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ABSTRACT 

 

Methodological Developments in Consequential Life Cycle Assessment 

 

by 

 

Joseph William Palazzo 

 

Life Cycle Assessment (LCA) seeks to quantify the environmental impacts of product 

systems and services from “cradle-to-grave”, or from raw material extraction through the 

end-of-life. The ideal outcome of this exercise is the identification of actions that can be 

taken by firms and policymakers to reduce global environmental damage. LCA is quite 

young relative to the classical academic disciplines, and faces significant challenges in 

establishing its relevance for decision-making. Mainstream LCA practice seeks to 

account for environmental damage using a class of frameworks termed Attributional LCA 

(ALCA). This typically involves the use of normative, technology-focused rules to 

allocate inputs, outputs and emissions over product systems that interact with each other. 

The application of such rules can sever cause-effect relationships that strongly influence 

the environmental consequences of changes to industrial systems. This thesis develops 

and demonstrates new methodologies pertaining to Consequential LCA (CLCA), which 

has not been standardized and fully adopted in mainstream practice. In CLCA, I seek to 

assess the net environmental outcomes of decisions, rather than attribute environmental 
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impacts using a set of normative rules. This leads to an inevitable focus on social 

dynamics and causal inference, which are scarcely addressed in the LCA field.  

The first chapter is an extensive literature review on the history and current state of 

methods for characterizing the environmental consequences of actions in LCA. I first 

discuss the major existing differences between ALCA and CLCA in the literature. Then, I 

provide a detailed review of methods that have been proposed to evolve the structure of 

CLCA models towards a robust representation of cause-effect relationships. I recommend 

the use of an iterative framework between structural CLCA models and causal inference 

analysis, a class of methods largely absent from the LCA literature. The remainder of my 

dissertation applies this iterative framework and focuses on the integration of LCA with 

the modelling and quantification of social mechanisms. In Chapter 2, I build a CLCA 

model of automotive material substitution including parameterized market forces that 

drive the environmental impacts of changes in scrap generation and recycling activity. I 

show that market forces contribute significantly to uncertainty in modelling the 

greenhouse gas consequences of automotive material substitution using local and global 

sensitivity analysis. I also find that in 16% of trials of a Monte Carlo simulation, 

substituting aluminum for steel in a fleet of vehicles does not constitute a net decrease in 

greenhouse gas emissions. This finding contrasts with previous studies on the topic, and 

is influenced by the incorporation of market forces into the model. Chapter 3 explores the 

environmental consequences of recycling as an example of these market forces in greater 

depth. I generalize this concept as a question of the cause-effect relationship between 

recycling and production of materials from primary resources. For the first time in the 

industrial ecology literature, I propose the use of difference-in-differences (DID), a quasi-
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experimental statistical method that classifies observational data into treatment and 

control groups, to test hypotheses about this key relationship. I simulate the application of 

the DID estimator to the question of whether or not increases in the use of recycled 

aluminum in the automotive industry would lead to an equivalent reduction in the use of 

primary aluminum. Finally, in Chapter 4, I exploit the fact that water is used, recycled, 

and reused in localized units to create treatment and control groups of recycled water 

users. I design an empirical DID study that explores the question of whether or not 

increases in wastewater recycling lead to equivalent reductions in potable water usage. I 

find that in a large urban water district in California, the wastewater recycling program 

has displaced over 25 million cubic feet of potable water production with a displacement 

rate of 93.4%. Chapter 4 is the first empirical application of quasi-experimental methods 

to quantifying the relationship between recycling and primary production, and the first 

attempt to test hypotheses regarding the potable water savings achieved from wastewater 

recycling. 
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1. A review of methods for characterizing the environmental 

consequences of actions in life cycle assessment 

1.1 Abstract 

Understanding the environmental consequences of actions is becoming increasingly 

important in the field of industrial ecology in general, and in life cycle assessment (LCA) 

more specifically. However, a consensus on how to operationalize this idea has not been 

reached. A variety of methods have been proposed and applied to case studies that cover 

various aspects of consequential life cycle assessment (CLCA). Previous reviews of the 

topic have focused on the broad agenda of CLCA and how different modelling frameworks 

fit into its goals. However, explicit examination of the spectrum of methods and their 

application to the different facets of CLCA is lacking. Here I provide a detailed review of 

methods that have been used to construct models of the environmental consequences of 

actions in CLCA. First, I cover the following structural modelling approaches: (1) economic 

equilibrium models, (2) system dynamics models, (3) technology choice models, and (4) 

agent-based models. I provide a detailed review of particular applications of each model in 

the CLCA domain. The advantages and disadvantages of each are discussed, and their 

relationships with CLCA are clarified. From this, I am able to map all of these models onto 

the established aspects of CLCA. I learn that structural models alone are not sufficient to 

quantify the uncertainty distributions of underlying parameters in CLCA, which are essential 

components of a robust analysis of consequences. To address this, I provide a brief 

introduction to the causal inference approach to parameter identification and uncertainty 

analysis that is emerging in the CLCA literature. I recommend that a research path forward 
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for the future of CLCA is the establishment of feedback loops between empirical estimates 

and structural models. 

1.2 Introduction 

The inquiry over the robustness of quantitative methods used in the industrial ecology 

community for decision-making has persisted throughout its history (Tillman 2000; 

Weidema 1993; Ekvall et al. 2016; Weidema 2003; Earles and Halog 2011; Zamagni et al. 

2012; Plevin et al. 2014; Dale and Kim 2014; Brandão et al. 2014). Fundamentally, this can 

be understood as the industrial ecology asking itself the following question: do the results of 

our analysis adequately represent the environmental consequences of actions? The labelling 

of a fraction of life cycle assessment (LCA) studies as “consequential” naturally implies that 

a particular subset of LCA studies do the job of representing the consequences of actions 

(Curran et al. 2002). However, there is a lack of consensus on what exactly constitutes a 

consequential LCA (CLCA, Rajagopal 2016; Earles and Halog 2011; Yang 2016; Suh and 

Yang 2014; Zamagni et al. 2012; Ekvall et al. 2016). For example, authors have suggested 

CLCA is the merging of traditional attributional LCA (ALCA) with supply-demand 

equilibrium models (Earles and Halog 2011), that CLCA should be computed using general 

equilibrium techniques (Rajagopal 2016), that CLCA is the combination of ALCA and 

scenario analysis (Yang 2016), and that CLCA is rather an aspiration than an operational 

model and that actual practice lies in the continuum “from ALCA to the ideal CLCA” (Suh 

and Yang 2014). 

Despite the ongoing debate over what constitutes CLCA, there are specific features of 

CLCA that are accepted in the literature. For example, CLCA requires that data collection 

be guided by the goal to analyze the consequences of a change to a product system. Thus, 
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the inventory data should be reflective of the precise sources used to fulfill the increases (or 

decreases) in products and services affected by the change, which are referred to as 

“marginal” in the case of small changes and “incremental” in the case of large ones (Ekvall 

et al. 2016). Other themes of CLCA that appear in literature are the use of system expansion 

to address issues where flows are shared between product systems (Ekvall and Weidema 

2004; Ekvall et al. 2016; Weidema 2003; Majeau-bettez et al. 2014; Weidema 2001), the 

addition of a time dimension to LCA (Stasinopoulos et al. 2012), and the inclusion of social 

and economic mechanisms (Zamagni et al. 2012; Earles and Halog 2011). A number of 

approaches have been used to mechanistically characterize change-oriented data, expand 

system boundaries, include a time dimension, and parametrize social and economic 

processes. This diversity of approaches is supported by the notion that there are “different 

models for different purposes” (Anex and Lifset 2014). 

Some authors have associated the use of a specific modelling approach with CLCA. This 

includes the use of economic equilibrium models (Rajagopal 2014; Earles and Halog 2011; 

Ekvall and Andrae 2006), system dynamics models (Stasinopoulos et al. 2012), agent-based 

models (Querini and Benetto 2015), and the technology-choice model (Kätelhön et al. 

2016). In one way or another, these models specify a set of input parameters and a 

corresponding set of equations that govern hypothesized cause-effect relationships in the 

system. Herein, I refer to this as a structural model for CLCA. 

Much of the existing CLCA review literature is focused on comparing and contrasting 

traditional linear process-based and economic input-output LCA models with LCA models 

which utilize economic equilibrium approaches (Earles and Halog 2011; Zamagni et al. 

2012; Yang and Heijungs 2017; Marvuglia et al. 2013). Authors have also conducted in-
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depth reviews regarding the inclusion of other market mechanisms, such as the concepts of 

constrained and unconstrained suppliers, in CLCA  (Ekvall and Weidema 2004; Ekvall et al. 

2016). The gaps in existing reviews are the following: 1) approaches other than economic 

equilibrium modelling are mostly absent; 2) the relative merits of each approach for 

informing the individual accepted facets of CLCA are unclear; 3) the role that hypothesis 

testing and statistical inference play in CLCA is not specified. 

The objectives of this chapter are thus three-fold: first, to provide a comprehensive 

review of the key assumptions, applications, advantages and disadvantages of the full array 

of models proposed as structures for CLCA. Secondly, I aim to map these models onto the 

individual aspects of CLCA that I described above. Third, I seek to tie these models together 

with causal inference in order to promote the integration of cause-effect and uncertainty 

analyses into the research agenda of CLCA. 

The following chapter first focuses on four structural models for consequential life cycle 

inventories: (1) economic equilibrium models, (2) systems dynamics models, (3) technology 

choice models, and (4) agent-based models. For each model, I provide an overview of the 

key concepts and assumptions. Next, I provide descriptions of specific applications of each 

model in the industrial ecology literature, and specify where these fit into the CLCA puzzle. 

The advantages and disadvantages of each are discussed both in absolute terms and relative 

to each other. Then, I introduce observational methods that can be used to test hypotheses 

generated by structural CLCA models, and in turn inform the input parameters and their 

underlying uncertainties. I conclude by discussing how existing CLCA models highlight 

critical hypotheses that underpin the environmental consequences of decisions, which are 

testable via observational methods. Then, the results from these hypothesis tests can be used 



 

 5 

to refine the structural model used in a given CLCA. In this way, structural models and 

observational methods can be integrated in a feedback loop in an effort to advance CLCA as 

a cause-effect analysis framework. 

1.3 Review of structural models for CLCA 

 Economic Equilibrium Models 1.3.1

The terminology of “general” and “partial” equilibrium has been a source of great 

confusion in scholarly literature. Therefore, I begin our discussion by providing some 

historical context and specifying a clear definition of what is meant by an “economic 

equilibrium model” for the purposes of this review.  

The contribution of general equilibrium theory to the economic literature is credited to 

Arrow and Debreu (1954). Its theoretical grounding traces to the work of Léon Walrus, who 

is credited with introducing the classical market-clearing equilibrium condition; that supply 

equals demand for all goods in a perfectly competitive market (Walrus 1900). Arrow-

Debreu equilibrium specifies the existence of a vector of prices for all goods in the economy 

for which all markets clear, or reach equilibrium, under a set of assumptions (Mitra-kahn 

2008). One can approximate a solution for the vector using a computational algorithm such 

as Scarf’s algorithm (Scarf 1967).  

In mainstream practice, computable general equilibrium (CGE) models, such as the 

global trade analysis project (GTAP), are not a complete manifestation of Arrow-Debreu 

general equilibrium theory (see Mitra-kahn 2008). They are market models constructed 

using simultaneous equations of supply and demand for goods as a function of price and a 

series of exogenous variables. Therefore, I refer to “general equilibrium” approaches as the 

exercise in determining price and quantity jointly in all sectors and regions in the world 
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economy using a solvable system of equations, which aligns with its mainstream definition 

today. This exercise requires price responses and substitution responses between sectors as 

an essential input. I note that in practice, these price responses are calculated as ratios of 

percentages and referred to as “elasticities”. 

Some applications of economic equilibrium modelling in CLCA are referred to “partial 

equilibrium” models (PEMs). This terminology is used for models that use simultaneous 

equations of supply and demand, along with the equilibrium condition, to represent the 

market for a particular good (or small set of goods) in isolation from the rest of the 

economy. Given the enormous challenges associated with building a general equilibrium 

model of the world economy, the majority of cases applicable to CLCA have used a partial 

equilibrium approach. This also requires the calculation of price elasticities and substitution 

elasticities, but with significantly fewer inputs in comparison with GEMs. Together, PEMs 

and GEMs as described above are what I refer to as “economic equilibrium models” during 

this review. 

1.3.1.1 Assumptions 

The most elementary of assumptions in economic equilibrium models is that there are 

two sets of agents that interact on a market or set of markets. These two sets are referred to 

as the “supply side” and “demand side” (Cardenete 2012). On the supply side, there are 

agents which are assumed to produce goods and services in a profit-maximizing manner. In 

other words, they choose the production recipe that minimizes the difference between their 

costs and the selling price of their product. The demand side is made up of consumers, 

which are seeking to maximize their utility function. Another key assumption in economic 

equilibrium models is that the market in question is competitive. In short, this means that no 
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single agent of supply or demand prescribes the operating parameters of the market (for 

more detailed definitions see Stigler, 1957). It is also assumed that following a shock to 

supply or demand, an equilibrium condition where supply equals demand will be reached in 

subsequent time periods. While not necessary, most of the underlying relationships between 

prices and quantities are defined using linear functions, meaning that they assume the effect 

of price is linear and homogenous.  

The parameters underlying simultaneous equations of supply and demand that comprise 

economic equilibrium models are sometimes estimated using two-stage least squares 

regressions with instrumental variables, and may have ceteris paribus causal interpretations 

(Stock 2001; Wooldridge 2012). For example, in the background of economic equilibrium 

models, the ceteris paribus causal effect of a unit change in price on the quantity of a good 

supplied is sometimes estimated, and called the “own-price” response of supply. The own-

price response of demand may also be estimated in an economic equilibrium model based on 

simultaneous equations. When two goods A and B are included in the economic equilibrium 

model, the effect of a unit change in the price of A on the quantity demanded of B (and vice 

versa) may also be estimated econometrically, or otherwise calculated. These are referred to 

as “cross-price” or “substitution” responses. In cases where regressions are used to estimate 

the underlying parameters, non-price variables are included as exogenous shifters of supply 

and demand and used as the instrumental variables in the regressions that generate the price 

response estimates (Wooldridge 2012). The ideal aspiration of an economic equilibrium 

model is then to establish causal relationships between supply and demand for a commodity 

and its own price, the price of its inputs, the price of competing products and other 

economy-wide controls such as real GDP (Blomberg and Hellmer 2000; Zink et al. 2017). 
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However, it is important to note that PEM and CGE models as a whole are not causal 

inference models even if the underlying parameters are estimated econometrically. By 

applying PEM and CGE models, we are not testing the hypothesis that their structure is 

reflective of the underlying causal mechanisms in the economy. 

1.3.1.2 Applications 

Perhaps the most influential case of the use of PEMs in industrial ecology is a study of 

the consequences of indirect land use change in the environmental impact assessment of 

shifts towards biofuels (Searchinger et al. 2008). The authors conclude that the conversion 

of land for food and feed crops in response to increased bio-ethanol demand was 

unaccounted for in previous LCA studies of biofuels. The consideration of this indirect 

effect in the LCA resulted in findings that contrasted with earlier studies, which concluded 

that using ethanol may reduce greenhouse gas (GHG) emissions (Macedo et al. 2004; Wang 

et al. 1999; Farrell et al. 2006).  A PEM created by the Center for Agriculture and Rural 

Development (CARD) at Iowa State University models the relationship between changes to 

demand in corn-derived ethanol and changes in the amount of land used for food and feed 

production. The idea that increased corn ethanol can lead to increased land conversion for 

crop production is a major driver of their result. In subsequent research, economic 

equilibrium models were proposed in general as a means to expand the system boundary in a 

CLCA of biofuels (Marvuglia et al. 2013). 

Another example of the use of PEM in industrial ecology originates from the following 

research question: What is the relationship between increases in recycling activity and 

production of primary materials from raw resources (Zink et al. 2017, 2015)? One approach 

to the question is to construct a simultaneous equations model of supply and demand for 
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primary and secondary alternatives of the same material. The markets are linked through 

substitution elasticity, or a coefficient on the price difference between the two. Both markets 

reach equilibrium following the shock in secondary supply or demand. The response of 

primary supply to increases in secondary supply is termed “displacement”. For example, if 

an increase in secondary supply of one unit results in a one-unit decrease in primary 

production, the displacement rate is 100%. Estimating displacement using PEMs is an 

example of avoiding the need to allocate recycling benefits between scrap users and 

generators by expanding the system boundary to include the scrap and material markets 

(Ekvall 2000; Zink et al. 2017).  

PEMs are also applied in an early CLCA study of the transition to lead-free solders in 

the electronics industry (Ekvall and Andrae 2006). In this paper, a partial equilibrium 

structure for the lead and scrap lead markets is suggested. However, the price elasticities of 

supply and demand for both lead and scrap lead are assumed rather than estimated. The 

authors conclude that long-run elasticities are more relevant than short-term elasticities, as 

“[…] environmental systems analyses are primarily conducted due to concern about the 

long-term future environment.”  

Rajagopal (2016) discusses how a multi-market PEM can be built up into a GEM for the 

purposes of conducting CLCA. The supply and demand functions as well as equilibrium 

conditions are outlined for a hypothetical economy that produces food and fuel from land 

and energy inputs. A theoretical example of a policy shock stimulating fuel production from 

the land endowment (i.e. biofuel) is provided. However, in reality such a policy will have 

effects on other sectors of the economy besides agriculture and energy. This is the argument 

for building a GEM that links this system with the remaining sectors in the economy. By 
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linking supply and demand functions for all sectors, one could simulate the response of all 

sectors to a policy-driven shock to biofuel production. This is suggested as a potential 

overall framework for CLCA due to the intuitive appeal of including the interactions 

between sectors that are unaccounted for in PEMs.  

1.3.1.3 Advantages & Disadvantages  

There are several particular strengths regarding the use of PEMs for modelling the 

consequences of actions. The functions driving PEMs are usually estimated using causal 

inference techniques such as instrumental variables and two-stage least squares. This means 

that the price elasticity estimates have a ceteris paribus cause-and-effect interpretation 

conditional on past observations, even though the use of PEMs on the whole is not 

necessarily a direct measure of causality as discussed in section 2.1.1. The use of exogenous 

instruments for prices in the supply and demand functions are intended to produce the causal 

interpretation of the underlying parameters (Stock 2001).  This statement should be 

interpreted with caution, however, as the instrument validity assumption implies that the 

instrumental variable is uncorrelated with the unobserved portion of the model, which can 

never be proven conclusively. Thus, the causal interpretation of instrumental variables relies 

on logical arguments, and should not be interpreted as reflecting a true random assignment 

experiment. Nonetheless, prices are a significant predictor of consumer behavior in 

competitive, developed economies and price responses are useful for thinking about the 

consequences of changes in the economy.  

Another strength of PEMs is that the structural equations are quite detailed and specific, 

in comparison with GEMs which tend to aggregate commodities into sectors, have opaque 

structures and require massive amounts of effort and data to produce (Gohin and Moschini 
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2006). An intuitive analogy can be drawn between the PEM to GEM relationship and the 

process to input-output LCA relationship. In a general sense, process-based LCA lends itself 

to a more detailed analysis, whereas the input-output method relies on heavily aggregated 

data (Suh and Huppes 2005). This analogy is strengthened by the fact that partial 

equilibrium has been used in process-based CLCA (Ekvall and Andrae 2006) and economic 

input-output theory is considered a part of the foundation for general equilibrium models 

(Rose 1995). 

Although they are a powerful tool, PEMs also contain several further limitations. The 

first one is that PEMs model the interactions of one or two sectors in isolation from the rest 

of the economy. Consider the secondary production and primary production example 

mentioned above. A shock in the supply of secondary aluminum, for example, may displace 

primary aluminum. The growth in secondary aluminum production and the reduction in 

primary aluminum production have a net effect on the market for electricity, as the 

electricity consumption of the aluminum industry would decrease if there was truly a net 

increase in primary production. On a global scale, this reduction may be significant, and 

would not be accounted for in a single-sector PEM.  

As discussed previously, GEMs are an exercise in adapting the principles of economic 

equilibrium to an entire economy, made of many sectors, as opposed to just a select few. 

They are also equipped to handle inter-regional and inter-national dependencies, in contrast 

to standard input-output models, which are based on the accounts of a single nation (Rose 

1995). Relative to PEMs, using GEMs for modelling the consequences of actions presents 

the advantage that they are able to handle international trade. For example, GTAP 

constructed a database containing 140 regions and 57 sectors that contains information about 
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the input-output structure of the sectors and heterogeneous household consumption 

preferences across countries (Hertel and Tsigas 1997). One could then evaluate the 

consequences of a carbon tax imposed on electricity-intensive imports from a country that 

has a grid mix with high carbon intensity. Consider the example of importing aluminum 

from China, which has an electricity mix grid with a higher than average carbon footprint 

(Hao et al. 2015). Reducing imports of Chinese aluminum and increasing imports from a 

nation that uses mostly hydroelectric power appears to reduce carbon emissions to first 

order. However, there may be unintended consequences, for example if the alternative 

source of aluminum requires greater inputs from the transportation sector. Under the 

assumptions of perfect competition and market clearing equilibrium, GEMs will provide 

insights regarding the cascading consequences of this change in global trade. 

GEMs operate with the disadvantage that the sectors are highly aggregated, even more 

so than in the single nation input-output models commonly used in IO-LCA. Linking the 

input-output tables between multiple nations naturally requires some additional aggregation. 

The inability to account for competing technologies within a nation is another limitation of 

GEMs. Given that GEMs rely on the input-output account of nations, GEM tables are 

compiled on an intermittent basis and are frequently rooted in data from the fairly distant 

past, roughly 5-10 years (Hertel and Tsigas 1997). Data gaps in substitution elasticities are 

sometimes filled using data that are even older, exacerbating the data age issue. They are 

also based off the calculation of Armington elasticities, which present an issue in modelling 

the upstart production of a good in a region which did not produce it before (Springer and 

Duchin 2014). These issues are problematic when modelling the consequences of a decision 

made today, and the potential need to shift production of critical goods to new economies. 
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The theoretical construct of marginal input-output tables that could feed into marginal 

GEMs exists (Miller and Blair 2009), but in practice is based on calculating the change in 

the input-output structure between two consecutive editions of input-output tables. The 

tables used to calculate the marginal coefficients are still in the form of aggregated sectors 

and remain based on information produced in large time intervals, which remains 

problematic in terms of forecasting consequences increasing the demand for particular 

technological processes into the future. Lastly, GEMs are not very useful in exploring the 

consequences of decisions that have impact on developing economies, as these areas 

frequently have unstable trade conditions and governments, lack transparency in their 

economic policy and perform much of their trade on the black market.  

In general, one must also bear in mind that a static equilibrium condition is the 

counterfactual for the responses quantified in these analyses. This is unlikely to be a 

sustainable assumption in the long term, and the uncertainty associated with the estimated 

effects in an economic equilibrium model increase with the time frame under which the 

studied transformation occurs. Lastly, economic equilibrium models are based on classical 

economic assumptions such as perfect information and rationality. These are not realistic in 

many situations, for example in relatively monopolistic or otherwise distorted markets; 

therefore it is likely that what we actually observe after a supply or demand shock will differ 

from what a PEM tells us.  

 System Dynamics Models 1.3.2

System dynamics modelling originated from a “pencil and paper simulation” of the 

feedback loops between industrial inventories, production volumes, and employment which 

was inspired by an optimization problem posed by General Electric in the 1950s (Forrester 
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1989). The complexity of the calculation of optimal employment practices led to the 

development of the original computing frameworks for system dynamics, namely SIMPLE 

and eventually DYNAMO. This development corresponds with the original academic 

version of system dynamics (Forrester 1958). Throughout the 1960s, interest in the use of 

Forrester’s modelling framework for problems outside of industry intensified. A 1970 report 

by the Club of Rome used the World3 model, derived from Forrester’s original framework, 

to predict a collapse of modern society by 2100 due to the depletion of Earth’s natural 

resources if trends in industrial activity were left unchanged. This is widely considered the 

first application of system dynamics to a sustainability problem. Over the subsequent 

decades, system dynamics became a key modelling and simulation technique in supply chain 

management research (Angerhofer and Angelides 2000), which makes its eventual overlap 

with industrial ecology and LCA unsurprising.  

The system dynamics framework starts with a network with nodes that are linked by a 

series of causal pathways, most often illustrated using a causal loop diagram (Ahmad et al. 

2016). The method is rooted in stock and flow calculations. Goods, capital, information, and 

other flows accumulate in the nodes of the causal pathways. There are time delays to the 

release of the various stocks, and they flow to the nodes that they are connected to, which in 

turn interact with the next nodes, and so forth. Given the node-level heterogeneity in 

dynamic effects, the existence of numerous feedback loops, and the randomness introduced 

by uncertainty in the inputs, nonlinear emergent properties of the model over time are 

observed. Increases in computing power have enabled the use of system dynamics for a 

broader range of problems of increasing complexity.  
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1.3.2.1 Applications 

System dynamics has been used to add a time dimension to life cycle inventories, which 

aids in the modelling of a marginal background system. This gives the technique a different 

purpose in LCA compared with economic equilibrium models, which are most frequently 

used as an avenue for system expansion. In one case, system dynamics was used to analyze 

the energy benefits of changes in automotive body materials and was termed a 

“consequential energy LCI” (Stasinopoulos et al. 2012). Using systems dynamics, the 

authors introduce a time delay in capturing the marginal environmental benefits of recycling 

aluminum when it is substituted for steel. The study also highlights the difference between 

dynamic effects in a single product LCA versus that of an entire fleet of products.  

In another example, system dynamics is applied to the analysis of environmental impacts 

of various end-of-life management scenarios for mobile phones in China (Yao et al. 2018). 

The authors examine the sensitivity of the system dynamics model to changes in landfill and 

incineration rates of the main components of mobile phones (casing, PCBs, LCDs, and 

batteries). The results suggest that increasing recycling rates of mobile phones increases 

human health and resource consumption, but has a positive influence on ecosystems in the 

long term. However, the positive influence on ecosystem health over time is negatively 

correlated with incineration rates. The system dynamics component of this study captures 

the time delay from mobile phone purchase to the environmental impacts of end-of-life 

management. An earlier study of end-of-life management of mobile phones used a dynamic 

stock-and-flow analysis to suggest that high recycling rates are critical for achieving real 

energy savings from mobile phone recycling, especially in the face of rapidly increasing 

demand (Mclaren et al. 1999). 
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Modelling short and long-term dynamics of supply and demand in the electricity sector 

is another application of system dynamics that is of interest to the industrial ecology 

community, and specifically aids the identification of marginal electricity supply. A 2016 

review identifies “[…] models developed for policy assessment, generation capacity 

expansion, financial instruments, demand side management, mixing methods, and finally 

micro-worlds” (Ahmad et al. 2016). Of particular interest to the industrial ecology 

community are models of capacity expansion and demand, both of which effect the 

production and use phases of the LCIs of most household products. Ford (2001), for 

example, uses system dynamics to demonstrate the “boom-bust” pattern in electricity 

generation capacity expansion in California. This implies that utilities and investors respond 

to large increases in electricity demand in a sub-optimal manner. The LCI of marginal 

electricity generation in California is certainly affected by the dynamics of its supporting 

infrastructure.  

1.3.2.2 Advantages & Disadvantages  

One advantage of system dynamics in CLCA is the characterization of the timing of 

inventory data, emissions and associated environmental impacts. This is quite advantageous 

for identifying marginal inventory data, which are expected to evolve over time. From a 

policy standpoint, time horizons are frequently associated with sustainability goals. For 

example, the University of California zero waste plan, United Nations Sustainable 

Development Goals, and Hawai’i Sustainability Plan have time horizons of 2020, 2030, and 

2050, respectively (State of Hawai’i 2008; University of California 2017; United Nations 

2015). Thus, building models that evaluate the environmental consequences of such policies 

will inevitably involve a time component, which can be aided by the use of system dynamics 
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simulation. The system dynamics framework is also highly parameterized; giving it 

increased flexibility relative to economic equilibrium models.  

System dynamics requires a set of pre-programmed parameters that set the initial 

conditions for stock and flow relationships. Thus, the directions of causal loops are also pre-

determined from primary research, previous literature, and intuition. This pre-determination 

presents a disadvantage from a cause-and-effect standpoint, as the parameter sets are often 

too large to be completely determined using empirical methods. Economic equilibrium 

models, on the other hand, are parameterized with price elasticities that are determined using 

statistical methods. System dynamics models are sometimes considered less transparent than 

economic equilibrium models, since they are not likely to rely on public information or 

government accounts. Due to the complexities of the simulation, system dynamics also have 

a truncated system boundary compared with typical LCA models. Thus, system dynamics 

may be better suited for examinations of effects in smaller-scale systems, as in the case of 

local electricity generation capacity examined earlier. 

 Technology Choice Models 1.3.3

A technology choice model is one that optimizes the mix of multiple technologies used 

to produce sufficient quantities of goods to satisfy total demand from the various sectors of 

the economy. The optimization is subject to specified objectives and constraints. These may 

be related to costs, resource constraints, or other environmental outcomes, for example 

(Katelhon et al. 2015; Duchin and Levine 2012). In this section, I describe the Rectangular 

Choice of Technology (RCOT) model and an evolved version of RCOT referred to as the 

Technology Choice Model (TCM), which has been proposed as a component of CLCA 

(Kätelhön et al. 2016).  
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In a traditional input-output analysis, the technology matrix is square and the rows and 

columns are matching sectors. The RCOT model is an extension of the traditional input-

output analysis framework where sectors can have multiple choices of technologies. Each 

technology is assumed to derive its input from the aggregated sectors, so the rows remain 

unchanged, but the technology matrix becomes rectangular instead of square. The objective 

of the RCOT model is to solve several types of linear optimization problems (Duchin and 

Levine 2011, 2012).  

A key assumption of the RCOT model is that final demand for all sectors is met via a 

linear combination of activity levels of the technology options and that the outputs scale 

linearly with activity levels. It is also assumed that the outputs of the sectors in the RCOT 

model are all non-zero. RCOT further relies on the idea of “factors of production” which 

include resources that are not captured by the inputs from other sectors such as land and 

water. Factors need to have costs associated with them, which can be zero, and it is assumed 

that the objective of the economy is to minimize its factor costs subject to a series of 

constraints. The RCOT model can be further extended to include multiple regions that may 

trade the outputs of sectors with one another, with an objective of minimizing the total factor 

costs across all regions. The factors of production themselves, however, are not traded. 

Thus, different regions can have different factor use and cost structures.   

As stated earlier, there are several types of optimization problems that may be solved 

with the RCOT model. The most basic one minimizes the factor costs for a region while 

meeting final demand. The objective function problem looks like this: 𝑚𝑖𝑛𝑍 = ′𝐹∗𝑥∗ s.t. 

(𝐼∗ − 𝐴∗)𝑥∗𝑦, where  is the vector of factor prices, F* is the rectangular matrix of factors, 

x* are the activity levels, I* is the rectangular identity matrix, A* is the rectangular input-
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output coefficient matrix, and y is the vector of final demand. In this most basic case, given 

no constraints on quantities of factors or technologies, the optimization problem will dictate 

that the lowest cost technology is used to meet all demand in each sector. Other conditions 

may be added to the objective function problem, such as factor endowments or maximum 

capacities for different technologies. This increases the complexity of the optimization 

problem and increases the likelihood that there will be no solution. On its own, RCOT is not 

a complete framework for LCA, as it does not characterize the environmental impacts of the 

elements of the input-output matrix, nor does it specify a functional unit. However, given 

that input-output matrices are used to compute life cycle inventories (Heijungs and Suh 

2002; Suh and Kagawa 2005), the RCOT model can be readily integrated into an LCA 

computational structure. 

This leads to the TCM, which is the integration of RCOT into the matrix formulation of 

LCA (Kätelhön et al. 2016). Integration is achieved by introducing a scaling vector for the 

activity levels of the sectors in the economy needed to achieve the functional unit of the 

LCA. The rectangular environmental matrix B is introduced, which contains the direct flows 

to and from the environment from each process option in all sectors. One can proceed by 

using a characterization model to produce environmental impact indicators as would be done 

in any LCA. The difference is that the A matrix is rectangular and the ratios of the activity 

levels for multiple technologies available in a given sector has been optimized using the 

RCOT model. By using Monte Carlo simulation to perturb the input parameters to TCM, the 

authors propose what they call “stochastic TCM” as a model for CLCA that addresses both 

technology choice optimization and uncertainty analysis. In the context of CLCA, TCM is a 
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pathway for the identification of marginal technologies, which aligns with the strengths of 

system dynamics.  

1.3.3.1 Applications 

Springer and Duchin (2014) apply the RCOT model along with the World Trade Model 

(Duchin 2005) to tackle the question of how to feed a population of nine billion under 

various scenarios. The required increase in agricultural production in 2050 compared with 

baseline levels in 2000 for three regions (Africa, Latin America, and Rest of World) is 

estimated. The authors find that feeding nine billion is possible, even when accounting for 

increases in daily caloric intake in developing countries, when all usable land and water on 

earth are made available and agricultural technologies remain constant everywhere. 

However, once the available land is constrained to exclude clearing additional forests and 

available water is reduced to 20% of “renewable supply”, the model has no solution with all 

other variables held constant. In subsequent scenario analyses, the paper concludes that 

lowering caloric intake in developed countries and improving agricultural technologies to 

reduce land requirements provides a solution even when land and water use are restricted. 

All scenarios with a solution require increasing agricultural production in Africa by at least 

400%. 

Kätelhön et al. (2016) use the stochastic TCM to explore a hypothetical case of rice 

production, in particular the source of thermal energy, and how the climate change impacts 

vary with different factor constraints. The authors also analyze the uncertainty introduced 

when there are deviations from the optimized technology mix generated using RCOT. The 

analysis shows that the climate change impact per kilogram of rice production rises from 0.9 

to 1.3 kg CO2e/kg when the lowest-cost fuel (local rice husk) for thermal energy becomes 
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constrained. Alternative fuel sources must be imported from long distances, and when 

demand is high enough natural gas and wood pellets become part of the mix. Using TCM, 

the authors also show that the average climate change impact per functional unit of rice 

production is substantially lower than the marginal climate change impact.  

1.3.3.2 Advantages & Disadvantages  

The constraint modelling is a key advantage in using the RCOT model to examine the 

environmental consequences of actions. It helps us to determine what combinations of 

technologies are needed to meet our combination of economic and environmental objectives, 

given the assumption that the input and factor cost structures are realistic. In theory, this 

would allow us to examine seemingly infinite scenarios where different types of pollution 

are capped at different levels, for example, in an effort to determine whether or not such 

caps are actually reasonable given a certain level of final demand. Then, one could add 

another constraint stating that a certain low pollution technology is constrained in its 

production capacity and see whether or not a solution still exists. From there, insights may 

be gained regarding the need to add additional capacity of certain technologies or modify the 

endowments of certain factors in order to meet our objectives. This has great appeal in terms 

of informing policy decisions.  

While the RCOT model is quite powerful, it still has limitations in the context of CLCA. 

The RCOT model does not account for potential technology learning curves, or the idea that 

the inputs and factors of a given technology may not scale linearly with activity levels. 

According to Springer and Duchin (2014), the data to produce factor endowments, a key 

component of the RCOT model, are scarce. Therefore, their values may be highly uncertain. 

Inputs for the base sectors in Springer and Duchin (2014) are pulled from the year 2000, 
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introducing a significant time lag in the baseline input structures and factors of production. 

One other limitation is the use of static factor prices. In the agricultural example, this means 

that a factor price was assigned today to arable land and renewable water in 2050. Given that 

water is a commodity with a distorted market, one could imagine that the factor price may 

change quite a bit between today and 2050. The use of static factor prices also reduces 

confidence in a cause-and-effect interpretation of the results. 

 Agent-Based Models 1.3.4

Agent-based computational economics (ACE) is an emerging approach to modelling 

emergent properties of complex systems that are influenced by human interaction. Agents 

are discrete units that behave according to a set of pre-programmed rules. Agents’ behavior 

may also be influenced by learning outcomes via artificial intelligence, over a series of 

iterations. The goals of agent-based studies range from determining the optimal strategy of a 

basic economic game to learning-based adoption of new technologies (Chen 2011; Ringler 

et al. 2016).  

The assumptions that go into ACE modelling vary along an extremely broad spectrum. 

Chen (2011) provides a detailed review of the types of agents that exist and what 

assumptions go into each. The most basic type of agents is zero-intelligence, or randomly 

behaving agents. These agents make random decisions, with some probability of following 

the decisions of neighbors, but lack the ability to learn. They may interact with agents that 

have minimal intelligence and follow along, with emergent properties emulating the 

behavior of swarms of insects.  

On the next level of complexity, there are agents that have the ability to learn and make 

non-random decisions. The second broad category agents described in Chen (2011) are 
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human programmed agents. The origins of this type of agents are economic tournaments 

such as Iterated Prisoner’s Dilemma tournaments, where participants submitted individually 

programmed agents with unique algorithms to compete against one another in the game. 

Thus, human programmed agents are just that – assigned a set of rules by a human 

programmer for how they interact with each other, the simulated environment, and the 

decisions at hand in a particular game or analysis. They are unable to learn autonomously, 

i.e. beyond the learning rules generated from their initial programming. The third broad 

category of agents is autonomous agents, which are initialized by humans but able to learn 

thereafter without human intervention.  

1.3.4.1 Applications 

Querini and Benetto (2015, 2014) use ACE to compute LCIs for mobility systems under 

a number of simulated responses to policy and call it a form of CLCA. The policy 

interventions pertain to the adoption of hybrid and electric vehicles. There are an unknown 

number of parameters used to calibrate the agents, but their sensitivity analysis involves 

varying at least 23 different parameters. These range from agents’ initial attitudes towards 

HEVs and BEVs, driving habits, prices of electricity and charging infrastructure ability, 

among others. LCAs are performed for every vehicle purchased, used and discarded by the 

agents in the period 2013-2020 in Luxembourg and Lorraine, in order to contrast two 

locations with different electricity grid mixes. The results suggest that large scale adoption 

of Battery Electric Vehicles (BEVs) may decrease global warming impacts and depletion of 

fossil resources, but increase impacts in other categories such as metal depletion and 

ionizing radiation because of battery production. In the ACE model, the rate at which BEVs 
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are adopted depends on simulated preferences and attitudes toward the environment, and not 

purely price-quantity relationships.  

Zhao et al. (2011) hybridize ACE and system dynamics to assess the adoption of solar 

PV systems. This implementation of ACE includes the effects of advertising and sharing of 

information between agents and their electricity consumption behavior. The specific policy 

interventions examined in the study are Investment Tax Credits and Feed-In Tariffs in both 

New York City and Tuscon, Arizona. Real demographic data from the two localities are 

used to program some parameters for the ACE simulation. Feedback loops between PV 

systems and the electricity grid are modelled using system dyanmics based on the timing 

and intensity of electricity usage inferred via the patterns determined by the ACE 

simulation. The results suggest that residents in New York City are less responsive to PV 

adoption incentives than those in Tucson. This is partially attributed to the lower average 

daily solar power generation capacity in New York, but could also be because agents in such 

a large city are programmed to be less interactive.  

Davis et al. (2009) suggest an integrated feedback loop between an LCA model and 

ACE, pointing out that they are both “tools that employ systems approaches.” Furthermore, 

LCA (when the system is represented as a technology matrix) and ACE are both 

interconnected networks that behave according to a set of programmed relationships. 

However, the technology matrix in a traditional LCA framework is static, whereas the 

relationships simulated in ACE are dynamic. The authors suggest that ACE can be used to 

simulate the formation of supply chains, and that at each step of the simulation one can 

perform an LCA by inverting the A matrix of each agent in the simulated supply chain. In 

turn, the environmental impacts can be fed back to the agents as inputs for the next step of 
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the simulation. The functionality of the model is demonstrated in a hypothetical case study 

of increasing electricity demand that is met with bio-based electricity feedstocks. A CO2 tax 

is simulated along with various bio-based electricity feedstocks that have different price-

quantity curves. As electricity demand increases, new electricity producers enter the market 

using feedstocks that are determined by their decision making process in the ACE model. 

The simulation shows that agents programmed with a profit-maximizing decision-making 

process behave differently than those that aim to minimze GWP. All of these applications 

explicitly address the inclusion of social processes into CLCA. 

1.3.4.2 Advantages & Disadvantages 

A benefit offered by ACE to CLCA is the ability to include effects that emerge from 

communication between a network of agents, such as technology adoption, into LCA 

models. A traditional LCA contains very limited insight into the effects of behavior. 

Properties beyond price signals, such as those associated with consumer preferences and 

community demographics, can be incorporated into the LCA domain. In this sense, ACE 

results may both include the signals captured by economic equilibrium models, but also 

account for additional non-price factors influenceing market behavior.  

One potential disadvantage of the use of ACE is the level of complexity, and resulting 

lack of transparency in the model behavior. The number of parameters used to initialize an 

ACE model can be in the hundreds, or even the thousands. This makes it challenging for the 

outside audience to understand how well the simulation reflects reality. This contrasts with 

other models explored here, such as PEMs and the RCOT model, which have a simpler set 

of governing equations. This does not mean PEMs and RCOT are a better reflection of 

reality; it simply implies that the path to assessing this is sometimes clearer. Thus, it seems 
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ACE is most appropriate for approaching localized questions, where large sets of parameters 

are reasonable to research. For instance, studying EV adoption in a locale such as 

Luxembourg may be feasible, but in the United States the driving habits and attitudes vary 

so widely that one would have great difficulty defining the baseline set of parameters, 

especially regarding habits and attitudes. Zhao et al. (2011) is also an example of how ACE 

can be a powerful tool to help us understand the environmental consequences of policies. 

However, it also shows that one may need to combine ACE with other approaches to obtain 

meaningful results for a CLCA. 

1.4 Causal Inference 

The reviewed models from Section 2 provide structures and parameter sets for 

evaluating the environmental consequences of changes to product systems. However, these 

structures do not explicitly address the empirical proof of causal relationships. To some 

extent, economic equilibrium models can be considered an exception to this. The price 

response coefficients used in economic equilibrium models are derived using instrumental 

variables regression analysis, which fits under the umbrella of causal inference from 

observational data. However, performing this analysis is generally not a part of the 

application of economic equilibrium in CLCA, with the exception of Zink et al. (2017). In 

all other cases, previously determined price responses are input into the economic 

equilibrium structure. However, the world of causal inference is much broader than 

instrumental variables regression, and much of its potential is untapped as of today in 

CLCA. In general, observational settings are scarcely addressed in this domain; thus I 

introduce an observational component to my review herein.   
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Causal inference is the exercise of testing hypotheses regarding cause-effect 

relationships using observations of the past. This can be achieved, for example, by finding 

“natural experiments” in observational data. A natural experiment is analyzed through the 

lens of Rubin’s causal model. Rubin’s framework relies on the construction of 

counterfactuals  which represent an outcome of interest in a treatment group in if it were in 

an untreated state (Rubin 1974). Since a single unit cannot be in a treatment state and control 

state simultaneously, counterfactuals are unobserved. Natural experiments utilize 

relationships between treatment and control groups to provide estimates of these 

counterfactuals. Treatment effects in this framework are a function of the difference between 

treated observations and the estimates of their unobserved counterfactuals. As has been 

noted before, this presents a challenge in the case of sustainability science because we only 

have one planet in which to test policy (Cucurachi and Suh 2017, 2015). Given the absence 

of parallel worlds, I am unable to form treatment and control groups at the planetary level in 

order to establish global treatment effects due to policies. However, causal inference can be 

used to inform environmental policy by examining heterogeneity in responses to 

sustainability interventions across space and time in subsets of the planetary population. The 

research requires defensible arguments that some segments of the population are suitable 

counterfactuals for others under a particular policy regime. 

There are a number of statistical strategies that can be used to perform causal inference 

in an observational setting. The choice of method depends on the data structures, the 

problem at hand, and the type of treatment effect to be analyzed (i.e. average treatment 

effect in the population vs. average treatment effect on the treated). Natural experiments 

may be analyzed using statistical techniques including, but not limited to, difference-in-
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differences, propensity score methods, instrumental variables, matrix completion methods, 

and regression discontinuity (Angrist and Pischke 2009; Caliendo and Kopeinig 2005; 

Imbens and Lemieux 2007; Angrist et al. 1996; Stock 2001; Athey and Imbens 2016).  

In chapter 3 of this dissertation, I suggest that avoided primary production caused by 

recycling could be estimated by analyzing a natural experiment where a subset of firms in a 

given sector is exposed to a recycling policy. If those firms are well matched with others in 

the sector, a difference-in-differences approach could be used to estimate how much primary 

material is avoided by each kilogram of additional recycled supply (Palazzo et al. 2019). In 

general, LCA results can be quite sensitive to the amount of primary material avoided from 

recycling (Mcmillan et al. 2012; Weidema 2003; Geyer et al. 2015; Geyer 2008; Ekvall 

2000). This quantity has also been identified as a key issue in the development of CLCA 

methodology (Koffler and Finkbeiner 2018; Yang 2016; Zink et al. 2015).  

The main advantage of using causal inference in CLCA is that it provides a pathway to 

estimating the treatment effects of policies using empirical data. This is a more direct 

measure of causality in a system compared with simulation-based models such as system 

dynamics and ACE. On the other hand, defensible treatment and control groups are hard to 

come by in observational settings. The treatment effects are also based on our past 

observations, which introduce challenges for projecting the significance of findings for 

future policy decisions. 

1.5 Discussion 

 Strengths and weaknesses of structural CLCA models 1.5.1

Given the aspiration of CLCA to support decision-making by quantifying the 

environmental consequences of actions, it is important not to restrict the analysis space to 
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any one particular method. I have shown that there are a plethora of methods available to 

characterize consequences, which have unique sets of advantages and disadvantages. One 

aspect of the path forward for CLCA is then to identify the pieces of life cycle inventories 

that are most sensitive to the social and economic phenomena that are not included in a 

traditional ALCA or required by the ISO standards. Once those aspects of the LCI are 

identified, a model is designed using the most appropriate method for the problems at hand 

and the data available. This piecewise approach is evident in many of the papers reviewed 

here, whereas others endorse a certain technique as a comprehensive framework for CLCA. 

The use of one methodology exclusively limits the potential of CLCA due to the diversity in 

social and economic mechanisms that potentially affect LCA outcomes. Thus, before 

designing the cause-effect research for a CLCA, one must accumulate detailed knowledge of 

the dynamics of the particular policy intervention and product system(s) affected. This 

allows for an investigation of the optimal methods for quantifying the key consequential 

effects, for which this review serves as one potential guide. Table 1.1 solidifies this by 

providing a summary of the aspects of CLCA addressed to date in the literature using the 

reviewed models, as well as the referenced studies that use each one. 

Model Applications 

Reviewed 

Aspects of CLCA addressed  Aspects of CLCA not 

addressed  

Economic 

Equilibrium 

Ekvall 2000 

Ekvall and Andrae 

2006 

Searchinger et al. 

2008 

Marvuglia et al. 

 System expansion  

 Effects of macro-scale price and 

quantity changes  

 Non-price social 

mechanisms 

 Time dimension 

 Innovation and 

technology change 

 Identification of 

marginal technologies 
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2013 

Rajagopal 2016 

Zink et al. 2017 

System 

Dynamics 

Mclaren et al. 1999 

Ford 2001 

Stasinopoulos et al. 

2012 

Yao et al. 2018 

 Identification of marginal 

technologies  

 Time dimension 

 Innovation and technology 

change 

 System expansion 

 Social Mechanisms 

(price or non-price) 

 

Technology 

Choice 

Springer and 

Duchin 2014 

Kätelhön et al. 2016 

 Identification of marginal 

technologies 

 Effects of micro-scale price and 

quantity changes   

 Innovation and technology 

change 

 System expansion 

 Time dimension 

 Non-price social 

mechanisms 

Agent-Based Davis et al. 2009 

Zhao et al. 2011 

Querini and Benetto 

2014, 2015 

 Identification of marginal 

technologies 

 Both price and non-price social 

mechanisms 

 System expansion 

 Innovation and 

technology change 

Table 1.1: A summary of the applications of structural models reviewed in this paper. I 

highlight the aspects of CLCA that are addressed and not addressed to date using these 

methods. 

From this, I can infer several additional insights. For example, economic equilibrium 

models are desirable when it comes to the kind of questions that involve macro-scale 

changes that significantly affect the price and quantity such as fiscal reform and tariffs. 

These models also explicitly address the issue of co-production in LCA using a cause-effect 

lens, which is not as clear in the other models reviewed. However, GEMs or PEMs are 

limited to economic systems and do not address population increase, innovation & 
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technology change, where system dynamics and the TCM showed strengths. Agent-based 

models are particularly effective when the non-price social mechanisms such as 

communication among agents are of concern. This is not handled adequately by any other 

models reviewed. Finally, the TCM’s strength lies in the situation where detailed 

technological specification and costs are known, and when the level of detail goes beyond 

what GEM or PEM generally deal with.  

 Combining structural models and causal inference 1.5.2

What all of the reviewed structural models have in common is that they start with a set 

of input parameters, which are then subject to a set of transformations to generate 

components of a life cycle inventory. However, it is scarcely pointed out that regardless of 

the complexity of the structural model, its output can be viewed as a point of departure for 

an uncertainty analysis of the environmental consequences of changes to product systems. 

Thus, a critical component of combining structural models and causal inference is the 

quantification of contributions to uncertainty from the inputs to structural models. This can 

be achieved via local (i.e. one-at-a-time) and/or global (i.e. Monte Carlo) uncertainty 

analysis.  

Figure 1.1 presents three conceptual frameworks of how researchers can combine 

structural CLCA models with causal inference analysis in order to produce conclusions and 

future research directions. In framework (a), LCA models are developed in parallel with 

empirical work regarding the environmental consequences of actions, but in some cases the 

insights and conclusions complement one another. This resembles how literature on the 

environmental benefits of energy-efficient technologies has developed. One example is the 

environmental assessment of efficient vehicle powertrain technologies. There are many 
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existing LCA studies that examine this based on technical input-output relationships 

(Granovskii et al. 2006; Hawkins et al. 2013; Samaras and Meisterling 2008). In parallel, a 

substantial effort has been made to empirically estimate the degree to which consumers may 

respond to reduced fuel expenditures per mile by driving more, a market-mediated 

mechanism known as direct rebound (Sorrell et al. 2009). However, market-mediated 

mechanisms are not included in the initial LCAs. Insights into the environmental 

consequences of efficient powertrains are taken in parallel from the two lines of literature. 

 

Figure 1.1: Three conceptual frameworks of how one could combine structural CLCA 

models with causal inference. Panel (a), the parallel framework, is most reflective of 

historical practice. Panel (b), the iterative framework, is the path forward recommended 

from this review. Panel (c), the integrated framework, is a hypothetical case where an entire 

LCA model is built using a causal inference approach. 

To illustrate framework (b), the iterative framework, I return to the example of 

quantifying displaced primary material impacts caused by recycling. In chapter 2 of this 

dissertation, I demonstrate the application of framework (b) in a CLCA model of vehicle 

light-weighting via material substitution. Displacement is integrated into my model using a 

market-mediated mechanism. The parameter values associated with the market-mediated 

flows are substantial contributors to the high variance in model outcomes. One of the 
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reasons for this is that the underlying uncertainties in this causal effect are poorly 

understood. A suggested item for future research in automotive material substitution is then 

to conduct statistical inference to inform the underlying distribution of displacement, for 

example by using the methods described in chapters 3 and 4. Theoretically, updated 

distributions can be cycled back into the model and possibly have an effect on its 

interpretation. Building additional market forces related to material production and the use 

phase into the model using robust parameterization is another suggestion for moving 

forward in this research along the direction posed by framework (b). 

Framework (c) is an idealistic aspiration that uses causal inference to identify all of the 

parameters in an LCA model. In essence, this amounts to constructing statistical 

counterfactuals for entire life cycle inventories that have been subject to an exogenous 

change. Given the number of parameters that are generally included in LCA modelling, this 

is an unrealistic approach for providing policy-relevant guidance in a timely manner. Such a 

causal LCA model has not been produced as of today. 

 Conclusions 1.5.3

My suggestions for future directions in CLCA emphasize a development path focused on 

cause-and-effect analysis. There are myriad proposals for how to structure a CLCA model, 

and what the input parameters should be. However, research into the causal mechanisms and 

uncertainties that inform these parameters is just beginning. This direction includes work in 

the observational setting using natural experiments and causal inference methods in order to 

characterize the net environmental impacts of past decisions and increase the predictive 

power of life cycle inventories. However, it also includes the notion that decisions or 

policies aiming to reduce environmental impacts are sometimes rolled out heterogeneously 
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through time and space. In this sense, I envision a future where, when possible, policies are 

intentionally rolled out in a way that creates the opportunity to analyze treatment effects 

across environmental impact indicators. When this is not possible, I encourage practitioners 

of CLCA to seek out natural experiments in response to the sources of uncertainty in their 

structural models, and design research to estimate treatment effects. These treatment effects 

provide critical information about the values and uncertainties in parameters that underpin 

CLCA models. This approach captures the essence of idealized CLCA; that we accumulate 

maximum knowledge of cause-and-effect relationships between changes to industrial 

systems and the natural environment over time. The subsequent chapters of this dissertation 

illustrate my attempt to evolve CLCA practice in the spirit of this review and its 

conclusions. 
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2.1 Abstract 

The substitution of aluminum for steel in vehicle body and closure components is a 

common strategy for reducing fuel consumption. In order to assess the greenhouse gas 

(GHG) consequences of this decision, the system must be examined using a life cycle 

approach. Furthermore, attributional life cycle assessment (ALCA) does not suffice for a 

number of reasons, including the fact that ALCA does not model the incremental system and 

that allocating the benefits of recycling inhibits the modelling of system-wide consequences 

caused by the decision studied. This chapter thus uses a consequential life cycle assessment 

(CLCA) framework. I examine the physical and economic processes that guide the North 

American light-duty vehicle fleet from its initial state in 2012 to a state in 2050. Industry 

projections are used to model the production and use phases. The system is expanded to 
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include the scrap and material markets. This generates new insights regarding the 

environmental consequences of changes in scrap generation and recycling in automotive 

material substitution. The method is applied to the fleet in order to forecast if and when 

aluminum intensification constitutes net GHG reduction under various conditions. Using 

baseline parameter values compiled from public and industry data; I calculate a GHG 

payback period of 25 years, i.e. before a net reduction in emissions relative to a no change 

counterfactual is achieved. A local sensitivity analysis is performed, showing that the net 

GHG reduction may be achieved in a period as short as 12 years, or never be achieved at all. 

A global sensitivity analysis is performed using Monte Carlo simulation, where 16% of 

trials never reach a net reduction in GHG emissions. I also estimate which parameters 

contribute the most to variance in the model outcomes. The material replacement 

coefficient, or the amount of aluminum it takes to functionally replace one kilogram of steel, 

is the top contributor to the variance (29.8%). Overall, the results are most sensitive to 

parameters governing the amount of mass that can be replaced by each kilogram of 

additional aluminum, the GHG intensity of additional aluminum production, and the 

response of the aluminum scrap and material markets to additional aluminum scrap 

generation. I conclude that given the current lack of understanding of key parameters and 

their underlying uncertainties, it is not possible to definitively state that substituting 

aluminum for steel results in a net reduction in GHG emissions from a fleet of vehicles. 

2.2 Introduction 

 Vehicle Emission Standards 2.2.1

In 2012, the United States Department of Transportation released a set of decreasing 

tailpipe greenhouse gas (GHG) emission targets to be met between 2017 and 2025 (EPA, 
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2012). While the executive summary mentions that “[…] standards should ultimately reflect 

a life cycle analysis”, there is minimal elaboration on what this means in practice, and the 

targets are set for the use phase explicitly. A recent European Union vehicle emissions 

policy update also points out that “Greenhouse gas emissions related to energy supply and 

vehicle manufacturing and disposal […] are likely to significantly increase in importance in 

the future” and a proposed amendment to the policy would require manufacturers to report 

life cycle GHG emissions as of 2025 (Dalli, 2018; European Parliament, 2014). One 

pervasive strategy for industry compliance with such emission policies is to decrease vehicle 

mass, and therefore use-phase energy consumption, by replacing steel with a lighter 

material. There are a number of material options considered by auto manufacturers including 

aluminum, advanced high-strength steel, magnesium, and polymers with and without carbon 

reinforcement. Recent market research has projected that the automotive industry will 

increase its aluminum consumption dramatically and provided detailed forecasts of this 

trend (Ducker Worldwide, 2015, 2014). The use of aluminum creates the kind of trade-off 

the quotes above allude to, as the GHG emissions of primary aluminum production range 

from 6.7-21.7 kg CO2/kg, which is up to eleven times higher than those of primary steel 

(European Aluminum, 2018; Hao et al., 2015; Thinkstep, 2015). Reductions in fuel 

consumption during the use phase help “pay back” the GHG investment, or cause the system 

to produce net negative GHG emissions relative to a no change counterfactual, but the size 

of the effect depends on vehicle design decisions and the composition of the fleet. The 

potential emission savings due to recycling aluminum scrap are a critical component of any 

environmental assessment of such automotive material substitution, as secondary aluminum 

ingot production creates just 7-14% of the emissions of its primary equivalent (Hao et al., 
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2015; International Aluminum Institute, 2014; The Aluminum Association, 2013; Thinkstep, 

2015). Thus, the need for a life cycle perspective is abundantly clear. 

 Attributional vs. Consequential Life Cycle Assessment of Automotive 2.2.2

Materials 

Two principal approaches for this type of analysis are identified in the literature: 

attributional and consequential life cycle assessment (ALCA and CLCA, Curran et al. 2002; 

Ekvall et al. 2016). In ALCA, a static inventory of inputs and outputs is taken for all 

processes in the life cycle of a product or service and scaled linearly to a functional unit 

(Koffler et al., 2014). ALCA inventories typically reflect global or national averages of the 

involved unit processes (Ekvall and Andrae, 2006). They also solve co-product allocation 

problems using the ISO hierarchy, frequently severing cause-effect relationships (Ekvall and 

Finnveden, 2001; ISO, 2006). The static, average, allocated nature of ALCA can inhibit its 

ability to inform environmental policy (Plevin et al., 2014). 

The treatment of recycling as a co-product allocation problem in ALCA studies of 

automotive material substitution is particularly problematic. Typically, assumed recycling 

benefits are entirely allocated to either the user or producer of scrap, using the “recycled 

content” or “avoided burden” methods, respectively (Frischknecht, 2010). When the 

baseline input data of this study is used in a comprehensive, peer-reviewed model for 

comparative GHG ALCAs of steel and aluminum body structures, recycled content and 

avoided burden methods yield opposite conclusions in terms of net GHG emissions (Geyer, 

2017). When the results are linearly scaled to North American light duty vehicle production 

in 2015, i.e. 17.5 million vehicles, the recycled content method results in a net GHG 
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increase of 22 Mt CO2eq, while the avoided burden method results in a net GHG decrease of 

33 Mt CO2eq. 

Alternatively, CLCA is an emerging technique that assesses the consequences of a 

change to the life cycle using marginal (or incremental) data and maintaining cause-effect 

relationships by avoiding allocation (Earles and Halog, 2011; Ekvall and Andrae, 2006; 

Stasinopoulos et al., 2012; Weidema et al., 2009). The term “marginal” is used for very 

small changes, and “incremental” for large changes such as the one analyzed here (Ekvall et 

al., 2016; Weidema et al., 2009). As of today, there are a number of arguments about how 

exactly CLCA should be done. These included the integration of LCA and market 

equilibrium models (Earles and Halog, 2011; Ekvall and Weidema, 2004; Rajagopal, 2016), 

the combination of ALCA and scenario analysis (Yang, 2016), and the merging of LCA 

with more advanced modelling tools such as system dynamics and agent-based modelling 

(Florent and Enrico, 2015; Stasinopoulos et al., 2012). In this analysis, I apply CLCA as an 

examination of the physical and economic processes that are affected by a well-defined 

change to the studied product system, causing it to evolve over time from its initial state. I 

identify key consequential parameters and model the sensitivity of the results to their 

variation, but do not limit the quantification of these parameters to any one particular 

method. The computational structure is generalizable to any set of materials and any impact 

category, with the GHG consequences of substituting aluminum for steel in vehicles used as 

a demonstrative case study. 

 Previous LCA Studies of Automotive Material Substitution 2.2.3

A recent meta-analysis of LCA studies of vehicle light-weighting via material 

substitution analyzed 33 peer-reviewed articles (Kim and Wallington, 2013). The 
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harmonization of the results is achieved by applying consistent assumptions to the life cycle 

inventories. The fact that harmonization parameters include allocation keys shows that the 

33 studies and the meta-analysis are rooted in ALCA. 

A small number of consequential studies of automotive material substitution are also in 

the literature. Several authors have modelled time-dependent, non-linear effects across the 

fleet (Das, 2000; Field et al., 2001; Stasinopoulos et al., 2012). One dynamic fleet-based 

LCA with detailed stock-and-flow simulations and various aluminum intensification 

scenarios emphasizes the benefits of moving towards closed-loop aluminum recycling 

(Modaresi et al., 2014). Other forward looking projections of the energy benefits of light 

weighting are focused on modelling the production and use phases (Das et al., 2016; 

Serrenho et al., 2017). Agent-based modelling has also been used to simulate the adoption of 

electric vehicles in Luxembourg and Lorraine under various policy schemes (Querini and 

Benetto, 2015). I build upon these studies by examining additional consequential aspects.  

In contrast to existing studies, I deploy system expansion to explore the market effects of 

changes in scrap generation and use. This is a critical point, as prior research has shown that 

potential GHG savings from aluminum recycling are of the same order of magnitude as the 

use phase savings due to light-weighting, and that these potential savings are unlikely to be 

fully realized (Geyer, 2008; Zink et al., 2017). The insights from sensitivity analysis of scrap 

market parameters introduced in this research are different from those obtained from 

mechanistic comparisons of open vs. closed-loop recycling. This further supports the view 

that the distinction between closed- and open-loop recycling is of limited use for LCA in 

general, as neither one has “intrinsically higher environmental benefits” as pointed out by 

Geyer et al. (2015). In addition, I model growth in the imported share of incremental North 
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American primary aluminum due to capacity constraints (Accenture LLC, 2015; IAI, 2018). 

Finally, industry and government projections of the powertrain composition of the vehicle 

fleet, which effects the fuel savings per mass savings, are utilized (Ducker Worldwide, 2015, 

2014; IEA, 2010; Wohlecker et al., 2007). 

The goals of this chapter are four fold: (1) To produce a computational structure for 

CLCA of automotive material substitution that is generalizable to any set of materials and 

any impact category; (2) To identify the parameters that contribute most significantly to 

variation in model outcomes using one-at-a-time sensitivity analysis (OAT-SA) and Monte 

Carlo simulation; (3) To draw conclusions regarding the environmental consequences of 

large-scale substitution of aluminum for steel in body and closure components of newly 

produced vehicles in North America between 2012 and 2050 and; (4) To contribute to the 

methodological development of CLCA by incorporating economic processes into the model 

and presenting uncertainty as a decision-relevant finding. 

2.3 Methods and data  

 Functional Unit and Reference Flow 2.3.1

The functional unit of the study consists of the transportation services provided between 

2012 and 2050 by all light vehicles produced annually in North America between 2012 and 

2050. This implies that not all cars conclude their use phase, since vehicle use and end-of-

life (EOL) management after 2050 are excluded. The studied change in this product system 

is a progressive annual replacement of steel with aluminum in the body and closure parts. 

Additional aluminum content and production volumes are held constant from 2028 to 2050. 

This assumption creates a steady state annual emission profile by the end of the modelling 

period and eases the interpretation of the results. As I show in Appendix A, Figure A.4, 
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continuing the growth in aluminum production through the entire modelling period does not 

affect the conclusions of the study, nor does the continuation of modelling beyond 2050. A 

set of input data compiled from current public and industry sources are used to compute a 

change in reference flows for the system, from which a net change in greenhouse gas 

emissions is calculated each year and cumulatively. Herein, I refer to the analysis using 

these data, which are described in detail with references in Section 2.3.4, as the “baseline” 

case. The baseline serves as the point of departure for the uncertainty analyses in Section 2.4 

and Appendix A. While the model currently uses global warming potentials as the sole 

impact indicator, it could be readily extended to include additional impact categories; hence 

I use the generic notation 𝑰𝑛 for each major change in impact modelled (e.g. 𝑘𝑔 𝐶𝑂2𝑒𝑞) and 

𝐼𝑦
𝑥 for impact intensities (e.g. 𝑘𝑔 𝐶𝑂2𝑒𝑞 𝑘𝑔 𝑜𝑟 𝑀𝐽⁄ ).  

 System Boundary 2.3.2

The changes in flows calculated within the system boundary of this model are shown in 

Figure 2.1. The seven quantities given by 𝑰𝑛 capture the main environmental consequences 

caused by the studied change. Seven distinct system-wide consequences are modelled: 

Changes in 1) production of the steel and 2) aluminum used in the modeled body and 

closure parts and the secondary mass savings; 3) the fuel economy of the mass-reduced 

vehicles; the generation and use of 4) steel and 5) aluminum scrap from material forming 

processes (termed “prompt” scrap); and the same from 6) steel and 7) aluminum vehicle 

EOL scrap. All of these consequences occur in response to one studied change, namely the 

increasing aluminum content of body and closure components in North American light duty 

vehicles. These consequences are combined into one model in order to gain insights into 

how this singular change propagates through the components of the system. However, the 
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computational structure handles the seven changes in impact individually, and in Section 2.4 

I explore the uncertainties pertaining to the GHG consequences of changes to individual 

components of the system. Changes in emissions which are expected to be small, relative to 

the main consequences that are modelled, are excluded to avoid modelling an 

indeterminately large number of consequences. The baseline data are an estimate of the 

incremental process inventory based on the comprehensive set of references described in 

Section 2.3.4 and detailed explicitly for every input in Section A.3 of Appendix A. I address 

the uncertainties surrounding the incremental inventory using local and global sensitivity 

analysis in Section 2.4. System expansion is used to model the economic consequences of 

changes in the scrap flows into and out of the physical product system as detailed in Figure 

2.2. The recycling of prompt and/or EOL scrap can also be modeled in a closed loop, i.e. the 

scrap is used directly for the production of vehicles in North America. 

  

Figure 2.1: The changes in environmental impact calculated in the system boundary of this 

CLCA model. I
1
, I

2
, and I

3
 correspond to the changes in impact caused by the first order 
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changes in material flows that arise due to the studied increase in aluminum usage in 

vehicles. The second order consequences are then captured by the changes in impact I
4
-I

7
 

that arise due to subsequent changes in scrap generation. 

 Computational Structure  2.3.3

Here, I provide a series of equations that facilitate the calculation of changes in 

environmental impacts corresponding to changes in the major flows in this product system 

as described in Section 2.3.2. Since I calculate changes in GHG emissions, the resulting 

quantities are all calculated relative to a counterfactual of no change in body and closure 

material composition. In other words, this creates the possibility of negative values, such as 

in steel and fuel production. This does not imply that the system produces negative 

quantities of steel or fuel. For example, prior to the start of the analysis the body and closure 

composition of vehicles is 99% steel and 1% aluminum per Ducker Worldwide (2014). By 

2025, this shifts to 74% steel and 26% aluminum. Thus, relative to a no change 

counterfactual, the amount of steel production decreases, and the change in environmental 

impact calculated in (2) takes a negative value. Detailed derivations of all equations are 

given in Section A.1 of Appendix A. 

2.3.3.1 Material Production and Forming 

Given the time series of total aluminum additions of type l, 𝑇𝐴𝐴𝑙(𝑡), the total 

environmental impact of additional aluminium production in year t is calculated as 

𝑰1(𝑡) = ∑
𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎 𝐼𝑙

𝑎(𝑡)𝑙 > 0                     (2.1) 

with 𝛾𝑙
𝑎 being the forming yield of aluminium type l and 𝐼𝑙

𝑎(𝑡) the impact of producing one 

additional kg of aluminum type l (sheet, extrusions, or castings). The amount of aluminum 
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required to achieve the functional equivalence of the removed steel is characterized by the 

material replacement coefficient, k, in kg aluminum/kg steel. Reducing the mass of vehicle 

body and closures enables mass reduction of additional components such as the suspension 

and transmission (Alonso et al., 2012). This is accounted for using the secondary mass 

savings parameter s, in kg secondary/kg primary mass savings). The environmental impact 

of reduced production of steel type l in year t relative to a no change scenario as a function 

of aluminum additions is calculated as 

𝑰2(𝑡) = ∑
1

𝛾𝑙
𝑠 [− ∑ 𝑇𝐴𝐴𝑚𝑚 (𝑡) (

𝑝𝑓𝑙+(1−𝑘)∙𝑠∙𝑠𝑓𝑙

𝑘
)] 𝐼𝑙

𝑠(𝑡)𝑙 < 0              (2.2) 

with 𝛾𝑙
𝑠 being the forming yield of steel type l (flat, long, or castings), 𝑝𝑓𝑙 the fraction of 

steel type l in primary savings, 𝑠𝑓𝑙 the fraction of steel type l in secondary savings, 𝐼𝑙
𝑠(𝑡) the 

impact of producing one less kg of steel type l (flat, long, or castings), and m the type of 

aluminum (sheet, extrusions, or castings). Both aluminum and steel have primary and 

secondary production routes, which are reflected in the material production equations as 

follows: 

𝐼𝑙
𝑥(𝑡) = 𝑠𝑐𝑙

𝑥(𝑡) ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 (𝑡) + (1 − 𝑠𝑐𝑙

𝑥(𝑡)) ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑥 (𝑡) + 𝐼𝑙

𝑓𝑥
, 𝑥 = 𝑎, 𝑠            (2.3) 

with 𝑠𝑐𝑙
𝑥(𝑡)  being the secondary content of material x of type l, 𝐼𝑖𝑛𝑔𝑜𝑡

𝑠𝑥  the cradle-to-ingot 

secondary production impact of material x of type l, 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑥

 the cradle-to-ingot primary 

production impact of material x of type l, and 𝐼𝑙
𝑓𝑥

 the gate-to-gate impact of forming 

material x into type l (all in impact/kg). 

2.3.3.2 Vehicle Use 

For each year of the analysis period the impact reductions during vehicle use are 

calculated as 
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𝑰3(𝑡) = ∑ [𝐼𝑅𝑖
𝑢 ∙ (1 + 𝑠)

𝑘−1

𝑘
𝐴𝐴𝐴𝑖(𝑇)

𝑉𝑀

𝑉𝐿
𝑁𝑖(𝑇)𝐹𝐼𝑈(𝑡 − 𝑇)]𝑇,𝑖 < 0            (2.4) 

with 𝐴𝐴𝐴𝑖(𝑇) being the average amount of aluminum added to vehicle type i in production 

year T, 𝑉𝑀 the lifetime vehicle driving distance (in km), 𝑉𝐿 the vehicle lifetime (in years), 

𝑁𝑖(𝑇) the total number of type i vehicles produced in year T, and 𝐹𝐼𝑈(𝑡 − 𝑇) the fraction of 

vehicles produced in year T still in use after 𝑡 − 𝑇 years.  

𝐼𝑅𝑖
𝑢 denotes the environmental impact reduction per kg mass savings and km driven and is 

calculated as 

𝐼𝑅𝑖
𝑢 = 𝑒𝑠𝑖 ∙ ∆𝐸𝑖 ∙ 𝐼𝑒(𝑇) + (1 − 𝑒𝑠𝑖)∆𝐹𝑖 ∙ 𝐼𝑓(𝑇)            (2.5) 

with ∆𝐹𝑖 and ∆𝐸𝑖  being the relative fuel and electricity savings (in MJ/kg saved and km 

driven), 𝐼𝑓(𝑇) and 𝐼𝑒(𝑇) the average well-to-wheels impacts of electricity and fuel 

production and use for vehicles produced in year T (per MJ), and 𝑒𝑠𝑖 the share of driving 

energy from electricity. The relationship between mass reduction and use phase energy 

savings is a function of the power train type i. It also depends on the extent to which the 

power train is resized after mass reduction, since a mass-reduced vehicle can achieve equal 

performance with a smaller engine or motor (Lewis et al., 2014). Fuel and electricity savings 

per mass savings are higher when the powertrain is resized (see Table S18 in SI). The model 

considers five powertrain types i: gasoline, diesel, standard hybrid, plug-in hybrid and 

electric. 𝐹𝐼𝑈(𝑡 − 𝑇) is derived from a log-normal lifetime distribution, enabling accurate 

modelling of the timing of fuel savings and exit of vehicles from the fleet. Other 

distributions have been proposed for vehicle lifetimes (Field et al., 2001; Sakai et al., 2014; 

Yano et al., 2014). It is important to note that this feature does not imply that the model, as a 

whole, is stochastic in nature. I discuss the choice of lifetime distribution in Section A.4.2 of 

Appendix A. 
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2.3.3.3 Scrap generation and use 

If recycling takes place in an open loop, scrap flows cross the initial system boundaries 

at the beginning and the end of each vehicle’s physical life cycle (see Figure 2.2). Panel (a) 

shows the system expansion used to calculate the consequences of scrap generation and use 

during the production of vehicles, while (b) shows the analogous version at EOL. I model 

two tiers of system expansion: The first models the external scrap market and the second the 

external material market (Geyer, 2008). During material production and forming, scrap input 

(𝑆𝐼𝑛) comes from the external scrap market in cases when it is readily available, for 

example in the case of cast aluminum (Modaresi and Müller, 2012). At the same time, 

prompt scrap (𝑃𝑟𝑜𝑆) generated by the system goes to the external scrap market. The 

parameter 𝛼 ∈ [0; 1] quantifies the effect of those two flows on external scrap collection. 

For example, a net increase in automotive scrap supply by one unit decreases external scrap 

collection by (1 − 𝛼) units. The value of 𝛼 depends on how the scrap market responds to 

scrap generation from the physical vehicle product system. Consider the case where total 

scrap demand does not increase proportionally to an increase in vehicle scrap collection. 

This would yield a value of 𝛼 < 1, meaning some of the additional scrap simply displaces 

collection from other sectors instead of contributing to an increase in external secondary 

production (recycling). In order for reductions in primary production to be realized, scrap 

generation must first lead to additional recycling activity, which is the effect captured by 𝛼. 

Assuming that scrap stocks are constant in the long run, the external scrap flow balance 

can be calculated as: 

𝑃𝑟𝑜𝑆 + (𝛼 − 1)(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) + 𝑠𝑝𝛽𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) = 𝑆𝐼𝑛 + 𝑠𝑟𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛)  

⇒ 𝑌 =
𝛼

𝑠𝑟−𝑠𝑝𝛽 
                    (2.6) 
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with 𝑠𝑟 and 𝑠𝑝 being the scrap inputs into recycled and primary production (in kg/kg).  There 

is no scrap input into primary aluminum production, i.e. 𝑠𝑝
𝑎 = 0, which simplifies the scrap 

flow balance. Primary steel production, however, has a significant amount of scrap input. 

The parameter 𝛽 ∈ [0; 1]  quantifies the effect that a change in external secondary 

production has on external primary production. For example, an increase in external 

secondary production by one unit causes a decrease in external primary production by 𝛽 

units. The value of 𝛽 is termed the “displacement rate” (Zink et al., 2015), and the 

implications of 𝛽 < 1 are a key issue in evaluating the environmental consequences of 

recycling (Koffler and Finkbeiner, 2017; Mcmillan et al., 2012; Vadenbo et al., 2017; 

Weidema, 2003; Yang, 2016). Thus, I use 𝛼 and 𝛽 together to quantify the change in 

primary material production and consequent environmental benefits caused by additional 

scrap generation as shown in Figure 2.2. 
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Figure 2.2: The system expansion model used to calculate impacts due to changes in scrap 

generation. Panel (a) shows the scrap balance during the production of vehicles, (b) at 

vehicle end of life. The rectangles are unit processes, ovals are markets, and arrows are 

flows. Here, 𝑆𝐼𝑛 is the scrap input to the physical vehicle product system, 𝑃𝑟𝑜𝑆 is scrap 

from vehicle production processes, 𝑠𝑟 and 𝑠𝑝 are scrap inputs into external recycled and 

primary production, 𝐸𝑜𝑙𝑆 is the scrap generated at the end-of-life, 𝛼 quantifies the effect of 

a change in scrap generation on external scrap collection, 𝛽 quantifies the displacement of 

primary production due to increases in secondary production, and   𝑌 =
𝛼

𝑠𝑟−𝑠𝑝𝛽 
. 

The change in environmental impact due to changes in scrap flows during production and 

forming of automotive material x during year t is now calculated as 
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𝑰4,5(𝑡) = 𝛼𝑥 ∙
(∑ 𝑃𝑟𝑜𝑆𝑙

𝑥(𝑡)−𝑆𝐼𝑛𝑙
𝑥(𝑡))𝑙

𝑠𝑟
𝑥−𝛽𝑥∙𝑠𝑝

𝑥 (𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 (𝑡) − 𝛽𝑥 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑥 (𝑡)) , 𝑥 = 𝑎, 𝑠            (2.7) 

with ∑ 𝑆𝐼𝑛𝑙
𝑥(𝑡)𝑙  being the total change in the amount of scrap used during production of 

material x during year t, and ∑ 𝑃𝑟𝑜𝑆𝑙
𝑥(𝑡)𝑙  the change in total prompt scrap generation from 

material x during year t.  

It follows that I can calculate the change in impact due to EOL scrap generation using 

the flows shown in Figure 2.2 (b). Again, I assume scrap stocks are constant in the long run, 

and calculate the external scrap balance for EOL as I did for prompt scrap in (2.6): 

𝐸𝑜𝑙𝑆 + (𝛼 − 1)𝐸𝑜𝑙𝑆 + 𝑠𝑝𝛽𝑌𝐸𝑜𝑙𝑆 = 𝑠𝑟𝑌𝐸𝑜𝑙𝑆  

⇒ 𝑌 =
𝛼

𝑠𝑟−𝑠𝑝𝛽 
                    (2.8) 

The change in environmental impact due to changes in automotive EOL scrap generation is 

then calculated as 

𝑰6,7(𝑡) = 𝛼𝑥 ∙
𝐸𝑜𝑙𝑆𝑥(𝑡)

𝑠𝑟
𝑥−𝛽𝑥∙𝑠𝑝

𝑥 (𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 − 𝛽𝑥 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑥 (𝑡)) , 𝑥 = 𝑎, 𝑠              (2.9) 

with 𝐸𝑜𝑙𝑆𝑥(𝑡) being the change in total generation of automotive EOL scrap from material x 

during year t. 

 Data  2.3.4

In this section, critical inputs from each life cycle stage contributing to the baseline 

cumulative GHG result are described. Comprehensive treatment and referencing of the 

spreadsheet formulas and baseline data are included in Appendix A. 

2.3.4.1 Material Production and Forming 

Industry data from Ducker Worldwide are used to set up the projection of total 

aluminum additions 𝑇𝐴𝐴(𝑡) and production units 𝑁(𝑡) on an annual basis (Ducker 
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Worldwide, 2015, 2014). Table 2.1 provides a sample of the time series. The complete series 

is available in section A.3 of Appendix A. The baseline material replacement coefficient, 

𝑘 = 0.668, is derived using the aforementioned harmonization study and vehicle-specific 

data suggesting a 50% split of mild and high-strength steel available to be replaced on 

average in body and closure components (Chapp and Shah, 2007; Kim and Wallington, 

2013; Morgans, 2012; Pafumi, 2006). The distribution of vehicle classes amongst hybrid and 

electric vehicles is compiled from the monthly sales distribution reported by Argonne 

National Laboratory (ANL, 2015). The aluminum content, material replacement coefficient, 

powertrain distribution and vehicle class distribution data set the stage for producing the life 

cycle inventory on an annual basis. 

Table 2.1: A sample of the time series inputs of additional aluminum content and total 

vehicles produced in North America 

Recent literature suggests baseline secondary content values 𝑠𝑐𝑙
𝑎(𝑡) for wrought (both 

sheet and extrusions) and cast aluminum are 0% and 85%, respectively (Geyer, 2013; Løvik 

Year 

Additional sheet 

aluminum 

produced (million 

kg) 

Additional 

extruded 

aluminum 

produced (million 

kg) 

Additional cast 

aluminum 

produced (million 

kg) 

Vehicles Produced 

in North America 

2012 81.9 0 0 16,181,282 

2017 681.6 38.2 27.3 17,609,612 

2022 1303.0 81.9 65.5 19,000,000 

2027 1778.0 115.0 93.0 20,000,000 

2028-2050 1,790.0 115.0 95.0 20,000,000 
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et al., 2014; Modaresi and Müller, 2012). As shown in Table 2.1, most of the additional 

aluminum demanded by the system is sheet aluminum. Thus, the majority of this demand is 

met using primary material. The baseline secondary content of flat, long and cast steel 

𝑠𝑐𝑙
𝑠(𝑡) are 5%, 85% and 100% (World Steel Association, 2010). However, I note that the 

model allows for changes in secondary content, including closed-loop recycling of all scrap. 

Baseline forming yields 𝛾𝑙
𝑎 for sheet, extrusions and cast aluminum are 62%, 80% and 80% 

(Geyer, 2014, 2013; Milford et al., 2011). Baseline forming yield 𝛾𝑙
𝑠 for flat, long and cast 

steel are 60%, 80% and 80% (Geyer, 2014, 2013; Milford et al., 2011). Baseline secondary 

mass savings are 𝑠 = 50% (Kim and Wallington, 2013). Recent research indicates that the 

incremental supplier of primary steel is likely to be China (Beylot, 2016). Therefore, I use 

an initial value of 2.02 kg CO2eq/kg for the GHG intensity of primary steel production, 

𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑠 , for the baseline case (calculated from Hasanbeigi et al., 2016). The baseline initial 

GHG intensity of secondary steel production, 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 , is 0.399 kg CO2eq/kg  (World Steel 

Association, 2010). The uncertainties associated with these values and the potential 

decarbonization of their electricity inputs are addressed in the sensitivity analysis. 

Industry analysis suggests that 36% of primary aluminum demand in North America was 

met using imports in 2015 (The Aluminum Association, 2015). Another report shows that 

North American smelters are near capacity, and estimates that the share of imported 

aluminum used to meet the increase in demand from the automotive industry will climb by 

3.6% per year, reaching 72% in 2025 (Accenture LLC, 2015). Thus, the base case uses 

China as the supplier of imported primary aluminum (IAI, 2018).The initial GHG intensities 

used in this model are 16.5 kgCO2eq/kg for imports from China (Hao et al., 2015) and 8.937 

kg CO2eq/kg for North America (International Aluminum Institute, 2014; The Aluminum 
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Association, 2013). The emissions inventory of primary aluminum, 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑎 (𝑡), is a weighted 

average of the two values in each year, which serves as a proxy for the incremental supplier. 

A reduction in electricity input for primary aluminum ingot production in China is modelled 

following the trend detailed by Hao et al. (2015); therefore the annual emission inventory for 

imported primary aluminum follows a downward trajectory. Finally, I use an initial baseline 

secondary aluminum GHG intensity value of 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 = 0.508 kg CO2eq/kg (Thinkstep, 

2015).  

Importantly, I note that there is a high degree of uncertainty surrounding the GHG 

intensity of incremental suppliers of steel and aluminum in the both the short and long term. 

In the case of cradle-to-gate primary aluminum ingot production, I identified values as low 

as 6.7 kgCO2eq/kg from Europe (European Aluminum, 2018) and as high as 21.7 kg 

CO2eq/kg from parts of China (Hao et al., 2015). These are reflective of the electricity grid 

mixes in those regions, as primary aluminum production is an electricity-intensive process. 

For steel, I identify cradle-to-gate primary production GHG intensities as low as 1.27 kg 

CO2eq/kg when applying a possible 32% decrease in the energy intensity of primary steel 

production to the global average (Energy Information Adminstration, 2018), and as high as 

2.8 kg CO2eq/kg from coal-dominated electricity grids (Columbia Climate Center, 2012). 

The uncertainties regarding the GHG intensity of all primary and secondary production 

processes is addressed in the sensitivity analyses conducted in Section 2.4 and section A.4 of 

Appendix A. In addition, I include a year-over-year decarbonization factor of 0.5% for 

primary and secondary material production processes in the model. This aims to reflect 

decarbonization of electricity grids globally, which is expected to happen gradually (Morvaj 

et al., 2017). 



 

 63 

2.3.4.2 Vehicle Use 

The annual sales projections for the five powertrain types are input from a Ducker 

analysis (Ducker Worldwide, 2015). The baseline model assumes that 50% of all mass-

reduced vehicles also have their power trains resized, and that the plug-in hybrids receive 

50% of their driving energy from external electricity. The used fuel and electricity savings 

per mass savings, ∆𝐹𝑖 and ∆𝐸𝑖, by powertrain type, with and without resizing are from 

extensive powertrain simulations and available in Appendix A (Geyer and Malen, 2018; 

Malen and Geyer, 2018). Vehicle lifetimes are assumed log-normally distributed and used to 

determine the fraction-in-use from production year T in year t of use,  𝐹𝐼𝑈(𝑡 − 𝑇). The 

baseline mean lifetime is 𝑉𝐿 = 13 years with a standard deviation of 3 years (National 

Highway Traffic Safety Administration, 2006). Lifetime vehicle distance travelled 𝑉𝑀 is 

245,000 km (National Highway Traffic Safety Administration, 2006). Well-to-wheels GHG 

intensities of gasoline, diesel, and electricity production and use/combustion are 87.5, 82.7, 

and 150 gCO2eq/MJ (Argonne National Laboratory, 2015; Thinkstep, 2015). The potential 

decarbonization of electricity production for battery electric vehicles (BEVs) is addressed in 

the sensitivity analysis, as I consider up to a 50% reduction in its initial GHG intensity 

(Figure A.5 of Appendix A), along with year-over-year decarbonization. In addition, I note 

that the GHG intensity of gasoline and diesel production may increase as less conventional 

sources are exploited (Brandt and Farrell, 2007). Thus, I also consider up to a 50% increase 

in GHG emissions from gasoline and diesel production in the sensitivity analysis (Figure 

A.5 of Appendix A). 
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2.3.4.3 Prompt and end-of-life scrap 

Very little is known about the values of  and  for any given material, since it is 

difficult to generate robust estimates for these values. Recently, a micro-econometric 

framework was proposed to quantify the displacement rate  (Zink et al., 2015). The first 

estimation of this parameter was conducted for aluminum in the United States and yielded 

an initial median value of about 0.12, but values from -0.5 to 1 are included between the 5
th

 

and 95
th

 percentiles (Zink et al., 2017). The case study calculates  from own-price and 

cross-price elasticities of supply and demand for primary and secondary aluminum, which 

are determined using partial equilibrium modeling and econometric time-series analysis 

(Zink et al., 2017, 2015). In the relevant literature,  also has an economic interpretation. 

For example, if the price elasticities of supply and demand for scrap are equal in magnitude, 

𝛼 = 0.5 (Ekvall, 2000). The baseline case uses an open-loop with values of 𝛼 = 1 and 

𝛽 = 1 for both steel and aluminum. Although the mechanics are different, these specific 

values of 𝛼 and 𝛽 yield the equivalent outcome to closed-loop recycling. 

2.4 Results 

Here, I present the results from local one-at-a-time sensitivity analysis (OAT-SA) and 

global sensitivity analysis using Monte Carlo simulation. I start by presenting the 

contributions of each calculated change in GHG emissions to the baseline results, which 

serves as a point of departure for the uncertainty analysis. Then, OAT-SA is used to show 

how the shape of the cumulative GHG curve varies when perturbing individual parameters, 

holding all others constant at the values given in Section 2.3.4. OAT-SA alone is not 

sufficient for robust estimates of which parameters in the model contribute most to the 

overall variance in the results, especially when there are nonlinear interactions between 
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parameters (Saltelli and Annoni, 2010).  One way in which this has been addressed in LCA 

is to use Monte Carlo simulation (Lloyd and Ries, 2007). Thus, I also conduct a global 

sensitivity analysis using Monte Carlo simulation in Section 2.4.5.  

 Baseline GHG contributions and Local Sensitivity Analysis 2.4.1

The baseline GHG curve shown in each component of Figure 2.4 is the cumulative sum 

of contributions from the seven system-wide changes as shown in Figure 2.3. These 

contributions are calculated using formulas from 𝑰1(𝑡) through 𝑰7(𝑡) as described in the 

Methods section. The standard for comparison is the x-axis, or the case in which there are no 

changes in aluminum content over time. The relative increase in annual GHGs due to 

prompt and EOL steel scrap contributions can be understood as the opposite of the avoided 

burden effect created by additional aluminum scrap. Since the baseline case uses an open-

loop and assumes 1-to-1 displacement, the removal of steel scrap from the market will be 

compensated by additional primary steel production. 
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Figure 2.3: Contribution analysis for all seven distinct GHG consequences analyzed in the 

CLCA using data inputs described in Section 2.3.4, where “prompt” refers to emissions 

related to scrap generation from production processes, and “EOL” refers to emissions 

related to scrap generation from end-of-life. All of the lines represent changes in emissions 

from each change in flows relative to a counterfactual of no change in material composition. 

Initially, increases in emissions from aluminum production dominate the contribution 

analysis. Over time, emissions decreases accumulate due to reduced steel production, fuel 

production, and fuel combustion relative to the no change counterfactual. End-of-life 

recycling benefits in the form of displaced primary aluminum production accumulate even 

later.  

Production and prompt scrap emission changes reach a steady state by the year 2028, 

while the steady state for use and EOL effects are delayed by vehicle lifetime effects. The 

year where the cumulative GHG curve crosses the x-axis is referred to as the “GHG payback 

year”, and is calculated as 2037 at the baseline. Figures 2.4 (a), (b), (c), (d), (e), (f), (g), and 

(h) are the components of the local OAT-SA discussed in the following subsections. The 

interaction of various parameters is covered in Appendix A, as well as additional sensitivity 

analyses that apply to each component of the model individually. GHG payback must be 

interpreted with some caution, as warming occurs between the initial emissions and the 

arithmetic payback year that cannot be reversed and that I am unable to account for in this 

model.   
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Figure 2.4: (a) Sensitivity of cumulative GHG curve to changes in the material replacement 

coefficient (k). (b) Sensitivity of cumulative GHG curve to secondary mass savings (s). (c) 

Sensitivity of cumulative GHG curve to the GHG intensity of additional imported primary 

aluminum, with the same for decreased primary steel in (d). (e) Sensitivity of cumulative 

GHG curve to changes in the growth rate of the imported share of primary aluminum. (f) 

Cumulative GHG curves for baseline and BLUE map fleet compositions with baseline 

powertrain resize rate (50%) and powertrain resize rate of 100% (Resize100). (g) Effect of 

partial displacement of aluminum recycling (<1) on cumulative GHG curve, with the same 

shown for steel in (h).  

 Sensitivity to material production parameters 2.4.2

The output of the CLCA is very sensitive to the material replacement coefficient (k). At 

the baseline, I use a value of k=0.668. Alternative values of k are presented in Figure 2.4 (a) 

with a range corresponding to previous studies of automotive material substitution (Kim and 

Wallington, 2013). As expected, lowering the value of k improves the GHG payback time of 

the system. The realizable size of secondary mass savings (s) is quite uncertain and strongly 

affects the outcome. Holding other parameters fixed, varying s from 0 to 1 produces a GHG 

payback range of 15 years. Figures 2.4 (c) and 4 (d) show that the model results are more 

sensitive to the GHG intensity of primary aluminum production than they are to the GHG 

intensity of primary steel production. The shortest GHG payback period of all of the curves 

in Figure 2.4 is 12 years, when the initial GHG intensity of imported primary aluminum 

production takes its lowest identified value. In addition, the cumulative GHG curve is 

sensitive to the growth rate of imported primary aluminum production. Figure 2.4 (e) covers 
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the range from 0% growth to the theoretical maximum of 6%, which would drive the 

imported share of incremental production to 100% during the steady state. 

 Sensitivity to use phase parameters 2.4.3

The baseline time series of fleet composition is extracted from figures in two industry 

studies conducted by Ducker Worldwide (Ducker Worldwide, 2015, 2014). There is a steady 

decline in gasoline and diesel internal combustion vehicles (ICVs) and growth in vehicles 

with hybrid and electric powertrains. In 2010, the International Energy Agency (IEA) 

published an alternative evolution of powertrain technology shares as part of its BLUE map 

scenario (IEA, 2010; Modaresi et al., 2014). In this analysis, I examine the sensitivity of the 

model to the implementation of a BLUE map fleet where ICVs are diminished much more 

rapidly and replaced by hybrid and electric vehicles. For both fleet compositions, the 

response of GHG payback to an increase in resized powertrains to 100% from the baseline 

of 50% (Resize100) is modeled.  

A counterintuitive result is shown in Figure 2.4 (f). In comparison to the baseline fleet, a 

shift toward more efficient powertrains results in a delay in GHG payback. This is because 

the mechanism of GHG reduction is the energy savings per mass savings achieved during 

the use phase. If the fleet follows a more efficient powertrain trajectory, the energy savings 

per mass savings are diminished (Geyer and Malen, 2018; Malen and Geyer, 2018; 

Wohlecker et al., 2007). Regardless of the fleet composition, increased powertrain resizing 

rates accelerate the GHG payback effect, since this increases the fuel economy effect of 

mass reduction. 
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 Sensitivity to scrap and material market responses 2.4.4

Recycling is most likely in an open loop, i.e. market-mediated (Reck and Graedel, 2012; 

Shen et al., 2010). The effect of primary production displacement depends on the difference 

in GHG intensity between primary and secondary production. Therefore, it is imperative to 

examine conditions where the displacement rate for aluminum is less than one. The market-

based interpretation of partial displacement is that recycled aluminum grows the material 

market without causing an equivalent decrease in primary production. This phenomenon 

may be governed, for example, by own and cross-price (substitution) elasticities of supply 

and demand for primary and secondary aluminum. In response to a supply shock, a low 

substitution elasticity of demand for primary aluminum would reduce displacement (Zink et 

al., 2015; Zink and Geyer, 2017). On the other hand, a high own-price elasticity of supply 

for primary aluminum would increase displacement.  

Given that technological limitations currently prevent recycling all of the incremental 

aluminum scrap back into the wrought components (Løvik et al., 2014; Modaresi and 

Müller, 2012), partial displacement is quite likely. As the aluminum displacement rate (𝛽𝑎) 

decreases, GHG payback is significantly delayed. As shown in Figure 2.4 (g), for values 

of 𝛽𝑎 < 0.35, GHG payback is never achieved with other parameters fixed at baseline 

values. This insight would not be apparent if one were to simply allocate the benefits of 

recycling using the avoided burden method, which is equivalent to assuming 𝛼 = 𝛽 = 1. 

Finally, as shown in Figure 2.4 (h), GHG payback shows strikingly limited sensitivity to 𝛽𝑠, 

highlighting the fact that the difference between the GHG intensity of primary and 

secondary production is an order of magnitude greater for aluminum than it is for steel 

(Geyer, 2013, 2008; Hao et al., 2015; Thinkstep, 2015). Figures A.7 (c) and (d) of Appendix 
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A show that GHG payback is just as sensitive to 𝛼𝑎 as it is to 𝛽𝑎, and as insensitive to 𝛼𝑠 as 

it is to 𝛽𝑠. 

 Monte Carlo simulation 2.4.5

Monte Carlo simulation begins with the assignment of probability distributions to the 

uncertain parameters in the model. The parameters are assigned uniform distributions with 

ranges given in Table 2.2. The use of a uniform distribution means that all possible values in 

the range have an equal probability of being sampled, which can be thought of as an 

unbiased approach given the lack of knowledge of the underlying uncertainties. After 

defining the ranges for the variables, I simulate the cumulative GHG curve 100,000 times by 

randomly sampling all of the parameters in Table 2.2 simultaneously. Then, I record 

statistics on the value of cumulative GHG emissions in 2050, the final year of the model. 

The simulation is conducted using the Oracle Crystal Ball plug-in for Microsoft Excel 

(Oracle Company, 2018a).  

 

Parameter Unit Minimum Maximum  

Material Replacement Coefficient  kg aluminum/kg steel 0.55 0.75 

Initial GHG intensity of Imported Primary Aluminum 

Production 

kg CO2eq/kg 6.70 21.70 

Secondary Mass Savings  

kg secondary/kg 

primary mass savings 

0 1 

Fraction of Powertrains Resized % 0 100 

Aluminum Beta unitless 0 1 

Aluminum Alpha unitless 0 1 

Vehicle Lifetime Distance Driven km 200,000 300,000 
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Aluminum Sheet Yield % 52 72 

Year-over-year decarbonization of material production 

processes and electricity production for BEVs 

%/year 0 2 

Initial GHG intensity of Primary Steel Production kg CO2eq/kg 1.27 2.80 

Growth Rate of Imported Primary Aluminum 

Production 

%/year 0.00 6.00 

Flat Steel Yield % 50 70 

Initial GHG intensity of North American Primary 

Aluminum Production 

kg CO2eq/kg 6.70 8.94 

Initial GHG intensity of Secondary Aluminum 

Production 

kg CO2eq/kg 0.254 1.016 

Initial GHG intensity of Secondary Steel Production kg CO2eq/kg 0.199 0.798 

Initial GHG intensity of Electricity Production for 

BEVs 

kg CO2eq/MJ 0.075 0.15 

Initial GHG intensity of Gasoline Production kg CO2eq/MJ 15.50 23.25 

Initial GHG intensity of Diesel Production kg CO2eq/MJ 7.74 11.61 

Steel Alpha unitless 0 1 

Steel Beta unitless 0 1 

Year-over-year carbon intensification of gasoline and 

diesel production 

%/year 0 2 

Table 2.2: The parameters sampled for the Monte Carlo simulation with their units, 

minimum values, and maximum values. All parameters were assigned a uniform 

distribution. 

The cumulative GHG emissions in 2050 are normally distributed with a mean of -135 

million tonnes CO2eq and a standard deviation of 359 million tonnes CO2eq.  In 35% of the 

iterations, cumulative GHGs remain positive in 2050. In 16% of the iterations, cumulative 

GHG emissions in 2050 are above 207 million tonnes CO2eq, which is an approximate 
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threshold value indicating that GHG payback will never be achieved (see note in Appendix 

A section A.3.4). Because the input distributions are not empirically determined and the 

model itself is a coarse approximation of real-world dynamics, I focus the discussion of the 

results on the contributions to variance from the input parameters, rather than the output 

distribution. Crystal Ball calculates the contributions to variance using the rank correlation 

coefficients of each input variable with the outcome variable (cumulative GHG emissions in 

2050) over all 100,000 simulations. The rank correlation coefficients are squared and 

normalized to 100% (Oracle Company, 2018b). Figure 2.5 shows the top eleven 

contributions to variance from the inputs given in Table 2.2. The remaining parameters 

contribute less than 1%. 

 

Figure 2.5: The contributions to variance in the model attributed to individual input 

parameters after Monte Carlo simulation with 100,000 iterations.  

Parameters related to the calculation of changes in GHG emissions from changes in 

material production dominate the contributions to variance. The material replacement 

coefficient, GHG intensity of imported primary aluminum, and secondary mass savings are 
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all key factors in the determination of GHG emissions from changes in aluminum and steel 

production using equations (1) and (2). This finding is robust to an alternative scenario 

where I narrow the range of GHG intensities of imported primary aluminum production. All 

three of these parameters remain in the top five contributors to variance as shown in Figure 

A.10 of the Appendix A. The main contribution to variance from the use phase calculation is 

the fraction of powertrains resized in the fleet, which strongly affects the calculation of fuel 

savings per mass savings via equation (2.5). In the calculation of changes in GHG emissions 

due to changes in scrap generation using equations (2.7) and (2.9), the aluminum market 

response parameters alpha and beta make the largest contribution to the variance. 

2.5 Discussion 

The results of my analysis reiterate why CLCA is the correct choice of modelling 

approach for understanding the GHG consequences of large-scale shifts in automotive body 

and closure materials. The consideration of how the scrap and material markets respond to 

additional scrap generated from the system has a significant impact on the cumulative net 

GHG curve and makes a large contribution to the variance in model outcomes. Such market 

interactions are not part of the traditional ALCA framework, which relies on average 

inventory data and technical input-output relationships. Here, I have instead modelled the 

system-wide changes in GHG emissions caused by the decision to increase aluminum 

content in vehicles, which includes the interactions with the scrap and material markets. 

One key feature of all of the cumulative GHG curves generated by this model is that 

they show large-scale shifts of closure and body part material from steel to aluminum in the 

production of North American light vehicles will initially increase GHG emissions. This 

means that the fact that less material is needed in the production of vehicles cannot make up 
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for the higher GHG intensity of primary aluminum production. As the GHG intensity of 

incremental aluminum production increases, this effect becomes more pronounced. 

The results are highly sensitive to the material replacement and secondary mass savings 

coefficients. Varying these parameters within the range of previous literature corresponds 

with GHG payback ranges of 20 and 15 years. There is still controversy over the actual 

values of those two parameters, since they are not directly observable. The magnitude of the 

use phase savings significantly depends on the power train composition of the vehicle fleet 

and on the extent to which power trains, in particular internal combustion engines, are 

resized when vehicles are mass reduced. The use phase savings of light-weighting are 

diminished as the fleet shifts toward more efficient powertrains.  

The GHG benefits of aluminum scrap recycling are potentially larger than the use phase 

savings, but occur even later. The model results are particularly sensitive to the assumptions 

behind the GHG consequences of aluminum scrap collection, recycling, and use. Relevant 

literature, including the first market-based estimates, suggests a high likelihood that 

recycling of aluminum displaces primary production by less than 100%, which would 

significantly delay or even eliminate GHG payback (Løvik et al., 2014; Modaresi and 

Müller, 2012; Zink et al., 2017, 2015).  

That the parameters with the largest uncertainty, i.e. k, s, 𝛼𝑎, and 𝛽𝑎, are also the ones 

with the largest impact on the GHG payback is the most important insight from this CLCA. 

The lack of understanding of the underlying uncertainty distributions for these parameter 

values, as well as the inherent uncertainty in modelling human behavior decades into the 

future, renders the comparison of the environmental performance of aluminum and steel 

indeterminate. In contrast to previous studies, I conclude that it is thus not possible to draw a 
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definitive conclusion regarding the net GHG consequences resulting from the substitution of 

aluminum for steel due to the lack of robust estimates for the most sensitive parameters. 

2.6 Conclusions 

 Limitations and Future Work 2.6.1

The behavior of the affected external scrap and material markets are key consequential 

effects. The first and second-order consequences of scrap generation in this CLCA are 

characterized by the four parameters: 𝛼𝑎, 𝛽𝑎, 𝛼𝑠 and 𝛽𝑠 as explained in Section 2.3.3.3. For 

the moment, sensitivity analysis is the most evident way to provide useful insights, since 

there is currently no knowledge of their actual values. Rigorous estimations of 𝛼 do not exist 

for any material. The argument has been made that in the absence of robust information, 

using 𝛼 = 0.5 “will minimize the maximum error in the estimation of indirect effects” 

(Ekvall, 2000) in the market- based framework. A partial equilibrium model was used to 

provide the first estimate of 𝛽𝑎 , but no analogue exists for 𝛽𝑠 (Zink et al., 2017). 

Modelling additional market dynamics of substituting primary aluminum for primary 

steel should be considered in the future. One could envision the possibility that the steel 

industry aggressively targets sales of primary material to other sectors such as construction 

in response to softened demand from the automotive industry. The reduction in sales to the 

automotive industry could also trigger a small price reduction that stimulates demand from 

other sectors. These mechanisms, in turn, may diminish the reduction in steel production 

modelled here using equation (2.2). Thus, future work includes the development of a system 

expansion model that incorporates the effect of decreased demand from the automotive 

sector on the market for primary steel. 
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An important area for future research is thus in the development of additional 

methodologies to measure consequential parameters. The partial equilibrium models used to 

estimate 𝛽𝑎 in the literature are exercises in eliciting causal effects, subject to various 

assumptions, from our actual observations of the world (Stock, 2001). This does not mean 

that partial equilibrium is the only path to conducting estimations of consequential effects.  

Going forward, it is imperative that CLCA does not limit itself to being the intersection 

of LCA and classical economics, as some have suggested (Earles and Halog, 2011). CLCA 

stands to benefit from the full suite of methods for causal inference, of which partial 

equilibrium modelling is only one. For example, the direct rebound effect may apply to this 

CLCA, as one may expect consumers to respond to fuel savings by increasing the frequency 

and length of automobile travel (Sorrell et al., 2009). While partial equilibrium is one option 

to measure this effect, a well-designed field experiment or survey study would be an 

informative complement originating from outside of classical economics. Perhaps the 

rebound effect is an emergent property of interactions between consumers with 

heterogeneous preferences. In this case, simulation frameworks such as agent-based 

modelling may also be informative. Depending on the particular research question and 

available data, a wide array of methods originating from outside of classical economics 

could be applicable to a given CLCA. In this sense, I align with literature recommending 

that practitioners explore multi-method approaches and weigh the relative advantages and 

disadvantages of methods that could be used to answer the research questions identified 

during a CLCA analysis (Anex and Lifset, 2014; Sandén and Karström, 2007; Yang and 

Heijungs, 2017).  
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Chapter 3 of this dissertation introduces and applies new methodology for causal 

inference in the CLCA domain. In chapter 3, I simulate the use of the difference-in-

differences, a quasi-experimental statistical method, to estimate firm-level displacement of 

primary aluminum usage due to increased aluminum recycling in the automotive sector. By 

collecting the type of dataset described in the simulation in Chapter 3, one could shed light 

on the underlying uncertainty distribution behind 𝛽𝑎 and improve the resolution of this 

model. Such an exercise is a manifestation of the iterative framework for CLCA that I 

suggest in Chapter 1. 

 My analysis further reinforces the need for rigorous treatment of uncertainty in LCA 

studies. Here, I have shown that the range of possible outcomes in net GHG emissions from 

the substitution of aluminum for steel in vehicles is vast. As has been pointed out before in 

the CLCA discourse, these uncertainties reflect the “limits of scientific knowledge” that we 

have to date regarding these possible outcomes (Plevin et al., 2014). Focusing on the 

baseline curve, which is a point of departure for the sensitivity analysis, clearly leads to 

flawed conclusions. This has been identified as a fundamental problem in the formation of 

public policy based on science, with one facet of the solution being the orientation of 

science-based policy discussions on interval estimates and uncertainty (Manski, 2013). As a 

result, I encourage future research on the environmental impacts of automotive material 

substitution to focus on improving the characterization of uncertainty. 

 Policy Implications 2.6.2

The presented consequential analysis shows that vehicle light-weighting strategies based 

on replacing steel with aluminum will lead to significant initial increases in GHG emissions 

before the targeted use phase savings become effective. It highlights questions that need to 
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be answered to conclude when aluminum intensification in vehicles constitutes a net GHG 

benefit, if it does at all. The most concerning scenario occurs when aluminum scrap 

generation exhibits reduced levels of primary production displacement, as this directly leads 

to the possibility that a net reduction in GHGs is never achieved. The lack of understanding 

of the underlying uncertainties in most critical parameters is a further cause for re-evaluation 

of lightweight material substitution as a means to achieve policy-mandated reductions in 

GHG emissions from vehicles. 

Nonetheless, there are several strategies to reduce the production/use-phase trade-off 

faced by GHG intensive lightweight materials. The most obvious one is to reduce the GHG 

intensity of their production. The potential for automotive aluminum to create the intended 

GHG benefits in the production of vehicles in North America is hindered by the fact that 

significant additional production is projected to come from imports, which often have higher 

GHG intensities than North American aluminum (Accenture LLC, 2015; Hao et al., 2015; 

Ou et al., 2011). The ongoing pursuits of low-carbon energy in countries that produce 

aluminum and process improvements reducing the electricity intensity of primary aluminum 

production help to mitigate this issue. 

The most important strategy, however, is to increase the “impact reduction potential” 

(Geyer et al., 2015) of aluminum scrap generation, in other words to make sure that 

maximum levels of primary production displacement are achieved. One example would be 

to increase scrap quality, for example via advanced alloy identification technologies 

(Werheit et al., 2011). However, this paper demonstrates that understanding and influencing 

market behavior is more important than focusing on technical solutions. More research is 

urgently required in this domain. 
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An alternative to reducing trade-offs is to side-step them. Vehicle mass reduction 

without GHG trade-offs can be achieved by simply downsizing vehicles instead of using 

GHG intensive lightweight materials. Mass reduction is also possible by replacing mild with 

advanced high strength steel, which has a GHG intensity similar to mild steel. 

Any policies that target a reduction in the GHG footprint of goods and services require 

careful examination of the implications on a system-wide basis. Moreover, unique insights 

into the environmental consequences of these policies are gained from utilizing a CLCA 

framework. The presented research shows how such a framework can be used for extensive 

sensitivity analysis and thus guides formulation, analysis, and implementation of 

environmental policy. 
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3.1 Abstract 

Recycling only creates environmental benefits when it displaces other material 

production. Without displacement, it only delays rather than prevents ultimate disposal. It is 

therefore critically important that we improve our understanding of the causality between 

recycling and other material production. This research focuses on estimation of the causal 

link between an increase in recycling and a reduction in primary material.  I first review how 

structural models of supply and demand, for both the primary material and the recycled 

material, can be used to identify a causal link.  The supply and demand approach suffers 

from issues of endogeneity, which require the use of advanced regression techniques. These 

techniques, in turn, require detailed and large datasets, which are often hard to obtain. Here, 

I introduce the Difference-in-Differences estimator to the industrial ecology literature, as an 

alternative approach to quantifying the causal effect between additional recycling and 
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primary material production.  The Difference-in-Differences estimator is based on a quasi-

experimental approach, in that it classifies data into treatment and control groups.  I 

introduce the method, analyze the data structures and assumptions needed for identification 

of causal effects, and discuss the advantages relative to the supply and demand framework. 

A hypothetical application of each method to aluminum recycling is provided, along with a 

simulated quantitative example of the Difference-in-Differences technique. My proposed 

method will help to better understand, measure, and promote the conditions under which 

recycling creates environmental benefits. 

  

3.2 Introduction 

Recycling is the process of converting what would otherwise be waste into secondary 

resources to be used again in the economy. In public environmental policy, recycling is seen 

as one way to keep solid waste out of landfill and reduce the environmental footprint of 

human activity. Recycling, or secondary material production, is also a topic that has 

received intense attention throughout the history of the field of industrial ecology. It turns 

out that the sole environmental benefit of  secondary production is that it can displace, or 

avoid, other material production processes (Geyer et al., 2015; Yang, 2016; Zink et al., 

2015). Recycling without displacement only delays rather than prevents ultimate disposal 

activities such as landfill, littering, or incineration (Zink and Geyer, 2018). Such 

displacement leads to all other perceived benefits of recycling such as landfill reduction, 

energy savings, and reductions in raw material usage (Geyer et al., 2015). Unfortunately, the 

actual mechanisms of displacement have not been studied until recently. 
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From early to recent times, displacement has simply been assumed to happen on a 100% 

basis, which means that each unit of recycled material displaces one unit of primary 

material. In environmental life cycle assessment (LCA), recycling causes a so-called 

allocation issue when it happens across two different product systems. Methods used to 

resolve this issue include recycled content, 50/50, avoided burden, value-corrected 

substitution, and multi-cycle approaches (Atherton, 2007; Frischknecht, 2010; Nicholson et 

al., 2009; Weidema, 2001). These methods typically account for yield losses, and some also 

consider limited technical substitutability. However, they uniformly ignore the fact that 

technical equivalence does not guarantee displacement. While authors have acknowledged 

that quantifying displacement precisely is important (Ekvall, 2000; Geyer, 2008; Geyer et 

al., 2015; Mcmillan et al., 2012; Vadenbo et al., 2017; Weidema, 2003), only one 

comprehensive statistical analysis of displacement exists in the industrial ecology literature 

(Zink et al., 2017).  

The extent to which more scrap and waste collection leads to additional secondary 

production, and then to displacement, has predominantly been treated as a market 

equilibrium problem in the literature and approached by assuming or calculating price 

elasticities (Ekvall, 2000; Ekvall and Andrae, 2006; Weidema, 2003; Zink et al., 2017, 

2015). Displacement has also been identified as a key issue in the methodological 

development of consequential life cycle assessment (CLCA), which strives to model the net 

environmental impacts of a change to an industrial system considering all physical and 

social processes affected (Brander et al., 2009; Ekvall et al., 2016; Koffler and Finkbeiner, 

2017; Weidema, 2003; Zamagni et al., 2012). In general, much of the industrial ecology 

literature has equated social processes with markets and their equilibria (Earles and Halog, 
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2011; Rajagopal, 2016; Weidema, 2003; Weidema et al., 2009; Zamagni et al., 2012). 

CLCA has considerably advanced life cycle thinking, a pertinent example being the issue of 

direct and indirect land use change (LUC and ILUC, Marvuglia et al., 2013; Vázquez-Rowe 

et al., 2014). However, it has yet to be fully exploited to support decision-making for 

recycling or for circular economy activities more broadly. This may, in part, be due to its 

current focus on market equilibrium models, which turn out to be challenging and highly 

uncertain.  

Structural market models of primary and secondary variants of one material in isolation 

from the rest of the economy have been the primary tool proposed and applied to calculating 

displacement (Ekvall, 2000; Ekvall and Andrae, 2006; Zink et al., 2017, 2015). It has been 

shown that this can be used to assess the displacement of primary aluminum due to 

aluminum recycling in North America (Zink et al., 2017). Supply and demand modelling has 

also been applied to other industrial ecology problems, such as direct energy efficiency 

rebound effects (Sorrell et al., 2009) and ILUC in biofuel production (Lapola et al., 2010; 

Plevin et al., 2010; Searchinger et al., 2008). However, supply and demand models are only 

one avenue to study cause-and-effect mechanisms using observational data. Authors have 

recently suggested that broader causal inference analysis will be necessary for industrial 

ecologists to support sustainable development (Cucurachi and Suh, 2017), but specific 

applications are still lacking in the literature. 

In this paper, I generalize displacement as a question of the cause-and-effect relationship 

between secondary production and primary material and show that structural market 

equilibrium models are not the only possible approach. I identify and investigate the use of 

an alternative method for causal inference, Difference-in-differences (DID), for quantifying 
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the causal relationship between recycling and primary production.  DID has a long history in 

applied microeconomics beginning with Ashenfelter and Card (1985). The novelty of this 

contribution lies in the application of DID to the industrial ecology literature. I thoroughly 

examine the statistical problems and assumptions, causal mechanisms, and 

operationalization of both structural supply and demand models and DID without loss of 

generality. Idealized case studies for the two methods are hypothesized using aluminum as a 

platform. A quantitative example of DID is provided using simulated data, illustrating key 

potential issues with its practice. Finally, I discuss applying these methods to other 

displacement problems and the significance of this research in environmental policy and the 

field of industrial ecology. 

3.3 Generalized Displacement 

Figure 3.1 shows a generalized displacement problem. The solid green line represents 

secondary aluminum production 𝑄𝑠𝑒𝑐 over time for a regional aluminum market. Prior to the 

year 2000, secondary aluminum was not produced in this particular market. In the year 

2000, an exogenous shock occurs, i.e. a shock that did not affect demand for aluminum 

directly, hence the dashed lines have the same slope before and after the year 2000. This 

shock leads to the production of 150 tons of secondary aluminum per year going forward. 

One example of such a shock would be a legislative act suddenly mandating aluminum 

producers to increase secondary production. I ask the following question: does additional 

secondary production cause a decrease in primary production? This question is critical 

because such an outcome reduces our reliance on raw natural resources and typically 

reduces the total impact of production. This impact reduction dynamic may affect the 

environmental assessment of policy-driven changes to product systems. One example is 
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material substitution in vehicles, where lack of displaced production through recycling 

would affect the environmental performance of light-weight materials (Geyer, 2008; Løvik 

et al., 2014; Modaresi et al., 2014; Modaresi and Müller, 2012). The dotted lines in Figure 

3.1 (a) are the trends in primary aluminum production 𝑄𝑝𝑟𝑖𝑚 over time, and in Figure 3.1 (b) 

they represent the trends in total aluminum production  𝑄𝑡𝑜𝑡 = 𝑄𝑠𝑒𝑐 + 𝑄𝑝𝑟𝑖𝑚.  

  

 

Figure 3.1: Total quantity of material produced as a function of time with an exogenous 

shock leading to additional secondary production in the year 2000. Displacement is a 

research question about what happens after this influx of secondary material. The question 

can be answered by observing what happens to the primary quantity produced after the 

shock. Panel (a) shows what happens to primary production for 0%, 50% and 100% 

displacement. Panel (b) shows the same for total production. 

Consider the case where this influx of secondary material goes onto the regional market 

for automotive materials. In the scenario represented by the black line in Figure 3.1, all of 

the secondary aluminum is used to replace primary aluminum (i.e. 150 tons per year), which 

is 100% displacement. The red line represents the scenario where only 75 tons of the 

secondary aluminum is used to replace primary aluminum, which is 50% displacement. In a 
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third scenario represented by the blue line, none of the secondary aluminum is used to 

replace primary aluminum, which is 0% displacement. These examples illustrate the 

definition of displacement: 𝑑 = 1 −
∆𝑄𝑡𝑜𝑡

∆𝑄𝑠𝑒𝑐
=

−∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
. 

In general, there are numerous forces affecting the regional demand for aluminum such 

as GDP, incomes, and the prices of substitute materials. These other forces will affect how 

much aluminum is used in automobile manufacturing. In consequence, one cannot estimate 

displacement simply by computing the observed change in primary and secondary 

production. To control for these other forces, one could specify a linear regression model 

with the functional form  

𝑄𝑝𝑟𝑖𝑚 = 𝛼 + 𝛽1𝑄𝑠𝑒𝑐 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜀                    (3.1)  

where ∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=2  capture the effect of these forces, and 𝜀 is the regression error term. 

Unfortunately, Ordinary Least Squares (OLS) estimates of the effect of 𝑄𝑠𝑒𝑐 on  𝑄𝑝𝑟𝑖𝑚 (𝛽1) 

are likely to be biased and inconsistent due to endogeneity. This presents itself when the 

explanatory variable of interest is correlated with the regression error term. It also threatens 

the identification of causal effects from the regression coefficients. Endogeneity arises for a 

number of reasons, but is frequently due to simultaneous causality between the dependent 

variable and the explanatory variable. While I expect secondary production to have an effect 

on primary production, I equally expect that changes in primary production affect secondary 

production; thus, simultaneous causality is a significant concern in the estimation of (3.1). 
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3.4 Previous approach to quantifying displacement: Supply and demand 

 Framework 3.4.1

A classical approach to address endogeneity is to estimate a structural model of supply 

and demand for primary and secondary aluminum using instrumental variable methods 

rather than OLS (also known as Partial Equilibrium Analysis). This approach has been used 

historically and frames displacement micro-econometrically, meaning that price responses 

of supply and demand are assumed to drive the causal relationship between secondary 

production and primary production (Ekvall, 2000; Ekvall and Andrae, 2006; Zink et al., 

2017, 2015).  One would estimate functional relationships between supply and demand of 

primary and secondary material and their explanatory variables, which include endogenous 

prices and exogenous shifters. Equation 3.2 shows a simplified set of simultaneous 

equations of supply and demand for primary and secondary material ( 𝑄𝑆𝑝𝑟𝑖𝑚, 𝑄𝑆𝑠𝑒𝑐, 

𝑄𝐷𝑝𝑟𝑖𝑚 and 𝑄𝐷𝑠𝑒𝑐) along with equilibrium conditions.  

𝑄𝑆𝑝𝑟𝑖𝑚 = 𝛼1 + 𝛽1𝑃𝑝𝑟𝑖𝑚 +  𝜋1𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜀1            (3.2a) 

𝑄𝐷𝑝𝑟𝑖𝑚 = 𝛼2 + 𝛾1𝑃𝑝𝑟𝑖𝑚 + 𝜇1(𝑃𝑠𝑒𝑐 − 𝑃𝑝𝑟𝑖𝑚) + 𝜋2𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜀2          (3.2b) 

𝑄𝑆𝑠𝑒𝑐 = 𝛼3 + 𝛽2𝑃𝑠𝑒𝑐 + 𝜋3𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜀3             (3.2c) 

𝑄𝐷𝑠𝑒𝑐 = 𝛼4 + 𝛾2𝑃𝑠𝑒𝑐 + 𝜇2(𝑃𝑝𝑟𝑖𝑚 − 𝑃𝑠𝑒𝑐) + 𝜋4𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜀4           (3.2d) 

𝑄𝑆𝑝𝑟𝑖𝑚 = 𝑄𝐷𝑝𝑟𝑖𝑚                (3.2e) 

𝑄𝑆𝑠𝑒𝑐 = 𝑄𝐷𝑠𝑒𝑐                 (3.2f) 

In this system, 𝛼𝑛 are intercepts, 𝛽𝑛 are own-price responses of supply, 𝛾𝑛 − 𝜇𝑛 are own-

price responses of demand,  𝜇𝑛 are cross-price responses of demand, 𝑆𝐻𝐼𝐹𝑇𝑋 are the 

exogenous shifters, 𝜋𝑛 represent the effect of changes in the exogenous shifters on supply 
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and demand,  𝑃𝑥 are price variables and 𝜀𝑛 are unobserved error terms. Observations of 

quantities, prices, and shifters are gathered empirically and used to estimate a set of four 

regressions. After the coefficients on the equations are estimated, a shock is introduced to 

𝛼1, or to the supply of secondary material. Solving the system again after introducing a 

shock simulates how primary supply would respond to the change in the secondary supply. 

The algebra behind this is detailed in Zink et. al, 2015. I note that in practice, prices of 

substitutes and additional control variables are likely to come into play and complicate the 

algebra even further. 

Before moving forward, it is critical to examine the meaning of all six components of 

(3.2) in depth. This system of equations represents a classical economic model of the 

behavior of supply-side agents and demand-side agents that interact simultaneously on a 

market for the primary and secondary variants of a material. In practice, multiple 

observations of all of the variables are collected over time. Here, (3.2a) states that a given 

observation of the quantity of primary material supplied to the market (𝑄𝑆𝑝𝑟𝑖𝑚) is a function 

of a baseline intercept 𝛼1, its market price at the time of the observation  𝑃𝑝𝑟𝑖𝑚, the 

magnitude of one or more exogenous supply shifters at the time of the observation 

𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚, and an unobserved random variable 𝜀1. The researcher collects multiple 

observations of 𝑄𝑆𝑝𝑟𝑖𝑚, 𝑃𝑝𝑟𝑖𝑚, and 𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 and uses them to estimate a regression in 

the form of (3.2a). This estimation yields values for 𝛼1, 𝛽1, and 𝜋1. The coefficient 𝛽1 is the 

change in the quantity of primary material supplied in response to a one unit change in its 

price (or the own-price response). The coefficient 𝜋1 is the change in the quantity of primary 

material supplied in response to a one unit change in 𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚, a variable other than 

price that affects primary supply. The correct choice of 𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚  is dependent on the 
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particular market being analyzed. These regression coefficients are necessary in order to 

specify the dynamics between changes in the quantity of secondary material and changes in 

the quantity of primary material, which are linked through the components of (3.2).  

The concept behind (3.2b) is nearly identical. However, the agents of demand are 

different than the agents of supply. Thus, 𝑄𝐷𝑝𝑟𝑖𝑚 will respond differently to changes in 

price than 𝑄𝑆𝑝𝑟𝑖𝑚, and carries a different price response coefficient. In addition, the 

exogenous (non-price) shifter of demand is different than that of supply, hence the 

notation 𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚. Finally, I introduce the consideration of the difference in prices 

between the primary and secondary variant of the material, which is salient to the agents of 

demand and may affect their decisions. The price difference also links the demand functions 

for primary and secondary material. After estimating a regression in the form of (3.2b), I 

have values for all of its coefficients. The interpretation is the same as that of (3.2a), except 

that I add 𝜇1, which is the change in the quantity of primary material demand in response to 

a one-unit change in the price difference between the primary and secondary variant. The 

interpretation of the variables and coefficients in (3.2c) and (3.2d) follow immediately from 

that of (3.2a) and (3.2b). The distinction is that data collection and estimation involve 

analogous variables related to secondary materials, as opposed to primary.  

Finally, consider (3.2e) and (3.2f). These equilibrium conditions reflect the classical 

economic assumption that supply and demand are equivalent in the long term on a 

competitive market, or a market where no one agent or small group of agents determines 

how the market operates. Exogenous shocks to supply and demand, such as those analyzed 

in quantifying displacement, cause the market to settle into a new equilibrium condition that 

satisfies the entire system of equations shown in (3.2).  
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Estimating four simultaneous equations bypasses the particular statistical issue posed in 

the OLS estimation of (3.1). However, price is endogenous in the vast majority of markets, 

leaving us with a new statistical issue. Prices cause supply and demand to change, but 

changes in supply and demand also affect price, which clearly constitutes simultaneous 

causality (Wooldridge, 2012).  The supply and demand framework approach restores the 

causal interpretation of price-response parameters by estimating four two-stage least squares 

(2SLS) equations with instrumental variables. The first stage of 2SLS consists of estimating 

a regression with the endogenous variable as the dependent variable, and the instrument(s) 

as well as all other exogenous covariates on the right-hand side. This generates an estimate 

for the value of the problem (endogenous) variable that corrects for endogeneity bias, which 

is substituted into the original regression equation. The second stage is estimating the 

original regression using the values of the endogenous variable estimated from the first 

stage. In practice, 2SLS software commands avoid the need for two separate regressions and 

ensure correct estimates of standard errors. However, it is still worthwhile to walk through 

the theoretical construct of the first-stage. 

Consider the first two components of (3.2). In the case of primary supply, the price of 

primary material is the endogenous variable. For primary demand, both the price of primary 

material and the price difference between primary and secondary material are endogenous. 

Estimating 2SLS requires that there are at least as many instruments as endogenous 

variables for each equation. The instruments for the primary supply equation are exogenous 

shifters of primary demand, secondary supply, and secondary demand. The instruments for 

the primary demand equation are exogenous shifters of primary supply, secondary supply, 

and secondary demand. Thus, there are at least three instruments for each equation, 
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assuming that I am able to find unique and exogenous shifters for primary supply, primary 

demand, secondary supply, and secondary demand. Equation 3.3 provides an example of a 

first stage regression for the primary supply equation, which generates 𝑃𝑝𝑟𝑖𝑚̂, the estimate 

for 𝑃𝑝𝑟𝑖𝑚 that corrects for endogeneity.  

𝑃𝑝𝑟𝑖𝑚 = 𝛿1 + 𝜏1𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜏2𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜏3𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜏4𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜔1(3.3a) 

𝑃𝑝𝑟𝑖𝑚̂ = 𝛿1̂ + 𝜏1̂𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜏2̂𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜏3̂𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜏4̂𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜔1̂(3.3b) 

In specifying (3.3), I assume that the four exogenous shifters are “relevant” instruments 

for the price of primary material 𝑃𝑝𝑟𝑖𝑚. This means that the shifters of the supply and 

demand curves are correlated with 𝑃𝑝𝑟𝑖𝑚. By estimating (3a), I generate values of 𝑃𝑝𝑟𝑖𝑚 that 

are a function of only the variables that are exogenous to the supply and demand system 

specified in (3.2). In essence, this provides a correction for the simultaneous causality issue 

that leads to bias in an OLS estimate of the price response coefficients in the first four 

components of (3.2). After collecting a series of observations of 𝑃𝑝𝑟𝑖𝑚 and the four 

exogenous shifters, I estimate (3.3a). This results in an estimated vector of values for 𝑃𝑝𝑟𝑖𝑚, 

which I notate as 𝑃𝑝𝑟𝑖𝑚̂. The variables on the right-hand side of (3.3b) are the estimated 

functional form of 𝑃𝑝𝑟𝑖𝑚̂. Its intercept is 𝛿1̂, it changes by 𝜏𝑛̂ in response to a unit change in 

the exogenous shifters, and it has an estimated error term 𝜔1̂. This exercise is repeated for 

all of the price variables, as I must replace all price variables in (3.2) with their corrected 

versions. It turns out that identifying the unique, exogenous shifters is not so 

straightforward. In practical applications, the exogeneity of shifters is frequently debatable, 

which threatens the identification of causal effects. The following discussion illustrates 

ideal, but hypothetical shifters for all four equations in the case of aluminum. 
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A truly unique and exogenous shifter of primary aluminum supply would be a measure 

of political unrest in countries that are primary bauxite suppliers, as bauxite is the key raw 

material input for aluminum production. One could create a variable indicating how many 

bauxite-producing countries experience unrest in a given year, for example. Of course, there 

must be variation in unrest over time. In the case of primary aluminum demand, consider 

increased costs of shipping for iron ore that increase the cost of steel, making steel sheet for 

automotive body parts prohibitively expensive. Primary aluminum is the best-known 

substitute, thus demand for primary aluminum is shifted exogenously by the variation in iron 

ore shipping costs.  

Legislation aimed at increasing recycling rates, such as the “bottle bills” offering 

deposits for recycling aluminum cans throughout the United States (State of Hawai’i, 2002; 

State of Oregon, 1971), have been shown to be exogenous shifters of secondary aluminum 

supply (Container Recycling Institute, 2005). For use in the structural market model, it is 

required that such policies vary over time, for example by gradually increasing in 

geographic scope. Finally, an exogenous shifter of secondary aluminum demand would be 

the purity of recycled aluminum over time, which may increase due to technological 

improvements. This would exogenously increase the amount of applications where recycled 

aluminum is a viable substitute. 

Figure 3.2 illustrates the causal pathways of the supply and demand framework via 

price-quantity relationships, showing how the supply and demand curves for primary 

aluminum are shifted by the instrumental variables. Shifting the primary demand curve 

traces out the primary supply curve, and vice versa. This is the key concept in restoring the 

causal relationship between quantity and price (Stock, 2001). 
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Figure 3.2: Causal pathways in the supply and demand framework illustrated via price-

quantity (P-Q) relationships. Panel (a) shows that one instruments for the primary supply 

equation shifts the primary demand curve from D to D’, while panel (b) shows that one 

instrument for the primary demand equation shifts the primary supply curve from S to S’.   

 Case Study 3.4.2

The lone case study using this methodology explores the question of whether or not 

aluminum recycling in the U.S. displaces primary production between 1971 and 2013 (Zink 

et al., 2017). The exogenous shifters are prices of substitutes as well as a series of process 

inputs and economic factors (Blomberg and Hellmer, 2000; Blomberg and Söderholm, 

2009), which are not as strong as the idealized shifters I propose above. This is a ubiquitous 

issue in the identification of causal effects using structural market models. The authors use 

43 annual observations of all variables on the national level. The small number of 

observations contributed to a high level of uncertainty in the results. In fact, in the initial 

year following a 5% shock to secondary supply, displacement estimated via Monte Carlo 

simulations has a 5
th

 to 95
th

 percentile range of approximately [-50%, 100%] (Zink et al., 

2017). 
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 Advantages & Disadvantages 3.4.3

Structural supply and demand models offer a methodology for estimating displacement 

in competitive markets based on classical economic theory. The structural equations for 

supply and demand determine the instruments, which are the unique exogenous shifters used 

in the 2SLS regressions. Thus, setting up the structural equations implicitly provides a 

solution to price endogeneity and establishes identification of causal effects.  

On the other hand, the causal interpretation of supply and demand models requires that 

the market in question be competitive, in that no individual agent or small group of agents 

can determine how that market operates. A model of the form of Equation 3.2 further 

requires that the effect of price is linear and homogenous. Identifying four unique and 

exogenous shifters of supply and demand is challenging, and failure to do so introduces bias 

to the estimation and complicates interpretation of the model. The challenge is amplified in 

settings where I seek to observe multiple market segments, where shifters are needed for 

each segment. To overcome these challenges, I developed the following framework for 

quantifying displacement. 

3.5 Novel approach to quantifying displacement: Quasi-experimental 

 Framework 3.5.1

Rather than construct a structural supply and demand model for the two markets, one 

could approach endogeneity directly through observations of the quantity of primary and 

secondary material by seeking out natural experiments in observational data. This quasi-

experimental design could be achieved through the gathering of public data, or via primary 

data collection. A quasi-experiment is a situation where endogeneity is addressed by 
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dividing observations into treatment and control groups based on explanatory characteristics 

of their values for an outcome variable of interest over time. Observations could be grouped 

by firms, industries, or geographic regions that may use primary and secondary variants of a 

material, for example. After some time, an exogenous change to the quantity of secondary 

material occurs in the treatment group, and the quantity of primary material in the treatment 

and control groups are compared before and after the exogenous change. Several statistical 

methods may be applied to a quasi-experiment. Selection of the method depends on the 

problem at hand and the structure of the data available. Examples include difference-in-

differences (DID), regression discontinuity analysis, and propensity score matching (Angrist 

and Pischke, 2009; Caliendo and Kopeinig, 2005; Imbens and Lemieux, 2007; Lee and 

Lemieux, 2010). I explore the quasi-experimental approach by applying DID estimation to 

quantifying displacement for the first time in the literature. 

Consider the simplified DID example of Figure 3.3, where there is an exogenous 

increase in the secondary quantity of a material in a subset of market segments (𝑇𝑅𝐸𝐴𝑇𝑖 =

1) at time t*=100. The exogenous increase originates from a source uncorrelated with 

factors that explain the underlying trend in the material quantity on the market. There is a 

control group of market segments, which do not see any change in secondary material at 

t*=100. In the period after the exogenous change at t*=100 (t  t*), observations of the 

quantity of primary material in both the treatment and control groups continue to be 

collected. At time t=300, the difference in primary material in each market segment between 

t*=100 and t=300 is measured for both treatment and control groups. If the additional 

recycling had no effect on primary material, the difference in primary material between 

t*=100 and t=300 would be the same in both groups. In Figure 3.3, the treatment group had 
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a lesser difference in primary material from pre-to post-treatment compared with the control 

group, thus there is a “difference in the differences”, which is reflected by 𝜃. This 

coefficient is interpreted as the increase in secondary material causing a decrease in primary 

material given that the identification restrictions outlined in Section 3.5.2 are satisfied. One 

would determine 𝜃 using a regression with form of (3.4): 

 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛿{𝑖𝑇𝑅𝐸𝐴𝑇𝑖 = 1} + 𝜌{𝑡 ≥ 𝑡∗} + 𝜃{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 ≥ 𝑡∗} + 𝜀𝑖𝑡            (3.4)  

where 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

 is the observation of primary material in market segment i (treatment or 

control) in period t (pre- or post-treatment), {𝑇𝑅𝐸𝐴𝑇𝑖} takes the value 1 for treated 

observations and 0 for controls, {𝑡 ≥ 𝑡∗} takes the value 1 in the post treatment period and 0 

in the pre-treatment period, and 𝜀𝑖𝑡 is the error term (Angrist and Pischke, 2009). The effect 

of interest is identified by 𝜃, the coefficient on {𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 ≥ 𝑡∗}, which has a value 

of 1 for observations of the treatment group in the post-treatment period. The change in 

primary material 𝜃 reflected in the regression is converted into displacement by observing 

the change in secondary material and applying the identity 

𝑑 = −
∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
= −

𝜃

∆𝑄𝑠𝑒𝑐
, where ∆𝑄𝑠𝑒𝑐 is the increase in recycling that occurs at t*. 
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Figure 3.3: Difference-in-differences estimation of displacement due to increases in 

recycling. The treatment group of market segments experiences a sudden increase in 

recycling at t*=100. The quantity of primary material is measured in each period, and 

𝜃 gives the DID estimate of the change in the quantity of primary material caused by 

exogenous shift in recycling activity.  

 Firm-Level Case Study 3.5.2

Here, I return to the example of automobile manufacturing from the generalized 

displacement discussion in Section 3.3. Consider the scenario where groups of treatment and 

control firms operating in similar markets both use primary aluminum. The treatment firms 

absorb additional secondary aluminum generated from an exogenous, policy-driven shock. 

The control firms do not pursue use of the additional secondary aluminum provided by the 

shock. Selection into the treatment group is random conditional on observable 
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characteristics of the firms. In this hypothetical system, I gather monthly statistics on 

primary and secondary aluminum used in each firm i on a per vehicle basis. At t*=100, an 

exogenous, policy-driven shock to the quantity of secondary aluminum ∆𝑄𝑠𝑒𝑐 occurs and is 

absorbed by the treatment group of firms. I continue to measure primary aluminum used per 

vehicle by the treatment and control firms until t=300.  

In this application, use of DID requires that the trends in primary aluminum 

consumption by the treatment and control firms were parallel prior to t*=100 or that any 

differences in the trends could be accounted for by observable quantities. For example, the 

trend in primary aluminum quantity may look different for firms that produce economy class 

vehicles versus those that produce luxury class vehicles. This is one example of a factor that 

needs to be included in the DID regression as a control, ensuring that treatment is random 

conditional on what I observe. With the appropriate controls in place, one could estimate a 

regression with the form of Equation 3.5, where 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

 is the quantity of primary aluminum 

used in firm i during month t. 

𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛿{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} + 𝜌{𝑡 ≥ 𝑡∗} + 𝜃{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 ≥ 𝑡∗} + 𝛾1𝐶𝐿𝐴𝑆𝑆𝑖𝑡 +

⋯ + ∑ 𝛾𝑘𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑖𝑡
𝐾
𝑘=2 + 𝜀𝑖𝑡                           (3.5) 

The displacement effect is given by 𝑑 = −
∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
= −

𝜃

∆𝑄𝑠𝑒𝑐
. 

The first identifying assumption of the DID causal effect is referred to as the parallel 

trends assumption, and means that I assume the post-treatment trend in per vehicle primary 

aluminum use would be the same between the treatment and control firms in the absence of 

treatment (Angrist and Pischke, 2009). The robustness of this assumption can be examined, 

for example, by comparing the trends in per vehicle primary aluminum use between 

treatment and control groups for the period prior to t*=100 and verifying they were actually 
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parallel. The second necessary condition is that the treatment, or sudden increase in 

recycling, did not coincide with another exogenous shock affecting primary aluminum use 

differently in the treatment and control groups. The causal interpretation of the result is 

threatened if, for example, a policy requiring improved fuel economy emerges at the same 

time as the exogenous shock to recycled aluminum, and the treatment and control firms 

respond by decreasing the mass of their vehicle fleets in ways that affect their primary 

aluminum use differently. Lastly, the causal interpretation requires that the additional 

secondary aluminum in the treatment group does not interact with the control group. In other 

words, the additional secondary aluminum cannot be sold by treatment firms to control 

firms. The trade of secondary aluminum across groups threatens identification because the 

treatment will have an effect on outcomes in the control group.   

I must also consider the estimation of standard errors, which is influenced by 

assumptions regarding the correlations between values of 𝜀𝑖𝑡. Classic standard errors are not 

sufficient, as they assume the error terms are uncorrelated and of constant variance, 

something that is highly unlikely in practice.  The correct standard error estimator depends 

on the structure of the data. One general alternative, that adjusts for arbitrary temporal 

correlation, is to use the Newey-West estimator (Newey and West, 1987; Petersen, 2009). In 

the case of Equation (3.5), I could also account for the likely scenario that unobserved 

sources of variance in primary production are clustered by firm, in which case it is more 

appropriate to use a cluster-robust estimator.  These strategies alleviate the risk of 

constructing standard error estimates that are systematically too small, which would lead to 

over-rejection of the null hypothesis that 𝜃1 = 0 (Cameron and Miller, 2015). One must also 

pay attention to the number of firms and the evenness of the distribution of observations 
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across clusters, as cluster heterogeneity may present issues in hypothesis testing (Carter et 

al., 2016; Lee and Steigerwald, 2017). 

 Quantitative Example 3.5.3

Here I present a quantitative example to illustrate how a firm-level case study lends itself 

to a DID estimation framework, demonstrate the estimation of a DID regression on 

simulated data, and provide an interpretation of the model coefficients. I illustrate one of the 

challenges one might face using DID, which is that the mean and variance of the DID 

estimate will change based on the number of post-treatment periods in the data. In addition, I 

show how one handles the scenario where the treatment effect is dependent on an observable 

difference between firms (for example, the class of vehicles produced). 

Returning to the example in Section 3.5.2, consider the case where a researcher collects 

50 monthly observations on primary aluminum use (in tons) in 100 automotive firms.  The 

100 firms are divided into two groups, the first group produces economy vehicles and the 

second group produces luxury vehicles. This setting will allow me to examine models in 

which the treatment effect differs across different types of firms.  In month t*, a sustained 

monthly increase in secondary aluminum usage occurs for the firms exposed to an 

exogenous, policy-driven shock and I refer to these firms as treated.  

During the pre-treatment period, 𝑡 < 𝑡∗,  primary aluminum usage in a firm depends on 

the class of vehicles produced: 

𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛾1{𝐶𝐿𝐴𝑆𝑆𝑖 = 𝐿} + 𝜀𝑖𝑡,                (3.6) 

where {𝐶𝐿𝐴𝑆𝑆𝑖 = 𝐿} is an indicator variable designating firms that produce luxury class 

vehicles and 𝜀𝑖𝑡 is a normally distributed random variable. In this expression, 𝜇 is the 

average quantity of primary aluminum used by firms that produce economy vehicles.  
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Because, in this example, firms that produce luxury vehicles use more primary aluminum, 

the coefficient 𝛾1 is positive. 

During the post-treatment period, 𝑡 ≥ 𝑡∗, primary aluminium usage in a firm also 

depends on the treatment status of the firm: 

𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝜃{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} + 𝛾1{𝐶𝐿𝐴𝑆𝑆𝑖 = 𝐿} + 𝛾2{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝐶𝐿𝐴𝑆𝑆𝑖 = 𝐿} +

𝜀𝑖𝑡,                      (3.7) 

where {𝑇𝑅𝐸𝐴𝑇𝑖 = 1} is an indicator variable designating firms that are treated.  Here 

𝜃 captures how much the average quantity of primary aluminum used by economy vehicle 

producers changes when secondary aluminum usage increases due to the policy.  The 

change in the average quantity of primary aluminum usage due to the policy for luxury 

producers is 𝜃 + 𝛾2,  so that 𝛾2 measures how much the policy impact varies between the 

two types of vehicle producers. 

In our simulations, on average half the firms are assigned to be luxury vehicle producers 

and, within each type of firm, half are randomly assigned treatment.  The firms exposed to 

the policy increase their usage of secondary aluminum by 8 tons per month.  Economy 

vehicle producers have a displacement of 50%, which means that primary aluminum usage 

falls by 4 tons per month (so 𝜃 = −4).  Luxury vehicle producers have a displacement of 

30%, which means that primary aluminum usage for these firms falls by 2.4 tons per month 

(so 𝛾2 = 1.6). 

I focus on the estimators for the treatment effect 𝜃 and 𝛾2 and report the results from 

1000 simulations.  For each simulation, I generate the data as described above and construct 

an estimate of the parameters from the difference-in-differences regression 
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𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛿{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} + 𝜌{𝑡 ≥ 𝑡∗} + 𝜃{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 ≥ 𝑡∗} + 𝛾1{𝐶𝐿𝐴𝑆𝑆𝑖 =

𝐿} + 𝛾2{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 ≥ 𝑡∗} ∗ {𝐶𝐿𝐴𝑆𝑆𝑖 = 𝐿} + 𝜀𝑖𝑡                        (3.8) 

where {𝑡 ≥ 𝑡∗}  is an indicator that the observation occurs in the post-treatment period.  Two 

new coefficients have appeared in (3.8), 𝛿 and 𝜌.  These coefficients are included in applied 

work to account for the possibility that the treatment and control groups differ in the pre-

treatment period, which is captured by 𝛿, and for the possibility that the control group differs 

in the pre- and post-treatment periods, which is captured by 𝜌.  In this setting, 𝜌 = 0 because 

the quantity of primary aluminium usage by control firms does not systematically vary over 

time.  Also, if an equal number of firms of each type are assigned to the treatment group, 

then the treatment and control groups do not differ in the pre-treatment period and 𝛿 = 0.  In 

my simulations, I randomly assign groups to treatment and control with equal probability. 

For the first setting  𝑡∗ = 25, ensuring that there are many months in both the pre- and 

post-treatment periods.  For this setting I find highly accurate estimation of 𝜃: the average of 

the estimates is -4.01, the variance is 0.11, and the minimum and maximum are -5.42 and -

2.97 respectively.  Thus, approximately 95% of our estimates lie within (-4.6,-3.4).  For 𝛾2 

the results are similar: the average of the estimates is 1.61 and 95% of my estimates lie 

within (1.0, 2.2). 

Accurate estimation of the baseline treatment effect 𝜃 depends on having a sufficiently 

large number of observations before and after the treatment. However, analysis often occurs 

shortly after a policy change, leading to a small number of post-treatment observations. 

Thus, it is critical to ask: What happens if treatment occurs very late in the sample?  To 

answer, I vary t* resulting in settings in which there are a decreasing number of observations 
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in the post-treatment period. Table 3.1 contains the results for estimation of 𝜃, where 

estimates are notated as 𝜃 in accordance with common practice. 

t* Mean 𝜃 Var 𝜃 Min 𝜃 Max 𝜃 

25 -4.01 0.11 -5.42 -2.97 

35 -4.01 0.13 -5.23 -2.88 

45 -3.98 0.27 -5.69 -2.14 

49 -4.02 0.80 -6.64 -1.57 

50 -3.95 1.50 -8.12 0.20 

Table 3.1: Features of the distribution of 𝜃 when varying the time of the treatment 

intervention t*. This illustrates the importance of having sufficient post-treatment 

observations when using DID. The base case, where t*=25, is shown in bold. 

From Table 3.1 I see that as the number of observations in the post-treatment period 

shrinks the variance of the estimator increases (it, of course, remains unbiased across all 

settings).  If only one observation is available post-treatment, the variance increases 

dramatically. The results for estimation of 𝛾2 (notated as 𝛾2̂) are contained in Table 3.2.  For 

the settings in which the number of post-treatment observations shrinks, a similar pattern 

emerges: the estimator remains unbiased but the variance increases as the post-treatment 

sample is reduced.  

t* Mean 𝛾2̂ Var 𝛾2̂ Min 𝛾2̂ Max 𝛾2̂ 

25 1.61 0.10 0.49 2.58 

35 1.60 0.16 0.41 2.91 

45 1.56 0.35 -0.42 3.54 
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49 1.61 1.03 -1.18 5.00 

50 1.63 2.09 -3.85 6.83 

Table 3.2: Features of the distribution of 𝛾2 ̂ when varying the time of the treatment 

intervention t*. This illustrates the importance of having sufficient post-treatment 

observations in order to adjust the DID results treatment effect for heterogeneity in 

observable characteristics. The base case, where t*=25, is shown in bold. 

 Advantages & Disadvantages 3.5.4

DID uses a simpler regression framework with reduced data requirements compared to 

structural supply and demand models for estimating displacement. It avoids the need for 

exogenous shifters of supply and demand in two markets, and the aforementioned 

complications that go with them. However, unlike the supply-demand framework, DID 

requires careful balancing of treatment and control observations to avoid biased results due 

to confounding factors. DID treatment interventions are generally easier to defend as 

plausibly exogenous than the four shifters in the supply-demand framework. This is because 

the treatment is sharply defined and pre-treatment parallel trends imply quasi-random 

assignment of treatment. 

DID studies also present inherent limitations. The most critical challenge with DID is 

that the parallel trends assumption is dependent on a counterfactual trend in the treated 

observations, which cannot be verified, although the testing of pre-treatment trends helps to 

mitigate this problem. Another key disadvantage of DID is that the parallel trend assumption 

is dependent on the way in which the parameter is measured (Bertrand et al., 2002; Lechner, 

2011). For example, the parallel trends in primary aluminum production from Figure 3 may 

not hold for elementary transformations of this variable (i.e. log material production). 
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Underestimation of standard errors due to serial correlation of the error terms is also a 

known problem leading to misleading conclusions in DID studies (Bertrand et al., 2002). 

It is also important to recognize the difference in scope between structural supply and 

demand models and a firm-level DID approach. Zink and Geyer (2017) compared partial 

displacement of recycling to the so-called rebound effect of increases in energy efficiency 

and thus called it ‘circular economy rebound’. Energy efficiency rebound literature typically 

distinguishes between direct and indirect effects. For example, if a household acquires a 

more energy-efficient car, it could use the fuel cost savings to a) drive more (direct rebound) 

or b) purchase other goods and services (indirect rebound). In an analogous way, increased 

use of secondary automotive material could lead to increased total material use in the 

automotive sector, or increased use in other sectors, such as packaging. A structural supply 

and demand model would capture direct and indirect effects; while the firm-level DID 

approach outlined in section 3.5.2 would measure only the direct effect. 

3.6 Outlook 

I have framed the discussion of displacement in terms of primary and secondary 

production of a given material, but there are many other related questions of interest. For 

example, it is possible that aluminum recycling leads to less use of both primary and 

secondary plastics, as aluminum is used in many packaging applications. Displacement may 

also be an issue in generalized material substitution, regardless of whether or not the 

substitute material originates from recycling. Consider the case where primary aluminum is 

substituted for primary steel in vehicles. Displaced production of primary steel by additional 

primary aluminum production may not be solely determined by physical parameters in the 
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product system. Other effects, driven by price disturbances or other social parameters, could 

influence the production volumes of both materials in significant ways.  

Causal inference methods such as DID provide an important addition to the toolbox of 

industrial ecology. They broaden the scope of what industrial ecology has considered 

“cause-and-effect” beyond price-driven mechanisms, which is particularly important in the 

development of CLCA. Approaches that fall outside the domain of classical economic 

equilibrium modelling allow for analyses of cause-and-effect relationships that are not 

conditional on perfect information and rational behavior. Perhaps sustainability 

interventions in product systems, such as increased energy efficiency or recycled content, 

have shaped perceptions and consumer preferences in a way that creates consequences that 

are not easily captured via price. Imagine if, for example, marketing a “green” variant of a 

product has the direct effect of making consumers feel less culpable for environmental 

damage. As a result, they purchase a larger quantity of the product than they would have 

without “green” labeling, regardless of price. One could envision a quasi-experimental 

approach where such products are introduced in a heterogeneous manner across market 

segments, and testing if there is an increase in total consumption that reduces the purported 

environmental benefits. A CLCA study of the new variant of the product would need to 

include this effect. Direct observations can also be coupled with field experiments such as 

survey studies, in order to directly examine underlying behavioral mechanisms and bridge 

industrial ecology studies with other disciplines. The DID method is naturally designed to 

analyze this quasi-experimental approach.  

Another case where DID can provide insights into the relationship between recycling 

and primary material is the increased production of recycled wastewater in drought-prone 
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areas. Given that water is used, recycled, and used again in localized units with usage 

tracked at the individual property level by water districts, a quantitative method similar to 

the one presented in Section 3.5.3 can be readily applied. In fact, I apply the method 

outlined in this chapter to an empirical data set on wastewater recycling in Chapter 4 of this 

dissertation.  

Understanding the net environmental consequences of changes to product systems 

requires a deep understanding of the physical and social processes that underpin these 

systems and cause them to evolve over time. This notion is at the core of studies of 

displacement and of CLCAs in which displacement is a key parameter. Thus, I emphasize 

the importance of frameworks other than structural models of supply and demand in 

quantifying the social impacts of changes to product systems. The use of quasi-experimental 

methods offers an avenue to advance our knowledge of how social processes translate into 

physical outcomes, a concept that remains in its infancy in LCA and industrial ecology. This 

undertaking is essential in order to strengthen the relevance of sustainability assessments for 

decision-making. 
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4. How much potable water is saved from wastewater recycling? 

Quasi-experimental evidence from California 

4.1 Abstract 

Investment in advanced wastewater recycling has increased in drought-prone parts of the 

world. California has made particularly large investments in wastewater recycling to replace 

applications that use potable water, but do not require it. In these cases, a conversion of the 

physical infrastructure on the properties is required, due to regulations that ensure that 

recycled wastewater does not contaminate potable supplies. This conversion process and 

discretization of water supplies creates a natural experiment in a large water district in 

California. Over the period 2001 to 2014 a number of public parks converted from potable 

to recycled water for landscape purposes in two regions within a water district, while others 

in those regions remained on potable supply. While the selection of parks for conversion is 

not random, selection depends on the evolution of a large infrastructure project initiated by 

the water district in collaboration with the state, with a decision-making process involving 

many stakeholders, but does not appear to be correlated with the site specific factors that 

determine water use. In this research, I match converted and unconverted parks based on 

their location to control for other factors that determine water usage. This enables a quasi-

experimental analysis, where we quantify the effect of converting to recycled water on total 

water use and potable water use. I use two-way fixed effects regression to produce a 

difference-in-differences estimate of the effect of recycled water on total and potable water 

usage. I find that total water usage is largely unchanged at parks that are converted to 

recycled water use, and the finding is robust to a number of sample restrictions. However, I 

find that potable water usage is reduced significantly when a park is connected to the 
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recycled water supply. In the study period, I estimate 25 million cubic feet of potable water 

was saved. The point estimate of displacement, or the ratio of potable water saved to 

recycled water used, is 93.4%. This analysis provides the first empirical estimate of the 

water savings claimed by urban water recycling programs, and the first empirical estimate of 

displacement using quasi-experimental methods. The methodology can be further extended 

to evaluating the effectiveness of water recycling programs around the world. 

4.2 Introduction 

The reuse of treated wastewater, or water recycling, is a strategy for the diversification 

of urban water portfolios in water scarce areas. Increases in water recycling capacity have 

been a policy driven response to drought in Australia and California. While the use of 

recycled water in California traces back to the early 1900s, recycled water use  has more 

than doubled since 1990, a time period in which the most extreme droughts in California 

history have occurred (Kwon and Lall, 2016). Droughts are expected to increase in 

frequency and intensity as climate change continues, which will stimulate the need for 

desalinated ocean water and recycled water.  How has the increased use of recycled water 

changed the overall demand for water and, in particular, the demand for potable water?  To 

shed light on this question, I examine data from a California water district that recently 

introduced treated wastewater into its supply. I find that while potable water demand falls, 

the overall demand for water does not demonstrably change. 

The reuse of wastewater traces back to ancient civilizations in dry areas of the world.   

Angelakis, Koutsoyiannis, and Tchobanoglous (2005) trace the earliest uses of wastewater 

for agricultural irrigation to the Minoan civilization, more than a millennium before the 

Christian era. In modern times, Qatar, Israel, and Kuwait are among the largest users of 
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recycled water, each of these countries has a long history of water scarcity (Jimenez and 

Asano, 2008). In semi-arid areas that have been settled in more recent times, such as 

Australia and California, the use of recycled water is a more recent development. For 

example, the use of untreated sewer water for agricultural irrigation in California raised 

public health concerns that resulted in the first regulations related to water reuse in the state 

in 1918 (Newton et al., 2011). A major proposal for water recycling infrastructure in 

California came in the form of the Water Recycling Act of 1991, which committed to 1 

million acre-feet of annual wastewater recycling by the year 2010 (California State 

Legislature, 1991). The bill was drafted with the intention to fill a “[…]need for a reliable 

source of water for uses not related to the supply of potable water to protect investments in 

agriculture, greenbelts, and recreation and to replenish groundwater basins, and protect and 

enhance fisheries, wildlife habitat, and riparian areas.”  In the case of Australia, the idea of 

recycling urban wastewater for a subsequent use was largely absent from the water supply 

discourse until the 1990s, when a number of legislative initiatives regarding water 

management were adopted (Radcliffe, 2015). The “millennium drought” of the mid-2000s 

prompted the formation of the National Water Commission and a strong commitment to 

increasing the diversity of water supplies (Apostolidis et al., 2011). Today, advanced water 

recycling consists of a combination of reverse osmosis and treatment with ultraviolet light, 

also known as tertiary treatment, in addition to the standard mechanical and biological 

processing of water that enters a wastewater treatment plant (Australian Academy of 

Technological Sciences and Engineering, 2004). 

It has been highlighted recently that climate change promotes an increase in the 

harshness and the rate at which droughts occur throughout the world (Dai, 2013; Trenberth 
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et al., 2014). Moreover, areas of high population are expected to experience a pronounced 

increase in their exposure to drought (Guneralp et al., 2015). Thus, an increase in water 

sources that lack dependence on rainfall, such as wastewater recycling, is inevitable 

especially in urban areas. However, it has been suggested that locales with access to diverse 

water sources may be less responsive to water conservation initiatives in the face of drought 

conditions, perhaps due to a perceived lack of scarcity (Baldassare and Katz, 1992; Palazzo 

et al., 2017). This further reinforces the need for research into methods to precisely quantify 

the effect of increasing recycled wastewater supplies on potable water usage. 

In general, characterizing the environmental benefits that arise from recycling activity is 

a topic of great interest to the industrial ecology community (Ekvall, 2000; Frischknecht, 

2010; Koffler and Finkbeiner, 2018), These benefits are driven by the degree to which 

recycled materials substitute for their primary equivalents on the material market, a 

phenomenon referred to as displacement (Geyer et al., 2015; Yang, 2016; Zink and Geyer, 

2018). In recent research, authors have shown that paper consumption may increase when 

users are aware of its recycled content (Catlin and Wang, 2013) and that the complete 

substitution of recycled aluminum for primary aluminum on the U.S. material market is 

unlikely (Zink et al., 2017). It has also been shown that resource consumption may increase 

when recycling is added as a disposal option, in comparison to scenarios where trashing is 

the only disposal option (Sun and Trudel, 2017). These studies provide evidence that 

recycling may encourage increases in total resource consumption, a phenomenon known as 

circular economy rebound (Zink and Geyer, 2017). Another recent paper suggested one can 

test for the presence of circular economy rebound using quasi-experimental approaches such 

as difference-in-differences (DID), where data are divided into treatment and control groups 
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(Palazzo et al., 2019). Data with the resolution required to use DID were not available for 

the case of aluminum. Water recycling, on the other hand, presents a compelling case study 

because water is used, recycled, and reused in a localized system with data that are regularly 

tracked at the level of the individual user by water districts. Furthermore, recycled water is 

delivered for non-potable applications using a discretized infrastructure in which the usage 

data of potable and recycled water are metered. Thus, in this research I collect data on water 

usage of different types over time to conduct the first quasi-experimental estimate of the 

effect of wastewater recycling on total and potable water usage. I use a two-way fixed 

effects regression to produce DID estimates of the effect of recycled water conversions on 

total and potable water usage.  

I first discuss the assumptions that qualify the use of the technique and then apply it to a 

panel of nineteen properties in two regions of the water district. In water districts with active 

water recycling programs, promotional material states the amount of potable water saved is 

equivalent to the amount of recycled wastewater supplied to customers (Goleta Water 

District, 2018; Horticulture Australia Limited, 2011). However, a rigorous statistical 

estimate of this equivalency is lacking in the literature.  In this research, I estimate that an 

average site that converts to recycled water in one California water district saves an average 

of 1,224 cubic feet of potable water per day, equivalent to 93.4% of its recycled water usage. 

I conclude with a discussion of the limitations of my approach, future research directions, 

and the implications of the findings for water resources management. 
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4.3 Data & Methods 

 Data source 4.3.1

To examine the effect of water recycling on total water use, and in turn displacement, I 

collect a primary data set on site-level water usage from the East Bay Municipal Utility 

District (EBMUD), a large water district (more than 1 million customers) in California. 

These data consist of monthly observations of water usage from public recreational 

properties. For each site, we collect a minimum of 120 monthly observations. Data are 

collected from a total of 21 sites that are divided into two small regions within EBMUD. A 

site is considered “treated” once it has been connected to the infrastructure that supplies 

recycled wastewater.  Sites that are never connected to the infrastructure serve as controls. 

The proximity of treatment and control properties allows us to isolate the effect of 

conversion to recycled water from the myriad other factors that determine water usage 

(Arbués et al., 2003; DeOliver, 1999; Gilbertson et al., 2011; Martinez-Espineira, 2002).  

Table 4.1 gives a summary of the data set used in the analysis. EBMUD supplied the 

water usage data without site-specific identifiers. Thus, the exact location and size of all 

properties is unknown. However, I proceed under the assumption that given their geographic 

proximity, the treatment and control groups are robust matches in predictors of water usage. 

The connection to recycled water is staggered over time, with some sites connected later 

than others. Because of this, there are more observations in the control state than in the 

treatment state. I account for this staggered adoption in the estimated model.  

In addition, I observe the unit price of water of both potable and recycled water, both of 

which increase over the data collection period. The price of each type of water in a given 

year is the same across all sites. In all but one year (2010), the price of potable water is 
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exactly 1.2 times the price of recycled water. In 2010, potable water costs 1.08 times as 

much as recycled water. The public recreational properties do not pay a tiered water rate 

based on usage as most residential properties in California do. I note that two potential 

control sites, one from each region, were excluded due to data anomalies that make them 

unsuitable controls for the sites that convert from potable to recycled water. 

Region Control 

Sites 

Treated 

Sites 

Mean 

control 

observations 

Mean 

treatment 

observations 

Mean pre-treatment 

monthly water usage 

for controls 

(CCUFT/site/month) 

Mean pre-treatment 

monthly water usage 

for treated 

(CCUFT/site/month) 

R1 5 5 168 129 1390 682 

R2 4 5 168 136 272 213 

Table 4.1: An overview of the two study regions including the number of control and 

treatment sites, the mean number of observations for the treatment and control sites, and the 

mean monthly water usage for treatment and control sites in hundred cubic feet (CCUFT) 

during the period before any site is connected to recycled water.  

Table 4.1 compares average water use in the pre-treatment period for the sites that will 

eventually be treated and those that serve as corresponding controls. Ideally, the average 

water use is comparable across the two groups. This is true in Region 2, where the average 

usage in control sites, 272, is quite similar to the average usage in the sites selected for 

treatment, 213. Thus in Region 2, the treatment sites appear to be randomly selected. In 

Region 1, however, the average usage in control sites, 1390, is much larger than the average 

usage in sites selected for treatment, 682. It could be that in Region 1, larger parks are 

located closer to the source of recycled water, and so are more likely to be treated. As long 

as this differential usage pattern does not change over time, then it can be accounted for with 
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site specific effects and the comparison of treatment and control groups remains valid. In 

Section 4.3.2.1, I detail why this difference is likely random with respect to selection into 

recycled water conversion, and thus does not threaten the identification of the effect of 

recycled water conversion on total and potable water usage. 

 Empirical approach 4.3.2

4.3.2.1 Estimation framework 

To estimate the effect on water demand of introducing recycled water I employ the- 

difference-in-differences (DID) estimator, which Palazzo, Geyer, Startz, and Steigerwald 

(2019) propose as a method to analyze the effect of recycling on total and primary resource 

usage. The identification of causal effects depends on several key assumptions. Let 𝑌𝑖𝑡   

measure total water usage at site i in period t. Each site in each time period is characterized 

by a pair of potential outcomes 𝑌𝑖𝑡(0) and 𝑌𝑖𝑡(1). The observed outcome is 𝑌𝑖𝑡(1) if the 

observation is treated and 𝑌𝑖𝑡(0)  if the observation is not treated.  A site is treated once it is 

connected to the recycled water system. 

The first assumption required for the use of DID is that treatment is randomly assigned, 

or {𝑌𝑖(0),  𝑌𝑖(1)}  ⊥  𝑇𝑅𝐸𝐴𝑇𝑖, where 𝑇𝑅𝐸𝐴𝑇𝑖 is 1 if a site is treated at any point during the 

study period and 0 otherwise. The assignment mechanism for the parks that we observe is 

based on factors that are likely unrelated to their water usage.  For example, sites connected 

to the recycling infrastructure are generally determined based on: distance to the treatment 

plant, the cost per mile of the system, and the number of sites served. Within EBMUD, main 

recycled water pipelines are constructed in an alignment that enables recycled water to reach 

an “anchor” customer such as a golf course or large industrial user. The pipeline going from 
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the wastewater treatment plant to the anchor customer is configured such that the maximum 

number of smaller irrigation customers, such as the parks that we collected data on, can be 

reached at the lowest cost. Thus, although Table 4.1 shows that total usage is higher overall 

in control parks in Region 1, this imbalance is unlikely to change in response to the 

introduction of recycled water, because it is a function of the parks’ proximity to anchor 

customers.  

A second key assumption, which is sometimes termed the parallel trends assumption, 

implies that, absent connection to recycled water, water usage would follow the same trend 

over time in all parks. This assumption would be threatened if, for example, there was 

another major change that occurred in the treated parks simultaneously with their conversion 

to recycled water. Because I am unable to run a controlled experiment, my treatment could 

be correlated with another exogenous effect that is differs in magnitude across treatment and 

control sites. However, I note that in the sample I have staggered adoption of the treatment. 

This helps me to mitigate the possibility that another exogenous effect occurs 

simultaneously. Figure 4.1 examines the robustness of parallel trends in total water usage 

during the pre-treatment period. The plotted trends are average total water usage across sites 

in the treatment group (solid line) and control group (dashed lines) during the subset of the 

study period where all 19 sites are reporting data. I observe a sinusoidal pattern in water 

usage that peaks in the summer season. The peaks in the control group are lower than that of 

the treatment group. To focus the comparison on trends rather than levels, treatment and 

control are plotted on separate axes. In the all-sites reporting period, the pre-treatment trends 

in average total water usage are approximately parallel in the treatment and control groups. 
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Figure 4.1: Monthly water usage in CCUFT averaged across treated sites (solid line) and 

control sites (dashed line) during the period where all sites report data. The staggered 

treatment adoption is indicated with labels the number of treated sites at the beginning of 

each year where new treated sites are introduced. The all-sites period is broken into three 

parts, one before any site is treated (per-treatment), a second during the staggered adoption 

period (adoption period), and a third once all sites are treated (all-treated). 

The water usage data collected here lends itself to a DID analysis. First, I seek to 

understand whether or not the introduction of recycled water had an effect on total water 

usage in converted sites. This could arise from over irrigation due to the perceived lack of 

scarcity of recycled water or from the release of pent up demand, for example. A change in 

total water usage could also originate from qualities of the recycled water itself. For 

example, recycled water is known to contain higher concentrations of salts that may buildup 

in soils where it is used (Toor and Lusk, 2011).  
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To establish the basic regression framework for DID estimation; consider the case where 

there are two sites, one treated and one control. I observe two months (t=2) of water usage in 

the two sites (i=2). One of the two properties received the treatment, a conversion to 

recycled water, in the period t=2. The treated site is assigned the designation 𝑇𝑅𝐸𝐴𝑇𝑖 = 1. 

To examine whether or not the conversion to recycled water had an effect on total water 

consumption in the treated site using DID, I estimate (4.1) where 𝑌𝑖𝑡 is the total water usage 

in site i during month t: 

𝑌𝑖𝑡 = 𝜇 + 𝛿{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} + 𝜌{𝑡 = 2} + 𝜃𝐷𝑖𝑡 + 𝜀𝑖𝑡                          (4.1) 

Here, {𝑇𝑅𝐸𝐴𝑇𝑖} takes the value 1 for the treated sites and 0 for the controls, 𝐷𝑖𝑡 =

{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} ∗ {𝑡 = 2}, 𝜇 is the intercept, 𝛿 captures the difference in levels between the 

treatment and control properties throughout the study period, 𝜌 captures the effect of being 

in the post-treatment period of treated unit i, and 𝜃 is the DID coefficient. In other words, 

the estimate 𝜃 ̂captures the change in total water usage that arises from being in the treated 

state during the post-treatment period. I choose total water usage as the dependent variable 

because sites often convert completely from potable to recycled water. Thus, using potable 

water as the dependent variable introduces a large number of zeroes into the dependent 

variable and inhibits my ability to fit a continuous linear model. 

Before moving forward, I take a step back to explore the significance of the elements of 

(4.1). In essence, the terms 𝛿{𝑇𝑅𝐸𝐴𝑇𝑖 = 1} and 𝜌{𝑡 = 2} are controls for the quasi-

experiment represented by this model. It is likely that mean monthly water usage levels are 

systematically different in the treatment and control groups throughout the entire study 

period, regardless of the exposure of the treatment group to recycled water. The coefficient 

𝛿 captures this difference in means, and including the term in the regression addresses 
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potential bias in the estimate of the treatment effect. This bias would arise because the 

previously existing difference in water usage levels between the treatment and control 

groups would be absorbed into the estimate 𝜃. Similarly, 𝜌 captures a change in mean water 

usage that arises in both the treatment and control groups in the post-treatment period. 

Including this term in the regression addresses potential bias in the estimate of the treatment 

effect that arises from time trends that exist across both treatment and control groups. Such 

time trends are not attributable to the treatment itself. With these controls in place, and the 

aforementioned identification assumptions met, 𝜃 represents an unbiased estimator of the 

effect of being assigned to treatment, and being in the post-treatment period. 

Table 4.2 illustrates the role of the model coefficients from a differences-in-means 

perspective. 

 Pre-treatment mean Post-treatment mean 

Treated 𝜇 + 𝛿 𝜇 + 𝛿 + 𝜌 + 𝜃 

Control 𝜇 𝜇 + 𝜌 

Table 4.2: The mean monthly water usage for pre- and post-treatment observations in the 

treated and control groups when using the difference-in-differences regression model in 

Equation (4.1) 

Let 𝑌̅ be the mean monthly water usage in a site throughout the study period. Then, let mean 

water usage corresponding to the four quadrants of Table 4.2 be labeled using subscripts, 

such as 𝑌̅𝑝𝑟𝑒,𝑡𝑟𝑒𝑎𝑡𝑒𝑑 for pre-treatment observations of a treated site. Table 4.2 gives the four 

different values of 𝑌̅: 

𝑌̅𝑝𝑟𝑒,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝜇  

𝑌̅𝑝𝑜𝑠𝑡,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝜇 + 𝜌  
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𝑌̅𝑝𝑟𝑒,𝑡𝑟𝑒𝑎𝑡𝑒𝑑 = 𝜇 + 𝛿  

𝑌̅𝑝𝑜𝑠𝑡,𝑡𝑟𝑒𝑎𝑡𝑒𝑑 =  𝜇 + 𝛿 + 𝜌 + 𝜃  

When 𝛿 ≠ 0, there is a systematic difference in total water usage levels in the treated and 

control groups throughout the study period. When 𝜌 ≠ 0, there is a time trend that exists 

across both treatment and control groups, which is not attributable to the exposure of the 

treatment group to the treatment. I note that the terminology difference-in-differences comes 

from the fact that {[𝑌̅𝑝𝑜𝑠𝑡,𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑌̅𝑝𝑟𝑒,𝑡𝑟𝑒𝑎𝑡𝑒𝑑] − [𝑌̅𝑝𝑜𝑠𝑡,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑌̅𝑝𝑟𝑒,𝑐𝑜𝑛𝑡𝑟𝑜𝑙]} =

{[𝜇 + 𝛿 + 𝜌 + 𝜃 − 𝜇 − 𝛿] − [𝜇 + 𝜌 − 𝜇]} = 𝜃. The coefficient 𝜃 represents the difference 

between pre-and post-treatment means in the treatment group, minus the difference between 

pre-and post-treatment means in the control group.  

Using the estimate of the effect of recycled water on total water usage, I can also 

estimate displacement, which is the ratio of the change in primary material usage to the 

change in secondary material usage (Zink et al., 2015). In this setting, potable water is the 

primary material and recycled wastewater is the secondary material. Thus, I ask: How much 

of the recycled water usage comes from reducing, or displacing, potable water usage? To 

measure displacement effects, let 

𝑅 = ∑ ∑ 𝑅𝑖𝑡

𝑇

𝑡=1

𝑛

𝑖=1

 

be total recycled water usage and let 

𝑛𝑡𝑟𝑒𝑎𝑡 = ∑ ∑ 𝐷𝑖𝑡

𝑇

𝑡=1

𝑛

𝑖=1

 

be the number of observations of treated sites. Because 𝜃 measures the average monthly 
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change in total water usage after connection to recycled water, total water usage is changed 

by 𝜃 ∙ 𝑛𝑡𝑟𝑒𝑎𝑡 during the study period. 

If total water usage is unchanged, then recycled water has replaced potable water 1 for 1 

and the displacement ratio is 1. If, instead, total water usage increases, then 1 unit of 

recycled water replaces less than 1 unit of potable water and the displacement ratio is less 

than 1. Formally, the displacement ratio is (see appendix for additional details): 

𝑑 = 1 −
𝜃∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
                   (4.2) 

Total potable water savings immediately follow as: 

∆𝑃 = 𝑅 ∗ 𝑑 = 𝑅 ∗ [1 −
𝜃∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
] = 𝑅 − 𝜃 ∙ 𝑛𝑡𝑟𝑒𝑎𝑡               (4.3)  

In this elementary example, I have only one post-treatment observation of water usage 

for each site. Thus, I can estimate displacement and total potable water savings in the treated 

site by applying (4.2) and (4.3): 

 𝑑̂ = 1 −
𝜃̂∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
= 1 −

𝜃̂

𝑅22
, and ∆𝑃 = 𝑅22 ∗ 𝑑, 

where 𝑅22 is the recycled water usage observed for the treated site (i=2) in the post-

treatment period (t=2), and 𝑛𝑡𝑟𝑒𝑎𝑡 is equal to one. It is important to note that the numerator 

in the displacement quantity is an estimate of the average treatment effect for each period t 

multiplied by the appropriate number of time periods, while the denominator is a summation 

of the observed recycled water usage. This becomes a critical point, as the actual data set I 

collected contains multiple treated sites and multiple post-treatment periods. Handling this 

data set requires some adaptation of the simple DID regression method outlined above, as 

discussed in the following section.   
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4.3.2.2 Two-way fixed effects 

To examine the effect of recycled water conversions on total and potable water usage in 

the setting where I have multiple control units, treated units, and time periods, I use the two-

way fixed effects regression approach to DID estimation. A two-way fixed effects approach 

allows for there to be an individual intercept, or dummy variable coefficient, for each site. 

Two-way fixed effects also allows for an individual intercept, or dummy variable 

coefficient, for each time period of data collection. This is a more flexible approach than the 

standard DID example given in section 4.3.2.1, where I estimate a single intercept for 

treatment sites, a single intercept for control sites, and one indicator variable for the post-

treatment period. In two-way fixed effects settings I can control for time-invariant factors in 

individual sites, such as management structures, by estimating individual site intercepts. In 

addition, I can control for site-invariant factors that are distinct during each time period, 

such as the unit prices of potable and recycled water, by estimating individual time period 

intercepts.  

The effect of introducing recycled water on total water usage is estimated using (4.4), 

where γ is the fixed effect for the excluded site in the base year, 𝛼𝑖  is the difference between 

the fixed effect for site i and the excluded site, 𝛽𝑡 is the difference between the fixed effect 

for period t and the base year, 𝐷𝑖𝑡 remains the indicator for a treated site in the post 

treatment period, and 𝜋 is the estimate of the DID treatment effect, 

𝑌𝑖𝑡 = 𝛾 + 𝛼𝑖 + 𝛽𝑡 + 𝜋𝐷𝑖𝑡 + 𝜀𝑖𝑡                           (4.4)  

I note that when there are only two sites and two time periods, equation (4.4) collapses into 

the form of equation (4.1).  



 

 142 

Following the example in section 4.3.2.1, total water usage is changed by 𝜋 ∙ 𝑛𝑡𝑟𝑒𝑎𝑡 due 

to the introduction of recycled water to the treated sites. A reasonable proxy for the 

displacement ratio is then 

𝑑 = 1 −
𝜋∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
                   (4.5) 

and total potable water savings are 

∆𝑃 = 𝑅 ∗ 𝑑 = 𝑅 ∗ [1 −
𝜋∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
] = 𝑅 − 𝜋 ∙ 𝑛𝑡𝑟𝑒𝑎𝑡               (4.6)  

4.3.2.3 Inference 

Thus far, I have shown how one obtains an unbiased point estimate for the effect of 

recycled water on total and potable water usage given the study design and data structure. 

However, in order to perform proper statistical inference, the calculation of standard errors 

is a critical undertaking. Classical standard errors assume that there is no correlation 

between the error terms (the unobserved factors), 𝜀𝑖𝑡, in the fixed-effects models. In my data 

it is likely that there is correlation, specifically among the multiple observations for a park.  

To see why, the park fixed effect accounts for all components that are site specific and do 

not vary over time, such as the soil condition and the size of the park.  But there are other 

components that are also specific to the park but that do vary over time, such as the intensity 

of usage of athletic fields.  These factors cause the unobserved components, captured in the 

error terms, to be correlated over time at the park level.  As the specific form of these 

correlations is unknown, we account for this by allowing for general correlation patterns 

across the errors for each park.  Formally, the error terms are clustered by park and I report 

cluster-robust standard errors.  
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The appropriate method of inference with cluster-robust standard errors depends on the 

number of clusters, not the number of observations, and in particular on the effective 

number of clusters. The effective number of clusters, defined by Carter, Schnepel, and 

Steigerwald (2016), accounts for variation across clusters in the observed and unobserved 

components (for example, if the general correlations in the unobserved components vary 

across clusters, as they likely do) and adjusts the number of clusters downward to account 

for this variation.  I report this value in Table 4.4 using the code developed by Lee and 

Steigerwald (2018).  Because there are 19 sites in the sample, I have 19 clusters in the data 

used in estimates (1), (2) and (5) of Tables 4.4 and 4.5. Estimates (3) and (4) are restricted to 

one particular region. Estimate (3) has 10 clusters, and estimate (4) has 9 clusters. In 

estimate (1) the reported effective number of clusters is 16.9, nearly equal to 19, indicating 

little variation in the clusters.  However, for the model reported in column (2), there is more 

variation across the clusters, reflected in an effective number of clusters that falls from 16.9 

to 13. 

Because the effective number of  clusters in our data is small, I follow the 

recommendation of Lee and Steigerwald (2018), and use the wild cluster bootstrap to 

compute the critical values for the t-statistic. I adopt the procedure outlined by Cameron and 

Miller (2015) to obtain the bootstrap critical values. In detail, the vector of estimated 

residuals for each cluster, {𝜀𝑖𝑡̂}𝑖 is multiplied by either 1 or -1 with equal probability. A 

bootstrap sample is created by combining the residual vectors with the regressors and 

estimating the coefficient of interest using OLS. From each OLS estimate, a Wald statistic is 

calculated. The procedure is repeated 1,000 times and the distribution of Wald statistics 

determines the upper and lower wild cluster bootstrap critical values. 
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4.4 Results 

 Pre and post-treatment total water usage 4.4.1

First, I present total water usage levels during the pre- and post-treatment periods at the 

treated sites, in Table 4.3. Water usage levels vary widely across the treated sites, as public 

parks tend to have wide variance in irrigated areas and utilization. Seven sites decrease 

water usage after treatment, and three increase water usage. However, I note that two of the 

sites that increase their water usage do so by more than 100% (treated sites 1 and 3 in region 

2). The water data provider confirmed that these are valid measurements, but provided no 

reason as to the sudden increase in water usage. From Table 4.3, it is not possible to provide 

a robust analysis of the average effect of recycled water conversions on potable water usage 

in EBMUD. This is because the timing of treatment is staggered across the sites, which 

means that the counterfactual post-treatment water usage levels established by the control 

group are different for each site. The staggering in treatment timing, combined with the 

variance in site-level behavior, calls for regression analysis in which I estimate the average 

treatment effect of recycled water usage on total and potable water usage. 

Region Treated Site 

Pre-treatment 

mean monthly 

water usage 

(CCUFT) 

Post-treatment 

mean monthly 

water usage 

(CCUFT) 

% Change 

R1 T1 328.8 381.6 +16.1% 

R1 T2 532.9 474.1 -11.0% 

R1 T3 544.5 478.2 -12.2% 
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R1 T4 300.0 190.6 -36.4% 

R1 T5 1558.7 1433.5 -8.0% 

R2 T1 157.2 461.8 +194% 

R2 T2 159.1 130.8 -17.9% 

R2 T3 110.0 211.9 +92.6% 

R2 T4 519.3 447.6 -13.8% 

R2 T5 86.2 65.1 -24.5% 

Table 4.3: Pre and post-treatment mean monthly water usage in treated sites in CCUFT 

 Fixed-effects regression 4.4.2

Using the data described in Section 4.3.1 and the regression specification given by (4.4), 

I estimate the effect of water recycling conversions on total water usage across ten public 

recreational properties. In column (1) of Table 4.4, I estimate 𝜋̂ using the entire set of 2,836 

observations. The estimated coefficient is small in magnitude relative to average monthly 

water usage in the sites, and due to the lack of precision I am unable to conclude that the 

introduction of recycling has an effect on total water usage. I test for cluster heterogeneity 

using the program developed by Lee and Steigerwald (2018). The effective number of 

clusters is 16.9, which is considered small enough to advise the use of wild bootstrap critical 

values for inference, as described in Section 4.3.2.3. The use of wild cluster bootstrap 

critical values results in a 95% confidence interval of [-61.94, 117.6] for the effect of 
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recycled water conversions on total monthly water usage across the sites, where all values 

are in units of hundred cubic feet (CCUFT). 

To further examine the overall estimate, which implies no effect of recycling on total 

water use, I apply several sample restrictions. Perhaps there is an initial reduction in water 

use, which diminishes over time.  In Column (2) I include only the first year of water usage 

after connecting to recycled water.  I again observe a small coefficient with a wide 

confidence interval regarding the effect of recycled water on total water usage.  It may be 

that water usage is most sensitive to recycling when water demands are highest, namely June 

through September.  I restrict attention to these four months in Column (5) and, again, am 

unable to conclude that access to recycled water changes total water usage. Columns (3) and 

(4) restrict the sample to one of the two regions within EBMUD. I impose this restriction to 

explore if there is a fundamentally different response to recycled water conversions by 

region. Although the point estimates are quite different, the lack of precision again leaves 

me unable to conclude that access to recycled water changes total water usage. In Table B.1 

of Appendix B, I present the treatment effect as a percentage of pre-treatment water usage 

by estimating a model where the dependent variable is the log of total water usage, instead 

of the level. This provides an interpretation of the treatment effect which reflects the fact 

that treated sites, present and future, vary widely in scale.  

 (1) (2) (3) (4) (5) 

𝜋̂  

(S.E) 

25.96 

(44.75) 

-14.10 

(79.52) 

-12.84 

(70.18) 

77.99 

(80.44) 

-16.68 

(118.4) 

N 2,836 2,275 1,485 1,351 947 
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Actual Clusters 19 19 10 9 19 

Effective 

Clusters 

16.9 13.0 8.17 8.94 16.9 

Bootstrap 

critical values 

[-1.96, 2.05] [-2.01, 2.07] [-2.47, 1.94] [-1.83, 2.56] [-2.09, 2.19] 

Bootstrap 95% 

CI 

[-61.94,117.6] [-173.8,150.5] [-186.1,123.2] [-69.03,283.9] [-264.2,242.7] 

Restrictions None 1-year post Region 1 Region 2 Peak only 

Table 4.4: Two-way fixed effects results with total water usage as the dependent variable, 

using cluster-robust standard errors and wild bootstrap critical values. Actual clusters, 

effective clusters, number of observations, critical values, 95% confidence intervals, and 

sample restrictions are also shown. 

 Displacement and total potable water savings 4.4.3

In Section 4.3.2.2 I introduced the calculation of displacement in treated sites as 

equation (4.5). Table 4.5 presents displacement findings for each of the sample restrictions. 

The 95% confidence interval for displacement is calculated using an analogous procedure, 

where I substitute the upper and lower boundaries shown in Table 4 for 𝜋̂ in equation (4.5) 

to generate the upper and lower boundaries for displacement. For example, in the full 

sample (column 1), the point estimate of displacement is calculated as: 𝑑̂ =  1 −
𝜋̂∗𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
=

1 −
25.96∗681

267056
= 93.4%. The bootstrap 95% CI immediately follows by substituting the upper 

and lower boundaries of the 95% CI from Table 4 for 𝜋̂. 
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 (1) (2) (3) (4) (5) 

𝜋̂ 25.96 -14.10 -12.84 77.99 -16.68 

Total  recycled 

water usage 

(CCUFT) 

267,056 48,672 179,119 87,937 166,407 

Treated 

observations  

681 120 326 355 232 

Displacement 93.4% 103% 102% 68.5% 102% 

Bootstrap 95% 

CI 

[70.0%,116%] [62.9%,143%] [77.6%,134%] [-14.6%,128%] [66.2%,137%] 

Restrictions None 1-year post Region 1 Region 2 Peak only 

Table 4.5: Estimated mean monthly change in total water usage (𝜋̂), total recycled water 

usage, total observations of treated sites in post-treatment periods, displacement, and 

bootstrap 95% confidence intervals for displacement across all sample restrictions. 

Displacement, and in turn potable water savings, is present across all sample restrictions. 

Columns (1), (2), and (5) of Table 4.5 show that the point estimate of monthly displacement 

hovers around 100% regardless of whether or not I restrict the post-treatment observations to 

just the first post-treatment year or only the summer months. Columns (3) and (4) suggest 

that displacement may be higher in region 1 in comparison with region 2.  

Using the elements of Table 4.5, namely displacement and total recycled water usage, I 

estimate the total amount of potable water saved during the study period using equation (4.6) 

and compare this with California household usage.  In 2016, average residential water usage 

in California was 11.4 cubic feet (85 gallons) per person per day (Legislative Analyst’s 

Office, 2017). This quantity varies by season, and in the peak months of June through 
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September residential usage was 14.6 cubic feet (109 gallons) per person per day. In the 

sites in my sample that converted to recycled water, I estimate that a total of 25 million 

cubic feet of potable water (267,056 𝐶𝐶𝑈𝐹𝑇 ∗ 0.934) were saved during the study period, 

or approximately 1,224 cubic feet per site, per day. Thus, my estimate of daily potable water 

savings at each treated site is enough to cover the daily usage of 107 California residents. 

4.5 Discussion 

 Limitations and future work 4.5.1

I produce the first quasi-experimental estimate of the potable water savings that arise 

from recycled water conversions, and the first quasi-experimental displacement metric in the 

industrial ecology literature. In the East Bay Municipal Utility District, conversions from 

potable to recycled water achieve high levels of potable water savings and displacement. 

Because these data are collected from only one water district in a relatively small 

geographical area, future research can examine the relevance of the conclusions on a larger 

sample of water districts from diverse geographic areas, for example in  other parts of 

California or across Australia, where infrastructure conversions to recycling have become 

common in recent decades. Such an undertaking would also require collection of observable 

characteristics that predict water usage such as rainfall, temperature, and local income 

levels. A more sophisticated approach, such as propensity score matching, may need to be 

applied in a more geographically diverse sample if the treatment is not assigned randomly 

conditional on these observables.  
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 Conclusions 4.5.2

I am unable to conclude that total water usage increased in treated sites, a finding that is 

somewhat surprising to both the author of this research and the community affairs 

representative from EBMUD who supplied these data. The unit cost of recycled wastewater 

is less than that of potable water, and recycled wastewater is sometimes perceived as an 

abundant resource relative to potable water, which can lessen the sensitivity of users to 

drought conditions. However, in EBMUD the recycled water program is part of a greater 

water conservation unit. Thus, it is possible that the treated units are exposed to additional 

information about conservation best practices, a possible mechanism that could contribute to 

this outcome. Nevertheless, it is clear that in EBMUD, conversions to recycled water lead to 

significant potable water savings resulting in high displacement, and may not stimulate an 

increase in overall water consumption (i.e. circular economy rebound). The presented 

research provides statistical evidence to support this for the first time in the literature, and 

the finding should be encouraging to water districts and management entities that are 

considering the expansion of non-potable, discretized recycled wastewater infrastructure in 

an effort to save potable water.   

Conversions to recycled wastewater as a water source for irrigation are expected to 

increase in the face of climate change. This research provides a general methodology that 

can be readily applied in water districts to rigorously monitor the effectiveness of their 

recycled water conversion programs.  In general, I recommend that quasi-experimental 

methodologies be adopted when possible to ensure that policies that intend to produce 

conservation outcomes are meeting these objectives. 
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A. Appendix A: Supporting Information for Chapter 2 

A.1. Derivation of formulas from Chapter 2 

Here, I provide detailed derivations of all formulas from Chapter 2. I only provide 

equation numbers when I arrive at a step that corresponds directly with Section 2.3.3 of 

Chapter 2. The equation numbers then line up exactly with those from Chapter 2. This 

streamlines the connection between main text and Appendix.  

  A.1.1 Material production impacts 

Every year, the total aluminum additions 𝑇𝐴𝐴(𝑡) = ∑ 𝑇𝐴𝐴𝑙(𝑡)𝑙  are used to replace 𝑆(𝑡) 

steel, where l denotes the types of aluminum (sheet, extrusions, or castings). The 

replacement ratio is 𝑇𝐴𝐴(𝑡) 𝑆(𝑡)⁄ = 𝑘, which means that the primary mass savings are 

𝑆(𝑡) − 𝑇𝐴𝐴(𝑡) = 𝑆(𝑡) − 𝑘𝑆(𝑡) = (1 − 𝑘)𝑆(𝑡). 

This, in turn, enables secondary mass savings of 𝑠(1 − 𝑘)𝑆(𝑡). 

The total amount of removed steel is thus 𝑆(𝑡) + 𝑠(1 − 𝑘)𝑆(𝑡). Expressed as a function of 

total aluminum additions, total removed steel is 
𝑇𝐴𝐴(𝑡)

𝑘
+ 𝑠(1 − 𝑘)

𝑇𝐴𝐴(𝑡)

𝑘
. 

If 𝑝𝑓𝑙 and 𝑠𝑓𝑙 denote the fractions of primary and secondary steel removals that are of steel 

type 𝑙, the total amount of steel type 𝑙 removed due to total aluminum additions of 𝑇𝐴𝐴(𝑡) is 

calculated as 
𝑇𝐴𝐴(𝑡)

𝑘
𝑝𝑓𝑙 + 𝑠(1 − 𝑘)

𝑇𝐴𝐴(𝑡)

𝑘
𝑠𝑓𝑙 = 𝑇𝐴𝐴(𝑡)

𝑝𝑓𝑙−𝑠(1−𝑘)𝑠𝑓𝑙

𝑘
. 

If 𝛾𝑙
𝑎 and 𝛾𝑙

𝑠 denote the manufacturing yields of aluminum and steel type 𝑙, the additional 

amount aluminum production and shipments is ∑
𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎𝑙  and the annual reduction in steel 

production is ∑
1

𝛾𝑙
𝑠 [− ∑ 𝑇𝐴𝐴𝑚𝑚 (𝑡) (

𝑝𝑓𝑙+(1−𝑘)∙𝑠∙𝑠𝑓𝑙

𝑘
)]𝑙 , where m denotes the type of 

aluminum. 
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If 𝐼𝑙
𝑎(𝑡) and 𝐼𝑙

𝑠(𝑡) denote the amount of environmental impact per marginal unit of 

aluminum and steel production, the environmental impact of additional aluminum 

production is  

𝑰1(𝑡) = ∑
𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎 𝐼𝑙

𝑎(𝑡)𝑙 > 0,                     (2.1) 

and the environmental impact reduction from reduction in steel production is 

𝑰2(𝑡) = ∑
1

𝛾𝑙
𝑠 [− ∑ 𝑇𝐴𝐴𝑚𝑚 (𝑡) (

𝑝𝑓𝑙+(1−𝑘)∙𝑠∙𝑠𝑓𝑙

𝑘
)] 𝐼𝑙

𝑠(𝑡)𝑙 < 0.               (2.2) 

For each material type 𝑙, 𝐼𝑙
𝑎(𝑡) and 𝐼𝑙

𝑠(𝑡) account for the amount of secondary content 

𝑠𝑐𝑙
𝑥(𝑡) that is in the aluminum additions and in the steel removals: 

𝐼𝑙
𝑥(𝑡) = 𝑠𝑐𝑙

𝑥(𝑡) ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 (𝑡) + (1 − 𝑠𝑐𝑙

𝑥(𝑡)) ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑥 (𝑡) + 𝐼𝑙

𝑓𝑥
, 𝑥 = 𝑎, 𝑠            (2.3) 

𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 (𝑡), 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑥 (𝑡), and 𝐼𝑙
𝑓𝑥

 are the environmental impact per marginal unit of secondary 

ingot production, primary ingot production, and ingot forming (rolling, extruding, casting). 

The first two are cradle-to-gate processes; the third is a gate-to-gate process. 

  A.1.2 Use phase impacts 

𝐴𝐴𝐴𝑖(𝑇) denotes the average amount of aluminum added per vehicle type 𝑖 produced in 

year 𝑇. The considered vehicle types are gasoline, diesel, standard hybrid, plug-in hybrid, 

and pure electric. 𝐴𝐴𝐴𝑖(𝑇) is different for each vehicle type, since each vehicle type has 

different vehicle class distributions, and vehicle composition data shows that the use of 

aluminum varies across vehicle classes. E.g. electric power trains are more prevalent in the 

smaller vehicle classes, while larger vehicle classes use more aluminum. All this 

information is used in spreadsheet “Fleet composition” to calculate the data array 𝐴𝐴𝐴𝑖(𝑇). 

Note that 𝑇𝐴𝐴(𝑇) = ∑ 𝐴𝐴𝐴𝑖(𝑇) ∙ 𝑁𝑖(𝑇)𝑖 , with 𝑁𝑖(𝑇) being the number of vehicles of type 𝑖 

produced in year 𝑇. 
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Using 𝐴𝐴𝐴𝑖(𝑇), the total mass reduction (in kg) of vehicle type 𝑖 is calculated as 

[
𝐴𝐴𝐴𝑖(𝑇)

𝑘
− 𝐴𝐴𝐴𝑖(𝑇)] + 𝑠 [

𝐴𝐴𝐴𝑖(𝑇)

𝑘
− 𝐴𝐴𝐴𝑖(𝑇)] =

(1+𝑠)(1−𝑘)

𝑘
𝐴𝐴𝐴𝑖(𝑇). 

∆𝐹𝑖 and ∆𝐸𝑖  denote the relative fuel and electricity savings (in MJ/kg saved and km driven) 

for vehicle type 𝑖. If 𝑉𝑀 denotes the lifetime vehicle driving distance and 𝑉𝐿 the vehicle life 

in years, then 𝑉𝑀 𝑉𝐿⁄  is the average distance driven per year (in km/year). 

If 𝑒𝑠𝑖  denotes the share of driving energy coming from electricity, the absolute annual fuel 

and electricity savings (in MJ) for each vehicle type 𝑖 are calculated as 

[𝑒𝑠𝑖 ∙ ∆𝐸𝑖 + (1 − 𝑒𝑠𝑖)∆𝐹𝑖]
(1+𝑠)(1−𝑘)

𝑘
𝐴𝐴𝐴𝑖(𝑇)

𝑉𝑀

𝑉𝐿
.   

If 𝐼𝑒(𝑇) and 𝐼𝑓(𝑇) denote the average environmental impact per MJ of electricity and fuel 

inputs to vehicles produced in year T, the annual environmental impact reductions per 

vehicle type 𝑖 due to the electricity and fuel savings are calculated as: 

  [𝑒𝑠𝑖 ∙ ∆𝐸𝑖 ∙ 𝐼𝑒(𝑇) + (1 − 𝑒𝑠𝑖)∆𝐹𝑖 ∙ 𝐼𝑓(𝑇)]
(1+𝑠)(1−𝑘)

𝑘
𝐴𝐴𝐴𝑖(𝑇)

𝑉𝑀

𝑉𝐿
. 

The equation above needs to be multiplied with the total number of mass-reduced vehicles 

of type 𝑖 that are in use during any given year 𝑡. This number is calculated as the product 

between 𝑁𝑖(𝑇), the number of vehicles of type 𝑖 produced in year 𝑇, and 𝐹𝐼𝑈(𝑡 − 𝑇), the 

fraction of vehicles still in use after time (𝑡 − 𝑇). Vehicle lifetime distribution is modeled as 

a lognormal function. 𝐹𝐼𝑈 is 1 minus the cumulative lognormal function. The total amount 

of impact reduction during year 𝑡 for all mass-reduced vehicles in use during that year is 

calculated as 𝑰3(𝑡) = 

∑ [[𝑒𝑠𝑖∆𝐸𝑖𝐼
𝑒(𝑇) + (1 − 𝑒𝑠𝑖)∆𝐹𝑖𝐼

𝑓(𝑇)](1 + 𝑠)
𝑘−1

𝑘
𝐴𝐴𝐴𝑖(𝑇)

𝑉𝑀

𝑉𝐿
𝑁𝑖(𝑇)𝐹𝐼𝑈(𝑡 − 𝑇)]𝑇,𝑖 . 

This simplifies to 
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 𝑰3(𝑡) = ∑ [𝐼𝑅𝑖
𝑢 ∙ (1 + 𝑠)

𝑘−1

𝑘
𝐴𝐴𝐴𝑖(𝑇)

𝑉𝑀

𝑉𝐿
𝑁𝑖(𝑇)𝐹𝐼𝑈(𝑡 − 𝑇)]𝑇,𝑖 < 0            (2.4) 

when I denote the environmental impact reduction per kg mass savings and km driven as: 

𝐼𝑅𝑖
𝑢 = 𝑒𝑠𝑖 ∙ ∆𝐸𝑖 ∙ 𝐼𝑒(𝑇) + (1 − 𝑒𝑠𝑖)∆𝐹𝑖 ∙ 𝐼𝑓(𝑇)              (2.5) 

  A.1.3 Material recycling impacts during production of vehicles 

Replacing steel with aluminum causes changes in the scrap flows during vehicle 

production: 1) A reduction in steel scrap input, 𝑆𝐼𝑛𝑙
𝑠(𝑡) < 0, due to reduced steel 

production, and a likely increase in aluminum scrap input, 𝑆𝐼𝑛𝑙
𝑎(𝑡) > 0, due to increased 

aluminum production. 2) A reduction in prompt steel scrap generation, 𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡) < 0, due 

to less steel use, and an increase in aluminum prompt scrap generation, 𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡) > 0, due 

to more aluminum use. The external scrap market can respond to the net change in scrap 

flow to or from vehicle production through changes in external scrap consumption and 

changes in external scrap supply/collection. External scrap market response depends on 

many factors and is not well understood. It is thus modeled parametrically through scrap 

market response parameter ∝. ∝= 1 models a completely unresponsive (inelastic) external 

scrap supply. ∝= 0 models a completely unresponsive (inelastic) external scrap demand. 

One assumption in solving the scrap market model shown in Figure A.1 is that the scrap 

market clears every year. In the case of steel, the annual scrap flow balance is complicated 

by the fact that primary production is a scrap consumer. A change in external primary steel 

production due to a change in external secondary steel production (shown by the green 

arrows in Figure A.1) causes a change in external scrap consumption (shown as the blue 

arrow from external primary production). 

In the case of steel, the annual scrap flow balance is 

𝑃𝑟𝑜𝑆 + (𝛼 − 1)(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) + 𝑠𝑝𝛽𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) = 𝑆𝐼𝑛 + 𝑠𝑟𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛),           (2.6) 
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with 𝑠𝑝 and 𝑠𝑟 being the scrap inputs into recycled and primary production (in kg/kg), and 

parameter 𝛽 ∈ [0; 1]  quantifying the effect that a change in external secondary production 

has on external primary production. It follows that the unknown 𝑌 is 

𝑌 =
𝛼

𝑠𝑟−𝑠𝑝𝛽 
. 

In the case of aluminum, the annual scrap flow balance is simply  

𝑃𝑟𝑜𝑆 + (𝛼 − 1)(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) = 𝑆𝐼𝑛 + 𝛼(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛), 

Which follows from the equations above by setting 𝑠𝑝 = 0. 

 

Figure A.1: External scrap flow balance during vehicle production 

As can be seen in Figure A.1, external secondary production changes by 𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛) 

and, in response, external primary production changes by −𝛽𝑌(𝑃𝑟𝑜𝑆 − 𝑆𝐼𝑛). 

For aluminum, the resulting changes in environmental impact are 

(𝑃𝑟𝑜𝑆𝑎 − 𝑆𝐼𝑛𝑎) 
𝛼𝑎

𝑠𝑟
𝑎 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑠𝑎 (𝑡) and −(𝑃𝑟𝑜𝑆𝑎 − 𝑆𝐼𝑛𝑎) 𝛽𝑎 ∙
𝛼𝑎

𝑠𝑟
𝑎 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑎 (𝑡), 

with 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 (𝑡) and 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑎 (𝑡) being the environmental impact of secondary and primary 

aluminum production (per kg of ingot). 

For steel, the resulting changes in environmental impact are 
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(𝑃𝑟𝑜𝑆𝑠 − 𝑆𝐼𝑛𝑠) 
𝛼𝑠

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 (𝑡) and −(𝑃𝑟𝑜𝑆𝑠 − 𝑆𝐼𝑛𝑠) 𝛽𝑠 ∙

𝛼𝑠

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑠 (𝑡), 

with 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 (𝑡) and 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑠 (𝑡) being the environmental impact of secondary and primary steel 

production (per kg of ingot). 

The resulting general equation for material recycling impacts during vehicle production is 

𝑰4,5(𝑡) = 𝛼𝑥 ∙
(∑ 𝑃𝑟𝑜𝑆𝑙

𝑥(𝑡)−𝑆𝐼𝑛𝑙
𝑥(𝑡))𝑙

𝑠𝑟
𝑥−𝛽𝑥∙𝑠𝑝

𝑥 (𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 (𝑡) − 𝛽𝑥 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑥 (𝑡)) , 𝑥 = 𝑎, 𝑠            (2.7) 

 A.1.4 Material recycling impacts during end-of-life 

Replacing steel with aluminum causes changes in the scrap flows during vehicle end of 

life: A reduction in end-of-life (eol) steel scrap generation, 𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡) < 0, due to less steel 

use, and an increase in aluminum eol scrap generation, 𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡) > 0, due to more 

aluminum use. The response of the external scrap market is modeled in the same way as 

during vehicle production. Resulting scrap market model and scrap flow balance are shown 

in Figure A.2. 

 

Figure A.2: External scrap flow balance during vehicle end of life 

As can be seen in Figure A.2, external secondary production changes by 𝑌 ∙ 𝐸𝑜𝑙𝑆 and, in 

response, external primary production changes by −𝛽𝑌 ∙ 𝐸𝑜𝑙𝑆.  

Analogous to (2.6), the scrap flow balance at end-of-life is: 
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𝐸𝑜𝑙𝑆 + (𝛼 − 1)𝐸𝑜𝑙𝑆 + 𝑠𝑝𝛽𝑌𝐸𝑜𝑙𝑆 = 𝑠𝑟𝑌𝐸𝑜𝑙𝑆  

⇒ 𝑌 =
𝛼

𝑠𝑟−𝑠𝑝𝛽 
                     (2.8) 

For aluminum, the resulting changes in environmental impact are 

𝐸𝑜𝑙𝑆𝑎  
𝛼𝑎

𝑠𝑟
𝑎 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑠𝑎 (𝑡) and −𝐸𝑜𝑙𝑆𝑎 𝛽𝑎 ∙
𝛼𝑎

𝑠𝑟
𝑎 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑎 (𝑡). 

For steel, the resulting changes in environmental impact are 

𝐸𝑜𝑙𝑆𝑠  
𝛼𝑠

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 (𝑡) and −𝐸𝑜𝑙𝑆𝑠 𝛽𝑠 ∙

𝛼𝑠

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡
𝑝𝑠 (𝑡). 

The resulting general equation for material recycling impacts during vehicle production is 

𝑰6,7(𝑡) = 𝛼𝑥 ∙
𝐸𝑜𝑙𝑆𝑥(𝑡)

𝑠𝑟
𝑥−𝛽𝑥∙𝑠𝑝

𝑥 (𝐼𝑖𝑛𝑔𝑜𝑡
𝑠𝑥 − 𝛽𝑥 ∙ 𝐼𝑖𝑛𝑔𝑜𝑡

𝑝𝑥 (𝑡)) , 𝑥 = 𝑎, 𝑠              (2.9) 

 A.2. Documentation of Spreadsheet Formulas 

Here, I document the formulas used to compile the spreadsheet model, which is also 

provided as Supporting Information for this chapter. It is important to note that I restart the 

numbering, and begin with Equation A.1. This is to separate these equations from those that 

map directly onto the main text, from Section A.1. The spreadsheet model can be found on 

the website that hosts the published version of this chapter: 

https://www.sciencedirect.com/science/article/pii/S0195925518301343#s0130 

  A.2.1 Fleet composition 

For each year of the modelling period (2012-2050), the CLCA spreadsheet used to 

computer the results in Chapter 2 calculates the power train composition of the light duty 

vehicles assumed to be produced in North America during that year. It also calculates, for 

each production year T and power train type i, the average amount of body and closure parts 

made from aluminum, 𝐴𝐶𝑖(𝑇). 
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The resulting output table contains 5 power train types i, which are Gasoline ICV, Diesel 

ICV, Standard HEV, Plug-in HEV, and BEV. For each power train type i and production 

year T is lists 

 𝐴𝐶𝑖(𝑇): Average amount of body and closure parts made from aluminum (in kg per 

vehicle). 

 𝑇𝐴𝐴𝑖(𝑇): Total amount of aluminum added to body and closure parts (in kg). This is 

the average amount multiplied by the total number of vehicles of that power train 

type produced during that year, 𝑇𝐴𝐴𝑖(𝑇) = 𝐴𝐶𝑖(𝑇) ∙ 𝑁𝑖(𝑇). 

 𝑃𝑇𝑖(𝑇): Share of the power train type i as % of the total number of vehicles produced 

during production year T. This is the number of vehicles of that power train type 

divided by the total number of vehicle produced during year T. 

A significant amount of input data are required to calculate the outputs described above. 

Below is a comprehensive list: 

 Total amount of aluminum body and closure parts added to light duty vehicles 

produced each year (in kg), 𝑇𝐴𝐴(𝑇). This data is also broken down into sheet, 

extrusions, and castings for other modelling purposes, 𝑇𝐴𝐴𝑙(𝑇) with ∑ 𝑇𝐴𝐴𝑙(𝑇)𝑙 =

𝑇𝐴𝐴(𝑇). 

 Total number of light duty vehicles assumed to be produced each year, 𝑁(𝑇) in #. 

 For each year, the share of annually produced vehicles that are ICVs, 𝑃𝑇𝐼𝐶𝑉(𝑇). 

 For each year, the share of annually produced ICVs that are Gasoline ICVs. 

 For each year, the share of annually produced vehicles that are HEVs, 𝑃𝑇𝐻𝐸𝑉(𝑇). 

 For each year, the share of annually produced HEVs that are Standard HEVs. 
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 The share of each vehicle class as % of the total number of vehicles produced in 

2015, 𝑉𝐶𝑎𝑙𝑙
𝑗

 with j being the vehicle class. 

 For each vehicle class j, the average amount of aluminum in vehicles produced in 

2015 (in lbs). 

 The vehicle class composition of HEVs produced in 2014, 𝑉𝐶𝐻𝐸𝑉
𝑗

. Assumed to be 

constant over the modelling period and the same for Standard and Plug-in HEVs. 

 The vehicle class composition of BEVs produced in 2014, 𝑉𝐶𝐵𝐸𝑉
𝑗

. Assumed to be 

constant over the modelling period. 

8 different vehicle classes are considered. They are A/B, C, D, E, MPV, SUV, VAN, PUP. 

Calculating the average amount of body and closure aluminum per vehicle for each 

power train type is complicated by the fact that each power train type has a different 

composition of vehicle classes and vehicle classes differ in the amount of aluminum they 

contain. 

The first step is to calculate 𝐴𝐶𝑎𝑙𝑙(𝑇), the body and closure aluminum added to each 

average vehicle in production year T. This is done by dividing the total amount of body and 

closure aluminum added in year T by the total number of vehicles produced in year T. The 

results are in cells T55:T93. The next step is to express the amount of aluminum per 2015 

vehicle for each vehicle class (in lbs/vehicle) relative to the amount of aluminum per 2015 

vehicle across all vehicle classes (in lbs/vehicle), which was 398 pounds. The results are in 

cells L53:S53 and denote the amount of aluminum per vehicle class as percent of average 

amount of aluminum across all vehicles. Multiplying the added body and closure aluminum 

per vehicle and production year, 𝐴𝐶𝑎𝑙𝑙(𝑇), with those ratios yields the added body and 

closure aluminum per vehicle and production year for each vehicle class, 𝐴𝐶𝑗(𝑇). This data 
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is stored in cells L55:S93. One more intermediate step needed to calculate the added body 

and closure aluminum per vehicle for each power train type and production year is to 

calculate the vehicle class composition for ICVs: 

𝑃𝑇𝐼𝐶𝑉(𝑇) ∙ 𝑉𝐶𝐼𝐶𝑉
𝑗

+ 𝑃𝑇𝐻𝐸𝑉(𝑇) ∙ 𝑉𝐶𝐻𝐸𝑉
𝑗

+ 𝑃𝑇𝐵𝐸𝑉(𝑇) ∙ 𝑉𝐶𝐵𝐸𝑉
𝑗

= 𝑉𝐶𝑎𝑙𝑙
𝑗

                       (A.1)            

⇒ 𝑉𝐶𝐼𝐶𝑉
𝑗 (𝑇) =

𝑉𝐶𝑎𝑙𝑙
𝑗

−𝑃𝑇𝐻𝐸𝑉(𝑇)∙𝑉𝐶𝐻𝐸𝑉
𝑗

−𝑃𝑇𝐵𝐸𝑉(𝑇)∙𝑉𝐶𝐵𝐸𝑉
𝑗

𝑃𝑇𝐼𝐶𝑉(𝑇)
                  (A.2) 

with j being the vehicle class. 

Since 𝑃𝑇𝑖(𝑇) varies with each production year this calculation is repeated for each 

vehicle class j and each production year T. The results are stored in cells L110:S148. 

Finally, the added body and closure aluminum per vehicle for each power train and 

production year, 𝐴𝐶𝑖(𝑇), can be calculated: 

𝐴𝐶𝑖(𝑇) = ∑ 𝐴𝐶𝑗(𝑇) ∙ 𝑉𝐶𝑖
𝑗(𝑇)𝑗                 (A.3) 

Note that the calculated values are the same for Gasoline and Diesel ICVs, i.e. 

𝐴𝐶𝐼𝐶𝑉−𝐺(𝑇) = 𝐴𝐶𝐼𝐶𝑉−𝐷(𝑇) = 𝐴𝐶𝐼𝐶𝑉(𝑇), and for Standard and Plug-in Hybrids, i.e. 

𝐴𝐶𝐻𝐸𝑉−𝑆(𝑇) = 𝐴𝐶𝐻𝐸𝑉−𝑃(𝑇) = 𝐴𝐶𝐻𝐸𝑉(𝑇), since the vehicle class shares 𝑉𝐶𝑖
𝑗
 are assumed to 

be identical for the two ICV types and the two HEV types. The total amount of added body 

and closure aluminum as a function of power train and production year, 𝑇𝐴𝐴𝑖(𝑇) is 

calculated as follows: 

𝑇𝐴𝐴𝑖(𝑇) = 𝐴𝐶𝑖(𝑇) ∙ 𝑁𝑖(𝑇) = 𝐴𝐶𝑖(𝑇) ∙ 𝑃𝑇𝑖(𝑇) ∙ 𝑁(𝑇)             (A.4) 

Variable Description Location of data 

𝐴𝐶𝑖(𝑇) 

Average amount of body and closure parts made from 

aluminum for powertrain type i and production year T 

(in kg/car) 

B5:B43, E5:E43, H5:H43, 

K5:K43, N5:N43 

𝑇𝐴𝐴𝑖(𝑇) Total amount of body and closure parts made from C5:C43, F5:F43, I5:I43, 
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aluminum for powertrain type i and production year T 

(in kg) 

L5:L43, O5:O43 

𝑃𝑇𝑖(𝑇) 

Share of the power train type as % of the total 

number of vehicle produced during production year T 

D5:D43, G5:G43, J5:J43, 

M5:M43, P5:P43 

Table A.1: Output data from the spreadsheet ‘Fleet composition’ 

  A.2.2 Vehicle Use 

For each calendar year t of the modelling period (2012-2050), this spreadsheet calculates 

the total amount of GHG savings (in million kgCO2eq) that result from driving the mass-

reduced vehicle fleet modeled on the spreadsheet ‘Fleet composition’. These total GHG 

savings per calendar year are reported in cells AO232:AO269. The total GHG savings in 

each calendar year t are a function of the age composition of the fleet during year t, i.e. how 

many vehicles of each production year T were in use. Each production year is characterized 

by the total number of vehicle produced, 𝑁(𝑇), and the total amount of aluminum closures 

and body parts, 𝑇𝐴𝐴(𝑇), added to those vehicles. For each calendar year t, the total use 

phase GHG reductions are thus calculated as the sum of use phase GHG reductions from the 

vehicles of each production year T. The table of use phase GHG savings for each year of 

driving t and each year of vehicle production T is given in cells B232:AN269. 

Use phase savings are calculated separately for each power train type, but the calculation 

process is identical. The starting point is the added amount of aluminum body and closure 

parts per vehicle, 𝐴𝐶𝑖(𝑇), which is given in kg per vehicle. The first step is to calculate the 

resulting mass reductions per vehicle, ∆𝑀𝑖(𝑇), which are given in kg per vehicle and are 

calculated as 

∆𝑀𝑖(𝑇) = 𝐴𝐶𝑖(𝑇) ∙ (1 + 𝑠)
(𝑘−1)

𝑘
               (A.5)  
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With k being the material replacement coefficient of aluminum relative to steel (in kg 

aluminum/kg steel) and s being the secondary mass savings (in kg secondary mass 

savings/kg primary mass savings). The next step is to calculate the life time fuel and 

electricity savings per car, 𝐹𝑆𝑖 (in liters per car) and 𝐸𝑆𝑖 (in MJ per car), according to the 

following equations: 

𝐹𝑆𝑖(𝑇) = (1 − 𝐸𝐿) ∙ ∆𝑀𝑖(𝑇) ∙ ∆𝐹𝑖(𝑇) ∙ 𝑉𝑀 ∙ 0.0001  

𝐸𝑆𝑖(𝑇) = 𝐸𝐿 ∙ ∆𝑀𝑖(𝑡) ∙ ∆𝐸𝑖(𝑇) ∙ 𝑉𝑀 ∙ 0.0001              (A.6) 

with EL being the share of life time driving powered by plug electricity (in %), ∆𝐹𝑖(𝑇) 

the fuel savings per mass savings (in liters per 100km driven and 100kg mass reduction), 

∆𝐸𝑖(𝑇) the electricity savings per mass savings (in MJ per 100km driven and 100kg mass 

reduction), and VM the assumed vehicle life (in km). Life time fuel and electricity savings 

per vehicle are converted into lifetime GHG emissions savings per vehicle, 𝐺𝐻𝐺𝑆𝑖(𝑇), 

according to this equation:  

𝐺𝐻𝐺𝑆𝑖(𝑇) = 𝐹𝑆𝑖(𝑇) ∙ 𝐺𝐻𝐺𝑓+𝐸𝑆𝑖(𝑇) ∙ 𝐺𝐻𝐺𝑒              (A.7) 

with 𝐺𝐻𝐺𝑓 and 𝐺𝐻𝐺𝑒 being the GHG intensities of the fuel and the electricity, in kg 

CO2eq per liter and kg CO2eq per MJ respectively. The final step in calculating the life time 

use phase GHG savings per power train type and production year is to multiply the life time 

use phase savings per car with the total number of vehicles of the given power train i being 

produced in each given production year T, i.e. 𝐺𝐻𝐺𝑆𝑖(𝑇) ∙ 𝑁𝑖(𝑇). 

The calculations above require various additional input parameters, such as the material 

replacement coefficient k, the secondary mass savings coefficient s, the plug electricity share 

EL, the life time vehicle driving VM, the GHG intensities of fuel and electricity 𝐺𝐻𝐺𝑓 and 

𝐺𝐻𝐺𝑒, and finally the fuel and electricity savings per mass savings ∆𝐹𝑖(𝑇) and ∆𝐸𝑖(𝑇). The 
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last two parameters can be modeled as time dependent but are currently assumed to be 

constant over time, i.e. ∆𝐹𝑖(𝑇) = ∆𝐹𝑖 and ∆𝐸𝑖(𝑇) = ∆𝐸𝑖. For each power train type the 

energy savings per mass savings are calculated from a set of input parameters. Energy 

savings per mass savings are significantly higher in the case that the power train of the 

vehicle is resized, i.e. optimized to the new, reduced vehicle mass. However, this is not 

always feasible or cost-effective. Also, fuel consumption models show that energy savings 

per mass savings vary across power train types and vehicle classes. For this reason, they are 

calculated as follows for each power train type i: 

∆𝐹𝑖 = 𝑅𝐸 ∙ 𝐴𝑣𝑔(∆𝐹𝑖,𝑟𝑒
𝑗

) + (1 − 𝑅𝐸) ∙ 𝐴𝑣𝑔(∆𝐹𝑖,𝑛𝑜−𝑟𝑒
𝑗

)  

∆𝐸𝑖 = 𝑅𝐸 ∙ 𝐴𝑣𝑔(∆𝐸𝑖,𝑟𝑒
𝑗

) + (1 − 𝑅𝐸) ∙ 𝐴𝑣𝑔(∆𝐸𝑖,𝑛𝑜−𝑟𝑒
𝑗

)                (A.8) 

where RE is the fraction of power train resizing benefit that mass-reduced vehicles can 

realize on average, superscript j denotes the vehicle class, and subscripts re and no-re stand 

for resizing and no-resizing, respectively. The average is calculated over the input values for 

the different vehicle classes (the yellow cells on the spreadsheet in columns J to V). 

Different numbers of vehicle classes may be used to characterize different power trains. 

𝐺𝐻𝐺𝑆(𝑇) are the lifetime GHG use phase savings from all vehicles produced in year T 

and calculated as follows: 

𝐺𝐻𝐺𝑆(𝑇) = ∑ 𝐺𝐻𝐺𝑆𝑖(𝑇) ∙ 𝑁𝑖(𝑇)𝑖                (A.9) 

These values need to be converted into the GHG use phase savings that occur during 

each calendar year of the modeling period. The first step is to convert the lifetime savings 

into annual savings according to the following equation: 

𝐴𝑆(𝑇, 𝑡) = {
𝐹𝐼𝑈(𝑡) ∙

𝐺𝐻𝐺𝑆(𝑇)

𝑉𝐿
   𝑓𝑜𝑟 𝑇 < 𝑡

0                                     𝑓𝑜𝑟 𝑇 ≥ 𝑡
            (A.10) 
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where VL is the mean lifetime of each vehicle (assumed to be constant across time and 

all vehicles), and FIU(t) is the fraction of vehicles still in use after t years of driving. FIU(t) 

is defined as 𝐹𝐼𝑈(𝑡) = 1 − 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑉𝐿, 𝑆𝐷), with VL as the mean and an additional 

parameter SD, the standard deviation. The total GHG use phase savings in each calendar 

year is now calculated as the sum of all annual savings across all production years: 

𝐺𝐻𝐺𝑆(𝑡) = ∑ 𝐴𝑆(𝑇, 𝑡)𝑇                (A.11) 

In the model, vehicles are being produced every year of the modeling period (2012-

2050). This means that not all vehicles will reach the end of their lives and as a result the use 

phase savings accruing during the modeling period are smaller than the sum of the lifetime 

savings of all cars produced during the modeling period, i.e. the following inequality holds: 

∑ 𝐺𝐻𝐺𝑆(𝑡)𝑡 < ∑ 𝐺𝐻𝐺𝑆(𝑇)𝑇               (A.12) 

Variable Description Location of data 

𝐺𝐻𝐺𝑆(𝑡) 

Total GHG use phase savings per calendar year t (in 

million kg CO2eq) 

AO232:AO269 

Table A.2: Output data from spreadsheet ‘Vehicle use” 

  A.2.3 Material production 

The aim of this spreadsheet is to calculate all changes in GHG emissions from material 

production, both for the added aluminum and the removed steel. The spreadsheet calculates 

and tallies all direct emission changes, i.e. it reflects to what extent the added aluminum and 

removed steel come from primary or secondary production. In other words, the results on 

this spreadsheet reflect the recycled content of the added and removed material. The 

implications of changes in scrap input and output are calculated on two separate, dedicated 

spreadsheets. 



 

 169 

The starting point for calculating the changes in production GHGs from the added 

aluminum are the total amount of aluminum body and closure parts added to light duty 

vehicles produced each year (in million kg), broken down into sheet, extrusions, and 

castings. The three time series are denoted by 𝑇𝐴𝐴𝑙(𝑡), with subscript l standing for sheet, 

extrusions, and castings. The first calculation step is to convert the aluminum contained in 

the vehicles as body and closure parts into shipped primary and secondary aluminum, 

denoted by 𝑆𝑀𝑙
𝑝𝑎(𝑡) and 𝑆𝑀𝑙

𝑠𝑎(𝑡), where superscript pa stands for primary aluminum and 

sa for secondary aluminum. The calculations are as follows: 

𝑆𝑀𝑙
𝑝𝑎(𝑡) = (1 − 𝑠𝑐𝑙

𝑎(𝑡)) ∙
𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎   

𝑆𝑀𝑙
𝑠𝑎(𝑡) = 𝑠𝑐𝑙

𝑎(𝑡) ∙
𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎               (A.13) 

where 𝑠𝑐𝑙
𝑎(𝑡) is the secondary (recycled) content of aluminum type l in production year 

t, and 𝛾𝑙
𝑎 is the manufacturing yield of aluminum type l. The results of these calculations are 

also in million kg and stored in cells B6:G44. The next step is to calculate the resulting 

production GHG emissions for each aluminum type by multiplying the shipped material 

quantities with the GHG intensities of aluminum production: 

𝐺𝐻𝐺𝑃𝑙
𝑝𝑎(𝑡) = 𝑆𝑀𝑙

𝑝𝑎(𝑡) ∙ (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑎 (𝑡) + 𝐺𝐻𝐺𝑙

𝑎)  

𝐺𝐻𝐺𝑃𝑙
𝑠𝑎(𝑡) = 𝑆𝑀𝑙

𝑠𝑎(𝑡) ∙ (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 + 𝐺𝐻𝐺𝑙

𝑎)            (A.14) 

where 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑎

 and 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑎  are the GHG intensities of primary and secondary 

aluminum ingot production and 𝐺𝐻𝐺𝑙
𝑎 the GHG intensities of aluminum ingot rolling, 

extruding, and casting. The final step is to sum over all aluminum types l in order to 

calculate the GHG emissions that result from increases in aluminum production and forming 

in any given production year: 
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𝐺𝐻𝐺𝑃𝑎(𝑡) = ∑ (𝐺𝐻𝐺𝑃𝑙
𝑝𝑎(𝑡) + 𝐺𝐻𝐺𝑃𝑙

𝑠𝑎(𝑡))𝑙             (A.15) 

The changes in GHG emissions due to increased aluminum production 𝐺𝐻𝐺𝑃𝑎(𝑡) are 

stored in cells S6:S44. Calculating the changes in production GHGs from the removed steel 

has the same computational structure, once the total amount of removed steel has been 

determined. The latter is complicated somewhat by the fact that it needs to account for both 

primary and secondary mass savings and the different steel types l, which are flat, long, and 

cast. The total amount of steel type l removed from all vehicles produced in year t is 

calculated as follows: 

𝑇𝑆𝑅𝑙(𝑡) = −
𝑇𝐴𝐴(𝑡)

𝑘
∙ 𝑝𝑓𝑙 −

𝑇𝐴𝐴(𝑡)

𝑘
(1 − 𝑘) ∙ 𝑠 ∙ 𝑠𝑓𝑙                      (A.16) 

where 𝑇𝐴𝐴(𝑡) is the total amount of aluminum body and closure parts added to the 

vehicles produced in year t, k is the material replacement coefficient of aluminum relative to 

steel (in kg aluminum/kg steel), s is the secondary mass savings coefficient (in kg secondary 

mass savings/kg primary mass savings), and 𝑝𝑓𝑙 and 𝑠𝑓𝑙 are the fractions of primary and 

secondary mass savings that are of steel type l. Note that 𝑇𝐴𝐴(𝑡) = ∑ 𝑇𝐴𝐴𝑙(𝑡)𝑙  and is one 

of the central data inputs into the model. The subsequent calculation steps are the same as 

for the added aluminum. First, the amount of no longer shipped primary and secondary steel, 

𝑆𝑀𝑙
𝑝𝑠(𝑡) and 𝑆𝑀𝑙

𝑠𝑠(𝑡), is calculated: 

𝑆𝑀𝑙
𝑝𝑠(𝑡) = (1 − 𝑠𝑐𝑙

𝑠(𝑡)) ∙
𝑇𝑆𝑅𝑙(𝑡)

𝛾𝑙
𝑠   

𝑆𝑀𝑙
𝑠𝑠(𝑡) = 𝑠𝑐𝑙

𝑠(𝑡) ∙
𝑇𝑆𝑅𝑙(𝑡)

𝛾𝑙
𝑠               (A.17) 

where 𝑠𝑐𝑙
𝑠(𝑡) is the electric arc furnace (EAF) content of steel type l in production year t, 

and 𝛾𝑙
𝑠 is the manufacturing yield of steel type l. The next step is to calculate the avoided 
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production GHG emissions for each steel type by multiplying the no longer shipped material 

quantities with the GHG intensities of steel production: 

𝐺𝐻𝐺𝑃𝑙
𝑝𝑠(𝑡) = 𝑆𝑀𝑙

𝑝𝑠(𝑡) ∙ (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑠 + 𝐺𝐻𝐺𝑙

𝑠)  

𝐺𝐻𝐺𝑃𝑙
𝑠𝑠(𝑡) = 𝑆𝑀𝑙

𝑠𝑠(𝑡) ∙ (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 + 𝐺𝐻𝐺𝑙

𝑠)            (A.18) 

where 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑠

 and 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑠  are the GHG intensities of primary and secondary steel 

ingot production and 𝐺𝐻𝐺𝑙
𝑠 the GHG intensities of steel ingot rolling and casting. The final 

step is to add over all steel types l in order to calculate the GHG emissions that result from 

reductions in steel production and forming in any given production year: 

𝐺𝐻𝐺𝑃𝑠(𝑡) = ∑ (𝐺𝐻𝐺𝑃𝑙
𝑝𝑠(𝑡) + 𝐺𝐻𝐺𝑃𝑙

𝑠𝑠(𝑡))𝑙             (A.19) 

The changes in GHG emissions due to reduced steel production 𝐺𝐻𝐺𝑃𝑠(𝑡) are stored in 

cells S52:S90. 

There are three different ways in which recycled content is modeled for aluminum. The 

first models recycling as an open loop, which means that scrap inputs and outputs are 

independent from each other and modeled exogenously. In this case the recycled content of 

aluminum sheet, extrusions, and castings is given through time-dependent input values, 

which means that recycled content could be different every year. In the default setting the 

values are assumed to be constant over time and are set to zero for the recycled content of 

sheet and extrusions, and 0.85 for the recycled content of castings. This open loop 

methodology is the only way available to model the EAF fraction for flat, long, and cast 

steel. In the default setting the EAF fractions are assumed to be constant over time and are 

set to 5% for flat, 85% for long, and 100% for cast steel. As with all input variables, the 

values can be changed by the model user. The other two approaches available for aluminum 

model recycling as a closed loop, i.e. the scrap inputs into production of aluminum body and 
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closure parts come from scrap generated within the modeled North American light duty 

vehicle life cycles. In option one of the closed-loop model, only production scrap is used in 

a closed loop, i.e. for aluminum body and closure production; the scrap at vehicle end-of-life 

is still recycled externally, i.e. in an open loop. The calculations for shipped primary and 

secondary aluminum are now as follows: 

𝑆𝑀𝑙
𝑠𝑎(𝑡) =

𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡)

𝑠𝑟
𝑎   

𝑆𝑀𝑙
𝑝𝑎(𝑡) =

𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎 − 𝑆𝑀𝑙

𝑠𝑎(𝑡)              (A.20) 

where 𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡) is the amount of prompt scrap of aluminum type l generated and 

collected during calendar/production year t, and 𝑠𝑟
𝑎 is the amount of scrap used to produce 

one kg of recycled (secondary) aluminum ingot. In option two of the closed-loop model, 

production and end-of-life scrap is used in a closed loop, i.e. for aluminum body and closure 

production. The calculations for shipped primary and secondary aluminum change to the 

following: 

𝑆𝑀𝑙
𝑠𝑎(𝑡) =

𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡)+𝐸𝑜𝑙𝑆𝑙

𝑎(𝑡)

𝑠𝑟
𝑎   

𝑆𝑀𝑙
𝑝𝑎(𝑡) =

𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎 − 𝑆𝑀𝑙

𝑠𝑎(𝑡)              (A.21) 

where 𝐸𝑜𝑙𝑆𝑙
𝑎 is the amount of end-of-life (eol) scrap of aluminum type l generated and 

collected during calendar/production year t. 

Variable Description Location of data 

𝐺𝐻𝐺𝑃𝑎(𝑡) 

GHG emission changes from increases in aluminum 

production and forming in calendar year t (in million 

kg CO2eq) 

S6:S44 

𝐺𝐻𝐺𝑃𝑠(𝑡) GHG emission changes from reductions in steel S52:S90 
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production and forming in calendar year t (in million 

kg CO2eq) 

Table A.3: Output data from spreadsheet ‘Material production’ 

  A.2.4 Scrap at production 

Changing the material composition of North American light duty vehicles produced 

between 2012 and 2050 changes the quantities and types of scrap that are generated during 

vehicle production. The aim of this spreadsheet is to calculate the GHG implications of 

changes in the use and generation of scrap during material production and forming. In rows 

2 to 45 this is done for aluminum, and in rows 48 to 90 it is done for steel. 

For aluminum, the starting point is the total amount of aluminum body and closure parts 

in light duty vehicles produced each year (in million kg), broken down into sheet, 

extrusions, and castings, i.e. 𝑇𝐴𝐴𝑙(𝑡), with subscript l standing for sheet, extrusions, and 

castings. These values are turned into amounts of generated and collected production scrap 

as follows: 

𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡) = 𝑐𝑝𝑟𝑜

𝑎 ∙
(1−𝛾𝑙

𝑎)

𝛾𝑙
𝑎 ∙ 𝑇𝐴𝐴𝑙(𝑡)            (A.22) 

where 𝑐𝑝𝑟𝑜
𝑎  is the production scrap collection rate for aluminum and 𝛾𝑙

𝑎 is the forming 

yield of aluminum type l. 

The next step depends on which recycling model is chosen for aluminum production 

scrap. If closed-loop recycling is selected, the values for collected production scrap, 

𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡), are forwarded to the ‘Material production’ spreadsheet and used to calculate the 

recycled content of the aluminum body and closure parts in North American light vehicle 

production. If open-loop recycling is selected, the first step is to calculate the scrap input 

into vehicle production according to this equation: 
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𝑆𝐼𝑛𝑙
𝑎(𝑡) = (𝑠𝑝

𝑎 ∙ (1 − 𝑠𝑐𝑙
𝑎(𝑡)) + 𝑠𝑟

𝑎 ∙ 𝑠𝑐𝑙
𝑎(𝑡)) ∙

𝑇𝐴𝐴𝑙(𝑡)

𝛾𝑙
𝑎                       (A.23) 

where 𝑠𝑝
𝑎 the scrap input into primary aluminum production (in kg/kg), 𝑠𝑟

𝑎 the scrap 

input into secondary (recycled) aluminum production (in kg/kg), and 𝑠𝑐𝑙
𝑎(𝑡) is the 

exogenously given recycled (secondary) content of aluminum type l used in body and 

closure parts in production year t. The second step is to calculate the net change in external 

secondary aluminum production caused by the net scrap flow into or out of vehicle 

production according to the following equation: 

𝛼𝑎 ∙
𝑃𝑟𝑜𝑆𝑙

𝑎(𝑡)−𝑆𝐼𝑛𝑙
𝑎(𝑡)

𝑠𝑟
𝑎−𝛽𝑎∙𝑠𝑝

𝑎                (A.24) 

where 𝛼𝑎 models the response of the aluminum scrap market to a change in automotive 

aluminum scrap generation and use, and 𝛽𝑎 models the response of external primary 

aluminum production to a change in external secondary aluminum production. The 

penultimate step of the open-loop recycling model is to calculate the GHG implications of 

the net change in external secondary aluminum production: 

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡) = 𝛼𝑎 ∙

𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡)−𝑆𝐼𝑛𝑙

𝑎(𝑡)

𝑠𝑟
𝑎−𝛽𝑎∙𝑠𝑝

𝑎 (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 − 𝛽𝑎 ∙ 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡

𝑝𝑎 (𝑡))         (A.25) 

In the final step, the total external GHG implications due to changes in aluminum scrap 

use and generation during material production and forming are calculated by summing over 

aluminum sheet, extrusions, and castings: 

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑎(𝑡) = ∑ 𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑙
𝑎(𝑡)𝑙                           (A.26) 

For steel, the calculations are identical to the open-loop recycling calculations for 

aluminum. Here, the starting point is the total steel removed from the vehicles, 𝑇𝑆𝑅𝑙(𝑡), 

which has been calculated in the ‘Material production’ spreadsheet. These values are 
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converted into amounts of production scrap no longer generated and collected, 𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡), 

and amounts of steel scrap no longer used into vehicle production, 𝑆𝐼𝑛𝑙
𝑠(𝑡): 

𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡) = 𝑐𝑝𝑟𝑜

𝑠 ∙
(1−𝛾𝑙

𝑠)

𝛾𝑙
𝑠 ∙ 𝑇𝑆𝑅𝑙(𝑡)  

𝑆𝐼𝑛𝑙
𝑠(𝑡) = (𝑠𝑝

𝑠 ∙ (1 − 𝑠𝑐𝑙
𝑠) + 𝑠𝑟

𝑠 ∙ 𝑠𝑐𝑙
𝑠) ∙

𝑇𝑆𝑅𝑙(𝑡)

𝛾𝑙
𝑠             (A.27) 

where 𝑐𝑝𝑟𝑜
𝑠  is the collection rate for steel production scrap, 𝛾𝑙

𝑠 is the forming yield of 

steel type l, 𝑠𝑐𝑙
𝑠 is the secondary content of steel type l, 𝑠𝑝

𝑠 is the scrap input into primary 

steel production (in kg/kg), and 𝑠𝑟
𝑠 is the scrap input into secondary steel production (in 

kg/kg). The net change in external secondary steel production is now calculated as follows: 

𝛼𝑠 ∙
𝑃𝑟𝑜𝑆𝑙

𝑠(𝑡)−𝑆𝐼𝑛𝑙
𝑠(𝑡)

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠                (A.28) 

where 𝛼𝑠 models the response of the steel scrap market to a change in automotive steel 

scrap generation and use, and 𝛽𝑠 models the response of external primary steel production to 

a change in external secondary steel production. As in the case of aluminum production 

scrap, the last two steps are to calculate and aggregate the GHG implications of the net 

change in external secondary steel production: 

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡) = 𝛼𝑠 ∙

𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡)−𝑆𝐼𝑛𝑙

𝑠(𝑡)

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 − 𝛽𝑠 ∙ 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡

𝑝𝑠 (𝑡))  

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑠(𝑡) = ∑ 𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑙
𝑠(𝑡)𝑙              (A.29) 

Variable Description Location of data 

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑎(𝑡) 

GHG changes due to changes in external use of 

aluminum production scrap in calendar year t (in 

million kg CO2eq) 

S6:S44 

𝐺𝐻𝐺𝑃𝑟𝑜𝑆𝑠(𝑡) 

GHG changes due to changes in external use of steel 

production scrap in calendar year t (in million kg 

S51:S89 
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CO2eq) 

Table A.4: Output data from spreadsheet ‘Scrap at production’ 

  A.2.5 Scrap at end-of-life 

Changing the material composition of the vehicles produced between 2012 and 2050 

means that the quantities of end-of-life aluminum and steel scrap change when these 

vehicles reach the end of their lives. The aim of this spreadsheet is to calculate the GHG 

implications of these changes in automotive end-of-life scrap generation, collection, and 

recycling. 

The main data input into this spreadsheet is the total amount of aluminum body and 

closure parts added to the vehicles produced in year T, 𝑇𝐴𝐴(𝑇) = ∑ 𝑇𝐴𝐴𝑙(𝑡)𝑙 , and the total 

amount of steel removed from all vehicles produced in year T, 𝑇𝑆𝑅(𝑇) = ∑ 𝑇𝑆𝑅𝑙(𝑡)𝑙 . The 

first step is to calculate the changes in end-of-life scrap generated and collected in calendar 

year t, taking into account the lifetime distribution of the vehicles. For aluminum and steel 

the calculations are identical and as follows: 

𝐸𝑜𝑙𝑆𝑎(𝑡) = 𝑐𝑒𝑜𝑙
𝑎 ∙ 𝑠𝑠𝑟𝑒𝑜𝑙

𝑎 ∙ ∑ 𝑇𝐴𝐴(𝑇) ∙𝑡−1
𝑇=2012 (𝐹𝐼𝑈(𝑇 − 𝑡 − 1) − 𝐹𝐼𝑈(𝑇 − 𝑡))  

𝐸𝑜𝑙𝑆𝑠(𝑡) = 𝑐𝑒𝑜𝑙
𝑠 ∙ 𝑠𝑠𝑟𝑒𝑜𝑙

𝑠 ∙ ∑ 𝑇𝑆𝑅(𝑇) ∙𝑡−1
𝑇=2012 (𝐹𝐼𝑈(𝑇 − 𝑡 − 1) − 𝐹𝐼𝑈(𝑇 − 𝑡))        (A.30) 

where 𝑐𝑒𝑜𝑙
𝑎  and 𝑐𝑒𝑜𝑙

𝑠  are the end-of-life collection rates for aluminum and steel scrap, 

𝑠𝑠𝑟𝑒𝑜𝑙
𝑎  and 𝑠𝑠𝑟𝑒𝑜𝑙

𝑠  are the shredder separation rates for end-of-life aluminum and steel scrap. 

𝐹𝐼𝑈(𝑇 − 𝑡) is the fraction of vehicles still in use after 𝑇 − 𝑡 years of driving, and 𝐹𝐼𝑈(𝑇 −

𝑡 − 1) is the fraction of vehicles still in use after 𝑇 − 𝑡 − 1 years of driving (see also Section 

A.2.2). Therefore, (𝐹𝐼𝑈(𝑇 − 𝑡 − 1) − 𝐹𝐼𝑈(𝑇 − 𝑡)) is the fraction of vehicles that reach end 

of life during calendar year 𝑇 − 𝑡. 
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If closed-loop recycling is selected for the end-of-life aluminum scrap, 𝐸𝑜𝑙𝑆𝑎(𝑡) is 

broken out into sheet, extrusions, and castings, 𝐸𝑜𝑙𝑆𝑙
𝑎(𝑡), forwarded to the ‘Material 

production’ spreadsheet, and used to calculate the recycled content of the aluminum body 

and closure parts in North American light vehicle production (see Section A.2.3). 

If open-loop recycling is selected for end-of-life aluminum scrap, 𝐸𝑜𝑙𝑆𝑎(𝑡) is recycled 

externally and has the following GHG implications: 

𝐺𝐻𝐺𝐸𝑜𝑙𝑆𝑎(𝑡) = 𝛼𝑎 ∙
𝐸𝑜𝑙𝑆𝑎(𝑡)

𝑠𝑟
𝑎−𝛽𝑎∙𝑠𝑝

𝑎 (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 − 𝛽𝑎 ∙ 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡

𝑝𝑎 (𝑡))            (A.31) 

where 𝛼𝑎 models the response of the aluminum scrap market to a change in automotive 

aluminum scrap generation and use, and 𝛽𝑎 models the response of external primary 

aluminum production to a change in external secondary aluminum production. The open-

loop model used to calculate the GHG consequences of changes in end-of-life scrap flows is 

the same as the one used for changes in prompt scrap flows. Other parameters used in the 

calculation above are the GHG intensities of primary and secondary aluminum ingot 

production (in kgCO2eq/kg), 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑎

 and 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑎 , and the scrap input into primary and 

secondary (recycled) aluminum production (in kg/kg), 𝑠𝑝
𝑎 and 𝑠𝑟

𝑎. 

The changes in end-of-life steel scrap are always modeled in an open loop. The GHG 

implications of reducing the amount of end end-of-life steel scrap are calculated as follows: 

𝐺𝐻𝐺𝐸𝑜𝑙𝑆𝑠(𝑡) = 𝛼𝑠 ∙
𝐸𝑜𝑙𝑆𝑠(𝑡)

𝑠𝑟
𝑠−𝛽𝑠∙𝑠𝑝

𝑠 (𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 − 𝛽𝑠 ∙ 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡

𝑝𝑠 (𝑡))          (A.32) 

where 𝛼𝑠 models the response of the steel scrap market to a change in automotive steel 

scrap generation and use, and 𝛽𝑠 models the response of external primary steel production to 

a change in external secondary steel production. Other parameters used in the calculation 

above are the GHG intensities of primary and secondary steel ingot production (in 
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kgCO2eq/kg), 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑝𝑠

 and 𝐺𝐻𝐺𝑖𝑛𝑔𝑜𝑡
𝑠𝑠 , and the scrap input into primary and secondary 

(recycled) steel production (in kg/kg), 𝑠𝑝
𝑎 and 𝑠𝑟

𝑎. 

Variable Description Location of data 

𝐺𝐻𝐺𝐸𝑜𝑙𝑆𝑎(𝑡) GHG changes due to changes in external use of end-

of-life aluminum scrap in calendar year t (in million 

kg CO2eq) 

Q5:Q43 

𝐺𝐻𝐺𝐸𝑜𝑙𝑆 𝑠(𝑡) GHG changes due to changes in external use of end-

of-life steel scrap in calendar year t (in million kg 

CO2eq) 

N5:N43 

Table A.5: Output data from spreadsheet ‘Scrap at end-of-life’ 

 A.3 Baseline Input Data 

The following are the input data used to generate the baseline result, which serves as an 

initial estimate of the incremental inventory for the system, and a point of departure for the 

sensitivity analyses. The subsections refer to the particular spreadsheets in the model to 

which the data were input.  

  A.3.1 Results & data input  

Parameter Value Source 

Material replacement coefficient (aluminum to mild steel) 0.55 Kim and 

Wallington, 2013 

Material replacement coefficient (HSS to mild steel) 0.7 Kim and 

Wallington, 2013 

Fraction of aluminum replacing mild steel 0.5 Ducker, 2015 

Flat steel fraction of total replaced steel 0.9 Geyer, 2013 

Secondary mass savings coefficient 0.5 Kim and 

Wallington, 2013 

Flat share of secondary mass savings 0.4 Geyer, 2013 
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Long share of secondary mass savings 0.3 Geyer, 2013 

Year-over-year decarbonization of material production processes & 

electricity production for BEVs 

0.5% n/a 

Year-over-year carbon intensification of gasoline & diesel production 0.5% n/a 

Table A.6: General input data 

Note: Final material replacement coefficient is derived from the values for aluminum to mild 

steel and HSS to mild steel along with the fraction of aluminum replacing mild steel, where 

the remaining aluminum replaces HSS per Chapp and Shah, 2007, Ducker Worldwide, 

2015, Morgans, 2012, and Pafumi, 2006. 

𝑘𝑓𝑖𝑛𝑎𝑙 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑚𝑖𝑙𝑑 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 ∗ 𝑘𝑎𝑙 𝑡𝑜 𝑚𝑖𝑙𝑑 + (1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑚𝑖𝑙𝑑 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑) ∗
𝑘𝑎𝑙 𝑡𝑜 𝑚𝑖𝑙𝑑

𝑘𝐻𝑆𝑆 𝑡𝑜 𝑚𝑖𝑙𝑑
 

= 0.5 ∗ 0.55 + (1 − 0.5) ∗
0.55

0.7
= 0.275 + 0.3928 = 𝟎. 𝟔𝟔𝟕𝟖  

Parameter Value Source 

Scrap input to primary production 0 IAI, 2013 

Scrap input to secondary production 1.048 TAA, 2013 

Prompt scrap collection rate 0.99 Geyer, 2013 

EOL scrap collection rate 0.97 Kelly and Apelian, 

2016 

Shredder separation rate 0.9 Geyer, 2013 

Alpha 1 n/a 

Beta 1 n/a 

Table A.7: Aluminum recycling parameters 

Parameter Value Source 

Scrap input to primary production 0.209 AISI, 2016 

Scrap input to secondary production 1.05 WSA, 2010 

Prompt scrap collection rate 0.99 Geyer, 2013 
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EOL scrap collection rate 

0.97 

Steel Recycling 

Institute, 2017 

Shredder separation rate 0.98 Geyer, 2013 

Alpha 1 n/a 

Beta 1 n/a 

Table A.8: Steel recycling parameters 

Process GHG intensity Source 

Primary ingot (North America) 

(cradle-to-gate) 

8.937 TAA, 2013 

Secondary ingot  

(cradle-to-gate) 

0.508 Thinkstep, 2015, PE, EU27 

Rolled aluminum 

(ingot-to-gate, aluminum rolling) 

0.589 Thinkstep, 2015, PE, EU27  

Extruded aluminum 

(ingot-to-gate, aluminum extrusion) 

0.689 Thinkstep, 2015, PE, EU27  

Cast aluminum 

(ingot-to-gate, aluminum casting) 

0.590 Thinkstep, 2015, PE, DE  

Table A.9: GHG intensities of aluminum production and forming (in kgCO2eq/kg output) 

Process GHG intensity Source 

BF/BOF slab 

Note: Time series entry optional 

2.02 Hasanbeigi et al., 2016 

EAF slab (slab-to-gate) 0.399 WSA, 2010 

Flat steel (slab-to-gate) 0.485 WSA, 2010 

Long steel (gate-to-gate, steel rolling) 0.290 WSA, 2010 

Cast steel (gate-to-gate, steel casting) 0.135 WSA, 2010 

Table A.10: GHG intensities of steel production and forming (in kgCO2eq/kg output) 
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Parameter Value Unit Source 

NCV of gasoline 32.27 MJ/liter Thinkstep, 2015, 

PE, EU27 

GHG intensity of gasoline production 

(cradle-to-gate, at gas station)) 

15.50 gCO2eq/MJ Thinkstep, 2015, 

PE, EU27 

GHG intensity of gasoline combustion 

(gate-to-gate, combustion in light duty vehicle) 

72 gCO2eq/MJ Thinkstep, 2015, 

PE, GLO 

NCV of diesel 36.00 MJ/liter Thinkstep, 2015, 

PE, EU27 

GHG intensity of diesel production 

(cradle-to-gate, at gas station)) 

7.74 gCO2eq/MJ Thinkstep, 2015, 

PE, EU27 

GHG intensity of diesel combustion 

(gate-to-gate, combustion in light duty vehicle) 

75 gCO2eq/MJ Thinkstep, 2015, 

PE, GLO 

GHG intensity of electricity production 

(cradle-to-gate, U.S. average, at consumer) 

0.150 kgCO2eq/MJ ANL, 2015 

Fraction of powertrains resized 50 % n/a 

Share of plug electricity as energy source 50 % Geyer, 2013 

Vehicle lifetime driving 245,000 km NHTSA, 2006 

Mean vehicle lifetime 13 years NHTSA, 2006 

Standard deviation of vehicle lifetime 3 years NHTSA, 2006 

Table A.11: Vehicle use phase parameters 

Material Yield Source 

Aluminum, Sheet 0.62 Milford et al., 2011 

Aluminum, Extrusion 0.8 Geyer, 2013  

Aluminum, Castings 0.8 Geyer, 2013 

Steel, Flat 0.6 Milford et al., 2011 

Steel, Long 0.8 Geyer, 2013 
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Steel, Castings 0.8 Geyer, 2013 

Table A.12: Forming yields 

Note: Aluminum sheet and flat steel yields are calculated from Milford et al., 2011 SI tables 

3 and 4 as 𝑦𝑖𝑒𝑙𝑑 = 𝑆𝑙𝑖𝑡𝑡𝑖𝑛𝑔_𝑦𝑖𝑒𝑙𝑑 ∗ 𝐵𝑙𝑎𝑛𝑘𝑖𝑛𝑔_𝑦𝑖𝑒𝑙𝑑 ∗ 𝑆𝑡𝑎𝑚𝑝𝑖𝑛𝑔_𝑦𝑖𝑒𝑙𝑑.  

Year 

Imported Al 

kgCO2/kg
4,5

 

% Imported
3
 

2012 16.50
1
 0.25 

2013 16.27 0.29 

2014 16.05 0.32 

2015 15.83 0.36
2
 

2016 15.61 0.40 

2017 15.39 0.43 

2018 15.17 0.47 

2019 14.96 0.50 

2020 14.76 0.54 

2021 14.55 0.58 

2022 14.35 0.61 

2023 14.15 0.65 

2024 13.95 0.68 

2025 13.76 0.72 

2026 13.69 0.72 

Table A.13: A sample of the imported primary aluminum ingot production share and GHGs. 

Notes: 

1. Initial imported GHG intensity (16.5 kgCO2/kg) is a global average from 

International Aluminum Institute, 2014. 
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2. 2015 Aluminum import share (36%) is derived from The Aluminum Association, 

2015. 

3. Growth rate of aluminum imports (3.6% per year until 2025)  is derived from 

Accenture LLC, 2015. 

4. Downward trend in imported aluminum GHGs is derived from a downward 

projection in electricity consumption for aluminum production in China from Hao et 

al., 2015 and applied to the global average. 

5. In addition, a year-over-year decarbonization factor of 0.5% is applied in the 

baseline scenario which continues through the modelling period 

  A.3.2 Fleet Composition 

Year # of Vehicles 

2012 16,181,282 

2013 16,200,000 

2014 16,752,614 

2015 17,500,000 

2016 17,323,946 

2017 17,609,612 

2018 17,900,000 

2019 18,180,944 

2020 18,200,000 

2021 18,752,277 

2022 19,000,000 

2023 19,323,609 

2024 19,609,275 

2025-2050 20,000,000 

Table A.14: Light duty vehicle production forecast (Ducker, 2015, p.55) 
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The resulting cumulative light duty vehicle production between 2012 and 2015 is therefore 

752,533,558, i.e. just over 750 million cars.  

Year ICV Share Gasoline Share of ICV Hybrid Share Standard Share of 

Hybrid 

2012 0.982 0.932 0.018 0.500 

2013 0.976 0.931 0.024 0.500 

2014 0.972 0.935 0.026 0.500 

2015 0.965 0.936 0.034 0.500 

2016 0.952 0.932 0.046 0.500 

2017 0.947 0.931 0.050 0.500 

2018 0.938 0.932 0.057 0.500 

2019 0.924 0.931 0.070 0.500 

2020 0.913 0.934 0.081 0.500 

2021 0.909 0.932 0.084 0.500 

2022 0.900 0.931 0.092 0.500 

2023 0.892 0.932 0.100 0.500 

2024 0.883 0.931 0.108 0.500 

2025 0.874 0.934 0.110 0.500 

2026-2050 0.870 0.934 0.110 0.500 

Table A.15: Powertrain type inputs (Ducker, 2015, p. 21 & 22) 

Year Sheet (million kg) Extrusions (million kg) Castings (million kg) 

2012 81.9 0.0 0.0 

2013 100.3 7.3 0.0 

2014 200.5 12.7 1.8 

2015 420.9 20.0 18.2 

2016 592.2 32.8 23.7 

2017 681.6 38.2 27.3 
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2018 738.1 41.9 29.1 

2019 878.4 56.4 29.1 

2020 1,078.8 69.2 45.5 

2021 1,228.2 80.1 45.5 

2022 1,303.0 81.9 65.5 

2023 1,419.7 87.4 74.6 

2024 1,640.1 111.0 78.3 

2025 1,707.6 112.9 85.6 

2026 1,755 114 91 

2027 1,778 115 93 

2028-2050 1,790 115 95 

Table A.16: Projected amount of aluminum body & closure parts in North American light 

vehicle production (Ducker, 2014, p.20) 

Class lbs of aluminum NA LDV fleet share HEV share BEV share 

Source Ducker 2014 p. 9 ANL 2014 

A/B 251.60 0.03 0.09 0.18 

C 273.90 0.17 0.35 0.51 

D 363.30 0.21 0.42 0.31 

E 546.90 0.03 0.11 0.00 

MPV 396.50 0.04 0.00 0.00 

SUV 410.30 0.33 0.02 0.01 

VAN 273.20 0.02 0.00 0.00 

PUP 548.90 0.17 0.00 0.00 

Table A.17: Vehicle class data (ANL, 2015; Ducker, 2014, p.9) 

  A.3.3 Vehicle Use 
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  No powertrain resizing 

(MJ/100km100kg) 

Powertrain Resizing 

(MJ/100km100kg) 

PT type Fuel Compact Midsize SUV Compact Midsize SUV 

ICEV-G Gasoline  4.992 4.635 4.775 7.202 8.728 9.766 

ICEV-D Diesel  4.340 4.470 4.311 6.958 7.272 7.112 

HEV-S Gasoline  2.994 3.329 2.927 4.998 6.324 6.409 

HEV-P Gasoline  4.290 4.437 n/a 5.973 6.299 n/a 

HEV-P Electricity 1.395 1.439 n/a 1.942 2.048 n/a 

BEV Electricity 1.393 1.446 n/a 1.965 2.079 n/a 

Table A.18: Fuel and electricity savings per mass savings with and without powertrain 

resizing 

  Baseline vehicle mass (kg) Baseline fuel economy (MJ/100km) 

PT type Fuel Compact Midsize SUV Compact Midsize SUV 

ICEV-G Gasoline  1260 1640 2195 148.61 198.24 285.11 

ICEV-D Diesel  1350 1740 2320 141.86 169.14 231.23 

HEV-S Gasoline  1335 1752 2345 121.20 163.39 247.92 

HEV-P Gasoline   

1188 

 

1431 

n/a 111.82 136.29 n/a 

HEV-P Electricity n/a 36.36 44.32 n/a 

BEV Electricity 1097 1334 n/a 34.78 42.83 n/a 

Table A.19: Baseline vehicle mass used in power train models and resulting baseline fuel 

economy (Geyer and Malen, 2017; Malen and Geyer, 2017) 

Note: Time series entry optional  

Other parameters used in the power train models: 

Frontal area (m
2
): ICEV-G, ICEV-D, HEV-S: Compact: 2.16, Midsize: 2.24 SUV: 2.78;     

HEV-P, BEV: Compact: 2.03, Midsize: 2.26 
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Tire rolling radius (m): ICEV-G&D, HEV-S: Compact: 0.308, Midsize: 0.317, SUV: 0.356; 

HEV-P, BEV: Compact: 0.285, Midsize: 0.300 

Drag coefficient: ICEV-G, ICEV-D, HEV-S: Compact: 0.31, Midsize: 0.27, SUV: 0.36;  

HEV-P, BEV: Compact: 0.25, Midsize: 0.25 

Tire rolling resistance coefficient: 0.07 

  A.3.4 Monte Carlo simulation 

The following is the table of parameter value ranges entered into the Monte Carlo simulation 

shown in Figure 2.5: 

Parameter Unit Minimum Maximum  

Material Replacement Coefficient  kg aluminum/kg steel 0.55 0.75 

Initial GHG intensity of Imported Primary 

Aluminum Production 

kg CO2eq/kg 6.70 21.70 

Secondary Mass Savings  

kg secondary/kg 

primary mass savings 

0 1 

Fraction of Powertrains Resized % 0 100 

Aluminum Beta unitless 0 1 

Aluminum Alpha unitless 0 1 

Vehicle Lifetime Distance Driven km 200,000 300,000 

Aluminum Sheet Yield % 52 72 

Year-over-year decarbonization of material 

production processes and electricity production for 

BEVs 

%/year 0 2 

Initial GHG intensity of Primary Steel Production kg CO2eq/kg 1.27 2.80 

Growth Rate of Imported Primary Aluminum 

Production 

%/year 0.00 6.00 

Flat Steel Yield % 50 70 
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Initial GHG intensity of North American Primary 

Aluminum Production 

kg CO2eq/kg 6.70 8.94 

Initial GHG intensity of Secondary Aluminum 

Production 

kg CO2eq/kg 0.254 1.016 

Initial GHG intensity of Secondary Steel Production kg CO2eq/kg 0.199 0.798 

Initial GHG intensity of Electricity Production for 

BEVs 

kg CO2eq/MJ 0.075 0.15 

Initial GHG intensity of Gasoline Production kg CO2eq/MJ 15.50 23.25 

Initial GHG intensity of Diesel Production kg CO2eq/MJ 7.74 11.61 

Steel Alpha unitless 0 1 

Steel Beta unitless 0 1 

Year-over-year carbon intensification of gasoline 

and diesel production 

%/year 0 2 

Table A.20: The initial Monte Carlo simulation, with contributions to variance shown in 

Figure 2.5 of Chapter 2. 

Note: I determined the approximate threshold of 2050 cumulative GHG emissions for which 

GHG payback is never achieved by lowering the parameter value for aluminum beta until it 

triggers an upward slope at the end of the modelling period (GHG payback = “Never”). 

With all else fixed at baseline values, the threshold of aluminum beta that triggers GHG 

payback = “Never” is 0.352. Cumulative 2050 GHG emissions in that scenario are equal to 

207 million tonnes CO2eq. Thus, I say that Monte Carlo trials with cumulative GHG 

emissions greater than 207 million tonnes CO2eq are trials where GHG payback is never 

achieved.  
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This is an approximation, because when other parameter values are changed in order to 

trigger GHG payback = “Never”, the value of cumulative GHG emissions in 2050 may be 

slightly different.  

 A.4 Additional Sensitivity Analyses  

In Section 2.4.1 (Figure 2.3), I show the results of inputting all of the baseline 

parameters as outlined in Section A.3. Key parameters corresponding to each life cycle stage 

are then varied to generate a number of sensitivity analyses. In the production phase, it is 

shown that the results are highly sensitive to the material replacement coefficient k and 

secondary mass savings s. I also show the effect of the GHG intensities of primary 

aluminum and steel production. In the use phase, I explore the effects of increasing the share 

of the fleet that with powertrain resizing, as well as showing the effect of accelerating the 

adoption of hybrid and electric vehicle in accordance with the IEA BLUE map projections 

(IEA, 2010). Finally, for the case of recycling it is shown that the model is highly sensitive 

to the displacement of primary production resulting from the recycling of aluminum in the 

end-of-life stage, and that the displacement rate of steel has a much less pronounced effect. 

The contributions of the various life cycle calculations to the cumulative baseline GHG 

curve are shown. The remainder of this section explores additional sensitivity analyses of 

interest from each life cycle stage, as well as selected interactions between parameters. 

  A.4.1 Primary Production  

Figure A.3 shows the sensitivity of the result to the growth in the material replacement 

coefficient, the secondary mass savings factor, the production yields of both steel and 

aluminum sheet, the growth rate of the imported share of primary aluminum, the GHG 

intensity of imported primary aluminum, the GHG intensity of primary steel production, and 
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the starting year of modelling additional aluminum production.
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Figure A.3: (a) Sensitivity of cumulative GHG curve to the material replacement coefficient, 

(b) Sensitivity of cumulative GHG results to secondary mass savings factor,(c) Sensitivity of 

the cumulative GHG curve to the initial GHG intensity of imported primary aluminum 

production, (d) Sensitivity of the cumulative GHG curve to the GHG intensity of primary 

steel production, (e) Sensitivity of cumulative GHG curve to the growth rate of the imported 

share of primary aluminum ingot, (f) Sensitivity of cumulative GHG curve to the starting 

year of additional aluminum production modelling, (g) Sensitivity of cumulative GHG curve 

to flat steel forming yield, (h) Sensitivity of cumulative GHG curve to aluminum sheet 

forming yield. 

The first insight provided by Figure A.3 is that the results are most sensitive to the 

material replacement coefficient, and the effect is clearly non-linear. Equation A.16 

illustrates how the quantity of steel removed depends non-linearly on the material 

replacement coefficient.  This model is based on a fixed industry projection of aluminum 

content. Therefore, lowering the material replacement coefficient increases the amount of 

steel removed from vehicles because of the increasing aluminum content. In turn, the 

amount of fuel savings in the use phase is increased as the material replacement coefficient 

decreases. The illustrated values of the material replacement coefficient fall within the range 

observed by the meta-analysis of automotive material substitution referenced in this paper 

(Kim and Wallington, 2013). 

In addition, the cumulative GHG curve is sensitive to the growth rate of imported 

primary aluminum production. Figure A.3 (e) covers the range from 0% growth to a 

theoretical maximum of 6%, which would drive the imported share of additional production 
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to 100% during the steady state. The response of the cumulative GHG curve to the 

production yield of flat steel is smaller compared to all other tested parameters. 

It is also useful to observe the change in GHG payback when varying the start date of 

modelled additional aluminum production. In order to test this, I created two scenarios 

where additional aluminum production begins in 2017 and 2022, rather than the beginning 

of the Ducker forecast in 2012. In the 2017 case, the Ducker figures from 2016 are used as 

the counterfactual to which all other years are compared. In the 2022 case, the Ducker 

figures from 2021 are used as the counterfactual. This means, for example, that in the “Start 

Date 2017” scenario, the additional aluminum inputs for 2017 are (681.6-592.2=89.4) for 

sheet, (38.2-32.7=5.5) for extrusions, and (27.3-23.7=3.6) for castings. These calculated 

time series for the 2017 and 2022 scenarios are shown on the “Fleet Composition” tab in 

cells B134:D172 and B178:D216, respectively.  

Modifying the start year has a two-fold effect on GHG payback. First, the peak of the 

curve is lower when the starting year is later, a trivial consequence of the fact that the 

cumulative amount of additional aluminum becomes smaller. Secondly, there is a slight 

effect on GHG payback time. The baseline case, with additional aluminum beginning in 

2012, has a payback year of 2039 and a payback time of (2039-2012) = 27 years.  When 

starting in 2017, the payback year is 2042 and the payback time is (2042-2017) = 25 years. 

Finally, when beginning in 2022, the payback year is 2044 and the payback time is (2048-

2022) = 22 years.  

In Figure A.4, I explore the possibility that the aluminum content of vehicles continues 

to increase after 2028, the end of the industry projection used to form the baseline curve. To 

explore the sensitivity of the model to the steady state assumption, I (a) extrapolate the trend 
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in sheet aluminum production from the Ducker data to 2050 using linear regression, and (b) 

accelerate the trend so that in 2050 aluminum makes up 100% of the body and closure 

material. Then, I perform the Monte Carlo analysis using the accelerated aluminum content 

in order to verify whether or not the overall results of the study change. 

 

Figure A.4: (a) Sensitivity of cumulative GHG curve to alternative additional aluminum 

production curves that do not level off to a steady state in 2028. “Ducker extrapolation” is a 

continuation of a linear trend that produced the baseline case, and “Accelerated aluminum” 

brings the aluminum content of body and closures to 100% by 2050. (b) The Monte Carlo 

simulation from the main text (Figure 5) using the accelerated aluminum content and 

showing that the top ten contributions to variance are not significantly affected. 

Figure A.4 (a) shows that continuing to increase aluminum production beyond 2028 

changes the shape of the cumulative GHG curve. It broadens the curve so that the peak in 

net GHGs occurs later, and GHG payback is delayed as a result. However, the core features 

of the cumulative GHG curve and the conclusions of the analysis are not changed, even 

when aluminum production is accelerated such that it makes up 100% of the body and 

closure composition by 2050. The most noticeable change is that the contribution to 

variance from year-over-year decarbonization of material production processes increases 

when more aluminum is produced.  
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As shown in Figure A.4 (b), the Monte Carlo simulation returns the same top 11 

parameters (>1% contribution) in terms of contribution to variance in the model when 

accelerated aluminum production is considered. The magnitudes of the contributions to 

variance for the 11 parameters are also quite similar to what is shown in Figure 2.5 of 

Chapter 2. Since accelerating aluminum content to 100% by 2050 is the most extreme 

scenario, and the curve still reaches its peak before the end of the modelling period, I also 

conclude that extending the modelling period beyond 2050 will not have a significant effect 

on the overall conclusions of the study.  

 A.4.2 Use 

In Section 2.4, I show that increasing the efficiency of the fleet actually extends the 

GHG payback time, which challenges the intuition that increasing use phase efficiency is 

beneficial. This is due to the fact that the fuel savings per mass savings is decreased in 

hybrid and electric vehicles relative to their gasoline and diesel-powered counterparts, as 

shown in Table A.18. I also show the interaction of the two fleet compositions with baseline 

powertrain resizing shares (50%) and an increase to 100% resizing. This is reflected in 

Figure A.5 (a). Additional use phase effects of interest are covered in Figure A.5 (b), (c), 

(d), (e), and (f). These include the effects of changing the mean lifetime of the fleet, 

changing the distance driven over a fixed mean lifetime, varying the fuel savings per mass 

savings (Fuel Reduction Value), and changing the GHG intensity of gasoline, diesel, and 

electricity production. 

Figure A.5 (b) highlights another counterintuitive result related to the use phase. 

Conventional wisdom says that lengthening the lifetime of products is a benefit to their 

environmental profile. However, in this case, longer lifetimes actually delay the GHG 
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payback of the system. Shorter lifetimes achieve payback faster for two reasons. First of all, 

the end-of-life aluminum scrap becomes available sooner. The scenarios are relative to the 

baseline, where all aluminum scrap is recycled and displaces primary production on a 1-to-1 

basis, therefore large assumed GHG benefits are captured sooner when the lifetime is 

shorter. Additionally, the changes in the mean lifetime still assume a fixed distance driven of 

245,000 km. This means that the fuel savings for the total distance travelled is captured in a 

shorter period when a shorter mean lifetime is assumed. 
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Figure A.5: (a) Scenarios interacting the efficiency of the fleet (Baseline & IEA BLUE Map) 

and the share of powertrain resizing in the fleet, 50% (Baseline) & 100% (Resize100). (b) 

Shifting of the cumulative GHG curve in response to changes in the mean lifetime of vehicles 

in the fleet. (c) Shifting of the cumulative GHG curve in response to changes in the distance 

driven over a fixed mean lifetime. (d) Sensitivity of GHG payback to changes in the fuel 

savings per mass savings (Fuel Reduction Value).(e) Sensitivity of the cumulative GHG 

curve to the GHG intensity of gasoline & diesel production. (f) Sensitivity of the cumulative 

GHG curve to the GHG intensity of electricity production for BEVs. 

 When the distance travelled over a fixed lifetime is increased, as shown in Figure A.5 

(c), GHG payback is accelerated. This is due to increased accumulation of use-phase energy 

savings across the fleet. Keeping the mean lifetime fixed at 13 years and changing the 

lifetime distance travelled to 300,000 km shortens payback to 2036, while changing it to 

200,000 km delays payback to 2043. 

Changing the fuel reduction values with and without powertrain resizing (Table A.18) 

shifts the cumulative GHG curve in an intuitive way. Increasing fuel and electricity savings 

per mass savings by 20% shortens GHG payback from 2039 to 2036. Decreasing the fuel 

reduction values by 20% extends GHG payback to 2043. 
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Finally, possible shapes of the lifetime distribution curve are compared in Figure A.6. I 

acknowledge that the Weibull distribution has been used to model vehicle lifetimes in some 

studies (Sakai et al., 2014; Yano et al., 2014). However, log-normal has been used for this 

model because the parameters governing the shape and position of the curve are input 

directly as mean and standard deviation, which is not possible when using the Weibull.  In 

addition, Figure A.2 (d) and prior literature both suggest that the results of using log-normal 

and Weibull for lifetime distribution modeling yield similar outcomes (Davis et al., 2007).  

 

Figure A.6: Comparison of lognormal and Weibull lifetime distributions 

 A.4.3 Recycling 

The implications of reducing the displacement of primary production due to recycling of 

aluminum as characterized by the parameter 𝛽𝑎 are explored in the main text. However, I 

have not yet explored the sensitivity of the model to the scrap market parameters 

corresponding to the response of scrap collection to increases and decreases in aluminum 
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and steel scrap generation, 𝛼𝑎 and 𝛼𝑠. In addition,  the parameter corresponding to reduced 

displacement from reduced secondary steel production,  𝛽𝑠, may also have an impact. The 

response of the cumulative GHG curve to these parameters is largely governed by the 

difference between primary and secondary production, as shown in equations A.31 and 

A.32. Therefore, I expect that the responses to changes in the aluminum scrap market 

responses are stronger than those for steel. This is reflected in Figure A.7. 
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Figure A.7: Sensitivity of the cumulative GHG curve to (a) aluminum displacement 𝛽𝑎, (b) 

steel displacement  𝛽𝑠, (c) aluminum collection 𝛼𝑎, and (d) steel collection 𝛼𝑠. The sensitivity 

of cumulative GHG emissions to the GHG intensity of secondary aluminum and steel 

production are shown in (e) and (f), respectively. 

 There are a few noteworthy features of the responses shown above. First of all, the 

responses to variation in aluminum collection and displacement parameters relative to the 

baseline values are extremely similar. This implies that it is equally important that additional 

aluminum scrap generation both leads to additional scrap collection, and that the additional 

secondary production in turn displaces primary production. Secondly, the expectation that 

the cumulative GHG curve is dramatically more responsive to aluminum recycling 

parameters in comparison to steel is confirmed. Finally, I note that lowering the scrap 

collection effect and displacement of steel production actually improves the GHG 

performance of the system over time relative to the baseline. This is because full collection 

and displacement implies that equivalent amounts of primary steel must be produced to 

compensate for the reduction in secondary steel on the market. In the event that collection 

and displacement are less than 100%, less primary steel production is required to 

compensate. This is the opposite of the case of aluminum, where I am modelling an increase 

of secondary material on the market, and lower displacement is interpreted as greater net 
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primary production relative to the baseline. Lastly, I note that the model shows limited 

sensitivity to the GHG intensities of secondary aluminum and steel production. 

 A.3.4 Interactions 

Here, interactions between key parameters are explored. It has been shown that the 

model is highly responsive to the displacement of primary aluminum production from 

recycling, and to the material replacement coefficient. Figure A.8 (a) explores whether or 

not reducing the material replacement coefficient can help mitigate the problems caused by 

partial displacement. I have also shown that the use phase is sensitive to the share of the 

fleet that resizes its powertrains. Figure A.8 (b) shows the possibilities resulting from both 

varying the material replacement coefficient and increasing or decreasing powertrain 

resizing.      

 

Figure A.8: (a) Interaction of the material replacement coefficient with partial aluminum 

displacement from recycling. (b) Interaction of the material replacement coefficient with the 

share of the fleet that resizes its powertrains. 

 Figure A.8 (a) offers some suggestion of how a partial displacement scenario involving 

aluminum might be mitigated under large-scale material substitution. The baseline curve and 

the first scenario are familiar from other figures. While holding all else constant, lowering 
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𝛽𝑎 to 0.8 leads delays GHG payback significantly. However, lowering the material 

replacement coefficient, as I do in the other two interaction scenarios, restores the GHG 

payback effect. In fact, for 𝛽𝑎 = 0.8  and 𝑘 = 0.57, cumulative GHGs are lower than the 

baseline for all years. 

Figure A.8 (b) explores the use of two opportunities to reduce GHG payback time 

simultaneously. When the share of powertrain resizing is 0%, GHG payback is delayed in 

comparison with the baseline case. However, the delay in GHG payback can be counteracted 

by reducing the material replacement coefficient. This scenario produces lower cumulative 

GHGs compared to the baseline. If the material replacement coefficient is fixed at the 

baseline value, increasing the share of resized powertrains to 100% provides a vast 

improvement in cumulative GHGs. Finally, by increasing the share of resized powertrains to 

100% and decreasing the material replacement coefficient simultaneously, the fastest GHG 

payback time of all presented interaction scenarios. 

Another sensitivity analysis applies to the annual year-over-year decarbonization and 

carbon intensification factors. The decarbonization factor is applied to aluminum and steel 

production processes, as well as electricity production for BEVs. This factor is a proxy for 

the gradual decarbonization of the electricity grid, which contributes a significant proportion 

of GHG emissions to these production processes. The baseline estimate for this variable is a 

year-over-year 0.5% decarbonization, and in Figure A.9 (a) I show how the results change 

when varying year-over-year decarbonization from 0% to 2%. In the case of gasoline and 

diesel production, evidence suggests that the carbon intensity of their production may 

actually intensify over time due to the extraction of less conventional sources (Brandt and 

Farrell, 2007). For these production processes, I apply a carbon intensification of 0.5% year-
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over-year as a baseline. Figure A.9 (b) shows how the results change when varying the 

carbon intensification of gasoline and diesel production from 0% to 2%. 

 

Figure A.9: (a) Sensitivity of the cumulative GHG curve to variation in the year-over-year 

decarbonization factor for production processes. (b) Sensitivity of the cumulative GHG 

curve to variation in the year-over-year carbon intensification factor for gasoline and diesel 

production. 

Figure A.9 shows that the model is more sensitive to year-over-year decarbonization of 

production processes than it is to the year-over-year carbon intensification of gasoline and 

diesel production. The sensitivity of the model to decarbonization is primarily driven by its 

effect on primary aluminum production. I note that while it is not possible to estimate what a 

decarbonization curve projected this far into the future would look like, it is important to 

consider the effect of this possibility on the model. 

Finally, I consider the possibility that there is a narrowed range of GHG intensities of 

initial imported primary aluminum production. The case I present in Chapter 2 uses a broad 

range based on literature related to the GHG intensity of aluminum production from all over 

the world. If the range is bounded by more moderate values from the literature, the results 

may change because the input distributions to the Monte Carlo simulation are different. 
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However, if I find a similar result in terms of contributions to variance, it shows that my 

analysis is reflective of the model structure itself. To illustrate the response of our Monte 

Carlo analysis to a narrowed range of GHG intensity of primary aluminum production, I run 

an alternative simulation using a range of 8.937 kg CO2eq/kg (The Aluminum Association, 

2013)  to 16.5 kg CO2eq/kg (Hao et al., 2015). I find that the initial GHG intensity of 

imported primary aluminum production drops from the 2
nd

 to the 4
th

 highest contributor to 

the variance. However, the top five and top eleven parameters (with >1% contribution) 

remain unchanged. 

 

Figure A.10: Contributions to variance from an alternative Monte Carlo simulation where 

the range of GHG intensities for initial imported primary aluminum production is narrowed 

compared with the case from the main text. 
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B. Appendix B: Supporting Information for Chapter 4 

B.1. Estimating the treatment effect in percentage changes 

As discussed in Section 4.4.2, sites exposed to recycled water can vary widely in scale. 

Thus, it is sensible to estimate the effect of recycled water on total water usage as a 

percentage change. Here, I estimate the two-way fixed effects regression given by (4.5) 

using the log of total water usage as the dependent variable. To be explicit, the model is: 

𝑙𝑛 (𝑌𝑖𝑡) = 𝛾 + 𝛼𝑖 + 𝛽𝑡 + 𝜋𝐷𝑖𝑡 + 𝜀𝑖𝑡                (B.1) 

In this case, the coefficient 𝜋 has the interpretation of a percentage change. The sign of the 

coefficients and the width of the confidence intervals are consistent with those found in 

Table 4.4, as expected. 

 (1) (2) (3) (4) (5) 

𝜋̂ (%)  

(S.E) 

9.65 

(16.0) 

-0.24 

(28.8) 

-1.21 

(14.6) 

21.0 

(28.7) 

-5.10 

(16.8) 

N 2,707 2,175 1,458 1,249 946 

Actual 

Clusters 

19 19 10 9 19 

Effective 

Clusters 

16.9 13.0 8.17 8.94 16.9 

Bootstrap 

critical 

values  

[-2.02, 2.25] [-2.21, 2.40] [-2.52, 2.03] [-2.33, 2.34] [-1.97, 2.27] 

Bootstrap 

95% CI (%) 

[-22.6,45.6] [-63.9,68.9] [-38.0,28.5] [-46.0,88.2] [-38.2,33.1] 

Restrictions None 1-year post Region 1 Region 2 Peak only 
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Table B.1: Two-way fixed effects results with log total water usage as the dependent 

variable, using cluster-robust standard errors and wild bootstrap critical values. Actual 

clusters, effective clusters, number of observations, critical values, 95% confidence 

intervals, and sample restrictions are also shown. 

B.2. Additional details on the displacement ratio 

The displacement ratio is defined by Zink, et. al (2015) as 𝑑 = −
∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
, where 

∆𝑄𝑝𝑟𝑖𝑚 is the change in the quantity of primary material in response to a change in the 

quantity of secondary material ∆𝑄𝑠𝑒𝑐. The negative sign dictates that when ∆𝑄𝑝𝑟𝑖𝑚 is 

negative (i.e. the quantity of primary material decreases), displacement is positive. In this 

research, the secondary material is recycled wastewater and the primary material is potable 

water. Here, I add another layer of sophistication to the definition since I also estimate a 

counterfactual for potable water usage after the change in the quantity of recycled water.  

Returning to the example of Section 4.3.2.1, consider the case where there are two time 

periods (t=1 is pre-treatment, t=2 is post-treatment) and two sites (i=1 is the control site, and 

i=2 is the treated site). Let 𝑌𝑖𝑡 = 𝑃𝑖𝑡 + 𝑅𝑖𝑡, where 𝑌𝑖𝑡 is total water usage in site i in period t, 

and 𝑃𝑖𝑡 and 𝑅𝑖𝑡 are potable and recycled water usage. I assume that site 1 is a suitable 

control for site 2, i.e. the identification conditions for DID discussed in Section 2.2.1 are 

met. In addition, site 2 has no access to recycled water in the pre-treatment period, and 

converts a portion of its supplies to recycled water in the post treatment period, while site 1 

uses potable water in both periods (i.e. 𝑅11,𝑅12,𝑅21, = 0, and 𝑅22 ≠ 0). I use the change in 

water usage in site 1, the control site, as a counterfactual for what would have happened in 

site 2 in the absence of a conversion to recycled water. Now, I can define a quasi-

experimental version of the displacement ratio that allows recycled water to also displace 
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counterfactual potable water as: 𝑑 = −
[𝑃22−𝑃21]−[𝑃12−𝑃11]

𝑅22
. The numerator is a difference-in-

differences estimate of the change in potable water usage in the treated site. The 

denominator is the only non-zero quantity of recycled water usage in the system. 

Using the identity 𝑌𝑖𝑡 = 𝑃𝑖𝑡 + 𝑅𝑖𝑡, displacement can also be expressed as: 𝑑 =

−
[(𝑌22−𝑅22)−(𝑌21−𝑅21)]−[(𝑌12−𝑅12)−(𝑌11−𝑅11)]

𝑅22
= −

[(𝑌22−𝑅22)−(𝑌21−0)]−[(𝑌12−0)−(𝑌11−0)]

𝑅22
=

−
[𝑌22−𝑌21]−[𝑌12−𝑌11]−𝑅22]

𝑅22
= 1 −

[𝑌22−𝑌21]−[𝑌12−𝑌11]

𝑅22
. Now, consider the estimation of the DID 

regression given by (4.1). The expression [𝑌22−𝑌21] − [𝑌12 − 𝑌11] is represented by 𝜃, and 

the displacement ratio is 𝑑 = 1 −
𝜃

𝑅22
.  

In the two-way fixed effects setting, I generalize this to the case of multiple treated units, 

multiple time periods, and staggered treatment adoption. In equation (4.4), 𝜋 replaces 𝜃 as a 

DID estimate of the treatment effect. Assuming that 𝜋 ∙ 𝑛𝑡𝑟𝑒𝑎𝑡 is a suitable proxy for the 

change in total water usage after accounting for counterfactual trends, the equivalent quasi-

experimental displacement expression is 1 −
𝜋∙𝑛𝑡𝑟𝑒𝑎𝑡

𝑅
 as discussed in Section 4.3.2.2. 

In order to provide more clarity, I provide several examples of pre- and post-treatment 

water usage for treatment and control sites in the setting with two time periods and two sites, 

and show how these translate into displacement ratios. In each example, I give potable and 

recycled water usage pre- and post-treatment for the treated site, and potable water use in the 

pre- and post-treatment periods for the control site (in CCUFT). From this information I 

calculate 𝜃, and in turn displacement, for each example. Then, I show that calculating 

displacement from the potable water usage gives the same result. Note that the pre-treatment 

column corresponds to t=1, and the post-treatment column to t=2, such that 𝑃1 in the pre-

treatment column is the potable water usage in site 1 during period 1, or 𝑃11. 



 

 211 

Example 1: 

 Pre-treatment 

(t=1)  

Post-treatment 

(t=2)  

Displacement calculation 

𝜃 = 0 

𝑑 = 1 −
𝜃

𝑅22

= 1 −
0

110
= 100% 

𝑑 = −
[𝑃22 − 𝑃21] − [𝑃12 − 𝑃11]

𝑅22

= −
−110

110
= 100% 

𝑃𝑖=1 100 110 

𝑃𝑖=2 100 0 

𝑅𝑖=2 0 110 

Table B.2: Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 

and the displacement calculation for Example 1. 

In this first example, total water usage in the control site and the treated site are the same in 

both the pre- and post-treatment period. Thus, even though total water usage increased by 10 

CCUFT, 𝜃 = 0 because the increase was the same in both sites. Displacement is 100%, 

because the 110 CCUFT of recycled water displaced both the 100 CCUFT from the pre-

treatment period and the 10 CCUFT increase in potable water usage that we infer from the 

behavior of the counterfactual (control site). Thus, I infer that the introduction of recycled 

water had no effect on total water usage, and displaced potable water on a 1-to-1 basis. 

Example 2: 

 Pre-treatment 

(t=1)  

Post-treatment 

(t=2)  

Displacement calculation 

𝜃 = 50 

𝑑 = 1 −
𝜃

𝑅22

= 1 −
50

100
= 50.0% 

𝑑 = −
[𝑃22 − 𝑃21] − [𝑃12 − 𝑃11]

𝑅22

= −
−50

100
= 50.0% 

𝑃𝑖=1 100 100 

𝑃𝑖=2 100 50 

𝑅𝑖=2 0 100 

Table B.3: Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 

and the displacement calculation for Example 2. 
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In the second example, total water usage in the control site stays the same in both periods, 

while the treated site increases its total water usage by 50 CCUFT after introducing recycled 

water. In this case, 𝜃 = 50. The 100 CCUFT of recycled water displaced 50 CCUFT of 

potable water usage, and no counterfactual potable water. The other 50 CCUFT of recycled 

water grew overall water usage at the site. Displacement is then 50%, and the calculation is 

equivalent when using difference-in-differences in total or potable water as shown above. 

Example 3: 

 Pre-treatment 

(t=1)  

Post-treatment 

(t=2)  

Displacement calculation 

𝜃 = 50 

𝑑 = 1 −
𝜃

𝑅22

= 1 −
50

230
= 78.3% 

𝑑 = −
[𝑃22 − 𝑃21] − [𝑃12 − 𝑃11]

𝑅22

= −
−180

230
= 78.3% 

𝑃𝑖=1 200 250 

𝑃𝑖=2 200 70 

𝑅𝑖=2 0 230 

Table B.4: Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 

and the displacement calculation for Example 3. 

In example 3, I show how displacement is calculated when total water usage increases in 

both treatment and control groups, but the magnitude of the increase is different. The 

difference between the change in total water usage in the treated site and the change in total 

water usage in the control site is 50 CCUFT. Usage in the control site increases from 200 to 

250, but in the treated site it increases from 200 to 300 CCUFT. Thus, in this case 𝜃 = 50 

once again. The treated site introduced 230 CCUFT of recycled water into its supply. This 

displaced the 130 CCUFT reduction in potable water usage from pre- to post-treatment, and 

another 50 CCUFT of counterfactual potable water usage inferred from the increase in 

potable water usage in the control site. The remaining 50 CCUFT of recycled water grew 
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overall water usage. Thus, 78.3% of the recycled water displaced potable water as shown in 

the two displacement calculations. 

Example 4: 

 Pre-treatment 

(t=1)  

Post-treatment 

(t=2)  

Displacement calculation 

𝜃 = 110 

𝑑 = 1 −
𝜃

𝑅22

= 1 −
110

150
= 26.7% 

𝑑 = −
[𝑃22 − 𝑃21] − [𝑃12 − 𝑃11]

𝑅22

= −
−40

150
= 26.7% 

𝑃𝑖=1 100 90 

𝑃𝑖=2 100 50 

𝑅𝑖=2 0 150 

Table B.5: Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 

and the displacement calculation for Example 4. 

Finally, I have an example where total water usage decreases in the control site. In this 

example, the difference-in-differences value of 𝜃 is 110, as total water usage increases from 

100 to 200 CCUFT in the treatment site, and decreases from 100 to 90 CCUFT in the 

control site. To first order, 150 CCUFT of recycled water displaces 50 CCUFT of potable 

water. However, I adjust displacement for the decrease in water usage in the control site, just 

as I did when the control sites increased water usage in previous examples. Since water 

usage decreased by 10 CCUFT in the control site, the 150 CCUFT of recycled water only 

displaced 40 CCUFT (50-10) of potable water after adjusting for the counterfactual. Then, 

for 150 CCUFT of recycled water, only 40 CCUFT displaced potable water and the 

displacement ratio is 26.7%. 

 

 

 

 




