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ABSTRACT OF THE DISSERTATION

A Multi-part Optimization Framework for POMDPs in Lung Cancer Screening

by

Simon Han

Doctor of Philosophy in Biomedical Engineering

University of California, Los Angeles, 2023

Professor Alex Anh-Tuan Bui, Co-Chair

Professor Denise R. Aberle, Co-Chair

Currently, low-dose computed tomography (LDCT) is the only recommended screening test

for patients who are at high risk of lung cancer. However, the cost-benefit analysis of LDCT

must be weighed against the high number of false positives, radiation exposure, unnecessary

procedures, and the associated patient distress as a result of the aforementioned possibilities.

Sequential decision making models such as the partially observable Markov decision process

(POMDP) have seen success in making recommendations in clinical applications such as

lung cancer screening. Enabled by the availability of longitudinal datasets that track patient

health over time, these models make predictions toward long-term health outcomes. A key

challenge in lung cancer screening is the balancing between true positives and false posi-

tives, that is, maximizing true positives while minimizing false positives. This dissertation

attempts to address this challenge by leveraging a variety of techniques toward optimizing

decision making over time. First, the modularized POMDP (modPOMDP) framework is

developed to account for temporal variations within a POMDP model. Each time point is

optimized separately to ensure “earlier” detection by maximizing positive predictions over

ii



the entire screening duration. Second, a two-part model framework (modPOMDP2) is

developed to differentiate true and false positive predictions from each other. This method

combines classic machine learning (ML) techniques and modPOMDP to maintain true posi-

tives while decreasing false positives. Third, the validity of these approaches is demonstrated

in an external testing dataset.
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CHAPTER 1

Introduction

1.1 Motivation

As more biomedical data become available, especially longitudinal datasets, researchers have

gained an unprecedented ability to track patient health over time. Prognostic models can

incorporate these data towards long-term health outcome predictions. In particular, sequen-

tial decision making under a partially observable context is uniquely suited to support such

medical decision making problems as the true health state of a patient is often unknown, re-

quiring series of external tests that elucidate the belief about possible conditions. Moreover,

such clinical tests and observations have an inherent amount of sensitivity and detection

error (i.e., false positive/negative rates). Partially observable Markov decision processes

(POMDPs) aim to determine an optimal set of actions over time, referred to as a policy,

maximizing a desired outcome.

In the healthcare setting, for instance, POMDPs are used to create policies to guide lung

cancer screening [1,2], balancing detection rates, quality of life, and cost. While lung cancer

incidence and mortality have been decreasing for decades, it generally has a poor prognosis

and is the number one death-causing cancer. There will be an estimated 238,340 new lung

cancer cases representing 12.2% of all new cancers and 127,070 lung cancer deaths repre-

senting 20.8% of all cancer-related mortality in the United States in 2023 [3]. Since 2013,

the U.S. Preventive Services Task Force (USPSTF) recommends annual low-dose computed

tomography (LDCT) screening for high-risk patients [4], with an updated high-risk definition
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in 2021 [5]. A meta-analysis found that the false positive rate of LDCT at baseline screen-

ing ranged between 7.9% to 49.3% among 27 publications [6]. Excess screening can lead to

radiation-induced cancer, unnecessary tests such as invasive procedures, overdiagnosis, inci-

dental findings, and increases in patient distress. At the same time, missing a true positive

cancer case can incur a large quality of life cost on the patient. Thus a POMDP-based lung

cancer screening model must optimize towards detecting true positives earlier while reducing

false positives over time.

Predicated on a stationarity assumption, classic POMDPs assume that the transition,

observation, and reward submodels are time-invariant. However, in healthcare this assump-

tion is often untrue. In breast cancer screening for example, the incidence rate is highly

dependent on age, thus affecting transition probabilities over time. Likewise, the accuracy

of mammograms depend on the age of the woman screened and other time-varying features.

The rewards model, if framed as quality-adjusted life years (QALY), not only depends on

the age of the patient, but on patient preferences (e.g., the disutility of the imaging exam

may outweigh potential benefits for older women). Currently, researchers applying POMDP

models to healthcare problems use a limited simulation-based approach (e.g., enumerating

all sample paths) or do not explicitly address these changes over time. A systematic strategy

is needed to explicitly represent changing transition, observation, and rewards in POMDPs

over the expected modeling period, adapting over time. This problem also extends to the

domain of lung cancer screening.

1.2 Contributions

This dissertation addresses the optimization of POMDP predictions by fulfilling the following

two aims:

• Aim 1: Improving POMDP predictions by optimizing each modularized POMDP sub-

model. Aim 1 investigates the use of POMDPs under a novel framework, namely the

2



decomposition of POMDP problems into time-dependent constituent components. This

is the modularized POMDP (modPOMDP) framework. Formally, a modPOMDP

model is composed of I POMDP submodels joined in a sequential fashion, where each

POMDPi has a defined applicable time range σi ∈ Σ. Each submodel can take on dif-

ferent transition, observation, and reward functions that better characterize an evolving

disease trajectory and its progressive assessment and treatment. In a domain-specific

manner, the values for I and Σ depend on the decision-making problem, as well as the

availability of data. In effect, Σ reflects the time duration over which the problem or

disease is considered (e.g., a 5-year perspective vs. lifetime), while I captures the tempo-

ral granularity based on the frequency of available observations (e.g., biannual vs annual

screening). Optimization of each POMDPi is in itself a balancing act, but this aim will

primarily bias towards recall for capturing positive cancer cases.

• Aim 2: Optimizing POMDP positive predictions with classifiers in a two-part model ap-

proach. Aim 2 further explores optimization in POMDPs through use of a two-part model

approach. While two-part models are not commonly seen with electronic health records

(EHR) data, they are more common in other artificial intelligence (AI) fields. One ap-

plication is in highly skewed data in which one model reduces the search space and the

second model optimizes on the remaining samples. In this work, the two-part model con-

sists of modPOMDP from Aim 1 and classifiers common in the machine learning (ML)

field. More specifically, strategies are developed for optimizing classifiers and experiments

are designed for selecting classifiers. This two-part modPOMDP is collectively called

modPOMDP2.

1.3 Organization

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 describes the background of sequential decision making, such as POMDPs

3



and their applications in healthcare. Methods of building and solving POMDPs are also

described, including the datasets used in the evaluation of this work.

• Chapter 3 describes the design and implementation of modPOMDP as stated in Aim 1.

• Chapter 4 describes the design and implementation of modPOMDP2 as stated in Aim

2.

Finally, Chapter 5 summarizes the contributions and findings from this dissertation and

future directions that can be extended from this research.
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CHAPTER 2

Background

2.1 Sequential Decision Making

Sequential decision making (SDM) is concerned with how a decision maker (agent) interacts

in a modeled world (environment) and makes a series of decisions that optimizes an outcome

[7]. Each decision may have immediate and long-term consequences that depends heavily on

the future objective. The agent must take into account these future possibilities and at the

same time balance the current and later states to achieve the desired goal. As such, SDM

has a significant role in a range of clinical decision-making tasks (e.g., selection of a set of

tests to perform to quickly diagnose a patient; series of actions to optimally treat a disease,

etc.). SDM encompasses a variety of different approaches, briefly covered below.

2.1.1 Multi-armed Bandits

One type of SDM is the multi-armed bandit (MAB) problem, or simply bandit problem. In

its classical formulation, it is defined as a set of actions (also called bandits, arms, machines,

etc.), each with an associated independent reward distribution [8–14]. At each iteration, the

agent picks one action to take and receives some reward from the corresponding distribution

while other actions remain inactive and receive no reward. The strategy for picking the action

is referred to as the policy. Through successive actions, the agent explores the rewards

distributions and determines the one that returns the highest reward while updating the

parameters of the policy. This process, however, introduces the exploration-exploitation
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trade-off problem: the agent must balance between gathering information by taking actions

with lower reward distributions and picking the action currently known to give the highest

reward. An extension of the bandit problem is the contextual bandit problem where the

action taken depends on a set of covariates [15–17]. The bandit family of approaches has

been used in many different fields, such as personalized advertisement and news placement

[18, 19]. In healthcare, it is traditionally used in patient allocation of clinical trials [8, 20].

More recently, it was discussed in the context of clinical decision support in breast cancer

screening [21] and for delivering personalized interventions in mobile health (mHealth) [22].

2.1.2 Markov Decision Process

Another approach to SDM is the Markov decision process (MDP) [7]. MDPs can be described

by a four element tuple that consist of: 1) states that describe the world; 2) actions that

describe possible interactions with the environment; 3) transitions that are a probabilistic

description of moving from one state to another having taken an action; and 4) immediate

rewards of having taken an action in a particular state. In breast cancer screening for

instance, states could be stages of cancer; actions could be to have a mammogram or wait;

transitions could be the natural progression of disease; and rewards could be the expected

quality-adjusted life years (QALY). In an MDP, transitions satisfy the Markov assumption

such that future states only depend on the current state for a given action. Solving an

MDP involves producing a mapping from states to actions [23], that is, the action that is

expected to give the highest reward in a given state. The solution to the MDP (i.e., policy)

is a set of actions derived from this mapping and the policy that gives the highest reward

is the optimal policy. The resulting policy depends on the horizon, which is the number

of decisions the agent is expected to make. When there is a fixed number of horizons, the

MDP is referred to as finite-horizon problem. Conversely, an infinite horizon MDP refers

to a situation when there is no expected termination. The ability to maximize long-term

rewards is one reason for the popularity of MDPs, as the agent can forgo short-term rewards
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to achieve a greater goal. In medicine, MDPs have been used in a variety of problems such

as when to recommend liver transplantation [24], breast cancer biopsy [25,26], breast cancer

screening [27], and intervention for a joint breast and ovarian cancer problem [28].

2.1.3 Partially Observable Markov Decision Process

One requisite assumption of MDPs is that the agent knows the environment completely —

there is no uncertainty regarding the agent’s observations. In real-world applications and

in particular medicine, the true health state of a patient is often unknown, and clinical

observations have an inherent degree of uncertainty (e.g., a test’s false positive rate). An

extension of MDPs, called partially observable Markov decision processes (POMDPs), per-

mits uncertainty over the state space by adding two more elements: 1) the set of possible

observations available to the agent; and 2) the probability of making an observation while

in a state [29, 30]. Extending the prior breast cancer screening example, observations could

be results of mammogram exams (e.g., BI–RADS [31] scores) and observation probabilities

could be the probability that a BI–RADS score is some cancer stage. Because a POMDP

agent cannot directly access states to produce a mapping from states to actions, the POMDP

agent instead maintains a probability distribution over the states, called a belief. Thus, the

goal of a POMDP policy is to derive a mapping of beliefs to actions and does not depend on

the state itself [7]. POMDPs too, have been used in a variety of medical problems such as

when to recommend breast cancer biopsy [25], breast cancer screening [32], colorectal can-

cer screening [33, 34], prostate cancer biopsy [35], prostate cancer screening [36], antibiotic

administration for sepsis [37], surgery for Parkinson’s disease [38], amputation for diabetic

foot disease [39], and intervention for ischemic heart disease [40].

Formally, a POMDP is defined as a tuple ⟨S,A, T,R,Ω,O⟩ consisting of:

• States s ∈ S, which represent the possible states for a given phenomenon/process to

be in (e.g., a disease state);
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• Actions a ∈ A, which are acts that the agent can take within the environment;

• Transition function T (s, a, s′) = Pr(s′|s, a), the probability of ending in state s′ for

taking action a in state s;

• Reward function R(s, a), the immediate reward for taking action a in state s;

• Observations o ∈ Ω, which define the observations the agent can make about the

environment; and

• Observation function O(s′, a, o) = Pr(o|s′, a), the probability of observing observation

o for taking action a and ending in state s′.

The state, action, and observation sets are typically finite. The agent is expected to

reason about the system by selecting actions that maximize expected rewards over time.

Given that the underlying state space is unknown to the agent, the agent reasons using a

belief. A belief state b is a probability distribution over S, where b(s) is the probability of

being in state s. The belief state space is represented by an n-dimensional triangle, the

(|S| − 1)-dimensional simplex ∆. All belief states rest within the simplex and have the

property that
∑

s∈S b(s) = 1, where 0 ≤ b(s) ≤ 1 for all s ∈ S. Given an existing belief state

b, an action a, and an observation o, a state-estimation function SE(b, a, o) is used to update

the belief. Each b′(s′) can be updated via:

b′(s′) =
O (s′, a, o)

∑
s∈S T (s, a, s′) b (s)

Pr (o|a, b)
(2.1)

where Pr(o|a, b) is a normalizing factor that ensures b′ sums to 1. That belief update requires

only the current belief state b demonstrates that POMDPs are Markovian processes. Prior

to solving, a POMDP is often recast as a MDP over the belief space, or belief MDP. The

belief MDP is defined as ⟨∆,A, τ, ρ⟩ consisting of:

• Belief states b ∈ ∆, which are the set of possible belief distributions over the POMDP

states;
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Figure 2.1: A simplified representation of a POMDP over 3 time points illustrating the

unobservable nature of the underlying state St, which emits an observation Ot. An optimal

action At is selected based on belief bt while generating a reward Rt. bt+1 is then updated

based on Ot and At. Dashed arrows indicate transitions to a future time point (not shown).

• Actions a ∈ A, which are acts that are the same as the POMDP;

• Transition function τ(b, a, b′) = Pr(b′|a, b) =
∑

o∈Ω Pr(b′|b, a, o) Pr(o|a, b), where:

Pr (b′|b, a, o) =

1, if SE (b, a, o = b′)

0, otherwise


• Reward function ρ(b, a) =

∑
s∈S b(s)R(s, a), for taking action a in belief state b.

Because the belief value is continuous, the belief MDP is effectively a continuous space

MDP. Thus, the dynamic programming approach used in solving MDPs applies. The goal of
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dynamic programming is to update the value function Vt using a given value function Vt−1

where t is the number of steps left in the decision process. When applied to POMDPs, the

value function can be defined in terms of the belief state:

Vt (b) = max
a∈A

[
ρ (b, a) + γ

∑
o∈Ω

Pr (o|a, b)Vt−1 (b
′)

]
(2.2)

where 0 ≤ γ ≤ 1 is a discount factor to reduce future reward contributions.

Solving a POMDP. Sondik [41] demonstrated that the value function is piece-wise linear

and convex (PWLC) and can be represented finitely. Thus, the value function is a set of

linear equations, one for each of the discretized regions in the belief simplex ∆. Many exact

algorithms [41–43] take advantage of the PWLC property to derive the value function, with

value iteration [44,45] being the more popular method. The value function can be represented

as:

Vt(b) = max
α∈Γt

b ·α (2.3)

where Γt is a set of |S|-dimensional alpha vectors α representing the value function at t.

Each α is associated with an action a and composed of coefficients of its linear equation. To

determine the best action to take for a belief state b at t, calculate the dot product between

b and Γt and select the α with the highest dot product. The associated action is then the

optimal action. Γt is then the result and also the representation of the optimal policy π∗ at t,

since an optimal action is given for any belief b ∈ ∆. The optimal policy π∗ is a deterministic

list of actions that when followed, produces the highest reward over a given time frame.

For finite-horizon problems, it is typical to use a non-stationary policy approach. The

number of horizons H in value iteration is equal to the number of decisions the agent is

expected to make. The rationale is that if h = 1, the agent only needs to make one decision

and hence value iteration only needs to be solved for one iteration; additional iterations are

wasted and πh=1 is then taken as the optimal policy for h = 1. For a finite-horizon problem,

the optimal policy is then π∗ = {πH , πH−1, · · · , π1}. For infinite-horizon problems, because
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the agent continuously makes decisions, the stop condition is different. A discount factor γ

is typically used to reduce future reward contributions and value iteration continues until

convergence, that is, |Vh − Vh−1| < ϵ, where ϵ is a difference metric. Assuming it takes H

horizons to reach convergence, the optimal policy in the infinite-horizon case is π∗ = πH .

In value iteration, the number of alpha vectors can grow exponentially and many re-

searchers have improved the efficiency of value iteration through enumeration or pruning

methods such as linear support by Cheng [46]; witness algorithm by Littman [47] and

Littman et al. [48]; and incremental pruning by Cassandra et al. [49]. More recent ap-

proximate POMDP algorithms seek to avoid the exponential growth in the number of al-

pha vectors and reduce the computational costs of exact methods. Many of these newer

approaches [50–55] use a point-based method where alpha vectors are only generated for

selected belief points. Point-based methods mainly differ in the way the belief points are

selected and the order in which operations are then performed on those belief points. A

review of point-based methods can be found in Shani et al. [56].

The QMDP Algorithm. In this work, the POMDPs are solved using an implementation

of an approximate algorithm called QMDP [57,58] and the pseudocode is shown in Algorithm

1. In QMDP, the algorithm solves POMDPs by solving for the Q values of the underlying

MDP. That is, the observation model is set aside and the POMDP is solved as an MDP

by computing Q(s, a) values using transitions and rewards only. Q(s, a) values can then be

used to estimate Q values for a belief state b using Qa(b) =
∑

s b(s)QMDP(s, a). An optimal

action aopt can be selected for a belief b as shown by Algorithm 2. By maximizing over all

actions, the action with the highest expected reward is returned at each step, maximizing

rewards over time. Thus, QMDP approximates the value function of a POMDP by making

use of the computed value function of the underlying MDP. The advantage of QMDP is it

has the speed and efficiency of solving MDPs while also suitable for large POMDP problems.
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Algorithm 1: QMDP Algorithm; adapted from [2].

Input : S, A, R, ϵ

Output: Q matrix

Computing the Q matrix;

V (s) = MDP VI(S,A,R, ϵ) # Value Iteration algorithm

for si ∈ S do

for a ∈ A do
Q(si, a) = R(s, a) +

∑
sj∈S T (sj, a, si)V (si)

Return: Q

Algorithm 2: Action Selection Algorithm; adapted from [2].

Input : Q, b

Output: aopt optimal action

Given belief b;

aopt = argmaxa
∑

si∈S b(si)Q(si, a)

Return: aopt

2.2 Building a POMDP Model

Building a POMDP involves defining and estimating the values of its various components.

Recent research in lung and breast cancer screening have used novel ways for this task [1,2,59].

Namely, dynamic Bayesian networks are developed to provide the transition and observation

probabilities, and inverse reinforcement learning is applied to learn the reward function from

clinicians.

2.2.1 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) [60] are extensions of Bayesian networks (BN) for mod-

eling dynamic processes. That is, variables are modeled over time and can represent the

changes in a system over the modeling interval. The probability distribution over time is
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represented below, where X
(t)
i is a random variable at time t:

P (X1, ..., Xn) =
n∏

n=1

P (Xi|X1, ..., Xi−1) (2.4)

A DBN can be represented in two parts: 1) a prior model for the initial distribution and 2)

a transition model for the changes to the process across time points:

P
(
X(t+1)|X(t)

)
=

∏
X(t+1)∈X(t+1)

P
(
X(t+1)|Par

(
X(t+1)

))
(2.5)

where Par
(
X(t+1)

)
is the parent. DBNs are used to estimate conditional probabilities which

are often in the form of conditional probability tables (CPTs). DBNs in this work are solved

using the Bayes Net Toolbox (BNT) [61].

DBNs and BNs have been used in many medical domains such as breast cancer [62, 63],

lung cancer [64], cervical cancer [65], colon cancer [66], oral cancer [67], among many others

[68–72]. A review of changes and advancements of DBNs in recent years can found in [73].

2.2.2 Adaptive Step-size Maximum Entropy Inverse Reinforcement Learning

The reward function is one of the most important components of the POMDP and actively

drives the agent’s decision making. In SDM models in healthcare, rewards are typically in

terms of cost [33, 34, 39, 74–76], mortality risk [77], QALY [78], or even a combination of

cost and QALY [79]. However, the cost of healthcare does not necessarily reflect patient

outcomes. Moreover, rewards such as mortality and QALY can be difficult to acquire and

or define. A recent method of using adaptive step-size maximum entropy (MaxEnt) inverse

reinforcement learning (IRL) algorithm to compute the reward function was proposed by

Petousis et al. and demonstrated in lung and breast cancer screening [1]. The goal of

MaxEnt IRL [80] is to learn the rewards of the POMDP through available data, that is the

expert optimal policy π∗. The pseudocode is shown in Algorithm 3.

The reward function r is defined in Equation 2.6. τ , or a trajectory, is a series of state-

action pairs where states s is the series of states visited and actions a are the actions that the
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Algorithm 3: MaxEnt Inverse Reinforcement Learning; adapted from [59].

Input : MDP and trajectories D

Output: State-rewards

Randomly initialize θ;

repeat
Solve for the optimal stochastic policy using r(τ) = θTfτ with value iteration;

Use a dynamic algorithm to compute p(s|τ ; θ) = Ds, the state visitation

frequencies;

Compute the gradient ∇θL;

Update θ;
until convergence;

agent took to arrive at those states. fs represent feature vectors and θ represent the features’

respective weights. fτ is the sum of feature counts across states visited in a trajectory.

r (τ ; θ) = θTfτ =
∑
s∈τ

θTfs (2.6)

Algorithm 3 first solves for the optimal policy then solve for the state visitation frequencies.

The gradient ∇θL can be computed with:

∇θL = f̃ −
∑
si

Dsifsi (2.7)

where f̃ is the average feature counts across all trajectories. Finally, θ is updated with:

θi+1 = θi + η∇θL (2.8)

where η is a learning rate. Adaptive step-size is accomplished by first defining η = α
(t+A)α

and t as:

ti+1 = max (ti + f (⟨−∇θLi,∇θLi−1⟩) , 0) (2.9)

f(·) is a sigmoidal function where its constant values, as well as α and A are defined in [81].

A multiplicative rewards model. The output from the IRL algorithm is state-rewards

and not the R (s, a) function required in a POMDP. To address this issue, MaxEnt IRL can
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be used to solve two MDPs, a state MDP model for R(s) and an action MDP model for

R(a). The implementation details of the two MDPs are described in [1]. Both state-rewards

are normalized to [−1, 1] and the final rewards function is then computed using:

R (s, a) = R (s) ·R (a) (2.10)

If a POMDP has only two actions, then solving an action MDP with MaxEnt IRL for

R(a) is unnecessary. As a result of normalization, R(a) would become [−1, 1] regardless of

the output from MaxEnt IRL. This is likewise the case for R(s) if the POMDP only has two

states.

2.3 Data

The two datasets used in this work are the National Lung Screening Trial (NLST) [82]

and the Integrated Diagnostics (IDx)1 lung cancer screening database at UCLA (hereafter

referred to simply as UCLA data). Both datasets are collected over time and provide lon-

gitudinal patient data relevant for an SDM model. The NLST dataset was used to develop

the modPOMDP as well as the modPOMDP2 model. The UCLA data was used towards

external validation.

2.3.1 NLST

The NLST was a randomized controlled trial (RCT) conducted in 33 institutions across the

United States with the aim of comparing the effectiveness of screening with low-dose com-

puted tomography (LDCT) and chest x-ray (CXR) at reducing lung cancer-specific mortality.

53, 454 current or former smokers considered to be high risk for developing lung cancer were

recruited into the study between August 2002 and April 2004. Eligibility at baseline were

between 55–74 years old, ≥ 30 pack-years of smoking history, < 15 years of quit time for

1https://diaag.medsch.ucla.edu/index.html
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former smokers, no history of lung cancer, and among others. Participants were randomized

into either the LDCT or CXR arm and had up to 3 screenings with ∼1 year between screen-

ings. Screenings were conducted between 2002 and 2007, with follow-ups through December

2009. Findings suspicious for lung cancer (e.g., nodules ≥ 4 mm) were referred for further

follow-up and were counted as positive for lung cancer if confirmed through a diagnostic pro-

cedure (e.g., biopsy). Participants confirmed for lung cancer were given medical follow-up

and did not receive further screenings in the trial.

2.3.2 UCLA

The IDx Research Program is an initiative of the Department of Radiological Sciences,

David Geffen School of Medicine at UCLA. This group provided lung cancer screening data

for patients at UCLA. Unlike the NLST, patients at UCLA are not part of a RCT and not a

selected group of high-risk individuals. The last data pull was provided in September 2021

and contained a total of 4, 966 patients with screenings spanning decades. The exact years

are unknown because the provided dataset anonymized patient data including shifting all

dates. There were 11, 471 reports associated with a lung nodule and 20, 499 unique nodules.

3, 185 patients answered a lung cancer survey of demographics and medical history questions.

The population was very diverse in age, from 18–99 years old, with 2, 580 patients between

55–74 years old.
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CHAPTER 3

modPOMDP: The Modularized POMDP

3.1 Introduction

In the context of Markov models, stationarity means that the transition probabilities do

not change over time [83]. In multi-armed bandits (MABs), the literature on stationarity

is usually in terms of the environment, while in Markov decision processe (MDPs) and

partially observable MDPS (POMDPs), the literature on stationarity is discussed in terms

of the policy [7] or environment. In MDPs and POMDPs, a stationary policy does not

change with different horizons (i.e., it is often a feature of infinite-horizon problems). In

a finite-horizon problem, while the optimal policy could be stationary, it is not guaranteed

and the mapping from state or belief to action could change as the MDP or POMDP is

being solved [84]. The non-stationary policy then, selects actions from the policy at each

intermediate time step. The research in this chapter is primarily concerned with stationarity

of the environment and will be referred to as stationarity unless otherwise specified.

In many real-world applications, stationarity is often not true. As such, recently re-

searchers have started investigating reward distributions in MABs that change over time

and how to balance the exploration-exploitation trade-off in a changing environment [85–87].

In dynamic Bayesian networks (DBNs), others have started exploring non-stationary DBNs

(i.e., Bayesian networks whose structure and parameters evolve over time) [88–92]. In MDPs

and POMDPs, stationarity (e.g., time-invariant transitions) are often assumed. Indeed, the

formal definition of a POMDP by Monahan [29] states that a POMDP’s core process is
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to be a finite state Markov chain with stationary transition probabilities. The problem-

atic nature of this assumption, especially in a biomedical context, has been pointed out by

several [24,32].

Approaches for overcoming stationarity. In Abdollahian et al. [28], the authors ex-

plored an MDP model for breast and ovarian cancer intervention strategies. Though the

authors did not set out to address stationarity in particular, by explicitly modeling age-

dependency in the state space (for a total of 8,492 states) they effectively model changing

disease and intervention dynamics over time. Maillart et al. [78] developed a partially observ-

able Markov chain to study mammography screening policies where the authors enumerated

all sample paths that changed over time. Ayer et al. [32] solved a finite-horizon POMDP to

address decision support in mammography screening. The authors took the non-stationary

policy approach and used age-specific transitions and rewards at different time steps during

the solving process. Despite recent interest, the stationarity problem in a POMDP setting

remains underexplored. While the non-stationary policy approach is the usual and rec-

ommended solution method [84], it does not guarantee optimal expected reward over the

decision horizon.

In this work, stationarity was addressed in a lung cancer screening POMDP by mod-

ularizing the POMDP through the modPOMDP framework. Specifically, each POMDP

module is optimized individually for its applicable timeframe by tuning the reward function

separately. Optimized rewards from each time point are then serialized into the combined

non-stationary reward function to account for changes over time. The framework is im-

plemented on a cohort of 5, 089 NLST participants and externally validated on a patient

population at UCLA. In the NLST dataset, it is found that 1) results from non-stationary

rewards outperformed results from each of the stationary rewards; and 2) results from non-

stationary rewards are comparable to those of experts in true positives with a small increase

in false positives. In the UCLA dataset, results from non-stationary rewards also outper-
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formed results from each of the stationary rewards.

3.2 Method

3.2.1 Data Preprocessing

Table 3.8 and Table 3.9 contain the list of variables used in building the POMDP model as

well as their distributions.

Tammemägi. For variables that were used in the Tammemägi PLCOM2012 model [93], the

preprocessing steps taken were the same as in PLCOM2012. Patients with missing values

required for calculating the PLCOM2012 6-year probability of lung cancer were removed from

the datasets. Patients in the Tammemägi model can only belong to one combined race and

ethnicity category, and as a result, multiracial patients were removed. Hispanics of any race

were counted only as Hispanic and only non-Hispanics of a race were counted in their re-

spective races. This method of grouping race and ethnicity appears in other papers as well,

such as Tuttle et al. [94]. For family history and personal history of cancer, a patient was

marked as “yes” if the patient was “yes” in any of its subcategories. Table 3.1 summarizes

subcategories in family history and personal history of cancer and shows the difference be-

tween NLST and UCLA subcategories. While the personal history of cancer categories are

broadly similar, each dataset collects cancer types not in the other set. Patients with prior

history of lung cancer including diagnosis and procedures (e.g., surgery, chemotherapy, etc.)

were also removed. Body mass index (BMI), smoking quit time, pack-years, and lastly the

risk scores were calculated for remaining participants and patients. NLST criteria (e.g., age,

smoking history, etc.) were reimposed on the NLST dataset as there are a few participants

who fell outside of the inclusion criteria but were in the NLST database. NLST criteria were

also applied to the UCLA dataset to get a comparable population for external validation.
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Nodule-related features. Nodules were binned based on size. Bin 0: < 4 mm, Bins

1–8: 1 mm bins from 4–11 mm, Bin 9: (11, 27] mm, and Bin 10: > 27 mm. Bin 1’s size of

4 mm was informed by NLST’s definition of suspicious findings (≥ 4 mm). Some nodules

have inconsistencies in the recorded sizes where the larger diameter is less than the smaller

diameter, and these were removed. Screenings with abnormalities but missing nodule sizes

were also removed. Screenings without abnormalities were assumed to be in bin 0.

NLST screening-related. Participant data from the LDCT arm were used in building

the model and must have an abnormality in at least one screening. Participants who did not

develop cancer must have completed all three rounds of screenings. Because NLST does not

keep track of individual nodules across screenings, an assumption was made that a nodule

in the same lung lobe across different screening time points is the same nodule. Participants

with only one identified finding in the same lobe across time were kept. For patients who

were diagnosed with cancer, a location match between the diagnostic procedure identified

primary tumor location and the screening tracked nodule was done. Patients whose lobes

did not match were removed. Physician intervention was defined as having a diagnostic

follow-up after the screening. To augment screening data, half-year data were interpolated,

and nodule size was taken to be the mean between annual screenings. The total time range

is thus Σ = [1, 3] years and a horizon of 5 (5 time points). Figure 3.1 shows all possible

screening trajectories in NLST without interpolated time points.

UCLA screening-related. As UCLA data is real-world observational data from a clinical

lung cancer screening program, the screenings are not neatly separated into annual screenings

as NLST was. As such, the patient’s first available survey, which was necessary for calculating

the Tammemägi 6-year lung cancer risk score, was used as the anchor time point. Some

patients may receive a screening exam with a suspicious finding and return within a couple

of weeks to months for a diagnostic imaging follow-up, at which point the patient fills out the

survey. It therefore seemed reasonable to utilize screening and physician intervention data
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Figure 3.1: Possible screening trajectories of NLST participants. Participants start screen-

ing with no cancer and are removed from the trial if diagnosed with cancer. Non-cancer

participants must have all three screenings. NC: no cancer; C: cancer.

100 days before and up to 6 years after the date of the survey. While most categorical values

could be mapped 1-to-1 between UCLA and NLST, consistency could not be. Table 3.2 shows

the final mapping between UCLA consistency and NLST predominant attenuation1. Another

major difference is that UCLA data tracks individual nodules over time. And as such, each

sample in the UCLA dataset is a nodule. Nodules that do not have any screenings within the

defined timeframe or had interventions prior to any screenings were removed. Unlike NLST,

which uses “positive” and “negative” for screening results, UCLA screening results are given

using Lung-RADS [95,96]. Following the provided definitions, Lung-RADS Categories 1 and

2 are negative screenings and Categories 3 and above are positive screenings. As UCLA

data is used for external validation, negative nodules can have any number of screenings up

1Finalized mapping after email correspondence with an expert thoracic radiologist at UCLA (Prosper).
“Solid” can be both “soft tissue” and “fat”, but as there are only three cases of “fat”, “solid” is mapped to
“soft tissue”.
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to five and always start at the first screening. The exception is when the negative nodule

belongs to a patient with a positive nodule. In such a case, the negative nodule must have

a screening on the same date as the positive nodule and the negative nodule screenings

may shift so that the end dates of both nodules align. Figure 3.2 shows examples of nodule

trajectory alignment. Ground truth is defined as having a biopsy confirmed cancer or having

resection/ablation procedure done on the nodule. Physician intervention is defined in two

ways. The first is when a procedure such as a core biopsy, biopsy, ablation, or resection was

done. The second is when the patient undergoes diagnostic imaging or non-screening LDCT.

However, if the patient’s first screen was a diagnostic imaging or non-screening LDCT, then

it was likely an incidental finding and not considered physician intervention until a procedure

was performed.

The final counts per screen are shown in Table 3.3.

Figure 3.2: Examples of nodule trajectory alignment in UCLA data before and after

reformatting. Patient 1 (P1) has 4 nodules (N1-4), one of which is a procedure confirmed

cancer (C). Screenings (S) are shifted to align with C, but P1N4 is removed because it does

not have a screening on the same date as C. P2 only has negative nodules and all start at

Scr1.
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Table 3.1: Comparison between NLST and UCLA in two categorical variables. Differences

are shaded. Some differences are due to combining subcategories, for example NLST’s Lar-

ynx, Nasal, Oral, and Pharynx were merged into UCLA’s Head & Neck. Notably, UCLA

collects more cancer types, but did not collect Stomach and Transitional Cell cancers that

were collected in NLST.

NLST UCLA

Family History

of Lung Cancer

Father Mother Brother Sister Father Mother Sibling Child

Child

Personal History

of non-Lung Cancer

Bladder Breast Cervical Colorectal Bladder Breast Cervix Colon

Esophageal Kidney Pancreatic Thyroid Esophagus Kidney Pancreas Thyroid

Larynx Nasal Oral Pharynx Head & Neck Gall Bladder Liver Lymphoma

Stomach Transitional Cell Mesothelioma Ovary Prostate Skin

Uterus

Table 3.2: Mapping between UCLA consistency and NLST predominant attenuation.

GGN: ground-glass nodule; PSN: part-solid nodule.

UCLA NLST

Solid Soft tissue

Pure GGN Ground-glass

PSN Mixed

All others Other

3.2.2 Defining POMDP Components

States (s) and actions (a). To model the lung cancer screening process, three states [97]

and two actions are defined. The No cancer (NC) state is for participants who do not have

suspicious findings (e.g., nodule size < 4 mm). The Uncertain (U) state is for participants

who do have suspicious findings (e.g., nodule size ≥ 4 mm), but not diagnosed with cancer.

The Lung cancer (LC) state is for participants who have a confirmed cancer (e.g., through

biopsy). Participants who enter LC are removed from the screening process to emulate trial

proceedings in NLST. At each time point, the agent either recommends a LDCT if belief for

cancer is low or an intervention to confirm cancer if belief for cancer is high enough.
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Table 3.3: NLST and UCLA counts of cancer and non-cancer cases per time. In NLST, each

participant was preprocessed to have only one nodule and the count is both the number of

participants and the number of nodules. For UCLA, each patient can have multiple nodules

and therefore nodule counts are provided. For UCLA’s cancer cases, each nodule belonged

to only 1 patient.

NLST Participants UCLA Nodules

Cancer (%) Non-Cancer (%) Total Cancer (%) Non-Cancer (%) Total

Scr1 128 (2.5) 4961 (97.5) 5089 33 (0.9) 3569 (99.1) 3602

Scr1.5 0 4961 4961 8 (0.7) 1104 (99.3) 1112

Scr2 70 (1.4) 4891 (98.6) 4961 1 (0.2) 402 (99.8) 403

Scr2.5 0 4891 4891 0 (0.0) 150 (100.0) 150

Scr3 88 (1.8) 4803 (98.2) 4891 4 (5.9) 64 (94.1) 68

Sum 278 46

Observations (z). The observation space mainly consists of model-derived values rep-

resenting the probability of observing cancer. Information (nodule size, attenuation, and

margins) from the three screenings and two interpolated time points are used as input to

a DBN to infer the probability of cancer at each time point. These probabilities are then

discretized into a value between 0 and 1 representing their closest percent probability. The

DBN was trained using five bootstrap iterations of 5-fold cross validation using NLST. Strat-

ified sampling was used to ensure each sample was used as training four times and once as

testing per bootstrap. The mean probabilities of the testing set over the five bootstraps

were used as the final probabilities for discretization. To get observations for UCLA, the

NLST testing fold was replaced with UCLA data, with means and discretization operations

occurring thereafter. Together with a cancer after intervention observation and a no cancer

regardless of intervention observation, the observation space consists of 102 possibilities.

Transitions and observation probabilities. The transition and observation probabil-

ities were calculated using a DBN. Figure 3.3(c) shows the transition model. Each node
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(a) Lung cancer screening POMDP. (b) DBN-based observation model.

(c) Transition model.

Figure 3.3: Various components of lung cancer screening POMDP; adapted from [2].

represents a conditional probability table (CPT). The Cancer node has three categories for

the three defined states. LDCT has 100 categories for the discretized observation probabilities.

Intervention has two categories, a cancer after intervention and a no cancer regardless of

intervention. In instances where the conditional probabilities contain 0, the 0 was replaced

with 0.0001.

Rewards. Calculation of the reward function R(s, a) via adaptive step-size maximum en-

tropy (MaxEnt) inverse reinforcement learning (IRL) was previously described in Chapter
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2.2.2. While normally both the state MDP and action MDP are necessary, it is apparent

that as there are only two defined actions in the POMDP, R(a) would default to [−1, 1].

As such, MaxEnt IRL was only used for the state MDP model prior to employing the mul-

tiplicative model. When these rewards were used to select actions, the recall values shown

in Table 3.4 suggest additional optimization of the rewards are necessary. Reward tuning is

accomplished by progressively increasing the relative rewards for transitioning into the LC

state. The rewards that produced the highest true positives were then selected for rewards

that produced the lowest false positives. A stop condition is set such that the false positive

rate does not exceed 90%.

Table 3.4: Results of using MaxEnt IRL R(s, a) to select actions on the NLST dataset.

Model performance (mean counts ± 95% CI) is calculated over 100 instances of bootstrap

on the testing set.

NLST TN FP FN TP Pre. Rec.

R(s, a)

Scr1 857.46± 2.01 136.54± 2.01 3.40± .30 22.60± .30 0.1425± .0024 0.8692± .0117

Scr2 706.96± 4.39 273.04± 4.39 1.99± .26 12.01± .26 0.0423± .0009 0.8579± .0188

Scr3 629.78± 4.95 332.22± 4.95 3.04± .38 14.96± .38 0.0431± .0009 0.8311± .0208

Sum 2194.20 741.80 8.43 49.57

Initial beliefs. Initial beliefs b0 are the belief distribution over POMDP states at t0. As

the Tammemägi risk scores are calculated for participants at baseline, they are a natural

candidate for initial beliefs. The initial belief for state LC is defined as b0,LC = 2×PLCOM2012.

b0,U is assumed to be 0 while b0,NC = 1− b0,LC.

3.2.3 The modPOMDP Framework

Figure 3.4 shows the experimental setup of modPOMDP. The initial data are split such

that 80% were used in training the model and tuning the rewards. The remaining 20% were

used for testing. This was done over 100 instances of bootstrap. Under the modPOMDP
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framework, the reward tuning step is done per screen. This implies I = 3 POMDP submodels

where the relevant year ranges are σ1 = [1, 2), σ2 = [2, 3), and σ3 = [3, 3]. When externally

validating on the UCLA data, the 20% testing set is replaced with the UCLA data. Thus

the rewards from POMDP1 would be applied to screens 1 and 1.5, POMDP2 to screens 2

and 2.5, and POMDP3 to screen 3.

Figure 3.4: Experimental setup of modPOMDP. A POMDP model is trained per boot-

strap iteration and rewards are tuned for each screen. For external validation, the Testing

(20%) box is replaced with UCLA data.

3.2.4 The Brock Model

The Brock model [98] was implemented on the NLST dataset to compare to modPOMDP

results. The Brock model consists of four models: 1a) parsimonious without spiculation, 1b)

full without spiculation, 2a) parsimonious with spiculation, and 2b) full with spiculation.

The full model with spiculation (Brock2b) was implemented in this work. The Brock risk

scores were calculated using data (including nodule features) from the time of screening (i.e.,

screen 2 Brock2b scores were calculated using data from screen 2). As age is variable in the

model and NLST screenings were roughly one year apart, age was incremented by 1 and 2 for
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screens 2 and 3, respectively. Similar to the modPOMDP setup, there were 100 bootstrap

instances where 80% of the data were used for threshold tuning for recall and 20% were used

for testing. The variables and distributions for each screening are shown in Table 3.10.

3.3 Results

NLST. Table 3.5 summarizes modPOMDP (mp) results for NLST. Screen 1 Optimized

(Scr1-O) results are derived from applying Scr1-O rewards to all three screens. Likewise,

Screen 2 Optimized (Scr2-O) and Screen 3 Optimized (Scr3-O) results are derived by apply-

ing their respective optimized rewards to all three screens. Scr1-O and Scr2-O performed

similarly in terms of TPs (Scr1-O: 57.40 v. Scr2-O: 57.76) across three screens. However,

Scr2-O had an overall higher FP count (Scr1-O: 2206.63 v. Scr2-O: 2489.32). While Scr3-O

had overall low TPs and FPs, it performed well for the screen that it was optimized for

(TP: 17.73 and FP: 411.88). When these screen-optimized results are collected into mod-

POMDP, the results show similar TPs to physicians (p) as well as to Scr1-O and Scr2-O.

On the otherhand, modPOMDP had lower FPs compared to Scr1-O and Scr2-O, and only

slightly higher FPs relative to the physicians (mp: 1975.95 vs. p: 1926.45).

UCLA. Table 3.6 summarizes modPOMDP results for UCLA. In terms of TPs, both

modPOMDP and physicians did well, achieving 45 out of 46 TPs over 5 time points. For

FPs, physician performance immediately stands out, where screen 1 FP rate is only 0.4%.

This is far lower than the baseline LDCT FP rates (7.9% to 49.3% among 27 publications)

reported by Jonas et al. [6]. By contrast, FP rates of physicians for screens 1.5 to 3 range

from 22.3% to 48.4%. For Scr1-O, the FP rates of screens 1 and 1.5 are 39.6% and 47.6%

respectively, whereas NLST Scr1-O is 62.1%. In other words, screen 1 optimized rewards

generalized to UCLA better. For Scr2-O, the FP rates of screens 2 and 2.5 are 96.6% and

97.4% respectively, comparable to NLST Scr2-O’s 96.6%. For Scr3-O, the FP rate of screen
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Table 3.5: Results for modPOMDP on the NLST dataset. Model performance (mean

counts ± 95% CI) is calculated over 100 instances of bootstrap on the testing set. Highlight:

results collected for modPOMDP.

NLST TN FP FN TP Pre. Rec.

Physician

Scr1 480.43± 2.89 513.57± 2.89 0.00± .00 26.00± .00 0.0482± .0003 1.0000± .0000

Scr2 322.14± 2.83 657.86± 2.83 0.74± .14 13.26± .14 0.0198± .0002 0.9472± .0102

Scr3 206.98± 2.39 755.02± 2.39 0.00± .00 18.00± .00 0.0233± .0001 1.0000± .0000

Sum 1009.55 1926.45 0.74 57.26

Screen 1

Optimized

Scr1 376.87± 14.23 617.13± 14.23 0.26± .12 25.74± .12 0.0406± .0010 0.9900± .0047

Scr2 209.58± 24.38 770.42± 24.38 0.34± .11 13.66± .11 0.0178± .0006 0.9757± .0081

Scr3 142.92± 18.62 819.08± 18.62 0.00± .00 18.00± .00 0.0218± .0005 1.0000± .0000

Sum 729.37 2206.63 0.60 57.40

Screen 2

Optimized

Scr1 386.53± 23.26 607.47± 23.26 0.10± .06 25.90± .06 0.0430± .0024 0.9962± .0023

Scr2 33.06± 26.06 946.94± 26.06 0.14± .12 13.86± .12 0.0148± .0006 0.9900± .0083

Scr3 27.09± 21.42 934.91± 21.42 0.00± .00 18.00± .00 0.0193± .0008 1.0000± .0000

Sum 446.68 2489.32 0.24 57.76

Screen 3

Optimized

Scr1 817.31± 4.86 176.69± 4.86 2.15± .27 23.85± .27 0.1206± .0029 0.9173± .0104

Scr2 664.79± 3.70 315.21± 3.70 1.19± .21 12.81± .21 0.0392± .0007 0.9150± .0148

Scr3 550.12± 3.51 411.88± 3.51 0.27± .09 17.73± .09 0.0413± .0002 0.9850± .0049

Sum 2032.22 903.78 3.61 54.39

modPOMDP

Scr1 376.87± 14.23 617.13± 14.23 0.26± .12 25.74± .12 0.0406± .0010 0.9900± .0047

Scr2 33.06± 26.06 946.94± 26.06 0.14± .12 13.86± .12 0.0148± .0006 0.9900± .0083

Scr3 550.12± 3.51 411.88± 3.51 0.27± .09 17.73± .09 0.0413± .0002 0.9850± .0049

Sum 960.05 1975.95 0.67 57.33

3 is 52.1% vs. NLST Scr3-O 42.8%. As Scr2-O and Scr3-O performed within expectations,

it appears that UCLA Scr1-O’s better than expected results lead to the comparatively worse

performance of modPOMDP vs. Scr1-O (mp: 2505.5 vs. Scr1-O: 2348.97) in terms of FPs.

Brock2b. Table 3.7 shows Brock2b results for NLST. When compared to modPOMDP,

Brock2b (B2b) had lower TPs (B2b: 55.52 vs. mp: 57.33) and lower FPs (B2b: 1151.87 vs.

mp: 1975.95) across three screenings. For screen 1 only, both Scr1-O and B2b performed

well in TPs (both: 25.74), while B2b had much lower FPs (B2b: 361.87 vs. Scr1-O: 617.13).
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Table 3.6: Results for modPOMDP on the UCLA dataset. Model performance (mean

counts ± 95% CI) is calculated over 100 instances of bootstrap on the testing set. Highlight:

results collected for modPOMDP.

UCLA TN FP FN TP Pre. Rec.

Physician

Scr1 3555.00± .00 14.00± .00 0.00± .00 33.00± .00 0.7021± .0000 1.0000± .0000

Scr1.5 858.00± .00 246.00± .00 0.00± .00 8.00± .00 0.0315± .0000 1.0000± .0000

Scr2 284.00± .00 118.00± .00 0.00± .00 1.00± .00 0.0084± .0000 1.0000± .0000

Scr2.5 91.00± .00 59.00± .00 0.00± .00 0.00± .00 0.0000± .0000 n/a

Scr3 33.00± .00 31.00± .00 1.00± .00 3.00± .00 0.0882± .0000 0.7500± .0000

Sum 4821.00 468.00 1.00 45.00

Screen 1

Optimized

Scr1 2157.50± 53.95 1411.50± 53.95 0.00± .00 33.00± .00 0.0238± .0011 1.0000± .0000

Scr1.5 578.35± 15.09 525.65± 15.09 1.00± .00 7.00± .00 0.0135± .0004 0.8750± .0000

Scr2 146.09± 14.88 255.91± 14.88 0.00± .00 1.00± .00 0.0042± .0002 1.0000± .0000

Scr2.5 41.95± 4.33 108.05± 4.33 0.00± .00 0.00± .00 0.0000± .0000 n/a

Scr3 16.14± 1.63 47.86± 1.63 0.00± .00 4.00± .00 0.0787± .0020 1.0000± .0000

Sum 2940.03 2348.97 1.00 45.00

Screen 2

Optimized

Scr1 2155.50± 65.05 1413.50± 65.05 0.00± .00 33.00± .00 0.0244± .0014 1.0000± .0000

Scr1.5 219.22± 63.88 884.78± 63.88 0.38± .12 7.62± .12 0.0101± .0009 0.9525± .0149

Scr2 13.51± 10.73 388.49± 10.73 0.00± .00 1.00± .00 0.0027± .0002 1.0000± .0000

Scr2.5 3.95± 3.15 146.05± 3.15 0.00± .00 0.00± .00 0.0000± .0000 n/a

Scr3 1.34± 1.06 62.66± 1.06 0.00± .00 4.00± .00 0.0605± .0020 1.0000± .0000

Sum 2393.52 2895.48 0.38 45.62

Screen 3

Optimized

Scr1 3063.64± 24.44 505.36± 24.44 2.61± .89 30.39± .89 0.0585± .0016 0.9209± .0268

Scr1.5 864.20± 9.13 239.80± 9.13 2.00± .12 6.00± .00 0.0255± .0012 0.7500± .0000

Scr2 280.85± 3.57 121.15± 3.57 0.00± .00 1.00± .00 0.0084± .0003 1.0000± .0000

Scr2.5 86.20± 1.73 63.80± 1.73 0.00± .00 0.00± .00 0.0000± .0000 n/a

Scr3 30.64± 0.89 33.36± 0.89 0.00± .00 4.00± .00 0.1089± .0030 1.0000± .0000

Sum 4325.53 963.47 4.61 41.39

modPOMDP

Scr1 2157.50± 53.95 1411.50± 53.95 0.00± .00 33.00± .00 0.0238± .0011 1.0000± .0000

Scr1.5 578.35± 15.09 525.65± 15.09 1.00± .00 7.00± .00 0.0135± .0004 0.8750± .0000

Scr2 13.51± 10.73 388.49± 10.73 0.00± .00 1.00± .00 0.0027± .0002 1.0000± .0000

Scr2.5 3.95± 3.15 146.05± 3.15 0.00± .00 0.00± .00 0.0000± .0000 n/a

Scr3 30.64± 0.89 33.36± 0.89 0.00± .00 4.00± .00 0.1089± .0030 1.0000± .0000

Sum 2783.95 2505.05 1.00 45.00
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Table 3.7: Results for Brock2b on the NLST dataset. Model performance (mean counts ±

95% CI) is calculated over 100 instances of bootstrap on the testing set. B2b: Brock2b.

TN FP FN TP Pre. Rec. ROC-AUC PR-AUC

B2b

Scr1 632.13± 3.23 361.87± 3.23 0.26± .10 25.74± .10 0.0665± .0005 0.9900± .0039 0.8130± .0016 0.5284± .0018

Scr2 461.82± 20.42 518.18± 20.42 1.36± .22 12.64± .22 0.0249± .0012 0.9029± .0155 0.6870± .0089 0.4646± .0075

Scr3 690.18± 4.22 271.82± 4.22 0.86± .16 17.14± .16 0.0596± .0009 0.9522± .0089 0.8348± .0040 0.5063± .0044

Sum 1784.13 1151.87 2.48 55.52

3.4 Discussion

This chapter described the design and implementation of a modularized POMDP framework

for lung cancer screening. The key realization comes from the observation that due to the

Markovian nature of belief states in POMDPs, each time point can be evaluated separately.

The temporal dynamics of the system is captured through reward function optimization and

represents a simple and effective way of addressing the stationarity assumption. In this work,

while the conditional probabilities of POMDP subcomponents are jointly learned across time

points, the reward functions are optimized individually for each time point.

Given the nascent nature of lung cancer screening and the setup of the NLST, a modu-

larized POMDP framework was tested given the observation that most participants/patients

when first starting a cancer screening program have a higher potential for (an initial) posi-

tive finding vs. those who have been continuously monitored over time – suggesting that the

observation, transition, and reward functions are non-stationary and thus should be modeled

differently over time.

In NLST, the results show that modPOMDP performs better than each of the screen-

optimized results – that is, maintaining comparable true positives while having lower false

positives. When compared to experts, modPOMDP performs at the same level for true pos-

itives with only a small increase in false positives (49.5 across three screenings). The Brock2b

model on the hand other, was not able to capture true positives to the same extent as mod-

POMDP overall. However, Brock2b performed very well in the first screen, capturing the
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same number of true positives while having much fewer false positives than modPOMDP.

This performance did not extend to screens 2 and 3, indicating that the temporal dynamics

and dependencies learned in the POMDP cannot be replicated by a model that predicts

each time point completely independently. These results demonstrate the applicability of

the modPOMDP framework.

When applied to the UCLA external validation set however, modPOMDP received

higher false positives than screen 1 optimized rewards alone, but maintained the same number

of true positives. As previously pointed out in Section 3.3, UCLA’s optimized screens 1

and 1.5 results are the outliers in having a much lower false positive rate than NLST’s

screen 1 while the false positive rates are comparable for other time points. One possibility

involves the fact that NLST is a RCT with multiple eligibility criteria, one of which is

that the participant cannot have a CT within 18 months of recruitment. Coupled with the

high-risk for lung cancer smoking criteria, NLST’s screen 1 would naturally be expected

to have higher than normal positive cases. UCLA data on the other hand is electronic

health record (EHR) data and many patients had CTs within 18 months of the baseline

survey. Many abnormalities would have already been found and one would not expect the

front-loaded distribution of cancers that appears in NLST. Indeed, at baseline, 40.1% of the

NLST participants had no or < 4 mm abnormalities whereas 79% of UCLA nodules had no

or < 4 mm abnormalities. To an agent trained and tuned on the NLST data, many of the

UCLA nodules would appear as negative and no intervention recommended. While screen 1

optimized rewards performed well for earlier screens, it was not able to capture the temporal

dynamics of screen 3. That is, screen 3 optimized rewards showed better results than screen

1 optimized rewards showed in screen 3 (NLST Scr1-O FP: 819.08 vs. Scr3-O FP: 411.88;

UCLA Scr1-O FP: 47.86 vs. Scr3-O FP: 33.36).

One assumption made about the UCLA data is the characterization of physician inter-

vention. Intervention is defined as having a procedure (e.g., biopsy), diagnostic imaging

(DXI), or non-screening LDCT (NSL). If the patient’s first screen is a DXI or NSL however,
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then it and subsequent DXI/NSL were assumed to be incidental findings and also treated as

non-intervention until a procedure is done. As most non-cancer patients and nodules only

have one or two screens, these trajectories are clustered at screens 1 and 1.5. At screen 1,

DXI and NSL are 344 out of 3602 screenings. At screen 2, DXI and NSL are 320 out of

1112 screenings. How physician intervention is defined clearly has an effect on UCLA’s false

positive rates at screens 1 and 1.5.

Another observation is that regardless of the dataset, screen 2 appears to be a difficult

time point. The precision at screen 2 is the lowest for the physicians, modPOMDP, and

Brock2b. In NLST, screen 2 is the only time point where the physicians have false negatives.

When optimizing rewards for screen 2, true positives were not improved much despite the

very aggressive rewards, but false positives did increase substantially relative to applying

screen 1 optimized rewards on screen 2. In Brock2b, true positives were the lowest among

the three groups, despite tuning the decision threshold for recall. This suggests that the

Brock2b model cannot differentiate very well between positive and negative nodules in some

circumstances, a finding previously reported in Winter et al. [99]. The authors noted the

differentiation difficulty even when Brock2b achieved high area under the curve (AUC). It

is likely then, that there are cancer patients whose screening results look very similar to

non-cancer patients. It is also noted that in the NLST, applying screen 1 optimized rewards

on screen 2 (instead of screen 2 optimized rewards on screen 2) would decrease overall

true positives by 0.2 while decreasing false positives by 176.52. This largely maintains the

same true positives as physicians but lowers false positives significantly (mp: 1799.43 vs.

p: 1926.45). Markedly, if applied to the UCLA cohort, this same trend is observed. That

is, true positives did not change, but false positives decreased by 170.58 to 2334.47. This

observation suggests that the modPOMDP setup of I = 3 submodels where σ1 = [1, 2),

σ2 = [2, 3), and σ3 = [3, 3] may not be optimal, and instead can be I = 2 where σ1 = [1, 3)

and σ2 = [3, 3]. It appears that the dynamics of screen 1 can apply to screen 2 well and how

modPOMDP setup is defined can influence outcome.
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One limitation of this study is in the preprocessing of UCLA EHR data. When building

the NLST POMDP model, the time interval was set to half-year by interpolating values

between two screenings. In the UCLA data, the time interval between screenings were used

as they occur, meaning the time between two screenings is unlikely to be six months. The

average number of days for a nodule between screens 1 and 1.5 is 402.6±256.9 (mean ± std),

367.6±203.9 between screens 1.5 and 2, 316.4±185.0 between screens 2 and 2.5, and 274.8±

242.6 between screens 2.5 and 3. The high standard deviation shows substantial differences

in individual nodule trajectories. For example, some patients may be referred for 3-month

follow-ups while others return to screening after multiple years. Modeling trajectories to

allow a more fitting time interval between screenings may improve POMDP performance.
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Table 3.8: Baseline characteristics of NLST participants and UCLA patients. UCLA Scr2.5

has no cancer nodules and therefore omitted. For numeric variables, the values are mean ±

standard deviation. For categorical or binary variables, the values are count (%). C: cancer;

NC: non-cancer; LC: lung cancer; NH/PI: Native Hawaiian or other Pacific Islander;

AI/AN: American Indian or Alaskan Native.

NLST (Participant count) UCLA (Patient count)

Characteristics Scr1 C (128) Scr2 C (70) Scr3 C (88) NC (4803) Scr1 C (33) Scr1.5 C (8) Scr2 C (1) Scr3 C (4) NC (726)

PLCOM2012 risk score 0.049± .039 0.051± .037 0.044± .034 0.033± .028 0.06± .055 0.063± .041 0.07± .0 0.109± .086 0.041± .037

≥ 0.0151 114 (89.1) 63 (90) 77 (87.5) 3640 (75.8) 29 (87.9) 7 (87.5) 1 (100) 4 (100) 590 (81.3)

Age 63.9± 5.3 62.5± 4.5 62.8± 5.2 61.5± 5 66.8± 4.9 66.7± 5.5 68± .0 67.3± 7 64.9± 5.4

[55− 60) 35 (27.3) 19 (27.1) 31 (35.2) 2011 (41.9) 4 (12.1) 1 (12.5) 0 (0) 1 (25) 160 (22)

[60− 65) 34 (26.6) 29 (41.4) 23 (26.1) 1490 (31) 6 (18.2) 1 (12.5) 0 (0) 0 (0) 199 (27.4)

[65− 70) 38 (29.7) 17 (24.3) 22 (25) 868 (18.1) 13 (39.4) 4 (50) 1 (100) 1 (25) 212 (29.2)

[70− 75) 21 (16.4) 5 (7.1) 12 (13.6) 434 (9) 10 (30.3) 2 (25) 0 (0) 2 (50) 155 (21.3)

BMI 26.6± 4.1 26.8± 6.6 26.3± 4.1 27.7± 4.9 26.9± 5.1 26.2± 4.5 37.8± .0 23.6± 3.3 27.1± 5.4

< 18.5 1 (0.8) 2 (2.9) 2 (2.3) 43 (0.9) 1 (3) 0 (0) 0 (0) 0 (0) 20 (2.8)

[18.5-25) 46 (35.9) 25 (35.7) 27 (30.7) 1441 (30) 13 (39.4) 5 (62.5) 0 (0) 3 (75) 244 (33.6)

[25-30) 59 (46.1) 33 (47.1) 45 (51.1) 2001 (41.7) 10 (30.3) 2 (25) 0 (0) 1 (25) 286 (39.4)

≥ 30 22 (17.2) 10 (14.3) 14 (15.9) 1318 (27.4) 9 (27.3) 1 (12.5) 1 (100) 0 (0) 176 (24.2)

Gender

Male 73 (57) 43 (61.4) 52 (59.1) 2806 (58.4) 24 (72.7) 3 (37.5) 0 (0) 1 (25) 444 (61.2)

Female 55 (43) 27 (38.6) 36 (40.9) 1997 (41.6) 9 (27.3) 5 (62.5) 1 (100) 3 (75) 282 (38.8)

Education

< High school 16 (12.5) 6 (8.6) 8 (9.1) 277 (5.8) 0 (0) 0 (0) 0 (0) 0 (0) 23 (3.2)

High school 31 (24.2) 17 (24.3) 19 (21.6) 1192 (24.8) 9 (27.3) 1 (12.5) 1 (100) 0 (0) 116 (16)

Post high school 10 (7.8) 10 (14.3) 14 (15.9) 675 (14.1) 1 (3) 0 (0) 0 (0) 1 (25) 51 (7)

Some college 30 (23.4) 20 (28.6) 23 (26.1) 1143 (23.8) 7 (21.2) 3 (37.5) 0 (0) 1 (25) 186 (25.6)

College 21 (16.4) 7 (10) 14 (15.9) 825 (17.2) 12 (36.4) 3 (37.5) 0 (0) 0 (0) 207 (28.5)

Graduate 20 (15.6) 10 (14.3) 10 (11.4) 691 (14.4) 4 (12.1) 1 (12.5) 0 (0) 2 (50) 143 (19.7)

Race/ethnicity

White 115 (89.8) 62 (88.6) 81 (92) 4405 (91.7) 27 (81.8) 7 (87.5) 1 (100) 3 (75) 616 (84.8)

Black 4 (3.1) 7 (10) 3 (3.4) 198 (4.1) 0 (0) 1 (12.5) 0 (0) 1 (12.5) 32 (4.4)

Hispanic 5 (3.9) 0 (0) 1 (1.1) 81 (1.7) 2 (6.1) 0 (0) 0 (0) 0 (0) 32 (4.4)

Asian 4 (3.1) 1 (1.4) 2 (2.3) 97 (2) 4 (12.1) 0 (0) 0 (0) 0 (0) 40 (5.5)

NH/PI 0 (0) 0 (0) 0 (0) 11 (0.2) 0 (0) 0 (0) 0 (0) 0 (0) 6 (0.8)

AI/AN 0 (0) 0 (0) 1 (1.1) 11 (0.2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Hist. of COPD (% Yes) 13 (10.2) 8 (11.4) 7 (8) 255 (5.3) 12 (36.4) 3 (37.5) 1 (100) 2 (50) 191 (26.3)

Prior non-LC (% Yes) 10 (7.8) 4 (5.7) 3 (3.4) 206 (4.3) 12 (36.4) 4 (50) 0 (0) 3 (75) 134 (18.5)

Fam. hist. of LC (% Yes) 34 (26.6) 23 (32.9) 22 (25) 1067 (22.2) 10 (30.3) 2 (25) 1 (100) 1 (25) 155 (21.3)

Cigarettes per day 30.1± 13.5 30.6± 10.7 29.8± 13 28.7± 11.3 23± 6.7 20.1± 4.9 20± .0 25± 8.7 22.4± 8.2

Years smoked 43.2± 7.6 43.2± 6.3 43± 7 40± 7.2 43.1± 6.1 45.5± 7.3 47± .0 47.5± 12.5 41.6± 8.1

Current smokers 64 (50) 44 (62.9) 47 (53.4) 2397 (49.9) 13 (39.4) 3 (37.5) 0 (0) 1 (25) 288 (39.7)

Smoking quit time 6.6± 4.3 6.2± 4.4 7.2± 4.8 7.3± 4.6 5± 4.3 5± 1.9 3± .0 7.4± 4.7 6.4± 4.5
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Table 3.9: Baseline characteristics of NLST and UCLA nodules. Baseline nodule sizes were

computed from nodules with diameter > 0 mm. UCLA Scr2.5 has no cancer nodules and

therefore omitted. For numeric variables, the values are mean ± standard deviation. For

categorical or binary variables, the values are count (%). C: cancer; NC: non-cancer.

NLST (Participant count) UCLA (Nodule count)

Characteristics Scr1 C (128) Scr2 C (70) Scr3 C (88) NC (4803) Scr1 C (33) Scr1.5 C (8) Scr2 C (1) Scr3 C (4) NC (3582)

Baseline nodule size (mm) 19.8± 11.7 14.3± 18.9 10.7± 7.7 7.3± 5.9 25.7± 14.6 22.1± 17.7 8± .0 9.3± 1.7 6.7± 5.6

< 4 0 (0) 37 (52.9) 66 (75) 1936 (40.3) 0 (0) 1 (12.5) 0 (0) 1 (25) 2865 (80)

4 1 (0.8) 3 (4.3) 1 (1.1) 555 (11.6) 0 (0) 0 (0) 0 (0) 0 (0) 182 (5.1)

(4, 5] 2 (1.6) 2 (2.9) 0 (0) 750 (15.6) 0 (0) 1 (12.5) 0 (0) 0 (0) 128 (3.6)

(5, 6] 4 (3.1) 0 (0) 3 (3.4) 464 (9.7) 0 (0) 0 (0) 0 (0) 0 (0) 122 (3.4)

(6, 7] 3 (2.3) 5 (7.1) 4 (4.5) 296 (6.2) 0 (0) 0 (0) 0 (0) 1 (25) 59 (1.6)

(7, 8] 5 (3.9) 5 (7.1) 4 (4.5) 184 (3.8) 1 (3) 0 (0) 1 (100) 0 (0) 40 (1.1)

(8, 9] 3 (2.3) 3 (4.3) 1 (1.1) 139 (2.9) 0 (0) 0 (0) 0 (0) 0 (0) 38 (1.1)

(9, 10] 6 (4.7) 3 (4.3) 1 (1.1) 113 (2.4) 1 (3) 1 (12.5) 0 (0) 1 (25) 29 (0.8)

(10, 11] 8 (6.2) 0 (0) 1 (1.1) 62 (1.3) 3 (9.1) 1 (12.5) 0 (0) 1 (25) 29 (0.8)

(11− 27] 68 (53.1) 10 (14.3) 6 (6.8) 275 (5.7) 15 (45.6) 2 (25) 0 (0) 0 (0) 78 (2.2)

≥ 27 28 (21.9) 2 (2.9) 1 (1.1) 29 (0.6) 13 (39.4) 2 (25) 0 (0) 0 (0) 12 (0.3)

Baseline attenuation

Soft tissue 100 (78.1) 21 (30) 14 (15.9) 2906 (43.6) 9 (27.3) 2 (25) 0 (0) 1 (25) 1330 (37.1)

Ground-glass 11 (8.6) 5 (7.1) 7 (8) 410 (8.5) 2 (6.1) 2 (25) 0 (0) 0 (0) 303 (8.5)

Mixed 13 (10.2) 5 (7.1) 0 (0) 148 (3.1) 9 (27.3) 3 (37.5) 0 (0) 2 (50) 63 (1.8)

Other 1 (0.8) 0 (0) 1 (1.1) 20 (0.4) 5 (15.2) 0 (0) 0 (0) 0 (0) 18 (0.5)

Missing 3 (2.3) 39 (55.7) 66 (75) 2129 (44.3) 8 (24.2) 1 (12.5) 1 (100) 1 (25) 1868 (52.1)

Baseline margins

Spiculated (Stellate) 80 (62.5) 14 (20) 4 (4.5) 270 (5.6) 15 (45.5) 1 (12.5) 0 (0) 1 (25) 20 (0.6)

Smooth 14 (10.9) 7 (10) 7 (8) 1902 (39.6) 0 (0) 1 (12.5) 0 (0) 1 (25) 47 (1.3)

Poorly defined 26 (20.3) 10 (14.3) 8 (9.1) 524 (10.9) 5 (15.2) 2 (25) 0 (0) 0 (0) 75 (2.1)

Missing 8 (6.2) 39 (55.7) 69 (78.4) 2107 (43.9) 13 (39.4) 4 (50) 1 (100) 2 (50) 3440 (96)
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Table 3.10: Variables used in the Brock2b model on NLST participants for each screening

and their distributions. The NLST population was limited to participants with only one

nodule. For numeric variables, the values are mean ± standard deviation. For categorical

or binary variables, the values are count (%). C: cancer; NC: non-cancer; LC: lung cancer.

NLST (Participant count)

Characteristics Scr1 C (128) Scr1 NC (4961) Scr2 C (70) Scr2 NC (4891) Scr3 C (88) Scr3 NC (4803)

Brock2b risk score 0.326± 0.217 0.025± .07 0.191± .167 0.024± .068 0.211± .189 0.021± .064

Age 63.9± 5.3 61.6± 5 63.5± 4.5 62.5± 5 64.8± 5.2 63.5± 5

Gender (% female) 55 (43) 2060 (41.5) 27 (38.6) 2033 (41.6) 36 (40.9) 1997 (41.6)

Fam. hist. of LC (% Yes) 34 (26.6) 1112 (22.4) 23 (32.9) 1089 (22.3) 22 (25) 1067 (22.2)

Hist. of emphysema (% Yes) 14 (10.9) 431 (8.7) 8 (11.4) 423 (8.6) 12 (13.6) 411 (8.6)

Nodule size (mm) 19.8± 11.7 4.4± 6 13.8± 11.7 4.3± 5.1 15.5± 15.1 4.2± 5

Nodule type

Ground-glass 11 (8.6) 422 (8.5) 4 (5.7) 373 (7.6) 10 (11.4) 403 (8.4)

Part-solid 13 (10.2) 153 (3.1) 9 (12.9) 120 (2.5) 10 (11.4) 92 (1.9)

Nodule location (% Upper lobe) 83 (64.8) 1086 (21.9) 40 (57.1) 1068 (21.8) 62 (70.5) 1042 (21.7)

Spiculation (% Yes) 80 (62.5) 288 (5.8) 31 (44.3) 250 (5.1) 32 (36.4) 193 (4)
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CHAPTER 4

modPOMDP2: The Two-Part modPOMDP

4.1 Introduction

In Chapter 3, modPOMDP (mp) was shown to reach parity with physicians (p) in terms of

true positives (mp: 57.33 vs. p: 57.26) and slightly more false positives (mp: 1975.95 vs. p:

1926.45) across three screenings in the NLST dataset. It is nevertheless desirable to reduce

false positives even further. The key insight for the research in this chapter is that in general,

the developed lung cancer screening POMDPs are aiming to optimize earlier detection of a

positive finding and is based on mimicking experts’ actions, which includes a relatively high

false positive rate. Introducing another step, therefore, may keep the “earlier” detection

while reducing the false positives.

modPOMDP2 is designed to reduce the false positives by leveraging classification tech-

niques to disambiguate a POMDP’s positive predictions. That is, both true positive and

false positive predictions of the POMDP are fed as inputs to a classifier. The goal is to fill

in the gap in a POMDP’s decision making and capture subtleties that modPOMDP might

have missed. While the two-part model has a long history and worked well in other fields, it

does not seem to be utilized much in biomedical informatics. This work shows that chaining

a POMDP and commonly used classifying techniques in a two-part framework can largely

maintain true positives while decreasing false positives, more so than either technique alone.

The idea of the two-part model has existed for a long time and was used in the 1970’s

for rainfall prediction [100–102]. The two-part model is often used in the field of health
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economics today where the task is often to predict healthcare spending and healthcare access.

When it comes to healthcare spending, most patients do not spend or spend very little, but

a small group can spend a lot. A similar trend is observed in healthcare access as well.

This highly 0-skewed data therefore pose a challenge in the prediction task. Within the

health economics domain, the two-part model approach is more or less the consensus [103].

Researchers use one model to predict whether a patient will spend or access healthcare, and

a second model to predict the amount of spending or access.

Another area of research that employs combining methodologies is artificial intelligence

(AI) in games. While Deep Blue has bested human players since 1997 [104], it was not

until AlphaGo [105] emerged on the scene in 2016 that the best Go players were defeated

by AI. Go is a particularly difficult game for AI because enumerating all possibilities is

considered intractable due to its large state and action space. In the original AlphaGo, two

neural networks were used to train a policy function and a value function, while a Monte

Carlo Tree Search (MCTS) [106] is then used to optimize the policy. Effectively, the neural

networks reduced the search space required for the MCTS to calculate optimized policies.

Later versions, AlphaGo Zero [107] and AlphaZero, [108] reduced the neural networks down

to a single joint policy and value network, but the same idea of reducing the search space

followed by optimizing policy remained.

4.2 Methods

To demonstrate that the modPOMDP2method itself can lower false positives, only features

previously used in modPOMDP were used. Table 4.1 summarizes the features and their

types. The first nine features are part of the PLCOM2012 model [93], which was previously

used to inform modPOMDP’s initial cancer state beliefs and showed good predictive power

in NLST patients (AUC–ROC: 0.701). However, history of chronic obstructive pulmonary

disease (COPD) and smoking status were excluded because an earlier feature importance
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Figure 4.1: Left: figure showing the highly 0-skewed data in healthcare spending. Most

patients do not spend or spend very little, while a small group spend a lot; adapted from [103].

Right: figure of an empty Go board, showing the initial large state and action spaces; adapted

from [109].

analysis (not shown) showed low importance. Four additional features, gender and three

baseline nodule characteristics (baseline nodule size bin, baseline attenuation, and base-

line margins) were included to represent the patient’s nodule characteristics at the start of

screening.

Data preprocessing. The data were processed the same way as was done in Chapter

3.2.1, with additional steps for the classifiers. For categorical variables, one-hot encoding

was used. k-1 was used for baseline attenuation and baseline margins because these had

missing values (not all nodules appeared at baseline). An earlier analysis (not shown) did

not show much difference in tree-based classifier performance whether one-hot encoded or

not. Additionally, while baseline nodule size bin is categorical, it was treated as numeric.

For MLPClassifier [110–113] (MLP), numeric columns (including baseline nodule size bin)

were transformed using a standard scaler of mean 0 and variance 1.
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Table 4.1: List of features and data types used in modPOMDP2’s classifiers.

Feature Data Type

Age Numeric

Race/ethnicity Categorical

Education Categorical

BMI Numeric

Prior non-lung cancer Binary

Family history of lung cancer Binary

Cigarettes per day Numeric

Total years of smoking Numeric

Smoking quit time Numeric

Gender Categorical

Baseline nodule size bin Categorical (treated as numeric)

Baseline attenuation Categorical

Baseline margins Categorical

Classifiers. Different classifiers provided in scikit-learn [114], imbalanced-learn [115],

XGBoost [116] were explored for the purpose of implementing the modPOMDP2 method.

Due to the large imbalance in true positives (TPs) vs. false positives (FPs), a variety of

techniques were used to address class imbalance. Thresholding [117] was used in conjunction

with other methods by all classifiers for maximizing recall. Both BalancedRandomForest-

Classifier [118] (BRF) and EasyEnsembleClassifier [119] (EEC) by default resample the

non-minority class. RandomForestClassifier [120] (RF) and support vector classifier [121]

(SVM) used the class weight=balanced option to weigh the minority class more, while

XGBClassifier (XGB) used the scale pos weight option to do the same. For MLP, over-

sampling the minority class was tried as MLP does not have a built in class weight option.

However, thresholding alone produced higher recall than thresholding + oversampling.
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4.2.1 Classifier Selection

A classifier selection study using the NLST dataset (5,089 patients) was conducted to see how

each classifier performs. This is both to serve as a baseline for comparisons and for selecting

classifiers to combine with modPOMDP. The dataset was divided into 60% training, 20%

validation for threshold tuning, and 20% for testing. Hyperparameter tuning (see Table 4.2)

was conducted for each classifier and all runs were over 200 iterations of bootstrap. For

each classifier, results for the set of hyperparameters that produced the highest summed

recall over three screening time points are shown in Table 4.3. Based on these results, two

classifiers were selected for use in modPOMDP2. The first one is MLP, which had the

highest summed recall. The second one is BRF, which was selected for its relatively low FPs

while maintaining similar TPs to EEC and XGB. RF and SVM were not considered because

of RF’s low TP counts and SVM’s in-between performance relative to MLP and BRF.

Table 4.2: Classifier hyperparameter tuning.

Categorical or

Classifier Hyperparameter Lower Upper Selected

BRF n estimators 100 200 200

EEC n estimators 100 200 200

RF n estimators 100 200 200

XGB max depth 6 10 6

SVM kernel linear, rbf, poly, sigmoid linear

C 0.1 100 1

MLP activation relu, identity, logistic, tanh relu

solver adam, lbfgs, sgd adam

max iteration 200 500 200

hidden layer sizes (6,) (36,36) (24,)
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Table 4.3: Exploring classifiers for modPOMDP2. Classification performance (mean

counts ± 95% CI) of various methods over 200 iterations of bootstrap on the testing set.

In each iteration, data were divided into 60% training, 20% validation, and 20% testing.

Prediction threshold to bias for recall was tuned on the validation set and applied to the

testing set. Hyperparameter tuning was performed for each classifier and the set of hyperpa-

rameters that gave the highest summed recall over three screening time points was selected.

Classifiers are ordered by summed recall.

TN FP FN TP Pre. Rec. ROC-AUC PR-AUC

MLP

Scr1 269.17± 36.89 724.83± 36.89 0.58± .16 25.43± .16 0.0464± .0052 0.9779± .0063 0.6179± .0055 0.3778± .0115

Scr2 34.02± 13.38 945.98± 13.38 0.17± .09 13.83± .09 0.0145± .0002 0.9879± .0064 0.5000± .0000 0.0446± .0050

Scr3 44.31± 13.62 917.69± 13.62 0.18± .10 17.82± .10 0.0193± .0003 0.9900± .0056 0.5002± .0004 0.0387± .0025

Sum 347.50 2588.50 0.93 57.08

SVM

Scr1 470.82± 43.55 523.19± 43.55 0.86± .16 25.15± .16 0.0637± .0050 0.9671± .0062 0.8787± .0046 0.3282± .0099

Scr2 77.00± 12.78 903.01± 12.78 0.31± .10 13.70± .10 0.0151± .0002 0.9782± .0075 0.6116± .0090 0.0323± .0022

Scr3 108.63± 15.39 853.38± 15.39 0.45± .12 17.56± .12 0.0204± .0003 0.9753± .0068 0.6347± .0074 0.0328± .0015

Sum 656.44 2279.57 1.61 56.40

EEC

Scr1 556.64± 20.67 437.36± 20.67 0.83± .17 25.17± .17 0.0622± .0038 0.9681± .0065 0.8711± .0038 0.3608± .0117

Scr2 204.79± 13.77 775.21± 13.77 0.82± .16 13.18± .16 0.0169± .0002 0.9414± .0117 0.6047± .0077 0.0287± .0016

Scr3 159.48± 14.03 802.52± 14.03 0.89± .17 17.12± .17 0.0211± .0003 0.9508± .0095 0.6289± .0072 0.0446± .0038

Sum 920.91 2020.54 2.54 55.47

BRF

Scr1 584.38± 32.85 409.62± 32.85 0.90± .18 25.11± .18 0.0779± .0058 0.9656± .0067 0.8910± .0040 0.3530± .0110

Scr2 257.28± 15.03 722.72± 15.03 0.78± .16 13.23± .16 0.0182± .0003 0.9446± .0111 0.6364± .0081 0.0300± .0018

Scr3 227.78± 19.03 734.22± 19.03 0.92± .16 17.09± .16 0.0233± .0005 0.9492± .0089 0.6622± .0075 0.0380± .0018

Sum 1069.44 1866.56 2.59 55.42

XGB

Scr1 250.26± 29.85 743.75± 29.85 0.87± .17 25.13± .17 0.0362± .0019 0.9665± .0067 0.7705± .0064 0.3330± .0110

Scr2 114.79± 14.34 865.21± 14.34 0.98± .18 13.03± .18 0.0149± .0002 0.9304± .0129 0.5157± .0046 0.0220± .0011

Scr3 146.66± 14.82 815.35± 14.82 0.96± .17 17.04± .17 0.0207± .0003 0.9467± .0096 0.5367± .0057 0.0354± .0023

Sum 511.70 2424.30 2.81 55.20

RF

Scr1 724.93± 12.45 269.08± 12.45 1.35± .18 24.66± .18 0.0920± .0038 0.9483± .0071 0.5254± .0029 0.3422± .0104

Scr2 442.51± 8.19 537.50± 8.19 3.71± .27 10.30± .27 0.0189± .0004 0.7354± .0190 0.5000± .0000 0.0230± .0010

Scr3 393.46± 7.48 568.55± 7.48 3.87± .28 14.13± .28 0.0243± .0004 0.7850± .0155 0.4999± .0000 0.0326± .0015

Sum 1560.89 1375.12 8.92 49.08

4.2.2 The modPOMDP2 Framework

Figure 4.2 shows the experimental setup of modPOMDP2. At each time point, the positive

predictions (both TPs & FPs) from the POMDP training set were separated in a 75%/25%

split where the 75% were used in a classifier’s training and 25% were used to tune the decision
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threshold towards biasing recall. Similar to the POMDP training data, positive predictions

were also retrieved from the POMDP testing set. The classifier’s decision threshold is applied

to POMDP’s testing positives and the combined model’s confusion matrix calculations are

summarized in Table 4.4. In short, the classifier’s positives are the final positives and mod-

POMDP’s negatives are adjusted by the classifier’s negatives. For each instance of POMDP

bootstrap, 100 instances of machine learning (ML) were performed. At each screening time

point, the 95% confidence interval is calculated over 10, 000 sets of numbers.

Figure 4.2: Experimental setup of modPOMDP2. An extension of Figure 3.4, the posi-

tive predictions from the training results are used as inputs in the classifiers. For external

validation, the Testing (20%) box is replaced with UCLA data. ML: machine learning.

4.2.3 The Brock Model

The Brock model was previously described in Section 3.2.4. Overall, Brock2b (B2b) per-

formed similarly to BRF in TPs, but much lower FPs. The Brock model was therefore
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Table 4.4: Confusion matrix calculation in the combined modPOMDP2 model. ML:

machine learning.

TN = POMDP TN + ML TN TP = ML TP

FN = POMDP FN + ML FN FP = ML FP

included in the analysis with modPOMDP2 and chained similarly as the other classifiers.

While other classifiers used baseline characteristics, Brock2b used information from the time

of screening, with screening-adjusted ages. Similar to other classifiers, modPOMDP posi-

tive predictions were split in two portions of 75% and 25%. As there is no training involved,

only the 25% were used for threshold tuning and biased for recall. This step was done 100

times per POMDP instance. The tuned threshold was applied to the positive predictions

from the POMDP testing set.

4.3 Results

Table 4.5 summarizes modPOMDP2 results, with physician and modPOMDP results

reproduced from Table 3.5 and Table 3.6 for comparison purposes. The area under the curve

values were calculated from the classifier/B2b portions only and therefore not available for

the physicians and modPOMDP. All three chained models, modPOMDP + MLP (mp-

MLP), modPOMDP + BRF (mp-BRF), and modPOMDP + B2b (mp-B2b), lowered FPs

and TPs from modPOMDP.

NLST. In the NLST testing set, the results are more or less mirroring classifier perfor-

mance from the exploratory study. That is, mp-MLP had both more TPs and FPs than

mp-BRF. When looking over all three screenings and compared to modPOMDP, mp-MLP

decreased TPs and FPs by 1.16 and 167.53 respectively, while mp-BRF decreased TPs and

FPs by 2.62 and 512.43 respectively. These results indicate that in NLST, chaining MLP
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can decrease FPs without affecting TPs by too much. Chaining BRF however, performed

similarly to Scr3-O in TPs (mp-BRF: 54.71 vs. Scr3-O: 54.39), but worse in FPs (mp-

BRF: 1463.52 vs. Scr3-O: 903.78). However, modPOMDP2 achieved better results than

modPOMDP or individual classifiers alone. mp-B2b had the lowest TPs (53.14), but also

lowered FPs substantially (697.40).

UCLA. When testing on the UCLA dataset, mp-BRF did better than mp-MLP, where

mp-BRF achieved both higher TPs (mp-BRF: 44.24 vs. mp-MLP: 43.32) as well as lower

FPs (mp-BRF: 1794.07 vs. mp-MLP: 2111.44). Both classifiers were able to decrease the

FPs from modPOMDP while maintaining similar TPs. When looking over all five screen-

ings and compared to modPOMDP, mp-MLP decreased TPs and FPs by 1.68 and 393.61

respectively, while mp-BRF decreased TPs and FPs by 0.76 and 710.98 respectively. These

results indicate that chaining BRF can decrease FPs without affecting TPs by too much.

4.3.1 Error Analysis

To investigate the false negative predictions from the classifier, a study was conducted on

a prior implementation of modPOMDP2 using BRF on a larger cohort of 5, 402 NLST

patients. In this study, 23 cases most likely to be BRF false negatives out of the 10, 000

classifier bootstrap instances were selected, along with a random sample of 6 cancer cases

and 11 non-cancer cases as control. Two radiologists read all patient images1 and reached

consensus on Lung-RADS categories, whether nodule was mismatched, and any additional

context or comments. Nodule mismatch was defined in one of two categories: a) the imaging-

identified nodule was not the same as the procedure-identified (e.g., biopsy) nodule or b) the

procedure-identified nodule was not detected in imaging. A total of 12 out of 23 false negative

predictions were mismatched cases, suggesting a fairly large contribution towards misclassifi-

1Drs. Denise Aberle and Ashley Prosper read and interpreted patient LDCTs. Professor William Hsu,
Yannan Lin, and Rina Ding assisted with image and data retrieval.
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cations. Following this study, a comparison between imaging-identified nodule locations and

procedure-identified nodule locations was done for all cancer patients, and mismatched cases

were removed. However, three mismatched cases remained in the dataset, as their nodule

locations did not differ between imaging and procedure. This shows that for some patients,

nodules in the same lobe over time were actually different nodules. Unfortunately this is

unrectifiable in the data. A summary of the findings can be found in Table 4.6.

As a result of the study, 51 cancer patients (Scr1: 17, Scr2: 18, Scr3: 16) out the original

5, 402 cohort were removed from the dataset. The match to mismatch ratio is summarized in

Table 4.7. Note that the “Match” column does not match the number of cancers in Table 3.3

because of other exclusion criteria applied after this. The post-screen cohort were patients

who did not develop cancer during the NLST screening period, but during the up to five

years post-screening follow-up period. Unsurprisingly, these patients had a higher chance

of nodule mismatches. In this dissertation, the post-screen patients were grouped under

non-cancer patients as they did not develop cancer following a screen.

Within the 13 cases of mismatched cases identified in the BRF false negative study, A

closer look at the categories of mismatched cases showed differences in cancer type distri-

butions. When a mismatch is due to imaging and procedure location differences, the cancer

types are more varied. When the nodule was not detected during screening, 50% were

the fast-growing small-cell lung cancer (SCLC). These cancers would be less likely to be

captured by LDCT and consequently by modPOMDP and the classifier. As none of the

three mismatched cases that remained in the dataset were SCLC, a slight improvement to

classification is likely. The cancer type distributions are shown in Figure 4.3.

4.4 Discussion

This chapter described the design and implementation of a two-part model of modularized

POMDP + classifiers and demonstrated that the combined model, modPOMDP2, can
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(a) Imaging-procedure locations are different. (b) Nodule was not detected during imaging.

Figure 4.3: Distribution of cancer types for different nodule mismatch categories.

perform better than each of the two parts alone. A modPOMDP + Brock2b model was

developed for comparison purposes. modPOMDP2 was trained and tested on the NLST

dataset, and externally validated on the UCLA dataset. Statistics such as Youden’s J statistic

[122] and F-scores [123] were explored; however, high scores in these metrics did not result

in higher true positives, as these statistics balance both positives and negatives.

Often times, modelers report areas under the curve results and say clinicians can pick a

suitable decision point. However, picking this point is a very difficult choice. In this work,

the classifiers’ prediction thresholds were optimized for recall, as the cost of missing cancer

cases is potentially very high for the patients screened. When compared to modPOMDP

or classifiers alone, the combined model can maintain similar true positives while further

reducing false positives. This suggests that using modPOMDP to filter out a portion

of the negative samples is helpful to the classification task. Screen 2 of NLST appears

especially difficult for the classifiers and the Brock model, mirroring both the physicians and

modPOMDP, as precision is lowest among the three screenings. Using baseline patient and

nodule characteristics to predict cancer at different screening time points remain a challenge,

as shown by the classifiers missing positive cases in both the classifier selection study and
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when chained with modPOMDP.

The modPOMDP + Brock2b model having the lowest true positives out of the three

chained models is somewhat surprising. First, Brock2b alone achieved very similar true

positives as BRF alone (B2b: 55.52 vs. BRF: 55.42). Second, Brock2b uses data, including

nodule characteristics, from screens 2 and 3. Third, Brock2b was tuned to bias for recall for

each screen. It appears that these steps could not optimize true positive predictions as well

as classifiers using baseline characteristics could. Previous research [99] performed external

validation of the Brock model on the NLST dataset and found that the model performance

can be improved by calibrating some of the beta coefficients. Adapting the recalibrated beta

values may be one way to improve the modPOMDP + Brock2b model in this work.

There are several key differences between the NLST and UCLA populations. The NLST

RCT was a nationwide study and drew participants from different populations while UCLA

patients are likely more localized. Overall, UCLA patients at baseline tended to be older,

higher PLCOM2012 risk score, higher proportion with scores ≥ 0.0151 (higher screening ef-

ficiency threshold [124]), higher education attainment, more minorities, much higher pro-

portion with history of COPD, and much higher proportion with prior non-lung cancers.

For smoking history, UCLA patients smoked fewer cigarettes per day, fewer current smok-

ers, but also less smoking quit time. These results suggest modPOMDP2 trained on the

NLST dataset can generalize to a higher risk population. Baseline participant and patient

characteristics can be found in Table 3.8.

There are several limitations to this work and improvements to the classifiers can be

made in several ways. While a fairly extensive hyperparameter tuning experiment was done

for MLP and SVM, a more thorough hyperparameter tuning step can be done for some of

the other classifiers. In XGB for example, eta and booster were identified as important

hyperparameters whose tuning can lead to gains in performance [125]. Another limitation

is the use of baseline patient and nodule characteristics. It can be seen from Table 3.9 that

in NLST, large number of cancer patients after screen 1 did not have a suspicious finding
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at baseline (Scr2: 52.9%, Scr3: 75%). This is due to many cancer nodules not having

appeared or grown large enough yet and likely contributing to the large number of false

positives experienced by the classifiers. The indication for this is that the false positive

rate (not shown) of NLST’s screen 1 is consistently the lowest for all classifiers in Table

4.3. Additionally, modPOMDP + Brock2b, which calculates Brock risk scores at each

screening using data from those respective screens, has the lowest false positives out of the

three chained models at only 697.40 across three screenings. Therefore, a feature selection

process that incorporates nodule features from the time of the screen would likely help lower

false positives significantly in screens 2 and 3. For screen 2 cancer patients at screen 2,

95.7% had nodule characteristics with an average nodule size of 14.4± 11.7 mm. For screen

3 cancer patients at screen 3, 97.7% had nodule characteristics with an average nodule size

of 15.8± 15.2 mm. Lastly, only positive modPOMDP predictions are used as input to the

classifiers. While filtering out negative cases may help the classification task as previously

mentioned, this also means that positive cases missed by the POMDP will never make it

to the classifier. A separate two-part model that incorporates both positive and negative

modPOMDP predictions can be used to study the relative benefits of including each.
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Table 4.5: Results for modPOMDP2 on both NLST and UCLA dataset. Asterisks (*)

indicate results reproduced from Table 3.5 and Table 3.6. For modPOMDP2, model per-

formance (mean counts ± 95% CI) is calculated over 10, 000 instances of bootstrap on the

testing set and the area under the curve values are from the classifier/B2b portions only.

NLST TN FP FN TP Pre. Rec. ROC-AUC PR-AUC

Physician*

Scr1 480.43± 2.89 513.57± 2.89 0.00± .00 26.00± .00 0.0482± .0003 1.0000± .0000 n/a n/a

Scr2 322.14± 2.83 657.86± 2.83 0.74± .14 13.26± .14 0.0198± .0002 0.9472± .0102 n/a n/a

Scr3 206.98± 2.39 755.02± 2.39 0.00± .00 18.00± .00 0.0233± .0001 1.0000± .0000 n/a n/a

Sum 1009.55 1926.45 0.74 57.26

modPOMDP*

Scr1 376.87± 14.23 617.13± 14.23 0.26± .12 25.74± .12 0.0406± .0010 0.9900± .0047 n/a n/a

Scr2 33.06± 26.06 946.94± 26.06 0.14± .12 13.86± .12 0.0148± .0006 0.9900± .0083 n/a n/a

Scr3 550.12± 3.51 411.88± 3.51 0.27± .09 17.73± .09 0.0413± .0002 0.9850± .0049 n/a n/a

Sum 960.05 1975.95 0.67 57.33

modPOMDP

+ MLP

Scr1 481.18± 3.48 512.82± 3.48 0.76± .03 25.24± .03 0.0583± .0007 0.9708± .0010 0.6114± .0008 0.3794± .0015

Scr2 66.81± 3.07 913.19± 3.07 0.34± .02 13.66± .02 0.0153± .0001 0.9760± .0013 0.5000± .0000 0.0400± .0005

Scr3 579.60± 0.66 382.40± 0.66 0.74± .02 17.26± .02 0.0433± .0001 0.9589± .0011 0.5000± .0000 0.0558± .0003

Sum 1127.58 1808.42 1.83 56.17

modPOMDP

+ BRF

Scr1 626.75± 3.54 367.25± 3.54 1.19± .03 24.81± .03 0.0794± .0007 0.9541± .0010 0.8427± .0007 0.3417± .0014

Scr2 265.99± 2.64 714.01± 2.64 0.99± .03 13.01± .03 0.0184± .0001 0.9294± .0019 0.6274± .0012 0.0303± .0003

Scr3 579.73± 0.63 382.27± 0.63 1.11± .02 16.89± .02 0.0424± .0001 0.9382± .0014 0.5694± .0011 0.0595± .0004

Sum 1472.48 1463.52 3.29 54.71

modPOMDP

+ B2b

Scr1 722.99± 1.53 271.01± 1.53 1.26± .03 24.74± .03 0.0907± .0005 0.9517± .0011 0.9265± .0005 0.4447± .0015

Scr2 702.27± 3.18 277.73± 3.18 2.06± .03 11.94± .03 0.0528± .0005 0.8529± .0021 0.8803± .0010 0.1435± .0011

Scr3 813.34± 0.70 148.66± 0.70 1.54± .03 16.46± .03 0.1040± .0004 0.9144± .0015 0.8798± .0006 0.2411± .0014

Sum 2238.60 697.40 4.86 53.14

UCLA TN FP FN TP Pre. Rec. ROC-AUC PR-AUC

Physician*

Scr1 3555.00± 53.95 14.00± 53.95 0.00± .00 33.00± .00 0.7021± .0000 1.0000± .0000 n/a n/a

Scr1.5 858.00± 15.09 246.00± 15.09 0.00± .00 8.00± .00 0.0315± .0000 1.0000± .0000 n/a n/a

Scr2 284.00± 10.73 118.00± 10.73 0.00± .00 1.00± .00 0.0084± .0000 1.0000± .0000 n/a n/a

Scr2.5 91.00± 3.15 59.00± 3.15 0.00± .00 0.00± .00 0.0000± .0000 n/a n/a n/a

Scr3 33.00± 0.89 31.00± 0.89 1.00± .00 3.00± .00 0.0882± .0000 0.7500± .0000 n/a n/a

Sum 4821.00 468.00 1.00 45.00

modPOMDP*

Scr1 2157.50± 53.95 1411.50± 53.95 0.00± .00 33.00± .00 0.0238± .0011 1.0000± .0000 n/a n/a

Scr1.5 578.35± 15.09 525.65± 15.09 1.00± .00 7.00± .00 0.0135± .0004 0.8750± .0000 n/a n/a

Scr2 13.51± 10.73 388.49± 10.73 0.00± .00 1.00± .00 0.0027± .0002 1.0000± .0000 n/a n/a

Scr2.5 3.95± 3.15 146.05± 3.15 0.00± .00 0.00± .00 0.0000± .0000 n/a n/a n/a

Scr3 30.64± 0.89 33.36± 0.89 0.00± .00 4.00± .00 0.1089± .0030 1.0000± .0000 n/a n/a

Sum 2783.95 2505.05 1.00 45.00

modPOMDP

+ MLP

Scr1 2441.69± 8.91 1127.31± 8.91 0.07± .01 32.93± .01 0.0400± .0007 0.9979± .0002 0.6340± .0009 0.3383± .0011

Scr1.5 675.80± 2.97 428.20± 2.97 1.26± .01 6.74± .01 0.0190± .0002 0.8428± .0014 0.5739± .0009 0.0854± .0006

Scr2 19.88± 1.12 382.12± 1.12 0.00± .00 1.00± .00 0.0027± .0000 1.0000± .0000 0.4999± .0000 0.0321± .0006

Scr2.5 6.18± 0.34 143.82± 0.34 0.00± .00 0.00± .00 0.0000± .0000 n/a 0.0000± .0000 0.0000± .0000

Scr3 34.01± 0.11 29.99± 0.11 1.35± .02 2.65± .02 0.0805± .0006 0.6630± .0054 0.5002± .0001 0.1596± .0014

Sum 3177.56 2111.44 2.68 43.32

modPOMDP

+ BRF

Scr1 2658.28± 9.94 910.72± 9.94 0.01± .00 32.99± .00 0.0542± .0008 0.9997± .0001 0.9400± .0003 0.3446± .0007

Scr1.5 753.13± 3.42 350.87± 3.42 1.48± .01 6.52± .01 0.0248± .0003 0.8149± .0014 0.8065± .0008 0.0882± .0008

Scr2 38.97± 1.12 363.03± 1.12 0.01± .00 0.99± .00 0.0028± .0000 0.9916± .0018 0.6076± .0040 0.0048± .0002

Scr2.5 12.35± 0.34 137.65± 0.34 0.00± .00 0.00± .00 0.0000± .0000 n/a 0.0000± .0000 0.0000± .0000

Scr3 32.20± 0.09 31.80± 0.09 0.26± .01 3.74± .01 0.1069± .0004 0.9354± .0026 0.3854± .0015 0.1239± .0014

Sum 3494.93 1794.07 1.76 44.24
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Table 4.6: Summary of BRF false negative (FN) analysis.

Mismatched Mismatchs

Type Screen Cases Cases Remained

Cancer Scr1 2 0 0

Scr2 2 1 1

Scr3 2 0 0

Non-cancer All 11 0 0

BRF FN Scr1 9 4 0

Scr2 6 3 1

Scr3 8 5 1

Total 40 13 3

Table 4.7: Summary of matching and non-matching nodule locations.

Match (%) Mismatch (%) Total

Scr1 135 (83) 27 (17) 162

Scr2 70 (82) 15 (18) 85

Scr3 90 (84) 17 (16) 107

Post-screen 38 (39) 59 (61) 97
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CHAPTER 5

Conclusion

This chapter summarizes the results and findings of this dissertation. The potential areas of

improvement and future research directions are also described.

5.1 Summary of Research

This dissertation presents methods for optimizing actions under a sequential decision making

context in lung cancer screening. Methods were developed to address different aspects of

the optimization task in screening while taking into account temporal differences. The

optimization task can be thought of as two separate but related optimizations, namely the

need to improve true positive predictions while reducing false positive predictions at the

same time. The specific contributions of this dissertation are as follows:

1. An improved POMDP implementation to address the stationarity assumption

by optimizing predictions for each decision epoch. This task was achieved through

modularizing larger POMDP models into smaller, time-dependent constituent submodels

to account for finer temporal differences. Results in Table 3.5 show the improvements in

the NLST. Other improvements were also made to the implementation of a lung cancer

screening POMDP. For example in the preprocessing step, patients who had mismatched

procedure-identified nodules and screening-identified nodules were identified and removed.

Evaluation was conducted in a more rigorous fashion by utilizing hold-out test sets and

bootstrapping instead of k-fold cross validation. The UCLA dataset was also introduced
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for external validation. Though the approach did not sufficiently generalize to the UCLA

data, the trend that modularization can improve results is nevertheless apparent. The

differences between the UCLA and NLST populations also highlights the potential need

for more tailored modeling.

2. A two-part model approach using classifiers for optimizing positive predic-

tions from the POMDP model. The two-part model shows that POMDP’s positive

predictions can be further disambiguated into true positives and true negatives using tra-

ditional machine learning techniques. Many classifiers were explored extensively, such as

using different strategies for class imbalance and hyperparameter tuning. Results show

the two-part approach can decrease false positives at a small cost to true positives.

3. Demonstrating the validity of the POMDP-based approach for sequential deci-

sion making. This work implemented the Brock model as a comparison to modPOMDP

and found that modPOMDP captured more cancer cases over multiple screenings. As

capturing cancer cases is an important metric in a lung cancer screening context, this

work demonstrated the value and potential of POMDPs for making better consecutive

decisions over a conventional (e.g., logistic regression-based) approach. In other words,

learning the screening process across multiple time points as a whole is more advantageous

than learning on individual time points separately.

5.2 Future Directions

The work in this dissertation has several avenues for improvement. Some of which were

previously discussed in Sections 3.4 and 4.4.

modPOMDP setup and components. The POMDP stationarity assumption in this

work is addressed mostly through the reward function. However, other components of the

POMDP such as transition probabilities can nonetheless be modeled as time-variant. One
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possibility is to use DBN implementations that explicitly model transition probabilities as

a function of t, such as in non-stationary DBNs. Furthermore, section 3.4 showed that the

modPOMDP setup can influence results. Future work can use the following setup in both

modPOMDP and modPOMDP2: I = 2 where σ1 = [1, 3) and σ2 = [3, 3].

UCLA data update. UCLA data is currently very sparse, with the number of nodules

falling very quickly after the first screen. Considering the last data update was September

2021, an update should increase the dataset size and potentially allow more meaningful

comparisons. As the UCLA dataset grows, it may be possible for training a new model as

well.

UCLA screening interval. Limitations surrounding UCLA screening intervals were pre-

viously discussed in 3.4. In brief, the POMDP model was trained on NLST data with

interpolated half-year values. The modeling time intervals is therefore six months, but this

value is not enforced in the UCLA data. The highly varied screening intervals across UCLA

patients may affect the underlying natural state transitions. Future work could model each

nodule’s screening trajectory individually and allow for sampling at designated time inter-

vals.

Classifier improvements. Limitations and possible improvements to the classifiers were

previously discussed in 4.4. Using baseline nodule characteristics for classification beyond

screen 1 likely contributed to the high number of false positives. The Brock2b model, using

nodule characteristics from screens 2 and 3, substantially lowered the number of false pos-

itives. Future work should incorporate nodule characteristics from the same time point as

the screen in the classification task. A feature selection process to include more features or

even directly extract features from the source images using feature extraction techniques can

be done as well. Secondly, the hyperparameter space of classifiers is large and can be further

explored, especially as features change. Thirdly, only positive predictions from the POMDP
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are used as inputs to the classifier. Incorporating negative predictions can be explored and

assessed for contribution to classification.

Generalizability of the model. While the NLST dataset is limited by the NLST inclu-

sion criteria, the UCLA dataset is not similarly restricted. However, the NLST criteria is

currently imposed on the UCLA data to get a more comparable population. Future studies

should explore relaxing the inclusion criteria to see how modPOMDP and modPOMDP2

perform on a wider population. For example, the USPSTF recommends adults between the

ages 50-80 and 20 pack-years of smoking history for annual LDCT. If the USPSTF criteria

were used, then the UCLA dataset can include both younger and older patients, as well as

lighter smokers than the current set.

Explainability of the model. An often cited barrier to physician trust of modeling

techniques, including machine learning, is the explainability of the model outcome. That

is, the means of justifying clinical decisions [126]. For example, deep learning models are

often considered “black boxes” that lack explainability. POMDPs on the other hand, have

several advantages. First, POMDP decisions are based on beliefs, which include the belief in

the cancer state. This is similar to the probability of cancer from risk models. Second, the

optimal policy π∗ can be visualized as a policy graph, which is effectively a rule-based chart of

when to take what action – another easily interpretable construct. Future work can explore

extending policy graphs to include information from modPOMDP and modPOMDP2 with

physician input for deployment in a clinical setting.
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Indian Journal of Statistics (1933-1960), 16(3/4):221–229, 1956.

[11] John C Gittins and David M Jones. A dynamic allocation index for the discounted
multiarmed bandit problem. Biometrika, 66(3):561–565, 1979.

[12] Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation
rules. Advances in applied mathematics, 6(1):4–22, 1985.

57



[13] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2):235–256, 2002.

[14] Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimi-
nation and stopping conditions for the multi-armed bandit and reinforcement learning
problems. Journal of machine learning research, 7(6), 2006.

[15] Michael Woodroofe. A one-armed bandit problem with a concomitant variable. Jour-
nal of the American Statistical Association, 74(368):799–806, 1979.

[16] Jyotirmoy Sarkar. One-armed bandit problems with covariates. The Annals of Statis-
tics, pages 1978–2002, 1991.

[17] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. Advances in neural information processing systems, 20, 2007.

[18] Naoki Abe. Learning to optimally schedule internet banner advertisements. In Proc.
of 16th Int. Conf. on Machine Learning, pages 12–21, 1999.

[19] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit
approach to personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pages 661–670, 2010.

[20] Sof́ıa S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the
optimal design of clinical trials: benefits and challenges. Statistical science: a review
journal of the Institute of Mathematical Statistics, 30(2):199, 2015.

[21] Linqi Song, William Hsu, Jie Xu, and Mihaela Van Der Schaar. Using contextual
learning to improve diagnostic accuracy: Application in breast cancer screening. IEEE
journal of biomedical and health informatics, 20(3):902–914, 2015.

[22] Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual bandits
in mobile health. In Mobile Health, pages 495–517. Springer, 2017.

[23] AJ Schaefer, MD Bailey, SM Shechter, and MS Roberts. Modeling medical treat-
ment using markov decision processes, international series in operations research and
management science, 70 (4), 593-612, 2005.

[24] Oguzhan Alagoz, Heather Hsu, Andrew J Schaefer, and Mark S Roberts. Markov
decision processes: a tool for sequential decision making under uncertainty. Medical
Decision Making, 30(4):474–483, 2010.

[25] Jagpreet Chhatwal, Oguzhan Alagoz, and Elizabeth S Burnside. Optimal breast biopsy
decision-making based on mammographic features and demographic factors. Opera-
tions research, 58(6):1577–1591, 2010.

58



[26] Elizabeth S Burnside, Jagpreet Chhatwal, and Oguzhan Alagoz. What is the optimal
threshold at which to recommend breast biopsy? PloS one, 7(11):e48820, 2012.

[27] Oguzhan Alagoz, Jagpreet Chhatwal, and Elizabeth S Burnside. Optimal policies
for reducing unnecessary follow-up mammography exams in breast cancer diagnosis.
Decision Analysis, 10(3):200–224, 2013.

[28] Mehrnaz Abdollahian and Tapas K Das. A mdp model for breast and ovarian cancer
intervention strategies for brca1/2 mutation carriers. IEEE journal of biomedical and
health informatics, 19(2):720–727, 2014.

[29] George E Monahan. State of the art—a survey of partially observable markov decision
processes: theory, models, and algorithms. Management science, 28(1):1–16, 1982.

[30] Michael L Littman. A tutorial on partially observable markov decision processes.
Journal of Mathematical Psychology, 53(3):119–125, 2009.

[31] American College of Radiology et al. Breast imaging reporting and data system. BI-
RADS, 2003.

[32] Turgay Ayer, Oguzhan Alagoz, and Natasha K Stout. Or forum—a pomdp approach to
personalize mammography screening decisions. Operations Research, 60(5):1019–1034,
2012.

[33] Moshe Leshno, Zamir Halpern, and Nadir Arber. Cost-effectiveness of colorectal cancer
screening in the average risk population. Health care management science, 6(3):165–
174, 2003.

[34] Fatih Safa Erenay, Oguzhan Alagoz, and Adnan Said. Optimizing colonoscopy screen-
ing for colorectal cancer prevention and surveillance. Manufacturing & Service Oper-
ations Management, 16(3):381–400, 2014.

[35] Jingyu Zhang, Brian T Denton, Hari Balasubramanian, Nilay D Shah, and Brant A
Inman. Optimization of prostate biopsy referral decisions. Manufacturing & Service
Operations Management, 14(4):529–547, 2012.

[36] Jingyu Zhang, Brian T Denton, Hari Balasubramanian, Nilay D Shah, and Brant A
Inman. Optimization of psa screening policies: a comparison of the patient and societal
perspectives. Medical Decision Making, 32(2):337–349, 2012.

[37] Athanasios Tsoukalas, Timothy Albertson, Ilias Tagkopoulos, et al. From data to
optimal decision making: a data-driven, probabilistic machine learning approach to
decision support for patients with sepsis. JMIR medical informatics, 3(1):e3445, 2015.

[38] Athanassios Vozikis and John E Goulionis. Medical decision making for patients with
parkinson disease under average cost criterion. Australia and New Zealand health
policy, 6(1), 2009.

59



[39] John E Goulionis, Athanassios Vozikis, VK Benos, and D Nikolakis. On the decision
rules of cost-effective treatment for patients with diabetic foot syndrome. ClinicoEco-
nomics and outcomes research: CEOR, 2:121, 2010.

[40] A Vozikis, JE Goulionis, and VK Benos. The partially observable markov decision
processes in healthcare: an application to patients with ischemic heart disease (ihd).
Operational Research, 12(1):3–14, 2012.

[41] Edward J Sondik. The optimal control of partially observable markov processes over
the infinite horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

[42] Chelsea C White III and William T Scherer. Solution procedures for partially observed
markov decision processes. Operations Research, 37(5):791–797, 1989.

[43] Craig Boutilier and David Poole. Computing optimal policies for partially observ-
able decision processes using compact representations. In Proceedings of the National
Conference on Artificial Intelligence, pages 1168–1175, 1996.

[44] Katsushige Sawaki and Akira Ichikawa. Optimal control for partially observable
markov decision processes over an infinite horizon. Journal of the Operations Research
Society of Japan, 21(1):1–16, 1978.

[45] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting opti-
mally in partially observable stochastic domains. In Aaai, volume 94, pages 1023–1028,
1994.

[46] HT Cheng. Algorithms for partially observable markov decision processes [ph. d. the-
sis]. Vancouver Columbia: University of British Columbia, 1988.

[47] Michael L Littman. The witness algorithm: Solving partially observable markov deci-
sion processes. Brown University, Providence, RI, 1994.

[48] Michael L Littman, Anthony R Cassandra, and Leslie P Kaelbling. Efficient dynamic-
programming updates in partially observable markov decision processes, 1995.

[49] Anthony Cassandra, Michael L Littman, and Nevin L Zhang. Incremental pruning:
a simple, fast, exact method for partially observable markov decision processes. In
Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, pages
54–61, 1997.

[50] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An
anytime algorithm for pomdps. In Ijcai, volume 3, pages 1025–1032, 2003.

[51] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based pomdp
planning by approximating optimally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Citeseer, 2008.

60



[52] Guy Shani, Ronen I Brafman, and Solomon Eyal Shimony. Prioritizing point-based
pomdp solvers. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 38(6):1592–1605, 2008.

[53] Trey Smith and Reid Simmons. Point-based pomdp algorithms: Improved analysis
and implementation. arXiv preprint arXiv:1207.1412, 2012.

[54] Matthijs TJ Spaan and N Spaan. A point-based pomdp algorithm for robot planning.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 3, pages 2399–2404. IEEE, 2004.

[55] Matthijs TJ Spaan and Nikos Vlassis. Perseus: Randomized point-based value itera-
tion for pomdps. Journal of artificial intelligence research, 24:195–220, 2005.

[56] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers.
Autonomous Agents and Multi-Agent Systems, 27:1–51, 2013.

[57] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning poli-
cies for partially observable environments: Scaling up. In Machine Learning Proceed-
ings 1995, pages 362–370. Elsevier, 1995.

[58] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probalistic robotics. Kybernetes,
35(7/8):1299–1300, 2006.

[59] Panayiotis Petousis. Optimizing cancer screening with POMDPs. University of Cali-
fornia, Los Angeles, 2019.

[60] Marcel AJ Van Gerven, Babs G Taal, and Peter JF Lucas. Dynamic bayesian net-
works as prognostic models for clinical patient management. Journal of biomedical
informatics, 41(4):515–529, 2008.

[61] Kevin Murphy et al. The bayes net toolbox for matlab. Computing science and
statistics, 33(2):1024–1034, 2001.

[62] Nicandro Cruz-Ramirez, Hector Gabriel Acosta-Mesa, Humberto Carrillo-Calvet,
Luis Alonso Nava-Fernández, and Rocio Erandi Barrientos-Martinez. Diagnosis of
breast cancer using bayesian networks: A case study. Computers in Biology and
Medicine, 37(11):1553–1564, 2007.

[63] Olivier Gevaert, Frank De Smet, Dirk Timmerman, Yves Moreau, and Bart De Moor.
Predicting the prognosis of breast cancer by integrating clinical and microarray data
with bayesian networks. Bioinformatics, 22(14):e184–e190, 2006.

[64] Jung Hun Oh, Jeffrey Craft, Rawan Al Lozi, Manushka Vaidya, Yifan Meng, Joseph O
Deasy, Jeffrey D Bradley, and Issam El Naqa. A bayesian network approach for mod-
eling local failure in lung cancer. Physics in Medicine & Biology, 56(6):1635, 2011.

61



[65] R Marshall Austin and Agnieszka Onisko. Increased cervical cancer risk associated
with extended screening intervals after negative human papillomavirus test results:
Bayesian risk estimates using the pittsburgh cervical cancer screening model. Journal
of the American Society of Cytopathology, 5(1):9–14, 2016.

[66] Alexander Stojadinovic, Anton Bilchik, David Smith, John S Eberhardt, Elizabeth Ben
Ward, Aviram Nissan, Eric K Johnson, Mladjan Protic, George E Peoples, Itzhak
Avital, et al. Clinical decision support and individualized prediction of survival in
colon cancer: bayesian belief network model. Annals of surgical oncology, 20:161–174,
2013.

[67] Konstantinos P Exarchos, George Rigas, Yorgos Goletsis, and Dimitrios I Fotiadis.
Modelling of oral cancer progression using dynamic bayesian networks. In Data Mining
for Biomarker Discovery, pages 199–212. Springer, 2012.

[68] Micol Sandri, Paola Berchialla, Ileana Baldi, Dario Gregori, and Roberto Alberto
De Blasi. Dynamic bayesian networks to predict sequences of organ failures in patients
admitted to icu. Journal of biomedical informatics, 48:106–113, 2014.

[69] Marion Verduijn, Peter MJ Rosseel, Niels Peek, Evert de Jonge, and Bas AJM de Mol.
Prognostic bayesian networks: Ii: An application in the domain of cardiac surgery.
Journal of biomedical informatics, 40(6):619–630, 2007.

[70] Anthony Costa Constantinou, Mark Freestone, William Marsh, and Jeremy Coid.
Causal inference for violence risk management and decision support in forensic psychi-
atry. Decision Support Systems, 80:42–55, 2015.
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