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Abstract of the Dissertation

Enabling Accelerator Centric Computing

by

Michael Anthony Gill

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Glenn D. Reinman, Chair

With power limitations imposing hard bounds on the amount of a chip that can

be powered simultaneously, but advances in manufacturing technologies continuing to

pay dividends in terms of feature density [1], together leading to the presence of dark

silicon [2], it becomes clear that continued advances in performance will come in the form

of energy efficiency and customization rather than scaling processor count and cache size.

This observation is the basis for the argument that accelerators, highly customized logic

blocks that perform a particular task with both high performance and energy efficiency,

are going to become increasingly relevant in future processors. It is predicted that the

number of these accelerators will exceed 1500 by 2022 [1].

As accelerators become more responsible for shouldering a greater portion of compu-

tation, it becomes important to elevate accelerators to be considered a first-class compu-

tational primitive, rather than an unusual device that requires extraordinary measures

to interact with. Simply having a powerful compute engine in a machine is meaningless

if it is impossible to efficiently communicate with it, or if software that uses an acceler-

ator is hard to write, or if interacting with the device involves complicated performance

considerations which make it difficult to predict whether any benefit would be had by

using the accelerator.

The work described herein attempts to address this issue, and providing architectural

extensions that allow for accelerators to become a high performance, highly efficient, and

ii



highly utilized compute elements. The effort comes from two directions: 1) introducing

enabling technologies that allow accelerators to be efficiently used by software, and 2)

redesigning system components to allow for accelerators to perform well and leverage

existing system resources efficiently. This results in accelerator-centric designs, where

conventional processing cores act more as choreographers for a communicating network

of accelerators as opposed to cores acting as the primary mechanism of performing com-

putation. The intent is to accomplish this in such a way as to place undue burden on

application programmers, by introducing accelerators in such a way as to be compiler-

friendly.
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CHAPTER 1

Introduction

Power-efficiency has become one of the primary design goals in the many-core era. While

ASIC/FPGA designs can provide orders of magnitude improvement in power-efficiency

over general-purpose processors, they lack reusability across different application do-

mains, and significantly increase the overall design time and cost [3]. On the other hand,

general-purpose designs can amortize their cost over many application domains, but can

be 1,000 to 1,000,000 times less efficient in terms of performance/power ratio in some

cases [3]. A recent industry trend to address this is the use of on-chip accelerators in

many-core designs [4–6]. According to an ITRS prediction [1], this trend is expected to

continue as accelerators become more common and present in greater numbers (close to

1500 by 2022). On-chip accelerators are application-specific implementations that provide

power-efficient implementations of a particular functionality, and can range from simple

tasks (i.e., a multiply accumulate operation) to tasks of more moderate complexity (i.e.,

an FFT or DCT) to even more complex tasks (i.e., complex encryption/decryption or

video encoding/decoding algorithms). On-chip accelerators are combined with general-

purpose cores in an effort to amortize the cost of the design across many application

domains. Accelerators can capture the most commonly executed kernels of one or more

application domains. They are relatively simple to design/optimize (compared to the

entire application), and the general-purpose cores can be used to handle the rest of the

application.

Accelerator-rich architectures also offer a good solution to overcome the utilization

wall as articulated in the recent study reported in [7]. It demonstrated that a 45nm

chip filled with 64-bit operators would only have around 6.5% utilization (assuming a
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power budget of 80W). The remaining un-utilizable transistors are ideal candidates for

accelerator implementations, as we do not expect all the accelerators to be used all the

time. Moreover, once an accelerator is used, it provides much higher performance/power

efficiency, due to its customized implementation, compared to the general-purpose cores.

In order to increase the utilization of accelerators, and allow application developers

to take advantage of the performance and energy consumption benefits they offer, it is

necessary to reduce the overhead involved in their use. Currently, this overhead comes

both in the form of a performance penalty rooted in operating system(OS) and driver

interaction, along with logistical problems associated with actually interacting with the

accelerator and authoring programs that make use of specialized hardware. Because ac-

celerator designs are not universal, programmers need to write code that explicitly makes

use of accelerators, and thus requires refactoring to the design of the program, knowl-

edge of what accelerators are available in a given platform, and restricting a program to

execute exclusively to a specific platform.

These issues gave rise to the work discussed in this document. This work focuses

on simplifying the use of accelerators, and simplifying their use. While specific compute

engine designs are referenced within this work, they are not the focus of it. The focus

of this work is resource management, and eliminating barriers that make accelerators

attractive in the abstract, but impractical in reality. By analyzing the strengths of hard-

ware and the needs of software, this work aims to design hardware that can be efficiently

used by software, instead of designing the fastest possible hardware, and rendering the

platform unusable by software. This takes the form of four independent works, which

can be briefly introduces as follows:

• ARC: Resource management and arbitration is conventionally the responsibility

of software drivers, and OS calls designed to allow for interaction with drivers.

These calls not only introduce their own overhead, but also introduce long-lasting

impacts on program performance, such as flushing translation look-aside buffers

(TLBs) or local caches as a result of switches between process memory spaces.
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ARC introduces the first architectural accelerator resource manager that aims to

extend all of the benefits conventionally extended by a driver, while eliminating

the performance overhead. ARC pushes the use of accelerators entirely into user-

space, and eliminates the interaction of the OS entirely. This work is discussed in

Chapter 2

• CHARM: Large accelerators are highly efficient and feature high performance,

but come with two shortcomings: 1) because they are highly specialized, they are

often infrequently utilized, and 2) it is intractable to automate the process of find-

ing occurrences of large accelerators in source code, and thus a programmer needs

to explicitly invoke a large accelerator. To address these issues, the CHARM archi-

tecture breaks accelerators up into small parts, and expresses a complex accelerator

as a network of small communicating accelerators. Because these pieces can com-

municate with one another in an arbitrary way, any given component is capable

of being used in many different configurations. For this reason, it becomes pos-

sible to achieve high utilization of these small accelerators. To achieve additional

performance and utilization, CHARM also introduces hardware-assisted work dis-

tribution, thus allowing a great number of accelerators to contribute toward the

computation of even simple compute tasks. Additionally, these small accelerators

can be found in arbitrary program code, and thus it is possible to compile programs

for this platform without requiring specialized knowledge from a programmer. This

work is discussed in greater detail in Chapter 3

• CAMEL: To further improve on the utilization benefits realized in the CHARM

architecture, CAMEL introduces an amount of programmable fabric for the purpose

of instancing infrequently used accelerators. This allows for ASIC resources to

be dedicated to implementing a greater amount of frequently needed accelerators,

rather than being dedicated to rarely used accelerators for the purposes of achieving

workload coverage. CAMEL also introduces elements facilitating the management

of programmable fabric, that allows the system to continue to operate as a cohesive
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whole, entirely within user space. CAMEL is discussed in Chapter 5

• AIM: Nearly all proposals for introducing accelerators to a platform involve ex-

tensive modifications to a number of components of a system, including the cpu,

memory, operating system, and often the communication mechanisms and protocols

between these components. While these are not problems in the context of an aca-

demic study, it does make it extremely difficult to actually introduce accelerators

in an actual platform, due to the number of industry players and different orga-

nizations whose cooperation would be required. The AIM project puts forward a

design intended to introduce acceleration in a more down-to-earth way, in a fashion

that can be introduced to existing systems without requiring modification of any

existing components. This is done while achieving many of the desirable qualities

of the previous works as well, such as operating over shared memory. This is done

by introducing a new device that seats into an existing systems’ DRAM memory

interfaces. This also comes with the advantage that it is possible to construct large

systems of accelerators, since the accelerator resources would scale relative to the

size of the memory system. This work is discussed in Chapter 6

Additionally, my experience with working with accelerator-centric platforms led me

to pursue a number of additional works that deviated from my primary interest, and

instead focus on performance concerns of accelerators themselves from a system-wide

perspective. Two selected works of this type are introduced below:

• BiN: Some accelerators benefit from large local memory for internal use, and are

able to compute more efficiently if they can internalize a portion of memory reuse.

If many such accelerators are on a chip, it becomes unreasonable to construct large

private memories for each accelerator, due to space constraints. To address this

issue, we propose a method of allocating and managing buffers in a non-uniform

cache architecture (NUCA). This work, Buffer in NUCA (BiN), aims to allow for

compute engines to operate efficiently on larger amounts of data without requir-

ing private buffers. For algorithms whose computational efficiency coorelates well
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with the amount of data being operated over at a given time, this can improve

performance substantially. BiN is discussed in Chapter 7.

• STREAM: While designing high performance compute engines is relatively easy,

developing mechanisms to deliver necessary data to a compute engine is much more

difficult. We examine trends in network on chip (NoC) design and developed a pro-

tocol in the context of emerging network technologies. We evaluated radio frequency

interconnection (RF-I) networks, and developed a protocol named STREAM that

enables efficient exploitation of the enormous bandwidth potential of new network

technology. This work is further discussed in Chapter 8.
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CHAPTER 2

Architecture Support for Accelerator-Rich CMPs

Conventional accelerators, such as GPUs or other dedicated PCI devices, conventionally

use a set of drivers to allow user software to interact with hardware. This driver primarily

provides two services: 1) a portal through which software can communicate with a device,

and 2) an opportunity for an operating system to ensure some measure of safety and

process isolation. A driver however is a complicated and heavy bit of software, and comes

with many performance penalties, as will be shown. In an accelerator-rich system, these

penalties constitute a non-trivial cost, and complicates the performance expectations

that a programmer may have of a presumably higher performing device.

This work, entitle Accelerator-Rich CMPs(ARC) [8], is the first work to argue for

addressing these performance penalties with a dedicated hardware resource manager,

and eliminating the concept of a device driver entirely. This work was intended to

elevate an accelerator to a first-order primitive, providing hardware primitives that allow

for an accelerator to operate directly over shared memory in process space, without

involving the operating system or any other auxiliary software abstractions. This results

in accelerators being usable for small tasks, and managed as an as-needed set of compute

engines that software can tap into, and simplifies the performance model associated with

using an accelerator.

2.1 Microarchitecture of ARC

Figure 2.1 shows the overall architecture of ARC which is composed of cores, accelerators,

the global accelerator manager (GAM), shared L2 cache banks and shared NoC routers
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Figure 2.2: Communication between core, GAM,

and accelerator

between multiple accelerators. All of the mentioned components are connected by the

NoC. Accelerator nodes include a dedicated DMA controller (DMA-C) and scratchpad

memory (SPM) for local storage and a small translation look-aside buffer (TLB) for

virtual to physical address translation. GAM is introduced to handle accelerator sharing

and arbitration.

2.1.1 Instruction Set Extension

In order to interact with accelerators more efficiently, we have introduced an extension

to the instruction set consisting of four instructions used specifically for interacting with

accelerators. These instructions are briefly described in Table 2.1. A processor uses lcacc-

req to request information about accelerator availability, consisting of pairs of accelerator

identifiers and predicted wait times for each available accelerator. A processor will then

use lcacc-rsv to request use of a specific accelerator. lcacc-cmd is used for interacting

directly with an accelerator. When a job is completed, lcacc-free is used to release an

accelerator to be used by another cpu. These instructions are accessible directly from

user code, and do not require OS interaction. Communication with accelerators is done
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with the use of virtual addresses, accessing resources that are already accessible from user

code. Execution of each of these instructions results in a message being sent to a device

on the network, either the GAM or an accelerator. Attached to each of these messages

is the thread ID of the executing thread that can be used to track requesting threads in

an environment where context switches are possible.

Figure 2.2 shows the communication between a core, the GAM, an accelerator and

the shared memory detailing the use of an accelerator by a core. The numbers on the

arrows in Figure 2.2 show the steps taken when a core uses a single accelerator. They

are described below.

1. The core requests an enumeration of all accelerators it may potentially need from

the GAM (lcacc-req). The GAM responds with a list of accelerator IDs and asso-

ciated estimated wait times.

2. The core sends a sequences of reservations (lcacc-rsv) for specific accelerators to the

GAM. The core waits for the GAM to give it permission to use these accelerators.

The GAM also configures the reserved accelerators for use by the requesting core.

3. The core writes a task description detailing the computation to be performed to

the shared memory. It then sends a command to the accelerator (lcacc-cmd) iden-
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Table 2.1: Instructions used to interact with accelerators.

lcacc-req x Request information from GAM about availability of

accelerators implementing functionality x

lcacc-rsv x y Reserve the accelerator with ID x for a

predicted duration y

lcacc-cmd accl cmd Send a command cmd to an accelerator accl with

addr x y z parameters x, y, and z. Performs an address

translation on addr, sending both logical and

physical address.

lcacc-free accl Sends a message to GAM releasing accelerator accl.

Table 2.2: Instructions to handle light-weight interrupts.

lwi-reg x y z Register service routine y to service interrupts arriving

from accelerator x. LWI message packet will be written to z

lwi-ret Return from an interrupt service routine.

tifying the memory address of the task description. The accelerator loads this task

description, and begins working.

4. When the accelerator finishes working, it notifies the core. The core then sends a

message to the GAM freeing the accelerator (lcacc-free).

2.1.2 Light-Weight Interrupt Support

Table 2.3: OS overhead to access accelerators(cycles)

Operation 1 Core 2 Cores 4 Cores 8 Cores 16 Cores

Open driver 214,413 256,401 266,133 308,434 316,161

ioctl (average) 703 725 781 837 885

Interrupt latency 16,383 20,361 24,022 26,572 28,572
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A platform that features accelerators requires a mechanism for a processor to be

notified of the progress of an accelerator. In the ARC platform, we handle this issue with

the use of light-weight interrupts. ARC light-weight interrupts are interrupts handled

entirely as user code, and do not involve OS interaction, as this interaction can be a major

source of inefficiency. Table 2.3 shows the cost in cycles of interacting with accelerators

through a device driver and the overhead associated with OS interrupts.

There are three main sources of interrupts associated with accelerator interaction:

(1) GAM responses, (2) TLB misses, and (3) notifications that the accelerators have

finished working. GAM responses come either because a core sent a request or a reserve

message. TLB misses occur when an accelerator fails to perform address translation with

the use of its own private TLB, and requires a core’s assistance in performing the lookup.

Interrupts notifying the completion of work arrive when an accelerator has completed all

work given to it.

Figure 2.3 shows the microarchitecture components added to the cores in ARC in

order to support the light-weight interrupt. An interrupt is sent via an interrupt packet

(shown in Figure 2.3-a) through the NoC to the core requested accelerator. Each interrupt

packet includes the thread ID which identifies the thread which this interrupt belongs

to, and a set of interrupt-specific information. The main microarchitectural components

added to support the light-weight interrupt are listed below:

1. Interrupt controller located at the core’s network interface. This is responsible for

receiving the interrupt packets and queuing them until being serviced by the core.

2. Light-weight interrupt interface in the core. This is responsible for: (1) receiving

the interrupt from the interrupt controller, and (2) providing a software interface

to setup the information needed to service the interrupt.

The interrupt controller has a queue for buffering the received interrupt packets,

so they don’t get lost if the core is busy handling other interrupts. Without loss of

generality we assume that for each thread we can only have one level nest for interrupt.
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This means no other light-weight interrupt will be serviced, while servicing another light-

weight interrupt. If an interrupt arrives for a thread that is currently scheduled, it is

executed immediately. If the thread is not scheduled, a normal OS-based interrupt occurs.

In order to support light-weight user-level interrupts, we introduce a set of instructions

to enable user code to handle interrupts. These instructions are described in Table 2.2.

lwi-reg registers the interrupt handlers. lwi-ret returns from an interrupt handler routine.

A program segment using accelerators is then designed as a series of interrupt service

routines.

2.1.2.1 Accelerator Extraction Methodology

Figure 2.4 shows the block diagram for accelerator extraction from a given application.

Given an application, using a combination of static analysis and profiling, a list of can-

didates for accelerators are extracted. These candidates are weighted using a series of
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selection criteria, such as area, performance, energy, criticality, and physical design con-

straints. This step generates an accelerator database, which can be used together with a

series of transformation rules to create larger or smaller accelerators from the available

accelerators in the platform. This step is handled by a module called the virtualizer,

which outputs a DLL that is used to link to executable files, as shown in Figure 2.5.

2.1.3 Programming Interface to ARC

The application programming interface (API) involved in using accelerators is presented

in Figure 2.5. For each type of accelerator, one dynamic linked library (DLL) is provided.

This DLL is specific to a target platform, and provides a mapping from accelerator calls

to actual invocations of physical accelerators. Calls to accelerators have their implemen-

tations dynamically linked to application code.

2.1.4 Invoking Accelerators

In this work, we assume an accelerator will be used to process a relatively large amount

of data. The initial overhead associated with acquiring permissions to use an accelerator

is large enough that it should be amortized over a large amount of work. To that end,

we introduce two accelerator features that explicitly deal with efficiently processing large

amounts of data: (1) task descriptions to limit communication between accelerators and

the controlling core, and (2) methods to handle TLB misses.

To communicate with an accelerator, a program would first write to a region of shared

memory a description of the work to be performed. This description includes location

of arguments, data layout, which accelerators are involved in the computation, the com-

putation to be performed, and the order in which to perform necessary operations. This

detail is included to allow accelerators to both be general as well as allow coordination

of accelerators in groups that perform more complex tasks (described in Section 2.1.6).

Evaluating the task description yields a series of steps to be performed in order, with each

step consisting of a set of memory transfers and computations that can be executed con-

12



currently. This allows accelerators to overlap computation with memory transfer within

a given step. When all computations and memory transfers of a given step are completed,

the accelerator moves onto the next step. In this work, we refer to these individual steps

as tasks, and the structure detailing a sequence of tasks as a task description.

To further decouple the accelerator from the controlling core, each accelerator contains

a small local TLB. This is required because the accelerator operates within the same

virtual address space as the software thread that is using the accelerator. The accelerator

relies on the controlling core to service any detected TLB misses. It does this by sending

a light-weight interrupt to the controlling core when a TLB miss occurs with the address

that caused the TLB miss. Handling this interrupt would involve the core executing

the same TLB miss handler that is executed when the core normally encounters a miss

in its own TLB. Because this is an OS action, and involves trapping to an OS handler

regardless, it is not actually necessary that the original software thread that is using the

accelerator be currently scheduled. If it is scheduled, the lightweight interrupt interface

can be used to limit overhead associated with interrupt handling. Otherwise, the OS can

be notified directly (e.g. by invoking a software interrupt or real hardware interrupt)

without having to wait for or force a context switch to reschedule the controlling thread.

The resolved address is then sent back to the accelerator that had encountered the TLB

miss.

2.1.5 Sharing Accelerators

When accelerators are shared among all the on-chip cores, it is possible for there to be

several cores competing for the same accelerator. Even in architectures with large num-

bers of accelerators, there may be a limited number of one particular type of accelerator

that is suddenly in high demand. In this situation, some of these cores may choose to

eschew the use of the accelerator and simply execute the task to be offloaded using their

own core resources. While the core is certainly less power efficient in executing this task,

it may make sense for it to do so in situations where the wait time for an accelerator

13
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Figure 2.6: Regression models for medical imaging benchmarks

will eliminate any potential gains. In this paper we propose a sharing and management

scheme which can dynamically determine whether the core should wait to use an accel-

erator or should instead choose a software path, based on an estimated waiting time.

This proposed sharing and management strategy is performed by the GAM. The GAM

tracks: 1) the types of available accelerators; 2) the number of accelerators of each type;

3) the jobs currently running or waiting to run on accelerators, their starting time and

estimated execution time (Section 2.1.5.1); 4) the waiting list for each accelerator and

the estimated run time for each job in the waiting list (Section 2.1.5.2).

2.1.5.1 Accelerator Run-Time Estimation (by the Core)

The execution time of a certain job on an accelerator is data-dependent. When an

accelerator is reserved, the requesting thread submits an estimation of the duration for

which the accelerator will be used. This estimate is determined with the use of a data-size-

parameterized regression model, which has been constructed based on profiled executions.

We empirically found that a simple second order polynomial is sufficient to estimate

execution time within 1-2% on average (at most 6%). Once a model is generated for an

accelerator, it is provided to the rest of the development flow via the accelerator DLL
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(see Figure 2.5). Figure 2.6 shows the models we used in this work.

2.1.5.2 Wait-Time Estimation Algorithm (by the GAM)

After receiving the reserve request message from the core, the GAM will add the request-

ing core’s ID to the tail of the waiting list for that accelerator. Note that the tasks being

tracked in this waiting list are issued on a first-come-first-served (FCFS) basis. Hence,

the estimated wait-time for the task being added to the end of the list can be derived by

summing up the expected execution times of all jobs that already exist in the waiting list

for that accelerator. This estimation algorithm is both simple and practical for hardware

implementation.

2.1.6 Accelerator Composition

A key contribution of our work is the increased utilization of the available resources by

either chaining accelerators together or otherwise composing accelerators to virtualize

larger ones. In the next two subsections we discuss these techniques.

2.1.6.1 Accelerator Chaining

In an accelerator-rich platform, there are many cases when the output of one accelerator

feeds the input of another accelerator (like many streaming applications). In a traditional

system, these two accelerators communicate through system memory, i.e., the controlling

core reads the output of the first accelerator from its SPM, stores it to shared memory,

and writes it to the second accelerator’s SPM. To remove this inefficiency, two DMA

controllers can communicate and the source DMA controller can send the content of its

SPM to another DMA controller to be written in its SPM.
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Figure 2.7: An example of accelerator composition

2.1.6.2 Accelerator Virtualization

For many types of problems, it is not practical to provide an accelerator to directly

solve each possible problem instance. Additionally, it is not practical to demand that

an application author target a single architecture. For this reason, we provide a set of

virtual accelerators to decouple hardware design and software development. A virtual

accelerator is an accelerator that is implemented as a series of calls to other physical

accelerators, available in hardware (Figure 2.7(a)). A large library of virtual accelerators

can be provided to the application author as if they were implemented in hardware.

These accelerators would actually be implemented as a series of decomposition rules that

break down a large problem into a number of smaller problems (Figure 2.7(b)), similar

in style to the approach presented in [9]. These small problems would then be solved

directly by hardware. These rules describe two things: 1) computation that must be

performed by accelerators capable of solving sub-problem instances, and 2) how data is

communicated to, from, and between these various smaller accelerators. Rules would be

applied recursively to express an implementation for each virtual accelerator in terms of

calls to physical accelerators.

These statically determined decomposition rules can thus be applied at run-time. Fig-

ure 2.8 describes the process of invoking a virtual accelerator from within the application

binary. When an accelerator is called, a lcacc-req message is sent to the GAM for wait

times for all functional units that may be required by the decomposition result. While
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Figure 2.8: Accelerator composition steps

waiting on this request, the requesting core either begins calculating the decomposition

or begins fetching the data structures associated with the statically computed solution.

Once the GAM responds and the requesting core has a fully decomposed problem avail-

able, the core calculates the wait time for the entire computation. It does this by adding

the delay calculated with the use of the regression model to the largest of the delays pro-

vided by GAM. The core then executes a series of lcacc-rsv instructions for each required

accelerator, specifying the wait time for the entire operation as the estimated duration of

use of each accelerator reserved. GAM will not assign any accelerators until it can assign

all accelerators requested. The core releases accelerators in the same way as it normally

would. With these mechanisms, an application author can use a simple API to invoke

virtual accelerators, and a hardware developer can implement accelerators based on need

and available resources.

2.2 Evaluation Methodology

2.2.1 Benchmarks

To illustrate the effectiveness of our ARC platform, we evaluate a number of compute

intensive benchmarks from both the medical imaging domain as well as the computer

vision and navigation domain. Using shared LCAs, we have accelerated four algorithms

from each of these two domains. Tables 2.4 and 2.5 provide brief descriptions of each
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Table 2.4: Accelerated medical imaging algorithms

Application Algorithmic Functionality # LCAs

Denoise [10] Total variation minimization 3

Deblur [11] Total variation minimization 4

and deconvolution

Registration [12] Linear algebra 7

and optimizations

Segmentation [13] Dense linear algebra, spectral 1

methods, MapReduce

application’s computational characteristics and include the numbers of accelerators used.

FFT is a computation common to a wide range of scientific computing and signal

processing algorithms, including use in a number of our chosen medical imaging bench-

marks. We used FFT to show our virtualization results. As a point of comparison we

are using FFTW [18] v3.3 for our software implementation.

When analyzing contention between multiple threads executing the same benchmark,

we insert a barrier immediately before entering the benchmark kernel that was targeted

for acceleration. This is done to maximize the observable effects of contention, and model

a worst case scenario. All threads executing a benchmark can then be expected to enter

this kernel at approximately the same time.

2.2.2 Simulation Tool-Chain

In order to make the exploration of this topic practical, a number of supporting tools have

been created. These tools simplify the authoring of programs that used accelerators, and

automate the process of implementing our chosen accelerators in our simulator frame-

work. These tools are used in place of hand-written implementations and hand-adapted

benchmarks to allow us to simulate systems that would have been prohibitively complex
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Table 2.5: Accelerated computer vision and navigation algorithms

Application Algorithmic Functionality # LCAs

IDSI [14] Computation of histograms based on 1

intensity and distance of pixels

LPCIP [15] Log-polar forward transformation of 1

image patch surrounding each feature

SURF [16] Feature orientation and computation 1

of gradient histogram

EKF-SLAM [17] Partial derivative, covariance, and 2

spherical coordinate computations

to manually author, such as those that utilize many accelerators or feature complicated

inter-accelerator communication. Additionally, we believe that this is representative of

what will be done in the development of future accelerator exploiting libraries, to simplify

the job of programmers who would use these libraries without compromising any of the

capabilities of these accelerators.

With this tool-chain, generation of accelerators is only a matter of identifying a func-

tion in an application’s source code to accelerate. We have automated the process of

extracting these functions, compiling these modules into VHDL, and synthesizing these

modules to extract timing and energy information. This process yields a module that

plugs into our cycle-accurate simulation infrastructure to model the hardware unit, and

coordinates the execution of this selected function in a pipelined fashion.

Once we select the functions we want to accelerate, typically encompassing the kernel

of the benchmark, we procedurally generate a program segment to use these accelerators.

We describe communication between accelerators in a simple data-flow language that we

use to generate C source code. These program segments together make up the platform-

specific DLL mentioned previously. This code is responsible for coordinating interactions

between accelerators, registering/handling interrupts, managing task descriptions and
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Figure 2.9: Process used to generate simulation structures and accelerated programs

accelerator resources, and dealing with accelerator-CPU synchronization. Figure 2.9

illustrates the work flow described here.

2.2.3 Simulation Platform

Our experiments were conducted using a heavily modified version of the Simics [19]

and GEMS [20] simulation platform. The machine we model is based on a multicore

system consisting of a mix of Ultra-SPARC-III-i processors and accelerators. In order

to create a fair comparison between machines of different configurations, we maintain a

fixed cache and network configuration. Our network topology is a mesh modeled on a

system normally used to support 32 processors. These nodes are then configured to either

be processors, accelerators, or empty sockets. We feature a per-processor split L1 cache,

and a distributed L2 spread across all nodes that rely on a directory-based coherence

protocol. Table 2.6 shows the machine configurations we model in our simulations.
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Table 2.6: Simics+GEMS configuration

CPU Ultra-SPARC-III-i @ 2.0GHz

Number of cores 1, 2, 4, 8, 16

Coherence protocol MSI MOSI CMP directory

L1 cache 32 KB, 4 way set-associative

L2 cache 8 MB, 8-way set-associative

Memory latency 1000 cycles

Network topology Mesh

Operating System Solaris10

Table 2.7: Synthesis results

Deblur Registration Denoise Segmentation GAM DMA-C

Clock (ns) 4 4 4 4 2 2

Area (µm2) 4419917 12253775 1935539 2890354 12270 10071

Power (mW) 98.28 256.3 57.69 80.93 2.64 0.59

2.2.4 Area/Timing/Power Measurements

The AutoPilot behavioral synthesis tool [21] in combination with the Synopsys design

compiler [22] are used to synthesize the C modules into ASIC. The timing information

produced by the synthesis process is back-annotated to our accelerator modules to model

cycle accurate accelerators. For computing energy we use power reports from Synopsys

for accelerators and McPAT [23] for CPU power. Table 2.7 shows the synthesis results for

the accelerators in our selected benchmarks together with the GAM and DMA controller.
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Figure 2.13: MI – Energy gain over OS+Acc

2.3 Experimental Results

To illustrate the effectiveness of our ARC platform, we evaluate a number of compute-

intensive benchmarks from the domains of medical imaging (MI) as well as computer

vision and navigation (VN). The following evaluation schemes are used:

• Original benchmark (SW-only): The baseline for the experiments is the ex-

ecution of these multithreaded benchmarks on a multiprocessor (one thread per

processor).

• Accelerators + OS management (OS+Acc): This is a system which has

accelerators managed by OS drivers.

• Accelerators + HW management (ARC): This is a system which features all

enhancements discussed thus far, including resource arbitration managed by the

hardware-based GAM.
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Figure 2.15: VN – Speedup over OS+Acc

 

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

En
e

rg
y 

G
ai

n
 (

X
) 

Configuration (N cores, N threads, N accelerators) 

Energy Gain Over SW-only 

EKF-SLAM IDSI LPCIP SURF

Figure 2.16: VN – Energy gain over SW-

only

 

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8

En
e

rg
y 

G
ai

n
 (

X
) 

Configuration (N cores, N threads, N accelerators) 

Energy Gain Over OS+Acc 

EKF-SLAM IDSI LPCIP SURF
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We specify each simulation configuration using the Cc-Tt-Aa-Dd pattern, where “C”

is the number of cores, “T” is the number of threads, “A” is the number of replications

of the accelerator set needed by a benchmark, and “D” is the data size. For example, a

benchmark featuring 4 cores, 2 threads, 1 instance of each accelerator, and an argument

that is 64-cubes of data would be described as 4c-2t-1a-64d. For the MI benchmarks,

since the data is in a cubic form, “D” shows a cube of D × D × D data elements for

each argument, whereas for the linear data of the VN benchmarks, “D” represents the

absolute data size. Next the results for baseline speedup and energy improvement are

discussed.
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2.3.1 Speedup and energy improvements

Figures 2.10, 2.14, 2.12, and 2.16 show the speedup and energy gain results for the

ARC base configuration (Nc-Nt-Na) compared to running the software-only version of

the benchmark on the same number of processors, number of threads, and data size. The

highest speedup is for registration (485X for 1c-1t-1a-32d case) and the lowest is for EKF-

SLAM (13X for 16p-16t-16a case). The best energy gain is for registration with 641X

improvement. On average we get 241X energy improvement over all the benchmarks and

configuration. The VN benchmarks are shown to benefit relatively less from acceleration

than the MI benchmarks, yet this is largely due to smaller data sizes being used for

VN. As the data sizes are increased, more computation can be streamed through the

accelerators, resulting in more utilization and efficient execution.

24



0	  

1	  

2	  

3	  

4	  

5	  

6	  

Re
gis
ter
a1
on
-‐1	  

Re
gis
ter
a1
on
-‐2	  

Re
gis
ter
a1
on
-‐4	  

Re
gis
ter
a1
on
-‐8	  

Re
gis
ter
a1
on
-‐16
	  

De
blu
r-‐1
	  

De
blu
r-‐2
	  

De
blu
r-‐4
	  

De
blu
r-‐8
	  

De
blu
r-‐1
6	  

De
no
ise
-‐1	  

De
no
ise
-‐2	  

De
no
ise
-‐4	  

De
no
ise
-‐8	  

De
no
ise
-‐16
	  

Se
gm
en
ta1
on
-‐1	  

Se
gm
en
ta1
on
-‐2	  

Se
gm
en
ta1
on
-‐4	  

Se
gm
en
ta1
on
-‐8	  

Se
gm
en
ta1
on
16
	  

Cy
cl
e	  

M
ill
io
ns
	  

Applica1on-‐N	  (N	  cores,	  N	  threads,	  N	  accelerators)	  

Hardware	  GAM	  vs.	  SoMware	  GAM	  

HW-‐GAM	  

SoM-‐GAM	  

Figure 2.21: Benefit of using hardware GAM over SW-GAM

We observe a reduction in speedup as we increase the number of cores and threads.

This reduction is attributed to several sources. First, we measure the time from the start

of all threads, to the end of the last thread, thus the results shown are the measured time

of the longest running thread. Adding more threads increases the likelihood of observing

normal fluctuations in run time. Lastly, while we increase the number of cores and ac-

celerators, we do not correspondingly increase network resources, memory bandwidth, or

cache capacity. As a result, increasing the number of cores and threads resulted in addi-

tional contention for communication and memory resources. This impacted accelerated

cases more than software-only cases because, while the same amount of data is accessed,

the accelerated cases access this data over a much shorter time period.

Figures 2.11 and 2.15 show the speedup gain ARC achieves compared to the OS+Acc.

Here, for larger base configurations we see an increase speedup compare to OS managed

systems. The reasons for this are: (1) by increasing the number of threads and processors,

the OS management overhead (thread context switching, TLB services, etc.) increases,

and (2) for larger configurations, the number of interrupts also increase, which makes

our system perform better due to the use of the light-weight interrupt in the place of the

OS interrupts.

Figures 2.13 and 2.17 also show the energy improvement of ARC over the OS+Acc
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case. Here by making configurations larger, we see a better energy gain over OS+Acc

system. Again registration performs best with 63X. On average we get 17X energy gain

over OS+Acc case.

2.3.2 Accelerator Sharing Results

Figure 2.18 shows the observed error for both the run-time and wait-time estimates for

MI benchmarks. As can be seen by our estimated errors ranging from < 1% to 6%,

execution times on our accelerators are sufficiently predictable for this to be a practical

approach.

2.3.3 Accelerator Virtualization Results

Figure 2.19 shows the result of virtualizing a 512x512 2D FFT and a 128x128x8 3D FFT

on multiple 128x128 2D FFTs. The SW case is compared to having 1, 2, and 8 copies of

128x128 2D accelerator on the chip (8 FFT is based on assigning a maximum 5% of the

chip area to FFT). The SW case is the result of running FFTW3 [18]. In the best case

for 3D-FFT we obtained 14.4X speedup and for 2D-FFT we obtained 8.4X speedup.

2.3.4 Benefits of Light-Weight Interrupt

To measure the benefits of the light-weight interrupts, we examined a platform lacking

light-weight interrupts to compare our ARC platform against a system that relies instead

on OS handling of interrupts. Figure 2.20 shows the speedup measured over a platform

lacking light-weight interrupts. ARC is up to 2.5X faster than an otherwise identical

system that lacks light-weight interrupts. The larger the data size, the more interrupts

are generated, so the benefits of ARC increases as the data size grows.
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2.3.5 Benefits of Hardware-Based GAM

We examined the possibility of using an OS process, called the SW-GAM, to handle

the responsibilities normally associated with the GAM. This approach differs from the

previous OS-managed approaches in that it still does not rely on a accelerator driver

for communication. Added instructions are still included for accelerator communication,

and the light-weight interrupt interface is used both by the calling thread and the SW-

GAM. To give the most opportunity for the SW-GAM to compete with the dedicated

hardware GAM, we allocated a processor exclusively for the SW-GAM. Figure 2.21 shows

the benefit for the N cores, N threads, N accelerators (N = 1, 2, 4, 8, 16) configurations

for fixed data size. The best results is for registration (almost 2X), since there are more

accelerators and thus the GAM is responsible for allocating more resources. On the

other hand segmentation has only one accelerator, which reduces the advantage of using

a dedicated hardware GAM (only 10% benefit). The larger the configuration size, the

more interaction with GAM which is why we see more benefits for hardware GAM for

larger values of N.
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CHAPTER 3

CHARM: A Composable Heterogeneous

Accelerator-Rich Microprocessor

While large-scale accelerators, like those discussed in Chapter 2, offer a large degree of

performance and energy efficiency, they are not appropriate for algorithms that are not

mature computations, and see low utilization. LCAs are only appropriate for targeting

mature computations because of the immutable nature of hard logic. As soon as an algo-

rithm changes, the LCA implementing that algorithm becomes useless. Low utilization

stems from two facts: 1) LCAs implement a very specific functionality, and thus any-

thing that requires a different functionality cannot use the LCA, and 2) a programmer

must know that an LCA exists that implements their desired functionality, and actually

make use of that hardware. The second point primarily stems from the fact that it is

intractable to prove equivalence of subprograms over general code.

To deal with both of these problems, we put forward an architecture that focuses

more on composition of compute engines rather than development of a series of mono-

lithic compute engines. This architecture was called the Composable Heterogeneous

Accelerator-Rich Microprocessor (CHARM) [24] architecture, and introduced sophisti-

cated computation via communication between a series of simple components. These

simple components, called accelerator building blocks (ABBs) are distributed through-

out the system, and each implement a relatively small functionality. A program would

the construct a graph of communicating ABBs that together describe a complex opera-

tion, and send this graph to a resource management device referred to as the accelerator

block composer (ABC). The ABC would then act as a proxy for communication between

a communicating sea of ABBs and the host processor, thus lending not only high perfor-
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mance and energy efficiency, but fully virtualized accelerator resources and scheduling,

along with hardware managed work distribution.

This compute model not only allowed for compilers to assist in discovering accelerator

regions, since ABBs implement functionalities that are individually small enough to dis-

cover in source code, but also introduces a more expressive accelerator framework that is

able to target many applications using a small set of common functions. Hardware work

scheduling and balanced work distribution also enabled very high resource utilization,

with all ABBs in a system able to cooperate in performing even small computations via

hardware managed task distribution.

3.1 Microarchitecture of CHARM

In this section, we address our design goals by way of an architecture that provides

flexibility, scalability, and design reuse.

3.1.1 CHARM Software Infrastructure

CHARM’s software component is responsible for: (1) LCA candidate selection – iden-

tifying program hotspots that would benefit from LCA implementation [8]; (2) ABB

selection – generating a set of ABBs to cover a set of LCAs under physical design con-

straints (area, timing, power) [25] and (3) ABB flow graph creation – used to compose

LCAs from ABBs. While the LCA candidate selection is done manually, the processes

of ABB selection and flow graph creation are automated.

The structure of the ABB flow graph is the same as that of a task flow graph [26] (see

Figure 3.1). Each node is a task that is represented by a desired ABB invocation, with

edges representing memory transfers between ABBs. In memory, this graph consists

of a list of ABBs that are part of the LCA, followed by an enumeration of memory

transfers. Each ABB node consists of a type, an enumeration of starting addresses for

locating argument streams in a virtually addressed private scratchpad memory (SPM)
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Figure 3.2: Microarchitecture of CHARM

region, and settings for any local configuration registers. Each memory transfer consists

of an identifier for a source and destination device (either memory or an ABB node). It

also includes a starting address and a series of size-stride pairs describing a polyhedral

(regular, high-dimensional) space for both the source and destination. This graph is

easy to parse, and consists mostly of values that are directly usable by various control

registers on the ABBs and associated DMA. We further note that when a data flow graph

is created, it is not tied to any physical instance of the ABBs. The flow graph simply

connects virtual ABBs together as a template of an LCA. Figure 3.1 illustrates this for

one of the LCAs used in Denoise, whose functionality is formulated by Equation 3.1:

1/

√√√√ 6∑
i=0

(xc − xi)2 (3.1)

The hardware will then map physical instances of ABBs to this LCA template on the

fly to instantiate a virtual LCA.
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3.1.2 Hardware Infrastructure

While the software is responsible for specifying candidates for acceleration and detailing

how ABBs may be composed into particular LCAs, it is the hardware’s responsibility to

allocate ABB resources to particular threads to satisfy software demand. For this paper,

we will restrict each ABB to be allocated to at most one LCA at a time. Our hardware

will arbitrate use of the ABBs and LCAs among multiple competing threads/cores, and

allocate resources in a way that maximizes the utilization of available resources (i.e. load

balances requests from one or more cores among multiple LCAs). Note that additional

complications exist due to variation in latency when streaming data to LCAs (i.e. caused

by TLB and cache misses, congestion on the NoC, etc.) and varying contention for the use

of any given ABB. A dynamic solution is preferable in order to adapt to nondeterminism

in LCA memory latency and to the varying LCA demand across different cores.

Figure 3.2 shows an example of the CHARM microarchitecture. It consists of cores,

L2 cache banks, memory controllers, ABB islands and an accelerator block composer

(ABC), which is the means of control for composing ABBs and essentially the mechanism

by which we provide dynamic adaptation. We describe the ABC in more detail below.

Each ABB island has a small dedicated SPM, dedicated DMA engine and NoC inter-

face. The SPM allows ABBs, when composed into an LCA, to have a fixed data access

latency. By using memory streaming and task partitioning, and by overlapping commu-

nication with computation, the SPM size can be kept small. The allocation of SPM to

each ABB is handled by the ABC.

The dedicated DMA engine in each ABB island is responsible for transferring data

between the SPM and the L2 cache, and also between SPMs in different ABB islands (i.e.

accelerator chaining or remote DMA [27]). In addition, each DMA has a small internal

TLB, allowing LCAs to work with virtual addresses. In the event of a TLB miss, the

DMA will forward its request to the ABC (see Section 3.1.2.1 for details on ABC TLB

handling).
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3.1.2.1 ABC Design

In our scheme, the ABC is contacted by cores that need access to an LCA. It then

allocates ABBs to satisfy this request. An LCA can consist of any number of ABBs,

provided that number is less than the number of ABBs that is available in the system.

The ABC uses five components to manage its collection of ABBs: a Resource Table,

a Composed LCA Table, a collection of Task Lists, a TLB, and a Data Flow Graph

Interpreter.

Resource Table: The ABC has a Resource Table that it uses to track the allocation

of different ABBs to LCAs. When a core requests the use of an ABB, the Resource

Table is queried to determine which ABBs are available. If enough ABB resources are

available, multiple instances of a particular type of LCA may be instantiated, assuming

the computation to be done is large enough for these multiple instances to each perform

non-trivial amounts of work. The ABC uses a two-tiered allocation policy to decide

which ABBs to compose into a given LCA. First, the ABC will attempt to balance the

concentration of memory-accessing ABBs across the entire system. The purpose of this

is to limit contention in the DMA associated with each node. Second, the ABC will

employ a simple greedy approach to select ABBs that are local to other ABBs they

communicate with. This is done in order to minimize the cost of communication between

ABBs. To further reduce latency, ABBs within the same island may use a common SPM

for communication (rather than each using their own SPM in their respective islands) and

eliminate the need to communicate through the NoC. When ABB resources are scarce,

the above metrics degrade to greedily constructing LCAs out of any available ABBs,

rather than waiting for more optimal choices to become available.

Composed LCA Table: To eliminate the need to repeatedly compose the same LCA

out of the same ABBs when tasks are completed, a Composed LCA Table is introduced.

This table tracks ABB allocation, and is used to remove the overhead of remapping

patterns when an LCA is already composed.

Task Lists: When the ABC receives a request for an LCA, the requested computation
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is split into a number of fixed-size data chunks to enable efficient parallelism. Each of

these is referred to as a task and the ABC maintains these in a Task List. Each entry in

the task list consists of a marker identifying which LCA the task belongs to, which task

of the whole computation the entry belongs to (for that specific LCA invocation), and

a bit flag marking it as runnable or not runnable. As tasks are added to the Task List,

the ABC iterates over the memory addressed by the task, and checks its local TLB. If all

addresses in a task are resolvable by the internal TLB, the task is marked as runnable.

Otherwise, it is marked as not runnable, and the ABC issues a TLB miss to the requesting

core. The ABC uses a round robin scheduling policy to iterate through all LCAs that

have at least one task marked as runnable. So long as there are tasks that are marked

as both runnable and for which there are enough ABBs to compose, the ABC continues

attempting to compose more LCAs, and continues issuing tasks. We plan to implement

more complex scheduling policies based on task priority and criticality in the future.

TLB: The ABC maintains a shared TLB that caches address translations among all

tasks in its task list. This allows the ABC to prescreen tasks for TLB misses prior to

composition. If multiple ABBs under control of the ABC would have encountered the

same TLB miss, the ABC can avoid sending duplicate requests to the corresponding core

and simply satisfy these misses locally with its own TLB.

Data Flow Graph Interpreter: Our software framework provides composition in-

structions in the form of a data flow graph. These graphs are fed as resource instantiation

templates from the cores to the ABC. Each node in the data flow graph needs to be allo-

cated to a particular ABB, and each ABB is only assigned to a single graph node, and a

single LCA, at a time. When an ABB finishes with the work for a single task, it notifies

the ABC that it is free for reassignment. If there are more tasks marked as runnable

associated with the LCA to which the ABB was allocated, it is given another task from

this set. If there are no runnable tasks associated with that LCA, the ABB becomes

eligible for composition into a different LCA. We considered keeping LCAs composed for

a longer duration to exploit potential locality of use of a particular LCA, but found that

the overhead involved in mapping a set of ABBs to an LCA template is small enough
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Figure 3.3: LCA composition example: A) A core sends a request for an LCA to the ABC; B)

An LCA instance is allocated; C) An LCA instance is allocated with consideration for balancing

DMA utilization; D) The ABC signals completion to the core.

such that releasing resources immediately is preferable due to the improved utilization of

ABBs across multiple LCAs. This means that ABB utilization varies over the course of

execution of a particular task, and it may be possible for there to be multiple constructed

copies of a particular LCA at a given time, even if this is not possible when a given core

initially requests an LCA. Therefore, as long as the ABC has runnable tasks in the Task

Lists for a particular LCA, we allow it to attempt to compose additional copies of that

LCA. In this way, the ABC can eventually make use of all available resources. In this

paper, we do not allow ABB preemption (except in the event of error, such as an access

violation in the requesting core), but we will explore this for future work.

3.1.2.2 Example of Composition

Figure 3.3 shows an example of LCA composition for an architecture with 4 ABB islands.

This example architecture has eight ABBs (shown as hexagons), with two of them in each

ABB island. We assume for the sake of simplicity that all ABBs in this example are of

the same type. The ABC and a requesting core are shown in the upper left-hand side
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of the figure. In this example, the core requests the composition of an LCA consisting

of three ABBs in sequence, with the first ABB reading from memory and the last ABB

writing to memory. The core sends a data flow graph (DFG) of the desired LCA to the

ABC (Figure 3.3A). The ABC then interprets the DFG, splits the request into tasks,

and begins cycling over the addresses each computation will access. It puts each of

these chunks in the task list. For this example, we assume there is more than one task

associated with this LCA invocation, and that the ABC’s local TLB has the required

pages to make all tasks immediately runnable. The ABC then examines the availability

of ABBs, discovering that they are all free, and begins allocating.

Since at least one task is made runnable, the ABC proceeds to execute the allocation

algorithm described in Section 3.1.2.1. After finding a match, consisting of two ABBs

in Island 1 and a single ABB in Island 2 (Figure 3.3B), the ABC makes an entry in its

Composed LCA Table, marking these ABBs as belonging to this specific LCA. At this

point, it chooses a runnable task from the task list belonging to this LCA type, and

dispatches a task. The ABC then begins attempting to map another instance of the

requested LCA to available ABBs, and finds two ABBs in Island 4 and one in either

Island 2 or Island 3. The allocation algorithm chooses to use Island 3 for the last ABB

instead of Island 2 to distribute load across more DMAs (Figure 3.3C). This process is

then stopped since there are not enough ABBs to construct any additional LCAs. As

ABBs finish their assigned work, they signal to the ABC that they are finished. Each

time the first ABB in an LCA signals the ABC of completion, the ABC checks its task

list for runnable tasks. If it finds a task, it begins sending a new task to each ABB in

that composed LCA. If it does not find a task, it marks this LCA as retiring, and marks

the associated ABB(s) as free. Each time an ABB that was part of a retiring LCA is

marked as free, it is made available to be recomposed into a new LCA. When all ABBs of

all clones of a retired LCA are freed in this manner, an interrupt is sent to the requesting

core marking the completion of the requested computation (Figure 3.3D).
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Table 3.1: Simulation parameters

Parameter Value

Processor Ultra-SPARC-III-i @ 2.0GHz

Operating system Solaris 10

L1 32-KB, 4-way set-associative: 1-cycle

L2 8-MB, 8-way set-associative: 10-cycles

Coherence protocol Shared banked L2-cache, L2:MOSI, L1:MSI

Memory 1000-cycles, Directory 6-cycles

Network topology MESH, latencies: link 1-cycle, router 5-cycles

3.2 Evaluation Methodology

To evaluate the CHARM architecture, we have modified Simics [19] and GEMS [20] to

model accelerator-rich many-core architectures. Table 3.1 shows the parameters used in

our simulations.

We have also implemented a series of supporting tools to automatically generate ac-

celerators as well as application code that makes use of these accelerators. For calculating

energy, we used the power result output from Synopsys for LCAs and ABBs, and used

McPat [23] to generate power values for cores and caches.

Table 3.2 and Table 3.3 show the area and power overhead (using the Synopsys 32nm

SAED library and CACTI 5.3 [28]) for the selected ABBs and LCAs corresponding to each

benchmark. We have also included the synthesis results for the ABC that implements

the ABB allocation algorithm mentioned in Section 3.1. To study the overhead of ABBs,

we have synthesized the Poly16 ABB, the results of which are shown in Table 3.2. The

internal structure of a Poly ABB is shown in Figure 3.4 (this Figure is actually showing

a Poly8). It consists of adder/subtractor/multiplier (ASM) modules, an SPM bank, and

control logic which controls access to the SPM bank. The SPM bank has 3 sub-banks

(for simultaneous read/compute/write) each one with 1 read/write port. One sub-bank

is connected to the ASMs and two are ported to the DMA controller (DMAC). For the
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Table 3.2: Area/Power results – CHARM

Name A (u2) P (mW ) Total #

FDiv 4949 0.264 12

Poly16 38276 1.608 96

FInv 3503 0.141 12

FSqrt 58683 1.83 8

SPM-4KB 1R/W 13591 17.6 288

SPM-768B 1R/W 2545 7 72

ABC 8383 0.066 1

experimental results, each ABB island in our design has 16 ABBs and 16 SPM banks

to provide concurrent access to all the ABBs. We have used 128 ABBs in our design: 8

ABB islands, each having 3 FInv/FDiv, 1 FSqrt, and 12 Poly16 modules, along with 16

SPM banks. Table 3.4 shows the area for the main components of the chip. Note that

“CHARM HW” accounts for the area of the ABB islands and the ABC.

We modeled a system consisting of 1 to 8 processors, and a set of either physical

LCAs or ABBs. When modeling a system consisting of physical LCAs, we included all

the accelerators required to run a single instance of each benchmark, without contention.
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Table 3.3: Area/Power results – LCAs

Name A(u2) P(mW ) SPM Banks

Denoise 496908 16.5 6

Deblur 2013228 110.9 9

Segmentation 688298 27.3 6

Registration 3853098 183.9 18

EKF-SLAM 1188252 42.0 24

LPCIP 239159 6.11 6

SPM-2KB 2R,1R/W 37043 17.5 –

Table 3.4: Area (mm2) for various chip components

Core NoC Cache & Dir CHARM HW CHARM Total LCA HW LCA Total

10.8 0.3 39.8 8.3 (Table 3.2) 59.2 8.5 (Table 3.3) 59.4

(scaled to 32nm) Ref [29] Ref [28] (14%) (14.3%)

To illustrate the load balancing capacity of our ABC, we modeled instances in which we

have some multiple of this number of accelerators. When modeling a system featuring

ABBs, the number of ABBs corresponds to the total amount of area that would have

otherwise been devoted to LCAs. As a baseline (i.e. 1x ABB area), the total area

consumed by the ABBs equals the total area of all LCAs required to run a single instance

of each benchmark (this can be verified by the number of ABBs in Table 3.2 and the LCA

area numbers in Table 3.3). All ABB numbers are multiples of this base amount. We

configured our system to have 8 ABB islands, and scaled the number of ABBs present on

each island. We also scaled the amount of SPM space on each ABB island proportionally.

3.3 Experimental Results

We compare the following architectures to evaluate CHARM:

Physical LCA sharing with Global Accelerator Manager (LCA+GAM): In

38



0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1p	   2p	   4p	   8p	   1p	   2p	   4p	   8p	   1p	   2p	   4p	   8p	   1p	   2p	   4p	   8p	  

Seg	   Deb	   Reg	   Den	  

Normalized	  Performance	  

LCA+GAM	  

LCA+ABC	  

ABB+ABC	  

Figure 3.5: Performance improvement

this architecture, physical LCAs can be shared between multiple cores. Each benchmark

in our domain is accelerated with special-purpose accelerators. A global accelerator

manager (GAM) is implemented in hardware to dynamically allocate physical LCAs to

cores. We examine cases where there are between 1 and 8 replicates of each required

accelerator. This allows for the concurrent execution of multiple instances of any specific

benchmark, one for each accelerator in the system. Also, LCAs are powered off when

not in use. This approach is similar to the architecture in [8].

Physical LCA sharing with ABC (LCA+ABC): In this architecture, a core

may share physical LCAs using a centralized hardware ABC. In addition, the ABC can

load-balance the available physical LCAs. We examine cases where there are between 1

and 8 replicates of each required LCA. Since the ABC can split tasks among multiple

LCAs, we are able to take advantage of all LCAs of a given type, even when only a single

instance of that benchmark is executing. In the cases where there are more LCAs than

can be allocated to available tasks, extra LCAs are left powered off.

ABB composition and sharing with ABC (ABB+ABC): In this architecture,

a centralized hardware ABC is responsible for composing and managing available ABBs,

load balancing the tasks, and managing TLB requests from ABBs. We examined multiple
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Figure 3.6: Energy improvement

ABB quantities. For the purposes of making a comparison, we will refer to a quantity of

ABBs with area equal to a single replicate of each LCA in the domain to be comparable

to the case where we have one of each physical LCA in the domain. Typically these

ABBs can be used to make multiple virtual LCAs, but this gives us a metric by which

to make a fair comparison to the LCA+GAM and the LCA+ABC cases. In the cases

where there are more ABBs than can be constructed into LCAs, the extra ABBs are left

powered off.

For all cases, unless otherwise stated, we ran our 4 selected benchmarks from the

medical imaging domain. The benchmarks were run with volumetric images of 32-pixel

cubes in multiple iterations.

3.3.1 Improvement over LCA-based systems

Figure 3.5 and Figure 3.6 show the normalized performance and energy improvements we

observed by using the ABB+ABC scheme compared to the LCA+ABC and LCA+GAM

schemes. All numbers shown here are normalized to the corresponding LCA+GAM

result. In each case, we have the same number of processors, threads and accelerators
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Figure 3.7: Effect of increasing accelerators

(e.g. the 4p case has 4 processors, 4 threads, and 4 accelerators). On average we observe

more than 2.4X energy improvement over LCA+GAM (maximum 4.7X) and 1.6X energy

improvement over LCA+ABC (maximum 3X). In general, as the number of independent

tasks increases, ABB+ABC shows better performance because the ABC starts composing

ABBs to create new LCAs (so long as ABBs are available in the system). This creates

more parallel tasks, thereby achieving better performance and consuming less energy.

We note that Segmentation-2p using ABB+ABC shows higher energy usage compared to

other schemes. The reason for this is that the performance for segmentation improves only

slightly. Therefore, the overhead of constructing LCAs and coordinating communication

between ABBs consumes more energy than what is conserved by the slight reduction in

execution time.

3.3.2 Effect of adding accelerators

Figure 3.7 shows the effect of adding more accelerator resources on the performance in

all of our studied schemes. We observed a very similar result for energy improvement as

well. For this experiment, we fix the number of processors and threads at 4. For LCA
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Figure 3.8: Performance improvement for computer vision and navigation

cases (LCA+GAM and LCA+ABC), the number of LCAs ranges from 1 to 8. For the

ABC+ABB scheme, the quantity of ABBs ranges from 1/4 of the ABB number that

area-wise matches one set of the LCAs in the domain, to two times that number.

There are several observations for these results. First, adding more accelerator re-

sources in general improves speedup and energy. Second, as accelerator resources are in-

creased, significant performance improvements are seen much earlier in the ABB+ABC

case than in the LCA schemes (notice 1.5x-2x case in ABB+ABC vs. 6x-8x case in

LCA+GAM and LCA+ABC). The reason behind this is that in the ABB+ABC scheme

even 1x area allocation can reconstruct many copies of a virtual LCA to run concurrently.

This is because a benchmark using physical LCAs only uses those of a specific type, and

thus only a small number of the total LCAs. The ABB+ABC is free to replicate virtual

LCAs out of the entire sum of accelerator resources, rather than leaving area unutilized.

An implication of this is that the ABB+ABC case saturates much more quickly in the

acceleration that it can offer, either exhausting potential parallelism or becoming mem-
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Figure 3.9: Utilization of ABBs given a task-grain of 8

ory bound. Third, after 4x, the LCA+ABC case still continues improving performance

and energy, but LCA+GAM flattens. This is because ABC splits each individual LCA

invocation into multiple tasks and load balances these tasks among accelerator resources,

thereby benefitting from having more than one LCA per accelerator invocation. The

GAM, which allocates accelerators directly to the calling thread, is not capable of doing

this without the software actually having requested multiple accelerators.

3.3.3 Effect of changing task-grain

Task-grain is the maximum number of individual computations in each task assigned

to a set of composed ABBs. The smaller the task-grain, the more parallelism in cases
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Figure 3.10: Utilization of ABBs given a task-grain of 128

where computations can be performed independent of one another. In order to measure

the effect of task-grain on the ABB usage of each thread, we measured the number of

ABBs allocated to LCA invocations by each thread for every moment of execution. For

brevity, we are only showing results for registration, but all benchmarks we examined

exhibited the same characteristics. We show this utilization for two cases: task-grain of

8 and task-grain of 128 as shown in Figure 3.9 and Figure 3.10, respectively. Each figure

shows the ABB usage by each thread and the total number of ABBs used (the upper

most curve). When the task-grain is 8, there is more parallelism and so more ABBs can

be quickly allocated to a given thread (e.g. the initial spike seen in Figure 3.9). When

the task-grain is 128, only one set of ABBs is used by each thread. The values shown

in Figure 3.10 describe the ABBs allocated for a single LCA instance per thread. Also
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shown in Figure 3.9 is the impact of our round robin scheduling. This assures a measure

of fairness when allocating ABBs. The jagged total use is the result of freeing ABBs

prior to their reassignment.

3.3.4 Platform flexibility

An original argument we put forward as a justification for this approach was the reusabil-

ity of this system in terms of block design as well as retargetability. To substantiate this

argument, we examined two applications from two domains that are completely unrelated

to medical imaging: computer vision and navigation. Computer vision and navigation

require compute-intensive data processing, consisting heavily of linear algebra and float-

ing point computation, to attain high levels of situational awareness. We examine log-

polar coordinate image patches (LPCIP) [15] from computer vision and extended Kalman

filter-based simultaneous localization and mapping (EKF-SLAM) [17] from navigation.

A more detailed description of these two applications and existing acceleration strategies

can be found in [30]. Figure 3.8 shows results comparing the use of our medical imaging

platform (unmodified and implementing virtual LCAs) against custom physical LCAs

that specifically target these new domains. This illustrates that our platform is flexible,

and is much more broadly targetable than a typical platform featuring custom LCAs.
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CHAPTER 4

Progress on Developing

Accelerator-Rich Architectures

Chapter 3 primarily focused on the microarchitectural impacts on a system of introduc-

ing CHARM, but discussed only briefly on the the microarchitecture of many of the

devices introduced as part of CHARM. This chapter focuses on the design of the ABB

islands themselves, along with details about internal structures. These were considered

as separate works primarily because of the scope of the topic to cover.

The methodology guiding the design of ABB islands differs from conventional embed-

ded system design in that we can leverage compute resources outside of island to allow us

to make assumptions about the design of internal components. For example, the network

providing connectivity between components internal to an ABB island does not need to

provide uniform connectivity between all internal devices, because we can leverage the

controlling core and ABC to make allocation decisions that bias toward certain commu-

nication patterns. This chapter discusses this, and other observations that have allowed

us to create an efficient ABB island.

4.1 Progress on Developing

Accelerator-Rich Architectures

We began our investigation of accelerator-rich architectures in 2010 and developed three

generations of architecture templates. The first generation of architectures focused on

hardware support for accelerator management (ARC) [8]. Figure 4.1-A shows the overall
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Figure 4.1: Overview (not to scale) of accelerator-rich architectures: (A) ARC; (B) CHARM;

(C) CAMEL

architecture of ARC, which is composed of cores, accelerators, the Global Accelerator

Manager (GAM), shared L2 cache banks, and shared network-on-chip (NoC) routers

between multiple accelerators. These components are all connected by the NoC. Each

accelerator node includes a dedicated DMA-controller (DMA-C) as well as scratch-pad

memory (SPM) for local storage and a small translation look-aside buffer (TLB) for

translating from virtual to physical addresses. In this architecture, we first introduce

the GAM, a hardware resource management scheme that provides support for sharing a

common set of accelerators among multiple cores. Using a hardware-based arbitration

mechanism, the GAM provides feedback to cores indicating the wait time for a particular

resource to become available. In addition, a lightweight interrupt system is introduced

to reduce the overhead incurred by the OS for handling interrupts, which can occur fre-

quently in an accelerator-rich platform. ARC also provides architectural support allowing

for the composition of a larger virtual accelerator out of multiple smaller accelerators.

On a set of medical imaging applications (our original driver applications at the CDSC),

ARC shows significant performance improvement (on average 16X) and reduction in en-

ergy consumption (on average 13X) compared to software-based execution on an Intel

Xeon E5405 server running at 2GHz.

Although ARC produces impressive performance and energy improvements, it has two

limitations. First, it has narrow workload coverage. For example, the highly specialized

monolithic accelerator for Deblur cannot be used for Segmentation (refer to the medical

imaging pipeline in [31]). The second limitation is that each accelerator has repeated
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resources, such as the DMA engine and scratchpad memory (SPM), which are underuti-

lized when the accelerator is idle. To overcome these limitations of ARC, we introduced

CHARM [24] (shown in Figure 4.1-B), a Composable Heterogeneous Accelerator-Rich

architecture that provides scalability, flexibility, and design reuse. We noticed that all

the ARC accelerators for the medical imaging domain could be decomposed into a small

set of computing blocks, such floating-point divide, inverse, square root, and 16-input

polynomial functions. These blocks are called the accelerator building blocks (ABBs).

Our compiler decomposes each compute-intensive kernel (i.e. code region selected as a

candidate for acceleration) into a set of ABBs at compile time, and stores the data flow

graph describing the composition [24]. The GAM is extended to include an “accelerator

block composer” (ABC), which uses data flow graphs at runtime to dynamically allocate

and compose available ABBs in order to virtualize monolithic accelerators. Therefore, al-

though each composed accelerator is somewhat slower than the dedicated accelerator, we

can potentially obtain more copies of the same accelerator, leading to better acceleration

results. Our ABC is also capable of providing load balancing among available compute

resources to increase accelerator utilization. With respect to the same set of medical

imaging benchmarks, the experimental results on CHARM demonstrate improved per-

formance (over 2X better than ARC) and similar gains in energy efficiency [24].

In addition to improving performance/energy efficiency, the CHARM architecture

provides better flexibility and wider workload coverage compared to ARC. As shown

in [24], by using the same set of ABBs designed for the medical imaging domain, one can

compose accelerators in other domains, such as computer vision and navigation, while

still achieving impressive speedup and energy reduction. However, it is possible that

CHARM misses some ABB types that are necessary for composing functions in a new

application domain. To address this issue, we proposed CAMEL [32], which features

programmable fabric (PF) to extend the use of ASIC-based composable accelerators and

support algorithms beyond the scope of the baseline platform. Figure 4.1-C presents an

overview of the CAMEL architecture. With a combination of hardware extensions and

compiler support, we demonstrate an average of 12X performance improvement and 14X
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energy savings compared to a 4-core 2GHz Intel Xeon E5405 processor across benchmarks

that deviate from the original medical imaging domain used for our baseline platform.

More details are available in [32].

4.2 Ongoing Research on Composable

Accelerator-Rich Platforms

Throughout our work on composable accelerators, and in particular CHARM, we have

come to better understand associated performance characteristics. A large part of our

ongoing work is to find an optimal design point that better facilitates communication

between ABBs. An important limiting factor on the overall performance of a CHARM

system is the NoC connecting the various islands to memory resources, and off-chip mem-

ory bandwidth. These elements place a hard constraint on the potential performance of

a CHARM system. For the purposes of this study, we fix the design of all system com-

ponents except structures internal to the ABB island, so as to focus on the implications

of various design decisions for components internal to an island. Details regarding the

evaluated system can be found in Section 4.3.

4.2.1 Anatomy of an ABB Island

In order to evaluate the quality of an ABB island design, we must first categorize the

individual components of an island, and understand the design goals of these components.

Each ABB island consists of a series of ABBs that serve as the accelerator compute

engines, a set of SPM banks that serve as local storage for the ABBs, a DMA engine to

coordinate memory traffic between shared memory and the island, and a pair of networks

for internal connectivity.

The two networks of this system, which together constitute the elements of greatest

cost and greatest impact on performance, are networks connecting the ABB to the SPM

(ABB↔SPM), and connecting the SPM memory to the DMA engine (SPM↔DMA).
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The design objective of the ABB↔SPM network is to provide low and uniform latency.

Latency fluctuations in this network result in stalls in the ABB compute engine. The

design objective of the SPM↔DMA network is high bandwidth between the DMA and

the individual SPMs. Latency in this network is less critical.

The original CHARM architecture used a crossbar for both the ABB↔SPM and

SPM↔DMA networks. While this provides low latency and reasonable bandwidth, cross-

bars scale poorly. This becomes a concern as the size of the island increases, and the

number of ABBs on a single island grows beyond a small number. The ABB↔SPM

crossbars in the original CHARM design also allowed for sharing of SPM banks between

multiple accelerators. However, sharing in the ABB↔SPM network artificially limits the

number of ABBs that can be active at any given time, and introduces complexity to

scheduling. To eliminate SPM sharing conflicts and make more efficient use of memory

resources, it therefore becomes necessary to have each SPM bank allocated to only one

ABB at a time.

4.2.2 Design Space Exploration Parameters

Our design space exploration begins by adjusting the number of islands while keeping

the system-wide total number of ABBs fixed, resulting in configurations with different

numbers of ABBs per island. In particular, we vary the number of islands from 3-24 while

maintaining a total of 120 ABBs in the system. In terms of memory, while the amount of

SPM dedicated to a given ABB is fixed by the type of ABB, we vary the number of ports

of this SPM from the minimum to two times this quantity. The minimum is defined as

the number of ports (in aggregate) that are necessary to allow the ABB to run at peak

throughput. Adding SPM ports beyond this minimum keeps the ABB compute engines

from observing the impact of bank conflicts.

We also evaluated two potential designs for the ABB↔SPM network: (1) a crossbar

that connects the ABB to a set of private SPM banks, and (2) a wider crossbar that

connects each ABB to both its most local SPMs and the SPM banks of its neighbors.
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Figure 4.2: Island design using ring for SPM↔DMA network

This second design allows for sharing of SPM banks, and potentially allows for fewer SPM

banks to be included, while also allowing for an increase in utilization of SPM resources.

As for the SPM↔DMA network, we evaluated three potential designs: (1) a unidi-

rectional ring network, an example of which can be seen in Figure 4.2, (2) a crossbar

connecting the DMA to every SPM bank, and (3) a crossbar connecting all SPM banks

to each other as well as to the DMA. Chaining in the second option involves sending

data from the source SPM to the DMA, then to the destination SPM. For this reason

we refer to the second option as the proxy crossbar design. Chaining in the third option

involves sending data directly from the source SPM to the destination SPM; we refer to

this option as the chaining-optimized crossbar design.

4.3 Simulation and modeling details

Our evaluation uses a detailed full-system cycle-accurate simulator based on Simics [19]

and GEMS [20]. Our modifications primarily consist of adding simulation support for

the ABB types described in [24], as well as modeling the ABC, the compute engines, and
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the internal mechanisms of ABB islands. Table 2 in [32] describes the tools we used for

modeling timing and power of the various components of our island-based architecture.

For the ring network featured in this work, we model area and energy of the routers and

links using the Orion [29] tool, estimating link lengths based on island size. Furthermore,

the parameters of the simulated system can be found in Table 2 of [24], with the exception

that the system in this work is configured with 4 memory controllers (avg. 180-cycle

latency @ 10 GB/s) and 120 ABBs (78 polynomial, 18 divide, 9 sqrt, 6 power, 9 sum)

with uniform distribution of ABBs among the islands and islands among the processor.

The workloads used for this evaluation are drawn from the Medical Imaging and

the Navigation domains, and can be found detailed in our prior work [8, 24, 32]. Our

software infrastructure includes a compiler framework [24, 32] for automating the process

of analyzing a given accelerator kernel, determining a minimum set of ABBs to cover the

kernel, and generating an ABB flow graph to be used for dynamically composing that

accelerator.

4.4 Results

For the purpose of discussing the findings of this study, we will consider the simplest

possible island construction as our baseline. This island would feature conservative SPM

porting, the proxy crossbar for the SPM↔DMA network, and no sharing of SPMs.

4.4.1 SPM Sharing

The original CHARM architecture featured partial crossbars between the ABBs and the

local SPM banks. The purpose of this was to allow for SPM sharing, and reduce the

amount of area devoted to the SPM. Each ABB is connected both to its own memory

and to the memory of its neighbors, and some subset of these SPM banks are needed

to use this ABB. Since the allocation of a particular ABB requires assigning the shared

memory to be temporarily owned by the newly allocated ABB, the act of allocating an

ABB renders other near-by ABBs unusable.
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The given architecture exhibits three main costs: (1) the algorithm that performs

allocation must take into consideration side-effects when making an allocation decision,

resulting in a considerably more complex ABC, (2) the ABB↔SPM crossbar is larger

than it would be were the SPM banks private to a given accelerator, and (3) even if a

system has a large number of ABBs, the effective usable amount of ABBs reduces as

the degree of sharing increases. This third point is especially critical in a system like

CHARM, since the total number of ABBs is heavily dominated by a single type of ABB

(polynomial), making it impossible to arrange a sharing scheme that allows for effective

utilization of the available compute resources.

While all of the above points are valid arguments against sharing, the most quantita-

tively concise point against sharing is the increased complexity of the crossbar joining the

ABB and SPM banks. Because the SPM banks are individually quite small, the increase

in crossbar complexity eliminates area savings. We found that introducing a crossbar

that allows an ABB to share the SPM of only its immediate neighbors, a modest amount

of sharing, grows the ABB↔SPM crossbar by 3X its original size, and potentially reduces
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the number of SPM banks by 0.66X. With the volume of SPM banks allocated to a given

ABB already constituting about 20% as much area as the ABB↔SPM crossbar (reduced

to 7% with sharing), this is a poor trade. For these reasons, we will show no further

results regarding SPM bank sharing, and dismiss it as a poor design choice.

4.4.2 Chaining-Optimized Crossbar Topology

A chaining-optimized crossbar, as described in Section 4.2.2, is attractive for performance

reasons as intra-island communication constitutes a non-trivial amount of the total com-

munication between ABBs. In terms of performance, this crossbar conceptually would

be an optimal choice for enabling intra-island chaining. However, we have found that

this design does not scale beyond the smallest islands. For large islands, such as those

with 40 ABBs, the SPM↔DMA network accounts for over 99% of the total island area,

while contributing only modest performance improvements. The reason performance is
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Figure 4.5: Performance per unit energy of selected designs; normalized to baseline for re-

spective number of islands

not improved more significantly is that not only is there extra latency for routing through

the large crossbar (which will be discussed in greater detail in Section 4.4.5), but more

importantly, chaining on this network is not observed to constitute the primary

performance bottleneck. At any given time, most ABB pairs are not communicating

with one another, which becomes increasingly apparent as the size of islands increases.

Therefore, this chaining-optimized crossbar topology provides a great deal of connectiv-

ity, but severely over-provisions the capacity for chaining relative to what is needed in

practice.

4.4.3 Ring Network Width & Ring Count

We have evaluated various bit-widths (16-byte and 32-byte link widths) for the SPM↔DMA

network. In the cases of ring networks, we have also evaluated the benefit of adding mul-

tiple rings. We have found that a 2-ring network with 16-byte wide channels performs

almost identically to a 1-ring network with 32-byte wide channels, and does so with re-
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number of islands

duced ring router complexity. The primary benefit for having a larger number of narrow

rings is to make better use of bandwidth in the case where transmitted packets are smaller

than the ring width, which would allow for transmission of multiple flits simultaneously.

Because the SPM↔DMA network almost exclusively transmits data at the granularity

of cache blocks (64-byte) or half-blocks (32-byte), reducing the bit-width below a half-

block size does not lead to an improvement. As such, we will not show further results for

network configurations with 16-byte link widths except in the case of a single ring, since

this data point provides a reasonable distinction from the 32-byte-wide rings.

4.4.4 SPM Porting

Intuitively, bank conflicts on local memory have the potential to constitute a substantial

performance shortcoming. For this reason, we have evaluated two SPM porting configu-

rations. The first configuration features exactly the number of ports required to keep the

compute engines functioning at peak throughput. The second configuration features twice
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this amount, with the intent that bank conflicts can be overcome by over-provisioning

SPM bandwidth. We have found that adding ports to SPM banks contributed very lit-

tle to the total amount of performance, if at all. The primary reason for this is that

software has control over the layout of data in the SPM, and even a superficial effort

to place data in a favorable SPM bank could eliminate almost all SPM bank conflicts.

Over-provisioning of SPM ports therefore only eliminates a negligible amount of conflicts,

thereby marginally improving the throughput of the attached ABB. Also, because the

ABB performance is not the primary limiting factor for this entire system, as discussed

in Section 4.4.5, this marginal drop in ABB performance is of little consequence under

most circumstances. Furthermore, increasing ports increases the area and power con-

sumption of SPM banks, along with the size of the ABB↔SPM crossbar (if used). As

such, we conclude that designing an island with exact provisioning of SPM ports is not

only sufficient, but preferable.

4.4.5 Performance

We have consistently found that one of the primary performance limitations in this

accelerator-rich architecture is the interface between the ABB island and the NoC, par-

ticularly the NoC bandwidth. This bottleneck is the primary reason for the results

shown in Figure 4.3, which displays performance for a selection of benchmarks using sev-

eral SPM↔DMA network configurations with different numbers of islands (results are

normalized to the baseline configuration for 3 islands). In almost all island configura-

tions, the link connecting the ABB island to the rest of the system has been fully utilized.

As ABBs are distributed across more islands (i.e. fewer ABBs per island), there is likely

more inter-island communication, which causes performance to be more heavily domi-

nated by the NoC. For benchmarks with small amounts of ABB chaining (e.g. Denoise),

compared to benchmarks with more ABB chaining (e.g. EKF-SLAM), inter-island com-

munication is less probable and constitutes a smaller portion of the total traffic on the

NoC. As such, when the number of islands is increased, benchmarks with less chaining

exhibit larger improvements in average performance across all the SPM↔DMA network
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configurations.

Figure 4.4 shows the performance impact of adjusting the topology of the SPM↔DMA

network. As shown, the majority of ring configurations outperform the proxy crossbar

(i.e. the baseline to which the results are normalized), though the impact is reduced as

the total number of islands increases. The crossbar also exhibits particularly poor per-

formance for cases with large amounts of ABB chaining, such as with the Segmentation,

Robot Localization, and EKF-SLAM benchmarks. Unlike a crossbar, the ring network

presents a more scalable solution, and exhibits bandwidth provisioning that is easier to

fine-tune.

4.4.6 Energy & Energy Per Computation

Figure 4.5 shows performance per unit energy for several configurations. This shows the

efficiency with which we are able to achieve a given performance point. This graph clearly

shows that over-provisioning interconnect resources allows for more energy-efficient op-

erations. The reason for this is because a more robust interconnect allows for higher

performance, but uses very similar power per bit-transferred. Also, comparing the 24-

island configuration with the 3-island one reveals that having more islands results in

smaller efficiency gains as the interconnect strength is increased. This is to be expected

since performance is more heavily dominated by the NoC interface when the number of

islands increases (as described in Section 4.4.5).

4.4.7 Area & Compute Density

The SPM↔DMA network accounts for 16-40% of the total island area for a ring network

(depending on the bit-width of links and the number of rings), and 44-50% of the total

island area for crossbar networks for large islands. For this reason, under-provisioning

this resource, and thus maximizing network utilization, allows for an increase in compute

density, even though performance suffers. Figure 4.6 shows this clearly, with compute

density (i.e. performance per unit area) dropping as network resources are added to
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Figure 4.7: Performance and energy gains of “best” accelerator-rich design configuration over

chip multi-processor (CMP)

increase the system’s performance. Small networks see high utilization, and even limit

accelerator throughput severely in some cases. However, due to the NoC interface bottle-

neck described in Section 4.4.5, there is little justification for enlarging the SPM↔DMA

network capacity very much beyond the bandwidth cap instituted by the NoC.

4.4.8 Comparison to Chip Multi-Processor (CMP)

Based on our design space exploration, the configuration that performs the best in terms

of average performance, energy efficiency, and compute density is the 24-island design

with a 2-ring SPM↔DMA network of 32-byte links, and with no SPM sharing and no

over-provisioning of SPM ports. In Figure 4.7, we compare this design to a 12-core 1.9

GHz Intel Xeon E5-2420 processor, where on average, our accelerator-rich design achieves

7X speedup and 20X energy savings. Comparing to the 4-core CMP used in [32], we see

25X speedup and 76X energy savings. Furthermore, this design maintains an average

ABB utilization of 18.5% with a peak utilization of 43.5%.
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CHAPTER 5

Composable Accelerator-rich Microprocessor

Enhanced for Adaptability and Longevity

In the CHARM architecture, discussed in Chapter 3, any given kernel consisted almost

entirely of a small set of common components. These components, described in Chapter 3

as poly, divide, and pow ABBs, were used in all computations, and in great number. As

more workloads are considered in the design of a single platform, the portion of ABBs

that are shared heavily begins to reduce, as new ABBs that are specific to a particular

workload need to be introduced to maintain program coverage, and enable acceleration

of more regions. This begins to cause a problem when it becomes necessary to sacrifice

highly utilized ABBs to add low utilization ABBs for the purpose of allowing an unusual

kernel to be accelerated that otherwise could not be accelerated.

To help curb this problematic trend, the Composable Accelerator-rich Microproces-

sor Enhanced for Adaptability and Longevity (CAMEL) [32] architecture is introduced.

CAMEL adds to a CHARM system a small region of programmable fabric for the pur-

pose of implementing these small seldom used accelerators, while limiting the impact

that including these ABBs has on system-wide accelerator utilization. The type of pro-

grammable fabric CAMEL features is FPGA, though this is not necessarily the only

possible design. While it is understood that an FPGA implementation of a compute en-

gine instead of ASIC is on average 40x larger, 3.2x slower, and 12x less power efficient [33],

the advantage of including an FPGA allows for a sharp increase in the degree to which

ASIC resources can be utilized, and thus yields system-wide performance improvement

and energy savings.
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The main contributions of this work are the following:

• Compiler and Runtime Framework to Support ASIC and PF Allocation -

Our compilation framework generates a task flow graph of interconnected building

blocks for a given kernel; it can also perform platform-aware partitioning of the

task flow graph into subgraphs that can be accommodated by on-chip resources;

at runtime, our resource manager uses these graphs to compose accelerators by

allocating either ASIC- or PF-based building blocks.

• Slack Analysis and Rate Matching - Our compiler statically identifies im-

balance in the task flow graph, and compensates for the computational slack in

shorter paths by allocating extra buffer space; our hardware reduces PF perfor-

mance overhead through rate-matching, where it instantiates multiple PF-based

building blocks to collectively match the ASIC design throughput.

• Design Space Exploration - We demonstrate the enhanced flexibility from our

approach through analysis on four distinct application domains, examining the

benefits our approach provides to design extensibility and longevity; while we an-

alyze our results on one candidate architecture for accelerator composition, our

techniques are more generally applicable to other composable architectures.

5.1 Microarchitecture of CAMEL

The CAMEL architecture uses a combination of software and hardware components to

improve flexibility and longevity. The hardware components are responsible for the actual

accelerator composition, where the virtual accelerators, or loosely-coupled accelerators

(LCAs), are dynamically constructed using either the available accelerator building blocks

(ABBs) in ASIC or ABBs that have been instantiated in PF. While our contributions

in the CAMEL architecture are generally applicable to composable architectures, in this

paper we implement our techniques and analyze results on the CHARM architecture [24].

An overview of the CAMEL microarchitectural components is presented (not to scale)
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in Figure 5.1. This figure consists of a set of cores with private L1 caches, shared L2

cache banks, and the following specialized CAMEL components: (1) ABBs grouped into

a series of islands (shown as “I”); (2) accelerator block composer (ABC) responsible for

accelerator composition, PF assignment, and CAMEL resource arbitration; and (3) PF

(for additional ABBs).

5.1.1 ABB Islands

Figure 5.2 shows the internal structure of an ABB island; in this sample figure there

are 8 ABBs, 8 scratchpad memory (SPM) banks, and 1 multi-channel DMA controller

(DMAC). Each ABB has access to only 4 of the SPM banks using a partial 8x8 cross-

bar [34]. These SPMs are in turn connected to the multi-channel DMAC. The numbers

and types of the ABBs are determined using software-driven design-space exploration,

and the ABBs of a given type are distributed evenly across the islands in a round-robin

fashion.
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5.1.2 Programmable Fabric

The PF is used for hosting the ABBs required by new applications (in new or existing

domains). The internal design of the PF in CAMEL is shown in Figure 5.3. It consists

of PF slices, 16 SPM banks, 4 DMACs, 4 network interfaces (NI), and 2 crossbars: one

to connect a selected set of PF slices to SPMs and one to connect SPMs to DMACs.

Although a monolithic PF presents challenges in its shared usage (i.e. ports, NoC con-

gestion, etc.), it accommodates ABBs of any size and avoids performance hits due to

static partitioning of resources. The main advantage of using a PF is its reusability and

run-time reconfigurability. However, ABBs implemented on the PF are less area- and

power-efficient, and have lower performance compared to ABBs implemented on ASIC.

While the area and power issues are largely technology-dependent, we address energy con-

sumption and performance using hardware techniques that compensate for the mismatch

in computation speed.

When a virtual LCA is invoked, software sends to the ABC an encoded task flow

graph representing the LCA’s functionality. Nodes in this graph represent functionalities

of individual ABBs, while edges represent data transfers. This functionality is executed

in a pipelined fashion, with each ABB in the graph communicating with others by means

of bulk transfers from/to its local SPM to/from remote SPMs or memory. If a PF-

implemented (presumably less efficient) ABB is on the critical path, it can negatively

impact the performance of the entire LCA. Figure 5.4 exemplifies this scenario and how

63



rate-matching helps. In this figure, the same task flow graph is instantiated for three

different hardware allocation scenarios, and we see how four independent data sets (il-

lustrated by different shading patterns) would flow through the connected ABBs. As

Figure 5.4-a shows, when all ABBs are operating at the same frequency (e.g. f = 1), the

LCA they compose will have that same throughput. However, as shown in Figure 5.4-b,

if one of the ABBs is slower than the others (e.g. ABB3 has f = 1/2), this ABB becomes

a bottleneck and the other ABBs are forced to stall. This results in the LCA as a whole

progressing at the rate of this single slow component. Since the ABBs allocated in the

PF typically have less throughput than ASIC ones, the inclusion of a PF-based ABB

could result in such a bottleneck.

To address this, CAMEL allocates multiple copies of the slower ABB to bring the

aggregate throughput of the collection of slow ABBs up to match that of the faster ABBs.

This is referred to as rate-matching, and is shown in Figure 5.4-c. Provided there are

sufficient PF resources for multiple ABB instantiations, this technique interleaves inde-

pendent data sets between the duplicated PF-based ABBs and allows for the LCA to

make more efficient use of the ASIC-based ABBs. As throughput is increased, the other

ABBs and overall system components are left idle for a shorter period of time, thereby

reducing static energy consumption. Although dynamic power is slightly increased, dy-

namic energy remains constant and so overall energy consumption is reduced. Thus, while

rate matching not only improves performance and resource utilization, it also improves

energy efficiency. The implementation of this technique is described in Section 5.1.3.

5.1.3 Runtime PF Allocation

The ABC performs PF-based ABB allocation using the algorithm shown in Figure 5.5.

It receives information on the available space on the PF, along with the list of available

ASIC ABBs and the LCA task flow graph. Using these it determines what ABBs to

allocate in PF. To achieve the best allocation, it starts with the minimum configuration

as a feasibility test; if the minimum currently cannot fit, it temporarily keeps the task
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work

until enough space is available on PF. If the minimum cannot be implemented at all,

the ABC informs the requesting core of the failure to implement. If the feasibility check

passes, the ABC attempts rate-matching: it iteratively increases the PF-based allocation

of critical ABBs (i.e. those on the critical path of the task flow graph) until either no

space is left on the PF or the best rate-match is achieved.

5.1.4 Compiler Support

An overview of the CAMEL compiler framework is shown in Figure 5.6. Given informa-

tion on ABB types to potentially use, the compiler is responsible for mapping a given

program kernel to a set of those ABB types, producing a data flow graph (i.e. task flow

graph) whose nodes are ABBs and whose edges are data transfers. The algorithm used

is similar to that described in [35]. Provided supplemental information on the available

ASIC ABBs and PF for a given platform, the compiler can also determine if a kernel

being mapped is too large for the total number of ASIC ABBs combined with the total

PF. In these cases, the kernel’s task flow graph is partitioned into the fewest number of
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regions such that allocation is possible. Partitioning is done along regions of the graph

such as to minimize data transfer between partitions, and temporary storage is allocated

to store intermediate data. The partitioned regions become subgraphs that can then be

run sequentially. An example of this is shown in Section 5.3.4. After a mapping solution

exists, addressing for the local SPM of each ABB is calculated. Part of this calcula-

tion is an optimization for graphs that feature multiple paths of different lengths (i.e.

slack) between a pair of nodes. Once this slack is identified, computational correctness

is ensured by allocating extra buffer space along shorter paths. By avoiding stalls, this

method allows for higher ABB utilization and overall throughput along all paths.

5.2 Evaluation Methodology

5.2.1 Tool Chain

In order to evaluate this architecture, we extended Simics [19] and GEMS [20] with the

cycle-accurate models needed by CAMEL. Table 5.1 shows the simulation parameters

used. We also implemented a complete tool-chain for generating simulator models start-

ing from C-based kernel code. Table 5.2 shows the additional tools used for acquiring

accurate timing and power values for these models. Furthermore, the compiler framework

was implemented in LLVM [36], and has an average compilation time of 6.1 seconds per

kernel for our benchmarks.

5.2.2 Domains

In this work, we target the four application domains described below. These four do-

mains not only provide coverage of real-world applications with interesting computational

demands, they also represent classes of applications that are algorithmically diverse in

nature. Table 5.3 shows the numbers and types of ABBs used for accelerating each do-

main using one set of accelerators. Note that by one set of accelerators we mean as

many ABBs as it would take to instantiate one of each virtual LCA in the domain. In
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Table 5.1: Simulation Parameters

Parameter Value

Main Memory Latency: 280 cycles,

bandwidth: 10 B/cycle per controller

L2 Cache 8MB, 8-way set-associative, 32 banks, latency: 10 cycles

Coherence Protocol Shared banked L2-cache, L2: MOSI, L1: MSI

Network Topology 4x8 MESH, latency: link 1 cycle & router 5 cycles,

bandwidth: 72 B/cycle per link

ABB Islands (Base) 16 islands; 14 ABBs and 14 4KB SPMs per island

Table 5.2: Tools for Timing and Power Models

Tool Purpose

Xilinx Vivado Design Suite [37] Accelerator high-level synthesis

Synopsys Design Compiler (32nm) [22] ASIC synthesis (power, performance)

Xilinx ISE [38] PF synthesis (performance)

Xilinx Virtex 6 XPower Estimator [38] PF power analysis

CACTI [28] Cache and scratchpad modeling

Orion [29] NoC power and area

McPat [23] Core and cache power analysis

our experiments, we have used four sets of accelerators.

5.2.2.1 Medical Imaging (Med)

Medical imaging is an important tool for diagnosis and treatment. Because of the high

volumes of data and high computational demands, the algorithms cannot be easily used in

real-time clinical diagnosis, making them excellent candidates for acceleration. The med-

ical imaging pipeline includes denoising, deblurring, fluid registration, image segmenta-

tion, and compressive sensing for reconstruction. These algorithms and their acceleration
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strategies are described further in [31].

5.2.2.2 Commercial (Com)

We have selected three applications from the PARSEC [39] suite to represent the com-

mercial domain: BlackScholes, Streamcluster, and Swaptions. These applications solve

partial differential equations, online clustering problems, and probability distribution

estimations.

5.2.2.3 Vision (Vis)

Computer vision is a compute-intensive domain with inherent parallelism that makes

it ideal for streaming-data style of acceleration. Two main categories of applications

in this domain are feature extraction, for which we include implementations of SURF

from OpenCV [40] and LPCIP from MRPT [41], and image processing, for which we

include the Texture Synthesis application from SD-VBS [42]. These applications provide

a variety of computation including complex matrix-based, trigonometric, log-polar, and

gradient histogram computations, with fluctuating memory usage.

5.2.2.4 Navigation (Nav)

Navigation is a compute-intensive, AI-related domain that aims to achieve high levels

of situational awareness. We include EKF-SLAM from MRPT [41], along with Robot

Localization and Disparity Map from SD-VBS [42]. These applications provide diverse

computation in the form of partial derivatives, covariance, spherical coordinates, proba-

bilistic models, particle filters, search for minimal sum of absolute differences, etc.

5.2.3 ABB Characterization

The ASIC ABBs for our system have all been synthesized with a frequency of 1GHz and

an initiation interval (II) of 1. Although the PF ABBs also have II’s of 1, they have
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Table 5.3: ABB Types, PF Synthesis, Domain Num-

bers, and Func.
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Table 5.5: Number of ABBs and PF Slices in CAMEL-x%

CAMEL-0% CAMEL-10% CAMEL-20% CAMEL-30% CAMEL-40% CAMEL-50%

# ABBs 224 192 168 148 128 108

# PF Slices 0 2466 4935 7404 9873 12342

different operating frequencies depending on their type. Table 5.3 details the results of

synthesizing the various ABB types for a Xilinx Virtex6 FPGA, along with the numbers

of ABBs needed by the four domains and the functionalities of the ABBs. Note that the

ABB granularities and functionalities have been determined according to a domain-space

optimization primarily for Med, which is the base domain of CAMEL in our case studies

(see Section 5.2.4), with additional ABB types added as needed.

5.2.4 Case Studies

For the purposes of this paper, we consider the cases of running single benchmarks, where

accelerator needs are known. As such, PF reconfiguration can be done statically, and so

reconfiguration time is excluded from all results. In our experiments we have considered

the following cases, each representing a different class of accelerator-based architectures:
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GPU is a Tesla M2075; performance measures consider computation only (not data

transfer time).

LCA-ASIC is an accelerator-rich platform where all LCAs are monolithic and ASIC-

based [8].

LCA-FPGA is an accelerator platform where all LCAs are monolithic and FPGA-

based [8].

CHARM is a composable accelerator-rich platform with Med base domain and no

PF [24].

CAMEL-x% is the CAMEL architecture with Med base domain and “x” percent of the

total ABB area substituted (by removing “x” percent of ABBs of each type, maintaining

even ABB distribution across islands) for equivalent area of PF; x ranges 0%-50%.

The power and area values modeled for the CAMEL-0% base platform can be found

in Table 5.4, where the total area of the chip is 122 mm2. To determine the number of

PF slices that can fit in CAMEL-x%, we have used the die area size of Virtex6 (measured

by taking X-ray photos) and have estimated 2955 um2 for each slice in 32nm. Table 5.5

shows numbers of PF slices and remaining ASIC-based ABBs for each CAMEL-x% case.

Note that ABB types vary in both area and quantity – the distribution shown corresponds

specifically to our platform. As PF slices are linearly increased for the CAMEL-x% cases,

different numbers of various types of ABBs are removed to make room for the PF area,

so the total number of remaining ABBs may not decrease linearly.

5.3 Experimental Results

In this section, we present and discuss our simulated results. Although our Simics+GEMS

framework simulates an Ultra-SPARC-III-i 1GHz processor (running Solaris 10), we con-

servatively measure our performance gains in terms of a wall-time-based comparison to

fully parallelized runs on a 4-core 2GHz Intel Xeon E5405 processor. When there are

insufficient accelerator resources to run a benchmark, we fall back to running on the

CPU, and thus exhibit no benefit.
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5.3.1 Comparison Between Acceleration Schemes

Figure 5.7 and Figure 5.8 compare four accelerator-based architectures running bench-

marks from the Med domain. As it features domain-specific acceleration, CHARM (i.e.

CAMEL-0%) outperforms by 2.1X and saves energy by 93X compared to the power-

hungry GPU. Furthermore, with its ability to load-balance and dynamically virtualize

LCAs, CHARM on average outperforms LCA-FPGA by 3.5X and LCA-ASIC by 1.8X,

resulting in energy savings of 14.5X and 5.1X, respectively. For an optimal design, we

would want the performance and energy usage of CHARM with the adaptivity of GPUs

and FPGAs. We show next how CHARM is made adaptive for greater performance and

energy savings across domains.

5.3.2 Effect on Domain-Span

To evaluate CAMEL support of domain-span, we have used the Med base domain (for

ASIC ABBs) and chosen three other target domains: Com, Vis, and Nav (as mentioned

in Section 5.2). In all of these experiments, we have kept the overall area constant

by removing 0%-50% of the ASIC ABB area in increments of 10% (maintaining even

distributions of ABB types across islands) and adding PF slices equivalent to the removed

area.

Figure 5.9 shows the aggregate speedup and energy savings for all four domains, while

Figure 5.10 shows the average speedup and energy savings of each domain vs. software-

only versions of the implementations. Since most of these new applications are unable to
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run on the base without the PF (i.e. exhibit 1X as they fall back to running on the CPU),

the aggregate speedup of CAMEL-0% (i.e. CHARM) across all benchmarks is relatively

low. As seen in Figure 5.10-a, the Med applications, for which this base was originally

optimized, see performance improvement with the addition of a small amount of PF,

followed by a decrease in performance as more PF is added. This is intuitively correct, as

the platform considered was provisioned with the ASIC-based ABBs designed specifically

for accelerating Med applications. A small amount of PF (10%-20%) provides adaptivity

for higher load balancing and resource utilization for each individual benchmark, while

larger amounts of PF begin to starve the system of the improved performance efficiency

of the ASIC ABBs. However, even the small performance improvement initially seen with

the addition of PF is not enough to counterbalance the reduction in power-efficiency as

ASIC ABBs are replaced by PF. As a result, we see an initially small decrease in energy

savings for CAMEL-10% and CAMEL-20%, followed by a larger decrease for CAMEL-

30% and onward.

For Com (Figure 5.10-b), no applications can be implemented without PF because

they all require a variety of new ABB types that do not appear on the base platform

(refer to Table 5.3). As PF is added, these ABBs can be instantiated and rate-matched,

resulting in large performance gains and energy savings. With Vis (Figure 5.10-c), we

see behavior similar to that of the Com applications. For Nav (Figure 5.10-d), we see

an initial speedup even without the PF because this domain shares a lot of the same

ABBs as Med, allowing some benchmarks to be minimally implemented on the base

platform. As we initially increase PF, we are able to instantiate the missing ABBs and

run all benchmarks, resulting in increased average gains in both performance and energy.

However, similar to the trends we see with CAMEL-10% and -20% for Med, as more

ASIC is replaced by PF for Nav, performance continues improving slightly, yet energy

savings begin dropping (e.g. CAMEL-30% and onward).

In summary, as ASIC ABBs are removed and replaced by PF, more useful ABBs

become available and rate-matching takes effect. This translates into better adaptivity,

and often times higher performance and energy savings for new domains. While these
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Figure 5.9: Geometric Mean of All Speedups and Energy Savings

trends depend on the specific workload you are considering, as intuitively suspected, the

less similar a workload is to the base domain of the platform, the more useful the PF.

As with the law of diminishing returns, however, increasing the PF past a certain point

starts reducing the improvements because the system is now removing too many of the

useful ASIC ABBs and replacing them with their equivalent PF-based ones. We see this

turning point with ∼30% PF for domains similar to the base (e.g. Nav) and ∼50% PF

for other domains (e.g. Com and Vis).

5.3.3 Effect on Domain Longevity

In order to evaluate the longevity of the base domain, we have added a new application to

Med: compressive sensing magnetic resonance (CS MR) [43]. This application needs one

additional ABB, namely the ”sum” ABB, which is not found on the Med base domain of

CAMEL. This ”sum” ABB is one that accumulates the values of a given vector, and is

used to implement the internal FFT engine of CS MR. The speedup result for CS MR is

shown in Figure 5.11. CS MR does not need many of the ASIC-based ABBs on CAMEL,

so as more PF slices are provided, it can use them to implement more ”sum” ABBs,

allowing it to instantiate more of its virtual LCAs and achieve more speedup.

5.3.4 Graph Partitioning for Lower-Capacity Hardware

As described in Section 5.1.4, it is sometimes the case that a benchmark demands a

massive LCA for a large kernel and requires more resources than are available on CAMEL,
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Figure 5.10: Geometric Mean of Speedup and Energy Savings for Each Domain

even with PF. Benchmarks like Texture Synthesis, Swaptions, Stream Clusters, and

SURF contain kernels that can never be implemented in their original form. To overcome

this, our compiler partitions the task flow graph of each of these kernels into a number of

subgraphs that can each fit on CAMEL-x% (e.g. Texture Synthesis requires 6 partitions

for CAMEL-50%). Figure 5.11 shows the result of accelerating Texture Synthesis as an

example after applying this graph partitioning technique, where we are able to achieve

up to 11.96X speedup.
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CHAPTER 6

AIMing to Topple the Memory Wall

While accelerators are able to bring a great deal of computational power to bear on

a problem, providing data to these compute engines continues to be a problem. This

is particularly problematic when considering workloads that must stream over a large

volume of data. The reason for this is that, while resources that can be dedicated to

on-chip networks scale well with regard process technology, the pin-out of a chip improves

relatively slowly. The 2012 ITRS Road Map [1] predicts a 1.48x increase in the number

of pins over an 8-year time-frame and based on Moore’s Law there will be at least a 16x

increase in the number of transistors available to implement compute engines over the

same time period. The impact that this has on the design of a system is obvious, an

impact referred to as ”Hitting the Memory Wall” [44], which describes the inevitable and

pervasive out-pacing of memory devices by compute engines, due simply to manufacturing

capability.

This shortcoming however manifests itself in very specific places: chip boundaries.

Even conventional memory systems in modern machines feature memory modules collec-

tively feature bandwidth that is many times the ability of the central processors ability

to make use of this bandwidth. This observation was made by prior works as well, that

distributed compute engines into memory devices directly, so as not to have to pay the

cost of moving data across the die package boundary of the central processor [45–48].

While the performance of these systems are very high, they are highly invasive to memory

module design, which results in both manufacturing challenges and practical challenges

in the form of requiring cooperation with memory manufacturers to create.

While integrated accelerators benefit from low latency communication with conven-

76



tional cores, many accelerator designs circumvent the other structures on the processor

die for the purposes of achieving higher performance [49]. For accelerators designed to

compute over large volumes of data in a streaming fashion, caches are a hindrance. For

accelerators accessing highly structured data, prefetchers have no purpose. For accel-

erators that exhibit well structured communication patterns, a packet-switched NoC is

an unnecessary source of fluctuation in communication latency. There is also the simple

and practical truth that integrating accelerators into a processor die is complex, and

getting a commercial-grade highly-efficient accelerator packaged into the same die as a

commercial-grade highly-efficient conventional core requires requires both a large engi-

neering effort and cooperation between industry players. These factors together make an

argument for moving accelerators that perform streaming style computation over large

volumes of data into a separate die package entirely, and moving toward a more modular

design, and leave integration to those accelerators that implement only the functional-

ity that benefits from tight coupling to caches and other mechanisms that improve the

performance of a conventional core.

Inspired by these observations, we propose an architecture that meets the following

objectives:

• Modularity: The accelerator must be implemented such that it can be designed

and tested in isolation.

• Non-invasiveness: It must be possible to introduce accelerator modules into a

system that is otherwise composed of off-the-shelf components.

• Low latency communication Communication with the accelerators must be fast.

• Shared Memory The accelerator should operate over the same memory as the

processor.

• Scalable The bandwidth accelerators are able to use must scale with the system,

rather than be bound by packaging pin-out.
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Our proposed architecture meets these objectives by introducing a new device to the

system called an Accelerator In Memory (AIM) module. This device is an accelera-

tor in a DIMM form factor, and features a DIMM interface on the AIM module into

which conventional memory DIMMs may be seated. The AIM module with a memory

DIMM seated into it would then be seated into the system motherboard. This design

accomplishes the previous objectives in the following way:

• Modularity: The AIM itself is simple, and provides scaffolding for simplifying the

authorship of customized accelerators as a separate package. The implemented ac-

celerator also communicates with other devices using the well established protocols

that the CPU uses to communicate with memory, which limits the need for testing

communication protocols.

• Non-invasiveness: A set of AIMs can be introduced to a machine that otherwise

consists entirely of off-the-shelf parts, that run off-the-shelf software.

• Low latency communication The needs of the CPU that drives the design of low

latency and high bandwidth networks between the CPU and memory is leveraged

to provide low latency and high bandwidth communication with the accelerators.

• Shared Memory The AIM literally uses the same memory as the CPU, and thus

shared memory is automatic, without the need of costly hardware abstractions.

• Scalable As the memory system grows in size, the number of AIMs grows as well.

Aggregate bandwidth observed by all AIMs is the peak DRAM bandwidth, rather

than the artificial limit imposed by CPU pin-out.

While conceptually simple, there are a number of difficult challenges in achieving such

a design. This paper discusses how we met these challenges, and shows experimentally

that a system featuring AIMs can achieve substantially higher performance for a selection

of benchmarks, and performs at least as well as accelerators integrated into the CPU for

other highly parallel benchmarks, without incurring the engineering cost of integrating

accelerators into a CPU.
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6.1 Acceleration Platform

This section will describe the architecture and design of AIMs, along with how these

modules interact with the rest of the system. Because the design of accelerators more

broadly have been widely studied [4, 8, 24, 49–52], this section will not focus on the

compute engine of the AIMs, but instead focusing on the mechanisms that are necessary

to integrate AIMs into an existing system.

At a high level, a system using AIMs is structured as a hierarchy, with the CPU as

the master, and AIMs serving as slaves. Each AIM and its attached memory acts as a

small independent system capable of independent computation, while the CPU views all

the memory in the entire system as shared memory.

While the particulars of a communication protocol between the CPU and system

memory is important, the details discussed here are focused on the internals of the AIM

itself, and not how these modules interact with any particular memory protocol. For

this reason, this section will discuss components in a way that is agnostic to the memory

protocol being used. An actual implementation of an AIM would be customized for a

specific memory standard, and this customization may allow for certain components to

be simplified. A more detailed discussion of how an AIM featuring system can be adapted

to a specific memory protocol standard is presented in Section 6.2.

6.1.1 Accelerator Integrated DIMM Architecture

As shown in Figure 6.1, an AIM consists of an additional card that plugs into a conven-

tional DIMM interface of a motherboard. An AIM in turn features its own DIMM inter-

face which can seat conventional, off-the-shelf, DIMM memory. In almost every way, an

AIM paired with a memory DIMM appears completely identical to a conventional mem-

ory DIMM from the perspective of the surrounding system. The sole difference between

an AIM and a conventional memory DIMM is that an AIM filters out accesses to a small

address range that serves the purpose of allowing communication with the accelerator.

We will call this region the accelerator control memory region (ACMR). The memory
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Figure 6.1: How a set of AIMs physically connect to an existing system.

DIMM seated in an AIM acts as both normal system memory from the perspective of

the CPU, and also the private memory from the perspective of the attached AIM.

Figure 6.2 details the internals of an AIM. This module consists of three components,

and interconnection between these components.

• Address Filter: The address filter decides whether or not an incoming access is

an access to the ACMR, which is simply an address range check. If the access

is to the ACMR region for a particular AIM, the request is serviced by reading

configuration state of the compute engine, along with signaling the compute engine

that the access has occurred. If the access is to the ACMR region belonging to a

different AIM, the request is either ignored if the memory system uses a broadcast

network, or forwarded on if the memory system features a multi-hop network. If

the access is not to the ACMR, then it is a normal memory access and is forwarded

to the Memory Response Filter.

• Memory Response Filter: When a memory access is made by the CPU, the

Memory Response Filter tracks the address that was accessed. The purpose of

this is to correctly route responses from the attached memory DIMM to the device
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Figure 6.2: The internals of a sample AIM.

that issued the request: either the compute engine, or the CPU. When a response

arrives from the attached memory DIMM, the Memory Response Filter is checked.

If the address is found, the response is forwarded to the CPU and the entry in the

Memory Response Filter is invalidated. Otherwise, the response is forwarded to

the compute engine. The exact design of the Memory Response Filter depends on

the type of memory system the AIM is being introduced into, but generally the

Memory Response Filter is a small associated table, similarly to an MSHR [53], that

is sized appropriately to the maximum number of concurrent accesses the attached

memory module can support being simultaneously pending. If a memory format

does not support multiple simultaneously pending accesses, the Memory Response

Filter is simply a register and the necessary comparison logic.

• Compute Engine: The Compute Engine consists of both the accelerator(s), and

a small amount of memory reserved for the purpose of servicing read requests from

the ACMR. This does not require the entire ACMR address range associated with

a particular AIM to be backed by this memory range, only that addresses not

backed by this address range are write-only. These write-only addresses are used

for configuring an accelerator prior to performing a task, or sending control signals

to the accelerator. Any access performed on an ACMR region for the AIM receiving

the access results in a signal being sent to the accelerator indicating that an access

has occurred, to what address the access was made. In the case of writes, the signal
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also contains the value that was written. The reason that parts of the ACMR are

backed by dedicated physical memory is to allow for a guaranteed access latency,

which is a common requirement in memory systems. A read to an area that is not

backed by physical memory returns the value of zero for all bits requested. The

exact functionality of the accelerator encapsulated within the Compute Engine is

outside the scope of this section, and is expected to be application specific. In

Section 6.3, we describe that our experiments assumed that the compute region

is an FPGA, but can also be implemented as dedicated ASIC [8], CGRA [54] or

composable accelerators [24], or any other compute mechanism.

Memory accesses to addresses in the ACMR region are routed independently from the

normal memory address interleaving protocol imposed by the memory controller. This

is done to assure that any specific address range can be chosen for the ACMR, and the

systems memory controller does not have an opportunity to exempt certain AIMs from

having adequate ACMR space allocated to them. This is done by overriding the DIMM

select mechanisms that would be used by the memory controller. Because an address that

is determined to be within the ACMR range by a single AIM will never be determined to

not be in the ACMR range by a different AIM, this cannot result in multiple responses to

a single access. Furthermore, overriding routing for accesses in the ACMR range enables

broadcasting to all AIMs. This is performed by all AIMs simultaneously determining

that a given access maps to their portion of the ACMR, and that it maps to the ACMR

portion of another AIM.

The ACMR is split into two regions: global memory and local memory. An access to

ACMR global memory is treated as a broadcast using the mechanism described above,

and is received by all AIMs. This is primarily used for bulk configuration of accelerators

or for communication of control signals. Because a single memory request is expected to

solicit a single memory response, read accesses to ACMR global memory are serviced by

the AIM indicated by the DIMM select mechanism emitted by the memory controller.

ACMR global memory is not backed by compute engine register state, and thus a read

from an address in this range is responded to with a zero. An access to ACMR local
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memory is an access or signal to a specific AIM, such as to set control registers that

differentiate a given AIM’s accelerator from that found in its neighboring AIM module.

While it is not necessary that ACMR local memory be backed by physical memory in

the AIM, any ACMR memory that is backed by physical memory in an AIM is assured

to be local memory. Also, because most AIM configuration is expected to be done via

global memory, configuration time remains constant regardless of the number of AIMs

in the system.

An AIM gives priority to memory accesses made by the CPU. This is due to the

increased sensitivity of processing cores to memory latency. This is also frequently man-

dated by the memory communication protocol as well.

6.1.2 Accelerator Use

The primary mechanism for communicating with AIMs is an AIM driver. This driver

also serves the purpose of reserving the memory address range that corresponds to the

ACMR as being mapped to a device, as is typically done for hardware memory mapped

hardware devices. Memory mapping the ACMR region is only done to forbid the oper-

ating system from allocating accelerator configuration addresses for other purposes, but

does not correspond to any device listening to the CPUs address bus. For this reason,

an access to an ACMR address results in an access to the conventional memory system,

and thus is visible to the AIMs.

In order to send data to an AIM, a region in the ACMR is written, and then instructed

by the CPU to flush the modification from the cache, such as by explicitly invalidating

the block. This will result in a write of the dirty cache region back to memory, which

would in turn result to a signal being sent to the appropriate AIM. The process of reading

data from an AIM is similar: the CPU requests a region of memory that maps to the

ACMR local memory associated with a specific AIM, and gets the response back just

as would occur with a normal memory read. There is no coherence mechanism between

AIMs and the CPU, so if the CPU wants to get an up-to-date value from an AIM, it
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must first assure that the block associated with the ACMR local memory is not stored

in the local cache.

Because the memory controller does not support unsolicited responses from memory,

AIMs cannot communicate information to the CPU without having this information

requested via a read from the ACMR local memory. In theory, requiring the CPU

to poll the AIMs for progress updates, such as to see if a task has been completed,

seems highly inefficient. In practice however, the inefficiency of polling is offset by the

long-running nature of the data parallel computations over large volumes of data that

AIMs are designed to perform, combined with a quite predictable run time [8]. Because

computations of this kind tend to both be long running, and predictable, using the AIMs’

compute engine to generate a estimated time until the task is completed was found to

be a very effective method of making polling more efficient. A CPU would poll current

estimates, then wait until the estimated time has elapsed before polling again. This

process would be repeated until a poll resulted in a notification that the task is complete.

The exact protocol for interacting with the accelerators located on AIMs is applica-

tion specific, and thus beyond the scope of this section. Our methodology focuses on

extending a mechanism for communication, rather than making demands on a particular

communication protocol.

6.1.3 Memory Layout

A critical requirement of this system is that memory required for the operation of an

accelerator must be located entirely within a single memory DIMM. Each AIM is only

capable of interacting with the memory that is directly attached to it. The primary reason

for this is that unexpected traffic on the network joining the CPUs memory controller

to main memory may result violate the assumptions the memory controller makes about

the memory communication protocol. For this reason, all memory accesses made by an

AIM must not require transmitting memory over the memory network, and thus must

only be to the attached memory. Communication between AIMs must be performed as a
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result of a memory access on the part of the attached CPU, or via direct memory copies

performed by the CPU. A secondary reason is simply performance, as the aggregate

bandwidth potential of all attached memory in a system is typically much larger than

the bandwidth of the memory network.

In order to make effective use of all AIMs in the system, software must distribute

data required by a given computation evenly across all memory DIMMs, and aligned

such that all the inputs for a given computation are all located on a single DIMM. For

linearly structured streaming computations, this is a straight forward requirement to

meet: Each input stream is a sequence of elements such that the first element of each

stream resides in the same memory DIMM, and padding is added so as to make all inputs

to a single computation the same size. This would guarantee that for all computations,

all inputs needed by that computation reside in a single memory DIMM. AIMs can work

on the entire data set in parallel, with no further action on the part of a CPU.

For more complex computations, the use of AIMs can be optimized by restructuring

data that will be consumed by the AIMs such as to maximize the amount of computation

that can be performed by a single AIM. Various compiler passes can facilitate the process

of aligning data properly, as the process of mapping data to DIMMs is identical to data

tiling and for either improving cache performance or vectorization [55, 56]. Often though

this process leaves regions parts of the computation that cannot be performed exclusively

using data located in a single memory DIMM. These computations can either be done

within the CPU, or via data replication.

6.2 Standards Compliance

To achiever the objective of using off the shelf components for every component of our

proposed system, except for AIMs, we designed our system to work within the tight

constraints laid out by existing communication protocols between the CPU and main

memory. Because there are many such protocols, and each of them features small but

critical differences, we chose as a case study the common protocol of DDR3 memory over
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a multidrop bus. This design point was chosen because it is the protocol found in most

modern systems, and because its specification is at least as restrictive as most modern

competing technologies.

6.2.1 Timing

Because the introduction of AIMs involves inserting additional address filtering logic

between a normal DRAM module and the memory network, a slight increase in the

latency for operations is to be expected. Total bandwidth would not be affected, but

latencies of CAS & RAS operations would be increased by a value δt in order to allow

for this additional logic, and would have no impact to operations that do not solicit a

response such as writes. δt is calculated as the amount of time it takes to filter the request

from the CPU against the ACMR range, plus the time it takes to check whether or not the

response from the attached DIMM is as a result of a request from the CPU. This change

in timing would not impact potential bandwidth, but only the latency of individual

accesses. δt is a small value, since the computations mentioned above are very simple.

Within this work we considered δt to be 1 nanosecond, where 0.5 nanoseconds were used

for filtering the request, and 0.5 nanoseconds were used for filtering the responses.

The memory DIMM itself would operate in the exact same way as before, at the exact

same clock. During initialization the AIM would add a single nanosecond to the latencies

returned by the memory DIMM, and send these values to the memory controller instead

of the original values. From the perspective of the memory controller, the memory seated

in the DIMM slot containing an AIM would feature memory with slightly longer latencies

than is actually included in the system.

An additional concern is the handling of accesses from the CPU that arrive while

the DRAM is busy handling a memory read that was issued from the accelerator. The

DRAM cannot be interrupted, and the memory controller is expecting a response at a

very specific time. In this event, it is impossible to successfully satisfy the CPUs request

on schedule. As a last-resort mechanism, the accelerator will return a dummy data value
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that is known to fail the memory controllers error check. This will cause the memory

controller to retry the request again in the hopes that the a transient error had been

encountered. The accelerator will use this window of time to stall the accelerator so as

to assure that the DRAM is not busy when the memory controller retries the request.

6.2.2 Communication with CPU

As was mentioned in Section 6.1.2, AIMs act purely as slaves to the CPU and do not

interact on their own with either each other or the CPU. For this reason, all commu-

nication between accelerators and the CPU must occur upon solicitation by the CPU.

This occurs when the CPU accesses a memory region that is mapped to the configuration

space of an accelerator, at which point the AIM may respond.

This communication pattern has implications on software design, as the CPU must

assume the lack of an interrupt mechanism for notifying software of the progress of

accelerators. A CPU would have to poll for completion, rather than relying on event to

notify the CPU of progress. Many accelerator designs however have predictable workload

run times, and as such predictions can be made regarding how to poll more intelligently.

In our cases, for example, we found that the total execution time of an accelerator

could be fairly accurately estimated immediately after execution. The CPU polls a

region of the ACMRs local memory space that held the value of an estimated time until

completion, and would not poll again until that time had elapsed. Since our accelerators

typically ran for hundreds of thousands, or even many millions of cycles at a time, a

slight over-approximation of the time to completion resulted in very little performance

overhead while also assuring we polled only a small number of times before finding that

the accelerator had completed its task.

6.2.3 Routing of Configuration Messages

Configuring each accelerator individually is time consuming if all accelerators are going

to be configured identically. To eliminate this, we proposed the use of a ACMR global
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memory. The implementation of the ACMR global memory is done by over-riding the

DIMM select bits on messages sent by the CPU over the memory network. In a conven-

tional system, normal memory DIMMs only respond to communication where the DIMM

select bits are set to a specific value, every message sent over the multi-drop bus is re-

ceived by all memory DIMMs and ignored by all except one. In a system that features

AIMs, an address filter is applied regardless of the setting of the DIMM select bits. If the

address corresponds to the ACMR, the AIM accepts this message and ignores the DIMM

select bits entirely. ACMR global memory is implemented by having each AIM listen for

accesses to the same memory address range. ACMR local memory is implemented by

having each AIM filter addresses within a disjoint portion of the ACMR. This mechanism

allows for communication from the CPU to the accelerators to be routed independent of

the normal memory interleaving policy implemented by the memory controller.

6.2.4 Consideration of Alternative Protocols

While DDR3 over a multi-drop bus is the most pervasive memory configuration used in

modern machines, there have been plenty of others that have competed for that market

share. This section will briefly describe why transitioning to some other near-by protocols

would still allow for the design of an AIM described in Section 6.1, though with some

changes made to the specifics mentioned in this section.

The most obvious point of comparison are Fully Buffered DIMMs [FB-DIMMs], which

have seen implementations as modifications on DDR2 and DDR3. FB-DIMMs abandon

a multi-drop bus in exchange for a more scalable network topology consisting of a chain

of linked DIMMs. To access memory in a far away DIMM, a message is passed from

one DIMM to another down the chain, and the response is propagated back in a sim-

ilar fashion. This protocol has the advantage of not necessarily limiting inter-DIMM

communication, since the network connecting DIMMs to one another is not a broadcast

mechanism. Thus this would allow for a more expressive accelerator model than can be

implemented over a system featuring a multi-drop bus.
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Some protocols, such as that proposed in the Hybrid Memory Cube[HMC][57] work,

do not demand a specific round-trip delay on individual accesses to memory, and instead

allow individual memory flexibility with regard to timing for accesses. In these cases, a

back-off mechanism such as that described in Section 6.2.1 would not be needed, and it

would be sufficient to simply wait for memory to service an accelerators already pending

memory request prior to then servicing the request from the CPU. It would still be

beneficial to give the CPU priority, but it would no longer be necessary. A memory

controller that does not expect a rigid round-trip time for memory accesses would not

necessarily require a new memory standard, such as HMC, but could be any memory

system that lacks deterministic timing due to the topology of the memory network as

well, such as that described in [58].

6.3 Evaluation Methodology

6.3.1 Evaluated Systems

It has been extensively shown in prior work that an accelerator is capable of providing

substantially higher performance than a conventional processor [4, 8, 24, 49–52]. To

create a fair comparison for evaluation, we compared a system featuring accelerators

integrated into the processor die, to a system featuring accelerators integrated both into

the processor die and distributed through the memory system in the form of AIMs. In

all cases, accelerators were FPGA modules. For a given number of DIMMs, the FPGA

resources in the baseline system was the same as the FPGA resources in the system

featuring AIMs. We chose this point of comparison, instead of a comparison between a

conventional CPU and a system featuring AIMs, because there has been extensive prior

work illustrating the performance and efficiency benefits of accelerators over conventional

processors [4, 8, 24, 49, 50]. We thus felt it would not be a meaningful study unless we

compared a system with AIMs against another accelerator-featuring platform.

On both the baseline and the AIM featuring system, we modeled a network bus with
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Table 6.1: Characteristics of the evaluated system(s)

Cache 8MB L2, 8-way set associative, 32 banks,

10 cycles latency for L2 access

Coherence Protocol Shared banked L2 cache. MOSI protocol

FPGA region FPGA from Xilinx Zynq 702 board.

52K LUTS, 106K FF, 140 BRAM, 220 DSPs

Memory Network 24-GBps peak bandwidth, multi-drop bus

DRAM memory DDR3-1600 DIMMs, 12.8-GBps peak bandwidth,

11.25 ns CAS latency

the bandwidth and latency characteristics of Intel’s Quick Path Interconnect (QPI).

While we did not make use of the coherence or multi-socket features of QPI, we did

make use of its bus standard. All systems modeled featured a single socket into which a

processor is placed, along with between 1 and 16 memory DIMMs.

Details of the baseline system are presented in Table 6.1. The baseline system contains

one more FPGA regions than there are DIMMs in the system integrated into the processor

die. The experimental system features the exact same configuration, except for an AIM

between the DIMM interface and the memory DIMM for each memory DIMM in the

system. The experimental system only features a single FPGA region integrated into

the processor die, along with one FPGA region acting as the computation engine in

each AIM. In both systems, all FPGAs are used for all compute tasks, with the CPU

primarily being used to configure the FPGAs. In the experimental system, the CPU also

is used to provide explicit transfers between AIMs where necessary. FPGA regions that

are integrated into the processor die access memory through a cache interface, and are

thus cache coherent.

Though these two systems are relatively simple, we believe they demonstrate the

potential of our approach. The baseline is still representative enough of more complex

accelerator architectures like GPUs, or specialized coprocessors like the Cell [59], to
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provide us with confidence in the generality of our results.

6.3.2 Benchmarks

We selected a diverse set of applications by focusing in on three distinct categories of

applications, and selecting a number of benchmarks from each category for our results.

These categories are:

• Trivially data-parallel (TDP): These workloads are the type of computations

for which vector processors and stream processors are most effective. Using soft-

ware assisted data alignment, all data for each individual computation that is to

be performed can reside in a single memory DIMM, and thus accelerators can

work completely independently from one another. The entire computation can be

partitioned in this way, leaving nothing that requires accessing multiple memory

DIMMs. AIMs perform the entire computation in these cases.

• Complex data-parallel (CDP): These workloads are computations that exhibit

data parallelism, but for which dividing data cleanly into specific DIMMs is impos-

sible for some subset of computations to be performed. Our chosen benchmarks for

this category are predominantly stencil-based computations, with the data divided

evenly among memory DIMMs. Computations that require data located on the

edges of the dividing lines between regions require data from multiple DIMMs, and

thus cannot be performed by the AIMs. In these cases, the computation is per-

formed on the CPU by an integrated accelerator. The overwhelming majority of

computations do not require input data from multiple memory DIMMs, and thus

can be performed within the AIMs.

• Phases & Filters (PF): These workloads feature distributed computations that

either perform reduction operations, or require shuffling of data between compute

phases. The majority of each workload is parallel, but needs the CPU to organize

data transfers between AIMs. In the case of the baseline system, these workloads
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typically also feature regions that are cache friendly, such as the first several phases

of calculating FFT. Because these workloads consist of different compute phases,

the tasks performed by accelerators integrated into the processor are often func-

tionally different than the functionality performed in the AIMs.

Table 6.2 describes which benchmarks we chose, in which categories they fit, and

a brief description of the type of computation performed in each benchmark. For PF

workloads, there is also a description of the type of computation performed by each

type of accelerator. All workloads were optimized so as to maximize the amount of

computation that can be performed using data residing in a single memory DIMM, while

also evenly distributing the data between all memory DIMMs. For workloads running

on the system featuring AIMs, the addition of padding to data was required to further

increase the amount of computation that could be done within a single AIM. Because

this padding reduces the efficiency of used bandwidth, by reducing the density of useful

data, padding was not applied for workloads run on the baseline system.

6.3.3 System Modeling

To model our system, we used a heavily modified version of the GEMS [20] and Simics [19]

full system simulator. Our modifications were primarily focused on the integration of ac-

celerators, along with mechanisms to communicate with accelerators. We also introduced

a model for memory, which was previously absent from the base GEMS simulator, and

the memory network connecting the processor to main memory. In order to calculate la-

tency of our accelerators, we synthesized them with the use of the Vivado tool suite [37],

and back-annotated the derived latency values into our simulator.

6.4 Results

The primary metric that we used to evaluate our proposal is the impact that AIMs

have on system performance. To show additional insight into why the performance was

92



(a) (B)

Figure 6.3: Shows the performance scalability of systems with and without AIMs as the

number of DIMMs in the system is increased. (a) shows a system with AIMs normalized to the

performance of a system with AIMs and only 1 memory DIMM, (b) shows the baseline system

without AIMs normalized to the performance of a system without AIMs and only 1 memory

DIMM.

impacted in the way that it was, we also examined memory network utilization and

memory access patterns and demand by each benchmark.

6.4.1 Performance

Figure 6.3 shows the normalized performance of each benchmark for each system con-

figuration as the number of memory DIMMs increase. The performance of our baseline

system is observed to scale up smoothly for most benchmarks scale, until the system

contains between two and four memory DIMMs. At this point there is a sharp decline

in the rate of improvement, followed by a plateau. This plateau clearly indicates the

memory wall, and is the point at which expanding the memory system serves only to

improve memory capacity, but does not further benefit bandwidth and thus does not

further benefit performance. While this point is reached at different points for different

benchmarks, it is clear that all benchmarks examined are impacted by this problem.

In the case of our experimental system, however, it is observed that most benchmarks

continue to improve as the size of the memory system enlarges. The reason for this

is simple: AIMs are able to continue making use of bandwidth beyond the point at

which bandwidth would be limited by the processor die packaging in system with on die
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Figure 6.4: Shows performance of a system featuring AIMs compared normalized to the

performance of the baseline system with 1 memory DIMM.

accelerators. In addition to the performance scalability of a system featuring AIMs, we

also observed a direct performance impact associated with bypassing the CPUs memory

system and bus arbitration. Not only was the system featuring AIMs able to fully leverage

the bandwidth of each memory DIMM, but the AIMs saw a reduction in memory latency

as would have been observed by an accelerator integrated into the processor die. This

is attributed both to bypassing the memory network and the memory controller used

by the CPU, but also because of being able to bypass caches in the instances in which

accelerator data exhibited poor cache performance. Figure 6.4 illustrates this effect by

showing the performance of our experimental system relative to our baseline system with

1 memory DIMM. Figure 6.4 also helps to put Figure 6.3, discussed above, in context.

6.4.1.1 Trivial Data Parallel [TDP]

TDP benchmarks, as described in Section 6.3.2, are those for which input data for com-

putations can be completely divided evenly among memory DIMMs. For this reason, for
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AIM featuring systems, the AIMs can perform the entire computation with out assis-

tance from the controlling CPU, except for configuring and initiating the accelerators.

Our results predictably show that we see near-linear performance improvement in our

experimental system as additional memory DIMMs are added. This is not surprising,

as this is the most optimal type of workload for the use of AIMs. Our baseline system

benefits from additional DIMMs so long as the aggregate bandwidth of all DIMMs in the

system is less than the bandwidth of the network connecting the CPU to the memory.

While not experimentally shown, it is intuitively clear that the performance of a system

featuring AIMs will continue to scale near-linearly with the addition of DIMMs to the

system.

6.4.1.2 Complex Data Parallel [CDP]

CDP benchmarks exhibit improvement with the addition of DIMMs. As is discussed

in Section 6.3.2, these benchmarks feature stencil computations. Data is partitioned

among DIMMs such as to maximize the portion of the total computation that can be

performed with the data contained in a single memory DIMM, while still distributing

the data evenly among memory DIMMs. Even with an optimal division of labor, some

of the computations are going to use data stored in multiple DIMMs, and thus a set

of the computations require data from multiple DIMMs. We chose to implement these

benchmarks by using the accelerator integrated into the processing die to perform the

computations that require data from multiple memory DIMMs.

In the case of AIM featuring systems, the portion of the work that must be performed

on the CPU increases with each memory DIMM that is added. This is because the

number of regions the input data gets partitioned into increases with each added memory

DIMM. For our experiments, the CPU became the system bottleneck in a system with 8

memory DIMMs. There is a marginal performance benefit moving to 16 memory DIMMs

that is derived from the fact that the CPU sees a reduction in competition for memory

DIMM bandwidth with the AIM. The AIMs continue to scale performance linearly, and
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thus complete their task earlier, thus freeing up memory bandwidth to be used by the

accelerator integrated into the processor.

As the number of memory DIMMs becomes larger, the portion of the input data that

is on the border of divided regions grows, and the amount of work that can be off loaded

to the AIMs shrinks. For this reason, it can be concluded that there is a break-even point,

beyond which adding memory DIMMs would reduce performance. This can be resolved

by limiting the number of AIMs used in a computation, by inserting padding into input

data to resulting in the memory controller skipping certain DIMMs when mapping the

useful regions of the input data. This would exempt certain specific AIMs from having

useful input data mapped to their attached memory DIMM, which would in turn exempt

them from the participating in the computation.

It should be noted however that, because platform is a simulator, we are constrained

in the size of data that we can evaluate. A real workload would feature a substantially

larger input size over which the stencil computation is being performed, and thus would

feature a much smaller relationship between border regions and center regions of the

divided up input data. As a result, a full-scale system can be expect to reach this break-

even point at a substantially larger number of memory DIMMs than was experimentally

shown here.

6.4.1.3 Phases and Filters[PF]

PF workloads were the most complex workloads that are evaluated within this work. As is

discussed in Section 6.3.2, these benchmarks consist of multiple phases of computations.

AIMs are used either to filter out the volume of data that is needed by the centralized

accelerator, or to pre-compute data so as to reduce the complexity of the centralized

accelerator.

FFT consisted of multiple levels of the Cooley-Tukey algorithm, which is very cache

friendly. For this reason, the cache coherent accelerators located in our baseline system

performed very well. Bandwidth was not so much a bottleneck as much as access latency
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with the cache. Cache behavior was only problematic when computing the last iterations

of the Cooley-Tukey algorithm. Even in this situation though, which was expected to be

the poorest performing of our benchmarks, the AIMs were able to remain competitive,

and effectively match the performance of the baseline system. It should be noted however

that the AIMs were able to perform as well as centralized accelerators, but would not

require the level of invasive redesign that would be necessary to create a system that

featured centralized accelerators.

Stream Cluster was the most parallelizable benchmark that was examined in this

category. In systems featuring AIMs, no computation was actually performed by the

centralized accelerator. AIMs are used to perform vector arithmetic and produce partial

results. Software would then read each partial result stored in the ACMR local memory,

perform a quick computation, and broadcast the result back out to all AIMs via a write

to the ACMR global memory. Software was occasionally required to perform slight

rearranging of data. In systems without AIMs, the entire computation was done using

centralized accelerators with no software interleaving. This resulted in a highly scalable

implementation.

Fluid Animate featured computation similar to the CDP workloads, except also in-

cluding a phase which used a centralized accelerator to move copy data elements between

partitioned regions. For this reason, Fluid animate exhibited the same scalability issues

that were seen in CDP workloads, but was further bound by the data copy step. Fluid

animate was however also the most compute intensive of the examined workloads. These

factors combined meant that the centralized accelerator performed quite well on this

benchmark, as the system bandwidth was not the main limiting factor, but rather a con-

straint on compute capacity. As was mentioned in Section 6.3.1, we scaled the number

of FPGA resources on the baseline system as the number of memory DIMMs increased,

to make up for the compute advantage that would be added by increasing the number of

AIMs in the system. This difference allowed for our baseline system to hit the memory

wall very late, and thus hid many of the advantages that can be gained by introducing

AIMs to a system.
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6.4.2 Memory Activity

Because the AIMs lack a cache to filter out redundant memory accesses, we observed

an increase in the aggregate number of DRAM accesses in a system featuring AIMs as

compared to our baseline system. In our CDP benchmarks, this difference comes in the

form of redundant accesses for inputs to the stencil computations in instances where the

accelerator was not able to internally buffer the reused data. While a stencil computation

often also benefits from caches in general, our accelerator design internalized nearly all

of the sharing between neighboring computations, and thus caches were not needed to

fill that roll in either the baseline system or the system featuring AIMs.

In the case of FFT, the impact of caches was more significant. Caches in the base

system were able to eliminate the majority of memory accesses for the first few phases of

the Cooley-Tukey algorithm. Later phases suffered from a high cache miss rate however.

For this reason, as is shown in Figure 6.4, FFT does not show any benefit in the 1 memory

DIMM case.

6.4.3 Memory Network Utilization

As discussed in Section 6.4.1, our baseline system encountered the memory wall after

adding 4 DIMMs in most cases. This is further illustrated in Figure 6.5 which shows the

utilization of the memory network for a chosen workload running on the base system.

Figure 6.6 shows a similar measurement of the memory network utilization for systems

featuring AIMs. As is clearly shown, nearly all of the memory network traffic is eliminated

while executing the benchmark. While not shown, other benchmarks exhibited similar

traffic patterns.

Even though the accelerator resources are scaled up in the baseline system as the

number of DIMMs are scaled up, no performance improvement is observed once the

memory network is fully saturated.
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Figure 6.5: Shows the bandwidth consumption on the memory network for the baseline system

for EKF SLAM.
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Table 6.2: Description of evaluated benchmarks

Benchmark Type Description

Black Scholes TDP Stock pricing simulation, part of PARSEC [39]

EKF SLAM TDP Performs simultaneous localization and

mapping [17], from the

Mobile Robot Programming Toolkit [41]

Robot TDP Performs Monte Carlo Localization using

Localization probabilistic models of motion [42]

Segmentation CDP Stencil computation of 3-dimensional image

segmentation in medical imaging [31]

Denoising CDP Stencil computation on 3-dimensional image to

eliminate imaging noise in medical images [31]

Registration CDP Iterative computation of fluid registration [31]

FFT PF A 16 radix Cooley-Tukey [60] iterative

FFT calculation on a single dimension

AIMs perform all but the last phase of the

Cooley-Tukey algorithm. Centralized accelerator

performs the last phase of the algorithm

Stream PF Phase-based reductions and accumulate operations [39]

Clusters Compute intensive vector operations on long streams

AIMs perform partial reductions.

Centralized accelerator performs final reductions &

results broadcast

Fluid PF Fluid dynamics simulation [39]

Animate AIMs perform fluid simulation within a region.

Centralized accelerators migrate particles between regions
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CHAPTER 7

BiN: Buffer-in-NUCA for Accelerator-Rich CMPs

In order to work efficiently, accelerators need some degree of assurance regarding latency

to memory accesses. This typically takes the shape of private memory that is local to the

accelerator, such as the SPM that is described in Chapter 2 and Chapter 3. This design

choice works well if the primary purpose of the SPM is to provide buffering, and perhaps

a small degree of reuse, and is thus relatively small in size. For computations that would

benefit from large SPMs, such as to provide a larger degree of reuse within a single

transfer into local memory, providing a private memory for each accelerator becomes

problematic due to the size of memory that would be most efficient for the computation

being performed. In these cases, there have been works that look at allocation of shared

buffers [61], or buffers in caches [62]. These designs however assume a uniform cost

associated with accessing memory, which is not reasonable in the context of many-core

systems.

Many core systems typically feature Non Uniform Cache Architectures (NUCA) for

last-level caches (LLC). These systems exhibit performance characteristics that differ

greatly relative to where data is placed, and where the consumer of the data is located

on the network. To operate in this environment, we proposed a Buffer in NUCA (BiN) [63]

protocol, that performs buffer allocation in shared cache in a way that is locality aware.

This also has the added benefit of potentially reducing off-chip memory accesses for

accelerators that are capable of subsuming a greater quantity of reuse when provided

with a larger buffer. We capture this bandwidth savings using a representation that

we referred to as the Buffer size vs Bandwidth Curve(BB-Curve), which communicates

bandwidth expectations as a function of provided buffer size. Because a programmer
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Figure 7.1: BB-Curve of a denoise accelerator

will not necessarily have information regarding system utilization at any given point, the

BiN system takes as input a BB-Curve, rather than an individual buffer size request, and

delegates to a hardware management component to allocate an optimal buffer size given

the current system state. An example BB-Curve can be seen in Figure 7.1.

Prior work allocates a contiguous space to each buffer to simplify buffer access [62],

since the address of a buffer block is calculated only as a relative position with respect to

the buffer starting address. This may lead to space fragmentation when requested buffers

have unpredictable space demand and come in dynamically. As shown in Figure 7.2, at

Cycle 1K, there is 10KB available space in the shared buffer. But since this space is not

contiguous, Buffer3 cannot be allocated. NUCA complicates buffer allocations in cache.

In addition to the buffer size, the distance of the cache bank in relation to the accelerator

also matters. It is possible that the only contiguous space that can satisfy a buffer is

quite far from the accelerator and a better choice may be to aggregate several smaller

available space segments in the cache banks around the accelerator. One approach to

leveraging these fragmented resources is to make use of a paged scheme that adds a

level of indirection. This makes physically non-contiguous spaces in NUCA appear to be

contiguous, analogous to a typical OS-managed virtual memory. However, accelerators

can not afford a large private page table in terms of energy and area; nor can they, for

performance reasons, afford a multi-hop scheme to access a centralized shared page table.
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Shared buffer space: 15KB

5KB, 1K cycles duration

Buffer2 5KB, 2K cycles duration

Buffer3 10KB, 2K cycles duration

Cycle 0: Buffer1

Cycle 100: Buffer1 Buffer2

Cycle 1K: Buffer2

Buffer3

Buffer1

Figure 7.2: Buffer space fragmentation in shared buffer.

7.1 BiN Architecture

7.1.1 Overall Infrastructure

We construct BiN upon the ARC [8]a hardware-managed accelerator-rich CMP. Fig-

ure 7.3(a) shows the overall architecture of our evaluated ARC, which is composed of

cores (with private L1 caches), accelerators, the accelerator and BiN manager (ABM),

NUCA (shared L2 cache) banks, and NoC routers. The off-chip memory controllers (not

shown) are attached to the routers on the four corners. ABM manages accelerator sharing

(the same functionality as that of the GAM in [8]) and allocates buffers in NUCA.

Figure 7.3(b) shows the communications between a core, ABM, an accelerator and

NUCA. The numbered arrows show the order of steps taken during a single accelerator

invocation by a core. Buffer allocation (Step 2) is described in the following subsections.

7.1.2 Dynamic Interval-based Global (DIG) Buffer Allocation

In BiN, the space allocated to a particular buffer is dynamically determined at runtime.

To avoid greedily allocating buffer space for each buffer allocation request, we propose a

dynamic interval-based global (DIG) buffer allocation scheme. The key point is that ABM

will collect the buffer allocation requests in a short fixed-time interval and then perform

the global allocation for the collected requests to achieve short-time global optimality.

By keeping the interval appropriately short, we limit the impact on performance of idle

waiting in the interval. In this work, unless otherwise specified, we set the interval to be

10K cycles. Moreover, to avoid having too many accumulated buffer allocation requests,
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once up to eight buffer requests are collected, the DIG allocation will be immediately

triggered.

7.1.2.1 Problem Formulation

Given:

• The batch of buffer allocation requests with a set of points in the BB-Curve of

request i as {(bij, sij) — 0 ln j ¡ Ni} (in increasing order of buffer size, where Ni

is the number of points in the BB-Curve of request i, bij and sij are the band-

width requirement and buffer size of the jth point of the BB-Curve of request i,

respectively);

• The total available buffer size W

Goal: Find one and only one node ni for each buffer allocation request i, so that the

total bandwidth
∑N−1

i=0 bn is minimized and the sum of the buffer size
∑N−1

i=0 Sn is less

than or equal to W .

7.1.2.2 Optimal Solution

This problem can be solved optimally through dynamic programming. Define a N+1

dimension array M, each element M[n0, n1, ... nN − 1, w] denotes the minimum total

bandwidth that can be attained with a buffer size less than or equal to w, when the buffer

request i uses its curve nodes up to the node ni (not that this curve does not necessarily

need to use node ni it may use any node in its curve up to ni). For the first N dimensions,

each dimension i has a size of Ni, where Ni is the number of points in the BB-Curve of

the buffer allocation request i. The last dimension has a size of W .

Then we can have:
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M [n0, ..., ni, ..., nN − 1,W ] =


M [n0, ..., ni, ..., nN − 1,W ] if sin ¿ w

min(M [n0, ..., ni, ..., nN − 1,W ] + b, if sin ln w

M [n0, ..., ni, ..., nN − 1,W ])

Note that if one of the first N dimensions of the M array is 0, it means that none of

the BB-Curve points of this buffer allocation request can be used. The solution can then

be found by calculating M [n0, ..., ni, ..., nN − 1,W ]. And the complexity for both space

and time is O(N0 ∗ ... ∗Ni ∗ ...NN − 1 ∗W ).

7.1.2.3 Online Greedy Heuristic

The aforementioned dynamic programming approach can solve the problem optimally,

but it incurs relatively high timing and space overhead. Moreover, this optimal solution

assumes that the buffer can always be allocated if there is enough space, regardless of

the space fragmentation problem. Thus we developed an online greedy heuristic to solve

the problem fast and efficiently, with consideration of fragmentation.

The algorithm first allocates the minimum buffer size for each request and tries the

paged allocation to see whether this allocation is valid. If so, it then checks the next point

of each curve, and selects the one with the maximum (bij − bi(j − 1))/(sij − si(j − 1)),

i.e., the request that gives the maximum reduction of bandwidth with unit increase

of buffer size. Again, the paged allocation is tried to validate this new allocation.

This process will go on, until the next point of each BB-Curve makes the resulting

allocation not valid. An example of this scheme is shown in Figure 7.4. To save

the computation of the DIG allocation, the (bij − bi(j − 1))/(sij − si(j − 1)) (buffer

utilization efficiency) is pre-computed, so that the curves sent to ABM are actually

((bij − bi(j − 1))/(sij − si(j − 1)), sij)|0 ln j < Ni, where bi(−1) = 0, si(−1) = 0. This

heuristic only has a linear time and space complexity. Experiment results show that, for

our evaluated benchmarks, this heuristic can provide the same buffer allocation solution

as the optimal solution, if paged buffer allocation is not considered (the optimal solution
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can not take the paged allocation into consideration since the transition in the dynamic

programming assumes that the buffer can always be allocated if there is enough space,

regardless of the space fragmentation problem)

Once the allocation decision is successfully made, ABM follows the allocation solution

to allocate the buffers in the NUCA banks. As in BiC [62], each L2 cache line has a bit

to indicate if it is allocated to a buffer. Allocating a cache line as buffer may result in

L1 sharer invalidations and dirty block write-back. If the DIG allocation fails, ABM

will leave out the last request and invoke the DIG allocation again on the reduced set

of requests. The removed requests are put in an outstanding queue. Once a buffer free

event happens, ABM will allocate them. Otherwise, they will be allocated with the

requests accumulated in the next interval (as the earliest requests in that interval). If

the paged allocation of the minimum buffer size of a buffer allocation request fails at the

upper bound of BiN space (discussed in Section 7.1.4), the core needs to perform the

task without calling accelerators. We use the algorithm in [64] to obtain the accelerator

BB-Curves for various input sizes.

7.1.3 Flexible Paged Buffer Allocation

In BiN, we compose non-contiguous spaces to satisfy the buffer requests. We propose

that once a buffer is allocated, the accelerator will use a small local page table to translate

buffer addresses into absolute addresses that can be found in NUCA. The key point to

achieving this is to set the page granularity for each buffer according to the buffer size;

i.e., a larger buffer may have a larger page size so that the total number of pages for this

buffer is still a fixed number (32 in our evaluated system). The allowed page size is always

a power of 2 to simplify translation. In our evaluated system it ranges from 4KB to half

of the L2 cache bank size (32KB). A page must start at an address that is a multiple of

the min-page and should not span cache banks. Since all of the buffer allocation and free

operations are performed by ABM, it locally keeps the information about the current

contiguous buffer spaces of each cache bank. To allocate a buffer with size S, ABM uses

106



the smallest page that is no smaller than S/32 to try the allocation, starting from the

cache bank nearest to this accelerator, to the farthest cache bank. The amount of cache

lines that can be used in each cache bank will be discussed in Section 7.1.4. To try the

allocation of a set of buffers, ABM processes the buffers in a decreasing order of the

buffer size, since a larger buffer may be more difficult to fit. If any buffer in this set fails

to allocate, the paged allocation for this set fails. An example of the flexible paged buffer

allocation is shown in Figure 7.5, where the min-page is 1 way of an 8-way set-associative

cache bank.

To reduce the page fragments, we allow the last page (source of page fragments) of a

buffer to be smaller than the other pages of this buffer, since this does not affect the page

table lookup. For example, in Figure 7.5, the last page of Accelerator 0 is only half the

size of its other pages. Therefore, the max page fragment for any buffer is smaller than

the min-page. Note that the page fragments do not waste capacity since the cache lines

in these fragments will remain as cache blocks and be used by the cache. For example,

in Figure 7.5, the shaded blocks denote the page fragments. Then Sets 2 and 3 of Cache

bank 0 actually have five cache lines.

7.1.4 Buffer Allocation in NUCA

In this work we assume a static NUCA design (statically-mapped addresses to banks).

Since the buffers are allocated on-demand, the boundary between the cache and acceler-

ator buffers is floating. When BiN allocates buffers in the cache, it could easily consume

all or most of the cache space to maximize accelerator gains. To limit the impact on cache

performance, we impose an upper bound on the total buffer size that can be allocated.

In our implementation where each cache bank is 8-way set-associative, BiN may vary

the upper bound from 1/8 to 7/8 of the NUCA size with a 1/8 increment at each step.

The upper bound can be controlled by existing cache partitioning schemes (e.g. [65])

where the BiN upper bound is simply one of the partitions competing for space. The

accelerators BB-Curves collected in each partitioning interval can be used to estimate the
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potential variation of off-chip access counts when making partition decisions. BiN can

definitely benefit from dynamic upper bound tuning through smart cache partitioning,

but our experimental results show that an upper bound set to half of the NUCA size

achieves the best or close to the best performance for most of our evaluated benchmarks.

Since the focus of this work is to show the gain of the DIG buffer allocation and the

flexible paged buffer allocation over the prior work, we always set the upper bound to be

half of the NUCA size unless otherwise declared, in order to make fair comparisons.

To avoid creating high contention in a particular cache bank, the upper bound is

uniformly distributed to each cache bank; i.e., if the upper bound is half of the NUCA

size, then in each cache bank at most half of the cache ways can be allocated as buffers. If

high contention still occurs in some cache banks, we use the page re-coloring scheme [66]

to remap the OS pages originally mapped to the cache banks to other underutilized

banks in order to reduce contention. Other cache bank utilization balancing techniques

(such as [67]) can also be used. We would like to emphasize that BiN is orthogonal to

and compatible with most state-of-the-art NUCA management schemes since BiN only

considers cache bank adjacency while allocating buffer pages in NUCA.

7.1.5 Hardware Overhead

The hardware overhead introduced by BiN on the evaluated ARC is mainly in ABM

(buffer allocation) and the accelerators (look-up of buffer page locations in NUCA).

The block diagram of ABMs buffer allocation module is shown in Figure 7.6(a). The

SRAM table to store the contiguous spaces information for each cache bank is 7-entry.

This is because there can be at most 7 contiguous spaces in a 64KB cache bank with a

min-page of 4KB, as shown in Figure 7.6(b). Each entry has 10 bits for the starting block

address and 4 bits for the space length in terms of min-page. There are also 8 SRAM

tables to store the BB-Curves of the buffer requests (DIG scheme processes at most 8

requests in a batch). We limit BB-Curves to have at most 8 points. Each point uses

2B for the buffer size and 3B for the buffer utilization efficiency. Thus, the total storage
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overhead is 768B. According to the Synopsys Design Compiler (SAED library, 32nm),

the buffer allocation logic has an area of 9,725um2 under a cycle time of 0.5ns, and the

storage area is 3,282um2 based on Cacti [28] (32nm). Thus, the total area of the buffer

allocation module is less than 0.001% for a medium size 1cm2 chip. An average latency

of 0.6us (1.2K clock cycles at 2GHz) is required to perform the buffer allocations. The

initial 10K (waiting time in the DIG allocation) + 1.2K cycles of allocation time is only

1% of the typical accelerator runtime (in order of million cycles).

Figure 7.7 depicts the local page table of the accelerator and the mechanism to gen-

erate the block addresses in NUCA. Since we have 32 banks (5-bit bank ID) and each

bank has 1024 blocks (10-bit block ID), each table entry is 15-bit and the page table is

64B. This table has an area of 373um2 based on Cacti [28], which is less than 1% of

the area of our evaluated smallest accelerator (denoise: 496,908um2). The table access

latency is 0.14ns. Since the clock cycle of the evaluated accelerators is 2ns, this latency

can easily fit in the pipeline of block address generation. Note that the 15-bit adder in

Figure 7.7 also exists in a shared buffer design with contiguous space allocation. This is

not an overhead of BiN.

BiN does not introduce any more micro-architectural complexity to the L2 cache

controller than BiC [62] does. For buffer allocation in a cache bank, BiN uses the same

way-based approach as BiC (it uses cache lines uniformly from one way, and then uses

the next). Moreover, the overhead of the cache partition scheme and the cache-bank-

utilization balancing scheme are not considered as the overhead of BiN, since BiN are

orthogonal to these techniques.

7.2 Compiler-Based BB-Curve Analysis

This section describes the generation of the BB-Curve for synthesized accelerator modules

based on the compiler-based static analysis. The input is the C-code of the accelerators

which is used to generate RTL accelerators through a high-level synthesis design flow.

According to the access pattern analyzed by the compiler infrastructure, the tradeoffs
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between the off-chip bandwidth requirements and on-chip buffer size are explored to

generate the BB-curve for the SPM allocation optimizations in BiN.

7.2.1 Analysis Flow Overview

Data-intensive applications always have repeated accesses to the same array element in

the program: this is one of the major causes of the critical off-chip memory bandwidth

utilization. Data reuse is the efficient technique that is widely used to reduce the use of

off-chip bandwidth usage by using an on-chip reuse buffer. The possibility of data reuse

can be statically analyzed by a compiler-based design flow shown as Figure 7.8.

The input to the BB-Curve analysis is the C-code program which can be synthesized

into hardwired accelerators. We primarily care about the off-chip memory access refer-

ences and their surrounding loops in the input program for data reuse optimizations. A

traditional compiler infrastructure, for example ROSE [68] is used to parse this informa-

tion from the source code, and is expressed into the polyhedral model. The polyhedral

model represents the loops and array access references into a linear form, and also pro-

vides a set of functionalities to perform transformations for the loops and array references

in an efficient way: this makes it easy to statically calculate the bandwidth saving and

buffer size for data reuse.

Data reuse tradeoffs are exploited and evaluated based on this information in the

polyhedral model. First a data reuse graph is built to express the data reuse candidates

in the program. Second, the access count saving and buffer size is calculated based

on the polyhedral model. Third, for each given bandwidth requirement, the minimum

buffer size for the requirement is calculated by an optimization process. And after that,

the BB-Curve for the accelerator module is generated. To simplify the evaluation, we

assume that the computation core has a fixed throughput so that the off-chip bandwidth

is proportional to the off-chip access count.
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7.2.2 Data Reuse Modeling

The data reuse graph (DRG) is widely used to represent data reuse candidates [69–72],

as Figure 7.9(a) shows. Nodes of the graph are array references, and edges are the data

reuse between the nodes. Nodes are weighted by the access count (AC) of the reference,

and edges are weighted by the reuse buffer size (BS). A data reuse buffer is allocated

to store the data accessed by the source node of a reuse edge, and then is accessed by

the target node for the reused data. Each edge in a DRG represents a data reuse buffer

candidate which can be allocated in on-chip memory to save off-chip bandwidth.

For a read node, its bandwidth is saved if there is a reuse edge allocated whose target

node is this read node. Bandwidth of the write node can even be saved if all the read

nodes of the same array are reused and the data is not the primary output of the design.

This means that the data of this array will be always in on-chip memory. We simplify the

DRG by pruning sub-optimal buffer allocations by only considering the reuse from the

temporal nearest neighboring node, as shown in Figure 7.9(b), which has the minimal

buffer size for each specific node.

Figure 7.10 shows an example of data reuse between two array access references from

A[i,j] to A[i-2,j]. The on-chip reuse buffer size is 2N, because the data fetched by reference

A[i,j] will be used by reference A[i-2,j] after two loop i iterations, and the 2N new data

elements accessed during this period (two loop i iterations) need to be stored in the reuse

buffer for continuous data reuse. After the data in the buffer is reused, it can be replaced

to store new reusable data. The modulo operation in the reuse buffer addressing indicates

that the buffer is accessed and updated in a cyclic way. By allocating the reuse buffer,

off-chip memory accesses by reference A[i-2,j] are saved.
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Table 7.1: System configuration of Simics/GEMS simulation

Core 4 Ultra-SPARC III-i cores @ 2GHz

L1 data 32KB for each core, 4-way set-associative, 64B cache

& instruction cache block, 3-cycle access latency, pseudo-LRU, MESI

directory coherence by L2 cache

L2 Cache (NUCA) 2MB, 32 banks, each bank is 64KB, 8-way set-

associative, 64B cache block, 6-cycle access latency,

pseudo-LRU

Network on Chip 4x8 mesh, XY routing, wormhole switching, 3-cycle

router latency, 1-cycle link latency

Main Memory 4GB, 1000-cycle access latency

7.3 Evaluation Methodology

7.3.1 Simulation Infrastructure

We use the HSI simulator described in Section 7.1.1 to evaluate the system performance.

Table 7.1 shows our simulated system configuration.

7.3.2 Benchmarks and Accelerators

We chose applications from one domain (medical imaging) to accelerate, since accelerator-

rich architectures (such as ARC) are most suitable for domain-specific computing [8,

73]. We chose the medical imaging domain because it consists of applications that are

both compute- and memory-intensive, and the highly regular computation of the domain

makes it an ideal target for hardware acceleration. Furthermore, improved performance

in medical imaging has a tremendous potential to transform health care. The chosen

applications are: denoise, deblur, segmentation, and registration. These applications are

explained in detail in [74] and form a medical imaging pipeline.
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We use the methodology of [8] to extract the computation- intensive tasks of these

applications, synthesize these tasks as ASIC accelerators by using a high level synthesis

tool Vivado [37] from Xilinx, and obtain their cycle-accurate modules. We then plug

these modules into our simulator. Each of these accelerators has at least 4 copies on the

chip to allow threads calling the same type of accelerator to run simultaneously. All of the

accelerators work at a frequency of 500MHz. The non-computation-intensive and control

tasks of these applications and the Solaris-10 OS are running on the general-purpose

cores.

7.3.3 Reference Designs

We compare BiN to the following representative schemes from prior work. All are eval-

uated under the same area constraint. To make a fair comparison, we set a fixed upper

bound of BiN as half of the NUCA size when comparing to the prior work. We will

discuss the impact of dynamic upper bound tuning in Section 1.4.4.

• Accelerator Store (AS) [61]: In AS the shared buffer and NUCA are two sepa-

rate units. We set the 32-bank NUCA size as 1MB (since we use an upper bound as

half of the NUCA size in BiN). Because buffers in cache have some area overhead

compared to separate buffers, we set the capacity of the shared buffer in AS as

1.32MB (32% larger than the maximum buffer size in BiN under the same area

constraint) based on Cacti [28]. We also partition the shared buffer into 32 banks

to increase the buffer access ports and these banks are distributed to the 32 NoC

nodes.

• BiC [62]: BiC dynamically allocates contiguous cache space to a buffer. Here we

set an upper bound for BiC by limiting buffer allocation to at most half of each

cache bank. To allow a buffer to span multiple cache banks, the end of the BiC

space in one cache bank is considered to be contiguous to the beginning of the

BiC space in the next cache bank. The system configurations of BiN and BiC

are the same except that the DIG allocation and the flexible paged allocation are
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not available in BiC. This scheme is used to show that simply allocating buffers in

NUCA will result in space fragmentation and underutilization.

We use the off-line compiler analysis in Section 1.2 to generate the desired buffer space

of a set of potential input sizes for both AS and BiC to achieve their best performance.

In addition, to demonstrate the innovations of BiN step by step, we also construct the

following schemes. 1) BiN-Paged. It only uses the proposed flexible paged allocation

scheme (32-entry page table). 2) BiN-Dyn. Based on BiN-Paged, it performs dynamic

allocation without consideration of near future buffer allocation requests; i.e., it just

responds to a buffer allocation request immediately by greedily satisfying the request

with the current available spaces. Thus, a new buffer allocation request may not be

satisfied since a preceding buffer has consumed most of the spaceeven if the new requesting

accelerator can use the space more efficiently. 3) BiN-Full. This is the entire proposed

BiN scheme.

7.4 Results

We conduct experiments for different degrees of buffer pressure by varying the number of

medical imaging pipelines that we run in parallel (1, 2, and 4 pipelines). Each pipeline

consists of one thread sequentially executing the four medical imaging applications on a

different set of imaging data (i.e., no data dependencies between pipelines), where the

image sizes also vary. Our benchmark naming convention indicates both the number of

concurrent pipelines and the image size for that particular run. For example, benchmark

4P-28 means that there are 4 copies of the pipeline running in parallel and the input

to each is a unique image that is 28x28x28 pixels. Benchmarks from 1P-28 to 4P-100

feature pipelines that are running with the same input image sizes. Thus there is no

buffer fragmentation problem. These benchmarks are mainly used to demonstrate the

gain of the DIG allocation. The 4P-mix label indicates that the various pipelines in the

benchmark have randomly selected input image sizes. Computation over varied image

sizes exhibits variation in the buffer demand and duration of buffer use, which in turn
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results in fragmentation; thus they are used to demonstrate the gain from both the

flexible paged allocation and the DIG allocation.

7.4.1 Impact of DIG Buffer Allocation

Figure 7.11 and Figure 7.12 show the comparison results of runtime and off-chip memory

access counts. All of the results in Section 1.4.1 to 1.4.3 are normalized to that of AS

(Accelerator Store). In the first 12 benchmarks, since there is no buffer fragmentation,

AS, BiC, and BiN-Paged behave similarly (the impact of buffer-to-accelerator distance

will be discussed in Section 1.4.2).

By greedily satisfying the buffer requests with currently available resources, BiN-Dyn

outperforms AS, BiC, and BiN-Paged in 1P cases and 2P/4P cases with small inputs,

because the shared space can accommodate these small buffers even if they are greedily

satisfied. This gain can also be confirmed by the bandwidth reduction in these cases

(shown in Figure 7.12). However, in the cases where greedily satisfying the first buffer

requests will severely reduce the available space for subsequent requests that may more

efficiently use the buffer space, BiN-Dyn behaves considerably worse compared to the first

three schemes, as can be seen in the 2P/4P cases with large input sizes. Interestingly,

the off-chip memory access counts do not increase correspondingly. The reason is that,

when BiN-Dyn allocates a large buffer for the initial requests, it will delay subsequent

requests from accelerators with large input sizes. Eventually these subsequent requests

will be assigned to a large buffer (for reducing off-chip bandwidth), but their execution

is serialized and thus the performance is impacted. Therefore, a reduction of the total

off-chip memory accesses may not necessarily result in an increase in performance.

BiN-Full consistently outperforms the other schemes because of the DIG allocation

(and also the flexible paged allocation in the 4P-mix cases). The only exception is in

4P-mix3, where the 1.32x larger capacity of AS is just large enough to accommodate all

buffer requests; whereas BiN-Full needs to allocate a smaller buffer size to the accelerator

that has the smallest buffer utilization efficiency. But it still outperforms the other three
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schemes that have the same total capacity. Overall, compared to AS and BiC, BiN-Full

reduces the runtime by 32% and 35%, respectively.

7.4.2 Impact of Paged Buffer Allocation

In the 4P-mix cases where there are buffer fragmentation problems, BiN-Paged and BiN-

Full improves the runtime (up to 24% and 56%, respectively) in 4P-mix1,4,5,6. However,

the bandwidth is not reduced by BiN-Paged and BiN-Full correspondingly, because al-

though AS, BiC and BiN can allocate similar buffer sizes (thus similar bandwidth), BiN

can allocate the buffer much earlier than BiC and AS, since BiN can aggregate non-

contiguous space to satisfy the parallel buffer requests while BiC and AS can not. In

4P-mix2,3, the 1.32x larger capacity of AS can accommodate the buffers even when there

is fragmentation. Thus BiN-Paged behaves similar to or even worse than AS. But in both

cases, BiN-Paged outperforms BiC, which has the same capacity.

Since the first 12 benchmarks do not suffer buffer fragmentation, BiN-Paged improves

their runtime by allocating buffers closer to the accelerator. However, the improvement

is small. The reason is as follows. The buffer accesses from our evaluated accelerators are

mainly reading in large amounts of input data, performing some calculation on the data

and then writing the transformed data out to the buffers. These accesses do not have

inter-dependencies. They are pipelined so well that buffer access latency is completely

hidden. Therefore, as shown in Figure 7.13, even though BiN-Paged can improve the

average buffer access latency by 19%-32%, the runtime gain is only 2%-9%. We expect

that accelerators from other domains which may have dependencies among the buffer

accesses can obtain more benefit from adjacent buffer allocation.

7.4.3 Impact on Energy

We obtain the dynamic and leakage energy data of NUCA and the main memory through

Cacti [28] and McPAT [23], and the power data of the ABM module via the Synopsys

Design Compiler [22]. We back-annotate these numbers into our simulator to obtain the
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memory energy results, as shown in Figure 7.14. By separating cache and buffer units,

AS consumes less energy for each cache/buffer access and also consume less unit standby

leakage than the other schemes. Therefore, BiC and BiN-Paged consume more energy

than AS. BiN-Dyn can save energy in cases where it can reduce the off-chip memory

accesses and runtime. However, in the cases where BiN-Dyn significantly increases the

runtime, it consumes considerably more energy (more standby energy). By performing

DIG and flexible paged buffer allocation, BiN-Full can reduce both the number of off-

chip memory accesses and the runtime. When compared to AS, it sees a 12% reduction

in energy on average. In cases where the 1.32x capacity of AS can better satisfy buffer

requests (4P-mix3), BiN-Full consumes more energy due to more off-chip memory accesses

and longer runtime. BiN-Full reduces the energy by 29% on average compared to BiC.

7.4.4 Impact of DIG Allocation Interval Length

The DIG buffer allocation is triggered 1) once an interval end is achieved, or 2) once

the number of collected buffer allocation requests achieves a predetermined value (8 in

this work). If the allocation interval length is too short, BiN will behaves like BiN-Dyn

which greedily satisfies each buffer allocation request using currently available resources,

without considering near-future requests. If the allocation interval is too long, the buffer

allocation requests that arrived earlier will wait for a long time to get their requested

buffers. In the previous experiment subsections, we always use an empirical value of

10K-cycle DIG allocation interval. In this subsection, we will discuss the sensitivity of

the system performance to this interval length.

Unlike the previous experiment subsections that strictly follow the dependencies

among the medical imaging pipeline stages, here we assume that each stage of the med-

ical imaging pipeline can be issued independently. Thus we can flexibly tune the buffer

allocation request arrival rate to ABM. Moreover, we also extract some kernels (such

as the polynomial computations) from these medical imaging pipeline stages, which run

much faster than these pipeline stages, to make our case that the waiting time of the
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10K interval length is non-trivial to these kernels.

We characterize the tasks that run on accelerators as small, medium and large, based

on their estimated runtime. Note that here small tasks mean the aforementioned ker-

nels, whereas the small input size that we used in the real benchmarks in the previous

subsections falls into the medium and large categories. Basically, the small tasks can be

finished within 20K-50K cycles; the medium tasks can be finished within 400K-1M cycles;

and the large tasks can be finished within 3M-10M cycles. Moreover, we characterized

the task arrival rates to ABM as fast, moderate, and slow, which stands for the average

arrival rates of one task per 500 cycles, 5K cycles, and 50K cycles, respectively. Each task

will issue a buffer allocation request to ABM. In sum, we have nice benchmarks of all

3x3 combinations, ranging from small-fast to large-slow. We compare the system perfor-

mance (reverse of the average task runtime) of these benchmarks with the DIG interval

length as 1K-cycle, 10K-cycle and 100K-cycle. The results are shown in Figure 7.15.

For small tasks, when the arrival rate is moderate and slow, a 1K-cycle interval

length can significantly reduce the waiting time in an interval; thus, it has the best

performance (27% better than the 10K-cycle and 67% better than the 100K-cycle). The

1K-cycle interval only has, on average, two buffer allocation requests served at each DIG

allocation, which has less global optimality than the 10K-cycle and 100K-cycle intervals.

However, the tasks finish quickly, and thus they do not hold up the following tasks too

much. If the arrival rate is fast, the waiting times of 10K-cycle and 100K-cycle intervals

are reduced remarkably since once the number of collected buffer allocation requests

achieves a predetermined value (8 here), DIG allocation will be triggered. Thus the 10K-

cycle and 100K-cycle intervals perform 13% better than the 1K-cycle interval because of

more global optimality.

For medium tasks, the impact of waiting time begins to diminish, and the global

optimality of DIG allocation becomes more important. When the task arrival rate is fast,

10K-cycle and 100K-cycle intervals outperform the 1K-cycle interval by 16%; the reason

for this is similar to the small-fast case. When task arrival rate decreases to moderate,

the average waiting time increases, but still cannot offset the benefits of more global
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optimality; thus, the 10K-cycle and 100K-cycle intervals still outperforms the 1K-cycle

interval. However, when the arrival rate is slow, the importance of an average waiting

time reduction begin to outweigh the benefits of a more global optimality; thus, the

1K-cycle interval performs slightly better than the 10K-cycle and 100K-cycle intervals.

For large tasks, the global optimality of DIG allocation is much more critical than

the waiting time reduction. Therefore, the 1K-cycle interval always performs the worst.

At the relatively slower arrival rates, the 100K-cycle interval can collect a large enough

number of allocation requests in one interval to perform global optimization. Therefore,

it performs 15% and 11% better than the 10K-cycle interval in the moderate and slow

arrival rate, respectively.

Overall, it can be seen that the short interval performs well in cases where task size

is small and arrival rate is slow, while the long interval performs well in cases where

task size is large. The applications in our evaluation are mostly medium and large tasks;

therefore, in this work we choose an interval length of 10K cycles.

7.4.5 Impact on Cache

We further quantify the impact of the effective cache capacity reduction due to buffer

allocation by running a set of general-purpose applications (SPEC CPU2006 benchmarks)

on the cores concurrently. In the previous experiments we use a fixed BiN upper bound

which is half of the NUCA size. Thus, we first evaluate the impact on SPEC benchmark

runtime when half of the NUCA space is used by BiN, as shown in Figure 7.16. The

results are normalized to full cache capacity performance (additional separate buffers

are required for the accelerators). In most cases the runtime increase is within 10%,

except milc which has a large working set. For milc, although a full-capacity NUCA with

separate buffers has a remarkably small runtime, it almost doubles the on-chip memory

energy and area, and has less flexibility.

The impact of BiN on the cache can be improved via dynamic upper bound tuning. We

use the cache partitioning scheme proposed in [65] to dynamically tune the upper bound.
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We run each SPEC benchmark simultaneously with two medical imaging pipelines for

each of the 4 input sizes, respectively. The dynamic tuned BiN upper bounds for each

case are shown in Figure 7.17. In most cases an upper bound of half of the NUCA size is

selected. In the cases where the SPEC benchmarks can give more space to BiN without

considerably impacting the performance, an upper bound of 5/8 NUCA size is selected

for BiN. For these cases, the runtime of both SPEC benchmarks and the medical imaging

pipelines (normalized to the runtime with an upper bound as half of the NUCA size) and

the product of the two are shown in Figure 7.18. All of the runtime variations are within

the range of 5%, which suggests that impact of the upper bound tuning is limited.
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core, ABM, accelerator, and NUCA.
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// original

for i=0 to N

for j=0 to N

S1: B[i,j]=f0(A[i, j], A[i-2, j]

A[i-3, j]);
for i=0 to N

for j=0 to N

S2: C[i,j]=f1(B[i, j],B[i, j-2], 

B[i,j-3]);

data_type buf[2, N];

for i=0 to N

for j=0 to N {

S1: B[i,j]=f0(A[i, j], 

buf[i%2, j], A[i-3, j]);

buf[i%2, j] = A[i, j];
}

for i=0 to N

for j=0 to N

S2: C[i,j]=f1(B[i, j],B[i, j-2], 

B[i,j-3]);

Figure 7.10: (a) Full data reuse graph. (b) Simplified data reuse graph
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Figure 7.11: Comparison results of runtime
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Figure 7.12: Comparison results of off-chip memory accesses
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Figure 7.13: Comparison results of buffer access latency
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Figure 7.14: Energy comparison of the memory subsystem
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Figure 7.15: Impact of DIG allocation interval length
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Figure 7.16: Impact of BiN with a fixed upper bound (half of the NUCA size) on the runtime

of SPEC benchmarks.

dealII gcc gobmk hmmer milc namd omnetpp perl povray sphinxxalancbmk

0.00

0.25

0.50

0.75

1.00
1st bar: 2p-28, 2nd bar: 2p-52, 3rd bar: 2p-76, 4th bar: 2p-100

Cache BiN upper bound

P
e
rc

e
n
t 
o
f 
c
a
p
a
c
ity

 

Figure 7.17: Partitions via dynamic upper bound tuning
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CHAPTER 8

Stream Arbitration: Towards Efficient Bandwidth

Utilization for Emerging On-Chip Interconnects

Emerging interconnect technologies, such as optical network [75, 76] and radio frequency

interconnection(RF-I) [77] networks, have been considered recently as potential replace-

ments for traditional copper wires for long-haul NoC lines. These technologies offer enor-

mous bandwidth potential, low energy cost per bit transmitted, and low latency, when

compared to traditional networks. Drawbacks of these technologies are two-fold: 1) These

are analog networks, and thus require digital to analog conversion to transmit and receive

data, and 2) the bandwidth capacity of these networks is so large as to make in-flight in-

spection of packet content, and thus traditional packet-switched routing, impossible. For

this reason, we introduced STREAM [78], which is a communication protocol designed

to operate efficiently within these design constraints. As will be shown, STREAM fea-

tures a chip-wide communication network that allows for high-bandwidth transmission

between source-destination pairs. STREAM was the first protocol and design considering

emerging network technology resources that allowed for the high performance offered by

these technologies to be exploited successfully.

This technique is particularly attractive in the context of accelerators, which were

used as a driver for this study. The reason for this is that, while it is relatively simple to

scale up the capability of an accelerators compute engine, feeding data to this compute

engine has been consistently identified as a challenge. STREAM assists in addressing

this by offering massive amounts of burst bandwidth while an accelerator is in use, while

not exhibiting many of the short-comings typically associated with NoC hotspots in large

scale NoC topologies.
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In this work, we used RF-I as a driver, but the methodologies discussed in this

chapter are applicable to optical networks as well. RF-I was chosen due to the existence

of publications on the topic of RF-I networks, which allowed us to model our system at a

level of detail that would have been impossible if we assumed an optical network instead,

which had yet to have been successfully integrated into CMOS technology as of the time

that this work was done.

8.1 Introduction

As we enter the era of many-core and beyond, the number of cores, co-processors, and

on-chip accelerators grows rapidly. The dramatic increase of these processing elements

(PE) imposes a tremendous bandwidth requirement on the communication to the mem-

ory/cache [79]. This communication is typically accommodated via an on-chip inter-

connection network (or NoC: Network on Chip). It has been observed that electronic

networks cannot efficiently supply the dramatically increased PE-memory communication

bandwidth due to unacceptable power and area consumption [79]. Therefore, alternative

interconnectssuch as radio-frequency interconnect (or RF-I) [77], and optical intercon-

nect [75, 80]have become more attractive as a means to scale bandwidth and latency in

a power efficient manner. However, efficient utilization of the on-chip communication

bandwidth provided by these emerging interconnects still remains an open problem due

to nonuniform and temporally irregular traffic patterns in current and future CMPs.

There are two main approaches to dealing with the allocation of the on-chip com-

munication bandwidth for emerging interconnects. Both of them partition the aggregate

bandwidth into a set of communication channels. The first approach allocates these

channels as application-specific shortcuts [81] that are overlaid on the baseline tradi-

tional NoC to facilitate critical and heavy-loaded communication paths. This addresses

the concern of spatial nonuniformity in NoC traffic. Off-line compiler optimization or

profiling methods are used to predict the communication pattern of program phases.

Since the shortcuts are realized by tuning the frequency of the transmitter-receiver pairs,
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they can be reconfigured for each application or each phase of an application to match the

changes in program characteristics, and can accommodate a degree of change in traffic

patterns effectively. This is based on the assumption that the dynamic communication

pattern changes can be predicted a priori, and are sufficiently rare to justify the cost

of reconfiguring routing tables. However, in modern CMP designs, the data layout in

the last level cache (typically designed as NUCA, non-uniformed cache architecture) is

dynamically determined by OS through virtual-to-physical page translation [82]. More-

over, threads may be dynamically migrated to fully utilize the on-chip core resource [83]

and cache blocks may also be dynamically migrated [84] or replicated to reduce cache

access latency. In a recently investigated composable accelerator-rich CMP [24], a virtual

accelerator called by a thread is dynamically composed by the available on-chip acceler-

ator building blocks, which cannot be pre-determined. Moreover, in an accelerator-rich

CMP, buffers may be dynamically allocated in any L2 cache bank based on the distance

to the accelerator [63]. All of these complications make it unrealistic to enable an accu-

rate prediction of the on-chip communication pattern. Therefore, although this shortcut

approach can efficiently address the spatial communication heterogeneity, it cannot ef-

fectively handle temporal communication heterogeneity.

The second approach uses token-based dynamic arbitration [75, 80] to allocate the

channels at the real-time to communicating pairs on demand. Each receiver node in the

NoC has its own channel which serves as its home node. The home node injects a token

into its channel and any senders that want to communicate to this home node can perform

a destructive read of the token to acquire the communication channel, and then re-

inject the token once it finishes this one-time communication. Unlike the aforementioned

shortcut approach, this approach allocates the bandwidth on-demand at runtime with

low arbitration latency, power, and hardware cost, satisfying the real-time communication

requirement. If all of the receivers are uniformly receiving packets, it also tends to high

utilization and fair sharing. However, this is not the case for modern and future CMPs

due to the spatial communication heterogeneity.

Figure 8.1 depicts the high variation in number of received network flits per node
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Figure 8.1: Percent of received flits per node in a Token-based RF-I NoC

for a NoC using RF-I with a token-based arbitration scheme. The results shown are

complete executions of each benchmark (a detailed system description is in Section 8.4).

Each histogram denotes the received flits for one node over the total number of flits of

the application (i.e. the percent of total flits received by a given node). The coefficient

of variation for these applications ranges from 33% to 80%. This variation is even more

significant if instantaneous demand is examined instead of aggregate demand.

In this situation, the channel bandwidth of the nodes that receive few packets is

wasted, while the channels associated with the nodes receiving a large amount of packets

are bandwidth-hungry. It may be argued that the bandwidth allocated to each channel

can be pre-determined based on the home nodes communication workload, but as men-

tioned earlier in discussing the shortcut approach, the temporal communication workload

is difficult to predict a priori due to the dynamic uncertainties. Therefore, although this
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token-based dynamic arbitration scheme efficiently solves the temporal communication

heterogeneity, it cannot effectively handle spatial communication heterogeneity.

Therefore, it is necessary to find an efficient bandwidth utilization scheme which can

deal with both spatial and temporal communication heterogeneity. In this paper, we pro-

pose a dynamic arbitration scheme called Stream Arbitration. Unlike token arbitration

where channels are coupled to receivers, a channel in stream arbitration can be used to

send packets from any sender to any receiver, which efficiently addresses the problem of

spatial communication heterogeneity. Since stream arbitration is inherently a dynamic

arbitration scheme, it also efficiently handles temporal communication heterogeneity. In

this paper we choose RF-I to evaluate stream arbitration. RF-I is one promising alter-

native interconnect due to its compatibility with existing CMOS design process, thermal

insensitivity, low latency, and low energy consumption [77]. But it should be noted that

stream arbitration is not constrained to only RF-I: it can also be applied to other emerg-

ing interconnects such as optical interconnect. The main contributions of this work can

be summarized as follows:

• To the best of our knowledge, steam arbitration is the first dynamic arbitration

scheme which targeting emerging interconnect technologies can efficiently deal with

both spatial and temporal communication heterogeneity. Starvation avoidance and

flow control are also carefully considered.

• We propose a detailed circuit level design to realize stream arbitration in a radio

frequency interconnect, with accurate modeling of area and power overhead.

• We develop a full-system cycle-accurate simulation infrastructure to evaluate the

system performance and power impact of the stream arbitration scheme on various

benchmarks and system configurations. Compared to one representative band-

width allocation schemes for emerging interconnects from prior work: token based

arbitration [80] (applied to RF-I), stream arbitration can provide an average 20%

performance improvement and 12% power reduction.
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8.2 Stream Arbitration: Scheme and Example

In this section we describe stream arbitration from an algorithmic and architectural

point of view. We will discuss the circuit support of the operations required by stream

arbitration, such as stream augmentation and circulation in RF-I in Section 8.3.

We partition the aggregate bandwidth provided by the RF-I or waveguide into several

logical communication channels. One of them is used for arbitration, which is called the

arbitration channel. The remaining channels are used for PE-memory data requests and

responses, which are called data channels. Each RF node has one transmitter and receiver

pair to access both the arbitration channel and data channels. Active sources (nodes that

want to send flits) compete for the data channels in the arbitration channel to talk to

their desired destination nodes. Arbitration is done for each flit that is transmitted.

8.2.1 Stream Arbitration Scheme

The key component of our approach is the arbitration stream that travels across the

arbitration channel. Conceptually, the arbitration stream starts at a single node, which

is called the stream origin. The arbitration stream starts out logically empty and will

travel in a unidirectional manner across all the nodes on the chip, this is called Trip 1.

In this trip, when the stream passes each node, the node logically augments a number of

bits (referred to as substream) in the arbitration stream to specify whether or not this

node is attempting to send to another node, and whether or not this node is capable of

receiving packets. It is important to note that these two pieces of information (desire to

send and availability to receive) do not require any parsing of the stream they only rely

on information known a priori at the node. So there is no dependence where the stream

must be read first and then modified such a dependence would impair the arbitration

latency by bringing slower logic on the critical path of the stream propagation.

To ensure this decoupling and that nodes need only modify the stream without first

reading it, each node has a specified region of bits that make up that nodes substream,

and substreams are disjoint within the arbitration stream. Collectively, these disjoint
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Algorithm 1 Stream Arbitration

INPUT: Stream:flowControl [1..N], interested [1..N], destination[1..N], where N is the

number of RF nodes; the total number of channels M ; this nodes ID node id.

OUTPUT: Transmitting channel ID, Receiving channel ID.

Transmitting channel ID = INVALID;

Receiving channel ID = INVALID;

for i = 1..N do

if interested[i] and not flowControl[destination[i]]) then

flowControl[destination[i]] = TRUE;

channel ID++;

if destination[i] = node id then

Transmitting channel ID = channel ID;

end if

if channel ID = M-1 then

break;

end if

end if

end for
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log2N bits, denote destination node ID if interested bit = 1, 

put all 0 if interested bit = 0

Interested bit , set to 1 if this node is an interested source

Flow control bit , set to 1 if this node’s buffer is full

Figure 8.2: The substream augmented by each node as the stream passed by

substreams will represent each nodes interest in sending over a data channel and avail-

ability to receive from a data channel. The layout of a single substream element is shown

in Figure 8.2. A node that wants to send a flit and is therefore contending for data

channels is referred to as a source node. The destination ID is the label of the node to

which a source node intends to send a flit (referred to as a destination node). The flow

control bit indicates the whether or not there is sufficient buffer space in this node to

accept a flit. N is the number of RF nodes.

After the arbitration stream passes the last RF node in Trip 1, it circulates over all

nodes a second time, which we refer to as Trip 2. In this trip, when the stream passes

each node, the node receives the arbitration stream but does not modify the stream. The

purpose of Trip 2 is to parse the stream in order to check:

• Ability to Send: If this node is attempting to send a flit, information from the

stream will be used to indicate whether this node can acquire a data channel, and

if so, the data channel ID.

• Receive Channel: Determine whether this node will be receiving a flit, and if so,

the data channel ID where this data will be arriving is computed from the stream.

The algorithm is very simple and straightforward. It parses the stream in the order of

the augmentation of the bits. A source node can acquire a data channel to a destination

node if:
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• The flow control bit of the desired destination node is zero.

• There is no upstream node already sending to the desired destination node. In

this context, upstream means that an earlier node in the unidirectional flow of the

stream.

• There are still available data channels.

After the arbitration stream is parsed, the transmitter of a source node that has

successfully acquired a data channel will be tuned to send on this channel, and the receiver

of the intended destination node will be tuned to listen to the same data channel. A node

can be a source and a destination simultaneously, using different channels. After Trip

2, the sources that successfully acquired data channels begin to use these data channels

to communicate with their corresponding destinations. A channel is used for a single

flit, and is surrendered. This does not incur a performance penalty because arbitration

can be initiated every cycle, so a pair of nodes is allowed to communicate so long as

the source continues to win arbitration. This requires a pipelined stream arbitration

and data transferring. The latency of the two trip arbitration and the pipelining of the

arbitration and data transferring in the physical design are detailed in Section 8.3.2.

It can be seen that the upstream nodes always have higher priority in the arbitra-

tion than the downstream nodes (nodes encountered later in the unidirectional flow of

the stream). In order to introduce fairness into stream arbitration, we use a rotating

prioritization scheme, where each node is gradually reduced in priority each cycle, until

it reaches the lowest priority. Each cycle, the lowest priority node from the previous

cycle becomes the highest priority node. This prevents nodes that are lowest priority

from being starved during periods of high system load. Moreover, each node gradually

reduces priority to reduce the likelihood of burst data transfers dropping suddenly from

highest priority in one arbitration cycle to lowest priority in the next. We found this

method allowed for flits associated with multi-flit messages to arrive at the destination

subsequently without high transmission latency deviation. From an architectural point

of view, this gradually priority reduction is achieved by rotating the stream origin in the
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Figure 8.3: An example of the stream arbitration scheme

reverse direction of the stream traversal in the transmission line. However, we have a

smart scheme detailed in Section 8.3.3 to support this without really rotating the stream

origin.

8.2.2 Example of Stream Arbitration

To illustrate our approach, this section presents a single example arbitration attempt

(Figure 8.3). This example consists of only 4 nodes participating in arbitration, one

arbitration channel, one data channel, and assumes the stream origin is at the node A.

Node A is attempting to send to node C, while node B and D are attempting to send

to node A. C has no flits waiting for transmission, but has a fully occupied buffer and

cannot receive any flits.

In Trip 1, each node augments its substream as described in Section 8.2.1 to the

stream as showed in Figure 8.3(a) (The stream vectors follow the direction of arrow in

the figure ). Nodes A, B and D are source nodes in this arbitration cycle. They modulate

the interested bit 1 and their respective destination node IDs when the stream travels

by. The node C has no requirement for data transmission, and its receiver buffer is

unavailable for new messages in this arbitration. So node C only sets the flow control
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bit to 1 and leaves the interested bit at 0 when the stream travels by. Therefore the

substreams to be modulated by the node A, B, C and D are 0110, 0100, 1000 and 0100,

respectively.

In Trip 2 as shown in Figure 8.3(b), each node receives the full arbitration stream, and

executes the algorithm presented in Section 8.2.1. Node A is the first node to modulate

the stream and has the highest priority to acquire the data channel, but it cannot send

because its destination, node C, has declared that it does not have available buffer space.

Thus, node A loses in arbitration and does not receive a data channel. Then the next node

in priority order, node B, wins the data channel in this arbitration since its destination,

node A, has an available buffer. Node C does nothing, since its receiving buffer is full

and it is not an active node. From parsing the stream, Node D knows the upstream node

B gets the data channel, and there are no more channels left. So node D also loses in

this arbitration.

After the arbitration, the winner, node B, will transmit the message through data

channel, and others will retry in the next arbitration.

8.3 Stream Arbitration in RF-I

8.3.1 RF-Interconnect

Radio Frequency Interconnect (RF-I) was proposed in [85, 86] as a high bandwidth, low

latency alternative to traditional interconnect. Its benefits have been demonstrated for

off-chip, on-board communication [87] as well as for on-chip interconnection networks [88].

The two most distinct advantages of RF-I compared to traditional interconnects are that

1) instead of charging and dis-charging the whole wire to 1 or 0 as is done in a traditional

electrical interconnect, which consumes substantial time and energy, RF-I modulates

information on an electro-magnetic carrier wave which is continuously sent along the

transmission line, and 2) instead of trying to aggressively expand baseband bandwidth,

which often involves power-hungry compensation technique to achieve a flat channel
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Figure 8.4: A ten carrier RF-Interconnect and corresponding waveform at the transmission

line

frequency response, RF-I divide bandwidth in frequency domain, each of which becomes

a narrow-band signal which saves power. By doing this, RF-I also improves bandwidth

efficiency by sending many simultaneous streams of data over a single transmission line.

This particular technique is referred to as multi-band RF-I. Also, RF-I has been projected

to scale better than traditional RC wires in terms of delay and power consumption, and

unlike traditional wires, it can allow signal transmission across a 400mm2 die in 0.3ns

via propagation at the effective speed of light. Figure 8.4 shows an exemplary RF-

Interconnect link with 10 bands transmitting on the same physical transmission line.

One key advantage of RF-I over traditional interconnects is its capability of multi-cast

with on-chip directional couplers [88]. Impedance matched directional couplers eliminate

signal reflection that has inhibited multi-cast on traditional interconnects. Figure 8.5

shows an exemplary RF-Interconnect multi-cast link of one band. In the case that higher

aggregate data rate is desired for this arbitration channel, more RF channel can be

added into this multi-cast with a similar fashion as shown in Figure 8.4, with multi-band
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Figure 8.5: Multi-cast RF-Interconnect system
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Figure 8.6: The curl transmission line

directional couplers. Since required signal power scales with the number of drops along

a multi-cast link, such as is shown in Figure 8.5, a larger amount of power is required to

transmit a signal on a multi-cast link as compared to required to transmit on a point-

to-point link [88, 89]. Such effects are taken into consideration in our power estimation

shown in Section 8.3.4.

8.3.2 Curled Transmission Line for Stream Circulation

A conventional RF-I transmission line is unidirectional and acyclic, i.e., the starting point

and the end point of the transmission line are two different points. This prohibits the

stream circulation in the arbitration channel. To enable the two-trip stream arbitration,
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we propose a curled transmission line. Figure 8.6(a) shows the curled transmission line

for the arbitration channel and the normal RF-I transmission line for the data channel.

This curl starts from the stream origin at the outside loop and ends at the last RF node

on the trip in the inner loop.

The outer loop of the arbitration channel is Trip 1 for transmitting only, while the

inner loop is Trip 2 for receiving only. The transmitters to the arbitration channel (TX-

A) of all the nodes are attached to the outer loop, while the receivers (RX-A) attached to

the inner loop. There is also a frequency-tunable transceiver pair (TX-D and RX-D) at

each node, which is attached to the data channels. Although we presented a rectangular

style transmission line in Figure 8.6(a) for better illustration in the real physical design,

all the transmission lines should go through each node, as shown in Figure 8.6(b). The

reflection and discontinuity effect of sharp 90 degree turns in the curl transmission lines

can be mitigated by careful designs for impedance matching. For example, [88] used 450

diagonal routing at each corner of the channel to eliminate sharp turns. As a result this

did not impact the interconnect performance. Depending on different CMOS fabrication

technology, rounded turns can also be implemented to better avoid the reflection issue

caused by the sharp turns. In our evaluated system, which is a 1cm2 chip with 16 PE

clusters (each cluster has one RF node), the total distance for 1 trip in the arbitration

channel, or the longest distance in the data channel, is 5cm. The speed of light in silicon

is 8ps/mm, thus each trip of the arbitration can be finished in 400ps. Our evaluated

system has a working frequency of 2GHz. Therefore, each trip only takes one cycle, and

any flit transfers on the data channel can reach its destination in one cycle.

At any particular cycle, the TX-As of the nodes are augmenting their substreams

for the arbitration initiated during cycle x; the RX-As of the nodes are receiving the

entire stream for the arbitration initiated during cycle x-1; the local stream parsing unit

is parsing stream for the arbitration initiated during cycle x-2; the RX-Ds and TX-Ds of

the winning sources of the arbitration initiated during cycle x-3 are using data channels

to transfer data. In this way, stream arbitration can be initiated at every cycle.
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8.3.3 Time Division Modulation Multicast for Stream Augmentation

We propose a time division modulation multicast (TDMM) approach in the arbitration

channel to achieve the stream augmentation with priority rotation. The latency T for

one stream trip can be divided into N slots, where N is the number of RF nodes, and

the length of each slot is λ = T/N. Let d(v) denotes the RF node hops from the stream

origin to node v. Let p(v) denotes the priority of node n in a particular arbitration, in

which p=0 means highest priority. Then, the slot for a node to modulate its substream

to the arbitration channel is (p+d) λ.

An example of TDMM is shown in Figure 8.7. In this example, there are 4 RF nodes.

Node A is the stream origin where the curl starts. Assume the current highest priority is

rotated to node C and the priority order is in the reverse of the stream travel direction.

Then we have: node A: d=0, p=2; node B: d=1, p=1; node C: d=2, p=0; node D: d=3,

p=3. Therefore, node A, B, C, and D will modulate their substreams at slot 2λ, 2λ, 2λ,

and 6λ, respectively. These modulated substreams will finally form a stream that is in

the order of the priority of their nodes when the stream makes the second pass to be

read.

The proposed TDMM approach can support any arbitrary priority assigned to these

nodes using the formula described above, provided all nodes have unique priorities. Here

we adopt the gradual priority reduction scheme discussed in Section 8.2.1. Each node

locally keeps a small counter to record its current priority p. Initially, each node v is

assigned with a priority p(v) = d(v). After each arbitration, it increases its p(v) by 1.

When p(v) reaches N, where N is the number of RF nodes, indicating that it is at the

lowest priority,the node will reset p(v) to 0, which is the highest priority in the next

arbitration.

In Trip 2, each node also receives one substream per slot. A node does not wait for

all the substreams to begin parsing the stream (using the algorithm in Section 8.2.1).

Instead, each time when a node receives a substream, it begins to process the substream

by perform one iteration in the algorithm. The only difference is that the flow control
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bits are buffered but not checked, and are used at the end to invalidate the winning

source nodes with destinations that have a full buffer. In this way, we parallelize the

stream receiving and stream parsing.

8.3.4 Power and Area

Table 8.1: Power Parameters of Point-to-Point RF Transceiver in 32nm Technology

Power Power Efficiency Active Area Passive Area

(mW) (pJ/b)

TX Mixer 1 5um x 5um 0

TX PA 2.5 10um x 10um 50um x 50um

Total TX 3.5 0.44 125um2 2500um2

RX Mixer 0.5 10um x 10um 50um x 50um

RX PA 2 20um x 20um 0

Total RX 2.5 0.31 500um2 2500um2

Table 8.2: Power Parameters of Arbitration RF Transceiver in 32nm Technology

Power Power Efficiency Active Area Passive Area

(mW) (pJ/b)

TX Mixer 1 5um x 5um 0

TX PA 5 15um x 15um 50um x 50um

Total TX 6 0.6 250um2 2500um2

RX Mixer 3.5 20um x 20um 50um x 50um

RX PA 2 20um x 20um 0

Total RX 5.5 0.55 800um2 2500um2

For power estimation, the predicted power parameters are different between the ar-

bitration channel and data channels. Although data channels are broadcast links, the
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arbitration strategy allows them to be treated as point-to-point links in any data com-

munication cycle. On the other hand, due to large signal attenuation for the multicast

link in the arbitration channel, increased power is needed to meet the signal-noise-ratio

(SNR) requirement of desired bit-error-rate (BER, 10-12).

The power and area modeling values of point-to-point RF-Interconnect RF Transceivers

used in this paper implemented with 32nm CMOS Technology are shown in Table 8.1.

The TX and RX power consumptions are predicted (scaled) from our implementation

of a multi-band RF-I at 90nm CMOS technology [88]. For the scaling from 90nm to

32nm CMOS process performance, it is assumed that the average power consumption

per transceiver channel is expected to stay constant at about 6mW. The logic behind the

assumption is that although RF circuits at higher carrier frequencies require more power,

this additional power is compensated by the power saved at the lower carrier frequencies

due to higher fT transistors available with scaling. In addition to increased number of

channels, the modulation speed of each carrier would also increase, allowing a higher data

rate per channel. As a result, the data rate per channel per wire is predicted as 8Gbps,

which results in a power efficiency of 0.75pJ/b. A behavioral model simulation shows

that 15GHz channel spacing is sufficient to carry 8Gb/s data with a low BER. Therefore

it is projected that 12 carriers can be sent simultaneously on each wire (transmission

line) given the 350GHz fT of 32nm technology, which indicates 96Gbps aggregate data

rate on each wire. The active area and passive area are also predicted from our 90nm

multi-band RF-I prototype.

Table 8.2 shows our power and area modeling of arbitration RF-Interconnect RF

Transceivers in 32nm CMOS Technology. The power consumption is estimated by scaling

our implementation of a multi-cast RF-I at 65nm CMOS technology in the similar fashion

of the scaling of point-to-point RF transceivers. The power efficiency is predicted to be

1.15pJ/b. The number is higher than that of point-to-point RF transceivers mainly

because of the larger channel loss of multi-cast data links. The data rate per channel

per wire is predicted as 8Gbps. Therefore 12 carriers provide an aggregate bandwidth of

96Gbps on each wire for the arbitration channels. The active devices area is also less than
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2x larger than the point-to-point link because of the higher gain required for arbitration

links (larger devices implemented).

Due to the power overhead is basically the charging and discharging of the bias

transistors gate capacitance, we configure the RF transmitter and receivers with simple

logic gates which control their bias stage, so the RF transmitter and receivers can be

turned off to save power when they are not in use. For example, a 50fF gate capacitance

of the receiver bias transistor indicates 25fF energy consumption of turning it on and off,

which is substantially smaller than demodulating one bit from the arbitration channel

(¿1pJ/b). The speed of this power switching depends on the driving strength of the

controlling logic gates. In 32nm technology, this speed is expected to be well below

0.05ns

8.4 Evaluation Methodology

8.4.1 Simulation Infrastructure

We evaluated stream arbitration using a composable heterogeneous accelerator-rich mul-

tiprocessor (CHARM) [24], where the on-chip accelerator building blocks (Custom Func-

tional Units -CFUs) can be dynamically composed to virtual accelerators based on the

applications requirement. While this architecture only features a small number of cores,

the network and memory demand of the various accelerator components is substantially

larger than that of a system featuring only conventional cores. We chose this architecture

because we recognized that NoC design will not advance in isolation, and in order to eval-

uate a future NoC, we should evaluate it in combination with a system that would place

a demand on the NoC representative of a HPC-aimed architecture, which is anticipated

characterized as high raw throughput at low power of compute-intensive architectures

in the near term future. As is shown in the Figure 8.8, our modeled system consisted

of multiple cores, an accelerator block composer (ABC), a set of accelerator building

blocks, memory controllers and L2 cache bank nodes. These nodes are arranged, in all
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configurations, in an 8-by-8 grid, resulting in 64 nodes, and accelerators are uniformly

distributed. Table 8.3 describes details of the system configuration. These details are

consistent across all configurations.

Table 8.3: Evaluated system configuration

Parameter Value

Processor 8x 2.0GHz Ultra-SPARC-III

Operating System Solaris 10

Private L1 Cache 32-KB 4-way set-associative,

1-cycle access latency for each core

Shared L2 Cache 4-MB 8-way set-associative,

10-cycle access latency in 64 banks

Coherence Protocol Shared banked uniformly distributed

MOSI L2-Cache, private MSI L1-cache

for cores, Distributed directory.

Memory 4 Memory controllers, 450 cycle latency,

30GBPS bandwidth each [120 GBPS aggregate]

We have extended the Simics [19] and GEMS [20] simulation platform to model a

RF-I network, along with the stream arbitration scheme. As a point of comparison,

we have also implemented a recently proposed token-based arbitration for performing

arbitration over optical interconnects [80], which we will refer to as token arbitration.

Our implementation of token arbitration was adapted to use a RF-I network so as to

make a fair comparison. Brief details of the operations of token arbitration are described

in Section 4. Timing, area, and power consumption associated with the RF-I network was

measured using the methodology discussed in Section 3, and was incorporated into our

cycle accurate simulation platform. Timing, area, and power consumption associated

with the digital circuitry required to perform arbitration was obtained by compiling

code implementing our arbitration scheme into RTL using the AutoPilot [21] behavioral
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synthesis tool, which was then synthesized using the Synopsys Design Compiler [22]. For

network communication along traditional wires, such as that between multiple nodes and

shared RF-I transmission points, we used Orion 2.0 [29] to estimate power consumption

in 32nm technology. Accelerators and accelerator arbitration mechanisms used in this

work were modeled after those presented in [8]. Accelerators were included due both to

the expected increase in their use in future processors, and as an effective way at stressing

the NoC in a way that cores cannot. The accelerator design methodology and accelerator

arbitration mechanism we adopted for this work supports hardware load-balancing.

To more effectively examine the performance of stream arbitration, and how it per-

forms relative to token arbitration, we examined a number of different system config-

urations and RF-I configurations. We modeled cases in which nodes on our network

were bunched into clusters of varying sizes, with RF-I serving as the only communica-

tion mechanism between clusters. We also scaled the capability of our examined RF-I

network in terms of number of channels and bandwidth per channel. A clustered ar-

chitecture means several routers share one RF transceiver. Only the communications

between different clusters will go through the RF-I, with traffic between nodes in the

same cluster instead using a fully connected traditional network. We considered the im-

pact on latency and power of different cluster sizes of 4, 2, and 1, and found the effect is

minor due to marginal reduction in the amount of bandwidth dedicated to servicing data

channels when reducing the cluster size. The another reason is that, from the perspective

of each individual cluster, the overwhelming majority of network traffic was inter-cluster

traffic, irrespective of the number of nodes in each cluster. Therefore we chose a cluster

size of 4 as our baseline configuration in this paper if not special specified.

8.4.2 Benchmarks

To evaluate our work, we examined a number of accelerator using benchmarks. These

benchmarks consisted of those evaluated in the CHARM design [24], along with two

PARSEC benchmarks [39], Fluid Animate and Black Scholes, that were amenable to
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being mapped to accelerators. The examined region was restricted to the program kernel,

which was either entirely, or nearly entirely, covered by hardware acceleration.

Since our selected accelerator arbitration scheme features hardware load balancing

among accelerators, there is not a substantive difference in system load when adding

software threads. For this reason, our benchmarks were primarily executed sequentially,

with the accelerated regions relying on load-balancing hardware to achieve concurrency.

8.4.3 Reference Scheme

Token arbitration, presented in [80], is a multiple-writer single-reader arbitration mech-

anism designed for use in optical NoCs. Token arbitration makes an effort toward ef-

ficiently solving the problem of arbitrating a shared communication channel to assure

that multiple writers on a single channel do not interfere with one another. In order to

assure that only a single writer is writing to a given destination, the destination node

transmits a send token around a ring in the NoC. A node interested in sending will halt

the progress of this token by reading it, and hold it until it finishes sending, at which

point it will reemit the token. This requires that there is a single communication channel

for each potential destination node.

While token arbitration makes guarantees of liveness and fairness, restricting each

communication channel to service only a single destination potentially results in poor

channel utilization and difficulty scaling with number of nodes, since the number of chan-

nels must also scale accordingly. We chose token arbitration as our point of comparison

because it is recent work, and it targets the specific problem of sharing communication

channels on emerging interconnect technologies.

While static shortcuts [81], as mentioned in Section 1, are also designed to utilize

emerging interconnect technologies, we chose not to compare against this design point due

to the fundamentally different nature of the problem static shortcuts addressed. Static

shortcuts also rely on an underlying mesh network as a fallback option if a shortcut isnt

present, which our approach does not. As a result, it would not be possible to construct

148



a fair comparison between static shortcuts and stream arbitration.

8.5 Results and Discussions

8.5.1 Performance as Bandwidth Scales

Figure 8.9 shows a comparison of average network flit latency between stream arbitration

and token arbitration, for various network configurations. Each system consists of 16

clusters of 4 nodes each, laid out in a grid, with a single RF-I access point for each

cluster. Aggregate bandwidth is calculated by the number of channels multiplied by the

bandwidth of each channel. Token arbitration requires a single channel for each possible

destination, and thus aggregate bandwidth is adjusted by scaling the bandwidth of each

channel from 2 to 16 bytes per cycle. Stream arbitration decouples the number of nodes

from the number of channels, so instead aggregate bandwidth is adjusted by fixing the

bandwidth of a single channel at 16 bytes per cycle, and scaling the number of channels

from 2 to 16. As expected, the performance of both systems becomes near equal as

both the bandwidth per channel and number of channels becomes 16 for both arbitration

schemes. Our experiment also shows this clearly.

As is shown, there is an advantage of having few channels of high bandwidth and

allow them to be flexibly used by any communication pairs at runtime, over having many

channels of uniformly low bandwidth. This is intuitively sound, as each cycle only a

fraction of nodes will be communicating with one another. Having a large number of

channels is only an advantage when the traffic pattern is highly uniform, at which point

all channels can be utilized continually. Since each destination can only have a single

channel associated with it at a time, any non-uniformity in the traffic pattern, even if

just instantaneously, results in favoring a few high bandwidth channels. While both

systems were able to reduce average flit transmission latency by upwards of 60-70% for

most benchmarks in systems that featured an abundance of RF-I resources, we found

that stream arbitration was able to approach this figure much more quickly when RF-I
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resources were reduced.

For most of our examined benchmarks, the benefit of adding channels diminished

quickly, highlighting that only a small handful of nodes at any given instant are responsi-

ble for the majority of the NoC traffic. While cache activity was approximately balanced,

clusters in the corners of the network which featured memory controllers saw additional

traffic in the form of memory requests, and clusters featuring highly utilized accelerators

saw additional traffic in the form of cache responses.

Figure 8.10 shows the impact of this latency reduction on benchmark runtime. NoC

latency reduction doesnt correlate directly with performance primarily due to all of the

other factors contributing to performance that are not NoC related. Chiefly among

these, for both accelerator centric architectures examined in this work and conventional

CMP designs, is the contribution of memory latency. Reducing NoC latency primarily

contributes to performance by reducing the latency associated with coherence between

the private and shared cache layers. While there is a correlation between reduction of NoC

latency and improvement of overall performance, the 60-70% NoC latency reduction we

observed contributed only 15-25% runtime reduction in most cases. Some benchmarks

were outliers, such as Deblur, which is a memory bound benchmark that featured a

working set that fit in shared cache. In these cases, we observed a much more pronounced

relationship between NoC flit latency reduction and performance improvement.

8.5.2 Energy Consumption

Energy in emerging NoC designs, such as RF-I, comes primarily from two sources. First,

modulation and demodulation of the signal, which occurs when a one bit of data is sent

on the network or received from the network respectively. Second is the preparation of

the communication medium for carrying data. For RF-I this involves supplying receivers

with energy to listen to the attached channel, which must be done perpetually on any

channel on which data may arrive, whether the given channel is being used to carry data

or not. These two sources are analogous to dynamic and static power on traditional
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electric circuits. Results shown in Figure 8.11 were gained from the experiments for

which performance results were shown in Section 5.1. Energy consumption for CPUs,

caches, and accelerators is not shown in order to highlight the contrast between the two

arbitration algorithms.

The RF transmitter and receivers can be turned off to save power when there is no

RF signal modulation and demodulation as discussed in Section 3.4. Therefore there is

power saving when there is no data being sent to/from a RX-D/TX-D through the data

channels, or there is no arbitration in the arbitration channel. Token arbitration on the

other hand continually circulates the arbitration tokens, even when the NoC is otherwise

unused. The power required to do this scales linearly with the number of potential

destination nodes, but is generally small relative to the power required to actually send

data. A considerable portion of the energy difference is attributed to the difference in

arbitration success rate. Stream arbitration features a very high arbitration success rate

in general due to the short utilization period of a given channel. In comparison, token

has a relatively poor arbitration success rate due to sending nodes holding the token for

long durations when link bandwidth is small.

As shown in Figure 8.11, the difference in energy consumption between stream arbi-

tration and token arbitration is mostly related to the difference in performance provided

at a given design point. But Token performs better than Stream at points that provide

similar or identical performance, the reason is that Stream has more modulation power

than Token, which needs modulate 6 bits each time compared with only 1 bit for token.

8.5.3 Bandwidth Allocation for Channels

To further examine the point discussed in the previous section, we conducted an experi-

ment with a fixed aggregate bandwidth, and adjusted the number of channels and channel

bandwidth to achieve that aggregate bandwidth. Figure 8.12(a) shows the impact on av-

erage flit latency of adjusting the division of bandwidth into multiple channels, with a

fixed aggregate RF-I bandwidth budget of 108 bytes per cycle. The optimal configura-
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tion varies by benchmark. While Section 5.1 showed that adding additional bandwidth

was never observed to result in a degradation of performance, it is clear that there is

a compromise to be found between high bandwidth channels and additional channels.

Figure 8.12(b) shows the corresponding impact on execution time for each design point.

While in this work we focused on static partitioning of bandwidth into multiple chan-

nels, this figure shows the potential for dynamically partitioning this bandwidth as well.

8.5.4 Data Channel Utilization

Figure 8.13 shows the percent of total RF-I traffic that occupies each data channel using

stream arbitration for several selected benchmarks, for a system with 64 nodes and the

clusters of size 2, which is allocated 6 RF data channels and 16 bytes per cycle bandwidth

per channel. As described in Section 2, stream arbitration allocates data channels to a

communicating source-destination pair ordered by winning arbitration. Thus, if any data

at all is being sent over RF-I, it is guaranteed that data channel 0 is in use, followed by

channel 1 if two channels are in use, and so on. This figure shows that even a single

channel can accommodate between 27% and 52% of the total bandwidth demand. The

utilization of channels drops steadily. While data could be shown for systems with larger

numbers of channels, the utilization for later channels becomes extremely low, indicating

that the physical RF-I medium is being wasted. This clearly indicates that dynamic

channel allocation is critical to effective resource utilization of emerging networks, such

as RF-I, as static allocation results in a large amount of waste.

8.6 Scalability

8.6.1 Hierarchical Stream Arbitration

As the chip size scales up or the number of RF nodes increases, the length of the trans-

mission line increases and one stream trip may need P cycles, where P is larger than 1, to

finish. In this case, the latency to complete arbitration would increase to 2P+1. As the
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number of RF nodes N increases, the amount of data sent to perform a single arbitration

increases in O(NlogN). If we keep using a single curl to perform flat stream arbitration

for all RF nodes, we will encounter serious challenges in terms of performance, power,

and area:

• Performance: Each arbitration needs 2P+1 cycles to finish, therefore, it will

take a much longer time for a network message to claim a data channel success-

fully when P scales up to a large number. This results in a significant increase in

average network latency. Although we can still use pipelining to initiate stream

arbitration every cycle in order to guarantee throughput, but for applications with

message dependencies, average network latency has a significant impact on system

performance. Under this circumstance, the long 2P+1 arbitration latency limits

the scalability of the base stream design.

• Power: The length of the arbitration stream increases in O(NlogN), so that the

arbitration channel power also increases in O(NlogN). If N is a relatively small

number, then compared to the data transfer power in the data channels, the ar-

bitration power is negligible. This is how stream arbitration can win over token

arbitration in terms of power. However, as N scales up to a large number, then this

arbitration overhead becomes non-trivial compared to data transfer power.

• Area: As the number of data channels increases as N scales up to maintain network

performance, the total number of channels that the RF transceiver on the data

channels should support also increases linearly with N. For this reason, the area of

the communication substrate increases quadratically with N.

In the large-scale CMPs, it is not the case anymore that all the network elements

are communicating with all other elements uniformly. The state-of-the-art non-uniform

cache architecture (NUCA) management schemes, such as the RNUCA [82] and page-

recoloring scheme [90], intend to place cache blocks near to its most frequently requesters

by smart initial placement, dynamic migration, and replication. Moreover, cache parti-

tioning schemes [65, 91, 92] can be used so that a cluster of cores are only going to access
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a locally allocated cache partition. Communication between these partitions is only re-

quired when there are coherence invalidations and fills. Therefore, it is expected that in

large-scale CMPs, the local communication in a core-cluster dominates the overall com-

munication. Under this circumstance, a flat stream arbitration scheme that uses a single

curl to go across all nodes is wasting resources and unnecessarily limiting performance.

Here we propose a hierarchical stream arbitration scheme to make use of the communica-

tion pattern expected to be found in future large-scale CMPs. In hierarchical stream we

have a local transmission line (TL) for each core-cluster, and a global TL to connect these

local TLs. Each TL consists of a curled arbitration channel and a set of data channels,

as shown in Figure 8.14. The stream arbitration is performed independently in each level

of the hierarchy.

The local TL is connected to the global TL through a relay node which consists of

two RF interfaces and two buffers, as shown in Fig 14. Each RF interface is similar to

the RF nodes described in Section 3.2. One RF interface consists of a pair of transceiver

(TX-A and RX-A) connected to the local curl and a pair of transceiver (TX-D and RX-D)

connected to local data channels. Another RF interface also has two sets of transceivers

connected to the global curl and global data channels. Buffers are used to temporarily

buffer the network messages which have already arrived at the relay node but are still

waiting for arbitration success to move forwardeither from local TL to the global TL,

or vice versa. Each of the buffers will attach its flow control signal to the substream in

the corresponding arbitration channel in order to indicate the fullness of this buffer, as

a normal RF node does in Section 2.

The proposed hierarchical stream arbitration RF-I NoC is deadlock-free as long as

we only allow minimal routing. Figure 8.15 shows the topology graph (TG) and the

corresponding channel dependency graph (CDG) of an example hierarchical stream ar-

bitration RF-I NoC (the definitions of both TG and CDG are detailed in [93]). In this

example there are four local transmission lines (TL) and 1 global TL, each local TL

contains 4 RF nodes (one of them is the relay node). Since the NoC is built upon RF

medium, in the TG, when we say that there is a channel (the unidirectional arrows in
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Figure 8.15(a)) from RF node A to RF node B, we mean that a packet can go directly

from RF node A to RF node B through the RF medium. Due to the space limitation,

in the CDG (Figure 8.15(b)), we only details the channel dependencies in the global TL

and also one of the four local TLs, since the CDGs of the four local TL are identical.

The purple solid arrows in Figure 8.15(b) denote the channel dependencies among the

channels in TG, and the red dashed arrows denote the channel dependencies between the

channels in the TG and the network injection queue (Si) and ejection queue (Ti). As

it can be seen in Figure 8.15(b), the CDG of the network is acyclic. According to the

theory in [94], the routing of the proposed hierarchical stream arbitration RF-I NoC is

deadlock-free.

The example shown in Fig 14 has 8x8 RF nodes (actually 256 network nodes and

each 4 network nodes share one RF transceiver). We let 16 RF nodes share one local

TL, so that we can have enough slack to enable one stream trip to finish in one cycle, as

discussed in Section 3.2. The total distance for one stream trip in global TL is 5cm with

this 8x8 RF nodes topology, and so can be finished in one cycle also in this topology.

This two-level hierarchical design contains 4 local TLs and 1 global TL. Since there is

also a relay node in the local TL, actually, there are 17 RF nodes competing for the data

channel resources of the local TL. In the global TL, there are 4 RF nodes (the 4 relay)

competing for the data channels resources of global TL. In the example shown in Fig 14,

if node A wants to send a message to node B, it only needs to perform arbitration within

its local TL, where each arbitration takes 3 cycles (one for the first stream trip, one for

the second stream trip, and one for the stream parsing). Then the message can be sent to

B using the granted data channel from this local arbitration. However, if node A wants

to send a message to node C, it first attempts local stream arbitration in Local TL 1,

and then uses the granted local data channel to send the message to Relay Node 1. In

Relay Node 1, the message is buffered and waiting for the global arbitration to allocate

it a data channel in Global TL. Upon success, the message is sent by Relay Node 1 to

Relay Node 3 using the granted global data channel. Then in Relay Node 3, the message

is buffered again and waits for the success of arbitration in Local TL 3, at which point
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it is sent to node C by Relay Node 3. The entire process takes at least 9 cycles.

8.6.2 Trace-Driven Evaulation Methodology

To verify the performance of the hierarchical architecture, we scaled the NoC size (in

terms of number of routers) to 16x16, 24x24 and 32x32. In these topologies, each 2x2

routers share 1 RF node. Then the three evaluated NoC designs have 8x8, 12x12, and

16x16 RF nodes, respectively.

• For hierarchical stream arbitration, every 4x4 RF nodes share 1 local TL, so that in

each local TL there are 17 RF nodes in total (the additional one node is the relay

node). One stream trip in curl of the local TL takes one cycle. The hierarchical

architecture of 8x8 RF nodes is already shown in Figure 8.14, where the global TL

has 4 RF relay nodes. The hierarchical architecture of 12x12 and 16x16 RF nodes

are shown in Figure 8.16, where the RF relay nodes in their global TL are 9 and 16,

respectively. One stream trip in the curl of the global TL for these three designs

takes 1, 2, and 4 cycles, respectively (depends on the length of TL).

• For flat stream arbitration, there will be a single TL across all of the RF nodes for

each NoC designs. With the assumption and discussion in Section 3.2, one stream

trip in the curl of the single TL for the three NoC designs takes 3, 7, and 11 cycles,

respectively (depends on the length of the TL).

We assign two 16B data channels for each local TL for the hierarchical stream arbitra-

tion. To make a fair comparison, we make the number of data channels in the TL of flat

stream arbitration as the total number of local TL data channels of the corresponding

hierarchical design.

As we scale the number of components on chip to such a large level, full-system

simulation becomes intractable due to its extremely long runtime (in order of weeks to

months). Therefore, in this section, we used a trace-driven cycle-accurate network simu-

lation method to evaluate performance and power consumption. We extended Garnet [95]
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to support the proposed hierarchical stream arbitration scheme. Moreover, as a means of

exploring the interconnect demand of future applications, we made use of the probabilistic

trace methodology developed in [81] to represent five communication patterns for multi-

threaded applications uniform, uni-dataflow, bi-dataflow, 1hotspot and 2hotspot. To

mimic the local-communication-dominated commutation patterns expected in large scale

CMPs, our probabilistic traces have 60% of the communication as local traffic (inside the

local TL). The remaining traffic follows the specific communication pattern as the trace

name indicated: 1) uniformthe routers are equally likely to communicate with all other

routers in different curls; 2) 1hotspot/2hotspotthere is one router in one/two TLs send-

ing/receiving a disproportionate amount of traffic. 3) uni-dataflow/bi-dataflowdataflow

pattern simulates pipelined communication flow such as medical imaging decomposition

or a cryptographic algorithm, routers are biased to communicate with routers in groups

that neighbor them on either one side (unidirectional dataflow) or two sides (bidirectional

dataflow). The message sizes were either 8 bytes (a cache block request or control signal)

or 64 bytes (a cache block response). Each probabilistic trace is executed on Garnet for

1 million network cycles.

8.6.3 Results

Figure 8.17 shows the average network latency reduction through hierarchical stream arbi-

tration (denoted as HStream) compared to flat stream arbitration (denoted as FStream).

By serving the local data channel requests in the local TL with much less latency,

HStream arbitration can reduce the average network latency by 28%-55% (40% on aver-

age) compared to FStream. The latency reduction in arbitration actually is similar for all

of the five patterns (they all have the similar percentage of local traffic), however, there

is still observable differences between the overall latency reduction of them. The reason

for the considerable difference in performance observed is less to do with the arbitration

latency, or even the latency of actual data transmission, but of the increased success

of arbitration in the case of HStream as compared to FStream. The reason for this is

intuitive: As the network increases, HStream maintains a constant number of competing
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nodes for the messages within the local TL. Communication occurring in disjoint regions

of the NoC does not compete for a shared resource, where as in FStream it does. Even

though in FStream this shared resource is of greater capacity, being the sum of the lo-

cal TL and the global TL in terms of bandwidth, this doesn’t make up for the large

increase in competing nodes in a network that is not segregated into regions.. Although

in HStream there are two additional buffering steps in the relay nodes, the experimental

results show that most of these long distance messages are granted data channels in the

next arbitration immediately following the time it enters the relay node. We observe a

reduction in benefit of HStream as compared to FStream in the hot-spot experiments.

The primary source of this reduced benefit is attributable to availability of buffer space

in the node relay in transition point from the local TL containing a hot spot to the

global TL. FStream does not exhibit this bottleneck, and thus performs similarly as it

performed in other experiments.

Figure 8.18 shows the power comparison results of HStream and FStream, which is

broken down into arbitration power and data transfer power. The data transfer power

also includes the power between the network interface and the RF node. The reduced

data transfer required to perform arbitration, as described in Section 6.1, allows HStream

to reduce energy required by arbitration by 40% - 70% compared to FStream. The larger

the network size is, the more significant of this arbitration reduction to the overall power

reduction is. However, in HStrean, all of the communications that go across two local TLs

will have does the modulation/demodulations due to the need to buffer during transitions

between the local TL and the global TL. As mentioned, these global communication only

accounts for a small percentage of the overall communication in the large-scale CMPs,

thus HStream only incurs a 3%-16% additional data transfer power. The overall power

of HStream and FStream is similar, within 5%.
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Figure 8.7: An example of TDM multicast for stream augmentation with priority rotation: (a)

t=0 and t=λ: no substream is modulated. (b) t=2λ: node C, B, A modulate their substreams

simultaneously. (c) t=3λ: substream C, B, A achieves node D, C, B, respectively. (d) t=4λ:

substream C, B, A achieves node A (inner), D, C, respectively. Substream C is received by node

A. (e) t=5λ: substream C, B, A achieves node B (inner), A (inner), D, respectively. Substream

C and B is received by node B and A, respectively. (f) t=6λ: node D modulates its substream.

Substream C, B, A achieves node C (inner), B (inner), A (inner), respectively.
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Figure 8.8: Overall diagram of the evaluated CHARM architecture with RFI overlaid NoC
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Figure 8.9: Comparison results of average network flit latency at various aggregate bandwidths

(normalized to token arbitration with 32 Byte/Cycle aggregate bandwidth)
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Figure 8.10: Comparison results of application runtime at various aggregate bandwidths

(normalized to token arbitration with 32 Byte/Cycle aggregate bandwidth)
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Figure 8.11: Comparison results of application Network power consumption at various aggre-

gate bandwidths (normalized to token arbitration with 32 Byte/Cycle aggregate bandwidth)
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Figure 8.12: Impact of channel bandwidth allocation: (a) Average network flit latency. (b)

Application runtime (The results is the variation over the case of RF channel =6, Bandwidth

= 16 Byte/Cycle)
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Figure 8.13: RFI data channel utilization
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Figure 8.15: Hierarchical NoC topology characterization graph of (a) TG, (b) CDG
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Figure 8.17: Performance (average network flit latency) gain through hierarchical stream

arbitration (normalized to Flat Stream of 32*32 topology for each application)
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CHAPTER 9

Core Design After Acceleration

Introducing accelerators to a platform bifurcates code that runs on the system into two

components: 1) code that runs on the accelerator, and 2) code that cannot run on an

accelerator. Accelerators typically offer such an advantage in terms of both performance

and energy efficiency as to leave no reason to use a conventional processing core to perform

a task that can otherwise be performed by an accelerator. Because of this, the code that

ends up running on a conventional core in an accelerator featuring system is considerably

different in composition as compared to the code that runs on a conventional core in a

system that lacks accelerators.

Accelerators are most appropriate for code that is highly structured, small, and com-

pute intensive. While these code kernels generally constitute only a tiny portion of the

total program size, they are greatly overrepresented in the total program execution time.

For this reason, much of the research that has gone into developing high performance

conventional cores has gone into introducing microarchitectural enhancements that target

these compute intensive kernels. Because introducing accelerators to a system eliminates

the cores responsibility to execute these highly structured code regions, many components

of a conventional core are no longer utilized in the same way, and no longer contribute

to a cores performance in the same way or to the same extent.

This chapter re-examines a number of common components that are critical to the

performance of aggressive out-of-order processors in the context of a system with accel-

erators. The reasoning behind this is that the benefits that these components lend to a

out-of-order processor are primarily restricted to enhancing the execution of code regions

that are no longer the responsibility of the core, and are now instead executed on the
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accelerator. With these code regions now executed on the accelerator, the benefit that

these structures lend to a core may no longer justify the cost of including them.

9.1 Platform Model

There are a large number of proposals for programmable accelerators [24, 50, 54]. While

proposals differ slightly in the types of program regions they can cover, most accelerator

proposals generally target loops surrounding small compute kernels that iterate over a

volume of data.

The general work flow involved in using these programmable accelerators is also sim-

ilar across a variety of designs. During compilation, a schedule of an identified compute

kernel is generated and stored as a portion of the program. At runtime, a configuration

describing the computation to be performed is loaded into the accelerator. After the

accelerator is configured, it is invoked by a signal from a controlling core. After a period

of time, the controlling core receives a signal back indicating that the requested work has

been completed.

While different programmable accelerator proposals differ widely in architectural char-

acteristics, advantages, and drawbacks, this similarity in program coverage makes it pos-

sible to discuss impact on program structure in an accelerator-agnostic fashion. For this

reason, this work will consider a model accelerator that is meant to represent the con-

straints of more complex accelerator proposals, while simplifying the discussion about

program coverage. This accelerator model is not meant to represent a optimal accelera-

tor design, but is architecturally simple enough to drive a conversation about accelerator

utility without becoming mired in a conversation about accelerator design. Accelerator

design has already been covered extensively in previous chapters, and is not the focus of

this work.
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Figure 9.1: Architectural overview of the programmable accelerator model.

9.1.1 Accelerator Architecture

The accelerator model used was selected to capture the capabilities of many recent ac-

celerator proposals without necessitating a detailed architectural discussion about the

internals of the accelerator. As such, it is architecturally simple enough to be intuitive

in its design. The selected accelerator is not intended to be the most efficient possible

accelerator, nor is this work arguing that an accelerator of this type should be included

in an actual architecture, but instead only intended to simplify the discussion of how the

introduction of this accelerator influences core design.

The accelerator model consists of three compute components and a shared internal

memory, each of which can be individually programmed by a controlling core, and com-

municates with the controlling core by a hardware managed message queue. The three

components, illustrated in Figure 9.1, are 1) the DMA engine (DMA-E), 2) the synchro-

nization engine (SE), and 3) the processing engine (PE). The SE sends control signals

to both the DMA-E and PE instructing them on when to start working. The DMA-E

is responsible for moving memory in and out of the accelerator, usually as bulk trans-

fers. The PE is responsible for interacting with memory stored in the shared memory

region, and does not interact directly with system memory. The SE interacts with the
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Figure 9.2: Internal design of the Synchronization Engine (SE).

DMA-E and PE with a hardware queue instructing the DMA-E or PE what tasks to

perform, and a single signal leading back to the SE indicating that a task has been com-

pleted. Each component of an accelerator features a small instruction memory which

holds pre-decoded commands for just that component.

The SE, shown in Figure 9.2 is responsible for tracking dependencies on a coarse

grain between memory reads/write and compute. It does this by sending a message to

either the DMA-E or PE, and waiting for a response indicating completion. Commands

that are sent to the DMA-E or PE are bundled into coarse grain segments, between

which dependencies are tracked. The instruction set for the SE allows for four types of

commands: 1) command to DMA-E, 2) command to PE, 3) wait-on device, and 4) next-

iteration signal. Commands to either the DMA-E or PE feature start and end indicies

in the respective engines instruction memory, and result in a message being enqueued in

the message queues leading to the respective engines. The wait-on instruction explicitly

stalls for responses from the DMA-E or PE, to enable coarse grain dependency tracking.

Because the majority of the work that the accelerator does is loop processing, the SE

also features a ”next iteration” command, which enables scheduling of commands for

the next iteration in a loop where applicable. The state tracking components within the

SE, such as program counters and iteration counters, are replicated twice, to allow for

concurrent execution of two loop iterations simultaneously.

The DMA-C, is a structure designed for bulk memory transfers from memory. The
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Figure 9.3: Internal design of the Processing Engine (SE).

DMA does not perform any kind of checking for dependencies between memory accesses.

Instructions for the DMA-E each consist of a memory base address, two-dimensional

element count and stride, and a number of elements to transfer with each command,

along with a base address for the accelerator shared memory region that is assumed to

be sequentially addressed. The SE sends as part of its command message a ”loop index”

that is used to calculate the effective address relative to the stored base address. Even

though memory accesses may finish out of order, the DMA-E sends finish signals to the

SE in-order. There is a small queue leading into the DMA-C that is used to buffer a

number of commands from the SE.

The PE, shown in Figure 9.3, is the main compute engine of the accelerator. It

performs no dependency tracking or scheduling in hardware, and simply executes one

”instruction” each cycle. An instruction in the PE consists of a setting for a crossbar

that routes arguments from either register reads or a forward channel from the ALU to the

compute engine internal to the PE, an opcode to the ALU, and addresses for accesses to

the shared memory space. The compute engine internal to the PE has a fixed latency for

any particular operation, and the program running in the PE is authored with knowledge

of these latencies. A dummy code is used for the memory address when a memory access

is not necessary to save on memory read costs. Everything in this system is statically
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scheduled as part of compilation, and everything from the perspective of the PE occurs

with a latency known at compile time.

Software interacts with the accelerator by first loading appropriate instructions into

each of the three engines, and then sending a message to the SE engine indicating the

number of iterations to compute. The accelerator then runs until the computation is

completed, and sends a completed signal to the requesting core indicating completion.

Shared memory is used for communication of compute results between the accelerator

and software. The command queue that the controlling core uses to communicate with

the accelerator allows the controlling core to enqueue multiple commands, thus keeping

the accelerator busy.

9.1.2 Compilation

Like other programmable accelerator platforms, this one relies heavily on a compiler

to achieve performance and program coverage. The compiler has two jobs: 1) finding

program regions that can be mapped to the accelerator, and 2) scheduling these regions

into accelerator configurations. These two responsibilities will be discussed separately,

with a focus on the first responsibility.

9.1.2.1 Region Selection

The primary target of regions for acceleration are loops. The reason for this is that there

is an overhead associated with configuring the accelerator prior to being used. As such,

the more work that can be performed by a single configuration, the greater the advantage

that can potentially be gained with the use of an accelerator. In addition to this, the

accelerator used in this work has facilities to make the execution of highly uniform loops

very efficient by internalizing the loop iterator, thus allowing the core to be uninvolved for

the entire loop execution. In addition to this, the instruction memory of the accelerator

is small compared to the total program size, and as such the accelerator can only be used

to target small hot program regions.
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Accelerator Permitted Loop Body

A[i] = B[D[i] + 4] + 
pow(C[i+1] * sqrt(7.0), 2.5);

Accelerator Rejected Loop Body

float (*F)(float) = A[i];
//F is not known at compile time
B[i] = F(1.0); 

Figure 9.4: Examples for admissible and inadmissible loop bodies.

Accelerator Permitted Loop

For(int x = 0; x < Y; x += Z)
{

….
}

Accelerator Rejected Loop

For(int x = 0; x < Y; x += Z)
{

if(F(x)) break;
…

}

Figure 9.5: Examples for admissible and inadmissible loops, not including loop bodies.

The compilation strategy used in this work targets loops. Loops are broken up into

three categories: 1) cannot be accelerated, 2) the body can be accelerated, but the

loop itself cannot, and 3) the loop and loop body can be accelerated. A loop that

can be accelerated is one for which there is a single entrance, a single exit, and a loop

iteration count that can be computed prior to entering the loop. A loop body that can

be accelerated is one which does not itself contain loops, or an identifiable bound on flow

control, and consists entirely of operations that the either memory transfers or operations

that the PE is capable of performing. In short, an acceleratable loop body is one which

consists of straight-line code that can be completely inlined or unrolled. An example of

acceleratable and unacceleratable structures are shown in Figure 9.4 and Figure 9.5 for

the body and loop respectively.

If the loop body is acceleratable, it is passed to the scheduling step described in
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Section 9.1.2.2. If the loop is acceleratable, it is replaced entirely with an accelerator

invocation. If the body is acceleratable but the loop is not, the controlling core executes

the loop flow control component, and replaces the body of the loop with a message to

the command queue to the accelerator.

9.1.2.2 Program Scheduling

Once a dataflow graph has been selected from a program, it must be translated into an

accelerator schedule. The dataflow graph is first broken up into maximal contiguous com-

ponents of memory transfers and computation. This allows for more memory transfers

to be scheduled simultaneously. Scheduling the memory transfer components is straight

forward, with each memory transfer becoming part of a DMA-C instruction. Because

there is no possibility for dependencies between co-scheduled memory accesses, nothing

more needs to be done for this component.

The portions of the dataflow graph that constitute computation are passed to a solver

to find an optimal schedule. The output of the scheduler is a setting for each multiplexer

and arithmetic unit in the PE. Because of a consistent issue rate of one instruction per

cycle, along with no hardware assistance for data forwarding, the scheduler is responsible

for asserting that there are no conflicts on lines used for data forwarding or write back to

the local memory. If the scheduler cannot find a schedule such that the produced program

can fit in the available instruction memories for all components of the accelerator, the

region cannot be accelerated, and is instead executed on the CPU, or broken into smaller

parts and re-submitted to the program scheduling pass.

9.2 Methodology

To evaluate the impact on a core of introducing a programmable accelerator to the

system, the system shown in Figure9.6 was used. This system featured a basic two-level

cache, with stream prefetching in the L2 cache. The L1 cache was accessible only by the

core, with the accelerator accessing the L2 cache directly. Table 9.1 describes the specific
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Figure 9.6: System architecture of evaluated system.

sizing and composition of various components of the evaluated system.

Measurements of resource utilization were gathered with the use of dynamic binary

instrumentation with PIN [96]. This was used instead of a cycle accurate simulator

because this study is focused on the utility of specific subcomponents of a system, rather

than the contribution those components make to performance. Using a cycle accurate

simulator is very time consuming compared to the used PIN-based implementation, which

would limit the scope of the study being performed.

9.2.1 Benchmark

Chosen to evaluate this work were a set of workloads from the PARSEC [39] benchmark

suite. The only restriction placed on the selection of workloads was that the programs

not require linking to any libraries that constituted a substantial portion of the spent

compute time. This is because this technique required the entire program source code to

be visible to the compiler, and linking against precompiled libraries limited the capability

of the compiler to make decisions about what could potentially run on the accelerator.

Besides this, workloads were taken unmodified.
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Table 9.1: Characteristics of the evaluated system

Component Configuration

Processor x86, 2-bit branch prediction, 64-entry I-fetch line cache,

128-instruction window, 4-wide issue

Accelerator- DMA 32-entry instruction memory size,

2D- parameterized address generation

Accelerator- PE 1 FP-ALU, 1 Int-ALU, 4-Read 2-Write memory access,

512-entry instruction memory

Accelerator- SE 64-entry instruction memory

Accelerator- Memory 512 64-bit memory locations.

L1 Cache Private 32KB, split instruction/data, 4-way set

associative, MESI coherence, 64-byte Block size

L2 Cache Shared 8MB, 8-way set associative, 64-byte Block size

Prefetcher 32-stream strided prefetcher. Accessed upon L2 miss

Benchmarks were compiled with a modified version of LLVM [36] that was extended

to identify accelerator candidate locations, and schedule accelerator programs. All other

compilation passes are performed prior to searching for accelerator candidates, and there

were no program transformations to morph the program into a form that may be more

amenable for acceleration. While there were opportunities in the evaluated programs

to expose additional opportunity for acceleration by modifying program structure, these

opportunities were not examined within this work.

9.3 Results

Table 9.2 presents all experimental results which will be discussed in the following sec-

tions.
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Table 9.2: Impact on processor resource utilization over all benchmarks. Rows indicating

removed events show number of events that occur in the CPU only case as compared to the

CPU and accelerator case. Acc- indicates systems that feature only conventional CPUs, while

Acc+ indicates systems that feature CPUs and accelerators. All numbers are percentages.

Values that were greater than 99.95% were rounded up to 100
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Dynamic Instr removed 100 83.4 76.7 97.8 49.8 86.8 74.2 92.1

Acc- branch predict rate 97.4 80.2 85.5 93.9 90.8 94.9 72.1 77.9

Acc+ branch predict rate 98 84 84.6 92.8 92.8 97.2 86.8 86.2

L1-D Accesses removed 100 83.5 70.6 92.9 37.4 74.9 74.6 90.7

L1-D Acc- hit rate 98 98.4 99.7 99.8 99.7 97.0 99.8 99.8

L1-D Acc+ hit rate 99 98.6 99.6 99.3 99.8 100 100 100

Prefetch- Streams removed 100 81.8 40 72.7 42.7 45 44.1 89.9

Prefetch- Acc- hit rate 99.9 0.1 41.4 80.3 59 97.9 50.7 61.5

Prefetch- Acc+ hit rate 0.7 0.1 32.3 64.7 56.5 97.8 65.8 46.6
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9.4 Accelerator Resource Utilization

Most loops that could be targeted by accelerators in this work naturally consisted of

only a small number of operations. In order to achieve high accelerator utilization, the

scheduling step used in this work attempts to unroll these loops so as to increase the

number of operations in a single loop body. Unrolling was done until some resource

was exhausted, either the shared memory internal to the accelerator, or the instruction

memories of any of the accelerators’ engines. This allows for a greater number of mem-

ory accesses to be concurrently outstanding, and also reduces the degree to which the

accelerator as a whole is sensitive to memory latency. Because of this strategy, instead

of discussing memory contention or instruction memory occupancy, a more interesting

result to focus on is the proportion of time that the compute engine within the acceler-

ator remains busy, as this indicates the proportion of peak compute throughput that is

being achieved.

While not shown in the results of Table 9.2, it is worth noting that the program that

targets an accelerator-featuring system was identical to the CPU only program for over

95% of the total number of static instructions. Only a select number of small loops were

shifted to the accelerator, even in the cases where the the accelerator reduced the number

of dynamic instructions greatly.

9.5 Core Utilization

In accelerator-featuring systems, for all evaluated workloads except Freqmine, the over-

whelming majority of computational work ended up shifted to the accelerator. The role

of the CPU was then limited to executing irregular code, and segments of control code

between accelerated loops. Even though the types of loops that were no longer executed

on the CPU tend to contain branches that are highly predictable, branch prediction

was found to be similarly effective in both evaluated systems. This was found to be

attributable primarily to two main sources: 1) accelerator-targetable code that resides
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outside the scope of the optimized code, such as calls to the memcpy function, or string

processing functions, and 2) error-checking code that is trivially predictable under normal

operating conditions as being not-taken branches.

Dependencies among nearby Instructions were also found to be more common in code

that could not be accelerated. Intuitively this makes sense, since code regions that are

accelerator friendly are also regions that loop unrolling can be used to arbitrarily increase

potential ILP in program code. Even if loop unrolling isn’t performed, the branch in-

structions used to construct these types of loops are highly predictable. Measurements of

potential ILP, which was performed by counting the number of independent instructions

could be found in the 256 entry instruction window that could potentially be co-scheduled

with the current front of the instruction window, revealed that for all evaluated workloads

code regions that could not be accelerated contained on average 40%-60% less potential

ILP as compared to acceleratable regions.

9.5.1 Memory System Utilization

Even though only a small portion of the total program code was moved to the accelerator,

the accelerator emitted the majority of cache-missing memory accesses, primarily because

the accelerator frequently operated over data volumes that are larger than the L1 cache

size. Much of the data over which accelerators operated was highly structured, and is the

type of access pattern for which prefetchers have been shown to be highly effective. While

these access streams are predictable, a high prefetcher hit rate would not actually bring

value to the system as a whole due to the accelerator being insensitive to the memory

latency that the prefetcher helps eliminate. In several cases the prefetcher continued

to show considerable value to the core, but these cases were found to consist primarily

of cases in which the core would touch data the accelerator had worked on after the

accelerator was finished in an way that could not be migrated to the accelerator. This

would cause data to be re-fetched. This problem could be more effectively dealt with

by employing a tiling strategy, and reusing data in the core while it is still resident in
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the shared L2 cache after having been fetched by the accelerator, but this was not done

in this work. Other than this, which could be more appropriately be dealt with during

compilation, the prefetcher was not observed to provide much utility in the evaluated

system.

In addition to impacting the utility of the prefetcher, L1 cache for the conventional

processor is no longer exposed to the data that the accelerator touches. This allows a

smaller L1 cache to achieve a similar performance as would be expected to be seen in a

larger L1, since the L1 cache primarily serves the purpose of keeping program stack data

resident instead of more general data. While not shown above, it was observed that the

L1 cache can be shrunk from 32K to 4K in a system with accelerators with less than

0.2% impact on hit rates for most workloads.
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CHAPTER 10

Related Work

10.1 On-Chip Accelerators

There is a large amount of work that implements an application-specific coprocessor or

accelerator through either ASIC or FPGA [97, 98]. These works mostly consider a single

accelerator dedicated to a single application. Convey [99] and Nallatech [100], target re-

configurable computing in which customized accelerators are off-chip from the processors,

unlike our work which target CMP architectures with on-chip accelerators. Some previ-

ous work considered on-chip integration of accelerators. Garp [101], UltraSPARC T2 [6],

Intel’s Larrabee [5] and IBM’s WSP processor [4] are examples of this. Most of these

platforms (except WSP) are tightly coupled with processor cores (or core-clusters). Our

work focuses on loosely coupled accelerators in a way where accelerators can be shared

between multiple cores. OS support for accelerator sharing and scheduling is presented

in [102]. In contrast, we focus on hardware support for accelerator management.

There have also been a number of recent designs of heterogeneous architectures, like

EXOCHI [103], SARC [27], and HiPPAI [104]. Similar to our work, EXOCHI’s focus is

on a heterogeneous non-uniform ISA. HiPPAI, like our work, aims to eliminate system

overhead involved in accessing accelerators, only it does so using a software layer (portable

accelerator interface). SARC also has a core and accelerator architecture similar to our

work, yet it also lacks a hardware management scheme. Unlike these works that focus

on software-based methodologies, our approach fully advocates the use of hardware for

managing and interfacing with accelerators.

Prior art has also explored accelerator virtualization. VEAL [105] uses an architecture
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template for a loop accelerator and proposes a hybrid static-dynamic approach to map a

given loop on that architecture. The difference between our virtualization technique and

theirs is that their work is limited to nested loops, while in our approach we seek any

accelerator such that its composition can be described by some set of rules. PPA [54]

uses an array of PEs which can be reconfigured and programmed. PPA, uses a technique

called virtualized modulo scheduling which expands a given static schedule on available

hardware resources. Again in this work the input is a nested loop, where in our approach

this is not a limitation. DySER [50] implements an FPGA like accelerator, with fixed

functionality arithmetic units coupled with a configurable communication network. Our

work distinguishes from this by allowing for communication between distant accelerators,

relying on a packet-switched NoC for communication, and in that our accelerators are

intrinsically all shared.

10.2 Off-Chip Near-Memory Accelerators

Studies investigating integrating small accelerators directly into DRAM memory has

previously been investigated. Works such as CRAM [45], IRAM [46], DIVA [47] and

FlexRam [48] fall into this category. These architectures allow for exploitation of the

massive bandwidth that is available to structures internal to a DRAM chip, prior to se-

lecting data for transmission across the DRAM packaging. While the bandwidth of these

architectures is much larger than our proposal has access to, the design and implementa-

tion complexity of these types designs is very high, and the need to integrate accelerators

directly into the internal structure of DRAM limits the complexity and expressiveness

of the integrated compute engines. The AIM proposal does not disrupt memory design,

thus can take advantage of off-the-shelf components, and does not impose any significant

restrictions on the type or level of sophistication of compute engines.

Architectures have also been proposed that argue for stacking a high density SRAM

directly onto the main processor, as either a very large last level cache or an embedded

memory. [106]. While the capacity of these designs provide large bandwidth and reducing
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communication latency to the integrated memory, they still do not provide the storage

capacity of conventional memory systems. 3D integration also is still a maturing tech-

nology. While we view this technology as being an interesting enhancement to a system

featuring accelerators, we view it as an orthogonal topic due to the disparity of capacity

between integrated memory and a more conventional memory system.

Integrating accelerators or FPGAs into a DIMM form-factor has also been previously

explored. Copacobana [107] and Pilchard [108] both identified the memory bus as a

convenient solution to the need for a high bandwidth and low latency interconnect be-

tween FPGAs and the CPU, and created boards that conform to a DIMM form factor

with FPGAs embedded. These designs have the advantage of limiting design overhead

of implementing an accelerator platform. Neither project however features memory on

board, and could not be communicated with using conventional memory protocols, and

thus could not be used in a system intended to run conventional programs or boot a con-

ventional operating system. For these reasons, these modules were mostly appropriate

for embedded, or otherwise specialized systems. Our proposal strives to be transparent

to the surrounding system system, so as to be usable in existing systems with minimal

overhead.

10.3 Emerging Network Technology

To provide guaranteed quality of service in NoC in terms of throughput and latency,

hybrid circuit switching and packet switching is introduced in recent work. The key is

to dynamically construct virtual circuit. The first categories of work use Time-Division-

Multiplexing (TDM). In a particular time-interval, the available network bandwidth is

exclusively dedicated to a virtual circuit. One of the representative work is the Philips

Ethereal [109] which uses two separate NoC: a Guaranteed Service (GS) circuit switching

sub-network and a Best-Effort (BE) packet-switching sub-network, where the BE network

is used to configure circuit switching in the GS network. TDM-based circuit-switching

is particularly well adapted for long and frequent messages like multimedia streams.
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However, it suffers long circuit set-up time and complex commutation scheduling. Re-

cent work in [110] uses a hybrid router design which intermingles circuit-switched flits

and packet-switched flits to reduce the circuit setup time. Spatial-Division-Multiplexing

(SDM) is later introduced in [111] and enhanced by [112] and [113] to further reduce

the circuit setup overhead by allocating a sub-set of the link wires to a given circuit

for the whole connection lifetime. The proposed stream arbitration is similar to virtual

circuit switching in the way of dynamically allocating communication channels between

requested communication nodes. However, stream arbitration distinguishes the previous

virtual circuit switching in that it circulates the information of available communication

resources and the competing senders across all the arbitration participants, thus provide

much higher resource utilization and global fairness. Such information is impractical to

be circulated in the traditional RC-wire-based NoC, as it will incur significant latency and

power overhead. Therefore, stream arbitration is not suitable for traditional RC-wire-

based NoC. It is dedicated for the emerging high-bandwidth low-latency interconnects,

such as RF-interconnect and optics.

To efficiently utilize the high bandwidth provided by emerging interconnects, re-

searchers in [81] propose application-specific shortcuts which can be realized by dynam-

ically tuning the on-chip RF transceiver frequencies. Shortcut is allocated based on

the communication profiling of the application so that intensively communicated nodes

will be allocated RF bandwidth. This approach is suitable for MPSoCs where the com-

munication pattern is predictable or applications with long and frequent messages like

multimedia streams. However, it can not well adapt to the dynamic runtime variation

in general-purpose CMPs. Token arbitration is proposed in [75, 80] to perform runtime

arbitration of the communication channels by token-passing among the arbitration par-

ticipants. Therefore, it works well for general-purpose CMPs with unpredictable dynamic

variation behaviors. However, the communication bandwidth allocated to each receiver is

fixed and may result in bandwidth waste when that receiver is not frequently used. The

proposed stream arbitration distinguishes from [81] by allocating communication resource

at runtime, and distinguishes from [75, 80] by allowing for any communication pairs to
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make use of communication channel, in order to maximize the bandwidth utilization.

The curl-based arbitration channel used in stream arbitration is similar to the Intel

ring-based communication architecture [114], but with a much higher transmission la-

tency and bandwidth because of the use of RF interconnect. Since it is difficult for the

RF signal be transmitted in a closed-loop ring due to the impedance switching, therefore

we use a curl style transmission line to allow the signal to take a round-trip of all the RF

nodes. Moreover, the introducing of curl also allows us to pipeline the stream arbitration

as the first trip is physically disjoint from the second trip.
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CHAPTER 11

Conclusion

Increasing expectations for power efficiency and performance demands, combined with

a glut of transistors provided by ever improving fabrication technology, has made in-

cluding accelerators in compute systems an attractive option. When combined with

advancements that have been made in the area of high-level synthesis, the cost associ-

ated with introducing accelerators is very low. The barrier that blocks accelerators from

playing a more central roll in commodity systems are the challenges associated with us-

ing accelerators by normal software and cooperating with other components in a normal

system. This work focused primarily on these issues. Compilation technology was de-

tailed that allowed for common programming idioms to be automatically translated to

programs that run on accelerators, architectural advancements were proposed to manage

and interact with accelerators in a way that doesn’t require specialized arbitrators in

operating systems, and accelerators were introduced of sufficient simplicity to be both

efficient and compiler friendly.

While this work does not argue that the accelerators discussed are ideal choices, it

illustrates that even simple accelerators like those discussed in Chapter 3 are sufficient to

get large performance and energy efficiency gains. Furthermore, future efforts in choosing

better accelerator designs could make use of the architectural and compiler frameworks

presented in this work to be rapidly introduced to a system while not requiring application

software modification or operating system modification.
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11.1 Future work

While accelerators satisfy the need of performing computations at both high performance

and with low energy consumption, the rest of the system still remains as it was. As

was hinted at in Chapter 4 and Chapter 6, the cost of computation constitutes an ever

shrinking proportion of total system energy. In modern commodity processors with highly

aggressive out-of-order processors, the compute core itself still constitutes a large portion

of both the area used and the energy consumed, but in systems that feature highly efficient

compute cores, the energy consumption shifts heavily to supplying a clock, memory, and

the on-chip interconnect.

Accelerators like those discussed within this work, which operate asynchronously,

and often autonomously, present many interesting potential directions to lowering energy

consumption of these other components as well. The system is naturally asynchronous

and highly fragmented, and in many instances has no need for a centralized clock or

tight coupling over large areas. This allows for the potential to put compute engines in

a variety of places, and reduce clock and interconnect energy consumption by moving

the compute to the data, similar to what was preliminarily explored in Chapter 6. The

system is also naturally highly redundant, which potentially opens up possibilities to

experiment with near-threshold designs to further save power and address topics of fault

tolerance.

Within the context of this work, accelerators were all hand selected. There has been a

wealth of prior work in selecting accelerator candidates out of samples of program code,

typically for the purposes of developing custom instructions, but no work that incor-

porates the potential data-flow style compute paradigm emphasized within this work.

Custom instructions have the benefit of not requiring complete coverage, while systems

like those discussed in this work do not.

187



Bibliography

[1] ITRS. International Technology roadmap for semiconductors, 2012 edition.

http://www.itrs.net/Links/2012ITRS/Home2012.htm., .

[2] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Computer

Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365–

376. IEEE, 2011.

[3] Patrick Schaumont and Ingrid Verbauwhede. Domain-specific codesign for embed-

ded security. Computer, 36(4):68–74, 2003.

[4] Hubertus Franke, Jimi Xenidis, Claude Basso, Brian M Bass, Sandra S Woodward,

Jeffrey D Brown, and Charles L Johnson. Introduction to the wire-speed processor

and architecture. IBM Journal of Research and Development, 54(1):3–1, 2010.

[5] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep

Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, et al.

Larrabee: a many-core x86 architecture for visual computing. In ACM Transactions

on Graphics (TOG), volume 27, page 18. ACM, 2008.

[6] Umesh Nawathe, Mahmudul Hassan, Lynn Warriner, King Yen, Bharat Uppu-

turi, David Greenhill, Ashok Kumar, and Heechoul Park. An 8-core, 64-thread,

64-bit, power efficient sparc soc (niagara 2). ISSCC, http://www. opensparc.

net/pubs/preszo/07/n2isscc. pdf, 2007.

[7] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav

Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Con-

servation cores: reducing the energy of mature computations. In ACM SIGARCH

Computer Architecture News, volume 38, pages 205–218. ACM, 2010.

[8] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn

188



Reinman. Architecture support for accelerator-rich cmps. In Proceedings of the

49th Annual Design Automation Conference, pages 843–849. ACM, 2012.
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