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Abstract

Computational power and digital data create new opportunities to explore and understand
the social world. A special synergy is possible when social scientists combine human attention
to certain aspects of the problem with the power of algorithms to automate other aspects of the
problem. We review selected exemplary applications where machine learning amplifies human
coding, targets human attention, and relaxes certain assumptions. We then seek to reduce
perceived barriers to machine learning by summarizing several fundamental building blocks
and their grounding in classical statistics. We close by presenting a few guiding principles
and promising approaches where we see particular potential for machine learning to transform
social science inquiry. Our aim is to convince social scientists that machine learning tools are
accessible, worthy of attention, and ready to yield new discoveries.

Some guiding questions for lab:

1. What part do you like?

2. What part is confusing or needs work?

3. Is there text that would benefit from a figure?

4. All reactions and thoughts are welcome!
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1 Introduction

Advances in statistics and machine learning have the potential to rapidly expand the toolkit avail-

able to social scientists. The pace of change will depend on how social scientists weigh the costs and

benefits of adopting new tools. Our review of existing work emphasizes three key benefits: machine

learning can amplify human coding, target human attention, and relax certain assumptions. These

benefits unlock new research directions, from the study of digital datasets of previously intractable

size to the estimation of causal effects with minimal functional form assumptions. Yet many social

scientists have yet to adopt machine learning tools despite their promise. One reason machine learn-

ing methods have appeared infrequently thus far may be the appearance of high adoption costs,

such as the time needed to learn new methods and the difficulties that arise when interpreting a

complex model. Yet the increasing availability of open-source software and pedagogical materials

means that these costs are constantly falling. A uniting theme of our review is an argument that

the benefits of machine learning are likely to substantially outweight the costs over time.

Related to assumed costs, social scientists may have a preconception that the adoption of

machine learning methods requires a qualitative shift away from classical statistical methods. A

second theme of our review is that there is no such qualitative shift. Where possible, we trace

the lineage of machine learning methods directly back to standard statistical tools. While the

fields of “statistics” and “machine learning” have at times differed in their emphasis on various

aspects of data analysis (Breiman, 2001), many of the key advances occur when these perspectives

are brought together (e.g., Wager and Athey 2018). What unites these fields is far greater than

what divides them. When a social scientist uses a statistical method, they can conceptualize that

method as a specific case of a machine learning tool. The question is not whether to adopt machine

learning—every quantitative social scientist has already done that by using any statistical method.

The question is whether to broaden the scope of machine learning tools in your toolkit. To the

degree that researchers say yes to that question, the pace of change in social science may be rapid.

Our argument proceeds in several sections. We first emphasize several benefits of machine

learning by reviewing its use in existing social science research. Second, we provide a pedagogical

introduction to some of the central building blocks of machine learning, with a special emphasis on

their connection to standard statistical approaches. Third, we discuss some frontiers of machine
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learning research which may be especially fruitful for social science research in the future. Finally,

we conclude with a discussion of how machine learning may contribute to social science knowledge

moving forward.

2 What you can do with machine learning:

Exemplary applications in social science

Machine learning is already yielding new insights within social science. To uncover exemplary

applications, we reviewed papers published from 2016–2021 in a set of journals drawn from sociology

(American Sociological Review and American Journal of Sociology),1 political science (American

Political Science Review), and economics (American Economic Review). We also reviewed articles

appearing in one interdisciplinary journal (Social Science Research) and included a few articles

from methodological journals (Sociological Methodology and Political Analysis). We do not review

all uses of machine learning, nor do we review all classes of machine learning methods. Instead, we

highlight exemplary cases that illustrate three high-level ways that machine learning can transform

the research process: machine learning can amplify human coding, target human attention, and

relaxes certain assumptions. We also offer a word of caution: there are problems machine learning

does not solve, and researchers must beware of these limitations. We illustrate this word of caution

by discussing the use of prediction to guide policy interventions.

2.1 Machine learning can amplify human coding

One characteristic of the digital age is a high volume of available data in unstructured formats,

such as text, audio, and video. Social scientists might like to convert these documents, sound bites,

and video clips into a small set of categories relevant to a research question. That type of labeling

requires human attention. It is feasible at a small sample size. Yet human coding is prohibitive for

the massive number of cases available in digital datasets. A promising use of machine learning is

to amplify human coding: if the researcher manually labels a random sample, automated methods

can learn patterns in that sample and predict in the much larger population.

1We considered two sociology journals because each sociology journal contained fewer applications of machine
learning than in political science or economics.
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Fig. 1. Machine learning can amplify human coding. One setting which is particularly
promising for machine learning exists when social scientists have many observations, each of which
contains some high-dimensional predictor set x⃗i (e.g., the text of document i) but the researcher
is interested in some low-dimensional, unobserved categorization yi (e.g., the topic of document i,
here represented by colors). A researcher who manually codes a random sample of the observations
into categories can use machine learning tools to amplify that coding by predicting for the full
population.

For example, King et al. (2017) studied government involvement in the social media ecosystem

in China. In one analysis, they examined 43,757 social posts made by individuals employed by the

Chinese government to spread propaganda. This volume of digital data would be extremely costly

to analyze by hand. Instead, the authors drew a random sample of 200 posts and hand-coded them

into a set of categories chosen by the authors. Using these 200 posts, they learned the statistical

patterns linking the words used in the posts (predictors) to the categories defined by the researchers

(labels). Finally, they used these patterns to estimate the prevalence of each category of post in the

entire set of 43,757 posts (using a pre-established procedure available in open-source R software; see

Hopkins and King 2010 and Jerzak et al. 2019). The authors were then able to show that roughly

80% of the posts did not engage in arguments about the Communist Party but instead simply

involved cheerleading for China and for the Party. This descriptive evidence was made possible by

human expertise (defining the categories of posts and labeling a sample) amplified by the power of

machine learning (to draw inference about a massive data set).

Amplification of human coding applies to many questions involving high volumes of text data.

Similar to the study above, Su and Meng (2016) manually categorized the topics of 1,000 messages

from citizens to Chinese provincial officials and then used supervised methods to make predictions

for the topics in the full set of 207,554 messages. In an entirely different context, Friedman and
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Reeves (2020) explored patterns of cultural distinction in recreational activities by studying the

lives of 71,393 British elites over the 19th and 20th centuries who appeared in Who’s Who, a

book cataloguing their lives. They manually coded 600 entries into three categories of recreational

activities—aristocratic, highbrow, or ordinary—and then used supervised learning to estimate the

prevalence of each type of recreation in the full set of 71,393 entries. The authors then summarized

how patterns of elite portrayal of their recreational activities changed over time, an exercise which

was only possible by combining human decisions (categorizing text into these three categories)

amplified by machine learning to draw inference in a massive sample.

Beyond text, new forms of audio and visual data also become amenable to analysis through

a strategy of amplified human coding. Knox and Lucas (2021) note that political scientists often

study political speech by first transforming an audio file into a transcript, thus discarding all of the

audio information. In a sample of audio files from Supreme Court hearings, they manually label

some speech patterns as demonstrating skepticism toward the presented argument, and then they

develop methods to predict skepticism in unlabeled utterances as a function of the audio profile

of those utterances. Images are likewise amenable to analysis by amplified coding, following well-

established methods for computer vision (Szeliski, 2010). Using 53,249 images of vote tally sheets

from a Mexican election in which fraud was suspected, Cantú (2019) labels a random sample of

900 images as containing alterations or no alterations. Cantú (2019) then learns a convolutional

neural network classifier, evaluates on a validation set of 150 images, and predicts alterations or no

alterations for the full 53,249 images to reveal the extent of fraud by election officials who modified

the vote tallies.

Amplified human coding is powerful because it draws on the strengths of machine learning and

social science. The social scientist takes a high-dimensional predictor x⃗ (text, audio, or video data)

and converts that into a category y among a few discrete choices constructed for their relevance

to the theoretical question. This step requires social science theory to define the categories. Then,

a machine learns the underlying mapping and uses it to predict for a sample size which would be

prohibitively large for direct human coding. Machine learning tools thus amplify a labeling task

which is fundamentally human at its core.
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2.2 Machine learning can target human attention

In contrast to amplified human coding, there exist other settings in which the researcher does not

know what aspects of the data may be most interesting. To the degree that the researcher can

formalize what would make an aspect of the data interesting, an algorithm can search through the

data to target human attention.

For example, political scientists often use conjoint experiments (Hainmueller et al., 2014) to

examine how voters respond to a variety of signals about a candidate. For example, Breiten-

stein (2019) presented voters with profiles of hypothetical mayoral candidates and randomly varied

signals of the candidates’ sex, party affiliation, experience qualities, economic performance under

their leadership, and evidence of corruption. The number of treatment conditions is numerous, with

2×4×2×2×3 = 96 unique profiles possible by combining these attributes. Breitenstein (2019) sum-

marized the causal effects by a linear regression to estimate the average effect of each component,

marginalized over all the other components. In a reanalysis, Incerti (2020) relaxes this additive

approximation by using a decision tree—a machine learning tool to partition the population into

subgroups as an interactive function of the predictors. Decision trees recursively split the data into

subsets where outcomes are increasingly homogeneous. The discovered interactions in this setting

are interesting. Voters were most likely to support a non-corrupt politician’s profile (72% in sup-

port) but also demonstrated high support for profiles involving corruption as long as the candidate

was of the same party as the respondent and had a history of good economic performance under

their leadership (67% in support). Meanwhile, a corrupt candidate of a different political party

from the respondent garnered only 36% support. This kind of interactive relationship—supporting

a corrupt candidate if and only if they have certain other desired characteristics—would be hard

to predict a priori. When presented with a large set of 96 treatment conditions, a machine learning

tool (a decision tree) can guide attention toward treatment conditions with particularly interesting

outcomes.

Machine learning can also target human attention in settings with one binary treatment variable.

In these settings, one might search for population subgroups across which the effect of the binary

treatment varies substantially. Athey and Imbens (2016) developed causal trees, an extension of

decision trees specifically designed to uncover effect heterogeneity. In one application, Brand et al.
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(2021) assessed variation in the effects of college completion on low-wage work. They found that

college completion reduced low wage work most for individuals whose mothers had less than a

high school degree, who grew up in large families, and who had low social control have the largest

effects of college completion on reducing low-wage work. Not only does the use of causal trees allow

researchers to uncover subgroups not previously considered, it also more transparently depicts the

analyses that lead researchers to focus on particular subgroups. When a researcher chooses to

highlight the outcomes of a particular subgroup, it is difficult to know how they came to that

decision. When a causal tree highlights a particular subgroup, the algorithm that determines the

highlighted result is fully transparent.2

2.3 Machine learning can relax certain assumptions

Conceptual argument often guides social scientists toward a particular research question and a

particular set of variables to study. Yet conceptual argument often breaks down in the final step of

the analysis: selection of a statistical model which may involve an assumed functional form linking

the predictors to the outcome. Machine learning methods are especially helpful in this step: one

can allow the data to select a statistical model using out-of-sample predictive performance as a

criterion.

For example, Dube et al. (2020) use web scraping to gather data on Human Intelligence Tasks

(HITs) posted online on Amazon Mechanical Turk (MTurk), which would include tasks like placing

labels on images or completing a short questionnaire. Workers can see information about the

available tasks including the financial reward offered for completion before deciding whether to

complete that task. A HIT remains available until the poster has received their desired number of

responses. The authors are particularly interested in the causal effect of the reward amount on the

duration of time that the HIT remains posted, taken as a metric of how quickly workers sign up

and complete the task. But there is a problem: whether workers choose to complete a task may

also be a function of other aspects of that task, such as the title, keywords, and time allotted by

2Causal trees do not always discover effect heterogeneity. Sometimes, they reveal a surprising lack of effect
heterogeneity. Handel and Kolstad (2017) analyzed a randomized health intervention and found almost no evidence
of heterogeneity across the measured variables. Davis and Heller (2017) found that a randomized youth intervention
in Chicago had roughly the same effect on arrests in all subpopulations studied. In general, a lack of evidence for
effect heterogeneity does not mean that effects are constant for everyone, but only reveal a lack of evidence for
heterogeneity as a function of the measured variables.
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the requester. To proceed, the authors first need untestable identification assumptions for which

machine learning is not helpful. In this settings, one must assume that the relationship between

reward and duration is entirely causal within subgroups defined by the measured variables (Imbens

and Rubin, 2015; Pearl, 2009). Given this assumption, the authors can identify the causal effect

by adjusting for these variables. When deciding how to carry out that adjustment, theory is of

limited use and machine learning may be quite helpful: machine learning can select a model to

predict the treatment given the confounders or a model to predict the outcome given the treatment

and confounders. Dube et al. (2020) use double machine learning (Chernozhukov et al., 2018)

to adjust for confounding by learning an ensemble that averages over several learning algorithms

to predict the treatment (reward amount) and the outcome (duration of posting). This machine

learning strategy thus handles difficult statistical choices automatically, allowing the authors to

focus their attention on the definition of the research question and the validity of the required

causal assumptions.

As another example, researchers may seek to draw inference about a population using a non-

representative sample. Gelman and Little (1997) proposed to accomplish this task by a parametric

method: estimate a multilevel model for the survey responses as a function of measured variables

(e.g., race, age), predict the outcome in each subgroup defined by those variables, and post-stratify

by the known population distribution of the predictors. The validity of this procedure relies not only

on an identification assumption (ignorable sample inclusion within strata of covariates), but also on

the assumed functional form of the regression model. Bisbee (2019) relaxed the latter assumption

with a nonparametric machine learning approach (Bayesian Additive Regression Trees). Which

approach is superior will depend on the sample size and on how closely the standard parametric as-

sumptions approximate the true response surface, which can be assessed by out-of-sample predictive

performance. Overall, this example illustrates how nonparametric machine learning methods can

directly estimate unknown functional forms while leaving all other aspects of the research question

as they would have been under standard statistical procedures.

2.4 A word of caution: Machine learning, causal inference, and policy

To make the most of machine learning, social scientists must recognize what it can and cannot do.

In particular, machine learning can describe the world as it exists but does not inform policy (what
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would happen under an intervention to change the world) in the absence of additional assumptions.

To illustrate this point, we consider tasks which Kleinberg et al. (2015) call “prediction policy

problems.” In these tasks, it may appear that public policy can be improved by incorporating

predictions from machine learning algorithms. This is true only under certain assumptions about

the causal effect of those interventions. A simplified yet illustrative example from Kleinberg et al.

(2015) is the decision about whether to carry an umbrella. The causal effect is known a priori: if

it rains, carrying an umbrella will cause you to remain dry. What is unknown is the risk of rain: it

would be nice to have a machine learning algorithm to predict the probability of rain, so that we

can target the intervention (carry the umbrella) on days when rain is likely.

Moving outside the idealized example and into real policy questions, however, the causal effect

central to the claim is often much more complex. For example, Chalfin et al. (2016) consider

whether firing some police officers and replacing them with other officers could reduce the rate of

police shootings in Philadelphia. For this policy, the central question is causal: if we took a given

encounter between a police officer and a civilian but counterfactually changed the officer involved,

would the probability of a police shooting decrease? The question is difficult to answer. Some

officers may shoot civilians at higher rates than other officers, but perhaps that is because of the

tasks to which those officers are assigned (e.g., particularly dangerous neighborhoods). Perhaps

any officer assigned to that task would shoot at the same rate. The authors term this problem

“task confounding.” To conclude that differences across officers are caused by differences in the

officers rather than the tasks, the authors assume the absence of task confounding. Under this

causal assumption, Chalfin et al. (2016) get to draw a causal conclusion: firing the 10% of officers

with the highest propensity to shoot and replacing them with officers of average propensities to

shoot would reduce shootings by 4.81 percent. Importantly, while the authors emphasize the use

of predictive modeling, the conclusion rests critically on causal assumptions (task confounding).

This case illustrates how the dichotomy between prediction policy problems and causal problems is

false: a prediction problem that involves a policy intervention is fundamentally a causal problem,

and it is dangerous to think that machine learning tools can solve these causal problems on their

own. In general, prediction policy problems are only prediction problems under the assumption

that the relevant causal effect is identified. Or better yet, the relevant causal effect may be known:

we do not need an experiment to know that an umbrella will keep you dry if it rains. The more the
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causal effect is known, the more the researcher can focus on the predictive side of the problem. At

the end of the next section, we discuss settings where causal effects are highly unknown and social

scientists need to combine causal assumptions with predictive tools to answer policy questions.

3 Conceptual building blocks: The statistical foundations of ma-

chine learning

To realize the benefits discussed above does not require years of training in machine learning.

Rather, researchers trained in classical statistics already possess some knowledge of the fundamental

building blocks that support machine learning. This pedagogical section links machine learning to

classical statistics by presenting a set of core concepts: task clarity, the bias-variance tradeoff,

data-driven estimator selection, and tasks involving a new target population.

3.1 Task clarity: Define a precise goal

Every statistical problem begins with a task—the goal that we hope to accomplish. For instance,

we might wish to make predictions in a particular setting or estimate a mean in some population.

A precise statement of the task is essential in all quantitative research, and it takes on renewed

importance in the context of machine learning, which can often be tailored specifically to the task

at hand. For example, consider a task which has been well-studied in both statistics and machine

learning: drawing inference about a target population from a sample. We discuss this task from

two perspectives: estimation of unknown population parameters and prediction of out-of-sample

cases.

Suppose a researcher studies academic performance for students nested within classrooms. Each

student i has a test score Yi capturing their academic performance. We would like to understand

how test scores vary across classrooms,

θj = IE(Yi | Ji = j) (1)

where Ji = j means we are taking the expectation among students in classroom j. Equivalently,

we can conceptualize θj as a prediction rule: if we see a new student in class j, we would predict
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Learning
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Fig. 2. Task clarity: Out-of-sample prediction. A well-studied machine learning task involves
a random sample S taken from a target population, where the goal is to learn a prediction function
to predict the outcomes of new samples from that same target population. For instance, we might
use classroom indices to predict the tests scores of individual students who were not observed in
the training sample.

that student’s unknown test score to be θj (Fig 2).

If we observed all students in every classroom, we could calculate each θj directly by the

classroom mean. If we only observe a random sample S of students, then we need an estimator for

this unknown parameter. For instance, we could estimate by the sample mean,

θ̂Mean
j = ȳj =

1

|Sj |
∑
i∈Sj

Yi (2)

where the term beneath the summation sign indicates that we are summing over all students i in

the sample Sj from classroom j. The sample mean is a consistent and unbiased estimator, yet it

may not be the optimal estimator in a finite sample. We discuss this issue in the next section.

Estimation of class-specific means is a useful example because it bears resemblance to both

statistics and machine learning. Social scientists and statisticians could easily study this problem

without conceptualizing it as a machine learning problem. Yet it also contains several hallmarks

of machine learning. Machine learning estimators often involve a very large set of parameters to

be estimated (e.g., many classes) and apply in settings where the sample size seems large (e.g.,

many students) but in fact are small given the large number of predictors (e.g., few students in

each classroom).
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3.2 The bias-variance tradeoff: Choose a biased estimator

Continuing the example of students in classrooms, suppose that the sample size |Sj | in class j is

small (e.g., 5 students). In this case, the sample mean may be a poor estimator of the population

mean in the classroom because the sample size is so small. For every statistical and machine

learning estimator, a first-order concern is how well we can expect that estimator to accomplish

our task. We want to choose an estimator which will be close to the truth on average when

applied to hypothetical sample from the population. Counterintuitively, to produce an estimator

which is close to the truth on average one might be well-advised to choose an estimator which has

low variance but is slightly wrong on average—a biased estimator. Many of the best statistical

estimators and nearly every estimator that would be considered “machine learning” accepts some

bias in order to improve performance. To make the most of machine learning, social scientists will

need to come to appreciate the benefits that bias can bring. We illustrate this point through an

example which is standard in statistics: a multilevel model.

To better estimate the classroom mean in a small sample, the researcher could add a shrinkage

term to produce a multilevel model estimator (Bryk and Raudenbush, 1992),

θ̂Multilevel
j = ȳj −

1
nj
σ̂2
j

1
nj
σ̂2
j + δ̂2

(
ȳj − ȳ

)
︸ ︷︷ ︸

Shrinkage Term
(creates bias)

(3)

where σ̂2
j is the empirical variance of test scores across students within class j, δ̂2 is the empirical

variance of classroom-level mean test scores across all classrooms, and ȳ is the mean test score in the

entire sample.3 The estimator θ̂Multilevel
j is a partial pooling estimator because it pools information

from class j together with other information about the mean test score in the sample overall. The

consequence of partial pooling is that the estimator for each class is biased toward the overall

mean—the greater the shrinkage, the more the bias. Yet shrinking toward the overall mean also

yields the benefit of reduced variance. Fig 3 shows that the amount of shrinkage in θ̂Multilevel
j is the

amount that mimimizes the expected squared error of the estimator: across repeated samples, the

average squared distance between the estimated mean and the truth.

3This estimator is sometimes called the “Best Linear Unbiased Predictor” FIND PAGE, although that name is
misleading because the estimator is biased.
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Fig. 3. Simulation: A hierarchical linear model balances the bias-variance tradeoff.
In this simulation, there are 100 classes with class-level mean test scores normally distributed
with variance 3. Within classes, student scores are normally distributed with variance 10. In
each of 100 simulated samples, we estimate from a sample of 5 students from each class. The
estimator partially pools the class-specific mean with the overall mean according to a shrinkage
factor: θ̂

(shrinkage factor)
j = ȳj − (shrinkage factor) (ȳj − ȳ). A shrinkage factor of 0 involves

no pooling so that the estimate is the sample mean within each class, and a shrinkage factor of 1
involves complete shrinkage so that the estimate for every class equals the overall sample mean. A
hierarchical linear model selects a shrinkage factor equal to the variance of the within-class means
divided by that variance plus the variance of the means across classes. The center dashed line takes
those variances as known and shows that the multilevel shrinkage minimizes the expected squared
error. To create each curve, we first calculate the statistic over simulations within classes, and then
we report the average of the statistic over all classes.
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The notion of accepting some optimal amount of bias in order to reduce the variance of an

estimator is an idea that is much broader than multilevel models. In particular, the expected

squared error of any estimator can be decomposed into components corresponding to bias and

variance.

Bias-Variance Tradeoff: IE

((
θ̂ − θ

)2
)

︸ ︷︷ ︸
Expected Squared Error

=
(
IE
(
θ̂
)
− θ

)2

︸ ︷︷ ︸
Bias Squared

+IE

((
θ̂ − IE

(
θ̂
))2

)
︸ ︷︷ ︸

Variance

(4)

If we want our estimator to be close to the truth on average (low expected squared error), then it

is often worthwhile to accept some bias in order to reduce the variance of the estimator.

The bias-variance tradeoff is especially relevant in settings where the variance of an unbiased

estimator is high. High-variance estimators are common when the number of parameters to be

estimated (e.g., the means of many classes) is large, because the amount of data relevant to each

parameter (e.g., the students in a particular class) may be small even if the overall sample size is

very large. Beyond the setting of students in classrooms, the bias-variance tradeoff plays a central

role in other statistical problems characterized by large sample sizes but also many parameters

to be estimated, such as in small-area estimation (Rao, 2003). In machine learning, the bias-

variance tradeoff is especially important because machine learning estimators often involve many

parameters, such that variance is a serious concern even in big-data settings. Machine learning

estimators resolve this problem by accepting some bias in order to reduce variance and improve

expected squared error. Social scientists applying these methods should be comfortable with this

acceptance of bias just as they are already comfortable with bias in classical statistical settings

like multilevel models. The existence of bias should not be a barrier to the adoption of machine

learning.

3.3 Data-driven estimator selection: Automate what can be automated

Choices abound in quantitative social science. For example, the choice of a model specification is a

central question in classical statistics. Researchers have traditionally approached this question by

some combination of conceptual argument paired with empirical metrics of model fit, such as R2.

A machine learning perspective transfers the weight of these choices in the direction of empirical
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evidence. To the degree that data can inform the choice of estimator, machine learning approaches

allow the data to speak.

Fig 4 illustrates data-driven estimator selection in a simulated setting. The predictor variable

X is related to the outcome Y by a complicated conditional mean function, as is likely to be the

case in many realistic settings. Not knowing this function in advance, the researcher might consider

several possible estimators with different assumed functional forms (various OLS specifications) or

different procedures to learn the functional form from the data (a regression tree and a Generalized

Additive Model). A social scientist following common practice might report the results of all

these specifications. Despite the inclusion of machine learning estimators like regression trees, this

overall research approach could be considered “classical” in the sense that it involves choosing the

estimator or estimators for conceptual rather than data-driven reasons. An approach more inspired

by machine learning might instead seek to empirically score the performance of the estimators in

order to make a data-driven choice. The metric by which an estimator is evaluated is often called

a loss function, which formalizes what it means for an estimator to perform well. For instance, one

loss function would take an estimator θ̂S estimated in a sample S and score it by its mean squared

error when predicting new observations from the population.

Loss Function: L(θ̂S) = IEi:i ̸∈S

((
θ̂S(xi)− yi

)2
)

(5)

In practice, we do not observe the full population and thus must rely on an estimate L̂() of the

loss function. Suppose we take our sample S and randomly assign observations into two equally-

sized samples: a training sample STraining and a test sample STest (Fig 4 Panel C). We then learn

the prediction function in the training sample and estimate the loss function in the test sample.

Estimated Loss Function: L̂(θ̂S) =
1

|STest|
∑

i∈STest

(
θ̂STraining

(xi)− yi

)2
(6)

Finally, we can choose the estimator for which the estimated loss function L̂(θ̂S) is as close as

possible to zero. In the simulated example of Fig 4, this procedure selects the Generalized Additive

Model estimator. In this setting, it is visually apparent in Fig 4 Panel B that this is the best

estimator. But in non-simulated settings, the true conditional mean function (the gray curve in
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A) Data generating process in this simulation. The conditional mean function µ(x)
(black curve) is intentionally chosen to not correspond to any of the functional
forms assumed by the estimators.
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B) Performance of six estimators (dashed
black) for the simulated conditional
mean function (solid gray).

C) We estimated the dashed functions in
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Fig. 4. Simulation: Data-driven estimator selection. We consider six estimators: OLS with linear,
log, quadratic, and cubic specifications, a regression tree following defaults in the rpart package (Therneau
et al., 2015), and a Generalized Additive Model (GAM, Wood 2017) following defaults in the mgcv package.
Visually, the GAM comes closest to the true response function (Panel B). Panel C depicts how we randomly
assigned observations to two equally-sized subsamples: the train set and test set. We then estimated each
function on the train set and estimated its mean squared error when predicting the new cases in the test
set. Panel D shows that the GAM achieves the best performance. This exercise illustrates a building block
of machine learning: instead of arguing conceptually for a particular estimator (e.g. OLS with a particular
form), empirically evaluate the performance of many candidate estimators.
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Fig 4 Panel B) is unknown and out-of-sample predictive performance can still help the researcher

choose an estimator which comes as close as possible to that unknown function.

While data-driven estimator selection is a hallmark of machine learning, it is also in full align-

ment with standard statistical procedures. Social scientists already compare models by empirical

scores such as R2, likelihood ratios, the Akaike information criterion (AIC, Akaike 1973), Bayesian

information criterion (BIC, Schwarz 1978), and numerous other scores. Each of these can be in-

terpreted as a loss function for data-driven model selection. When carried out within machine

learning, the loss function is typically evaluated on data not used to estimate the model in order

to assess the ability of the model to generalize to new observations.

We have taken care to distinguish the true loss function L(k) from the estimated loss function

L̂(k) because the estimated loss function may be statistically uncertain, especially if it evaluated on

a small sample. An estimator which is inferior in the population may outperform another estimator

in the test sample because of the chance of which cases from the population happen to appear in the

test sample. One way to improve the precision of L̂(k) is to conduct cross validation, a procedure

in which the full sample S is partitioned into several components, each of which plays the role of

STest in turn, with the ultimate loss function estimate being the average of the results. Regardless

of whether a single sample split or cross validation is used to select a model, researchers should

be cautious of the possibility that the estimated loss function may itself be statistically uncertain,

so that the evidence for one model over another may be weaker than point estimates alone might

suggest.

3.4 A return to task clarity: Use caution when predicting in a new target

population

Our first conceptual building block was task clarity—being precise about goal of the quantitative

exercise. To re-emphasize the importance of task clarity, we now turn from standard out-of-sample

prediction tasks to a range of more complex tasks. We discuss two settings that demonstrate the

importance of clarity about the task: prediction in a new target population and prediction for

causal inference.

To consider prediction in a new target population, suppose we study a cohort of students

entering Statsville West High School in 2017. For each student, we observe many variables about
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Prediction in the same population

Target
Population

SampleChosen at
random

Inference

Example:
1) Sample students entering Statsville

West High School in 2017
2) Observe if they drop out
3) Learn a prediction function
4) Predict for all students

entering Statsville West in 2017

Prediction in a new population

Learning
Population

Target
Population

SampleChosen at
random

Inference

Example:
1) Sample students entering Statsville

West High School in 2017
2) Observe if they drop out
3) Learn a prediction function
4) Predict for all students

entering Statsville West in 2022

Fig. 5. Caution: Prediction in a new target population. A standard machine learning task is
to learn about a target population using a sample of cases selected at random from that population.
In practice, however, algorithms are often deployed to make predictions in new populations from
which no training cases were available. For example, a function to predict high school dropout
learned in a cohort entering high school in 2017 might be used to target resources to at-risk students
entering high school in 2022. But if the mapping between the predictors and outcome changes across
cohorts, that prediction function may no longer be useful. To the extent that prediction functions
are learned in one population and applied in a new target population, the validity of predictions
may be placed in doubt.

academic performance in 8th grade and we observe whether they drop out of high school over the

next four years. Using a machine learning algorithm, we learn a function to predict high school

dropout. Impressed by our model, the principal of Statsville West suggests that for the entering

cohort of 2022 we predict the likelihood of dropping out for each student, so that the principal can

target extra counseling resources to those students. Perhaps the principal of Statsville East High

School also hears about our model and wants to deploy it in that context as well. For each of these

use cases, there is a danger: the population that entered Statsville West in 2017 is not the same

as the population entering in 2022, and is surely different from the population entering Statsville

East in 2022. The mapping between the predictors and the outcome in these new populations may

not be the same as the mapping in the original population on which the algorithm was learned

(Statsville West, entering in 2017). The problem of Statsville West and Statsville East is ubiquitous

across real applications of machine learning. Researchers routinely learn things in one context in

the past, and then apply what they have learned in the future and possibly in new contexts. To

use statistics and machine learning responsibly, one must be aware when there is a leap to a new

target population (Fig 5).
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Prediction in a new target population is especially relevant for causal inference (Fig 6). Suppose

the principal of Statsville West had already implemented a program to offer extra counseling to

some students in the 2017 entering cohort. After observing whether those students dropped out,

the principal wants to predict whether those who did not receive the program would have benefited

if the program had been available to them. But those who did not receive the extra counseling

are by definition not part of the learning population from whom we drew the sample. In fact, it

is impossible to sample people who received the counseling and observe the outcome they would

have realized if they had not received the counseling (the fundamental problem of causal inference,

Holland 1986). To learn about what would have happened if other students had received extra coun-

seling, the principal is necessarily requiring the researcher to make predictions in a new population.

Absent randomization or additional assumptions, prediction for causal questions always involves a

target population which is different from the learning population. Only by an assumption can we

view the learning population and the target population as the same population in causal inference.

For instance, we might assume (or know from randomization) that the potential outcome under

treatment Yi(1) follows the same distribution among the treated units as among the untreated

units, within each subpopulation defined by a set of predictor values. By this assumption, any

mapping X⃗i → Yi(1) learned in the learning population will still be valid in the target population.

Yet even in the best-case scenario, causal inference for policy prescriptions often involves an

additional leap to a new target population (Fig 7). Suppose the principal randomly assigned

counseling to students entering Statsville West in 2017. But then, the principal wants to use these

results to justify the an expansion of counseling support for the cohort entering in 2022. Despite

strong internal validity for the causal effect estimate in the 2017 cohort, the principal still must leap

to a new population to deploy the policy in the 2022 cohort. The leap from the training population

to the target population is therefore particularly relevant to causal policy prescriptions.4

In fact, there is often a tradeoff between internal and external validity, where one can study

a population less like the target population in a randomized design (high internal validity) or

a population more like the target population in an observational study (high external validity).

4The assumption to draw causal inference in the target population is {Y (0), Y (1)}⊥⊥{P, S,D} | X⃗, where P
indicates membership in the learning versus target population, S indicates inclusion in the sample of cases, D
indicates treatment assignment, and X⃗ denotes the vector of pre-treatment predictors. One setting where this would
hold is if the target population is the learning population and S and D are randomly assigned.
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Prediction in a counterfactual population.

Task: Predict the outcome that would be realized under treatment.

Learning Population
(e.g., units receiving treatment)

Target Population
(e.g., untreated units)

SampleChosen at
random

Inference

Required
Assumption:

Treatment (which determines membership in the learning
versus target population) is independent of the outcome
Yi(1) that would be realized under treatment, within sub-
populations defined by the predictor variables.

Fig. 6. Causal inference: A task that involves a new target population. Suppose we
observe a set of units who receive a treatment of interest (e.g., extra counseling in high school).
After learning a prediction function in a sample of treated units, we wish to predict the outcome
that untreated units would have realized if they had received treatment. For instance, we might
predict whether those who did not receive counseling would not have dropped out if they had
received counseling. Causal questions of this form require assumptions because in the absence of a
randomized treatment it is impossible to draw a simple random sample from the target population.

Perhaps the principal has a randomized experiment from a very old cohort that entered in 2000

and an observational study on the cohort that entered in 2017. It would not be clear which study

would be more informative for a policy prescription applying to the cohort entering in 2022. Every

study has limitations, and the leap from a learning population to a different target population is a

limitation of which one must always be aware.

4 The future: Guiding principles and promising approaches

Looking ahead, it is difficult to predict how machine learning will be used in the future. In this

section, we offer a few guiding principles and approaches which we believe may hold particular

promise for future use in social science.

4.1 Resolving p-hacking: The promise of automated model selection

The replication crisis has cast doubt on the validity of much quantitative social science research

(Freese and Peterson, 2017; Simmons et al., 2011). A key source of concern is the common practice

in which researchers iterate between model fitting and interpretation until arriving at a chosen

specification which is reported to the reader. This procedure creates many opportunities for a well-
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Within each subgroup defined by predictor values X⃗ = x⃗,

Learning
Population

Y1(0) Y1(1)

Y2(0) Y2(1)

...
...

Yn(0) Yn(1)

Random
Sample
of Cases

Y1(0) Y1(1)

Y5(0) Y5(1)

Y8(0) Y8(1)

Random
Treatment
Assignment

Observed Data

Y1(0)

Y5(1)

Y8(0)

Target
Population

Y ′
1(0) Y ′

1(1)

Y ′
2(0) Y ′

2(1)

...
...

Y ′
n(0) Y ′

n(1)

Inference: Under the assumption that the

target population follows the same

data generating process as the

learning population within X⃗ = x⃗

Fig. 7. Causal inference for policy prescriptions: A particular leap to a new target.
Suppose there is a learning population of n units, each of whom has a potential outcome that would
be realized under the control condition Yi(0) and under the treatment condition Yi(1). Suppose
we take a random sample from the learning population and then randomly assign treatments to
units in that sample. For each unit in the sample, we observe one of the two potential outcomes.
Under randomization, a prediction function learned in the observed data can be used to make
predictions in the learning population. But when designing policy, we generally want to predict
treatment effectiveness in a new population who have not yet received the treatment. To predict
in a new target population, we would have to additionally assume that the same data generating
process holds in the target population as in the learning population. In observational settings,
machine learning can be used for causal inference if the assumptions of random sampling and
random treatment assignment are credible within subgroups defined by the observed predictors X⃗.
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meaning researcher to select the model for which the results that most aligns with that researcher’s

pre-existing beliefs (Gelman and Loken, 2013). The (possibly unintentional) practice of choosing an

estimator based on the results undermines the validity of p-values and confidence intervals, which

are designed under the assumption that the researcher follows a single procedure that would be

applied the same way in any hypothetical sample.

Machine learning may seem to amplify this problem: with more candidate estimators, re-

searchers who stay the course will simply have more opportunities to select their preferred result.

Automated model selection offers a way out of this problem. Before analyzing the data, one can

specify a single decision rule for choosing among many candidate estimators. For instance, we

might choose the one with the lowest cross-validated mean squared error. By defining the decision

rule before viewing any results, one can remove the danger of choosing a result based on one’s

preferred specification. One particularly promising application of automated model selection is

Super Learner (Van der Laan et al., 2007), which accepts a dataset and a set of candidate learners

as arguments and returns a single prediction function which is a weighted average of those learners

with weights learned through cross-validation. Super Learner is available in open-source software

for R, both in the SuperLearner package (Van der Laan et al., 2007) and as part of the tlverse

in the sl3 package (Coyle et al., 2021).

4.2 Resolving approximate models: The promise of an agnostic perspective

It is often stated that all models are wrong. Yet when a researcher assumes a statistical model,

the properties of that model depend on the assumptions it entails. As Manski (2003) argued, the

credibility of the resulting inference is only as strong as the researcher’s defense of the required

assumptions. Yet social scientists routinely assume linear, additive models despite conceptual

reasons to expect the world to be nonlinear and interactive. When a model is a poor approximation

to the world, a hypothesis about some coefficient β may be of limited use.

As with replication, machine learning may seem to make this problem worse. It is one thing

to argue about whether an Ordinary Least Squares model is correctly specified; it is quite another

to argue that a random forest or deep neural network is correctly specified. A promising domain

of statistical research reinterprets linear regression parameters as estimators of the best linear

approximation to the conditional mean function (Aronow and Miller, 2019; Buja et al., 2019a,b; Lin,
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2013), but producing a similar interpretation for complex machine learning estimators is likely out

of reach. Because machine learning estimators may be harder to interpret than classical statistical

estimators, the difficulty of assuming one’s model to be correct may become even more severe.

An alternative agnostic approach resolves this problem by doing away with the notion of “cor-

rect” model specification altogether. The world is complex, and every statistical or machine learning

model is likely to be an approximation at best. A researcher who defines the estimand outside of

the statistical model gains an opportunity to be transparent about the sense in which the model

is an approximation (Lundberg et al., 2021). Then, predictive performance can be used to assess

the relative accuracy of various candidate approximations. New tools for estimation may produce

an approximation which is closer to the truth than the standard model-based approximations. We

therefore join others in arguing that social scientists adopting machine learning tools would do well

to maintain an agnostic perspective, where the research goal is defined outside of the model and

the parameters of the model are only tools to approximate that target quantity (Grimmer et al.,

2021).

4.3 Resolving extrapolation: The promise of local estimators

Extrapolation is an ever-present danger in globally parametric models like Ordinary Least Squares.

Two complementary sides of this same problem are extrapolation and influence. Extrapolation

occurs when a data point to be predicted is far from the mass of the training data, so that the

predicted value may depend heavily on the assumed functional form (e.g., a line). Influence is the

converse, when a training point far from the mass of the data heavily shapes the fitted prediction

function. Extrapolation and influence are two consequences with the same source: the assumption

of global parametric models (e.g., the assumption of a line). Local estimators offer a solution to

the problem: only allow each unit j to contribute to the estimate for unit i to the degree that unit

j is “near” to unit i. For every local estimator, the central question is what it means for two units

to be “near” each other. New advances in local estimation are thus most powerful paired with

conceptual social science argument for the chosen definition of “near.”

Propensity score matching for causal inference is one example of a local estimator (Imbens,

2015; Morgan and Harding, 2006). Suppose we know the probability of treatment pi (also known

as the propensity score) given the values of confounding variables for unit i. If unit i is treated,
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we might estimate the potential outcome under control Yi(0) by the outcome of the untreated unit

j with propensity score pj closest to unit i. This is a local estimator because only the nearest

untreated unit contributes to the estimate for unit i. Propensity score matching is a nearest

neighbors estimator (Fix and Hodges, 1951): the unit or units nearest to the focal unit contribute

to the estimate.

Nearest neighbors and other local estimators depend crucially on the definition of “near.” There

are many ways to define what it means to be near. In propensity score matching, the distance be-

tween any pair of units is defined as the difference in their probabilities of treatment pi, each of

which is a univariate summary of the confounder set L⃗i. But one could also define nearness as

a function of the confounders L⃗i directly, as is the case for Manhattan distance (sum of absolute

differences over all in covariate values), Euclidean distance (sum of squared differences), or Maha-

lanobis distance (a generalization of Euclidean distance which incorporates the covariance among

X⃗, Mahalanobis 1936). For each of these distances, one can define a local estimator by averaging

across units which are “near” the focal unit by the chosen distance metric.

The definition of nearness is consequential: units that are “near” by one metric may be far apart

by another metric.5 Future research with local estimators will need to reason carefully about the

definition of “near” that is relevant to the problem at hand. For instance, the covariate balancing

propensity score (CBPS) (Imai and Ratkovic, 2014) modifies the propensity score to optimize

balance along the covariates. Entropy balancing (Hainmueller, 2012) optimizes matches such that

first, second, or higher moments of the covariates are similar across matched units. Coarsened

exact matching (Iacus et al., 2012) defines units to be “near” if and only if they take identical

values along a coarsened version of measured covariates, but this distance metric is ambivalent

about differences in covariate values within the coarsened strata. No distance metric is inherently

superior to another outside of a specific application—they are all different definitions of what it

means to be “near.”

Machine learning tools offer new ways to define the distance between any pair of observations.

Random forests (Breiman, 2001) are one example. A random forest is an algorithm which repeatedly

(1) randomly samples a subset of predictors from the data, (2) randomly samples observations from

5In fact, when the predictor set L⃗ is high-dimensional (containing many unique values), it is possible that every
unit is in some sense quite far from all other units. In causal inference, this can create a setting where arguably there
is no untreated unit which is comparable to any given treated unit (D’Amour et al., 2021).
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the data with replacement, and (3) partitions the resulting sample into a set of “leaves” which are

cells defined by the predictor variables and for which the outcome Y is relatively homogeneous.

Each iteration produces a tree, and the average of all the trees is a forest. As highlighted by Lin

and Jeon (2006), the random forest can be interpreted as a weighted nearest neighbors estimator,

where units i and j are “near” to each other proportional to the frequency that they fall in the same

leaf. The connection is powerful because it connects random forests (a machine learning tool) to a

setting well-studied in classical statistics (weighted means). Wager and Athey (2018) exploit this

connection to derive asymptotically-valid confidence intervals for estimates from random forests,

drawing on results from classical statistics (Hájek, 1968; Hoeffding, 1948). The notion of random

forests as adaptive nearest neighbors estimator generalizes to many problems (Athey et al., 2019),

such as using random forests to define nearness for weighted local linear regression (Friedberg et al.,

2021).

Looking forward, local estimators hold great promise for future social science research. The

barriers to adoption are low: many of the advances discussed above are implemented in open-

source R software, including cbps for the covariate balancing propensity score (Fong et al., 2021),

ebal for entropy balancing (Hainmueller, 2014), ranger for random forests (Wright and Ziegler,

2017), and grf for generalized random forests (Tibshirani et al., 2018). The open task for social

scientists is to motivate the chosen definition of “near” with respect to their substantive problem.

4.4 Resolving poor convergence: The promise of targeted learning

Flexible machine learning estimators such as random forests can approximate unknown conditional

mean functions IE(Y | X⃗) without the strong parametric assumptions common in to classical

methods like generalized linear models. Yet flexibility comes at a cost: the rate at which adaptive

estimators converge toward the conditional mean is slower than the rate achieved by parametric

methods. Targeted learning (Van der Laan and Rose, 2018; Van Der Laan and Rubin, 2006)

resolves this convergence problem. While one cannot generally achieve fast convergence for the full

conditional mean function, it is often possible to target the estimator and achieve fast convergence

rates for a low-dimensional parameter of social science interest.

For concreteness, suppose we are interested in the population-average potential outcome IE(Y (a))

that would be realized if a treatment variable A were assigned to the value a. This target parameter
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is low-dimensional : in this case, it is just one number. We might make the causal assumption that

a set of measured confounders L⃗ is sufficient to identify that causal parameter. In this case, our

causal target parameter can be rewritten as a particular aggregation of a statistical function.

IE(Y (a)) = IE
(
IE
(
Y | A = a, L⃗

))
Expected outcome
under treatment a
(low-dimensional)

Conditional mean
(high-dimensional)

Outer expectation over the

population distribution of L⃗

Converts a high-dimensional function
to a low-dimensional target parameter

(7)

The internal conditional expectation IE(Y | A = a, L⃗) is a high-dimensional parameter because the

confounders L⃗ may have many unique values. The reason flexible machine learning estimators have

slow convergence is because they attempt to estimate all of these conditional means under minimal

assumptions. But in our setting, the only reason for estimating the high-dimensional parameter is

to help us estimate the low-dimensional target that we really want.

Targeted learning takes advantage of the aggregation to target the estimator to our specific goal.

In this setting (see Fig 8), we would begin by estimating a prediction function ĝ(a, L⃗) ≈ IE(Y | a, L⃗)

to approximate the internal conditional expectation function. For instance, we might restrict to

the subpopulation with treatment value A = a and then predict the outcome Y as a function of

the confounders L⃗. Then, we might use that prediction function to make predictions in the full

population. Yet here is a problem: suppose a stratum L⃗ = ℓ⃗ of the confounders contains only a

few treated units (A = a) but also contains many untreated units (A ̸= a). A naive prediction

function will not optimize for prediction in this stratum, because few treated units are observed in

the stratum. Yet, in the target population this stratum may be very important because it is home

to many untreated units. We ideally desire an estimator which will perform well in the places we

want to make predictions, which may not be the places where we already have plentiful data. Naive

prediction optimizes for the wrong task.

To target our estimator, we need information about how the confounding variables L⃗ are related

to the treatment condition A = a. We could estimate the conditional probability of treatment

m̂(a, L⃗) ≈ P(A = a | L⃗). The inverse of this conditional probability for each treated unit is
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1) Estimate initial
prediction functions

ĝ(a, ℓ⃗) ≈ P
(
Y = 1 | A = a, L⃗ = ℓ⃗

)
m̂(a, ℓ⃗) ≈ P

(
A = a | L⃗

)
2) Define the

clever covariate
Ĥ(A, L⃗) = I(A=a)

m̂(a,L⃗)

Sample split: Optionally, carry out step 3 in a different sample from steps 1 and 2

3) Regress Y on the
clever covariate
with an offset

logit
(
P(Y = 1 | A, L⃗)

)
≈ logit

(
ĝ(A, L⃗)

)
+ Ĥ(A, L⃗)β

Offset
term

(from 1)

Clever
covariate
(from 2)

Coefficient
to estimate

here

4) Target the
prediction
function

ĝ′(A, L⃗) = logit−1
(
logit(ĝ(A, L⃗)) + Ĥ(A, L⃗)β̂

)
Targeted prediction rule
optimized for the way we
will aggregate predictions

Original prediction rule
optimized for

disaggregate prediction

5) Estimate using the
targeted prediction
function

ÎE(Y (a)) = 1
n

∑n
i=1 ĝ

′(a, L⃗i)

Fig. 8. Targeted learning with a binary outcome. An important advantage of targeted
learning (Van der Laan and Rose, 2018) over double machine learning (Chernozhukov et al., 2018)
is that targeted learning can accomodate a link function (the logit in steps 3 and 4) which can
guarantee that predicted values fall within the support of the outcome.
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proportional to the ratio of units with this confounder set in the full population (treated and

untreated) to the number with this confounder set in the treated population alone. It tell us

how much a unit like this is overrepresented in our target population compared with our available

sample. If there is a trend such that our outcome model over- or under-predicts in strata that will

be heavily upweighted when moving from the treated population to the full population, we want

to correct that outcome model. To do that, one can estimate a new regression for Y where the

initial prediction ĝ(A, L⃗) is included as an offset term (a known intercept) and the inverse treatment

probability I(Ai=a)

m̂(a,L⃗)
is included as the “clever covariate.” The estimated coefficient β̂ on the clever

covariate captures the degree to which outcomes tend to be over- or under-predicted in strata that

will be heavily weighted for inference in the population. Using that estimated coefficient, we arrive

at a new prediction function ĝ′(a, L⃗i) which we then use to predict the potential outcome under

treatment A = a for every unit i in the target population. The average of those predictions is a

targeted estimate of the population average potential outcome, IE(Y (a)).

Targeted learning should be more widely applied in social science because it offers several impor-

tant advantages. First, the convergence rate for the target parameter (in this case, IE(Y (a))) is faster

than the convergence rates for the high-dimensional prediction functions ĝ(a, ℓ⃗) and m̂(a, ℓ⃗). This

property allows one to use flexible machine learning estimators such as random forests (Breiman,

2001) and ensemble methods such as super learner (Van Der Laan and Dudoit, 2003), even though

these estimators have slow convergence rates. Second, because targeting (Step 4 in Fig 8) can in-

volve a generalized linear model with a link function designed to match the support of the outcome

variable, targeted learning never makes predictions outside of that support. This property is not

shared by other related methods, such as augmented inverse probability weighting (Robins and

Rotnitzky, 1995; Robins et al., 1994) and double machine learning (Chernozhukov et al., 2018).6

Third, targeted learning is a general-purpose methodology which can be applied to many settings,

while maintaining formal properties such as consistency and asymptotic normality which derive

from the roots of the method in influence functions (Van der Laan and Rose, 2018). Finally,

targeted learning is accessible: for common target parameters, the tlverse suite of R packages

supports the use of targeted learning.

6Appendix Fig 10 presents Double Machine Learning (Chernozhukov et al., 2018), and Appendix Fig 9 presents
targeted learning ofr a continuous outcome to support direct comparisons with DMl.
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5 Conclusion

To be written :)
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A Supplemental figures

1) Estimate initial
prediction functions

ĝ(a, ℓ⃗) ≈ IE
(
Y | A = a, L⃗ = ℓ⃗

)
m̂(a, ℓ⃗) ≈ P

(
A = a | L⃗

)
2) Define the

clever covariate
Ĥ(A, L⃗) = I(A=a)

m̂(a,L⃗)

Sample split: Carry out step 3 in a different sample from steps 1 and 2

3) Regress Y on the
clever covariate
with an offset

IE(Y | A, L⃗) ≈ ĝ(A, L⃗) + Ĥ(A, L⃗)β

Offset
term

(from 1)

Clever
covariate
(from 2)

Coefficient
to estimate

here

4) Target the
prediction
function

ĝ′(A, L⃗) = ĝ(A, L⃗) + Ĥ(A, L⃗)β̂

Targeted prediction rule
optimized for the way we
will aggregate predictions

Original prediction rule
optimized for

disaggregate prediction

5) Estimate using the
targeted prediction
function

ÎE(Y (a)) = 1
n

∑n
i=1 ĝ

′(a, L⃗i)

Fig. 9. Targeted learning with a continuous outcome. This method is analogous to the
method for a binary outcome presented in Fig 8. We include the continuous version here for
comparison with double machine learning (Appendix Fig 10).
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1) Estimate initial
prediction functions

ĝ(a, ℓ⃗) ≈ IE
(
Y | A = a, L⃗ = ℓ⃗

)
m̂(a, ℓ⃗) ≈ P

(
A = a | L⃗

)
2) Define the

clever covariate
Ĥ(A, L⃗) = I(A=a)

m̂(a,L⃗)

Sample split: Carry out step 3 in a different sample from steps 1 and 2

3) De-bias the estimated
outcome predictions using
the clever covariate
as a weight

ĝ′(a, ℓ⃗) = ĝ(a, ℓ⃗) +
∑

i(Yi−ĝ(Ai,L⃗i))H(Ai,L⃗i)∑
i H(Ai,Yi)

Debiased
outcome
prediction

Original
outcome
prediction

Bias correction
(estimated in a new sample)

4) Estimate using the
targeted prediction
function

ÎE(Y (a)) = 1
n

∑n
i=1 ĝ

′(a, L⃗i)

Fig. 10. Double machine learning. This figure presents double machine learning (Cher-
nozhukov et al., 2018) using the language of targeted learning (e.g., “clever covariate,” Van der
Laan and Rose 2018) in order to emphasize the parallels between the two methods. For targeted
learning with a continuous outcome, see Appendix Fig 9. For targeted learning with a binary
outcome, see Fig 8.
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