
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A Centralized IoT Middleware System for Devices Working Across Application Domains Using
Self-descriptive Capability Profile

Permalink
https://escholarship.org/uc/item/6vn6r09g

Author
Huo, Chengjia

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vn6r09g
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A Centralized IoT Middleware System for Devices Working Across Application Domains Using
Self-descriptive Capability Profile

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Chengjia Huo

Dissertation Committee:
Professor Pai Chou, Chair

Professor Phillip Sheu
Professor Rainer Dömer

2014

c© 2014 Chengjia Huo

DEDICATION

To my parents, my finacee and my friends

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Description of Device’s Capability . 2
1.2 Devices Working Across Application Domains 3
1.3 Security and Privacy Enforcement . 4
1.4 Low Power Requirement . 5
1.5 Contributions . 5
1.6 Disseration Structure . 6

2 Background: Protocols for Networks of Things 7
2.1 NoT Protocols . 7

2.1.1 Bluetooth Low Energy . 8
2.1.2 ANT+ . 15
2.1.3 ZigBee . 15

2.2 BLE’s GATT Profile Hierarchy . 16
2.2.1 Properties of Characteristic . 16
2.2.2 Descriptors of Characteristic . 18

3 Background and Related Work: IoT 20
3.1 Middleware . 20
3.2 Device Capability Abstraction . 24

3.2.1 External-descriptive Solutions . 24
3.2.2 Self-Descriptive Solutions . 26

3.3 Task Composition . 26
3.3.1 Task Composition of NoT . 27
3.3.2 Composition of Web Services . 27

iii

3.4 Cloud and IoT Middleware . 29

4 Rimware: System Overview 33
4.1 Overview of Proposed Firmware-Gateway-Central System 33
4.2 Firmware . 34
4.3 Gateway . 36

4.3.1 NoT Device Adapter . 36
4.4 Centralized Components of Rimware . 37

4.4.1 Knowledge Base . 38
4.4.2 Adaptive Application-level Security Enforcement with Knowledge Base . . 40
4.4.3 Device-initiated Adaptive Privacy Protection with Knowledge Base 41
4.4.4 Task Scheduler . 43
4.4.5 Data Store . 44

5 Device Capability Profile 45
5.1 Device Capability Profile Model . 45

5.1.1 Functionality . 46
5.1.2 Attribute . 47
5.1.3 fact-typed Attribute . 49
5.1.4 stream-typed Attribute . 49
5.1.5 property-typed Attribute . 50

5.2 Syntax Expression of Device Capability Profile 52
5.3 Device Capability Profile in Firmware . 54

5.3.1 Functionality, Attribute, and Attribute’s Description in Firmware 54
5.3.2 Access Control on Device Capability Profile 56

5.4 Security and Privacy Specification using Device Capability Profile 56
5.4.1 Security Description in Device Capability Profile 57
5.4.2 Privacy Description in Device Capability Profile 59

6 Query and Task Scheduling 61
6.1 Access on Attributes . 61

6.1.1 Web APIs-based method . 62
6.1.2 Query-based method . 63
6.1.3 Search for Device’s KB Record . 64

6.2 Task Scheduling . 64
6.3 Task Optimization . 66

6.3.1 Optimization on Tasks Affected by Periodic Actions 67

7 Implementation: BlueRim 70
7.1 BLE Device and Emulator . 70

7.1.1 GATT-based Capability Profile . 71
7.1.2 EcoBT . 72
7.1.3 BLE Device Emulator by MacBook . 75

7.2 Gateway . 75
7.3 Cloud-base Centralized Components . 76

iv

8 Evaluation and Case Studies 77
8.1 Evaluation . 77

8.1.1 Code Size . 78
8.1.2 Responsive Time . 79
8.1.3 Power Consumption . 79

8.2 Case Studies . 81
8.3 ECG Recorder . 82
8.4 Infant Monitor . 82
8.5 Water Pipe Monitor . 83

9 Conclusions and Future Work 85

Bibliography 87

v

LIST OF FIGURES

Page

2.1 BLE Protocol Stack . 9
2.2 States in BLE Link Layer . 10
2.3 GATT Profile Hierarchy . 17

3.1 NoT device’s firmware structure with NoT middleware 21
3.2 Classification of middleware of NoT . 22
3.3 Position of the centrailized middleware for IoT with respect to NoTs and applications 23
3.4 Application domains formed by clouds . 30

4.1 Relationship of rimware, NoTs and application Domains 34
4.2 Overview of rimware . 35
4.3 Structure of centralized components of rimware and the interaction with gateway

and application domains . 39

5.1 An example of a device capability profile model 46
5.2 Functionalities of an infant monitoring device . 47
5.3 Example of a device’s functionality model . 48
5.4 A complete device capability profile of the infant monitoring device 53
5.5 An example of infant monitoring device interacting on the communication channel

with detailed description on heart-rate monitor functionality 55
5.6 An example of applying a security policy based on a symmetric key cryptography

algorithm . 58
5.7 An example of applying a security policy based on a public-key cryptography al-

gorithm . 59
5.8 An example of authentication checking based on two different mechanisms 60

6.1 The table structure used for KB records maintenance in a relational database 63
6.2 A workflow of the optimization on tasks affects by periodic actions 68

7.1 (a) EcoBT Platform for ECG recording and infant monitoring, (b) EcoBT with
ECG module, and (c) EcoBT with modules for Infant Monitoring 73

7.2 Software framework of EcoBT . 74
7.3 BlueRim Interactive Shell Interface . 76

8.1 An screenshot of the ECG recorder applicaition 83
8.2 An screenshot of the infant monitoring applicaition 84

vi

8.3 Locations of deployed devices . 84
8.4 The collected result of a specific location . 84

vii

LIST OF TABLES

Page

2.1 Comparison of common NoT Protocols . 8
2.2 Structure of Attribute . 12
2.3 Security Modes and Levels in BLE . 13
2.4 Characteristic properties . 17
2.5 Descriptor Types of Characteristic . 18

5.1 Required access permissions of different types of attributes 54

6.1 Mappings between access type and standard HTTP methods 62
6.2 An example of searching for an online device base on various conditions 64

7.1 Mappings of components between a device capability profile and a GATT-based
profile . 71

7.2 Mappings between attribute types and characteristic properties 71
7.3 The structure of ‘Characteristic Presentation Format’ descriptor used to describe

an attribute of a BLE device’s capability . 72

8.1 Code sizes of each component in BlueRim . 78
8.2 Impact on responsive time from security and privacy functionalities in BlueRim

for the demo device . 80
8.3 Impact on power consumption from security and privacy functionalities in BlueRim

for the demo device . 81

viii

ACKNOWLEDGMENTS

This work was sponsored in part by a National Institute of Standards and Technology (NIST)
Technology Innovation Program (TIP) Grant 080058, and National Institute of Health (NIH) grants
11R41HL112435-01A1, and 1R4HD074379-01.

I would like to extend my deepest gratitude towards my advisor Pai H. Chou, and committee mem-
bers Professor Phillip C-Y Sheu, Professor Rainer Dömer for their patient guidance and insightful
advices. Professor Pai H. Chou has supervised me through the entire work. I appreciate all of his
thoughtful directions and encouragements.

I dedicate this work to my parents, Wuqin Huo and Fengqin Liu for their steadfast love and en-
couragement. I am also indebted to my fiancee, Pinglin Huang. She always supports me and made
me concentrated with her love.

I am thankful to all my co-workers: Ting-Chou Chien, Jun Luan, Ke Hao, Qi Wang for their ideas,
collaborations, and friendship, which have made my Ph.D study here a wonderful experience.

I have found the Electrical Engineering and Computer Science Department at the University of
California, Irvine to be a great place to study.

ix

CURRICULUM VITAE

Chengjia Huo

EDUCATION

Doctor of Philosophy in Computer Engineering 2014
University of California, Irvine Irvine, California

Master of Science in Computer Engineering 2008
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2006
Dalian University of Technology Dalian, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2008–2014
University of California, Irvine Irvine, California

RESEARCH OF INTEREST

Internet of Things (IoT), Cyber-physical system (CPS), software modeling, online analytical pro-
cessing (OLAP)

REFEREED JOURNAL PUBLICATIONS

Chengjia Huo, Ting-Chou Chien, and Pai H. Chou. “Middleware for IoT-Cloud Integration
Across Application Domains”, IEEE Design & Test, Volumn 31, Issue 3, Pages 21-31, 2014.

Ke Hao, Zhiyuan Gong, Chengjia Huo, and Phillip C.-Y. Sheu. “Semantic Computing and Com-
puter Science”, International Journal of Semantic Computing (IJSC), Volume 05, Issue 1, Pages
95-120, 2011.

REFEREED CONFERENCE PUBLICATIONS

Ting-Chou Chien, Chengjia Huo, and Pai H. Chou, “A Modular Backend Computing System for
Continuous Civil Structural Health Monitoring”, in Proceedings of the Nondestructive Charac-
terization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland
Security 2014, Volume 9063, March 9-13, 2014.

INVITED TALKS

“Security and Trust Enforcement Using Profile-based Handler in a Highly Mobilized IoT”, The

x

10th IEEE International Conference on Distributed Computing in Sensor Systems, Marina Del
Rey, California, May 26, 2014.

xi

ABSTRACT OF THE DISSERTATION

A Centralized IoT Middleware System for Devices Working Across Application Domains Using
Self-descriptive Capability Profile

By

Chengjia Huo

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2014

Professor Pai Chou, Chair

The Internet of Things (IoT) has been receiving growing attention in recent years as the next wave

of computing revolution made possible by all types of networks of things (NoTs), where devices

powered with low-cost, miniature low-power systems-on-chip (SoC) with computing and commu-

nication capabilities, and are bridged to the Internet with the assistance of gateways. More and

more NoT device are designed to provide more than one functionalities to fulfill different require-

ments from the application domains. We believe that the true power of IoT is that functionalities

of devices can work across application domains. In order to reveal the potential of IoT, the de-

scription of a device’s capability needs to represent the functionalities that the device can provide.

We discover the previous solutions on describing a device’s capability focus mainly on hiding

the vendor-specific interfaces made by different manufacturers, but they do not reflect different

functionalities that a device provides.

In this thesis, the concept of device capability profile is proposed. Different from the previous

solutions, the device capability profile specified in the firmware of a device allows the device to

work across different application domains. Together with device capability profile, a centralized

IoT middleware framework, called rimware, is proposed. Rimware tracks every device’s capa-

bility and state in a centralized manner and provides different ways for application domains to

xii

query against the device’s functionalities. In addition, rimware utilizes the device capability pro-

file to carry out the enforcement of the security and privacy throughout the communication with

the devices. Moreover, tasks can be scheduled through the rimware which enables functionali-

ties from multiple devices to work together to fulfill the requirements from application domains.

Optimization is applied on cases that one device working for multiple task simultaneously. An

implementation of rimware that is specifically designed for BLE devices, called BlueRim, which

takes advantages of BLE’s very long battery life on the device side and the cloud functionality

on the centralized side is provided. The fundamental features of rimware have been validated

in several real-world applications from different different domains while incurring minimal code

size and communication overhead on BLE devices. We believe that our approach represents an

important technology in taking IoT closer to realizing the full potentials.

xiii

Chapter 1

Introduction

The Internet of Things (IoT) has been rapidly gaining ground in the scenarios of pervasive comput-

ing and automated human life. The basic idea of this concept is to present pervasively a variety of

things or devices that are around us through some unique addressing schemes so that those things

or devices can interact with each other and cooperate with each other to meet the users’ require-

ments. Manifold definitions of IoT were proposed from either the “Internet” perspective or the

“things” perspective, depending on their interests and backgrounds. We follow the definition that

raises the IoT vision from both two perspectives as defined in [51], which is, “Internet of Things

(IoT) is an integrated part of Future Internet including existing and evolving Internet and net-

work developments and could be conceptually defined as a dynamic global network infrastructure

with self configuring capabilities based on standard and interoperable communication protocols

where physical and virtual “things” have identities, physical attributes, and virtual personalities,

use intelligent interfaces, and are seamlessly integrated into the information network”. Physical

things in IoT include devices with direct Internet access and devices from Networks of Things

(NoTs) that are inter-networked by the Internet. An NoT is a network that makes use of short-

range communication protocols to enable devices to interact with their neighboring devices within

the same network. The wireless sensor network (WSN), which creates low-rate wireless personal

1

area networks for the communications of the low-cost, energy-efficient sensor devices based on

the standards on different layers of the wireless network, such as IEEE 802.15.4 for physical and

MAC layers, and ZigBee for the network layer and higher layers, is considered as one example of

an NoT. The Internet is the global network system of interconnected computer network that use

the standard TCP/IP protocol. Many application services are built on top of the Internet, such as

World Wide Web that uses Hypertext Transfer Protocol (HTTP), email services that use Simple

Mail Transfer Protocol (SMTP), and sharing services that use peer-to-peer (P2P) technology. Ac-

cording to our definition, an NoT is considered as part of the IoT. Unlike an NoT, things in the

IoT can work together even though they are not deployed in the same NoT because connections

of things in IoT are supported by the Internet, which does not have the limit of locale. The IoT

takes care of much more than just the connectivity issue, such as low-cost, miniature size, nam-

ing, object abstraction, service management, data logging, security and privacy. While IoT will

unquestionably bring high impact to every user’s everyday-life and behavior, many challenging

issues still need to be addressed.

The next four sections discuss some of the open issues in IoT which motivate us for our work.

Section 1.5 lists the contributions in this thesis. Section 1.6 presents the structure of this thesis.

1.1 Description of Device’s Capability

One major issues of achieving IoT is to describe a device’s capability. A device’s capability de-

scription specifies the interfaces in a universal format through which the device can be accessed. A

machine interpretable capability description helps on machine-to-machine interactions. Automated

configuration and management can be achieved against a device with a machine interpretable ca-

pability description in the IoT. However, due to the use of different vendor-specific interfaces on

different devices, it is very difficult to universally formalize the capability description for every

device.

2

A device can be either self-descriptive or external-descriptive. A device that is self-descriptive

stores an on-board capability description and provides it upon request. In contrast, an external-

descriptive device that provides vendor-specific interfaces without a formalized description. The

formalized capability description is provided by a third party system, such as a middleware sys-

tem, which sits between the device and the application domains and does translation work between

standard capability description and the device’s vendor specific interfaces. Previous solutions have

been proposed based on these two directions to describe device’s capability. In this thesis, we pro-

pose a way to define the capability description in a profile-based structure on the device’s firmware,

which is self-descriptive.

1.2 Devices Working Across Application Domains

Traditionally, embedded systems have been specialized to a specific application, such as a heart-

rate monitor (HRM), a proximity tag for locating misplaced items, or a light switch in a smart

home, etc. To us, a device in the IoT environment is more than just a single-purpose embedded

system with direct or indirect connectivity to the Internet. It may have been designed and marketed

for a single application, but it can potentially participate in applications that it was not originally

designed for, as long as it can provide the service needed. For example, one particular application

use case may need multiple devices to work together, in which case each of the devices was not

specifically designed for this application.

In addition, thanks to advances in systems-on-chip (SoC) in terms of computing and communica-

tion capabilities, increasingly more devices with onboard SoC are designed with different hardware

modules that are capable of fulfilling different application purposes.

We believe the above two aspects on “devices working across application domains” are the true

power of IoT to be. Previous solutions of describing a device’s capability mainly focus on hiding

3

the vendor-specific interfaces provided by different devices with a universal interface. However,

a common issues on the previous solutions is that devices described by the universal interface

are designed to only serve for a specific application domain instead of multiple domains because

functionalities in the devices are not described properly.

In this thesis, the capability profile structure we propose defines a device’s capability based on

the functionalities that the device provides, with which the first aspect of “devices working across

application domains” can be realized. Moreover, we propose a centralized IoT middleware frame-

work that allows tasks to be scheduled against one or more devices for a specific application do-

main, which fulfills the needs of the second aspect of “devices working across application do-

mains”.

1.3 Security and Privacy Enforcement

Various security techniques have been built in different NoT protocols used for embedded sys-

tem. However, they bring a scalability issue that the security policies that can be applied on the

communication channels are limited to the ones that are implemented by the NoT protocols. The

authentication mechanisms that are used in different NoT protocols to protect privacy also suffer

from the same situation. In many NoT protocols, access control is either nonexistent or relies on

simple pairing with web-password verification over different NoT standards.

We believe that security and privacy should not be restricted by the implementation of NoT pro-

tocols. Developers should have the possibility to specify preferred security policies and authen-

tication mechanisms to be applied for the devices designed by them. In this thesis, security and

privacy are considered as two functionalities that a device can provide. To enable the scalability of

security and privacy, the capability profile is used to specify the preference of security and privacy

on devices so that different security policies and authentication mechanisms can be applied for

4

different devices.

1.4 Low Power Requirement

Another major issue is low power consumption. Low power consumption is a mandatory feature

in many IoT systems, especially those powered by battery or are wearable. Bluetooth Smart, also

known as Bluetooth 4.0 Low Energy Technology (BLE), stands out as the lowest in average power

consumption among many wireless standards [13]. A BLE node can last for one year on a CR2032

coin-cell battery. BLE also is built into many mobile devices, making it possible for users to

interact with BLE nodes using their smartphone directly without infrastructure support. For these

reasons, we believe BLE deserves high-priority support in IoT. The implementation of our work

focus on BLE. However, the concept also applies to other low-power techniques that also have a

profile-based application layer.

1.5 Contributions

The contribution of this work is fourfold. First, we give the design of the centralized IoT mid-

dleware framework, called rimware, which integrates the NoTs and application domains. Second,

as part of the rimware definition, the profile-base capability structure on the device’s firmware is

given, through which the functionalities of a device can be described and accessed independently.

Moreover, security and privacy are described and provided as parts of the capability description

that helps firmware developers adopt different security and authentication mechanisms. Third,

query and task scheduling against devices through rimware are enabled to allow “devices working

across different application domains”. Finally, we describe an implementation, named BlueRim,

designed specifically for BLE devices, and we evaluate it using several real-world applications.

5

1.6 Disseration Structure

The rest of this dissertation is structured as follows. Chapter 2 introduces the background of proto-

cols of NoT, and Chapter 3 reviews the background and related work of IoT. Chapter 4 presents the

overview of our proposed framework, the “rimware”. Chapter 5 presents the concept of profile-

based capability structure at the application layer of a device’s firmware. In the following chapter,

we present a formalized way of querying and scheduling tasks against the NoT device through

rimware. Implementation of BlueRim is given in Chapter 7. Evaluation is discussed in Chapter 8.

Chapter 9 concludes this dissertation with directions for future research.

6

Chapter 2

Background: Protocols for Networks of

Things

This chapter surveys common communication protocols for networks of things (NoT), which are

inter-networked to form the Internet of Things. Our work exploits profile-based protocols, which

standardize the packet format and semantics to enable inter-vendor compatibility. We also examine

the security aspects of some of these protocols.

2.1 NoT Protocols

Many communication protocols are being used for NoTs. Table 2.1 compares some of the key

features of these protocols.

7

Table 2.1: Comparison of common NoT Protocols

BLE ANT+ ZigBee RF4CE Wi-Fi NFC

Topology
Broadcast, Star,
Scan, P2P, No
mesh

Broadcast, Mesh,
Scan, P2P

Mesh, Star,
Scan, P2P, no
broadcast

Mesh, Star,
Scan, P2P, no
broadcast

Star, P2P. P2P only

Cost (1-10ku) $1.95 $3.33 + MCU $3.20 $2.75 $3 + MCU $1 + MCU

PCB size (mm2) 20 125 306 305 60 100

MCU Integrated Low-end, sep. Integrated Integrated High-end, sep. High-end sep.

Need Regulator? No No No No Yes ($1.50) Yes ($0.33)

Energy per bit 153 nJ 710 nJ 185,900 nJ (~ZigBee) 5.25 nJ (reader side)

Peak Current 12.5 mA 17 mA 40 mA 40 mA 116 mA 50 mA

Coin battery life
@120 B/s 191 days 52.64 days (too high) (to high) (too high) (too high)

Distance 100 m 30 m 100 m 100 m 150 m 5 cm

Coexistence Freq. hopping
(37)

Fixed channel
(1/8)

Freq. agility
(1/16) Fixed Active

coexistence
None (short

burst)

Throughput 305 Kbps 20 Kbps 100 Kbps 100 Kbps 6 Mbps (11b) 424 Kbps
Latency 2.5 ms < ms 20 ms 20 ms 1.5 ms 1 second
Direct to
Smartmobile Yes (few) No No Yes (few)

2.1.1 Bluetooth Low Energy

BLE, for Bluetooth Low Energy Technology, is a subset of the Bluetooth 4.0 standard. It uses

the PHY and MAC layers of the ShockBurst protocol developed by Nordic Semiconductor, but

it defines higher layers of the protocol stack to be integrated with “classic Bluetooth,” formally

known as BR/EDR (Basic Rate / Extended Data Rate). One reason for BLE’s recent popularity is

its extremely low energy consumption. This is a crucial feature in many IoT systems that must be

miniature and portable but battery replacement is inconvenient. BLE represents one of the fastest

growing protocols for NoTs. This section reviews the BLE stack in layers.

8

Generic Attribute Profile
(GATT)

Attribute Protocol
(ATT)SMP

Logical Link Control and Adaptation
(L2CAP)

Link Layer (LL)

Physical Layer (PHY)

Generic Access Profile
(GAP)

GATT-based Profiles

HCI

Host

Controller SMP: Security Manager Protocol
HCI: Host Controller Interface

GAP RoleApplication

Figure 2.1: BLE Protocol Stack

Physical Layer (PHY)

The Physical Layer is responsible for transmitting and receiving bits over Radio Frequency (RF)

channels. BLE uses the 2.4 GHz Industrial Scientific Medical band and has 40 RF channels with 2

MHz channel spacing. Of these 40 channels, three of them are advertising channels that are used

for device discovery, connection establishment and broadcast transmission. The rest of the chan-

nels are data channels for bidirectional communication between connected devices. The Physical

Layer has a data rate of 1 Mbps with a coverage range of tens of meters.

Link Layer (LL)

The Link Layer is a state machine that controls different states of BLE device. There are five states:

Standby, Advertising, Scanning, Initiating, Connection, as shown in Fig. 2.2. When a device trans-

mits data in advertising packets through the advertising channels, the device is in Advertising state.

The device is referred to as an advertiser. The advertising packets may contains pure data if the

9

Adverstising

Initiating

Standby

Scanning

Connection
Slave Master

Figure 2.2: States in BLE Link Layer

advertiser only needs to broadcast the data without the intention to pair with other devices. On

the other hand, the advertiser can also announce itself as a connectable device in the advertising

packets through advertising channels. A device that only aims at receiving data through advertis-

ing channels without the commitment to pair is in Scanning mode and is referred to as an scanner.

In contrast, a device that listens for connectable advertising packets to form a connection to an-

other device is in Initiating mode and is called an initiator. When an initiator finds a connectable

advertiser, it transmits a Connection Request message to the advertiser to create a point-to-point,

bi-directional connection between the two devices. Once the connection is established, the two

devices enter Connected mode in which they can transmit data packets through data channels to

each other.

BLE defines two devices roles at the Link Layer for an established connection: the master and

the slave, which correspond to the initiator and the advertiser, respectively, during the connection

creation. In BLE, a master can have multiple simultaneous connections with different slaves,

whereas a slave may belong to at most one master in BLE 4.0, although BLE 4.1 allows a slave to

belong to more than one master.

10

Logical Link Control and Adaptation Protocol (L2CAP)

The L2CAP layer in BLE supports multiplexing for higher level protocols on top of a Link Layer

connection. It is a simplified version compared to the one used in classic Bluetooth in that BLE’s

L2CAP only supports three higher layer protocols, which are ATT, SMP, and L2CAP LE signaling

protocol, and it handles data packets in a best-effort (asynchronous) mode and does not offer

retransmission and flow control mechanisms in classic Bluetooth. Because the maximum payload

size of the L2CAP is 23 bytes, which is the data units of a single attribute in ATT, segmentation

and reassembly are not used for BLE.

Attribute Protocol (ATT)

The ATT defines two roles: server, which stands for the device containing data, and client, which

stands for the one accessing the server. The client or server role is independent of the slave or

master role that is defined in Link Layer. The ATT allows a device playing the server role to

expose a set of attributes to a device playing the client role by exchanging messages.

An attribute is a data structure that stores information managed by the GATT, which operates

on top of the ATT. An attribute consists of three elements: a 16-bit handle, a 16-bit or 128-bit

UUID that represents the attribute type, and a value of the attribute, as shown in Table 2.2. The

ATT defines several types of operations that server and client can make use of to exchange in-

formation on attributes. The client can access the server’s attributes by sending request-typed

messages, which trigger response-typed messages sent from the server. The client can also send

command-typed messages to write attribute values. For asynchronous communication, the server

can also send unsolicited messages that contain attributes to notify the client whenever there is a

value change on the attribute. The unsolicited messages can be of either indication-type, which

requires a confirmation-typed message from client side, or notification-type, without requiring a

confirmation.

11

Table 2.2: Structure of Attribute

Handle (2 octets) Type (2 or 16 octets) Value(0 to 512 octets)

Security Manager Protocol (SMP)

BLE supports two security modes, LE Security Mode 1 and LE Security Mode 2 over a connection

from two BLE devices. These two security modes apply security functionality over Link Layer

and over ATT layer, respectively. Each security mode may work on different levels with different

requirements on encryption and pairing. A summary of security mode and level is given in Ta-

ble 2.3. Encryption on Link Layer in LE Security Mode 1 is performed using 128-bit AES-CCM

algorithm [53] with Long-Term Key (LTK) used as input for the encryption key. If LE Security

Mode 2 is used, which means the connection is not encrypted, data signing is used for transferring

authenticated data and Connection Signature Resolving Key (CSRK) is shared between two de-

vices for signing the data. To distribute the above keys, a short-term encrypted session needs to be

established and the Short-Term Key (STK) needs to be generated for the session.

To generate the STK, pairing has to be performed between two devices. There are three methods to

peform pairing: Out of Band, Passkey Entry and Just Works. The first two are authenticated pairing

and prevent Man-In-The-Middle attacks [21], whereas the third method is unauthenticated. The

Security Manager Protocol is the message protocol used for distributing specific keys for pairing

and transport on top of a fixed L2CAP channel. The actual security mode and level to be used is

determined by GAP.

A vulnerability that currently exists in BLE is that except for Out-of-Band pairing mode, which

is cumbersome to implement in practice, none of the other pairing methods is protected against

passive eavesdropping during the pairing process. In these pairing mode, an adversary who obtains

the pairing messages can determine the LTK, the CSRK or the IRK [46].

Note that, instead of solving the existing vulnerability against passive eavesdropping that currently

12

Table 2.3: Security Modes and Levels in BLE

Pairing Encryption Layer

LE Security Mode 1
Level 1 No No

Link LayerLevel 2 Unauthenticated Yes
Level 3 Authenticated Yes

LE Security Mode 2
Level 1 Unauthenticated No

ATT
Level 2 Authenticated No

exists in the link layer of BLE, our interest in security over BLE is to enable the scalability of

security on BLE based on the developer’s preference by making use of the GATT-based profile in

the application layer. A developer can describe the preferred security policy to be applied on the

communication channel for the BLE device in the device’s GATT-based profile. Our work is based

on the assumption that there is no passive eavesdropping in the experimental environment.

Furthermore, the term “authentication” as used in BLE security is the authentication in the sense

of cryptography, which refers to “verification that the two devices have the same secret key (for

encryption or for data signing)” [18]. However, this device-level authentication does not solve the

general sense of authentication, i.e., the privacy issue, which is “the process of verification of the

identity of the remote device” [20]. This two security-related issues, as part of the motivation of

our work, will be discussed further in Chapter 4.

Generic Attribute Profile (GATT)

The GATT defines a profile-based service framework using the ATT. The framework defines for-

mats of services and characteristics as well as the discovery procedure from one device to another.

A characteristic is a value with properties and configuration information about how the value may

be accessed and information about how the value should be displayed and represented. The char-

acteristics’s value and its properties and configuration information are stored as attributes. There

may be other attributes used as the descriptors for the characteristic to specify information related

to the characteristic’s value, such as measurement units. A service is a group of one or more

13

characteristics, whose identification is also stored in attributes. In our work, the BLE’s GATT pro-

file hierarchy is used to create the profile that describes an NoT device’s capability. Through the

profile, each of the functionalities in a device’s can be accessed and utilized independently. The

definition of BLE’s GATT profile hierarchy is discussed in details in Section 2.2.

Generic Access Profile (GAP)

The BLE GAP is the base profile that describes the behaviors and methods for device discovery,

connection establishment, security and authentication, association models and service discovery.

GAP define four device roles for BLE: Broadcaster, Observer, Central, and Peripheral:

• Broadcaster role broadcasts advertisement data through adverting channels without estab-

lishing connection with other devices.

• Observer role receives data transmitted by the Broadcaster.

• Central role scans for devices that advertise themselves to be connectable and initiates and

manages multiple connections with peripherals.

• Peripheral role broadcasts the device itself as a connectable device and waits for a request

from a Central to establish a link-layer connection.

Each GAP role specifies the requirement for the underlying controller. For example, Central and

Peripheral roles requires the device’s controller to support master and slave roles, respectively. A

BLE device may support multiple roles if supported by the underlying controller.

GATT-based Application Profiles

Application profiles can be created by following the GATT profile hierarchy to contain a collection

of services for the specific application. The purpose of creating application profiles is to enable

14

application interoperability through the same application domain.

2.1.2 ANT+

ANT+ is a profile-based protocol on top of ANT, which is a popular lightweight wireless protocol

based on the same ShockBurst PHY that is also used by BLE. ANT+ has been popular with sports

and fitness applications such as heart-rate monitors, bike speedometers, and treadmills, although

they are being taken over by BLE. ANT is very simple, low-power protocol that basically just

broadcasts without pairing. The response time is therefore very fast, but at the same time it offers

no privacy.

2.1.3 ZigBee

The ZigBee [9] Alliance is an association of companies working together to develop standards

(and products) for reliable, cost-effective, low-power wireless networking. ZigBee technology

has been embedded in a wide range of products and applications across consumer, commercial,

industrial and government markets. ZigBee builds upon the IEEE 802.15.4 [30] standard, which

defines the physical and MAC layers for low-cost, low-rate personal-area networks. ZigBee defines

the network-layer specifications for star, tree and peer-to-peer network topologies and provides a

framework for application programming in the application layer.

ZigBee and BLE are similar in that they both use profile concept to define communication interface

of different devices for different application use cases. However, the term “profile” mean different

things. BLE uses GATT-based profile structure in its application layer for the discovery of services

and exchanges data from one device to another through the profile’s characteristics. Whereas,

ZigBee’s profile does not specify a communication structure. Instead, it specifies initial settings,

the communication sequence and message format for different types of devices that are involved

15

in the particular application use cases.

2.2 BLE’s GATT Profile Hierarchy

BLE defines a profile-based application layer structure, whose hierarchy is defined by GATT,

which is discussed in Section 2.1.1. As shown in Fig. 2.3, the GATT profile hierarchy consists

of three types of components:

• Service

• Characteristic

• Descriptor

The top level of the hierarchy is a profile consists of one or more services. According to the

definition of BLE specification, each service represents a particular function or feature of a BLE

device or portions of the device. A service consists of a list of characteristics. The service may

also contain references to other services. A characteristic carries a single value and a number of

descriptors that describe the meanings of characteristic’s value such as measurement unit, valid

range, description in human readable text, etc. Every service, characteristic, and descriptor is

identified by a Universally unique identifier (UUID), with a length of either 16-bit or 128-bit long.

2.2.1 Properties of Characteristic

Properties of a characteristic specify the accessibility types on a characteristic’s value as shown in

Table 2.4. The ‘Broadcast’ property is set when the characteristic value is permited to be broad-

casted. The ‘Read’ and ‘Write’ properties enable a characteristic value to be accessed by read

operations or write operations, respectively. The ‘Write Without Response’ property enables the

16

Figure 2.3: GATT Profile Hierarchy

Table 2.4: Characteristic properties

Properties Hex Value
Broadcast 0x01
Read 0x02
Write Without Response 0x04
Write 0x08
Notify 0x10
Indicate 0x20
Authenticated Signed Writes 0x40
Extended Properties 0x80

17

Table 2.5: Descriptor Types of Characteristic

Descriptors UUID
Characteristic Extended Properties 0x2900
Characteristic User Description 0x2901
Client Characteristic Configuration 0x2902
Server Characteristic Configuration 0x2903
Characteristic Presentation Format 0x2904
Characteristic Aggregate Format 0x2905

same accessibility on a characteristic value as the ‘Write’ property does, but in a different re-

sponse manner. With ‘Write’ property a response message is sent back after every write operation

against the characteristic is received and processed to indicate whether or not the operation suc-

ceeds, whereas with ‘Write Without Response’ property no response is sent. The ‘Notify’ property

and ‘Indicate’ property enable a characteristic’s value to be sent out to other party with push no-

tification when there is an update on the characteristic’s value. The difference between ‘Notify’

property and ‘Indicate’ property is that characteristics with ‘Indicate’ property require confirma-

tion message from the party where the notification is sent to, whereas characteristics with ‘Notify’

property do not. The ‘Authentication Signed Writes’ enables write operations against a charac-

teristic value along with authentication signatures. The ‘Extended Properties’ property indicates

that extended properties are defined and is set for this characteristic in the ‘Extended Properties

Descriptor’ of the characteristic. Multiple properties can be assigned to one characteristic.

2.2.2 Descriptors of Characteristic

Different types of descriptors [17] are defined in BLE to describe a characteristic’s value as shown

in Table 2.5.

• ‘Characteristic Extended Properties’ descriptor: This descriptor that associates with the ‘Ex-

tended Properties’ property discussed in Section 5.1.5 serves for setting extended accessibil-

ity properties to the characteristic.

18

• ‘Characteristic User Description’ descriptor: This is a human-readable textual string for a

description of the characteristic.

• ‘Server Characteristic Configuration’ descriptor: This descriptor is used to enable ‘Broad-

cast’ property of characteristic.

• ‘Client Characteristic Configuration’ descriptor: This descriptor is used to enable ‘Notify’

property of characteristic.

• ‘Characteristic Presentation Format’ descriptor: This descriptor stores the representation

information about a characteristic value such as format, exponent, unit, name space, descrip-

tion, etc.

• ‘Characteristic Aggregate Format’ descriptor: This descriptor stores the handles of ‘Charac-

teristic Presentation Format’ descriptors for each sub-value when a characteristic’s value is

used to store multiple sub-values.

The GATT-based application profile is used to specify a BLE device’s capability, which is dis-

cussed in Chapter 7.

19

Chapter 3

Background and Related Work: IoT

This chapter introduces the concept of middleware and its relate work in IoT. The cloud technology

and the challenges to IoT brought by cloud are also discussed.

3.1 Middleware

Originally, middleware is a concept of NoT. Because of the existence of different protocols and data

formats provided by different types of devices, middleware components are employed to provide a

universal interface to these devices or the NoTs formed by them to ease the difficulty of application

development with these devices. By hiding vendor-specific details from application developers,

middleware components allow Remote Procedure Call (RPC) servers to support function calls over

different languages and architectures. This trend of NoT middleware development were motivated

by increased technological possibilities of embedded system devices, e.g., more memory, larger

storage capability, and better processors. These possibilities allow different types of middleware

to run on devices. Therefore, NoT middleware is often deployed on devices as part of the firmware

that runs on top of the OS layer as show in Fig. 3.1. Developers are allowed to write applications

20

NoT device's firmware

OS layer

middleware

application

Figure 3.1: NoT device’s firmware structure with NoT middleware

in a standard way with the universal interface provided by the middleware.

Under the original definition, NoT middleware often can be categorized as follows:

• Query-based: This type of middleware views the NoT as a distributed database. Each device

typically has a local database to store sensed data and a query engine to receive and process

queries, which is usually in a modified form of standard SQL. Besides executing and return-

ing the results of any query, query-based middleware is responsible for routing the query

to the correct device by maintaining a network path. Examples of this type of middleware

include TinyDB [39], SNEE [27], and KSpot [11].

• Deployment-based: This type of middleware installs a virtual machine programming envi-

ronment that hides details of the underlying operating system and hardware. Thus, software

developers can write programs in a common language and deploy it to any device that runs

the virtual machine. Deployment-based middleware enables reusable programs to be run or

updated across different devices. Examples of deployment-based middleware includes Maté

[35], MagnetOS [14], and Wukong [45].

• Communication-based: This type of middleware discovers the nature of many NoTs, that is,

communication often occurs because of events that happen in the monitored environment.

For example, the detection of facing down of a motion sensing device on a baby may result

in transmission of that signal to all interested applications. The event-driven communica-

21

Sensor device

query-based
middleware

Sensor device

query-based
middleware

Sensor device

query-based
middleware

Sensor device
deployment-

based
middleware

Sensor device
deployment-

based
middleware

Sensor device
deployment-

based
middleware

Sensor device
communication-

based
middleware

Sensor device
communication-

based
middleware

Sensor device
communication-

based
middleware

Figure 3.2: Classification of middleware of NoT

tion has led to publish/subscribe mechanism for NoT middleware. When a device detects an

event, the event is “published” to all the applications that “subscribed” this event by trans-

mitting the resulting measurements as messages. Additionally, applications can “subscribe”

to receive messages either triggered by a special event or with a certain time interval. Ex-

amples of communication-based middleware include Mires [50], TinyMQ [48] and WMOS

[36].

The NoT middleware categorization is shown in Fig. 3.2.

However, the trend of NoT middleware development has its limits. First, it is only suitable for

devices that are powerful in terms of CPU, memory and storage capability. However, many current

devices are still limited by their resource to run, e.g., a virtual machine. Second, it is designed only

for devices that work for a specific application because the application, as part of the firmware, also

22

Centralized Middleware

Applications

Data publishing

Data gathering

NoTs
: NoT device

Internet

NoT protocols

Internet

Figure 3.3: Position of the centrailized middleware for IoT with respect to NoTs and applications

runs on devices. In practice, many real-world applications provide their services based on only the

device’s measurements without requiring NoT middleware. Devices in an NoT function primarily

as simple data sources. Data collected from existing NoTs are often served for more than just one

single application. Therefore, the ideas underlying the approaches for NoT middleware have not

been widely adopted in practice.

Moreover, in recent years, data-centric applications designed for IoT have started collecting data

from multiple existing NoTs. Consequently, middleware for IoT that focuses on data gathering

from existing NoTs and data publishing for the use by third party applications has been popular-

ized. Middleware for IoT provides a universal interface for developers to access any NoT device.

Unlike middleware for NoTs, middleware for IoT often resides outside the NoT devices and man-

ages the IoT in a centralized manner as shown in Fig. 3.3. Under each NoT, a gateway is often used

to bridge between different NoT protocols and the Internet. Because this centralized design con-

siders NoT devices as data providers and separates the application layer from the firmware stack,

software developers can design applications such as remote monitoring and management without

worrying about flashing new firmware.

In recent years, the Service Oriented Architecture (SOA) approach is often adopted for the central-

23

ized IoT middleware. The adoption of SOA allows the middleware to present services provided by

NoT devices as web services. It also allows applications to fulfill complex tasks by composing ser-

vices provided by different device. Examples of IoT middleware include SANY [15], PULSENet

[26], and SenseWeb [28].

The design of IoT middleware focuses on several important aspects. First, because devices are

accessed through middleware in a centralized manner, IoT middleware needs to abstract the ca-

pability descriptions of the devices that are managed by it in a standard way and present them as

the universal interface. We will discuss this in the next section. Second, IoT middleware needs

to take care of the management issues such state monitoring, data collecting and storage, security

and privacy, etc. Our work is based on the centralized IoT middleware design. We expand the

design by introducing a specification of self-descriptive device capability description as well as by

involving the concept and functionality from the cloud.

3.2 Device Capability Abstraction

The purpose of device capability abstraction is to provide a universal interface to access different

devices. However, because of different hardware specifications, it is difficult for a device to be

described in a universal manner. Previous solutions used on device capability abstraction can

be summarized into two categories that are opposite to each other: external-descriptive and self-

descriptive.

3.2.1 External-descriptive Solutions

The external-descriptive solutions require no formal description provided from the device side.

Instead, an agent, such as middleware component, provides the universal interface to access any

device by hiding the vendor-specific interface. The external-descriptive solutions are often used by

24

SOA-based middleware, in which case device’s description information is often exposed as web

services. For instance, SenseWeb [28] is a centralized middleware framework from Microsoft Re-

search. In SenseWeb, devices can be addressed through a sense gateway, which provides a uniform

interface for the rest of SenseWeb, hiding any vendor-specific aspects. The sense gateway com-

municates with applications and other components in SenseWeb through a a common Web Service

Application Programming Interface (WS-API). A similar solution that uses a smart gateway to

provide the universal interface to access devices is discussed in [24].

OGC’s Sensor Web Enablement (SWE) initiative [19] is one of the most commonly used stan-

dards to make sensor devices discoverable and accessible over the Internet through web service

interfaces. SWE’s powerful modeling language, SensorML, aims at modeling any type of sensor

systems and provides information such as discovery process, sensor’s capabilities in XML and

wrapped as Sensor Observation Service (SOS), the web service standard from OGC for publish-

ing on the web. Although SWE means to make sensor devices known and discoverable through

SensorML, we often see in real practice that sensor devices need assistance from an intermediate

application on translating their capabilities into SensorML and registering them as SOS to join in

an SWE-based system due to the fact that capabilities of sensor devices are often described by

vendor-specific interfaces instead of by SensorML.

However, external-descriptive solutions have their limits. Because external-descriptive solutions

translates vendor-specific interface over NoT protocols into a universal interface over the Internet.

The translation often happens on the gateway, which serves as the bridge between NoT protocols

and the Internet. However, it leads to an embarrassing situation that the gateway not only is re-

quired to have connectivity on NoT protocols and Internet, but also must have knowledge on the

device’s capability. The gateway has to be re-programmed to gain “knowledge” every time when

there is a device with new interfaces trying to connect to the gateway. It is difficult to maintain such

a huge knowledge base on each local gateway and may also bring security problems, especially

in a highly mobilized IoT where different types of NoT devices roam frequently and connect to

25

different local gateways at different places.

3.2.2 Self-Descriptive Solutions

In contrast, with self-descriptive solutions a device provides the capability description by itself

so that it can be accessed directly. In this type of solutions, capability description is often stored

on the device and can be obtained through message exchange by following a particular commu-

nication protocol. The advantage of self-descriptive solutions compared to external-descriptive

solutions is that a device is able to share its capability description with others directly without the

assistance from middleware. Our work belongs the second category. IEEE 1451 [34] provides

device’s description at the transducer level. It embeds the TEDS documents to provide description

of hardware modules in a device, e.g. manufacturer data and calibration data, etc. Constrained Ap-

plication Protocol (CoAP) [52] is a RESTful application layer protocol design that minimizes the

complexity of mapping with HTTP. Device capabilities can be exposed as a list of CoAP sources.

CoAP benefits from low header overhead and parsing complexity.

3.3 Task Composition

In IoT, it is often the case that an application purpose must be fulfilled by the collaboration of

services provided by multiple devices. In that case, techniques of composing tasks against multiple

devices are required. We first review the techniques on task composition used in NoT middleware.

Because IoT middleware often adopts SOA principles, we then review the composition techniques

used in web service.

26

3.3.1 Task Composition of NoT

TinyDB [39] uses an SQL-like query format to compose a task. To process a composed task, issued

queries are first routed to the correct devices from root device and system will maintain routing

path of concerning devices. After receiving the results from all concerning devices the root device

will aggregate the sub-results and return the final result.

WuKong project [45] defines profiles that are independent of the transport protocol such as ZigBee,

Z-Wave, or Wi-Fi. Profile enables WuKong-compliant devices (called Wu-devices) to interoperate

and task mapping from a flow-based program. In case of a device crash, the mapper can re-task it

to substitute devices (i.e., with matching profile).

SHARE [37, 38] uses TinyOS-based task coordination design. Tasks in SHARE are composed

and transmitted in XML. It defines event semantics checking and conversion based on signal type

system (STS) that captures both values and service triggering. Based on the compatibility of event

semantics, redundant computations in uncoordinated tasks are removed from runtime. The task

optimization in our work discussed in Section 6.3 is highly inspired by the STS.

3.3.2 Composition of Web Services

A complex task may require multiple web services to collaborate with each other in which situation

service composition is required. There are two main techniques for service composition: flow-

based composition and AI-based composition.

A workflow-based method for web service composition usually generates either a static workflow

or a dynamic workflow. In a static workflow, a complex service is modeled as a graph that de-

fines the execution sequence in the process. The graph is manually created and can be updated

dynamically. Eflow [22] is one example of static workflow composition. In a dynamic workflow

method, it assumes that the availability of services may change frequently to fit a highly dynamic

27

environment. CSDL [23] is one example of dynamic workflow composition. Static and dynamic

techniques may be combined for service composition such as Polymorphic Process Model (PPM)

[47]. The dynamic workflow of PPM includes a set of service-based processes, where a service

is modeled as a state machine. The state machine is used to specify the states of a service and

the state transitions. In the composition process, dynamic service composition is supported by

reasoning based on the state machine.

Because it is insufficient to achieve the goal of interoperation simply by integrating business pro-

cesses across enterprise boundaries using standard messages and protocols alone, AI-based com-

position is introduced, which aims to declaratively specify the prerequisites, consequences, and

data flow of a web service. AI-based composition languages such as BPEL4WS [12], Web Ser-

vices Flow Language [7], XLANG [8], and Web Service Choreography Interface [5] have been

offered as solutions.

Besides declarative languages, ontology is also used to assist web service composition. The Se-

mantic Web Service (SWS) framework [41] was introduced as a solution by combining traditional

web services and ontology. The core of a semantic web service is adding semantic markups to a

traditional web service. Ontology is used to describe the properties and semantics of web services

in an unambiguous form so that the user can locate, select, employ, compose, and monitor the web.

It is based on a service description ontology that includes three sub-ontologies: service profile,

service grounding, and a process model. SWS framework usually includes the vision of:

• Automatic Web Service Discovery: Given a service request, the Semantic Web Service sys-

tem can find a service provider that offers a service that can fulfill the requirements such as

input/output data, conditions, and restrictions. Note that the term “discover” means finding

one particular service, not a combination of multiple services.

• Automatic Web Service Execution: In the traditional web service framework, after a service

is discovered it has to be manually invoked. A Semantic Web Service, however, allows a

28

computer program or agent to automatically execute it.

• Automatic Web Service Composition and Interoperation: Traditionally, if no single existing

service can be identified to satisfy a service request, several services have to be manually

found and a workflow has to be manually built to fulfill the requirement. The Semantic Web

Service system is targeted to automatically select and compose appropriate web services to

satisfy the service request.

Typical solutions for semantic web service composition include OWL-S [40], METEOR-S [43],

SWSL [4], and WSDL-S [6].

3.4 Cloud and IoT Middleware

A cloud is a general term for a pool of automatically managed computing resources that are ac-

cessible over the Internet. The resources can include CPU cycles, storage, and the services offered

using these resources. The main goal of the cloud structure is to provide on-demand, prompt ac-

cess to these services while being able to scale with usage, from few users to millions or billions

of users. The concept of a cloud stack may be useful for describing the different levels of cloud

services. They are IaaS, PaaS, and SaaS.

• Infrastructure as a Service (IaaS) refers to the hardware and software infrastructure on which

cloud services are actually run. The hardware includes the server machines, storage systems,

the networks (to the Internet as well as high-speed networks between servers on a rack, for

example). The software includes the operating system that runs on these machines and layers

of software that integrate them. Examples include Amazon Web Services, Rackspace, and

OpenStack.

• Platform as a Service (PaaS) refers to the tools and services for facilitating the develop-

29

Healthcare

Smart
environment Transportation ...

Autohome

NoTs

access

SaaS
applications

Figure 3.4: Application domains formed by clouds

ment and deployment of applications as cloud services. PaaS provides computing platform

resources including operating system, programming language runtime environment, web

server, and database engine. In a PaaS, users may choose the platform components they

need to build their online/offline application. PaaS manages the underlying computing and

storage resources automatically to fulfill the needs of applications running on it in terms of

availability and scalability. Examples of PaaS include Heroku, Google App Engine, Mi-

crosoft Azure.

• Software as a Service (SaaS) refers to the application-level services for the end user. Exam-

ples include web mail, google map, google doc, facebook.

In recent years, integration of IoT and cloud becomes the popular research trend. Functionalities of

cloud benefits the implementation of IoT middleware in several aspects. For instance, the world-

wide Internet accessibility allows devices to be accessed from anywhere without downtime. In

addition, the large storage ability allows data collected from devices to be archived at centralized

30

middleware instead of storing at local NoTs. Moreover, the powerful computation capability of

cloud enables IoT middleware to process thousands of queries against NoT and return results

immediately. The implementation of our work is a SaaS application that is built on a PaaS runtime

platform, thus having all above benefits from functionalities of cloud.

Besides the powerful functionality, cloud technology also brings challenges to IoT. From the appli-

cation aspect, there exists more than just one cloud. A SaaS application is considered as a cloud and

the application forms its own application domain. Applications that serve for different application

purposes create different application domains as shown in Fig. 3.4. In cloud-based architecture, it

is often the case that different SaaS applications share the same group of users. For instance, an

application under Facebook domain share the same group of users with Facebook. Different appli-

cations that share the same group of users are considered to be under the same application domain.

In this thesis, we assume applications that are under the same application domain serve for the

same application purpose, for instance, healthcare, autohome, smart environment, etc., as shown

in Fig. 3.4. The formation of different cloud-based application domains generates the needs of one

device working for different application domains. It also generates the needs of multiple devices

collaborating with each other to work for any application domain. Many works [32, 44] have been

proposed to create cloud-based IoT middleware. However, these works mainly focus on estab-

lishing an IoT middleware structure with cloud functionality that supports one specific application

domain and do not consider the issue of one device working across application domains. Many

data centric implementations, such as [42], support for multiple application domains, but they are

concerned with only sharing archived data among different application domains and do not sup-

port runtime tasks collaborating from multiple devices. Other proposed works such as [29] support

runtime monitoring on devices from different application domains are through a subscribe/publish

mechanism. However, because this type of framework often lacks definitions of device capability

descriptions, it can only support read-only operation such as state monitoring and data collecting

but does not support remote device manipulation. Our work in this thesis aims at providing a so-

lution to respond to the challenges brought by the cloud concept and to address the issues in the

31

existing solutions.

32

Chapter 4

Rimware: System Overview

We envision an enhanced architecture for IoT by introducing our proposed rimware, a middleware

layer that spans NoT device’s firmware, gateway, and centralized components. The term rimware

is coined from the analogy that the proposed middleware resides in a rim that wraps the physical

space (i.e., NoTs) on the inside and application domains on the outside, as shown in Fig. 4.1.

The halo on the edge between rimware and NoTs denotes that rimware also plays a role in the

firmware of NoT devices on the NoTs side. Rimware aims at supporting remote device access

from different application domains and enablement of collaboration on multiple devices for tasks

across application domains. This chapter presents the overview of the rimware structure.

4.1 Overview of Proposed Firmware-Gateway-Central System

An overview of a firmware-gateway-central system running rimware is shown in Fig. 4.2. Differ-

ent from classic centralized IoT middleware, which often consists of the gateway and centralized

components, rimware is composed of three parts: profile-structured firmware, plug-in-style gate-

way, and the centralized components of rimware. On the firmware sides, the capability of any NoT

33

Application Domains

Rimware

NoTs

Figure 4.1: Relationship of rimware, NoTs and application Domains

device is abstracted into a profile structure. When the device connects to a gateway or a rimware-

enabled smartphone, the gateway or smartphone obtains the capability profile from the device over

NoT protocols and passes it to the centralized components of rimware over the Internet. The cen-

tralized components then applies the security policy and privacy mechanism on the communication

channel against the NoT device according to the description in its capability profile. The informa-

tion in the capability profile is translated and presented to the application domains in the format

of web APIs. A user with the the correct privilege from any application domain can access the

device’s functionalities remotely either through its web APIs or by self-composed queries. A user

can also compose and issue a task to run on any device through the centralized components of

rimware. Moreover, tasks that involve multiple devices can also be scheduled through the central-

ized components of rimware. The next three sections present the principle parts of rimware.

4.2 Firmware

Rimware requires a profile-based interface to abstract an NoT device’s capability on the firmware

side. A device’s capability is expressed by a capability profile. The capability profile consists

34

centrailized
components
of rimware

application domain1
Node1

NoT

Node2

Node3

dedicated gateway1
adapters

rimware-enabled
smartphone1

apps

adapters

Lengends:

 : capability profile : functionality : rimware adapter : non-rimware apps

Web API

User
applications

application domain2

User
applications

NoT protocol

NoT protocol

Internet

In
te

rn
et

Application
domains

NoT protocol

Figure 4.2: Overview of rimware

of one or more functionalities. For instance, a heart rate monitoring device may have two func-

tionalities: monitoring the current heart-rate at the specified sampling rate and providing the de-

vice’s hardware information such as manufacture’s name, serial number, etc. The capability profile

may also include security policies and privacy mechanisms to be applied after the communication

channel with the device is established. For implementation, the application layer of the rimware-

compatible device’s firmware is built for abstracting the device’s capability in a profile structure.

During discovery stage, the NoT device exposes its capability profile to the other party (e.g.,

the gateway). The other party accesses the device’s functionalities through its capability profile.

Profile-structured design on the firmware brings several advantages over the classic centralized

IoT middleware. First, it releases the burden from the gateway in the classic centralized IoT mid-

dleware that uses external-descriptive solutions as discussed in Section 3.2.1. With the uniform

profile structure, the gateway does not need to be re-programmed when a new device with a differ-

ent version of firmware connects to it. Instead, the gateway acts as the conduit when the centralized

35

components of rimware access the the capability profile of any NoT device. Second, because the

profile structure is a self-descriptive solution for device capability abstraction as mentioned in Sec-

tion 3.2.2, it enables the possibility of sharing capability information between devices without the

interference of a gateway. For example, it is possible for a non-rimware app as shown in Fig. 4.2

to communicate with an NoT device directly as long as it understands the capability profile of the

device.

The capability profile structure is the fundamental concept of our work. The construction of capa-

bility profile is discussed in detail in Chapter 5.

4.3 Gateway

The gateway in rimware serves the purpose of bridging the NoT devices with the centralized com-

ponents of rimware. This means it must have connectivity of the NoT protocols downstream and

connectivity of the Internet upstream. The gateway runs adapter processes in a plug-in-style archi-

tecture to bridge the two sides. As shown in Fig. 4.2, the gateway program can be set up either on a

dedicated local device or a rimware-enabled smartphone. A gateway can establish communication

channels with multiple devices by instantiating multiple adapter instances.

4.3.1 NoT Device Adapter

An adapter on the gateway is a running process that acts as the interfacing process between an

NoT device and the centralized components of rimware. When a gateway starts running, it proac-

tively discovers and connects with those nearby NoT devices that are advertising themselves as

connectable devices over the NoT protocol. For every connected device, the gateway instantiates

an adapter on the gateway and uses the adapter. The adapter is used for exchanging message with

the device through the NoT protocol. Once the device is connected, the adapter sends messages

36

to the device and asks for the structure of device capability profile. After obtaining the device

capability profile structure, the adapter passes it to the centralized components of rimware over the

Internet.

The gateway adapter acts as the conduit. Messages containing different types of operations includ-

ing read, write, subscribe, and unsubscribe from the centralized components can be sent to any

NoT device to access its capability profile through an adapter.

4.4 Centralized Components of Rimware

The centralized components of rimware sit between gateways and application domains, and com-

municate with the two sides over the Internet. The centralized components serve several function-

alities:

• Storing the capability profile of every NoT device and translating it into web APIs

• Applying the required security policies and privacy on the communication channels of the

NoT devices

• Monitoring the state of every NoT device

• Storing data collected from NoT devices

• Processing composed tasks from users against any NoT device(s)

Note that rimware does not take care of access control against users from application domains.

Instead, we assume the accessibility checking against users should be done at the application do-

mains side before any request is issued to the rimware. The reason is that, to maintain the accessi-

bility mappings between NoT devices and users from different application domains and for every

user, the rimware needs to first maintain a mapping between the user’s identity in rimware and the

37

identity in the user’s application domain. Due to the different identification mechanisms used in

different application domains, it is possible that two users from different application domains have

the same the identity in their own domains. Therefore, it is difficult to do access control against

users from the rimware side. Since the applications from different domains are built to work with

rimware, it is reasonable for them to do the accessibility checking. From the rimware side, when

rimware receives a request from the application domains side, it processes the request without car-

ing about which application the request comes from or which user of the application issues the

request.

As shown in Fig. 4.3, the centralized components of rimware are:

• Knowledge base

• Task scheduler

• Data store

The next three subsections discuss each of the centralized components.

4.4.1 Knowledge Base

The knowledge base serves for storing and translating the device’s capability profile, monitoring

the online/offline state of every NoT device, applying the required security policies and performing

the authentication checking. The knowledge base is built by a managing process called the KB

manger.

For every device, the KB manager maintains in the knowledge base a unique KB record that is

generated when the device joins rimware for the first time. The KB record is identified by the

device’s on-board ID, for instance, the MAC address. The KB record contains several kinds of

information as follows:

38

Data Store

Knowledge Base
Knowledge

Base Record
Knowledge

Base RecordKB Record

Gateway

capability profile
structure

NoT
device

adapter

Internet

web APIs
info

translate

collected data

application
domains

web API

task request

authentication
info

NoT proctocol

ID

security handler
templates

URLs

download

apply

required handler

KB manager
Task scheduler

periodic
monitor
request

online/offline state

task request

task result

centralized
components
of rimware

authentication
handler templatesverify

Figure 4.3: Structure of centralized components of rimware and the interaction with gateway and
application domains

• Device’s unique ID

• The device capability profile structure that contains the description of the profile

• Web APIs translated from the device capability profile structure

• Online/offline state

• Authentication information depending on whether or not there is a required privacy mecha-

nism to be applied against the device.

The KB manager periodically sends messages to all gateways to track online/offline state of every

NoT device and updates the latest state in every device’s KB record.

39

4.4.2 Adaptive Application-level Security Enforcement with Knowledge Base

The knowledge base solves the scalability issue on the security enforcement of NoT protocols

by using a plug-in-style design. In most NoT protocols, security policies that can be applied on

the NoT communication channels are often limited to the ones that are implemented by the NoT

protocols. Developers are not allowed to choose security policies other than the ones specified

the NoT protocols. The knowledge base solves this issue by maintaining a list of pre-defined

templates of different types of security handlers. These templates are identified by their type IDs.

The security handler is a piece of code that applies a specific security policy on the communication

channel between any NoT device and the corresponding gateway. Additional templates that contain

new security policies can be contributed by developers when they need to apply them on their

devices.

When a connection is established between a gateway and an NoT device, the gateway asks for

the device capability profile structure and passes it to the knowledge base. The KB manager in the

knowledge base scans the capability profile structure to see if it contains information about required

security policy. If such information exists, the KB manager sends messages to the NoT device

through the gateway asking for detailed information including the security type and configuration

parameters. The KB manager then finds the matched template of security handler from the template

list. By using the template, the KB manager initializes an instance of the security handler with

the configuration parameters and asks the corresponding gateway to download the instance of

security handler in order to apply the security policy on the communication channel between the

gateway and the NoT device. After the security policy is applied, security handler on the gateway

handles the encryption of outgoing messages and decryption of incoming messages as long as

the communication between the gateway and the NoT device remains active. The instantiation of

security handler is shown in Fig. 4.3.

Moreover, the firmware developers can set up restrictions on the communication channels during

40

the time the preferred security policy is not applied. For instance, the firmware can be setup to deny

all the accesses to the content of the capability profile except that one that specifies the preferred

security policy before the security policy is applied.

Although the security support at the link layer of NoT protocols may be still needed for estab-

lishing a secured connection before an NoT device’s capability profile can be accessed, in the

application layer, the plug-in-style design of security handlers enables the rimware to adaptively

apply the preferred security policy on the communication channel between the gateway and the

device according to the security policy specification in the device capability profile The templates

of security handlers in the knowledge base, combined with the capability profile on the firmware,

enables the scalability of the security enforcement for NoT protocols. We name this technique

adaptive application-level security enforcement.

4.4.3 Device-initiated Adaptive Privacy Protection with Knowledge Base

For privacy protection, the knowledge base also uses a plug-in-style design on authentication as it

does on security enforcement. In rimware, NoT devices are considered as data sources. Preventing

the data sources from being abused by a fraudulent party is important. When an NoT device that

was previously in rimware is temporarily disconnected from the local gateway for some reason,

such as to roam to another place, it is possible that a fraud party detects the device and tries

to connect to it before a rimware gateway finds the device. Authentication used in many NoT

protocols that rely on simple pairing with web-password verification does not solve this issue. For

this reason, different from the general sense of authentication, which is to “verify of the identity

of the remote device” [20], in rimware the authentication is performed reversely. In rimware, the

authentication is initiated from NoT device side. The purpose of the authentication is to check

whether the other party is trusted, i.e., whether it is a gateway of rimware, in order to protect the

device’s privacy. The knowledge base maintains a template list of authentication handlers as shown

41

in Fig. 4.3. The authentication handler is a piece of code that performs the authentication checking

against the gateway with the authentication mechanism specified in the NoT device’s capability

profile. Additional templates that contain new authentication mechanisms can be contributed by

developers when they apply them on their devices. When an NoT device joins rimware through

a gateway, the KB manager in the knowledge base finds the authentication requirement from its

capability profile and initializes an instance of authentication handler of the corresponding type.

Different from security handler, authentication handler only handles the one-time authentication

when an NoT device joins the rimware. Therefore, instead of being kept at the gateway after

initialization, the authentication handler remains in the knowledge base and destroy itself after

performing the authentication with the device.

As one example, if the authentication is based on a pre-defined password, i.e., both the device

and the authentication handler know the password beforehand, then the handler sends the correct

password to the device through gateway for verification. Depending on the type of authentication,

the authentication information may be initialized and stored both in the device’s KB record and on

the device side.

As another example, assume the authentication is based on access token matching mechanism,

which represents the credentials for the rimware’s privileges to fully or partially access the device.

When the device joins the rimware for the first time, the authentication handler either generates

a random token or receives the token from the device, and ensures that the token information is

stored both in the device’s KB record on the rimware side and in the device’s capability profile

on the device side. Assuming the device disconnects from the rimware and connects back from

another gateway, a newly initialized authentication handler first checks whether or not an access

token is already stored in the device’s KB record. If there is one, then the handler sends the token

to the device for access control verification.

The plug-in-style design of authentication handlers enables the rimware to adaptively perform

the authentication checking from a device to a gateway according to the preferred authentication

42

mechanism specified in the device’s capability profile, thus enabling the scalability of the privacy

protection. We name this technique as device-initiated adaptive privacy protection.

4.4.4 Task Scheduler

The task scheduler receives task requests from application domains and schedules the tasks to run

on the desired NoT devices. Tasks that are scheduled by the task scheduler can be categorized into

two types in terms of their time duration: direct-access tasks and long-term tasks.

Direct-access tasks are those that access one or more devices in sequence or in parallel through

the web APIs or by composed queries. A scheduled task returns immediately after the result is

obtained from the NoT device. For example, a direct-access task can be scheduled against a heart

rate monitoring device to read the current heart rate. If the task succeeds, the task returns with

the current heart rate. If the task fails, the task returns with an error message obtained from the

device’s side.

As the second type, long-term tasks serve the purpose of collecting data by subscribing to the data

generated by a particular functionality of any device, such as collecting heart rate readings con-

stantly from the heart rate monitoring device. Multiple types of data can subscribed and collected

by a long term task. Because a long terms task constantly collects the data, it cannot return a

complete result instantly after the task is issued. Instead, the temporary result is stored in the data

store and two URLs are returned as result for each of the subscribed data. One of the URLs is

for accessing the result stored in the data store, and the other one is the API to receive the push

notification for the latest result. Details on scheduling tasks is discussed in Chapter 6.

43

4.4.5 Data Store

Each entry stores the result of a subscribed data generated by a particular functionality of an NoT

device in a long-term task. For every entry in the data store, an observing processing is initialized

to receive the latest data and to store the data at the data entry whenever there is a push notification

received from the subscribed data on the corresponding functionality of the device.

44

Chapter 5

Device Capability Profile

In rimware, different functionalities from one NoT device may be used by different application

domains. Rimware defines a formalized profile-based interface on the NoT’s firmware to abstract

its capability. Every functionality of the device can be utilized individually through the device

capability profile. In addition, security and privacy prerequisites for the communication between

an NoT device and the rimware can also be specified using the capability profile. This chapter

presents the device capability profile model.

5.1 Device Capability Profile Model

In recent years, more and more NoT devices are designed to serve for not only one but multiple

application purposes. For instance, a light switch controlling device may have some other on-board

modules for detecting the ambient environment, such as temperature or luminance, with which the

device can do more than just turning on or off light. The purpose of modeling a device is to describe

an NoT device’s capability in a formal way such that different functionalities from the device can

be utilized by different application domains. Our work attempts to model the functional-level

45

A Device Capability Profile

Functionality1
Functionality2

...
FunctionalityN

Figure 5.1: An example of a device capability profile model

capability by explaining how a device would be used in real practice.

5.1.1 Functionality

As shown in Fig. 5.1, in the device capability profile model, an NoT device’s capability is com-

posed of a list of functionalities. A functionality is a set of actions or features provided by an NoT

device that serves for the same purpose. From the hardware aspect, a functionality usually rep-

resents the functions provided by a particular hardware module. Each functionality in a device’s

capability is able to serve individually without depending on other functionalities. If some actions

or features in a device have dependencies between one another, each of them is considered as part

of the same functionality.

For example, as shown in Fig. 5.2, an infant monitor device provides four different functionalities:

• “Device Information” is the functionality that provides general information about the device

such as manufacturer, serial number, software revision, etc.,

• “Body Temperature” is the functionality provided by the on-board temperature-sensing mod-

ule that constantly monitors the current body temperature reading of the infant,

• “CO2” is the functionality provided by the on-board CO2 sensing module that constantly

detects the CO2 density around the infant’s face, and

46

Infant Monitoring Device

Device Information

Body Temperature

CO2 Monitor

Heart-rate

Figure 5.2: Functionalities of an infant monitoring device

• “Heart-rate” is the functionality that constantly measures the infant’s heart rate readings.

5.1.2 Attribute

In a functionality, there are one or more attributes. An example of a functionality model is given

in Fig. 5.3. An attribute represents a particular action or feature in a functionality. In the model of

the device capability profile, every attribute is composed of a single value and additional descrip-

tions. The value represents the attribute’s current behavior. The additional descriptions provide

information about the attribute’s value, such as the format, unit, human-readable description, etc.

Attributes in the same functionality may be associated with one another. Attributes are categorized

into five types in terms of their access permissions. Five predicates with different semantics are

defined to denote different types of attributes that may be contained in a device’s functionality as

follows:

• fact

• property

• stream

• security

47

A Device's Functionality

fact value
descriptionfact value

description

depends

stream value
descriptionsteam value

description

property value
descriptionproperty value

descriptionproperty value
descriptionproperty value

description

depends

depends

Figure 5.3: Example of a device’s functionality model

• authentication

The fact-typed attribute and stream-typed attribute represent a functionality’s behavior. In a func-

tionality that contains multiple fact-typed attributes or stream-typed attributes, each of the at-

tributes represents a part of the functionality’s behavior. The property-typed attribute in a func-

tionality, on the other hand, affects the behavior of the functionality or any fact-typed or stream-

typed attribute in the functionality. In some particular cases, the property-typed attribute may

also represent a functionality’s behavior. The security-typed and authentication-typed attributes

are two special types of attributes that do not exist in general functionalities. They are only used

in functionalities that specify the required security policies and authentication mechanisms to be

applied.

The next three subsections discuss each of the first three attribute types. The rest two attribute

types is discussed in Section 5.4.1.

48

5.1.3 fact -typed Attribute

A fact-typed attribute defines the data that is provided by a functionality in an NoT device’s capa-

bility. The “fact” term, which is borrowed from Data warehouse [31] research field, is often used

to represent the data reported at raw level. A functionality can have multiple fact-typed attributes.

Examples of fact-typed attribute of a device includes raw readings, device specification, device’s

state information, etc. For example, in an NoT device, the device’s hardware details, such as the

manufacture’s name, hardware revision, model number, etc., are considered fact-typed attributes

from the functionality of the device that provides the information of the device’s specification.

Because of the immutable characteristic, fact-typed attribute permits only read operations.

In some particular cases, it is possible that a functionality of a device may have no fact-typed

attribute. For instance, suppose in a light switch controlling device there is a functionality imple-

mented to take inputs to control the light’s on/off state as well as to provide the readings on the

current state of the light. The light’s on/off state then can be accessed by both read and write oper-

ations, and therefore it is not a fact-typed attribute, but a property-typed attribute that is discussed

in Section 5.1.5.

5.1.4 stream-typed Attribute

The stream-typed attribute describes a data stream formed by a sequence of same type of data

generated constantly by an NoT device’s functionality. A functionality can have multiple stream-

typed attributes. The stream-typed attribute is often generated either periodically or based on

some specific conditions. For example, suppose there is a functionality provided by a heart rate

monitoring device monitors the heart rate readings on a human body at a certain sampling rate and

outputs them as a sequence of data, and generates a lead-off signal when a lead is off the body

which prevents the device from receiving heart rate readings. The consistent sequence of heart rate

readings is a stream-typed attribute in the functionality. The lead-off detection signal is another

49

stream-typed attribute in the functionality.

The stream-typed attribute also permits only read operations as it has the same immutable char-

acteristic as the fact-typed attribute does. However, when a stream-typed attribute is accessed by

read operations, each operation returns only the latest result instead of returning a constant data

sequence. To receive all the data from a stream-typed attribute, the publish/subscribe [50] mecha-

nism is often used, with which a notification message containing the latest result is sent from the

attribute to the subscribers every time when a new result is generated.

The time interval or the condition that affects a stream-typed attribute’s behavior, if adjustable,

is often exposed as a property-typed attribute in the device’s functionality, which is discussed in

Section 5.1.5.

5.1.5 property-typed Attribute

The property-typed attribute specifies the adjustable setting that affects the behavior of a func-

tionality. A functionality can have multiple property-typed attributes. A property-typed attribute

must at least be accessible by write operations and also possibly by read operations or even in a

publish/subscribe mechanism. For instance, in the example of the heart rate monitoring device in

Section 5.1.4, the current sampling rate may also be considered as valuable information in some

use cases. Therefore, the property-typed attribute that is used to control the sampling rate may be

set to be accessible by both read and write operations.

If in a functionality of an NoT device, there is a property-typed attribute that is specifically used

to control the behavior of any fact-typed attribute or stream-typed attirbute, we say the fact-typed

attribute or stream-typed attribute depends on the property-typed attribute. For instance, the ad-

justable sampling rate parameter in the example of the heart rate monitoring device in Section 5.1.4

can be exposed as a property-typed attribute that the sequence of heart rate readings depends on.

50

Dependency relationship can only be established from fact-typed or stream-typed attributes that

represent the behaviors of functionalities to property-typed attributes that affect the behaviors of

functionalities. It is possible that a fact-typed or stream-typed attribute depends on multiple prop-

erty-typed attributes. If two property-typed attributes in a functionality are mutually dependent,

then at least one of them must be able to represent the behavior of another functionality. For exam-

ple, considering the light switch controlling device in Section 5.1.3, the device is equipped with an

ambient-light sensing module and programmed to be able to automatically turn on the light when

the ambient luminance is below a specific threshold, then the threshold settings can be exposed

as another property-typed attribute in its functionality that serves for controlling the light switch.

However, the behavior of the previous property-typed attribute, the light’s on/off state, depends on

the threshold value, which is not allowed. For this reason, the two property-typed attributes are

separated into three independent functionalities. The first controls the light switch directly by tak-

ing inputs of the on/off state. The second controls the light’s on/off state automatically according

to an input threshold. In the second functionality, the light’s on/off state should be specified as

an attribute with fact-typed, because in this functionality, the light’s state should not be controlled

directly.

The property-typed attributes can be further classified into three categories in terms of different

types of actions they base upon to affect the behavior of a functionality or the behavior of other

types of attributes:

• Conditional actions based: The property-typed attributes in this category affect the behavior

of a functionality or an attribute when a particular event with a setup condition is triggered.

For instance, in the example of automatic light switch controlling based on ambient lumi-

nance mentioned above, the attribute that is used to store an input of the threshold value for

automatic light switch controlling belongs to this category.

• Instant actions based: The property-typed attributes in this category controls the enable-

ment/disablement of a functionality or an attribute through an instant action. For example,

51

the attribute that takes an input to control the light’s on/off state in the example of the light

switch controlling device in Section 5.1.3 simulates the instant action of turning on or off a

light through a light switch, thus belonging to this category.

• Periodic actions based: The property-typed attributes in this category affect the behavior of

a functionality or an attribute periodically, where the attributes specify the frequency. For

instance, the attribute for storing the input of sampling rate in the example of the heart rate

monitoring device mentioned above belongs to this category.

Note that the property-typed attribute is not designed to represent the behavior of a functionality.

However, a property-typed attribute can represent the behavior of a functionality in some particular

cases, when it represents the behavior of itself. In other words, no other attributes depend on

the property-typed attribute in the functionality. For instance, the on/off state information in the

light switch controlling device in the example in Section 5.1.3 is a property-typed attribute that

represents the behavior of the functionality as well as the behavior of itself since there is no other

fact-typed or stream-typed attribute in the functionality. This special situation happens only in

functionalities that represent the behaviors of actuator modules.

5.2 Syntax Expression of Device Capability Profile

In the expression of a device capability profile model, the capital letter C is used to denote a de-

vice’s capability. The capital letter F is used to denote a functionality inside a device’s capability.

Different types of attributes are presented by the three predicates: fact, stream, and property. The

names of the device capability profile, functionalities, and attributes are represented as subscripts.

In the parenthesis after each functionality, attributes that belong to the functionality are separated

by commas. In the parenthesis after each attribute, the names of property-typed attributes, sep-

arated by commas, are given to denote that the attribute’s output depends on the behavior of the

52

Infant Monitoring Device

Device Information
(di)

Body Temperature
(bt)

CO2 Monitor (cm)

manufacture's
name (mn)

serial number (sr)

software revision
(sr)

temperature
readings (tr)

sampling rate
(bt_sr)

start/stop (bt_ss)

CO2 readings (cr)

sampling rate
(cm_sr)

start/stop (cm_ss)

Heart-rate (hr)

heart-rate readings
(rr)

sampling rate
(hr_ss)

start/stop (hr_ss)

fact

fact

fact

stream

property

property

property

property

stream
stream

property

property

Figure 5.4: A complete device capability profile of the infant monitoring device

property-typed attributes.

We revisit the example shown in Fig. 5.2 and complete the device capability profile by adding

attributes into each of its functionalities as shown in Fig. 5.4. In each attribute, the type information

is given in the upper-left. The short names of each functionality and attribute are given in the

parentheses, respectively. Supposing that the infant monitoring device’s name is imd, its device

capability profile can be expressed as follows:

Cimd(Fdi(factmn, factsn, factsr),

Fbt(streamtr(bt sr,bt ss),propertybt sr,propertybt ss),

Fcm(streamcr(cm sr,cm ss),propertycm sr,propertycm ss),

Fhr(streamrr(hr sr,hr ss),propertyhr sr,propertyhr ss))

, (5.1)

where each of the components in the device capability profile is identified by its short name.

53

Table 5.1: Required access permissions of different types of attributes

Access Permissions
Attribute Read Write Subscribe

fact yes no no
stream optional no yes

property optional yes optional
security implementation dependent

authentication implementation dependent

5.3 Device Capability Profile in Firmware

In an NoT device’s firmware, the device capability profile work as an application on top of the the

device’s operating system environment. Every device should have only one capability profile. The

next two subsections discuss the specification of each of components as well as the access control

of device capability profile.

5.3.1 Functionality, Attribute, and Attribute’s Description in Firmware

In firmware, every functionality that contains one or more attributes should be addressable with an

ID or handle. Each attribute in a functionality is composed of a value, an ID or handle to access the

value and one or more descriptions that describe the attribute as well as its value. Each attribute in

a functionality should be assigned with the proper access permission as shown in Table 5.1. The

value of each attribute should be accessible individually through message exchange on secured

and authenticated communication channel. An observer function should be associated with each

of the stream-typed attributes to enable the publish/subscribe data push mechanism and should be

able to be activated or deactivated by an input “subscribe” signal or “unsubscribe” signal. When

an observer is activated, it notifies the subscriber whenever there is an update on the value of the

associated stream-typed attribute.

54

secured and authenticated
communication channel

heart rate
functionality

OS layer

heart rate readings

samping rate

start/stop

value

subscription

other functionalities

confirm
subscription

write (50)
write response

write(1)

read
read response

write response

handle
descrp1 handle
descrp2 handle

value handle
descrp1(unit) handle

descrp2 handle

value handle
descrp(textual) handle

step 2

step 1

step 3

latest updates
on readings

Drivers

Figure 5.5: An example of infant monitoring device interacting on the communication channel
with detailed description on heart-rate monitor functionality

Descriptions of attributes should be categorized into different types in terms of the different as-

pects they describes such as information about presentation format including the value’s type, unit,

exponent, information about the valid range of the value, dependency relationship with other at-

tributes, a textual description of the attribute in natural language, etc. Each type of the descriptions

should be stored in order in the attribute or identified by its type ID if multiple descriptions with

the same type in an attribute are allowed. For a property-typed attribute, a description dedicated

to describing the action types as discussed in Section 5.1.5 should be specified. For fact-typed

and steam-typed attributes, a description dedicated to describing the dependencies as discussed in

Section 5.1.5 should be specified.

Fig. 5.5 shows an example of the infant monitoring device mentioned in Section 5.2 interacting

on the communication channel with details given on its heart rate functionality. In this example,

descriptions of attributes are obtained first to understand the meanings of the values for every

attribute. A integer value of 50 is sent to the “sampling rate” attribute to setup the sampling rate to

55

50 Hz. A integer value of 1 indicating a start signal is sent to the “start/stop” attribute to start the

heart rate monitoring. A subscription message is sent to the “heart rate readings” attribute to ask

for notifications whenever there is an update on heart rate reading. The communication between

the heart rate monitoring device and the other party is carried out over a secured and authenticated

channel. Section 5.4.1 discusses how the device capability profile is configured for establishing a

secured and authenticated communication channel.

5.3.2 Access Control on Device Capability Profile

Access control should be established at different levels against functionalities, attributes, and at-

tribute descriptions. Upon the establishment of a connection to an NoT device, the device capa-

bility profile structure, including the hierarchy of the profile, the IDs or remote handles of each

functionality, attribute, and attribute’s description should be obtainable by the other party without

restrictions. However, a device capability profile should be designed not to expose any content of

attributes in any of the functionalities except the ones that stores the device’s information, preferred

security policy, and authentication mechanism before the communication channel is secured and

authenticated.

5.4 Security and Privacy Specification using Device Capability

Profile

As discussed in Sections 4.4.2 and 4.4.3 the rimware solves the scalability issues for both the

security enforcement and the privacy protection by using the adaptive application-level security

enforcement technique and the device-initiated adaptive privacy protection technique, respectively.

To apply these two techniques, the device’s capability profile is configured to contain the specifica-

tions about the preferred security policy and authentication mechanism. In the device’s capability

56

model, security and privacy are also considered as two functionalities that a device is capable

of. Therefore, their specifications are specified in two separate functionalities. Different from a

regular functionality that represent’s a part of the behavior of a device, these two special function-

alities contain only security-typed attributes and authentication-typed attributes, respectively. A

security-typed attribute or authentication-typed attribute can have any type of access permissions,

including Read, Write, Read&Write, depending on the specification requirement. Each of the two

functionalities is assigned a pre-defined ID or handle to indicate that the functionality is used for

the specification of security policy or authentication mechanism. The next two subsections discuss

the structure inside each of the functionalities.

5.4.1 Security Description in Device Capability Profile

In the functionality for security policy specification, an attribute that stores the type information

of the preferred security policy, with read access permissions, always exists. The type information

is used by the centralized side of the rimware to find the template of the security handler with the

corresponding type so that an instance of the security handler can be initialized and utilized on

the gateway side as discussed in Section 4.4.2. Other parameter values that are used to apply the

security policy are stored in other attributes. Two examples are given as follows to illustrate the

specification of security policies using attributes with different access permissions in the security

functionality.

The example as shown in Fig. 5.6 illustrates the configuration of a device capability profile for

security policy specification based on a symmetric key cryptography algorithm as well as the the

process of applying of the security policy . On the firmware side, an attribute with read permis-

sions is used to store the type information in the security policy specification functionality. This

attribute states that the Advanced Encryption Standard (AES) with Cipher FeedBack (CFB) mode

[25] should be used for security, which is basically sharing a same secret and an initialization vec-

57

Gateway

NoT device's firmware

security policy specification

adapter

attribute
(type=AES.CFB)

attribute
(secret key)

another device's functionality

attribute attribute

3. encrypt/decrypt
message using
the cipher

2. read or write
security policy
parameters
and generate the
cipher at each end

security
handler

attribute
(IV)

* IV = Initialization Vector
 R = read permission
 W = write permission

1. read security
policy type

R R R

R W

Figure 5.6: An example of applying a security policy based on a symmetric key cryptography
algorithm

tor to generate the cipher for encryption or decryption at each end. Another two attributes with

read permissions are used to store the necessary parameters, the secret key and the initialization

vector in the functionality. The values of the parameters are randomly generated by the device.

On the gateway side, as discussed in Section 4.4.1, the security handler with the corresponding

type generates a cipher by acquiring the necessary parameter values by accessing the device ca-

pability profile. On the devices side, upon sending the parameter values to the gateway side, the

device generates a cipher with the same parameters, and removes the access restrictions on other

functionalities so that the gateway can send encrypted messages to access those functionalities.

Another example of profile configuration on security policy specification is given in Fig. 5.7 for

applying the security policy that utilizes the RSA public-key cryptography algorithm implemented

in Public-Key Cryptography Standards (PKCS) with Optimal Asymmetric Encryption Padding

(OAEP) scheme [10]. To send and receive encrypted message, both sides need to generate a pair

of public and private keys, and share the public key generated by their own to the other side for

encryption and keep the private key for decryption. For that reason, the attribute that is used to

stored the public key to obtain is set with write permission to obtain the public from the gateway

58

Read Write

Gateway

NoT device's firmware

security policy specification

adapter

attribute
(type=PKCS1.OAEP)

attribute
(public key to share)

another device's functionality

attribute attribute

3. encrypt/decrypt using
the key pairs at each end

security
handler

attribute
(public key to obtain)

1. read security type

R WR R W

* R = read permission
 W = write permission
 PKCS = Public-Key Cryptography Standards
 OAEP = Optimal Asymmetric Encryption Padding

2. generate key pairs
and share the public
key at each end

Figure 5.7: An example of applying a security policy based on a public-key cryptography algorithm

side.

Note that, in the case that an authentication checking is required by the device side, other function-

alities should not be accessible until the authentication checking succeeds. The next subsections

discuss privacy specification in the device capability profile that describes the mechanisms to be

used for authentication checking.

5.4.2 Privacy Description in Device Capability Profile

The functionality for authentication mechanism specification follows a similar structure as the one

used in the security functionality. An attribute with read permissions is used to store the type

information of the preferred authentication mechanism. The information is used by the centralized

side of the rimware to initialize the authentication handler with the corresponding type as discussed

in Section 4.4.3. The parameters that need to be exchanged between the NoT device and the

authentication handler are stored in other attributes with the corresponding access permissions.

Fig. 5.8 illustrates the capability profile configurations on two different NoT devices for two au-

59

Knowledge Base

Gateway1

adapter

KB manager

NoT device1's firmware

authentication mechanism specification

attribute
(type=

password)

attribute
(access token)

another device's functionality

attribute attribute

R W R W

1. read
authentication

mechanism type

2. verify or
intialize

access token

3. access restrictions on
other functionalities removed
upon success of verification

KB Record

IDauthentication
handler

messages

access token

Gateway2

adapter

NoT device2's firmware

authentication mechanism specification

attribute
(type=

password)

attribute
(password
parameter)

another device's functionality

attribute attribute

R W R W

1. read
authentication

mechanism type

2. verify
password

3. access restrictions on
other functionalities removed
upon success of verification

KB Record

IDauthentication
handler

messages

Figure 5.8: An example of authentication checking based on two different mechanisms

thentication mechanisms that are discussed in Section 4.4.3 for the protection of the devices’ pri-

vacy. The device on the right uses an authentication mechanism is based on a pre-defined password,

i.e., both the device and the authentication handler know the password beforehand. The device on

the left performs authentication checking based on an access token that is randomly generated by

the authentication handler at the first time when the device joins rimware.

60

Chapter 6

Query and Task Scheduling

As mentioned in Chapter 4, in the rimware environment an NoT device can be accessed either

through the web APIs that are translated from the device capability profile or by composed queries

from application domains. In addition, different types of tasks can be scheduled to allow the

functionalities from one device to work for different tasks as well as to allow the functionalities

from different devices working together for one task. This chapter discusses how the queries and

tasks are composed in rimware. Optimization on task scheduling is also discussed.

6.1 Access on Attributes

In rimware, the utilization of an NoT device’s functionality is done by accessing the attributes of

the functionality. Four types of access can be made against an attribute in terms of different access

permissions as follows:

• Read access for an access with read permission,

• Write access for an access with write permissions,

61

Table 6.1: Mappings between access type and standard HTTP methods

Access Types standard HTTP Methods
read GET
write PUT

subscribe POST
unsubscribe DELETE

• Subscribe access for a subscription against any of the stream-typed attribute that is discussed

in Section 5.3

• Unsubscribe access for stopping the generation of notifications from a stream-typed attribute

Attributes can be accessed in two different formats from application domains. One is to access

through the web APIs that are translated from the device capability profile as discussed in Section

4.4.1. The other is to access by composed queries. The next subsections discusses each of the

formats. To access an NoT device’s attribute, the device’s KB record that contains information such

as the device’s ID, the capability profile structure information, web APIs, etc., has to be obtained

first. Section 6.1.3 discusses how the information in an NoT device’s KB record is searched.

6.1.1 Web APIs-based method

In the knowledge base (Section 4.4.1), for every NoT device, every attribute in a functionality of

the device is translated into a web API. A format of the API is shown as follows:

https://device_id/functionality_id/attribute_id

The web APIs follow the REST architectural style to make use of standard HTTP methods for

different types of access.

62

https://device_id/functionality_id/attribute_id

idAttribute handle ...device_id gateway_id type
(access permissions) subscribed?

idDescription handle ...type contentattribute_id

foreign key

idFunctionality handle ... type (functionality?
security?privaty?)

functionality_id

foreign key

idDevice ... state(online/
offline)

foreign key

idGateway online/offline ... geo-location

foreign key

web API

* ... : other table attributes that are contained in the table

Figure 6.1: The table structure used for KB records maintenance in a relational database

6.1.2 Query-based method

A query-based access against a device’s attribute is made through a universal web API. The syntax

of a query statement can be expressed as follows, beginning with keyword Query:

Query(access type, device id, f unctionality id, attribute id, [attribute value]) (6.1)

, where access type is one of the four access types mentioned above, the “device id”, “function-

ality id”, “attribute id” specify the identification of the device and functionality that the attribute

belongs to as well as its own identification, “attribute value” parameter that only exists in query

with write permissions specify the value to be sent to the attribute. When a query is processed, a

feedback message is returned indicating whether or not the query succeeds

63

Table 6.2: An example of searching for an online device base on various conditions

select Device.id
from Attribute, Device, Gateway, Functionality
where Device.id = Attribute.device_id and

Gateway.id = Attribute.gateway_id and
Functionality.id = Attribute.functionality_id and
Gateway.geo-location = ‘‘Irvine, CA’’ and
Attribute.handle = ‘‘FFEC’’ and
Functionality.handle = ‘‘FFE0’’ and
Device.state = ‘‘online’’

6.1.3 Search for Device’s KB Record

In rimware, the KB records are maintained using a relational database. Information about a de-

vice’s state, functionalities, attributes, descriptions of attributes and the device’s corresponding

gateway is store in database tables. Fig. 6.1 provides the table structure that is used for storing KB

records in a relational database. The “handle” column in table “Functionality”, “Attribute”, and

“Description” stores the handle address or an ID that is used to identify the functionality, attribute,

or description in the device.

Standard SQL [49] queries are used to find the information of any device with a specified condition

in the database. Table 6.2 shows an example for searching the identification list of the devices from

the database where every device in the list is located in Irvine, CA, and has a functionality with a

handle address of 0xFFE0, and there is an attribute in the functionality with a handle address of

0xFFEC.

6.2 Task Scheduling

In addition to access through web APIs and queries against an NoT device, rimware allows tasks

to be scheduled against one of multiple NoT devices. A task can be considered as a superset of

64

individual accesses on attributes that are issued in different orders. We use query-base access to

denote a subset of a task in this section. If in a task there is only one individual access on a single

attribute against a device, the task is issued as a query as shown in Section 6.1.2. In most cases, a

task consists of more than one attribute access.

A task can be scheduled in sequence, in parallel, or mixed. Two tasks that run in sequence are

connected using the logical operator before as follows:

query-statement before query-statement

Two tasks that run in parallel are connected using the logical operator and as follows:

query-statement and query-statement

The syntax of a general task statement that may contain sub-tasks in sequence, in parallel, or mixed

can be expressed using the logical operator before.

task ::- query-statement [before | and query-statement | sub-task]

sub-task ::- query-statement [before | and query-statement | sub-task]

There are two types of tasks that rimware can schedule in terms of their time duration: direct access

task and long term task as discussed in Section 4.4.4. In a direct access task, each of the queries

must be either read or write access or unsubscribe access. When the task finishes, a sequence of

the result of with the same order of the queries in the task returns. In a long term task, one or

more subscribe accesses must be issued. When a subscribe access is found, the rimware opens an

entry in the data store that is discussed in Section 4.4.5 for receiving and storing the incoming data

stream sent from the corresponding stream-typed attribute. On the result list, for each subscribe

access, a tuple that contains two URLs returns. One of the URLs is to access the entry in the

65

data store to obtain the complete result. The other one is the API for receiving push notifications

for the latest data results. Note that, in direct access tasks, subscribe accesses can also be issued.

However, no entry for the incoming data stream is opened in the data store, which means the

device’s corresponding gateway will ingore the notification messages sent from the device on the

subscribed attribute(s).

6.3 Task Optimization

The rimware support multiple tasks or sub-tasks to run on an NoT device simultaneously. However,

in some cases, when a long-term task is scheduled to run against a functionality of an NoT device

on a particular stream-typed attribute, another task has already been scheduled and running against

the same functionality on the same attribute. However, inputs for the property-type attributes that

affect the behavior of the stream-typed attribute may not be the same. This special situation leads

to a problem that if there is no optimization on the scheduling, the latter task needs to wait till the

the former finishes completely. Therefore, in those particular cases an optimization is needed.

Note that optimization only works for long-term tasks, where different inputs on the same property-

typed attribute a stream-typed attribute depends on may lead to different results stored in the data

entries of the data store.

As discussed in Section 5.1.5, a property-typed attribute may affect another attribute or the entire

functionality based on different actions. For a stream-typed attribute, a property-type attribute that

it depends on can affect its behavior based on either periodic actions or conditional actions. The

rimware takes care of optimization on periodic action based property-type attribute. For example,

the stream-typed attribute that generates the heart-rate readings in the heart rate monitoring device

example discussed in Section 5.1.4 depends on the “sampling rate,” which is a periodic action-

based property-typed attribute. The next section discusses how the optimization is applied.

66

6.3.1 Optimization on Tasks Affected by Periodic Actions

When two tasks that are scheduled to subscribe the same stream-typed attribute provides two

different inputs to the periodic action based property-typed attribute that the stream-typed attribute

depends on, three types of optimization may be used as follow. Note that, in all three types of the

optimization, we assume the input value for specifying the frequency of the periodic actions in the

property-typed attribute is always integer-based. The input value against a property-typed attribute

from the the latter task is denoted as c. The input value against property-typed attribute from the

the former task, that is the same as the attribute’s value of in the device capability profile, is denoted

as p.

• If c < p and p is a multiple of c, then a downsampling service is injected against the result

for the latter task.

• If c < p but p is not a multiple of c, then an interpolation service is injected against the result

for the latter task to provide a lossy result.

• If c > p, which means the latter task requires a higher frequency and thus should receive

more results than the former within a certain amount of time, then c is sent to the property-

typed attribute in the device capability profile to take effect. According to the relationship

of the two input values, a downsampling service or interpolation service is injected to the

result of the former task. If there are other tasks running to observe the result from the same

stream-typed attribute, then the downsampling services or interpolation services are injected

to their observation process accordingly.

Fig. 6.2 shows the workflow of the optimization process on stream-typed attributes that are affected

by periodic action-based property-typed attributes. Note that, as highlighted in in Fig. 6.2, the

property-typed attribute may not have read permissions so that the current value of the attribute is

not retrievable from the device capability profile. In that case, the optimization process finds the

67

no

Task
request
received

find an attribute that
has already been observed

by another task?

yes

scan stream-typed
attributes in the task

scan property-typed
attributes that the

stream-typed attribute
depends on

no
find a related

property-typed attribute
based on periodic actions

in the task?

yes
check the access
permission of the

property-typed
attribute

scan the previous
tasks that are

observing the stream-
typed attribute

the previous task
has injection service for the

result?

yes

write permission only?
yes

compare the current
value p of the attribute
with the input value c

in the task

p > c?

yes

check whether p is
multiple of c

p is a multiple of c?

yes

no

inject a downsampling
service for the result of

the stream-typed
attribute in this task

no
inject a lossy

interpolation service
for the result of the

stream-typed attribute
in this task

Task
optimization

finished

no

send c to the device's
capability profile to
take effect on the

property-typed
attribute and update all

previous tasks
accordingly

no

Figure 6.2: A workflow of the optimization on tasks affects by periodic actions

68

running task that specifies the input value of the attribute and does not have injection services for

its result to obtain the current value of the attribute.

69

Chapter 7

Implementation: BlueRim

BlueRim is an implementation of rimware that is specifically designed for NoT devices utilizing

the Bluetooth Low Energy (BLE) protocol. This chapter discusses the implementation details of

each module of rimware in BlueRim, including the capability profile construction in firmware,

gateway and centralized components.

7.1 BLE Device and Emulator

The BLE’s GATT profile hierarchy is utilized to construct a profile to represent a device’s capa-

bility at the application layer in the device’s firmware. The next section describes the mappings

between the GATT-based profile and the capability profile model. The platforms that are used

to implement the GATT-based capability profile includes the EcoBT board [1], which utilizes the

BLE stack from Texas Instrument (TI), and a MacBook working as an emulator of a BLE device

that utilized the BLE framework from Apple. Sections 7.1.2 and 7.1.3 discuss the two respective

platforms.

70

Table 7.1: Mappings of components between a device capability profile and a GATT-based profile

Components in Capability Profile Components in a GATT-based Profile
Functionality Service

Attribute Characteristic
Description of attribute Descriptor

Table 7.2: Mappings between attribute types and characteristic properties

Attribute Types Characteristic Properties
fact Read

property Write
stream Notify

7.1.1 GATT-based Capability Profile

As discussed in Section 2.2, BLE’s application layer defines a profile-based structure whose hierar-

chy is defined in GATT. In BlueRim, an NoT device’s capability is presented using a GATT-based

application profile, where components in the device capability profile discussed in Section 5.1 in-

cluding functionalities, attributes and descriptions are described by the components defined by the

GATT profile hierarchy. Table 7.1 shows the mappings between components in a device capability

profile and the ones in a GATT-based profile, where each functionality is represented by a service,

each attribute is represented by a characteristic and each description is represented by a descriptor.

Note that, although in a GATT-based profile, one service can depend from another service as

discussed in Section 2.1.1, in the capability profile model, functionalities are independent from

each other. For this reason, a GATT-base profile that is used to specify a BLE device’s capability

is not allowed to have dependencies between services.

Different types of attributes in a device capability profile discussed in Section 5.1.2 are represented

by characteristics with different access permissions, i.e., the properties of characteristic discussed

in Section 2.2. Table 7.2 shows the mappings between attribute types defined in a device’s capa-

bility profile and the characteristic properties.

71

Table 7.3: The structure of ‘Characteristic Presentation Format’ descriptor used to describe an
attribute of a BLE device’s capability

Names Format Possible Values

Format 8-bit unsigned integer
1: Boolean; 2: unsigned 2-bit integer;
3: unsigned 4-bit integer, etc.

Exponent based on 10 8-bit signed integer any 8-bit signed integer
Unit 16-bit unsigned integer 1: oF ; 2: oC; 3: lumen, etc.

Type 8-bit unsigned integer

1: fact ; 2: stream; 3: property based on
conditional actions; 4: property based
on instant actions; 5: property based on
periodic actions;

Dependency 16-bit unsigned integer UUID of a property-typed attribute

Different types of descriptors are used to store the descriptions of attributes. In a GATT-base pro-

file, one characteristic that is used to represent an attribute may be associated with multiple descrip-

tors. The ‘Characteristic User Description’ descriptors are used to provide natural language-based

descriptions of the attribute. The ‘Characteristic Presentation Format’ descriptors store presenta-

tion information of the attribute’s value, including the format, exponent, unit, attribute type and

other attributes that it depends on. For any fact-typed or stream-typed attribute discussed in Sec-

tion 5.1.2, multiple ‘Characteristic Presentation Format’ descriptors are specified, each of which

stores the UUID of one property-typed attribute that the attribute depends on. The ‘Characteristic

Presentation Format’ descriptors are specified in a structured format as shown in Table 7.3.

Pre-defined UUIDs are used to identify the services for storing the security and privacy specifica-

tion and the characteristics that are used to store the security type, authentication type, and other

parameters.

7.1.2 EcoBT

The EcoBT board [33], as shown in Fig. 7.1, is a wireless sensor board based on BLE. It is centered

around TI’s CC2540 System-on-Chip (SoC) in a miniature size. As shown in Fig. 7.2, the software

framework provided by TI are separated into several layers.

72

(a) (b)

(c)

Figure 7.1: (a) EcoBT Platform for ECG recording and infant monitoring, (b) EcoBT with ECG
module, and (c) EcoBT with modules for Infant Monitoring

73

HAL

OSAL

BLE stack

GAP GATT-based
Profiles

* GAP: Generic Access Profile
 GATT: Generic Attribute
 OSAL: Operating System Abstraction Layer
 HAL: Hardware Abstraction Layer

Figure 7.2: Software framework of EcoBT

The Hardware Abstraction Layer (HAL) communicates with the underlying physical hardware

through SPI or UART and provides the interface of abstraction of the physical hardware to the

upper layers.

The Operating System Abstraction Layer (OSAL), which is built on top of HAL, is a simple

runtime-support layer for the CC2540 SoC to run the BLE stack. Different from operating systems

in the traditional sense, OSAL is a task-based non-preemptive control loop triggered by task events.

There can be up to 256 tasks, each of which has an 8-bit ID. Each task can supports up to 16 types

of events, where a 16-bit event flag expresses the set of events to be handled. One special type

of event supported by OSAL is the messaging event type for inter-task communication. Any task

can emit and receive events. OSAL can dispatch the event immediately or schedule it after some

timer delay. The rest of the events are free for each task to define to whatever it means. A task

could communicate with each other either by either setting events or sending messages, where a

message uses dynamically allocated memory for the data to send, while an event per se has no

associated data. The meaning of other events are defined by the owner task. OSAL runs a task

loop that dispatches tasks from the highest priority task down to the lowest and then sleeps, if

enabled, when no more task needs to be dispatched. The OSAL mechanism is required by TI’s

BLE protocol stack and defines the overall firmware architecture. The stack implements the full

BLE protocol [16], with which GAP-related settings and the GATT-based profile can be specified

74

in the application layer.

7.1.3 BLE Device Emulator by MacBook

A MacBook Pro (15-inch, 2009 model) with Mac OS X v10.9 is used as the emulator of BLE

device that is specifies to provide different functionalities. The emulator, which emulates the Pe-

ripheral role discussed in Section 2.1.1, is built with the CoreBluetooth framework, a BLE protocol

implementation for Mac OS X by Apple. The framework follows an event-driven architecture and

uses a delegate process to receive callbacks from all the received events. All types of events in-

cluding the device’s state change and the receipt of incoming access request are dispatched to the

delegate to take the specified actions in their corresponding callback functions. Besides the emu-

lator, the CoreBluetooth framework is also used to build the MacBook-based gateway in BlueRim

which is discussed in the next section.

7.2 Gateway

The gateway program discussed in Section 4.3 works as the Central role discussed in Section 2.1.1

in BLE protocol. The gateway is a lightweight program which serves only for the application of

security policy and the message exchange between the device side and the centralized components

of BlueRim. The gateway is built on a a 2009 Model MacBook Pro with Mac OS X v10.9 with

both BLE and Internet connectivity. The gateway program is written in Python with the support

of the CoreBluetooth framework for Mac OS X. The PyObjC library is used to bridge between

the Python and Objective-C programming languages due to the fact that CoreBluetooth framework

only provide interface to Objective-C.

75

Figure 7.3: BlueRim Interactive Shell Interface

7.3 Cloud-base Centralized Components

The centralized component discussed in Section 4.4 in BlueRim is programmed in Python and de-

ployed in a privately maintained Openshift environment. Openshift is PaaS cloud solution powered

by RedHat that supports the creation of an application deployment environment with a customized

specification on runtime environment, database support, integration service, etc. The cloud-based

implementation on the centralized components enables the computation and storage scalability of

the knowledge base and the data store. In the knowledge base, KB records are stored in a MySQL

relational database. Tornado web framework [2] is used to create the web APIs of every device

capability profile is exposed in REST architectural style as discussed in Section 6.1.1. Queries

and tasks can be made through a shell-based environment to access the devices under BlueRim.

Fig. 7.3 provides the screenshot of the interactive shell environment, where commands can be

issued to check the entire hierarchy information under BlueRim including gateways, connected

peripherals and capability profiles of peripherals. In the data store, two URLs are generated for

every entry that is used to store the result of a long-term task. One is to access the result stored in

data entry. The other one is to receive push notifications sent to the observing process of the data

entry from the subscribed device. The latter is implemented using the WebSocket protocol [3].

76

Chapter 8

Evaluation and Case Studies

This chapter presents the evaluation of BlueRim, the implementation of rimware specifically de-

signed for BLE devices, and several case studies that BlueRim is used in practice.

8.1 Evaluation

BlueRim is evaluated in three aspects: code size, responsive time, and power consumption. These

three factors are critical to the performance of a BLE device when it is working for any application

domain(s). While BlueRim brings benefits to the application domains, we discover from the eval-

uation that the impact on the performance of a BLE device is infinitesimal and can be negligible.

The next three sections discuss the evaluation on each of the aspects, respectively. Note that, the

strength of the specified security policy, such as whether or not it is resistant to certain types of

attacks, is not evaluated because the strength of the security policy depends on the cryptography

used in the security policy.

77

Table 8.1: Code sizes of each component in BlueRim

Component Functionality Bytes

Device with the demo firmware
Security functionality 5406
Privacy functionality 1596
Overall 58038

Gateway
Adapter 17718
Overall 62053

Centralized components Overall 65011

8.1.1 Code Size

In BlueRim, only the code size of the firmware side are varied from one to another depending on the

functionalities that the devices provide. The code size of the other components in BlueRim remain

constant. The firmware side is evaluated against a demo EcoBT device that specifies the security

functionality, privacy functionality, and a simple functionality that output a static value upon the

request with read permission. The device capability profile model organizes the BLE’s GATT-

based profile using existing GATT profile hierarchy without adding additional logic. Therefore,

except the security and privacy functionalities, it has no difference on the code size to the structure

of the other regular functionalities from a device with a regular GATT-based application profile.

In the device’s security functionality, the AES symmetric block cipher encryption in mode CFB,

as discussed in 5.4.1, is specified for the adaptive application-level security enforcement using a

16-byte shared key. The authentication mechanism based on randomly generated access token,

as discussed in Section 5.4.2, is specified in the device’s privacy functionality. The code size of

each component in BlueRim including firmware, gateway, and centralized components is given in

Table 8.1. Given that the BLE micro-controller (CC2540) has 256 KB of code flash and 8 KB of

SRAM, the memory overhead is marginal in the firmware side. The gateway, which is evaluated

against the Macbook-based gateway, is a lightweight program. Upon on the connection with every

BLE device, an adapter with only a size of 17718 bytes is generated to bridge the communication

between the device and the centralized components of BlueRim.

78

8.1.2 Responsive Time

BlueRim does not change the way that a BLE’s GATT-based application profile is accessed. There-

fore, it makes no difference between accessing a BlueRim-compatible device and accessing a reg-

ular BLE device on the responsive time, if the BlueRim-compatible does not specify the security

and privacy functionalities. If the security and privacy functionalities are specified for the adaptive

application-level security enforcement and device-initiated adaptive privacy protection, the impact

on the responsive time that BlueRim brings to a BLE device depends on the initialization and the

application of the preferred security policy and authentication mechanism that are specified in the

security and privacy functionalities. The impact on responsive time is evaluated against the demo

device used for the evaluation of code size in Section 8.1.1. Table 8.2 shows the average time on

the initialization and the application of both adaptive application-level security enforcement and

device-initiated adaptive privacy protection. Note that, the application of device-initiated adaptive

privacy protection is a one time operation, whereas for adaptive application-level security en-

forcement the message encryption occurs on every outgoing message and the message decryption

occurs on every incoming message. Although encryption and decryption are carried out on every

transaction of the message exchange, the impact of which on the overall performance is negligible.

8.1.3 Power Consumption

Power consumption is the most important performance factor especially for BLE that is designed

for wireless communication with low energy consumption. As mentioned in Section 8.1.2, BlueRim

does not change the communication way between the BLE device and the other party. Therefore,

there is no extra power consumption on a BlueRim-compatible device if the security and authen-

tication functionalities are not specified. Similar to the impact on the responsive time, when these

two functionalities are specified, the impact on power consumption occurs during the time of the

initialization and the application of the preferred security policy and authentication mechanism

79

Table 8.2: Impact on responsive time from security and privacy functionalities in BlueRim for the
demo device

Service Average of initialization (µs) Average of application (µs)
adaptive application-level
security enforcement 1105

Encryption Decryption
216 165

device-initiated adaptive
privacy protection 494 33

Type Response Time
Query transaction 933
Task scheduling 1363

80

Table 8.3: Impact on power consumption from security and privacy functionalities in BlueRim for
the demo device

Service Average of initialization(nJ) Average of application (nJ)
adaptive application-level
security enforcement 519

Encryption Decryption
102 78

device-initiated adaptive
privacy protection 232 16

that are specified in the security and privacy functionalities. Table 8.3 shows impact on average

power consumption on the initialization and the application of adaptive application-level security

enforcement and device-initiated adaptive privacy protection, which is negligible on the overall

performance of a BLE device.

8.2 Case Studies

The case study of BlueRim is carried out by three different devices with the corresponding appli-

cations that are built for making use of functionalities on different types of BLE devices through

BlueRim. The first one is the electrocardiography (ECG) collecting device. An ECG analysis ap-

plication remotely collects an individual’s ECG recordings from the ECG collecting device through

81

BlueRim, which demonstrates the BlueRim’s ability of tasking on one functionality from one de-

vice and the task optimization. The second one is the infant monitoring device that monitors an

infant’s health state by the corresponding application through BlueRim, which demonstrates the

task scheduling against different functionalities from one device by an application domain. The

third one is the water pipe monitoring application that monitoring the vibrations of the water pipes

at different locations, which demonstrates the utilization of functionalities from multiple devices

The next three sections discuss the three applications, respectively.

8.3 ECG Recorder

The ECG recorder is the EcoBT device discussed in Section 7.1.2 equipped with a ECG recording

module. A ten-electrode strip which connects with the ECG recording module is attached to the

human body with a proper placement to collect the ECG data. The ECG recording module is mod-

eled as a functionality provided by the ECG recorder in the capability profile. The corresponding

application takes control of the ECG recorder and utilizes the ECG recording functionality re-

motely. For each recording, a long term task is scheduled to ECG recorder through BlueRim by

the ECG recording application and the result is retrieved from the data store in BlueRim. Fig. 8.1

shows a screenshot of ECG recording application that displays a 10-second ECG recording result.

8.4 Infant Monitor

The infant monitoring device is a EcoBT device equipped with multiple hardware modules for

collecting different types of physical data, including ambient infant’s body position with an ac-

celerometer, CO2 density with a CO2 sensor, breathing sound with a microphone, body tempera-

ture with temperature sensor, from an infant. Each of the modules is modeled as one functionality

82

Figure 8.1: An screenshot of the ECG recorder applicaition

in the device’s capability profile which can work independently from other functionalities. From

the application side, for a real-time remote monitoring, a task is scheduled to subscribe the data

from all the functionalities on the infant monitoring device. Fig. 8.2 shows a screenshot of the ap-

plication that is proceeding the real-time monitoring. In addition, instead of monitoring the overall

state of an infant, data collection task may be scheduled against any functionality individually to

collect data for users with different interests on the infant. Tasks that are scheduled against the

same device are taken care of by the task scheduler and optimization is proceeded if possible as

discussed in Section 6.3.

8.5 Water Pipe Monitor

The water pipe monitoring device performs noninvasive monitoring on the exterior of the water

pipes by measuring its vibration at a certain frequency. As shown in Fig. 8.3, several devices are

deployed at different location of UCI campus. The application issues a task against the BlueRim

to schedule data collection on all of the devices and retrieve the data according to the user specifi-

83

Figure 8.2: An screenshot of the infant monitoring applicaition

Figure 8.3: Locations of deployed devices Figure 8.4: The collected result of a specific
location

cation, for example, from a certain location as shown in Fig. 8.4.

84

Chapter 9

Conclusions and Future Work

We have introduced the concept of describing an NoT device’s capability using a self-descriptive

profile-based structure as well as exposing the device capability profile as the access interface. To-

gether with the device capability profile, a centralized managed IoT middleware layer, rimware, is

introduced for the integration between IoT and application domains to form a very powerful cyber-

physical system. The adaptive application-level security enforcement and the device-initiated

adaptive privacy protection techniques are introduced to ensure security and privacy for NoT de-

vices in the highly mobilized rimware environment. We believe that the true power of IoT is the

ability of allowing NoT devices to work across application domains. Rimware unleashes the po-

tential of NoT devices by exposing the device capability profile as web APIs for M2M interactions.

It also provides the formalized way to schedule tasks on devices, with which functionalities from

multiple devices can be utilized by different application domains. The implementation of rimware,

BlueRim, which is specifically designed for BLE devices, take advantages of BLE’s very long

battery life on the device side and the cloud functionality on the centralized side. The effective-

ness of the fundamental features of rimware have been validated in several real-world applications

with different access patterns while retaining their ability to consume very low power. We be-

lieve that our approach represents an important technology in taking IoT closer to realizing the full

85

potentials.

Several future works needs to be done to perfect the role of rimware as the middleware of IoT

including:

• Applying and experimenting the device capability profile concept on other NoT protocols,

such as ZigBee and ANT+, by building a profile-based application layer in the firmware as

well as deploying gateway program on the platforms with the connectivity of the correspond-

ing protocols.

• Utilizing more on the descriptions of attributes in the device capability profile to encode

more meta information, such as quality of service, to provide a more powerful device search

and task scheduling.

• Enabling collaboration from multiple devices without involvement of the gateway and the

centralized components of rimware using the self-descriptive device capability profile.

• Providing automatic recovery mechanism on the failure of tasks.

• Because of the lightweight characteristic of the gateway, a mobile version gateway may be

developed and deployed on the smartphone device.

86

Bibliography

[1] Emebedded Platforms Lab. http://epl.cs.nthu.edu.tw/.

[2] Python Tornado Web Framework. http://www.tornadoweb.org/.

[3] RFC 6455: The WebSocket Protocol. http://tools.ietf.org/html/rfc6455.

[4] Semantic Web Services Language. http://www.daml.org/services/swsl/.

[5] Web Service Choreography Interface. http://www.w3.org/TR/wsci/.

[6] Web Service Semantics - WSDL-S. http://www.w3.org/Submission/WSDL-S/.

[7] Web Services Flow Language. http://www.ebpml.org/wsfl.htm.

[8] XLANG. http://www.ebpml.org/xlang.htm.

[9] ZigBee Document 053474r06, Version 1.0, ZigBee Specification. ZigBee Alliance, 2004.

[10] PKCS #1 v2.2: RSA Cryptography Standard. RSA Laboratories, 2012.

[11] P. Andreou, D. Zeinalipour-Yazti, M. Vassiliadou, P. Chrysanthis, and G. Samaras. Kspot:
Effectively monitoring the k most important events in a wireless sensor network. In Data
Engineering, 2009. ICDE ’09. IEEE 25th International Conference on, pages 1503–1506,
March 2009.

[12] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services (BPEL4WS) 1.1, May 2003.

[13] S. Ashok and R. V. Krishnaiah. Overview and Evaluation of Bluetooth Low Energy: An
Emerging Low-Power Wireless Technology. International Journal, 2013.

[14] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G. Sirer. On
the need for system-level support for ad hoc and sensor networks. SIGOPS Oper. Syst. Rev.,
36(2):1–5, Apr. 2002.

[15] T. Bleier, B. Bozic, R. Bumerl-Lexa, A. da Costa, and e. a. Costes, S. SANY: an open service
architecture for sensor networks. The SANY Consortium, 2009.

[16] S. Bluetooth. Bluetooth: Bluetooth Core Specification v4.1. 3 December 2013.

87

http://epl.cs.nthu.edu.tw/
http://www.tornadoweb.org/
http://tools.ietf.org/html/rfc6455
 http://www.daml.org/services/swsl/
http://www.w3.org/TR/wsci/
http://www.w3.org/Submission/WSDL-S/
http://www.ebpml.org/wsfl.htm
http://www.ebpml.org/xlang.htm

[17] Bluetooth SIG. GATT Descriptors. https://developer.bluetooth.org/gatt/
descriptors/Pages/DescriptorsHomePage.aspx.

[18] Bluetooth SIG. GATT Specification. https://developer.bluetooth.org/
TechnologyOverview/Pages/v4.aspx.

[19] M. Botts, G. Percivall, C. Reed, and J. Davidson. OGC R© Sensor Web Enablement: Overview
and High Level Architecture. GeoSensor Networks, pages 175–190, 2008.

[20] W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk, S. Gupta, and E. A.
Nabbus. Electronic Authentication Guideline. NIST Special Publication 800-63-1. Computer
Security Division, Information Technology Laboratory, National Institute of Standards and
Technology, Dec. 2011.

[21] F. Callegati, W. Cerroni, and M. Ramilli. Man-in-the-Middle Attack to the HTTPS Protocol.
Security & Privacy, IEEE, 7(1):78–81, Feb. 2009.

[22] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and dynamic
service composition in eflow. In B. Wangler and L. Bergman, editors, Advanced Information
Systems Engineering, volume 1789 of Lecture Notes in Computer Science, pages 13–31.
Springer Berlin Heidelberg, 2000.

[23] F. Casati, M. Sayal, and M.-C. Shan. Developing e-services for composing e-services. In
K. Dittrich, A. Geppert, and M. Norrie, editors, Advanced Information Systems Engineer-
ing, volume 2068 of Lecture Notes in Computer Science, pages 171–186. Springer Berlin
Heidelberg, 2001.

[24] S. K. Datta and C. Bonnet. Smart M2M gateway based architecture for M2M device and End-
point management. In ITHINGS 2014, IEEE International Conference on Internet of Things
2014, September 1-3, 2014, Taipei, Taiwan, Taipei, TAIWAN, PROVINCE OF CHINA, 09
2014.

[25] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Methods and Tech-
niques. NIST Special Publication 800-38A. Jan. 2001.

[26] S. M. Fairgrieve, J. A. Makuch, and S. R. Falke. PULSENetTM: an implementation of sensor
web standards. International Symposium on Collaborative Technologies and Systems, 2009
CTS’09, pages 64–75, 2009.

[27] I. Galpin, C. Brenninkmeijer, F. Jabeen, A. Fernandes, and N. Paton. An architecture for
query optimization in sensor networks. In Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on, pages 1439–1441, April 2008.

[28] W. I. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. SenseWeb: An Infrastructure for
Shared Sensing. MultiMedia, IEEE, 14(4):8–13, 2007.

[29] M. M. Hassan, B. Song, and E.-N. Huh. A framework of sensor-cloud integration oppor-
tunities and challenges. In Proceedings of the 3rd International Conference on Ubiquitous
Information Management and Communication, ICUIMC ’09, pages 618–626, New York, NY,
USA, 2009. ACM.

88

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/v4.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/v4.aspx

[30] IEEE. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low Rate Personal Area Networks (WPAN), 2003.

[31] S. Ikeda, P. C.-Y. Sheu, and J. P. Tsai. A Model for Object Relational OLAP. International
Journal on Artificial Intelligence Tools, pages 551–595, 2010.

[32] W. Kurschl and W. Beer. Combining cloud computing and wireless sensor networks. In
Proceedings of the 11th International Conference on Information Integration and Web-based
Applications & Services, iiWAS ’09, pages 512–518, New York, NY, USA, 2009. ACM.

[33] T. K. Lai, A. Wang, C.-M. Chang, H.-M. Tseng, K. Huang, J.-P. Li, W.-C. Shih, and P. H.
Chou. Demonstration Abstract: An 8 × 8 mm2 Bluetooth Low Energy Motion-Sensing
Wireless Sensor Platform. In The 12th ACM/IEEE Conference on Information Processing in
Sensor Networks, Demo Session, Berlin, April 2014.

[34] K. Lee. IEEE 1451: A Standard in Support of Smart Transducer Networking. Proceedings
of the 17th IEEE, 2:525–528, 2000.

[35] P. Levis and D. Culler. MatÉ: A tiny virtual machine for sensor networks. SIGARCH Comput.
Archit. News, 30(5):85–95, Oct. 2002.

[36] L. S. Lifang Zhai, Chunyuan Li. Research on the Message-Oriented Middleware for Wireless
Sensor Networks. Journal of Computers, 6(5), May 2011.

[37] J. Liu, E. Cheong, and F. Zhao. Semantics-based optimization across uncoordinated tasks in
networked embedded systems. In EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software, pages 273–281. ACM Request Permissions, Sept. 2005.

[38] J. Liu and F. Zhao. Towards Semantic Services for Sensor-rich Information Systems. In
Broadband Networks, 2005. BroadNets 2005. 2nd International Conference on, pages 967–
974, 2005.

[39] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An acquisitional
query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122–173,
Mar. 2005.

[40] D. Martin, M. Burstein, and G. Denker. OWL-S 1.2 draft release. http://www.ai.sri.
com/daml/services/owls/1.2/, 2006.

[41] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems,
16(2):46–53, Mar. 2001.

[42] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi. Combining Cloud and sensors in
a smart city environment. EURASIP Journal on Wireless Communications and Networking,
2012(1):1–10, 2012.

[43] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. Meteor-s web service annotation
framework. In Proceedings of the 13th International Conference on World Wide Web, WWW
’04, pages 553–562, New York, NY, USA, 2004. ACM.

89

http://www.ai.sri.com/daml/services/owls/1.2/
http://www.ai.sri.com/daml/services/owls/1.2/

[44] V. Rajesh, J. M. Gnanasekar, R. S. Ponmagal, and P. Anbalagan. Integration of wireless sensor
network with cloud. In Recent Trends in Information, Telecommunication and Computing
(ITC), 2010 International Conference on, pages 321–323, 2010.

[45] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu. Design of an intelligent middle-
ware for flexible sensor configuration in m2m systems. SENSORNETS, 2013.

[46] M. Ryan. Bluetooth: With Low Energy Comes Low Security. In Proceedings of the 7th
USENIX Conference on Offensive Technologies, WOOT’13, pages 4–4, Berkeley, CA, USA,
2013. USENIX Association.

[47] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and composing
service-based and reference process-based multi-enterprise processes. In B. Wangler and
L. Bergman, editors, Advanced Information Systems Engineering, volume 1789 of Lecture
Notes in Computer Science, pages 247–263. Springer Berlin Heidelberg, 2000.

[48] K. Shi, Z. Deng, and X. Qin. TinyMQ: A Content-based Publish/Subscribe Middleware for
Wireless Sensor Networks. In SENSORCOMM 2011, The Fifth International Conference on
Sensor Technologies and Applications, pages 12–17, 2011.

[49] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts. Connect, learn,
succeed. McGraw-Hill Education, 2010.

[50] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and J. Kelner. Mires:
a publish/subscribe middleware for sensor networks. Personal and Ubiquitous Computing,
10(1), Dec. 2005.

[51] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S. Jubert,
M. Mazura, M. Harrison, and M. Eisenhauer. Internet of Things Strategic Research Roadmap.
Chapter 2 in Internet of Things: Global Technological and Societal Trends, pages 9–52, 2011.

[52] Villaverde, B C and Pesch, D and De Paz Alberola, R and Fedor, S and Boubekeur, M. Con-
strained Application Protocol for Low Power Embedded Networks: A Survey. In Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Con-
ference on, pages 702–707, 2012.

[53] J. Zheng, M. J. Lee, and M. Anshel. Toward Secure Low Rate Wireless Personal Area Net-
works. Mobile Computing, IEEE Transactions on, 5(10):1361–1373, Oct. 2006.

90

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Description of Device's Capability
	Devices Working Across Application Domains
	Security and Privacy Enforcement
	Low Power Requirement
	Contributions
	Disseration Structure

	Background: Protocols for Networks of Things
	NoT Protocols
	Bluetooth Low Energy
	ANT+
	ZigBee

	BLE's GATT Profile Hierarchy
	Properties of Characteristic
	Descriptors of Characteristic

	Background and Related Work: IoT
	Middleware
	Device Capability Abstraction
	External-descriptive Solutions
	Self-Descriptive Solutions

	Task Composition
	Task Composition of NoT
	Composition of Web Services

	Cloud and IoT Middleware

	Rimware: System Overview
	Overview of Proposed Firmware-Gateway-Central System
	Firmware
	Gateway
	NoT Device Adapter

	Centralized Components of Rimware
	Knowledge Base
	Adaptive Application-level Security Enforcement with Knowledge Base
	Device-initiated Adaptive Privacy Protection with Knowledge Base
	Task Scheduler
	Data Store

	Device Capability Profile
	Device Capability Profile Model
	Functionality
	Attribute
	fact-typed Attribute
	stream-typed Attribute
	property-typed Attribute

	Syntax Expression of Device Capability Profile
	Device Capability Profile in Firmware
	Functionality, Attribute, and Attribute's Description in Firmware
	Access Control on Device Capability Profile

	Security and Privacy Specification using Device Capability Profile
	Security Description in Device Capability Profile
	Privacy Description in Device Capability Profile

	Query and Task Scheduling
	Access on Attributes
	Web APIs-based method
	Query-based method
	Search for Device's KB Record

	Task Scheduling
	Task Optimization
	Optimization on Tasks Affected by Periodic Actions

	Implementation: BlueRim
	BLE Device and Emulator
	GATT-based Capability Profile
	EcoBT
	BLE Device Emulator by MacBook

	Gateway
	Cloud-base Centralized Components

	Evaluation and Case Studies
	Evaluation
	Code Size
	Responsive Time
	Power Consumption

	Case Studies
	ECG Recorder
	Infant Monitor
	Water Pipe Monitor

	Conclusions and Future Work
	Bibliography

