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Abstract

Atomic Parity Violation and Related Physics in Ytterbium

by

Dimitri Robert Dounas-Frazer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dmitry Budker, Chair

Atomic parity violation has been observed in the 408 nm 6s2 1S0 → 5d6s 3D1 forbidden
transition of ytterbium. The parity-violating amplitude is 8.7(1.4) × 10−10 ea0, two orders
of magnitude larger than in cesium, where the most precise experiments to date have been
performed. This is in accordance with theoretical predictions and constitutes the largest
atomic parity-violating amplitude yet observed. This also opens the way to future measure-
ments of neutron skins and anapole moments by comparing parity-violating amplitudes for
various isotopes and hyperfine components of the transition.

We present a detailed description of the observation. Linearly polarized 408 nm light
interacts with ytterbium atoms in crossed electric (E) and magnetic fields (B). The proba-
bility of the 6s2 1S0 → 5d6s 3D1 transition contains a parity-violating term, proportional to
(E ·B)[(E ×E) ·B], arising from interference between the amplitudes of transitions induced
by the electroweak interaction and the Stark effect (E is the optical electric field). The
transition probability is detected by measuring the population of the metastable 6s6p 3P0

state, to which 65% of the atoms excited to the 5d6s 3D1 state spontaneously decay. The
population of the 6s6p 3P0 state is determined by resonantly exciting the atoms with 649 nm
light to the 6s7s 3S1 state and collecting the fluorescence resulting from its decay. Systematic
corrections due to imperfections in the applied electric and magnetic fields are determined
in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency ex-
cursions of the 408-nm excitation light due to imperfect stabilization of the optical reference
with respect to the atomic resonance. The present uncertainties are 9% statistical and 8%
systematic. Methods of improving the accuracy for the future experiments are discussed.

We further present a measurement of the dynamic scalar and tensor polarizabilities of
ytterbium’s 5d6s 3D1 state. The polarizabilities were measured by analyzing the spectral
lineshape of the 6s2 1S0 → 5d6s 3D1 transition. Due to the interaction of atoms with the
standing wave, the lineshape has a characteristic polarizability-dependent distortion. A the-
oretical model was used to simulate the lineshape and determine a combination of the polar-
izabilities of the ground and excited states by fitting the model to experimental data. This
combination was measured with a 13% uncertainty, only 3% of which is due to uncertainty
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in the simulation and fitting procedure. By comparing two different combinations of polar-
izabilities, the scalar and tensor polarizabilities of the state 5d6s 3D1 were measured to be
α0(

3D1) = 0.151(36) Hz · (V/cm)−2 and α2(
3D1) = −0.205(53) Hz · (V/cm)−2, respectively.

We show that this technique can be applied to similar atomic systems.
Finally, we propose two methods for improving future measurements of atomic parity

violation using two-photon transitions. The first method is characterized by the absence of
static external electric and magnetic fields. Such measurements can be achieved by observing
the interference of parity-conserving and parity-violating two-photon transition amplitudes
between energy eigenstates of zero electronic angular momentum. General expressions for
induced two-photon transition amplitudes are derived. The two-photon scheme using the
6s2 1S0 → 6s6p 1P1 → 6s6p 3P0 transition in ytterbium (λ1 = 399 nm, λ2 =1280 nm)
is proposed as a crosscheck of the APV experiment which uses the single-photon 408 nm
6s2 1S0 → 5d6s 3D1 transition. We estimate that the signal-to-noise ratio of the proposed
experiment is comparable to that achieved in the 408 nm system.

The second method allows for measurement of nuclear spin dependent atomic parity
violation without nuclear spin independent background. Such measurements can be achieved
by driving parity-violating two-photon J = 0→ 1 transitions driven by identical photons in
the presence of an external static magnetic field. We discuss two promising applications: the
462 nm 5s2 1S0 → 5s9p 1P1 transition in strontium-87, and the 741 nm 7s2 1S0 → 7s7p 3P1

transition in unstable radium-225.
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Chapter 1

Introduction

Symmetry is a powerful tool for understanding the dynamics of physical systems. One partic-
ularly useful consequence of symmetric systems is that they are characterized by conservation
laws [92]. For example, angular momentum is conserved in systems that have rotational sym-
metry. Parity, the subject of the present dissertation, is the conserved quantity associated
with symmetry under spatial inversion. For many years the laws of physics were thought to
be symmetric under a number of geometrical transformations, including spatial inversion.
However, in the middle of the 20th Century, the physics community was confronted with
irrefutable evidence that the electroweak interaction is not symmetric under spatial inversion
and hence conservation of parity is violated by electroweak processes.

The mid-1950s saw a flurry of activity related to parity violation. In 1956, Tsung-Dao Lee
and Chen Ning Yang pointed out that parity conservation in the electroweak interaction had
not yet been tested, and they proposed several experiments for performing such a test [83].
Within a year, Chien-Shiung Wu, Leon Lederman, and their collaborators at Columbia
University observed parity-violating effects in the beta decay of cobalt-60 [122] and in the
decay of charged pions [61]. Soon after, Jerome Friedman and Valentine Telegdi reproduced
the results of the pion decay experiments at the University of Chicago [60], further confirming
that parity is not conserved and that our universe is indeed distinguishable from its mirror
image. For their work, Lee and Yang were awarded the 1957 Nobel Prize in Physics.

Over the last 60 years, parity violation experiments have evolved from paradigm-shifting
observations to tools for placing constraints on physics beyond the Standard Model (SM).
This dissertation focuses on atomic parity violation (APV) experiments, a small subset of
parity violation experiments that nevertheless has far reaching implications, e.g., for high
energy particle physics and nuclear physics. In this chapter, we take an historical approach
to describing APV, give a rough sketch of the implications of APV experiments, and argue
that ytterbium is an ideal candidate for the study of APV. Detailed reviews of APV can be
found in Refs. [17, 27, 78, 91].



CHAPTER 1. INTRODUCTION 2

Z0

e– N

γ

e– N

Figure 1.1: Feynman diagrams for two electron-nucleon radiative processes: (left) one gov-
erned solely by electromagnetic processes and (right) a second one involving exchange of the
weak neutral gauge boson Z0.

1.1 History and background

We begin our discussion with the background and history of APV. The theoretical origins
of APV trace back to the late 1950s, when Yakov Zel’dovich addressed the question of
how electroweak interactions manifest in atoms. His work lead to several predictions, key
among them the rotation of the plane of polarization of visible light transmitted through a
gas of optically inactive matter [124]. Such optical rotation arises in atomic vapors due to
electroweak neutral current interactions between electrons and nucleons. Zel’dovich’s initial
estimates suggested that the effect was too small to be observed.

To understand the difficulty of detecting electroweak processes in atoms, we perform a
näıve order of magnitude estimate, following a similar tack to that taken in Ref. [17]. Con-
sider two different electron-nucleon radiative processes: an electromagnetic one of amplitude
Aem, and an electroweak one of amplitude Aw which involves exchange of the neutral weak
gauge boson Z0 (Fig. 1.1). If we denote the four-momentum transfer between the electron
and the nucleon by q, then Aem ∝ e2/q2 and Aw ∝ g2Z0

/
(
q2 +M2

Z0
c2
)
, where gZ0 ∼ e and

MZ0 = 91 GeV/c2 are the coupling constant and mass of the Z0 boson, respectively. In
atoms, the four-momentum is given by the inverse of the Bohr radius, i.e., q ∼ ~/meαc,
where me = 0.51 MeV/c2 is the electron mass and α ≈ 1/137 is the fine structure constant.
Therefore, our näıve estimate suggests that the electroweak amplitude is incredibly small
compared to its electromagnetic counterpart:

Aw/Aem ∼ α2m2
e/M

2
Z0
≈ 10−15. (1.1)

In practice, however, APV effects as large as 10−5 have been observed. The estimate (1.1)
is too pessimistic because it neglects the impact of several enhancement mechanisms.

In the mid-1970s, Claude and Marie-Anne Bouchiat demonstrated that there exists a
mechanism for enhancement of APV effects: the so-called Z3 law [18]. According to the this
law, electroweak effects in atoms grow roughly as the cube of the atomic number Z. The
origins of the Z3 scaling can be understood qualitatively by considering the the electron-
nucleus potential due to APV interactions. This interaction is analogous to the Coulomb
interaction, but with the Z0 boson playing the role of the mediating photon. In the non-
relativistic limit, an electron with position re, spin σe, and velocity ve, will experience a
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potential

Hw =
QwGF

4
√

2

[
δ(3)(re)σe · ve/c+ h.c.

]
, (1.2)

due to APV effects. Here Qw is the weak nuclear charge, analogous to the electric nuclear
charge Z, and GF is the Fermi constant, which is proportional to (gZ0/MZ0)

2. The elec-
troweak charge accounts for one factor of Z in the Z3 law since Qw ≈ −N and N ≥ Z for
most heavy, stable nuclei. The second factor of Z is related to the the term δ(3)(re) in Hw.
Because the APV interaction is a contact interaction, its strength depends on the electron
density near the nucleus. For orbitals that penetrate the nucleus, the electron density scales
linearly with Z. Finally, the third factor of Z is due to the electron helicity σe · ve. Near
the nucleus, the electron experiences a Coulombic electric potential and, consequently, the
electron velocity is proportional to the nuclear charge Z.

The Z3 enhancement of APV led researchers to search for parity-violating effects in heavy
atoms. In the late 1970s, a few years after the Bouchiats’ work and almost two decades after
Zel’dovich first predicted APV effects, optical rotation was finally observed in bismuth by
Lev Barkov and Max Zolotorev at the Nuclear Physics Institute in Novosibirsk [7]. Since
then, optical rotation has been measured by several groups in bismuth [8, 10, 73, 85, 118],
lead [87], and thallium [50, 116]. However, the most precise measurement of APV was
achieved using a different method: the Stark interference technique.

Proposed by the Bouchiats in 1975 [19], the Stark interference technique measures APV
using a difference in two transition rates: the rate RA→B from initial state |A〉 to a final state
|B〉 and the rate RÃ→B̃ between the “mirror states”|Ã〉 = P |A〉 and |B̃〉 = P |B〉, where P
is the spatial inversion operator. The inequality of these two rates can be understood as
follows. The Hamiltonian H governing these transitions has two contributions, one from
electromagnetic processes and another from electroweak processes. The latter contribution
makes H asymmetric under spatial inversion, that is, [P,H] 6= 0. It follows that non-
commutation with P also applies to the time evolution operator U(t) = exp(−iHt/~), that
is, [P,U(t)] 6= 0.1 Then

RÃ→B̃ = |〈B̃|U(t)|Ã〉|2 = |〈B|P−1U(t)P |A〉|2

6= |〈B|U(t)|A〉|2,
(1.3)

and hence APV manifests in a difference between the rates of transition between two states
and their mirror states,

RÃ→B̃ 6= RA→B. (1.4)

The Stark interference technique uses electric dipole (E1) transitions between atomic
states of the same parity. Such transitions are strictly forbidden by QED because it is a
spatially symmetric theory. Electroweak neutral currents break this symmetry, giving rise
to a small but non-zero electric dipole amplitude E1pv ∼ i× 10−11 ea0, where the factor of

1 Non-commutation of P with H has many other consequences as well. For example, if |A〉 is an eigenstate
of H, then its mirror state |Ã〉 is not.
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i preserves time reversal invariance [78]. A second transition, of amplitude E1s, is induced
by the Stark effect via application a static electric field E. The Stark-induced amplitude is
antisymmetric (odd) under spatial inversion. On the other hand, the weak-induced amplitude
is asymmetric and therefore contains a symmetric (even) contribution that gives rise to a
parity-violating asymmetry by interference with the much larger Stark-induced amplitude.
The transition rate satisfies R± ∝ | ± E1em + E1w|2, where R+ ≡ RA→B and R− ≡ RÃ→B̃
are the rates of the transition between the states and the mirror states, and the asymmetry
is defined as

A ≡ R+ −R−
R+ +R−

= 2Im(E1w/E1em). (1.5)

In practice, experimental asymmetries are on the order of 10−5. Because E1s ∝ E, the
strength of the parity-conserving transition is controlled by tuning the strength of the electric
field. Nevertheless, the transition is sufficiently weak that it must be detected by fluorescence.
We note that the transition rate scales like E2 whereas the asymmetry scales like 1/E.
Therefore, the shot-noise limited signal-to-noise ratio is, in principle, independent of E.

The Stark-interference technique was successfully employed for the first time by M.-A.
Bouchiat and her collaborators in Paris in 1982: they observed parity-violating Stark-weak
interference in the 540 nm 6S1/2 → 7S1/2 transition in cesium [20]. Shortly thereafter, at
Berkeley, Persis Drell and Eugene Commins used the Stark interference technique to measure
APV in the 293 nm 6P1/2 → 7P1/2 transition in thallium [41]. Ultimately, the most precise
measurement of APV was obtained by Carl Wieman’s group in Boulder in 1997. As was
the Paris group, the Boulder group was also investigating the 540 nm transition in cesium,
achieving sub-1% experimental precision [120].

We conclude our historical outline of APV by noting that the Stark interference technique
was also used to measure the most recent (and the largest) APV effect. In 2009, APV
was measured in the 408 nm 6s2 1S0 → 5d6s 3D1 transition in ytterbium [111, 112]. The
description of the ytterbium APV experiment is the subject of this dissertation.

1.2 Implications

The three major goals of APV experiments are the determination of the nuclear weak charge
Qw, verification of the scaling of Qw with neutron number N , and measurement of a parity-
violating nuclear moment called the nuclear anapole moment. These goals, which require
significant theoretical and experimental effort, have significant implications for both nuclear
physics and physics beyond the SM.

Testing the Standard Model

The electroweak parameter of utmost importance in APV experiments is the electroweak
charge Qw associated with the exchange of the Z0 boson between an atomic electron and the
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Figure 1.2: Running of the weak mixing angle. Predicted running of sin2 θw as a function
of momentum transfer q (solid line) and its theoretical uncertainty (shaded area) is overlaid
with results from cesium APV (circle) and high-energy experiments at SLAC (triangle) and
CERN (square). See text for references.

nucleus. In the SM, Qw is approximately equal to the neutron number N :

Qw = −N − Z(4 sin2 θw − 1) ≈ −N, (1.6)

where θw is the weak mixing angle, given experimentally by sin2 θw = 0.23. The weak
mixing angle is a SM parameter that determines the relative strength of electromagnetic
and electroweak couplings. Thus measurements of Qw provide a stringent test of the SM at
low momentum transfer (q ∼ MeV/c).

The cesium APV experiments yielded a value of Qw(Cs) having experimental and theo-
retical uncertainties of 0.35% [120] and 0.20% [94], respectively. In combination with high-
energy experiments at SLAC [93] and CERN [25], the cesium APV results confirm the
predicted running of sin2 θw over a momentum transfer spanning four orders of magnitude
(Fig. 1.2). Moreover, the excellent agreement between the measured value of Qw(Cs) and
that predicted by the SM constrains “new physics.” For example, some grand unification
and string theories hypothesize the existence of extra Z bosons which would contribute to
the weak charge. The cesium result implies a stringent lower bound on the mass of such
bosons: if they exist, they must be heavier than 1.3 TeV/c2 [94]. Thus, despite the relatively
low energies involved in atomic physics processes, APV experiments are powerful tools for
exploring the limits of the SM.
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Probing neutron distributions

However, it has not yet been possible to test an important prediction of the SM concerning
the variation of Qw along a chain of isotopes. It has been suggested [48] that rare earth atoms
may be good candidates for APV experiments because they have chains of stable isotopes,
and the APV effects may be enhanced due to the proximity of opposite-parity levels. While
the accuracy of atomic calculations is unlikely to ever approach that achieved for atoms
with a single valence electron, ratios of APV asymmetries between different isotopes should
provide ratios of electroweak charges, without involving, to first approximation, any atomic
structure calculations.

Measuring APV in isotopic chains has a second benefit: it can be used to probe neutron
distributions. In particular, ratios of APV asymmetries are sensitive to the so-called neutron
skin. The neutron skin is defined as the difference between the root-mean-square radii of
neutron and proton distributions within the nucleus. Originally, sensitivity of APV ratios
to the neutron skin was thought to limit their usefulness because uncertainties in neutron
distributions would complicate interpretation of the ratios [58]. However, recent work shows
that APV ratios can be used as tools to measure the neutron skin [23] and hence to shed
light on the open question of neutron distributions [75].

Measuring the nuclear anapole moment

The neutron skin isn’t the only nuclear property probed by APV experiments; they provide
measurements of a parity-violating nuclear moment called the anapole moment. Anapole
moments, whose existence was another of Zel’dovich’s key predictions in the late 1950s [125],
arise from electroweak interactions between nucleons and contribute to differences in APV
amplitudes of two different hyperfine lines belonging to the same transition (see, for example,
reviews [62, 71, 72]).

In general, the processes that contribute to APV are separated into two categories accord-
ing to their dependence on nuclear spin [78]. The dominant contributions to APV usually
come from nuclear spin-independent (NSI) processes, whereas nuclear spin-dependent (NSD)
effects constitute small corrections [55]. Measurements of NSI APV in cesium [120], for exam-
ple, led to the precise evaluation of Qw(Cs), and those of NSD APV to the first observation of
the cesium nuclear anapole moment [56]. The thallium nuclear anapole moment has likewise
been extracted from NSD APV measurements [82].

The values of the cesium and thallium anapole moments result in constraints on elec-
troweak coupling constants that are difficult to reconcile with those obtained from other
nuclear-physics experiments and with each other [62, 71, 72]. Future anapole-moment mea-
surements will provide additional insight to this open problem, and are a major goal of
ongoing experiments in ytterbium [111], dysprosium [90], francium [64], radium ions [44,
63], and diatomic molecules [35].
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Table 1.1: Stable isotopes of ytterbium (Z = 70) and corresponding neutron number N ,
nuclear spin I, and abundance.

Nuclide symbol N I Abundance (%)
170Yb 100 0 3
171Yb 101 1/2 14
172Yb 102 0 22
173Yb 103 5/2 16
174Yb 104 0 32
176Yb 106 0 13

1.3 The case for ytterbium

The subject of the present dissertation is APV in the 408 nm 6s2 1S0 → 5d6s 3D1 transition
in ytterbium (Z = 70). This choice of atomic system was originally inspired by the prediction
that the corresponding APV amplitude would be about two orders of magnitude times larger
than that in cesium [33]. This prediction was supported by further theoretical work [30, 96]
and was ultimately verified experimentally [111].

The 408 nm transition in ytterbium is a particularly attractive candidate for APV mea-
surements because, in addition to exhibiting a large APV effect, ytterbium has several stable
isotopes (Table 1.1). Therefore, this system can be used to probe low-energy nuclear physics
in two ways: the neutron skin can be extracted from measurements of APV effects on a chain
of naturally occurring isotopes, and the nuclear anapole moment can be determined from
measurements in different hyperfine components for the same odd-neutron-number isotope.
This combination of features makes the ytterbium system a truly versatile tool.
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Chapter 2

Observation of APV in ytterbium

In this chapter, we report experimental verification of the predicted APV amplitude en-
hancement in ytterbium (Yb) using a measurement of the APV effect in the forbidden 408
nm 6s2 1S0 → 5d6s 3D1 transition of 174Yb. [111, 112]. We measured the APV induced
transition matrix element to be 8.7(1.4)× 10−10 ea0, which confirms the theoretically antic-
ipated APV enhancement in Yb [33] and constitutes the largest APV effect observed so far.
However, the measurement accuracy is not yet sufficient for the observation of the isotopic
and hyperfine differences in the APV amplitude, the study of which is the main goal of
the present experiments. Here we describe the impact of the apparatus imperfections and
systematic effects on the accuracy of the measurements and discuss ways of improving it.

During the initial stage of the experiment, various spectroscopic properties of the 6s2 1S0 →
5d6s 3D1 transition were measured, including: radiative lifetimes, Stark-induced amplitudes,
hyperfine structure, isotope shifts, and dc-Stark shifts [21]. In addition, the 404 nm
6s2 1S0 → 5d6s 3D2 transition has been observed, and the corresponding electric quadrupole
transition amplitude and tensor transition polarizability have been measured [22]. The for-
bidden M1 amplitude of the 408 nm transition was measured to be 1.33 × 10−4 µ0 using
the M1-E1 Stark interference technique [108]. The ytterbium atomic system, where transi-
tion amplitudes and interferences are well understood, has proven useful for gaining insight
into the Jones-dichroism effects that had been studied in condensed-matter systems at ex-
treme conditions and whose origin had been a matter of debate (see Ref. [24] and references
therein).

An experimental and theoretical study of the dynamic (ac) Stark effect on the 6s2 1S0 →
5d6s 3D1 forbidden transition was also undertaken [40, 107]. A model was developed to cal-
culate spectral line shapes resulting from resonant excitation of atoms in an intense standing
light wave in the presence of off-resonant ac-Stark shifts. A byproduct of this work was an
independent determination of the Stark transition polarizability, which was found to be in
agreement with the earlier measurement [22].

The present Yb APV experiment uses an atomic beam. An alternative approach would
involve working with a heat-pipe-like vapor cell. Various aspects of such an experiment were
investigated, including measurements of collisional perturbations of relevant Yb states [80],
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nonlinear optical processes in a dense Yb vapor with pulsed UV-laser excitation [31]. Other
proposed schemes for measuring APV in Yb include measurement of optical rotation on
a transition between excited states [79] and measurement of parity-violating effects on the
two-photon 6s2 1S0 → 6s6p 1P1 → 6s6p 3P0 transition (Chapter 4).

In this chapter, we address the issues of sensitivity and systematics in the Yb APV
experiment. In Sections 2.1 and 2.2, the experimental technique and its application in the
present experiment are discussed. In Section 2.3, a method of analyzing the impact of various
apparatus imperfections is described based on theoretical modeling of signals recorded by the
detection system in the presence of imperfections. In Section 2.4, a detailed description of the
experimental apparatus is given, along with a discussion of the origins of the imperfections,
which is followed by an account of the measurements of the imperfections in Section 2.5. In
Sections 2.6, we discuss measurements and analysis of the APV amplitude and systematic
effects.

2.1 Experimental technique for the APV

measurement

The idea of the experiment is to excite the forbidden 408 nm transition (Fig. 2.1) with
resonant laser light in the presence of a quasi-static electric field. The APV amplitude of
this transition arises due to APV mixing of the 5d6s 3D1 and 6s6p 1P1 states. This mixing
arises because 1P1 has a large admixture of the configuration 5d6p [33, 45]. The purpose of
the electric field is to provide a reference transition amplitude, which is due to Stark mixing
of the same states interfering with the APV amplitude. In such an interference method [19,
28], one is measuring the part of the transition probability that is linear in both the reference
Stark-induced amplitude and the one induced by the electroweak interaction. In addition
to enhancing the APV dependent signal, the Stark interference technique provides for all-
important reversals that separate the APV effects from the systematics.

Even though the APV effect in Yb is relatively large, and the M1 transition is strongly
suppressed, the M1 transition amplitude is still three orders of magnitude larger than the
weak-interaction-induced amplitude. As a result, the geometry of the experiment was de-
signed to suppress spurious M1-Stark interference. In addition, this effect is minimized by
the use of a power-build-up cavity to generate a standing light wave. Since a standing wave
has no net direction of propagation any transition rate which is linear in the M1 amplitude,
will cancel out (see below).

The advantages of the present experimental configuration can be demonstrated by con-
sidering Yb atoms in the presence of static electric (E) and magnetic (B) fields interacting
with a standing monochromatic wave produced by two counter-propagating coherent waves
in an optical cavity. The electric field in the standing wave, E , is a sum of the fields of the
two waves. In atomic units (~ = me = e = 1), the rate of the resonant transition from the
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Figure 2.1: Energy eigenstates and transitions relevant to the Yb APV experiment.

ground state 1S0 to the excited state 3D1 is

R(M) = (2π)2αI|A(M)|2 2

πΓ
, (2.1)

where α is the fine structure constant, I is the intensity of the 408 nm light, Γ is the
natural linewidth of the transition, A(M) is the transition amplitude, and M ∈ {0,±1} is
the magnetic quantum number of the excited state. Here and in the rest of this section it is
assumed that the individual magnetic sublevels of the 3D1 state are resolved.

The transition amplitude A(M) is the sum of E1 and M1 transition amplitudes:

A(M) = AE1(M) + AM1(M). (2.2)

The E1 amplitude has two contributions corresponding to the Stark- and electroweak- mixing
of the 3D1 and 1P1 states. That is,

AE1(M) = As(M) + Aw(M) = iβ(−1)M (E× ε)−M + iζ(−1)Mε−M , (2.3)

where β is the vector transition polarizability, ζ is related to the reduced matrix element of the
Hamiltonian describing the weak interaction, ε is the polarization of the optical field (given
by E = Eε), and ε0,±1 are the spherical components of the vector ε. Although Stark-induced
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transitions are generally characterized by scalar, vector, and tensor polarizabilities [19, 22],
only the vector polarizability contributes for the case of a J = 0 → 1 transition. Equation
(2.3) is derived in Appendix A.1.

Similarly, the M1 transition amplitude has two components: one for each of the two
counter-propagating laser beams. Let E± = E± ε denote the electric fields of the beams
traveling in the ±k directions. Then E = E+ + E− and the M1 amplitude is given by

AM1(M) =M(−1)M (k× E+)−M +M(−1)M (−k× E−)−M

=M(−1)M (δk× E)−M , (2.4)

where M is the reduced matrix element of the M1 transition and k is a unit vector in the
direction of the wavevector. Here we have introduced δk = δk k with δk = (E+ − E−)/E .
For a perfect standing wave, E+ = E− and hence δk = 0 and the M1 transition is completely
suppressed. In practice, E− = E+− δE due to the small but nonzero transmission of the back
mirror in the cavity. Since |δE| � E , |δk| ≈ |δE/E| � 1. Thus, although the M1 transition
amplitude is not strictly zero, it is highly suppressed.

Without loss of generality, the quantities β, ζ, and M are assumed to be real. In
general, the rate R(M) given by Eq. (2.1) includes terms proportional to βM (Stark-M1
interference) and βζ (Stark-weak interference). A careful choice of field geometry allows
for suppression of undesirable Stark-M1 interference. From Eq. (2.3), it is evident that
the Stark-PV interference is proportional to a pseudoscalar quantity called the rotational
invariant :

(E ·B)[(E× E) ·B], (2.5)

which is antisymmetric under spatial inversion (P-odd) and symmetric under time reversal
(T-even).

In the present experimental apparatus, the electric field E is applied orthogonally to the
magnetic field B and collinearly with the axis of the linearly-polarized standing light wave, as
shown in Fig. 2.2. This geometry is such that the M1 and Stark-induced amplitudes are out
of phase. Thus, they do not interfere and therefore do not produce spurious APV-mimicking
effects (see Section 2.3).

2.2 PV signature: Ideal case

In the ideal case where we neglect the apparatus imperfections, the static magnetic and
electric fields are B = B ẑ and E = E x̂, respectively, and the light polarization is

ε = sin θ ŷ + cos θ ẑ. (2.6)

With this field orientation (see Fig. 2.2), Eqs. (2.2) through (2.4) yield

|A(0)|2 = β2E2 sin2 θ + 2ζ βE sin θ cos θ, (2.7)

|A(±1)|2 = (1/2)β2E2 cos2 θ − ζ βE sin θ cos θ, (2.8)
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Figure 2.2: Experimental apparatus. An oven and collimator are used to generate a colli-
mated beam of Yb atoms, travelling in the z-direction. Downstream, atoms are illuminated
by 408 nm light in the presence of external electric (E) and magnetic (B) fields, where they
undergo the parity-violating 6s2 1S0 → 5d6s 3D1 transition. Large optical fields are achieved
using a power build-up cavity (PBC). In this region, about a third of the excited atoms
fluoresce at 556 nm and the rest decay to the metastable state 3P0. Further downstream,
the population of 3P0 is probed by driving the 649 nm 6s6p 3P0 → 6s7s 3S1 transition.
Parabolic and spherical mirrors ensure optimal collection efficiency of the 3S1 fluorescence.
Light guides transmit fluorescent light to a photomultiplier tube (PMT) and a photodiode
(PD). Not shown is the vacuum chamber, which contains all depicted elements except the
PMT and PD.
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where terms of order ζ2 and higher are neglected and δk = 0 is assumed.
In order to isolate the Stark-weak interference term from the dominant Stark-induced

transition rate, we modulate the electric field: E = Edc + Eac cos(ωt), where Eac is the
modulation amplitude, ω is the modulation frequency, and Edc provides a DC bias. Then
Eqs. (2.7) and (2.8) become

R(M) = R0(M) +R1(M) cos(ωt) +R2(M) cos(2ωt), (2.9)

where Rn(M) is the amplitude of the nth harmonic of the transition rate R(M). For conve-
nience, we define the amplitudes An(M) by

Rn(M) = (2π)3αI|An(M)|2 2

πΓ
. (2.10)

Then Rn(M) ∝ |An(M)|2. The dominant Stark-induced contribution, which oscillates at
twice the modulation frequency, is

|A2(0)|2 = (1/2)β2E2
ac sin2 θ, (2.11)

|A2(±1)|2 = (1/4)β2E2
ac cos2 θ. (2.12)

On the other hand, the amplitude R1(M) contains the Stark-PV interference term:

|A1(0)|2 = 2β2EacEdc sin2 θ + 2ζβEac sin θ cos θ, (2.13)

|A1(±1)|2 = β2EacEdc cos2 θ − ζβEac sin θ cos θ. (2.14)

The zeroth harmonic, R0(M), is a constant “background” to which our measurement tech-
nique is insensitive.

For a general polarization angle θ, all three Zeeman components of the transition are
present while scanning over the spectral profile of the transition (Fig. 2.3). The first-harmonic
signal due to Stark-PV interference has a characteristic signature: the sign of the oscillating
terms for the two extreme components of the transition is opposite to that of the central
component. The second-harmonic signal provides a reference for the lineshape since it is free
from interference effects linear in E. With a non-zero DC component present in the applied
electric field, a signature identical to that in the second harmonic will also appear in the
first harmonic. The latter can be used to increase the first-harmonic signal above the noise,
which makes the profile analysis more reliable.

To obtain the APV asymmetry ALR from the measured first- and second-harmonic tran-
sition rates, we first normalize the first-harmonic signal R1(M) by its second-harmonic coun-
terpart R2(M), generating a “partial” asymmetry:

A(M) ≡ R1(M)/R2(M). (2.15)

The asymmetry is obtained by combining the partial asymmetries in the following way:

ALR ≡ A(−1) +A(+1)− 2A(0) = − 1

sin 2θ

16ζ

βEac

. (2.16)

This method has the advantage that the asymmetry ALR is independent of Edc, so that the
bias field may be chosen based on technical requirements of the experimental apparatus.
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Figure 2.3: Discrimination of the APV-effect by E-field modulation under static magnetic
field. Left: Schematic of transitions to different Zeeman sublevels of 3D1. Right: The Zeeman
pattern of the spectral profile is shown for the polarization angle θ = π/4 for the first and
second harmonic components of the transition rate. Effects of the DC bias are omitted.

2.3 PV signature: Impact of apparatus imperfections

While the current Yb-APV apparatus has been designed to minimize systematic effects, the
APV mimicking systematics may be a result of a combination of multiple apparatus imper-
fections. In order to understand the importance of these effects, the electric and magnetic
field misalignments and stray fields were included in a theoretical model of the transition
rates as well as the excitation light’s deviations from linear polarization. In addition, we
relax the assumption that δk = 0 and include the effects of the residual M1 transition.

The quantization axis is defined along ẑ and, following the ideal case model, the axis of
the standing light wave is collinear with x̂. We model an arbitrarily polarized light field as

ε = (sin θ cosφ+ i cos θ sinφ)ŷ + (cos θ cosφ− i sin θ sinφ)ẑ (2.17)

where θ is the polarization angle and φ is the ellipticity. Electric field imperfections are
included by taking

E→ E = Ẽ + E′,

where
Ẽ = (Eacx̂ + ẽyŷ + ẽzẑ) cos(ωt) and E′ = Edcx̂ + eyŷ + ezẑ,

are the AC and DC components of the electric field. It is assumed that the y- and z-
components of the AC field are in phase with the leading oscillating electric field. Out-of-
phase AC reduce to sums of in-phase and DC components and are implicitly included in
this model. The AC components are due to misalignments of the applied electric field with
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Table 2.1: Lowest-order terms contributing to the partial asymmetry A(M).

Aw(M) AM1(M) Aφ(M)

M = 0 +
4 ζ cot θ

βEac

0 0

M = −1 −4 ζ tan θ

βEac

+
4 δkM(ẽy − ẽz tan θ)

βE2
ac

+
4 ezφ sec2 θ

Eac

M = +1 −4 ζ tan θ

βEac

−4 δkM(ẽy − ẽz tan θ)

βE2
ac

−4 ezφ sec2 θ

Eac

respect to the light wave axis as well as to the quantization axis ẑ. The DC components
arise due to a misalignment of the DC-bias field and also due to stray electric fields in the
interaction region. The magnetic field imperfections are defined within the same frame of
reference by taking analogously

B→ B = B̃ + B′,

where
B̃ = b̃xx̂ + b̃yŷ +Bẑ and B′ = b′xx̂ + b′yŷ + b′zẑ,

where B̃ and B′ are reversing and stray non-reversing magnetic fields, respectively. The
geometry of the ideal case is reproduced when φ = 0, ẽy,z = ey,z = 0, and b̃x,y = bx,y,z = 0.

Equations (2.1) through (2.4) apply when the quantization axis is along the magnetic
field, thus a rotation D is applied to each of the vectors E, B, E , and k such that DB ∝ ẑ.
That is, we take

B→ DB, E→ DE, E → DE , and k→ Dk, (2.18)

where
D = D(−αy, ŷ)D(αx, x̂). (2.19)

Here the matrix D(α, n̂) represents a rotation about an axis n̂ through angle α. The angles
αx and αy are given by

αx,y = (B − b′z)(b′y,x − b̃y,x)/B2. (2.20)

Thus, the electric field E and the polarization vector E acquire additional components after
the rotation (besides, for example, ey and ẽy).

Due to the imperfections, the partial asymmetries now include additional terms besides
the Stark- and the PV effects:

A(M) = As(M) +Aw(M) +AM1(M) +Aφ(M), (2.21)

where As(M), Aw(M), AM1(M), Aφ(M) are contributions to the partial asymmetry due to
E and B field imperfections and stray fields, the Stark-weak interference term, the Stark-
M1 interference term, and the distorted linear polarization of the light. Expressions for the
lowest-order terms are summarized in the Table 2.1.
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Table 2.2: List of the lowest-order terms contributing to the asymmetry ALR for |θ| = π/4
sorted with respect to their response to the reversals. ALR,4 corresponding to a rather long
list of terms that are invariant with respect to all reversals, is not shown in the table.

ALR,1 ALR,2 ALR,3

8(ẽyez + ẽzey)

E2
ac

+
16b̃xey
BEac

+
16ζ

βEac

16b′xey
BEac

16b′xez
BEac

The asymmetry (2.16) has been chosen to determine the APV asymmetry. Since the M1
and ellipticity terms have opposite signs for M = ±1, their contributions to ALR cancel,
while the contributions from Aw(M) add.

The Stark contribution, As(M), has several terms that are produced due to different
imperfections and impacts all three Zeeman components, M = 0,±1. In order to determine
which terms could potentially mimic the APV asymmetry in ALR, we discriminate the APV
contribution to ALR with respect to the B-field reversal and flip of the polarization angle,
θ. Switching to a different Zeeman component of the transition is also a reversal, which
is incorporated in the expression for the asymmetry, ALR. Analysis of the noise affecting
the accuracy of APV-asymmetry measurements demonstrate that the highest signal-to-noise
ratio is achieved when θ = ±π/4, and therefore, the polarization flip is a change of the po-
larization angle by π/2. Thus, the asymmetry (2.16) must be determined for four different
combinations of the magnetic field directions and light-polarization angles: ALR(+B,+π/4),
ALR(−B,+π/4), ALR(+B,−π/4), and ALR(−B,−π/4), so that terms having different sym-
metries with respect to the reversals can be isolated:

ALR,1

ALR,2

ALR,3

ALR,4

 =
1

4


−1 −1 +1 +1
−1 +1 +1 −1
+1 −1 +1 −1
+1 +1 +1 +1

 ·

A(+B,+θ)
A(−B,+θ)
A(+B,−θ)
A(−B,−θ)

 . (2.22)

The result of this procedure is summarized in Table 2.2.
The APV asymmetry contributing to ALR,1 is B-field even, θ-flip odd. It competes with

the second-order terms that are a combination of the E-field and B-field alignment imper-
fections and stray fields. Using the theoretical value of ζ ' 10−9 ea0 [30, 96] combined with
the measured |β| = 2.24(0.12)× 10−8 ea0/(V/cm) [22, 107], the expected APV asymmetry,
16ζ/βẼ, is about 10−4, for θ = π/4 and Eac = 2 kV/cm. For a typical value of misalignments
and “parasitic” fields, ey,z/Eac and b̃x/B (on the order of 10−3 in the present apparatus), the
contribution of the “parasitic” terms may be up to a few percent of the total value of ALR,1.
Ways of measuring the contribution of these imperfections are discussed in the following
sections.
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Figure 2.4: Schematic of the power buildup cavity.

2.4 Experimental apparatus

The forbidden 408 nm transition is excited by resonant laser light coupled into the power-
buildup cavity in the presence of the magnetic and electric fields. The transition rates are
detected by measuring the population of the 3P0 state, where 65% of the atoms excited to
the 3D1 state decay spontaneously (Fig. 2.1). This is done by resonantly exciting the atoms
with 649-nm light to the 6s7s 3S1 state downstream from the main interaction region, and by
collecting the fluorescence resulting from the decay of this state to the 3P1 and 3P2 states and
subsequently, from the decay of the 3P1 state to the ground state 1S0 (556 nm transition).
As long as the 408 nm transition is not saturated, the fluorescence intensity measured in the
probe region is proportional to the rate of that transition.

A schematic of the Yb-APV apparatus is shown in Fig. 2.2. A beam of Yb atoms is
produced (inside of a vacuum chamber with a residual pressure of ∼ 3× 10−6 Torr) with an
effusive source: a stainless-steel oven loaded with Yb metal, operating at 500− 600◦C. The
oven is outfitted with a multi-slit nozzle, and there is an external vane collimator reducing
the spread of the atomic beam in the horizontal direction. The resulting Doppler width of
the 408 nm transition is ∼ 12 MHz [107].

Downstream from the collimator, the atoms enter the main interaction region where the
Stark- and APV-induced transitions take place. Up to 80 mW of light at the transition
wavelength of 408.345 nm in vacuum is produced by frequency doubling the output of a
Ti:Sapphire laser (Coherent 899) using the Wavetraincw ring-resonator doubler. After shap-
ing and linearly polarizing the laser beam, ∼ 10 mW of the 408 nm radiation is coupled into
a power buildup cavity (PBC) inside the vacuum chamber.
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Figure 2.5: Schematic of the optical setup. Light at 408-nm is produced by frequency dou-
bling the output of a Ti:Sapphire laser (Coherent 899) using the Wavetraincw ring resonator
doubler. The laser is locked to the PBC using the FM-sideband technique. The PBC is
locked to a confocal Fabry-Pérot étalon. This scannable étalon provides the master fre-
quency. The 649-nm excitation light is derived from a single-frequency diode laser (New
Focus Vortex). The diode laser is locked to a frequency-stabilized He-Ne laser using another
scanning Fabry-Pérot étalon.
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The cavity was designed to operate as an asymmetric cavity with flat input mirror and
curved back mirror with a 25-cm radius of curvature and 22-cm separation between the
mirrors. The atomic beam intersects the cavity mode in the middle of the cavity, where
the 1/e2 radius of the mode in intensity is 172 µm. The asymmetric configuration has the
advantage of larger mode radius at the interaction position compared to a symmetric cavity.
A larger mode allows us to reduce the ac-Stark shifts, consequently reducing the width of
the 408 nm transition. Alternatively, the cavity can be modified to operate in the symmetric
confocal condition where multiple transverse modes can be excited, thereby increasing the
effective “mode” size. However, we were unable to obtain high power and stable lock for the
confocal configuration.

The cavity mirrors were purchased from Research Electro Optics, Inc. For the flat input
mirror the transmission is 350 ppm with the absorption and scattering losses of 150 ppm to-
tal at 408 nm. The curved back mirror is designed to have a lower transmission of 50 ppm in
order to additionally suppress the net light wave vector and, therefore, the M1 transition am-
plitude. The absorption and scattering losses in the curved mirror are 120 ppm. The finesse
and the circulating power of the PBC are up to F = 9000 and P = 8 W. These parameters
were routinely monitored during the PV measurements. Details of the characterization of
the PBC are addressed in Appendix A.2.

We found that the use of the 408 nm-PBC in vacuum is accompanied by substantial
degradation of the mirrors. Typically after 6 hours of operation, the finesse drops by a
factor of two. This is a limiting factor for the duration of the measurement run. The
degradation of the finesse is due to the increased absorption and scattering losses. This
effect is reversible: the mirror parameters can be restored by operating the PBC for several
minutes in air, which makes performing a number of runs possible without replacing the
mirrors. However, it takes several hours with the present apparatus to reach the desired
vacuum after exposing the PBC to air. Presently, this effect is under investigation aiming
for longer-duration experiments and shorter breaks in between.

A schematic of the PBC setup is presented in Fig. 2.4. The mirrors are mounted on
precision optical mounts (Lees mounts) with micrometer adjustments for the horizontal and
vertical angles and the pivot point of the mirror face. The mirror mounts are attached to an
Invar rod supported by adjustable table resting on lead blocks. The input mirror is mounted
on a piezo-ceramic transducer allowing cavity scanning.

The laser is locked to the PBC using the FM-sideband technique [42]. In order to remove
frequency excursions of the PBC in the acoustic frequency range, the cavity is locked to
a more stable confocal Fabry-Pérot étalon, once again using the FM-sideband technique.
This stable scannable cavity provides the master frequency, with the power-build-up cavity
serving as the secondary master for the laser. A schematic of the optical system is presented
in Fig. 2.5.

The magnetic field is generated by a pair of rectangular coils designed to produce a
magnetic field up to 100 G with a 1% non-uniformity over the volume with the dimensions
of 1 × 1 × 1 cm3 in the interaction region. Additional coils placed outside of the vacuum
chamber compensate for the external magnetic fields down to 10 mG at the interaction region.
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Figure 2.6: Schematic of the E-field electrodes assembly, and a result of the E-field modeling
showing an X-Z slice of the amplitude of the E-field z-component, ez, in a midplane (Y=0)
of the assembly normalized by the total E-field amplitude, E. The voltage is applied to
electrode 1, and electrode 2 and the correction electrodes are grounded.
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The residual B-field of this magnitude does not have an impact on the APV measurements
since its contribution is discriminated using the field reversals.

The electric field is generated with two wire-frame electrodes separated by 2.1 cm (see
Fig. 2.6). The copper electrode frames support arrays of 0.2-mm diameter gold-plated wires.
This design allows us to reduce the stray charges accumulated on the electrodes by min-
imizing the surface area facing the atomic beam, thereby minimizing stray electric fields.
AC voltage of up to 10 kV at a frequency of 76.2 Hz is supplied to the electrodes via a
high-voltage amplifier. An additional DC bias voltage of up to 100 V can be added.

The result of the electric field non-uniformity calculations is shown in Fig. 2.6. These
calculations demonstrate that errors in the centering of the light beam with respect to
the E-field plates may induce substantial parasitic components as large as, for example,
|ez| ∼ 5 × 10−3Eac, producing parasitic effects comparable to the APV asymmetry. In
order to measure and/or compensate the impact of the parasitic fields, additional electrodes
designed to simulate stray E-field components were added to the interaction region. By
applying high-voltage to these electrodes (“correction electrodes” in Fig. 2.6), the parasitic-
field components may be exaggerated and accurately measured as described in the following
sections.

Light at 556 nm emitted from the interaction region is collected with a light guide and
detected with a photomultiplier tube. This signal is used for initial selection of the atomic
resonance and for monitoring purposes. Fluorescent light from the probe region is collected
onto a light guide using two optically polished curved aluminum reflectors and registered
with a cooled photodetector (PD). The PD consists of a large-area (1× 1 cm2) Hamamatsu
photodiode connected to a 1-GΩ transimpedance pre-amplifier, both contained in a cooled
housing (temperatures down to −15◦C). The pre-amp’s bandwidth is 1 kHz and the output
noise is ∼ 1 mV (rms). The 649-nm excitation light is derived from a single-frequency diode
laser (New Focus Vortex) producing ≈ 1.2 mW of cw output, high enough to saturate the
6s6p 3P0 → 6s7s 3S1 transition. Due to the saturation of this transition, ∼3 fluorescence
photons per atom exited to the 3P0 state are emitted at the probe region. The natural width
of the 649-nm transition is 70 MHz, thus, its profile covers all transverse velocity groups (vx)
in the atomic beam (≈ 8 MHz Doppler width at 649 nm). A drift of the laser frequency
(∼ 100 MHz per minute) is eliminated by locking the diode laser to a frequency-stabilized
He-Ne laser using a scanning Fabry-Pérot étalon with the scanning rate of 25 Hz. The
spectral distance between the étalon transmission peaks from the two lasers is measured
during each scan and maintained constant within an accuracy of ±3 MHz, good enough to
eliminate any degradation of the probe-region signal.

The signals from the PMT and PD are fed into lock-in amplifiers for frequency discrim-
ination and averaging. A typical time of a single spectral-profile acquisition is 20 s. The
signals at the first and the second harmonic of the electric-field modulation frequency are
registered simultaneously, which reduces the influence of slow drifts, such as instabilities of
the atomic-beam flux. The modulation frequency is limited by several factors. Thermal
distribution of atomic velocities in the beam causes a spread (of ∼ 2 ms) in the time of flight
between the interaction region and the probe region. This, along with the finite bandwidth
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Figure 2.7: A profile of the B-field-split 408-nm spectral line of 174Yb recorded at 1st- and
2nd-harmonic of the modulation. Also a simulated APV-contribution is shown for clarity.
Ẽ=5 kV/cm; DC offset=40 V/cm; θ = π/4; an effective integration time is 10 s per point.

of the PD, leads to a reduction of the signal-modulation contrast (see below). The choice of
the modulation frequency of 76.2 Hz is a tradeoff between this contrast degradation and the
frequent E-field reversal.

2.5 Results and analysis

In Fig. 2.7 a profile of the B-field-split 408 nm spectral line of the 174Yb is shown. The
649-nm-light-induced fluorescence was recorded during a single profile scan. Statistical error
bars determined directly from the spread of data are smaller than the points in the figure.
The peculiar asymmetric line shape of the Zeeman components is a result of the dynamic
Stark effect [107].

During a typical experimental run 100 profiles are recorded for each combination of the
magnetic field and the polarization angle (400 profile scans in total). In order to compute
the normalized amplitude, A(M), of a selected Zeeman component, the actual first-harmonic
signal near the Zeeman peak is divided by the respective second-harmonic signal and then
averaged over a number of the data points1. Then, the combination ALR of Eq. (2.16) is

1In the normalized rate calculations only data points having intensity higher that 1/3 of the respective
Zeeman peak are used to avoid excessive noise from spectral regions with low signal intensity.
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Table 2.3: Results of measurements of the electric field imperfections using artificially ex-
aggerated AC- and DC-components, ẽexy,z and eexy,z. These fields were generated by use of the
correction electrodes, Fig. 2.6. Eac = 2000(2) V/cm.

DC-Set AC-Set

Exaggerated imperfections (V/cm)

eexy = −140(2) ẽexy = −120(2)

eexz = 20(2) ẽexz = 30(2)

Measurements (mV/cm)

ẽye
ex
z /(2Eac) = 16(10) eyẽ

ex
z /(2Eac) = 4(5)

eexy b̃x/B + eexy ẽz/(2Eac) = 442(10) ez ẽ
ex
y /(2Eac) = 40(5)

Parasitic fields (V/cm)

ẽy = 3.2(2) ey = 0.5(0.6)

2Eacb̃x/B + ẽz = −12.6(0.3) ez = −1.3(0.2)

computed for each profile scan followed by averaging the result over all the scans at a given
B-θ configuration. This procedure is repeated for all four reversals, and all B-θ symmetrical
contributions, ALR,1−4, are determined. In the present experiment, the values of ALR,2,3,4-
terms are found to be consistent with zero within the statistical uncertainty, which is the
same as that of the APV-asymmetry (see below).

As can be seen from Table 2.2, terms in ALR,1 associated with the fields imperfection are
of crucial importance:

16

Eac

[
ey

(
ẽz

2Eac

+
b̃x
B

)
+ ez

ẽy
2Eac

]
.

In order to measure the contribution of these terms, artificially exaggerated E-field imperfec-
tions both static and oscillating, eexz , eexy , ẽexy and ẽexz , are imposed by use of the “correction
electrodes” (see Fig. 2.6), and two sets of the experiments were performed. In the first one,
a DC-voltage was applied to the correction electrodes, and the measurements were done
reversing eexy and eexz . These experiments yield values of ẽy and ẽz + 2Eacb̃x/B. In the sec-
ond set, an AC-voltage modulated synchronously with the main E-field is applied to the
correction electrodes. In order to reverse the sign of the parasitic terms a π-phase-shift of
ẽexy and ẽexz with respect to the modulation signal is employed by switching the wiring of
the correction electrodes. Thus, values of the DC-imperfections, ey and ez, are determined.
The magnitudes of the applied electric fields and their distributions are calculated using a
3D-numerical-model of the interaction region. The results of the experiments are presented
in Table 2.3.

The net contribution of these imperfections to ALR,1 in the absence of the exaggerated
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fields is found to be2:

ey

(
ẽz

2Eac

+
b̃x
B

)
+ ez

ẽy
2Eac

= −2.6(1.6)stat.(1.5)syst. mV/cm. (2.23)

The systematic uncertainty comes from a sensitivity of the numerical model of the E-field,
which is used for calculating the exaggerated fields in the interaction region, to an imper-
fect approximation of the electrode-system geometry. These experiments suggest that this
field’s imperfection cannot mimic the APV-effect entirely, nevertheless, it appears to be a
major source of systematic uncertainty impacting the accuracy of the APV-asymmetry mea-
surements. The most prominent contribution is given by a combined effect of the parasitic
components of the electric field and the non-zero projection of the leading magnetic field
on the direction of the electric field: ey(ẽz/2Eac + b̃x/B). The APV-asymmetry parameter,
ζ/β is obtained from the measured value of ALR,1 by compensating for the influence of these
magnetic- and electric-field imperfections, Eq. (2.23).

There is another effect that cannot, by itself, mimic the PV-asymmetry, but needs to be
taken into account for proper calibration. This effect is related to the E-field modulation
implemented in the present experiment. The atoms are excited to the metastable state,
6s6p 3P0, by the light beam in the interaction region and then travel ∼20 cm until they are
detected downstream in the probe region. Due to the spread in the time-of-flight between the
interaction and probe regions, the phase mixing leads to a reduction of the signal modulation
contrast at the probe region, and it depends on the signal-modulation frequency. Since
the signal comprises two time-scales of interest, first- and second-harmonic of the E-field
modulation, the contrast reduction is different for the two. Therefore, the ratio of the signal
modulation amplitudes, A(M), on which we base the APV-asymmetry observation, appear
altered in the probe region compared to what it would be at the interaction region. The
amplitude combination, ALR, and, therefore, the APV-parameter, ζ/β, are similarly affected.
In our data analysis, a correction coefficient, C0, is introduced, which has been calculated
theoretically: [

ζ

β

]
probe reg.

= C0

[
ζ

β

]
real

.

Under present experimental conditions, this coefficient, C0, is found to be 1.028(3), and the
measured APV parameter is corrected accordingly. Principles of its derivation are given in
Appendix A.3.

In Fig. 2.8, the APV interference parameter ζ/β is shown as determined in 19 separate
runs (∼60 hours of integration in total). Its mean value is

ζ/β = 39(4)stat.(3)syst. mV/cm, (2.24)

which is in agreement with the theoretical predictions [30, 96]. The value of the APV
parameter was extracted using the expression given in the first column of Table 2.2, taking

2Compare with the APV asymmetry parameter ζ/β ≈ 40 mV/cm.
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Figure 2.8: APV asymmetry in ytterbium. Shown are the measurements of the Stark-weak
interference parameter ζ/β. The mean value is 39(4)stat.(5)syst. mV/cm, which corresponds
to a weak-interaction-induced transition amplitude |ζ| = 8.7(1.4)× 10−10 ea0.

into account the calibration correction C0. Thus, |ζ| = 8.7(1.4) × 10−10 ea0, which is the
largest APV amplitude observed so far (here we used |β| = 2.24(12)× 10−8 ea0/(V/cm) [22,
107]).

The sign of the APV interference parameter ζ/β is found by comparing the measurements
with the theoretical model of the transition rates employing the field geometry shown in
Fig. 2.2. The direction and, thus, the signs of the electric and magnetic fields as well
as the polarization angle θ were calibrated prior to the APV measurements. Special care
was taken of detecting parasitic phase shifts in the lock-in amplifier. A signal from an
arbitrary function direct digital synthesis (DDS) generator simulating the output of the
probe region photodetector was fed into the amplifier. The signal is comprised of a sum of
two sinusoidal waveforms, one frequency doubled, attenuated, and phase shifted with respect
to the other. Results of the signal parameters measurement from the lock-in, such as the
first-to-second harmonic amplitude ratio, relative phase shift and its sign, are compared to
those used in the DDS generator to simulate the signal. The difference in the measured and
generated amplitude ratio is found to be below 0.01%, and the relative phase shift is detected
within ±1.5◦. No relative sign flips between the first- and second-harmonic amplitudes were
detected.

2.6 Error budget

The present measurement accuracy is not yet sufficient to observe the isotopic and hyperfine
differences in the APV amplitude, which requires an accuracy better than ∼ 1% for APV
amplitude in a single transition [23, 97, 105].
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In the present apparatus, the signal levels achieved values high enough to reach the signal-
to-noise ratio (SNR) for the APV asymmetry if the noise were dominated by the fluorescence-
photon shot-noise. The ideal shot-noise-limited SNR can be estimated as follows. Let Ni ≈
106 be the number of atoms illuminated by 408 nm light of intensity I ≈ 80 W/mm2, which
corresponds to about 10 W of power and a beam radius of about 200 µm (Sec 2.4). Then the
number of excited atoms contributing to the first and second harmonics of the fluorescence
signal are N1,2 = NiR1,2t, where t is the measurement time. Here N2 and N1 � N2 are
the number of excited atoms due to parity-conserving and parity-violating processes. The
signal-to-noise ratio is SNR = N1/

√
N2, which reduces to

SNR ≈ ζ
√

8παIt/Γ ≈ 3
√
t(s) (2.25)

in the absence of a DC bias and systematic sources of noise. This is good enough to reach
the sub-percent accuracy in a few hours of integration. However, a number of additional
factors limit the accuracy.

One of the most important noise sources is the fluctuations of the modulating- and DC-
field parameters during the experiment. The first- and the second-harmonic signals depend
differently on the modulating electric field amplitude, Eac, and the DC-bias, thus, a noise in
the electronics controlling the fields contaminates the first-to-second harmonic ratio directly.
A substantial effort was made to cope with this problem: a home-built high-voltage amplifier
used in the first 13 runs was replaced by a commercial Trek 609B amplifier and a circuit
controlling the DC-bias was upgraded. This allowed us to control the DC-bias and Eac

with mV-scale accuracy that would make the SNR to approach the shot-noise limit if this
were the only source of the noise. As seen in Fig. 2.8, the last six measurements exhibit
higher accuracy than the rest. These are the runs after the HV-system upgrade. However,
the present SNR of ≈ 0.03/

√
τ(s) is worse by almost two orders of magnitude than the

shot-noise limit.
There are other fluctuations in the system parameters, such as light intensity fluctuations

in the PBC, fluctuations of the spectral position of the PBC resonance with respect to the
frequency reference, and noise in the detection system. All of them contribute to the noise
in the first- and the second- harmonic signals but we found that such noise largely canceled
in the ratio A(M).

However, there is a noise source, which is not canceled in the ratio. The following
experiments demonstrated that this noise source is related to frequency excursions of the
Fabry-Pérot étalon serving as the frequency reference for the optical system. In these ex-
periments the excitation light was frequency tuned to a wing of the atomic resonance, and
the first- and second-harmonic signals were recorded without scanning over the resonance.
Then, the same was done when the spectral position was set at the peak of the resonance,
and a change of the SNR for the harmonics ratio was determined. These experiments were
performed using the upgraded HV-system. Results of the measurements are presented in
Fig. 2.9.

For a shot-noise-limied signal, the SNR at the peak of the resonance is expected to be a
factor of about

√
2 higher than at the wing due to larger signal. It was found, however, that
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Figure 2.9: Impact of the frequency excursions of the Fabry-Pérot étalon on the noise level
in the harmonics ratio. A change in the noise level when the optical system was tuned from
the wing of the atomic resonance to its peak is shown. In the inserts above the excitation
light spectral position is shown schematically with respect to the atomic resonance. Arrows
denote the fluctuations.

the SNR went up by a factor of 4 by tuning from the wing to the peak of the resonance.
This demonstrates that the main source of noise is not photon statistics but fluctuations
in the spectral reference. Indeed, the frequency excursions at the wing of the spectral line
produces substantially more intensity noise due to a steeper spectral slope than that at the
peak, where the slope is nominally zero. It must be emphasized, that in the case of slow
frequency excursions (compared to the E-field modulation period), the noise in the first- and
the second-harmonic channels would be canceled in the ratio. However, fast excursions can
generate noise in the signal ratio.

The factors affecting the measurement accuracy mentioned above have an impact on the
statistical error of the result. The present systematic errors (summarized in Table 2.4) has
nearly the same significance as the statistical one and also comprises a number of factors.

One of the most significant factors is the uncertainty in the field-imperfection contribu-
tions, Eq. (2.23). This uncertainty is mostly due to statistical factors such as laser drifts,
nevertheless, it provides an offset to the PV-parameter. Since the measurement of this con-
tribution is actually the same measurement as the APV-effect, any improvements of the
stability reduces the overall systematic uncertainty. We would like to emphasize also that
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Table 2.4: List of factors contributing to the systematic uncertainty of the parameter ζ/β.

Factor Uncertainty (%)

Ẽ value:
geometry 5
numerical modeling 3

Applied field imperfections 5
Phase mixing 0.5
Other 1
Total (in quadrature) 8

Eq. (2.23) represents a mean value of the imperfection contribution over numerous exper-
iments averaging over possible fluctuations of the field-imperfection contribution. These
fluctuations may be partially responsible for the variance in the APV-parameter, and, thus,
the statistical uncertainty of its value. This fact demonstrates that the elimination of the
field-imperfections is an essential requirement for improving the overall accuracy of the ex-
periments.

Another significant source of the systematic uncertainty is the uncertainty in the value
of the electric field in the interaction region. While the voltage applied to the E-field plates
and the correction electrodes is controlled precisely, the actual E-field value used in the
APV parameter determination depends on the accuracy of the numerical modeling of the
electric-field distribution in the particular geometry. There are two factors in the model
contributing to the uncertainty: finite accuracy of measurements of the interaction region
geometrical parameters, and the imperfect approximation of the geometry in the numerical
simulation.

However, while this systematic uncertainty plays a significant role for measurements of
the APV parameter of a single isotope, for the isotope ratios this uncertainty will cancel (or
will be substantially reduced), if the measurements observing different isotopes are performed
without changing the E-field geometry. The same is true for the calibration parameter, C0,
which also cancels in the isotope ratios.

There are other, rather minor, factors contributing to the systematic uncertainty, for
example, a finite accuracy of the polarization angle flip, errors in the lock-in amplifiers, a
finite dynamic range of the lock-ins etc. The net contribution of these factors is found to be
. 1%. A summary of the systematic error budget is presented in Table 2.4.

One goal of the future measurements of the parity-violation effects in ytterbium is ob-
serving a difference in the APV effect between different isotopes. The net uncertainty of
the APV parameter of a single isotope must be better than 1% based on the theoretical
predictions. Methods for improvement are discussed in Chapter 5.
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Chapter 3

Measurement of ac polarizabilities in
ytterbium

Static (dc) and dynamic (ac) electric dipole polarizabilities determine the response of neu-
tral particles to applied electric fields. They are related to a host of atomic and molecular
quantities, including the dielectric constant, refractive index, and Stark shift [2, 3, 12, 13],
and are an important consideration for many current atomic, molecular, and optical physics
experiments [88]. For example, polarizabilities play a vital role in the production of light
traps for quantum information processing applications [123]. In the context of optical atomic
clocks, Stark shifts constitute an important systematic effect that must be controlled [5, 26,
109, 114]. Similarly, Stark shifts also contribute to systematic effects in atomic parity viola-
tion (APV) measurements [111, 112, 119, 121]. Hence the determination of polarizabilities
is a priority for high-precision atomic physics.

Present experiments typically rely on theoretical calculations of electric dipole polariz-
abilities [9, 43, 100]. Several methods for measuring polarizabilities also exist. Early schemes
involved the deflection of atoms in an inhomogeneous electric field [12]. More recent tech-
niques include absolute frequency measurements [5], atom interferometry [32, 51, 89], and
a technique that uses light force [76, 77]. However, these methods typically provide infor-
mation about the polarizability of an atom in its ground state [88]. Therefore, they are
inappropriate for high-precision experiments where the polarizabilities of excited states are
relevant.

As part of an ongoing investigation of parity violation in atomic ytterbium (Yb) [111,
112], a scheme for measuring a combination of polarizabilities of the ground and an excited
state of Yb was developed [40, 107]. The scheme involves the simulation and measurement
of the spectral lineshape of a forbidden electric dipole transition driven by a standing wave
of light in the presence of a dc electric field. Due to the standing wave, the ac Stark
shifts of the upper and lower states introduce a polarizability-dependent distortion in the
lineshape, a phenomenon which was first observed and characterized during a search for
APV in cesium [119]. The difference of polarizabilities of the two states is treated as a
variable parameter in the simulation and is measured by fitting the simulated lineshape to
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experimental data. We call this scheme the Lineshape Simulation Method (LSM). The LSM
can be generalized to an arbitrary atomic species.

In this chapter, we present the next generation of the LSM, which was described in
Ref. [40]. The numerical procedures accommodate for a broad domain of values of input pa-
rameters, e.g., the intensity of the standing wave. In addition, the independent dimensionless
parameters that determine the lineshape have been explicitly identified, thus facilitating er-
ror analysis. In general, the LSM is compatible with a variety of atomic species and field
geometries. The LSM is sensitive to the difference of polarizabilities of the atom in its
ground and excited states. Nevertheless, this method may yield unambiguous measurements
of the vector and tensor components of the excited state polarizability, as we will show. In
this sense, we present a versatile method for measuring the excited-state polarizabilities of
atoms.

We demonstrate the LSM using the 408-nm 6s2 1S0 → 5d6s 3D1 transition in atomic
Yb. Whereas the previous results [107] were obtained in the absence of a magnetic field,
the present work uses a magnetic field to isolate Zeeman sublevels of the excited state. The
ac Stark shifts of the sublevels are characterized by different combinations of scalar, vector,
and tensor polarizabilities. This approach allows for the unambiguous determination of these
polarizabilities. The ac scalar and tensor polarizabilities of the excited state 5d6s 3D1 in Yb
are measured for the first time. Due to improvements in the experimental apparatus, the
signal-to-noise ratio of the observed lineshape is an order of magnitude larger than for the
previous implementation. In the present work, the statistical error introduced by the LSM
is negligible compared to the systematic uncertainty of the experiment.

This chapter is organized as follows. In Section 3.1, we introduce our conventions for the
polarizabilities and the Stark shift. The theoretical model, numerical procedure, and results
of the simulation are discussed in Section 3.2. In Section 3.3 we apply the LSM to the Yb
system and present the results. Finally, a summary of the results and an outlook for future
experiments are given in Section 3.4.

3.1 Atomic system

Throughout this work, we consider a Stark-induced transition between two atomic states of
the same parity. The transition is induced by applying a uniform dc electric field E. We
assume that the transition is driven by a standing wave of light formed by two counter-
propagating waves with the same polarization traveling in the ±k directions. In this case,
the electric field of the light is given by

E(r, t) = E(r) cos(ωt) ε, (3.1)

where
E(r) = E0 cos(k · r)e−r

2
⊥/r

2
b . (3.2)

Here E0, k, ω, and ε are the amplitude, wave-vector, angular frequency, and polarization of
the electric field, respectively, rb is the radius of the standing wave, and r⊥ = |r− k̂(k̂ · r)|
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is the perpendicular distance from the center of the standing wave. In addition to these
parameters, we define the wave-number k ≡ |k| = ω/c and the wavelength λ ≡ 2π/k, where
c is the speed of light. We assume that E0 > 0 since the overall sign of the field can be
incorporated into the polarization ε. Equation (3.2) is appropriate for the case of a light
field with a Gaussian profile. The discussion is limited to optical frequencies. In this regime,
E(r, t) is uniform over atomic length scales. In order to study the influence of the magnetic
structure of the transition, we also assume the presence of a uniform dc magnetic field B.
The quantization axis (z-axis) is chosen so that B = B ẑ for B > 0.

The dynamics of an atom in the presence of the external magnetic and electric fields
described above is governed by the total Hamiltonian

H = H0 +H1(t), (3.3)

where H0 ≡ HA+HZ+Hdc and H1(t) ≡ Hac(t) are the time-independent and time-dependent
parts of H. Here HA is the atomic Hamiltonian, HZ = −µ ·B is the Zeeman Hamiltonian,
Hdc = −d ·E and Hac(t) = −d · E(r, t) are the dc and ac Stark Hamiltonians, and µ and d
are the magnetic and electric dipole moments of the atom, respectively. We assume that B,
E, and E(r, t) are sufficiently electroweak that HZ, Hdc, and Hac can be treated as successive
perturbations to HA.

Let |`〉 = |γJM〉 and ωA(`) = ωA(γJ) represent the degenerate eigenstates of the atomic
Hamiltonian HA and their corresponding energies, respectively. Here J is the total angular
momentum quantum number, M ∈ {J, J − 1, . . . ,−J} is the magnetic quantum number
corresponding to the projection of the total angular momentum along the z-axis, and γ is a
set of other quantum numbers. Then, to lowest order in the perturbing fields B and E, the
eigenstates of H0 are

|`〉 = |`〉+
∑
`′ 6=`

|`′〉 〈`
′|Hdc||`〉

ωA(`)− ωA(`′)
, (3.4)

with corresponding energies

ω(`) = ωA(`) + ωZ(`) + ωdc(`). (3.5)

Here ωZ(`) and ωdc(`) represent the Zeeman and dc Stark shifts, respectively. The Zeeman
shift is given by ωZ(`) = g`µ0BM , where g` is the Landé factor of the state |`〉 and µ0 is the
Bohr magneton. Throughout this work, we assume that B is sufficiently strong to completely
isolate the Zeeman sublevels of |`〉. The dc Stark shift is given by ωdc(`) = −(1/2)αdc

` E
2,

where E = |E| is the magnitude of the dc electric field, and αdc
` is the dc polarizability of

the atom in state |`〉. To derive Eq. (3.4), we neglected mixing of atomic eigenstates due to
the magnetic field.

The atomic energy levels are also shifted by the ac Stark shift [2, 3, 12, 13], which is
induced by the dynamic field E(r, t). We assume that the frequency of the standing wave
satisfies ω ≈ ωag, where ωag is the resonant frequency of the electric-dipole (E1) transition
from the perturbed electronic ground state |g〉 to a perturbed excited state |a〉. Thus it is
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appropriate to make a two-level approximation that involves neglecting dynamic interactions
between states other than |g〉 and |a〉. However, such an approximation can only account for
ac Stark shifts that arise due to mixing of the states |g〉 and |a〉 with each other. To address
this situation, we modify the energy of the perturbed ground state as follows:

ω(g)→ ω(g) + ωac(g), (3.6)

where
ωac(g) = −αg [E(r)/2]2 , (3.7)

is the ac Stark shift1 of |g〉 due to mixing of |g〉 with states other than |a〉, and αg is the
corresponding ac polarizability of the state |g〉. An analogous modification is made to the
energy of the perturbed state |a〉.

We further assume that the unperturbed ground and excited states |g〉 = |γgJgMg〉 and
|a〉 = |γaJaMa〉 have the same parity. In this case, the g → a transition is induced by the dc
electric field [19] and the mixing of the states |g〉 and |a〉 with each other is characterized by
the induced dipole matrix element

〈a|d · ε|g〉 ≡ din. (3.8)

We assume din ≥ 0 since any complex phase can be incorporated into the states |a〉 and
|g〉. Note that the value of din depends on the dc field E and the light polarization ε. In
particular, din → 0 as E → 0. Therefore, the dynamic field does not cause mixing of the
states |g〉 and |a〉 in the absence of the electric field. The polarizability αg in Eq. (3.7)
represents the ac polarizability of the unperturbed ground state |g〉, provided the effects of
the dc field on the ac polarizability can be neglected. In this case, αg = αg.

In general, ac polarizabilities depend on the polarization ε and frequency ω of the external
light field. The polarizability of an arbitrary atomic state |`〉 can be decomposed into three
terms:

α` = α0(γJ) + i α1(γJ)
M

J
(ε× ε∗) · ẑ + α2(γJ)

3M2 − J(J + 1)

J(2J − 1)

3|ε · ẑ|2 − 1

2
. (3.9)

The quantities α0(γJ), α1(γJ), and α2(γJ) are referred to as the scalar, vector, and tensor
polarizabilities, respectively [12]. The scalar, vector, and tensor polarizabilities are indepen-
dent of the magnetic quantum number M and the polarization ε, and hence are independent
of the choice of quantization axis and field geometry. However, they depend on the light
frequency ω, as described in Appendix D.

Hereafter, we abandon the use of the overline to distinguish between perturbed and
unperturbed atomic states. Despite the lack of an overline, quantum states should be inter-
preted as atomic states that have been perturbed by the static electric and magnetic fields
E and B, unless otherwise noted.

1 In Refs. [107] and [40], a different convention for the ac Stark shift is used.
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Figure 3.1: Energy-level diagram. Shown are the energy eigenstates of an atom and the
electronic transitions relevant to the LSM.

We consider a system in which atoms in the excited state undergo spontaneous decay to
the lower states |b〉 and |c〉 with corresponding rates Γab and Γac = Γa−Γab, where Γa is the
natural linewidth of the state |a〉. A schematic of the relevant energy level structure is shown
in Fig. 3.1. As atoms decay from |b〉 down to |g〉, they emit fluorescent light of frequency
ωbg. The LSM involves both the simulation and measurement of the spectral lineshape of
the g → a transition. In this context, the “spectral lineshape” refers to the probability of
emission of fluorescent light of frequency ωbg as a function of laser frequency ω. Although
polarizabilities αg and αa depend on ω, we assume that they are effectively constant for
ω ≈ ωag. The LSM can be applied to any atomic system with the energy level structure
shown in Fig. 3.1.

3.2 Spectral lineshape

The ac Stark shifts cause the resonant frequency of the g → a transition to shift as atoms
travel through the standing wave. As a result, the spectral lineshape depends heavily on
the details of the light field. Because the light field amplitude E(r) is not spatially uniform
[see Eq. (3.2) and the discussion thereafter], an atom with coordinate r(t) will experience a
time-dependent electric field in its rest frame.

Assuming constant velocity, the atom’s position is r(t) = vt + r0 where v is the atomic
velocity and r0 is the position of the atom when t = 0. The origin O is chosen to be at one
of the nodes of the standing wave. A diagram of the geometry is shown in Fig. 3.2. The
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Figure 3.2: Parameters of atomic trajectory. The atom’s position r(t) and velocity v are
shown for some time t > 0 and have been projected onto two planes: (a) the plane formed
by the vectors k and v, where k is the wave-vector of the standing wave of light, and (b)
the plane normal to k and containing the origin O. A contour plot of the spatial extent
of the light intensity is shown for reference; white and purple indicate minimal (zero) and
maximal intensity, respectively. Here r0‖ and r0⊥ correspond to the components of r(t) that
are parallel and perpendicular to k when t = 0.
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time-dependent field experienced by the atom is given by

E [r(t)] = E0 cos(kv‖t+ kr0‖) e
−(v2⊥t

2+r20⊥)/r2b , (3.10)

where E(r) is given by Eq. (3.2). Here v‖ = k̂ · v and v⊥ = |v− k̂ v‖| are the components of
the velocity that are perpendicular and parallel to k. Similarly, r0‖ and r0⊥ correspond to
the perpendicular and parallel components of the position r0.

The total time dependence of the electric field in Eq. (3.1) is due to the fast oscillation of
the light at frequency ω and the slow modulation of the amplitude with a frequency kv‖. The
amplitude modulation is additionally characterized by a temporal Gaussian envelope with a
characteristic width rb/v⊥, which is the amount of time an atom spends within the radius
of the standing wave. We consider non-relativistic atoms for which the conditions ω � kv‖
and ω � v⊥/rb are valid, and the optical oscillations are much faster than the modulation of
the amplitude E [r(t)]. In this case, the ac Stark shift is obtained by substituting Eq. (3.10)
into Eq. (3.7).

Absorption profile

In order to gain a qualitative understanding of the physics, we make the simplifying assump-
tion

E(t) ≈ E0 cos(kv‖t). (3.11)

In this case, the Stark shifts of the ground and excited states lead to the following shift of
the resonant energy of the g → a transition:

ωac(a)− ωac(g) = −αag(E0/2)2 cos2(kv‖t), (3.12)

where
αag ≡ αa − αg, (3.13)

is the difference of the polarizabilities of the ground and excited states. From an atom’s
perspective, this is equivalent to a polarizability-dependent frequency modulation of the two
counterpropagting light fields. Thus, the features of the g → a lineshape can be understood
by studying a related system: stationary atoms with fixed energy levels in the presence of
two counter-propagating, frequency-modulated electric fields. In this subsection, we turn
our attention to such a system.

The frequency-modulated electric fields have instantaneous frequencies ω+ and ω− given
by

ω±(t) = ω ± kv‖ + ωmAm cos(ωmt), (3.14)

where

ωm ≡ 2kv‖ and Am ≡
αagE20
16~kv‖

, (3.15)

are the modulation frequency and modulation index, respectively. Equation (3.14) in-
cludes the term ±kv‖ which accounts for the Doppler shifts of the frequencies of the two
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counter-propagating waves. To derive Eq. (3.14), we used a trigonometric identity to write
cos2(kv‖t) = (1/2)[1 + cos(2kv‖t)] and we neglected the time-independent term because it
can be interpreted as an overall shift of the optical frequency: ω → ω + ωmAm. The instan-
taneous frequency ω±(t) is characteristic of a light field with a time-dependent phase [104].
Such a field is given by

E± = (1/2)E0ei[(ω±kv‖)t+Am sin(ωmt)], (3.16)

where the factor of 1/2 is included so that the total field, which is the sum of two traveling
waves, has an amplitude of E0. Note that the instantaneous frequency is the time derivative
of the argument of E±. The effective field E± can be decomposed in the following way:

E± =
∞∑

n=−∞

(1/2)E0Jn(Am)ei(ω±kv‖+nωm)t, (3.17)

where Jn are Bessel functions of the first kind. Thus the effective field consists of a principal
field (n = 0) which oscillates at a frequency ω ± kv‖, and infinitely many sidebands (n 6= 0)
which oscillate at frequencies ω ± kv‖ + nωm. The amplitude of the electric field of nth
sideband is (1/2)E0Jn(Am).

The total electric field Etot seen by the atom is the sum of the two counter-propagating
light fields. To add the fields, the summation index in Eq. (3.17) is changed from n to n+ 1
and the field E− is expressed as

E− =
∞∑

n=−∞

(1/2)E0Jn+1(Am)ei(ω+kv‖+nωm)t,

where −kv‖+ωm = +kv‖ because the modulation frequency ωm is exactly twice the Doppler
shift. Hence the sidebands of the two counter-propagating waves overlap and the total field
is given by

Etot = E+ + E− =
∞∑

n=−∞

Ẽneiωnt, (3.18)

where

Ẽn ≡
E0
2

[Jn+1 + Jn] and ωn ≡ ω + kv‖ + 2n kv‖. (3.19)

In particular, the first-order sidebands from one field correspond with the carrier of the
other [107], resulting in an absorption profile with a polarizability-dependent distortion.
The “absorption profile” is a plot of the transition rate as a function of ω.

The rate of the g → a transition is given by

R =
∞∑

n=−∞

2π

~2
∣∣∣dinẼn∣∣∣2 Γa/2π

(ωn − ωag)2 + (Γa/2)2
. (3.20)

Equation (3.20) is valid in the electroweak excitation limit, that is, when the excitation
rate R is much smaller than all other relevant rates. To derive Eq. (3.20), we neglected
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Figure 3.3: Absorption profile. Shown is a plot of the transition rate R as a function of
the laser frequency ω for the case of a single atom with parallel speed v‖ = ωD/k, where
ωD is the Doppler broadening of the line. The transition rate is normalized by R0 to have
a maximum value of unity. Here the modulation index satisfies Am < 0. For Am > 0, the
peak on the left is taller than the peak on the right. In the insert, the average transition
rate R is shown in three cases: (a) the condition Γa/4 � ωD is violated, (b) the condition
~ωD . |αag|E2

0 is violated, and (c) both conditions in Eq. (3.22) are satisfied. To generate
these curves, we made use of the approximation k ≈ kag which is valid in the near-resonant
regime (ω ≈ ωag).

the interference of different harmonic components, e.g., Ẽneiωnt and Ẽn′eiωn′ t. Such terms
contribute small corrections to the transition rate which do not affect the qualitative behavior
of the absorption profile. A plot of the absorption profile is given in Fig. 3.3. The single-atom
absorption profile is clearly asymmetric about the atomic resonance (ω = ωag).

For an ensemble of atoms, the absorption profile is obtained by averaging the transition
rate (3.20) over the velocity distribution. The average rate is

R ≡
∫ ∞
−∞
R(v‖)wL(v‖, vC) dv‖, (3.21)

where wL(v‖, vC) is the appropriate probability distribution for the parallel velocity v‖, and

vC is a characteristic speed in the k̂ direction. A plot of the average transition rate is shown
in the insert of Fig. 3.3. For the insert, wL(v‖, vC) is taken to be a Lorentzian distribution
with a full-width at half the maximum value (FWHM) of vC = ωD/k, where ωD is the overall
Doppler broadening of the line. The resulting absorption profile is similar to experimentally
observed lineshapes in Yb (Section 3.3).

The absorption profile exhibits a polarizability-dependent feature: a dip that separates
the profile into two distinct peaks. The sign of the polarizability αag determines whether the
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peak on the left is larger or smaller than the peak on the right. The following conditions
need to be met in order for the distortion to be observed:

Γa/4� ωD and ~ωD . |αag|E20 . (3.22)

The former condition ensures that the sidebands of the FM waves can be resolved. The
latter ensures that the amplitude of the first-order sidebands is not negligible compared
to the amplitude of the carrier, that is, Am 6= 0 for v‖ ≈ vC. If either ωD . Γa/4 or

~ωD � |αag|Ẽ20 , then the asymmetric distortion will be suppressed, as can be seen in the
insert of Fig. 3.3. In this case, the methods described here cannot be used to measure the
polarizability αag. However, the LSM can still be used to measure αag in the absence of the
distortion by comparing displacements of the central peak of the lineshape.

By omitting the Gaussian envelope exp(−v2⊥t2/r2b) in Eq. (3.11), we neglect effects of
the atom’s finite transit time, such as broadening of the spectral line [36]. Nonetheless, the
transit time must satisfy the following restrictions:

v⊥/rb . dinE0/~ and v⊥/rb � ωD, (3.23)

where dinE0/~ is the Rabi frequency of the g → a transition. The former condition represents
a system in which atoms have enough time to undergo excitation to the upper state |a〉, as
will be discussed in Section 3.2. The latter condition ensures that the Doppler broadening is
sufficiently large that most atoms travel through many nodes and antinodes of the standing
wave during their transit.

Although the absorption profile provides a satisfactory illustration of the physics, it
cannot be used to measure the ac polarizabilities. The transition rate presented in Eq. (3.20)
is valid only in the electroweak excitation limit and therefore cannot account for saturation
effects. Moreover, Eq. (3.20) does not properly take into account interference of different
probability amplitudes, nor does it include finite transit-time effects. A more complete
picture is required to generate a theoretical lineshape that can be fitted to experimental
data. Such a picture is achieved by the following model.

Fluorescence probability

Hereafter, we return our attention to the original system: moving atoms illuminated by
light with a fixed frequency ω. The spectral lineshape of the g → a transition is modeled
by computing the probability of emission of fluorescent light of frequency ωbg as a function
of laser frequency ω. The computation involves three steps. First, the time-dependent
population ρbb of the state |b〉 is computed by numerically solving the optical Bloch equations
(OBE) for the case of atoms traveling through a non-uniform field (see Fig. 3.2). Second,
the probability of fluorescence F is determined by integrating the time-dependent decay rate
Γbρbb with respect to time. Finally, the average fluorescence probability F is computed by
taking a weighted average of F with respect to the atomic velocity v and the offset r0.
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Although the LSM can be used in conjunction with any atomic source, our model makes
use of distributions that are appropriate for a collimated beam of thermal atoms traveling in
a direction that is orthogonal to the standing wave. In this case, v⊥ represents the component
of the atom’s velocity along the atomic beam, and v‖/v⊥ represents the angular spread of
the beam. The corresponding velocity distribution is

w(v) = wT(v⊥, vT)wL(v‖, vC), (3.24)

where
wT(v⊥, vT) = 2(v3⊥/v

4
T)e−(v⊥/vT)

2

, (3.25)

is the distribution of velocities appropriate for thermal atoms escaping from a hole, and
wL(v‖, vC) is the velocity distribution appropriate for a collimated atomic beam. Here vT =√

2kBT/M is the thermal speed of the atom, T is the temperature of the oven, M is the
atom’s mass, kB is Boltzmann’s constant, and vC is the characteristic speed determined by
the atomic-beam collimator. To model the effects of a vane collimator, we approximate the
spread of parallel velocities by a Lorentzian distribution with a FWHM of vC = ωD/k, where
ωD is the overall Doppler broadening of the line.

In the following model, we use dimensionless parameters. Dimensionless parameters
ease computation, and potentially facilitate the application of the model to several different
atomic systems. Throughout, we make the approximation k ≈ kag which is valid in the
near-resonant regime (ω ≈ ωag).

Time is measured in units 1/Γa. We define the dimensionless time τ ≡ Γa t and decay
rates Gb ≡ Γb/Γa, Gc ≡ Γc/Γa, Gab = Γab/Γa, and Gac = 1 − Gab. We further define the
dimensionless perpendicular and parallel velocities u⊥ ≡ v⊥/vT and u‖ ≡ v‖/vC, and the
dimensionless perpendicular and parallel offsets ξ ≡ r0⊥/rb and ϕ ≡ kr0‖, respectively.

Consistent with the discussion in Section 3.2, we introduce the following dimensionless
parameters: the saturation parameter S0, characteristic modulation index S1, and Doppler
parameter S2, defined by

S0 ≡ [dinE0/(~Γa)]
2 , (3.26)

S1 ≡ αagE20/(16~ωD), (3.27)

and
S2 ≡ 2ωD/Γa, (3.28)

respectively. We define an additional parameter S3 by

S3 ≡ vT/(rbΓa). (3.29)

Note that rb/v⊥ is the time that an atom spends within the radius of the light field and
hence 1/(S3 u⊥) represents the dimensionless transit time.

In terms of the dimensionless parameters, the conditions presented in expressions (3.22)
reduce to S2 � 1/2 and |S1| & 1/16. When either of these conditions is violated, the
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characteristic dip in the lineshape is suppressed, as can be seen in Fig. 3.4. Likewise, con-
ditions (3.23) reduce to S3 .

√
S0 and S3 � (1/2)S2. Whereas the absorption profile

discussed in Section 3.2 was valid only in the weak excitation limit (S0 � 1), the model of
the fluorescence can accommodate large saturation parameters.

Let ρnm be the elements of the density matrix in the atom’s rest frame for states n,m ∈
{g, a, b, c}. We assume that the rotating wave approximation holds and dynamic interactions
between states other than |g〉 and |a〉 can be neglected. In this case, the dimensionless optical
Bloch equations (OBE) for the configuration shown in Fig. 3.1 are [84]

ρ̇aa = − i
2

Ω(ρag − ρga)− ρaa, (3.30a)

ρ̇ag = +
i

2
Ω(ρgg − ρaa)−

1

2
(1− 2i∆)ρag, (3.30b)

ρ̇bb = −Gbρbb +Gabρaa, (3.30c)

ρ̇cc = −Gcρcc +Gacρaa, (3.30d)

where ρ̇nm = d(ρnm)/dτ . The remaining density matrix elements ρgg and ρga are determined
from

∑
n ρnn = 1 and ρga = ρ∗ag. Here

Ω ≡ 1

Γa

[
〈a|d · ε|g〉E(t)

~

]
=
√
S0 f(ξ,u), (3.31)

is the Rabi frequency,

∆ ≡ 1

Γa

[
ω − ω(a)− ω(g)

~

]
= δ + 2S1S2 f(ξ,u)2, (3.32)

is the detuning of the laser light from the resonance, δ ≡ (ω − ωag)/Γa, and the function
f(ξ,u) is defined by

f(ξ,u) ≡ cos[(S2/2)u‖τ + ϕ]e−[(S3u⊥τ)
2+ξ2], (3.33)

where ξ = (ϕ, ξ) and u = (u‖, u⊥). We further assume that all atoms initially occupy the
ground state.

The probability that an atom will emit fluorescent light of frequency ωbg in a time interval
[τi, τf ] is given by

F =

∫ τf

τi

Gb ρbb(τ) dτ, (3.34)

where Gb ρbb(τ) is the time-dependent rate of the b → g decay. The choice of integration
interval [τi, τf ] depends on both the transit time and the characteristic time of the fluorescent
decay after the atoms leave the light field. In the case where the a → b → g decay time
is shorter than the transit time, it is appropriate to define the integration limits by −τi =
τf = 3/(S3 u⊥). The factor of 3 ensures that the atom is “far” from the standing wave at the
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Figure 3.4: Results of simulation. The simulated lineshape F(δ) is shown for two different
values each of the modulation index S1 and the Doppler parameter S2, as indicated by the
insert: (a) the condition S2 � 1/2 is violated, (b) the condition |S1| & 1/16 is violated, and
(c) both conditions are satisfied. For each curve, the saturation parameter is S0 = 1.0. The
lineshapes are normalized by the maximum peak height F0. To ease comparison, the middle
and top curves are shifted vertically by 0.7 and 1.0, respectively.

integration limits. To model a system with slower decays, the integration limit τf must be
extended.

The fluorescence probability depends on the parameters of the atomic trajectory, that is,
F = F(ξ,u). We define the average probability of fluorescence by

F =

∫∫
F(ξ,u)w(ξ,u) dξ du, (3.35)

where w(ξ,u) is the probability distribution associated with the atom’s initial position and
velocity. In our model, we assume w(ξ,u) = w1(ξ)w2(u), where the distribution w1 is a
uniform distribution over the intervals ξ ∈ [−3, 3] and ϕ ∈ [−π, π]. The finite integration
limits are justified by the following properties of the system: First, the amplitude of the
standing wave drops to less than 0.01% of its maximum value when |ξ| > 3. Therefore,
atoms will only pass through the light if |ξ| . 3. Second, ϕ constitutes a phase shift of
the electric field which is unique only for ϕ ∈ [−π, π]. Consistent with Eqs. (3.24) and
(3.25), the velocity distribution satisfies w2(u) = wT(u⊥, 1)wL(u‖, 1), where wT(u⊥, 1) is the
velocity distribution for atoms escaping from a hole with unit thermal speed, and wL(u‖, 1)
is a Lorentzian distribution with FWHM of 1.

The fluorescence probability is a function of the detuning δ from the atomic resonance,
that is,

F = F(δ; S,G), (3.36)
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where S ≡ (S0, S1, S2, S3) and G ≡ (Gab, Gb, Gc) are parameters. We refer to a plot of
F(δ; S,G) as a function of δ as the “simulated lineshape” of the g → a transition. Three such
plots are shown in Fig. 3.4. In Fig. 3.4, curves (a) and (b) demonstrate the suppression of the
polarizability-dependent distortion when either the Doppler parameter S2 or the modulation
index S1 is too small. The distortion is most pronounced in curve (c), for which S2 � 1/2 and
|S1| & 1/16. The simulated lineshapes in Fig. 3.4 are qualitatively similar to the absorption
profiles in the insert of Fig. 3.3, as expected.

Numerical procedure

The numerical procedures described here are valid for a variety of atomic species. How-
ever, the simulations were performed with parameter values appropriate for the Yb system
described in Section 3.3.

We used a stiffly stable Rosenback method [98] to numerically solve a system of equations
related to Eqs. (3.30) and (3.34), with −τi = τf = 3/(S3 u⊥). This system of equations is de-
scribed in Appendix B.2. The Rosenback method involves two tolerances–denoted atol and
rtol in Ref. [98]–which were both set to 10−5. The multi-dimensional integral in Eq. (3.35)
was computed using an adaptive Monte Carlo routine [98]. In our implementation, the inte-
gration routine involves 105 evaluations of the integrand. For various values of S, the average
estimated error was less than 1% of the value of the integral.

For computational purposes, we restricted the integration to the following finite domain:
ξ ∈ [−3, 3], ϕ ∈ [−π, π], u⊥ ∈ [0, 3], and u‖ ∈ [−6, 6]. The subdomains for ξ and ϕ were
discussed after Eq. (3.35). The finite integration subdomains for u‖ and u⊥ are justified as
follows: Atoms with a large parallel speed |u‖| experience a Doppler shift that is much larger
than the characteristic Doppler broadening of the spectral line. Such atoms only contribute
to the wings of the lineshape, where |δ| is large and the probability of fluorescence is very
small. Moreover, for a Lorentzian velocity distribution with unit FWHM, |u‖| ≤ 6 for about
95% of atoms.

On the other hand, atoms with a perpendicular speed that satisfies u⊥ �
√
S0/S3 are

moving so fast that the transit time is much smaller than the inverse Rabi frequency. Such
atoms do not spend enough time in the light field for the g → a transition to be realized.
Since most atoms travel at or near the thermal speed u⊥ = 1, the condition

√
S0/S3 & 1

represents a system in which most atoms have enough time to interact with the light. We
assume that atoms with speed u⊥ > 3 do not contribute significantly to the lineshape. Note
that u⊥ > 3 for only about 0.1% of atoms. Finally, we ignore counterflow of atoms in the
atomic beam by requiring u⊥ ≥ 0.

For fixed G = (0.35, 0.45, 0) and S3 = 0.53, we computed the average fluorescence
F(δ; S,G) for 100 discrete values of δ ∈ [δ−, δ+], and various discrete values of S0 ∈ [0.1, 10],
S1 ∈ [0.01, 1], and S2 ∈ [1, 100]. Here δ± ≡ 2S1S2 ± 3[(1/2)S2 + Gb + 1]. The results were
interpolated using cubic splines to approximate the continuous function F(δ; S,G). Three
curves which are typical of those produced by this procedure are presented in Fig. 3.4.
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The LSM involves fitting the simulated curve F(δ; S,G) to the observed lineshape to
determine best-fit values of S0, S1, and S2. From the best-fit values, the following three
quantities can be calculated: the polarizability difference αag, the circulating power P of the
standing wave,2and the Doppler broadening ωD of the g → a transition which are given by

αag =

[
8 d2in
~Γa

]
× S1S2/S0, (3.37)

P =
1

α

[
rb~Γa
8din

]2
× S0, (3.38)

and
ωD = (Γa/2)× S2, (3.39)

respectively. Here α ≈ 1/137 is the fine structure constant. The present implementation of
the LSM uses Mathematica’s nonlinear regression routine to determine the best-fit values of
S0, S1, and S2. Alternatively, Eq. (3.38) can be solved for din in terms of P and S0. Thus
the LSM can also be used to measure the induced dipole moment when the power is known,
as was done in the previous application of the LSM [107].

The treatment of systematic errors and statistical uncertainties is straightforward. In
Eq. (3.37), for instance, the uncertainty in the dimensionful quantity d2in/(~Γa) is due solely
to systematic effects, whereas the uncertainty in the term S1S2/S0 arises from statistical
uncertainties in both the observed signal and the fitting algorithm. The total uncertainty
of the quantity αag is obtained by adding these independent uncertainties in quadrature. If
the signal-to-noise ratio (SNR) of the observed lineshape is sufficiently high, then the error
of the measurement of αag will be dominated by the uncertainties of the known quantities
din and Γa.

3.3 Application to ytterbium

The electronic structure of Yb is shown in Fig. 3.5. The low-lying energy eigenstates of Yb
match the structure shown in Fig. 3.1 under the following mapping: g = 1S0, a = 3D1,
b = 3P1, and c = 3P0. Therefore, the LSM can be used to measure the difference in ac
polarizabilities of the upper state 3D1 and the ground state 1S0 at 408 nm by analyzing the
lineshape of the 408-nm 1S0 → 3D1 transition. In this case, the lineshape is measured by
observing the 556-nm fluorescence of the 3P1 → 1S0 decay. The intermediate state 3P0 is
metastable and hence Γc ≈ 0.

2The standing wave is formed by two counter-propagating waves of light. The circulating power of
the standing wave is defined as the average power of a single traveling wave. The electric field of the
wave propagating in the ±k̂ direction is given by E1(r, t) = (1/2)E0 exp[−(r⊥/rb)2] cos(kr‖ ± ωt). The
corresponding time-averaged intensity in SI units is I(r⊥) = (1/32πα)E20 exp[−2(r⊥/rb)2], where the time
average is taken over a single period of oscillation. Therefore, the circulating power of the standing wave is
given by P ≡

∫∞
0
I(r⊥) 2πr⊥ dr⊥ = (1/64α)r2bE20 .
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Figure 3.5: Ytterbium energy levels. Shown are the low-lying energy eigenstates of Yb and
the electronic transitions relevant to the polarizability experiment.

There is an additional decay of 3D1 to the metastable state 3P2, which is not shown in
Fig. 3.1. The state c can represent multiple metastable states, including both 3P1 and 3P2.
In this interpretation, Γac is the rate of decay of 3D1 to all metastable states.

The highly forbidden 1S0 → 3D1 transition is induced by the Stark mixing technique.
This technique involves the application of a static, uniform electric field E which mixes the
upper state 3D1 with opposite-parity states, predominantly the 1P1 state. The effective
dipole moment din associated with the Stark-induced transition is given by [107]

din = βag|(E× ε)
(1)
−Ma
|, (3.40)

where βag = 2.18(10) × 10−8 e · a0 · (V/cm)−1 is the vector transition polarizability of the
1S0 → 3D1 transition, e is the elementary charge, a0 is the Bohr radius, and (Edc × ε)(1) is
a spherical tensor of rank one.3Here Ma is the magnetic quantum number of the 3D1 state.

Because the angular momentum of the ground state 1S0 is Jg = 0, only the scalar term
in Eq. (3.9) contributes to the polarizability of 1S0. That is, αg = α0(

1S0) and so αg is
independent of the geometry of the applied fields. Hence the dependence of αag on the field

3Let A(1) be the rank-one spherical tensor associated with the Cartesian vector A. Then the components

of A(1) are given by A
(1)
0 = Az and A

(1)
±1 = ∓(Ax ± iAy)/

√
2.
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geometry is due entirely to the vector and tensor polarizabilities α1(
3D1) and α2(

3D1) of the
excited state 3D1. In this case, the LSM is sensitive to the difference of the scalar polarizabil-
ities of the ground and excited states. However, the vector and tensor polarizabilities of the
excited state can be measured unambiguously by varying the polarization of the standing
wave.

A recent calculation [37] of the polarizability of the ground state 1S0 at 408 nm yielded4

α0(
1S0) = 0.570(3) Hz · (V/cm)−2. (3.41)

Calculations of the polarizability 3D1 at 408 nm are complicated by the potential existence of
odd-parity eigenstates with energy close to twice the energy of a 408-nm photon. Such states
could lead to a resonantly enhanced polarizability of the 3D1 state. The energy spectrum
in this region (which is below the ionization limit) is very dense due to the excitation of 4f
orbitals. The knowledge of the energy spectrum is far from complete in this region. This
provides one of the motivations for determining the polarizabilities experimentally.

The first implementation of the LSM [107] was used to measure the quantity5

αI
ag = −0.624(68) Hz · (V/cm)−2, (3.42)

were αI
ag = α2(

3D1)+α0(
3D1)−α0(

1S0). Here the superscript “I” is introduced to distinguish
this measurement from the results of the present work. To determine the tensor contribution
α2(

3D1) unambiguously requires a second measurement of a different combination of scalar
and tensor polarizabilities. This is accomplished in the present work by the application
of a dc electric field that is parallel to the standing wave (Fig. 3.6), whereas the previous
measurement was performed with a dc field that was perpendicular to the standing wave. In
addition, the current experiment includes a strong magnetic field not present in the previous
case. The magnetic field makes possible the measurement of the vector polarizability, as
discussed in Section 3.4.

Experimental apparatus and field geometry

The details of the experimental apparatus were reported elsewhere [112], and only a brief
description is provided here. A schematic of the setup is shown in Fig. 3.6. A beam of Yb
atoms is produced by a stainless-steel oven loaded with Yb metal, operating at 500 ◦C. The
oven is outfitted with a multislit nozzle, and there is an external vane collimator reducing
the spread of the atomic beam in the z-direction. Downstream from the collimator, atoms
enter a region with three external fields: a uniform, static magnetic field B; a uniform, static
electric field E; and a non-uniform, dynamic electric field E(r, t).

4Equation (3.7) implies that αag has units of energy per squared electric field. However, in this work
αag is normalized by 2π~ and presented in units of frequency per squared electric field. For a more thorough
discussion of unit conventions, see Ref. [88].

5 The quantity αI
ag presented here is larger than the analogous quantity presented in Ref. [107] by a

factor of 2. This difference is due to the fact that we adopt a different convention for the Stark shift than is
used in that work.
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Figure 3.6: Experimental apparatus. A collimated beam of ytterbium atoms interacts with
a standing wave of light in the presence of dc electric and magnetic fields. The light is
resonant with the 408-nm 1S0 → 3D1 transition, and the 556-nm fluorescence is detected by
the photomultiplier tube (PMT). The neodymium (Nd) magnets are axially magnetized in
the z-direction. The standing wave is generated in a power buildup cavity (PBC). With the
exception of the PMT, the apparatus is contained in a vacuum chamber.
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Figure 3.7: Results of fitting program. Shown is a comparison of the observed and the
simulated lineshapes of the 1S0 → 3D1 transition. The data correspond to Run 3 in Table
3.1. Also shown are the residuals, magnified by a factor of 10. The residuals are the difference
of the data and the simulation.

The magnetic field B is generated by a pair of axially magnetized neodymium (Nd) mag-
nets. These magnets produce a field with sufficient strength (more than 50 G) to completely
isolate the Zeeman sublevels of the upper state 3D1. The electric field E is generated by two
wire-frame electrodes separated by 2 cm. The ac electric field E(r, t) is due to standing-wave
light at the transition wavelength of 408.346 nm in vacuum, which is produced by doubling
the frequency of the output of a Ti:sapphire laser (Coherent 899). About 7 mW of 408-nm
light is coupled into a power buildup cavity (PBC) with finesse of approximately 15,000. The
PBC is an asymmetric cavity with a flat input mirror and a curved back mirror with a 50-cm
radius of curvature. The separation between the mirrors is 22 cm. Fluorescent light with
a wavelength of 556 nm is collected with a light guide and detected with a photomultiplier
tube (PMT). With the exception of the PMT, the entire apparatus is contained within a
vacuum chamber with a residual gas pressure of 3× 10−6 Torr.

As can be seen in Fig. 3.6, the fields B and E point in the ẑ direction. Likewise, the
standing wave is oriented along the z-axis. The light field E(r, t) lies in the xy-plane. For
this geometry, the transition to the upper state |3D1;Ma = 0〉 is suppressed.

The polarization of the light field is of the form ε = εx x̂ + εy ŷ, where |εx|2 + |εy|2 = 1.
To further characterize the polarization, we introduce three parameters: polarization angle
θ, degree of ellipticity φ, and handedness h, which are given by [4]

tan 2θ = 2 Re(εxε
∗
y)/(|εx|2 − |εy|2), (3.43)

sin 2φ = 2 |Im(εxε
∗
y)| = |i(ε× ε∗) · ẑ|, (3.44)
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Table 3.1: Summary of results. The uncertainty in the fitted parameters is the asymptotic
standard error returned by the fitting algorithm.

Run c0 ·102 c1 ·102 S0 S1 S2 S1S2/S0

1 5.1(1) 5.5(4) 2.83(17) -0.208(3) 34(1.1) -2.53(16)
2 5.0(1) 3.2(3) 2.76(16) -0.215(3) 30(1.1) -2.33(17)
3 5.4(1) 7.0(3) 2.68(12) -0.187(2) 34(1.0) -2.35(13)
4 5.0(1) 4.7(3) 2.56(17) -0.195(3) 29(1.1) -2.22(17)

Avg.: 2.70(7) -0.199(1) 31.8(5) -2.36(8)

and
h = −sgn[i(ε× ε∗) · ẑ]. (3.45)

Linearly, circularly, and elliptically polarized light are described by φ = 0, φ = π/4, and
0 < φ < π/4, respectively. The sense of rotation is determined by h: left and right-handed
polarizations correspond to h = +1 and h = −1, respectively. Substituting E = E ẑ and
ε = εx x̂ + εy ŷ into Eqs. (3.40) and (3.9) yields

din = βagE
√

(1/2)[1 + hMa sin(2φ)], (3.46)

and

αa = α0(
3D1)− hMa sin(2φ)α1(

3D1)−
1

2
α2(

3D1), (3.47)

for Ma = ±1. Here we have used Eqs. (3.44) and (3.45) to eliminate εx and εy in favor of
the degree of ellipticity φ and the handedness h. For this geometry, both din and αa are
independent of the polarization angle θ.

According to the geometry in Fig. 3.6, the component of the atom’s velocity that is
perpendicular to the standing wave is v⊥ = (v2x + v2y)

1/2. The output of the oven is about
6 mm in the y-direction, and is located more than 20 cm away from the standing wave. In
order for an atom to pass through the standing wave, its velocity components must satisfy
|vy/vx| ≤ 0.015. Therefore, the approximation v⊥ = vx is valid and the use of the thermal
distribution given in Eq. (3.25) is justified. However, for a high-precision measurement, the
effect of this approximation needs to be investigated.

Data analysis

The data were acquired over four separate experiments (runs). During each run, approxi-
mately 2000 lineshapes were recorded at a rate of about 100 ms per lineshape and an average
lineshape was computed. This procedure resulted in 4 lineshapes, each with an effective in-
tegration time of about 200 s. A typical lineshape is shown in Fig. 3.7. After fitting the
theoretical model to the data, the statistical uncertainties of each run were scaled to give a
reduced χ2 of unity. The scale factor varied between 4.0 and 4.7 depending on the run. The
resulting error bars are shown in the figure. The relatively large scale factor indicates that
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the accuracy of the fit is dominated by either systematic distortion of the profile during the
scan, or profile features that are neglected in the theoretical model, but not by the statistical
uncertainty of the signal.

In the present experiment, the oven temperature was T = 500(50) ◦C and the magnitude
of the dc electric field was E = 4.24(6) kV/cm. The atoms intersect the standing wave in the
middle of the PBC where the radius of the light beam is rb = 196(5) µm. We used linearly
polarized light with φ = 0(1)◦. Then Eqs. (3.37) through (3.39) become

αII
ag = [0.134(17) Hz · (V/cm)−2]× S1S2/S0, (3.48)

P = [5.02(98) W]× S0, (3.49)

and
ωD = [2π × 0.209(17) MHz]× S2, (3.50)

where αII
ag = α0(

3D1) − (1/2)α2(
3D1) − α0(

1S0). Here the superscript “II” is used to dis-
tinguish the results of the present work from the previous measurement. The dimensionless
decay rates are Gab = 0.35(4), Gb = 0.45(4), and Gc = 0, and the parameter S3 is given by
S3 = 0.53(5).

As part of our analysis, we normalized the observed and simulated lineshapes by their
maximum values. In addition, we introduced two calibration parameters to the simulated
curve:

F(x; S,G, c) = (1 + c0)F((1− c1)x; S,G)− c0, (3.51)

where c = (c0, c1). Here c0 accounts for the background of the observed signal. The param-
eter c1 is a scaling factor that accounts for any variation in the calibration of the frequency
axis of the data relative to the simulation. Such deviations could arise due to misalignment
of the atomic beam relative to the axis of the PBC, deviations in the perpendicular velocity
distribution, or the uncertainty of the timescale 1/Γa. In practice, both c0 and c1 represent
very small corrections, with typical values on the order of 0.05 (see Table 3.1).

The results of the fitting for each run are given in Table 3.1. Combining these results
with Eqs. (3.48) through (3.50) yields

αII
ag = −0.316(42) Hz · (V/cm)−2, (3.52)

P = 13.6(2.6) W, and ωD = 2π × 6.58(53) MHz. The measured values of the circulating
power P and the Doppler broadening ωD are consistent with (and more precise than) direct
measurements of these quantities. A comparison of the data to the fit is shown in Fig. 3.7.
The quality of both the data and the fit are sufficiently high that the uncertainty of the mea-
sured value of αII

ag is primarily due to the uncertainties in the vector transition polarizability
βag and the linewidth Γa. A summary of the factors that contribute to the uncertainty of
the measurement are shown in Table 3.2.

The quantity αII
ag = α0(

3D1)− (1/2)α2(
3D1)− α0(

1S0) is a combination of the ac scalar
and tensor polarizabilities of the states 3D1 and 1S0. The tensor polarizability of 3D1 is



CHAPTER 3. MEASUREMENT OF AC POLARIZABILITIES IN YTTERBIUM 50

Table 3.2: Error budget. Shown are the factors contributing to the uncertainty of the
measured value of αII

ag.

Factor Uncertainty (%)
Vector transition polarizability (βag) 9
Lifetime of 3D1 8
Light polarization 4
DC electric field 3
Simulation and data fit 3
Total (in quadrature) 13

determined unambiguously by comparing the present measurement of αII
ag with the previous

measurement of αI
ag, which was discussed after Eq. (3.42). We find

α2(
3D1) = −0.205(53) Hz · (V/cm)−2, (3.53)

and
α0(

3D1)− α0(
1S0) = −0.418(36) Hz · (V/cm)−2. (3.54)

Finally, the scalar polarizability of 3D1 is isolated by substituting the calculated value
α0(

1S0), given by Eq. (3.41), into Eq. (3.54):

α0(
3D1) = 0.151(36) Hz · (V/cm)−2. (3.55)

In the presence of linearly polarized light, the polarizability of 3D1 is dominated by the
tensor polarizability. However, for light with arbitrary polarization, α1(

3D1) also plays a
role. Measurement of the vector polarizability is the subject of ongoing experiments.

The tensor-to-scalar ratio of the polarizabilities of the 3D1 state is −1.36(48). This ratio
is consistent with the claim that the polarizability of 3D1 is dominated by near-resonant
mixing of 3D1 with a high-lying J = 2 state; in that case, we would expect the tensor-to-
scalar ratio to be −1 (see Appendix B.1). Measurement of the vector polarizability could
provide additional information about such a high-lying J = 2 state: if it existed, then the
scalar-to-vector polarizability ratio would be (2/3)(1−ωJ=2/ω), where ωJ=2 is the energy of
the hypothetical J = 2 state.

3.4 Summary and Outlook

This work is part of a continuing investigation of polarizabilities in Yb. The ac scalar and
tensor polarizabilities of the excited 3D1 state in Yb were measured independently for the
first time. Ongoing experiments are focused on measuring the ac vector polarizability, for
which there is currently no experimental or theoretical data.

To measure the vector polarizability, the 1S0 → 3D1 transition must be excited using
circularly polarized light, as can be seen in Eq. (3.47). Such a measurement requires control
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over the ellipticity of the light. In the present experimental setup, only two Zeeman sublevels
(Ma = ±1) are excited. The degree of ellipticity can be measured by comparing the relative
strengths of the transitions to different sublevels. For purely circularly polarized light, only
one sublevel is excited. This condition is ideal for measurement of the vector polarizability.

In this chapter, we presented the next generation of the Lineshape Simulation Method
(LSM) for measuring combinations of polarizabilities of the ground and excited states in
atoms. The LSM was originally developed specifically for Yb, but we have generalized the
method for an arbitrary atomic system with the level structure shown in Fig. 3.7. For
example, the LSM could be used to measure the polarizabilities of the 6S and 7S states in
cesium by observing the lineshape of the 539-nm 6S → 7S transition driven by a standing
wave of light [119].
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Chapter 4

Novel schemes for measuring APV

In this chapter, we propose two methods for measuring APV using two-photon transitions,
the all-optical scheme (AOS) and the degenerate photon scheme (DPS). Both techniques can
be thought of as extensions of the single-photon Stark interference method. The AOS replaces
static electric and magnetic fields with optical ones via the introduction of a second light
source. On the other hand, the DPS–which requires only a single light source–is essentially
the same as the Stark interference method except that nuclear-spin-independent sources
of APV are eliminated by taking advantage of the bosonic nature of photons. This work
originally appeared in Refs. [38] and [39].

4.1 APV in J = 0→ 0 two-photon transitions

In addition to well-established Stark-interference techniques, there are various extensions:
Light-shift measurements of amplitude interference have been proposed for various sys-
tems [57], including atoms [16], single trapped ions [59, 117], two-ion entangled states [86],
and chiral molecules [6, 70]. The potential advantages of using electromagnetically in-
duced transparency to measure APV-induced optical rotation in thallium have been in-
vestigated [29]. It has also been proposed to employ interference of a parity conserving
two-photon transition with a parity violating single-photon transition in cesium [68, 69].

All these methods rely on application of static external electric and magnetic fields to
amplify and discriminate APV effects. Misalignments of applied fields introduce systematic
uncertainties limiting the precision of APV measurements [111]. In this section, we present
a scheme for measuring NSI APV that replaces static fields with optical fields, which are
easier to align. The proposed scheme uses a two-photon transition between energy eigen-
states of zero electronic angular momentum. Amplification of APV effects is achieved by
interference of two transition amplitudes: a parity conserving amplitude describing electric-
dipole-magnetic-dipole (E1-M1) transitions, and a parity violating E1-E1 amplitude. The
APV signal can be discriminated from the large parity conserving background by manip-



CHAPTER 4. NOVEL SCHEMES FOR MEASURING APV 53

ulating properties of the light fields. A further advantage of this scheme is the ability to
measure spurious electric and magnetic fields. This method, which we call the all-optical
scheme (AOS), is applicable to a variety of atomic systems.

We consider an application of the AOS that takes advantage of the large NSI APV mixing
of the 6s6p 1P1 and 5d6s 3D1 states observed in ytterbium [111]. Precise measurements of
this mixing in a chain of isotopes will provide important information about nuclear structure
and facilitate a search for physics beyond the Standard Model [23, 48], two major goals of
ongoing Stark-interference experiments [111]. Systematic errors due to imperfections of
applied fields pose a challenge for APV experiments, and cross-checks of present and future
measurements are highly valuable. In the case of cesium, for instance, a cross check was
provided by a stimulated-emission experiment [65, 66]. To this end, we propose applying
the AOS to the ytterbium two-photon (λ1 = 399 nm, λ2 = 1.28 µm) 6s2 1S0 → 6s6p 3P0

transition to measure the parity-violating mixing of the intermediate 6s6p 1P1 state with the
5d6s 3D1 state.

From a formal point of view, the AOS is equivalent to measuring optical rotation induced
by APV on an M1 transition [15]. However, the AOS provides more field reversals compared
to traditional optical rotation experiments, thereby allowing for better discrimination of
systematic effects from the APV signal. For the ytterbium system, a scheme for measuring
APV-induced optical rotation on the 1.28 µm 6s6p 3P0 → 6s6p 1P1 has previously been
proposed [79]. The AOS has two advantages over that proposal: the light fields are cw
rather than pulsed, bypassing the challenges of achieving a high repetition rate; and, APV
effects are measured by observing population of the metastable 6s6p 3P0 state, which allows
for measurement in a region where detection conditions are easier to optimize.

All-optical scheme

We consider atoms illuminated by two light fields, with polarization vectors εj, propaga-
tion vectors kj, and frequencies ωj, where j = 1, 2 is the light-field index. We denote the
wavenumbers kj ≡ |kj| = ωj/c, the wavelengths λj = 2π/kj, and the field intensities Ij. The
light fields drive two-photon transitions from initial state |i〉 to final state |f〉, separated in
energy by ωfi. The transition rate on resonance (ω1 + ω2 = ωfi) is [53]:

R = (2π)3α2I1I2|A|2
2

π Γ
, (4.1)

where α is the fine-structure constant, A is the transition amplitude, and Γ is the width
of the transition. Energy eigenstates are represented as |i〉 = |JiMi〉, and likewise for |f〉.
Here Ji and Mi ∈ {±Ji,±(Ji − 1), . . .} are quantum numbers associated with the electronic
angular momentum and its projection along the quantization axis, respectively.

The AOS uses a two-photon transition from an initial state with Ji = 0 to an opposite-
parity final state with Jf = 0. The transition is enhanced by the presence of an intermediate
state |n〉 with Jn = 1. The character of the two-photon transition depends on the magnitude
of the detuning of the light fields from the one-photon resonances involving the intermediate
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Figure 4.1: Energy levels and transitions relevant to the AOS. The dashed ellipse represents
mixing of the states |n〉 and |a〉 due to the electroweak interaction. The dotted horizontal line
represents the detuning of the light fields from the intermediate state. Thick, solid arrows
and thin, dashed arrows illustrate dominant and suppressed excitation paths, respectively.

state [110]. When the detuning is small, the final state is populated by cascade excitation,
that is, consecutive single-photon i → n and n → f transitions. We work in the opposite
regime of large detuning [see condition (4.11) below]. In this regime, the excitation occurs
via a pure two-photon transition and the population of the intermediate state is negligible.

The probability amplitude for the i → f transition has two contributions: one from a
parity conserving E1-M1 transition, and another from a parity violating E1-E1 transition.
The E1-E1 transition is induced by mixing of the intermediate state1 |n〉 with opposite-parity
J = 1 states via the electroweak interaction. We assume that this mixing is dominated by a
single nearby state |a〉 with Ja = 1 (Fig. 4.1). The proximity of |a〉 to |n〉 leads to an M1-E1
excitation path for the i → f transition that uses the intermediate state |a〉 rather than
|n〉. We incorporate the amplitude of this path into the expression for the E1-M1 amplitude
below.

In the absence of stray fields, the amplitude for a two-photon Ji = 0→ Jf = 0 transition

1 Alternatively, the E1-E1 transition could be induced by mixing of the final state |f〉 with opposite-
parity J = 0 states. Such a scheme is equivalent to the AOS, and shares the key features of the AOS
presented in this work.
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is (Appendix A):
A = AE1−M1 + Aw, (4.2)

where
AE1−M1 = [M(ω1)k̂2 −M(ω2)k̂1] · (ε1 × ε2) (4.3)

and
Aw = i[ζ(ω1) + ζ(ω2)](ε1 · ε2) (4.4)

are the amplitudes corresponding to the E1-M1 and electroweak interaction induced E1-E1
transitions2. The quantities M(ωj) and ζ(ωj) are

M(ωj) =
1

3

(
µfn dni
ωni − ωj

+
dfa µai
ωai − ωj

)
(4.5)

and

ζ(ωj) =
1

3

dfa Ωan dni
ωna

(
1

ωni − ωj
− 1

ωai − ωj

)
, (4.6)

where µfn and dni are the reduced matrix elements of the magnetic- and electric-dipole
moments, respectively. Here ωna is the energy difference of states |a〉 and |n〉, and Ωan is the
magnitude of the reduced matrix element of the NSI APV Hamiltonian HNSD [see Eq. (D.12)
in the Appendix].

The two terms in each of Eqs. (4.5, 4.6) correspond to the two different excitation paths
for the transition. If states |n〉 and |a〉 were perfectly degenerate (ωna = 0), the induced
E1-E1 paths would interfere destructively and the parity violating amplitude vanishes. We
limit our discussion to atomic systems for which ωna is sufficiently large that one path is
dominant. We assume that ∆ = ω1 − ωni is much smaller than all other detunings from the
intermediate states |n〉 and |a〉. In this case, only

M(ω1) ≈M ≡
1

3

µfn dni
∆

(4.7)

and

ζ(ω1) ≈ ζ ≡ 1

3

dfa Ωan dni
ωna∆

(4.8)

contribute significantly to Eqs. (4.3, 4.30). Because M and ζ have the same complex
phase [78], the relative phase between AE1−M1 and Aw is determined by the field geome-
try. Hereafter, we assume that M and ζ are real parameters since their common phase is
irrelevant.

The goal of the AOS is to observe interference of amplitudes Aw and AE1−M1 in the rate
R. As Eqs. (4.1-4.30) show, R consists of a large parity conserving term proportional toM2,

2 The E1-M1 amplitude is a product of the matrix elements of the operators describing E1 and M1
single-photon transitions. Because the E1 (M1) operator is odd (even) under spatial inversion, the E1-M1
amplitude is a pseudoscalar. A similar argument shows that the E1-E1 amplitude is a normal scalar.
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a small parity violating term (the interference term) proportional to Mζ, and a negligibly
small term on the order of ζ2. The interference term is proportional to a pseudoscalar
quantity that depends only on the field geometry, the rotational invariant :

Im{(ε1 · ε2)∗[(ε1 × ε2) · k2]}, (4.9)

which changes sign upon spatial inversion and is invariant under time reversal3. The time
reversal invariance of expression (4.9) can be understood in the following way. In addition to
changing the sign of the photon momentum, time reversal requires complex conjugation [101].
Therefore there is no overall change in sign of expression (4.9) under time reversal.

The dependence of APV interference on the geometry of the light fields is inferred from
the form of the rotational invariant. The rotational invariant, and hence the interference
term, vanishes for plane polarized light beams. One way to achieve a nonzero rotational
invariant is to choose circular polarization for the second beam: ε2 = σ±, where we have
assumed k2 lies along the z axis. For arbitrary polarization ε1 = a+σ+ + a−σ− of the first
beam, conservation of angular momentum requires that only the polarization component a∓
contributes to the excitation process. Thus the rotational invariant (4.9) reduces to ±|a∓|2kz,
where kz = +1 (kz = −1) when k2 is aligned (anti-aligned) with the z-axis.

For two collinear circularly polarized beams of light oriented along the z-axis, the tran-
sition rate is

R ∝ |A|2 =M2 ± 2kzMζ, (4.10)

where we have neglected the term proportional to ζ2. The positive (negative) sign in
Eq. (4.10) is taken when beam 2 has σ+ (σ−) polarization. The interference term is dis-
criminated from the total transition rate either by reversing the direction of the propagation
vector k2, or by reversing the sense of rotation of the circularly polarized light fields. The
asymmetry 2ζ/M = 2(dfa/µfn)(Ωan/ωna) is obtained by dividing the difference of rates
upon a reversal by their sum.

We propose to measure the transition rate by probing the population of the final state
|f〉 while the following conditions hold: (i) the transition is purely two-photon, and (ii) the
transition is not saturated. A pure two-photon transition is achieved when [53, 110]

|∆| � Ω0, (4.11)

where

Ω0 =

√
8πα

3

(
d2ni I1 + µ2

fn I2
)

(4.12)

is the interaction energy. When condition (4.11) is satisfied, the system reduces to a two-
level system consisting of the initial and final states coupled by a single effective driving

3 The rotational invariant presented in Eq. (4.9) is not symmetric under photon exchange because we
have neglected the terms proportional to M(ω2) and ζ(ω2) in Eqs. (4.3, 4.30). When these terms are
included, R has two interference terms whose sum is exchange symmetric. In the case of degenerate photons
(ω1 = ω2), the sum of the interference terms is proportional to the exchange symmetric rotational invariant

Im{(ε1 · ε2)∗[(ε1 × ε2) · (k̂1 − k̂2)]}.
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field. Saturation effects can be ignored when the pumping rate R is much smaller than the
relaxation rate Γ′ of the final state, that is, when

I1I2 �
[

3

πα

∆

dni µfn

]2
ΓΓ′. (4.13)

In this regime, the population of the final state is proportional to the rate given by Eq. (4.1).
The shot-noise limited sensitivity of the AOS is estimated as follows. The probe signal is

proportional to the number of excited atoms. The number of excited atoms associated with
the parity violating part of the transition rate is

N = [(4πα)2I1I2(2Mζ)/Γ]Nit, (4.14)

where t is the effective integration time of the measurement and Ni is the total number of
atoms initially in state |i〉. The measurement noise is given by δN =

√
N ′, where

N ′ = [(4πα)2I1I2M2/Γ]Nit (4.15)

is the number of excited atoms associated with the parity conserving part of the transition
rate. The signal-to-noise ratio (SNR) of the probe signal is N/δN , or

SNR =
8 πα

3

dfa Ωan dni
ωna|∆|

√
I1 I2Ni t

Γ
. (4.16)

As expected, the SNR increases for large Ωan and high light intensities. Although purely
statistical shot-noise dominated SNR does depend on µfn, this amplitude is still an impor-
tant parameter in practice due to conditions (4.11, 4.13). Large µfn leads to small APV
asymmetry which requires better control over experimental parameters (see Sec. 4.1). In
the opposite case of small µfn, an observable signal requires high light intensities which may
pose a technical challenge.

Although we have focused on a ladder-type three-level atomic system (Fig. 4.1), the
discussion presented here holds for lambda-type systems (Fig. 4.2) as well. However, the
following modifications must be made: In a lambda-type system, the polarization of the
absorbed photon ε2 is replaced by the polarization of the photon emitted by stimulated
emission. Consequently, conservation of energy requires that the two-photon resonance con-
dition above Eq. (4.1) becomes ω1 − ω2 = ωfi, and conservation of angular momentum
requires that both circularly polarized beams have the same sense of rotation. Then the
positive (negative) sign is taken in Eq. (4.10) when ε1 = ε2 = σ−(+).

Spurious sources of asymmetry

Systematic effects may also contribute to the asymmetry and mask the APV signal. In
this section, we discuss three potential sources of such spurious asymmetry: imperfections
of applied optical fields; Stark interference due to stray electric fields; and, shifts of the
intermediate state energy induced by external fields.
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Optical field imperfections

To understand the effects of imperfections in the optical fields, we relax the assumptions of
collinear light beams and perfectly circular polarization. We choose the z-axis to lie along
k2. In this case, misalignment of the nominally collinear beams is characterized by the polar
(θ � 1) and azimuthal (φ) angles of k1.

The polarization of arbitrarily polarized light is parameterized in terms of the polarization
angle ϑj and the ellipticity ϕj in the following way:

εj = (cosϑj cosϕj − i sinϑj sinϕj)x̂ + (sinϑj cosϕj + i cosϑj sinϕj)ŷ, (4.17)

where x̂ and ŷ are Cartesian unit vectors in the x and y directions. Linearly, circularly,
and elliptically polarized light are described by ϕj = 0, |ϕj| = π/4 and 0 < |ϕj| < π/4,
respectively. The sense of rotation is determined by sign of the ellipticity: εj = σ± when
ϕj = ±π/4. Deviations from circular polarization are characterized by the parameters
ηj ≡ π/4− |ϕj| � 1.

Field imperfections lead to additional parity conserving terms in R:

R→ R−M2[θ2/2 + η21 + η22 + 2η1η2 cos(2ϑ− 2φ)], (4.18)

where ϑ = ϑ2 − ϑ1 is the relative polarization angle of the light fields. We treat the case
of maximal correction, that is, ϑ = φ. Then the corrections to R are on the order of
M2[θ2/2+(η1+η2)

2]. Although these corrections to R do not mimic APV, they nevertheless
contribute to the asymmetry if they change upon reversal. To simplify our analysis, we
assume that changes in θ and ηj between reversals are on the order of θ and ηj for any
particular reversal. We further assume that η1 and η2 are similar in magnitude: η1 ' η2 ≡ η.
Then spurious ellipticity and beam misalignment give rise to a spurious asymmetry on the
order of θ2 + 2η2, and may mask the APV signal if they are large. Asymmetry due to field
imperfections is negligible compared to APV asymmetry when

θ2 � 2ζ/M and η2 � ζ/M. (4.19)

Stark interference

The derivation of Eq. (4.10) assumes the absence of external fields. Here we relax this
assumption and discuss the uncertainty in the AOS that arises due to spurious electric
fields. In the presence of a static electric field E, Stark mixing of |n〉 and |a〉 induces an E1-
E1 transition between the initial and final states. The Stark-induced transition amplitude
is (Appendix A):

As = iξ[E · (ε1 × ε2)], (4.20)

where

ξ =
1

3
√

6

dfa dan dni
ωna∆

. (4.21)
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After including the effects of stray fields and misalignments, the transition rate (4.10) be-
comes

R ∝M2 + ξ2EzE1 ± kz
(
MξE⊥ + 2Mζ

)
, (4.22)

where Ez is the z component of the electric field, E1 = E·k̂1 ≈ Ez, E⊥ = |E·(k̂1×k̂2)| . θ|E|,
and only terms linear in θ and ηj are presented. The terms in the parentheses represent the
combined effects of APV and Stark interference. These interference terms exhibit the same
behavior under reversals of the light fields. This means that there is a contribution to the
asymmetry on the order of θξE/M, where E is the magnitude of |E|. APV asymmetry
dominates over asymmetry due to Stark interference when

E � 2ζ/(θξ). (4.23)

Energy shifts of the intermediate state

The transition rate must be further modified to account for light shifts and effects of stray
magnetic fields. We consider energy shifts of the form M2

nδ2+Mnδ1, where Mn is the magnetic
quantum number of |n〉.

The parameter δ2 is due to tensor shifts caused by the light fields or dc electric fields. We
neglect quadratic Zeeman shifts that arise in the presence of transverse magnetic fields. In
general, many levels may contribute to light shifts of the intermediate state. We approximate
light shifts by their contributions from the initial and final states. Then the light shifts are
approximately equal to Ω2

0/(4∆), where Ω0 is given by Eq. (4.12). When the dc polarizability
of the intermediate state is dominated by Stark mixing of |n〉 and |a〉, dc Stark shifts of that
state are on the order of d2anE

2/(2ωna). Then

δ2 ≈ Ω2
0/(4∆) + d2anE

2/(2ωna). (4.24)

The parameter δ1 is due to vector light shifts and the dc Zeeman effect. Vector light
shifts change sign upon reversal of circular polarization (σ± → σ∓). In this case,

δ1 ≈ ±Ω2
0/(4∆) + gµ0Bz, (4.25)

where g is the Landé factor of the intermediate state, µ0 is the Bohr magneton, Bz is the
z-component of the stray magnetic field, and gµ0Bz is the Zeeman shift.

The corrected E1-M1 and Stark-induced E1-E1 transition amplitudes are obtained by
expanding the energy denominators in Eqs. (C.2-C.6) in Appendix A to first order in δ1,2.
Corrections to the electroweak interaction induced amplitude (4.6) are neglected here. The
transition rate is

R ∝M2
[
1 + 2(δ2 ± δ1)/∆

]
+ ξ2E1Ez − 2ξ2E2

z (δ2 ± δ1)/∆± kz
(
MξE⊥ + 2Mζ

)
, (4.26)

where summation over the magnetic sublevels of |n〉 has been taken into account. Only the
Stark interference termMξE⊥ has the same signature as APV. The Stark and Zeeman shift
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Figure 4.2: Application of AOS to ytterbium.

corrections can be discriminated from the other terms in Eq. (4.26) by changing the sign
of ∆, and can be discriminated from each other by reversing the sense of rotation of the
circularly polarized light fields. Thus stray electric and magnetic fields can be measured by
alternating the sign of the detuning of the light fields from the intermediate state.

Applications of the AOS

We now turn our attention to the two-photon 6s2 1S0 → 6s6p 3P0 transition in ytterbium.
This transition can be driven by two light fields of wavelengths λ1 = 399 nm and λ2 =
1.28 µm, which are nearly resonant with transitions involving the intermediate 6s6p 1P1 state
(Fig. 4.2). The parity violating E1-E1 transition is induced by the mixing of the 6s6p 1P1

and 5d6s 3D1 states due to the electroweak interaction. The parameter describing mixing
of 6s6p 1P1 and 5d6s 3D1 was measured to be Ωan/ωna = 6 × 10−10 [111]. Other essential
atomic parameters are given in Table 4.1. The asymmetry in ytterbium is 2ζ/M≈ 6×10−6,
more than an order of magnitude larger than asymmetries measured in optical rotation
experiments in bismuth, lead, and thallium [62].

As an example, we consider an experiment using an atomic beam similar to that of
Ref. [111]: characteristic thermal speed 3×104 cm/s; density 2×109 cm−3; and, radius 1 cm.
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Table 4.1: Atomic data for application of AOS to ytterbium. Here a0 and µ0 are the Bohr
radius and magneton.

Transition (1→ 2) d21/(ea0) µ21/µ0

E1

6s2 1S0 → 6s6p 1P1 4.1a

6s6p 3P0 → 5d6s 3D1 2.6b

5d6s 3D1 → 6s6p 1P1 0.27b

M1
6s2 1S0 → 5d6s 3D1 1.33c × 10−4

6s6p 3P0 → 6s6p 1P1 0.13d

aRef. [11], bRef. [95], cRef. [108], dRef. [79]

The atomic beam intersects two overlapping, collinear laser beams where atoms interact with
the 399 nm and 1.28 µm light and undergo transitions from 6s2 1S0 to 6s6p 3P0. High light
powers–which are necessary to achieve a large SNR–can be realized using a unidirectional
ring cavity. The transition rate can be measured by probing the population of the metastable
6s6p 3P0 state using the detection method described in Ref. [111].

To estimate the SNR, we choose light parameters that satisfy conditions (4.11, 4.13). The
laser beams have a Gaussian profile with a characteristic radius of 2 mm, and the frequencies
are detuned from the intermediate state by ∆ = 2π × 800 MHz, about 30 times larger than
the width of the intermediate state. In the interaction region, the metastable state acquires a
radiative decay rate on the order of Γ′ = [Ω2

0/(4∆2)]τ−1 = 2π× 30 kHz, where τ = 5.68 ns is
the lifetime of 6s6p 1P1 [11]. The width of the 6s2 1S0 → 6s6p 3P0 transition is dominated by
the transit-broadened linewidth4 Γ = 2π×90 kHz. For light powers of 10 W at 1.28-µm and
10 mW at 399-nm, Eq. (4.16) gives SNR ≈ 2

√
t(s). Based on these estimates, a one-hour

measurement may achieve better than 1% statistical uncertainty in determination of parity
violation.

Spurious asymmetry due to field imperfections and stray electric fields can be controlled
by aligning the laser beams over a large distance. In order to limit asymmetry due to beam
misalignment to less than 1% of the APV asymmetry, the angle between the nominally
collinear laser beams must be controlled to better than one-tenth of a beam radius of trans-
verse displacement over a distance of one meter, which corresponds to a beam misalignment
of 0.01◦. Similarly, the deviation from circular polarization must also be smaller than about
0.01◦. In this case, the systematic uncertainty due to Stark interference effects is below 1%
for electric fields smaller than 8 V/cm. In Ref. [111], stray electric fields were measured to
be on the order of 1 V/cm. In that experiment, stray electric fields are partially attributed

4 The transit-broadened width of a one-photon transition is Γ0 ≈ 2.4v/r [36], where v is the atomic
velocity and r is the 1/e radius of the optical electric field profile. The matrix element for a two-photon
transition is proportional to the product of the two optical electric fields, and hence to the product of their
Gaussian profiles [53]. Therefore, the transit-broadened width is Γ =

√
2Γ0 when the beam profiles are

identical.
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to charge buildup on surfaces of electrodes and coils that are used to generate external static
electric and magnetic fields. For the AOS, the absence of such surfaces will likely result in
even smaller stray fields.

It is important to consider other mechanisms for population of the metastable 6s6p 3P0

state, causing background and noise. The metastable state may be populated by multiphoton
processes involving highly excited states, or by molecular processes in the presence of dimers
or other molecular impurities in the atomic beam. These detrimental effects will contribute
to a background that depends on ∆, compromising the search for stray fields [15]. We note
that no evidence of molecular impurities has been seen in the ytterbium APV experiments
up to date.

To better understand the feasibility of the proposed experiment, we compare the predicted
SNR of the two-photon AOS to the observed SNR of the one-photon Stark-interference
experiment [111]. This comparison is especially relevant since both techniques employ the
same method for probing the population of the metastable 6s6p 3P0 state in ytterbium. The
shot-noise limited SNR in Chapter 2 was demonstrated to be 3

√
t(s). However, the Stark-

interference experiment is not currently shot-noise limited; the measurement uncertainty is
determined by systematic effects due to imperfections of applied fields. Because the AOS has
similar projected statistical sensitivity and possibly better control of systematics compared
to the Stark-interference experiment, the AOS is an attractive candidate for future APV
measurements in ytterbium.

Another candidate for the AOS is the ladder-type 4f 66s2 7F0 → 4f 66s6p 7F0 transition
(λ1 = 639 nm, λ2 = 1.56 µm) in samarium. The E1-E1 transition is induced by mixing of the
opposite-parity states 4f 65d6s 7G1 and 4f 66s6p 7G1 due to the electroweak interaction. The
APV effect in samarium is expected to be of the same order of magnitude as that observed
in ytterbium [99]. A version of the AOS that uses photons of the same frequency has been
previously suggested in a proposal for a search for APV using the 1 µm 1s2p 3P0 → 1s2s 1S0

transition in uranium ions [103]. However, the uranium-ion experiment is not currently
feasible because the required laser intensity is on the order of 1021 W/cm2.

4.2 APV in J = 0→ 1 two-photon transitions

Sub-1% measurements of nuclear spin-independent (NSI) atomic parity violation (APV) [120]
have led to precise evaluation of the nuclear weak charge [94], yielding excellent agreement
with the Standard Model at low energies. On the other hand, nuclear anapole moments,
parity violating magnetic moments induced by weak interactions within the nucleus, have
been extracted from nuclear spin dependent (NSD) APV measurements in Cs [56] and Tl [82].
In these experiments, NSD APV was observed as a small correction to NSI effects [55]. In
this section, we propose a technique that allows for measurement of NSD APV without NSI
background in atoms with nonzero nuclear spin.

The proposed method uses two-photon transitions from an initial state of total electronic
angular momentum Ji = 0 to an opposite-parity Jf = 1 final state (or vice versa). The
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APV signal is due to interference of parity-conserving electric-dipole-electric-quadrupole (E1-
E2) and electric-dipole-magnetic-dipole (E1-M1) transitions with parity-violating E1-E1
transitions induced by the electroweak interaction. This scheme is different from other multi-
photon APV schemes [29, 38, 66, 68] in that the transitions are driven by collinear photons
of the same frequency, and hence are subject to a Bose-Einstein statistics (BES) selection
rule that forbids E1-E1 J = 0 → 1 transitions [14, 34, 52]. However, such transitions may
be induced by perturbations that cause the final state to mix with opposite-parity J 6= 1
states, such as the NSD electroweak interaction and, in the presence of an external static
electric field, the Stark effect. Because the NSI electroweak interaction only leads to mixing
of the final state with other J = 1 states, it cannot induce J = 0 → 1 transitions. Thus
NSI-background-free measurements of NSD APV can be achieved by exploiting two-photon
BES selection rules.

Consider atoms illuminated by light in the presence of a static magnetic field B. The
optical field is characterized by polarization ε, propagation vector k, frequency ω, and inten-
sity I. Because circularly polarized light cannot excite a J = 0 → 1 two-photon transition
due to conservation of angular momentum, we assume that the light is linearly polarized.
We choose the frequency to be half the energy interval ωfi between the ground state |i〉 and
an excited state |f〉 of opposite nominal parity. The transition rate is [53]:

R = (2π)3α2I2|A|2 2

πΓ
, (4.27)

where α is the fine structure constant, and A and Γ are the amplitude and width of the
transition. Energy eigenstates are represented as |i〉 = |JiIFiMi〉, and likewise for |f〉. Here
Ji, I, and Fi are quantum numbers associated with the electronic, nuclear, and total angular
momentum, respectively, and Mi ∈ {±Fi,±(Fi − 1), . . .} is the projection of Fi along the
quantization axis (z-axis), which we choose along B.

The transition is enhanced by the presence of an intermediate state |n〉 of total electronic
angular momentum Jn = 1 whose energy lies about halfway between the energies of the
initial and final states (Fig. 4.3). For typical situations, the energy defect ∆ = ωni−ωfi/2 is
large compared to the Rabi frequency ΩR associated with the one-photon resonance involving
the intermediate state. We assume that the scattering rate from |n〉 to |i〉 is small compared
to the natural width Γf of |f〉: (ΩR/∆)2Γn � Γf . In this case, the system reduces to a
two-level system consisting of initial and final states coupled by an effective optical field.

The parity-violating E1-E1 transition is induced by mixing of the final state with opposite-
parity states via the electroweak interaction. In general, |f〉may mix with states of electronic
angular momentum J = 0, 1, or 2 according to the selection rules for NSD APV mixing [78].
Mixing of the final state with J = 1 states results in a perturbed final state with electronic
angular momentum 1 that cannot be excited via degenerate two-photon transitions. We as-
sume mixing is dominated by a single state |a〉 of total angular momentum Ja, and consider
the cases Ja = 0 and Ja = 2 separately.
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Figure 4.3: Energy level diagram. Dotted lines indicate APV mixing of opposite-parity
states, and upward- and downward-pointing arrows represent two-photon absorption and
one-photon fluorescence, respectively. Field geometry. The propagation vector k may alter-
natively be anti-aligned with the magnetic field B.

NSD APV mixing of J = 1 and J = 0 states

When |f〉 mixes with a nearby Ja = 0 state, only transitions for which Ff = I may be
induced by the electroweak interaction. Transitions to hyperfine levels Ff = I ± 1 that
arise due to parity-conserving processes can be used as APV-free references, important for
discriminating APV from systematic effects. The amplitude for a degenerate two-photon
J = 0→ 1 transition is (Appendix D):

A = Apc + Aw, (4.28)

where

Apc = iQk−q(ε · ε)(−1)q〈FiMi; 1q|FfMf〉, (4.29)

and

Aw = iζ0(ε · ε)δFfFi
δMfMi

, (4.30)

are the amplitudes of the parity-conserving and electroweak-interaction-induced parity-violating
transitions, respectively. Here q = Mf −Mi is a spherical index, kq is the qth spherical com-

ponent of k̂, 〈FiMi; 1q|FfMf〉 is a Clebsch-Gordan coefficient, and δFfFi
is the Kronecker
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delta. The quantities Q and ζ0 are

Q =
Qfndni

2
√

15∆
+
µfndni

3
√

2∆
, (4.31)

and

ζ0 =
Ωfadandni

3ωfa∆
, (4.32)

where the reduced matrix elementsQfn = (Jf ||Q||Jn), µfn = (Jf ||µ||Jn), and dni = (Jn||d||Ji)
of the electric quadrupole, magnetic dipole, and electric dipole moments, respectively, are
independent of Ff and I. Here ωfa = ωf − ωa is the energy difference of states |f〉 and
|a〉, and Ωfa is related to the matrix element of the NSD APV Hamiltonian HNSD by
〈f |HNSD|a〉 = iΩfa. The parameter Ωfa must be a purely real quantity to preserve time
reversal invariance [78]. Note that ε · ε = 1 for linear polarization, whereas ε · ε = 0 and
hence A = 0 for circular polarization, consistent with conservation of angular momentum.
Hereafter, we assume ε · ε = 1.

The goal of the DPS is to observe interference of parity- violating and conserving am-
plitudes in the rate R. When Mf = Mi, R consists of a large parity conserving term
proportional to Q2, a small parity violating term (the interference term) proportional to
Qζ0, and a negligibly small term on the order of ζ20 . The interference term is proportional to
a pseudoscalar quantity that depends only on the field geometry, the rotational invariant :

k ·B. (4.33)

The form of the rotational invariant follows from the fact that only k0 ∝ k ·B contributes to
the amplitude in Eq. (4.29) when Mf = Mi. Thus the interference term vanishes if B and
k are orthogonal. One way to achieve a nonzero rotational invariant is to orient k along B
(Fig. 4.3).

We calculate the transition rate when B is sufficiently strong to resolve magnetic sublevels
of the final state, but not those of the initial state. This regime is realistic since Zeeman
splitting of the initial and final states are proportional to the nuclear and Bohr magnetons,
respectively. In this case, the total rate is the sum of rates from all magnetic sublevels of
the initial state:

R→
∑
Mi

R(Mi). (4.34)

When the fields are aligned as in Fig. (4.3), the transition rate is

R± ∝
Q2M2

f

I(I + 1)
± 2ζ0QMf√

I(I + 1)
, (4.35)

where the positive (negative) sign is taken when k and B are aligned (anti-aligned), and we
have omitted the term proportional to ζ20 .
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Reversals of applied fields are a powerful tool for discriminating APV from systematic
effects. The interference term in (4.35) changes sign when the relative alignment of k and B
is reversed, or when Mf → −Mf . The asymmetry is obtained by dividing the difference of
rates upon a reversal by their sum:

R+ −R−
R+ +R−

=
2
√
I(I + 1)

Mf

ζ0
Q
, (4.36)

which is maximal when Mf is small but nonzero. Reversals are sufficient to distinguish APV
from many systematic uncertainties. Nevertheless, there still exist systematic effects that
give rise to spurious asymmetries, which may mask APV.

We consider two potential sources of spurious asymmetry: misalignment of applied fields,
and stray electric and magnetic fields. A stray electric field E may induce E1-E1 transitions
via the Stark effect [18, 19]. The amplitude of Stark-induced J = 0 → 1 transitions is
(Appendix D):

As = ξ0E−q(−1)q〈FiMi; 1q|FfMf〉, (4.37)

where

ξ0 =
dfadandni

3
√

3ωaf∆
. (4.38)

When k and B are misaligned (k×B 6= 0), Stark-induced transitions may interfere with the
allowed transitions yielding a spurious asymmetry characterized by the following rotational
invariant:

(E× k) ·B ≡ (k×B) · E. (4.39)

The resulting Stark-induced asymmetry is

1

Mf

θξ0E

Q
, (4.40)

where θ = |k̂ × B̂| is the angle between the nominally collinear vectors k and B, and
E is defined by θE ≡ (k × B) · E. The spurious asymmetry (4.40) may mask the APV
asymmetry (4.36) because both exhibit the same behavior under field reversals. However,
because the Stark-induced transition amplitude is nonzero when Ff 6= I, APV and Stark-
induced asymmetries can be determined unambiguously by comparing transitions to different
hyperfine levels of the final state.

We propose to measure the transition rate by observing fluorescence of the excited, and
assume that the transition is not saturated:

I < Isat ≡ Γ/(4παQ), (4.41)

where the saturation intensity Isat is chosen so that R = Γ when I = Isat. In this regime,
fluorescence is proportional to the transition rate. The statistical sensitivity of this detection
scheme is determined as follows: The number of excited atoms is

Nf = NiR±t ≡ N ±N ′, (4.42)
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where Ni is the number of illuminated atoms, t is the measurement time, and N and N ′ � N
are the number of excited atoms due to parity-conserving and parity-violating processes. The
signal-to-noise ratio is SNR = N ′/

√
N , or

SNR = 8παIζ0
√
Nit/Γ = 2(I/Isat)(ζ0/Q)

√
NiΓt. (4.43)

The SNR is optimized by illuminating a large number of atoms with light that is intense, but
does not saturate the i → f transition. Although purely statistical shot-noise dominated
SNR does not depend on Q, this parameter is still important in practice due to condition
(4.41). Allowed E1-E2 and E1-M1 transitions are characterized by large Q, which leads
to small APV asymmetry. In the opposite case of forbidden E1-E2 and E1-M1 transitions
(small Q), an observable signal requires high light intensities, which may pose a technical
challenge.

NSD APV mixing of J = 1 and J = 2 states

Mixing of |f〉 with nearby Ja = 2 states is qualitatively similar to the previous case. Here
we make the comparison explicit. The amplitude of the transition induced by NSD APV
mixing of |f〉 and |a〉 is (Appendix D):

Aw = iζ2{ε⊗ ε}2,−q(−1)q〈FiMi; 2q|FfMf〉, (4.44)

where

ζ2 =
Ωfadandni√

15ωaf∆
, (4.45)

and {ε ⊗ ε}2q is the qth spherical component of the rank-2 tensor formed by taking the
dyadic product of ε with itself [115]. For the geometry in Fig. 4.3, the transition rate is

R± ∝ C2
1Q2 ±

√
2/3C1C2ζ2Q, (4.46)

where the positive (negative) sign is taken when k and B are aligned (anti-aligned), Ck =
〈IMf ; k0|FfMf〉 for k = 1, 2, and we have omitted a term proportional to ζ22 . For simplicity,
we focus on the case Ff = I + 1 (the cases Ff = I, I − 1 are similar). In this case, Eq. (4.46)
becomes

R± ∝
F 2
f −M2

f

(I + 1)(2I + 1)

[
Q2 ± 2ζ2QMf√

2I(I + 2)

]
, (4.47)

and the asymmetry is
R+ −R−
R+ +R−

=
2Mf√

2I(I + 2)

ζ2
Q
, (4.48)

which is maximal when Mf = I. In the case of maximal asymmetry, the SNR is

SNR = 8παCIIζ2
√
Nit/Γ = 2CI(I/Isat)(ζ2/Q)

√
NiΓt. (4.49)
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where CI =
√
I/[2(I + 1)(I + 2)] is a numerical coefficient and Isat is given by Eq. (4.41).

Static electric fields may induce a J = 0 → 1 transition via Stark mixing of |f〉 and
|a〉, giving rise to systematic effects that may mimic APV. When Ja = 2, the amplitude of
Stark-induced transitions is (Appendix D):

As = ξ2[E−q − 3(ε · E)ε−q](−1)q〈FiMi; 1q|FfMf〉, (4.50)

where

ξ2 =
dfadandni

15
√

3ωaf∆
. (4.51)

The spurious asymmetry due to Stark mixing is characterized by the rotational invariant

(k×B) · [E− 3(ε · E)ε]. (4.52)

Unlike for the Ja = 0 case, both the Stark effect and the electroweak interaction may
induce transitions to Ff = I, I ± 1 hyperfine levels of |f〉 when Ja = 2, eliminating the
possibility of using APV-free transitions to control systematic effects. However, the Stark-
and electroweak-interaction- induced asymmetries have different dependence on Mf :

R+ −R−
R+ +R−

=
2Mf√

2I(I + 2)

ζ2
Q︸ ︷︷ ︸

APV

+
(2I + 1)Mf

F 2
f −M2

f

θξ2Ẽ

Q︸ ︷︷ ︸
Stark

, (4.53)

where Ẽ is defined by θẼ ≡ (k × B) · [E − 3(ε · E)ε]. Thus APV can be distinguished
from spurious asymmetries by analyzing the Zeeman structure of the transition, e.g., by
comparing transitions to sublevels Mf = I and Mf = I − 1 of the final state.

As a final note, in addition to the rotational invariant (4.33), there is a second parity-
violating rotational invariant that arises when |f〉 mixes with J = 2 states:

(k ·B)(ε ·B)2. (4.54)

This rotational invariant describes APV interference in transitions for which Mf = Mi ± 1.

Applications of DPS

We now turn our attention to the two-photon 462 nm 5s2 1S0 → 5s9p 1P1 transition in
87Sr (Z = 38, I = 9/2). The transition is enhanced by the intermediate 5s5p 1P1 state
(∆ = 34 cm−1), and the parity-violating E1-E1 transition is induced by NSD APV mixing
of the 5s9p 1P1 and 5s10s 1S0 states (ωaf = 184 cm−1). We used expressions presented in
Ref. [47] to calculate the NSD APV matrix element: Ωfa ≈ 10κ s−1, where κ is a dimension-
less constant of order unity that characterizes the strength of NSD APV. The width of the
transition is determined by the natural width Γ = 1.15× 107 s−1 of the 5s9p 1P1 state [102].
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Table 4.2: Available atomic data for application of DPS to Sr and Ra. Here a0 is the Bohr
radius.

Transition (1→ 2) d21/(ea0)
Sra 5s2 1S0 → 5s5p 1P1 5.4
Rab 7s2 1S0 → 7s7p 1P1 5.8

7s7p 1P1 → 7s6d 3D2 0.6
7s6d 3D2 → 7s7p 3P1 4.8

aRef. [102], bRef. [49]

Other essential atomic parameters are given in Table 4.2. Resolution of the magnetic sub-
levels of the final state requires a magnetic field larger than 2Γ/g ≈ 10 G, where g ≈ 0.1
is the Landé factor of the F = I hyperfine level of the 5s9p 1P1 state. We estimate that
dan ≈ ea0, Qfn/dan ≈ α/2, and µfn � Qfn. Then the APV asymmetry associated with this
system is about 4κ× 10−8.

Spurious asymmetries due to stray electric fields can be ignored when

θE � 2(2I + 1)
√
I(I + 1)(ζ0/ξ0) ≈ 2 mV/cm. (4.55)

In ongoing APV experiments in Yb [112], stray electric fields on the order of 1 V/cm have
been observed. Assuming a similar magnitude of stray fields for the Sr system, spurious
Stark-induced asymmetries can be ignored by controlling misalignment of the light propa-
gation and the magnetic field to better than θ < 0.1◦. Regardless of misalignment errors,
APV can be discriminated from Stark-induced asymmetries by comparing transitions to the
F 6= 9/2 hyperfine levels of the final 5s9p 1P1 state.

To estimate the SNR, we consider experimental parameters similar to those of Ref. [111]:
Ni ≈ 107 atoms illuminated by a laser beam of characteristic radius 0.3 mm. Optimal
statistical sensitivity is realized when I = Isat ≈ 6 × 105 W/cm2. In this case, Eq. (4.43)
yields SNR ≈ κ × 10−3

√
t/s. The saturation intensity corresponds to light power of about

2 kW at 462 nm. High light powers may be achieved in a running-wave power buildup
cavity. With this level of sensitivity, about 300 hours of measurement time are required to
achieve unit SNR. The projected asymmetry and SNR for the Sr system are to their observed
counterparts in the most precise measurements of NSD APV in Tl [116].

Another potential candidate for the DPS is the 741 nm 7s2 1S0 → 7s7p 3P1 transition
in unstable 225Ra (Z = 88, I = 3/2, t1/2 = 15 days). This system lacks an intermediate
state whose energy is nearly half that of the final state; the closest state is 7s7p 1P1 (∆ ≈
14000 cm−1). Nevertheless, it is a good candidate for the DPS, partly due to the presence
of nearly-degenerate opposite-parity levels 7s7p 3P1 and 7s6d 3D2 (ωaf = 5 cm−1). In
this system, NSD APV mixing arises due to nonzero admixture of configuration 7p2 in the
7s6d 3D2 state [54]. Numerical calculations yield Ωfadan/ωaf ≈ 2κ × 10−9 ea0 [46] and
Γ = 2.8 × 106 s−1 [49]. Other essential atomic parameters are given in Table 4.2. Like for
the Sr system, we estimate that Qfn/dan = α/2 and µfn � Qfn, yielding an approximate
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asymmetry of 7κ × 10−6. Laser cooling and trapping of 225Ra has been demonstrated [67],
producing about Ni ≈ 20 trapped atoms. When I = Isat ≈ 108 W/cm2, Eq. (4.49) gives
SNR = κ × 10−2

√
t/s. For a laser beam of 0.3 mm, the saturation intensity corresponds

to light power of about 300 kW at 741 nm. These estimates suggest that unit SNR can be
realized in under 3 hours of observation time. Compared to the Sr system, the Ra system
potentially exhibits both a much larger asymmetry and a much higher statistical sensitivity.

Finally, we note that while we considered atoms with zero nuclear spin, the AOS could
also be applied to isotopes with nonzero nuclear spin provided that the detuning ∆ is much
larger than the hyperfine splitting of the intermediate state.
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Chapter 5

Future APV experiments

One goal of the future measurements of the parity-violation effects in ytterbium is observing
a difference in the APV effect between different isotopes [113]. The net uncertainty of the
APV parameter of a single isotope must be better than 1% based on the theoretical predic-
tions. To this end, a program of the apparatus upgrades and improvements is developed.
Besides general improvements of the stability of the system parameters, increase of the signal
levels, suppression of the electronics noise etc., the main focus is on elimination of the fre-
quency excursions of the frequency reference, which is a major source of the statistical noise.
Improving the statistical uncertainty will contribute to more precise measurement and con-
trol of the electric-field-imperfection contribution to the systematic part of the uncertainty.
The latter is another high-priority improvement essential for reaching the goal.

In the future apparatus, the referencing of the optical system to the Fabry-Pérot étalon
will be replaced by locking the system to a femtosecond frequency comb. The impact of
the electric field imperfection is planned to be substantially suppressed by redesigning of
the interaction region to provide more uniform and controlled electric field distribution.
Until now, no scientific or technical obstacles were discovered preventing us to improve the
apparatus to the desired level of sensitivity.

As an alternative approach, we also presented two schemes for measuring APV using
interference of parity-conserving E1-M1 (or E1-E2) and parity-violating E1-E1 two-photon
transition amplitudes: the AOS and DPS. The AOS allows for observations of NSI APV in
the absence of external static electric and magnetic fields. This method measures the rate of
a transition between two energy eigenstates with zero total electronic angular momentum.
We derived general expressions for the two-photon transition rate and SNR. Because the
AOS uses optical fields rather than static electric and magnetic fields, systematic effects
due to field misalignments are easier to minimize in the AOS than in the 408 nm system in
ytterbium.

To demonstrate the feasibility of the AOS, we estimated the SNR of the 6s2 1S0 →
6s6p 3P0 transition in ytterbium (λ1 = 399 nm, λ2 = 1.28 µm). A comparison of the
schemes using the single-photon 1S0 → 3D1 and the two-photon 1S0 → 3P0 transitions can
be found in Table 5.1. Our estimate of the SNR suggests that this system is a promising
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Table 5.1: Summary of APV methods. SNRs have been estimated for 1 s of integration
time and are valid when the statistical uncertainty is limited by photon shot noise. For the
408 nm system in ytterbium, the asymmetry A corresponds to an external electric field of
amplitude 4 kV/cm.

Technique Atom Transition P1 (W) λ1 (nm) P2 (W) λ2 (nm) A SNR
Stark 174Yb 1S0 → 3D1 10 408 10−5 3
AOS 174Yb 1S0 → 3P0 10−2 399 10 1280 10−5 2
DPS 87Sr 1S0 → 1P1 103 462 10−8κ 10−3κ
DPS 225Ra 1S0 → 3P1 105 741 10−5κ 10−2κ

candidate for a cross-check of our recent APV measurement and for future measurements of
APV in a chain of isotopes.

Whereas the AOS is best suited for NSI APV measurements, the DPS provides a means
for measuring NSD APV without NSI background. The DPS uses two-photon J = 0 → 1
transitions driven by collinear photons of the same frequency, for which NSI APV effects
are suppressed by BES. We identified transitions in strontium-87 and radium-225 that are
promising candidates for application of the DPS. The estimated asymmetries and SNRs
of those systems are presented alongside the ytterbium systems in Table 5.1. The radium
system boasts a large asymmetry and SNR compared to the strontium system. However,
the short lifetime of the unstable radium-225 nucleus poses several experimental challenges.

Nevertheless the future of APV looks bright, with ongoing experiments in dysprosium [90],
francium [64], radium ions [44, 63], and diatomic molecules [35]. The one- and two-photon
ytterbium systems described herein are especially exciting given that they exhibit large APV
asymmetries and are characterized by large SNRs, opening the door to high-precision APV
measurements in a chain of isotopes.
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Appendix A

Details of the Yb APV experiment

In this appendix, we derive the transition amplitudes relevant to the Yb APV experiment.
Additionally, we present a characterization of the gradual decrease of the PBC finesse over
time due to mirror degradation, and we derive the asymmetry correction factor due to phase
mixing.

A.1 Derivation of transition amplitudes

The total Hamiltonian (before including light-atom interactions and assuming B is along ẑ)
can be written as

H = HA +HZ +HS +HAPV, (A.1)

where HA is the atomic Hamiltonian and HZ, HS, and HAPV represent the contributions
from the static magnetic field B, the static electric field E, and the parity non-conserving
electroweak interaction, respectively. Here

HZ = −µ ·B = gµ0J ·B = gµ0JzB, (A.2)

where µ = −gµ0J is the magnetic dipole moment of the atom, g is the Landé factor, µ0 is
the Bohr magneton, and J is the angular-momentum operator. Similarly,

HS = −d · E = −diEi, (A.3)

where d is the atomic electric-dipole operator. Finally,

HAPV = iH
(0)
0 , (A.4)

where H
(0)
0 is a scalar operator. Summation over repeated indices is assumed.

In the presence of a strong magnetic field, that is, when Zeeman splitting dominates
Stark-shifts, it is useful to think of H1 ≡ HS +HAPV as a perturbation to H0 ≡ HA +HZ. In
this case, the LS-coupled states |2S+1LJ ;M〉, such as |3D1;M〉 and |1S0; 0〉, are eigenstates
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of the unperturbed Hamiltonian H0. Then the first-order perturbation theory can be used
to determine the eigenstates of the total Hamiltonian:

|a〉 = |a〉+
∑
a′

|a′〉〈a′|H1|a〉
ω(a)− ω(a′)

, (A.5)

where ω(a) is the energy of state |a〉. (Perturbed eigenstates are denoted using an overbar.)
The electric-dipole amplitude for the optical transition of interest is

AE1(M) = 〈3D1;M |(−d · E)|1S0〉 ≡ As(M) + Apv(M), (A.6)

where

As(M) =
∑
a′

[
〈3D1;M |d · E|a′〉〈a′|d · E|1S0〉

ω(3D1)− ω(a′)
+
〈3D1;M |d · E|a′〉〈a′|d · E|1S0〉

ω(1S0)− ω(a′)

]
, (A.7)

and

Apv(M) =
∑
a′

[
〈3D1;M |iH(0)

0 |a′〉〈a′|d · E|1S0〉
ω(3D1)− ω(a′)

− 〈
3D1;M |d · E|a′〉〈a′|iH(0)

0 |1S0〉
ω(1S0)− ω(a′)

]
. (A.8)

The Stark amplitude can be written as

As(M) = Tij〈3D1;M |Uij|1S0〉, (A.9)

where Tij = EiEj and

Uij =
∑
a′

di|a′〉〈a′|dj
ω(3D1)− ω(a′)

+
dj|a′〉〈a′|di

ω(1S0)− ω(a′)
. (A.10)

Let T
(k)
q and U

(k)
q represent the irreducible spherical components of the tensors Tij and Uij.

Then TijUij = (−1)qT
(k)
−q U

(k)
q and Eq. (A.7) becomes

As(M) = (−1)qT
(k)
−q 〈3D1;M |U (k)

q |1S0〉

= (−1)qT
(k)
−q

(3D1||U (k)||1S0)√
3

〈00; kq|1M〉

= iβ(−1)q(E× E)−q〈00; 1q|1M〉. (A.11)

Here β is the vector Stark transition polarizability and defined by

β ≡ 1√
6

(1S0||U (1)||3D1). (A.12)
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To derive Eq. (A.11), we used 〈00; kq|1M〉 = δk1δqM and

T
(1)
−q =

∑
q1,q2

〈1q1; 1q2|1− q〉Eq1Eq2 = (i/
√

2)(E× E)−q. (A.13)

For the parity-violating contribution to the E1 transition amplitude we can likewise write

Apv(M) = iEi〈3D1;M |Wi|1S0〉, (A.14)

where

Wi =
∑
a′

[
H

(0)
0 |a′〉〈a′|di

ω(3D1)− ω(a′)
− di|a′〉〈a′|H(0)

0

ω(1S0)− ω(a′)

]
. (A.15)

Let E (1)q and W
(1)
q represent the spherical components of the vectors Ei and Wi, respectively.

Then EiWi = (−1)qE (1)−qW
(1)
q and we have

Apv(M) = i(−1)qE (1)−q 〈3D1;M |W (1)
q |1S0〉

= i(−1)qE (1)−q
(3D1||W (1)||1S0)√

3
〈00; 1q|1M〉

= iζ(−1)qE (1)−q 〈00; 1q|1M〉. (A.16)

Here ζ is given by

ζ ≡ 1√
3

(3D1||W (1)||1S0). (A.17)

A.2 Characterization of the PBC mirrors

The finesse of the cavity is measured using the cavity-ring-down method [1]. The laser beam
is sent through a Pockels cell (Cleveland Crystals Inc. QX 1020 Q-Switch) and a polarizer
before entering the cavity. The polarizer is aligned with the laser polarization so that the
light is transmitted when there is no voltage applied to the Pockels cell. A high-voltage
pulse generator is used to send a fast step signal (30-ns wavefront) to the Pockels cell which
rotates the polarization of the light so that it is not transmitted through the polarizer. The
laser frequency is locked to the resonance frequency of the cavity, and then the Pockels cell is
switched into the non-transmitting state, causing a fast interruption of the laser power. The
subsequent decay of the light inside the cavity is monitored with a fast photodiode (50-MHz
bandwidth) measuring the power transmitted through the back mirror of the cavity. The
signal is fit to an exponential decay. The decay time is related to the finesse of the cavity
(F) by

F =
πc

L
τ,

where c is the speed of light, L is the cavity length, and τ is the intensity decay time. An
example of the PBC transmission signal and its fit are shown in Fig. A.1.
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Figure A.1: Application of the cavity-ring-down method for the determination of the finesse
of PBC.

Following the analysis discussed in [74], if we denote the transmission of mirrors 1 and 2
by T1 and T2, respectively, and the absorption+scatter loss per mirror as l1,2 = (A + S)1,2,
then the total cavity losses L = T1 + T2 + l1 + l2 determine the finesse F :

F =
2π

T1 + T2 + l1 + l2
. (A.18)

Information on the transmission of the mirrors discriminated from the A+S losses can be
obtained using the measured value of the finesse and the power transmitted trough PBC,
Ptr:

Ptr
εPin

= 4T1T2

(
F
2π

)2

, (A.19)

where Pin is the input power, and ε is a mode-matching factor. For two arbitrary mirrors,
for which neither T1,2 nor l1,2 are known the Eq. (A.18,A.19) do not provide a solution, since
a number of variables exceeds the number of equations. Nevertheless, for two mirrors from
the same coating run when one can assume that T1 = T2 = T and l1 = l2 = l, the equations
(A.18,A.19) become

F =
π

T + l
.

Ptr
εPin

= 4T 2

(
F
2π

)2

,

and for known mode-matching factor ε the parameters of the mirrors (T and l) can be
determined. The factor ε depends on the geometry of the cavity, and is assumed to stay
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constant upon replacing of the mirrors, if the geometry of the input laser beam and the
configuration of the PBC are unchanged. This gives the possibility to calibrate this factor
by using a mirror set for which the transmission is known. We used for this purpose the mirror
set purchased from Advanced Thin Films, Inc., for which reliable data on the transmission
of the mirrors is provided by the supplier. By measuring the finesse of the PBC comprised
of these mirrors and the ratio of the transmitted-to-input power, the mode-matching factor
and the A+S mirror losses l are found. This set is not an actual mirror set that was used
in the APV experiment, nevertheless, the parameters of other mirrors were determined by
replacing one mirror in the “reference” set by the “test” mirror, parameters of which are
sought. The geometry of the cavity was unchanged during the replacement. This tactic
allows for the measurement of parameters of any arbitrary mirror.

A.3 Impact of the phase mixing effect on the

harmonics ratio

Atoms undergo the 6s2 1S0 → 5d6s 3D1 transition in the interaction region where they are
illuminated by 408-nm light and are exposed to the static magnetic field and the oscillating
electric field E(t). Excited atoms then spontaneously decay from the 5d6s 3D1 state to the
metastable 6s6p 3P0 state. The population of 6s6p 3P0 is proportional to the transition rate
RM forM = 0,±1. Without loss of generality, we assume that the constant of proportionality
is equal to one and we consider the case M = 0. For convenience, we define R ≡ R(0).

The rate R is measured in the probe region. The probe region is located a distance d ≈
20 cm away from the interaction region. Therefore, an atom that arrives at the detection
region at time t experienced an electric field with magnitude E(t− d/vz) in the interaction
region, where vz is the atom’s speed and d/vz is the amount of time required for the atom
to travel a distance d.

Because some atoms travel faster or slower than others, the detection region is full of
atoms that have each experienced a different electric field while in the interaction region.
Each atom contributes to the total rate and hence the observed rate R is the thermal average
of every contribution:

R(t;ω, d, vT) =

∫ ∞
0

R(t− d/vz)f(vz; vT) dvz, (A.20)

where

f(vz; vT) dvz = 2(vz/vT)3e−(vz/vT)
2

dvz/vT, (A.21)

is the probability for an atom to have speed between vz and vz + dvz. Here vT =
√

2kBT/m
is the thermal speed, T ≈ 873 K is the oven temperature, and m = 161 GeV/c2 is the atomic
mass of Yb, yielding vT = 2.9× 104 cm/s.
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It is convenient to introduce the dimensionless variables x = vz/vT and τ = ωt, and
the dimensionless parameter α = ωd/vT. Then the average rate R(t;ω, d, vT) → R(τ ;α)
depends only on the dimensionless quantities α and τ , and Eq. (A.20) becomes

R(τ ;α) = R0 +R1|I(α)| cos(τ + Arg[I(α)]) +R2|I(2α)| cos(2τ + Arg[I(2α)]), (A.22)

with

I(α) ≡
∫ ∞
0

e−iα/xf(x; 1) dx. (A.23)

Note that |I(α)| → 0 as α → ∞ whereas |I(α)| ≈ 1 when α < 1. This places a limit on
the modulation frequency: We require that ω < vT/d = 2π× 230 Hz in order to avoid a
significant decrease in signal.

The lock-in amplifier receives an input signal proportional to R and returns two output
signals S1 and S2 corresponding to the first and second harmonic components, respectively.
This process can be modeled as

Sn(φn;α) =
1

π

∫ 2π

0

R(τ ;α) cos(nτ + φn) dτ

= Rn|I(nα)| cos(Arg[I(nα)] + φn), (A.24)

where the phases φ1,2 of the lock-in amplifier are chosen to maximize the signals S1,2. That
is,

φn = φn(α) ≡ −Arg[I(nα)]. (A.25)

Our measurement S is the ratio of the first- and second- harmonic signals:

S =
S1(φ1;α)

S2(φ2;α)
=

R1|I(α)|
R2|I(2α)|

= A× C(α), (A.26)

where C(α) ≡ |I(α)|/|I(2α)| is the correction factor. Therefore, we must further divide the
ratio S of observed output signals by C(α) to measure the ratio A.

The correction factor C(α) and the optimal lock-in phases φ1,2(α) inherit dependence on
the modulation frequency (ω = 2π×76.2 Hz), the distance between interaction and detection
regions (d ≈ 20 cm), and the oven temperature (T ≈ 873 K) through the parameter α:

α =
ω d√

2kBT/m
= 0.33(2), (A.27)

where the uncertainty in α is given by

δα = α
√

(δT/2T )2 + (δd/d)2, (A.28)
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for δT ≈ 50 K and δd ≈ 1 cm. The correction factor can be computed numerically and has
a value

C0 = C(α) = 1.028(3), (A.29)

with uncertainty given by δC0 = |C ′(α)| δα. Likewise, the lock-in phases have the following
values

φ10 = φ1(α) = 16(1)◦, φ20 = φ2(α) = 33(2)◦, (A.30)

where δφn0 = |φ′n(α)| δα.
In order to understand the impact of imperfect phase selections, we include the effects of

slight deviations from the optimal phase φn(α) by taking

φn → φn(α) + ϕn, (A.31)

where ϕn ≈ 0 represents a small deviation. Then the correction factor becomes

C(α)→ C̃(α, ϕ1, ϕ2) = C(α)× cos(ϕ1)

cos(ϕ2)
, (A.32)

and hence C̃0 = C̃(α, 0, 0) = C(α) = C0. The uncertainty in the correction factor becomes

δC0 → δC̃0 =
√
δC2

0 + δϕ4
1 + δϕ4

2, (A.33)

where δϕn is the uncertainty in the deviation ϕn. To derive this expression, we estimated
the partial uncertainty in C̃0 due to ϕn by ∂2ϕn

C̃(α, ϕ1, ϕ2) δϕ
2
n.

To estimate the uncertainty δϕn, we assume that we are within about 1◦ of the optimal
phase. This choice is consistent with the magnitude of the uncertainty in the optimal phases
φ10 and φ20. Therefore, we will take δϕn = δφn0 to be the accuracy with which we can select
the lock-in phases. Then δϕ1 = 0.02, δϕ2 = 0.03, and

δC̃0 = 0.0031 ≈ 0.0029 = δC0. (A.34)

Hence small deviations (on the order of 1◦) have a negligible effect on the uncertainty in the
correction factor.
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Appendix B

Details of the AC polarizability
experiment

In this appendix, we present the frequency dependence of the dynamic polarizabilities and
describe the system of equations used in the LSM numerical simulation.

B.1 Frequency dependence of dynamic polarizabilities

The ac polarizability α` of the state |`〉 = |γJM〉 is given by Eq. (3.9). The scalar, vector,
and tensor polarizabilities depend on the light frequency ω in the following way [12, 13]:1

α0(γJ) =
1

3~
∑
`′ 6=`

|d``′ |2

2J + 1
F+
``′(ω) Φ0(J, J

′), (B.1)

α1(γJ) =
1

2~
∑
`′ 6=`

|d``′ |2

2J + 1
F−``′(ω) Φ1(J, J

′), (B.2)

α2(γJ) =
1

3~
∑
`′ 6=`

|d``′ |2

2J + 1
F+
``′(ω) Φ2(J, J

′). (B.3)

Here the summation is over all states |`′〉 = |γ′J ′M ′〉 such that |`〉 and |`′〉 have opposite
parity. The functions Φ0, Φ1 and Φ2 are given by

Φ0(J, J
′) = δJJ ′ + δJ,J ′+1 + δJ,J ′−1, (B.4)

Φ1(J, J
′) = − δJJ ′

(J + 1)
+
J δJ,J ′+1

J + 1
− δJ,J ′−1, (B.5)

1 Reference [40] adopts a different convention for the Stark shift, and hence the ac polarizability. However,
that work erroneously defines the ac polarizability according to Eqs. (B.1), (B.2), and (B.3) presented here.
These equations are consistent with the convention for the ac Stark shift used in this dissertation, i.e.,
Eq. (3.7), and are inconsistent with the convention followed in Ref. [40].
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and

Φ2(J,J
′)=

(2J−1)δJJ ′

J+1
−J(2J−1)δJ,J ′+1

(J+1)(2J+3)
−δJ,J ′−1, (B.6)

where δJJ ′ is the Kronecker delta. We emphasize that Φ1(J, J
′) differs from the expression

found in Refs. [12, 13] by a factor of J . The reason for this discrepancy is that we follow the
convention for which the vector polarizability of a stretched state (M = J) is α1(γJ) instead
of J × α1(γJ).

The frequency-dependent parts of Eqs. (B.1) through (B.3) are given by

F±``′(ω) =
1

ω`′` − ω − iΓ`′/2
± 1

ω`′` + ω + iΓ`′/2
. (B.7)

Here d``′ ≡ (γJ ||d(1)||γ′J ′) is the reduced matrix element of the electric dipole operator and
d(1) is the spherical tensor associated with the electric dipole moment. In the limit of large
detuning from resonance (|ω`′` ± ω| � Γ`′), the functions F±``′ reduce to

F+
``′ =

2ω`′`
(ω2

`′` − ω2)
and F−``′ =

2ω

(ω2
`′` − ω2)

. (B.8)

B.2 System of equations used in numerical model

For computational purposes, it is convenient to express Eqs. (3.30) and (3.34) as

dρ

dτ
= f(ρ, τ), ρ(−τ0) = 0, (B.9)

where τ0 = 3/(S3u⊥). Here ρ = (ρ0, . . . , ρ5), ρ0 = ρaa, ρ1 = ρbb, ρ2 = ρcc, ρ3 = Re[ρga],
ρ4 = Im[ρga], ρ5 = F , and f = (f0, . . . , f5). The components of f are given by

f0 = −ρ0 + Ω ρ4, (B.10)

f1 = −Gb ρ1 +Gab ρ0, (B.11)

f2 = −Gc ρ2 +Gac ρ0, (B.12)

f3 = −1

2
ρ3 −∆ρ4, (B.13)

f4 = −1

2
ρ4 + ∆ρ3 −

Ω

2
(2ρ0+ρ1+ρ2−1), (B.14)

f5 = +Gb ρ1, (B.15)

where Ω and ∆ are given by Eqs. (3.31) and (3.32), respectively. To derive Eq. (B.9), we
eliminated the population ρgg of the ground state from the OBE using the conservation of
probability:

∑
n ρnn = 1. The fluorescence defined in Eq. (3.34) is given by

F(ξ,u) = ρ5(τ0; ξ,u). (B.16)

Thus the fluorescence can be obtained by numerically solving the system of equations (B.9),
as described in the text.
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Appendix C

Derivation of transition amplitudes
for the AOS

In this appendix, we derive amplitudes for E1-M1 and induced E1-E1 Ji = 0 → Jf = 0
transitions. We use the following convention for the Wigner-Eckart theorem (WET). Let Tk
be an irreducible tensor of rank k with spherical components Tkq for q ∈ {0,±1, . . . ,±k}.
Then the WET is [106]

〈J2M2|Tkq|J1M1〉 = (J2||Tk||J1)
〈J1M1; kq|J2M2〉√

2J2 + 1
, (C.1)

where (J2||Tk||J1) is the reduced matrix element of Tk and 〈J1M1; kq|J2M2〉 is a Clebsch-
Gordan coefficient.

The amplitude for the E1-M1 transition is [53]

AE1−M1 = AE1−M1(1, 2) + AE1−M1(2, 1)

+ AM1−E1(1, 2) + AM1−E1(2, 1),
(C.2)

where

AE1−M1(j, j
′) = 〈f |(k̂j′ × εj′) · µ

|n〉〈n|
ωni − ωj

εj · d|i〉, (C.3)

and

AM1−E1(j, j
′) = 〈f |εj′ · d

|a〉〈a|
ωai − ωj

(k̂j × εj) · µ|i〉, (C.4)

for j, j′ = 1, 2. Here µ and d are the magnetic- and electric-dipole moments of the atom,
and summation over the magnetic sublevels of the intermediate states |n〉 and |a〉 is implied.

E1-E1 transitions are induced by mixing of the states |n〉 and |a〉 due to the electroweak
interaction and, in the presence of a static electric field, the Stark effect. The perturbed
states |n〉+χ|a〉 and |a〉−χ∗|n〉 act as intermediate states for the two paths that contribute
to the induced E1-E1 amplitude. Here χ is a small dimensionless parameter that depends on
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the details of the perturbing Hamiltonian. The amplitude for the induced E1-E1 transition
is [53]

AE1−E1 = AE1−E1(1, 2) + AE1−E1(2, 1), (C.5)

where

AE1−E1(j, j
′) = 〈f |εj′ · d

[
χ|a〉〈n|
ωni − ωj

− |a〉〈n|χ
ωai − ωj

]
εj · d|i〉. (C.6)

Like for Eqs. (C.3, C.4), summation over the magnetic sublevels of states |n〉 and |a〉 is
implied.

When the mixing of |n〉 and |a〉 is due to the electroweak interaction alone, the pertur-
bation parameter is given by χ = χW where

χW =
〈a|HNSD|n〉

ωna
=

i√
3

Ωan

ωna
, (C.7)

for Ja = Jn andMa = Mn. Here Ωan is a real parameter related to the reduced matrix element
of HNSD by (Ja||HNSD||Jn) = iΩan. The factor of i preserves time reversal invariance [78].

In the presence of a static electric field E, the perturbation parameter becomes χ =
χW + χS, where χW is given by Eq. (C.7) and

χS =
〈a|HS|n〉
ωna

= −
danE

∗
q

ωna

〈JnMn; 1q|JaMa〉√
2Ja + 1

, (C.8)

where dan is the reduced matrix element of the electric-dipole operator. Here HS = −d · E
is the Stark Hamiltonian, Eq is the qth spherical component of E, E∗q = (−1)qE−q, and
q = Ma − Mn. In this case, AE1−E1 = Aw + As, where Aw ∝ χW and As ∝ χS are
the amplitudes of the transitions induced by the electroweak interaction and Stark effect,
respectively.

For a general Ji → Jf transition, the Stark-induced E1-E1 amplitude may have contri-
butions from each of the irreducible tensors that can be formed by the three vectors ε1, ε2,
and E. There are seven such tensors: one of rank 0, three of rank 1, two of rank 2, and one
of rank 3. However, for a Ji = 0 → Jf = 0 transition, only the rank-0 tensor contributes.
This tensor is [115]

T00 =
∑
λ,q

〈1λ; 1q|00〉{ε1 ⊗ ε2}1λEq = − i√
6
E · (ε1 × ε2), (C.9)

where

{ε1 ⊗ ε2}1λ =
∑
µ,ν

〈1µ; 1ν|1λ〉ε1µε2ν =
i√
2

(ε1 × ε2)λ (C.10)
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is the irreducible tensor of rank 1 formed by ε1 and ε2. Here λ, q, µ, ν = 0, ±1 are the
spherical components of {ε1⊗ε2}1, E, ε1, and ε2, respectively. The Stark-induced transition
amplitude is

As = i[ξ(ω1)− ξ(ω2)][E · (ε1 × ε2)]. (C.11)

The coefficient ξ(ωj) can be expressed in terms of reduced electric-dipole matrix elements by
applying the WET to Eq. (C.5) with χ = χS and comparing the result to Eq. (C.11). This
procedure yields

ξ(ωj) =
1

3
√

6

dfa dan dni
ωna

(
1

ωni − ωj
− 1

ωai − ωj

)
. (C.12)

The Stark effect may also cause the final state |f〉 to mix with nearby opposite-parity J = 1
states. In this case, Eq. (C.11) is still valid, but Eq. (C.12) must be modified to account for
additional admixtures of states.

Expressions (4.3) and (4.44) for the amplitudes of the E1-M1 and electroweak interaction-
induced E1-E1 transitions are derived by direct application of the WET to Eqs. (C.2) and
(C.5). The Stark-induced E1-E1 amplitude in Eq. (C.11) reduces to expression (4.20) when
|∆| � |ωna| and |∆| � |ω2 − ωni|.
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Appendix D

Derivation of transition amplitudes
for the DPS

In this appendix, we derive amplitudes for induced E1-E1 J = 0 → 1 transitions between
opposite parity states.

D.1 Bose-Einstein statistics selection rules

Here we provide a brief review of BES selection rules for J = 0 → 1 transitions driven
by degenerate (ω1 = ω2 ≡ ω), co-propagating (k1 = k2 ≡ k) photons [34]. Since the
only transitions of relevance are of this type, they are referred to as simply “degenerate
transitions” without cumbersome qualifiers. We ignore hyperfine interaction (HFI) effects
by assuming that there is zero nuclear spin.

It must be possible to write the absorption amplitude A for a degenerate transition in
terms of the only quantities available: the polarizations of the two photons, ε1 and ε2; the
final polarization of the atom in its excited J = 1 state, εe; and the photon momentum k.
With the requirement of gauge invariance of the photons (ε1,2 · k = 0), only three forms of
A are possible:

Aa ∝ (ε1 × ε2) · εe; (D.1a)

Ab ∝ (ε1 · ε2)(εe · k); (D.1b)

Ac ∝ [(ε1 × ε2) · k](εe · k). (D.1c)

Amplitudes Aa and Ac are odd under photon interchange, and hence vanish because photons
obey BES. However, amplitude Ab is even and may yield a nonzero absorption amplitude. In
the case of degenerate transitions between atomic states of the same total parity, Ab vanishes
because it is odd under spatial inversion. Hence degenerate transitions between like-parity
states are forbidden by BES selection rules1. However, degenerate transitions may be allowed
when the initial and final states are of opposite parity.

1 Parity-conserving perturbations, such as the Zeeman effect or the hyperfine interaction, may induce
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When ε1 = ε2 ≡ ε, as would be the case if the photons were absorbed from the same
laser beam, the degenerate transition amplitude reduces to Ab ∝ (ε · ε)k · εe. Therefore, the
amplitude of a degenerate transition between opposite parity states is

Ab = i(ε · ε)Qk−M(−1)M , (D.2)

where k−M(−1)M is the projection of k̂ onto the spin of the excited atom and the factor of
i ensures time reversal invariance.

D.2 Wigner-Eckart theorem

We use the following convention for the Wigner-Eckart theorem (WET). Let Tk be an irre-
ducible tensor of rank k with spherical components Tkq for q ∈ {0,±1, . . . ,±k}. Then the
WET is [106]

〈J2IF2M2|Tkq|J1IF1M1〉 =
(J2IF2||Tk||J1IF1)√

2F2 + 1
〈F1M1; kq|F2M2〉, (D.3)

where (J2IF2||Tk||J1IF1) is the reduced matrix element of Tk and 〈F1M1; kq|F2M2〉 is a
Clebsch-Gordan coefficient. If Tk commutes with the nuclear spin I, then its reduced matrix
element satisfies [106]

(J2IF2||Tk||J1IF1)√
2F2 + 1

= (−1)J2+I+F1+k(J2||Tk||J1)×
√

2F1 + 1

{
J2 F2 I
F1 J1 k

}
, (D.4)

where (J2||Tk||J1) is the reduced matrix element of Tk in the decoupled basis, and the quantity
in the curly braces is a 6j symbol.

D.3 E1-M1 and E1-E2 transition amplitudes

In the following, summation over the magnetic sublevels Mn of the intermediate state is
implied. The E1-M1 and E1-E2 transition amplitudes are

Ab1 = 2〈f |[(k× ε) · µ]
|n〉〈n|

∆
(ε · d)|i〉

= i

(
2µfndni

3
√

2∆

)
k−M(−1)M〈FiMi; 1q|FfMf〉, (D.5)

and

Ab2 = 〈f |[i{k⊗ ε}2 ·Q]
|n〉〈n|

∆
(ε · d)|i〉

= i

(
Qfndni

2
√

15∆

)
k−M(−1)M〈FiMi; 1q|FfMf〉, (D.6)

degenerate transitions between like-parity states via two mechanisms: splitting of the intermediate state into
non-degenerate sublevels, and mixing of the final state with nearby like-parity J 6= 1 states [81].
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respectively. Here µ, d, and Q are the magnetic dipole, electric dipole, and electric quadrupole
moments of the atom.To derive Eqs. (D.5) and (D.6), we have assumed ε·ε = 1, as is the case
for linear polarization, and we have omitted a common factor of (−1)I−Ff . Equations (4.29)
and (4.31) follow from the definition Apc ≡ Ab1 + Ab2 .

D.4 Induced E1-E1 transitions

E1-E1 transitions may be induced by mixing of the states |f〉 and |a〉 due to both the
electroweak interaction and Stark effect. The final state of the transition is the perturbed
state |f〉+ χ∗|a〉, where χ is a small dimensionless parameter that depends on the details of
the perturbing Hamiltonian. The amplitude for the induced E1-E1 transition is [53]

AE1−E1 = χ〈a|ε · d |n〉〈n|
ωni − ω

ε · d|i〉. (D.7)

Here d is the electric-dipole moment of the atom and summation over the hyperfine levels
and magnetic sublevels of the states |n〉 and |a〉 is implied.

In Eq (D.7), the quantity 〈a| · · · |i〉 is the amplitude of the allowed degenerate two-photon
i→ a transition. It can be expressed as the contraction of two irreducible tensors:

〈a|ε · d |n〉〈n|
ωni − ω

ε · d|i〉 =
∑
k,q

{ε⊗ ε}∗kq〈a|Tkq|i〉, (D.8)

where
{ε⊗ ε}kq =

∑
µ,ν

〈1µ; 1ν|kq〉εµεν , (D.9)

is the tensor of rank k = 0, 2 formed by the dyadic product of ε with itself, and Tkq is a
tensor whose matrix elements we wish to express in terms of those of the dipole moment d.
Neglecting hyperfine splitting of the intermediate state, Tk commutes with I. Then, since
Ji = 0, we have

〈a|Tkq|i〉 = (−1)I−Fa+k
(Ja||Tk||Ji)√

2Ja + 1
〈FiMi; kq|FfMf〉, (D.10)

for k = Ja and q = Ma−Mi. Using the WET to simplify the left-hand side of Eq. (D.8), we
find

(Ja||Tk||Ji) =
1√
3

dandni
∆

, (D.11)

where dfa = (Jf ||d||Ja) is the reduced matrix element of the electric dipole operator. When
k 6= Ja, the matrix element 〈a|Tkq|i〉 vanishes. Therefore, only the tensor {ε ⊗ ε}k of rank
k = Ja contributes to the i → a transition. Note that the tensor of rank k = 1 satisfies
{ε ⊗ ε}1q ∝ (ε × ε)q ≡ 0, and hence the Ji = 0 → Ja = 1 transition has zero amplitude,
consistent with more general selection rules for degenerate two-photon transitions [34].
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When the mixing of |f〉 and |a〉 is due to the electroweak interaction alone, the pertur-
bation parameter is given by χ = χW, where

χW =
〈f |HNSD|a〉

ωfa
≡ iΩfa

ωfa
, (D.12)

for Fa = Ff and Ma = Mf . Equations (4.44) and (4.30) follow from the definitions ζk ≡
(Ωfa/ωfa)(Ja||Tk||Ji)/

√
2k + 1 for k = Ja = 0, 2.

In the presence of a static electric field E, the perturbation parameter becomes χ =
χW + χS, where χW is given by Eq. (D.12) and

χS =
〈f |HS|a〉
ωfa

, (D.13)

where HS = −d · E is the Stark Hamiltonian. In this case, AE1−E1 = Aw + As, where
Aw ∝ χW and As ∝ χS are the amplitudes of the transitions induced by the electroweak
interaction and Stark effect, respectively.

For a general J = Ji → Jf transition, the Stark-induced E1-E1 amplitude may have
contributions from each of the irreducible tensors that can be formed by combining {ε⊗ε}0 ∝
(ε · ε) or {ε⊗ ε}2 with E. There are four such tensors: one each of ranks 2 and 3, and two
of rank 1. However, for J = 0 → 1 transition, only the rank-1 tensors contribute. These
tensors are [115]:

{E⊗ {ε⊗ ε}0}1q = − 1√
3

(ε · ε)Eq (D.14)

and

{E⊗ {ε⊗ ε}2}1q =

√
1

15
[Eq − 3(ε · E)εq]. (D.15)

Stark mixing of |f〉 with |a〉 gives rise to a Stark-induced amplitude whose dependence
on applied fields is described by either the tensor in Eqs. (D.14) or the one in Eq. (D.15)
depending on whether Ja = 0 or Ja = 2. The corresponding amplitudes are given by
Eqs. (4.37) and (4.50), and the parameters ξ0 and ξ2 can be expressed in terms of the
reduced dipole matrix elements by applying the WET to Eq. (D.7) with χ = χS. This
procedure yields Eqs. (4.38) and (4.51).




