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Abstract of the Dissertation

Equilibrium & Nonequilibrium Fluctuation

Effects in Biopolymer Networks

by

Devin Michael Kachan

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Alexander Levine, Chair

Fluctuation-induced interactions are an important organizing principle in a

variety of soft matter systems. In this dissertation, I explore the role of both

thermal and active fluctuations within cross-linked polymer networks. The sys-

tems I study are in large part inspired by the amazing physics found within the

cytoskeleton of eukaryotic cells. I first predict and verify the existence of a ther-

mal Casimir force between cross-linkers bound to a semi-flexible polymer. The

calculation is complicated by the appearance of second order derivatives in the

bending Hamiltonian for such polymers, which requires a careful evaluation of the

the path integral formulation of the partition function in order to arrive at the

physically correct continuum limit and properly address ultraviolet divergences.

I find that cross linkers interact along a filament with an attractive logarithmic

potential proportional to thermal energy. The proportionality constant depends

on whether and how the cross linkers constrain the relative angle between the two

filaments to which they are bound.

The interaction has important implications for the synthesis of biopolymer

bundles within cells. I model the cross-linkers as existing in two phases: bound to

the bundle and free in solution. When the cross-linkers are bound, they behave

as a one-dimensional gas of particles interacting with the Casimir force, while the

ii



free phase is a simple ideal gas. Demanding equilibrium between the two phases,

I find a discontinuous transition between a sparsely and a densely bound bundle.

This discontinuous condensation transition induced by the long-ranged nature

of the Casimir interaction allows for a similarly abrupt structural transition in

semiflexible filament networks between a low cross linker density isotropic phase

and a higher cross link density bundle network. This work is supported by the

results of finite element Brownian dynamics simulations of semiflexible filaments

and transient cross linkers. I speculate that cells take advantage of this equilibrium

effect by tuning near the transition point, where small changes in free cross-linker

density will affect large structural rearrangements between free filament networks

and networks of bundles.

Cells are naturally found far from equilibrium, where the active influx of en-

ergy from ATP consumption controls the dynamics. Motor proteins actively gen-

erate forces within biopolymer networks, and one may ask how these differ from

the random stresses characteristic of equilibrium fluctuations. Besides the trivial

observation that the magnitude is independent of temperature, I find that the

processive nature of the motors creates a temporally correlated, or colored, noise

spectrum. I model the network with a nonlinear scalar elastic theory in the pres-

ence of active driving, and study the long distance and large scale properties of

the system with renormalization group techniques. I find that there is a new crit-

ical point associated with diverging correlation time, and that the colored noise

produces novel frequency dependence in the renormalized transport coefficients.

Finally, I study marginally elastic solids which have vanishing shear modulus

due to the presence of soft modes, modes with zero deformation cost. Although

network coordination is a useful metric for determining the mechanical response of

random spring networks in mechanical equilibrium, it is insufficient for describing

networks under external stress. In particular, under-constrained networks which

are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in

iii



numerical simulations and experimentally in many biopolymer networks. Drawing

upon analogies to the stress induced unjamming of emulsions, I develop a kinetic

theory to explain the rigidity transition in spring and filament networks. De-

scribing the dynamic evolution of non-affine deformation via a simple mechanistic

picture, I recover the emergent nonlinear strain-stiffening behavior and compare

this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory

to account for coordination number inhomogeneities and predict a breakdown of

universal scaling near the critical point at sufficiently high disorder, and discuss

the utility for this type of model in describing biopolymer networks.
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CHAPTER 1

Introduction

This thesis concerns both the equilibrium and non equilibrium properties of cross

linked semi-flexible polymer networks, a class of soft matter system. In order to

properly pose the research question, it is necessary to briefly describe the distin-

guishing features of soft condensed matter so as to illustrate where my research

fits within this broader scope. The introduction is organized as follows: I will first

discuss soft matter systems, with a focus on the forces and energy scales that are

generally relevant to a physical description. Polymers and networks of polymers

will be introduced along the way, with brief sections on their elasticity and ease

with which their non-equilibrium states may be explored. I will then describe the

often overlooked fluctuation or Casimir forces and review their importance within

nematic liquid crystals, as well as propose their existence and role in cross linked

polymer networks. Finally, as physics is an experimental science, I will introduce

the cytoskeleton as an accessible realization of the physics I study.

1.1 Soft matter physics

Soft matter physics is quite literally the study of squishy matter. More precisely, it

is concerned with systems governed by weak energy scales relative to the covalent

bond energies typically found in hard matter systems. This means that while

hard matter systems tend to be quite exotic, many household items constitute

interesting soft matter systems. The mayonnaise on your sandwich and whipped

cream on your ice-cream sundae are respectively examples of emulsions and foams,
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both of which are active fields of research. A more progressive culinary student

may be familiar with the spherification technique, where droplets of liquid, such

as orange juice, are stabilized and made to resemble caviar. The process, and it’s

cousin reverse-spherification, relies on the formation of a calcium ion cross-linked

polymer network of sodium alginate around the droplets and is a realization of

the class of systems I will study in this thesis.

Soft matter physics is also ubiquitous in the study of biological systems, a point

which will be discussed in more detail in Sec. 1.2. The typical cellular length scale

puts many interaction energies on the order of kBT , where kB is Boltzmann’s

constant, so that thermal fluctuations must be considered in any description.

Cellular systems thus offer the soft matter physicist an opportunity to borrow

mathematically from results in quantum mechanics. The analogy, although purely

formal, is still of considerable interest.

The building blocks of soft matter systems include colloids, liquid crystals,

polymers, and membranes, to name a few. The fundamental forces between these

constituents are fairly weak when compared to their hard matter counterparts

and tend to be short ranged. Electrically charged colloids in water, for example,

experience a strongly screened Coulomb interaction which is only on the order of

kBT , allowing competition with entropy. In the absence of a stabilizing charge the

colloids will aggregate due to very short ranged Van der Waals forces which are

balanced by even shorter range steric repulsion. Membranes and polymers earn

the soft classification in a slightly different sense than colloids: they are elastic,

meaning that the characteristic energy scale of excitations vanishes as the system

grows. In other words, thermal fluctuations are able to excite long wavelength

modes with appreciable amplitude for sufficiently large systems. In addition to

elasticity, hydrodynamic couplings are often present in soft matter systems.
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1.1.1 Polymers

Polymers are the main actor in this thesis and require a sufficient introduction.

First, a definition: A polymer is a macromolecule composed of repeating subunits

known as monomers. Polymers occur naturally in biological systems (see Sec. 1.2),

and are also easily synthesized and used extensively in industrial applications. Al-

though exotic branched configurations involving different monomers exist and are

easily synthesized, I will restrict my attention to simple single monomer linear

chains whose length is many times the monomer size. In this limit the chemical

details of the underlying monomer cease to matter and the polymer may be mod-

eled as a continuum object. The simplest model is the so called freely jointed or

ideal chain, which ignores all bending and stretching by describing the polymer as

a chain of N independent rigid rods of length l. The assumption of independent

chain segments associates l with the contour length over which the chain loses

orientational order. Typical values of l vary greatly between a few monomers

to over a thousand, reflecting the great diversity of monomeric building blocks.

Mathematically the ideal chain is equivalent to a random walk with N steps of

size l and this gives the predicted scaling R ∼
√
Nl for the typical size of the

polymer.

The ideal chain is of course an unrealistic model: Changes in orientation in-

troduce strain into the polymer which tends to subsequently relax due to internal

stresses. The simplest extension incorporating elasticity is the worm like chain

model, which considers the polymer as a thin, inextensible elastic rod with bending

modulus κ. The assumption of incompressibility is appropriate for most polymers

because the underlying monomers are much more compliant to axial rotation than

to longitudinal stretching. The bending energy of a particular chain configuration

is given by

E =
κ

2

∫
ds

(
dt̂

ds

)2

, (1.1)
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where t̂ is the local tangent vector and the integral is taken along the contour

length of the polymer [RC03, DE86]. The derivative
∣∣∣ dt̂

ds

∣∣∣ is simply 1/R, where R is

the local radius of curvature. The ground state configuration is perfectly straight

and one may wonder how this could ever describe the highly unordered states

predicted by the ideal chain. The resolution is that these systems are observed

at finite temperature and, depending on the modulus κ, thermal fluctuations can

severely distort the chain. A quantitative measure of orientational order at finite

temperature is given by the tangent vector autocorrelation function 〈t̂(0) · t̂(x)〉,

which one can easily show is an exponentially decaying function within the worm-

like chain model. The characteristic decay length, known as the persistence length,

is lp = βκ, where β = 1/kBT . This persistence length intuitively diverges at

zero temperature when the polymer is expected to be straight, and grows with

increasing chain stiffness. It furthermore neatly classifies polymers at a given

temperature: Short polymers (L < lp) are typically straight and are referred to as

semi-flexible, while long polymers (L < lp) are very flexible and are appropriately

modeled as ideal chains. In fact, an ideal chain with segment length l = 2lp

(known as the Kuhn length) will display the exact same end to end statistics as

a worm-like chain of persistence length lp.

It is reasonable to ask how the persistence length of a thin rod is related to

its cross sectional dimension, and to see if these numbers allow for both flexible

and semi-flexible polymers at room temperature. The bending modulus of a rod

is given by κ = EI, where E is the Young’s modulus and I is the area moment of

inertia [LL86]. The Young’s modulus has units of an energy density and since the

modulus is derived from microscopic covalent bonding the characteristic scale is

E ∼ nN/nm2 ∼ GPa. For an object of radius r the area moment of inertia scales

as I ∼ r4, giving the persistence length at room temperature lp ∼ 100r4/nm3. The

strong scaling with cross sectional dimension suggests that thermal fluctuations

are irrelevant for majority of macroscopic objects. A human hair, for example,
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would need to reach a length of ∼ 100 kilometers before thermal fluctuations

reached an appreciable level! Typical polymers, however, have r ∼ nm and thus

are expected to have persistence lengths on the order of micrometers. This allows

different polymers to display both flexible and semi-flexible behavior at room

temperature.

1.1.2 Polymer Networks

The natives of the Amazon basin were some of the first to take advantage of the

remarkable properties of polymer networks: They collected sap from the hevea

tree and, after letting it harden upon their feet, created the world’s first rubber

boots. The sap is comprised of long flexible polymers which are able to bond

to one another in the presence of oxygen, a process responsible for changing the

phase of the network from fluid-like sap state to a rubber which is able to support

elastic stresses. Sensitive mechanical dependence on chemical composition, and

more generally on the microscopic details of the system, is a general feature of net-

works, which is surprising given the macroscopic number of constituent polymers.

For example, a network of semi-flexible polymers (created by the introduction

of small molecules known as cross-linkers which bind the polymers) will display

highly non-linear elastic response stemming from the asymmetric elastic response

of the individual polymers to an applied longitudinal load: They can support large

tensile stresses but buckle easily under compression [MKJ95]. In the presence of

cross linkers, which are necessary to transmit stresses, the macroscopic network

will be observed to rapidly strain stiffen and develop negative normal stresses

[HLM03, CMS13] when subjected to external shear stress.

Cross-linkers allow for the formation of secondary structure within otherwise

amorphous semi-flexible networks. Depending on the type of cross-linker and

the concentration, polymers may order into one dimensional bundles of parallel

filaments or into two dimensional lamellar structures. Naturally, the elasticity
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of these objects are significantly different than the amorphous network, and in

this way the cross-linkers may play a key role in determining the macroscopic

mechanical properties of the network.

1.1.3 Soft Matter out of Equilibrium

An additional feature of polymer networks, and in fact nearly all soft matter, is

that they may be driven out of equilibrium in a controlled fashion. Hard matter

systems offer no such luxury: The characteristic energy scale of the system is also

responsible for holding the constituent particles together (for example atoms in

a crystal lattice), and non equilibrium forcing of this magnitude will necessar-

ily lead to catastrophic failure of the sample! Soft matter systems have no such

limitations as they are often elastic and naturally robust to fluctuations of order

kBT and can be easily driven actively at those energy scales without destroying

the system. Polymers, for example, can be driven continuously out of equilib-

rium by stretching or compression while still retaining their microscopic integrity.

While the effect of thermal fluctuations on macroscopic network elasticity has

been studied extensively [GSM04], much less progress has been made towards

understanding these systems in the presence of active noise. When the noise is

small, the fluctuation-dissapation theorem may be used to relate non-equilibrium

properties to known equilibrium ones, but the question of how to deal with sys-

tems far from equilibrium remains. Additionally, one may ask what types of noise

even allow for a near equilibrium description: Certain active processes necessarily

drive the system far out of equilibrium.

1.2 The cytoskeleton as a model soft matter system

Biology offers the soft matter physicist a tremendous set of ready made systems

to explore. For the purposes of studying semi-flexible polymer networks in and
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out of equilibrium, one could not ask for a better realization than the cytoskeleton

present within nearly all eukaryotic cells, shown in Fig. 1.1. The cytoskeleton is a

network of interconnected polymers responsible for providing structural integrity

to the cell, as well as being essential for mitosis and for cell motility. The cytoskele-

ton is made up of many different polymers, but the two most prevalent and well

studied are filamentous actin (often referred to simple as actin) and microtubules,

both of which are easily observed invivo and synthesized in a controlled manner

invitro. Actin is by far the softer of the two filaments, with a persistence length

of about 17µm, whereas microtubules have lp on the order of millimeters. This

implies that only actin will experience appreciable thermal fluctuations at cellular

length scales; microtubules in contrast will appear perfectly straight. Chapters

two and three will focus on the role filament fluctuations play in the distribution of

network cross-linkers and will be directly applicable to the actin component of the

cytoskeleton. Both filaments are easily deformed, however, and serve as valid ex-

amples of networks driven out of equilibrium, which is the focus of Chapter four.

Different network morphologies are observed within the cytoskeleton, including

bundles and lamellar networks. These structures are made possible by the great

variety of biological cross-linking proteins, and often many proteins are present

at once, giving rise to incredibly complex networks. Generally speaking, cross-

linkers may be categorized into two groups: bundling” and ”network.” Bundling

cross-linkers, such as α-actinin for actin and tau proteins for microtubules, prefer

to bind filaments parallel to one another and offer very little angular compliance.

This naturally is responsible for bundle formation within the cytoskeleton. Net-

work cross-linkers, conversely, either have no angular preference or bind filaments

at right angles to one another, facilitating the formation of two dimensional pla-

nar structures. Examples of network linkers are filamin for actin networks and

biotin-streptavidin for microtubules. The distinction between angle constraining

and compliant cross-linkers will turn out to have dramatic implications on the
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Figure 1.1: The cytoskeleton. Red: Actin filaments, Green: Microtubules, Blue:

Intermediate filaments
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fluctuation induced forces proposed in Chapter 2.

The living cell is, of course, strictly out of equilibrium; When that cease to

be true the cell is unfortunately dead. Biopolymer networks are actively driven

out of equilibrium through the presence of molecular motors such as myosin,

which binds to actin, and the microtubule version kinesis. These motors play a

huge role, respectively, in muscular function and cellular transport. When viewed

as a mechanics problem, the motors are a form of stochastic noise which exert

active forces upon the underlying network, driving it potentially very far from

equilibrium.

1.3 Casimir forces

Figure 1.2: Left: Quantum Casimir effect. Right: Thermal Casimir effect – As

the two plates are brought closer together, fluctuations between the plates are

suppressed while the entropy of the surrounding medium increases resulting in an

attractive interaction between the plates.
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There is an additional class of forces known as fluctuation, or Casimir forces

after the pioneering work of H.G. Casimir [Cas48] who studied a system of two

parallel conducting plates in vacuum, as shown in Fig. 1.2. According to the

classical theory the plates should not experience an electrostatic interaction since

they are uncharged, however this treatment neglects the effect of the plates on the

quantum vacuum fluctuations of the electromagnetic field. Because the plates are

perfect conductors they impose boundary conditions which quantize the otherwise

continuous vacuum fluctuation spectrum between the plates. The quantized mode

spectrum, not surprisingly, depends on the distance between the plates and thus

there is an effective interaction which turns out to decay as 1/D4, where D is the

plate separation.

Casimir’s discovery sparked a vast amount of research on fluctuation mediated

interactions in quantum field theories at zero temperature [Wei89, DS93], but the

idea of a fluctuation force is in fact much more general. Casimir type forces are

present whenever an object modifies the spectrum of a background fluctuating

field by imposing boundary conditions. The background fluctuations can arise

from quantum mechanics, as in the original Casimir problem, or from thermal

fluctuations which excite modes in systems at finite temperature. The resulting

interactions are pronounced in systems with massless modes such as those associ-

ated either with broken continuous symmetries (Goldstone modes) in e.g., liquid

crystals [ABD92], or at a critical point – see Refs. [Kre94, MT97, KG99]. As a spe-

cific example within soft matter physics, two plates surrounding a nematic liquid

crystal will attract because of boundary conditions they impose on the fluctuating

nematic order field. [ABD92].

The Casimir interaction between two plates is reminiscent of a depletion force,

whereby an attractive osmotic pressure is generated by the exclusion of particles

beyond certain size from the interior region, see Fig. 1.2. In analogy, the boundary

conditions on the plates restrict fluctuations of a certain size, i.e. wavelength,
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from existing within the plates, resulting in an effective pressure or depletion

type force pushing the plates together. This analogy, while instructive, is not

exact, as can be inferred from the observation that the Casimir interaction can

be either attractive (as suggested by the above analogy) or repulsive, depending

on the boundary conditions imposed on the fluctuations by the embedded objects

[DLP61], whereas the depletion interaction is necessarily attractive.

Casimir forces are often obscured by stronger, direct interactions, but not al-

ways. For example, the Casimir force between membrane proteins – and other

membrane inclusions – interacting through thermally excited membrane undula-

tions are important because this interaction decays as a power law with distance

whereas direct protein-protein interactions are short ranged [BGP94, ZPZ98].

Cross-linkers in semi-flexible polymer networks have only very short ranged

direct interactions and thus constitute a system where fluctuation forces could

be important. When they bind a polymer to a background elastic network they

restrict the thermal fluctuations of the polymer, or in other words they impose

boundary conditions. It is easy to imagine that when two cross-linkers are bound

to the same filament they will experience a Casimir type interaction acting along

the contour of the filament. This interaction is expected to be proportional to

temperature since it is a direct consequence of the cross-linkers impact on the

configurational entropy of the filament. Because of the lack of competing en-

thalpic interactions, the Casimir force is able to play a significant role in the

equilibrium distribution of cross-linkers within the network, and furthermore is

able to favor bundling and other higher order structure formation. The inter-

action also sharpens the deposition curves, or Langmuir isotherms, of a solution

of cross-linkers onto semi-flexible filaments. Cells may take advantage of this in-

creased sensitivity to use overall cross-linker concentration as a control parameter

for network morphology.
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1.4 Thesis Outline

In chapter 2 I will propose the Casimir force between a small number of cross-

linkers joined to the same semi-flexible polymer, and calculate its form directly

with different mathematical approaches. I will also present simulation based evi-

dence for its existence and discuss implications for biological networks Chapter 3

will focus on extending the interaction to many cross-linkers with a statistical me-

chanical approach, and explores the implications for fine tuned bundle formation

within the cytoskeleton. Finally, chapter 4 will discuss the mechanical properties

of networks out of equilibrium. First I will imagine homogenous polymer net-

works subjected to active correlated noise, which is meant to model the effect

of molecular motors within cytoskeletal networks. Secondly, I will present work

which explains the nonlinear strain stiffening observed in biopolymer networks

under external strain.
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CHAPTER 2

Casimir Effect Between Cross-linkers in

Semi-flexible Polymers

2.1 Introduction

Fluctuation-induced, or Casimir interactions been studied extensively in the limit

of highly flexible polymers [DE86, RC03], and are responsible for the entropic

elasticity present in rubbers and polymer melts. In this chapter I propose and

verify the existence of Casimir interactions between cross-linkers in the opposite

limit of semiflexible polymers, which have contour lengths shorter than or com-

parable to the thermal persistence length lp and are naturally observed in nearly

straight configurations. Figure 2.1 shows an example of two polymers held to-

gether by sliding linkers. The existence and sign of a Casimir-type force between

the linkers can be understood intuitively: Imagine that one pins two points along

an otherwise free filament to a background substrate. The addition of a fixed

point reduces the number of conformational degrees of freedom, and hence also

the entropy. Two fixed points at finite separation result in a further reduction

of the number of available states over a single fixed point, and the system will

therefore find it entropically favorable to place both fixed points at the same po-

sition. This argument holds at arbitrary separations and it is natural to expect

the resulting Casimir interaction to be long-ranged, and in fact it is logarithmic

in the separation–see Sec. 2.3.

The physical interest of this problem lies in possible applications in polymer
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Figure 2.1: Two semiflexible polymers are linked by two sliding rings. Thermal

fluctuations of polymer segments in between the rings are constrained. By re-

ducing the separation D between the rings, degrees of freedom transferred from

in between the rings to the exterior increase the entropy of the system. This

generates an attractive interaction between the rings.

networks. Thermal fluctuations have long been known to play a central role for the

viscoelastic properties of networks of polymers [HLM03]. In particular, the force-

extension curve τ(D) of a polymer of fixed length connecting two points separated

by a distance D is believed to determine the elastic properties of polymer network.

This force-extension curve is determined largely by thermal fluctuations. There is,

however, a fundamental difference between this form of entropic elasticity and the

thermal Casimir effect of Fig. 2.1: if two permanent nodes of a polymer network

are brought closer there is no transfer of degrees of freedom from the polymer

section between the nodes to the rest of the network. When the two linkers of

Fig. 2.1 are brought together, degrees of freedom are transferred from the section

in between the linkers to the surrounding system. In addition, the computation

of the Casimir effect typically requires the regularization of infinities associated

with summations over all fluctuation modes. No such divergences appear in the

calculation of entropic elasticity.

There are interesting examples of biopolymer networks, for example F-actin

cross-linked with α-actinin, where linker proteins bind reversibly to the protein

filaments, allowing them to effectively slide along the filament and sample con-
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figuration space. Such proteins might exhibit a Casimir interaction due to their

modification of the thermally excited transverse undulations of the filaments to

which they are bound. A first objection against this idea is that, for typical

biopolymer networks, the persistence length is much greater than the separation

between linkers. On length scales small compared to the persistence length, ther-

mal shape fluctuations must have a low amplitude, so the Casimir interaction is

expected to be very weak. Secondly, biopolymer networks often are under ten-

sion, either intrinsic or externally applied. Tension introduces a length scale in

the problem beyond which thermal fluctuation are suppressed. In this chapter,

I will demonstrate that the Casimir interaction between sliding linkers on length

scales smaller than the persistence length cannot be neglected, both in networks

with and without tension. I will show that neither effect suppresses the Casimir

interaction. Finally, we show that if the linker molecules imposes angular con-

straints on the filaments at the cross link, then this generates repulsive elastic

stresses, which overwhelm the Casimir interaction. Thus, I propose that distinc-

tion between between flexible cross linkers and stiff ones, associated with filament

bundling has important consequences for the equilibrium distribution of these

molecules in semiflexible filament networks.

The chapter is outlined as follows: In Sec. 2.2 we discuss the calculation of

the partition function that is required for the derivation of the Casimir force.

Because of the appearance of higher-order derivatives in the Hamiltonian H, the

standard method for evaluating Gaussian functional integrals by path integration

is questionable. We will apply a technique introduced by H. Kleinert [Kle86] for

field-theoretic problems to define the integration measure for path integrals with

actions that contain higher-order derivatives. In Sec. 2.3 we compute the Casimir

interaction using this functional integral technique, examine a few special cases,

and review the results in the context of biopolymer networks. Finally, in Sec. 2.4

I introduce evidence supporting the existence of a Casimir force from large-scale
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numerical simulations.

2.2 Partition function of a pinned semi-flexible polymer

2.2.1 System geometry & Hamiltonian

The basic building block of a cross-linked polymer network is two filaments joined

by a single cross-linker. The fluctuation interaction can be probed by allowing an

additional cross-linker to bind these two filaments at a separate location. Specifi-

cally, as shown in Fig. 2.1 let two cross linkers placed along the z axis and z = 0

and z = D permanently bind two semiflexible polymers, each having bending

modulus κ and thus persistence length lp = βκ � D, where β = 1
kBT

and kB

is Boltzmann’s constant. The cross linkers fix the position and direction of the

polymer at the linker locations but the length of the polymer between the linkers

is not fixed. As a simplification the filaments are assumed not to interact with one

another, i.e. steric interactions are neglected. In this case the filaments decouple

and it is sufficient to study a single filament pinned by two cross linkers, see Fig.

2.2.

The elastic energy of the filament is given by

H
[
~h
]

=
1

2

L∫
0

ds

[
κ

(
d2~r(s)

ds2

)2

+ τ

(
d~r(s)

ds

)2
]
, (2.1)

where s is an arc length variable traversing the filament from z = 0 to z = D

and ~r(s) specifies the filament position. The first term gives the contribution to

filament curvature while the second term accounts for a tension τ applied to the

polymer. Because the polymer can freely slide through the linkers, the linkers do

not absorb this tension. In principle there is also a contribution from torsional

deformations but these modes are generally much stiffer and are neglected. For

D � lp the filament will be nearly straight and the energy functional Eq. 2.1 may

be expanded in the small gradient expansion in term of a displacement field ~h(z)
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h(z)	  

z=0	   z=d	  

va=h’(0)	  

vb=h’(d)	  

Tension	  τ	  	  

ha	  
hb	  

Figure 2.2: A semi rigid filament of projected length d characterized by the height

field h(z). The filament has a bending rigidity κ and may be under an external

tension τ , as well as being contained in a confining potential of strength k. The

deformations are exaggerated for clarity–we treat stiff filaments so that the small

bending approximation is appropriate.

measured from the z axis:

H
[
~h
]
≈ 1

2

D∫
0

dz

κ(d2~h(z)

dz2

)2

+ τ

(
d~h(z)

dz

)2
 , (2.2)

Within the small gradient approximation it is clear that the two transverse

polarizations hx,y(z) of the filament undulations decouple, so that the resulting

partition sum is simply the product of two copies of the partition sum over a scalar

field h(z) representing one transverse mode, but still obeying the Hamiltonian

Eq. 2.2. The equation may be nondimensionalized by introducing a rescaled length

z = (βκ)
1
3 z̃ = l

1
3
p z̃. Finite tension introduces a length scale, which we write in

terms of a wave number q =
(
βτ/l

1/3
p )1/2. We note that the rescaled length z̃ has

physical dimensions of L
2
3 ; q has dimensions of inverse z̃. After this change of
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variables, the filament Hamiltonian reduces to

H =
1

2

D∫
0

dz
[
h′′(z)2 + q2h′(z)2

]
, (2.3)

where here and unless stated otherwise we remove the tildes from all rescaled

lengths and we measure energies in units of β−1.

As discussed in 1.3, fluctuation forces are generated by the boundary conditions

external objects generate on the fluctuating field. In the simplest version of this

problem the cross linkers impose exact local boundary conditions on the displace-

ment h(z = 0) = ha, h(z = D) = hb and direction h′(z = 0) = va, h
′(z = D) = vb

of the filament, as shown in Fig. 2.2 These boundary conditions correspond to

perfect pinning cross linkers, i.e. , ones that can provide arbitrary constraint forces

and torques to perfectly fix the filament’s position and slope, respectively. In any

physical biopolymer system, however, the cross linking molecules have some finite

elastic compliance and are of finite size and such molecules cannot precisely pin

the filament at a point. The use of perfect cross linkers allows one to better isolate

the role of filament fluctuations on the Casimir interaction of two cross linkers.

The finite size of the cross linkers may be considered within this framework by

modeling them as rings that enforce the boundary conditions only when the fila-

ment’s transverse displacement becomes larger than the rings’ radius–see Fig 2.1

and Sec. 2.3.5 for more details.

2.2.2 Calculation Details

2.2.2.1 Decomposition into classical and fluctuation paths

The partition function contains all the relevant statistical mechanical information

of a system and is defined as the sum over all states weighted by the Boltzman

factor e−En , where En is the energy of the nth state (measured in units of β−1). For

a continuous distribution of states, appropriate for a polymer, the sum becomes

18



an integral over all configurations of the field

Z =

∫
Dhe−H[h], (2.4)

and is known as a functional integral. The partition function for a filament pinned

by cross-linkers will have the Hamiltonian H given by Eq. 2.3. Any dependence of

the partition function on the distance between cross linkers, D, will be indicative

of a fluctuation force between the cross linkers. The integration measure Dh

represents the sum over all configurations of the filament satisfying the given

boundary conditions. The mathematical representation of such an object can be

difficult and will be discussed in greater detail later.

In analogy to the standard presentation of the path integral approach to classi-

cal quantum mechanics [FH65], the height field h(z) is first decomposed as a sum

of the classical solution hcl(z), which minimizes the energy, and the fluctuations

δh(z) around it, writing

h(z) = hcl(z) + δh(z). (2.5)

The stationarity condition δH
δh

= 0, which imposes the force balance condition for

a flexible beam, requires the classical trajectory to satisfy the differential equation

h′′′′cl − q2h′′cl = 0. (2.6)

The classical solution is required to explicitly satisfy the boundary conditions at

the end points z = 0 and z = D. By choosing the appropriate coordinate system,

i.e. by rotating the z axis, one may always set h(0) = h(D) = 0. The initial and

final tangents are defined to be: h′(0) = va, h
′(D) = vb, as shown in Fig. 2.2.

Because the classically solution satisfies all boundary conditions the fluctuation

field δh(z) and its first derivative are required to vanish at the endpoints, i.e.

δh(z) satisfies homogeneous boundary conditions. The general solution of Eq. 2.6

is

hcl(z) = a sinh qz + b cosh qz + cz + d, (2.7)
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with undetermined constants, a, b, c, d.

Using the decomposition Eq. 2.5 and integrating by parts, one finds that the

energy of a configuration separates into a classical path contribution and one from

the fluctuations about that path: H = Hcl +Hfl. The energy associated with the

classical trajectory is given solely by the boundary term:

Hcl =
1

2

[
h′′clh

′
cl − h′′′clhcl + q2h′clhcl

]∣∣∣∣h′(D)=vb

h′(0)=va

. (2.8)

Since the initial and final values of hcl were chosen to be zero, only the first term

makes a non-vanishing contribution to the elastic energy of the curved filament.

Applying the boundary conditions to set the undetermined constants in Eq. 2.7,

one finds

a =
1

M
[(va − vb)(cosh qD − 1)− qDva sinh qD]

b =
1

M
[(vb − va) sinh qD + qdva cosh qD − qDvb]

c =
1

M
[q(va + vb)(cosh qD − 1)]

d =
1

M
[(va − vb) sinh qD + qDvb − qDva cosh qD] , (2.9)

where M = q[2(cosh qD − 1) − qD sinh qD] is the determinant of the boundary

condition matrix. The corresponding energy is given by

Hcl =
1

2

q (qD(v2
a + v2

b )cosh(qD)− (va − vb)2sinh(qD)− 2qDvavb)

2(1− cosh(qD)) + qDsinh(qD)
. (2.10)

The above result reduces to a particularly simple form in the limit of zero tension

(q = 0) in which case the elastic energy of the filament depends on the initial and

final tangents through the expression

Hcl =
2lpkBT

D

(
v2
a + v2

b + vavb
)
, (2.11)

where the answer has been expressed in the original units. In response to choosing

symmetric imposed tangent angles, va = −vb = θ/2, and defining a radius of

curvature R via θ = D/R, the energy minimizing filament trajectory is an arc of
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a circle with radius R and the stored elastic energy is κD
2R2 (again in the original

units), as is expected. This solution is shown in Fig. 2.3. Of course, for much larger

bends, where the replacement of the curvature by the second derivative in the

Hamiltonian is inappropriate, a more complicated solution is obtained involving

elliptic functions [LL86].

Figure 2.3: Elastic rod subject to a torque is bent into the shape of a circular arc.

The radius of curvature of the arc is R and the angle subtending the arc is θ.

The energy of the fluctuation piece Hfl is simply given by

Hfl[δh] =
1

2

D∫
0

dz
[
δh′′(z)2 + q2δh′(z)2)

]
, (2.12)

The partition function Eq. 2.4 may now be written as a functional integral over all

configurations of δh(z) with vanishing displacement and slope at the boundaries

Z = ZclZfl = e−Hcl

∫
Dδh(z) e−Hfl[δh]. (2.13)

The factor Zfl depends only on the nature of the fluctuations and is aptly named

the fluctuation factor in path integral literature. Section 2.2.2.3 will detail an
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explicit evaluation of Zfl, but first I will explore the validity of a less formal

approach to understanding the statistical properties of a pinned filament.

2.2.2.2 Näıve mode analysis of the fluctuation factor & divergences

The direct evaluation of the functional integral Eq. 2.13 is quite involved and

it is reasonable to ask if there is a simpler method. Because the Hamiltonian is

quadratic in the field it is straightforward to evaluate the partition function and

corresponding free energy as a sum over the quantized eigenmodes. The theory

requires a short distance cutoff which is parametrized by ε = D
N+1

, where N is

the number of included modes, and in polymer systems one typically imagines

this length to be related to the monomer size. For the continuum approach to

be meaningful, intensive quantities, including the Casimir force defined as the

derivative of the free energy with respect to D, should not depend on the precise

formulation of this cutoff. On the other hand, extensive thermodynamic proper-

ties, such as the heat capacity, necessarily depend on the number of degrees of

freedom and thus retain an ε dependence. The partition function of the segment

can be evaluated by expanding the fluctuation displacement field δh into a series

of harmonic modes which automatically satisfy the vanishing displacement and

slope boundary conditions

δhn =

√
2

3(N + 1)

N∑
m=1

Am(cos(kmzn)− 1), (2.14)

with wavenumber km = 2πm/D. The normalization of the harmonic modes in

Eq. 2.14 has been chosen so as to set the Jacobian of the transformation to unity.

The calculation of the remaining Gaussian integrals is straightforward. The an-

swer can be inferred directly by noting that the energy stored in the mth mode in

thermal equilibrium is found by equipartition to be

Um =
ε

4
(k4
m + q2k2

m)A2
m, (2.15)
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which is the energy of a harmonic oscillator having spring constant Km = ε
2
(k4
m +

q2k2
m). Since these harmonic modes are decoupled, the free energy of the N modes

with spectrum ω(km) ∝
√
Km is given by the sum

F (D) =
N∑
m=1

ln[Γω(km)] (2.16)

of their free energies. Here Γ is a phase space factor which does not depend on

D. Converting the summation to an integration, one may write

F (D) =
D

2π

∫ 2π/ε

2π/D

dk ln(Γω(k)). (2.17)

At zero tension this reduces to

F (D) = D ln (Γε)
1
2

(
1

ε
− 1

D

)
+ 2D

(
1

ε
ln(2π/ε)− 1

D
ln(2π/D)− 1

ε
+

1

D

)
.

(2.18)

The free energy is formally divergent in the limit ε → 0 and it would appear

meaningless to consider this expression in the continuum limit. Nevertheless,

one is able to extract finite results by using the following procedure: Consider a

filament of total length L� D, which, to avoid additional complexities associated

with the choice of boundary conditions at the free ends, is assumed to be linked

into a loop. Then the total free energy of the loop with two cross links is FT (D) =

F (D)+F (L−D). The Casimir force −dFT (D)/dD is then fC(D) = f(D)−f(L−

D), where I have introduced f(D) = −dF (D)/dD. Each of the two fluctuation-

induced interactions between the linkers takes the form

f(D) = −1

ε
ln

(
Γ(ε)1/2

kBT

)
− 2

(
1

ε
ln(2π/ε) +

1

D
− 1

ε
)

)
. (2.19)

Each force is still formally divergent as ε → 0, however, after the subtraction of

the two fluctuation-induced interactions within the loop the residual Casimir force

is finite and, in the limit L
D
→∞ is given by

fC(D) ≈ − 2

D
. (2.20)
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It is essential to recognize that the finite Casimir force between the two cross

linkers on the loop was produced by the subtraction of the two fluctuation-induced

interactions, each of which diverged in the continuum limit of ε → 0. This näıve

mode analysis is not capable of separating the finite Casimir force from these cutoff

dependent terms, which diverge in the continuum limit. Although this result is

shown for the case of a filament at zero tension, the same issue appears for all

finite tension. That tension, of course, can be employed as a Lagrange multiplier

in order to fix the mean arc length of the filament. Controlling mean length in

this way does not eliminate the divergences associated with näıve mode analysis.

Of course, physical polymers have a natural short distance cutoff related to

their monomer size. By fixing ε the näıve mode analysis gives the free energy

of a polymer of N = D/ε degrees of freedom. The variation of that free energy

with length D (necessary to calculate the Casimir force) changes the total num-

ber of degrees of freedom making the analysis of the problem complicated. This

procedure gives a Casimir force with cutoff-dependent contributions. The precise

nature of the cutoff, however, should not determine the physical force between

distant pinning sites on the polymer. The subtraction scheme used above masks

our ignorance by removing this cutoff dependence and, although it does in fact

reproduce the correct Casimir force (see Sec. 2.3 for the rigorous result), it is not

inherently satisfactory. The appearance of infinities in the Casimir force calcula-

tion raises questions as to the reliability of our result, as it is far from clear that

our procedure properly separates the divergent and non-divergent terms.

As mentioned, the appearance of divergences is a signature of calculations

of the Casimir force [ABD92], and more broadly of path integral calculations.

Additional care must be employed in taking the continuum limit in the Casimir

force calculation than is generally necessary in computing other physical quanti-

ties associated with semiflexible filaments. For example, one may compute the

force extension curve of such a filament and take the continuum limit without
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encountering the infinities discussed above. We review that calculation briefly.

Including a finite tension on the filament, we may compute the thermal expec-

tation values of the squared amplitudes – see Eq. 2.14 – of the various undulatory

fluctuations on the filament. Using the equipartition theorem and Eq. 2.15 we

immediately obtain

< A2
m >=

2

ε
(k4
m + q2k2

m)−1 (2.21)

The arc length L of the filament between two points separated by D is

L =

∫ D

0

dz
√

1 + h′(z)2, (2.22)

where we again only consider one polarization state for the fluctuations. Using

Eqs. 2.21 and 2.22 we find the mean arc length between those points to be given

by

L/D − 1 ∝ 1

D

D/ε∑
m=1

(k2
m + q2)−1. (2.23)

The key observation is that the summation converges in the limit ε → 0. In

that continuum limit, changing from summation to integration leads to the force-

extension relation (L/D−1) ∝ 1/τ 1/2 for semiflexible polymers in the limit of high

tensions. This is a well-known result that has been verified by micromechanical

experiments [BMS94].

2.2.2.3 Direct evaluation of the fluctuation factor

Given the difficulties encountered in the näıve approach of the previous section,

we now return to the direct evaluation of the path integral in Zfl (Eq. 2.13). The

natural way to compute functional integrals is to slice each path into N infinites-

imal straight line segments of width ε–See Fig. 2.4. The paths are represented

mathematically by N independent height fields δhi, and the measure Dδh may
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then be defined as the product of N standard integral measures

Dδh =
N∏
n=1

∞∫
−∞

dδhn. (2.24)

To specify Hfl on a particular spatial slice, one must know the value of δh(z)

on both adjacent slices so that the derivatives may be evaluated. This naturally

induces a dependence on the width of the slices and requires an ε dependent

”measure factor” (see [FH65]) to be included in Dδh so that the path integral

is well defined in the limit ε → 0. The correct (insofar as it produces a finite

result as ε→ 0) measure factor is known for functionals with a single derivative,

but this factor is not appropriate for Hamiltonians with higher order gradients.

The statistical mechanics of a semi-flexible polymer should be well defined in

the continuum limit (it’s mechanical description certainly is!), and the lack of a

suitable path integral representation of the partition function is disconcerting.

A related problem is the specification of the discrete form of Hamiltonians with

second (or higher) order derivatives in the sliced representation. The piecewise

construction naturally invites replacing h′(z) by by (h(zi+1) − h(zi))/ε, but it is

unclear how to represent h′′(z). These terms, representing curvature energy, would

be infinite at the cusps of a piece-wise linear trajectory. Replacing the curvature by

a discrete second derivative avoids this divergence but that introduces additional

interactions between slices that are not adjacent, with mathematically unclear

consequences.

One solution, introduced by Kleinert [Kle86], is to rewrite H in terms of four

independent canonical functions. The value of H on each slice will be determined

by the four functions evaluated locally on that slice, with no dependence on ad-

jacent slices, and therefore no ambiguity in defining the curvature energy. The

measure in terms of these functions will therefore be independent of the slicing

procedure and may easily be written down up to an overall normalization constant.

The method is actually quite general, and in particular it is able to reproduce the
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Figure 2.4: Slicing the function into a set of interpolating straight line segments

is the first step towards direct evaluation of the path integrals. As the slice

width ε→ 0 the approximation is expected to approach the exact answer. While

the straight lines are appropriate for functionals with first order derivatives, it

is clearly problematic for higher order functionals because the derivatives will be

undefined at the kinks.

”measure factor” Feynman introduced for first order gradient functionals. The

next section will introduce the main idea in the context of a simple tense string

(the mechanical analogue of a free particle), and also expose the reader to an

explicit functional integral calculation before diving into the more complicated

pinned semi-flexible polymer system.
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2.2.2.4 A warmup problem: The partition function of a string

Feynman [FH65] showed the proper way to evaluate path integrals in the context

of the quantum mechanical propagator for a particle with classical action S

K(xb, tb;xa, ta) =

∫
a→b
Dx(t) e

iS
~ . (2.25)

The propagator K is the amplitude for the process of a free particle starting at

xa at time ta being observed at xb at time tb. The simplest example is of course

the free particle, described by the action

S =
1

2

∫ tb

ta

dtmẋ2. (2.26)

Aside from the factor of i which may be removed by a Wick rotation, there is

mathematically no difference between the propagator of a free particle and the

partition function of a string under tension

Z =

∫
Dh(z)e−H, (2.27)

where the energy functional is

H =
βτ

2

∫ D

0

dz h′(z)2. (2.28)

Time has been replaced by the string’s arc length variable z, position by the

height field h, and mass by the inverse length βτ . For continuity with the semi-

flexible polymer partition function I will outline the calculation in terms of the

string system instead of the free particle. As mentioned, the basic approach

Feynmann introduced was to split the interval D into N + 1 slices of width ε

such that (N + 1)ε = D. Supposing straight line paths between the different

slices, the spatial derivative may be replaced by h′(z) ≈ (h(zi+1)− h(zi))/ε. The

integration over all paths requires integrating over each discrete height field hi ≡

h(zi) independently , so that the measure becomes

Dh =
N∏
n=1

∞∫
−∞

dhn
∆h

, (2.29)
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where ∆h is a constant with units of length necessary to make the measure di-

mensionless. Since it is constant it will supply an overall prefactor to the partition

function which is independent of any system parameters, and thus will not con-

tribute physically. It is now straightforward to evaluate this discretized path

integral analytically since it is a product of coupled gaussian integrals. The result

is

Z =
1

∆hN
√
N

(
2πε

βτ

)N−1
2

exp

{
−(hf − hi)2

2D

}
, (2.30)

where hi and hf are the initial and final heights of the filament, respectively.

We immediately come across a serious issue: There is no well defined continuum

(ε → 0) limit to this expression! The source of the divergence is the dependence

of the derivative on the slicing procedure, which couples adjacent slices. While

it’s possible to call upon the correspondence with the quantum mechanical free

particle and invoke normalization arguments, it is more instructive for the purpose

of this thesis to introduce a more general method suggested by Kleinert [Kle86].

The resolution is to evaluate an equivalent canonical path integral written in terms

of the phase space variables q and p. To do so I introduce an auxiliary functional

which is the Legendre transform of Eq. 2.28. By all rights it should be called

the Hamiltonian and be labeled H, but as H typically represents configurational

space energy functionals within soft mater physics I will call the new functional L.

The conjugate momentum is defined with an i for convenience, p = i δH
δh′(z)

= iβτh′

and the new functional is defined as

L(h, p) = H +

∫
dz iph′ =

∫
dz

p2

2βτ
. (2.31)

The functional H in terms of the conjugate variables is

H(h, p) =

∫
dz

p2

2βτ
− iph′. (2.32)

The Legendre transforms have allowed us to write the energy functional in terms

of two independent functions h and p. The path integral measure is now DhDp
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and the time sliced version is unambiguous: it cannot depend on the short distance

cutoff since the state of the string is determined by the entirely local functions h

and p. We thus find

Z =
N∏
n=1

∞∫
−∞

dhn
∆h

∞∫
−∞

dpn
2π∆p

exp

{
−
∑
n

[
εp2
n

2βτ
− ipn(hn+1 − hn)

]}
. (2.33)

We may relate this to the original näıve form Eq. 2.27 by integrating out the

momentum degrees of freedom to find

Z =
N∏
n=1

∞∫
−∞

dhn
∆h

√
βτ

2πε∆p2
exp

{
−
∑
n

(
βτ

2

(hn+1 − ni)2

ε

)}
, (2.34)

which is identical to Eq. 2.27 except for an additional piece Feynmann called a

measure factor. In his treatment this served as a fudge factor to allow for finite

evaluations of path integrals, but we see that it can in fact be derived and emerges

naturally in the canonical treatment of the problem. It is easy to check that this

measure factor produces the ε dependence to precisely cancel the divergent portion

of Eq. 2.30 and we arrive at an answer which is well defined in the continuum

limit

Z =
1

∆hN∆pN

(
βτ

2πD

) 1
2

exp

{
−(hf − hi)2

2∆hD

}
, (2.35)

which was the original aim. Note that for fixed hf = hi = 0, which may always

be accomplished by a simple rotation of the system, we predict that the partition

function depends on the length of the string as Z ∝ D−1/2, and thus the free

energy is

F =
T

2
logD. (2.36)

We find that there is a fluctuation induced Casimir interaction between pinning

sites on the string, with the force going as T/2D. This form carries over to the

semi-flexible polymer system, although with a different, cross-linker dependent

prefactor.
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2.2.2.5 Fluctuation factor of the semi-flexible polymer

We now return to the evaluation of the semi-flexible polymer fluctuation factor,

Eq. 2.13. In the spirit of the previous section, we need to replace the Hamiltonian

Eq. 2.12 with a canonical version which may be evaluated locally on each spatial

slice. For notational convenience we will replace δh by h in this section. We first

introduce an auxiliary field, v(z) ≡ h′(z), and rewrite our Hamiltonian in terms

of h, v, and v′. We add a Lagrange multiplier p0 to ensure the correct relation

between h′ and v and define this new functional as

H̃[h, v] =

d∫
0

dz

{
1

2

[
(v′(z))2 + (q2

1 + q2
2)(v(z))2 + q2

1q
2
2h

2(z)
]
− ip0(h′ − v)

}
.(2.37)

The new Hamiltonian (2.37) is equivalent to (2.3) in that both produce the

same equation for the classical configuration of the filament, found by setting

δH̃
δh

= δH̃
δv

= 0. The advantage is that our Hamiltonian now depends only on

first derivatives of h and v, at the expense of the Lagrange multiplier. We next

introduce the variables p and pv which are conjugate to h and v respectively:

p = i
δH̃
δh′(z)

= p0

pv = i
δH̃
δv′(z)

= iv′, (2.38)

and play the role of canonical momenta. An i has been included in the definition

of p and pv in order to make subsequent integrals convergent. We now define a

new functional L as

L(h, v, p, pv) =

∫
dz (iph′ + ipvv

′) + H̃

=

∫
dz

[
ipv +

1

2

(
p2
v

2
+ q2v2

)]
. (2.39)
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Our Hamiltonian (2.37) in terms of the new variables is

H[h, v, p, pv] =

∫
dz [−iph′ − ipvv′] + L

=

∫
dz

[
−ip(h′ − v)− ipvv′ +

1

2

(
p2
v + q2v2

)]
. (2.40)

The fluctuation factor is

Zfl =

∫
DhDvDpDpv×

exp

{∫
dz

[
ip(h′ − v) + ipvv

′ − 1

2

(
p2
v + q2v2

)]}
.

(2.41)

If one were to drop the first two terms of the argument of the exponential, the

functional integral would resemble the path integral expression of the density

matrix of a quantum harmonic oscillator, with pv playing the role of the canonical

momentum. It should be kept in mind that in classical statistical mechanics

momentum integration produces the partition function of the ideal gas. The

variable pv is only a mathematical aid and should not be viewed as a physical

momentum variable.

To explicitly evaluate the functional integral, slice the spatial coordinate z into

N + 1 pieces of width ε such that zn = nε and (N + 1)ε = D. The boundary

conditions translate into the requirements

h0 = 0 hN+1 = 0

v1 = va vN+1 = vb (2.42)

There are no boundary conditions imposed on p and pv. A piecewise linear path

is now defined by the values of (hn, vn, pn, pvn) at each slice, with a straight line

path in four-dimensional phase space interpolating between adjacent slices. Since

the phase space coordinates are independent, we recover all possible paths by

integrating over each variable at each slice. The measures Dh,Dv,Dp, andDpv in
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the partition function are defined to be

Dh =
N∏
n=1

∞∫
−∞

dhn
∆h

Dv =
N∏
n=2

∞∫
−∞

dvn
∆v

Dp =
N+1∏
n=1

∞∫
−∞

dpn
2π∆p

Dpv =
N+1∏
n=2

∞∫
−∞

dpvn
2π∆pv

(2.43)

The factors ∆h,∆v,∆p, and∆pv are included in the definition of the elementary

volume in the four-dimensional phase space to construct a partition function that

is dimensionless, just as a factor with the dimensions of ~3 must be included in the

partition function of classical systems. The phase-space factors can be combined

into the term ∆−N = ∆h−N∆v−N+1∆p−N−1∆p−Nv .

All first order derivatives in the Hamiltonian can be discretized:

H̃ = ε
N+1∑
n=1

[
−ipn

(
hn − hn−1

ε
− vn

)
− ipvn

(
vn − vn−1

ε

)
+

1

2

(
p2
vn + q2v2

n

)]
(2.44)

First, perform the Gaussian integrals over pvn . This gives one factor (2πε)−
1
2 for

every n and a term 1
2
(vn−vn−1

ε
)2 inside the square brackets. Next, perform the

integrals over pn. This produces one delta function δ(hn−hn−1− εvn) for every n.

Finally, the integrals over vn combined with the delta function means replacing

vn by hn−hn−1

ε
. Finally, a factor of 1/ε is generated by each of the N − 2 integrals

over vn through the δ functions. The final result is

Zfl =
1

ε
3N
2
−1

 N∏
n=1

∞∫
−∞

dhn
∆

 δ (hN − εvb) δ (h1 − εva) e−H, (2.45)

where the Hamiltonian is given by

H =
ε

2

N∑
n=1

[(
∇∇̄hn

)2
+ q2 (∇hn)2

]
. (2.46)

Here, ∇ and ∇̄, are the forward and backward lattice derivatives:

∇h(z) =
h(z + ε)− h(z)

ε

∇̄h(z) =
h(z)− h(z − ε)

ε
. (2.47)
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Note that h(z) in the functional integral is here allowed to have a slope at the

end points that differs from the imposed boundary condition with the boundary

condition enforced by the two delta functions. Furthermore, Eq. 2.45 implies that

ε−3N/2+1 is the correct “measure factor” for the semi-flexible polymer Hamiltonian.

To explicitly compute Zfl, it is convenient to leave the integral over p1 and pN+1

in place. We begin by expanding the displacement in a sine series:

h(z) =

√
2

N + 1

N∑
m=1

Amsin kmz, (2.48)

with km = mπ
D

. This decomposition differs from that of the näıve mode analysis

in that the sine series imposes only the zero displacement boundary conditions

h0 = hN+1 = 0 at the ends, but does not constrain the angles there. The remaining

boundary conditions on the angles are imposed afterwards through the integral

over p1 and pN+1. The fluctuation Hamiltonian is

Hfl =
ε

2

N∑
m=1

(Q4
m +Q2

mq
2)A2

m. (2.49)

Here

Q2
m =

2− 2cos (kmε)

ε2
(2.50)

is the mode dispersion relation of a linear chain. Eq. 2.48 is an orthogonal trans-

formation with unit Jacobian. Finally, we express the height fields h1 and hN in

exp {ip1h1 − ipN+1hN} in terms of the sine series:

exp {ip1h1 − ipN+1hN} = exp

{
i

√
2

N + 1

[
(p1 − pN+1)

N∑
m odd

Amsin(kmε)

+ (p1 + pN+1)
N∑

m even

Amsin(kmε)

]}
. (2.51)
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The functional integral over the fluctuations, after the change of variables, is then

Zfl = ε∆−N
N∏
m=1

 ∞∫
−∞

dAm√
2πε ε

∫ ∞
−∞

dp1

2π

∫ ∞
−∞

dpN+1

2π

× exp

{
i

√
2

N + 1

[
(p1 − pN+1)

N∑
m odd

Amsin(kmε)

+ (p1 + pN+1)
N∑

m even

Amsin(kmε)

]}

× exp

{
ε

2

N∑
m=1

(Q2
m + q2)2A2

m

}
. (2.52)

The integrals over the mode amplitudes Am are Gaussian. Evaluation produces

the product of a prefactor
N∏
m=1

(ε2Q2
m + ε2q2)−1 (2.53)

that includes a factor 1√
2πε ε

, and a piece which depends on p1 and pN+1:∫ ∞
−∞

dp1

2π

∫ ∞
−∞

dpN+1

2π
exp

{
− 1

(N + 1)ε

[
(p1 − pN+1)2Σo

+ (p1 + pN+1)2Σe

] }
. (2.54)

where

Σe
o

=
N∑

m even
m odd

sin2(kmε)

(Q2
m + q2)2

. (2.55)

The infinite product (Eq. 2.53) and the sums Σe
o

can be evaluated in the limit

N →∞ giving

Σe =
ε2D

8q
coth

(
qD

2

)
Σo =

ε2D

8q
tanh

(
qD

2

)
(2.56)

(see Refs. [Kle10] and [GR94]). The remaining momenta integrals (Eq. 2.54)

are Gaussian. After evaluation and combination with Eq. 2.53, the fluctuation
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contribution to the partition function is

Zfl =
1

2π∆N

q2√
2(1− cosh qD) + qD sinh qD

. (2.57)

2.2.2.6 Partition function

The final result for the pinned semi-flexible polymer functional integral is found

simply by multiplying the classical contribution with Eq. 2.57

Z = e−Hcl
1

2π∆N

q2√
2(1− cosh qD) + qD sinh qD

, (2.58)

, where Hcl is given by Eq. 2.10. This function does not depend on the short

distance cutoff and provides the appropriate statistical description of the filament

in the continuum limit. In particular, it correctly extracts the fluctuation induced

Casimir interaction valid at length scales much larger than the monomer size. This

description will naturally fail, however, if one is interested in statistical properties

of the polymer viewed as a chain of individual particles. In that limit, there is

nothing unphysical about the dependence of the free energy on the microscopic

cutoff. In fact, −T ∂2F
∂T 2 , where F is the Helmholtz free energy, must equal the

Dulong-Petit heat capacity N
2
kB in the limit of large N according to classical sta-

tistical mechanics. To recover this result, one must reinsert the cutoff dependence

into the partition function through the semi-flexible filament measure factor:

Zdiscrete = e−Hcl
ε

2π(ε3/2∆)N
q2√

2(1− cosh qD) + qD sinh qD
, (2.59)

The free energy of the discrete polymer equals

F
kBT

= Hcl − ln

(
q2√

2(1− cosh qD) + qD sinh qD

)
+N ln

√
∆2ε3

kBT
− ln(ε/2π).

(2.60)

The first term, the classical Hamiltonian, is the elastic energy of the polymer in the

absence of thermal fluctuations. It is, of course, independent of the microscopic

cutoff. The second term is also independent of the short distance cutoff and it
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will be the source of the Casimir force. The third term, which depends explicitly

on the cutoff, is extensive in the number N of microscopic degrees of freedom

and dominates in the large N limit. Now, the finite and divergent terms are

cleanly segregated in the free energy: the dependence on the small distance cutoff

– which stands for dependency on microscopic variables – only appears in the free

energy per monomer. The third term (with the explicit temperature dependence

restored) ensures that the Dulong-Petit relation holds even as ε is taken to zero.

2.2.3 A note on the importance of the embedding space

It is worth commenting that it is necessary for the cross-linkers to pin the polymer

to an embedding space for the boundary conditions to make sense. In biological

systems, this may be accomplished by pinning the filament to an otherwise static

background elastic network. One can show that cross-linkers bound to an oth-

erwise free filament will not experience an interaction. This is not immediately

obvious because the cross-linkers will locally modify the mechanical properties of

the polymer by making it stiffer, and these so called rigid inclusions have been

shown to interact with one another in membrane systems. Nevertheless, I will

show that polymers differ from their two dimensional cousins in this respect.

Consider a free semiflexible filament fluctuating in the plane with two linkers at-

tached. The Hamiltonian for the filament, parameterized by the angle of the local

tangent with respect to a reference direction θ(s) as function of arc length, is given

in the usual form,

H ({θ(s)}) =
1

2

∫ L

0

ds κ(s)

(
dθ

ds

)2

. (2.61)

The role of the attached linkers is to modify the local bending stiffness of the

filament κ(s); the filament has one bending modulus at the linkers’ locations and

another elsewhere. The partition function for such a system may be written as

Z =

∫
Dθ e−βH({θ(s)}). (2.62)
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The above partition function is that of the one-dimensional nonlinear σ model,

but with a nonuniform stiffness. The functional integration should respect the

restriction of θ(s) to the unit circle: 0 ≤ θ < 2π. In the case of interest where

the entire chain segment is much shorter than a persistence length, the partition

sum is dominated by a small range of tangent angles so that this constraint can

neglected. Having done so, we perform the functional integral over θ(s) treating it

as a Gaussian variable. In the non-linear sigma model, this is known as the spin-

wave approximation. Discretizing the functional integral again in chain segments

of length ε, and assuming periodic boundary conditions, we obtain

Z =

[
N∏
n=1

∫ ∞
−∞

dθn
∆

]
exp

{
− 1

2ε

N∑
n=1

βκn (θn+1 − θn)2

}
, (2.63)

with θN+1 = θ1. Since there are no higher-order derivatives, there are no ambigu-

ities of the kind previously discussed in the evaluation of the functional integral.

Introducing the difference variable yn = θn+1 − θn and performing the Gaussian

integrals we arrive at

Z ∝
N∏
n=1

1√
βκn

. (2.64)

It is evident from this expression that the partition function does not depend on

the separation of the two beads on the filament because the product is insensitive

to the ordering of the κi. There is no fluctuation-mediated interaction between

the beads within the spin-wave approximation. To generate a fluctuation force it

is necessary to place the system in an embedding space where displacement and

slope boundary conditions are meaningful quantities.

2.3 Cross-Linker Interaction Potential

We can now use the results of the previous section to infer the effective interaction

between transient cross-linking molecules. We start with the case of zero tension
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where the partition function Eq. 2.58 reduces to

Z =
C

D2
e−

2
D (v2a+v2b+vavb), (2.65)

where C is a constant which is independent of D and the boundary conditions,

and thus plays no role in the Casimir force. The free energy, modulo this overall

constant, is

F = −kBT logZ

= kBT

(
2 log D̃ +

2

D̃

(
ṽ2
a + ṽ2

b + ṽaṽb
))

. (2.66)

The tildes have been reinserted here as a reminder: D̃ = l
− 1

3
p D, ṽ = l

1
3
p v. The

force between the linkers is computed, as before, by connecting the ends of the

chain into a loop of length L and computing the derivative of the total energy

with respect to D. This produces

f(D) ≈ −2kBT

D
+ 2κ

v2
a + v2

b + vavb
D2

. (2.67)

assuming again L � D. The first term has the form of the Casimir interaction

that we obtained earlier. The second term is the elastic energy of the section of

the chain between the linkers. The combined expression has a stable minimum at

f(D∗) = 0 with a separation D∗ = lp(v
2
a + v2

b + vavb) that is of the order of the

persistence length. Figure 2.5 shows the Casimir force for different fixed values of

the slopes.

The attractive Casimir interaction has a universal character: it is independent

of both the small distance cutoff and the persistence length, although the per-

sistence length partially determines the validity of the perfect pinning boundary

condition–See Sec. 2.3.5. To estimate the magnitude of this force in typical

biopolymer systems, we note that a separation of a ten nanometers, the attrac-

tive force is on the order picoNewtons, the typical force scale of motor proteins.

The work required to separate the two cross links from 100nm to one micron is

∼ 9kBT .
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Figure 2.5: The Casimir force for cross-linkers which fix the slope of the fila-

ment. At small distances the repulsive elastic interaction always overwhelms the

attractive fluctuation force.
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One must now specify how the transient cross-linker molecules impose angular

restrictions on the filaments to which they are bound. There are two particular

cases of interest related to cross linked F-actin networks. Some linkers that pro-

mote filament bundling, such as α-actinin, have a strong preference for parallel

filaments, but others, such as the network-forming filamin cross linkers do not

appear to generate strong angular constraints. It is simple to examine both cases

if the linker molecules apply a harmonic restoring torque on the two filaments to-

wards parallel alignment. In that case, two final Gaussian integrals remain to be

done to perform a thermal average of the classical partition function over different

linker angles:

Zcl =

∞∫
−∞

dva
∆va

dvb
∆vb

exp

{
−2lp
D

(
v2
a + v2

b + vavb
)}

(2.68)

× exp

{
−βγ

2

(
v2
a + v2

b

)}
,

where γ is a measure of the angular rigidity of the linker. The associated free

energy is

Fcl(D)

kBT
=

1

2
log

[
1

2
(lp/D)2

(
12 + 8βγD/lp + (βγD/lp)

2
)]

This expression must replace the second term in Eq. 2.66. We will examine this

expression in the limits of weak and strong angular stiffness in the following sec-

tions.

2.3.1 Network Linkers

For the case that the linker molecule have little or no angular preference, we take

the limit of βγ � lp/D and find the total force to be

f(D) ≈ −kBT
D

. (2.69)

The thermal average over the repulsive “classical” interaction simply cancelled one

half of the Casimir force. The net force remains attractive as long as βγ � lp/D.
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For very large separations, this condition fails. The attraction starts to increase

even more and is better described by the opposite limit of bundling linkers, which

have a strong angular preference. Relaxing the angle condition in going from the

result given by Eq. 2.67 to the one given by Eq. 2.69 removes precisely half of the

interaction strength. One may view the attraction in Eq. 2.67 as arising in equal

parts from the restriction of two separate degrees of freedom, the position and

slopes of the filament at the pinning sites. Alternatively, if one were to consider

the unphysical case of cross linkers which pin the slopes but not the positions of

the filaments, one should expect the same result as in Eq. 2.69. More importantly,

one may consider the case of cross linkers with no angular preference and some

intrinsic elastic compliance, modeled by a harmonic spring with spring constant

k. Based on our results for the cross linkers that generate a harmonic potential

with curvature γ for the filament slope, we expect that the prefactor of unity in

Eq. 2.69 would be reduced monotonically for elastically compliant cross linkers,

and go to zero as k → 0.

2.3.2 Bundling linkers

For the case that the linker molecule have a strong angular preference for parallel

alignment, we should take the opposite limit of βγ >> lp/D. This gives

f(D) ≈ −2
kBT

D
(1− 2

kBT lp
γD

+ ...) (2.70)

for the total force–Please see Fig. 2.6 for plots with different values of γ. The

repulsive interaction amounts to a small reduction of the Casimir force. The

Casimir force is thus roughly twice stronger for bundle linkers than for network

linkers. In the limit γ →∞ the final result for the Casimir force obtained from the

correct evaluation of the path integral is identical to that obtained by the näıve

approach and subtraction scheme discussed in section IIB. The näıve approach to

the calculation of the free energy of the pinned filament introduces errors in its
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dependence upon the small distance cutoff ε. However, by taking a derivative with

respect to the inter cross linker spacing and subtracting the remaining formally

divergent part of the resultant force as described after Eq. 2.19, one can mask the

deficiencies of the näıve approach. Other derivatives of the free energy, such as

the specific heat, still retain the unphysical dependence of the näıve free energy

upon ε, as discussed after Eq. 2.60.

Figure 2.6: As the angular stiffness γ is increased the Casimir force transitions

from a network cross-linker into one which prefers bundling filaments.
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2.3.3 The effect of tension

Next, consider the case of nonzero filament tension. Rewriting the earlier results

in terms of the unscaled variables, introducing the dimensionless quantity d ≡√
βτ
lp
D =

√
τ
κ
D, and further setting the slopes va = vb = 0 to focus on the

fluctuation contribution (Hcl = 0), we find the free energy

F = −kBT

[
log

(
1

D2

)
+ log (W (d))

]
+ C, (2.71)

where

W (d) =
d2√

2(1− cosh(d)) + d sinh(d)
(2.72)

is a scale function. The function f(d) contains the entire correction to the free

energy due to tension, which enters only through the length
√

κ
τ
. The force

between the two linker molecules, obtained as before, is

f(D) = kBT

(
− 2

D
+

√
τ

κ

(
W ′(d)

W (d)
+

1

2

))
. (2.73)

The factor 1/2 in the second term is the contribution to the force due to filament

fluctuations of chain material that is not between the two linkers. The second term

is strictly positive so that the inclusion of tension weakens fluctuation attraction.

For d� 1, W ′(d)
W (d)

≈ −1
2

+ 3
2d

. In that case, the total force is f(D) ≈ −kBT
1

2D
. The

tension-induced fluctuation repulsion thus cancels 3/2 of the tension-free Casimir

force. Figure 2.7 shows resulting force for different values of d.

For d � 1 on the other hand, the second term contributes a repulsive force

that is independent of D and equal to kBT
2

√
βτ
lp

but this is small compared to the

tension-free fluctuation attraction. For distances small compared to the “tension

scale” 1/q the full Casimir attraction is recovered. In summary, the Casimir force

is not suppressed by tension for the case of bundle linkers with strongly preferred

alignment. If slope fluctuations are included one finds a reduction of kBT
1
D

in

the attractive force for d << 1 again illustrating that tension has no effect for

distances less than the tension scale. For large distances the slope fluctuations
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are strongly suppressed and do not weaken the Casimir attraction. We plot the

Casimir force between cross linkers of the bundling and network types and explore

the effect of tension applied to the filament in Fig. 2.8.

Figure 2.7: For separations greater than the characteristic tension length scale√
κ/τ the Casimir force is weakened. At small separations, neglecting any elastic

repulsion due to preferred tangent angles, all curves with finite tension collapse

onto the bundling linker result.
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Figure 2.8: The Casimir force versus cross linker separation for a filament fluctu-

ating in one transverse dimension. We compare the interaction in the tension-free

case for network cross linkers, which do not constrain the filament crossing an-

gles (black), and angle-constraining bundle cross linkers (red) with zero preferred

slope. When the bundle cross linkers enforce filament slopes that introduce a

nonzero mean torque (magenta), the interaction becomes repulsive at short dis-

tances due to the forced bending of the filament. The effect of finite tension is

explored for the case of fixed tangent angles of zero at the cross links. Increased

tension reduces the attractive interaction at lengths greater than
√
κ/τ , as can

be seen by comparing the low tension (green) and high tension (blue) results.
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2.3.4 Three cross-linker interaction

Consider three sliding linkers on a fluctuating filament as shown in Fig. 2.9. The

classical and Casimir contributions to the free energy in a tensionless filament in

the scaled units are

F = 2kBT

(
logD̃ + log(L̃− D̃) +

ṽ2
a + ṽ2

b + ṽaṽb

D̃
+
ṽ2
b + ṽ2

c + ṽbṽc

L̃− D̃

)
, (2.74)

If one assumes the linkers have no angular preference then the ṽi may be integrated

Figure 2.9: Three interacting sliding linkers on a single fluctuating filament

out and one finds the interaction free energy

F = kBT

(
logD̃ + log(L̃− D̃) +

1

2
logL̃

)
(2.75)

The Casimir force on the middle linker is

f = −kBT

(
1

D
− 1

(L−D)

)
(2.76)

The force on the leftmost linker is

f = −kBT

(
1

D
+

1

2L

)
(2.77)
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As we let D → L corresponding to a single linker interacting with a cluster of

two linkers we see the force goes to −3kBT

2L̃
. This result highlights the fact that

tight clusters must eliminate fluctuations and therefore force the slopes to be

identically zero at the edges of the cluster. Fluctuating slopes generate repulsive

forces of strength −kBT

2L̃
so the elimination of such fluctuations increases the overall

strength of the attraction. We see that an individual linker will be preferentially

attracted to clusters over solitary linkers. This result holds for the interaction

of a single linker with any size cluster up to correction of order a
L

, where a is

the mean spacing within a cluster and L is the separation of the single linker

with the cluster. We may also deduce that two clusters will interact with the full

fluctuation force −2kBT

L̃
since there are no slope fluctuations at either end.

2.3.5 Applicability to Biological Systems

For the Casimir effect to be operative between two physical cross linkers, one

must be sure that the scale of transverse undulations at a location on the filament

without a cross linker is larger than the ring radius. Larger rings would have

no effect on the filament’s fluctuation spectrum and thus generate no Casimir

interaction.

The magnitude of the thermally generated undulations is easily estimated. For

simplicity tension is neglected and only one transverse direction is considered so

that the energy of a given configuration is given by

H =
κ

2

∫ D

0

dz [h′′(z)]2. (2.78)

The boundary conditions are chosen to represent a bound linker restricting

fluctuations at z = 0, specifically hinged at z = 0 and free at z = D, i.e. h(0) =

h′(0) = 0 and h′′(D) = h′′′(D) = 0, where primes denote differentiation with

respect to z. The aim is to determine the characteristic fluctuations a distance
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l from z = 0 and compare this with the relevant cross linker length scales. For

these boundary conditions we may integrate by parts with no surface terms to

find

H =
κ

2

∫ D

0

dz h ∂4
zh. (2.79)

To determine the thermal expectation value of the filament’s transverse displace-

ment at z = l it is convenient to decompose those displacements into eigen-

functions of the ∂4
z operator with the boundary conditions imposed above. The

appropriate eigenfunctions are

hn = cn

[
sin(knz) +

sin(knD)

sinh(knD)
sinh(knz)

]
, (2.80)

with corresponding eigenvalues k4
n, where kn are the solutions of the transcendental

equation

tan(knD) = tanh(knD), (2.81)

and cn is a normalization constant chosen so that∫ D

0

dz h2
n(z) = 1. (2.82)

The analysis is further simplified by considering only the first mode, n = 1. Since

the mean square amplitudes of each mode are positive definite quantities that add

to the quantity of interest 〈h2(l)〉, this result provides a conservative underestimate

of the rms fluctuations of the filament. From the equipartition theorem

κ

2
〈A2

1〉k4
1 =

kBT

2
, (2.83)

where A1 is the amplitude of the first mode. The local height fluctuations are

then given by

〈h2(l)〉 =
kBT

κk4
1(D)

h2
1(l;D) + · · · , (2.84)

where we note explicitly the dependence of the eigenfunction and eigenvalue on

the filament’s length D. The ellipses represent positive terms associated with

the neglected modes. The eigenfunction scales as h1(l;D) ∼ D−1/2k1l due to the
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normalization factor c1 of the eigenfunction and its dependence on l for small l.

The eigenvalues scale as k1 ∼ D−1, so h1(l;D) ∼ L−3/2l. Combining this with

Eq. 2.84 and recalling that lp = κ/kBT , one finds

〈h2(l)〉 ∼ l2D

lp
. (2.85)

The rms fluctuations are then estimated to be
√
〈h2(l)〉 ∼ l

√
D/lp. To put this

in a biological context imagine that the filament is a 1µm F-Actin polymer, which

has lp ∼ 10µm), and has characteristic transverse fluctuations√
〈h2(l)〉 = .1l. (2.86)

At a separation of l = 100nm the fluctuations are approximately 10nm. If

one imagines that the hinged boundary condition at z = 0 is due to a cross

linker with no angular preference then the perfect pinning approximation should

be reasonable at a separation of 100nm since a physical cross linker should be

capable of constraining fluctuations of order 10 nm. Assuming cross linkers can

affect fluctuations on the scale of 1nm, one arrives at an estimate of 10nm for the

lower bound of validity of the approximation. This result is somewhat sensitive to

boundary conditions: A clamped boundary condition at z = 0 leads to a quadratic

growth profile and would produce fluctuations of only a few nm at l = 100nm,

and thus the approximation is only appropriate beyond that distance.

2.4 Evidence of Casimir effect from simulations

The existence of a Casimir force between cross-linkers is verified by numerical

simulation of a pinned semi-flexible filament. The simulation free energy as a

function of pinning site separation is difficult to measure precisely because of the

macroscopic number of degrees of freedom in the system, each contributing kBT

to the total. One may easily measure the Fourier mode amplitudes, however, and

compare them to a theoretical model that is equivalent to the Casimir interaction
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previously derived. In Sec 2.4.1 I present the new calculation and prove the

equivalence. Section 2.4.2 outlines the simulation method, and the results are

stated and discussed in Sec. 2.4.3.

2.4.1 The Casimir force as a linear Fourier mode coupling

The derivation of the Casimir force in Sec. 2.2 is a direct evaluation of the

partition function expressed as a path integral

Z =

∫
Dh e−βH[h], (2.87)

where the Hamiltonian H is given by Eq. 2.2. The näıve approach (c.f. Sec.

2.2.2.2 ) represents the height field in terms of Fourier modes which enforce an

h = 0 boundary condition at z = 0, L

h(z) =

√
2

N + 1

N∑
n=1

An sin knz, (2.88)

where kn = nπ
L

, and N is the number of included modes which will be subsequently

taken to infinity. The boundary conditions represent network cross-linkers (see

Sec. 2.3.1) because the initial and final tangents are thermally averaged. This

transformation diagonalizes the Hamiltonian and also allows a simple form for the

path integral measure( up to a multiplicative constant) Dh:

Dh →
N∏
n=1

∫
dAn

H → κ

2

N∑
n=1

k4
nA

2
n +

τ

2

N∑
n=1

k2
nA

2
n, (2.89)

This method introduces the divergences discussed in 2.2.2.2 if one attempts to

directly calculate the interaction between two crosslinkers. The divergences are

due to the transfer of degrees of freedom into the bulk region of the filament

outside the linkers, but this can be avoided with the introduction of a third linker

between the original two, as shown in Fig. 2.10. It will be shown that there are no
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divergences associated with the change in free energy as the middle linker is slid

between the outer linkers, and that this näıve approach reproduces the Casimir

interaction as well as the desired Fourier amplitude matrices. Instead of restricting

ourselves to a single intermediate crosslinker we allow m linkers at positions z = Di

which constrain the fluctuations and force h(Di) = 0. This pinning condition

is handled with a product of Dirac δ functions δ(h(D1)) δ(h(D2)) · · · written in

Fourier space. The final form of the partition function is

Z =
N∏
n=1

∫
dAn

∫ ∞
−∞

dp1

2π
· · ·
∫ ∞
−∞

dpm
2π

exp {−βH

+ ip1

N∑
n=1

Ansin knD1 + · · ·+ ipm

N∑
n=1

Ansin knDm

}
. (2.90)

The integral is straightforward to evaluate since it is a product of Gaussian inte-

grals, although there is complexity associated with a large number of additional

crosslinkers. It is also clear that the Casimir interaction involves only a linear

coupling between all the modes. For simplicity let τ = 0 and consider only a

single intermediate linker at z = D. Completing the square for each amplitude

and performing the resulting Gaussian integrals gives

Z(D) =

[
N∏
n=1

√
2π

βκk4
n

]∫
dp

2π
exp

{
−

[
N∑
n=1

sin2 knD

2βκk4
n

]
p2

}
. (2.91)

The prefactor diverges as N → ∞, however it is independent of D and can be

ignored since it will not contribute to the Casimir force. Up to a constant we thus

have

Z(D) ∝

(
N∑
n=1

sin2 knD

2βκk4
n

)−1/2

. (2.92)

It’s interesting to note that Z(D = 0) differs from the partition function with no

constraint by an infinite multiplicative constant. This of course must be the case

if there is to be a Casimir force. Continuing, we obtain the free energy

F(D) =
T

2
log

(
N∑
n=1

sin2 knD

2βκk4
n

)
, (2.93)
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and the force

f(D) = −T
2

(
N∑
n=1

sin2 knD

k4
n

)−1( N∑
n=1

2kn sin knD cos knD

k4
n

)
. (2.94)

Setting the length of the filament to unity we are left with

f(D) = −πT

(
N∑
n=1

sin2 nπD

n4

)−1( N∑
n=1

sinnπD cosnπD

n3

)
. (2.95)

The sums converge and we may safely take the limit N →∞. The result,

f(D) = π T Im

[
Li3(eı2πD)− Li3(e−ı2πD)

Li4(eı2πD) + Li4(eı2πD)− 2Li4(1)

]
, (2.96)

is equivalent to the force calculated using the 3 body Casimir interaction, Eq.

2.76 (recalling L = 1):

f(D) = −T
(

1

D
− 1

1−D

)
. (2.97)

To calculate mode amplitude correlations it is convenient to turn the partition

function into a generating function Z(J) by including a source term
∑
AiJi in

the exponent of Eq. 2.90. Correlation functions are now simple to calculate, for

example the two point function takes the form

〈AiAj〉 =

∂Z
∂Ji∂Jj

∣∣∣∣
J=0

Z(J = 0)
. (2.98)

The integrals are easily evaluated, and explicitly in the case m = 1 we find the

correlation function

〈AiAj〉(D) =
δi,j

β(κk4
i + τk2

i )
−

sin kiD
κk4i+τk2i

sin kjD

κk4j+τk2j

β
∑N

n=1
sin2 knD
κk4n+τk2m

. (2.99)

If D = 0 or D = L, representing the intermediate linker positioned at either

edge, the standard equipartition result emerges. Apart from those two cases, the

pinning condition modifies the shape and eigenvalues of the normal modes of the

filament. This linear coupling of the Fourier modes completely defines the Casimir
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interaction. The simulations will also study the case m = 2 and I quote the result

here for the case of zero tension, τ = 0, and two pinning sites at D1 and D2

〈AiAj〉(D1, D2) =
δi,j

β(κk4
i )
− 1

4A(D1, D1)A(D2, D2)− A(D1, D2)

× [8A(D1, D1)B(i,D2)B(j,D2)

+ 8A(D2, D2)B(i,D1)B(j,D1) (2.100)

− 4A(D1, D2) (B(i,D2)B(j,D1) +B(i,D1)B(j,D2))] ,

where

A(D1, D2) =
1

2βκ

N∑
n=0

sin knD1 sin knD2

k4
n

B(i,D) =
sin kiD

2βκk4
i

. (2.101)

2.4.2 Simulation Details

2.4.2.1 Brownian dynamics simulations with finite beam elements

Simulations were carried out discretizing the filament with geometrically exact,

nonlinear Timoshenko beam elements [JC99, Cri03, Rom04], which account for

axial, torsional, bending, and shear deformation. Viscous drag is accounted for

by

f visc = ctẋ, mvisc = crθ̇ (2.102)

with translational and rotational damping tensors ct and cr and translational and

rotational velocities ẋ and θ̇. Stochastic forces and moments are determined in

accordance to the fluctuation-dissipation theorem and read

f stoch =
√

2kBTst
∂W2

t (s, t)

∂s∂t
, mstoch =

√
2kBTsr

∂W2
r(s, t)

∂s∂t
(2.103)

with damping tensors s{t,r} chosen to satisfy s{t,r}s{t,r}
T = c{t,r}. W denotes a

standard Wiener process.

Time is discretized using an Implicit-Euler scheme, which allows for larger step

sizes and therefore much greater simulated time intervals as compared to explicit
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Figure 2.10: Snapshots of filaments pinned down at one location s= 0.25L (top)

and two locations s1 = 0.25L, s2 = 0.6L (center) during simulation. Pinning sites

are marked by black dots. The blue horizontal lines show the initial geometry.

The zoomed part shows the smoothness and rotational freedom of the filament

around the pinning site; mechanical supports of the filament (bottom): the ends

of the filament are movable in one translational direction only, the translation of

the pinning site is completely inhibited. Rotations are unconstrained in all cases.

schemes due to a better numerical stability. Full details on the mechanical model,

the numerical method and the discretization in time are given in [CAO09, CNG10,

CMB13].

2.4.2.2 Geometrical and mechanical properties

A filament of length L= 10µm and persistence length Lp≈ 18.4µm was discretized

with N = 4000 beam finite elements, which for the applied beam formulation

amounts to 24000 degrees of freedom. Its circular cross section area was set
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to A= 1.9×10−5µm2 leading to a high axial stiffness compared to its bending

stiffness. The moment of inertia of area is set to I = 2.85×10−11µm4 and the

polar moment of inertia to Ip = 5.7×10−11µm4. The initial, stress-free geome-

try was chosen straight and parallel to the global x-direction. Its movement was

constrained to R2 allowing transverse deflections of the filament only in global

y-direction. Temperature was set to T = 293K and the dynamic viscosity of the

fluid to η= 10−3 Pa s.

2.4.2.3 Effects of time discretization

Three different step sizes ∆t∈{10−2s; 10−4s; 10−6s} of the time integration scheme

were chosen in order to access a broad set of geometrical configurations of the

filament. Figure 2.11 illustrates the effect of step size on the accuracy of the

simulation with respect to capturing the filament’s various eigenmodes. The left

graph features results for ∆t= 10−2s, which show excellent agreement between

theoretical prediction and simulation for slow modes n≤ 5. However, for mode

numbers n> 5, the quality of the numerical approximation deteriorates due to ∆t

being too large to accurately capture faster modes. Hence, additional simulations

were conducted in order to assess the behavior of the numerical model regarding

its sensitivity to step size. The effect is clearly visible in the central and right

panels of Figure 2.11. Simulations with intermediate step size ∆t= 10−4s provide

an acceptable approximation of slow modes. They exhibit an onset of deviation

from theory at higher mode numbers around n≥ 15. Finally at the lowest stud-

ied step size ∆t= 10−6s, the trade-off in accuracy between fast and slow modes

becomes even more apparent. While results for slow modes are poor, fast modes

are approximated well. As characteristic relaxation times τn of the modes vary

widely, the dynamics of the filament need to be sampled over a step size interval

of several orders of magnitude as well.
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Figure 2.11: Comparison of theoretical (N) diagonal mode amplitudes to those

computed (F) from finite element simulations for different time discretizations.

2.4.2.4 Boundary conditions for single-filament simulations

In case of the simulation of a single filament, the effect of linkers pinning down

the filament at a certain location s along the filament is modeled by permanently

inhibiting the translational degrees of freedom at the pinning site as sketched in

the bottom illustration of Figure 2.10. The filament is still free to rotate about

this pinning site as shown in the zoomed part of the illustration at the top of

Figure 2.10. The ends of the filament are free to slide in longitudinal direction

and rotations remain unconstrained. Two parameter studies were conducted with

transverse thermal fluctuations of the filament constrained by

(S1) a single pinning site at discrete finite element node positions s∈ [0;L/2].

The affected nodes are located at sites s/L∈{[0.025; 0.5], ∅} (illustration at

the top of Figure 2.10). The empty set represents the linker-free case.

(S2) two pinning sites at positions {s1, s2}∈ [0;L], s1 6= s2, neglecting symmet-

ric configurations (illustration in the middle of Figure 2.10).

All cases with a single pinning point were simulated for i > 200000 time steps for

all step sizes, while all cases with two pinning sites were simulated up to i≈ 100000

time steps.
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2.4.2.5 Calculation of covariance matrices from simulations

Simulations provide us with filament geometries, from which we can draw the

transverse deflections of the filament y(s). Over the course of a total number of I

time steps, we gather M ≤ I geometrical configurations of the filament. In case of

a discretized geometry, we obviously are only able to provide a discrete signal of

length L, which in turn allows for a discrete Fourier analysis up to mode N = L/2.

The kth Fourier coefficient, i.e., the approximated amplitude of eigenmode k, is

Ak =

√
2π

L

N∑
n=1

y(s) sin(nπ s/L). (2.104)

With this, the covariance matrix can be written as

〈AkAl〉 = cov(Ak, Al) = E [(Ak · Al)] (2.105)

with mode number indices k and l, providing a measure for the interdependence

of modes.

2.4.3 Results

The numerically determined mode amplitudes for the single pinning site are com-

pared with Eq. 2.99, and with Eq. 2.100 for the double pinning sites. Levine

plots encode the results and are shown for an array of single site locations in

Fig. 2.13, and double site locations in Fig. 2.13. For details on the Levine

plot please see Fig. 2.12, which explains the plot for D = .4L. Errors are

consistently on the order of 10% and may be shown to decrease with additional

observations. The equivalence of the mode spectra between simulation and theory

suggests that ideal cross-linkers experience a fluctuation induced attraction when

bound to semi-flexible filaments.
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Figure 2.12: The Fourier amplitude covariance matrix of the first 10 modes ob-

tained via finite element simulation for a filament pinned at D = .4L The area of

each element represents its log normalized magnitude, while its shape represents

the sign with rectangles being positive, circles negative. The color bar indicates

the % error relative to Eq. 2.99. The error magnitude is consistent across dif-

ferent pinning locations and supports the existence of a casimir effect between

crosslinkers in semiflexible polymers.
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Figure 2.13: Levine plots for nine different values of the single pinning location

D-See Fig. 2.10. Errors are consistently on the order of 10%. Please see Fig.

2.12 for details regarding the Levine plot.
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Figure 2.14: Levine plots for nine different values of the two pinning locations D1

and D2–See Fig. 2.10. Errors are consistently on the order of 10%. Please see

Fig. 2.12 for details regarding the Levine plot.
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2.5 Conclusions

I showed in this chapter that when semiflexible polymers are connected by sliding

linkers as in Fig.2, then thermal conformational fluctuations generate a long-range

Casimir attractive pair interaction V (D) = γkBT logD between linkers separated

by a distance D. The proportionality constant γ is a number that ranges from

1/2 to 4 depending on: (i) the presence or absence of tension along the polymer,

(ii) whether or not the polymers are confined to a plane, and (iii) the rigidity of

angular constraints imposed by the sliding linkers.

For distances large compared to the persistence length, the polymers can be

treated as flexible. In that case, V (D) can be roughly approximated as the entropic

energy cost of a loop of size D, if we reinterpret D as the total polymer length

between the two linkers. In that limit, the linker pair-interaction maintains the

same form, though the prefactor γ will be different (for non self-avoiding polymers,

γ would equal d/2 with d the spatial dimension). It is important to stress that the

Casimir attraction between sliding linkers only is important if elastic stress does

not prevent the two linkers from approaching each other. For example, if the two

sliding linkers in Fig. 2 impose a non-zero angle then this generates an elastic stress

that amounts to a repulsive interaction that overwhelms the Casimir interaction

on length scales small compared to the persistence length. The most interesting

examples of polymer networks held together by transient linkers involve F-actin

filaments in the presence of linker proteins. F-actin has a persistence length in

the range of 20 microns. The force between two sliding linker proteins separated

by a distance of ∼ 10nm is in the picoNewton range, which is the same order of

magnitude as typical forces exerted on proteins.

Any elastic compliance in the cross linkers will decrease the overall prefactor

of the Casimir interaction between them. We analyzed this effect for the case of

replacing the fixed angle boundary conditions with a harmonic potential having
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a minimum at the desired crossing angle of the two filaments at the cross linker.

As the curvature of that potential was reduced, the contribution to the Casimir

interaction coming from the pinning of the angular degrees of freedom vanished

continuously. Since slope and position variables are treated analogously within the

path integral formulation, replacing the boundary condition of the fixed filament

position at the cross linkers with a harmonic potential at those positions will

have a similar effect. Alternately, one might consider treating the cross linkers

as small rings of radius a, as represented in our figures. If that radius is finite

then undulatory modes of the filaments with an equilibrium amplitude less than

a should be essentially unaffected by the rings and not contribute to the Casimir

interaction. As the persistence length of the filaments diverges and all undulatory

mode amplitudes decrease, the Casimir interaction must vanish. We pursued our

calculation by first taking the limit of an infinitesimal ring so that our results show

a finite Casimir interaction for arbitrarily large (but finite) persistence lengths. As

mentioned above however, one can still explore the effect of softening the position

boundary condition by treating the cross linker as a spring instead of a hard

constraint.

Different values for γ may lead to different equilibrium phase behavior for

networks of semiflexible polymers. Assume a stress-free network of semiflexible

polymers held together by sliding linkers. If two neighboring linkers of a given

polymer can approach each other – without generating elastic stress – then the

equilibrium probability distribution P (D) for the separation of the two linkers

would be proportional to exp[−βV (D)] ∝ 1/Dγ. The mean square separation

<D2> of the two linkers then would be infinite for γ less than or equal to 2.

That would suggest that for γ greater than 2, linkers would come together into

pairs of linkers. Would this trigger decomposition of the network as a whole?

Estimate the free energy density of the linker many-body system as F (ρ)/kBT ≈

ρ log ρ− (z/2d)γρ log ρ, with z the average number of nearest neighbors per linker
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in the network and ρ ≈ 1/Dd the linker density. The critical value for γ above

which the free energy density is a concave function of the density is 2d/z. For larger

values of γ, the network state is thermodynamically unstable. These arguments

assumed that the Casimir force could be treated as a pair interaction. In Sec. 2.3.4

we show that this is not quite right: three-body Casimir interactions cannot be

neglected in general. I will explore the thermodynamic stability of these networks

in much greater detail in the following chapter.

We conclude by noting an important difference between the Casimir interac-

tions in liquid membranes and on semiflexible polymers. It is essential to recognize

that the linkers in our problem constrain the filament’s position with respect to

the space in which the filament is embedded. In other words, the filament can

exchange momentum with the background system, e.g., a polymer network with

the linkers at those points. If it were not constrained in this manner, so that the

linker polymer system could collectively diffuse in the space, there would be no

fluctuation-induced interaction between the linkers. This is demonstrated in Sec.

2.2.3. This aspect of the Casimir interaction on one dimensional elastic objects is

surprising when compared to the analogous problem of rigid, disk-like inclusions

in an isolated membrane. These are known to interact via a power-law Casimir

force even if the collective disk and membrane system were allowed to freely dif-

fuse in the embedding space. One cannot simply generalize this membrane result

to the semiflexible polymer problem and this has significant biophysical implica-

tions. Based on our result, we predict that DNA binding proteins do not expe-

rience a long-ranged attractive Casimir interaction along a DNA filament, while

membrane-bound proteins do.
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CHAPTER 3

Casimir Gas & Bundle Stabilization

3.1 Introduction

Semiflexible networks with transient cross linkers form the main structural ele-

ments of the cytoskeleton of eukaryotic cells and provide an intriguing arena in

which to study nonequilibrium physics. Due to the steric interactions between

the long filaments (e.g. F-actin) these systems are typically frustrated, unable

to reach more ordered ground states [CMS13]. In spite of this steric frustration,

experiments [GSM04, WTH06, PPH03, SLB09, LCH07] have found that both

the statistical properties of the network’s structure and its mechanics (rheology)

can be reproducibly predicted as a function of the ratio of the concentrations

of the filaments and their cross linkers. In particular, one observes an abrupt

transition between filament networks and networks composed of small bundles of

these filaments as a function of these concentrations. This seems surprising as

one might expect there to be continuous growth of bundles with increasing cross

linker density, cutoff in the high cross linker limit only by the aforementioned

steric frustration.

In this letter we propose that one can understand the abruptness of the

bundling transition in semiflexible networks by considering the Casimir or fluc-

tuation based interaction between cross linkers bound to the same filament. The

basic physics of this Casimir interaction in semiflexible polymers has been ex-

plored previously–See Ch. 2. Here we present new calculations showing that, due
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to the long-range nature of the Casimir interaction, there is an abrupt conden-

sation transition in which a gas of free cross linkers abruptly lock nearly parallel

filaments into bundles as a function of cross linker concentration. We test the

predictions of the fundamental Casimir interaction between cross linkers and the

condensation transition based on this interaction using large-scale Brownian dy-

namics finite-element simulations of the network.

This first order condensation transition appears in spite of the one-dimensional

nature of the problem due specifically to the long-range (i.e., logarithmic) na-

ture of the fluctuation-induced interaction between cross linkers (violating the

van Hove condition [Hov50]). This allows for the abrupt condensation transi-

tion in the line density of cross linkers on the filament at a critical value of their

chemical potential. In the condensed phase one finds that the bound linker line

density is significantly enhanced relative to that expected from a simple Langmuir

isotherm [Lan18]. In fact, one rapidly reaches bound linker saturation where their

line density is limited only by their hardcore repulsion. Below the condensation

point one finds large linker density fluctuations but a small mean concentration

implying insignificant bundling. Thus, we find that Casimir interactions between

linkers produce a type of binary chemical switch controlled by linker concentra-

tion between two states: (i) free filaments and a solution of unbound cross linkers

below the transition, and (ii) bundles composed of filaments that are maximally

coated with cross linkers. One may speculate that this cooperative transition

produced by the strongly interacting linker gas is exploited by the cell to induce

such dramatic structural rearrangements in the cytoskeleton via small changes in

linker protein concentration by remaining near the critical linker concentration.

Conversely, the cell may limit the dependence of cytoskeletal structure upon the

precise concentration of linkers by tuning their concentration far away from this

boundary.

In section 3.2 we derive the macroscopic properties of a line of Casimir inter-
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acting particles using classical results for one dimensional systems. We assume

a pairwise potential and study the interaction of a single particle with an is-

land of linkers to justify the assumption. The equation of state predicts novel

behavior, including the previously mentioned condensation transition. These sur-

prising results are verified in Sec. 3.3 with a Monte Carlo simulation using the

Metropolis–Hastings dynamics to prove the equilibrium distribution of the gas.

In sec 3.5 we study physical bundles, such as the ubiquitous actin bundles found

in biology, with large scale finite element simulations, and find evidence of a con-

densation transition in these more realistic systems. The chapter concludes with

a discussion of the statistical mechanics of the Casimir gas, with an emphasis on

the pair distribution function.

3.2 Thermodynamics of the Casimir Gas

The extension of the two-particle Casimir interaction derived in Ch.2 to a large

number of cross linkers in a network has two nontrivial features: (i) Because cross

linkers will only interact if they are on the same filament, the full interaction en-

ergy of a network configuration depends explicitly on the network topology, and

(ii) a single filament’s degrees of freedom on either side of the cross linker are

coupled by the condition of slope continuity, leading to an interaction which is

not strictly pairwise. For these reasons a treatment of general networks is dif-

ficult, but one particularly simple topology, the bundle, is amenable to analytic

calculations. The simplest bundle model, which we consider here, consists of two

parallel filaments sufficiently close together so that linkers may join them. In this

section we will first examine the validity of the pairwise interaction approxima-

tion for different cross-linker types, then study the thermodynamics of this one

dimensional system.
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3.2.1 Geometry and Interactions

Consider N cross-linkers adsorbed onto a tensionless semi-flexible filament of

length L and bending modulus κ. An isolated filament will fluctuate at finite

temperature T with a spectrum specified by the equipartition theorem (see Sec.

2.3.5) and the cross-linkers will not interact. However, if the cross-linkers bind

the filament to a stiff elastic background as shown in Fig. 3.1, their modification

of the fluctuation spectrum of the filament will mediate an attractive Casimir

interaction. This was shown in detail for two and three cross-linkers in Ch. 2

but the argument is easily extended to a large number of particles. The partition

function of N particles separated by displacements di is

Z ∝

(
N−1∏
i=1

1

d2d⊥
i

)
exp

−
d⊥(N−1)∑
i=1

2

di

(
v2
i + v2

i+1 + vivi+1

) , (3.1)

where d⊥ is the dimension of transverse fluctuations of the filament, vi is the angle

the filament makes with the ẑ direction (see Fig. 2.2), and a constant prefactor has

been neglected. The sum in the exponent goes to d⊥(N − 1) because there is one

vi for each transverse dimension. This equation assumes the slope is continuous

across a linker, which is justified for the stiff semi-flexible polymers we consider in

this work. This assumption has important consequences: The Casimir interaction

between cross-linkers is not strictly pairwise since the filament’s degrees of freedom

on either side of the crosslinker are coupled.

The properties of the cross-linkers naturally have a significant impact on the

strength of the interaction. Here we explore what role, if any, they play in the

assumption of pairwise additivity. We recognize and draw distinction between

two broad categories of of cross-linkers: Bundling linkers, which fix the slope of

the filament to be zero, and network linkers which have no preference and are

flexible enough to allow for slope fluctuations–see Sec. 2.3 for more details. As

will be shown, bundling linkers interact in a purely pairwise additive fashion,

while network linkers experience lightly screened interactions. Nevertheless, if the
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Figure 3.1: A single filament, shown in blue, is attached to a background elastic

network. The cross-linkers, highlighted in yellow, experience a Casimir interaction

due to their modification of the fluctuation spectrum of the filament away from it’s

equilibrium form. It is essential that the filament is pinned to the background: An

isolated filament with bound linkers will not generate a Casimir interaction–see

Sec. 2.2.3
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network linkers cluster they will in fact behave as a single bundling type linker,

lending credibility to the treatment of the Casimir interaction as pairwise.

Bundling cross-linkers force the slope vi to vanish wherever they bind. The

full partition now factorizes as

Z =
N−1∏
i=1

Z1(di), (3.2)

where the single particle partition function is Z1(d) = 1/d2d⊥ . Bundling cross-

linkers experience strictly pairwise interactions with the Casimir potential V (d) =

2d⊥T log(d/λc), where we have set Boltzmann’s constant kB = 1, and the length

λc represents the volume of phase space of a single filament state and is related

to ~ – see Sec. 2.2.2.5 for details.

The many body interaction of network linkers is considerably more compli-

cated. The slopes vi must be integrated out of the partition function to derive

the full interaction. It is instructive to review a few finite cases before studying

the large N limit. Two network linkers separated by a distance d have the po-

tential V (d) = d⊥ log(d/λc) (see Sec. 2.3.1). The integration produces a repulsive

contribution to the force which cancels exactly half of the original interaction.

Continuing, consider three mutually interacting network linkers, separated by d1

and d2 = d − d1, as shown in Fig. 2.9. The interaction potential is given by Eq.

2.75 and is reproduced here

V (d1, d2) = d⊥T

(
log(d1/λc) + log(d2/λc) +

1

2
log(d/λc)

)
. (3.3)

We find that the leftmost linker experiences a force f = −d⊥T
(

1
2D

+ 1
d1

)
which

is the sum of nearest and next nearest neighbor contributions. Insight into the

problem comes from letting d1 → d, representing a single linker interacting with

a cluster of two linkers. The resulting force, −3d⊥T
2d

, is equivalent to the two body

interaction of a network linker with a bundling linker. This is a natural result

because tight clusters eliminate fluctuations and therefore must force the slopes
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to be identically zero at the edges of the cluster. This suggests that a cluster of

network linkers behaves identically to a single bundling linker. The prefactor 3/2

may be alternatively understood as the fluctuation generated elastic repulsion Td⊥
2d

of the single network linker subtracted from the pairwise bundle linker force 2Td⊥
d

.

We see that an individual linker will be preferentially attracted to clusters over

solitary linkers. This result should hold for the interaction of a single linker with

any size cluster up to correction of order a
d
, where a is the mean spacing within a

cluster and d is the separation of the single linker with the cluster. We may also

deduce that two clusters will interact with the full fluctuation force −2kBT
D

since

there are no slope fluctuations at either end.

We will now attempt an analytical treatment of N network linkers. As stated,

consider N interacting network linkers with local slopes vi separated by projected

distances di. For simplicity let d⊥ = 1. We rewrite the partition function Eq. 3.1

in more compact notation

Z =

(
N−1∏
i

1

d2
i

)
exp

{
−2vTMv

}
, (3.4)

where v is a vector of slopes:

v =


v1

v2

...

vN

 , (3.5)

and M is symmetric positive definite matrix

M =



1
d1

1
2d1

0 . . . 0

1
2d1

1
d1

+ 1
d2

1
2d2

. . .
...

0 1
2d2

. . . . . . 0
...

. . . . . . 1
dN−1

+ 1
dN−2

1
2dN−1

0 . . . 0 1
2dN−1

1
dN−1


. (3.6)
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After integrating out the slope variables one finds

Z ∝ 1(∏N−1
i d2

i

) √
detM

. (3.7)

The determinant is difficult to calculate in general and it’s best to examine a

specific case, which has applications to the cluster geometry, where the linkers are

equally spaced di = d. The factor 1
d

in M is common to all terms now and may

be factored out. We must now calculate the determinant of the N ×N matrix

JN =



1 1
2

0 . . . 0

1
2

2 1
2

. . .
...

0 1
2

. . . . . . 0
...

. . . . . . 2 1
2

0 . . . 0 1
2

1


. (3.8)

The approach is to develop a recursion relation for the determinant of JN with

initial conditions det J1 = 1, det J2 = 3
4
. First introduce the auxiliary N × N

matrices WN and QN , defined as

WN =



2 1
2

0 . . . 0

1
2

2 1
2

. . .
...

0 1
2

. . . . . . 0
...

. . . . . . 2 1
2

0 . . . 0 1
2

1



QN =



1
2

1
2

0 . . . 0

0 2 1
2

. . .
...

0 1
2

. . . . . . 0
...

. . . . . . 2 1
2

0 . . . 0 1
2

1


. (3.9)

It is easily seen that

det JN = det WN−1 −
1

2
det QN−1, (3.10)
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and furthermore

det WN = 2 det WN−1 −
1

2
det QN−1

det QN =
1

2
det WN−1. (3.11)

Combining Eq. 3.11 we have the closed recurrence relation

det WN = 2 det WN−1 −
1

4
det WN−2, (3.12)

with initial conditions det W0 = det W1 = 1. An ansatz of det WN = rN solves

the relation for r± = 1±
√

3
2

and the linear combination which satisfies the initial

conditions is

det WN =
1

2

(
1 +

√
3

2

)N

+
1

2

(
1−
√

3

2

)N

. (3.13)

The determinant of QN is found directly from Eq. 3.11 and one may now calculate

the determinant of JN :

det JN =
1

2

(
1 +

√
3

2

)N−1

+
1

2

(
1−
√

3

2

)N−1

− 1

8

(1 +

√
3

2

)N−2

+

(
1−
√

3

2

)N−2
 . (3.14)

In the large N limit only the r+ solutions survive, leaving

det JN =
1

2

(
1 +

√
3

2

)N−1

− 1

8

(
1 +

√
3

2

)N−2

. (3.15)

The exact free energy for this special case of an island of interacting cross linkers

is given by

Fisland = Td⊥

[(
3N

2
− 2

)
log d+

1

2
log det JN

]
, (3.16)

where we have restored the dependence on d⊥. The second term is independent

of d and may be dropped if considering an island at fixed N . We see that, in the

large N limit, the free energy can be written as a sum of pairwise logarithmic

interactions with strength 3Td⊥
2

. In this mean field sense the Casimir interaction
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of network linkers is pairwise additive, although with a coupling exactly between

the network and bundle two particle interactions. The result can be improved by

considering a single linker separated by D from the island. The derivation of the

partition function is nearly identical to the simple island case. The D dependent

part of the resulting free energy is

F = Td⊥

{
3

2
logD/λc +

1

2
log

[
4r+ − 1 + 3r+

d

D

]}
. (3.17)

When the linker is far away from the island, D � d, the island appears as a

single bundling linker and the characteristic 3/2 prefactor emerges. Conversely,

for D � d the coupling becomes Td⊥, which is the bare two particle inter-

action for network type cross-linkers. Finally, if D = d we find the coupling

Td⊥
3
2

(
2− 2√

3

)
≈ 1.27Td⊥. The interaction of network linkers is always strength-

ened by the inclusion of non nearest-neighbor interactions, but in all cases it may

be understood as a simple renormalization of the coupling parameter.

This analysis suggests that the integration of the filament’s degrees of free-

dom produces a pairwise potential between linkers with the general form V (x) =

d⊥αT log x/λc, where α depends on the nature of the cross-linkers: Bundling link-

ers have α = 2, whereas network linkers will have 1 < α < 3/2. The singularity

at x = 0 is an unphysical consequence of including arbitrarily high wavenumber

fluctuations in the calculation of the Casimir interaction. We assign a hard core

potential of radius a to the cross-linkers to mask our ignorance of the short dis-

tance physics of the system. The final form of the potential which will be used

throughout the chapter is

V (x) =

 ∞ if x < a

d⊥αT log x
λc

if x ≥ a.
(3.18)
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3.2.2 One Dimensional Thermodynamics

It is always possible to obtain an implicit equation of state for a one dimensional

pairwise interacting system, from which all thermodynamic functions follow nat-

urally. The derivation presented follows [LM66] and begins by considering the

partition function of N particles on a line of length L interacting with the pair-

wise potential V

ZN(L) =

∫
· · ·
∫

0<x1<x2<···<xN<L

dx1 · · · dxN exp {−β [V (x1)

+ V (x2 − x1) + · · ·+ V (L−XN ]} , (3.19)

where β = 1
T

is the inverse thermodynamic temperature and I have assumed

the particle-wall interaction is equivalent to the particle-particle interaction. The

integral has the form of an N fold convolution of the function

Ω(R) = e−βV (R), (3.20)

so that the partition function may be written succinctly as

ZN(L) = Ω ? Ω ? · · · ? Ω︸ ︷︷ ︸
N

. (3.21)

Functions of this form are most conveniently written in terms of a Laplace variable

s since convolutions map onto multiplication in Laplace space. Rewriting, we have

ZN(s) = [Ω(s)]N

Ω(s) =

∫ ∞
0

e−sx−βV (x) dx. (3.22)

To connect this result to thermodynamic functions one can alternatively write

ZN(s) =

∫ ∞
0

dLZN(L) exp {−sL} =

∫ ∞
0

dL exp

{
−β(F +

s

β
L)

}
, (3.23)

where F is the configurational part of the Helmholtz free energy, F = −T logZ.

In the large N limit the integral is expected to be sharply peaked and we may

safely replace the integral by it’s largest value,

ZN(s) ≈ exp

{
−β(F +

s

β
L)

}
. (3.24)
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The extremal condition requires

d

dL
(F +

s

β
L) = 0, (3.25)

implying that the quantity p ≡ s
β

= −dF
dL

should be interpreted as the pressure

of the system. With this association we recognize F + s
β
L = F + pL as the

configurational contribution to the Gibbs free energy G. Furthermore, for an

extensive system (appropriate for strictly nearest neighbor interactions) G = µN ,

where µ is the chemical potential. Finally, comparing with the direct evaluation

of the partition function one finds

ZN(s) = exp−βµN =

[∫ ∞
0

e−βpx−βV (x) dx

]N
, (3.26)

or, upon inclusion of the kinetic degrees of freedom

βµ = − log

(
1

λt

∫ ∞
0

e−βpx−βV (R) dx

)
, (3.27)

where λt is the thermal deBroglie wavelength, λt =
√

2πβ~2
m

. This final result is an

implicit relation between the chemical potential and the thermodynamic pressure.

For the convenience of deriving other thermodynamic functions it may be encoded

in the function

f(β, µ, p(β, µ)) ≡ βµ+ log

(
1

λt

∫ ∞
0

dx e−βpxe−βV (x)

)
. (3.28)

3.2.3 Casimir Gas Equation Of State

Inserting the Casimir pair potential Eq. 3.18 into Eq. 3.28 gives an implicit rela-

tion between the (one-dimensional) pressure p(β, µ) of the linkers in the bundle,

temperature, and their chemical potential µ,

βµ = − log

[
(λcβp)

d⊥α

λtβp
Γ(1− d⊥α, βpa)

]
, (3.29)

where Γ(s, x) is the upper incomplete gamma function. The chemical potential

of the linkers on the bundle may be controlled by allowing them to come into
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chemical equilibrium with a solution of free linkers at number density c; treating

the linker solution as an ideal gas one finds βµ = log cλdt . Deviations from ideality

in the solution phase may be accounted via standard methods, and are immaterial

to our discussion.

The chemical potentials and pressures of the gas and line, µg, pg and µl, pl,

respectively, must be equal in equilibrium. However, if the gas is made suffi-

ciently dilute such that the pressure of the gas pg → 0 it can be shown that there

are no solutions to equation 3.29 for sufficiently strong interaction strength d⊥α.

Explicitly, the p→ 0 limit is

βµl → −∞ α ≤ 1

βµl → log

[
λc
λt

(d⊥α− 1)

]
α > 1. (3.30)

The p → 0 limit of the ideal gas is equivalent to letting the chemical potential

go to -∞ and this suggests that it will be possible to find equilibrium solutions

for α ≤ 1. For more strongly interacting particles the condition µg ≥ µcrit =

T log[λc
λt

(d⊥α − 1) ] is required for equilibrium. To explore this relation in more

depth we must consider other state variables.

The pressure p(L, T ) can be found from the relation N = − ∂
∂µ

Ω = L ∂p
∂µ

, where

Ω = −pL is the grand potential, in conjunction with

df

dµ
=
∂f

∂µ
+
∂f

∂p

∂p

∂µ
= 0. (3.31)

This implies the general relation

N

L
=
∂p

∂µ
= −

∂f
∂µ

∂f
∂p

=

∫∞
0

dx e−βpxe−βV (x)∫∞
0

dx x e−βpxe−βV (x)
, (3.32)

which for the case of the nearest neighbor Casimir interaction Eq. 3.18 becomes

Na

L
≡ ρ =

a
∫∞
a

dx x−d⊥αe−βpx∫∞
a

dx x1−d⊥αe−βpx
= βpa

Γ(1− d⊥α, βpa)

Γ(2− d⊥α, βpa)
, (3.33)

where we have introduced the line density ρ. This equation of state implicitly gives

the pressure of the gas in terms of the line density, temperature and interaction
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strength. Unfortunately, explicit expressions for the pressure can only be found

in select limits. The physics of a dense gas will be dominated by the hard core

interaction between the particles, and it is expected that the equation of state will

be independent of the Casimir interaction strength. In fact, when d⊥α = 0 the

solutions should reduce to the classical Tonks gas equation of state for hard core

spheres [Ton36]:

pt =
ρT

a(1− ρ)
. (3.34)

This equation of state is quite simple to understand: in the low density limit

ρ << 1 the gas is ideal, while conversely the pressure diverges for ρ → 1 as it

takes an infinite amount of work to add an additional particle to an otherwise full

line. We similarly expect the pressure to be large in the Casimir gas when ρ→ 1

and upon taking this limit in Eq. 3.33 one finds

pc =
T

a(1− ρ)
, (3.35)

which is identical to the Tonks pressure, ignoring corrections of order ε = 1 − ρ.

The Casimir interaction causes the pressure to be strictly less than the Tonks

pressure, but the effect is overwhelmed by the hard core repulsion at high line

densities. The converse is true at low line densities where we expect significant

deviations from ideal gas behavior and also strong dependence on the interaction

strength. Since the pressure at low line densities must also be very low it is

reasonable to expand the Gamma functions in Eq. 3.33 for small second argument.

We find

ρ = x
xαΓ(1− d⊥α) + x

d⊥α−1
− x2

d⊥α−2

xd⊥αΓ(2− d⊥α) + x2

d⊥α−2

, (3.36)

where x ≡ βpa and Γ(x) is the standard Gamma function. Unfortunately there

is no analytic solution for general d⊥α, although one does exist for d⊥α = 1, 2.

The case d⊥α = 1 physically represents network linkers on a filament confined to

two dimensions, while d⊥α = 2 is either bundling linkers with d⊥ = 1 or network
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linkers with d⊥ = 2. The equation of state with d⊥α = 1 is

pc =
−ρT

aW−1(−ρeγ)
, (3.37)

where W−1 is the lower branch of the Lambert W function, with the lower branch

chosen to ensure positive compressibility, and γ is the Euler-Mascheroni constant.

For small argument W−1(x) ∼ log(−x) so the Casimir pressure is lower than the

Tonks pressure Eq. 3.34 by a factor of − log(ρaeγ). A plot of both pressures is

shown in Fig. 3.2. The compressibility will also be smaller by this logarithmic

factor, which in turn means density fluctuations should be larger by −log (ρaeγ)

for the Casimir gas relative to the Tonks gas in the dilute limit.

An explicit expression is likewise found for d⊥α = 2:

pc =
Te−γ−

1
ρ

a
, (3.38)

which displays very interesting non-analytic behavior as the line fraction ρ → 0.

This value is in fact critical in the sense that stronger interacting systems display

discontinuous behavior in thermodynamic variables. To see this directly consider

again Eq. 3.33 in the limit p→ 0, which must correspond to the dilute limit. For

d⊥α ≤ 2 one finds ρ→ 0, as expected. However, for larger values of d⊥α the result

is ρ→ ρcrit ≡ d⊥α−2
d⊥α−1

at p = 0, independent of temperature. This is a direct result

of the interaction energy scale being proportional to T , which allows the system

to overcome the tendency to disorder (for sufficiently strong interactions) at all

temperatures. Plots of pressure versus ρ for different values of d⊥α are shown in

Fig. 3.2.

3.2.4 Internal Energy and Entropy

The entropy of a one dimensional pairwise interacting gas can be found from Eq.

3.28 in a similar manner to the pressure by considering df
dT

and using the relation

79



Figure 3.2: Pressure of a 1-D gas of particles interacting via the Casimir force

versus line fraction. The hard core only Tonks gas α = 0 is shown for reference.

The attractive interaction dramatically reduces the pressure at small line fraction

relative to an ideal gas. Inset: The hard core repulsion dominates at large densities

and all curves will collapse onto the Tonks result.
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Figure 3.3: Pressure of a 1-D gas of particles with Casimir interactions versus line

fraction. The hard core only Tonks gas is shown for reference. For d⊥α ≤ 2 the

pressure grows continuously from zero at zero line density, while for d⊥α > 2 the

pressure experiences a slope discontinuity at nonzero line fraction.
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S = L ∂p
∂T

. Explicitly

∂p

∂T
= −

∂f
∂T
∂f
∂p

=
∂f
∂T

∂f
∂µ
/ ∂p
∂µ

=
NT

L

∂f

∂T
, (3.39)

where Eq. 3.32 was used for the last equality. The resulting expression for the

entropy is

S = −Nµ
T

+
N

2
+
pL

T
+
N

T

∫∞
0

dxV (x)e−βpxe−βV (x)∫∞
0

dx e−βpxe−βV (x)
, (3.40)

where the full chemical potential µ found from Eq. 3.28 is

µ = −T log

[
1

λt

∫ ∞
0

dx e−βpxe−βV (x)

]
. (3.41)

In the absence of an interaction Eq. 3.40 reduces to the familiar Sackur-Tetrode

equation for the entropy of an ideal gas [Kar07]. The integral term in the entropy

is due entirely to the interaction and is interpreted as Sint = N<V >
T

where the

average is taken over a pair of interacting particles under an external pressure p.

The dominant contribution to the integral in the numerator is for x < 1
βp

and,

assuming V (x) is slowly varying, the integral will be proportional to V ( 1
βp

). As

the pressure is raised corresponding to an increase in volume fraction, we see that

the per particle contribution to the entropy will decrease if dV
dx

> 0, i.e. if the

interaction is attractive. An explicit calculation of the interaction entropy gives

Nd⊥α

∫∞
a

dx x−d⊥α log x e−βpx∫∞
a

dx x−d⊥αe−βpx
=

Nd⊥α

Γ(1− d⊥α, βpa)

∫ ∞
a

dx x−d⊥α log x e−βpx

=
Nd⊥α

Γ(1− α, βpa)
[Γ(1− d⊥α, βpa) log a

+ G30
23

βpa ∣∣∣∣ 1 1

0 0 1− d⊥α

 , (3.42)

where G is the Meijer G function. A plot of the entropy for different values

of d⊥α is shown in Fig. 3.4. As the rods approach close packing the number

of states clearly decreases and the interaction plays no role. In the dilute limit

strong interactions (d⊥α ≥ 2) cause significant reductions in the entropy of the

system. We may also calculate the internal energy of the Casimir gas using the
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Figure 3.4: The configurational entropy of a 1-D gas as a function of line density.

The curves collapse in the dense regime where the hard core repulsion dominates

the attractive Casimir interaction. For sparse systems the reduction in entropy

due to the pinning of filament fluctuations is apparent: The larger the coupling,

i.e. the more restrictive the cross-linker, the larger the reduction.
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thermodynamic relation

U = G+ TS − pV = N

∫∞
0

dxV (x)e−βpxe−βV (x)∫∞
0

dx e−βpxe−βV (x)
(3.43)

The integral, which has already been calculated for the entropy, is evaluated to

give

U = Nd⊥α

Γ(1− d⊥α, βpa) log a+G30
23

βpa ∣∣∣∣ 1 1

0 0 1− d⊥α


Γ(1− d⊥α, βpa)

(3.44)

The internal energy per particle for different values of α is shown in Fig. 3.5.

Despite the appearance of the graph, higher values of d⊥α (stronger attractive

interactions) always correspond to lower internal energies in the very dilute limit.

In fact, the limit of the internal energy per particle for d⊥α ≤ 1 as φ→ 0 diverges.

The plateau in the d⊥α = 2 curve is due to the pressure being essentially zero for

low volume fraction, letting the internal energy take its φ→ 0 limiting value over

a range of volume fractions.

3.2.5 Langmuir Isotherm

The Langmuir isotherm describes the adsorption of an ideal gas of particles onto

a substrate at fixed temperature. Explicitly, the isotherm relates the coverage on

the substrate to the pressure or concentration of the ideal gas through the relation

N = −∂Ω
∂µ

, where Ω is the grand potential. With Ω = −p(β, µ)L the Langmuir

equation can be rewritten as ρ = a ∂p
∂µ

. The isotherm for the Tonk’s gas, d⊥α = 0,

is first derived for reference. The pressure of this hard-core gas is given implicitly

in terms of µ by

βµ = βpa+ log βpλt, (3.45)

with solution

p =
W0

(
aeβµ

λt

)
βa

, (3.46)
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Figure 3.5: The internal energy per particle of a 1-D gas with Casimir interactions

versus line density.
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where W0(x) is the principal branch of the Lambert-W function, also known as

the Product-Log function. The resulting Langmuir isotherm is

ρ =
W0

(
aeβµ

λt

)
1 +W0

(
aeβµ

λt

) . (3.47)

The limits are simple: For low chemical potential the adsorbed line density van-

ishes, while for µ → ∞ the system close packs. Due to the hard-core repul-

sion, the coverage is always less than the classical result for non-interacting rods.

Extending the discussion to d⊥α > 0 by solving for the Isotherms numerically,

the long-range nature of the Casimir interaction leads to a remarkable result in

the thermodynamic limit: for sufficiently strong linker interactions d⊥α > 1, their

line density vanishes when the linker chemical potential falls below the critical

value µ ≤ µcrit = T log[λc
λt

(d⊥α− 1) ]. Moreover, upon increasing µ past µcrit, the

line density jumps discontinuously from 0 to ρ = ρcrit = d⊥α−2
d⊥α−1

. Both of these

results persist in finite length bundles (confirmed analytically by introducing a

long distance cutoff to the interaction and through Monte Carlo simulations – see

Sec. 3.3 and Fig. 3.9 ) leading to a continuous, but extremely sharp condensation

transition in which linkers collectively bind to the bundle when their solution con-

centration is increased through the critical value: ccrit : µ(ccrit) = µcrit. A similar

transition occurs for linkers which restrict the torsional fluctuations of a larger

bundle [SDB09], suggesting that nature may take advantage of fluctuation forces

in many different contexts.

Given the attractive Casimir interaction, the decrease in linker density at small

µ in the bundle with increasing α is surprising. At low density, however, adding

another linker to the bundle introduces an entropic contribution to the free energy

∼ −T logL/N , but this can be more than offset by the loss in filament entropy,

which is the source of the Casimir interaction, ∼ d⊥αT logL/N , leading to a net

increase in free energy due to the additional linker. This is possible since both the

translational entropy of the linker and its Casimir interactions are entropic and
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Figure 3.6: The coverage of an ideal gas being adsorbed onto a line with Casimir

interactions plotted versus the chemical potential of the ideal gas. At low gas

concentrations and high interaction strength it is entropically unfavorable for the

particles to adsorb.
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thus proportional to T .

3.3 Monte Carlo Simulations

The thermodynamic state functions of the previous section are verified with Monte

Carlo techniques. Specifically, I simulate particles interacting with the pairwise

Casimir interaction Eq. 3.18 on a line of length L = 105a in both the canonical and

grand canonical ensembles. The walls at x = 0 and x = L are assumed to interact

with adjacent particles with the same potential. Random initial states are evolved

with Metropolis–Hastings dynamics, wherein an initial state S is transformed to

S ′, chosen with probability f(S → S ′) and accepted with probability A(S →

S ′). To guarantee that the dynamics evolve an arbitrary state to the equilibrium

configuration, the distributions f and A must be chosen to satisfy the detailed

balance condition
P (S → S ′)

P (S ′ → S)
=
P (S ′)

P (S)
, (3.48)

where P (S) is the equilibrium probability distribution and P (S → S ′) is the

transition rate from S to S ′. In the simulated dynamics the transition rate is

simply A(S → S ′) × f(S → S ′), and upon insertion into Eq. 3.48 one finds the

relation
A(S → S ′)

A(S ′ → S)
=
P (S ′)f(S ′ → S)

P (S)f(S → S ′)
. (3.49)

Metropolis proposed an acceptance rate of the form

A(S → S ′) = min

(
1,
P (S ′)f(S ′ → S)

P (S)f(S → S ′)

)
, (3.50)

which clearly satisfies the detailed balance condition. To make further progress

one must specify both the form of the equilibrium distribution and the specific

form of the steps, thus determining P (S) and f(S → S ′), respectively.

To model the Casimir gas, consider a state SN specifying the positions of N

indistinguishable particles on the line. The underlying probability distribution
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P (SN), given by elementary statistical mechanics, is proportional to eβ(µN−EN ),

where β = 1/kBT is the inverse temperature, µ is the chemical potential, and EN

is the energy. The state is evolved by two distinct steps:

1. The translation of a randomly chosen particle to another position on the

line.

2. The insertion of a particle in a random position on the line or deletion of a

randomly chosen particle, both occurring with probability 1
2
.

The probability distribution for selecting a particular translation is f(SN → S ′N) =

1/NL, where S ′N denotes an N particle state with one particle in a different

location. This expression is simply the product of the probability of selecting

a particular particle at random (1/N) and moving it to a random location (1/L).

Since this distribution is the same for the reverse process, the required acceptance

rate is

Atranslation(SN → S ′N) = min
(

1, e−β(E′N−EN )
)
, (3.51)

where I have used the known form of P (SN). The second step is necessary to

model the system in the Grand Canonical ensemble because it explicitly allows for

number fluctuations. The probability of insertion is given by f(SN → SN+1) =

1
2L

, where the 1/2 factor represents choosing between insertions and deletions.

Likewise, the probability of the reverse step is f(SN+1 → SN) = 1
2(N+1)

. This

gives the acceptance rate of insertions

Ains(SN → SN+1) = min

(
1,

L

N + 1
eβµe−β(EN+1−EN )

)
, (3.52)

and rate of deletions

Adel(SN → SN−1) = min

(
1,
N

L
e−βµe−β(EN−1−EN )

)
. (3.53)

To verify the equation of state found in Eq. 3.33, I attach stiff harmonic

springs to the walls at x = 0 and x = L and deduce the pressure of the gas by
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Figure 3.7: Trace of the pressure in the canonical ensemble. After an initial

transient the pressure fluctuates around its equilibrium value.

sampling the separation of the walls. A typical trace of the pressure is shown in

Fig. 3.7. Equilibrium was achieved after an initial transient lasting approximately

5 × 104 steps. An additional 2 × 106 moves were performed and a sample of the

pressure was taken every 1000 steps. This process was repeated for line densities

in the range [0, .8] and for different values of d⊥α. The results are shown in Fig.

3.8 and it is clear that the Monte Carlo simulation confirms the equation of state

found numerically. Allowing particles to come on and off the line at fixed chemical

potential probes the system in the Grand Canonical ensemble. The translation
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Figure 3.8: The simulated equation of state compared with analytical solutions.
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step was also included so that the system would maintain mechanical equilibrium.

After an initial transient abated, the line density was sampled at fixed intervals

for different values of the coupling d⊥α and chemical potential µ. The results

are plotted alongside the Langmuir Isotherm obtained numerically in Fig. 3.9,

and once again the simulations are in agreement with the numerics. The largest

discrepancies occur near the condensation transition and are likely due to finite

size scaling, i.e. they would be removed as the system size was increased. This

is explored in greater detail in the following section, Sec. 3.4, where large-scale

finite element simulations are employed.

3.4 Finite Element Simulations

We explored the role of Casimir interactions in more complicated bundles via

large-scale finite-element simulations. We simulated a single central filament sur-

rounded by six outer filaments, all subject to hinged boundary conditions at one

end – see Fig. 3.10. This avoids the potential for frustrated dynamics associated

with bundle formation, and focuses on the equilibrium adsorption isotherms. All

filaments together offer Nb = 4207 binding sites. Except for finite size scaling

tests with halved filament length and persistence length, the filaments’ mechan-

ical properties remain the same as in Section 2.4.2.2. The cross-linkers, which

may form transient connections between filaments, exist in three distinct chem-

ical states: free (in solution), singly bound, and doubly bound. The transitions

between these states are governed by Poisson processes with rate constants kon

and koff for association and dissociation of the bonds, respectively. Both the

bundle and the linkers are located within a cubic simulation box, whose faces are

equipped with periodic boundary conditions. The number of linkers in solution is

approximately twenty-five times higher (Nl ∼ 50000) than the maximal number

of doubly bound linkers (Ndb ∼ 2000), ensuring an approximately constant free
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Figure 3.9: The density of a casimir gas in equilibrium with an ideal gas of

crosslinkers at fixed chemical potential. For α > 2 the system undergoes a first

order phase transition in the thermodynamic limit: The crosslinkers spontaneously

condense to the critical density ρcrit = α−2
α−1

at µcrit = kBT log λc
λt
α− 1.
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linker chemical potential. The stochastic dynamics of the linkers as well as their

reaction kinetics are described in [CMS13]. We chose cross linkers that pin the

slope of the filaments (α = 2) at fixed concentration (therefore fixed chemical

potential), and allowed the filaments to move in three dimensions (d⊥ = 2), so

that the prefactor of the Casimir interaction was d⊥α = 4.

Figure 3.10: The geometry of the finite element bundle simulation. A single

semi-flexible filament is surrounded by 6 neighbors, which may cross-link to each

other as well as the central filament. All filaments are subjected to hinged bound-

ary conditions at one end, while the other remains free. The bundle is shown in

a highly saturated state.

The Langmuir isotherms for simulations of two different length bundles are

shown in Fig. 3.11 alongside best theoretical fit (dot-dashed, green line) with

two free parameters: a trivial horizontal shift representing a choice of reference

chemical potential, and a vertical scaling which effectively tunes the strength

of the hard-core repulsion. For comparison we also plot the best fit Langmuir

isotherm for a Tonks gas (dashed, blue line) showing that, without the Casimir
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interaction, one cannot account for the sharpness of the condensation transition.

As the bundles are made longer (filled triangles) the transition is observed to

become even sharper in the simulation, suggesting that the observed rounding is

a finite size effect. The large error bars near the transition indicate significant

density fluctuations. These may be understood by inverting Eq. 3.33 to give

the pressure in terms of of density, as shown in Fig. 3.8. Bound linker number

fluctuations 〈(∆N)2〉/N2 are proportional to
(
∂p
∂L

)−1
= −L2N−1

(
∂p
∂ρ

)−1

. For

d⊥α > 1 the derivative of the pressure with respect to density vanishes at small

densities resulting in large density fluctuations.

3.5 Statistical Treatment of the Casimir Gas

The approach thus far has focused on a thermodynamic treatment of the interact-

ing Casimir gas, which has been sufficient to understand the condensation transi-

tion in bundles. An alternate approach is to study the statistical distribution of

the particles on the line by continuing the derivation given in Sec. 3.2.2.

Consider the same partition function of N particles on a line of length L

interacting with the pairwise potential V as in previous sections:

ZN(L) =

∫
· · ·
∫

0<x1<x2<···<xN<L

dx1 · · · dxN exp {−β [V (x1)

+ V (x2 − x1) + · · ·+ V (L−XN ]} , (3.54)

which may be written more succinctly in terms of a Laplace variable s

ZN(s) = [Ω(s)]N

Ω(s) =

∫ ∞
0

e−sx−βV (x) dx. (3.55)

Instead of relating this result to a thermodynamic potential, we advance the dis-

cussion by writing the partition function in terms of a Bromwich integral

ZN(L) =
1

2πi

∫ c+i∞

c−i∞
esLΩN+1(s) ds, (3.56)
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Figure 3.11: (color online) Theoretical and simulated Langmuir isotherms of link-

ers adsorbed onto a filament bundle. (F) Simulation data for a 5µm bundle with

persistence length lp = 9.2µm. (N) Both the system size and the persistence

length doubled to study finite size scaling effects. The transition is noticeable

sharper and is approaching the expected thermodynamic limit.
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where c is any real number greater than the largest pole of ΩN+1(s). Expressions

for the pair distribution functions ρ(1)(r) =
∑

i〈δ(ri−r)〉 , ρ(2)(r, r′) =
∑

i,j〈δ(ri−

r)δ(rj − r′)〉, and · · · ρ(n)(r, r′, r′′, · · · ) may be derived in a similar manner. Since

we are interested in a pairwise, non spatially dependent potential we must have

that ρ(1)(r) = N
L

= ρ since ρ(1)(r) is the density distribution. The pair distribution

function ρ(2)(r, r′) is more interesting since it quantifies spatial correlations and

is also responsible for determining the thermodynamic properties of the system.

Exact results may be derived In the limit N →∞ following [SZK53]

ρ(2)(R) = ρ
∞∑
n=1

1

2πi

∫ c+i∞

c−i∞
eR(s−c)

[
Ω(s)

Ω(c)

]n
ds, (3.57)

where R ≡ r′− r and the constant c is determined by the solution of Eq. 3.33 for

βp. Each term in the sum represents a contribution due to a different adjacency.

In other words, the full distribution function has been decomposed into a sum

over nearest neighbors, next nearest neighbors, etc. If the gas particles have a

finite size a then the sum cannot extend to infinity since it is impossible to place

an infinite number of particles a finite distance apart. We therefore append the

result with a theta function to accommodate hard core particles:

ρ(2)(R) = ρ
∞∑
n=1

Θ(R− na)

2πi

∫ c+i∞

c−i∞
eR(s−c)

[
Ω(s)

Ω(c)

]n
ds. (3.58)

3.5.1 Tonks gas distribution function

It is instructive to calculate the full radial distribution function for the hard core

Tonk’s gas. The pressure of a Tonks gas, found using e.g. Feynman’s method,

determines the constant c

c = βp =
ρ

a(1− ρ)
. (3.59)

Plugging the hard core potential into Eq. 3.55 we find Ω(s) = e−sa

s
. All that

remains is the Bromwich integral

In =
1

2πi

∫ c+i∞

c−i∞
eRsΩn(s) ds =

1

2πi

∫ c+i∞

c−i∞

e(R−na)s

sn
ds. (3.60)

97



The integral may be evaluated using the theory of residues. Analytically continue

the integrand into the complex plane and consider a contour along the line [c −

i∞, c+ i∞] closed by a semicircle of radius b in the left half plane. Since R ≥ na

by the Θ function in Eq. 3.58 the contribution along the left part of the semicircle

will vanish as b → ∞. Likewise, the top and bottom portions of the semicircle

will contribute nothing since Ω(s) ∼ 1
s
. Since c ≥ 0 the contour will enclose the

nth order pole at the origin. The residue is

Resn(s = 0) =
(R− na)n−1

(n− 1)!
, (3.61)

which can be seen by Taylor expanding the exponential in the integrand. By the

residue theorem we have that the integral Eq. 3.60 evaluates to

In =
(R− na)n−1

(n− 1)!
. (3.62)

The distribution function is

ρ(2)(R) =
∞∑
n=1

NΘ(R− na)

L

(R− na)n−1

(n− 1)!

(
ρ

a(1− ρ)

)n
exp

[
−ρ(R− na)

a(1− ρ)

]
(3.63)

A plot of the Tonks distribution function is shown for two different volume frac-

tions in Fig. 3.12. For ρ << 1 the distribution is flat and resembles an ideal

gas. For ρ ∼ 1 the system is fully packed and the distribution function shows the

expected crystalline order.

3.5.2 Casimir gas distribution function

We need to calculate the same quantities as for the Tonks gas. We have that

Ω(s) = sα−1Γ(1− α, sa) and the constant c is given by the solution of

ρ = c
Γ(1− α, ca)

Γ(2− α, ca)
. (3.64)

The integral we need to evaluate is

In =
1

2πi

∫ c+i∞

c−i∞
ds eRs

[
sα−1Γ(1− α, sa)

]n
. (3.65)
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Figure 3.12: The radial distribution function for a Tonks gas for different values of

the line density. The x axis is R
a

so that distance is measured in particle number.

The probability density is zero inside of the hard core region (shaded rectangle)

and approaches ρ2 for large R.
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First examine these expressions in the dense limit. This limit corresponds to

high pressures and therefore high values of the constant c. Integration by parts

gives the series expansion for the incomplete gamma function at large second

argument: Γ(s, x) ∼ e−xxs−1. In this limit Eq. 3.64 reduces to the Tonks relation

Eq. 3.59 and likewise the bromwich integral Eq. 3.65 likewise reduces to the

appropriate Tonks expression. The Casimir interaction is overwhelmed by the

steric interaction for any α.

In the dilute limit the Casimir interaction is responsible for a considerable

amount of structure in the distribution function. Analytic expressions for c in

the sparse limit have been found previously for α = 1, 2 (Eq. 3.37,3.38). Once

again there is no representations of the solution of Eq. 3.64 in terms of elementary

functions for general α. The incomplete gamma function introduces a branch cut

in the Bromwich integral Eq. 3.65 which we choose to be along the negative real

axis. We turn the line integral into a contour integral by closing in the left half

plane with a key-hole contour along the branch cut. For large |s| the integral looks

the same as the Tonks gas exp[(R−na)s]
s

and we see that the semi-circle contour in the

left half plane has no contribution as its radius is taken to infinity and likewise

the top and bottom portions of the integral vanish since Ω(s) ∼ 1
s
. The full

integral is then given by the discontinuity along the branch cut. To the best of

our knowledge there is no closed form expression for this integral for general n

so we will examine just the first few values n = 1, 2 in detail. Since n refers to

the distribution of finding your nth nearest neighbor some distance away there is

physically relevant information in this expansion. In particular if one considers

the full distribution function for distances less than n
ρ

only the first n terms of Eq.

3.58 will give meaningful contributions. In the limit ρ→ 0 only n = 1 contributes

so we examine that first. The branch cut integral will be dominated by small s

due to the exponential suppression so we expand the incomplete gamma function
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for small second argument and find:

In =
−1

2πi

{∫ iε

−∞+iε

ds eRs
[
sα−1Γ(1− α)− 1

1− α
+

s

2− α
+ · · ·

]
−

∫ −∞−iε
−iε

ds eRs
[
sα−1Γ(1− α)− 1

1− α
+

s

2− α
+ · · ·

]}
=
−1

2πi

∫ 0

−∞
ds [f(s+ iε)− f(s− iε)] , (3.66)

where Γ(x) is the standard Gamma function and the higher order terms contain

simple poles at all positive integer values of α which cancel the corresponding

simple pole in the Gamma function. At this point it is most instructive to look

at particular cases.

3.5.2.1 α = 1

In the limit α → 1 the integrand in Eq. 3.66 is f(s) = eRs (− ln sa− γ + sa).

Analytically continuing the log we find the discontinuity is −2πieRs so that our

integral is

I1(α = 1) =
−1

2πi

∫ 0

−∞
ds − 2πieRs =

1

R
. (3.67)

Recalling that for α = 1 the constant c is given by Eq. 3.37 multiplied by β we

have that the n=1 term in the radial distribution function is

ρ
(2)
1 (R) = ρ

exp
[

ρR
W−1(−ρaeγ)

]
RΓ(0, −ρR

W−1(−ρaeγ)
)
Θ(R− a). (3.68)

The computation of higher order terms in n is limited only by time and integration

skills. The distribution function including n = 1 and n = 2 is shown in Fig 3.13

alongside the Tonks distribution for reference.

3.5.2.2 α = 2

For α = 2 the integrand in Eq. 3.66 is f(s) = eRs (1 + (γ − 1)sa+ sa ln sa).

Analytically continuing the log we find the discontinuity is 2πi sa eRs so that our
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Figure 3.13: The sum of the first two terms of the analytical approximation to the

radial distribution function for a Casimir gas with ρ = .1. The Tonks distribution

shown for reference. The x axis is R
a

so that distance is measured in particle

number.
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integral is

I1(α = 1) =
−1

2πi

∫ 0

−∞
ds 2πi sa eRs =

a

R2
. (3.69)

Recalling that for α = 2 the constant c is given by Eq. 3.38 multiplied by β we

have that the n=1 term in the radial distribution function is

ρ
(2)
1 (R) = ρ

a2 exp

[
−Re−γ−

1
ρa

a

]
R2e−γ−

1
ρa Γ(−1, Re

−γ− 1
ρa

a
)
Θ(R− a). (3.70)

Higher order terms can likewise be calculated. A plot of the first two terms is

shown in Fig. 3.13. Doubling the strength of the interaction has considerable

impact on the distribution function, with ordering/clustering appearing at rela-

tively low concentrations. It can be expected that the physically relevant α = 4

will have a strong tendency to cluster and that it will have an n = 1 distribution

function ∼ ρa4 exp−R/a
R4 . One may also evaluate the pair distribution function using

numerical results for the pressure, as shown in Fig. 3.14.

3.6 Conclusions

Although highly nonequilibrium systems, cells may take advantage of equilibrium

Casimir interactions to control cytoskeletal structure. The discontinuous conden-

sation transition suggests that cells may be able to exploit this strongly interacting

system to effect dramatic topological rearrangements of the cytoskeleton via small

changes in the concentration of cross linking proteins. The difference in elastic

response of filament networks and bundle networks is stark [MWB14] and po-

tentially amenable to precise chemical control if linker concentrations are tuned

to a high susceptibility point near µ = µcrit. Alternatively, cells may tune these

concentrations far from the transition to effectively decouple cytoskeletal topology

and linker concentration.
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Figure 3.14: The numerically evaluated radial distribution function for a Casimir

gas with different values of d⊥α at fixed ρ = .1. The Tonks solution is shown for

reference. The x axis is R
a

so that distance is measured in particle number. The

probability density is zero inside of the hard core region (shaded rectangle) and

approaches ρ2 for large R.
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CHAPTER 4

Critical Non-Equilibrium Networks

While the previous chapters have explored the importance of equilibrium fluctua-

tion effects in cross-linked polymer networks, here I will study networks which have

been actively driven far from equilibrium. Cellular systems, which are naturally

found in non-equilibrium states, provide the inspiration for the models studied in

this chapter. Section 4.1, which focuses on the role of active noise within elastic

networks, is meant to model the role motor proteins plays within the cytoskeleton.

The motors are assumed to randomly drive the network, although the persistence

of the motors suggests that this noise will be correlated or colored. Treating the

network as a scalar elastic continuum, I study the system with Renormalization

Group techniques and show that it displays dynamic critical behavior. Section 4.2

explores the effect of soft modes, which have zero restoring force, on the mechan-

ics of isostatic networks. In cross-linked polymer systems, the soft modes are the

anomalously soft bending modes, which are orders of magnitude more compliant

than the stretching modes. Invoking a correspondence with jammed emulsions,

I study a kinetic model of the rigidity transition in the network, and predict a

nonlinear strain stiffening with G ∼ γ, where G is the shear modulus and γ is the

applied strain.
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Figure 4.1: Cross-linked Biopolymer networks are intrinsically nonlinear due to

the underlying constituent filaments: They can support large tensile stresses but

buckle easily. From Kang 2009 [KWJ09]

4.1 Active noise in elastic networks

4.1.1 Elastic description of cross-linked biopolymer networks

Biopolymer networks display rich mechanical behavior due in part to their highly

nonlinear elastic response. For example, when subjected to external shear stress

the networks have been observed to rapidly strain stiffen and develop negative

normal stresses [MKJ95, HLM03, CMS13] . The origin of the nonlinearity is

the asymmetric response of semi-flexible polymers to applied load: They can

support large tensile stresses but buckle easily under compression–See Fig. 4.1.

Cross linkers are necessary to transmit the stresses through the network, allowing

access to the nonlinear regime. A further source of nonlinearity is the network

composition. Networks are observed in multiple phases, including amorphous

networks of single filaments, lamellar configurations, and networks of bundles. The

cross linkers again play a key role in deciding which phase is thermodynamically

favorable, as was discussed in detail in Chapter 2.
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At large scales, however, the cross-linkers must drop out of the description of

the network and what remains may be treated as an elastic continuum. Here I

derive the most general isotropic quartic free energy of an elastic body, which is

sufficient to explain the nonlinear effects mentioned above.

Consider the deformations of an elastic body described by the right Cauchy

strain tensor uij = 1
2
(∂iuj + ∂jui + ∂iuk∂juk), where u(x) is the deformation field.

The strain tensor transforms as a rank 2 tensor under rotations of the reference

space and as a scalar under rotations of the target space. If one considers an

isotropic reference state, appropriate for biopolymer networks, then the free energy

must be invariant with respect to rotations in either space. This requires each

term to be fully contracted in the strain field, i.e. to be composed of products of

Trun for n = 1, 2, .... The most general form to quartic order is

Fiso[u] =

∫
ddx

λ

2
(Tru)2 + µTru2 + c1Tru3 + c2(Tru)3 + c3TruTru2

+ c4Tru4 + c5(Tru)4 + c6TruTru3 + c7Tru2(Tru)2 + c8(Tru2)2, (4.1)

where µ and λ are the usual Lamé coefficients, the ci are presently arbitrary

coefficients, and linear terms which must vanish for a body in equilibrium have

been neglected. Further restricting our attention to three dimensional systems, the

above simplifies because there are only three unique rotational invariants, which

may be taken to be Tru,Tru2, and Tru3. The term Tru4 can thus be neglected

since it can be written as a linear combination of the other invariants.

To gain insight into the effect of each nonlinear term consider the response of

the system to a pure shear strain uxy = uyx = γ
2
. The stress from this deformation

can be calculated from σik = δF
δuik

. Since pure shear is volume preserving (Tru = 0)

any term that is quadratic or higher in Tru will not contribute any stresses and

thus we may neglect c2, c5, and c7. The remaining non zero contributions to the
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stress are

µ : σxy = σyx = µγ,

c1 : σxx = σyy = c1
3γ2

4
,

c3 : σxx = σyy = σzz = c3
γ2

2
,

c6 : σ = 0,

c8 : σxy = σyx = c8γ
3. (4.2)

Evidently c1 and c3 contribute to the normal stresses and c8 contributes to strain

stiffening. If the free energy is meant to model a biopolymer gel we must impose

conditions on the coefficients to guarantee both negative normal stresses and strain

stiffening under shear. This gives the constraints c8 ≥ 0, c3 ≤ 0, and c1 ≤ −2
3
c3.

Including these constraints gives the minimally nonlinear model free energy for a

large-scale biopolymer network

F [u] =

∫
ddx

λ

2
(Tru)2 + µTru2 − ATruTru2 −BTru3 + C(Tru2)2, (4.3)

where A ≥ 0, C ≥ 0, and B ≥ −2
3
A. This free energy will be the inspiration for

the dynamical renormalization group study performed later in the chapter.

4.1.2 Motors

Biopolymer networks are actively driven by motor proteins, which accomplish

force generation by consuming ATP . The most prevalent motor proteins in the

cell are kinesin and myosin, which act on microtubules and F-Actin, respectively

[AJL02]. A single myosin motor is not processive, i.e. it will act instantaneously

and then fall off the filament and back into solution. Myosin can multimerize,

however, into thick filaments which act processively. These motors can cause

large network rearrangements including the formation of stress fibers. A graphical

depiction of a myosin thick filament and it’s resulting influence on a cross-linked

F-Actin network is shown in Fig. 4.2.
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Figure 4.2: Left: a single myosin is not processive, but can multimerize into

processive thick filaments. Right: The formation of stress fibers is evident in the

presence of motors. From Koenderink 2009 [KDN09]

Here I briefly describe the physical model of the motors and derive the sta-

tistical properties of the noise the motors introduce to the polymer networks. I

assume the motors generate a constant force ~f0 while they are acting on the net-

work. This represents motors which are held fixed at one end (an experimentally

realizable system), for example to a glass coverslip. If the motors were in the bulk

they would act as force dipoles and there would be no net injection of momentum

into the network. The dissociation of the motors is assumed to follow a poisson

process where the probability of a motor acting for duration T is

P (T ) =
1

τ
e−

T
τ , (4.4)

where τ is the characteristic on time of the motors, a few seconds for most myosin

thick filaments. This describes an Ornstein–Uhlenbeck process with correlation

function

〈fi(x, t)fj(x′, t′)〉 =
f 2

0

τ
e−

t−t′
τ δi,jδ(x− x′). (4.5)
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The noise is assumed isotropic with vanishing first moment. As stated by the

Wiener-Khinchin theorem, the power spectral density is the Fourier transform of

the real space two point function [Kit58]

2D(k, ω) = 〈fi(k, ω)fj(k
′, ω′)〉 =

2f 2
0

1 + ω2τ 2
δi,jδ(k + k′)δ(ω + ω′). (4.6)

In the limit τ → 0 the motors are uncorrelated and the standard white noise limit

is recovered. As τ → ∞ the noise amplitude vanishes continuously, except for

very small frequencies, in such a way that the total noise D(k, 0) remains fixed.

It is interesting to consider more dramatic forms of external driving, for example

the forcing function given by

2D(k, ω) = 〈fi(k, ω)fj(k
′, ω′)〉 =

2f 2
0

ω2 + 1
τ2

δi,jδ(k + k′)δ(ω + ω′) (4.7)

has a diverging zero frequency component as τ →∞. This will presumably drive

the system very far from equilibrium, with unknown consequences. This noise

form may model a system where motors are constantly created and added to the

system, so that D(k, 0) is not fixed.

I note that it is a simple manner to treat motors acting in the bulk, i.e.

one which act as force dipoles: The spectral densities given above need only be

multiplied by k2.

4.1.3 Dynamics and critical behavior

The dynamics resulting from active motor forcing should reflect the fact that

natural biopolymer networks exist in highly over damped environments. The

correct dynamical description of the displacement field u is therefore Model A

[HH77]:
1

Γ
∂tui = − δF

δui
+ fi = ∇i ·

δF

δu
+ fi, (4.8)

where Γ is a drag coefficient which is henceforth set to unity, f is the random

forcing, and the free energy F is given by Eq. 4.3. Neglecting the nonlinearities
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for the moment, and assuming an incompressible gel, one finds the dynamical

equation

∂tui = µ∇2ui −∇iP + fi, (4.9)

where µ is the shear modulus, and the pressure P enforces incompressibility.

Naturally the equation is easier to treat in Fourier space, where the differential

operators are diagonal:

−iωui = µk2ui − ikiP + fi. (4.10)

The pressure is eliminated by enforcing k · u = 0, which effectively removes the

longitudinal component of the displacement field from the theory. The resulting

dynamics for the transverse component are

ui(k, ω) =
1

−iω + µk2
Pij(k)fj(k, ω), (4.11)

where P is the transverse projection operator. To continue we must specify the

form of the random forcing f(k, ω). We assume it is Gaussian distributed so that

we only need to specify the first two moments

〈fi(k, ω)〉 = 0

〈fi(k, ω)fj(k’, ω′)〉 = 2D(k, ω)δd(k + k’)δ(ω + ω′)δij, (4.12)

where D(k, ω) is the forcing function or power spectral density. We may now

examine the typical strains present in the network due to the random forcing.

The linearized strain tensor is given by

eij =
1

2
(∂iuj + ∂jui). (4.13)

The average strain 〈e〉 = 0 since the noise is assumed isotropic, but the second

moments will in general not vanish. The fluctuations of each element of the strain

tensor are of the same order (off diagonal elements are half as big as diagonal

elements), so without loss of generality we look at the xx component exx = ∂xux.
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Fourier transforming and using our solution for u Eq. 4.11 gives an explicit

expression for the strain in terms of the noise:

exx(k, ω) =
ikxPxjfj(k, ω)

−iω + µk2
. (4.14)

The interesting quantity is 〈exx(k, ω)exx(-k,−ω)〉 which we denote as e2(k, ω).

We have that

e2(k, ω) =

〈
ikxPxjfj(k, ω)

−iω + µk2

−ikxPxkfk(k, ω)

iω + µk2

〉
=

kxkkPxjPxk〈fkfj〉
ω2 + µ2k4

=
kxkkPxjPxj2D(k, ω)

ω2 + µ2k4
. (4.15)

A quick calculation shows that PxjPxj = 1− k̂x
2
. What we’re really interested in

is the equal time equal space correlations, i.e. in the Fourier transform of e2 with

x = t = 0. Explicity:

e2(x = 0, t = 0) =

∫
ddk

(2π)d
dω

2π

2D(k, ω)kxkx(1− k̂x
2
)

(ω + iµk2)(ω − iµk2)
. (4.16)

It is convenient to evaluate the integral in d dimensional spherical polar coor-

dinates. The angular integral gives a dimension dependent prefactor Ad. The

remaining radial and frequency integrals are

e2(x = 0, t = 0) = Ad

∫
dk kd−1k2

∫
dω

π

D(k, ω)

(ω + iµk2)(ω − iµk2)
. (4.17)

At this point the exact form of D(k, ω) must be specified. First assume the motors

follow an Ornstein-Uhlenbeck process, so that D is given by Eq. 4.6:

D(k, ω) =
2D0

1 + ω2

s2

(4.18)

where I have introduced s = 1
τ
. This gives squared strain fluctuations

e2(x = 0, t = 0) = Ad

∫
dk kd−1k2

∫
dω

π

D0

(ω + iµk2)(ω − iµk2)(1 + ω2

s2
)
. (4.19)
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The frequency integral may be performed by contour integration. The result is

e2(x = 0, t = 0) = Ad
D0

µ

∫
dk kd−1 1

1 + µk2

s

. (4.20)

The radial integral may be evaluated but that is not necessary to capture the

general behavior. We see that for finite s the integral is infrared divergent only

for d ≤ 0, and thus there will not be large fluctuation corrections to the strain

in physical networks due to this noise. As s → 0, however, the integral becomes

formally divergent in two or less dimensions, suggesting that the noise is important

for the physically realizable d ≤ 2. This limit is somewhat subtle and will be

examined in greater detail in subsequent sections.

Now consider the case of the divergent noise given by Eq. 4.7

D(k, ω) =
D0

ω2 + s2
. (4.21)

This gives squared strain fluctuations

e2(x = 0, t = 0) = Ad

∫
dk kd−1k2

∫
dω

π

D0

(ω + iµk2)(ω − iµk2)(ω2 + s2)
. (4.22)

The frequency integral again may be performed by contour integration with result

e2(x = 0, t = 0) = Ad
D0

sµ2

∫
dk kd−1k−2 1

1 + s
µk2

. (4.23)

We see that in the s → 0 limit the strains will diverge in any dimension! For

small but finite s the integral is infrared divergent in d ≤ 2 dimensions.

4.1.4 A model system: φ4 with colored noise

To make further progress we must include the nonlinearities in the free energy Eq.

4.3. Assuming the nonlinearities are small, the resulting dynamical equations can

be studied with the tools of perturbative renormalization group. Unfortunately,

the elastic system is extremely complicated even for vanilla white noise, due in

part to both the tensorial nature of the strain field and the requirement of incom-

pressibility. Since the goal is to understand the role the active noise plays, I will
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consider instead a scalar elastic model, i.e. a φ4 theory in the presence of active

colored forcing. The effect of the noise may now be isolated, since, unlike in the

tensorial elastic model, the white noise limit is well understood.

In the usual way, consider a scalar field φ(x, t) with the general quartic Landau-

Ginzburg nonlinear free energy (cubic term excluded by e.g. symmetry):

F [φ] =
1

2

∫
ddx rφ2 + µ|∇φ|2 +

1

2
gφ4, (4.24)

where r is assumed positive. Imagine that this field is driven by an active noise

source η which has first and second moments

〈η〉 = 0

〈η(x, t)η(x′, t′)〉 = 2D(x, t)δ(x− x′)δ(t− t′). (4.25)

If we assume that φ is a non conserved field then it will satisfy the dynamical

equation

∂tφ = −rφ+ µ∇2φ− gφ3 + η. (4.26)

The linear differential operators are diagonalized in Fourier space so we switch

and never look back. Dropping the tildes on φ(x, t)→ φ̃(k, ω):

−iωφ = −rφ− µk2φ− g
∫
p,q,ν,Ω

φ(k − q)φ(q − p)φ(p) + η, (4.27)

where the arguments of φ have been suppressed for convenience. The linear be-

havior is determined entirely by the propagator or linear response function

G0(k, ω) =
1

−iω + µk2 + r
, (4.28)

in terms of which the equation of motion reads

φ = G0η − gG0

∫
p,q,ν,Ω

φ(k − q)φ(q − p)φ(p). (4.29)

In the linear theory (g=0) correlation functions are determined by G0(k, ω) and

D(k, ω). Explicitly we have that 〈φ〉 ∝ 〈η〉 = 0 and

〈φ(k, ω)φ(k′, ω′)〉
δ(k + k′)δ(ω + ω′)

=
2D(k, ω)

ω2 + (µk2 + r)2
. (4.30)
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All higher order odd correlation functions vanish and even ones may be calculated

from the two point function with Wick’s theorem since the theory is Gaussian. I

will study two different forms of the forcing function D(k, ω), which were discussed

in Sec. 4.1.2. The finite noise is given by

Df (k, ω) =
Df

1 + ω2

s2

, (4.31)

while the singular noise has

Ds(k, ω) =
Ds

ω2 + s2
. (4.32)

I am primarily interested in understanding the large scale, long time (hydro-

dynamic) characteristics of the system. In this limit of the theory may be studied

with the tools of Renormalization Group Theory, which involves a systematic

scaling out to larger distances and timescales. The relevance of model parame-

ters is determined primarily by their naıve scaling dimension, but if this vanishes,

i.e. if the gaussian theory exhibits scale invariance, then non linear corrections

will determine the behavior of the model. Under a simple scale transformation

x = bx′, t = bzt′, φ = bχφ′, with b = 1 + δl the infinitesimal transformation

parameter, the equations of motion may be made invariant provided the model

parameters satisfy

dr

dl
= zr

dµ

dl
= (z − 2)µ

dg

dl
= (2χ+ z)g

ds

dl
= zs

dDs

dl
= (3z − d− 2χ)Ds

dDf

dl
= (z − d− 2χ)Df . (4.33)

The exponents z and χ may be chosen to simply the flow equations. Let the

dynamical exponent z = 2 and the roughness exponent χ = 2−d
2
, 6−d

2
, for the
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conservative and non-conservative cases, respectively, so that µ and the noise

strength do not renormalize. It is clear that the parameters r and s always grow

under rescaling and are considered relevant. The nonlinear coupling g is found to

be marginal in df = 4, ds = 8 dimensions for the two types of noise.

What effect does the nonlinearity have on this analysis? I can answer this

question so long as the nonlinear coupling g is small (more precisely we will need

a small effective coupling), so that I may proceed perturbatively. The basic idea,

following [HH77], is to integrate out the large k and ω modes from the system,

absorbing the perturbative corrections into redefinitions of the bare model param-

eters, r, µ, s, and D. The divergences in the integrals are tamed by integrating

only over an infinitesimal shell. The solution is organized into a propagator, spec-

tral density, and vertex correction, as shown in figure 4.3. I now examine the two

different forcing functions presented in 4.1.2 separately.

4.1.5 Finite colored noise

4.1.5.1 Propagator Renormalization

The lowest order correction to the propagator (diagram (a) in Fig. 4.3) is

δG1 = −6G2
0(k, ω)g

∫
q,Ω

Df

1 + Ω2

s2

1

Ω2 + (µq2 + r)2
, (4.34)

where I have included the symmetry factor 3 and the integral over q,Ω contains

a factor 1/(2π)d+1. The integral is to be evaluated over an infinitesimal shell

containing the large k, ω modes. Conventionally, this is taken to be a momentum

shell, and the frequency integral is performed in its entirety. However, there is

nothing wrong in principle with choosing the opposite scheme: Integrate over

all wave vectors and over an infinitesimal frequency shell– See Fig. 4.4. The

reason for breaking with tradition has to do with power law nature of the noise

as s→ 0, making the frequency integral badly divergent. Unlike momentum shell

integration, The frequency shell method avoids the line ω = 0 and thus is a well
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Figure 4.3: Feynman diagrams contributing to the renormalization of the model

parameters. a) Response function renormalization. The O(g) diagram renormal-

izes the relaxation rate r, while the O(g2) gives corrections to both r and µ. b)

The spectral density renormalization gives corrections to D(k, ω). c) Lowest order

diagram contributing to vertex renormalization.
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Figure 4.4: Two different shell integration schemes.

defined procedure.

Taking the shell to be at Λω = 1 with width zδl I find the following correction

in the limit r → 0.

δG1 = −G2
0(k, ω)

3zDfgKd

2µ

1

1 + 1
s2

csc

(
πd

4

)
δl, (4.35)

where Kd = Sd−1

(2π)d
, with Sd−1 as the surface area of a d dimensional sphere. There

is an ultraviolet divergence in d = 4 due to extending the momentum integral

over all space. This could be removed by considering a frequency-momentum

shell scheme, but since the physical dimensions of interest are d ≤ 3 it is not

problematic. This correction is independent of k and will only renormalize r. To

find the lowest order correction to µ the expansion must be taken to two loop

order. I find the second order correction

δG2 = G2
0(k, ω)

zD2
fg

2

µ3

(
1

1 + 1
s2

)2 (
C0(d)− C1(d)k2 +O(k4)

)
δl, (4.36)
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where C0 and C1 are dimension dependent constants. In the relevant case of d = 3

I find C0 = 9.5 × 10−4, C1 = 7.5 × 10−5. Collectively, the corrections imply the

following corrections to the RG flow equations for r and µ:

dr

dl
= zr +

3zDfgKd

2µ

1

1 + 1
s2

csc

(
πd

4

)
− zD2

cg
2

µ3

(
1

1 + 1
s2

)2

C0(d)

dµ

dl
= (z − 2)µ+

zD2
fg

2

µ4

(
1

1 + 1
s2

)2

C1(d). (4.37)

4.1.5.2 Spectral Density Renormalization

The lowest order correction to the spectral density is order O(g2) and comes from

the diagram shown in Fig. 4.3(b). Again performing frequency shell integration

at Λω = 1 with r → 0 I find

δDf =
g2D3

fzC2(d)

µ4

(
1

1 + 1
s2

)3

δl, (4.38)

where C2(d) is another dimensional dependent constant, with C2(d = 3) = 1.09×

10−4. Absorbing this into a redefinition of the conserved noise strength Dc gives

the following perturbative correction to the Dc flow equation:

dDf

dl
= (z − d− 2χ)Df +

g2D2
fzC2(d)

µ4

(
1

1 + 1
s2

)2

. (4.39)

The motor correlation time 1/s is also renormalized by this diagram, but it will

not modify the exponents so I neglect it.

4.1.5.3 Vertex Renormalization

The bare vertex(four point function) in the theory is

Γ = −gG2
0(k, ω)|G0(k2, ω2)|2, (4.40)

to which the nonlinear term generates the frequency shell correction in the hydro-

dynamic limit

δΓ = G2
0(k, ω)|G0(k2, ω2)|2 9Dfg

2Kdz

4µ2

(
1

1 + 1
s2

)
(2− d) sec

(
πd

4

)
δl, (4.41)
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where once again the secant highlights the UV divergence in d ≥ 4. This may be

absorbed into a redefinition of g:

dg

dl
= (2χ+ z)g − 9Dfg

2Kdz

4µ2

(
1

1 + 1
s2

)
(2− d) sec

(
πd

4

)
. (4.42)

4.1.5.4 RG flow equations

I now summarize the results of the calculations. The full set of flow equations for

the finite colored noise is, to leading order,

dr

dl
= zr +

3zDfgKd

2µ

1

1 + 1
s2

csc

(
πd

4

)
dµ

dl
=

(
z − 2 +

zD2
fg

2

µ4

(
1

1 + 1
s2

)2

C1(d)

)
µ

ds

dl
= zs

dDf

dl
=

(
z − d− 2χ+

g2D2
fzC2(d)

µ4

(
1

1 + 1
s2

)2
)
Df

dg

dl
= (2χ+ z)g − 9Dfg

2Kdz

4µ2

(
1

1 + 1
s2

)
(2− d) sec

(
πd

4

)
, (4.43)

where I have neglected the O(g2) term in the renormalization of r since there is

an O(g) correction. The most striking effect of the noise is on the location of the

fixed points. We see that g∗ ∼ 1/s2 for s << 1. If s(l = 0) ≡ s0 is sufficiently

small, the system will always be strongly nonlinear.

The parameters z and χ are presently free, and we may let them take specific

values to simplify the equations. The most common choice enforces that µ and Df

do not renormalize. Introducing r̄ = r/µ and ḡ = Dfg/µ
2, I find the exponents

z = 2− 2ḡ2

(
1

1 + 1
s2

)2

C1(d)

χ =
1

2

[
2− d+ 2ḡ2

(
1

1 + 1
s2

)2

(C2(d)− C1(d))

]
. (4.44)
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The flow equations for the remaining parameters are

dr̄

dl
=

(
2− 2ḡ2

(
1

1 + 1
s2

)2

C1(d)

)
r̄ + 3ḡKd

1

1 + 1
s2

csc

(
πd

4

)
ds

dl
= 2s

dḡ

dl
= (4− d)ḡ − 9ḡ2Kd

2

(
1

1 + 1
s2

)
(2− d) sec

(
πd

4

)
, (4.45)

where I have let z = 2 where appropriate and neglected terms of order ḡ3. The

fixed points of this system of equations are trivial. Since s grows under rescaling

it must be that s̄ = 0. In this limit the nonlinear corrections vanish, and we

therefore conclude that r̄ = 0 and ḡ = 0 as well.

4.1.5.5 Correlation functions

The RG scale transformation enables one to write correlation functions at two

different scales. Recalling the scaling behavior of the field φ I find the homogeneity

relation

G(k, ω; r0, g0) =
〈φ(k, ω)φ(k′, ω′)〉

(2π)d+1δd(k + k′)δ(ω + ω′)

= e2(β(l)+dl+α(l))−dl−α(l) 〈φ(elk, eα(l)ω)φ(elk′, eα(l)ω′)〉
(2π)d+1δd(elk + elk′)δ(eα(l)ω + eα(l)ω′)

= e2β(l)+dl+α(l)G(elk, eα(l)ω; r̄(l), ḡ(l)), (4.46)

where

α(l) =

∫ l

dl′ z(l′)

β(l) =

∫ l

dl′ χ(l′) (4.47)

The prefactor e2(β(l)+dl+α(l)) follows from the scaling of φ in Fourier space; e−dl−α(l)

accounts for the scaling dimension of the Dirac delta functions.

Consider the case r = 0 where the correlation function is expected to take the

form

G(k, ω) =
2DR

f (k, ω)

ω2 + µR(k, ω)2k4

1

1 + ω2

s2

, (4.48)
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with µR(k, ω), DR
f (k, ω) the wave vector and frequency dependent renormalized

diffusion coefficient and noise strength, respectively. Scaling relations for the

renormalized parameters follow from Eq. 4.46, namely

µR(k, ω; ḡ0) = e2l−α(l)µR
(
elk, eα(l)ω; ḡ(l)

)
DR
f (k, ω; ḡ0) = e2β(l)+dl−α(l)DR

f

(
elk, eα(l)ω; ḡ(l)

)
. (4.49)

Consider now the diffusion coefficient for k = 0 in ε = 4 − d dimensions.

Evaluate the right hand side at l = l∗ such that eα(l∗)ω = 1→ l∗ ≈ 1
2

log 1/ω and

expand for small coupling (valid because ḡ flows to an order ε fixed point).

µR(0, ω) = e2l∗−α(l∗)µR (0, 1; ḡ(l∗)) ≈ µR(1 +

∫ l∗

dl′ [2− z(l′)] + · · · ), (4.50)

where ∫ l∗

dl′ [2− z(l′)] = 2C1(d)

∫ l∗

dl′ ḡ2(l′)

(
1

1 + 1
s(l′)2

)2

(4.51)

is order ḡ2. The resulting frequency dependent diffusion coefficient is shown for

the physically relevant case of ε = 1 (d = 3) in Fig. 4.5. The different curves

represent different values of s0, with s(l) = s0e
2l.

4.1.6 Singular colored noise–Frequency shell approach

The analysis is similar to the finite noise study of the previous section. In fact,

because of the frequency shell scheme, the replacement

1

1 + 1
s2

→ 1

1 + s2
, (4.52)

and the trivial change to the näıve scaling dimension of the noise amplitude, are

the only material differences in the flow perturbative flow equations. It is worth

noting that frequency shell methods are capable of handling arbitrarily complex

temporally correlated forcing functions, whereas momentum shell would be useful

for complicated spatially correlated noise. In the problem at hand, the resulting
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Figure 4.5: Renormalized diffusion coefficient µ at k = 0, r = 0 for finite noise.

The noise does not renormalize µ at high frequency ω > s, but produces a quick

transient to the white noise enhanced mixing at low frequencies.

flow equations are

dr

dl
= zr +

3zDsgKd

2µ

1

1 + s2
csc

(
πd

4

)
dµ

dl
=

(
z − 2 +

zD2
sg

2

µ4

(
1

1 + s2

)2

C1(d)

)
µ

ds

dl
= zs

dDs

dl
=

(
3z − d− 2χ+

g2D2
szC2(d)

µ4

(
1

1 + s2

)2
)
Ds

dg

dl
= (2χ+ z)g − 9Dsg

2Kdz

4µ2

(
1

1 + s2

)
(2− d) sec

(
πd

4

)
, (4.53)

where again I have neglected the O(g2) term in the renormalization of r since

there is an O(g) correction, and the Ci are identical to the finite noise versions.

A reduced set of equations is produced by choosing z and χ such that µ and Df
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do not renormalize. Introducing r̄ = r/µ and ḡ = Dsg/µ
2, I find the exponents

z = 2− 2ḡ2

(
1

1 + s2

)2

C1(d)

χ =
1

2

[
6− d+ 2ḡ2

(
1

1 + s2

)2

(C2(d)− C1(d))

]
. (4.54)

The flow equations for the remaining parameters are

dr̄

dl
=

(
2− 2ḡ2

(
1

1 + s2

)2

C1(d)

)
r̄ + 3ḡKd

1

1 + s2
csc

(
πd

4

)
ds

dl
= 2s

dḡ

dl
= (8− d)ḡ − 9ḡ2Kd

2

(
1

1 + s2

)
(2− d) sec

(
πd

4

)
, (4.55)

where I have let z = 2 where appropriate and neglected terms of order ḡ3. Fol-

lowing the analysis of Sec. 4.1.5.5 I find a renormalized diffusion coefficient in

d = 8 − ε dimensions. The physically relevant case of ε = 5 (d = 3) is shown in

Fig. 4.6. I note in passing that the theory is perfectly well defined for s → 0: it

is simply a white noise theory in dimension d = 8.

The one loop fixed point structure is very simple. Since s always grows under

rescaling, one must have s = 0. The flow equations then reduce to the white noise

equations around d = 8 dimensions:

r̄∗ = − ε

3(2− d)
cot

πd

4

ḡ∗ =
2ε cos πd

4

9Kd(2− d)
, (4.56)

where ε = 8 − d. These equations are different than the momentum shell white

noise versions [HH77], but the fixed points are not physically measurable quan-

tities, and it is not expected that the two techniques would produce the same

values. Carrying the analysis to two loop order (including corrections to s) would

give additional fixed points.
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Figure 4.6: Renormalized diffusion coefficient µ at k = 0, r = 0 for singular

noise. While the noise does not renormalize µ at high frequency ω > s, there is a

transient with diverging power law behavior near ω = s. The diffusion coefficient

remains constant for ω < s as ω → 0.

4.1.7 Comparison with momentum shell approach

I mentioned that it was necessary to employ a frequency shell integration scheme

to consistently treat the colored noise for all values of s, especially for the singular

noise which has a diverging ω = 0 component as s→ 0. It is instructive to look at

the difficulties one would encounter using the more traditional momentum shell

scheme. I begin with an outline of the perturbative corrections, similar to the

preceding sections. For simplicity I will only go to one loop order, so there will be

no perturbative correction to the spectral density and no renormalization of the

transport coefficients.
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4.1.7.1 Propagator Renormalization

The lowest order correction to the propagator is

δG = 3G2
0(k, ω)(−g)

∫
q,Ω

2D(q,Ω)|G0(q,Ω)|2. (4.57)

Using the singular noise forcing function Eq. 4.32 we have explicitly

δG = −6G2
0(k, ω)g

∫
q,Ω

Ds

Ω2 + s2

1

Ω2 + (µq2 + r)2
. (4.58)

In the r → 0 limit, corresponding to the classical order/disorder transition, the

correction diverges in d = 2 for finite s. If s is also allowed to vanish the correction

will be formally infrared divergent in any dimension because of the integration

across the Ω = 0 singularity. Assuming finite s, I integrate over a shell of infinites-

imal width at |q| = Λ. After setting Λ = 1 for convenience I find

δG = −3G2
0DsgKd

s

1

(r + µ)(r + s+ µ)
, (4.59)

where Kd = Sd−1

(2π)d
, with Sd−1 as the surface area of a d dimensional sphere. The

1/s dependence is expected due to the divergent s→ 0 behavior. This correction

may be absorbed into a redefinition of the model parameter r. There is no renor-

malization of the transport coefficient µ to one loop order because the correction

is independent of external wave vector k.

4.1.7.2 Vertex Renormalization

The bare vertex(four point function) in the theory is

Γ = −gG2
0(k, ω)|G0(k2, ω2)|2, (4.60)

to which the nonlinear term generates the correction

δΓ = 36(−g)2G2
0(k, ω)|G0(k2, ω2)|2

×
∫
q,Ω

1

Ω2 + (µ(k − q)2 + 3)2

1

−iΩ + µ(q − k2)2 + r

Ds

Ω2 + s2
. (4.61)
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The correction once again suffers from infrared divergences for sufficiently low

dimension. If r → 0 the divergence appears in d = 4, while if s is further allowed

to vanish the integral will again diverge in arbitrary dimension. Following the

same shell integration procedure for finite s with Λ = 1 one finds

δΓ =
9Dsg

2Kd

s

s+ 2(µ+ r)

(µ+ r)2(s+ r + µ)2
, (4.62)

where again we see the characteristic 1/s divergence.

4.1.7.3 RG flow equations and analysis

The equations of motion may be made invariant to order g provided the model

parameters satisfy

dr

dl
= zr +

3DsgKd

s

1

(r + µ)(r + s+ µ)

dµ

dl
= (z − 2)µ

dg

dl
= (2χ+ z)g − 9Dsg

2Kd

s

s+ 2(µ+ r)

(µ+ r)2(s+ r + µ)2

ds

dl
= zs

dDs

dl
= (3z − d− 2χ)Ds. (4.63)

We may choose the exponents z and χ to take the values 2 and 6−d
2

, respectively,

so that µ and D0 do not renormalize. The exponents are identical to the free

theory exponents and thus there will be no new corrections to scaling behavior

near the critical points r, s = 0. This is a consequence of µ not renormalizing to

one loop order. If the calculation was carried out to higher order one could expect

novel scaling behavior. At the present it is still interesting to examine the flows
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of the remaining 3 parameters of the theory:

dr

dl
= 2r +

3D0gKd

s

1

(r + µ)(r + s+ µ)

dg

dl
= (8− d)g − 9D0g

2Kd

s

s+ 2(µ+ r)

(µ+ r)2(s+ r + µ)2

ds

dl
= 2s. (4.64)

The bare coupling g is relevant below d = 8, while r and s are always relevant, as

expected. Again introducing the rescaled parameters r̄ = r/µ , ḡ = Dsg/µ
2, and

s̄ = s/µ, the flow equations are

dr̄

dl
= 2r̄ +

1

s̄

3ḡ

(1 + r̄)(1 + r̄ + s̄)

ds̄

dl
= 2s̄

dḡ

dl
= (8− d)ḡ − ḡ2

s̄

9(2 + 2r̄ + s̄)

(1 + r̄)2(1 + r̄ + s̄)2
. (4.65)

These equations are fundamentally different than the ones found through the fre-

quency shell scheme, Eq. 4.55. While the frequency shell flows vary continuously

as s → 0, the momentum shell versions become undefined, encountering a 1/s

singularity from the ω = 0 component of the frequency integrals. These equations

are clearly an incorrect description of the system near the s = 0 critical point,

since, as shown with the frequency shell scheme, there is a well defined s → 0

limit to the flow equations and the fixed points.

I note that it’s possible to tame these equations by introducing a new noise

amplitude Df ≡ Ds/s
2, which represents the finite noise previously introduced.

If one fixes Df , the resulting flow equations will be well defined as s→ 0:

dr̄

dl
= 2r̄ +

3gws̄

(1 + r̄)(1 + r̄ + s̄)

ds̄

dl
= 2s̄

dgf
dl

= (4− d)gf − g2
f

9s̄(2 + 2r̄ + s̄)

(1 + r̄)2(1 + r̄ + s̄)2
, (4.66)

128



where gf = Dfg/µ
2. These equations successfully reduce to the vanilla white

noise versions [HH77] in the limit s� 1 (or � µΛ2 in standard units):

dr̄

dl
= 2r̄ +

3gw
1 + r̄

ds̄

dl
= 2s̄

dgf
dl

= (4− d)gf − g2
f

9r̄

(1 + r̄)2
. (4.67)

4.1.8 Conclusion

Biological motors which introduce temporal correlations into network fluctuations

are expected to modify the transport coefficients of the system. Specifically, one

should find a diffusion coefficient which is larger than expected, i.e. there will

be enhanced mixing in the system. Cells may find this useful since transport by

purely diffusive means can become prohibitive at typical cellular length scales.

From a technical point of view, the normal momentum shell approach incorrectly

predicts divergent behavior in the resulting flow equations, and the true scaling

behavior is found with a frequency shell renormalization scheme which combats

divergences in the forcing at ω = 0. This rarely employed technique provides

access to previously restricted dynamical systems.

4.2 Kinetic theory of soft networks

Amorphous solids exhibit anomalous mechanical response that depends sensitively

on the contact network between individual constituents. A simple understand-

ing of these phenomena was first proposed by Maxwell, who suggested studying

the mechanical stability of solids by counting degrees of freedom relative to con-

straints imposed by network connectivity [Max64]. The balance of freedom and

constraint may be encoded in the average coordination number z, and when the

two are equal the system is isostatic. For networks whose coordination is above
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a critical value, the mechanical response is predicted to behave elastically, while

below this value the material exhibits fluid-like properties. These very general

arguments have been applied in studying materials as diverse as biopolymer net-

works [LCB10, PHT14], hydrogels [WBJ12], emulsions [GCO08, GCB10, MCC11],

granular media [OSL03], and foams [Dur95].

While static networks are well described using the coordination number as an

order parameter for determining global stability, materials that are driven out of

mechanical equilibrium cannot be described by connectivity alone. Biopolymer

networks, for example, exhibit several regimes of mechanical response [HLM03,

DML07, LCB10, PHT14]. On average, these networks are extremely under-

constrained, and thus in the global sense Maxwell’s argument predicts that they

will deform and flow without resistance; contrary to this prediction, above a

critical strain these networks exhibit nonlinear elasticity in the form of strain-

stiffening, the onset of which is controlled by the coordination [HLM03, HVO07].

The anomalous response arising in the presence of external stress suggests that

driving stimuli may used as additional dynamic order parameters in describing

the transition between response regimes.

This behavior is reminiscent of jammed emulsions, which also exhibit a co-

ordination controlled transition in the absence of load, and an anomalous dy-

namic mechanical response when subjected to applied stress. The correspon-

dence between the two systems has been employed successfully in the static case

[WSN05, SV10, LN10], and it is reasonable to expect that one could make in-

roads in the dynamic network stiffening problem by examining existing models

of stress induced unjamming. Specifically, kinetic theories of elasto-plastic defor-

mation have seen a great deal of success in predicting the behavior of jammed

emulsions, and more generally materials whose macroscopic properties depend on

a non-equilibrium microstructure [HL98, SLH97, Sol98, BCA09].

In this Letter, we show how a kinetic theory for strain propagation in an under-
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coordinated network predicts the onset of strain induced rigidity, and highlight

the correspondence to stress driven unjamming in emulsions. We postulate a

series of simple mechanisms that describe how deformations occur within the

network, from which a non-equilibrium Fokker-Planck equation describing the

strain distribution arises naturally. Along with the formal correspondence between

this kinetic theory and the mode-coupling theories describing jammed emulsions,

our derivation recovers the strain-stiffening results present in sheared amorphous

solids. We close by discussing how this general mechanistic picture is specifically

applicable to the response regimes observed in semiflexible biopolymer networks,

and comment on the role of coordination number heterogeneities.

4.2.1 Kinetic Model

Consider a disordered network of N nodes connected by harmonic springs with an

average coordination number z. A network in d dimensions will have Nd degrees

of freedom (ignoring rigid body rotations and translations) which are constrained

by Nz/2 springs. If z > zc = 2d the constraints will outnumber the degrees of

freedom and the network will be macroscopically rigid; conversely a floppy network

with a vanishing shear modulus is expected for z < zc. If z = zc the network is

on the verge of rigidity and is said to be isostatic. Herein we quantify the degree

of connectivity by δz ≡ zc − z.

We start with an under constrained (δz > 0) network that is divided into a

set of mesoscopic blocks of size a which carry scalar strain γ with time dependent

probability Pi(γ, t). The probability distribution is assumed to evolve dynamically

via a master equation arising from a simple mechanistic picture: (1) deformation

from an applied stress and (2) non-local strain propagation.

For small strains the blocks are expected to be fluid-like due to the presence

of “soft modes” [WSN05, WLK08, Tig12], defined as deformations which cost
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Figure 4.7: Schematic of filamentous network that is globally under constrained.

The network is divided into mesoscopic “blocks”, and a nearly isostatic network

under no external stress has regions that are locally under constrained (a). When

the whole network is subjected to a local stress σ, under constrained areas are free

to deform without any stress response. This is displayed schematically by rotation

(or non-affine deformation) of the blocks (b). At a critical strain γc, however, the

fully stretched regions now must propagate strain throughout the system in order

to maintain stress equilibrium (c).
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zero (or anomalously low) energy. A uniformly applied stress σ0 will lead to a

constant accumulation of strain in the block σ0t/η, where η is the viscosity of the

block. In the master equation this process takes the form of an advective term

−σ0
η
∂γPi(γ, t).

Soft modes are only present over a finite range of strain before they are

“stretched out” of the material (as illustrated schematically in Fig. 4.7), sug-

gesting that the strain accumulation will proceed only to a critical strain γc. This

critical strain will depend on the coordination deficit δz, since a vastly under-

constrained portion of the network will allow for larger free strain accumulation.

Removing bonds from an isostatic network enables node displacement in direct

proportion to the number of bonds removed, and thus we expect that the critical

strain will scale as γc ∼ δz. For γ > γc blocks will accumulate stress which is

relaxed by elastically propagating excess strain to other blocks in the network over

a time scale τ . For simplicity it is assumed that local excess strain relaxes to zero

and that the interactions with other blocks take the form of a Boltzmann collision

operator L({Pi}).

Collectively these mechanisms describe the following master equation

∂tPi(γ, t) = −σ0

η
∂γPi(γ, t)−

Θ(|γ| − γc)
τ

Pi(γ, t)

+ ρi(t)δ(γ) + L({Pi}), (4.68)

where we define

ρi =

∫
dγ′

Θ(|γ′| − γc)
τ

Pi(γ
′, t) (4.69)

as the rate of elastic events associated with elastic strain redistribution in the

network. These elastic events are catalysts for the anomalous mechanical response

displayed by the system, and physically correspond to soft modes freezing out

under local strain. Once the soft modes have been eliminated, the strain must

propagate elastically throughout the network. The operator L({Pi}) gives the
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change in local probability due to elastic events in other blocks

L({Pi}) =
∑
j 6=i

∫
dγ′

Θ(|γ′| − γc)
τ

[Pj(γ
′, t)Pi(γ + δγi, t)

− Pj(γ
′, t)Pi(γ, t)] , (4.70)

where the change in strain in block i may be written as δγi = Πi,jδγj, with Πi,j the

strain propagator between blocks. One may calculate a general propagator in the

continuum limit by dividing the tensorial strain into affine and non-affine compo-

nents mε = mεA + mεNA. Treating the non-affine component as a perturbation,

a background elastic medium will develop a shear stress mσ = 2µmεA. Applying

stress balance, ∇ ·mσ = 0, one can show that the non-affine strain component

acts as a quadrupolar source that propagates the strain [Esh59, PAL04]; in our

scalar model this non-affine source corresponds to the density of elastic events.

In order to make analytical progress it is necessary to simplify the nonlinear

collision operator by assuming small δγ and furthermore full strain relaxation

between the blocks δγ ≈ γc. These assumptions are expected to be valid near

the rigidity transition when δz � 1 and floppy modes stiffen quickly under small

applied stress. One may now perform a Kramers-Moyal [Ris89] expansion where

the collision operator is evaluated as a Taylor series in δγ. We truncate the

expansion at second order and derive the corresponding Fokker-Planck equation

∂tPi(γ, t) = −σ
η
∂γPi(γ, t)−

Θ(|γ| − γc)
τ

Pi(γ, t)

+ ρi(t)δ(γ) +Di(t)∂
2
γPi(γ, t). (4.71)

The stress is modified by the elastic events, σ = σ0 + η
2

∑
j 6=i Πi,jγcρj(t). The

expansion introduces a strain diffusion term with a non local diffusion coefficient

D proportional to the rate of elastic events in other blocks

Di(t) =
1

2

∑
j 6=i

Π2
i,jγ

2
cρj(t). (4.72)

The existence of strain diffusion in the system is the primary physical phenomenon

responsible for critical rigidity and spatial cooperativity.
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The block description is easily coarse grained into a continuous field represen-

tation in which the discrete label i is replaced by position vector r. The strain

diffusion coefficient can be written as

D(r, t) = αρ(r, t) +m∇2ρ(r, t), (4.73)

where α = 1
2
γ2
c

∑
j 6=i Π

2
i,j is a coupling constant and m = 1

4
a2γ2

c

∑
j 6=i Π

2
i,j quantifies

the degree of heterogeneity in the system. The aforementioned scaling γc ∼ δz sug-

gestsm and α both scale as δz2. Before solving the equations we introduce rescaled

variables γ̃ = γ/γc, σ̃ = στ/ηγc, D̃ = Dτ/γ2
c , ρ̃ = ρτ, r̃ = r/a, t̃ = t/τ, m̃ =

m/a2γ2
c , α̃ = α/γ2

c , and drop the tildes for clarity.

4.2.2 Homogeneous systems and the rigidity transition in amorphous

solids

Steady state solutions to the Fokker-Planck equation, Eq. 4.71, are first found in

the limit σ = 0. For a homogeneous system m = 0 and the rate of elastic events

is simply proportional to the diffusion coefficient, ρ = D/α. Requiring P (r, γ, t)

to be normalized is equivalent to enforcing

D =
2αD

1 + 2
√
D + 2D

. (4.74)

If α < 1
4

the only solution is D = 0, representing a steady state with no elas-

tic events that behaves macroscopically as a fluid. Two new solutions appear at

α = 1
4

with finite D(α = 1
4
) = 1

4
which are elastic states with continuous strain

redistribution. For homogeneous systems near the isostatic point one expects a

continuous transition between response regimes, as observed in the static coordi-

nation controlled transition [SV10, LN10], and these solutions are therefore not

immediately accessible. In fact, only one of the new solutions is smoothly con-

nected to D = 0, intersecting the fluid like solution at the critical value αc = 1
2

where it grows as D ∼ (α− αc)2. In the absence of applied stress the model thus
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has two distinct states, fluid and elastic, controlled by the coupling parameter α

with crossover between regimes at αc.

The equations may still be solved in the presence of applied stress, although

they simplify considerably in the limit σ � 1. We choose the rate of elastic

events ρ(r) and the averaged local strain γ̄(r) =
∫

dγ′P (r, γ′) as the relevant

variables and focus on the soft network α < αc. Steady state solutions are found

by expanding γ̄ and ρ in series expansions for small stress, from which we find

γ̄ = (6ρ)−1σ. An important result is the existence of a non vanishing γ∗ ≡

limσ→0 γ̄ = (12α)−1/2(αc−α)1/2 that is identified with a rigidifying strain capturing

the intuitive idea that the network must remove soft modes before becoming

macroscopically stiff. Below the critical point γ∗ ∼ (αc − α)1/2 while above γ∗ ∼

(α− αc)−2. Continuing to the next order in σ we find

γ̄ = γ∗ +

√
γ∗

3

√
σ +O(σ), (4.75)

This predicts a stress-strain relationship that is the primary result of this Letter

σ =


3(γ̄−γ∗)2

γ∗
; γ̄ ≥ γ∗

0 ; γ̄ ≤ γ∗.
(4.76)

Under-constrained systems are predicted to rigidify at a critical strain γ∗ into

nonlinear elastic materials, as shown in Fig. 4.8. Networks with γ̄ < γ∗ are

macroscopically soft because of the degenerate set of stress-free configurations

associated with local soft modes. The degeneracy is broken as strain is increased

and the network acquires a distinctive non linear elastic response σ ∼ γ2 that the

model suggests is due to elastic strain propagation within system. In the context

of critical phenomena the applied strain acts as a dynamic order parameter whose

value, in conjunction with the coordination, is necessary to specify the mechanical

response regime of amorphous solids near the isostatic point.

The stress-strain relation Eq. 4.76 is seen numerically in simulations of under-

constrained random spring networks near the isostatic point [WLK08], where the
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authors observe networks which rigidify as σ ∼ γ2 at a connectivity dependent

critical strain γ∗ ∼ δz. Our kinetic theory connects the macroscopic rigidifying

strain γ∗ to a microscopic model parameter γc and we are thus able to reproduce

this latter scaling. Specifically, we argued that γc necessarily scales as δz and

furthermore γ∗ ∼ γc so that γ∗ ∼ δz, as seen in the simulations.

Experimental realizations of the rigidity transition are found in semiflexible

polymer networks. Although the networks are generally under constrained in

the Maxwell sense they are not truly soft because of either thermal or active

fluctuation induced stiffening [DSS13, BM11]. Nevertheless, soft modes are still

present in the form of anomalously soft bending excitations of individual filaments

[HLM03, BML11]. The bending modes are stretched out under applied strain in

a similar fashion to the spring networks (see Fig. 4.7) and become locally stiff

as the stretching regime of the polymers is probed. Network connectivity is thus

more difficult to define, although the average free contour length of the filaments

serves as a reasonable proxy. Despite the differences, Eq. 4.76 accurately models

the strain-stiffening transition seen in experiments [WBW07, KWJ09], suggest-

ing that the proposed kinetic theory generically describes stiffening transitions

corresponding to excitations of modes with vastly different energy scales.

4.2.3 Correspondence with yield stress fluids

We note that upon taking γ ↔ σ and σ0 ↔ γ̇0 in Eq. 4.68 our model is iden-

tical to kinetic theories for elasto-plastic flow proposed to describe the jamming

transition in emulsions [HL98, BCA09]. The origin of this correspondence lies in

how network connectivity generates non-affine or plastic deformations in a mate-

rial. Jammed emulsions flow when local plastic events collaboratively fluidize the

system, while for floppy networks the characteristic inelastic deformation is the

non-affine strain (see Fig. 4.8). This non-affine deformation, caused by the pulling

out of soft modes, locally changes the equilibrium reference state of the network,
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Figure 4.8: Red curve: An under constrained network displays fluid-like behavior

for small strains, but the system rigidifies above the critical strain γ∗. The con-

tinuous transition from fluid-like to elastic behavior is seen in experiments and

simulations, and the scaling arguments we derive here correspond to the numerical

results of [WLK08]. Black curve: Comparison of the stress-strain relations for the

kinetic theory for soft glassy flows [BCA09] and the kinetic theory for isostatic

spring networks presented here. Jammed emulsions must build up a finite yield

stress before the flowing state is achieved. In this case, the initial static response

is elastic, since the material is jammed, but in the presence of an applied dy-

namic external stimulus the system displays fluid behavior. This correspondence

arises from the intrinsic dependence on the underlying contact network that these

disparate systems share.
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and thus mediates a geometrically controlled nonlinear elastic response at high

strain. In jammed emulsions, microscopic stresses build up and dynamically relax

through plastic events, until the whole system yields and flows; in floppy networks,

strain accumulates and then dynamically relaxes through non-affine elastic events,

and the whole system rigidifies.

4.2.4 Non-universal behavior of inhomogeneous systems

Motivated by this correspondence, we note that in yield stress fluids, heterogeneity

leads to a spatial cooperativity length scale that prevents a universal collapse

of the constitutive relations [HML03, LAM14]. We now examine the case of

floppy networks where m 6= 0. Since m is a measurement of the nearest neighbor

strain propagator, the spatial fluctuations in δz are an appropriate measure of

the heterogeneity. In other words, when the correlation length associated with

the spatial variance of the coordination is on the order of the system size, the

universal curve in Fig. 4.8 is expected to break down. Relaxing the m = 0

condition, eliminating the shear rate, and expanding the rate of elastic events

around γ∗ we find the self consistency equation

m∇2ρ = a1γ
∗(γ∗ − γ̄)ρ+ a2ρ

3/2 +O(ρ2), (4.77)

where a1 = 48α2 and a2 = 4α3/2(1 − α) and we have used Eq. 4.73 to eliminate

the diffusion coefficient. For a homogeneous system the left hand side of Eq. 4.77

vanishes and we immediately find the bulk density of elastic events

ρb =

(
a1γ

∗

a2

)2

(γ̄ − γ∗)2. (4.78)

Expanding ρ around ρb one finds

∇2ρ =
1

ξ2(γ̄)
(ρ− ρb), (4.79)

where we have introduced the rigidity correlation length

ξ(γ̄) =

√
m

a1(γ̄ − γ∗)
. (4.80)
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In many simulations of amorphous solids, special care is taken to ensure that

the spatial fluctuations of the coordination are small; this prevents percolation

effects that may obscure careful observation of the properties of the transition

point. However, biopolymer networks are complicated, often very heterogeneous

networks. Inhomogeneities on a length scale ∼ ξ will prevent a universal scaling

collapse onto the curve described by Eq. 4.77. Instead, there will be spatially

extended regions of strain diffusion, and thus the effective exponent of the shear

modulus will be non-universal. A macroscopic measurement of nonlinear elas-

ticity that corresponds to the distribution of biopolymer microstructure is a key

component of building an understanding of these systems.

4.2.5 Conclusion

Motivated by successful theories describing the dynamic unjamming transition in

emulsions we propose a simple kinetic theory which predicts the onset of a non-

percolative rigidity transition in under constrained elastic networks subject to ex-

ternal stress. The main result is a nonlinear stress-strain relationship σ ∼ (γ−γ∗)2

which recovers numerical predictions and is consistent with experimental obser-

vations of biopolymer networks. More generally, the model serves to extend the

known static correspondence between jamming and the isostatic transition to sys-

tems out of mechanical equilibrium, and suggests that heterogeneous networks

should display non-universal rigidity transitions. Due to the presence of a rigidity

correlation length, universal scaling breaks down and the microstructure of the

network needs to be modeled to accurately predict the emergent modulus. Fi-

nally, we note that ρ can be thought of as an order parameter that comes from

minimizing a dynamic free energy, and thus creates an effective thermodynamic

field theory for these out-of-equilibrium systems. This framework supports adding

more complicated mechanisms into the theory, as well as accommodating thermal

fluctuations or the active noise that is prevalent in biopolymer systems.

140



References

[ABD92] A. Ajdari, B. Duplantier, D. Hone, L. Peliti, and J. Prost. “”Pseudo-
Casimir” effect in liquid crystals.” J. Phys. II France, 2(3):487–501,
1992.

[AJL02] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter. Molecular biology of the cell. Garland
Science, 2002.

[BCA09] Lydéric Bocquet, Annie Colin, and Armand Ajdari. “Kinetic the-
ory of plastic flow in soft glassy materials.” Physical review letters,
103(3):036001, 2009.

[BGP94] R. Bruinsma, M. Goulian, and P. Pincus. “Self-assembly of membrane
junctions.” Biophysical Journal, 67(2):746 – 750, 1994.

[BM11] CP Broedersz and FC MacKintosh. “Molecular motors stiffen non-
affine semiflexible polymer networks.” Soft Matter, 7(7):3186–3191,
2011.

[BML11] Chase P. Broedersz, Xiaoming Mao, Tom C. Lubensky, and Freder-
ick C. MacKintosh. “Criticality and isostaticity in fibre networks.”
Nat Phys, 7(12):983–988, 12 2011.

[10.1038/nphys2127.]

[BMS94] C. Bustamante, J.F. Marko, E. D. Siggia, and S. Smith. “Entropic
Elasticity of lambda-phage DNA.” Science, 265:1599–1600, 1994.

[CAO09] C. J. Cyron, M. Arroyo, and M. Ortiz. “Smooth, second order, non-
negative meshfree approximants selected by maximum entropy.” Inter-
national Journal for Numerical Methods in Engineering, 79(13):1605–
1632, 2009.

[Cas48] H. B. G. Casimir. “On the attraction between two perfectly conducting
plates.” Proc. K. Ned. Adad. Wet., 51:793, 1948.

[CMB13] C. J. Cyron, K. W. Müller, A. R. Bausch, and W. A. Wall. “Microme-
chanical simulations of biopolymer networks with finite elements.”
Journal of Computational Physics, 244:263–251, 2013.

[CMS13] C. J. Cyron, K. W. Müller, K. M. Schmoller, A. R. Bausch, W. A.
Wall, and R. F. Bruinsma. “Equilibrium Phase Diagram of semi-
flexible polymer networks with linkers.” EPL (Europhysics Letters),
102:38003, 2013.

141



[CNG10] Christian Cyron, Keijo Nissen, Volker Gravemeier, and Wolfgang Wall.
“Stable meshfree methods in fluid mechanics based on Green’s func-
tions.” Computational Mechanics, 46:287 – 300, 2010.

[Cri03] M. A. Crisfield. Non-linear Finite Element Analysis of Solids and
Structures, Volume 2: Advanced Topics. Wiley, Chichester, 2003.

[DE86] M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Claren-
don Press, Oxford, 1986.

[DLP61] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii. “Reviews of
Topical Problems: General Theory of Van Der Waals’ Forces.” Soviet
Physics Uspekhi, 4:153–176, February 1961.

[DML07] Moumita Das, FC MacKintosh, and Alex J Levine. “Effective medium
theory of semiflexible filamentous networks.” Physical review letters,
99(3):038101, 2007.

[DS93] E. D’Hoker and P. Sikivie. “Casimir forces between beads on strings.”
Phys. Rev. Lett., 71:1136–1139, 1993.

[DSS13] M. Dennison, M. Sheinman, C. Storm, and F. C. MacKintosh.
“Fluctuation-Stabilized Marginal Networks and Anomalous Entropic
Elasticity.” Phys. Rev. Lett., 111:095503, Aug 2013.

[Dur95] DJ Durian. “Foam mechanics at the bubble scale.” Physical review
letters, 75(26):4780, 1995.

[Esh59] JD Eshelby. “The elastic field outside an ellipsoidal inclusion.” Pro-
ceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, pp. 561–569, 1959.

[FH65] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Inte-
grals. McGraw–Hill, 1965.

[GCB10] Julie Goyon, Annie Colin, and Lydéric Bocquet. “How does a soft
glassy material flow: finite size effects, non local rheology, and flow
cooperativity.” Soft Matter, 6(12):2668–2678, 2010.

[GCO08] J Goyon, A Colin, G Ovarlez, A Ajdari, and L Bocquet. “Spatial
cooperativity in soft glassy flows.” Nature, 454(7200):84–87, 2008.

[GR94] I. S. Gradshtein and I. M. Ryzhik. Table of Integrals, Series, and
Products. Academic Press, 1994.

[GSM04] ML Gardel, JH Shin, FC MacKintosh, L Mahadevan, P Matsudaira,
and DA Weitz. “Elastic behavior of cross-linked and bundled actin
networks.” Science, 304(5675):1301–1305, 2004.

142



[HH77] P. C. Hohenberg and B. I. Halperin. “Theory of dynamic critical phe-
nomena.” Rev. Mod. Phys., 49:435–479, Jul 1977.
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