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ABSTRACT OF THE DISSERTATION

Differential-Geometric-Control Formulation of Unconventional Flight Dynamics

By

Ahmed Mamdouh Hassan

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2018

Professor Haithem E. Taha, Chair

Differential-geometric control theory exploits differential geometry in the analysis of dynam-

ical control systems. Differential geometry is a mathematical discipline that is concerned

with studying calculus on curved (non-Euclidean) spaces. The main focus of this Disserta-

tion is to formulate modern aeronautical engineering applications in a differential-geometric

control framework.

Nonlinear controllability analysis is one of the most important aspects of differential-geometric

control theory. Its importance emanates from the fact that linear controllability conditions

for linearized systems are not necessary. That is, there exists a class of nonlinear systems

that are linearly uncontrollable but nonlinearly controllable. In particular, it allows for

identification of the ability to generate motions along unactuated (nonintuitive) directions

through specific interactions between the system dynamics and control inputs.

In this Dissertation, differential-geometric control theory is utilized to analyze the nonlinear

controllability of airplane flight dynamics. This study lead to several discoveries. First,

it is found that an airplane in an upset situation where all control surfaces are blocked

(inoperative) and linear controllability is lost, nonlinear controllability can be recovered

using engine control only. More importantly, the study reveals unconventional mechanisms

to generate motion along different directions in the state space. In particular, a novel roll

xii



mechanism that relies on nonlinear interactions between the elevator and aileron control

surfaces is discovered. This novel roll mechanism is found to be superior in comparison

to the conventional one (using ailerons only) near stall. Using differential-geometric control

tools (e.g., non-holonomic motion planning and Fliess functional expansion), it is shown that

the discovered roll mechanism can provide four times rolling motion near stall in comparison

to the conventional roll control using ailerons. This result suggests that the discovered roll

mechanism will provide a significant solution to the loss of control problem near stall, which

is the leading cause of fatal accidents in general aviation airplanes.

Combined with chronological calculus, differential-geometric control theory provides rigorous

analysis tools for time-varying vector fields, such as higher-order averaging of time-periodic

systems and decomposition of multi-scale time-varying vector fields. These tools are ap-

plied, in this Dissertation, to the multi-body, time-periodic, flapping-wing flight dynamics.

The rigorous analysis using these combined geometric-control-averaging techniques revealed

unconventional balance and stability characteristics in the rich flapping flight dynamics of

insects/birds. In particular, in contrast to the prevailing belief in the flapping flight dynamics

community that insects are unstable at hover due to the lack of pitch stiffness, the current

analysis revealed that flapping species enjoy a vibrational stabilization mechanism. That is,

the natural wing periodic forcing induces a passive stabilization mechanism in the form of

pitch stiffness, similar to the Kapitza pendulum.

xiii



Chapter 1

Introduction

In this chapter, a brief introductory tour to differential-geometric control theory and its

aerospace-related applications is given. Section 1.1 covers the definition of the theory and

some historical remarks. Section 1.2 outlines the main control-theoretic gains and flight-

dynamics applications of differential-geometric control theory.

1.1 Differential-Geometric Control Theory

Differential-geometric control theory exploits differential geometry in the analysis of dynam-

ical control systems. Differential geometry is a mathematical discipline that is concerned

with studying calculus on curved (non-Euclidean) spaces. The main focus of this Disserta-

tion is to formulate modern aeronautical engineering applications in a differential-geometric

control framework.

Frequency-response methods (classical control theory) had been the prevalent tool in con-

trol systems analysis and design over the first half of the twentieth century. Frequency-

response methods, however, are mostly limited to single-input-single-output (SISO), linear

1



time-invariant (LTI) control systems. The space race in the 1950s was one of the most

important factors necessitating the development of more sophisticated control theories that

are able to deal with multi-input-multi-output (MIMO), nonlinear, possibly time-varying,

control systems. Consequently, control theoreticians started to revert back to the original

and natural way of studying such systems; i.e., time domain. Analyzing dynamical control

systems through time-domain methods allowed more intrinsic and global representation of

the rich behavior of nonlinear dynamical control systems. These efforts led to the develop-

ment of state-space representation (modern control theory) and optimal control theory. The

development of state-space methods and Kalman filtering, primarily by Rudolf E. Kalman

[3, 4, 5, 6], was a major turning point in the history of control theory.

As the modern control theory became mature enough, control theoreticians pursued the

extension of all the developed linear systems notions (stability, controllability, etc.) to non-

linear systems [7, 8, 9]. However, the non-Euclidean state-space manifold nature of some of

these nonlinear systems was a major roadblock in the way to achieve this endeavor. This

dilemma necessitated the incorporation of differential geometry into control theory, which

led to what we call now differential-geometric control theory or geometric nonlinear control

theory.

The vast majority of the development and breakthroughs in differential-geometric control

theory took place over the 1970’s and 1980’s. The main focus of the theoreticians was

to account for the underlying state-space manifold while formulating and analyzing such

nonlinear dynamical control systems. As such, all the well-developed notions and properties

of linear systems (e.g, controllability) can be redefined in a geometric-nonlinear fashion.

Moreover, global results that represent the intrinsic behavior of the system rather than

its local-coordinate representation could be obtained. The next section outlines the major

aspects of differential-geometric control theory and their intersections with aircraft flight

dynamics and control.

2



1.2 Engineering Payoffs from Differential-Geometric Con-

trol Theory

Control theory can benefit from differential geometry in the following three major aspects

[10]: (i) global intrinsic assessment of the system behavior; (ii) motion generation along

unactuated directions and nonlinear motion planning; and (iii) analysis of time-periodic sys-

tems and vibrational stabilization. The last two aspects are, in fact, the core motives of this

effort. In the rest of this section, we will explore each one of these aspects individually and

briefly allude to their flight-dynamics applications that are investigated in this dissertation.

1.2.1 Global Intrinsic Assessment of Dynamical System Behavior

A manifold is defined to be everywhere locally diffeomorphic to a Euclidean space; i.e., there

is a smooth mapping (with a smooth inverse) between the manifold and the Euclidean space

locally at each point [11]. As such, the common approach to analyze such systems is to locally

parameterize the state-space manifold by a set of Euclidean coordinates (e.g., positions and

velocities), then study the local behavior of the system in Euclidean space. However, this

approach is essentially local and may lead to false conclusions about the global behavior of

the system.

A typical example in the literature is a dynamical system having a rotational degree of

freedom with one equilibrium. Consider the following system

θ̇ = ω

ω̇ = u
, (1.1)

where θ ∈ S1, ω ∈ R. One approach to stabilize this system is to design a continuous feedback

control law aiming for a globally asymptoticly stable equilibrium point. Deceptively, the

3



closed-loop system, represented in local coordinates (i.e., considering θ ∈ R), indeed, has a

globally asymptotically stable equilibrium. However, Bhat and Bernstein [12] proved in the

year 2000, using differential-geometric control tools, that the true system evolving on the non-

Euclidean space (due to the rotational degree of freedom) cannot have such a global property

using continuous feedback. This result was naturally obtained once the system dynamics

was represented in its intrinsic, non-Euclidean, manifold and the appropriate differential-

geometric control tools were employed. This finding, indeed, warrants a re-visit to many

problems in the area of rigid body attitude dynamics and stabilization.

1.2.2 Nonlinear Controllability and Motion Generation along Un-

actuated Directions

Controllability is the ability to steer the system from a given initial point x0 to a given final

point x1 in finite time. Consider a linear system

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn. (1.2)

Analyzing the controllability of such a system is quite simple. If rank of the controllability

matrix, C =
[
B AB A2B .... An−1B

]
, equals n, then the system is controllable

(Kalman rank condition [13]). Moreover, for linear systems, the controllability is global (i.e.,

if the condition is satisfied, then the system can be steered from any arbitrary x0 to another

point x1). Nonlinear systems, however, do not abide by this rule. That is, the controllability

should be checked locally at each point x0. Consider a nonlinear system

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t), x ∈Mn, (1.3)

4



where Mn is the state-space manifold. A sufficient condition for local controllability at

x0 ∈ Mn is to satisfy controllability of the linearization around that point. As such, after

linearization, one obtains the following system

ẏ(t) = Ay(t) +Bu(t), y ∈ Rn, (1.4)

where y = x−x0,A =
[
∂f
∂x

] ∣∣∣∣
x0

,B = [b1, ..., bm], and bi = gi(x0). The controllability of the

linearized system (1.4) can then be easily checked using the controllability rank condition

for linear systems. We emphasize that the previous condition is only sufficient (i.e., not

necessary). That is, if the linearized system is controllable, then the nonlinear system is

locally controllable at x0; the vice versa is not true.

Figure 1.1: A three degrees-of-
freedom car with two inputs.

In light of the previous discussion, since the controlla-

bility of the linearization is only a sufficient condition

for the controllability of the nonlinear system, there

exists a class of systems that are not linearly control-

lable, yet nonlinearly controllable. This is, indeed,

the main motive behind studying nonlinear controlla-

bility. These situations are very often associated with

the ability to generate motions along unactuated di-

rections (directions over which direct control author-

ity is missed). A simple typical example in the literature that illustrates this situation is the

planar car kinematics problem. Consider a car with three degrees of freedom (as shown in

Fig. 1.1): forward/backward motion, sideways motion, and rotation around its body-fixed

origin. Two controls are available: u1 is the forward/backward speed and u2 is the steering
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angular velocity. As such, the dynamic equations are written as

d

dt


x(t)

y(t)

θ(t)

 =


cos θ(t)

sin θ(t)

0

u1(t) +


0

0

1

u2(t), (1.5)

which can be abstractly written as ẋ(t) = g1(x(t))u1(t) + g2(x(t))u2(t). It should be noted

that since there is no drift vector field f(x(t)), the linearized dynamics has a zero A matrix.

Hence, the controllability matrix is constructed using the B matrix only, and can be written

as

C =


cos θ0 0

sin θ0 0

0 1

 . (1.6)

It is readily observed that the rank of the controllability matrix above is two ∀θ0. That

is, the system at hand (1.5) is linearly uncontrollable. This result is physically intuitive

because the systems lacks a direct actuation over the sideways motion direction. However,

nonlinear controllability analysis investigates both direct and indirect actuation mechanisms.

Therefore, exploiting differential-geometric control tools, nonlinear controllability analysis

yields the system (1.5) nonlinearly controllable. In particular, the inability to directly actuate

the sideways motion is compensated for by exploiting a nonlinear interaction between the

two available controls: forward/backward motion and steering. This nonlinear interaction

is called a Lie bracket. The Lie bracket between the two available control vector fields is

written as [g1, g2], and is computed as [g1, g2] =
∂g2

∂x g1 −
∂g1

∂x g2. One way to realize the

motion along the direction of the Lie bracket [g1, g2] is to command a piecewise constant

variations of the associated control inputs to achieve the following sequence: flow along g1,

then along g2, then backward along g1, and finally backward along g2. The net outcome of

the previous input sequence is a pure motion along the direction of the Lie bracket [g1, g2],
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which aligns with the sideways motion direction. It is worth mentioning that the realization

of the sideways motion Lie bracket is quite similar to what we do in parallel parking.

This concept can be generalized to many nonlinear dynamical control systems, where the

question is “Will the system remain controllable, if one or more actuators are lost?” One

example is the attitude dynamics of a spacecraft (rigid body) where it has been shown that

the system remains controllable even if one or two pairs of gas jets are removed [14], in spite

of the system being linearly uncontrollable. As such, applying this tool to aircraft flight

dynamics is one of the main focus areas of this dissertation and is the underpinning concept

of Chapter 3. In particular, we apply nonlinear controllability analysis to fixed-wing airplane

flight dynamics at full hydraulic failure (complete loss of all control surfaces) to prove that

the airplane can be (under some conditions) fully nonlinearly controllable using thrust-only

flight control. Moreover, through nonlinear controllability analysis, we discover a new rolling

mechanism that can compensate for the loss of aileron roll sensitivity near stall.

Upon discovering a new direction of motion that is associated with a Lie bracket, one asks the

next question: “How can we precisely realize motion along that direction?” Such question

is intimately connected to motion planning. The motion planning problem (MPP) is the

problem of finding a control input u(t) that steers a control system between two arbitrarily

given points. MPP has been solved a long time ago for linear systems provided that the

Kalman rank condition is satisfied. In fact, an analytical formula is available for a steering

control input between any two points in case of unbounded controls and no obstacles. That

is, if the controllability matrix C is of full rank, then the following relation provides a control

input history that steers the linear system (1.2) from x0 at t0 to x1 at t1 [15, PP. 74–77]

u(t) = −Bᵀ Φᵀ(t0, t) W
−1(t0, t1)

(
x0 −Φ(t0, t1) x1

)
W (t0, t1) =

∫ t1

t0

Φ(t0, t) B Bᵀ Φᵀ(t0, t) dt
(1.7)
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where ᵀ denotes transpose, Φ is the state transition matrix which is defined as Φ(t0, t) =

e−At. It should be noted that the control law (1.7) minimizes the integral
∫ t1
t0
||u(t)||2dt of

control energy needed for steering.

Such a closed-form solution for the minimum energy steering control input for nonlinear

system does not exist. Solving the MPP for nonlinear systems that rely on Lie brackets

to achieve controllability naturally invokes differential-geometric control tools in order to

realize motion along the directions of those Lie brackets. Several algorithms have been

developed for the motion planning of nonlinear driftless (f(x) = 0) systems over the 1990’s

using differential-geometric control tools [16, 17, 18, 19, 20, 21, 22]. Nevertheless, nonlinear

systems with drift have been almost left unexplored. In Chapter 3 of this dissertation,

we extend the nonlinear motion planning algorithm provided by Liu [21] to a special class

of nonlinear systems with drift in order to implement the newly-discovered nonlinear roll

mechanism that proved to be more effective than the conventional one near stall.

1.2.3 Time-Periodic Systems and Vibrational Stabilization

Differential geometric control theory provides quite powerful tools to analyze time-varying

vector fields. In particular, combined with chronological calculus [23], differential geometric

control theory provides rigorous higher-order averaging tools for the analysis of time-periodic

systems. One very useful application is the analysis of vibrational control systems. Vibra-

tional control is a time-varying control technique that exploits oscillatory control inputs to

provide new directions of motion or stabilize the system around a certain equilibrium point

[24, 25, 26, 27]. Vibrational stabilization is a vibrational-control phenomenon that exploits a

sufficiently high-amplitude, high-frequency, periodic forcing to convert an unstable equilib-

rium point into an asymptoticly stable one. A well-known manifestation of this phenomenon

is the Stephenson-Kapitza pendulum [28, 29, 30]: the application an oscillatory control in-
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put to the pendulum pivot provides an artificial torsional spring action that may convert the

unstable inverted pendulum equilibrium point into an asymptoticly stable one.

The application of these tools to the flapping-wing flight dynamics is another main focus area

of this dissertation and is the underpinning idea of Chapter 4. In particular, by formulat-

ing the multi-body dynamics of flapping-wing micro-air-vehicles in a differential-geometric-

control framework, a vibrational stabilization mechanism that greatly contributes to the

body pitch stabilization is revealed. The discovered vibrational stabilization mechanism is

induced by the interaction between the fast oscillatory aerodynamic loads on the wings and

the relatively-slow body motion. This stabilization mechanism provides an artificial stiffness

(i.e., spring action) to the body rotation around its pitch axis, and is similar to that of

Kapitza pendulum.
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Chapter 2

Differential-Geometric Mathematical

Tools for Dynamics and Control

Applications

In order to make this dissertation self-contained, all the mathematical and control-theoretic

tools used throughout this dissertation are outlined in this chapter. In particular, vari-

ous tools from differential-geometric control theory are outlined. These tools include: (i)

nonlinear controllability analysis and how it differs from the linear one; (ii) nonlinear mo-

tion planning and the realization of motion along unactuated directions; and (iii) analysis

of time-varying vector fields. Moreover, the most relevant tools from averaging theory are

summarized.
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2.1 Nonlinear Controllability and Motion Planning

2.1.1 Linear Controllability

A linear, time-invariant, system is typically written as

ẋ(t) = Ax(t) +Bu(t), (2.1)

where x is the state vector (n × 1), u is the control input vector (m × 1), A is the state

matrix (n × n), and B is the input matrix (n × m). A necessary and sufficient condition

for the controllability of the system (2.1) is that the (n × nm) controllability matrix, C =[
B AB A2B .... An−1B

]
, has to be of full row rank (i.e. rank(C)=n) [13].

Consider the nonlinear, control-affine system defined by

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t), (2.2)

where f(x(t)) is the drift vector field (uncontrolled dynamics) and gi(x(t)) is the control

input vector field associated with the control input ui(t). Assume, without loss of gener-

ality, that x0 is an equilibrium point (i.e. f(x0) = 0). A sufficient condition for the local

controllability of the system (2.2) at x0 is that the linearization about x0

∆ẋ(t) =

[
∂f

∂x

] ∣∣∣∣
x0

∆x(t) +
m∑
i=1

gi(x0)ui(t)

to be controllable. That is, the controllability matrix

C =

[
g1, ..., gm,

[
∂f

∂x

] ∣∣∣∣
x0

g1, ...,

[
∂f

∂x

] ∣∣∣∣
x0

gm, ...,

[
∂f

∂x

]n−1 ∣∣∣∣
x0

g1, ...

...,

[
∂f

∂x

]n−1 ∣∣∣∣
x0

gm

]
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to be of full row rank [31].

2.1.2 Nonlinear Controllability

As stated before, controllability of the linearization of a nonlinear system about a given x0

is not necessary. Determination of weaker conditions for local controllability of nonlinear,

control-affine systems has been thoroughly investigated using differential geometric analysis

tools [32, 33, 34, 35, 36, 37]. These studies concluded that the system (2.2) is locally accessible

at x0 if and only if the accessibility distribution

C =
[
g1, g2, ..., gm, [gi, gj], ..., ad

k
gigj, ..., [f , gi], ..., ad

k

fgi
]

(2.3)

has rank n, where the bracket [., .] is called the Lie bracket, and for two vector fields V 1(x)

and V 2(x) is defined as

[V 1,V 2] =
∂V 2

∂x
V 1 −

∂V 1

∂x
V 2.

Also, adkfg = [f , adk−1

f
g] and ad1

fg = [f , g]. This condition is called the Lie Algebraic Rank

Condition (LARC).

The accessibility property at x0 implies that the set R of reachable points from x0 has a

non-empty interior. In general, accessibility is weaker than controllability. In fact, the acces-

sibility property implies the ability to move in all directions around x0 (i.e., controllability),

however, there might be uni-directional motion along one or more axes. That is, the main

difference between accessibility and controllability is that we may be able to generate motion

along some direction, but cannot reverse motion along that direction. For driftless systems

(f(x) = 0), accessibility and controllability are equivalent.

It is interesting to note that the linear controllability condition of the system (2.2) can be
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written in the language of differential geometry as

C =
[
g1, ..., gm, [f , g1], ..., [f , gm], ..., adn−1

f
g1, ..., ad

n−1

f
gm
]
.

From the above discussion, it is seen that the Lie brackets between control vector fields

[gi, gj] and the higher order Lie brackets (e.g., [[f , gi], gj]) are not included in the linear

analysis, and hence, may provide unconventional mechanisms to generate motion or change

the controllability characteristics of a given system. As such, these terms will be the main

focus of this effort.

2.1.3 Nonlinear Motion Planning

As we explained in the previous subsection, the Lie brackets of the form adkfgi represent

direct control action (i.e., captured by linear controllability analysis), and are analogous

to the matrix products required for linear controllability (e.g., AB, A2B). However, the

Lie brackets generated by control vector fields only (e.g., [gi, gj]) are not included in linear

controllability analysis and represent indirect/nonlinear control action. Hence, we call them

nonlinear Lie brackets. If only Lie brackets of the form adkfgi are used to satisfy the LARC,

then that implies the controllability of the linearization. This is not the case if nonlinear Lie

brackets are used to satisfy the LARC. In such a case, there are some directions of motion

that are not directly actuated. Therefore, a means to indirectly generate motions along those

directions is sought, hence the need for nonlinear motion planning techniques.

In this section, we consider a nonlinearly controllable system that relies on some nonlinear Lie

brackets to satisfy its LARC. This implies that such a system has some directions of motion

that are not directly actuated. Therefore, we appeal to the nonlinear motion planning

techniques to devise a way to indirectly generate motions along those directions. In other

words, we seek a method/algorithm to realize motion along the directions of nonlinear Lie

13



bracket vector fields. Liu [21] provided such an algorithm for nonlinear driftless systems. He

considered systems of the form

ẋ(t) =
m∑
i=1

gi(x(t)) ui(t). (2.4)

He studied the relation between the trajectories of the system (2.4) and those of the extended

system

ẋ(t) =
r∑

k=1

gk(x(t)) vk(t), r > m, (2.5)

where the first m vector fields are the control vector fields in (2.4), and the vector fields

gk, k = m + 1, ..., r are the Lie brackets of the control vector fields. In other words, he

solved the following problem: given a certain extended input v(t), what is the ordinary

input u(t) that would generate the same trajectory as v(t). Liu published a companion

paper [38] in which he used averaging techniques to show sufficient conditions under which

the trajectories of (2.4) generated by sequences of ordinary inputs uj converge to trajectories

of the extended system (2.5). It should be noted that Haynes and Hermes [39] previously had

proved that if system (2.4) satisfies the LARC condition, then every trajectory of (2.5) can be

uniformly approximated by trajectories of (2.4). However, they did not provide a constructive

procedure for producing such a sequence. Liu [21] indicated that his algorithm could be

extended to a class of nonlinear systems with drift where only Lie brackets between control

vector fields are to be realized. Such a class encompasses a nonlinear motion generation

problem considered in Sec. 3.5. Hence, in the following subsection, we outline a framework

for motion planning of a class of nonlinear systems with drift using Liu’s algorithm specialized

for Lie brackets that involve only two control vector fields.
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2.1.4 Framework for Approximate Tracking of a Class of Nonlin-

ear Systems with Drift

We consider a nonlinear systems with drift on the same form as system (2.2). The extended

version of this class of systems can be written as

ẋ(t) = f(x(t)) +
r∑

k=1

gk(x(t)) vk(t), r > m, (2.6)

where the vector fields gk, k = m + 1, ..., r are the Lie brackets of the control vector fields

that are needed to complement the accessibility distribution used to satisfy the LARC. That

is, the accessibility distribution that is used to satisfy the LARC for this class of systems

can be written as

C =
[
g1, g2, ..., gm, [f , g1], ..., [f , gm], ..., adn−1

f
g1, ..., ad

n−1

f
gm, gm+1, gm+2, ..., gr

]
,

where the vector fields gm+1, ..., gr are Lie brackets of control vector fields only (i.e., nonlinear

Lie brackets) and are treated as direct inputs in the extended system. The framework we

present here consists of two steps. The first step is to obtain the extended inputs needed

to (i) steer the system from an initial point x0 to a final point xf ; or (ii) track a desired

trajectory xd(t). The second step is to employ Liu’s algorithm [21] to transform the extended

inputs into ordinary inputs.

Step 1: The Extended Inputs

We denote the matrix constructed by stacking the extended control input vector fields (g′ks)

together after evaluation at certain point x ∈ M by G(x). As such, the extended inputs
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needed to track some prescribed trajectory can be obtained as

v(t) = G(xd(t))
†
(
ẋd(t)− f(xd(t))

)
, (2.7)

where G(xd) = [g1(xd), ..., gr(xd)], † denotes pseudo inverse, and xd is a desired trajectory

in case of trajectory tracking or a suggested path that connects the initial point to the final

point in case of motion planning. Note that this is not the only way to obtain the extended

inputs. For example, the extended inputs could be obtained through solving an optimal

control problem that minimizes certain cost function (e.g., minimum time problem).

Step 2: From Extended to Ordinary Inputs

Now, we move to the next step which is transforming the obtained extended inputs into

ordinary inputs uk, for k ∈ {1, ...,m}. We are particularly interested in realizing Lie brackets

that involve only two vector fields (first order Lie brackets). Consider an extended input

vector field gk3 = [gk1 , gk2 ] where k1, k2 ∈ {1, ...,m}. Denote the extended input associated

with gk3 by vk3 . Assume that vk3(t) needed to track a specific trajectory over t ∈ [0, T ] has

been obtained. Then, according to Liu [21], the motion along the Lie bracket vector field gk3

can be realized through the following sequence of ordinary control inputs uk1(t) and uk2(t)

ujk1(t) = −
√
j ω vk3(t) sin(jωt)

ujk2(t) = 2
√
j cos(jωt)

, (2.8)

where ω ∈ R − {0}, and j is a positive integer. This sequence (2.8), when applied to the

ordinary system (2.2), generates a trajectory that converges to that of the extended system

(2.6) as j →∞.

16



2.2 Combined Geometric-Control-Averaging Analysis

Tools

x1

x2

x1

x2

b

fixed point x0 periodic orbit xT (t)

Figure 2.1: An illustration of the difference
between fixed point and periodic orbit.

Analysis of nonlinear time-periodic (NLTP)

systems requires a different set of tools

than those used for nonlinear time-invariant

(NLTI) systems. The essential difference be-

tween NLTP and NLTI systems emanates

from the fact that an equilibrium state of

NLTP systems is generally represented by a

periodic orbit (PO), as opposed to a fixed point for NLTI systems. That is, at equilibrium,

every state of the NLTP system takes a periodic sequence of values with some time period

T . Figure 2.1 shows a simple illustration of difference between fixed point and periodic orbit

equilibrium in a two-dimensional state space.

Stability analysis of NLTP flapping-wing dynamics could be performed on the original time-

periodic system by numerically capturing a periodic orbit associated with a certain equi-

librium condition and analyzing its linear stability through Floquet theorem [40, 41, 42].

However, very little insights into stabilizing/destabilizing mechanisms could be obtained

through this purely-numerical approach. On the other hand, a time-invariant version of the

NLTP flapping-wing dynamics could be obtained through averaging techniques (reviewed

next). As such, the periodic orbit representing equilibrium is converted into a fixed point,

around which the system could be linearized. Stability analysis is then easily performed

for the linear time-invariant (LTI) system via eigenvalue analysis. Furthermore, utilizing

the simple and tractable form of LTI systems, the stability of linearized, time-invariant,

flapping-wing dynamics could be analytically scrutinized. Hence, insights into different sta-

bilizing/destabilizing mechanisms (e.g., stiffness or damping) could be gained.
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2.2.1 Averaging Theorem

The averaging theorem is a simple tool that could be used to convert a NLTP system into a

NLTI one. However, it possesses several limitations, which will be discussed in the following

subsections. Theorem 1 provides the formal statement of the standard averaging theorem.

Theorem 1. Consider the NLTP system

ẋ(t) = εX(x(t), t), (2.9)

where 0 < ε � 1 is a small perturbation scale, e.g., ε could be seen as the reciprocal of

the frequency when the system is subject to high-frequency forcing. Assuming that X is a

T -periodic vector field in t, the averaged dynamical system corresponding to (2.9) is written

as

ẋ(t) = εX(x(t)), (2.10)

where X(x(t)) = 1
T

∫ T
0
X(x(t), τ) dτ . According to the averaging theorem [43, 44, 45]:

• If x(0)− x(0) = O(ε), then there exist b > 0 and ε∗ > 0 such that x(t)− x(t) = O(ε)

∀t ∈ [0, b/ε] and ∀ε ∈ [0,ε∗].

• If x∗ is an exponentially stable equilibrium point of (2.10) and if ‖x(0)− x∗‖ < ρ for

some ρ > 0, then x(t) − x(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, The system

(2.9) has a unique, exponentially stable, T -periodic solution xT (t) with the property

‖xT (t)− x∗‖ ≤ kε for some k.

Thus, the averaging approach allows converting a non-autonomous system into an au-

tonomous system. As such, if the equilibrium state of the NLTP system is represented

by a periodic orbit xT (t), it reduces to a fixed point of the averaged dynamics. The problem
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of ensuring a specific periodic orbit corresponding to a desired equilibrium configuration is

significantly simplified using the averaging approach, hence allowing for analytical results.

2.2.2 Nonlinear Variation of Constants Formula (VOC)

The nonlinear variation of constants formula is a differential-geometric tool that is used to

split the flow along two vector fields. Consider a nonlinear system subjected to a high-

frequency, high-amplitude, periodic forcing in the form

ẋ(t) = f(x(t)) +
1

ε
g

(
x(t),

t

ε

)
, x(0) = x0, (2.11)

where 0 < ε� 1. The time-varying vector field (1/ε)g(x(t), t/ε) is assumed to be periodic in

its second argument with period T . The system (2.11) is not amenable to direct averaging,

i.e., is not in the form of (2.9), because f and g are not of the same order. The VOC resolves

this issue by approximating the flow φ
f+g
0,T (x0) (i.e., flow along f +g for a period T starting

at initial point x0) by a flow along the vector field g staring at a different initial condition

δx0. That is, φ
f+g
0,T (x0) = φ

g
0,T (δx0), where the new initial point δx0 is obtained through

the flow along a new vector field F that is introduced by the VOC formula. Figure 2.2 shows

a simple explanatory sketch for the application of the VOC formula to the system (2.11). As

such, the VOC formula allows separation of the system (2.11) into two companion systems

as follows [23], [46]

ż(t) = F (z(t), t), z(0) = x0

ẋ(t) = g(x(t), t), x(0) = δx0 = z(t)
, (2.12)

where F is the pullback of the vector field f along the flow φ
g
t of the time-varying vector field

g. Using the chronological calculus formulation of Agrachev and Gamkrelidze [23], Bullo [47]

showed that, for a time-invariant f and time-varying g, the pullback vector field F (x(t), t)
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can be written as

F (x(t), t) = f(x(t)) +
∞∑
k=1

t∫
0

...
sk−1∫
0

(
adg(x(t), Sk)...adg(x(t), S1)f(x)

)
dsk...ds1, (2.13)

where adgf = [g,f ] is the Lie bracket between the two vector fields g and f , and is computed

as [g,f ] =
∂f
∂xg −

∂g
∂xf [31, PP. 23–72].

b b

b

x0 δx0 = z(T )

flow along f + g

flow along g

Φf+g
0,T (x0) = Φg

0,T (δx0)

flow along F

Figure 2.2: An illustration of the application of the VOC formula to system (2.11).

2.2.3 Averaging of of High-Amplitude Periodic Forcing

Since FWMAVs/insects experience high-amplitude, high-frequency, periodic forcing (i.e., in

the form (2.11)). Applying the VOC formula before averaging is necessary to obtain an

averaged system that accounts for the multi-body and multi-time-scale effects. The benefit

of the VOC formula is that each of the systems in (2.12) is individually amenable to the

averaging theorem. That is,

˙̄z(t) = 1
T

∫ T
0
F (z(t), t) dt, z̄(0) = x0

˙̄x(t) = 1
T

∫ T
0
g(x(t), t) dt, x̄(0) = z̄(t)

. (2.14)
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It should be noted that for the considered FWMAV system (4.15) or (4.8), the time-periodic

forcing vector field Y (x) τϕ(t) is of zero mean. Hence, averaging after applying the VOC

implies

x̄(t) = z̄(t), ˙̄z = F̄ (z̄). (2.15)

Therefore, the averaged dynamics of the original system (2.11) can be obtained just by

averaging the pullback vector field F (x(t), t). Therefore, Theorem 1 is extended next to

high-frequency, high-amplitude, periodically-forced systems in the form of Eq. (2.11).

Theorem 2. Consider a NLTP system subject to a high-frequency, high amplitude, periodic

forcing (2.11). Assuming that g is a T -periodic in t, zero-mean vector field and both f , g

are continuously differentiable, the averaged dynamical system corresponding to (2.11) is

written as

ẋ(t) = εF (x(t)), (2.16)

where F (x(t)) = 1
T

∫ T
0
F (x(t), τ) dτ , and F is the pullback of f along the flow φ

g
t of the

time-varying vector field g as explained in Eq. (2.13). Moreover

• If x(0) = x(0), then there exist b > 0 and ε∗ > 0 such that x(t) − x(t) = O(ε)

∀t ∈ [0, b/ε] and ∀ε ∈ [0,ε∗].

• If x∗ is an exponentially stable equilibrium point of (2.16) and if ‖x(0)− x∗‖ < ρ

for some ρ > 0, then x(t) − x(t) = O(1) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, there

exists an ε1 > 0 such that ∀ε ∈ [0,ε1], the system (2.11) has a unique, T -periodic,

locally asymptotically stable trajectory that takes values in an open ball of radius

O(1) centered at x∗.

The main difference between Theorem 1 (direct averaging) and Theorem 2 (VOC and av-
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eraging) is that the former guarantees a periodic orbit that is O(ε) from the corresponding

fixed point of the averaged dynamics, while the latter allows for larger variations O(1) from

the fixed point. This relatively large amplitude admitted by Theorem 2 is particularly use-

ful in analyzing flapping flight while including wing dynamics where the flapping angle ϕ

becomes a state; the amplitude of the flapping angle is typically around 60 degrees. There-

fore, the application of the VOC formula is essential in analyzing flapping flight, multi-body

dynamics. We are emphasizing that Theorem 1 is not a viable option in this case as direct

averaging would yield trivial results when applied to the FWMAV multi-body system (4.15)

or (4.8); i.e., it would neglect the entire effects of the flapping input vector field.

2.2.4 Generalized Averaging Theory

A main issue with the averaging approach is that it is valid for small enough ε (i.e., for

high enough frequency). Moreover, this frequency limit (determined by ε∗) is not known;

only its existence is guaranteed. The generalized averaging theory (GAT) presents a remedy

for this issue by providing an arbitrarily higher-order approximation to the flow along a

time-periodic vector field. Agrachev and Gamkrelidze laid the foundation for the GAT in

their seminal work [23]. Later, Sarychev [48] and Vela [49] used the concepts introduced by

Agrachev and Gamkrelidze to develop a generalization for the classical averaging theorem.

Only the final results of the GAT are stated here, and the reader is referred to Section 4

in Ref. [50] for a detailed presentation of the GAT. Sarychev [48] introduced the notion of

complete averaging to denote the following averaged dynamics of system (2.9)

˙̄x(t) = εX̄(t) = εΛ1(x̄(t)) + ε2Λ2(x̄(t)) + ε3Λ3(x̄(t)) + ..., (2.17)
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where

Λ1(x̄(t)) = 1
T

T∫
0

X(x(t), τ)dτ

Λ2(x̄(t)) = 1
2T

T∫
0

[
t∫

0

X(x(t), σ)dσ, X(x(t), t)

]
dt

Λ3(x̄(t)) = T
2

[Λ1(x̄(t)), Λ2(x̄(t))] + 1
3T

T∫
0

[
t∫

0

X(x(t), σ)dσ,

[
t∫

0

X(x(t), σ)dσ, X(x(t), t)

]]
dt,

(2.18)

where the Lie bracket between two vector fields is defined as [V 1(x),V 2(x)] = ∂V 2

∂x V 1 −
∂V 1

∂x V 2. Sarychev and Vela showed that if the series (2.17) converges, its limit will be the

logarithm of the Monodromy map (i.e., the nonlinear vector-valued function that maps an

initial condition to the solution after the period T ). That is, if the complete averaged

dynamics (2.17) has an exponentially stable fixed point, then the NLTP system (2.9) will

have an exponentially stable periodic orbit, irrespective of the value of ε.

Based on the above discussion, it is implied that if ε is small enough to truncate the series

after the first term, Λ1, the first-order averaging theorem is recovered. If not, then one

should use higher-order averaging until the desired accuracy is met. However, only conver-

gence of the series (2.17) representing the complete averaged dynamics is guaranteed under

some conditions [23]. Therefore, since the series (2.17) is typically not asymptotic, practical

computation may be an issue as one may need to perform infeasibly high-order averaging to

truncate the convergent series with a good accuracy, as shown by Nayfeh [51].
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Chapter 3

Differential-Geometric-Control

Formulation, Nonlinear

Controllability, and Motion Planning

of Airplane Flight Dynamics

Linear controllability conditions for linearized systems are not necessary. That is, there ex-

ists a class of nonlinear systems that are linearly uncontrollable but nonlinearly controllable.

Differential-geometric control theory provides useful tools for analyzing nonlinear control-

lability of dynamical systems. In particular, it allows for identification of the ability to

generate motions along unactuated (nonintuitive) directions through specific interactions

between the system dynamics and control inputs. Thus, nonlinear controllability analysis

of airplane flight dynamics reveals many unconventional methods to generate motion along

different directions in the state space. These unconventional methods rely on the concept of

Lie bracket control action, which is manipulating two (or more) different control inputs to

steer the system along a direction that is not directly actuated by any of these inputs. Imple-
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menting these unconventional motion generation mechanisms requires tools from nonlinear

motion planning literature.

In this effort, the six degrees-of-freedom, rigid-airplane, nonlinear equations of motion are

considered and cast in a differential-geometric-control framework, where different intercon-

nections between the airplane configuration and controllability are assessed. Consequently,

new unconventional rolling/yawing and pitching mechanisms that could be exploited near

stall are identified. An investigation of the new roll mechanism proves it to be superior to

the conventional one (direct aileron input) near stall, where the aileron sensitivity degrades.

Finally, a thrust-only flight control system is analyzed in this framework.

3.1 Introduction

One of the indispensable problems of a control engineer is the controllability question. Con-

trollability is a question about the ability to steer the system from a given initial point to

a given final point in finite time (i.e., it is an existence question; existence of a steering

control input history). For linear systems, this question has been answered from almost half

a century by Kalman, Ho, and Narendra [13]. The Kalman controllability rank condition is

instrumental in the modern control theory. It is necessary, sufficient, and very simple to use.

Moreover, for a nonlinear system, linearization about a given initial point may be used to

study local controllability about that point. That is, if the linearized system is controllable

from x0, the nonlinear system is locally controllable from x0 as well. However, controllability

of the linearized system is not necessary. That is, there exists a class of systems that are

linearly uncontrollable, yet nonlinearly controllable.

The situations where nonlinear controllability is invoked are usually associated with the

ability to generate motions along unactuated directions (directions over which direct control
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authority is missed). An interesting typical example that illustrates this situation is the

kinematic car. A car with two controls (forward/backward and steering) is obviously not

linearly controllable because of the inability to generate pure side motions. However, nonlin-

ear geometric analysis shows that the system is nonlinearly controllable and through some

manipulation of the available two controls, one can generate side motions. This idea can be

generalized to many nonlinear dynamical control systems, where the question is “Will the

system remain controllable, if one or more actuators are lost?” One example is the attitude

dynamics of a spacecraft (rigid body) where it has been shown that the system remains

controllable even if one or two pairs of gas jets are removed [14], in spite of the system being

linearly uncontrollable. Also, this question has been addressed previously by the authors for

airplane flight dynamics using a linear controllability analysis [52]. Therefore, the focus of

this chapter is to address this question from a geometric-nonlinear-analysis approach.

Although the theory of geometric nonlinear controllability has been well developed [36], very

little has been done to apply it to airplane flight dynamics. This may be attributed to the fact

that airplane flight dynamics is, indeed, controllable and the linear analysis is quite sufficient.

It is interesting to know that, even if a multi-engine airplane lost all of its control surfaces

due to a failure in the hydraulic system for example, linear analysis would still be sufficient to

prove controllability of the dynamic states (i.e., 9×9 system excluding the navigation states)

[52]. That is, conventional airplanes are equipped with so redundant control authority that

nonlinear controllability analysis may not be needed. However, for unmanned air vehicles

(with their numerous potential applications), this redundancy in control authority will be

questioned and may be sacrificed for better performance and cheaper operation. In addition,

the aeronautical engineering community is steadily seeking unconventional more efficient

configurations for airplanes. Obviously, relaxing controllability requirements will broaden

the design space for future airplane configuration. On the other hand, while the flight

dynamics of conventional airplanes suffer no controllability issues during normal operation,

it may do when the airplane encounters undesirable flight conditions (e.g., near stall). It is
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well known that the aerodynamic control effectiveness reduces considerably near stall and

also near the control reversal boundary at high flight speeds. The above reasons invoke a

nonlinear controllability analysis for airplane flight dynamics.

Utilizing the quite rich airplane nonlinear flight dynamics reveals unconventional ways to

control/steer the airplane. As such, the nonlinear controllability analysis performed in this

chapter unveils an unconventional roll/yaw mechanism that relies on the interaction between

elevator and aileron control inputs. The unconventional roll/yaw mechanism is shown to have

the potential of higher roll control authority over the conventional one (direct aileron input)

at near-stall operating points. It is well-known that aileron sensitivity degrades at high angles

of attack (i.e., near stall), hence a degradation in the conventional roll mechanism, which may

lead to loss of roll control. According to [53], stall accounts for about 46% of loss of control

events in commercial aircraft. A new roll/yaw mechanism that has a higher control authority

than the conventional one at such a critical operating point could potentially help mitigate

some loss of control incidents. In order to further investigate this new roll/yaw mechanism,

two important questions should be answered: (i) how strong/weak is that mechanism?; and

(ii) how to execute it? The first question relates to the degree of nonlinear controllability,

whereas the second one is essentially a nonlinear motion planning question. In this effort,

we focus on answering the second question, yet we discuss some aspects related to the first

one.

It should be noted that the analysis in this effort assumes unbounded control inputs. Had

the control inputs been bounded, the yes/no answer to the controllability question would not

have changed, yet the optimal steering control that makes a certain cost function extremum

would change. For more details about feedback control design of linear systems with con-

trol constraints, the reader is refereed to the article by Sontag and Sussmann [54] and the

references therein. Also, for formulating the dynamic equations of a nonlinear system with

control constraints, the reader is refereed to the articles by Blajer et al. [55], [56], Fumagalli

27



et al. [57], and Masarati et al. [58].

In this chapter, the six degrees-of-freedom (DOF) equations of motion governing the rigid-

airplane nonlinear flight dynamics are considered. The constructed nonlinear model is val-

idated against simulation results from open literature. This model is then represented in

a differential-geometric-control framework, where nonlinear controllability is assessed. The

analysis is used to determine the aerodynamic characteristics that are responsible for non-

linear controllability of airplanes. Consequently, new unconventional rolling/yawing and

pitching mechanisms are identified. A detailed investigation of the new roll mechanism is

performed as it shows a potential advantage over the conventional one (direct aileron in-

put) near stall. The new roll mechanism is found to be superior to the conventional one at

near-stall operating points, as the aileron sensitivity degrades. Tools from nonlinear motion

planning literature are then employed to execute near-stall roll maneuvers through the new

roll mechanism. Finally, a thrust-only flight control system, that lacks linear controllability,

is analyzed in this framework and shown to be nonlinearly controllable.

3.2 Rigid Airplane Nonlinear, Six DOF Flight Dynam-

ics Model

3.2.1 Equations of Motion

The six DOF equations of motion governing flight dynamics of rigid airplanes can be written

as follows [59]
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Force Equations

U̇ = RV −QW − g sin θ + FX
m

V̇ = −RU + PW + g sinφ cos θ + FY
m

Ẇ = QU − PV + g cosφ cos θ + FZ
m

(3.1)

where U, V, and W are the velocity components in the body frame, P,Q, and R are the

angular velocity components in the body frame, φ, θ, and ψ are the Euler angles defining

body frame with respect to an inertial frame, g is the gravitational acceleration, m is the

aircraft mass, and FX , FY , and FZ are the components of the aerodynamic force vector in

the body frame.

Moment Equations

Ṗ = (C1R + C2P )Q+ C3L+ C4N

Q̇ = C5PR− C6(P 2 −R2) + C7M

Ṙ = (C8P − C2R)Q+ C4L+ C9N

(3.2)

where C1 =
(JY −JZ)JZ−J2

XZ

Γ
, C2 = (JX−JY +JZ)JXZ

Γ
, C3 = JZ

Γ
, C4 = JXZ

Γ
, C5 = JZ−JX

JY
, C6 = JXz

JY
,

C7 = 1
JY

, C8 =
(JX−JY )JX+J2

XZ

Γ
, C9 = JX

Γ
, Γ = JXJZ − J2

XZ , and JX , JY , JZ , and JXZ are the

components of the inertia matrix in the body frame. Also, L,M, and N are the components

of the aerodynamic moment vector in the body frame.

Kinematic Equations

φ̇ = P + tan θ(Q sinφ+R cosφ)

θ̇ = Q cosφ−R sinφ

ψ̇ = Q sinφ+R cosφ
cos θ

(3.3)
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Navigation Equations

ṖN = U cos θ cosψ + V (− cosφ sinψ + sinφ sin θ cosψ)

+ W (sinφ sinψ + cosφ sin θ cosψ)

ṖE = U cos θ sinψ + V (cosφ cosψ + sinφ sin θ sinψ)

+ W (− sinφ cosψ + cosφ sin θ sinψ)

ḣ = U sin θ − V sinφ cos θ −W cosφ cos θ

(3.4)

where PE and PN are the position coordinates in the east and north directions, respectively,

in the inertial frame of reference, and h is the altitude.

The applied forces and moments can be classified into aerodynamic and thrust contributions.

That is, a generalized force G can be written as G = GA+GT , where the subscript A denotes

aerodynamic contributions, and the subscript T denotes thrust contributions. The thrust

contributions are written as GT = GT0 +Gδtδt, where GT0 represents the trim value and Gδt

represents the sensitivity of the generalized force G with respect to the throttle deflection δt.

The aerodynamic forces and moments are related to the aerodynamic coefficients through:

Fi = qSCi, L = qSbCL, M = qSc̄CM , and N = qSbCN , where q is the dynamic pressure,

S is the wing area, c̄ is the mean aerodynamic chord, and b is the wing span.
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3.2.2 Representation of Aerodynamic Loads

In order to exploit the powerful tools of geometric nonlinear control, we need to make room

for aerodynamic nonlinearities . As such, we followed Stevens and Lewis [59] and wrote

CX = CX(α) + ( c̄
2VT

)CXQ(α)Q+ CXδe (α)δe

CY = CY (β) +
(

b
2VT

)
(CYR(α)R + CYP (α)P ) + CYδa (β)δa + CYδr (β)δr

CZ = CZ(α) +
(

c̄
2VT

)
CZQ(α)Q+ CZδe (α)δe

CL = CL(α, β) +
(

b
2VT

)
(CLR(α)R + CLP (α)P ) + CLδa (α, β)δa+

+ CLδr (α, β)δr

CM = CM(α) +
(

c̄
2VT

)
CMQ

(α)Q+ CMδe
(α)δe

CN = CN(α, β) +
(

b
2VT

)
(CNR(α)R + CNP (α)P ) + CNδa (α, β)δa+

+ CNδr (α, β)δr

(3.5)

where VT is the true airspeed, i.e., VT =
√
U2 + V 2 +W 2, α is the angle of attack, β is the

side slip angle, and δe, δa, δr, and δt are the elevator, aileron, rudder, and throttle deflections

respectively.

3.3 Nonlinear Model Validation

To validate the 6 DOF nonlinear flight dynamic model described in Sec. 3.2, we simulate the

same flight conditions considered by Taha [1] and compare with his results. Taha considered

the DELTA (a paradigm model for a very large, four-engined, cargo jet aircraft) and the

FOXTROT (a paradigm model for a twin- engined, jet fighter/bomber aircraft) airplane

models whose stability derivatives are obtained from McLean [60]. It should be noted that

for the sake of comparison with Taha’s results, the aerodynamic forces and moments are
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represented linearly in this section through the listed stability derivatives in McLean [60].

Figure 3.1 shows the obtained response due to −10◦ elevator step input for the DELTA

model at the flight condition (Mach no.=0.875, altitude=12, 200 m, U0=260 m/s, α0=4.9◦)

compared with the results of Taha [1]. Figure 3.2 shows the obtained response due to

1◦ aileron step input for the FOXTROT model at the flight condition (Mach no.=2.15,

altitude=13, 700 m, U0=650 m/s, α0=1.4◦) compared with Taha’s results [1]. The compar-

ison shown in Figs. 3.1 and 3.2 validates our implementation of the model described in Sec.

3.2.

(a) Airplane speed (b) Angle of attack

(c) Pitch rate (d) pitch angle

Figure 3.1: Airplane response due to −10◦ elevator step input from the current simulations
and Taha’s results [1].
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(a) Horizontal-plane trajectory (b) Vertical-plane trajectory

Figure 3.2: Airplane response due to 1◦ aileron step input from the current simulations and
Taha’s results [1].

3.4 Geometric Control Formulation of Airplane Flight

Dynamics

The nonlinear model describing rigid-airplane flight dynamics, discussed in Sec. 3.2, can be

written in the form (2.2) with x = [U V W P Q R φ θ ψ]ᵀ and u = [δe δa δr δt]
ᵀ,

where the superscript ᵀ denotes transpose. Here, we omit the navigation states, as they do

not affect stability and control (i.e., ignorable coordinates). After rearranging the equations

of motion, we obtain the drift vector field f(x), which includes the uncontrolled aerody-

namic loads, and the control input vector fields gi’s associated with the four control inputs
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δe, δa, δr, and δt.

f(x) =



RV −QW − g sin θ +
qSc̄QCXQ (α)

2mVT
+ qSCX(α)

m
+

XT0
m

−RU + PW + g sinφ cos θ + qS
m
CY (β) + qSbP

2mVT
CYp(α) + qSbR

2mVT
CYr(α)

QU − PV + g cosφ cos θ +
qSc̄QCZQ (α)

2mVT
+ qSCZ(α)

m
+ +

ZT0
m

Q(C1R + C2P ) + C3

(
qSbCL(α, β) + qSbP

2VT
CLP (α) + qSbR

2VT
CLR (α)

)
+C4

(
qSbCN (α, β) + qSbP

2VT
CNP (α) + qSbR

2VT
CNR (α)

)
C5PR− C6 (P 2 −R2) + C7

(
qSc̄CM(α) + qSc̄Q

2VT
CMQ

(α) +MT0

)
Q(C8P − C2R) + C4

(
qSbCL(α, β) +

qSbPCLP (α)

2VT
+

qSbRCLR (α)

2VT

)
+C9

(
qSbCN(α, β) +

qSbPCNP (α)

2VT
+

qSbRCNR (α)

2VT

)
P + tan θ(Q sinφ+R cosφ)

Q cosφ−R sinφ

sec θ(Q sinφ+R cosφ)



(3.6)
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gδe =



qSCXδe
(α)

m

0

qSCZδe
(α)

m

0

C7qSc̄CMδe
(α)

0

0

0

0



(3.7) gδa =



0

qSCYδa
(β)

m

0

qSb
(
C3CLδa (α, β) + C4CNδa (α, β)

)
0

qSb
(
C4CLδa (α, β) + C9CNδa (α, β)

)
0

0

0



(3.8)

gδr =



0

qSCYδr
(β)

m

0

qSb
(
C3CLδr (α, β) + C4CNδr (α, β)

)
0

qSb
(
C4CLδr (α, β) + C9CNδr (α, β)

)
0

0

0



(3.9) gδt =



Xδt
m

0

Zδt
m

0

C7Mδt

0

0

0

0



(3.10)

Since the controllability analysis (linear and nonlinear) for nonlinear systems is essentially
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local, we perform such an analysis at a point of interest. In this work, nonlinear controllability

analysis only at the cruise flight condition will be performed.

3.4.1 Trim (Balance)

For steady level cruising flight, the airplane is flying with constant speed and certain angle

of attack. To ensure equilibrium at such a flight condition, we set

U̇ = V̇ = Ẇ = Ṗ = Q̇ = Ṙ = φ̇ = θ̇ = ψ̇ = 0 (3.11)

and

U = U0, V = 0, W = W0, P = 0, Q = 0, R = 0, φ = 0, θ = αo, ψ = 0

(3.12)

substituting Eqs. (3.11) and (3.12) in the equations of motion (3.1)–(3.3) we obtain

XT0
m

+ qSCX(αo)
m

− g sinαo = 0

CY (βo) = 0

ZT0
m

+ qSCZ(αo)
m

+ g cosαo = 0

CL(αo, βo) = 0

qSc̄CM(αo)−MT0 = 0

CN(αo, βo) = 0

(3.13)

which represent the trim condition at cruise.
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3.4.2 Unconventional Motion Generation Mechanisms

The first-order Lie brackets between the vector fields f and gi’s at the cruise flight condition

are calculated and shown in Appendix A. In this subsection, we discuss some of the interesting

results based on studying those Lie brackets.

Airplane Configuration and Controllability

It should be noted that the obtained Lie brackets provide feasible directions for motion

generation. For example, the Lie bracket vector field [f , gδe ], shown in Eq. (3.14), repre-

sents the possible motions due to the interaction between system dynamics and the elevator

deflection. Inspecting the Lie bracket vector field [f , gδe ], we find non-zero components in

the fourth and sixth elements, which correspond to rolling and yawing accelerations, respec-

tively. Although, this result may be found using linear analysis, it is not commonly known

that elevator can produce rolling and yawing from a symmetric cruise flight condition if the

airplane configuration leads to non-zero values for ∂CL(α,β)
∂α

or ∂CN (α,β)
∂α

. It should be noted

that the former is non-zero for the F-4B aircraft, though of a small magnitude [59, P. 90].

Moreover, for fighter airplanes doing maneuvers at transonic speeds, the asymmetry in the

shock wave development over the two wings will induce non-zero values for these aerody-

namic derivatives even at symmetric flight conditions. The wing drop phenomenon in the
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F/A-18 is a typical example [61].

[
f , gδe

]
=



q2S2W0CXδe
(α)CX

′(α)

m2U2
0

(
W2

0
U2
0

+1

) − q2S2CZδe
(α)CX

′(α)

m2U0

(
W2

0
U2
0

+1

) +

−C7qSc̄CMδe
(α)

(
qSc̄CXQ (α)

2m
√
U2
0 +W 2

0

−W0

)

0

q2S2W0CXδe
(α)CZ

′(α)

m2U2
0

(
W2

0
U2
0

+1

) − q2S2CZδe
(α)CZ

′(α)

m2U0

(
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0
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0

+1

) +

−C7c̄qSCMδe
(α)

(
U0 +

qSc̄CZQ (α)

2m
√
U2
0 +W 2

0

)

− qSCZδe
(α)

m

(
C3qSb
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U0
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W2

0
U2
0

+1

) +
C4qSb

∂CN (α,β)

∂α

U0

(
W2

0
U2
0

+1

)
)

+

− qSCXδe
(α)

m

(
−C3qSbW0

∂CL(α,β)

∂α

U2
0

(
W2

0
U2
0

+1

) − C4qSbW0
∂CN (α,β)

∂α

U2
0

(
W2

0
U2
0

+1

)
)

C7q2S2c̄W0CXδe
(α)C′M (α)

mU2
0

(
W2

0
U2
0

+1

) −
C2

7q
2S2c̄2CMδe

(α)CMQ (α)

2
√
U2
0 +W 2

0

+

−C7q2S2c̄CZδe
(α)C′M (α)

mU0

(
W2

0
U2
0

+1

)

− qSCZδe
(α)

m

(
C4qSb

∂CL(α,β)

∂α

U0

(
W2

0
U2
0

+1

) +
C9qSb

∂CN (α,β)

∂α

U0

(
W2

0
U2
0

+1

)
)

+

− qSCXδe
(α)

m

(
−C4qSbW0

∂CL(α,β)

∂α

U2
0

(
W2

0
U2
0

+1

) − C9qSbW0
∂CN (α,β)

∂α

U2
0

(
W2

0
U2
0

+1

)
)

0

−C7qSc̄CMδe
(α)

0



(3.14)
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A similar observation is found in the Lie bracket vector field [f , gδt ] (Eq. (A.4) in Appendix

A) which represents interaction between throttle input and airplane flight dynamics. Non-

zero contributions for roll and yaw can be obtained if ∂CL(α,β)
∂α

or ∂CN (α,β)
∂α

is non-zero at

cruise. It should be noted that differential thrust is not introduced here. That is, the above

observation is for a symmetric thrust configuration (e.g., single-engine). Along with the fact

that throttle input naturally creates pitching, the above observation may lead to design of a

thrust-only flight control system (TFCS) to be used in emergency cases such as failure in the

hydraulic system. Yamasaki et al. [62] exploited the engine layout of the Boeing 747-400 to

design a thrust-only flight control system relying on differential thrust and multi elevations

for the engines. Also, the same system has been investigated in the 1990s by Burcham

et al. [63, 64] and Tucker [65] at NASA Dryden Flight Research Center, they called it

propulsion controlled aircraft (PCA). They developed a computer-assisted engine control

system, implemented and tested it on the F-15 fighter aircraft and the MD-11 transport

aircraft.

New Rolling/Yawing and Pitching Mechanisms

Inspecting the Lie bracket vector [gδe , gδa ] (interaction between elevator and aileron), shown

in Eq. (3.15), new rolling and yawing mechanism is observed. That is, steady state rolling

can be obtained by zero-mean oscillating aileron and elevator deflections, provided that
∂CLδa
∂α

or
∂CNδa
∂α

is nonzero. It should be noted that a Lie bracket vector field [gδi , gδj ] between two

input vector fields gδi and gδj can be realized by an out-of-phase square waves or sinusoids

for the associated control inputs [31]. Therefore, if
∂CLδa
∂α
6= 0 or

∂CNδa
∂α

6= 0, steady-state

rolling can be obtained by out-of-phase oscillation of aileron and elevator [66]. Similarly,

inspecting the Lie bracket vector field [gδe , gδt ] (interaction between elevator and throttle),

Eq. (A.7) in Appendix A, a new pitching mechanism is observed. That is, a steady state

pitching can be obtained by zero-mean oscillating elevator and throttle deflections provided
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that there is a non-zero value for the derivative C ′Mδe
.

[
gδe , gδa

]
=


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0

0
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+
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0
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0
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∂α

U0

(
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0
U2
0

+1

)
)

0

q2S2b CXδe
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m

(
−C4W0

∂CLδa
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∂α
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0

(
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0
U2
0

+1

) − C9W0

∂CNδa
(α,β)

∂α

U2
0

(
W2

0
U2
0

+1

)
)

+

+
q2S2b CZδe

(α)

m

(
C4

∂CLδa
(α,β)

∂α

U0

(
W2

0
U2
0

+1

) +
C9

∂CNδa
(α,β)

∂α

U0

(
W2

0
U2
0

+1

)
)

0

0

0



(3.15)

To inspect the efficacy of the observed new rolling and pitching mechanisms, we write the

potential flow lift without leading edge suction as

CL = CLα sinα cos2 α
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where CLα is the lift curve slope in the linear range [67, 68, 69]. As such, we have

dCL
dα

= CLα cosα(cos2 α− 2 sin2 α)

Therefore, since CLδa (α) and CMδe
(α) are linearly dependent on dCL

dα
, we can represent

CLδa (α) and CMδe
(α) as follows

CLδa (α) = CLδa0 cosα(cos2 α− 2 sin2 α)

CMδe
(α) = CMδe0

cosα(cos2 α− 2 sin2 α)
(3.16)

where CLδa0 and CMδe0
are the aileron and elevator sensitivities, respectively, in the linear

range. Figure 3.3 shows the variation of the aileron and elevator sensitivities with angle of

attack. As may be expected, they both decrease as the angle of attack increases towards

stall. However, the derivatives
∂Lδa (α)

∂α
and

dCMδe
dα

, which represent the sensitivities of the new

rolling and pitching mechanisms, respectively, have considerable values. As such, the new

rolling and pitching mechanisms may be suitable in high angle of attack situations (e.g., stall

recovery). It should be noted that this is a novel nonlinear mechanism that is not related to

Crouch’s theorem [14]; the latter is concerned with single input.

(a) Normalized CLδa (b) Normalized CMδe

Figure 3.3: Variation of CLδa and CMδe
with α.
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3.5 Investigation of the Novel Roll Mechanism

In this section, the newly discovered roll mechanism (3.15), hereafter denoted by Lie roll

mechanism (LRM), is thoroughly investigated near stall; where it has a potential to be more

effective than the conventional one (direct aileron input). As explained earlier in Sec. 3.4.2,

the conventional roll mechanism’s sensitivity, CLδa , degrades near stall. However, the Lie roll

mechanism’s sensitivity is characterized by the rate of change of the aileron sensitivity with

the angle of attack, i.e.,
∂Lδa (α)

∂α
, which possesses a considerable value near stall. Figure 3.4

elaborates on this point by showing the variation of the normalized aileron sensitivity (i.e.,

CLδa
CLδa0

) with angle of attack, adapted to the NASA generic transport model (GTM) [70, 71].

Figure 3.4: Variation of the normalized CLδa with α.

Since the LRM is essentially a nonlinear motion generation mechanism, the nonlinear mo-

tion planning tools, reviewed in Sec. 2.1 are employed. A reduced-order three DOF flight

dynamics model is then developed to examine roll control power of the LRM versus the

conventional one. Afterwards, Fliess functional expansion for the roll output is performed

to investigate the different contributing factors to this output. A comparison through Fliess

functional expansion and numerical simulation is then held to examine the maximum ca-

pabilities of both the LRM and conventional roll mechanisms near stall, where the aileron
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sensitivity degrades. An agreement is found between both Fliess functional expansion and

numerical simulation that the LRM mechanism is superior to the conventional one near stall.

Moreover, the approximate tracking framework, discussed in Sec. 2.1.4, is employed to track

a desired roll maneuver near stall using the LRM mechanism.

3.5.1 Reduced-order three DOF Model

In this effort, we focus on the rolling capability of the new roll/yaw mechanism. As such,

in order to accurately assess the efficacy of new roll mechanism, we develop a reduced-order

three DOF flight dynamics model that possesses the minimal degrees of freedom needed

to demonstrate its rolling capability. We then perform all the analyses in the rest of this

section on the three DOF model . This model resembles a wind tunnel experiment (explained

in detail later) that will be developed to verify the results. The three degrees of freedom

included in this model are: heaving motion (z,W ) constrained by a spring force, roll (φ, P ),

and pitch (θ,Q). The three DOF flight dynamics model can be written in a standard

nonlinear system form as

d

dt



z(t)

φ(t)

θ(t)

W (t)

P (t)

Q(t)



=



W

P +Q tan θ sinφ

Q cosφ

−g − qS
m
CZ(α)− qS

2m
c̄

2VT

CZQ (α)

cosα
Q− ks

m
z

C2PQ+ C3qSb
(
CL(α) + b

2VT
CLP (α)P

)
−C6P

2 + C7qSc̄
(
CM(α) + c̄

2VT
CMQ

(α)Q
)



+



0

0

0

qS
m cosα

CZδe (α)

0

C7qSc̄CMδe
(α)



δe+



0

0

0

0

C3qSbCLδa (α)

0



δa

(3.17)
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where ks is the spring stiffness. The system (3.17) can alternatively be written in an abstract

form as

ẋ = f(x) + gδe(x)δe + gδa(x)δa, (3.18)

where the state vector x = [z φ θ W P Q]ᵀ.

3.5.2 Fliess Functional Expansion of the Roll Rate Output

In order to understand the various nonlinear effects induced by the aileron and elevator

inputs on the roll rate, we develop an input-output representation for the three DOF system

developed in the previous subsection. Such a representation could be developed using the

Fliess functional expansion [72, PP. 105–135]. An output yj(t) = hj(x(t)) of the nonlinear

system (??) can be written as

yj(t) = hj(x0) +
∞∑
k=0

m∑
i0,...,ik=0

Lgi0
...Lgik

hj(x0)

∫ t

0

dξik ...dξi0 , (3.19)

where g0 = f , Lgh is the Lie derivative of h along g, and i0, ..., ik is a multiindex of length k

(see Isidori [72, PP. 105–135] for more details). Writing the Fliess series expansion (3.19) of

the roll rate output P (t) of system (3.17), or alternatively (3.18), and truncating after two

terms, we obtain the following non-zero terms

P (t) = P0 + LgδaP (x0)

∫ t

0

δa(τ)dτ + LgδaLfP (x0)

∫ t

0

∫ τ

0

δa(s)dsdτ+

+ LfLgδaP (x0)

∫ t

0

δa(τ)τdτ + LgδeLgδaP (x0)

∫ t

0

δa(τ)

∫ τ

0

δe(s)dsdτ

. (3.20)
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It should be noted that the Lie bracket responsible for the new roll mechanism ([gδe , gδa ])

can be written in terms of Lie derivatives as

[gδe , gδa ] = LgδeLgδa − LgδaLgδe .

However, since LgδaLgδeP = 0, the effect of the Lie bracket [gδe , gδa ] is solely represented

in the term LgδeLgδaP . Hence, the Fliess functional expansion truncation in Eq. (3.20)

signifies the roles of both the direct aileron action (i.e., commanding only δa input) and the

[gδe , gδa ] Lie bracket action in executing a roll maneuver.

For the rest of this section, we use the NASA GTM [70, 71] for analysis. NASA GTM is

5.5% dynamically scaled commercial transport model along with a nonlinear aerodynamic

model that represents the aerodynamic coefficients and stability derivatives as polynomials

in the angle of attack α and sideslip angle β. We consider a near-stall trim point, x0 =

[0 0 α0 0 0 0]ᵀ, where α0 = 11.46◦. As such, the parameters included in the Fliess

functional expansion truncation (3.20) are estimated as follows

LgδaP (x0) = −0.131

LgδaLfP (x0) = 0.017

LfLgδaP (x0) = 4.33 ∗ 10−15

LgδeLgδaP (x0) = −12.074

(3.21)

It is observed that the Lie-bracket-action-related coefficient, LgδeLgδaP (x0), has a signifi-

cantly higher value than the direct-aileron-action-related ones at the considered trim point.

However, the total effect on the roll rate could be different when the iterated integrals are

evaluated and taken into account. Such a comparison is considered in the next section.
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3.5.3 Comparison between the Lie Roll and Conventional Roll

Mechanisms

In this subsection, we consider two different methods to execute a roll maneuver at the

considered near-stall trim point and conduct a comparative study between them while using

NASA GTM’s parameters. The first method is to command a fixed aileron deflection for

a specific amount of time (i.e., the conventional roll mechanism). Whereas in the second

method, we command the appropriate sinusoid signals (guided by the framework explained

in Sec. 2.1.3) for both aileron and elevator that would realize motion along the direction

of the Lie bracket vector field [gδe , gδa ] (i.e., the new discovered roll mechanism). For both

methods we consider the aileron and elevator deflections to be bounded between −30◦ and

30◦. We first compare between the two methods through investigating the Fliess functional

expansion of the roll output shown in Eq. (3.20). Numerical simulations are then performed

for both methods.

To examine the maximum capability of the conventional roll mechanism, we consider the

following control input signals

δe(t) = 0

δa(t) = −30◦
. (3.22)

Since the input-output representation in Eq. (3.20) is valid only for small time, we consider

an excursion time T = 0.5 sec. It should be noted that by commanding only δa input, the

effect of the last term in Eq. (3.20) would vanish. As such, evaluating the first three terms,

we obtain P (0.5) = 1.898 deg/s. Now, we examine the maximum capability of the LRM

mechanism. Inspired by the control input sequence shown in Eq. (2.8), we use the following

input signals for aileron and elevator inputs to realize the motion along the direction of the
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Lie bracket vector field [gδe , gδa ]

δe(t) = 2ke
√
j cos(jωt)

δa(t) = −ka
√
j ω sin(jωt)

, (3.23)

where j is chosen to be equal to 19 and ω = 1, which renders an oscillation frequency

of 3 hz. ke and ka are chosen so that the input signals do not exceed the bounds (i.e.,

δe, δa ∈ [−30◦, 30◦]). Hence, we set ke = 0.0595 and ka = 0.119. As such, evaluating the roll

output after the excursion time, we obtain P (0.5) = 2.825 deg/s. Hence 50% more roll rate

is achieved using the LRM’s control inputs, given in Eq. (3.23).

Next, we perform numerical simulations for both cases using the three DOF model (3.17). We

start the simulations at the same initial condition x0 used to examine the Fliess functional

expansion of the roll output. Figures 3.5 and 3.6 show the control input history along

with the roll output over one second using the conventional roll mechanism and the LRM,

respectively. Inspecting the simulation results, we observe that the roll angle reached 8◦

at the end of the one-second maneuver when using the LRM, as opposed to only 1.9◦ roll

angle for the conventional roll mechanism (constant aileron deflection). That is, the LRM

mechanism is able to generate more than four times as much roll as the conventional one is

capable of at this operating point. This result complies with what was noted earlier from

the Fliess functional expansion of the roll output. Hence, it is concluded that the discovered

new Lie-bracket roll mechanism is superior to the conventional one at near-stall operating

conditions.
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(b) Roll output.

Figure 3.5: Numerical simulation of the three DOF model (3.17) under the control input
signals given in Eq. (3.22) to examine the maximum capability of the conventional roll
mechanism.
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(b) Roll output.

Figure 3.6: Numerical simulation of the three DOF model (3.17) under the control input
signals given in Eq. (3.23) to examine the maximum capability of the Lie roll mechanism.

3.5.4 Implementation of the Lie Roll Mechanism as a Nonlinear

Motion Planning Problem

Now, that the LRM mechanism has been proved superior to the conventional one (direct

aileron action) at near-stall operating points, it is of interest to investigate trajectory tracking

capability of this new roll mechanism. Consider the following desired trajectory

xd =

[
0 c

t2

2
0 0 c t 0

]ᵀ
, (3.24)

where k = 0.01, to be performed at the same near-stall operating point considered in the

previous subsection. That is, a pure roll maneuver with constant roll acceleration equals to c
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needs to be performed. As such, we utilize the framework explained in Sec. 2.1.3 to perform

approximate trajectory tracking relying on the LRM to generate the desired roll motion.

As explained in Sec. 2.1.3, the first step is to cast the system in the extended form, i.e.,

add the Lie bracket inputs as physical inputs to the system. As such, we write the following

extended version of the three DOF system (3.17) or equivalently (3.18)

ẋ = f(x) + gδe(x)vδe + [gδe , gδa ](x)v[δe,δa]. (3.25)

It should be noted that the direct aileron input is not included in the extended system as

it is considered to be inefficient at this near-stall operating point. Through employing Eq.

(2.7), the extended inputs needed to track the desired trajectory can be obtained, which are

shown in Fig. 3.7.
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Figure 3.7: The extended controls needed to track the desired trajectory (3.24).

The next step is to transform those extended inputs into ordinary inputs via employing

the first-order Lie brackets realization algorithm outlined in Sec. 2.1.3. One caveat we

should mention is that the algorithm given in Eq. (2.8) often produces very high amplitude

control inputs. The reason is that tracking a trajectory through this algorithm requires high
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control input oscillation frequencies, and since the input signal’s amplitude is scaled by the

oscillation frequency, the yielded amplitudes are also quite high. In our specific example,

however, we observed that only one input signal (uk2 in Eq. (2.8)) was exceeding the bounds

and the other one (uk1 in Eq. (2.8)) has quite low amplitude. To overcome this hurdle and

make both signals abide by the bounds, we introduced the following modification to Liu’s

algorithm (2.8)

ujk1(t) = −kc
√
j ω vk3(t) sin(jωt)

ujk2(t) =
2

kc

√
j cos(jωt)

, (3.26)

where kc is chosen so that the high amplitude signal (uk2) could be scaled down to the

control bounds. The introduced modification does not affect the tracking accuracy because

the modified algorithm in Eq. (3.26) realizes motion along the same Lie bracket vector field

as that of original one (2.8). To explain this point, we have to appeal to the Lie bracket

computation. Consider the Lie bracket between two vector fields g1(x) and g2(x)

[g1, g2] =
∂g2

∂x
g1 −

∂g1

∂x
g2.

Now, consider the Lie bracket between kc g1(x) and 1
kc
g2(x)

[kc g1,
1

kc
g2] =

1

kc

∂g2

∂x
g1kc − kc

∂g1

∂x
g2

1

kc
=
∂g2

∂x
g1 −

∂g1

∂x
g2 = [g1, g2].

Hence, the scaling modification does not alter the vector field being realized.

As such, we use the modified algorithm (3.26) to obtain the ordinary control input signals

as follows

δe(t) = vδe(t) +
2

kc

√
j cos(jωt)

δa(t) = −kc
√
j ω v[δe,δa](t) sin(jωt)

. (3.27)
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Figures 3.8 and 3.9 show the actual versus desired response and the ordinary control inputs,

respectively, for ω = 1 and j = 100 (i.e., oscillation frequency u 16hz). It is noted from

Fig. 3.8 that the actual and desired trajectories are not in exact agreement. The reason

is that, as we referred to earlier, accurate tracking using this algorithm requires quite high

input frequencies which might not be feasible in real systems. To further explain this point,

we performed the same tracking at higher frequency (48 hz), which is shown in Figs. 3.10

and 3.11. It is noted from Fig. 3.10 that both desired and actual are in perfect agreement,

yet the control inputs exceeded the bounds ([−30◦, 30◦]) as shown in Fig. 3.11. That is,

tracking accuracy could be partially sacrificed in return of bounds-abiding control inputs

and a feasible range of input frequencies.
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Figure 3.8: Actual versus desired response of the three DOF model (3.17) under the control
inputs given by Eq. (3.27) and using input frequency of 16 hz.
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(a) Elevator input.
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(b) Aileron input.

Figure 3.9: Ordinary control inputs obtained through Eq. (3.27) with input frequency of
16 hz, used to track the desired trajectory (3.24) of the three DOF system (3.17).
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Figure 3.10: Actual versus desired response of the three DOF model (3.17) under the control
inputs given by Eq. (3.27) and using input frequency of 48 hz.

3.6 Nonlinear Controllability Analysis at a Loss of Con-

trol Situation (Hydraulic Failure)

One of the most interesting airplane upset situations is a hydraulic failure, leading to control

surfaces jamming. There is a detailed study by Lemaignan on the DHL A300-B4 airplane

incident when it was hit by a ground-to-air missile during the initial climb after taking off

from Baghdad airport in 2003. Because of that, within few seconds, all hydraulics were lost
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(a) Elevator input.
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(b) Aileron input.

Figure 3.11: Ordinary control inputs obtained through Eq. (3.27) with input frequency of
48 hz, used to track the desired trajectory (3.24) of the three DOF system (3.17).

[73]. The crew managed to land the airplane safely using only the thrust controls. Also,

as we referred earlier in this work, thrust-only flight control systems (TFCSs) have been

investigated by Burcham et al. [63, 64] and Tucker [65] at NASA Dryden Flight Research

Center over the 1990s, and by Yamasaki et al. [62] in 2011.

In this section, we analyze the thrust-only flight control systems from the controllability point

of view. We consider the full flight dynamics model (twelve states) and the controllability

of this system using TFCS (symmetric and asymmetric thrust inputs) is analyzed using

linear and nonlinear control analysis tools. The model considered in this section is Convair

880 aircraft model [74, PP.414–415] while the aerodynamic coefficients are represented using

NASA general transport model (NASA GTM) [71] which is a nonlinear aerodynamic model

that represents the aerodynamic coefficients as polynomials in the angle of attack α and

side-slip angle β. The nonlinear flight dynamics model using TFCS can be written as

ẋ = f(x) + gs(x)δts + ga(x)δta (3.28)

where δts denotes the symmetric thrust input and δta denotes the asymmetric thrust input.
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f(x), gs(x), and ga(x) can be written as

f(x) =



RV −QW − g sin θ + FX
m

PW −RU + g cos θ sinφ+ FY
m

QU − PV + g cos θ cosφ+ FZ
m

Q(C1R + C2P ) + C3L+ C4N

C5PR− C6 (P 2 −R2) + C7M

C4L+ C9N +Q(C8P − C2R)

P + tan θ(Q sinφ+R cosφ)

Q cosφ−R sinφ

sec θ(Q sinφ+R cosφ)

U cos θ cosψ + V (sin θ cosψ sinφ− sinψ cosφ)

+W (sin θ cosψ cosφ+ sinψ sinφ)− U0 cos θ0 −W0 sin θ0

U cos θ sinψ + V (sin θ sinψ sinφ+ cosψ cosφ)

+W (sin θ sinψ cosφ− cosψ sinφ)

U sin θ − V cos θ sinφ−W cos θ cosφ



gs =
[
Xδts 0 0 0 Mδts 0 0 0 0 0 0 0

]ᵀ

ga =
[
0 0 0 Lδta 0 Nδta 0 0 0 0 0 0

]ᵀ
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where the state vector x = [U V W P Q R φ θ ψ PN PE h]ᵀ, and the the

aerodynamic loads FX , FY , FZ ,L,M , and N are calculated using NASA GTM at the flight

condition (sea level cruise, M=0.25). It should be noted that for zero-cross-coupling moment

of inertia airplanes the control derivative Lδta is zero.

Now, we consider the linearized system at the cruise point x0

ẋ = A x+B1 δts +B2 δta

where A =
[
∂f
∂x

]
evaluated at x0, B1 = gs(x0), and B2 = ga(x0). Kalman rank condition

can be checked for this system by constructing the controllability matrix

C =
[
B1 B2 AB1 A2B1 .... A11B1 AB2 A2B2 .... A11B2

]
The rank of this matrix is found to be eleven which means that the linearized system is

uncontrollable.

As stated before, we can assess the accessibility of this system at an equilibrium point x0 by

calculating the rank of the accessibility distribution, Eq. (2.3). The accessibility distribution

can be seen as the infinite Lie-bracket iterations between the drift, f(x), and control inputs,

gs(x) and ga(x), vector fields. This invokes the definition of the P. Hall basis. We can

loosely say that the P. Hall basis of order k represents all the independent Lie brackets

resulting from Lie-bracket iterations of the system vector fields up to k brackets’ length.

Here we consider the P. Hall basis of order four for the system’s vector fields f , gs, and ga

along with some of the Lie brackets of length five. Following Munthe-Kaas et al., [75] the P.

Hall basis for the three vector fields f , gs, and ga of order four can be summarized in Table

3.1.

The first step in the nonlinear analysis would be to calculate the rank of the accessibility
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bracket length Lie brackets

one f , gs, and ga
two [f , gs], [f , ga], and [gs, ga]

three

[f , [f , gs]], [f , [f , ga]],
[gs, [f , gs]] [gs, [f , ga]],
[gs, [gs, ga]], [ga, [f , gs]],
[ga, [f , ga]], and
[ga, [gs, ga]]

four

[f , [f , [f , gs]]],
[gs, [f , [f , ga]]],
[gs, [gs, [gs, ga]]],
[ga, [gs, [f , gs]]],
[ga, [ga, [f , gs]]],
[[f , gs], [f , ga]],
[f , [f , [f , ga]]],
[gs, [gs, [f , gs]]],
[ga, [f , [f , gs]]],
[ga, [gs, [f , ga]]],
[ga, [ga, [f , ga]]],
[[f , gs], [gs, ga]],
[gs, [f , [f , gs]]],
[gs, [gs, [f , ga]]],
[ga, [f , [f , ga]]],
[ga, [gs, [gs, ga]]],
[ga, [ga, [gs, ga]]], and
[[f , ga], [gs, ga]]

Table 3.1: P. Hall basis of order four for the three vector fields f , gs, and ga.

distribution while including only the linear-analysis-related Lie brackets, (gs, ga, [f , gs] up

to ad11

f gs, and [f , ga] up to ad11

f ga). The rank of the accessibility distribution in this case

is found to be eleven, as expected, which means that the system is linearly uncontrollable.

The second step would be to add all the new Lie brackets included in the P. Hall basis to

the accessibility distribution, one at a time, to check if a given Lie bracket could provide

motion along the missed direction, i.e., it completes the rank of the accessibility distribution.

Using those Lie brackets included in the P. Hall basis shown above along with some Lie

brackets of length five, we obtain the Lie brackets that can satisfy the LARC in four different

configuration cases as summarized in Table 3.2.
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It is noted from the results in Table 3.2 that the existence of either cross-coupling moment of

inertia (non-zero IXZ) or an offset between the thrust line and center of mass line (non-zero

Mδts ) suffices to achieve full accessibility distribution rank [76, 66]. However, the LARC

cannot be realized in the absence of the cross-coupling moment of inertia and Mδts together.

Having said that, we can conclude that the system in this case is accessible. To conclude

that the system is controllable or small time locally controllable (STLC), further nonlinear

analysis would be required to check if any of the new Lie brackets represents an obstruction

to controllability. More details on this point can be found in the work of Sussmann [36].

Non-zero
IXZ

Non-zero
Mδts

Lie brackets that com-
plete the full rank for
accessibility

7

[ga, [f , ga]]
[[[f , [f , gs]], ga], ga]
[[[f , [f , gs]], gs], gs]
[gs, [f , gs]]
[ga, [f , ga]]
[gs, [gs, [f , gs]]]
[gs, [f , [f , [f , gs]]]]
[ga, [f , [f , [f , ga]]]]
[[[f , [f , gs]], gs], gs]
[[[gs, [f , gs]], gs], gs]

7 7 –

7

[gs, [f , gs]]
[gs, [gs, [f , gs]]]
[gs, [f , [f , [f , gs]]]]
[ga, [f , [f , [f , ga]]]]
[[[f , [f , gs]], gs], gs]
[[[gs, [f , gs]], gs], gs]

Table 3.2: Nonlinear controllability analysis results for the 12× 12 flight dynamics system.

It should be noted the results summarized in Table 3.2 are congruent with Crouch’s theorem

[14]; that is, the attitude of a rigid body can be completely controlled via a single moment

about a non-principal axis. Thus, if IXZ = 0 (all axes are principal), the differential thrust

yaw capability is not enough and pitching capability is essential (i.e., Mδts 6= 0). On the
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other hand, if IXZ 6= 0, the single yaw moment control is about a non-principal axis, which

suffices according to Crouch’s theorem.

3.7 Conclusions

In this chapter, the fixed-wing airplane flight dynamics is formulated in a geometric-nonlinear-

control framework. The six DOF flight dynamics model is presented in a full nonlinear sense;

i.e., nonlinear in dynamics as well as aerodynamics. As such, all the effects emanating from

the nonlinearity of the dynamics and aerodynamics could be revealed. In particular, new

rolling/yawing and pitching mechanisms are introduced. The new rolling/yawing mechanism

shows a potential advantage over the conventional one if used near stall.

In order to thoroughly investigate the new rolling/yawing mechanism, a reduced-order, three

DOF flight dynamics model is developed to perform a comprehensive investigation of the Lie

roll mechanism. The LRM is executed through realizing the Lie bracket between elevator

and aileron control vector fields. Realizing the motion along the direction of a Lie bracket

vector field in a nonlinear system with drift invokes motion planning tools from differential-

geometric control theory. Hence, the approximate trajectory tracking framework, outlined

in Sec. 2.1.3, is invoked. Employing this framework, and using the NASA GTM for analysis

and simulation, the maximum capability of the LRM near stall is examined and compared

to that of the conventional one. The simulation results indicate a superiority of the new

roll mechanism over the conventional one at near-stall operating points, in compliance with

the results of Fliess functional expansion analysis of the roll rate output. In particular,

the LRM is able to generate more than four times as much roll as the conventional one is

capable of at that operating point. Hence, the LRM may provide a more efficient way to

recover from stall/spin situations in commercial and general aviation aircraft. Moreover, the

developed framework in Sec. 2.1.3 is employed in order to track a desired roll trajectory
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near stall. Trajectory tracking simulation results indicate the need for high input frequency

if high tracking accuracy is sought. However, high input frequency may not be feasible for

real systems due to the actuator and structural limitations. Hence, the provided framework

is considered as an approximate trajectory tracking method for such systems.

Moreover, we introduce a methodology for analyzing the nonlinear controllability of the

airplane utilizing the differential-geometric control tools. As such, the controllability assess-

ment of some upset situations could be revisited. Nonlinear controllability analysis in case

of complete hydraulic failure, i.e., using thrust controls only, is performed. The system is

shown to be nonlinearly controllable if either IXZ or Mδts is non-zero., despite being linearly

uncontrollable.
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Chapter 4

Differential-Geometric-Control

Formulation and Stability Analysis of

Flapping Flight Multi-Body Dynamics

Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-

body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling

and analysis of such dynamics in the literature has long obstructed the discovery of some of

the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing

inertial effects and directly averaging the dynamics over the flapping cycle are two major

simplifying assumptions that have been extensively used in the literature of flapping flight

balance and stability analysis. By relaxing these assumptions and formulating the multi-body

dynamics of flapping-wing micro-air-vehicles in a differential-geometric-control framework, a

vibrational stabilization mechanism that greatly contributes to the body pitch stabilization

is revealed. The discovered vibrational stabilization mechanism is induced by the interaction

between the fast oscillatory aerodynamic loads on the wings and the relatively-slow body

motion. This stabilization mechanism provides an artificial stiffness (i.e., spring action) to
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the body rotation around its pitch axis. Such a spring action is similar to that of Kapitza

pendulum where the unstable inverted pendulum is stabilized through applying fast-enough

periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling

and analysis of flapping flight dynamics.

4.1 Introduction

Biological flyers represent a gold mine of scientifically-rich problems and a well-spring of

knowledge and inspiration for engineers and scientists. For example, some insects can thrust

up to five times their weights [77], while others have been observed to perform turning ma-

neuvers of greater than 3000 deg/s, with less than a 30 ms delay [78], in situations that

demand agility, such as chasing a potential mate. In normal everyday flight, birds may expe-

rience up to 14 g accelerations in super-maneuverable tasks [79], while the maneuverability

of the most advanced fighter airplanes cannot exceed 8 − 9 g. Moreover, birds and insects

outperform jet airplanes more than five times from a normalized power consumption perspec-

tive [79]. This huge potential inspired engineers to design flapping-wing micro-air-vehicles

(FWMAVs) [80], mainly for reconnaissance and surveillance applications.

Indeed, flapping flight invokes and pushes the frontiers of mechanical and aerospace engi-

neering disciplines. From an aerodynamic point of view, flapping flight creates an unsteady,

nonlinear flow field exploiting unconventional mechanisms to generate lift. In fact, using clas-

sical aerodynamics, insect flight was deemed impossible for decades (e.g., [81, 82, 83, 84]), as

the required lift coefficients for balance are 2−3 times the maximum lift coefficients achieved

by conventional aerodynamics. Later, biologists and engineers unraveled some of the uncon-

ventional lift mechanisms exploited by insect and bird flight. A stabilized leading edge vortex,

first introduced by Ellington and his coworkers [85], forms the main unconventional lift mech-

anism that makes insect flight possible. Computational fluid dynamic simulations show that
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the leading edge vortex contributes 40% of the total lift for insects [86]. Recently, many stud-

ies accounted for the unsteady and viscous aerodynamics of flapping-flight and similar flight

behaviors [68, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105].

As the aerodynamics of flapping flight became mature, the flight dynamic analysis followed

promptly. To our knowledge, the first article on flapping flight dynamics is that of Thomas

and Taylor [106]. Flapping flight dynamics represents a multi-body, nonlinear time-periodic

(NLTP) dynamical system. Moreover, it is a multi-scale dynamical system because of the

concomitant two time scales: the fast time scale of the flapping motion and the associ-

ated aerodynamic loads, and the relatively-slow time scale of the body motion. All these

challenges make flapping flight dynamics an intricate problem that necessitates a rigorous

mathematical analysis.

Two major assumptions have been typically adopted in the flight dynamic analysis of FW-

MAVs [107]: neglecting the wing inertial effects and directly averaging the dynamics over

the flapping cycle. The first assumption might be justifiable because the mass of the

wing is quite small when compared to that of the body (less than 5% [108]). Moreover,

adopting this assumption alleviates the problem’s complexity and yields flight dynamic

equations similar to those of conventional aircraft. As such, most of the analyses in the

literature of flapping flight dynamics and control have neglected the wing inertial effects

[106, 109, 110, 111, 112, 113, 114, 40, 115, 116, 117, 118]. For more details about the effects

of the wing’s inertia on the dynamics of flapping flight, the reader is referred to the review

articles [107, 119], and the references therein.

The second major assumption (directly averaging the dynamics over the flapping cycle) has

been refuted by Taha et al. [120, 50] for hovering insects with a relatively small flapping

frequency (e.g., hawkmoth and cranefly). They showed that despite the large ratio of the

forcing flapping frequency to the natural frequency of the body motion (30 for the hawkmoth

and 50 for the cranefly), there is a strong interaction between the system’s two time scales
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that considerably affects the flight balance and stability. Specifically, the intuition that an

averaged lift due to flapping equal to the FWMAV’s weight ensures vertical balance at hover

was interestingly refuted by showing that the aerodynamic-dynamic interaction results in

a negative lifting mechanism. In addition, the interaction between the system’s two time

scales results in a vibrational stabilization phenomenon that is quite similar to the well-known

behavior of the Kapitza pendulum [30]: the unstable equilibrium of the inverted pendulum

is stabilized through open-loop vertical oscillations of the pivot. These interactions are

essentially neglected when direct averaging is used.

On the other hand, some efforts [121, 41, 42] aimed at capturing the periodic orbit associated

with certain equilibrium configuration (e.g., hovering) using periodic shooting methods, then

analyzing the stability of that orbit using Floquet theorem. However, this would only yield

a yes/no answer to the stability question without any insights as to why this system has

been rendered stable/unstable and what are the stabilizing/destabilizing mechanisms.

While pursuing the relaxation of those two assumptions, differential geometric control theory

is naturally invoked as a rigorous analysis tool. It is particularly convenient for the analy-

sis of multi-body, underactuated mechanical systems [46]. Moreover, when combined with

chronological calculus [23], it provides constructive techniques for higher-order averaging of

NLTP systems [48, 122, 49] and dealing with multi-scale vibrational control systems [47].

As such, the goal of this effort is to relax the aforementioned simplifying assumptions and

hence: (i) derive the full (five degrees of freedom), multi-body, longitudinal flight dynamics

of FWMAVs and cast it in a differential-geometric-control framework; (ii) combine differ-

ential geometric control and averaging tools to rigorously and analytically investigate the

balance and stability of flapping flight dynamics at hover; and (iii) unravel and investigate

the unconventional flight dynamic behavior of flapping flight (e.g., vibrational stabilization

and negative lifting), and demonstrate the role of multi-body effects in such a behavior.

In this chapter, the five degree-of-freedom (DOF), multi-body equations of motion governing
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the longitudinal flight dynamics of FWMAVs near hover are derived using the principle of

virtual power [123]. A relatively simple, analytical aerodynamic model that accounts for the

dominant contributions (e.g., leading edge vortex and rotational effects) is adopted. Com-

bining these two models (aerodynamic and dynamic), a nonlinear, multi-body, time-varying,

longitudinal flight dynamics model is developed, which captures aerodynamic-dynamic in-

teractions. A two DOF FWMAV model is derived from the full longitudinal model as the

simplest multi-body model for balance analysis at hover. This two DOF model resembles

an experimental setup of a FWMAV restrained to move along vertical rails; where balance

and stability are decoupled. Additionally, an analysis framework combining averaging and

periodic shooting is introduced and demonstrated on the simple two DOF model to rigor-

ously analyze the balance problem at hover. Moreover, a three DOF model is then extracted

from the full model as the simplest, yet rich enough, multi-body, flapping flight dynam-

ics model for differential-geometric-control balance and stability analysis. This three DOF

model resembles an experimental apparatus for investigating both balance and stability at

hover. The geometric-control-averaging tools are then applied to the three DOF model to

reveal the role of wing-body dynamical interaction in vibrational pitch stabilization for the

insect/vehicle’s body. The vibrational pitch stabilization mechanism is induced by the in-

teraction between the fast, periodic, aerodynamic wing forces and the relatively-slow body

motion (aerodynamic-dynamic interactions). Such a mechanism would have been entirely

overlooked if direct averaging techniques are applied instead. Moreover, the obtained analyt-

ical results are verified through numerical periodic shooting and Floquet stability analysis.

Finally, a comparison is made with the corresponding single-body model to provide insights

into the multi-body effects.
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4.2 Modeling of the Multi-Body, Time-Varying Flap-

ping Flight Dynamics

4.2.1 Wing Kinematics

Figure 4.1 shows a schematic diagram of a FWMAV and its axis systems. Four reference

frames are required to study the flight dynamics of a rigid-wing FWMAV: an inertial reference

frame {xI, yI, zI}, a body-fixed reference frame {xb, yb, zb}, a stroke plane reference frame

{xs, ys, zs}, and a wing-fixed reference frame {xw, yw, zw} for each of the flight vehicle’s

wings. Because only longitudinal flight is considered in this work, symmetric wing motions

are assumed.
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Figure 4.1: A schematic diagram of a FWMAV hovering in a general orientation.

By convention, the xb-axis points forward defining the vehicle’s longitudinal axis, the yb-axis
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points to starboard, and the zb-axis completes the right-handed frame. The conventional

yaw-pitch-roll (ψ-θ-φ) Euler angle sequence, traditionally used with fixed-wing aircraft [74],

is adopted here to describe the body’s inertial orientation. Because this effort is focused on

longitudinal flight dynamics, only the body’s pitch angle θ is required.

The stroke-plane is inclined to the horizontal plane with a stroke plane angle β. That is, the

stroke plane reference frame is obtained from the inertial frame through a rotation by an

angle β about the yI-axis. The wing-fixed frame is defined such that it is aligned with the

stroke plane frame at zero wing kinematic angles. The wing motion is typically described

using three Euler angles: the flapping angle ϕ (describing back and forth motion along the

stroke plane), the plunging angle ϑ (describing out of stroke plane motion), and the pitching

angle η (describing rotation of the wing about a chord line). Consistent with observations

of biological flyers [124, 77], the plunging motion is neglected (ϑ = 0).

4.2.2 Equations of Motion

Since the two wings move symmetrically, the equations of motion are defined in terms of five

generalized coordinates: q = [x , z , θ , ϕ , η]ᵀ, where ᵀ denotes transpose, and x and z

are the inertial coordinates of the body center of mass along the xI and zI axes, respectively.

We use the principle of virtual power [123] to derive the equations of motion

∑
i=b,w

[mi(v̇i + ρ̈ci)− f i] ·
∂vi
∂q̇j

+ [ḣi +miρci × v̇i −M i] ·
∂ωi
∂q̇j

= 0, j = {1, ..., 5}, (4.1)

where mi is the mass of the ith rigid body, vi is the inertial velocity vector of its reference

point (the reference points of the body and wing frames are the body’s center of gravity and

the wing’s hinge root, respectively), ρci is the vector pointing from the reference point of

the ith rigid body to its center of gravity, ωi and hi are the angular velocity vector of the
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ith rigid body with respect to the inertial frame and the corresponding angular momentum

vector, respectively, and f i and M i are the external force and moment vectors applied on

the ith rigid body at its reference point. As such, the equations of motion can be written in

an abstract form as

[
M(q)

]


u̇

ẇ

θ̈

ϕ̈

η̈


+

(
C(q, q̇)

)
=

[
Raero

]


Fx

Fz

Mx

My

Mz


+



0

0

0

1

0


τϕ +



0

0

cosϕ

0

1


τη, (4.2)

where u = ẋ, w = ż are the body inertial velocity components, M(q) is the inertia matrix,

C(q, q̇) represents Coriolis and centripetal effects, Raero relates the aerodynamic loads (Fx,

Fz, Mx, My, and Mz) in the wing frame to the generalized forces, and τϕ and τη are the wing

flapping and pitching control torques, respectively. The details of the derivation of Eq. (4.2)

are given in Appendix B.

4.2.3 Aerodynamic Model

We extend the aerodynamic model, used in our earlier work [125, 126] which is based on

Refs. [127, 128, 129], to a more general setting that is convenient for aerodynamic-dynamic

interactions. This model accounts for the dominant contributions (i.e., leading edge vortex

(LEV) and rotational contributions) using a quasi-steady, strip theory formulation.

Dickinson et al. [130] showed that for ultra-low Reynolds numbers, where insects operate

(Re=200− 4000), there is almost no stall; the lift has a smooth variation with the angle of

attack. Berman and Wang [129] showed that the steady lift coefficient due to a stabilized
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LEV can be simply written as

CL = A sin 2α,

where α is the angle of attack. Taha et al. [128] provided a means to estimate the coefficient A

in terms of the aspect ratio using the extended lifting line theory [131]. Insects wings, similar

to delta wings, experience LEVs, and hence, the flow separates at the leading edge losing the

leading edge suction force [67, 128]. As such, the drag is given by CD = CL tanα [67, 128].

Therefore, the resultant aerodynamic force is almost normal to the wing surface (i.e., Cz =

−2A sinα). That is, the shear contribution is minimal as shown in the experimental study

of Dickinson et al. [130] and the computational results of Wang [132] and Ramamurti et al.

[133].

As such, a two-dimensional airfoil undergoing a translational motion with velocity compo-

nents Vx and Vz in the wing frame and a rotational pitching motion ωy, as shown in Fig.

4.2, is subjected to the following forces [127, 128, 129]

F ′x = πρc∆xVzωy

F ′z = −1
2
ρa0cV

2 sinα− πρc∆xVxωy
, (4.3)

where c is the chord length, ∆x is the distance between the pitching axis (hinge line) and the

three-quarter chord point, a0 is the two-dimensional lift curve slope that will be replaced by

the three-dimensional lift curve slope when integrating over the whole wing, V 2 = V 2
x + V 2

z ,

and the angle of attack is given by α = tan−1 Vz
Vx

. It should be noted that the added mass

terms are neglected in Eq. (4.3) because their net effects on the flight dynamics were found

to be minimal as shown in our previous effort [125].

To account for aerodynamic-dynamic interaction, the body’s motion variables (u, w, and θ̇)

and the aerodynamic inputs (Vx, Vz, and ωy) should be interconnected as shown in Fig. 4.3.

As such, the velocity of a wing section that is at a distance r from the wing root is written
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Figure 4.2: A schematic diagram of an airfoil section undergoing translational and rotational
motion.

as

V (w)(r) = [Rws][Rβ]V (I)
w + ω(w)

w × rjw, (4.4)

where [Rws] and [Rβ] (given in Appendix B) are the rotation matrices from the stroke plane

frame to the wing frame and from the inertial frame to the stroke plane frame, respectively.

Also, V (I)
w is the wing velocity vector in the inertial frame, and ω

(w)
w is the wing angular

velocity vector in the wing frame. Since the body motion (u, w, and θ̇) is evolving with

a quite slower time scale than that of the wing, the term (V 2 sinα) in Eq. (4.3) could be

approximated linearly with respect to the body states as follows

V 2 sinα = V 2 Vz
|V |

= |V |Vz ' (|V |Vz)
∣∣∣∣
0

+
3∑
i=1

∂(|V |Vz)
∂xi

∣∣∣∣
x′is=0

∆xi, (4.5)
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where x′is are the body states; u,w, and θ̇. Hence, we obtain

V 2 sinα = r2 sin η ϕ̇ |ϕ̇|+ u

(
2 r cos β sin η cosϕ |ϕ̇|+ r sin β cos η |ϕ̇|

)
+

+ w

(
r cos β cos η |ϕ̇| − 2 r sin β sin η cosϕ |ϕ̇|

)
+

+ r θ̇ |ϕ̇|
(
−r cos η sinϕ+ 2 xh sin β sin η cos θ cosϕ− 2 xh cos β sin η sin θ cosϕ+

− xh cos β cos η cos θ − xh sin β cos η sin θ

)
,

(4.6)

where xh is the distance from the vehicle’s center of mass to the root of the wing hinge line

(i.e., the intersection of the hinge line with the xb-axis), as shown in Fig. 4.1.

+
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Figure 4.3: A schematic diagram of the aerodynamic-dynamic interaction in a FWMAV.

The time-varying aerodynamic loads (in the wing frame) can then be written as



Fx(x)

Fz(x)

Mx(x)

My(x)

Mz(x)


=



Fx0

Fz0

Mx0

My0

Mz0


+



Fxu Fxw Fxq

Fzu Fzw Fzq

Mxu Mxw Mxq

Myu Myw Myq

Mzu Mzw Mzq




u

w

θ̇

+



Fxnl

Fznl

Mxnl

Mynl

Mznl


, (4.7)

where the terms (aerodynamic derivatives) in Eq. (4.7) are given in Appendix C. It should

be noted that the aerodynamic derivatives here are not normalized by masses and inertias,
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in contrast to the conventional aerodynamic derivatives commonly used in flight dynamics

literature [74, 134].

As explained above, the aerodynamic loads generated by the wing oscillatory motion are

represented as functions of the wing states (ϕ, η, ϕ̇, and η̇) as well as body states (u, w, θ, and

θ̇), in addition to the stroke plane angle β. As such, the interaction between the body motion

and the generated aerodynamic loads by the wing can be accounted for, which is explained in

Fig. 4.3. For given input torques and aerodynamic loads, the dynamic equations of motion

(4.2), or equivalently (B.1–B.5), can be integrated to update the body motion variables (u,

w, and θ) and the wing flapping variables (η and ϕ). Together, they dictate the motion of

each airfoil section with respect to the surrounding quiescent air, represented by Vx, Vz, and

ωy. These air speeds, in turn, completely determine the aerodynamic loads according to Eq.

(4.3) or (4.7). Accounting for such an interaction between the aerodynamic loads and the

body motion allows for a more accurate and heuristic trim and stability analysis.

4.2.4 Two DOF Flight Dynamic Model for Balance Analysis

In this subsection, a two DOF model is extracted from the full five DOF model (4.2). This

two DOF model resembles an experimental apparatus where a FWMAV is confined to move

along vertical rails, as shown in Fig. 4.4. As such, only two degrees of freedom are considered:

the body vertical motion with a velocity w and the wing back and forth flapping angle ϕ.

The wing pitching dynamics is ignored as typically done in FWMAVs when considering a

constant pitching angle throughout each half stroke.
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Figure 4.4: Experimental setup of a two DOF FWMAV.

The two DOF FWMAV dynamics can be written as

d

dt



z(t)

ϕ(t)

w(t)

ϕ̇(t)


=



w(t)

ϕ̇(t)

g − kd1 |ϕ̇(t)|w(t)− kLϕ̇(t)2

−kd2 |ϕ̇(t)| ϕ̇(t)− kd3w(t)ϕ̇(t)


+



0

0

0

1
IF


τϕ(t), (4.8)

where g is the gravitational acceleration, IF is the flapping moment of inertia defined as

IF = Ixw sin2 αm + Izw cos2 αm, and τϕ is the flapping control input torque. The coefficients

kd1 , kL, kd2 , and kd3 are configuration-dependent parameters and are defined as

kd1 =
ρ CLα I11 cos2 αm

2mv

kL =
ρ CLα I21 sinαm cosαm

2mv

kd2 =
ρ CLα I31 sin2 αm

IF

kd3 =
ρ CLα I21 sinαm cosαm

IF
,

where ρ is the air density, CLα is the wing lift curve slope, αm is the mean angle of attack

maintained throughout the entire stroke, mv is the total mass of the vehicle, and Imn are
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constants that depend on the chord distribution of the wing: Imn = 2
∫ R

0
rmcn(r) dr.

The two DOF system (4.8) can be written abstractly as a typical nonlinear control-affine

system

ẋ(t) = Z(x(t)) + Y (x(t)) τϕ(t), (4.9)

where x(t) = [z(t) ϕ(t) w(t) ϕ̇(t)]ᵀ is the state vector. The two DOF system (4.8), or

equivalently (4.9), is a NLTP system because the vehicle’s weight is balanced by periodic

forcing (e.g., τϕ(t) = U cosωt). The problem of determining the required amplitude U for

balance (i.e., to achieve a specific periodic orbit corresponding to a desired equilibrium,

e.g., hovering) is not trivial. For example, Taha et al. [50] refuted the intuitive notion

that hovering is achieved by balancing the averaged flapping lift to the weight. Because

of the inherent stability of the two DOF system (4.8) due to various damping actions, any

deviation from equilibrium will be attributed to unbalance. As such, because of its simplicity

and implementation feasibility, the two DOF system (4.8) represents a paradigm for periodic

orbit analysis of NLTP systems.

4.2.5 Three DOF Flight Dynamic Model for Balance and Stability

Analysis

While the developed model (4.2, 4.7) is amenable to differential-geometric-control tools, we

opt to demonstrate such tools on a simpler, yet rich enough, model, not to obscure the details

of these tools with the complexity of the full model. In particular, we consider the minimal

degrees of freedom required to demonstrate the vibrational pitch stabilization phenomenon.

As such, we consider two DOF for the body: body’s vertical motion z and pitching angle

θ, and one DOF for the wing: the flapping angle ϕ. The body forward motion is restricted
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and the wing pitching angle η is assumed to have a piecewise constant variation, commonly

used in flapping flight dynamics literature, e.g., [135, 136, 115, 137, 138]

η(t) =


αm, ϕ̇ > 0

π − αm, ϕ̇ < 0

.

As such, we have sin η = sinαm and cos η = cosαm sign(ϕ̇). This multi-body, three-DOF

model resembles (locally at the hovering equilibrium) a lab experiment apparatus [2] that

has been developed to verify the results. In this lab experiment, however, the body vertical

motion is transformed into pendulum rotation, as shown in Fig. 4.5.

Figure 4.5: The experimental setup developed in [2] to verify the vibrational pitch stabiliza-
tion phenomenon.

The three DOF model can be written as

M (q; sign(ϕ̇)) q̈ + f c(q, q̇) = f aero + g τφ, (4.10)

whereM is the inertia matrix, f c represents Coriolis and centripetal effects, f aero represents
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the aerodynamic loads, g is the input vector field, and τφ is the input torque. For simplicity,

now on, we set the parameter xh = 0 (the distance from the vehicle’s center of mass to the

root of the wing hinge line). Also, the stroke plane angle in this three DOF model is changed

to be measured from the body-fixed frame of reference instead of the inertial frame. As such,

M, f c, f aero and g in system (4.10) are written as

M =


mv M12 M13

M21 M22 M23

0 0 Iyb

 , (4.11)

where

M12 = −rcg cosϕ sin θ − c̄d̂ cosαm sign(ϕ̇) sinϕ sin θ

M13 = c̄d̂ cosαm cos θ cosϕ sign(ϕ̇)− c̄d̂ sinαm sin θ − rcg cos θ sinϕ

M21 = −mwrcg cosϕ sin θ − c̄d̂ mw cosαm sign(ϕ̇) sinϕ sin θ

M22 = −1
2
Ixw cos2 αm − 1

2
Izw sin2 αm + IF

2
+ Ixw+Izw

2

M23 = 1
2
Iyw sign(ϕ̇) sin 2αm sinϕ

,
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f c =



−θ̇2

(
c̄d̂ sinαm cos θ + c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ− rcg sin θ sinϕ

)
+

−2θ̇ϕ̇

(
c̄d̂ cosαm cos θ sign(ϕ̇) sinϕ+ rcg cos θ cosϕ

)
+

+ϕ̇2

(
rcg sin θ sinϕ− c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ

)
− gmv

−θ̇w
(
c̄d̂ mw cosαm cos θ sign(ϕ̇) sinϕ+mwrcg cos θ cosϕ

)
+

+wϕ̇

(
mwrcg sin θ sinϕ− c̄d̂ mw cosαm sin θ sign(ϕ̇) cosϕ

)
+

+θ̇2

(
1
2

cos2 αmIyw sinϕ cosϕ+ 1
2

sin2 αm(Ixw − Izw) sinϕ cosϕ+

+1
2
(−Ixw − Izw) sinϕ cosϕ+ 1

2
Iyw sin 2ϕ

)

0



, (4.12)

f aero =



−Fx (sinαm cos θ + cosαm sin θ sign(ϕ̇) cosϕ) +

−Fz (sinαm sin θ cosϕ− cosαm cos θ sign(ϕ̇))

sinαmMx − cosαmMz sign(ϕ̇)

− cosαmMx sign(ϕ̇) sinϕ+My cosϕ− sinαmMz sinϕ


, (4.13)

g =


0

1

0

 , (4.14)

where Fx, Fz, Mx, My, and Mz are the aerodynamic forces and moments represented in the
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wing frame, as shown in Eq. (4.7), c̄ is the mean aerodynamic chord of the wing, and d̂ and

rcg are the distances from the wing reference point (hinge point at the root section) to the

wing center of mass along the negative xw-axis and the yw-axis respectively.

The three DOF model (4.10) is then written in the standard nonlinear control-affine form

ẋ = Z(x) + Y (x) τϕ(t), (4.15)

where the state vector x is [q q̇]ᵀ = [z ϕ θ w ϕ̇ θ̇]ᵀ, and the vector fields Z(x) and

Y (x) are written as

Z(x) =

 q̇

M−1(f aero − f c)

 , Y (x) =

 0

M−1g

 .
The geometric control and averaging tools are then combined to rigorously investigate the

balance and stability of the NLTP system (4.15) and unravel the unconventional flight dy-

namic behavior of flapping flight (e.g., vibrational stabilization).

One caveat here is that the averaging theorem requires the NLTP dynamics to be smooth

in the states. Unfortunately, both the three DOF and the two DOF systems (4.8, 4.15)

are not smooth in the state ϕ̇ because of the absolute value function |ϕ̇|. In addition, the

adopted approximation of the wing pitching angle η results in the existence of the sign

function sign(ϕ̇). We tackle both issues by writing |ϕ̇| = ϕ̇ sign(ϕ̇) and introducing a

smooth approximation for the sign function; sign(ϕ̇) ≈ h(ϕ̇) = (2/π) tan−1(n ϕ̇). We set an

appropriate value of n such that, in 1% of the ϕ̇ range around the origin, the approximate

function h(ϕ̇) reaches 99% of the true value (±1). Alternatively, a hyperbolic tangent sigmoid

function could be used as a smooth approximation for the sign function instead of the

inverse tangent one. For more details about the adopted smooth approximation, the reader

is referred to an earlier work by Taha et al. [139].
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4.3 Combined Averaging-Shooting Approach for the

Analysis of Flapping Flight Dynamics

In this section, an analysis framework that combines both averaging and periodic shooting

approaches is introduced. To focus on balance analysis only first, the reduced-order, two

DOF, FWMAV model introduced in Sec. 4.2.4 is considered. Thanks to the inherent stability

of the two DOF system (4.8), due to various damping actions, any deviation from equilibrium

will be attributed to unbalance. Hence, balance is decoupled from stability and could be

scrutinized independently. The averaging techniques introduced in Chapter 2 are applied

to the two DOF, multi-body, NLTP FWMAV system (4.8) to perform a mathematically-

rigorous analysis for the balance of FWMAVs at hover. That is, the single-body and direct

averaging assumptions, that are commonly adopted in analyzing balance and stability of

FWMAVs and insects, are relaxed. Moreover, an optimized periodic shooting method is

employed to numerically capture the corresponding periodic orbit and verify the obtained

results. Finally, we provide a combined averaging-shooting approach for the balance and

stability analysis of NLTP systems that (i) unlike typical shooting methods, does not require

an initial guess; (ii) provides more accurate results than the analytical averaging approaches,

hence relaxing the need for intractable high-order averaged dynamics; and (iii) allows a

deeper scrutiny of the system dynamics, in contrast to numerical shooting methods.

4.3.1 Assuming a Prescribed Wing Motion

Ignoring the wing flapping dynamics (i.e., the ϕ-dynamics) in the two DOF system (4.8)

results in the following single DOF system

ẇ(t) = g − kd1 |ϕ̇| (t) w(t)− kL ϕ̇(t)2, (4.16)
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where the flapping angle ϕ is assumed to follow a cosine wave form: ϕ(t) = −Φ cosωt. By

applying first order averaging on the single DOF system (4.16) and solving for the required

Φ to achieve hovering, i.e., that makes w̄ = 0 a fixed point for the averaged dynamics of the

system (4.16), we obtain

Φtrim =

√
2g

kLω2
, (4.17)

which has been derived before by Doman et al. [136] and others.

Figure 4.6 shows a time simulation of the one DOF NLTP dynamics (4.16) with Φtrim

determined from (4.17) using the morphological parameters of the hawkmoth insect, given

in Appendix F. It is noted from Fig. 4.6 that the system (4.16) indeed goes into the hovering

periodic orbit (w̄ = 0). Therefore, the first order averaging is sufficient to estimate the

flapping requirements in the absence of the flapping-wing dynamics.
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Figure 4.6: Response of the hawkmoth one DOF dynamics (4.16) using Φtrim obtained from
(4.17) and an initial condition, w(0) = 0.
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4.3.2 Effect of Wing Flapping Dynamics

The input to the combined body-flight, wing-flapping two DOF dynamics (4.8) is the flapping

torque τϕ, which is written as

τϕ(t) = U cosωt. (4.18)

Clearly, the two DOF system (4.8), or equivalently (4.9), with τϕ given by (4.18), is not

amenable to the averaging theorem (Theorem 1 in Sec. 2.2), i.e., it is not written in the

standard averaging form (2.9). The periodic forcing vector field Y (x) τϕ(t) is of higher

magnitude and faster time scale (i.e., high frequency) than that of the dynamics (drift)

vector field Z(x). Therefore, averaging theorem cannot be directly applied to system (4.9).

In fact, if direct averaging is applied to (4.15), the time-periodic, zero-mean forcing vector

field Y (x) τϕ(t) would completely vanish. That is, the effects of the flapping-wing dynamics

on the body would be completely ignored. In order to resolve this issue, we utilize the

nonlinear variation of constants formula, explained in Sec. 2.2. As such, the VOC formula is

applied before averaging to obtain the pullback vector field which accounts for the effect of

the oscillating forcing vector field on the dynamics (drift) vector filed. That is, the averaged

dynamics will be determined from (2.15).

It should be noted that flapping insects, indeed, apply torques at the wing root [140]. There-

fore, the current analysis with the assumed simple waveform for the flapping torque is more

representative of their natural operation. In contrast, FWMAVs are typically actuated by

DC motors or piezo-electric actuators through a drive mechanism where the flapping torque

is not the ultimate input to the mechanical system, but rather an intermediate state in the

full motor-drive-flapping-body dynamics. Clearly, this full coupling is beyond the scope of

this work. The interested reader is referred to the recent effort by Nogar et al. [141], with

less emphasis on the higher-order averaging interactions.

80



VOC Formula with First Order Averaging

Thanks to the mechanical structure of the multi-body, two DOF system (4.8) and because

the non-conservative forces (aerodynamic loads) are quadratic in the generalized velocities

(w and ϕ̇), the integral series of the pullback vector field (2.13) terminates after two terms.

Hence, the pullback vector field can be written as

F (x(t), t) = Z(x(t)) + [Y , Z]
t∫

0

τϕ(s1) ds1 + [Y , [Y , Z]]
t∫

0

s1∫
0

τϕ(s2) τϕ(s1) ds2 ds1.

(4.19)

The averaging formulas, as defined in (2.17) and (2.18), are then applied to the pullback

vector field (4.19) to obtain the first term in the averaging series [142, 143]

Λ1(x̄(t)) =



w(t)

ϕ̇(t)

g − kLϕ̇(t)2 − kd1w(t) |ϕ̇(t)|+

+ U2

4I2Fω
2 (−2kL − kd1w(t) sign′(ϕ̇(t)))

−kd3w(t)ϕ̇(t)− kd2 |ϕ̇(t)| ϕ̇(t)+

+ U2

4I2Fω
2 (−2kd2 sign(ϕ̇(t))− kd2ϕ̇(t) sign′(ϕ̇(t)))



. (4.20)

The first-order-averaged system (4.20) can be written in terms of the symmetric product of

the control vector field Y (x) as [47], [139]

˙̄x(t) = Z(x̄(t)) +
U2

4 ω2
[Y , [Y , Z]] (x̄(t)). (4.21)

It should be noted that because the assumed cosine waveform for τϕ satisfies
∫ T

0

∫ t
0
τϕ(σ)dσdt =

0, application of the VOC and first-order averaging preserves the mechanical structure of
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the system as noted from the resulting averaged pullback vector field in Eq. (4.20); the first

two equations are simple kinematic equations.

To achieve balance at hover, we solve Λ1(0) = 0. The third equation implies

Utrim1st =

√
2 gI2

Fω
2

kL
, (4.22)

while the other three equations are automatically satisfied at the origin. If the torque

amplitude U is written in terms of the flapping amplitude Φ as U = IFω
2Φ, then Eq.

(4.22) yields the exact same result for Φtrim as Eq. (4.17). That is, first-order averaging

on the single DOF system (4.16), ignoring the wing dynamics, is equivalent to first-order

averaging after applying the VOC on the two DOF system (4.8). However, while the direct

averaging approach was successful in ensuring hovering for the single DOF case, its equivalent

requirements (4.22) in the case of multi-body dynamics is not successful in determining the

correct flapping torque amplitude for hover. Figure 4.7 shows the response of the NLTP

system (4.8) to the oscillating τϕ(t) shown in Eq. (4.18) with an amplitude determined from

Eq. (4.22) using the morphological parameters of the hawkmoth insect. The insect/FWMAV

dynamics goes into a stable periodic orbit that is corresponding to a vertical descent at an

average speed of 0.25 m/s. That is, the control input amplitude obtained from Eq. (4.22) is

not sufficient to maintain the vehicle in the hovering periodic orbit. Hence, when accounting

for the flapping-wing dynamics, direct averaging (even with the aid of the VOC formula) fails

to capture important interactions between the two vector fields Y and Z; i.e., aerodynamic-

dynamic interactions. Therefore, higher order averaging is invoked.

It is interesting to mention that the correct balance requirement can be obtained with the

above described procedure but at higher frequencies; that is, as mentioned in Theorem 2,

there is a frequency limit (signified by 1/ε∗) beyond which the obtained periodic orbit for

the NLTP system is guaranteed to take values in an open ball of radius O(1) centered at the
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Figure 4.7: Response of the hawkmoth two DOF dynamics (4.8) using Utrim obtained from
(4.22) and an initial condition, x0 = 0.

fixed point of the averaged system. To investigate this point more thoroughly, we double

the flapping frequency and decrease the mean angle of attack αm accordingly (almost one

fourth) to maintain a similar flapping angle amplitude Φ. In this case, the aerodynamic

lift due to flapping is exactly the same. This modification of the flapping parameters while

maintaining the aerodynamic lift results in a pure dynamic effect. We use the same formula

for flapping torque amplitude, Eq. (4.22), obtained through applying first order averaging

after VOC. The resulting NLTP system response is shown in Fig. 4.8. It is noted from Fig.

4.8 that the average vertical velocity is almost zero (i.e., hovering balance is ensured) and

the periodic orbit is centered at the fixed point equilibrium (hovering), while ϕ(t) oscillates

with a relatively large amplitude.
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Figure 4.8: Response of the hawkmoth two DOF dynamics (4.8) at higher flapping frequency
(two times the biological value) and lower αm using Utrim obtained from (4.22) and an initial
condition, x0 = 0.
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VOC Formula with Third Order Averaging

If the frequency limit, dictated by averaging theorems (e.g., Theorem 2), is infeasibly high

(e.g., the hawkmoth flapping frequency is below that limit), then the trim result (4.22)

obtained through first order averaging after the VOC formula would not be sufficient to

ensure the desired equilibrium periodic orbit, as discussed in the previous subsection. Hence,

higher order averaging along with the VOC formula would be required. The second order

averaging unfortunately yields the same balance requirement, Utrim, as given in Eq. (4.22).

That is, the second order averaging does not contribute to the balance problem, which

invokes third order averaging.

Applying third-order averaging, as shown in Eq. (2.18), on the pullback vector field (4.19),

we obtain too lengthy and complicated expressions for the averaged dynamics to show here.

Moreover, the mechanical structure is ruined. To explain this point further, recall that the

equations of motion of an n-DOF mechanical system are typically represented by n second

order differential equations. To represent a mechanical system in a standard first-order

form, the first n equations typically define the velocities; i.e., dq/dt = q̇ where q represents

generalized coordinates (positions and angles). Such a structure may not be maintained

under the higher-order averaging process. When it is lost, the balance (trim) problem of the

averaged system is quite intricate. Since the first two equations in the third-order-averaged

system are not trivial (mechanical structure is not preserved), trim analysis at nonzero ¯̇ϕ

might be required. As such, a pure analytical solution becomes hard to find. From the

multiple solutions of the nonlinear set of algebraic equations for trim, the most feasible

numerical solution can be written as [143]

Utrim3rd
= 1.0463

√
2 gI2

Fω
2

kL
. (4.23)
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Figure 4.9 shows the simulation of the NLTP dynamics (4.8) of the hawkmoth using the

input torque amplitude obtained form Eq. (4.23). The FWMAV’s velocity is significantly

decreased from 0.25 m/s to 0.02 m/s. That is, the obtained equilibrium is closer to the

hovering periodic orbit where w oscillates with a zero mean. This implies the ability of

third order averaging to more accurately capture the aerodynamic-dynamic interactions and

determine the appropriate balance requirements. However, if more accurate trim results

are needed, higher-order averaging (higher than third) would be required, which may be

impractical to carry out.
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Figure 4.9: Response of the hawkmoth two DOF dynamics (4.8) using Utrim obtained from
(4.23) and an initial condition, x0 = 0.

4.3.3 Combining Averaging with Periodic Shooting

In this subsection, we solve for Utrim simultaneously with capturing the corresponding peri-

odic orbit. This is achieved through using the optimized shooting technique, explained in

Appendix E, to simultaneously obtain the trim requirements to ensure a desired periodic

orbit (e.g., hovering) along with capturing the periodic orbit itself. That is, the parameter

Utrim is considered as an unknown (design variable in the optimization problem) rather than

an input to the algorithm and adding one more equation to the residual vector that ensures
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hovering. More precisely, we require

w̄ = 0 ⇔ z(0) = z(T ), (4.24)

where ż = w. This is equivalent to requesting a periodic solution for the state z representing

the vertical displacement of the FWMAV.

Applying the optimized shooting method on the two DOF FWMAV system (4.8) with the

additional constraint (4.24), and starting the algorithm with an initial guess for Utrim as

obtained from averaging approaches (Utrim1st or Utrim3rd
), we obtain the following results

[143]

w(0) = 0.0177 m/s

ϕ̇(0) = 50.3857 rad/s

Utrimexact = 1.05169
√

2 gI2Fω
2

kL
.

(4.25)

Figure 4.10 shows a time simulation of the NLTP system (4.8) with zero initial conditions

and Utrimexact . It is noted from Fig. 4.10 that the system tends rapidly (after around 20

cycles) to an average vertical velocity that is very close to zero, i.e., a hovering periodic

orbit. Figure 4.11 shows the captured periodic orbit corresponding to Utrimexact . Also, the

periodic orbits resulting from the first and third order averaging trim requirement, Utrim1st

and Utrim3rd
respectively, are shown on the same figure for comparison.

One might argue that if the optimized shooting method yields the accurate balance require-

ments for hovering (an accurate Utrim), then the analytical averaging techniques might not

be necessary. To address this argument we mention two important points. First, the op-

timized shooting method explained above is not guaranteed to yield the correct results if

it is started at any arbitrary initial guess. The initial guess has to be close enough to the

correct result, and this is where the proposed, self-contained, combined averaging-shooting
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Figure 4.10: Vertical velocity w using
Utrimexact for 40 cycles.
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Figure 4.11: The corresponding peri-
odic orbits to Utrimexact , Utrim3rd

, and
Utrim1st

approach proves its effectiveness. Second, the presented work is a first part of an effort that

aims at analyzing not just the balance of FWMAVs but also their stability characteristics.

Although FWMAVs stability could be investigated numerically using the Floquet theorem

after a periodic orbit is captured, this would only yield a yes/no answer to the stability

question without any insights as to why this system has been rendered stable/unstable and

what are the stabilizing/destabilizing mechanisms. On the other hand, using the accurate

balance requirements obtained from the numerical shooting algorithm and feeding it back to

the averaged dynamics, one can gain insights into different stabilizing/destabilizing mech-

anisms (e.g., positive/negative stiffness) by comparing the entries of the Jacobian of the

first- and higher-order averaged dynamics at the ensured equilibrium point. Hence, one can

identify potential unconventional stabilizing mechanisms (e.g., vibrational stabilization), as

performed by Taha et al. [50] on the single body problem. As such, the proposed approach

exploits (i) the accuracy of numerical shooting methods in comparison to the analytical av-

eraging approaches, hence, relaxing the need for intractably high-order averaging, and (ii)

the analytical tractability of averaging to scrutinize the dynamical behavior of the system.

Finally, Fig. 4.12 summarizes the analysis procedure and results in this section [144, 143].
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Periodic Orbit Stability Characterization

Figure 4.12: A schematic for the analysis procedure and results in this section.

4.4 Balance and Stability Analysis of the Three DOF

FWMAV Model

In this section, we use the geometric control and averaging tools explained in Chapter 2

to investigate the balance and stability of the three DOF model derived in Sec. 4.2.5.

As explained earlier, the direct application of the averaging theorem to the NLTP system

(4.15), with zero-mean τϕ, yields trivial results (i.e., no effect of flapping on the dynamics).

Therefore, the VOC formula is applied before averaging to obtain the pullback vector field

(2.13), which accounts for the effects of the forcing vector field on the dynamics (drift) vector

filed. That is, the averaged dynamics will be determined from Eq. (2.15). It should be noted

that because of the mechanical structure of the system (4.15) and the non-conservative forces

(aerodynamic loads) being quadratic in the generalized velocities, the integral series (2.13)

of the pullback vector field is expected to terminate after two terms [47]. However, the

essentially-high-order smooth approximation of the sign function hinders the termination

after two terms in this case. The pullback series of the system (4.15) terminates after three
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terms and can be written as

F (x, t) = Z(x) + [Y , Z]
t∫

0

τϕ(s1) ds1 + ad2

Y Z
t∫

0

s1∫
0

τϕ(s2) τϕ(s1) ds2 ds1

+ ad3

Y Z
t∫

0

s2∫
0

s1∫
0

τϕ(s3)τϕ(s2) τϕ(s1) ds3 ds2 ds1,

(4.26)

where adnY Z ≡ [Y , adn−1

Y
Z].

4.4.1 Balance (Trim)

Unlike the simpler two-DOF model, which has been investigated in the previous section, a

simple harmonic waveform (τϕ = U cosωt) for the the flapping torque cannot achieve balance

for the three-DOF system (4.10), or equivalently (4.15), where the body pitching angle θ is

a state. The reason is that a non-zero mean flapping angle may be required to adjust the

center of pressure of the aerodynamic forces with respect to the body center of gravity to

achieve pitch trim. Therefore, we suggest writing the input torque τϕ(t) as

τϕ(t) = U1 cosωt+ U2 sinωt, (4.27)

where the resultant amplitude of the two sinusoids will be denoted by UR (i.e., UR =√
U2

1 + U2
2 ). Note that this same objective could be achieved by using only one harmonic

with a phase shift. However, the adopted form (4.27) is easier to manipulate during the

variation of constants and averaging processes.

Using the input waveform in Eq. (4.27), the averaged dynamics (i.e., the averaged pullback

vector field (4.26)) is obtained as

˙̄x = F̄ (x̄) = Z(x̄)+
U2

ω
[Y , Z] (x̄)+

(
U2

1 + 3U2
2

4 ω2

)
ad2

Y Z(x̄)+

(
31U2

1U2 + 5U3
2

12 ω3

)
ad3

Y Z(x̄).

(4.28)
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In order to achieve balance at hovering, we solve for the trim input torque amplitudes, U1t

and U2t , along with a fixed point x̄0 that ensure ˙̄x = 0. Now on, we consider the hawkmoth

insect for this analysis whose morphological parameters are given in Appendix F. As such,

we obtain

U1t = 0.97 U †

U2t = 0.24 U †

x̄0 = [0 7.12◦ 0 0 0 0]∗

, (4.29)

where the subscript t denotes trim/balance condition at hover, U † is the input torque am-

plitude needed to balance the two DOF model at hover using a simple harmonic waveform,

and is equal to Utrim1st in Eq. (4.22).

It should be noted that the resultant trim input torque amplitude (URt =
√
U2

1t + U2
2t)

is equal to U †. That is, the flapping torque amplitude required to maintain the hovering

equilibrium for the considered three DOF system (4.15) is the same as that of the previously-

analyzed two DOF system in Sec. 4.3; only phase shift is required to achieve pitch trim as

explained earlier.

4.4.2 Stability Analysis

Now, that balance/trim at the hovering equilibrium has been ensured for the averaged system

(4.28), a linearized version of the averaged dynamics could be obtained at the hovering

fixed point (4.29). Having an LTI version of the NLTP system (4.15) at hover would: (i)

significantly simplify stability analysis: it can be analyzed by checking eigenvalues; and

(ii) allow us to obtain analytical (or semi-analytical) results and gain insights into various

stabilizing/destabilizing mechanisms.

To obtain an LTI representation of the NLTP dynamics (4.15), we evaluate the Jacobian
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matrix, A, of the averaged nonlinear dynamics (4.28) at the hovering trim point (U1t =

0.97 U †, U2t = 0.24 U †, z̄ = 0, ϕ̄ = 7.12◦, θ̄ = 0, w̄ = 0, ¯̇ϕ = 0, ¯̇θ = 0). As such, we obtain

d

dt



z̄

ϕ̄

θ̄

w̄

¯̇ϕ

¯̇θ


= [A](x̄) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −0.19 4.7 −4.05 0.0002 0.1

0 −19 −621.98 −0.85 −9.55 0.005

0 6093 −72.96 269.22 −5.42 −1.54





z̄

ϕ̄

θ̄

w̄

¯̇ϕ

¯̇θ


, (4.30)

where [A] =
[
∂

¯F
∂x̄

] ∣∣∣∣
x̄0

.

Investigating the eigenvalues of the linearized system (4.30), we find

eigenvalues(A) = −33.85± 31.9 i, 28.31± 30.8 i, − 4.05, 0,

which indicates an unstable averaged system due to the complex-conjugate pair (28.31 ±

30.8 i) having positive real parts. This implies that a feedback control would be needed to

stabilize this system at the hovering equilibrium. This result is consistent with many of the

previous analyses in the literature [113, 114, 109, 145, 125, 146] that concluded the hovering

equilibrium of FWMAVs/insects to be open-loop unstable.

4.4.3 Stability Characterization

Thanks to the simultaneous analytical tractability and mathematical rigor of the geometric-

control-averaging tools, the stability of the NLTP system (4.15) could be investigated on

a deeper level through scrutinizing the correspondent LTI system. The linearization of the
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averaged system (4.28) at the hovering fixed point x̄0 can be written abstractly as

A =
∂F̄

∂x̄

∣∣∣∣
x̄0

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 A42 A43 A44 A45 A46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66


, (4.31)

where the analytical expressions of the elements of the matrix A are shown in detail in

Appendix D.

Since the open-loop instability at the hovering equilibrium of FWMAVs/insects has been

attributed mostly to the lack of body pitch stiffness [113, 114, 109, 145, 125, 146]. It is of

great interest to scrutinize the stability derivative A63 which represents body pitch stiffness:

it corresponds to a pitching moment resulting from a pitch angle disturbance. The stability

derivative A63 can be analytically written as

A63 =
1

I2
F Iybmvω2

CLαmwρ cosαm

(
cosαm

(
c̄d̂

(
I11k

(
−5.23IFU2ω + 0.06U2

1 + 0.18U2
2

)
+

+ I12

(
3.9IFU2ω − 0.05U2

1 − 0.14U2
2

))
+ c̄d̂I21 cosαm

(
U2(0.02U2 − 2.4IFω) + 0.01U2

1

)
+

+ I21rcg

(
U2(0.18U2 − 19.27IFω) + 0.06U2

1

))
+ rcg

(
I11k

(
U2(1.48U2 − 41.88IFω) + 0.49U2

1

)
+

+ I12

(
U2(31.4IFω − 1.1U2)− 0.37U2

1

)))
.

Considering the hawkmoth parameters, we find A63 = −72.96 as shown in Eq. (4.30). The

negative sign indicates a restoring pitching moment under a pitch angle perturbation from

the equilibrium, hence a stabilizing pitch stiffness. This result revises the community’s belief.

That is, the natural (open-loop) longitudinal flight dynamics possesses a stabilizing body

pitch stiffness mechanism [147].
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To investigate the main contributors to this pitch stiffness mechanism, we write the averaged

dynamics in terms of its two components: the dynamics vector field Z and the Lie brackets

between the dynamics and control vector fields (i.e., control effects), as shown in Eq. (4.28).

As such, the Jacobian matrix A can be considered as an addition of two matrices Ad and

Ac, where

Ad = ∂
∂x̄

∣∣∣∣
x̄0

(
Z

)
Ac = ∂

∂x̄

∣∣∣∣
x̄0

(
U2

ω
[Y , Z] +

(
U2
1 +3U2

2

4 ω2

)
ad2

Y Z +

(
31U2

1U2+5U3
2

12 ω3

)
ad3

Y Z

) , (4.32)

where the subscripts d and c refer to dynamics and control, respectively. Hence, the effect

emanating from each source can be shown separately. We find that, as maybe expected,

Ad63 = 0. Hence, the pitch stiffness emanates solely from flapping actuation. This fact

implies that the high-frequency periodic forcing applied on the wings induces a stabilizing

effect on the slower body pitching motion. That is, this pitch stiffness mechanism relies

essentially on the vibrational stabilization phenomenon.

It should be noted that the pitch stiffness termA63 stems from a combined inertial-aerodynamic

root; i.e.,

lim
mw→0

A63 = 0 and lim
CLα→0

A63 = 0.

The pitch stiffness term A63 can be abstractly written as

A63 = k63 mw cos φ̄0M
(I)
yw ,

where k63 is a function of the vehicle parameters and the flapping torque amplitude and

frequency, φ̄0 is the average flapping angle at the trim condition (4.29), and M
(I)
yw is an

aerodynamic derivative that represents a pitching moment in the inertial frame due to a

disturbance in the vertical velocity w. For an intuitive explanation of this pitch stiffness
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mechanism and the role of wing inertia, consider a body pitch up disturbance ∆θ. This

pitch disturbance causes a change of the lift force vector direction, which, in turn, results

in a deficit in the lift force needed for balance. Hence, a downward vertical velocity dis-

turbance ∆w would be generated. The vertical velocity disturbance ∆w can be written as

an addition of two components: ∆w = ∆w̄ + ∆w̃, where ∆w̄ is the cycle-average and ∆w̃

is a zero-mean oscillatory component because of the fast time-scale of the wing dynamics.

Due to the aerodynamic derivative M
(I)
yw , a pitching moment is generated as a consequence

of ∆w. The derivative M
(I)
yw can be decomposed similarly: M

(I)
yw = M̄yw + M̃yw . As such,

the resulting pitching moment ∆M
(I)
y = M

(I)
yw ∆w will have three contributions: (i) M̄yw∆w̄

which is captured by direct averaging; (ii) M̄yw∆w̃ + M̃yw∆w̄ whose net effect cancel over

the flapping cycle (zero mean); and (iii) M̃yw∆w̃ which is the multiplication of two zero-

mean terms and will have a non-zero mean value if the variations of these two terms are

synchronized. It should be noted that the last contribution is clearly due to the oscillation

(vibration) of the system characteristics (i.e., the multi-time-scale nature of the system); it

is typically neglected by direct averaging. The wing inertial effects promote the last con-

tribution, M̃yw∆w̃, through amplifying ∆w̃ resulting from a pitch disturbance. This effect

can be seen from the ẇ equation in the three DOF NLTP system, i.e., the fourth line in Eq.

(4.15). The right hand side of that line contains terms like the following: mwrcgθ̇ϕ̇ cos θ cosϕ;

mwrcgθ̇
2 sin θ sinϕ; mwc̄d̂ cosαmθ̇ϕ̇ cos θ sinϕsign(ϕ̇); and mwc̄d̂ cosαmwθ̇ cos θ sinϕsign(ϕ̇).

This implies that these terms are producing body’s vertical velocity through an interaction

between the wing inertial effects and the body pitch angle/rate. Therefore, any first order

analysis that neglects the wing inertial effects would yield a zero pitch stiffness for the body.

4.4.4 Averaging-Aided Shooting-Floquet Analysis

Although the adopted approach (applying the VOC formula first to the NLTP system and

then averaging over the flapping cycle) captures a wide range of aerodynamic-dynamic in-
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teractions, it is still an approximation of the true time-periodic. Thus, there are some

phenomena that are not very well captured in the averaged dynamics sense. One important

aspect is the effect of the wing-body interactions on the generated lift over the cycle. That

is, an averaged lift over the flapping cycle that is equal to the weight of the vehicle may not

be enough for balance. This phenomenon has been referred to as a negative lifting mecha-

nism in an earlier work by Taha et al. [139]. This phenomenon, in turn, affects stability

since balance and stability are coupled in this problem. That is, if the flapping input torque

amplitudes are not enough to ensure balance at hover, the vehicle will be deviating from its

hovering periodic orbit (or fixed point in the averaged sense).

Therefore, in this subsection, a time-periodic analysis will be performed by using the averag-

ing analysis results as an initial guess for an optimized periodic shooting method [148]. This

shooting method is used to determine the hovering periodic orbit of the three DOF system

(4.15) simultaneously with more accurate (i.e., accounts for the negative lifting mechanism)

values of the trim input torque amplitudes (U1t , U2t). This procedure has been proposed

and applied on a simpler model in the previous section. The Floquet theorem [149] is then

used to analyze stability of the captured hovering periodic orbit. In the Floquet stability

analysis, the NLTP dynamics (4.15) is linearized about the numerically-captured periodic or-

bit, yielding a linear time-periodic (LTP) system. The stability of the obtained LTP system

is then analyzed through investigating the monodromy matrix: the state transition matrix

evaluated after one period T . The eigenvalues of the monodromy matrix (also called Floquet

multipliers) have to be inside the unit disk (in the complex plane) for the periodic orbit to

be stable. The Floquet multipliers could then be transformed into Floquet exponents, which

represent eigenvalues of the corresponding continuous LTI system. That is, a positive-real-

part Floquet exponent implies instability. Therefore, the obtained Floquet exponents will

be used to construct a comparison against the averaging stability results obtained in Sec.

4.4.2.
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Feeding the trim input torque amplitudes (U1t , U2t) from Eq. (4.29) as an initial guess to

the optimized periodic shooting, we obtain the following point on the hovering periodic orbit

along with the associated trim input torque amplitudes

ϕ(0) = −1.1 rad, θ(0) = 0.11 rad, w(0) = −0.01 m/s

ϕ̇(0) = −0.74 rad/s, θ̇(0) = 5.29 rad/s

U1tn = 1.02 U †, U2tn = 0.07 U †,

(4.33)

where the subscript n in U1tn , U2tn , refers to the numerical optimized shooting method.

Investigating the resultant trim amplitude, we find URtn
=
√
U2

1tn
+ U2

2tn
= 1.0225 U †. That

is, the resultant trim amplitude from the optimized shooting is slightly higher than that of

averaging. This result conforms with the previous findings for the two DOF model in Sec. 4.3

that averaging may not very well capture the negative lifting phenomenon (i.e., averaging

underestimates the required flapping torque to ensure hovering). Figure 4.13 shows the

periodic orbit corresponding to the initial conditions and trim input torque amplitudes in

(4.33).

To investigate stability, the NLTP dynamics (4.15) is linearized about the captured hovering

periodic orbit (4.33). The Floquet multipliers for the obtained LTP system are found to be

0.69± 1.99i, 0.11± 0.22i, 0.87, 0,

which also indicates an unstable hovering periodic orbit due to the existence of the complex-

conjugate pair (0.69± 1.99i) outside the unit disk. Figure 4.14 shows the Floquet exponents

corresponding to the above Floquet multipliers along with the eigenvalues from averaging

for comparison [147]. Both techniques yield similar stability characteristics: an unstable

oscillatory mode, a stable oscillatory mode, a stable eigenvalue on the real line, and a neutral

(zero) eigenvalue. Note that the zero eigenvalue corresponds to the ignorable coordinate z

in both cases.
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Figure 4.13: The captured hovering periodic orbit (4.33) for the NLTP system (4.15) under
the input waveform (4.27) and using the hawkmoth parameters.

4.4.5 Effects of High Flapping Frequency

It is well-known that the vibrational pitch stabilization phenomenon is intimately tied to

high-frequency periodic forcing [25, 28, 30, 29]. Therefore, the effect of flapping frequency

on stability of the NLTP system (4.15) is investigated in this subsection.

Considering a flapping frequency that is ten times the documented value for the hawkmoth,

the captured hovering periodic orbit is found to have the following trim input torque ampli-
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Figure 4.14: Eigenvalues determining the stability of the NLTP system (4.15) for the hawk-
moth case using averaging and Floquet theorem.

tudes

Uhf
1tn

= 1.00 U †

Uhf
2tn

= 0.01 U †
, (4.34)

where the superscript hf denotes high frequency. It is noted that the resultant amplitude

Uhf
Rtn

= 1.00032 U †, which is less than that of the original flapping frequency and closer to

the averaging one. This implies that the negative lifting mechanism effects tends to diminish

as the flapping frequency increases, hence the closeness to the averaging result. This, in fact,

conforms with the averaging theorem statement that the averaging results are valid for high

enough frequency. That is, the averaging results become more representative of the physical

(time-periodic) system at higher frequencies.

The obtained Floquet multipliers for this high-frequency periodic orbit are

1.1055± 0.1297i, 0.8745± 0.1074i, 0.9849, 0,
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whose unstable pair (1.1055±0.1297i) shifts towards the stable region. This indicates that the

higher flapping frequency amplifies the effect of the vibrational pitch stabilization mechanism.

However, to achieve passive (open-loop) stability, a change in the vehicle parameters (e.g.,

wing mass, wing size, hinge location, etc.) maybe required.

4.4.6 Comparison with the Corresponding Single-Body Model

One legitimate question that needs to be addressed is: Can direct averaging (which is essen-

tially less rigorous) capture such stabilizing effects? Realizing that direct averaging of the

NLTP system (4.15) would yield trivial results (completely ignoring the flapping effects), the

simplest non-trivial analysis, avoiding differential geometric tools (e.g., VOC), would have

to ignore the flapping dynamics and assume a waveform for the flapping angle ϕ(t) as if the

flapping wing is controlled by a fast servo mechanism. This analysis essentially neglects the

multi-body nature of the problem (i.e., a single body problem). Therefore, it is interesting to

investigate the differences between the three DOF model (4.15) and the single-body version

of it. In the latter, the VOC formula would not be needed. After applying direct averaging

to the single-body version of the three DOF system (4.15) and linearizing the resulting NLTI

system, we obtain the following Jacobian matrix

d

dt


θ

w

θ̇

 = [Asb](xsb) =


0 0 1

0.01 −0.15 0

0 −0.03 −0.88



θ

w

θ̇

 , (4.35)

where the state vector is xsb = [θ w θ̇]ᵀ. It should be noted that the pitch stiffness, the

element (3, 1), is zero, whereas in the multi-body averaged system (4.30), the pitch stiffness

has a significant value (−72.96). This implies that the discovered pitch stiffness mechanism

is essentially induced due to the mutual interactions between the body and wing dynamics

[147]. That is, such a mechanism is revealed only when the wing flapping dynamics is
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included and/or higher-order averaging is used.

4.5 Conclusion

In this chapter, the full multi-body, nonlinear, longitudinal, flight dynamics of FWMAVs are

formulated and cast in a differential-geometric-control framework. We relaxed the two com-

mon assumptions (neglecting wing inertia and performing direct-averaging) usually adopted

in the balance and stability analysis of FWMAVs and insects. We noted that while direct

averaging provides non-trivial results, though inaccurate, when ignoring the wing inertial

effects, it completely fails if this assumption is relaxed; it neglects the entire flapping effects.

To overcome this predicament, we provided a mathematically rigorous analysis for the bal-

ance and stability of FWMAVs by combining tools from chronological calculus, geometric

control, and averaging.

On the other hand, an optimized shooting method was adopted to numerically capture

the resulting periodic orbits. To circumvent providing an accurate initial guess as needed

by shooting methods, we proposed combining the averaging approach with the shooting

method; the result of first-order averaging after the VOC formula is a convenient initial

guess. The shooting method was then used to determine a more accurate estimate for the

hovering balance flapping requirements than those resulting from higher-order averaging.

Moreover, these requirements (flapping parameters) can then be fed to the analytically de-

termined higher-order averaged dynamics to scrutinize the dynamical behavior of the system

for discovery of potential unconventional stabilizing mechanisms (vibrational stabilization).

The most important finding of this effort is that the high-frequency periodic forcing on

FWMAVs/insects induces vibrational stabilization mechanisms to their relatively slow body

dynamics. These stabilizing mechanisms are mainly due to the interaction between the aero-

100



inertial loads on the flapping wings due to the fast flapping motion and those due to the slow

body motion: what we call aerodynamic-dynamic interaction. The main conclusion is that

this interaction is instrumental for the open-loop stability analysis of such nonlinear time-

periodic systems. Moreover, it cannot be captured by direct averaging or without accounting

for the wing flapping dynamics. Therefore, the differential-geometric-control tools are essen-

tial to properly analyze the complex dynamics of these systems as they naturally account

for the multi-body dynamics, hence capture the vibrational stabilization mechanisms due to

aerodynamic-dynamic interactions. Finally, Fig. 4.15 summarizes the analysis performed in

this section.

Multi-body NLTP FWMAV model

VOC + Averaging

Use OSM to capture the
hovering PO along with Utn

NLTI system

Balance anlaysis to find the
hovering fixed point x0 alongUse Ut as initial guess

Linearization about x0

Linearization about
the hovering PO

LTP system LTI system

Stability analysis through eigenvaluesStability analysis through Floquet
Verify results

Reveal and investigate the vibrational
stabilization mechansim

Reveal and investigate the negative lifting mechanism
and the effect of high flapping frequency

Compare with the corresponding
single-body model

with trim torque amplitude Ut

Figure 4.15: Summary of the analysis steps performed in Sec. 4.4.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Airplane Nonlinear Controllability and Motion Planning

The fixed-wing airplane flight dynamics has been formulated in a differential-geometric-

control framework. A new rolling/yawing mechanism that could be utilized for stall recovery

has been discovered. A reduced-order, three DOF flight dynamics model has been developed

to perform a comprehensive investigation of the novel roll mechanism. Employing nonlinear

motion planning tools, the maximum capability of the novel roll mechanism near stall has

been examined and compared to that of the conventional one. The novel roll mechanism

has been proved to be superior to the conventional one at near-stall operating points, where

aileron sensitivity degrades. In particular, the novel roll mechanism was able to generate

more than four times as much roll as the conventional one was capable of at that operating

point, abiding by the same control input limits and within the same amount of time. Hence,

the novel roll mechanism may provide a more efficient way to recover from stall/spin situa-
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tions in commercial aircraft. Also, it could be employed by fighter aircraft to perform high

angle of attack (low speed) maneuvers.

Moreover, a methodology for analyzing the nonlinear controllability of the airplane utilizing

the differential-geometric control tools has been introduced. Employing this methodology,

nonlinear controllability analysis in case of complete hydraulic failure, i.e., using thrust

controls only, has been performed. The system has shown to be nonlinearly controllable if

either IXZ or Mδts is non-zero., despite being linearly uncontrollable.

5.1.2 FWMAVs Differential-Geometric-Control Formulation and

Averaging Analysis

The two common assumptions (neglecting wing inertia and performing direct-averaging) usu-

ally adopted in balance and stability analysis of FWMAVs and insects have been relaxed.

Hence, the full (five DOF) multi-body, nonlinear, longitudinal flight dynamics of FWMAVs

have been formulated and cast in a differential-geometric-control framework. A mathemat-

ically rigorous analysis for the balance and stability of FWMAVs has been performed by

combining tools from chronological calculus, geometric control, averaging, periodic shooting,

and Floquet theorem.

In particular, a two DOF model (where balance and stability are decoupled) has been ex-

tracted from the full model to rigorously investigate the balance problem at hover. A pro-

cedure that combines averaging and periodic shooting techniques has been introduced to

accurately capture the balance requirement at hover. It has been found that the a cycle-

averaged lift force that is equal to the vehicle’s weight is not enough to maintain balance at

hover, due to the existence of a negative lifting mechanism. The negative lifting mechanism

is induced by the multi-body (wing-body) interactions that are not typically captured by

a single-body model or even by applying first-order averaging (after VOC formula) on a
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multi-body model. That is, this mechanism is only captured when applying higher-order

averaging on the multi-body model or if the periodic orbit of the multi-body dynamics is

numerically captured.

Moreover, a three DOF (vertical motion, pitching motion, and wing flapping dynamics)

model has been extracted from the full model to rigorously investigate both balance and

stability at hover. The most important finding of the three DOF model analysis is that the

high-frequency periodic forcing on FWMAVs/insects induces vibrational stabilization mech-

anisms to their relatively slow body dynamics. These stabilizing mechanisms are mainly

due to the interaction between the aero-inertial loads on the flapping wings due to the fast

flapping motion and those due to the slow body motion: what we call aerodynamic-dynamic

interaction. The main conclusion is that this interaction is instrumental for the open-loop

stability analysis of such nonlinear time-periodic systems. Moreover, it cannot be captured

by direct averaging or without accounting for the wing flapping dynamics. Therefore, the

differential-geometric-control tools are proven to be essential to properly analyze the com-

plex dynamics of these systems as they naturally account for the multi-body dynamics and

nonlinear phenomena.

5.2 Future Work

5.2.1 Degree of Nonlinear Controllability

The nonlinear controllability concept is a qualitative (binary) one; a given system is either

controllable or not. That is, there is no quantitative measure that gives an insight into

how easy/hard to steer a system to its equilibrium from a given point in the state space.

However, such a quantitative measure has been developed for linear controllability. Eising

[150] introduced the concept of distance from uncontrollable to characterize how weakly con-
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trollable a linear system is. Later, Hamdan and Nayfeh [151] defined the concept of modal

controllability measure which provides a continuous measure (from zero to one) to charac-

terize the linear controllability of each mode (eigenvector) of the linear system. Extending

these quantitative measures to nonlinear systems would allow a rigorous assessment of any

discovered unconventional (Lie bracket action) motion generation mechanism, e.g., the novel

roll mechanism explained in Sec. 3.5.

5.2.2 Experimental Demonstration of the Novel Roll Mechanism

A wind tunnel experiment is recommended to verify the obtained results for the novel roll

mechanism in Sec. 3.5. Figure 5.1 shows a schematic diagram for the experiment apparatus.

The experiment constitutes of a sub-scale airplane model of a commercial transport airplane

that is placed on a test rig which allows for pitch and roll but not yaw. Heaving motion

is also allowed but constrained through a tension spring. The airplane model is trimmed

at a near-stall angle of attack and the aileron and elevator are commanded sinusoid control

signals to realize the Lie-bracket roll mechanism as explained in Sec. 3.5. The roll response is

measured through an inertial measurement unit (IMU) and logged into a computer for further

analysis. The same experiment is repeated while commanding a fixed aileron deflection (i.e.,

the conventional roll mechanism). Responses from both mechanisms are then compared.

CG

Q
P

U∞

W

Figure 5.1: A schematic diagram for the wind tunnel experiment.
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5.2.3 Nonlinear Controllability Analysis of FWMAVs

The flight dynamics of FWMAVs/insects is heavily under-actuated; only two control inputs

are available to the five DOF longitudinal flight dynamics as explained in Sec. 4.2. Hence, a

next step in this endeavor should be performing a rigorous nonlinear controllability analysis,

similar to that performed for the fixed-wing aircraft in Chapter 3. As such, various uncon-

ventional motion generation mechanisms could be revealed. To perform such an analysis,

the equations of motion of the lateral DOF have to be derived and augmented with the lon-

gitudinal ones. Afterwards, the nonlinear controllability of the full (longitudinal and lateral)

nonlinear, multi-body dynamics could be assessed at the hovering equilibrium.
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Appendix A

First order Lie brackets of Airplane

Nonlinear Dynamics Vector Fields

In this Appendix, we show the ten first-order Lie brackets between the vector fields f and

gi’s, Eqs. (3.6–3.10) at the cruise flight condition.
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Appendix B

Derivation of the FWMAV’s Five

DOF Equations of Motion

We use the principle of virtual power [123], as explained in Sec. 4.2, to derive the five-DOF

equations of motion (4.2) in detail. The various terms in Eq. (4.1) for the body and wing

are given below.

B.1 Body

The linear velocity of the reference point of the body axis system (the body’s center of

gravity) and the corresponding angular velocity are written as

vb = ẋiI + żkI and ωb = θ̇jb = θ̇jI,
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where i, j, and k are unit vectors along the x, y, and z directions in the axis-system indicated

by the subscript. Thus, one obtains

∂vb

∂ẋ
= iI

∂vb

∂ż
= kI

∂vb

∂θ̇
= 0

∂vb

∂ϕ̇
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∂ż
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∂ωb

∂θ̇
= jI

∂ωb

∂ϕ̇
= 0

∂ωb

∂η̇
= 0 ,

and

v̇b = ẍiI + z̈kI.

The angular momentum vector of the body about its center of gravity and its inertial deriva-

tive are given by

hb = Iybθ̇jI, ḣb = Iybθ̈jI.

The aerodynamic contribution of the body is neglected and, hence, the body exhibits gravi-

tational forces only with no moments. Thus, the body force in the inertial frame is written

as

f
(I)
b = [0, 0, mbg]∗.

B.2 Wing

The linear velocity of the reference point of the wing frame (the hinge root) and its angular

velocity are written as

vw = (ẋ− xhθ̇ sin θ)iI + (ż − xhθ̇ cos θ)kI, ωw = θ̇jb − ϕ̇ks + η̇jw.
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Thus, one obtains
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and

v̇w = [ẍ− xhθ̈ sin θ − xhθ̇
2 cos θ]iI + [z̈ − xhθ̈ cos θ + xhθ̇

2 sin θ]kI.

The rotation matrix from the inertial frame to the stroke plane frame is given by

Rβ =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 ,

and rotation matrices from the stroke plane frame to the wing frame are

Rϕ =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 , Rη =


cos η 0 − sin η

0 1 0

sin η 0 cos η

 ,

and

Rws = RηRϕ.
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The wing angular velocity vector in the wing frame is

ω(w)
w =


ω1

ω2

ω3

 = Rws


0

θ̇

−ϕ̇

+


0

η̇

0

 =


ϕ̇ sin η − θ̇ cos η sinϕ

θ̇ cosϕ+ η̇

−ϕ̇ cos η − θ̇ sin η sinϕ

 .

The position vector pointing from the hinge root to the wing center of gravity is ρcw =

−d̂iw + rcgjw where d̂ and rcg are the distances between the wing root hinge point and the

wing center of gravity along the negative xw-axis and the yw-axis, respectively. Thus, the

inertial acceleration is obtained as

ρ̈c
(w)
w =


ρ̈1

ρ̈2

ρ̈3

 =


d̂(ω2

2 + ω2
3)− rcg(ω̇3 − ω1ω2)

−d̂(ω̇3 + ω1ω2)− rcg(ω2
1 + ω2

3)

d̂(ω̇2 − ω1ω3) + rcg(ω̇1 + ω2ω3)

 .

Assuming the wing reference frame is fixed in the wing principal axes, the inertial time

derivative of the angular momentum vector represented in the wing frame is written as

ḣ
(w)

w =


ḣ1

ḣ2

ḣ3

 =


Ixω̇1 + (Iz − Iy)ω2ω3

Iyω̇y + (Ix − Iz)ω1ω3

Izω̇3 + (Iy − Ix)ω1ω2

 .

The wing is subject to aerodynamic and gravitational forces. Noting that the yb-components

of the aerodynamic force on each wing are equal and opposite, the force vector applied on

the wing is written as

fw =


Fx

0

Fz


(w)

+


0

0

mwg


(I)

,
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where Fx and Fz are the aerodynamic loads along the xw and zw directions, respectively. The

moment vector comprises three contributions: aerodynamic, gravitational, and the control

torque. The aerodynamic contribution M aw is determined by integrating the radial distri-

butions of the forces Fx and Fz over the wing. That is, M aw = Mxiw + Myjw + Mzkw,

where

Mx = 2

∫ R

0

F ′z(r)rdr, My = 2

∫ R

0

F ′z(r)dac(r)dr, and Mz = −2

∫ R

0

F ′x(r)rdr,

where F ′x(r) and F ′z(r) are the two-dimensional aerodynamic loads on an airfoil that is

at distance r from the wing root and dac(r) is the distance between the hinge line and

the quarter-chord line (aerodynamic center) at each airfoil section along xw direction. The

gravitational contribution is written asM gw = (−d̂iw+rcgjw)×mwgkI. The last contribution

(the control torque) is written as M cw = −τϕks + τηjw, where τϕ and τη are the actuating

torque along the flapping and pitching directions, respectively.

Constructing all the required terms to apply the principle of virtual power (4.1), the five-

DOF equations of motion are obtained as [152] (with obvious correspondence to the abstract

form (4.2))

mw

(
ρ̈1(cos β cos η cosϕ− sin β sin η) + ρ̈3(cos β sin η cosϕ+ sin β cos η)+

+ ρ̈2 cos β sinϕ− xhθ̈ sin θ − xhθ̇
2 cos θ

)
+mvu̇ =

= Fx(cos β cos η cosϕ− sin β sin η) + Fz(cos β sin η cosϕ+ sin β cos η)

(B.1)

− mw

(
ρ̈1(sin β cos η cosϕ+ cos β sin η) + ρ̈3(sin β sin η cosϕ− cos β cos η)+

+ ρ̈2 sin β sinϕ+ xhθ̈ cos θ − xhθ̇
2 sin θ

)
+mv(ẇ − g) =

= −Fx(sin β cos η cosϕ+ cos β sin η)− Fz(sin β sin η cosϕ− cos β cos η)

(B.2)
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mw

[
−xh

(
θ̈ d̂(cos β cos η cos θ cosϕ+ sin β cos η sin θ cosϕ− sin β sin η cos θ+

+ cos β sin η sin θ)− θ̈ rcg sinϕ cos(β − θ)+

+ θ̇2
(
−rcg sinϕ sin(β − θ) + d̂ cos η cosϕ sin(β − θ) + d̂ sin η cos(β − θ)

))
+

+ u̇
(
− sin β rcg sinϕ+ d̂ sin β cos η cosϕ+ d̂ cos β sin η

)
+

+ ẇ
(
− cos β rcg sinϕ+ d̂ cos β cos η cosϕ− d̂ sin β sin η

)]
+

+ Iyb θ̈ + xhmw

[
ρ̈3 sin β sin η cos θ cosϕ+ ρ̈1 (cos η cosϕ sin(β − θ) + sin η cos(β − θ))

− ρ̈3 (cos β sin η sin θ cosϕ− cos β cos η cos θ − sin β cos η sin θ) + ρ̈2 sinϕ sin(β − θ)+

+ g cos θ + xhθ̈ − u̇ sin θ − ẇ cos θ

]
− ḣ3 sin η sinϕ− ḣ1 cos η sinϕ+ ḣ2 cosϕ =

= τη cosϕ− Fz xh

(
sin β(cos η sin θ − sin η cos θ cosϕ)+

+ cos β(sin η sin θ cosϕ+ cos η cos θ)

)
+ Fxxh(cos η cosϕ sin(β − θ) + sin η cos(β − θ))+

− Mx cos η sinϕ+My cosϕ−Mz sin η sinϕ

(B.3)

rcg xh mw cosϕ

(
θ̈ cos θ sin β − θ̈ sin θ cos β − 2θ̇2 cos θ cos β − 2 θ̇2 sin θ sin β

)
+

+ rcg mw cosϕ

(
u̇ cos β + u θ̇ sin β − ẇ sin β + w θ̇ cos β

)
+

+ d̂ xh mw cos η sinϕ

(
θ̈ cos θ sin β − θ̈ sin θ cos β − 2 θ̇2 cos θ cos β − 2 θ̇2 sin θ sin β

)
+

+ d̂ mw cos η sinϕ

(
u̇ cos β + u θ̇ sin β − ẇ sin β + w θ̇ cos β

)
+ ḣ1 sin η − ḣ3 cos η =

= τϕ +Mx sin η −Mz cos η

(B.4)

134



d̂ xh mw

(
θ̈ sin η cos θ cosϕ sin β − θ̈ sin η sin θ cosϕ cos β − θ̈ cos η cos θ cos β+

− θ̈ cos η sin θ sin β − 2 θ̇2 sin η cos θ cosϕ cos β − 2 θ̇2 sin η sin θ cosϕ sin β+

− 2 θ̇2 cos η cos θ sin β + 2 θ̇2 cos η sin θ cos β

)
+ d̂ mw

(
u̇ sin η cosϕ cos β+

+ u̇ cos η sin β + u θ̇ sin η cosϕ sin β − u θ̇ cos η cos β − sin η cosϕ sin β ẇ+

+ ẇ cos η cos β + w θ̇ sin η cosϕ cos β + w θ̇ cos η sin β

)
+ ḣ2 = τη +My,

(B.5)

where mv = mb +mw.
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Appendix C

FWMAV’s Aerodynamic Model

The aerodynamic derivatives in Eq. (4.7) are defined below

Fx0 = ρπ
(
kI11 − 1

4
I12

)
sin η η̇ϕ̇

Fz0 = −1
2
ρ CLαI21 sin η ϕ̇ |ϕ̇| − ρπ

(
kI11 − 1

4
I12

)
cos η η̇ϕ̇

Mx0 = −1
2
ρ CLαI31 sin η ϕ̇ |ϕ̇| − ρπ

(
kI21 − 1

4
I22

)
cos η η̇ϕ̇

My0 = 3
4

(
−1

2
ρ CLαI22 sin η ϕ̇ |ϕ̇| − ρπ

(
kI12 − 1

4
I13

)
cos η η̇ϕ̇

)
− k Fz0

Mz0 = −ρπ
(
kI21 − 1

4
I22

)
sin η η̇ϕ̇

Fxu = ρπ
(
kI01 − 1

4
I02

)
(cos β sin η cosϕ+ sin β cos η) η̇

Fxw = −ρπ
(
kI01 − 1

4
I02

)
(sin β sin η cosϕ− cos β cos η) η̇

Fxq = ρπ

(
kI11 −

1

4
I12

)
sin η cosϕ ϕ̇− ρπ

(
xh

(
kI01 −

1

4
I02

)(
cos η cos (β − θ)+

− sin η cosϕ sin (β − θ)
)

+ cos η sinϕ

(
kI11 −

1

4
I12

))
η̇
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Fxnl = ρπ cosϕ θ̇

(
kI01 −

1

4
I02

)(
u (cos β sin η cosϕ+ sin β cos η) +

+ w (cos β cos η − sin β sin η cosϕ)

)
− ρπ

(
xh cosϕ

(
kI01 −

1

4
I02

)(
cos η cos (β − θ)+

− sin η cosϕ sin (β − θ)
)

+ cos η sinϕ

(
kI11 −

1

4
I12

))
θ̇2

Fzu = −1

2
ρ CLαI11(2 cos β sin η cosϕ+ sin β cos η) |ϕ̇|+

− ρπ
(
kI01 −

1

4
I02

)
(cos β cos η cosϕ− sin β sin η) η̇

Fzw = ρπ

(
kI01 −

1

4
I02

)
(sin β cos η cosϕ+ cos β sin η) η̇+

− 1

2
ρ CLαI11(cos β cos η − 2 sin β sin η cosϕ) |ϕ̇|

Fzq =
1

2
ρ CLαI21 cos η sinϕ |ϕ̇|+

+ ρ CLαI11 |ϕ̇|
(
xh sin β sin η cos θ cosϕ+

1

2
cos β(2xh sin η sin θ cosϕ+ xh cos η cos θ)+

+
1

2
xh sin β cos η sin θ

)
+ ρπ xh cos η cosϕ sin(β − θ)

(
1

4
I02 − kI01

)
η̇+

+ ρπ xh sin η cos(β − θ)
(

1

4
I02 − kI01

)
η̇ − ρπ sin η sinϕ

(
kI11 −

1

4
I12

)
η̇+

− ρπ cos η cosϕ

(
kI11 −

1

4
I12

)
ϕ̇
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Fznl = −ρπ cosϕ θ̇

(
kI01 −

1

4
I02

)(
u (cos β cos η cosϕ− sin β sin η)+

+ w (sin β cos η cosϕ+ cos β sin η)

)
+

+ θ̇2

(
2πρxh cosϕ

(
1

4
I02 − kI01

)
(cos η cosϕ sin(β − θ) + sin η cos(β − θ)) +

− 2πρ sin η sinϕ cosϕ

(
kI11 −

1

4
I12

))

Mxu = −1

2
ρ CLαI21(2 cos β sin η cosϕ+ sin β cos η) |ϕ̇|+

− ρπ
(
kI11 −

1

4
I12

)
(cos β cos η cosϕ− sin β sin η) η̇

Mxw = ρπ

(
kI11 −

1

4
I12

)
(sin β cos η cosϕ+ cos β sin η) η̇+

− 1

2
ρ CLαI21(cos β cos η − 2 sin β sin η cosϕ) |ϕ̇|

Mxq =
1

2
ρ CLαI31 cos η sinϕ |ϕ̇|+ ρ CLαI21 |ϕ̇|

(
xh sin β sin η cos θ cosϕ+

+
1

2
cos β(2xh sin η sin θ cosϕ+ xh cos η cos θ) +

1

2
xh sin β cos η sin θ

)
+

+ ρπxh

(
1

4
I12 − kI11

)
η̇

(
cos η cosϕ sin(β − θ) + sin η cos(β − θ)

)
+

− ρπ
(
kI21 −

1

4
I22

)(
sin η sinϕ η̇ − cos η cosϕ ϕ̇

)
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Mxnl = −ρπ cosϕ

(
kI11 −

1

4
I12

)
(cos β cos η cosϕ− sin β sin η) θ̇ u+

+ ρπ cosϕ

(
kI11 −

1

4
I12

)
(sin β cos η cosϕ+ cos β sin η) θ̇ w+

+ θ̇2

(
2ρπxh cosϕ

(
1

4
I12 − kI11

)
(cos η cosϕ sin(β − θ) + sin η cos(β − θ)) +

− 2ρπ sin η sinϕ cosϕ

(
kI21 −

1

4
I22

))

Myu =
3

4

(
−1

2
ρ CLαI12(2 cos β sin η cosϕ+ sin β cos η) |ϕ̇|+

− ρπ
(
kI02 −

1

4
I03

)
(cos β cos η cosϕ− sin β sin η) η̇

)
− k Fzu

Myw =
3

4

(
ρπ

(
kI02 −

1

4
I03

)
(sin β cos η cosϕ+ cos β sin η) η̇+

− 1

2
ρ CLαI12(cos β cos η − 2 sin β sin η cosϕ) |ϕ̇|

)
− k Fzw

Myq =
3

4

(
1

2
ρ CLαI22 cos η sinϕ |ϕ̇|+ ρ CLαI12 |ϕ̇|

[
xh sin β sin η cos θ cosϕ+

+
1

2
cos β(2xh sin η sin θ cosϕ+ xh cos η cos θ) +

1

2
xh sin β cos η sin θ

]
+

+ ρπxh cos η cosϕ sin(β − θ)
(

1

4
I03 − kI02

)
η̇ + ρπxh sin η cos(β − θ)

(
1

4
I03 − kI02

)
η̇+

− ρπ sin η sinϕ

(
kI12 −

1

4
I13

)
η̇ − ρπ cos η cosϕ

(
kI12 −

1

4
I13

)
ϕ̇

)
− k Fzq
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Mynl =
3

4

(
−ρπ

(
kI02 −

1

4
I03

)
cosϕ θ̇

[
u (cos β cos η cosϕ− sin β sin η)+

− w (sin β cos η cosϕ+ cos β sin η)

]
+

+ θ̇2

[
2ρπxh

(
1

4
I03 − kI02

)
cosϕ (cos η cosϕ sin(β − θ) + sin η cos(β − θ))+

− 2ρπ

(
kI12 −

1

4
I13

)
sin η sinϕ cosϕ

])
− k Fznl

Mzu = −ρπ
(
kI11 −

1

4
I12

)
(cos β sin η cosϕ+ sin β cos η) η̇

Mzw = ρπ

(
kI11 −

1

4
I12

)
(sin β sin η cosϕ− cos β cos η) η̇

Mzq = ρπ

(
xh

(
kI11 −

1

4
I12

)
(cos η cos (β − θ)− sin η cosϕ sin (β − θ)) +

+ cos η sinϕ

(
kI21 −

1

4
I22

))
η̇ − ρπ

(
kI21 −

1

4
I22

)
sin η cosϕ ϕ̇

Mznl = −ρπ
(
kI11 −

1

4
I12

)
cosϕ θ̇

(
u (cos β sin η cosϕ+ sin β cos η) +

+ w (cos β cos η − sin β sin η cosϕ)

)
+

+ ρπ θ̇2

(
xh cosϕ

(
kI11 −

1

4
I12

)
(cos η cos (β − θ)− sin η cosϕ sin (β − θ)) +

+ cos η sinϕ

(
kI21 −

1

4
I22

))
,

where k = cr(1− xor), cr is the wing root chord, xor is the position of the hinge point along

xw normalized by the root chord, and xh is the distance from the vehicle center of mass

to the root of the wing hinge line (i.e., the intersection of the hinge line with the xb-axis).

Also, ρ is the air density, CLα is the three-dimensional lift curve slope of the wing, c(r) is
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the spanwise chord distribution, R is the wing radius, and Imn = 2
∫ R

0
rmcn(r) dr.
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Appendix D

The Linearized Dynamics of the

Averaged Three DOF System

The linearized averaged version of the three-DOF system (4.10) at the trim condition can

be written abstractly as [153]

A =
∂F̄

∂x̄

∣∣∣∣
x̄0

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 A42 A43 A44 A45 A46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66


, (D.1)
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where the elements of the matrix A can be written as (some elements have quite lengthy

expressions, hence, we only write their limits as the wing mass goes to zero)

lim
mw→0

A42 = 0

lim
mw→0

A43 =
0.25AI21ρU

2
1 sin2 αm + 0.74CLαI21ρU

2
2 sin2 αm

I2
Fmvω2

− 98.86CLαI21ρU2 sin2 αm
IFmvω

+

+
3307CLαI21ρ sin2 αm

mv

A44 =
1

IF Iybmvω
CLαρ cosαm

(
cosαm

(
I11

(
c̄d̂kmw(0.98U2 − 41.88IFω)+

+ Iyb(0.5U2 − 78.37IFω)

)
+

+mw

(
c̄d̂I12(31.4IFω − 0.74U2) + I21rcg(2.4IFω − 0.02U2)

)
+

+ c̄d̂I21mw cosαm(0.12U2 − 19.27IFω)

)
+

+mwrcg (5.23I11IFkω − 0.12I11kU2 − 3.92I12IFω + 0.09I12U2)

)

lim
mw→0

A45 =
CLαI21ρU2 sinαm cosαm

IFmvω
− 42.5CLαI21ρ sinαm cosαm

mv

lim
mw→0

A46 =
1

IFmvω

(
I11kρ(1.56U2 − 66.29IFω) + I12ρ(16.57IFω − 0.39U2)

)

A52 =
1

I3
F Iybω

2
CLαIywρ sinαm sin 2αm

(
I21k

(
−3230I2

Fω
2 + 96.6IFU2ω+

− 0.24U2
1 − 0.73U2

2

)
+

+ I22

(
2422I2

Fω
2 − 72.43IFU2ω + 0.18U2

1 + 0.55U2
2

)
+

+ I31 cosαm
(
−222I2

Fω
2 + 10.5IFU2ω − 0.06U2

1 − 0.18U2
2

))

lim
mw→0

A53 = 0

143



A54 =
1

I2
F Iybω

CLαρ cosαm

(
Iyw sin 2αm

(
−2.6I11IFkω + 0.06I11kU2+

+ 1.96I12IFω − 0.05I12U2 + I21 cosαm(0.01U2 − 1.2IFω)

)
+

+ I21Iyb sinαm(U2 − 42.5IFω)

)

A55 =
1

I2
F Iybω

CLαρ sinαm

(
Iyw sin 2αm

(
−12.25I21IFkω + 0.12I21kU2 + 9.19I22IFω+

− 0.09I22U2 + I31 cosαm(0.02U2 − 0.65IFω)

)
− I21IF Iybω sinαm

)

A56 =
1

I2
F Iybω

ρ sinαm cosαm

(
CLαIyw cosαm

(
0.65I21IFkω − 0.02I21kU2 − 0.49I22IFω+

+ 0.01I22U2

)
+ CLαI31 (5.27IF Iybω + 0.15IF Iywω − 0.12IybU2 − 0.001IywU2) +

+ CLαI31Iyw cos 2αm(0.15IFω − 0.001U2) + Iyw sinαm

(
k(−30I11IFkω + 0.19I11kU2+

+ 30I12IFω − 0.19I12U2) + I13(0.04U2 − 5.6IFω)

)
+

+ Iyw(−2I21IFkω + 0.05I21kU2 + 0.5I22IFω − 0.01I22U2)

)

A62 =
1

I2
F Iybω

2
CLαρ sinαm

(
I21k

(
−826I2

Fω
2 + 24.7IFU2ω − 0.06U2

1 − 0.19U2
2

)
+

+ I22

(
619.6I2

Fω
2 − 18.5IFU2ω + 0.05U2

1 + 0.14U2
2

)
+

+ I31 cosαm
(
1795I2

Fω
2 − 84.4IFU2ω + 0.5U2

1 + 1.49U2
2

))

A63 =
1

I2
F Iybmvω2

CLαmwρ cosαm

(
cosαm

(
c̄d̂

(
I11k

(
−5.23IFU2ω + 0.06U2

1 + 0.18U2
2

)
+

+ I12

(
3.9IFU2ω − 0.05U2

1 − 0.14U2
2

))
+ c̄d̂I21 cosαm

(
U2(0.02U2 − 2.4IFω) + 0.01U2

1

)
+

+ I21rcg

(
U2(0.18U2 − 19.27IFω) + 0.06U2

1

))
+ rcg

(
I11k

(
U2(1.48U2 − 41.88IFω)+

+ 0.49U2
1

)
+ I12

(
U2(31.4IFω − 1.1U2)− 0.37U2

1

)))
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A64 =
1

IF Iybω
CLαρ cosαm

(
42.2I11IFkω − I11kU2 − 31.7I12IFω+

+ 0.74I12U2 + I21 cosαm(19.4IFω − 0.12U2)

)

A65 =
1

IF Iybω
CLαρ sinαm

(
198I21IFkω − 2I21kU2 − 148I22IFω + 1.5I22U2+

+ I31 cosαm(10.5IFω − 0.25U2)

)

A66 =
ρ

IF Iybω

(
CLα cosαm (−5.23I21IFkω + 0.12I21kU2 + 3.9I22IFω − 0.09I22U2) +

+ CLαI31 cos 2αm(0.01U2 − 1.2IFω)− 1.2CLαI31IFω + 0.01CLαI31U2+

+ sinαm

(
k(242I11IFkω − 1.5I11kU2 − 242I12IFω + 1.5I12U2)+

+ I13(45.5IFω − 0.29U2)

)
+

+ 16.43I21IFkω − 0.39I21kU2 − 4.1I22IFω + 0.1I22U2

)
.
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Appendix E

Optimized Shooting Method

Periodic shooting methods have been used in the literature of FWMAVs/insects to capture

the periodic orbits associated with different equilibrium configurations (e.g., hovering) [121,

41, 42]. The stability of these orbits are then analyzed using the Floquet theorem [149].

Dednam and Botha [148] provided an optimized shooting approach to capture a periodic

solution of a nonlinear system. This optimized shooting approach adopts the Levenberg-

Marquardt optimization algorithm to minimize the residual. This algorithm is based on

two methods: the gradient descent method and the Gauss-Newton method. According to

Gavin [154], when the parameters are far from the optimal values, the Levenberg-Marquardt

algorithm operates in a way similar to gradient-descent. However, it operates similar to the

Gauss-Newton method when approaching the optimal point.

Consider the following system of equations

ẋ(t) = f(x(t),α, t), (E.1)

where x ∈ Rn and f : Rn×Rk ×R≥0 → Rn, and α are the system parameters. This system

corresponds to a non-autonomous vector field. Thus, a solution x(t) to the system (E.1) is
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periodic if there exists a constant T > 0 such that

x(t) = x(t+ T ). (E.2)

The optimized shooting method can be applied to any system that can be expressed in the

form of (E.1), and, for convenience, a dimensionless time τ is introduced such that t = τ T .

Equation (E.1) is then written as

dx

dτ
= Tf(x(τT ),α, τT ). (E.3)

Thus, this new variable τ allows the simplification of the boundary conditions in Eq. (E.2)

so that x(τ = 0) = x(τ = 1) and Eq. (E.3) can be integrated over one period (i.e., letting τ

run from zero to one). Now, the residual can be written as

R = T

∫ 1

0

f(x(τT ),α, τT ) dτ. (E.4)

According to Dednam and Botha [148], the residual depends on the number of quantities to

be optimized and can be expressed as

R =

(
x(1)−x(0), x(1 +∆τ)−x(∆τ), . . . , x(1 + (p− 1)∆τ)−x((p− 1)∆τ)

)
, (E.5)

where ∆τ is the integration step size and p ∈ N. For solvability, the natural number p is

chosen so that the number pn of components of the residual is greater than or equal to the

number of unknowns (initial point on the periodic orbit and any unknown parameters such

as the period in autonomous systems).
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Appendix F

Hawkmoth Morphological Parameters

The morphological parameters and the wing planform for the hawkmoth, as given in [145]

and [155], are

R = 51.9mm, S = 947.8mm2, c = 18.3mm,

r̂1 = 0.44, r̂2 = 0.525, f = 26.3Hz, Φ = 60.5◦,

αm = 30◦, mb = 1.648gm, and Iyb = 2080mg.cm2,

where R is the semi-span of the wing, S is the area of one wing, c is the mean chord, f is

the flapping frequency, Φ is the flapping angle amplitude, mb is the mass of the body, and

Iyb is the body moment of inertia around the body y-axis. The moments of the wing chord

distribution r̂1 and r̂2 are defined as

Ik1 = 2

∫ R

0

rkc(r) dr = 2SRkr̂kk .

As for the wing planform, the method of moments used by Ellington [155] is adopted here to

obtain a chord distribution for the insect that matches the documented first two moments
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r̂1 and r̂2; that is,

c(r) =
c

β

( r
R

)λ−1 (
1− r

R

)γ−1

,

where

λ = r̂1

[
r̂1(1−r̂1)

r̂22−r̂21
− 1
]
, γ = (1− r̂1)

[
r̂1(1−r̂1)

r̂22−r̂21
− 1
]
,

and β =
∫ 1

0
r̂λ−1(1− r̂)γ−1 dr̂.

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. [108] and

is assumed uniform with an areal mass distribution m′ The inertial properties of the wing

are then estimated as

Ix = 2
∫ R

0
m′r2c(r) dr , Iy = 2

∫ R
0
m′d̂2c3(r) dr

, Iz = Ix + Iy, and rcg =
2
∫R
0 m′rc(r) dr

mw
= I11

2S
,

where d̂ is the chord-normalized distance from the wing hinge line to the center of gravity

line.
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