
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
On Uncertainty and Robustness in Deep Learning for Natural Language Processing

Permalink
https://escholarship.org/uc/item/6td9p2d2

Author
Xiao, Yijun

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/6td9p2d2#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6td9p2d2
https://escholarship.org/uc/item/6td9p2d2#supplemental
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

On Uncertainty and Robustness in Deep Learning

for Natural Language Processing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yijun Xiao

Committee in charge:

Professor William Wang, Chair
Professor Xifeng Yan
Professor Sang-Yun Oh

June 2022

The Dissertation of Yijun Xiao is approved.

Professor Xifeng Yan

Professor Sang-Yun Oh

Professor William Wang, Committee Chair

June 2022

On Uncertainty and Robustness in Deep Learning for Natural Language Processing

Copyright © 2022

by

Yijun Xiao

iii

To my parents,

who supported me unconditionally throughout this journey.

iv

Acknowledgements

I am incredibly grateful to my advisor William Yang Wang for the support and

guidance throughout my study and during difficult times. He helps me enormously in

navigating the field of natural language processing and provides me with knowledgeable

suggestions and great freedom to explore. I would like to thank Professor Xifeng Yan and

Professor Sang-Yun Oh for serving on my committee and for their insightful comments

and feedback on my research.

I owe great thanks to all my collaborators, colleagues, and friends (in alphabetical

order): Alon Albalak, Rob Chambers, Wenhu Chen, Kyunghyun Cho, Kevin Knight,

Peter Li, Yasumasa Onoe, Luo Ping, Jing Qian, Jiyuan Qian, Xing Shi, Yi-Lin Tuan,

Hong Wang, Hongmin Wang, Xin Wang, Wenhan Xiong, Tiancheng Zhao, Ganbin Zhou

for their company, support and discussions throughout the years.

I am truely thankful to my partner Zhi for her company and encouragement through

my Ph.D. journey. Last and foremost, my deepest love to my parents.

v

Curriculum Vitæ
Yijun Xiao

Education

2017 - 2022 Ph.D. in Computer Science, University of California, Santa Barbara.

2014 - 2016 M.S. in Data Science, New York University.

2011 - 2013 M.S. in Civil Engineering, University of California, Davis.

2007 - 2011 B.E. in Civil Engineering, Tsinghua University.

Publications

EACL 2021 Yijun Xiao, William Yang Wang. On Hallucination and Predictive
Uncertainty in Conditional Language Generation.

arXiv:1912.12818 Yijun Xiao, William Yang Wang. Disentangled Representation
Learning with Wasserstein Total Correlation.

AAAI 2019 Yijun Xiao, William Yang Wang. Quantifying Uncertainties in Nat-
ural Language Processing Tasks.

arXiv:1811.00135 Yijun Xiao, Tiancheng Zhao, William Yang Wang. Dirichlet Vari-
ational Autoencoder for Text Modeling.

AAAI 2018 Ganbin Zhou, Ping Luo, Yijun Xiao, Fen Lin, Bo Chen, Qing He.
Elastic Responding Machine for Dialog Generation with Dynami-
cally Mechanism Selecting.

AAAI 2018 Ganbin Zhou, Ping Luo, Rongyu Cao, Yijun Xiao, Fen Lin, Bo
Chen, Qing He. Tree-Structured Neural Machine for Linguistics-
Aware Sentence Generation.

arXiv:1602.00367 Yijun Xiao, Kyunghyun Cho. Efficient Character-level Document
Classification by Combining Convolution and Recurrent Layers.

Experience

2021/06 - 2021/09 Software Engineer Intern, Machine Learning, Facebook

2019/06 - 2019/09 Research Intern, DiDi Labs

2016/06 - 2017/06 NLP Engineer, WeChat

vi

Abstract

On Uncertainty and Robustness in Deep Learning for Natural Language Processing

by

Yijun Xiao

With the recent success of deep learning methods, neural-based models have achieved

superior performances and since dominated across natural language understanding and

generation tasks. Due to the fact that many of such models are black-box mappings

from the input to the output, it is increasingly important to understand how confident

a model is about certain predictions and how robust the model is under distribution

shift. Uncertainty estimation methods provide us a way to separately quantify epistemic

and aleatoric uncertainty where the former arises due to inadequate knowledge about

the model and the latter is the inherent irreducible uncertainty in data. We could then

develop uncertainty-aware approaches that improve the robustness of a model. A closely

related concept called calibration measures how aligned model confidence is with the

prediction accuracy. A better calibrated model is more robust because we could better

interpret the predicted confidence scores from the model. Another important aspect

concerning the robustness of a deep learning model is its ability to adapt to distribution

shift. When the test distribution differs significantly from the training distribution, the

ability to detect and adjust accordingly is vital in practical applications.

In this dissertation, we first examine the benefits of applying uncertainty quantifi-

cation methods to sentiment analysis, named entity recognition and language modeling

tasks. We show that by incorporating uncertainty estimation in the modeling process,

we observe significant improvements in the three important NLP tasks. We then draw

connections between hallucination and predictive uncertainty and empirically investigate

vii

their relationship in image captioning and data-to-text generation tasks. Next, we in-

vestigate the relationship between model calibration and label smoothing in document

classification. We further acknowledge the importance of learning under distribution

shift by introducing a benchmark that evaluates models on their abilities to estimate the

change of label distributions in classification settings. Finally, we summarize the findings

and discuss potential future research directions for uncertainty aware learning and model

robustness for NLP.

The methods and analyses in this dissertation allow for a better understanding of

uncertainty and robustness in deep learning for natural language processing tasks. We

envision a future where AI systems are explainable and accountable.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Uncertainty Estimation . 2
1.2 Model Calibration . 4
1.3 Distribution Shift and Quantification Learning 4

2 Uncertainty Quantification in Natural Language Processing 6
2.1 Introduction . 6
2.2 Related Work . 8
2.3 Methods . 10
2.4 Experiments and Results . 16
2.5 Analysis . 22
2.6 Conclusion . 25

3 Hallucination and Uncertainty in Conditional Language Generation 27
3.1 Introduction . 27
3.2 Hallucination and Predictive Uncertainty 29
3.3 Case Study: Image Captioning . 32
3.4 Case Study: Data-to-text Generation . 36
3.5 Reducing Hallucination . 39
3.6 Related Work . 44
3.7 Discussion and Conclusions . 46

4 Label Smoothing and Model Calibration in Text Classification 47
4.1 Introduction . 47
4.2 Preliminaries . 48
4.3 Does Label Smoothing Always Help with Calibration? 50
4.4 Why Does Label Smoothing (Not) Help? 51
4.5 When Does Label Smoothing Help? . 53

ix

4.6 Label Sharpening . 54
4.7 Discussion and Conclusions . 55

5 Label Distribution Estimation Under Real-World Temporal Shift 56
5.1 Introduction . 56
5.2 Related Work . 59
5.3 The Text Quantification Benchmark . 61
5.4 Baseline Algorithms . 68
5.5 Experiments and Results . 69
5.6 Conclusions . 74

6 Conclusion 75

Bibliography 77

x

Chapter 1

Introduction

The last decade witnessed an enormous success of deep neural networks. They have

been adapted in various research fields where complex systems need to be modeled. Nat-

ural language processing (NLP) is no exception. Especially with the invention of the

Transformer model [1], significant improvements have been further achieved across many

natural language understanding and generation tasks. Despite superior performances

compared to traditional machine learning models, deep neural models remain limited in

many critical real-world applications. Some famous failures1 of image captioning and

machine translation systems have caused controversy and raised discussions on the ro-

bustness of deep learning models. Some major factors limiting the deep learning model

robustness are:

• How a deep learning model produces outputs are often less transparent, making it

less explainable compared to some of the traditional machine learning models such

as linear models and decision trees [2].

• Many deep models produce point estimates and are unable to provide reliable uncer-

1https://www.bbc.com/news/technology-33347866

1

Introduction Chapter 1

tainty estimates for its decisions. There are frequent observations of over-confident

predictions [3].

• Deep models are often developed under the i.i.d. assumption where test data are

sampled from the same distribution as the training data. They are sensitive to

distribution shifts [4].

At the core of tackling these limitations are reliable uncertainty estimation, model

calibration, and distribution shift detection / adaptation. In this dissertation, we conduct

analyses on all three fronts in the context of different natural language processing tasks.

1.1 Uncertainty Estimation

The motivation behind uncertainty quantification is straightforward: a robust model

should know when it does not know. An accurate measure of how uncertain a model is

given some specific inputs is beneficial in many ways. For example, predictions that are

deemed uncertain can be ignored or passed to human experts for verification to prevent

harm in a production AI system; Uncertainty can be used as a signal to acquire new

samples in active learning [5]; uncertainty measures can be used to balance between

exploitation and exploration in deep reinforcement learning [6, 7].

Recent studies in uncertainty quantification often categorize uncertainty into two

parts: epistemic uncertainty and aleatoric uncertainty [8, 9]. Epistemic uncertainty, also

referred to as model uncertainty, captures uncertainty about the model in the functional

space. Model uncertainty is reducible as more data becomes available and the training

distribution approaches the ground-truth data distribution. On the other hand, aleatoric

uncertainty, also called data uncertainty, is data inherent and cannot be reduced with

more training data.

2

Introduction Chapter 1

Popular methods to measure both parts of the uncertainty during model predic-

tion include Bayesian neural networks (BNNs) [10, 11], Monte Carlo Dropout (MC

Dropout) [12], Deep ensembles [13], Posterior networks [14], etc. BNN weights are mod-

eled as Gaussian random variables instead of scalars. The variances of the weights directly

describe the epistemic uncertainty of the model; MC Dropout applies dropout between

network layers and measures the uncertainty in the output space by comparing results

from multiple forward passes; Instead of injecting randomness through dropout layers,

Deep ensembles train multiple copies of a network using different hyper-parameters or

random seeds and measure the discrepancy in the output space; Posterior network aims

to use a single network to quantify uncertainty. In the context of classification, Poste-

rior network produces a Dirichlet distribution as its prediction instead of a categorical

distribution and uses the dispersion of the prediction to represent the estimated model

uncertainty.

In terms of applications, probabilistic pixel-wise semantic segmentation has been

studied in [15]; [16] studied model uncertainty in recurrent neural networks in the con-

text of language modeling and sentiment analysis; [9] researched both model and data

uncertainties in various vision tasks and achieved higher performances; [17] used similar

approaches to perform time series prediction and anomaly detection with Uber trip data.

In Chapter 2, we study the effects of quantifying model uncertainty and input-dependent

data uncertainty in sentiment analysis, named entity recognition, and language mod-

eling tasks. We show that there is a potential performance increase when including

both uncertainties in the model. We also analyze the characteristics of the quantified

uncertainties. In Chapter 3, we investigate the relationship between hallucination and

predictive uncertainty in image captioning and data-to-text generation tasks. We pro-

pose an uncertainty-aware beam search algorithm to reduce the chance of hallucination

by penalizing parts or the entirety of the predictive uncertainty during model decoding.

3

Introduction Chapter 1

1.2 Model Calibration

In a supervised classification task, model calibration measures how closely the model

prediction confidence reflects the actual classification accuracy. For example, when a

sentiment analysis model predicts 60% probability that a tweet is positive, ideally there

are actually 60% such tweets expressing positive sentiment. The benefits of a calibrated

model are mainly two-folds: it is less risky and easier to control in safety-critical applica-

tions since low model confidence can be interpreted as low accuracy; it is important for

general model interpretability and trustworthiness especially for black-box models like

deep neural networks.

[3] show that post calibration methods such as Platt scaling [18] are effective in re-

calibrating modern neural networks. [19] conduct a set of experiments discussing the

effects of label smoothing on representation learning and knowledge distillation. They

find that label smoothing has an implicit model calibration effect. Models trained with

label smoothing are better calibrated on two image classification tasks and the EN-DE

translation task. In Chapter 4, we investigate the role label smoothing plays with respect

to model calibration in text classification settings and find that label smoothing achieves

calibration effects in some scenarios by artificially suppressing model uncertainties at the

cost of biasing the predictions.

1.3 Distribution Shift and Quantification Learning

There has been an increasing interest in studying the challenges arising from data

distribution changes in the machine learning community [20, 21, 22, 23]. The focus of

these studies is mainly on adapting to covariate shift and improving the performance

of the underlying learner in a shifted domain. Another line of research [24, 25] aims to

4

Introduction Chapter 1

estimate and adjust for the label prevalence changes in the target domain, assuming the

feature distribution of each class stays the same.

Quantification learning deals with the task of estimating the label distribution when

test distributions differ from the training. Different from classification tasks, quantifica-

tion learning focuses on accuracy on the aggregate level. For example, while classifiers

can be adopted to identify and demote individual contents categorized as hate speech

on a social platform, quantifiers are more useful in estimating the prevalence of hate

speech for a collection of contents. With the help of a robust quantifier, such a platform

could evaluate the effectiveness of a newly developed anti-hate speech feature using A/B

testing and closely monitor future hate speech prevalence on the platform.

Despite the many applications, quantification is relatively understudied in the NLP

community. One main problem with recent studies on text quantification is the dataset,

especially the testing sets. In Chapter 5, we introduce the first text quantification bench-

mark with naturally occurred temporal distribution shift. We focus on temporal dis-

tribution shift to tackle a main use case for text quantifiers: monitoring future label

prevalence changes given historic labeled data. A total of eight datasets are included

in the benchmark spanning sentiment analysis, document categorization, and toxicity

classification. We evaluate different quantification algorithms on the benchmark and find

that no algorithm consistently outperforms others.

5

Chapter 2

Uncertainty Quantification in

Natural Language Processing

2.1 Introduction

With advancement of modern machine learning algorithms and systems, they are

applied in various applications that, in some scenarios, impact human wellbeing. Many

of such algorithms learn black-box mappings between input and output. If the overall

performance is satisfactory, these learned mappings are assumed to be correct and are

used in real-life applications. It is hard to quantify how confident a certain mapping is

with respect to different inputs. These deficiencies cause many AI safety and social bias

issues with the most notable example being failures of auto-piloting systems. We need

systems that can not only learn accurate mappings, but also quantify confidence levels or

uncertainties of their predictions. With uncertainty information available, many issues

mentioned above can be effectively handled.

There are many situations where uncertainties arise when applying machine learning

models. First, we are uncertain about whether the structure choice and model parameters

6

Uncertainty Quantification in Natural Language Processing Chapter 2

can best describe the data distribution. This is referred to as model uncertainty, also

known as epistemic uncertainty. Bayesian neural networks (BNN) [26, 27, 28, 29, 30] is

one approach to quantify uncertainty associated with model parameters. BNNs represent

all model weights as probability distributions over possible values instead of fixed scalars.

In this setting, learned mapping of a BNN model must be robust under different samples

of weights. We can easily quantify model uncertainties with BNNs by, for example,

sampling weights and forward inputs through the network multiple times. Quantifying

model uncertainty using a BNN learns potentially better representations and predictions

due to the ensemble natural of BNNs. It is also showed in [10] that it is beneficial for

exploration in reinforcement learning (RL) problems such as contextual bandits.

Another situation where uncertainty arises is when collected data is noisy. This

is often the case when we rely on observations and measurements to obtain the data.

Even when the observations and measurements are precise, noises might exist within the

data generation process. Such uncertainties are referred to as data uncertainties in this

chapter and is also called aleatoric uncertainty [8]. Depending on whether the uncertainty

is input independent, data uncertainty is further divided into homoscedastic uncertainty

and heteroscedastic uncertainty. Homoscedastic uncertainty is the same across the input

space which can be caused by systematic observation noise. Heteroscedastic uncertainty,

on the contrary, is dependent on the input. For example, when predicting the sentiment

of a Yelp review, single-word review “good” is possible to have 3, 4 or 5-star ratings while

a lengthened review with strong positive emotion phrases is definitely a 5-star rating. In

the rest of the chapter, we also refer to heteroscedastic uncertainty as input-dependent

data uncertainty.

Recently, there are increasing number of studies investigating the effects of quantifying

uncertainties in different applications [15, 16, 9, 17]. In this chapter, we focus on exploring

the benefits of quantifying both model and data uncertainties in the context of various

7

Uncertainty Quantification in Natural Language Processing Chapter 2

natural language processing (NLP) tasks. Specifically, we study the effects of quantifying

model uncertainty and input-dependent data uncertainty in sentiment analysis, named

entity recognition, and language modeling tasks. We show that there is a potential

performance increase when including both uncertainties in the model. We also analyze

the characteristics of the quantified uncertainties.

The main contributions of this chapter are:

1. We mathematically define model and data uncertainties via the law of total vari-

ance;

2. Our empirical experiments show that by accounting for model and data uncertain-

ties, we observe significant improvements in three important NLP tasks;

3. We show that our model outputs higher data uncertainties for more difficult pre-

dictions in sentiment analysis and named entity recognition tasks.

2.2 Related Work

Bayesian Neural Networks

Modern neural networks are parameterized by a set of model weights W. In the

supervised setting, for a dataset D = {(x1, yi)}Ni=1, a point estimate for W is obtained

by maximizing certain objective function. Bayesian neural networks [26, 27, 28, 29,

30] introduce model uncertainties by putting a prior on the network parameters p(W).

Bayesian inference is adopted in training aiming to find the posterior distribution of the

parameters p(W|D) instead of a point estimate. This posterior distribution describes

possible values for the model weights given the dataset. Predictive function fW(x) is

used to predict the corresponding y value. Given the posterior distribution for W, the

8

Uncertainty Quantification in Natural Language Processing Chapter 2

function is marginalized over W to obtain the expected prediction.

Exact inference for BNNs is rarely available given the complex nonlinear structures

and high dimension of model parameters W of modern neural networks. Various approxi-

mate inference methods are proposed [31, 11, 10, 12]. In particular, Monte Carlo dropout

(MC dropout) [12] requires minimum modification to the original model. Dropouts are

applied between nonlinearity layers in the network and are activated at test time which

is different from a regular dropout. They showed that this process is equivalent to vari-

ational Bayesian approximation where the approximating distribution is a mixture of a

zero mean Gaussian and a Gaussian with small variances. When sampling dropout masks,

model outputs can be seen as samples from the posterior predictive function fŴ(x) where

Ŵ ∼ p(W|D). As a result, model uncertainty can be approximately evaluated by finding

the variance of the model outputs from multiple forward passes.

Uncertainty Quantification

Model uncertainty can be quantified using BNNs which captures uncertainty about

model parameters. Data uncertainty describes noises within the data distribution. When

such noises are homogeneous across the input space, it can be modeled as a parameter.

In the cases where such noises are input-dependent, i.e. observation noise varies with

input x, heteroscedastic models [32, 33] are more suitable.

Recently, quantifications of model and data uncertainties are gaining researchers’ at-

tentions. Probabilistic pixel-wise semantic segmentation has been studied in [15]; Gal and

Ghahramani [16] studied model uncertainty in recurrent neural networks in the context

of language modeling and sentiment analysis; Kendall and Gal [9] researched both model

and data uncertainties in various vision tasks and achieved higher performances; Zhu

and Laptev [17] used similar approaches to perform time series prediction and anomaly

9

Uncertainty Quantification in Natural Language Processing Chapter 2

detection with Uber trip data. This study focuses on the benefits of quantifying model

and data uncertainties with popular neural network structures on various NLP tasks.

2.3 Methods

First of all, we start with the law of total variance. Given a input variable x and its

corresponding output variable y, the variance in y can be decomposed as:

Var(y) = Var (E[y|x]) + E [Var(y|x)] (2.1)

We mathematically define model uncertainty and data uncertainty as:

Um(y|x) = Var (E[y|x]) (2.2)

Ud(y|x) = E [Var(y|x)] (2.3)

where Um and Ud are model and data uncertainties respectively. We can see that both

uncertainties partially explain the variance in the observation. In particular, model

uncertainty explains the part related to the mapping process E[y|x] and data uncertainty

describes the variance inherent to the conditional distribution Var(y|x). By quantifying

both uncertainties, we essentially are trying to explain different parts of the observation

noise in y.

In the following sections, we introduce the methods employed in this study to quantify

uncertainties.

10

Uncertainty Quantification in Natural Language Processing Chapter 2

Model Uncertainty

Recall that Bayesian neural networks aim to find the posterior distribution of W

given the dataset D = {(x1, yi)}Ni=1. We also specify the data generating process in the

regression case as:

y|W ∼ N (fW(x), σ2) (2.4)

With the posterior distribution p(W|D), given a new input vector x∗, the prediction

is obtained by marginalizing over the posterior:

p(y∗|x∗, D) =

∫
W

p
(
y∗|fW(x∗)

)
p(W|D)dW (2.5)

As exact inference is intractable in this case, we can use variational inference approach

to find an approximation qθ(W) to the true posterior p(W|D) parameterized by a differ-

ent set of weights θ where the Kullback-Leibler (KL) divergence of the two distributions

is minimized.

There are several variational inference methods proposed for Bayesian neural networks

[11, 10, 12]. In particular, dropout variational inference method [12], when applied to

models with dropout layers, requires no retraining and can be applied with minimum

changes. The only requirement is dropouts have to be added between nonlinear layers.

At test time, dropouts are activated to allow sampling from the approximate posterior.

We use MC dropout in this study to evaluate model uncertainty.

At test time, we have the optimized approximated posterior q(W). Prediction distri-

bution can be approximated by switching p(W|D) to q(W) in Equation 2.5 and perform

11

Uncertainty Quantification in Natural Language Processing Chapter 2

Monte Carlo integration as follows:

E(y∗|x∗) ≈ 1

M

M∑
j=1

fŴj(x∗) (2.6)

Predictive variance can also be approximated as:

Var (y∗) ≈ 1

M

M∑
j=1

fŴj(x∗)2 − E(y∗|x∗)2 + σ2 (2.7)

where Ŵj is sampled from q(W).

Note here σ2 is the inherent noise associated with the inputs which is homogeneous

across the input space. This is often considered by adding a weight decay term in the

loss function. We will discuss the modeling of input-dependent data uncertainty in the

next section. The rest part of the variance arises because of the uncertainty about the

model parameters W. We use this to quantify model uncertainty in the study, i.e.:

Um(y∗|x∗) =
1

M

M∑
j=1

fŴj(x∗)2 − E(y∗|x∗)2 (2.8)

Data Uncertainty

Data uncertainty can be either modeled homogeneous across input space or input-

dependent. We take the second option and make the assumption that data uncertainty is

dependent on the input. To achieve this, we need to have a model that not only predicts

the output values, but also estimates the output variances given some input. In other

words, the model needs to give an estimation of Var(y|x) mentioned in Equation 2.3.

Denote µ(x) and σ(x) as functions parameterized by W that calculate output mean

and standard deviation for input x (in practice, logarithm of the variance is calculated for

an improvement on stability). We make the following assumption on the data generating

12

Uncertainty Quantification in Natural Language Processing Chapter 2

process:

y ∼ N
(
µ(x), σ(x)2

)
(2.9)

Given the setting and the assumption, the negative data log likelihood can be written

as follows:

Lrgs(W) =− 1

N

N∑
i=1

log p(yi|µ(xi), σ(xi))

=
1

N

N∑
i=1

(
1

2

∣∣∣∣yi − µ(xi)

σ(xi)

∣∣∣∣2 +

1

2
log σ(xi)

2 +
1

2
log 2π

)
(2.10)

Comparing Equation 2.10 to a standard mean squared loss used in regression, we

can see that the model encourages higher variances estimated for inputs where the pre-

dicted mean µ(xi) is more deviated from the true observation yi. On the other hand, a

regularization term on the σ(xi) prevents the model from estimating meaninglessly high

variances for all inputs. Equation 2.10 is referred to as learned loss attenuation in [9].

While Equation 2.10 works desirably for regression, it is based on the assumption that

y ∼ N (µ(x), σ(x)2). This assumption clearly does not hold in the classification context.

We can however adapt the same formulation in the logit space. In detail, define µ(x)

and σ(x) as functions that maps input x to the logit space. Logit vector is sampled and

thereafter transformed into probabilities using softmax operation. This process can be

described as:

13

Uncertainty Quantification in Natural Language Processing Chapter 2

u ∼ N
(
µ(x), diag(σ(x)2)

)
(2.11)

p = softmax(u) (2.12)

y ∼ Categorical(p) (2.13)

where diag() function takes a vector and output a diagonal matrix by putting the elements

on the main diagonal. Note here in Equation 2.13, y is a single label. This formulation

can be easily extended to multi-way Categorical labels.

During training, we seek to maximize the expected data likelihood. Here we approx-

imate the expected distribution for p using Monte Carlo approximation as follows:

u(k) ∼ N
(
µ(x), diag(σ(x)2)

)
(2.14)

E[p] ≈ 1

K

K∑
k=1

softmax(u(k)) (2.15)

The negative log-likelihood for the dataset can be written as:

Lclf(W) =
1

N

N∑
i=1

log
K∑
k=1

exp

(
u
(k)
i,yi
− log

∑
c

expu
(k)
i,c

)

− logK (2.16)

where ui,c is the c-th element in ui.

After the model is optimized, we use σ(x∗)2 to estimate the data uncertainty given

14

Uncertainty Quantification in Natural Language Processing Chapter 2

Figure 2.1: Illustration of the evaluation process of predicted output and both model
uncertainty and data uncertainty. E(y∗|x∗) denotes the expected value of model pre-
diction; Um(y∗) is the model uncertainty with respect to the output; Ud(y

∗) is the
input-dependent data uncertainty. Dotted arrows represent sampling processes.

input x∗ in the regression case:

Ud(y
∗|x∗) = σ(x∗)2 (2.17)

For classification, we use the average variance of the logits as a surrogate to quantify

the data uncertainty. This does not directly measures data uncertainty in the output

space but can reflect to a certain extent the variance caused by the input.

Combining Both Uncertainties

To simultaneously quantify both uncertainties, we can simply use Equation 2.10,2.16

in the training stage and adopt MC dropout during evaluation as described in the model

uncertainty section.

Take the regression setting as an example, prediction can be approximated as:

E(y∗|x∗) ≈ 1

M

M∑
j=1

µŴj(x∗) (2.18)

15

Uncertainty Quantification in Natural Language Processing Chapter 2

Model uncertainty can be measured with:

Um(y∗|x∗) =
1

M

M∑
j=1

µŴj(x∗)2 − E(y∗|x∗)2 (2.19)

and data uncertainty is quantified with:

Ud(y
∗|x∗) =

1

M

M∑
j=1

σŴj(x∗)2 (2.20)

where again Ŵj is sampled from q(W). Figure 2.1 is an illustration of the evaluation

process of predictive value and different uncertainty measures.

2.4 Experiments and Results

We conduct experiments on three different NLP tasks: sentiment analysis, named

entity recognition, and language modeling. In the following sections, we will introduce the

datasets, experiment setups, evaluation metrics for each task, and experimental results.

Corpus Size Average Tokens |V | Classes

Yelp 2013 335,018 151.6 211,245 5
Yelp 2014 1,125,457 156.9 476,191 5
Yelp 2015 1,569,264 151.9 612,636 5
IMDB 348,415 325.6 115,831 10

Table 2.1: Summaries of Yelp 2013/2014/2015 and IMDB datasets. |V | represents
the vocabulary size.

Sentiment Analysis

Conventionally, sentiment analysis is done with classification. In this study, to explore

the effect of quantifying uncertainties, we consider both regression and classification

16

Uncertainty Quantification in Natural Language Processing Chapter 2

settings for sentiment analysis. In the regression setting, we treat the class labels as

numerical values and aim to predict the real value score given a review document. We

introduce the datasets and setups in both settings in this section.

Datasets We use four large scale datasets containing document reviews as in [34].

Specifically, we use IMDB movie review data [35] and Yelp restaurant review datasets

from Yelp Dataset Challenge in 2013, 2014 and 2015. Summaries of the four datasets are

given in Table 2.1. Data splits are the same as in [34, 35].

Experiment Setup We implement convolutional neural network (CNN) baselines in

both regression and classification settings. CNN model structure follows [36]. We use a

maximum vocabulary size of 20,000; embedding size is set to 300; three different kernel

sizes are used in all models and they are chosen from [(1,2,3), (2,3,4), (3,4,5)]; number of

feature maps for each kernel is 100; dropout [37] is applied between layers and dropout

rate is 0.5. To evaluate model uncertainty and input uncertainty, 10 samples are drawn

from the approximated posterior to estimate the output mean and variance.

Adam [38] is adopted in all experiments with learning rate chosen from [3e-4, 1e-3,

3e-3] and weight decay from [3e-5, 1e-4, 3e-4]. Batch size is set to 32 and training runs for

48 epochs with 2,000 iterations per epoch for Yelp 2013 and IMDB, and 5,000 iterations

per epoch for Yelp 2014 and 2015. Model with best performance on the validation set is

chosen to be evaluated on the test set.

Evaluation We use accuracy in the classification setting and mean squared error (MSE)

in the regression setting to evaluate model performances. Accuracy is a standard metric to

measure classification performance. MSE measures the average deviation of the predicted

17

Uncertainty Quantification in Natural Language Processing Chapter 2

Model Yelp 2013 Yelp 2014 Yelp 2015 IMDB
(rgs mse)
Baseline 0.71 0.72 0.72 3.62
Baseline + mu 0.57 0.55 0.55 3.20
Baseline + du 0.84 0.75 0.73 3.74
Baseline + both 0.57 0.54 0.53 3.13
Relative Improvement (%) 19.7 25.0 26.4 13.5

Table 2.2: Test set mean squared error of CNN regressors trained on four sentiment
analysis datasets. rgs mse represents regression MSE. Baseline is the baseline CNN
model [36]; mu and du denote model uncertainty and data uncertainty respectively.
Classification results have a similar pattern but the improvements are less obvious.

scores from the true ratings and is defined as:

MSE =

∑N
i=1(goldi − predictedi)

2

N
(2.21)

Results Experiment results are shown in Table 2.2. We can see that BNN models

(i.e. model w/ mu and w/ both) outperform non-Bayesian models. Quantifying both

model and data uncertainties boosts performances by 13.5%-26.4% in the regression set-

ting. Most of the performance gain is from quantifying model uncertainty. Modeling

input-dependent uncertainty alone marginally hurts prediction performances. The per-

formances for classification increase marginally with added uncertainty measures. We

conjecture that this might be due to the limited output space in the classification set-

ting.

Named Entity Recognition

We conduct experiments on named entity recognition (NER) task which essentially is

a sequence tagging problem. We adopt a bidirectional long-short term memory (LSTM)

[39] neural network as the baseline model and measure the effects of quantifying model

18

Uncertainty Quantification in Natural Language Processing Chapter 2

U.N. official Ekeus heads for Baghdad .

B-ORG O B-PER O O B-LOC O

Figure 2.2: An illustration of the bidirectional LSTM model used for named entity
recognition. Two dropout layers independently sample their masks while masks are
the same across time steps.

and input-dependent uncertainties on the test performances.

Datasets For the NER experiments, we use the CoNLL 2003 dataset [40]. This cor-

pus consists of news articles from the Reuters RCV1 corpus annotated with four types

of named entities: location, organization, person, and miscellaneous. The annotation

scheme is IOB (which stands for inside, outside, begin, indicating the position of the

token in an entity). The original dataset includes annotations for part of speech (POS)

tags and chunking results, we do not include these features in the training and use only

the text information to train the NER model.

Experiment Setup Our baseline model is a bidirectional LSTM with dropout applied

after the embedding layer and before the output layer. We apply dropout with the same

mask for all time steps following [16]. An illustration of the model is shown in Figure

2.2. Note that the dropout mask is the same across time steps. Different examples in

the same mini-batch have different dropout masks.

Word embedding size is 200 and hidden size in each direction is 200; dropout proba-

19

Uncertainty Quantification in Natural Language Processing Chapter 2

Model CoNLL 2003
(f1 score)
Baseline 77.5
Baseline + mu 76.5
Baseline + du 79.6
Baseline + both 78.5
Relative Improvement (%) 2.7

Table 2.3: Test set F1 scores (%) of bidirectional LSTM taggers trained on CoNLL
2003 dataset. Baseline is the baseline bidirectional LSTM model; mu and du de-
note model uncertainty and data uncertainty respectively. Modeling data uncertainty
boosts performances

bility is fixed at 0.5; other hyper-parameters related to quantifying uncertainties are the

same with previous experiment setups.

For training, we use Adam optimizer [38]. Learn rate is selected from [3e-4, 1e-3,

3e-4] and weight decay is chosen from [0, 1e-5, 1e-4]. Training runs for 100 epochs with

each epoch consisting of 2,000 randomly sampled mini-batches. Batch size is 32.

Evaluation The performances of the taggers are measured with F1 score:

F1 =
2 · precision · recall

precision + recall
(2.22)

where precision is the percentage of entities tagged by the model that are correct; recall

is the percentage of entities in the gold annotation that are tagged by the model. A

named entity is correct only if it is an exact match of the corresponding entity in the

data.

Results Test set performances of the models trained with and without uncertainties

are listed in Table 2.3. We observe that much different from the sentiment analysis

case, models that quantify data uncertainty improves performances by 2.7% in F1 score.

20

Uncertainty Quantification in Natural Language Processing Chapter 2

Quantifying model uncertainty, on the other hand, under-performs by approximately 1%

absolute F1 score. One possible explanation for worse results with model uncertainty is

due to the use of MC dropout and chunk based evaluation. More specifically, predicted

tag at each time step is taken to be the argmax of the average tag probability across mul-

tiple passes with the same inputs. This operation might break some temporal dynamics

captured with a single pass of the inputs.

Language Modeling

We introduce the experiments conducted on the language modeling task.

Datasets We use the standard Penn Treebank (PTB), a standard benchmark in the

field. The dataset contains 887,521 tokens (words) in total.

Experiment Setting We follow the medium model setting in [41]. The model is a two-

layer LSTM with hidden size 650. Dropout rate is fixed at 0.5. Dropout is applied after

the embedding layer, before the output layer, and between two LSTM layers. Similar to

the NER setting, dropout mask is the same across time steps. Unlike [16], we do not

apply dropout between time steps. Weight tying is also not applied in our experiments.

Number of samples for MC dropout is set to 50.

Evaluation We use the standard perplexity to evaluate the trained language models.

Results The results are shown in Table 2.4. We can observe performance improve-

ments when quantifying either model uncertainty or data uncertainty. We observe less

performance improvements compared to [16] possibly due to the fact that we use simpler

dropout formulation that only applies dropout between layers.

21

Uncertainty Quantification in Natural Language Processing Chapter 2

Model PTB
(ppl)
Baseline 82.7
Baseline + mu 81.3
Baseline + du 80.5
Baseline + both 79.2
Relative Improvement (%) 4.2

Table 2.4: Test set perplexities of LSTM language models trained on PTB dataset.
ppl represents perplexity. Baseline is the baseline medium two-layer LSTM model in
[41]; mu and du denote model uncertainty and data uncertainty respectively.

Summary of Results

We can observe from the results that accounting for uncertainties improves model

performances in all three NLP tasks. In detail, for the sentiment analysis setting with

CNN models, quantifying both uncertainties gives the best performance and improves

upon baseline by up to 26.4%. For named entity recognition, input-dependent data un-

certainty improves F1 scores by 2.7% in CoNLL 2003. For language modeling, perplexity

improves 4.2% when both uncertainties are quantified.

2.5 Analysis

In the previous section, we empirically show that by modeling uncertainties we could

get better performances for various NLP tasks. In this section, we turn to analyze

the uncertainties quantified by our approach. We mainly focus on the analysis of data

uncertainty. For model uncertainty, we have similar observations to [9].

What Does Data Uncertainty Measure

In Equation 2.3, we define data uncertainty as the proportion of observation noise or

variance that is caused by the inputs. Conceptually, input-dependent data uncertainty is

22

Uncertainty Quantification in Natural Language Processing Chapter 2

High du
should game automatic doors !
i ’ve bought tires from discount tire for
years at different locations and have had
a good experience , but this location was
different . i went in to get some new tires
with my fiancé . john the sales guy pushed
a certain brand , specifically because they
were running a rebate special . tires are
tires , especially on a prius (the rest 134
tokens not shown here due to space)
Low du
great sports bar ! brian always goes out
of his way to make sure we are good to go
! great people , great food , great music !
great bartenders and even great bouncers !
always accommodating ! all the best unk
!
great unk burger ! amazing service ! bril-
liant interior ! the burger was delicious but
it was a little big . it ’s a great restaurant
good for any occasion .

Table 2.5: Examples of inputs in Yelp 2013 dataset with high and low data uncertain-
ties. They are taken from the top and bottom 10 examples with respect to measured
data uncertainty. High du is around 0.80 and low is around 0.52. Italic tokens are
highly indicative tokens for higher ratings.

high if it is hard to predict its corresponding output given an input. We explore in both

sentiment analysis and named entity recognition tasks and analyze the characteristics of

inputs with high and low data uncertainties measured by our model.

Table 2.5 shows examples with high and low data uncertainties taken from the Yelp

2013 test set. Due to space limit, we only show four typical examples. Examples with

high data uncertainties are either short or very long with extensive descriptions of actions

instead of opinions. On the other hand, examples with low data uncertainties are of

relatively medium length and contain large amount of strong opinion tokens. These

23

Uncertainty Quantification in Natural Language Processing Chapter 2

0.0 0.2 0.4 0.6 0.8 1.0
entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

da
ta

 u
nc

er
ta

in
ty

Figure 2.3: Scatter plot of evaluated data uncertainty against entropy of annotated
NER tag distribution for all tokens in CoNLL 2003 dataset. Higher input-dependent
data uncertainties are estimated for input tokens that have higher tag entropies.

observations are consistent with our intuition.

For the CoNLL 2003 dataset, we take all tokens and measure their average quantified

data uncertainty. We use the following strategy to measure how difficult the prediction

for each token is: 1. calculate the distribution of NER tags the token is annotated in the

training data; 2. use entropy to measure the difficulty level of the prediction defined as:

H(p1, p2, · · · , pm) = −
m∑
i=1

pi log pi (2.23)

where p1, p2, · · · , pm is the distribution of NER tags assigned to a particular token in

the training set. The higher the entropy, the more tags a token can be assigned and the

more even these possibilities are. For example, in the training data, the token Hong has

been annotated with tag B-LOC (first token in Hong Kong), B-ORG, B-PER, B-MISC.

Therefore Hong has a high entropy with respect to its tag distribution. In contrast, the

token defended has only been assigned tag O representing outside of any named entities.

Therefore defended has a low entropy of 0.

We plot the relationship between the average quantified data uncertainty and NER

tag distribution entropy for the tokens in Figure 2.3. It is clear that for tokens with

24

Uncertainty Quantification in Natural Language Processing Chapter 2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
F1

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

da
ta

 u
nc

er
ta

in
ty

OB-LOCB-PER

I-LOC

I-PERB-ORG
B-MISC

I-MISC

I-ORG

Figure 2.4: Scatter plot of average evaluated data uncertainty against test set F1 score
for different tags. Higher data uncertainties are observed when predicting tags with
lower F1 score.

higher entropy values, data uncertainties measured by our model are indeed higher.

We also analyze the data uncertainty differences among NER tags. For each NER tag,

we evaluate its test set F1 score and average data uncertainty quantified by our model.

The relationship is shown in Figure 2.4. We observe that when predicting more difficult

tags, higher average data uncertainties are estimated by the model. These observations

indicate that data uncertainty quantified by our model is highly correlated with prediction

confidence.

2.6 Conclusion

In this work, we evaluate the benefits of quantifying uncertainties in modern neural

network models applied in the context of three different natural language processing

tasks. We conduct experiments on sentiment analysis, named entity recognition, and

language modeling tasks with convolutional and recurrent neural network models. We

show that by quantifying both uncertainties, model performances are improved across

the three tasks. We further investigate the characteristics of inputs with high and low

data uncertainty measures in Yelp 2013 and CoNLL 2003 datasets. For both datasets,

25

Uncertainty Quantification in Natural Language Processing Chapter 2

our model estimates higher data uncertainties for more difficult predictions.

Future research directions include possible ways to fully utilize the estimated uncer-

tainties. In the next chapter, we investigate the relationship between predictive uncer-

tainty and hallucination. We introduce an uncertainty-aware decoding method to help

reduce hallucination in image captioning and table-to-text tasks.

26

Chapter 3

Hallucination and Uncertainty in

Conditional Language Generation

3.1 Introduction

Modern deep neural network models have brought drastic improvements of generation

quality measured by standard metrics on different natural language generation (NLG)

tasks. However, along with these improvements, researchers find that neural models are

more prone to a phenomenon called hallucination, where models generate description

tokens that are not supported by the source inputs. This phenomenon seriously damages

the applicability of neural language generation models in practice where information

accuracy is vital.

Hallucination has been observed in various conditional NLG tasks such as image

captioning [42], data-to-text generation [43, 44, 45], abstractive summarization [46, 47],

and neural machine translation (NMT) [48]. These studies tackle hallucinations within

a specific task and give possible explanations of why hallucinations occur. For example,

[42] attributes object hallucination in image captioning to visual misclassification and

27

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

over-reliance on language priors; [44] believes hallucination in neural surface realization

comes from the misalignment between meaning representations and their corresponding

references in the dataset; [48] claims that hallucinations in NMT are mainly due to

domain shift.

We believe that there is a common theme across all the hallucination explanations

in conditional NLG tasks: predictive uncertainty. In language generation, predictive

uncertainty quantifies the entropy of the token probability distributions a model predicts.

There are multiple sources of uncertainty. Two major ones frequently studied are aleatoric

and epistemic uncertainties, where the former comes from the data or measurements, and

the latter is concerned with the model. With recent progress in Bayesian neural networks

(BNNs) [49, 50] and uncertainty quantification [10, 12, 13], we are able to quantify both

parts of predictive uncertainty in neural NLG.

This chapter draws connections between hallucination and predictive uncertainty and

empirically investigates their relationship in image captioning and data-to-text generation

tasks. We propose an uncertainty-aware beam search algorithm to reduce the chance

of hallucination by penalizing parts or the entirety of the predictive uncertainty during

model decoding. We find that the choice of uncertainty matters, and penalizing epistemic

uncertainty yields better results compared to penalizing aleatoric or total uncertainty.

Our contributions are:

• We draw connections between hallucination and predictive uncertainty across vari-

ous conditional natural language generation tasks and empirically investigate their

relationship.

• We propose an uncertainty-aware beam search approach for hallucination reduction

to demonstrate that lowering uncertainty can lead to less hallucination.

• We show that uncertainty decomposition helps to achieve better trade-offs between

28

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

hallucination and performance.

3.2 Hallucination and Predictive Uncertainty

Hallucination Probability

In general, hallucination refers to the phenomenon where the model generates false

information not supported by the input. For example, in the context of image caption-

ing, hallucination can be defined as generating captions that contain descriptions not

present in the given image. Let (x, y) be the pair of variables at interest where x is some

structured data containing facts and y is a natural language sentence based on the facts.

The task is to learn the conditional distribution of p(y|x) in order to generate sentence

y given any new input x. Most neural approaches break the probability into a sequence

of single token predictions:

p(y|x) = p(y1|x)
k∏
i=2

p(yi|x, y1, . . . , yi−1) (3.1)

where {y1, . . . , yk} is the collection of tokens in sentence y. We denote ci = {x, y1, . . . , yi−1}

as the context of the i-th prediction in the following sections for simplicity.

Apparently, hallucination is context-dependent which means we need to look at a cer-

tain context ci and determine whether the next token prediction yi is hallucinated or not.

Let V(ci)
h denote the set of tokens that are considered false information given the current

context ci and V the whole vocabulary. Consider a random sampling decoder where a

token is generated based on the predicted categorical distribution. i.e. Cat(|V|, p(yi|ci)).

29

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

The probability of hallucination at the current step is simply:

P (yi ∈ V(ci)
h) =

∑
v∈V(ci)

h

p(yi = v|ci) (3.2)

Practically, it is hard to automatically determine the context-dependent set V(ci)
h .

Task-specific heuristics are often used to determine which tokens are hallucinated. In

specific restrictive applications, the context-dependent set can be relaxed to a context-

independent one to reduce the complexity of determining hallucination.

Relationship with Predictive Uncertainty

We use entropy to measure the predictive uncertainty in this chapter. The total

uncertainty of predicting token yi is:

H(yi|ci)

=−
∑
v∈V

p(yi = v|ci) log p(yi = v|ci)

=−
∑

v∈V\V(ci)

h

p(yi = v|ci) log p(yi = v|ci)

−
∑

v∈V(ci)

h

p(yi = v|ci) log p(yi = v|ci) (3.3)

From Equation 3.3, we can see that there are two sources of uncertainty for the token

predictions: one from the uncertainty of choosing suitable tokens to describe the input;

another from some unsuitable tokens attaining considerable probability mass either by

being confusing in the current context or due to an insufficiently trained system.

The second source of uncertainty is directly related to hallucination probability. Al-

though no monotonic relationship can be derived, a near-zero hallucination probability

30

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Prediction 1

Prediction 2

Prediction 3

Token 1 Token 2 Token 3

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

(a)

Prediction 1

Prediction 2

Prediction 3

Token 1 Token 2 Token 3

0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

(b)

Figure 3.1: Examples of predictions with (a) high aleatoric but low epistemic uncer-
tainty; and (b) high epistemic but low aleatoric uncertainty.

requires a near-zero value of the second source of uncertainty. This observation prompts

us to investigate the relationship between hallucination and predictive uncertainty in

practice. Intuitively, the higher the predictive uncertainty is, the more probable some of

the probability mass gets assigned to unsuitable tokens.

Uncertainty Decomposition

There are often two types of uncertainties frequently mentioned in uncertainty quan-

tification literature: epistemic and aleatoric uncertainty [8, 9, 51]. Epistemic uncertainty

reflects the uncertainty on model weights, and aleatoric uncertainty concerns inherent

uncertainty in the data or measurement. We are interested in whether the relationship

with hallucination is the same for both types of uncertainties.

Bayesian deep learning approaches [10, 12, 13] are widely studied for uncertainty

quantification with neural networks. Following the notations in Section 3.2, the predictive

distribution of p(yi|ci) can be written as:

p(yi|ci) =

∫
w

p(yi|ci, w)q(w)dw (3.4)

where w parameterizes the neural network that makes predictions and q(w) denotes the

approximate posterior distribution of the weights w given the training data. Notice that

31

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

if we fix the weights w, H(yi|ci, w) represents the entropy that is unrelated to the uncer-

tainty of the model weights. Therefore the aleatoric part of the predictive uncertainty

can be calculated with Eq(w)[H(yi|ci, w)]. The epistemic part of the uncertainty is the

difference between the total and the aleatoric uncertainty as shown below:

ual(yi|ci) = Eq(w)[H(yi|ci, w)] (3.5)

uep(yi|ci) = H(yi|ci)− Eq(w)[H(yi|ci, w)] (3.6)

In this chapter, the aleatoric and epistemic parts of predictive uncertainty are es-

timated using deep ensembles [13]. More concretely, denote the model predictions as

{pm(yi|ci)}Mm=1 and the aggregated prediction as p(yi|ci) = 1
M

∑M
m=1 pm(yi = v|ci), aleatoric

and epistemic uncertainties are calculated as:

ual(yi|ci) =
1

M

M∑
m=1

Hm(yi|ci) (3.7)

uep(yi|ci) = H(yi|ci)− ual(yi|ci) (3.8)

where Hm(yi|ci) and H(yi|ci) are the entropy of pm(yi|ci) and p(yi|ci) respectively.

Intuitively, in the case of deep ensembles, aleatoric uncertainty measures the average

spread of all model predictions, while epistemic uncertainty measures the agreement

among all model predictions. Examples with three possible tokens are illustrated in

Figure 3.1.

3.3 Case Study: Image Captioning

In this section, we analyze image captioning models trained on MSCOCO [52] data

set.

32

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Model
Action hallucination % at uncertainty level
≤ 0.8 0.8 - 1.6 1.6 - 2.4 2.4 - 3.2 3.2 - 4.0 > 4.0

FC 0.00 0.00 2.27 12.86 15.71 31.03
Att2In 0.00 0.00 3.39 6.58 12.07 22.03
BUTD 0.00 2.94 1.92 12.77 17.24 25.53
Transformer 2.99 5.48 6.58 8.82 12.00 43.75

Table 3.1: Action hallucination percentages at different levels of predictive uncertainty.
Action predictions with higher uncertainty are more prone to hallucination.

Hallucination Probability at Different Uncertainty Levels

The first question we want to investigate is whether hallucination probabilities change

at different predictive uncertainty levels. Some experimental settings are listed below.

Model architecture We consider four different image captioning models: FC model

[53] where image features are used to initialize the RNN decoder; Att2In model from

[53] applies attention on image features and feeds it into the decoder LSTM [39] cell gate;

BUTD model from [54] uses bottom-up attention which operates at the level of objects

and other salient image regions; Transformer model where transformers [1] are used in

the encoder-decoder structure for generation. All models are implemented in the open

source framework by [55]1.

Training We consider the same data split from [56]. All models are trained with batch

size 50 for 30 epochs with Adam optimizer [38]. Evaluations are done on the Karpathy

test set.

Hallucination and uncertainty evaluation As in [42], synonyms for all possible

MSCOCO objects are used to determine whether an object generated by the captioning

model is hallucinated. Hallucination probabilities are calculated by binning all object

1https://github.com/ruotianluo/self-critical.pytorch

33

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

0 1 2 3 4 5
predictive uncertainty

0

10

20

30

40

50

60

ha
llu

cin
at

io
n

%

FC
Att2In
BUTD
Transformer

Figure 3.2: Object hallucination chance at different predictive uncertainty levels.
Higher predictive uncertainty corresponds to a higher level of hallucination percentage
across all models.

token prediction entropy and counting the percentage of hallucinated objects in each

bin.

Results and Discussions

Figure 3.2 shows the object hallucination percentages at different predictive uncer-

tainty levels. At higher uncertainty levels, the generated objects are more likely to be

hallucinated. The results are consistent across four different models. The transformer

model seems to have a higher hallucination chance at high uncertainty levels than the

other three models. However, this does not indicate Transformer models hallucinate

more. In fact, the transformer model has an overall lowest hallucination percentage

among all four models.

Beyond object hallucination Aside from object hallucination, we also analyze verbs

generated by the models to see whether a similar relationship holds for other types of

token generations. The same models and training procedures are adopted. We extract all

34

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

(a) a red and black
motorcycle (0.58)
parked in a parking
lot

(b) a motorcycle
(4.80) is parked on
a dock with a bird
perched on top of it

(c) a bride and groom
cutting their wedding
cake (0.09)

(d) a woman holding a
cup and a cake (5.29)

(e) a man standing on
a tennis court holding
(0.81) a racquet

(f) a young man is
holding (4.76) a
skateboard in his hand

(g) a group of children
sitting at a table eat-
ing (1.00) pizza

(h) a man is eating
(4.01) a hot dog at a
restaurant

Figure 3.3: Examples of token predictions generated with the BUTD model with
high and low uncertainty values for objects (top) and actions (bottom). Numbers in
italic are predictive uncertainty values for the token predictions preceding them. The
examples are cherry-picked.

present continuous tense verbs from the generated captions using spaCy part-of-speech

tagger2 and manually label whether they are suitable to describe the corresponding im-

ages. There are approximately 3500 generated captions containing verbs, and 400 are

annotated for each model. We refer to unsuitable verbs generated in the captions as

action hallucinations.

Action predictions are binned according to their uncertainty values, and the results are

shown in Table 3.1. We can observe that action tokens with higher predictive uncertainty

are also more likely to be hallucinated. Noticeably, the transformer model also has a

higher action hallucination rate at high uncertainty levels.

Examples of predictions with high and low uncertainty Figure 3.3 shows some

example images and their captions generated from a BUTD model on the test set. The

2https://spacy.io

35

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Model
Correlation coefficient
epistemic aleatoric

FC 0.313 0.299
BUTD 0.334 0.228
Att2In 0.360 0.268
Transformer 0.269 0.131

Table 3.2: Pearson correlation coefficients between hallucination and epis-
temic/aleatoric uncertainty in image captioning task. Epistemic uncertainty is more
indicative of hallucination across four models.

token predictions of interests and the corresponding uncertainty values are highlighted

in bold and italic, respectively. We observe that highly uncertain predictions often corre-

spond to unusual textures, features resembling the predicted tokens, or blurred images.

For example, Figure 3.3(b) shows a motorcycle covered in vines; Figure 3.3(d) shows

candles in the background which resemble cakes; Figure 3.3(f) is blurred.

Epistemic and aleatoric uncertainties As we could decompose the total uncer-

tainty into two parts, we are interested in which part is more indicative of hallucination.

Table 3.2 shows the Pearson correlation coefficients between hallucination (binary) and

epistemic/aleatoric uncertainty for all four models. We can see that both parts of un-

certainty are weakly correlated with hallucination, while epistemic uncertainty is more

indicative of hallucination across all four models compared to aleatoric uncertainty.

3.4 Case Study: Data-to-text Generation

Data-to-text generation [57, 58] is a task to generate textual content conditioned on

input content in the form of structured data such as tables. Neural models are prone

to hallucination in data-to-text generation tasks compared to traditional template-based

systems, and methods are proposed to improve faithfulness [43, 44, 59]. In this section, we

discuss the relationship between predictive uncertainty and hallucination in data-to-text

36

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

generation with ToTTo dataset [45].

Generation Quality and Average Uncertainty

We conduct token-level analysis in Section 3.3. Now we take a different route and

analyze sentence-level quality with different average predictive uncertainty values. Ex-

periment settings are described below.

Dataset ToTTo dataset consists of tables from English Wikipedia articles with their

corresponding metadata, such as page title and section title. Candidate description texts

are modified by annotators to pair with each table. Relevant table cells supporting the

description texts are highlighted by the annotators as well. There are 120,761 table-text

pairs in training, 7,700 in validation, and 7,700 in test. We use the baseline standard

linearization approach to represent the highlighted portions of the tables along with their

corresponding metadata (referred to as subtable with metadata in [45]).

Model architecture and training We use a standard sequence-to-sequence model

with attention [60, 55] for analysis. LSTM with 512 hidden size is used for both the

encoder and the decoder. Adam optimizer with learning rate 1e-3 is used for the opti-

mization. The model is trained with cross-entropy loss for 20 epochs. The checkpoint

with the best validation loss is chosen for the evaluation. The implementation is done

using fairseq [61]3.

Evaluation We evaluate the average predictive uncertainty for all generated sentences

in the validation set and select the top, bottom, and middle 5% for comparison. BLEU

score [62] is used as an automatic metric to evaluate the similarity to the references;

3https://github.com/pytorch/fairseq

37

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Unc. Level Avg Unc. BLEU Faithfulness (%) Less/Neutral/More Coverage

High 1.83 - 3.74 10.2 41.3 79.4 / 15.9 / 04.7
Medium 0.83 - 0.89 31.5 78.9 35.2 / 47.9 / 16.9
Low 0.04 - 0.27 72.8 99.0 22.2 / 70.1 / 07.7

Table 3.3: Evaluation results for candidates with high, medium, and low average
predictive uncertainty values for ToTTo validation set. Unc. denotes uncertainty.
Higher uncertainty candidates have lower quality and higher chance of being halluci-
nated/unfaithful w.r.t. the input tables.

further manual annotations are done to evaluate the fluency, faithfulness (precision),

and coverage with respect to reference (recall) of the generated sentences. Particularly,

faithfulness reflects how likely the generated sentences hallucinate facts that are not

supported by the tables. More details of the human evaluation metrics are described in

[45]. The goal is to measure how different the generation qualities are for candidates with

varying average predictive uncertainties.

Results and Discussions

Table 3.3 summarizes the evaluation results for candidates with varying uncertainty

values. It is obvious that candidates with higher average predictive uncertainty values

are less fluent and more likely to contain hallucinations. Another interesting observation

from Table 3.3 is that the generated sentences with medium average uncertainty are

more likely (16.9%) to cover more table facts than the references compared to the ones

with high (4.7%) and low (7.7%) average uncertainty. One possible explanation is that

some table facts that are not always included in the references, when generated, have

higher predictive uncertainty values than the facts that are almost always included in

the references. Therefore, generated sentences with low uncertainty tend to include less

but more confident facts considered by the model.

38

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

3.5 Reducing Hallucination

Uncertainty-Aware Beam Search

Because of the positive correlation between hallucination probability and predictive

uncertainty, it is straightforward to incorporate uncertainty into the caption generation

process to reduce hallucination. Beam search is the most used approximate decoding

method in language generation. It keeps track of the top-B scored candidates at each

generation step and considers all single token extensions of the current candidates.

More formally, denote the set of B candidates in the beam at time step t − 1 as

Yt−1 = {y(b)
t−1}Bb=1. All possible single token extensions of the candidates in Yt−1 form a

set Ct = {y | yt−1 ∈ Yt−1 ∧ yt ∈ V}. Beam at step t is then formed as:

Yt = arg max
y1...yB∈Ct

B∑
b=1

log p(yb|x)

s.t. yi 6= yj ∀i 6= j (3.9)

Uncertainty-aware beam search (UABS) adds a weighted penalty term in the beam

search objective to balance between log probability and predictive uncertainty of the

selected candidates. Let u(y|x) be the function to measure the aggregated predictive

uncertainty of candidate y given input x, uncertainty-aware beam search updates the

beam at step t according to the following equation:

Yt = arg max
y1...yB∈Ct

B∑
b=1

log p(yb|x)− λu(yb|x)

s.t. yi 6= yj ∀i 6= j (3.10)

where λ ≥ 0 is the weight controlling the degree to which we want to penalize decoding

39

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

7.0 7.5 8.0 8.5 9.0
CHAIRi

80

85

90

95

100

CI
DE

r

epistemic
aleatoric
total

(a) FC

4.6 4.8 5.0 5.2 5.4 5.6 5.8
CHAIRi

95.0
97.5

100.0
102.5
105.0
107.5
110.0

CI
DE

r

epistemic
aleatoric
total

(b) Att2In

3.754.004.254.504.755.005.255.50

CHAIRi

60
70
80
90

100
110

CI
DE

r

epistemic
aleatoric
total

(c) BUTD

3.2 3.4 3.6 3.8 4.0 4.2
CHAIRi

70

80

90

100

110

CI
DE

r

epistemic
aleatoric
total

(d) Transformer

Figure 3.4: CIDEr plotted against CHAIRi scores of captions generated with UABS
with different uncertainty penalty weights. Lower CHAIRi score indicates less hallu-
cination. Upper-left is better. Penalizing epistemic uncertainty in UABS achieves the
best results.

uncertainty. Larger λ leads to candidates with smaller predictive uncertainty. In practice,

this can be done by subtracting the weighted uncertainty term from the aggregated log

probability scores at each decoding step before choosing top-B candidates.

An important decision in using uncertainty-aware beam search is the choice of uncer-

tainty term u(y|x). We could use either the aleatoric or epistemic part of the predictive

uncertainty or both. We compare these choices and discuss the results in the next section.

Image Captioning Results

With larger weights on the uncertainty penalty term, log probabilities of the decoded

sentences drop. Therefore, we expect to see a trade-off between the quality of generated

captions and the chance of hallucination.

40

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Image
UABS results with weight λ

0 20 80

a vase filled with flowers
sitting on top of a table

a vase filled with lots of
white flowers

there is a vase that has
flowers in it

a wooden cutting board
topped with lots of food

a wooden cutting board
topped with lots of food

a cutting board that has
a bunch on it

Table 3.4: Two examples of epistemic UABS results with varying penalty weights
on the image captioning data set. In the first example the model successfully avoids
hallucination of a table with λ = 20 while in the second example it is unable to change
the generated caption until larger penalty weight is set.

We empirically examine the trade-offs on the image captioning models with different

uncertainty choices for the penalty term. We use a five-model ensemble for each of the

four model architectures to estimate aleatoric and epistemic uncertainties. Due to the

different magnitudes of aleatoric and epistemic uncertainties, we choose penalty weight

λ from [0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0] for aleatoric and total uncertainty and [10, 20, 40, 80]

for epistemic uncertainty.

Figure 3.4 shows the trade-offs between CIDEr [63] and CHAIRi [42] scores of captions

generated with uncertainty-aware beam search with different uncertainty choices and

penalty weights. A smaller value of CHAIRi indicates the model is less likely to generate

hallucinated objects, and a higher CIDEr indicates better caption quality. Therefore an

approach that is to the upper left of another is better. As the penalty weight increases,

we observe a decrease in both the CHAIRi and the CIDEr scores across all models.

Table 3.4 shows two examples of different generated captions using epistemic UABS

with varying penalty weights. In the first example, we can see that a medium penalty

weight of 20 not only helps avoid the hallucination of a table but also adds correct

information about the color of the flowers. In the second example, a medium penalty

41

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

λ avg. len. # obj. hal. % gen. %

ref. 10.44 6114 0 -
base 0 9.31 7328 5.5 0

epist.

10 9.21 7195 5.2 0
20 9.16 7078 4.9 0.2
40 9.15 6912 4.2 1.5
80 9.12 6493 3.6 4.6

aleat.

0.1 9.32 7250 5.4 0
0.4 9.32 7051 5.1 0
1.0 9.33 6800 4.7 1.0
4.0 9.43 4349 4.1 28.4

Table 3.5: Average sentence length and total number of objects detected in the cap-
tions generated by BUTD model with varying uncertainty penalty weight λ. Pe-
nalizing epistemic uncertainty leads to slightly shorter lengths. Number of objects
mentioned by the captions decreases with increasing λ. gen. % denotes percentage
of generic responses. It is moderate with epistemic penalized results but can be very
high if aleatoric uncertainty is heavily penalized.

λ BLEU Fluency (%) Faithfulness (%) Less/Neutral/More Coverage

0 40.1 92 79 34 / 60 / 6
10 33.6 83 84 41 / 51 / 8
20 27.4 73 80 52 / 42 / 6

Table 3.6: Evaluation results for candidates decoded with different penalty weights
for UABS on ToTTo validation set. Epistemic uncertainty is used for uncertainty
penalization. Faithfulness first increases, then decreases to the same level as regular
beam search results as we increase the penalty weight λ.

weight is unable to change the generated caption.

Regarding the choice of uncertainty, it is notable that when penalizing epistemic un-

certainty, the generated captions achieve higher CIDEr scores than penalizing aleatoric or

total uncertainty. We hypothesize that epistemic uncertainty indicates the uncertainty of

model weights. By penalizing epistemic uncertainty, we encourage the model to take the

prediction path where it is well-calibrated. On the other hand, penalizing aleatoric un-

certainty encourages the model to make low entropy predictions in all contexts regardless

of the actual data distributions.

42

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Reference
UABS results with weight λ

0 10 20

barrows scored 164 net
points in virgin islands at
the 2008 summer olympics.

in virgin islands
at the 2008 summer
olympics, barrows iii
received 164 points.

in virgin islands at
the 2008 summer
olympics, barrows
received 164 points.

thomas barrows
received a total
score of 164.

janet gaynor won the first
academy award for best
actress for her performance
in the 7th heaven (1927 film).

janet gaynor won the
academy award for
best actress for his
performance in janet
gaynor.

janet gaynor won
the academy award
for best actress.

janet gaynor won
an academy award
for best actress.

Table 3.7: Two examples of UABS results with varying penalty weights on the ToTTo
validation set. Blue tokens are correct table facts that are dropped by candidates
generated with larger penalty weights; red tokens are incorrect/hallucinated facts
that are dropped with larger penalty weights. In general, UABS with larger weights
tend to produce sentences with less information that the model is more confident with.

Table 3.5 shows the average sentence length, the number of objects, the percentage

of hallucinations, and the percentage of generic responses in the captions generated by

the BUTD model with different uncertainty choices and penalty weights on the test set.

We can see that when penalizing epistemic uncertainty, UABS results in slightly shorter

caption candidates. Both the number of objects and hallucination percentage decrease as

we increase the weight λ. Interestingly, when penalizing aleatoric uncertainty, sentence

length stays approximately the same despite lower CIDEr scores, as shown in Figure 3.4.

Further investigation shows that this is partly due to an increasing number of generic

captions such as “there is no image here to provide a caption for”. Penalizing epistemic

uncertainty is much less likely to result in such generic captions. We can see that when

increasing λ from 1.0 to 4.0 with aleatoric UABS, the percentage of generic responses

jumps drastically from 1.0% to 28.4%. In comparison, epistemic UABS keeps the generic

response rates low while achieving lower hallucination rates.

43

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

Data-to-text Results

We also evaluate the effect of UABS on the ToTTo dataset. We choose to penalize

epistemic uncertainty due to its better performances than aleatoric uncertainty, as shown

in the previous section. A five-model deep ensemble is used to quantify the epistemic

uncertainty and generate results with UABS. We compare the BLEU score and three

human evaluation metrics among results generated with different uncertainty penalty

weights. 100 generation results are randomly selected and evaluated for each penalty

weight choice. The results are shown in Table 3.6. We can see that a relatively small

penalty weight leads to a reduced hallucination chance (hence more faithful) with a cost

on the BLEU score and fluency.

To qualitatively examine the sentences generated with different λ values, we show

example results on the ToTTo validation set in Table 3.7. We can see that with larger

penalty weights, the UABS results drop certain statements that the model deems less

confident regardless of the correctness. This results in shorter but more confident pre-

dictions for UABS results with a larger uncertainty penalty.

3.6 Related Work

Hallucination There are many pieces of anecdotal evidence of hallucination presented

in various NLG tasks. Most recently, researchers started investigating the phenomenon

systematically. [42] analyzes object hallucination focusing on the objects that appeared

in the MSCOCO segmentation challenge. They propose the CHAIR metric to quantify

the severity of object hallucination. They find that the models tend to make predictions

consistent with a language model trained on the captions instead of a model trained to

predict objects in an image. Therefore hallucination is caused by an over-reliance on

the language priors. [44] believes that the origin of the hallucination problem in neural

44

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

surface realization comes from the data side. More specifically, datasets used for NLG

systems often include instances with information misalignment between the input struc-

ture and the output text. They propose integrating a language understanding module for

iterative data refinement to better align meaning representations and output text. [48]

examines hallucination in neural machine translation and observes that the phenomenon

is most common in out-of-domain settings. They empirically compare several strategies

to improve domain robustness in NMT and find that a combination of reconstruction

and a noisy channel model for reranking is most effective.

These observations are consistent with our findings. For example, domain shift and

data misalignment are known to lead to a higher level of epistemic uncertainty [9] which

makes hallucination a more severe problem.

Uncertainty quantification Uncertainty quantification has attracted more attention

recently due to the progress in Bayesian deep learning. Bayes by backprop [10], Monte

Carlo dropout [12], and deep ensembles [13] are examples of popular Bayesian approaches

to evaluate uncertainty with deep neural models. [9] investigates the benefits of modeling

epistemic and aleatoric uncertainty in vision tasks such as semantic segmentation and

depth regression. They show that it is important to model aleatoric uncertainty with

large datasets and real-time applications and epistemic uncertainty with small datasets

and safety-critical applications. Other applications of uncertainty quantification have

been explored in the context of time series predictions [17], natural language processing

tasks [64], etc. More broadly, prediction entropy has been analyzed in different neural

language generation tasks [65, 66]. [51] shows how to extract and decompose uncertainty

in Bayesian neural networks with latent variables for decision-making purposes. They

show that active learning and risk-sensitive reinforcement learning both benefit from

uncertainty decomposition.

45

Hallucination and Uncertainty in Conditional Language Generation Chapter 3

3.7 Discussion and Conclusions

We investigate the relationship between hallucination and predictive uncertainty in

image captioning and data-to-text generation tasks and show that predictions with higher

uncertainty are more prone to hallucination. In particular, epistemic uncertainty is more

indicative of hallucination than aleatoric uncertainty. We propose uncertainty-aware

beam search to incorporate uncertainty into the decoding process to reduce hallucination.

We show that uncertainty decomposition helps the proposed beam search variant to

achieve a better performance-hallucination trade-off. Specifically, penalizing epistemic

uncertainty yields better results compared to penalizing aleatoric or total uncertainty.

In this chapter, we analyze uncertainty from the token level. This might be restrictive

because uncertainty corresponds to the current prediction context instead of the predicted

token. The relationship between hallucination and uncertainty, therefore, can be much

more complicated than a linear one. It is still possible to produce hallucinated information

with a very confident model. The proposed UABS reduces hallucination by limiting the

total uncertainty of the generated text. As a result, it might lead to shorter generations

and lower generation quality. Devising more sophisticated uncertainty-aware training and

decoding methods with less adverse effects on the generation quality is a future direction

to explore.

In addition to predictive uncertainty, model calibration is another concept that affects

the reliability and interpretability of model predictions. In the next chapter, we discuss

the relationship between model calibration and label smoothing.

46

Chapter 4

Label Smoothing and Model

Calibration in Text Classification

4.1 Introduction

Label smoothing has been widely used in deep learning models across various tasks,

including image classification [67] and machine translation [1] to improve model perfor-

mance. Recently, there are several studies analyzing various properties of label smoothing

[19, 68, 69]. Specifically, [19] conduct a set of experiments discussing the effects of label

smoothing on representation learning and knowledge distillation. They find that label

smoothing has an implicit model calibration effect. Models trained with label smoothing

are better calibrated on two image classification tasks and the EN-DE translation task.

However, it is unclear whether this implicit calibration effect is universal. How and when

does label smoothing help with model calibration are not evident.

In this chapter, we investigate the role label smoothing plays with respect to model

calibration in text classification settings. We train BERT [70] and deep averaging network

(DAN) [71] models on four text classification data sets with different label smoothing

47

Label Smoothing and Model Calibration in Text Classification Chapter 4

factors and further analyze the effects of label smoothing on the model predictions. Our

contributions are:

• We show that label smoothing does not always improve model calibration with

empirical experiments on several text classification data sets.

• We demonstrate that label smoothing artificially suppresses model uncertainties

and pushes the model to produce higher entropy predictions. This helps to calibrate

the model when there is a significant gap between training and validation losses.

• We find that in the settings where label smoothing yields worse calibrated models,

it is still possible to produce better-calibrated models by reversing the effect with

label sharpening.

4.2 Preliminaries

Model Calibration

In a supervised classification setting, the accuracy of the predictions is often the

most critical metric. However, calibrating the model prediction confidence to better

represent the actual prediction correctness is becoming an essential task when accurate

measurements of the test-time prediction correctness are required.

Let (x, y) be the input-label pair that follows a ground-truth distribution π(x, y) =

π(x)π(y|x); q(y|x,w) denotes the conditional model prediction given input x and pa-

rameter w. The ultimate goal of model calibration in classification tasks is to match

q(y|x,w) with π(y|x). In practice, the discrepancy between the model predictions and

the ground-truth distribution can be approximated using negative log-likelihood (NLL)

of the data samples.

48

Label Smoothing and Model Calibration in Text Classification Chapter 4

Expected Calibration Error (ECE) [72, 3] is a popular metric to measure miscali-

bration. It calculates the expected difference between model confidence and accuracy,

i.e.

Ep
[∣∣P(y = ŷ | q(y|x̂, w) = p

)
− p
∣∣] (4.1)

where (x̂, ŷ) are data examples. ECE is often approximated by binning all model predic-

tions by confidence scores and calculating the difference between confidence and average

accuracy within each bin.

Label Smoothing

Cross-entropy loss is widely used to train neural network models on classification

tasks. For K-class classification and an input-label pair (x̂, ŷ), the cross-entropy loss is

calculated as

K∑
k=1

−1[k=ŷ] log q(y = k|x̂, w) (4.2)

where 1[k=ŷ] is 1 when k = ŷ and 0 otherwise.

When applying label smoothing with a factor of α, we instead minimize the cross-

entropy loss between the prediction and the modified soft target yLSk = 1[k=ŷ](1−α)+α/K:

K∑
k=1

−yLSk log q(y = k|x̂, w) (4.3)

Label smoothing has been found to boost model performance, especially in machine

translation tasks with complex neural models.

49

Label Smoothing and Model Calibration in Text Classification Chapter 4

4.3 Does Label Smoothing Always Help with Cali-

bration?

We first investigate the question of whether label smoothing improves model calibra-

tion across different data sets and models. We experiment on the following data sets:

AG’s News [73]: 4 topic classes. 120000 training and 7600 test examples. We ran-

domly select 7600 examples from the training set for validation.

CoLA [74]: binary classification data set for linguistic acceptability. 8551/1043/1063

examples for training/validation/test.

20 Newsgroups : newsgroup articles from 20 different newsgroups. 9034/2259/7528

documents for train/validation/test.

Stanford Sentiment Treebank (SST) [75]: Movie reviews represented as sentiment

annotated parse trees. We use the original sentences as input. There are 8544/1101/2210

examples for train/validation/test with fine-grained sentence-level sentiment labels (SST-

5), and 67349/872/1821 for train/validation/test with binary labels (SST-2).

For CoLA, we use BERT models [70] trained from scratch. For 20 Newsgroups, we

train Deep Averaging Networks (DANs) [71] with three feed-forward layers. To compare

different models on the same data set, we train both types of models on AG’s news,

SST-2 and SST-5. Models are trained with AdamW [76, 77]. Early stopping is applied

monitoring the validation F1 score.

We evaluate the calibration performances of the models under different levels of label

smoothing factors using ECE. The test set results are listed in Table 4.1. We observe an

advantage of applying label smoothing when training BERT models on most of the data

50

Label Smoothing and Model Calibration in Text Classification Chapter 4

Model Dataset # classes
ECE (%) with label smoothing

Better calibrated
α = 0 α = 0.1 α = 0.2 α = 0.4

BERT

AG’s News 4 1.37 2.70 6.06 12.56 No
CoLA 2 23.63 16.43 14.23 8.32 Yes
SST-2 2 14.15 10.09 6.26 6.13 Yes
SST-5 5 15.57 14.10 9.79 6.56 Yes

DAN

AG’s News 4 4.59 8.28 11.54 17.18 No
20 Newsgroups 20 2.47 3.28 4.07 4.97 No
SST-2 2 8.63 11.75 14.39 18.19 No
SST-5 5 3.18 4.19 4.97 6.44 No

Table 4.1: Comparison of ECE scores under different levels of label smoothing
strengths. α is the label smoothing factor. Results are averaged over 5 random
runs. Label smoothing hurts model calibration for DAN models and helps in most
cases for BERT models.

sets. It is also obvious that it hurts model calibration to apply label smoothing when

training DANs.

4.4 Why Does Label Smoothing (Not) Help?

In this section, we investigate the reasons behind the drastic difference between the

effects of label smoothing on the calibration of BERT and DAN models.

We start by analyzing the differences from a particular test input x. We take an

input sentence from SST-2 test set; query its top-150 nearest neighbors in the pre-trained

BERT embedding space; approximate the ground-truth conditional distribution π(y|x) by

aggregating the labels of its neighbors. We then compare the distributions of prediction

confidences from models trained with different levels of label smoothing factors. The

distributions of model confidences for the positive class with four different levels of label

smoothing α values are plotted in Figure 4.1.

We can see that despite a similar average confidence, BERT and DAN models produce

wildly different distributions of confidences given identical inputs. The BERT model

tends to have extremely low-entropy predictions while the confidences of the DAN model

51

Label Smoothing and Model Calibration in Text Classification Chapter 4

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.1

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.2

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.4

(a) prediction confidences of a BERT model

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0

0
5

10
15
20
25
30
35

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.1

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.2

0.0 0.2 0.4 0.6 0.8 1.0
alpha=0.4

(b) prediction confidences of a DAN model

Figure 4.1: Histograms of prediction confidences for a certain input neighborhood on
SST-2 under different levels of label smoothing for (a) BERT and (b) DAN models.
Red vertical lines represent the approximated ground-truth conditional probability.
The distribution of confidences from the BERT model is bi-modal, while the DAN
model predictions are uni-modal. Label smoothing leads to lower-variance higher-en-
tropy predictions.

spread close to a normal distribution.

Due to the softening nature of label smoothing, it artificially suppresses model un-

certainty by pushing all predictions to higher-entropy ones. This can be qualitatively

observed from Figure 4.1 and empirically confirmed by measuring and comparing the

epistemic and aleatoric uncertainties during predictions. As a result, model calibration

is almost guaranteed to improve when the ground-truth probability falls between the two

posterior modes, as shown in Figure 4.1(a). However, when the posterior distribution is

uni-modal and already has a mean close to the ground-truth, label smoothing can hurt

model calibration by enlarging the prediction bias as shown in Figure 4.1(b).

52

Label Smoothing and Model Calibration in Text Classification Chapter 4

Model Dataset Train NLL Valid NLL

BERT

AG’s News 0.18 0.26
CoLA 0.21 1.10
SST-2 0.07 0.32
SST-5 0.40 2.71

DAN

AG’s News 0.48 0.38
20 Newsgroups 0.33 0.25
SST-2 0.46 0.40
SST-5 1.34 1.35

Table 4.2: Training and validation loss when the validation F1 score peaks. Results
are averaged over 5 random runs. The gap between validation and training losses is a
clear indicator whether the model can benefit from label smoothing.

4.5 When Does Label Smoothing Help?

We have described the differences between the posterior distributions of BERT and

DAN models in the previous section. These differences lead to different interactions

between label smoothing and model calibration. In this section, we further investigate

the causes of such differences and how we can identify a model that can potentially

benefit from label smoothing for model calibration.

If a model is well-trained at some specific area in the input space, the cross-entropy

loss will encourage a uni-modal prediction with small variance around the ground-truth

value. Therefore, the bi-modal distribution illustrated in Figure 4.1(a) indicates that the

model might have a relatively large NLL on the test set. To confirm this conjecture,

we record the training/validation loss of models trained without label smoothing on all

data sets. The results are listed in Table 4.2. We can see that when the validation

loss is comparable to the training loss, label smoothing hurts model calibration; when

the validation loss is significantly larger than the training loss, label smoothing leads to

better-calibrated models.

Table 4.2 suggests that for a complex model like BERT, it is often the case that

53

Label Smoothing and Model Calibration in Text Classification Chapter 4

Dataset ECE (α = 0) ECE / α

AG’s News 4.59% 2.74% / -0.04
20 Newsgroups 2.47% 1.84% / -0.2
SST-2 8.63% 5.72% / -0.1
SST-5 3.18% 1.54% / -0.2

Table 4.3: ECE scores of DANs trained without and with label sharpening. On all
four data sets, label sharpening with an appropriate negative α value leads to better
calibrated models.

the trained model is overfitted, in the calibration sense, on the training data if the

model selection is solely based on validation accuracy or F1 score. In these cases, label

smoothing improves model calibration by pushing the posterior modes in the low-entropy

areas of the probability simplex to be closer to the ground-truth value.

4.6 Label Sharpening

In this section, we investigate the question: in the cases where label smoothing hurts

model calibration, is it possible to reverse its effects by instead sharpening the labels?

To reverse the effect of label smoothing, we use the same cross-entropy loss in Equa-

tion 4.3 except that the soft target yLSk is obtained using negative α values. This is

equivalent to a regular cross-entropy loss with hard labels plus an additional term en-

couraging the divergence between the prediction and the uniform distribution. We call

label smoothing with negative α values label sharpening.

We experiment with DAN models trained on AG’s news, 20 Newsgroups, SST-2, and

SST-5. Models are trained following the same training procedure described in Section

4.3. The label sharpening factor α is selected from [-0.04, -0.1, -0.2] to minimize the

validation ECE score. We report the test set ECE scores in Table 4.3.

We can see from Table 4.3 that in all four cases where label smoothing leads to worse

calibration, we can effectively reverse the effects to improve model calibration with label

54

Label Smoothing and Model Calibration in Text Classification Chapter 4

sharpening. However, it is worth noting that excessive label sharpening has an adverse

impact on both calibration and classification performance.

4.7 Discussion and Conclusions

In this chapter, we investigate and answer three key questions regarding label smooth-

ing and model calibration for text classification. We find that label smoothing does not

always lead to better-calibrated models; label smoothing helps only when there is a sig-

nificant gap between training and validation loss which happens more often when the

model is complex; when label smoothing hurts calibration, it is possible to reverse the

effects with label sharpening.

We focus on the training-time calibration effects of label smoothing in this chapter.

It is also possible to apply label smoothing during re-calibration to potentially better

re-calibrate a trained model. Many related questions can be investigated further. For

example, how does label smoothing interact with model calibration methods such as

temperature scaling and model ensembles? Are other soft-label methods such as Mixup

[78] exhibit similar behavior like label smoothing? Can we devise an adaptive approach

that automatically selects appropriate label smoothing factor which yields well-calibrated

models? These are interesting future directions towards better understandings of label

smoothing and model calibration.

As of now, we discussed the uncertainty and calibration of predictions from deep

neural models in NLP tasks. In the next chapter, we will discuss out-of-distribution

robustness. In particular, we will introduce a benchmark for label distribution estima-

tion/quantification learning.

55

Chapter 5

Label Distribution Estimation

Under Real-World Temporal Shift

5.1 Introduction

Quantification is a supervised learning task that estimates the aggregated label distri-

bution of a test population given labeled training examples. Different from classification

tasks, quantification learning focuses on accuracy on the aggregate level. For example,

hate speech [79, 80, 81] is a major challenge for many online social platforms. Classifiers

can be adopted to identify and demote individual contents categorized as hate speech on

such platforms. On the other hand, quantifiers are more useful in estimating the preva-

lence of hate speech for a collection of contents. In other words, classifiers are mainly used

in enforcement and quantifiers are suitable for measurement as illustrated in Figure 5.1.

With the help of a robust quantifier, such a platform could evaluate the effectiveness of

a newly developed anti-hate speech feature using A/B testing and closely monitor future

hate speech prevalence on the platform. Another example of quantification learning in

epidemiology is to track the prevalence of clinical reports where a specific pathology is

56

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Classifier

Doc 1 Doc 2

0.9 0.1...

... Doc n

0.3

Enforcement Engine

delete none...demote

Test Collection A Test Collection B

Quantifier

0.03 0.01

A/B Test Result

Figure 5.1: Simplified illustration of possible roles of classification versus quantifica-
tion on a social platform. Classification focuses on individual classification correctness
and is often used in enforcement, while quantification focuses on aggregate level esti-
mation and is suitable for measurement.

diagnosed [82]. In both cases, an accurate estimation of the label distribution provides

actionable insights.

In addition to these direct use cases, quantification learning is studied in label shift

settings [24, 83] to optimize classification performance under distribution shift. In the

extreme case where label prevalence is the only difference between the source and target

domain, simply re-weighting the examples according to label prevalence ratios in both

domains is sufficient to adjust for the domain change. [25] further shows that an accu-

rate quantifier helps existing domain adaptation methods to adjust for label prevalence

changes in the target domain through importance weighting.

Despite the many applications, quantification is relatively understudied in the NLP

community. One common misunderstanding is that these problems can be solved trivially

using a straightforward Classify & Count (CC) approach [84] based on an off-the-shelf

classifier. However, classifiers are often trained with the assumption that the training

and test examples are drawn i.i.d. from a common data distribution. Under distribution

shift, simple aggregation of classification results yields sub-optimal prevalence estimate.

57

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

65% Money transfer
18% Digital wallet / virtual currency

37% Money transfer
59% Digital wallet / virtual currency

Samples:

Money transfer
on Saturday X/XX/XX my employeer tried to direct deposit XXXX it was rejected
by my bank.

Digital wallet / virtual currency
I can not transfer money to a site where I can buy digital currency. Not being able
to use my own money is a huge problem.Quite a scam.

Figure 5.2: Prevalence change of the “Money transfer, virtual currency” category
across time in the Consumer Complaint Database. Within the category, the compo-
sition of complaints also changes, creating further challenges to quantifiers.

One main problem with recent studies on quantification is the dataset, especially the

testing sets. As pointed out in [85], quantification methods need to be evaluated on a

set of testing splits with enough variations on the label distribution. Most of the above-

mentioned studies achieve this by artificially changing the test label distribution through

biased sampling. For example, [84] uses a set of pre-specified positive prevalence values

and constructs the test sets accordingly; [24] simulates label shift by drawing the test

set label distributions from a Dirichlet distribution. However, these stratified sampling

strategies change the underlying data distribution and are problematic in assessing the

actual performances of quantification models in practice.

In this paper, we introduce the first text quantification benchmark with naturally

occurred temporal distribution shift. We focus on temporal distribution shift to tackle

58

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

a main use case for text quantifiers: monitoring future label prevalence changes given

historic labeled data. Each dataset is split into subsets containing samples from the same

month or year. The subsets are then grouped into training and testing according to a

specified point in time. Due to the long time span, the input distribution for each class

might change. For example, Figure 5.2 shows that the “Money transfer, virtual currency”

category in one of the datasets has drastically different input composition in early-2017

and mid-2020, which presents significant challenges to a candidate quantifier.

A total of eight datasets are included in the benchmark spanning sentiment analysis,

document categorization, and toxicity classification. We evaluate different quantification

algorithms on the benchmark and find that no algorithm consistently outperforms others.

The main contributions of this work are threefold:

• We create the first benchmark for text quantification learning with temporal distri-

bution shift consisting of diverse tasks and domains to evaluate model performances

in a realistic setting.

• We propose a new metric, Class-Averaged Rank Correlation (CARC), for quantifi-

cation learning that measures models’ ability to produce prevalence estimates that

are consistent with ground-truth values in terms of ranking order.

• We evaluate various baseline algorithms on the benchmark and find that no algo-

rithm consistently outperforms others, strongly motivating future research in this

area.

5.2 Related Work

Quantification Learning. Many of the experiments reported in quantification learn-

ing literature employ datasets taken from other classification problems. For example,

59

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

[86] uses 11 sentiment classification datasets and average the performances of studied

methods across all 11 datasets. The problem is that only one test set is available for each

dataset. Four text classification datasets used in [87] all have a balanced training set,

and artificially created test splits similar to [84]. The image datasets created in [88] are

more adequate with 21 and 15 test splits under various distribution shift. [89] employs

RCV1-v2, a multi-label text classification benchmark with 52 weeks of data for testing.

These datasets lack either the number of test splits or the diversity of the task domains.

In contrast, our benchmark comprises more diverse tasks and domains; it involves tem-

poral distribution shift across a long period of time; it provides monthly/yearly splits

that allow more fine-grained analysis.

Learning under Distribution Shift. There has been an increasing interest in study-

ing the challenges arising from data distribution changes in the machine learning com-

munity [20, 21, 22, 23]. The focus of these studies is mainly on adapting to covariate

shift and improving the performance of the underlying learner in a shifted domain. [24]

makes use of a quantifier to estimate and adjust for the label prevalence changes in the

target domain, assuming the feature distribution of each class stays the same. [25] shows

that quantification helps in adversarial domain adaption by providing an estimation of

label prevalence ratios as importance weights.

Direct utilization of domain adaptation datasets for text quantification is undesirable.

Firstly, the very few datasets that involve temporal distribution shift are mostly vision

datasets [90, 91]. Secondly, quantification learning requires test splits to reflect the actual

ground truth prevalence for each class which is not a necessity for domain adaptation

datasets.

60

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Dataset
Amazon Reviews

CCD Wikipedia Toxicity
Clothing Electronics Office

training splits Aug 2008 - Jul 2015 Apr 2015 - Jul 2019 2001 - 2010
test splits Aug 2015 - Jul 2018 Aug 2019 - Jul 2021 2011 - 2015
classes 5 or 2 9 2
training 3,749,569 3,283,304 316,302 434,482 109,277
test 7,453,848 3,285,326 476,785 345,914 25,809

label distribution

Table 5.1: The text quantification benchmark contains 8 datasets (including three
binary versions of the Amazon Reviews datasets) across sentiment analysis, docu-
ment categorization, and toxicity classification tasks. Each dataset comprises data
from a long period of time, and the benchmark is set up to evaluate models’ ability
to accurately estimate future test split label distributions under naturally occurred
distribution shift.

5.3 The Text Quantification Benchmark

Problem Formulation

Given a labeled set of examples Ds = {(x1, y1), . . . , (xn, yn)} where xi ∈ X and

yi ∈ Y = {l1, . . . , lk}, denote P(X) as the powerset of X , and ∆d as the standard d-

simplex, the task is to induce a quantifier h : P(X)\∅ → ∆k−1 from the training data.

For a test set Xt = {x′1, . . . , x′m}, h(Xt) produces a categorical distribution p̂ where each

element in the predicted vector p̂j represents the proportion of label lj in the set of input

examples. The goal is to predict p̂ that is as close as possible to the ground truth label

distribution p.

Dataset Identification and Preparation

There are several considerations when we identify potential dataset candidates for

the benchmark:

• The dataset must have instance-level time information to construct test splits based

61

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

on the time each example was produced.

• There should be no label-based biased sampling in any test split so that the actual

underlying label distributions are available to be compared.

• The dataset ideally should span a long period of time so that there is enough label

distribution variation in the test splits.

• The benchmark should cover both multi-class and binary classification problems in

multiple text domains with various training data sizes.

There are in total eight datasets being included in the benchmark, an overview of the

dataset statistics is shown in Table 5.1. Note that there are more test examples than

training examples in Amazon Reviews datasets due to the fact that more recent splits

contain more examples than older ones.

Amazon Review Data [92] collected product reviews from Amazon in the range of

May 1996 to October 2018. We use the “5-core” subsets of three categories: Clothing

Shoes and Jewelry, Electronics, and Office Products to account for different domains and

data sizes. There is a steady trend towards a higher percentage of higher review ratings

over time, making these datasets suitable for quantification.

For all three categories, reviews made between 2008-08 and 2015-07 are used for

training, and reviews from 2015-08 to 2018-07 are split by month and used for testing.

The original review ratings are on a scale of five stars. We create binary versions of each

category by changing the task to predict the percentage of negative reviews, i.e., reviews

with 1 star and 2 stars.

Consumer Complaint Database (CCD) is a collection of complaints about con-

sumer financial products and services that the Consumer Financial Protection Bureau

62

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

sent to companies for response1. All complaints can be classified into nine categories

based on product types. Due to the evolution of the financial market, the complaint

category distribution changes over time. For example, the percentage of credit reporting-

related complaints increased from around 16% in 2017-01 to 57% in 2021-07.

We take all the records between 2015-04 and 2021-07 and filter out those without text

content. Complaints filed before 2019-07 are used for training, and the remaining data

are grouped by month as test splits. There are 434,482 training examples and 345,914

test examples. Test split size ranges from 5,127 to 18,495.

Wikipedia Talk: Toxicity [93] extracted discussion comments from English Wikipedia.

Multiple annotators labeled each comment via Crowdflower on whether it is a toxic or

healthy contribution. The original data was collected using two sampling types: random

and blocked. The random dataset contains randomly selected comments; therefore, it can

be used to evaluate the actual toxicity prevalences over time. The blocked dataset is used

to ensure a sufficient number of toxic comments for training purposes. We use blocked

and random examples from 2001 to 2010 as the training set, random examples from 2011

to 2015 as the test splits. By construction, the underlying distribution changes from

training to test significantly. As the up-sampling strategy for imbalanced classification is

ubiquitous in practice, this dataset is perfect for evaluating quantification methods with

classifiers trained on re-sampled data.

Distribution Shift Analysis

We measure the distribution shift of each test split compared with the corresponding

training set in terms of both covariate shift and label shift.

1https://www.consumerfinance.gov/data-research/consumer-complaints/

63

https://www.consumerfinance.gov/data-research/consumer-complaints/

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Clothing Electronics Office CCD Toxicity

0.005

0.010

0.015

0.020

0.025

0.030

Te
st

 se
t c

ov
ar

ia
te

 sh
ift

 (M
M

D)

Figure 5.3: Distributions of the test split covariate shift measured with MMD in the
BERT embedding space. Wikipedia Toxicity has milder covariate shift compared to
others.

Covariate Shift. We capture the covariate shift of the input distribution p(x) by

evaluating the Maximum Mean Discrepancy (MMD) [94] on the BERT [70] encodings

of the input examples. MMD allows us to compare two probability distributions in a

reproducing kernel Hilbert space based on their samples. We use MMD with a radial

basis function (RBF) kernel and set σ to be the median distance between points in the

training set [94].

k(x,x′) = e−
‖x−x′‖2

2σ2 (5.1)

A larger value measured by MMD indicates a larger discrepancy between the training

and testing input embeddings.

We sample 10,000 examples from each test split and measure the MMD for all test

64

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Clothing Electronics Office CCD Toxicity

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 se
t l

ab
el

 sh
ift

 (K
LD

)

Figure 5.4: Distributions of the test split label shift measured with KLD. CCD and
Wikipedia Toxicity have a higher average label shift as well as larger variations among
the test splits.

splits. The distribution of the test split covariate shifts for each dataset is shown in

Figure 5.3. All datasets have varying levels of covariate shift in their test splits except

for Wikipedia Toxicity. It is still interesting to see how well models trained with up-

sampling estimate the true unbalanced label distribution.

Label Shift. We use Kullback–Leibler divergence (KLD) to measure the difference

between the training and the test split label distributions. Ideally, the label shift of the

test splits should cover a range of values to better evaluate candidate methods under

various scenarios. The distributions of label shift values in the test splits are plotted in

Figure 5.4. CCD and Wikipedia Toxicity have higher variations in the degrees of label

shift from the training set than Amazon Review datasets. There are still reasonable label

shift variations in the Amazon Review data as shown in Table 5.1.

65

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Evaluation

We use two commonly reported quantification metrics for performance evaluation:

Relative Absolute Error (RAE) and Knullback-Leibler Divergence (KLD). We propose a

new metric, namely Class-Average Rank Correlation (CARC), to measure the ability to

rank test splits by class label prevalences correctly.

Relative Absolute Error. RAE measures the relation between the absolute error and

the ground truth label distribution. Adopting the same notations in Section 5.3, RAE is

defined as follows:

RAE(p, p̂) =
1

k

k∑
i=1

|p̂i − pi|
pi

(5.2)

Intuitively, RAE measures the average percentage difference from an estimated class

prevalence to the ground truth. The lower the better.

Knullback-Leibler Divergence. KLD is a popular metric for measuring the differ-

ence between two distributions.

KLD(p, p̂) =
k∑
i=1

pi log
pi
p̂i

(5.3)

A benefit of using KLD is that it is widely adopted in the machine learning community

and quantification literature. However, it is less interpretable than RAE and can be

undefined when p̂i = 0. As RAE and KLD values are closely correlated, reporting both

values is redundant in most cases. Therefore, we only report RAE in our experiments.

66

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Jan Feb Mar Apr May Jan Feb Mar Apr May

true prevalence predicted prevalence

CARC=1 CARC<1

Figure 5.5: An illustration of the CARC metric. A perfect CARC score of 1 indicates
that the model successfully predicts which split has a higher prevalence for any pair
of test splits.

Class-Averaged Rank Correlation. While RAE and KLD capture the difference

between the predicted label distribution and the ground truth for each test split, they do

not account for the ranking information of the predicted label prevalence. In practice,

correct ranking of the predicted prevalence is sometimes more important than capturing

the exact label prevalence. Therefore, we propose a new metric for quantification named

Class-Averaged Rank Correlation (CARC).

We measure the rank correlation between the predicted prevalence and the ground

truth prevalence for each class label across all test splits. CARC is then defined as

the average rank correlation value across all classes. Formally, let P = [p(1), . . . ,p(t)]

denote the list of ground truth label distributions for the t test splits. P̂ represents the

corresponding list of predictions [p̂(1), . . . , p̂(t)]. Denote Pi as [p
(1)
i , . . . ,p

(t)
i], i.e., the list

of true prevalences for class i in all test splits. CARC is defined as:

CARC(P , P̂) =
1

k

k∑
i=1

ρR(Pi),R(P̂i)
(5.4)

67

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

where ρ is the correlation coefficient applied to the rank variables R(Pi) and R(P̂i).

With a higher value of CARC, if test split A has a higher predicted prevalence than

test split B, the actual prevalence in A is more likely to be higher than that in B. CARC

is a critical metric because if a quantifier indicates a prevalence increase, the ground truth

prevalence should ideally indeed be higher. Otherwise, quantification results cannot be

relied on for relevant decision making.

5.4 Baseline Algorithms

In addition to the straightforward Classify & Count (CC) algorithm, we include sev-

eral methods from prior work on label shift estimation where predictions from a black

box classifier can be used as inputs.

Classify & Count (CC) [84]. Given classification results from any trained classifier,

CC uses the aggregated distribution to predict the test set label distribution. Proba-

bilistic Classify & Count (PCC) is a variant that aggregates the predicted probabilities

instead of class assignments.

Black Box Shift Estimation (BBSE) [24]. By making a label shift assumption that

the conditional distribution of p(x|y) remains the same across training and testing, BBSE

uses the confusion matrix to adjust the predicted label distribution from CC. BBSE is

proven to be consistent and error bounded even with biased black box predictors as long

as the confusion matrix is invertible, and the label shift assumption holds. BBSE, when

used for quantification, is equivalent to the Adjusted Count method [84, 95] in multi-class

settings.

68

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Regularized Learning under Label Shift (RLLS) [96]. To avoid arbitrarily bad

estimation of the confusion matrix due to limited data size, RLLS makes the final distri-

bution prediction less sensitive to the estimation performance of the confusion matrix by

regularizing the ratio of test and training label distributions. RLLS is primarily designed

to improve classification performance under label shift. The label distribution estimate

is often a compromise between the BBSE result and the training distribution.

Maximum Likelihood Label Shift (MLLS) [83]. Like BBSE, MLLS also takes a

distribution matching approach to estimate the test set label distribution. The original

algorithm uses an EM-based strategy [97] to perform distribution matching in the input

space of the test set. [83] show that in combination with a particular post-hoc calibration

method, MLLS outperforms BBSE.

5.5 Experiments and Results

Experimental Setup

We use the huggingface [98] implementation of the BERT [70] classifier fine-tuned

on the corresponding dataset as the base predictor for all algorithms. The predictor is

further calibrated using bias-corrected temperature scaling (BCTS) [83] for the MLLS

method. All models are trained with AdamW optimizer [77] with a learning rate of

2e-5. All models are trained on a single Titan RTX GPU with a batch size of 32. Input

sequence length is capped at 256.

69

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Method
Binary Multi-Class

Average Rank
Clothing Electronics Office Toxicity Clothing Electronics Office CCD

(RAE)(%)↓
CC 3.05 2.07 3.93 2.43 9.87 12.61 11.02 9.20 3.63
PCC 2.63 2.44 3.43 32.79 6.74 7.14 8.65 12.41 3.13
BBSE 2.19 1.90 4.61 50.68 5.60 8.89 19.00 8.71 3.50
RLLS 2.51 3.22 7.37 49.47 14.10 29.92 28.23 8.56 5.25
MLLS 1.73 2.06 4.15 29.46 7.02 8.95 11.96 6.13 2.75
MLLS-BCTS 1.26 2.94 4.07 30.57 7.63 7.13 11.77 7.40 2.75

(CARC)↑
CC 0.983 0.994 0.958 1.000 0.678 0.784 0.706 0.895 3.50
PCC 0.985 0.993 0.966 0.829 0.665 0.710 0.746 0.898 2.63
BBSE 0.985 0.993 0.965 nan* 0.699 0.695 0.616 0.892 4.13
RLLS 0.985 0.993 0.966 0.257 0.697 0.683 0.631 0.897 3.63
MLLS 0.985 0.993 0.967 0.314 0.685 0.721 0.733 0.900 2.13
MLLS-BCTS 0.986 0.993 0.967 0.314 0.663 0.698 0.733 0.896 3.00

Table 5.2: Quantification model performances in terms of average RAE (lower is bet-
ter) and CARC (higher is better). MLLS-BCTS denotes MLLS with BCTS calibrated
base predictor. Overall, MLLS performs the best, but not consistently outperforming
others. *BBSE fails to produce non-zero prevalence estimates on all test sets, leading
to an undefined CARC score.

Main Results

We measure the RAE and CARC scores for all methods on the benchmark. RAE

scores are averaged over test splits for each dataset. We rank the performances with

respect to RAE and CARC on each dataset and report the average ranking for each

algorithm. The results are summarized in Table 5.2. Some main observations from the

table are:

• No algorithm outperforms others on all datasets.

• CC and PCC are still strong baselines. PCC performs better in most cases, but

CC achieves significantly better results on Wikipedia Toxicity, where the positive

class is rare, and the label shift is severe.

• The performance of the MLLS algorithm, with or without BCTS calibration, is

more consistent across all datasets than other algorithms.

70

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

CC PCC
BBSE

RLLS
MLLS

MLLS-BCTS

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
RA

E

CC PCC
BBSE

RLLS
MLLS

MLLS-BCTS

Figure 5.6: Distribution of RAE scores for test splits with the lowest 20% label shift
(left) and with the highest 20% label shift (right) on CCD. CC and PCC’s perfor-
mances degrade significantly on test sets with a higher level of label shift.

• MLLS with BCTS calibration does not always have superior performance than the

base version MLLS, contrary to what has been observed in previous studies [83].

• A better RAE score does not always indicate a better CARC score. For example,

CC achieves a significantly better CARC score than other methods with a second-

worst RAE score of 12.61% on Amazon Reviews (Electronics).

• BBSE fails to produce a non-zero prevalence estimate on all Wikipedia Toxicity

test sets. This failure hints that BBSE might be unstable when predicting the

prevalence of rare binary events.

Effect of Distribution Shift

In Section 5.3, we analyze the distribution shift estimates for each dataset across all

the test splits. A natural question to ask is: how model performances change when the

level of distribution shift increases? We sort the CCD test splits by label shift levels

measured in KLD. We then take the bottom 20% and top 20% and visualize the RAE

score distributions for all baseline algorithms in Figure 5.6.

71

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

Method Standard Balanced % Change

(CCD)
CC 9.20 19.44 +111.3%
PCC 12.41 19.77 +59.3%
BBSE 8.71 9.63 +10.6%
RLLS 8.56 13.84 +61.7%
MLLS 6.13 16.80 +174.1%
MLLS-BCTS 7.40 15.94 +115.4%

(Office)
CC 11.02 14.09 +27.9%
PCC 8.65 19.94 +130.5%
BBSE 19.00 19.97 +5.1%
RLLS 28.23 27.34 -3.2%
MLLS 11.96 18.28 +52.8%
MLLS-BCTS 11.77 14.71 +25.0%

Table 5.3: Comparison of quantification performances in RAE (lower is better) using
base classifiers trained with standard and balanced training set. Using a balanced
training strategy almost always hurts quantification performance on CCD and Amazon
Reviews (Office). BBSE is more robust to label distribution changes from stratified
sampling during training.

We observe a significant performance degradation of CC and PCC methods on test

splits with higher levels of label shift. MLLS and MLLS-BCTS are less affected by the

label shift. The difference is expected because the underlying base predictor is likely to

overestimate or underestimate the label probabilities when the test split has a significantly

different label distribution.

Effect of Balanced Training

In practice, when the training data is highly skewed in terms of label distribution,

we often manually up-sample the rare class examples or assign more weights to them to

facilitate training. This procedure changes the underlying data distribution and could

significantly impact the quantification results if we use the classifier as our base predictor.

To analyze the effect of a balanced training procedure on the quantification per-

72

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

formance, we fine-tune the same BERT classifier on both CCD and Amazon Reviews

(Office) with a weighted random sampler so that all class examples are balanced. We

then use this classifier as the base predictor for all baseline algorithms and compare the

performances to the main results in Table 5.3.

When using a base predictor trained with a manually balanced dataset, the quantifi-

cation performance almost always degrades. However, we can see from the percentage

changes that BBSE is more robust to such performance degradation than other methods.

For example, on CCD, BBSE is outperformed by MLLS when using a base classifier

trained on the original training set. When switching to a balanced training setup, BBSE

maintains a similar level of performance and betters MLLS. This property makes BBSE

more preferable when label balancing is present during training.

Effect of Invariant Representation Learning

BBSE, RLLS, and MLLS all make a label shift assumption where the conditional dis-

tribution of p(x|y) remains the same across training and test. However, this assumption

does not always hold in practice. The content of a 1-star review on a product posted five

years ago could be significantly different from a 1-star review posted today due to many

factors, such as a change of consumer expectations in similar products.

To relax the label shift assumption, [25] propose to learn a domain-invariant represen-

tation and use a similar approach to BBSE to estimate the test set label distribution by

performing distribution matching in the invariant latent space. Supposedly, such meth-

ods should perform better on test splits where the conditional distribution of the input

features for each class drifts heavily from the training set. A significant drawback of the

method is that the underlying model needs to be retrained for each test split.

We experiment with IWDAN model [25] on both CCD and Wikipedia Toxicity datasets.

73

Label Distribution Estimation Under Real-World Temporal Shift Chapter 5

On CCD, IWDAN shows a much worse RAE score of 49.18%. On Wikipedia Toxicity,

however, IWDAN achieves an RAE score of 19.40%, the second-best result after CC. As

the training and testing splits of Wikipedia Toxicity come from different sampling strate-

gies, and considering IWDAN is devised mainly for domain adaption, the performance

discrepancy might be due to a more significant domain change in Wikipedia Toxicity

compared to CCD.

5.6 Conclusions

Quantification learning has an increasing number of applications yet is still less stud-

ied in the NLP community. In this chapter, we propose the first text quantification

benchmark with temporal distribution shift. Our experiments show that there is no

baseline algorithm consistently outperforming others. We believe the proposed bench-

mark should enable new research into devising methods that can adapt to temporal

changes and be reliably applied in practice.

74

Chapter 6

Conclusion

In this dissertation, we discussed and analyzed various topics around uncertainty and

robustness in deep learning for NLP. We demonstrated the benefits of incorporating

uncertainty estimation in the modeling process for sentiment analysis, named entity

recognition, and language modeling; we investigated the relationship between predic-

tive uncertainty and hallucination in image captioning and data-to-text generation; we

discussed the role label smoothing plays with respect to model calibration in text classifi-

cation; and we introduced a text quantification benchmark to evaluate methods on their

abilities to estimate label distribution under temporal distribution shift. These analyses

help to better understand uncertainty aware learning and robustness in NLP.

The goal of research in uncertainty and robustness is to demonstrate the benefits

and promote the importance of model transparency, interpretability, and accountability.

Several of future research directions in this line are:

• Development of standard evaluation methods for uncertainty estimation. Current

evaluation of uncertainty estimation methods depend on external tasks such as

model calibration and out-of-distribution detection. Sample level evaluations are

unavailable, meaning it is hard to measure whether the uncertainty estimates on

75

some specific inputs are accurate or not. A direct and sample-level evaluation

protocol would greatly benefit the study of uncertainty estimation.

• Uncertainty estimation for pre-trained models. Many of the uncertainty estimation

methods require retraining or significant modification to the base model. With the

popularization of large pre-trained models, how to effectively and reliably estimate

uncertainty without access to the training data or modification to the pre-trained

model remains an important open problem.

• Explainable uncertainty estimation. In addition to a number describing the level

of uncertainty of a model prediction, it is equally important to understand why

a model is confident or uncertain when doing such predictions. This capability is

especially essential in understanding how uncertainty estimation methods operate

to identify possible paths for refinement and detect failures.

76

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, Attention is all you need, in Advances in neural
information processing systems, pp. 5998–6008, 2017.

[2] G. Ras, M. van Gerven, and P. Haselager, Explanation methods in deep learning:
Users, values, concerns and challenges, in Explainable and interpretable models in
computer vision and machine learning, pp. 19–36. Springer, 2018.

[3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern neural
networks, in International Conference on Machine Learning, pp. 1321–1330,
PMLR, 2017.

[4] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift, Advances in neural
information processing systems 32 (2019).

[5] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, Bayesian active learning
for classification and preference learning, arXiv preprint arXiv:1112.5745 (2011).

[6] T. M. Moerland, J. Broekens, and C. M. Jonker, Efficient exploration with double
uncertain value networks, arXiv preprint arXiv:1711.10789 (2017).

[7] W. R. Clements, B. Van Delft, B.-M. Robaglia, R. B. Slaoui, and S. Toth,
Estimating risk and uncertainty in deep reinforcement learning, arXiv preprint
arXiv:1905.09638 (2019).

[8] A. Der Kiureghian and O. Ditlevsen, Aleatory or epistemic? does it matter?,
Structural Safety 31 (2009), no. 2 105–112.

[9] A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning
for computer vision?, in Advances in neural information processing systems,
pp. 5574–5584, 2017.

[10] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty
in neural networks, arXiv preprint arXiv:1505.05424 (2015).

77

[11] J. M. Hernández-Lobato and R. Adams, Probabilistic backpropagation for scalable
learning of bayesian neural networks, in International Conference on Machine
Learning, pp. 1861–1869, 2015.

[12] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, in international conference on machine
learning, pp. 1050–1059, 2016.

[13] B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive
uncertainty estimation using deep ensembles, in Advances in neural information
processing systems, pp. 6402–6413, 2017.

[14] B. Charpentier, D. Zügner, and S. Günnemann, Posterior network: Uncertainty
estimation without ood samples via density-based pseudo-counts, Advances in
Neural Information Processing Systems 33 (2020) 1356–1367.

[15] A. Kendall, V. Badrinarayanan, and R. Cipolla, Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene
understanding, arXiv preprint arXiv:1511.02680 (2015).

[16] Y. Gal and Z. Ghahramani, A theoretically grounded application of dropout in
recurrent neural networks, in Advances in neural information processing systems,
pp. 1019–1027, 2016.

[17] L. Zhu and N. Laptev, Deep and confident prediction for time series at uber, in
Data Mining Workshops (ICDMW), 2017 IEEE International Conference on,
pp. 103–110, IEEE, 2017.

[18] J. Platt et. al., Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods, Advances in large margin classifiers 10 (1999),
no. 3 61–74.

[19] R. Müller, S. Kornblith, and G. Hinton, When does label smoothing help?, in
NeurIPS, 2019.

[20] H. Daumé III, Frustratingly easy domain adaptation, in Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pp. 256–263,
2007.

[21] J. Blitzer, M. Dredze, and F. Pereira, Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification, in Proceedings of the 45th
annual meeting of the association of computational linguistics, pp. 440–447, 2007.

[22] X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for large-scale sentiment
classification: A deep learning approach, in ICML, 2011.

78

[23] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, Domain-adversarial training of neural networks,
The journal of machine learning research 17 (2016), no. 1 2096–2030.

[24] Z. Lipton, Y.-X. Wang, and A. Smola, Detecting and correcting for label shift with
black box predictors, in International conference on machine learning,
pp. 3122–3130, PMLR, 2018.

[25] R. Tachet des Combes, H. Zhao, Y.-X. Wang, and G. J. Gordon, Domain
adaptation with conditional distribution matching and generalized label shift,
Advances in Neural Information Processing Systems 33 (2020).

[26] W. L. Buntine and A. S. Weigend, Bayesian back-propagation, Complex systems 5
(1991), no. 6 603–643.

[27] J. S. Denker and Y. Lecun, Transforming neural-net output levels to probability
distributions, in Advances in neural information processing systems, pp. 853–859,
1991.

[28] D. J. MacKay, A practical bayesian framework for backpropagation networks,
Neural computation 4 (1992), no. 3 448–472.

[29] D. J. MacKay, Probable networks and plausible predictions—a review of practical
bayesian methods for supervised neural networks, Network: Computation in Neural
Systems 6 (1995), no. 3 469–505.

[30] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science &
Business Media, 2012.

[31] A. Graves, Practical variational inference for neural networks, in Advances in
neural information processing systems, pp. 2348–2356, 2011.

[32] D. A. Nix and A. S. Weigend, Estimating the mean and variance of the target
probability distribution, in Neural Networks, 1994. IEEE World Congress on
Computational Intelligence., 1994 IEEE International Conference On, vol. 1,
pp. 55–60, IEEE, 1994.

[33] Q. V. Le, A. J. Smola, and S. Canu, Heteroscedastic gaussian process regression, in
Proceedings of the 22nd international conference on Machine learning,
pp. 489–496, ACM, 2005.

[34] D. Tang, B. Qin, and T. Liu, Document modeling with gated recurrent neural
network for sentiment classification, in Proceedings of the 2015 conference on
empirical methods in natural language processing, pp. 1422–1432, 2015.

79

[35] Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang, Jointly modeling
aspects, ratings and sentiments for movie recommendation (jmars), in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 193–202, ACM, 2014.

[36] Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 (2014).

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The Journal of
Machine Learning Research 15 (2014), no. 1 1929–1958.

[38] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[39] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation 9
(1997), no. 8 1735–1780.

[40] E. F. Tjong Kim Sang and F. De Meulder, Introduction to the conll-2003 shared
task: Language-independent named entity recognition, in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4,
pp. 142–147, Association for Computational Linguistics, 2003.

[41] W. Zaremba, I. Sutskever, and O. Vinyals, Recurrent neural network regularization,
arXiv preprint arXiv:1409.2329 (2014).

[42] A. Rohrbach, L. A. Hendricks, K. Burns, T. Darrell, and K. Saenko, Object
hallucination in image captioning, in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 4035–4045, 2018.

[43] S. Wiseman, S. M. Shieber, and A. M. Rush, Challenges in data-to-document
generation, in Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2253–2263, 2017.

[44] F. Nie, J.-G. Yao, J. Wang, R. Pan, and C.-Y. Lin, A simple recipe towards
reducing hallucination in neural surface realisation, in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 2673–2679,
2019.

[45] A. P. Parikh, X. Wang, S. Gehrmann, M. Faruqui, B. Dhingra, D. Yang, and
D. Das, Totto: A controlled table-to-text generation dataset, arXiv preprint
arXiv:2004.14373 (2020).

[46] Z. Cao, F. Wei, W. Li, and S. Li, Faithful to the original: Fact aware neural
abstractive summarization, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

80

[47] E. Durmus, H. He, and M. Diab, FEQA: A question answering evaluation
framework for faithfulness assessment in abstractive summarization, in Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics,
(Online), pp. 5055–5070, Association for Computational Linguistics, July, 2020.

[48] M. Müller, A. Rios, and R. Sennrich, Domain robustness in neural machine
translation, arXiv preprint arXiv:1911.03109 (2019).

[49] G. E. Hinton and D. Van Camp, Keeping the neural networks simple by minimizing
the description length of the weights, in Proceedings of the sixth annual conference
on Computational learning theory, pp. 5–13, 1993.

[50] R. M. Neal, BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis,
University of Toronto, 1995.

[51] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft,
Decomposition of uncertainty in bayesian deep learning for efficient and
risk-sensitive learning, in International Conference on Machine Learning,
pp. 1184–1193, PMLR, 2018.

[52] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick,
Microsoft coco captions: Data collection and evaluation server, arXiv preprint
arXiv:1504.00325 (2015).

[53] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, Self-critical sequence
training for image captioning, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7008–7024, 2017.

[54] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,
Bottom-up and top-down attention for image captioning and visual question
answering, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6077–6086, 2018.

[55] R. Luo, B. Price, S. Cohen, and G. Shakhnarovich, Discriminability objective for
training descriptive captions, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6964–6974, 2018.

[56] A. Karpathy and L. Fei-Fei, Deep visual-semantic alignments for generating image
descriptions, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3128–3137, 2015.

[57] K. Kukich, Design of a knowledge-based report generator, in Proceedings of the 21st
annual meeting on Association for Computational Linguistics, pp. 145–150,
Association for Computational Linguistics, 1983.

[58] K. McKeown, Text generation. Cambridge University Press, 1992.

81

[59] R. Tian, S. Narayan, T. Sellam, and A. P. Parikh, Sticking to the facts: Confident
decoding for faithful data-to-text generation, arXiv preprint arXiv:1910.08684
(2019).

[60] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly
learning to align and translate, in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[61] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli, fairseq: A fast, extensible toolkit for sequence modeling, in Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

[62] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, Bleu: a method for automatic
evaluation of machine translation, in Proceedings of the 40th annual meeting on
association for computational linguistics, pp. 311–318, Association for
Computational Linguistics, 2002.

[63] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, Cider: Consensus-based image
description evaluation, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4566–4575, 2015.

[64] Y. Xiao and W. Y. Wang, Quantifying uncertainties in natural language processing
tasks, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 7322–7329, 2019.

[65] M. Ott, M. Auli, D. Grangier, and M. Ranzato, Analyzing uncertainty in neural
machine translation, in International Conference on Machine Learning,
pp. 3956–3965, 2018.

[66] J. Xu, S. Desai, and G. Durrett, Understanding neural abstractive summarization
models via uncertainty, in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 6275–6281, 2020.

[67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the
inception architecture for computer vision, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2818–2826, 2016.

[68] Y. Gao, W. Wang, C. Herold, Z. Yang, and H. Ney, Towards a better
understanding of label smoothing in neural machine translation, in Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural
Language Processing, pp. 212–223, 2020.

82

[69] M. Lukasik, S. Bhojanapalli, A. Menon, and S. Kumar, Does label smoothing
mitigate label noise?, in International Conference on Machine Learning,
pp. 6448–6458, PMLR, 2020.

[70] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186, 2019.

[71] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, Deep unordered
composition rivals syntactic methods for text classification, in Proceedings of the
53rd annual meeting of the association for computational linguistics and the 7th
international joint conference on natural language processing (volume 1: Long
papers), pp. 1681–1691, 2015.

[72] A. Niculescu-Mizil and R. Caruana, Predicting good probabilities with supervised
learning, in Proceedings of the 22nd international conference on Machine learning,
pp. 625–632, 2005.

[73] X. Zhang, J. Zhao, and Y. LeCun, Character-level convolutional networks for text
classification, in Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 1, pp. 649–657, 2015.

[74] A. Warstadt, A. Singh, and S. R. Bowman, Neural network acceptability
judgments, arXiv preprint arXiv:1805.12471 (2018).

[75] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, Recursive deep models for semantic compositionality over a sentiment
treebank, in Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1631–1642, 2013.

[76] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in
International Conference on Learning Representations, 2015.

[77] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, in International
Conference on Learning Representations, 2018.

[78] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, mixup: Beyond empirical
risk minimization, in International Conference on Learning Representations, 2018.

[79] W. Warner and J. Hirschberg, Detecting hate speech on the world wide web, in
Proceedings of the second workshop on language in social media, pp. 19–26, 2012.

[80] S. Malmasi and M. Zampieri, Detecting hate speech in social media, in Proceedings
of the International Conference Recent Advances in Natural Language Processing,
RANLP 2017, pp. 467–472, 2017.

83

[81] J. Qian, M. ElSherief, E. Belding, and W. Y. Wang, Leveraging intra-user and
inter-user representation learning for automated hate speech detection, in
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pp. 118–123, 2018.

[82] M. H. Stanfill, M. Williams, S. H. Fenton, R. A. Jenders, and W. R. Hersh, A
systematic literature review of automated clinical coding and classification systems,
Journal of the American Medical Informatics Association 17 (2010), no. 6 646–651.

[83] A. Alexandari, A. Kundaje, and A. Shrikumar, Adapting to label shift with
bias-corrected calibration, arXiv preprint arXiv:1901.06852 (2019).

[84] G. Forman, Quantifying counts and costs via classification, Data Mining and
Knowledge Discovery 17 (2008), no. 2 164–206.

[85] P. González, A. Castaño, N. V. Chawla, and J. J. D. Coz, A review on
quantification learning, ACM Computing Surveys (CSUR) 50 (2017), no. 5 1–40.

[86] W. Gao and F. Sebastiani, From classification to quantification in tweet sentiment
analysis, Social Network Analysis and Mining 6 (2016), no. 1 19.

[87] L. Qi, M. Khaleel, W. Tavanapong, A. Sukul, and D. Peterson, A framework for
deep quantification learning, in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 232–248, Springer, 2020.

[88] O. Beijbom, J. Hoffman, E. Yao, T. Darrell, A. Rodriguez-Ramirez,
M. Gonzalez-Rivero, and O. H. Guldberg, Quantification in-the-wild: data-sets and
baselines, arXiv preprint arXiv:1510.04811 (2015).

[89] A. Esuli and F. Sebastiani, Optimizing text quantifiers for multivariate loss
functions, ACM Transactions on Knowledge Discovery from Data (TKDD) 9
(2015), no. 4 1–27.

[90] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee, Functional map of the world,
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6172–6180, 2018.

[91] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,
N. Kirchgessner, G. Ishikawa, K. Nagasawa, M. A. Badhon, et. al., Global wheat
head detection (gwhd) dataset: a large and diverse dataset of high-resolution
rgb-labelled images to develop and benchmark wheat head detection methods, Plant
Phenomics 2020 (2020).

84

[92] J. Ni, J. Li, and J. McAuley, Justifying recommendations using distantly-labeled
reviews and fine-grained aspects, in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197,
2019.

[93] E. Wulczyn, N. Thain, and L. Dixon, Ex machina: Personal attacks seen at scale,
in Proceedings of the 26th international conference on world wide web,
pp. 1391–1399, 2017.

[94] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, A kernel
two-sample test, The Journal of Machine Learning Research 13 (2012), no. 1
723–773.

[95] D. J. Hopkins and G. King, A method of automated nonparametric content analysis
for social science, American Journal of Political Science 54 (2010), no. 1 229–247.

[96] K. Azizzadenesheli, A. Liu, F. Yang, and A. Anandkumar, Regularized learning for
domain adaptation under label shifts, arXiv preprint arXiv:1903.09734 (2019).

[97] M. Saerens, P. Latinne, and C. Decaestecker, Adjusting the outputs of a classifier
to new a priori probabilities: a simple procedure, Neural computation 14 (2002),
no. 1 21–41.

[98] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et. al., Transformers: State-of-the-art natural
language processing, in Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

85

	Curriculum Vitae
	Abstract
	Introduction
	Uncertainty Estimation
	Model Calibration
	Distribution Shift and Quantification Learning

	Uncertainty Quantification in Natural Language Processing
	Introduction
	Related Work
	Methods
	Experiments and Results
	Analysis
	Conclusion

	Hallucination and Uncertainty in Conditional Language Generation
	Introduction
	Hallucination and Predictive Uncertainty
	Case Study: Image Captioning
	Case Study: Data-to-text Generation
	Reducing Hallucination
	Related Work
	Discussion and Conclusions

	Label Smoothing and Model Calibration in Text Classification
	Introduction
	Preliminaries
	Does Label Smoothing Always Help with Calibration?
	Why Does Label Smoothing (Not) Help?
	When Does Label Smoothing Help?
	Label Sharpening
	Discussion and Conclusions

	Label Distribution Estimation Under Real-World Temporal Shift
	Introduction
	Related Work
	The Text Quantification Benchmark
	Baseline Algorithms
	Experiments and Results
	Conclusions

	Conclusion
	Bibliography

