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Abstract 8 

Hydropeaking, a hydroelectricity generation strategy involving rapid changes to flow releases 9 

from dams in response to fluctuations in hourly-adjusted electricity markets has been widely 10 

applied due to its economic efficiency. However, these operational practices produce sub-daily 11 

flow fluctuations that pose substantial hazards to riverine ecosystems and human activities. To 12 

ascertain the downstream impacts of hydropeaking, features of hydropeaking have been analyzed 13 

with respect to ecologically relevant hydrologic variables. However, since studies aiming to 14 

characterize hydropeaking regime often require manual feature extraction, they are limited to small 15 

temporal and spatial scales. Additionally, riverine ecologists have commonly treated hydropeaking 16 

as a broadly similar flow-alteration pattern regardless of the complexities of the electricity market 17 

and differences in the natural settings where it is applied. Therefore, this study sought to determine 18 

whether significantly different hydropeaking patterns exist on a regional scale, as revealed by the 19 

variation in hydropeaking over a long temporal scale (> five years). To fulfill this goal, a new 20 

algorithm, the Hydropeaking Event Detection Algorithm (HEDA), was developed in R to automate 21 

the characterization of hydropeaking flow regimes. Clustering analyses were conducted to explore 22 

the similarities and differences of hydropeaking regimes among 33 sites in numerous hydrologic 23 

regions of California. Four distinct classes of hydropeaking flow regimes were identified and 24 

distinguished by the duration and frequency of hydropeaking. Meanwhile, rate of change, 25 

amplitude and timing of hdyropeaking played less important roles in the classification. 26 

Keywords: hydropeaking, automated feature extraction, clustering analysis, environmental flow. 27 
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1 Introduction 28 

Hydropeaking operation is widely implemented due to the real-time electricity market mechanism 29 

and hydropower’s ability to quickly respond to peak electricity demands (Moog 1993). Rapid flow 30 

fluctuation is one of the most significant disturbances caused by hydropeaking power plants and 31 

summarized as frequent, large and rapid flow fluctuations, occurring as one or several peaks per 32 

day with certain periodicity (Meile et al. 2011, Charmasson and Zink. 2011, Poff and Schmidt, 33 

2016). Studies on hydropeaking started by comparing hydropeaking flow with natural flow to 34 

characterize the hydropeaking process, and to infer the critical condition when hydropeaking 35 

exceeds the ecological tolerance of river systems (Moog 1993, Poff and Ward, 1989, Young et al. 36 

2011). These studies found that the magnitude, frequency, duration, timing and rate of change of 37 

hydropeaking significantly impact the age, growth, movement, migration, spawning and rearing 38 

of aquatic organisms (Reichstein et al. 2019, Harby et al. 2013, Anindito et al. 2019). For example, 39 

the relatively sudden flow decreases (rate of change-fall) can strand fish in isolated shallows and 40 

gravel-bar interstices as water level recedes (Hauer et al. 2017a, Hauer et al. 2017b, Melcher et al. 41 

2017, Larrieu et al. 2021). Even though stranding may affect only a small portion of the fish 42 

population at a time, and may occur naturally, repeated flow fluctuations (frequency) can cause 43 

cumulative mortalities that can result in a significant fish loss (Young et al. 2011). Meanwhile, the 44 

ramping range (amplitude) of hydropeaking flow can partially explain the downstream 45 

displacement of both fish and macroinvertebrates (Thompson et al. 2011, Schülting et al. 2016). 46 

In addition, riparian plants face both physiological and physical constraints because of the shifts 47 

between submergence and drainage, and erosion of substrates (Bejarano et al. 2018). Nevertheless, 48 

most studies set natural flow as the reference condition and treat hydropeaking broadly similarly, 49 

which ignores the complexity of both power markets and natural settings (Haas et al. 2015, Lane 50 

et al. 2017). As a result, the general application in hydropeaking mitigation of these studies may 51 

be limited because each study can be site specific. 52 

 53 

With an increasing understanding of the hydropeaking flow-ecology relationship, characterizing 54 

hydropeaking flow regimes systematically became an important topic. At the early stage, because 55 

of the availability of data and computation capability, only daily flow was used to evaluate 56 

hydropeaking-induced flow alteration which was found to mask features of hydropeaking flow. 57 
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Instead, sub-daily flow data was needed to properly assess hydropeaking-induced flow alteration 58 

and its ecological impacts (Zimmerman et al. 2010, Spurgeon et al. 2016). With sub-daily flow, 59 

the short-term changes in hydropeaking flow that used to be masked by the daily flow can now be 60 

described. For example, Bejarano et al. (2017) found that sub-daily flow magnitudes such as 61 

amplitude and rate of change made the largest differences between hydropeaking flow and natural 62 

flow regime. Beyond the general differences between natural flow and hydropeaking, the 63 

hydropeaking-induced flow variation was found to differ from each other. Carolli et al. (2015) set 64 

thresholds for normalized amplitude and rate of change of hydropeaking flow, and divided 65 

hydropeaking flow regimes into three groups to represent different degrees of pressure that 66 

hydropeaking-induced flow variation imposed on the downstream aquatic system. Greimel et al. 67 

(2016) listed different types of hydropeaking flow regimes differentiated by the hydropeaking 68 

intensity and types of hydropower facilities. In the United States, McManamay (2015) found that 69 

peaking operations were the most prevalent type of hydropower operation based on extensive 70 

documentation mining, and identified three specific types of hydropeaking operations: peaking, 71 

intermediate peaking and run-of-river peaking. All these findings inspire this study, whose 72 

objective is to advance our fundamental understanding of hydropeaking regimes by conducting an 73 

explicit, data-driven analysis exploring the possible patterns and diversity among hydropeaking 74 

flow regimes. 75 

 76 

Hydrologic classification is the process of systematically arranging streams into groups that are 77 

most similar with respect to the characteristics or determinants of their flow regime (Olden et al. 78 

2012). By identifying and categorizing dominant features (as revealed through a suite of 79 

hydrologic variables), hydrologic classification not only assists in describing the flow regimes at 80 

a regional scale but can also improve the predictive power and process basis of flow-ecology 81 

relationships. This ultimately leads to more effective environmental flow management with 82 

minimal data and resource requirements (Corduas 2011, Lane et al. 2018, Sergeant et al. 2020). 83 

Despite the marked value of hydrologic classification and rapidly growing computational power, 84 

limited hydrologic classification work on hydropeaking has been developed to characterize 85 

hydropeaking flow regimes at a regional scale (Palmer et al. 2005, Bergen et al. 2019, Reichstein 86 

et al. 2019). Part of the reason for this is that methods used to parse sub-daily hydropeaking flow 87 
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are difficult to apply at a large spatial and temporal scale due to the frequent need to perform site 88 

pairing with gauging stations and feature extraction manually. 89 

 90 

Approaches available for characterizing hydropeaking flow regimes have also constrained our 91 

understanding of hydropeaking-induced flow alteration. The Indicators of Hydrologic Alteration 92 

(IHA) and its derivatives have been used to characterize hydropeaking-induced flow fluctuations 93 

(Cushman 1985, Richter et al. 1996). However, when dealing with sub-daily flow records, IHA 94 

and its derivatives are incapable of capturing the time-series variation of the whole period because 95 

of the burdensome feature extraction. To address this issue, wavelet transforms have been applied 96 

to extract the spectral pattern of hydropeaking flow by fully considering time-series variation at 97 

different temporal resolutions (Daubechies 1992, Zolezzi et al. 2009, Wu et al. 2015). 98 

Nevertheless, wavelet transforms can only be applied to one stream at a time and results are 99 

difficult to interpret in terms of ecological implications. To address limitations of these two 100 

approaches, a new method was devised to integrate IHA into wavelet transform by replacing the 101 

original energy amplitude with the IHA index amplitude in the scale-averaged wavelet transform 102 

spectrum (Zolezzi et al. 2009). While this approach successfully fused the advantages of the two 103 

methods, it is still limited to the daily flow of an individual river. After that, an algorithm named 104 

COSH was developed to analyze the time-series variation of hydropeaking flow (Sauterleute and 105 

Charmasson, 2014). Even though COSH made an important advance in mining hydropeaking 106 

features automatically, iterative adjustments to thresholds are needed to detect hydropeaking 107 

events for each river. These leaves open a gap for highly automated methods that can process a 108 

large number of records and the need for more basic science to handle extensive flow records with 109 

a high temporal resolution across a hydrologically diverse region. 110 

 111 

In this study, the goal was to explore the diversity of hydropeaking flow regimes at a regional 112 

scale. To fulfill this goal, a new algorithm was developed to (1) distinguish hydropeaking flow 113 

from non-hydropeaking flow, and (2) automate hydropeaking regime characterization by treating 114 

flow records as Euclidean vectors and identifying peaking events by vector angle and magnitude. 115 

The application of a dynamic threshold consists of daily maximum and minimum flow prevented 116 

this algorithm from requiring iterative, manual adjustments for different time windows and river 117 

reaches. The algorithm was applied to 128 sites with sub-daily flow records in California and 118 
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identified 33 sites with hydropeaking signals. Then, hydrologic classification was applied to the 119 

identified 33 sites to classify the broad range of hydropeaking process (governed by the electricity 120 

demand, power transmission lines, electricity price and natural site constraints) into several 121 

discrete categories. Two types of clustering analyses, hierarchical and fuzzy clustering, were used 122 

to provide a clear structural interpretation of data that sheds light on the underlying organized 123 

patterns of hydropeaking flow while still considering the uncertainty of cluster membership. 124 

2 Material and methods 125 

2.1 Study sites 126 

The study region comprises the state of California (425,000 km2), a highly heterogeneous region 127 

with respect to physical and climatic characteristics. California contains both the highest (4,418 128 

m) and lowest (-86 m) points in the contiguous U.S. and extends from 32° N to 42° N latitude. A 129 

600-km north-south-oriented mountain range, the Sierra Nevada, situated in eastern California 130 

provides large natural potential energy for hydropower facilities. California primarily exhibits a 131 

Mediterranean climate with cold and wet seasons (October-May), and warm and dry season (June-132 

September). Many rivers with hydropower facilities have their source in high-altitude zones of the 133 

Sierra Nevada, where most precipitation in winter has historically been stored as snowpack, and 134 

runoff peaks during the spring snowmelt period. This combination of topography and climate 135 

makes California naturally suitable for year-round hydropower production due to the sustaining 136 

summer baseflow supplied by snowmelt. 137 

 138 

California has a deregulated electricity market, which allows for the entrance of competitors to 139 

buy and sell electricity based on the hourly-variable electricity market demand, consisting of two 140 

major morning and evening peak demands on top of the baseload (Borenstein et al., 1995, 141 

Aghajanzadeh and Therkelsen, 2019). The wholesale electricity market is comprised of distinct 142 

day-ahead and real-time markets in which the former one schedules the electricity production for 143 

the next day while the latter one is a spot market used to meet the last few increments of demand 144 

not covered in the former markets (CAISO 2016). Besides these two markets, ancillary services 145 

are to help maintain grid stability and reliability by having hydropower plants generate electricity 146 

when unexpected events occur (CAISO 2004). Hydropower is one of the important energy sources 147 
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that can both undertake base load, peak load electricity generation and ancillary services (Key et 148 

al. 2012). In 2019, hydroelectric power plants accounted for 19 percent of the total in-state 149 

electricity generation in California based on the record of the California Energy Commission (CEC 150 

2020). 151 

 152 

A database of California hydropower plants was initially used to pair power facilities with gauging 153 

stations by locations (CEC, 2018). All the available flow records (15-minute and hourly) were 154 

obtained from the U.S. Geological Survey (USGS, 2018) and through the California Data 155 

Exchange Center (CDEC, 2018) using two R packages ("dataRetrieval" and "CDECRetrieve"). 156 

For sites whose flow records were unavailable online, public data requests were made to local 157 

managers, though not all requests were answered. Using these approaches a total of 128 records 158 

were obtained. 159 

2.2 Data analysis framework 160 

This study had two objectives. The first objective (OBJ 1) was to automate hydropeaking events 161 

detection and feature extraction to enable data mining in a high temporal and spatial scale. The 162 

second objective (OBJ 2) was to explore the diversity of hydropeaking flow regimes in California 163 

with outputs from OBJ 1. A data analysis framework was developed to process hydropeaking flow 164 

and identify patterns of hydropeaking flow regimes (Fig. 1). To fulfill OBJ 1, Hydropeaking Event 165 

Detection Algorithm (HEDA) was developed (Details in section 2.4). To yield better performance, 166 

flow records were split into climatic dry and wet seasons because precipitation or snowmelt can 167 

disturb hydropeaking signals. Then, outputs of HEDA were used to identify gauging stations 168 

recording hydropeaking flow and extract hydrologic metrics. To fulfill OBJ 2, two types of 169 

clustering analyses, hierarchical and fuzzy clustering, were conducted to explore data structure 170 

with seven independent hydrologic metrics of dry season dataset. Clustering analyses were 171 

heuristically determined with a combination of statistical interpretation, the examination of 172 

hydrographs, and documentation mining. Five major outcomes (highlighted in grey rectangular in 173 

Fig 2) were investigated and are discussed herein. 174 
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 175 
Figure 1. Data analysis frame of revealing the diversity of hydropeaking flow regimes. 176 

2.3 Hydrologic variables 177 

Five key dimensions of a hydrologic regime defined by Poff et al. (1997) were applied to analyze 178 

hydropeaking flow regimes. Fifteen ecologically meaningful flow metrics were then selected to 179 

represent these five dimensions (Baker et al. 2004, Meile et al. 2011, Bieri 2012, Bevelhimer et al. 180 

2015) (Table 1). Each hydropeaking event is divided into base, rising, peak, and falling processes 181 

(Fig. 2). For each event, base flow is the minimum flow while peak flow is the maximum flow of 182 

a hydropeaking event. Rising and falling processes are the transition between base and peak flow. 183 

When two increases above the threshold magnitude are interspersed with a short period of no 184 

change, these two increases are counted as two rising processes (highlighted in dark grey in Fig. 185 

2). Daily and annual frequency of hydropeaking are the sum of rise and fall process per day, and 186 

the number of days with hydropeaking per season/year respectively. One rise-fall cycle forms one 187 

hydropeaking event (highlighted in light grey in Fig. 2) Timing is the date/time at which 188 

hydropeaking happens. Duration is the time length of rise/fall (𝐷𝐷𝑅𝑅𝑅𝑅) and peak (𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟). Rate of 189 
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change (RC) is the flow variation per unit time and Richards-Baker (RB) Index describes the 190 

normalized flow variation per unit time, where the impact of river size is eliminated by normalizing 191 

with Qave. 192 

 193 

Figure 2. Events’ definition and relevant values to calculate flow fluctuation parameters. Two 194 

hydropeaking events occur in the hydrograph. Vector angle (𝜃𝜃𝑗𝑗) is defined as the angle between 195 

two flow vectors (𝑞𝑞𝑖𝑖���⃗ , 𝑞𝑞𝑗𝑗���⃗ ).  196 
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Table 1. Hydrologic metrics derived from HEDA used in classification. Illustration was provided 197 

in figure 2. 198 

Variable Metric Metric Name Symbol Unit 

Magnitude 

𝑄𝑄𝑝𝑝𝑝𝑝,𝑖𝑖

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎
 Peaking discharge 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 - 

𝑄𝑄𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎,𝑙𝑙

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎
 Base flow 𝑄𝑄𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝 - 

�𝑄𝑄𝑝𝑝𝑝𝑝,𝑗𝑗 − 𝑄𝑄𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝,𝑙𝑙�
𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝

 Standardized 
amplitude *𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 - 

Frequency 

Total number of rise and fall per 
day. One rise-fall cycle is one 
hydropeaking event. 

Daily peaking 
number 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 - 

Number of days has hydropeaking 
divided by the total number of days Annual frequency 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 - 

Timing Weighted value of time (1-24) 
hydropeaking happens per day. Timing **𝑇𝑇𝑚𝑚𝑝𝑝𝑚𝑚 hr 

Duration 
�𝑇𝑇 𝑟𝑟 − 𝑇𝑇𝑗𝑗� Retention of peak 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 hr 

�𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑙𝑙� Duration of rise/fall *𝐷𝐷𝑅𝑅𝑅𝑅 hr 

Rate of 
change 

�𝑄𝑄𝑝𝑝𝑝𝑝,𝑗𝑗 − 𝑄𝑄𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝,𝑙𝑙�
��𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑙𝑙�𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎�

 Flashness *RB 
Index hr-1 

|𝑄𝑄𝑝𝑝𝑝𝑝,𝑗𝑗 − 𝑄𝑄𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝,𝑙𝑙|
�𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑙𝑙�

 Rate of Change *RC (m3/s)/hr 

*𝐷𝐷𝑅𝑅𝑅𝑅 , RB Index, 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 and RC are split into rise and fall processes and each process is calculated separately. 199 

**The weighted average value of 𝑇𝑇𝑚𝑚𝑝𝑝𝑚𝑚 instead of the median value was used because of the multi-modal distribution 200 
due to morning and evening peaks, which led median value fails to represent the most frequent value of timing. 201 
Therefore, 𝑇𝑇𝑚𝑚𝑝𝑝𝑚𝑚  refers to the pattern of timing rather than the time hydropeaking happens. Qave  is the average 202 
discharge of the whole period of each site. 203 

2.4 Hydropeaking Event Detection Algorithm 204 

To fulfill OBJ 1, a new algorithm, Hydropeaking Event Detection Algorithm (HEDA), was 205 

developed in R (R Core Team, 2020) to automate feature extraction of high-resolution 206 
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hydropeaking flow with limited subjective decisions. HEDA consists of three modules: Data 207 

Preparation, Vector Angle, and Clean Noise (Fig. 3). The first module, Data Preparation, starts 208 

with hourly flow records (15-minute records were converted to hourly records by taking the mean 209 

flow within the same hour) of the interest period (e.g., post-dam period). The flow record of each 210 

site is then split into dry (June-September) and wet (October-May) season datasets to optimize the 211 

performance of HEDA as hydropeaking tends to occur more frequently in the dry season while 212 

precipitation and snowmelt in other seasons can disturb the hydropeaking signals. Data smoothing 213 

strategies such as Gaussian filtering or locally estimated smoothing were not applied as these 214 

strategies (1) are unable to quickly process a large amount of data; (2) potentially mark peaking 215 

events as noise; and (3) degrade or destroy the peaking pattern (SI II). Instead, the flow record was 216 

smoothed with two steps. First, based on observation, intensive small fluctuations always occur at 217 

base and peaking discharge, thus flow records were truncated by 10th and 90th percentile of 218 

discharge during the whole period(SI II). Second, flow variations (∆𝑞𝑞𝑟𝑟 = 𝑄𝑄𝑟𝑟+1 − 𝑄𝑄𝑟𝑟) smaller than 219 

threshold 𝑋𝑋  were assigned zero to avoid mischaracterizing small fluctuations as peaks due to 220 

measurement errors. Threshold 𝑋𝑋 consists of a global (𝛾𝛾) and local static (𝛼𝛼1 ∗ 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝) threshold 221 

(Eq.1). The global threshold (𝛾𝛾) acted as a consistent standard to all sites. Threshold values of 𝛾𝛾 222 

was initialized based on the minimum rise/fall rate found in the literature (2.8 m3/s/hr) and finalized 223 

to be 𝛾𝛾 = 1.1 m3/s. The local static threshold (𝛼𝛼1 ∗ 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝) was a consistent standard to one site. The 224 

𝛼𝛼1 was assigned 0.03 by evaluating the range of 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝  at 33 sites and the relative difference 225 

between all the thresholds (𝑇𝑇3𝑟𝑟) used in this study (SI II). 226 

 𝑋𝑋 = max(𝛾𝛾, 𝛼𝛼1 ∗ 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝) ( 1 ) 227 

The second module, Vector Angle, involves the identification of change points (Fig. 3). Among 228 

the flow record, consecutive data points (𝑇𝑇𝑟𝑟,𝑄𝑄𝑟𝑟) and (𝑇𝑇𝑟𝑟+1,𝑄𝑄𝑟𝑟+1) were treated as a Euclidean 229 

Vector 𝑞𝑞𝑟𝑟����⃗  (∆𝑆𝑆𝑟𝑟, ∆𝑞𝑞𝑟𝑟), a quantity that has a magnitude and a direction. The magnitude of a vector 230 

is the distance between the two data point (|𝑞𝑞𝑟𝑟����⃗ | = �(∆𝑆𝑆𝑟𝑟)2 + (∆𝑞𝑞𝑟𝑟)2 while direction is from its 231 

tail (𝑇𝑇𝑟𝑟,𝑄𝑄𝑟𝑟) to its head (𝑇𝑇𝑟𝑟+1,𝑄𝑄𝑟𝑟+1) (Fig. 2 ). The vector angle (θ𝑟𝑟+1) between two continuous 232 

vectors (𝑞𝑞𝑛𝑛���⃗ , 𝑞𝑞𝑛𝑛+1��������⃗ ) was used to identify change points instead of the first derivative of 𝑞𝑞(𝑆𝑆) to 233 

exclude change points outside the range of the designated rise/fall rate (tan𝜃𝜃 = ∆𝑞𝑞𝑟𝑟/∆𝑆𝑆𝑟𝑟) (Eq.2). 234 

The threshold value of 𝜃𝜃 was tested from 30° to 70° and finalized as 70°. The degree 70° was set 235 

based on the threshold of the mitigation standard of hydropeaking rise/fall rate (2.8 m3/s/hr) used 236 
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in the American river (SI II) (Young et al. 2011). After 𝑞𝑞(𝑆𝑆) with 𝜃𝜃 > 60° were identified, change 237 

points were grouped into four categories based on the symbol of ∆𝑞𝑞𝑟𝑟+1 (+, 0, -) which separated 238 

hydropeaking processes into four groups (points 1-4 in Fig. 3). Points 1 and 4 are always followed 239 

by a rising discharge while point 3 is followed by a falling discharge. Point 2 indicates the start of 240 

either a peak or base flow discharge. The sequence of point 2 followed by point 4 (base-flow pair) 241 

indicates base flow while the combination of point 2 and 3 (peak pair) indicates a peak discharge. 242 

 243 

 𝜃𝜃𝑟𝑟+1 = cos−1(∆𝑆𝑆𝑟𝑟2 ∗ ∆𝑆𝑆𝑟𝑟+12 + ∆𝑞𝑞𝑟𝑟2 ∗ ∆𝑞𝑞𝑟𝑟+12)/�∆𝑞𝑞𝑟𝑟 ∗ ∆𝑆𝑆𝑟𝑟2 + ∆𝑞𝑞𝑟𝑟+1 ∗ ∆𝑆𝑆𝑟𝑟+12 ( 2 ) 244 

 245 

In the Clean Noise module, three layers of correction (position, repetition and difference) clean 246 

change points identified incorrectly. In the position layer, change points are excluded if they occur 247 

in the wrong position. For example, both point 3 and the peak pair represent the peaking discharge 248 

whose value (position) should be close to the daily maximum discharge. If the peaking discharge 249 

is close to the daily minimum discharge, change points are removed since they are in the wrong 250 

positions. The second layer, Repetition, cleans repeated points generated in the first layer. Before 251 

getting to the third layer, the first and second layers need to repeat to make sure change points that 252 

violated the former two rules are removed. The last layer, Difference, evaluates whether ∆𝑞𝑞𝑟𝑟 is 253 

large enough to be identified as a peaking event based on a daily amplitude threshold described 254 

below. 255 

 256 
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Figure 3. Schematic diagram showing the sequential steps of the HEDA. 257 

Within the three layers, three thresholds were used, 𝑇𝑇1(t), 𝑇𝑇2(t), and 𝑇𝑇3(t) (Eq.3-5 and Fig. 3). 258 

In the position layer, two dynamic thresholds (𝑇𝑇1(t) and 𝑇𝑇2(t)) that were updated daily were used 259 

for each river to identify the relatively high and low discharge. The threshold value of high 260 

discharge was defined as the difference between maximum daily flow (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t)) and 30% (𝛼𝛼2) of 261 

the daily maximum amplitude (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆)) while that for low discharge was defined as 262 

the sum of daily minimum flow (𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆)) and 30% (𝛼𝛼2) of the daily maximum amplitude. In the 263 

repetition and difference layers, 𝑇𝑇3(t) was used as the standard to evaluate whether flow variation 264 

can be counted as a rise/fall process. 𝑇𝑇3(t) consists of a local static threshold ( 𝛼𝛼3 ∗ 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝) and a 265 

dynamic threshold ( 𝛼𝛼4 ∗ (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆))) that were updated daily for each river to reflect 266 

the evolvement evolution of climate, seasonality, and river size flow, all of which that are highly 267 

related to hydropower operation. To decide what fraction of 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝 to be used, tests were run within 268 

a reference range (30%-100%) obtained from literature with both 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝 and amplitude available 269 

(Zimmerman et al. 2010, Hauer et al. 2012, Capra et al. 2017). Finally, 70% of 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝 (𝛼𝛼3 = 0.7) 270 

was selected as the threshold value because outputs of HEDA didn’t change beyond this fraction. 271 

To identify different intensities of rise/fall process of each site, 50% of the daily maximum 272 

amplitude was used (SI II). 273 

 𝑇𝑇1(t) = 𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝛼𝛼2 ∗ (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆)) ( 3 ) 

 𝑇𝑇2(t) = 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(t) + 𝛼𝛼2 ∗ (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆)) ( 4 ) 

 𝑇𝑇3(t) = max� 𝛼𝛼3 ∗ 𝑄𝑄𝑝𝑝𝑎𝑎𝑝𝑝 ,  𝛼𝛼4 ∗ (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚(t) − 𝑄𝑄𝑚𝑚𝑟𝑟𝑟𝑟(𝑆𝑆))� ( 5 ) 

The performance of HEDA was assessed with visual examination, with 500 change points of each 274 

hydropeaking site plotted and visually checked. The error rate of HEDA was calculated by dividing 275 

the number of wrongly identified change points by 500. 276 

2.5 Hydropeaking clustering 277 

To fulfill OBJ2, outputs from HEDA of dry season dataset were analyzed with correlation analysis 278 

to select independent metrics for clustering analysis to explore the underlying diversity of 279 

hydropeaking flow regimes among the 33 sites. First, values of 15 metrics were transformed to 280 
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values between 0 and 1 by min-max normalization (Eq. 6) to remove scaling impact. A correlation 281 

matrix of fifteen flow metrics was created to identify and remove highly correlated metrics (SI I). 282 

Second, two types of clustering methods, hierarchical and fuzzy clustering, were used to explore 283 

the data structure from different perspectives. In the beginning, a hierarchical clustering analysis 284 

using Ward’s algorithm (Ward’s hierarchical clustering; WHC) (Ward, 1963) was used to make a 285 

preliminary assessment of hydropeaking patterns without any preconceived assumptions. The 286 

WHC started with the maximum cluster number (33 in this study), then reduced the number of 287 

clusters by merging them at the node with minimum merging cost, i.e. the least total within-cluster 288 

variance, from bottom to top. Then, Fuzzy c-means (FCM) clustering built on the WHC result was 289 

used to not only examine the clustering structure with the partitional-clustering algorithm but also 290 

the degree of membership (Bezdek 1973, 2013). Instead of assigning one site to one class each 291 

time, FCM assigned each site a cluster membership score, where being closer to the cluster center 292 

means a higher score. This provided more robust clustering against noise and outliers because low 293 

scoring sites have a reduced impact on the position of the cluster center (Kantardzic 2011). Also, 294 

presuming a soft boundary between clusters is more aligned with real-world hydropower operation 295 

since its underlying driving force is to maximize profit under constrained factors; thus, a 296 

powerhouse might use more than one operational mode. 297 

 𝑌𝑌′𝑟𝑟 = 𝑌𝑌𝑖𝑖−𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚−𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚

 ( 6 ) 298 

The relative roles of hydropeaking metrics forming the data structure were analyzed next. 299 

Nonmetric multidimensional scaling (NMDS) (Clarke, 1993) was performed to visualize the 300 

hidden structure of the multivariate dataset in a reduced dimension (from seven to three 301 

dimensions). Principle component analysis was then built on NMDS to evaluate the relative 302 

significance of the seven metrics on each axis. Box-and-whisker plotting was applied to illustrate 303 

relative differences in hydrologic metrics within and across the identified hydropeaking patterns. 304 

Finally, a classification and regression tree (CART) (Breiman et al., 1984, De'ath and Fabricius, 305 

2000) was used to identify the most explanatory hydrologic metrics in distinguishing hydropeaking 306 

patterns and their threshold values. The classification tree yielded a binary decision tree based on 307 

the proportion of presences and absences in the clusters. The splitting criterion was to maximize 308 

the homogeneity of the cluster and is defined by the Gini index which measures the degree or 309 

probability of a particular variable being wrongly classified when it is randomly chosen. At each 310 
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node, the selected feature/metric with the lowest Gini index was used to further split the tree. 311 

Euclidean distance was chosen as the distance measure. Ten-fold cross-validation was used to 312 

select tree size with the highest prediction accuracy. 313 

 314 

Clustering validation was heuristically determined based on a combination of statistical analysis 315 

interpretation, the examination of hydrograph and documentation mining. First, potential numbers 316 

of clusters were identified based on the structure of the dendrogram and the Hartigan index 317 

(Hartigan 1975). Meanwhile, NMDS was used to visualize how potential clusters distinguish sites 318 

in a reduced dimension. The goal is to have clusters well separated from each other with the least 319 

overlapping areas. Second, site membership in clusters was analyzed and only those with a value 320 

> 50% were kept. Third, box-and-whisker plots and classification trees were also used to examine 321 

the performance of clustering. For reliable clustering, it is expected that metrics display a certain 322 

degree of difference between clusters, and classifiers trained by identified clusters can perform 323 

prediction reliably (cross-validation accuracy). Besides all the statistical interpretation, physical 324 

interpretation of the clusters was also conducted by checking hydrograph and historical 325 

documentation of hydropower facilities. The goal of this heuristic refinement was not to make 326 

large adjustments to the purely statistical classification but to ensure that it was capturing real-327 

world differences. 328 

3 Results 329 

3.1 Identification of hydropeaking sites 330 

Before attempting to use HEDA to identify hydropeaking sites, the performance of HEDA was 331 

assessed (Fig. 5) by applying it to sites where operation modes were known (30 non-hydropeaking 332 

and 10 hydropeaking sites). HEDA worked effectively at distinguishing the non-hydropeaking 333 

flow from the hydropeaking flow. Compared with the hydropeaking flow, half of the non-334 

hydropeaking flow sites obtained “NA” output (no value) for all metrics and the other half featured 335 

low 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛  (<5%) and 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛  (<0.9). Hydropeaking flow was defined as having high 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 336 

(10%-95%) and 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛 (>=1). Then, these criteria for 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛 were employed as standards 337 

to identify sites using all 128 flow records. Sites that met only one of the two standards (𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 338 

and 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛 ) were double-checked with hydrographs and documentation about site operations. 339 
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Consequently, 33 sites (site information in SI I) with a length of flow records at least five years 340 

were identified as hydropeaking sites and used for the following analyses (Fig. 4). 341 

 342 
Figure 4. Map of hydropeaking sites identified by HEDA and classes identified by FCM, 343 

California, USA. An interactive map is available: 344 

https://ninalty.github.io/HPK_InteractiveMap/HPK_CA_InteractiveMap.html 345 

 346 

Among the 33 hydropeaking sites, the average error rate of HEDA was 1% among sites with 347 

minimum and maximum values of 0% (six sites) and 2.8% (two sites), respectively. The incorrect 348 

change points were mainly caused by noisy segments of flow records from local agencies that did 349 

not perform sufficient quality assurance and quality control, yielding data that were too noisy even 350 

for manual identification (Fig. 5A). As for other flow records, relatively small peaking events can 351 

be neglected by HEDA when a mix of small and large peaking events occurred on the same day. 352 

The large peaking discharge can make the upper bound of peaking (𝑇𝑇1(t)) too high for small 353 

peaking events to be detected. For example, in FOL site, the large peaking discharge is around 142 354 

https://ninalty.github.io/HPK_InteractiveMap/HPK_CA_InteractiveMap.html
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m3/s while the small peaking discharge is around 71 m3/s on the same day. Because of the large 355 

relative difference between hydropeaking events within that day, HEDA can only keep the large 356 

hydropeaking events but overlook the small ones (Fig. 5B). 357 

 358 
A 359 

 360 
B 361 

Figure 5. Hydrographs with 500 change points identified by HEDA in the dry season. A is 362 

streamflow below Big Creek Power House #3 recorded by gauge 11241800. B is streamflow below 363 

Folsom Lake outflow recorded by gauge FOL. 364 
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3.2 Diversity of hydropeaking flow regimes 365 

Outputs of HEDA (median values of 15 flow metrics) were further analyzed to reveal the diversity 366 

of hydropeaking flow regimes. Seven metrics were selected and regarded as uncorrelated (≤ 0.6) 367 

(SI II). Even though 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 is moderately related (0.69) to 𝐷𝐷𝑅𝑅𝑅𝑅 among the seven metrics, 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 368 

was still selected because it can provide the number of days that hydropeaking occurs during a 369 

certain period, such as summer in this case. As for the other six metrics, the correlation coefficients 370 

between them were all below 0.6 and assumed to be weakly related. With a normalized subset of 371 

hydrologic metrics meeting statistical independence, WHC was first applied to illustrate the nested 372 

data structure of the 33 sites (Fig. 6). The first split occurred at a distance of 2.8, distinguishing 373 

two clusters: one giant cluster and one small cluster – group four (G4). Subsequently, the tree split 374 

within the giant cluster and formed four big branches: group three (G2), group two (G3) and group 375 

one (G1) in sequence. All the subtrees continued to grow under each of the four branches. However, 376 

the internal clustering Hartigan index suggested that cutting the dendrogram into four groups was 377 

the optimal option driven by strong breaks in 𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛  and 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 . This conformed with 378 

preliminary analyses of data structure in the reduced dimensions (NMDS) and tree structure of the 379 

clustering dendrogram (Fig. 7). To have four clusters, the tree was cut at a distance of 2, and 11 380 

sites were clustered to G1, eight sites as G2, nine sites as G3 and four sites as G4. 381 
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 382 
Figure 6. The hierarchical cluster diagram shows similarity/dissimilarity among 33 sites. Sites are 383 

indicated by either their USGS ID number or the CDEC 3-character ID. 384 

To further evaluate clustering validity or uncertainty, FCM clustering was applied to assess the 385 

strength of WHC by knowing the membership value of each site in the identified groups. The 386 

fuzzification parameter (m) is a weighting parameter controlling the degree of fuzziness in the 387 

process of clustering. When m=1, the partitioning is ‘hard’ (probability of members to the 388 

designated cluster is one), as m increases the membership assignments of the clustering become 389 

fuzzier (members have evenly distributed probability in all clusters). Even though no theoretical 390 

or computational evidence distinguishes an optimal m, for most data sets, 1.25≤m≤3 gives good 391 

results (Bezdek et al. 1984, Güler and Thyne. 2004, Ross 2005). Based on trials and sensitivity 392 

testing in this study, it appeared that m = 1.3 resulted in clustering that was neither too fuzzy nor 393 

too hard. From the membership matrix (Table 2), sites were assigned to the cluster of membership 394 

value > 0.5. Compared with WHC, assigning the same cluster number to FCM generated a similar 395 

clustering structure with only two sites clustered to different groups. Site 11278400 and OXB were 396 

moved from G1 to G3 and G2 by FCM. Site OXB had a weak membership in all the groups.  397 



19 
 
 

Table 2. FCM Membership Matrix of hydropeaking patterns. Bold numbers indicate group 398 

membership selected. 399 

Sites Group 
Membership value 

G1 G2 G3 G4 

11278400 G3 0.40 0.04 0.54 0.01 
11289000 G1 0.50 0.39 0.10 0.01 
11355010 G2 0.10 0.86 0.03 0.00 
11429300 G1 0.96 0.02 0.03 0.00 
11429340 G2 0.04 0.94 0.02 0.00 
11440900 G2 0.00 0.99 0.00 0.00 
11441002 G2 0.06 0.94 0.00 0.00 
11441780 G1 0.98 0.02 0.01 0.00 
11441895 G1 1.00 0.00 0.00 0.00 
11443460 G1 0.99 0.00 0.00 0.00 
11238100 G3 0.00 0.00 1.00 0.00 
11238380 G3 0.00 0.00 0.99 0.00 
11238400 G3 0.00 0.00 1.00 0.00 
11241800 G3 0.00 0.00 1.00 0.00 
11246530 G3 0.00 0.00 1.00 0.00 
11238550 G3 0.00 0.00 1.00 0.00 
11235100 G3 0.00 0.00 1.00 0.00 
01123550 G4 0.00 0.03 0.02 0.95 
11238250 G2 0.16 0.74 0.08 0.02 
AFO G4 0.00 0.00 0.00 1.00 
BUL G3 0.03 0.00 0.97 0.00 
CBR G1 0.94 0.01 0.05 0.00 
CLE G2 0.01 0.99 0.00 0.00 
CPH G3 0.09 0.01 0.90 0.00 
CPPH G2 0.00 1.00 0.00 0.00 
FOL G1 0.94 0.05 0.01 0.00 
KIG G4 0.00 0.00 0.00 1.00 
LWS G4 0.00 0.00 0.00 1.00 
MMF G4 0.00 0.00 0.00 1.00 
OXB G2 0.17 0.38 0.32 0.13 
PMN G1 0.98 0.00 0.01 0.00 
SHA G1 0.92 0.04 0.03 0.01 
WHI G2 0.01 0.99 0.00 0.00 
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3.3 Clustering validity and relative significance of hydrologic metrics 400 

Clustering validation was heuristically evaluated by exploring the data structure in a reduced 401 

dimension and analyzing the relative significance of the hydrologic metrics of each group. The 402 

three-dimensional NMDS ordination reached a stress value of 0.085 with a non-metric coefficient 403 

of determination of 0.99 between observed dissimilarity and ordination distance (Fig. 7) which 404 

both indicate a good ordination with little risk of drawing false inferences (McCune et al. 2002). 405 

In the reduced dimensionality, along the first axis, five sites that belonged to G4 were well apart 406 

from the majority on the right side. Sites gathered on the right spread widely along the second axis 407 

and had a small overlapping area between G1 and G3. The three principal component axes (PCAs) 408 

resulting from the NMDS ordination explained 74% of the variance in the data with loadings of 409 

0.65 for 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛, -0.78 for 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 and -0.65 for 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 for PCA-1, PCA-2 and PCA-3 respectively. 410 

Besides 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐷𝐷𝑅𝑅𝑅𝑅 ranked the second highest (0.60) loadings for PCA-3. These analyses led to the 411 

conclusion that 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 was the principle metric that distinguished G4 from the other three groups 412 

while 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟, 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 and 𝐷𝐷𝑅𝑅𝑅𝑅  together explained the separation of G1, G2 and G3. 413 

 414 

Figure 7. Results from non-metric multidimensional scaling. 415 

Classification tree and box-and-whisker plots were used to identify the most explanatory 416 

hydrologic metrics distinguishing hydropeaking patterns and their threshold values. These 417 
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provided potential ranges of metric values expected for each hydropeaking pattern. The 418 

classification tree model built on WHC determined three principle metrics and the relative strength 419 

to be as follows: 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛  (2.6), 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 (46%) and 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(4.5) (Fig. 8). The classification tree model 420 

built on FCM determined three principle metrics and their relative strength to be as follows: 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 421 

(2.6), 𝐷𝐷𝑅𝑅𝑅𝑅  (3.5), and 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 (46%). The classification tree built on WHC and FCM both correctly 422 

classified 94% of the sites. Ten-fold cross-validation of the prediction was 79% (WHC) and 82% 423 

(FCM). Box-and-whisker plots illustrated relative differences in hydrologic metrics within and 424 

across the four identified hydropeaking groups (Fig. 9). G1 had the highest 𝐷𝐷𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛  which 425 

implied G1 features a relatively slow rise/fall process and frequent peaking operations across a 426 

year. G2 had the highest 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟, RC, and 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 implying that this group has a long-lasting peaking 427 

status, with a rapid fluctuation with large variations in magnitude. G3 stood out from other groups 428 

as having the highest 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 but relatively low values of other metrics compared with the former 429 

two groups. G4 has the fewest hydropeaking features, with low values of all the hydrologic metrics. 430 

G1 and G2 have similar values of 𝑇𝑇𝑚𝑚𝑝𝑝𝑚𝑚 while G4 has the lowest value of 𝑇𝑇𝑚𝑚𝑝𝑝𝑚𝑚 and G3 ranked 431 

between them. 432 

  
(A) (B) 

Figure 8. CART classification trees indicating primary metrics and their threshold values of 433 

distinguishing hydropeaking groups trained by WHC (A) and FCM (B). 434 
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 435 
Figure 9. Box-and-whisker plot of normalized hydrologic metrics used in the FCM clustering 436 

analysis. 437 

4 Discussion 438 

4.1 HEDA performance 439 

Instead of using the first derivative of discharge with time, treating consecutive points in a flow 440 

record as a Euclidean vector and detecting change points with vector angle and magnitude boosted 441 

the computational efficiency by avoiding over-detecting change points. In addition, the application 442 

of static and dynamic thresholds automatically adjusts the threshold over time and across sites. 443 

Thus, it requires less subjective input and iterative adjustment. The only subjective decisions that 444 

have been made are the four weighting coefficients 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3 and 𝛼𝛼4. Their values were assigned 445 

based on the overall performance and reference range found in the literature, but they are open to 446 

user adjustments. All these features make HEDA stand out from other approaches for its capability 447 

of distinguishing sites with and without hydropeaking and automating the feature extraction of 448 

hydropeaking flows. 449 

 450 
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Even though HEDA initially was not developed to distinguish hydropeaking flow from non-451 

hydropeaking flow, it successfully distinguished the two types of flow with 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛 . This 452 

is a very useful function because manually pairing the location of gauges to powerhouses is 453 

extremely time-consuming. Besides known hydropeaking sites, HEDA could identify 454 

hydropeaking sites by starting with flow records instead of with documentation – which is useful 455 

in regions of the world where getting this documentation can be quite difficult or in places where 456 

actual operations deviate from stated ones. With HEDA, users can finish this process within ten 457 

minutes by importing all the sub-daily flow record of a site into HEDA. Furthermore, HEDA 458 

successfully captured major hydropeaking events and filtered noises through the whole study 459 

period (five to thirty years) of 33 sites with a low error rate (Fig. 5), thus enabling the extraction 460 

of hydrologic features automatically. Automating feature extraction of sub-daily flow on a large 461 

spatial scale opens infinite possibilities for scientific analysis, such as applications for a high-462 

frequency sampling of many other types of flow alterations and the development of flow-ecology 463 

relationship. 464 

4.2 Variables governing hydropeaking classification 465 

NMDS and two types of clustering analyses were applied to explore the diversity of hydropeaking 466 

flow regimes. Together they delineated 33 hydropeaking sites into four distinct groups, providing 467 

meaningful information about differences in hydropeaking regimes in California. The finalized 468 

classification built on WHC and FCM were examined by classification trees with ten-fold cross-469 

validation. Even though both WHC and FCM generated similar clustering structures, the 470 

classification tree built on FCM had a higher accuracy of prediction than that on WHC. As for 471 

variables that govern the classification of hydropeaking, frequency and duration of peaking events 472 

were identified by classification trees. Specifically, 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛, 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛, and 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 distinguished the 473 

four classes G1-G4 in the classification tree built on WHC while 𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛 , 𝐷𝐷𝑅𝑅𝑅𝑅  and 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛 474 

distinguished G3, G4, G2 and G1 in the classification tree built on FCM. In both trees, daily 475 

number of peaking events (𝑃𝑃𝑃𝑃𝑟𝑟𝑛𝑛) is the principal metric distinguished G3 from the other three 476 

groups. The annual frequency (𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛) was the principal metrics distinguished G4 from the other 477 

two groups. Meanwhile, the structure of classification tree built on FCM indicated that G4 also 478 

featured rise/fall process with a smaller duration. As for G1 and G2, duration of peaking and 479 

rise/fall distinguished these two groups from each other. The magnitude, rate of change and timing 480 
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were not identified as principal metrics that differentiated the four groups which indicates that 481 

these features of hydropeaking events are similar among all hydropeaking sites. However, the 482 

governing variables might change in different regions. 483 

4.3 California hydropeaking regimes 484 

Four representative hydrographs of the identified hydropeaking groups/patterns were created for 485 

California (Fig. 10). G1 has the strongest hydropeaking regime due to high values in all metrics 486 

except the peaking retention and standardized amplitude. G2 ranks the second strongest peaking 487 

regime with long-lasting peaking retention (≥ 5 hr) and highest amplitude (two to four times mean 488 

annual discharge). Compared with G1, G2 represents a hydropeaking pattern that peaks less 489 

frequently but with a relatively longer peak each time due to the high peaking retention. These two 490 

groups describe hydropower plants with large generation capability or reservoirs which allows 491 

them to handle major hydropeaking tasks. In G3, all metrics values are smaller than those of the 492 

former two groups, but had the highest number of daily peaking events. This indicates G3 493 

represents hydropower plants that conduct hydropeaking more frequently on a daily basis but with 494 

lower magnitude and duration. Its relatively low annual frequency of peaking might imply that this 495 

group is not responsible for the major hydropeaking source of energy in California. G4 represents 496 

the weakest hydropeaking regime. Even though its 𝑃𝑃𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛  is extremely low (≤ 41%), the value of 497 

𝑃𝑃𝑃𝑃𝑁𝑁𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 strongly suggests that hydropeaking regulation still exists. This is an interesting 498 

group because its weak hydropeaking features are caused either by environmental restriction or 499 

the type of powerhouse. For example, the environmental restriction has been applied to Nimbus 500 

Dam (gauge AFO) to reduce steelhead trout stranding (Young et al. 2011). Thus, the downstream 501 

flow recorded by AFO still displays the peaking pattern but with a lower magnitude, frequency, 502 

and rate of change. The Merced Falls powerhouse (gauge MMF) is a run-of-the-river facility using 503 

water downstream of an impoundment. The impoundment’s release capability limits its capability 504 

of generating strong peaking flow (McManamay 2016). 505 

 506 
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 507 
G1 Frequent hydropeaking 508 

  509 
G2 Large hydropeaking 510 

  511 
G3 Supplementary hydropeaking 512 

  513 
G4 Regulated hydropeaking 514 

Figure 10. Representative hydrograph of the identified hydropeaking classes (left) and site member 515 

of each class (right; G1 gauge PMN; G2 gauge WHI; G3 gauge BUL; G4 gauge AFO). In G3 and 516 

G4, the typical morning and night timing pattern was not obvious. G3 features hydroelectricity 517 

generation mainly for ancillary services which were built for maintaining grid stability and 518 

reliability when unexpected events happened. G4 features those regulated hydropeaking flow. 519 

Flow alteration in G4 consists of hydropeaking flow and environmental flow for aquatic ecosystem 520 

and river channel. Therefore, these two factors disturbed the timing of hydropeaking in G3 and G4 521 

respectively. 522 
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4.4 Seasonality of California hydropeaking flow regimes 523 

The seasonality of hydropeaking was assessed in terms of the variation of hydropeaking operations 524 

between the wet and dry seasons that comprise the annual cycle of the Mediterranean climate in 525 

California. Another prominent feature of this climate is pronounced interannual precipitation 526 

variability. Thus, we also examined differences in hydropeaking between years with above- and 527 

below-normal precipitation. Representative drought and non-drought years were set to be 2014 528 

and 2017 separately due to the availability of data (SI I). The dry season of the two representative 529 

years was selected as the reference season. 530 

 531 

Generally, the annual frequency of hydropeaking in dry season was higher than that in wet season. 532 

The difference in annual frequency of hydropeaking between dry and wet season was over 10% in 533 

G1 (10%), G2 (13%) and G3 (17%) while was negligible (1%) in G4. These results indicated that 534 

sufficient water availability during wet season allows hydropower facilities to generate electricity 535 

constantly while hydropeaking operations are much more intensive in dry season due to the 536 

scarcity of water. In addition, the annual frequency of hydropeaking in the dry season is positively 537 

related to hydropeaking frequency in wet season indicated by the uncrossed lines of two seasons 538 

(Fig. 11). That to say, sites that tend to conduct hydropeaking frequently in dry season are more 539 

likely to have high annual frequency of hydropeaking in wet season. As for the variance of 540 

hydropeaking between different types of years, the non-drought year had a lower annual frequency 541 

of hydropeaking operation than that in drought year for all groups. And the difference between 542 

them followed the similar pattern identified in the comparison of wet and dry seasons. The annual 543 

frequency of hydropeaking in drought year was 12%, 7% and 10% higher than that in non-drought 544 

year in G1, G2 and G3 respectively. Meanwhile, the hydropeaking signals almost disappeared in 545 

G4. 546 
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 547 
Figure 11. Annual frequency of hydropeaking during dry and wet seasons. 548 

4.5 Uncertainty of the classification 549 

Three types of uncertainties exist in this study: the uncertainty in knowledge about the operation 550 

of hydropower facilities, the uncertainty caused by the method, and the uncertainty associated with 551 

input data. As for operation uncertainty, because the underlying driving force of hydropower 552 

operation is to maximize profit, thus, more than one operation mode might be conducted by one 553 

powerhouse. Fuzzy classification was applied to explore the proportion of different types of 554 

hydropeaking operation modes at one site. Even though four distinct groups of hydropeaking were 555 

revealed, three sites have more than one dominant type of hydropeaking (gauge OXB, 11278400 556 

and 1128900). For example, both gauge OXB and 11278400 had an even membership in two 557 

groups, indicating that two types of hydropeaking operation modes jointly exist. Methodological 558 

uncertainty originated from threshold values, especially the annual mean flow-based threshold (𝑋𝑋 559 

and 𝑇𝑇3𝑟𝑟 ). Seasonal flow-normalization was recommended for future research to avoid bias 560 

introduced by the extreme dry/wet years. Even though thorough tests were conducted and 561 

coefficients of annual mean flow were selected due to the stable outputs of HEDA, it is possible 562 

that the generality of HEDA cannot capture some details of the hydropeaking flow regime of an 563 

individual river. Therefore, it is highly recommended to adjust these coefficients if a single river 564 

is studied (Table 1 in SI II). Input data uncertainty arose from the scarcity of sub-daily flow records, 565 

particularly for streamflow, penstock flow and reservoir outflow. Reservoir outflow and penstock 566 

flow record the most original flow regime of hydropeaking flow which can be used to infer the 567 
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operation of facilities while streamflow records the degraded hydropeaking flow regime but is 568 

valuable to the study of flow-ecology relationships. 569 

5 Conclusions 570 

In this study, a new method (HEDA) has been developed in R statistical software to automate 571 

hydropeaking feature extraction with minimal subjective decisions, adjustments, and iterations. 572 

This allows for an analysis of hydropeaking flow at a large temporal and spatial scale. Then, 573 

hierarchical and fuzzy clustering analyses were used to explore and discover hydropeaking 574 

patterns in California, using seven ecologically relevant hydrologic metrics computed by HEDA. 575 

Four hydropeaking flow regimes have been identified: Frequent (G1), Large (G2), Supplementary 576 

(G3), and Regulated hydropeaking flow regimes (G4). G1, frequent hydropeaking, is characterized 577 

by long rise/fall processes of an individual peaking event (≥ 3.5 hr) but has the highest annual 578 

frequency (≥ 80%). Its long duration of rise/fall with a consistent rate of change indicates these 579 

sites are more likely to occur in large rivers while the highest annual frequency of hydropeaking 580 

can pose hydropeaking-induced flow alterations to the aquatic system constantly. G2, large 581 

hydropeaking, is characterized by a long-lasting peaking retention (≥ 5 hr) and a higher flow 582 

amplitude. The reduction of the annual frequency of hydropeaking is compensated by the increased 583 

duration of hydropeaking events. The reduced annual frequency of hydropeaking might reduce the 584 

impacts of hydropeaking but the increased flow amplitude can offset this relief to the downstream 585 

aquatic systems. G3, supplementary hydropeaking, has the highest frequency of daily peaking 586 

events but with a lower magnitude and duration of the individual peaking event. G4, regulated 587 

hydropeaking, has the lowest peaking signals among the four groups due to constraints of 588 

environment and facilities. G3 has the third strongest impact on the aquatic systems mainly due to 589 

its low frequency while G4 should have the least impacts. The four hydropeaking flow regimes 590 

were identified from raw time-series flow records are dominant hydropeaking flow regimes for 591 

their associated facilities, and it is possible that facilities adopt more than one type of hydropower 592 

operation modes. 593 

 594 

As for the relative significance of flow-alteration metrics, the duration and frequency of 595 

hydropeaking are principal variables governing the classification. Additionally, the magnitude, 596 
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rate of change and timing of hydropeaking events play less important roles in differentiating 597 

hydropeaking flow regimes. By analyzing the seasonality of hydropeaking, it is found that 598 

hydropeaking is more frequently conducted in the dry season and drought years. However, sites 599 

having strong peaking flow regimes in the dry season tend to have strong hydropeaking in wet 600 

season. This study not only provides a valuable tool to help the community to sample high-601 

frequency flow alteration on a large spatial and temporal scale but also created a data analysis 602 

framework that can be used worldwide to explore the underlying process especially in regions 603 

where documentations of hydropower operation are not well documented. Moreover, the 604 

classification of hydropeaking flow provides important insights into the patterns of hydropeaking 605 

flow regimes, which is difficult to gain by only knowing the operation modes. Meanwhile, having 606 

hydropeaking flow regimes classified into several groups simplified the problem and offers new 607 

opportunities to improve the understanding of the flow-ecology relationship. As for the future 608 

study topics, the flow-ecology relationship in the setting of hydropeaking flow and the spatial 609 

distribution of the classification are highly encouraged. 610 
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