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Abstract of the Dissertation

Measurements of the Critical Casimir Effect and

Superfluid Density in Saturated Helium-4 Films

near Tλ

by

John Bishoy Sam Abraham

Doctor of Philosophy in Physics

University of California, Los Angeles, 2013

Professor Gary A. Williams, Chair

Saturated thick films of 4Helium adsorbed on a copper substrate are studied ex-

perimentally. The film thickness is measured with an ultra-sensitive capacitance

bridge capable of resolving sub-Angstrom changes in film thickness. Through the

use of this capacitance bridge, the critical Casimir effect in the films is studied

in the vicinity of the λ transition. Additionally, the copper substrate assembly is

used to generate and detect third sound in the film. Measurements are made of

the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-

Thouless transition in the films. The position of the Kosterlitz-Thouless transition

relative to the critical Casimir effect in the films is identified. It is discovered that

the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thick-

ness due to the critical Casimir effect. When the temperature of the system is

swept extremely slowly across the λ transition, a step in film thickness is observed.

This step is possibly a non-universal critical Casimir effect. A model of thermal

second sound excitations is developed to describe this new observation.
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CHAPTER 1

Introduction

Recently, there has been much interest in understanding the role of finite size

effects near the superfluid phase transition [17]. There are measurements con-

firming finite size scaling of the critical Casimir effect in films of 4He [11]. As well,

there are recent Monte Carlo simulations of the Critical Casimir effect for the

XY model [14, 9]. The results of measurements and simulations generally are in

good agreement. The main results are that the dip in the film thickness scales as

predicted by finite size scaling and that there is a depression of the film thickness

in the superfluid phase that may be due to bulk and surface modes in the film[18].

We have undertaken measurements of the film thickness and the superfluid den-

sity in films of 4He in the vicinity of Tλ in order to identify the location of the

superfluid onset in the film relative to the minimum of the Casimir dip. Monte

Carlo simulations predict that the location of the Kosterlitz-Thouless (KT) tran-

sition should be somewhere between the start of the dip and the minimum [9, 15].

A previous measurement of the KT transition places it closer to the start of the

dip [19]. It has even been speculated that the KT transition is in the vicinity of

the dip minimum [17, 12]. The goal of this dissertation is to identify where the

KT transition in the film is relative to the critical Casimir effect. Based on our

measurements, the KT transition in the film is at the start of the low temperature

side of the dip.

This section provides the contextual and theoretical background for our results.

This review will begin by describing the Casimir effect and move on to relate some

1



Figure 1.1: This is a diagram of the set-up for the thought experiment presented

in [1]. On the left is an illustration of the box of side ‘L’ and it’s respective modes.

On the right is the box with a plate inserted a distance ‘d’ from one side. The

introduction of the plate introduces a reduced spectrum of modes by excluding

the long wavelength modes of the box.

of the fundamentals of the superfluid phase of 4He. From there, we will discuss

critical phenomena and finite size effects in the superfluid. Finally, all of these

topics will be united in a description of the critical Casimir effect in 4He.

1.1 The Casimir Effect

In 1948, H. B. G. Casimir extended his work with D. Polder on the electromagnetic

interaction between a perfectly conducting plate and an atom to considering the

force between two perfectly conducting plates due to zero point energy of the

electromagnetic field [1] . The article presents a thought experiment involving a

volume defined by perfectly conducting plates of a given size, see Fig. 1.1 for an

illustration of the system. The zero point energy within the box is the sum of the

zero point energy of each mode of the box, h̄ωi. The mode structure is defined by

2



the size of the box and the boundary condition that the field is zero at the wall.

This sum and thus the zero point energy is infinite. The next step is to consider

the modes between a plate a distance ‘d’ from a wall. When the modes of this

spectrum are given h̄ωi for each mode and summed, this sum is divergent as well.

Surprisingly, he found that the difference between these sums is finite. As found

by Casimir, the result for the difference is

∆E = −h̄c (πL)2

24 × 30

1

d3
(1.1)

Essentially, Casimir demonstrated that removing the long wavelength modes

in a region of space results in a quantifiable energy difference between that and un-

confined region, even though, the zero point energy in either region is not properly

defined. This effect as described by Casimir, is universal in that it does not de-

pend on the specific material used for the boundary. There are two extensions that

need to be made when considering real systems. The first extension is to consider

the perfectly conducting plates at a finite temperature, this has been labeled the

thermal Casimir effect. By including temperature, the spectrum of fluctuations

is altered and the energy difference then becomes a function of temperature. The

second extension is to consider real metal or dielectrics with surface impedance.

This changes the boundary condition for the electromagnetic field. Through these

extensions, the Casimir effect ceases to be universal. Much work has been done

both experimentally and theoretically on the electromagnetic Casimir effect since

the original article. See Refs. [20] and [21] for current reviews of this topic.

The insight that the geometric restriction of modes can lead to an energy dif-

ference can be extended to other systems, namely critical systems [22]. In critical

systems it is modes of the order parameter field that are restricted. Specifically, it

is the thermal fluctuations of the order parameter field that are constrained. By

imposing a constraint on the fluctuations, an energy difference is created between

the constrained and unconstrained regions. The electromagnetic Casimir effect

3



is the result of imposing a geometric constraint on quantum mechanical fluctua-

tions. Whereas, the critical Casimir effect is the result of imposing a geometric

constraint on thermal fluctuations. In the next section of this introduction, we

will review the superfluid 4He critical system.

1.2 Superfluid 4He

Despite the simplicity of the 4He atom, one of the most basic atoms. In the

condensed state, it displays a fascinating range of properties which, to this day,

holds properties yet to be discovered. When helium is cooled to around 4.1 K, at

atmospheric pressure, it liquefies. When cooled below 2.1768 K 1, it becomes a

superfluid. The history of the discovery and initial development of our understand-

ing of superfluid 4He is central to the development of Physics in the last century

and has been described in many books [23, 24, 25]. We will explore some of the

crucial steps in the development of the understanding of superfluidity described

in the aforementioned books in order to provide context for this dissertation.

In 1908, Kammerlingh Onnes successfully liquefied Helium and the work of

exploring the low temperature portion of the phase diagram began, see Fig. 1.2.

When liquid Helium was cooled below 2.1768 K, it was discovered that the vis-

cosity of the liquid when measured by capillary flow is zero. Whereas, when the

viscosity was measured through the damping of an oscillating disk, it was about

10−5 poise. This discrepancy was explained by positing a two-fluid theory. It

was first proposed by Tisza in 1940, but more fully developed by Landau in 1941.

The two-fluid model posits that the superfluid phase can be understood in terms

of two components; a superfluid component and a normal fluid component. The

superfluid component has zero viscosity and does not contribute to the entropy of

the system. While, the normal component has both viscosity and contributes to

1On the P90 scale.

4
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the entropy of the system.The sum of the two components is the density of 4He at

a given temperature. In Fig. 1.3, the fraction for each component as a function

of temperature is displayed.

In the next section, we will review the a salient feature of critical phenomena,

the coherence length, which is crucial for understanding the critical Casimir effect.

1.3 The Coherence Length

As 4He is cooled/heated through Tλ, it undergoes a second order phase transition

which can be described as an order-disorder transition and the language of critical

phenomena can be used to describe it. The order parameter becomes non-zero

in the superfluid phase. It is used to describe that phase and distinguish it from
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Figure 1.4: Plot of the coherence length, ξ+/− , versus temperature.

the normal phase. The order parameter is related to the superfluid density. Close

to Tλ, thermal fluctuations are able to perturb the superfluid state or order pa-

rameter on large length scales. As a sample is cooled to lower temperatures, the

length scale of the fluctuations decreases according to a power law. This behavior

is described by introducing the coherence length. The coherence length below

Tλ is inversely proportional to the superfluid density. Thus, it is most apprecia-

ble close to Tλ. The concept of the coherence length was first developed in the

mean field description of phase transitions. In that description, the role of the

coherence length is to give the length scale for the order parameter to recover

to it’s bulk value when the superfluid is near a boundary. In that framework, it

is more properly a healing length. Through the development of the renormalized

group description of critical phenomena, the coherence length came to take a more

prominent role[26, 27]. It describes the length scale over which the order parame-

ter fluctuates in the bulk as well. Hohenberg et. al. describe how the correlation

7



length can be related to the superfluid density in Ref. [27]. The relation they find

is

ξ =
m2kBT

h̄2ρS
(1.2)

where m is the mass of the helium atom and the other terms have their usual

meaning. In their article they also distinguish the coherence length from the

healing length. They argue that although the healing length is distinct from the

coherence length, it is universally related to the coherence length with the relation

depending on the details of the surface effects. This distinction is important

because we are interested in studying the transition in films. If the boundary can

modify the effective coherence length from the bulk value, it could have relevance

for the interpretation of the results. The coherence length has been measured

in previous experiments in the superfluid phase, see Refs. [28] and [29]. The

expression for the coherence length is

ξ = ξ+/−

(
1 − T

Tλ

)−ν

(1.3)

with ξ+ = 3.5 Å [28], ξ− = 1.432 Å [27] and ν = 2/3 (the critical exponent).

Since ξ− cannot be directly measured, it is quantified by the expected ratio with

ξ+ [27]. In the next section, we will show how the coherence length can be used

to describe what happens when a sample of superfluid is confined to a film.

1.4 Finite Size Scaling and the Superfluid

When superfluid helium is confined along one direction, it’s behavior will depart

from the behavior in bulk[30, 17]. This modification of its behavior can be de-

scribed by using finite size scaling (FSS), a theory developed by M. E. Fischer.

Ref. [17] provides a good review of FSS of 4He. The fundamental assertion of FSS

8



is that the behavior of the system can be described through the scaling variable,

l =
d

ξ(T )
(1.4)

where d is the length of confinement, for the purpose of this dissertation it

corresponds to the film thickness. ξ(T ) is the correlation length. The importance

of this is that there is not a ’new’ coherence length for the confined system. The

confined behavior can be described by scaling the same bulk correlation length by

the thickness constraint. An important consequence of FFS is data collapse for

thermodynamic quantities measured in films of different thickness when expressed

as functions of the scaling variable, l. This is accomplished through a scaling

function ϑ(l). The scaling function depends on the universality class and the

boundary conditions. Additionally, the magnitude of l dictates the importance of

the constraint for the thermodynamic behavior of the system. When d � ξ, the

system will behave like a bulk system. When the coherence length is on the order

of the film thickness, the finite extent of the system will be significant. In this

dissertation, we will explore two finite size effects in helium films; the Kosterlitz-

Thouless transition and the critical Casimir effect. Both of these phenomena are

appreciable only when the coherence length is on the order of the film thickness.

1.4.1 Kosterliz-Thouless Transition

When 4He is confined to a film, the transition temperature of the film is lowered

relative to the bulk transition temperature, Tλ, the shift in transition temperature

depends on the film thickness. This is well described by the vortex unbinding

model of the Kosterlitz-Thouless (KT) transition [8, 31]. Their result is that the

ratio of the areal superfluid density (σs(T ) = dρs(T )) and the temperature at the

transition is a universal constant. The expression they find is

9



σs(T )

T

∣∣∣∣
KT

=
2

π

(m
h̄

)2

kB = 3.491 × 10−9g cm−2K−1 (1.5)

where m is the mass of a helium atom, kB and h̄ have their usual meanings.

To place the Kosterlitz-Thouless in the context of finite size scaling theory, we

can evaluate Eq. 1.2 with the KT expression (Eq. 1.5) to find lKT . The result is

lKT =
d

ξKT
=

2

π
(1.6)

This results give the value of lKT as being less than one. The value of lKT in

films of different thickness can be used as a test of finite size scaling. The primary

experimental tests of this result in 4He films have been made with unsaturated

films far from the bulk transition[32, 33], see Table 3.1. The experimental results

in this regime are in good agreement with the KT theory. The result for lKT in

those measurements is that lKT = 1.595(7). This indicates that the transition

is occurring when the bulk coherence length is less than the film thickness which

may allow developing our understanding of the two dimensional transition beyond

a rough inequality[34]. There are a few measurements in the critical region close

to Tλ. In that temperature region, films are much thicker in order to be in the

superfluid regime. In the measurements which have been made closer to the bulk

transition, the results have not been as conclusive [17, 35, 19] and give a value of

lKT = 2.1(1).

On the theoretical front, early studies of the KT transition with Monte Carlo

Simulations yield a value close to this [36]. Recent Monte Carlo results [15] com-

pare well with the value from the thin film measurements. Refer to Table 3.1 for

a compilation of previous results.

One of the goals of this work is to improve our understanding of the KT

transition in thick films. An interesting question to investigate is whether the

scaling variable ( d
ξKT

) at the KT transition is a constant. Does d
ξKT

scale with film

10



Table 1.1: Tabulation of the ratio of film thickness to coherence length at the KT

Transition from different sources.

Source d
ξKT−

Monte Carlo Simulations [15] 1.595(7)

Unsaturated Film [32, 33] 1.58(8)

Saturated Film (near Tλ)[19] 2 2.12(10)

Confinded Helium(near Tλ) [17, 35] 2.0(1)

thickness, is there data collapse over the range of temperature from well below Tλ

to the region of Tλ? As well, we could ask how does this value compare to the value

of the scaling variable for other phenomena in the vicinity of the transition such

as the specific heat maximum and the maximum of the critical Casimir effect[17].

1.4.2 Critical Casimir Effect

A well know property of Helium in the liquid state is that it will coat all of the

surfaces of a container [24, 23, 25], see Fig. 1.5 for a sketch of the system. The

equilibrium value of the film thickness, far from the lambda point, is determined

by the chemical potential difference, between an atom in the bulk and on the film,

being equal to zero. The atoms gain gravitational potential energy relative to the

bulk by being in the film at a height above the bulk. That potential energy is

balanced by the attractive Van der Waals interaction of the helium atoms to the

substrate. In mathematical form, the equilibrium condition is;

mHegh =
γ0

d3
(1 +

d

d1/2

)−1 (1.7)

Where γ0 and d1/2 are constants determined by the interaction of the substrate

with 4He[37]. d is the thickness of the He film and h is the height of the film above

the bulk. Below Tλ, it is expected that the bulk Goldstone modes and surface

11
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Figure 1.5: Simplified model of the experimental cell. Bulk liquid helium is in the

bottom and a film coats all of the surfaces. The film thickness depends on the

height of the film from the bulk.
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fluctuations of the film will contribute to establishing the equilibrium thickness

of the film[12]. It is expected that their contribution will lead to a constant film

thinning below Tλ with an approximately 2 Å thinning for a 420 Å film. Closer

to the λ point, when the coherence length is on the order of the film thickness,

the critical Casimir force will become significant[22, 11, 12, 9]. The film acts to

limit the spectrum of fluctuations. This leads to a free energy difference between

the film and the bulk. The form this force takes is[22];

f =
V kBTc
d3

ϑ(d/ξ) (1.8)

where ξ is the bulk coherence length, Tc is the transition temperature, V=45.81

Å3/atom is the atomic volume of a helium atom, and ϑ is the Casimir scaling func-

tion. It is hypothesized that the Casimir scaling function is ’universal’ in that the

functional form and sign depend only on the universality class and boundary con-

ditions of the order parameter[22]. Recent measurements confirm the universality

of the Casimir scaling function[11]. The scaling function ϑ is expected to scale

with scaling variable x = l1/ν = t(d/ξ)1/ν [38], where t = T
Tλ

− 1 is the reduced

temperature. Equation 1.8 is included into Equation 1.7 to determine the equi-

librium film thickness in the vicinity of Tλ. The result of adding the term from

Equation 1.8 is to depress the film thickness from the value far from Tλ. The

critical Casimir film thinning for 4He films has been measured in two previous

experiments [10, 11]. The more recent measurement has confirmed the validity

of scaling for the Casimir scaling function. We intend to add to the information

provided by the previous measures through measuring the superfluid density in

the films in order to understand where the KT onset is relative to the critical

Casimir film thinning. We measure the KT onset in the films through measuring

the third sound onset in the films.

13



1.5 Overview

Before delving into our results for the critical Casimir effect, we will present our

third sound results. Third sound is a surface wave acoustic mode unique to su-

perfluid helium. Through measuring the speed and attenuation of third sound,

we can characterize the films. The next chapter will begin by introducing the the-

oretical understanding of third sound and the relevant previous measurements.

From there, we will present the relevant experimental techniques for the third

sound measurements. Finally, we will present the results and discuss the insights

derived from the measurements.

After the chapter on third sound, we will then present our results for the critical

Casimir effect. We will summarize the theoretical and experimental results for the

critical Casimir effect to date. This will provide the context for our results. Prior

to presenting the results, we will describe the salient features of our experimental

technique. Finally, we will present our results for the critical Casimir effect.

In this dissertation, the description of the experimental techniques and appara-

tus is divided between three sections. In Chapter 2, Section 3.3 the experimental

techniques directly related to the third sound measurements are presented. In

Chapter 3, Section ?? the experimental techniques directly related to the third

sound measurements are presented. The techniques and apparatus relevant to

both phenomena are relegated to Appendix A. In this way, the pertinent experi-

mental detail is most proximate to presented results.
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CHAPTER 2

Third Sound

Third sound is a propagating surface wave in superfluid helium films. It was first

proposed and measured by Atkins [39]. Third sound has played an important

role in understanding the properties of superfluid He films. Among the results

developed through measuring third sound are an understanding of the Kosterlitz-

Thouless phase transition [33] and boundary effects on the superfluid density

[40, 41]. In addition to third sound being an object of study in itself, it is used

in this experiment to further our understanding of the critical Casimir effect by

identifying the Kosterlitz-Thouless transition temperature relative to the onset of

the critical Casimir effect. This chapter will begin with a review of third sound

prior to presenting the results.

2.1 Theoretical Background

Previous studies of third sound were primarily restricted to studying third sound

in unsaturated films, or films far from the λ point. The more recent studies of third

sound on saturated films were focused on characterizing the attenuation[42, 5]. In

this thesis, measurements in saturated films where superfluidity persists to within

10 mK of the λ point are conducted in order to further characterize the phenomena

and see what insights may be gleaned into the nature of superfluidity in restricted

geometries.
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2.1.1 Surface Waves in liquid films

Generally, surface waves will not propagate on a fluid film as thin as a saturated

film of helium. This is due to the viscosity of the liquid clamping the fluid to the

substrate[43]. This clamping can be understood in terms of the viscous penetra-

tion depth,

δ =

√
2η

ωρ
(2.1)

where η is the viscosity, ω is the angular frequency of the wave, and ρ is the

density. For a frequency of 100 Hz, it can be seen that for water around room

temperature, the viscous penetration depth is over 100 µm and for He II around 2

K it is around 50 µm. The thickest saturated films studied are generally 50 nm or

less, which is much less than the viscous penetration depth. Note that the viscous

penetration depth depends inversely on frequency. Thus, at high frequency the

viscous normal component can become decoupled from the substrate and can be

driven. That is not a concern for the experimental regime of the measurements

reported here, since the frequencies we work with for third sound are all below

100 Hz. So the normal component is ‘locked’ to the substrate in the frequency

regime for these measurements. We are interested in shallow wave modes. So,

the expression for a surface wave whose wavelength is much longer than its depth

is[43]

ν2 =

(
fλ

2π
+

2πσ

ρλ

)
tanh

2dπ

λ
(2.2)

where ν is the phase velocity, f is the Van der Waals acceleration of the film

by the substrate, λ is the wavelength, σ is the surface tension, and d is the film

height. Since the argument of the hyperbolic tangent is much less than one, it

can be approximated as the argument. We can further simplify by ignoring the

term with surface tension since that term is a factor of 105 smaller than the Van

16



der Waals term. The simplified expression for the surface wave becomes,

ν2 = fd (2.3)

Since the surface wave is only appreciable in the superfluid phase, the super-

fluid fraction is included in the dispersion relation. Then the expression becomes,

ν2 =
ρ̄s
ρ
fd (2.4)

The bar placed over ρs distinguishes it from the bulk value of the superfluid

density, since it can be expected that boundary effects will depress the value of

ρs from the bulk value. This topic will be addressed in section 2.1.3. As well,

this expression for the dispersion relation is only partially correct. Measurements

of third sound show that there is significant attenuation, and a contribution to

the real part of dispersion relation from the evaporation-condensation mechanism

underlying its propagation. These issues will be addressed in the following section

as we further develop the dispersion relation.

To further develop our understanding of the dispersion relation, we must being

with the model of two fluid hydrodynamics. Since the superfluid component is

in motion, while the normal fluid is clamped down, there will be changes in local

density of superfluid that will propagate with the wave. This in turn will lead

to a modulation of the local temperature that will accompany the motion of

the superfluid. This temperature oscillation will, in turn, lead to evaporation

in the hotter regions and condensation in the cooler regions. This evaporation-

condensation mechanism is needed to refine our model. Additionally, it will also

be the means that we will initially incorporate attenuation in the model of third

sound. In the next sections, we will examine the two primary descriptions of third

sound.
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2.1.2 The Atkins and Bergman Models

In an effort to understand the surface tension of He II, Atkins[39] predicted that

surface waves could propagate in the film even though it is thinner than the viscous

penetration depth, see Eq. 2.1. He derived a dispersion relation for third sound

from three expressions; conservation of mass, expression of the heat flow, and an

equation of motion for the superfluid component based on the two fluid model. For

conservation of mass, he considers that the mass of an element can change due to

evaporation/condensation or superfluid flow. For the heat flow,that arises from the

latent heat of evaporation/condensation and the flow of the superfluid component.

Finally, the equation of motion for the superfluid has the superfluid acceleration

proportional to the gradient of the pressure at the surface, with contributions

from Van der Waals and the vapor pressure. This model leads to the following

complex dispersion relation

ω2

k2
=
ρ̄s
ρ
fd+

ρ̄s
ρ
ST

[(S − β
ρ
) − iKf

ρω
]

(C − iKL
dρω

)
(2.5)

Where C, S, and L are the specific heat, entropy, and the heat of vaporization

per gram. β is the slope of the vapor pressure curve. K is mass change per unit

temperature for the evaporation mechanism. In the limit that the frequency goes

to zero, the dispersion relation becomes,

ω2

k2
=
ρ̄s
ρ
fd(1 +

TS

L
) (2.6)

This is what is cited as Atkins’ dispersion relation. The salient point of it

is that C3 is proportional to (1+TS
L

)
1
2 . His model is somewhat of an oversim-

plification that is valid in certain limits. Bergman discovered that including the

substrate and a more complete model of the vapor coupling gives a more complete

picture of third sound.

18



Bergman’s model[44, 7] diverges from Atkins in the choice of equations to for-

mulate the dispersion relation. The primary point of departure is in Bergman’s

choice of the Onsager reciprocity relations[45] to model the thermodynamics of the

evaporation-condensation process; as well in his choice of including thermal cou-

pling to the substrate and coupling to the sound modes in the vapor. Bergman’s

model also takes into account the thermal conductivity of the substrate.

Bergman gives a general solution for the third sound dispersion relation, which

is a practically intractable expression with more than ten terms. He simplifies the

expression by taking a thin film and a thick film limit. In the thick film limit

the coupling to the substrate and the vapor is not significant. The thick film

limit is valid for films greater than 70 nm. Thus, the films that we study in

this experiment are less than the thick film limit so including the coupling to the

substrate and the vapor are critical for studying the dynamics of third sound in

the films we are working with.

Since Bergman’s model includes the dissipative effects of the third sound wave

coupling to the substrate and the vapor, it generates a greater value for attenuation

than Atkins’s model. Bergman’s model has better agreement with experimental

measurements with thin films at low temperatures [42, 5], although it still under-

estimates the attenuation by more than an order of magnitude. Our experiment

will allow us to see how well it describes the thick film attenuation closer to Tλ.

Bergman’s model also leads to a difference in the real part of the dispersion rela-

tion from that of Atkins, adding another power of (1+TS
L

), the term accounting

for the vapor exchange. The expression for the real part of the dispersion equation

then becomes;

ω2

k2
=
ρ̄s
ρ
fd(1 +

TS

L
)2 (2.7)

The attenuation of third sound is proportional to the imaginary component
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of the dispersion relation. We will not reproduce the equation describing that

here because it is quite long. The interested reader is directed to the work of

Bergman[44, 7] for those expressions. The attenuation of third sound has been the

focus of much attention from the beginning of the measurements of third sound. A

main reason for this interest is that the measured value of attenuation exceeds the

predictions of the Bergman model. Over the years, theories have been advanced

to describe the anomalous attenuation[46, 47, 48]. Recent measurements of third

sound attenuation have confirmed the anomalously high value of attenuation in

thick films[5, 49]. Our measurements agree with the recent work. In addition, we

extend the range of measured values of attenuation to the λ point.

2.1.3 Depletion of ρs
ρ

In the context of the Ginzburg-Pitaevski mean field description of superfluidity[50],

it is expected that the superfluid density should be depressed from the bulk value

a certain distance from a wall[40].This depression is described in terms of a heal-

ing length[50, 40, 27]. The healing length is thought to be proportional to the

coherence length. The factor of proportionality depends on the boundary condi-

tion of the superfluid wave function at the surface. It takes the value of 2 if the

wave function goes to zero and square root of two if the derivative is zero at the

surface[40].

Additionally, the pressure in the film within a few atomic layers of the substrate

will exceed the solidification pressure of He. This will lead to the first layers of He

on the substrate being solid. As well, once the temperature of the system is above

the lower lambda point (1.76 K), there will also be a certain thickness of Helium

above the solid layer where the superfluid density will be zero due to the pressure

exceeding the pressure along the λ line. As the temperature progresses to the λ

point, this thickness will continue increasing. Since these pressure effects depend

on the Van der Waals effect, the contribution of the solid layer and pressure-
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quenched normal layer will depend on the substrate used. For example, these

effects will be far more pronounced in copper than in glass substrate by a factor

of 2.36 which is the ratio of the Van der Waals coefficient for the two materials.

These effects have been integrated into various depletion layer models[40, 41,

51, 52] developed over the span of years. These models posit a ’dead layer’ to

correct the superfluid density. Thus the superfluid density in equation 2.7 is

distinct from the bulk superfluid density. They are related through the dead

layer, known as ’big D’. The expression is

D = Dsolid +Dnormal + ξhealinglength (2.8)

D is composed of three terms; the solid layer, the normal layer, and the bound-

ary supppression expressed through the healing length. We can now express ρs
ρs

in

terms of D;

ρs
ρs

= (1 − D(T )

d
) (2.9)

where D is explicitly shown to be a function of temperature and d is the film

thickness. The temperature dependence of D is primarily through the coherence

length and the normal layer size. The dead layer has been investigated experimen-

tally in unsaturated films[40, 41]. This thesis is the first investigation concerning

depletion in thick films to the vicinity of Tλ. As such, it provides new insight to

the modification of the superfluid density through proximity to a surface. Before

reporting the results, the experimental methods used to study third sound in this

experiment will be described.
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2.2 Experimental Methods

Surface waves on films of helium can be generated and detected using a capac-

itance technique described in Refs. [53, 5]. In the this section, we will outline

the experimental methods used for these measurements with our system. This

section will begin with a description of the cell. After the cell is described, the

measurement techniques used will be reviewed. A complete description of the cell

and the general features of the experiment are contained in Appendix A.

2.2.1 The Experimental Cell

With the system, we are able to measure sub Å resolution for 4He film thickness

changes and have 10 µK temperature resolution. The primary components of the

cell relevant for this set of measurements are the electrode assembly and the λ

stage. The electrode assembly contains the substrate for the helium film. The

substrate forms a capacitor with the helium films on each terminal and the vapor

in the gap contributing to the effective dielectric constant defining the capacitor.

Previous work has illustrated the importance of the surface quality of the

substrate for He film measurements [10, 54]. After rough machining of the elec-

trode surfaces, they are sent out for diamond turning to a manufacturing firm1.

Diamond turning is a surface finishing technique which can achieve a surface

roughness on the nm scale. From AFM measurements, we estimate the surface

roughness to be 10 nm. The cell body and all subcomponents which require high

thermal conductivity are manufactured from OFHC Copper. The substrates con-

sist of rectangular electrodes in a grounding assembly to minimize the fringing

field of the capacitor. The assembly consists of one large electrode facing four

quadrant electrodes across a gap of 60 µm, see Figure 2.1 a for schematic. The

quadrants are separated by a grounding cross and the gap between the monolithic

1KAF Manufacturing Stamford, CT
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Figure 2.1: Exploded view of the electrode assembly. All parts are fabricated

from OFHC copper. The electrode holders are shaded gray to indicated that the

electrodes are not electrically connected to the holders.

electrode and the quadrants is set by a Kapton film 60µm thick. The area of the

quadrant electrode is around 1 cm2, this results in a capacitance of approximately

15 pF for a quadrant electrode to the ground electrode. The actual value of the

capacitance is not critical for the third sound measurements since the third sound

signal arises from the change in capacitance. The discussion of that experimental

detail will be relegated to the section on film thickness measurements for the crit-

ical Casimir effect, Section 3.3. This assembly is sealed in our cell by attaching

the assembly to the main flange of our cell and sealing the flange to the cell body

with an indium seal. Electrical connections to the electrodes are passed out of the

cell through homemade coaxial epoxy seals using a recipe from Ref. [55].

The lambda stage is for the purpose of accurately establishing the position of

Tλ in our system. I will briefly discuss it here and leave a more thorough discussion

for the section in the appendix on the cryostat. It consists of an OFHC copper

block and a 1/4” thin-walled stainless steel tube connecting to the bottom of the
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Figure 2.2: Charged Bias Third Sound Circuit. The output of a lock-in drives

a quadrant on the left. On the right, the quadrant is charged through a large

resistor to act as a microphone. The change in film thickness is detected by the

lock-in via the capacitance change.

cell. Attached to the copper block is a heater and thermometer. The stainless

steel tube is our reservoir of bulk He for the cell. When the bulk He in the stage

goes through the transition, the thermal conductivity between the thermometer

on the bottom of the stage and on the cell changes dramatically. This can be seen

as relative change in the slope of the readings of the thermometers. Utilizing this

stage, I can determine Tλ to within 10 µK.

2.2.2 Third Sound Generation and Detection

In this experiment, third sound waves in the 4He film are detected using a charge

bias technique developed by Hoffmann et al.[5]. Figure 2.2 is a schematic of the

detection and generation scheme. One quadrant is driven by the output of a lock-

in amplifier. Another quadrant is charged with a 100 V battery2 through a large

resistor (1GΩ) to keep the charge on the electrode constant during our measure-

ment interval. Since the charge is constant, a change in capacitance will result in

2Charging the gap above 120 Volts leads to breakdown in the vapor.
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a change in voltage at the pre-amp input. This voltage is then detected at the

second harmonic of the drive since the response will go as the square of the drive

and thus twice the drive frequency. The typical settings for the instrumentation

and the geometry of our cell result in a sensitivity of 1 mV corresponding to 0.1 Å

of film change. In Figure 2.3 a representative third sound data set is reproduced.

Third sound is studied in this system by allowing the cell to thermally equilibrate

to a given temperature, sweeping the frequency of the lock-in amplifier drive, and

detecting the response at the second harmonic. In the next section, I will describe

how the frequency sweep is used to characterize the third sound response of the

film at a given temperature.

2.2.3 Third Sound measurements

The third sound resonator has a rectangular symmetry, and if the wave amplitude

falls to zero at the boundaries, the resonant frequencies will be

ωm,n = c3km,n

km,n =

√(
mπ
Lx

)2

+
(
nπ
Ly

)2

m,n = 0, 1, 2, 3, ...
(2.10)

The geometry of the resonator determine both Lx and Ly. The values of Lx and

Ly are 2.8 and 2.2 cm, respectively. By fitting the peaks of the frequency response

curve to Lorentzian peaks, we can extract the resonant frequencies at a given

temperature. As can be seen in Figure 2.3, there are more resonances detected

than those predicted with the dispersion relation of 2.10. This is probably due

to the having additional reflecting boundaries other than the outside border of

the large electrode. For example, there are the boundaries defining the quadrant

electrodes. Only the first three modes which are clearly related to the primary

boundaries of the large electrode are tracked from the base temperature of our

cryostat to the vicinity of Tλ. In this way, for each temperature step, three

measurements of c3 are made, see figure 2.4. Using equation 2.7, we can solve
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Figure 2.3: 480 Å film third sound sweep data with Lorentzian fits to the peaks.

The cell temperature during the sweep is 1.600 K. The first three prominent modes

correspond to the (1,0), (0,1), and (1,1) modes. These modes are tracked to the

vicinity of the λ point.

26



for the film thickness in terms of the Van der Waals force, third sound speed,

superfluid density, and the evaporation correction. A frequency sweep of third

sound close to the base temperature is used to establish the film thickness, see

figure 2.3. Using the measured third sound speed, the superfluid density from

Ref. [2], and other terms, we get a measurement good to about five percent of the

film thickness. The dominant uncertainty is the value of the Van der Waals force

for our substrate. We calculate the Van der Waals force based on the retarded

expression from E. Cheng and M. W. Cole[37].

2.3 Results

Experiments were conducted on five different film thicknesses; 27, 30, 30.5, 34.4,

and 48 nm thick. For each film we stepped the cell in temperature and then

took a frequency sweep to measure the film response. The temperature range of

our data spans from the base temperature, 1.6 K, to the vicinity of the λ point.

From the measurements of third sound resonances as a function of temperature,

we can understand the attenuation of third sound and the superfluid density as a

function of temperature. Additionally, we can measure the temperature and areal

superfluid density at the Kosterlitz-Thouless transition in the films. The results

of these measurements are presented in this section.

2.3.1 C3 versus Temperature

In Figure 2.4, the third sound speed as a function of frequency is plotted for

each film. The third sound speed is calculated from the resonant frequency by

multiplying by the wave number. According to Equation 2.7, the speed of the

wave should decrease as the film thickness grows, at a given temperature. This

behavior is observed in the measurements. The only previous measurements of

third sound in saturated films as a function of temperature are from Refs. [5, 6, 49].
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Figure 2.4: Third sound speed versus temperature for the films studied. Each data

point is the average of c3 measured for each of the first three resonant modes. For

comparison, we calculate c3 from the data provided in [5].
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Figure 2.5: The superfluid density derived from measurements of the third sound

speed is displayed against the bulk superfluid density from [2] and the results from

previous measurements by J. A. Hoffmann et al.[5].

These measurements are included in Figure 2.4 for comparison. As can be seen

in the figure, the dominant temperature dependence of the third sound speed is

the superfluid density, see equation 2.7. This allows the use of third sound as a

sensitive probe of the superfluid density in films.

2.3.2 ρs
ρ

versus Temperature

From the third sound speed, the superfluid density in the film can be calculated

using Equation 2.7. In Figures 2.5 and 2.6, the result is presented along with the
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bulk value of the superfluid density from the tables of Donnelly and Barenghi[2]

for comparison. As well, calculated values for ρ̄s from the data of J. A. Hoffmann

et al. [5] are included. For their data, we assumed a film thickness of 32 nm

and adjusted the value of wave number to match the expected value of C3 at

low temperature. The boundary condition for the experimental set-up used in [5]

is not well defined3. The wave number is adjusted through dividing by a factor

of 2 to match the expected value for the third sound speed for a 32 nm film

using Equation 2.7. With those corrections, the agreement is quite good with

our measurements. There is general agreement between the bulk value of the

superfluid density and the measurements of the superfluid density from the third

sound speed. Equation 2.7 does not account for the depletion of the superfluid

density due to the substrate.

By examining Figures 2.5 and 2.6, we can see a discrepancy at low temperature

and close to the λ point between the bulk superfluid density and the superfluid

density measured via third sound in both sets of experimental data. The discrep-

ancy close to the lambda point is due to the vortex-unbinding suppression of the

superfluid density, described in the Kosterlitz-Thouless theory developed by V.

Ambegaokar et. al. [34]. The role of the boundary induced superfluid depletion

in the measurements can be more easily visualized by scaling the measurement of

the superfluid density with the bulk value. This is plotted in Figure 2.7. In the

plot, we included the results of the calculation of the depletion layer correction to

the superfluid density for a 30 nm film as described in Appendix B. There is good

agreement between the data and the depletion model far away from and close to

the λ point.

The agreement fails from 1.85 to 2.15 K and indicates that the superfluid

density in the film recovers to the bulk value or even exceeds it. The largest

film thickness studied, 48 nm, shows a larger value of the superfluid density in

3Private Communication with K. Penanen
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Figure 2.6: Blow up of Figure 2.5 in the vicinity of the λ point.
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the film than the bulk starting around 1.9 K. This is seen in all of the resonant

modes tracked for the film. This disagreement may be explained through the

anisotropy in the superfluid density which is expected to develop in films[56].

The superfluid density in the perpendicular direction to the substrate exceeds the

bulk superfluid density in vortex loop simulations starting well below the region

of vortex unbinding, around 50 mK from the transition temperature for a 12 nm

film. In a paper by Williams [56], the calculation is performed for a film thickness

of 121 Å and shows enhancement of the perpendicular component more than 50

mK from the vortex unbinding region. How that enhancement scales for thicker

films could explain what is occurring in the thicker films. The current models of

third sound assume that the superfluid density is isotropic. Our measurements

indicate that assumption may be false. A reformulation of the third sound model

in terms of an anisotropic superfluid density may resolve the discrepancy between

our measurements and the current model of depletion.

2.3.3 α3 versus Temperature

From the third sound speed and the quality factor of the fits to the response peaks

(Figure 2.3) we can calculate the third sound attenuation using the expression

α =
ω3

2QC3

(2.11)

In Figure 2.8 we display the results of our measurement of attenuation along

with recent measurements of attenuation in saturated films[6] and the expected

attenuation from Bergman’s thermohydrodynamic model for a 30 nm film. The

attenuation we measure in our films are a factor of 100 times great than his model

predicts. Contributing to that difference is the attenuation due to the transmission

of third sound wave at the boundary, see Appendix C. Our measurements of

attenuation agree with the measurements of K. Penanen et. al [6]. At 2.1 K,
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the attenuation begins to increase and peaks at 2.134 K for most of the films

measured. This increase is not reflected in the attenuation model of Bergman or

the model developed to describe the attenuation due to the boundary in Appendix

C. From the peak at 2.134 K, the attenuation drops back to the low temperature

value. It is unclear what is causing the rise and fall in attenuation. It is not due to

the Thermohydrodynamics of Bergman nor is it described in the Boundary model

of attenuation. As well, the model of third sound attenuation described by V.

Ambegaokar et. al. [34] due to vortex unbinding is appreciable only 10 mK from

the λ point. Interestingly, the attenuation peak occurs in the same temperature

region where the depletion model fails. The attenuation of third sound may be

enhanced by the anisotropy in the superflud density. This possibility is compelling

since the superfluid density in the perpendicular component should determine the

attenuation in the film far more strongly than in the parallel direction because of

the critical role evaporation plays in attenuation of third sound.

2.3.4 KT transition as measured by third sound

From the third sound data we can measure the temperature and the areal su-

perfluid density at the Kosterlitz-Thouless transition in the films, TKT and ρsd,

respectively. The KT onset temperature is the temperature third sound ceases

to propagate in the film under investigation. The superfluid density at the KT

point is measured through measuring the third sound speed at the transition. The

third sound cutoff in He films provided some of the earliest confirmation of the

KT theory [33, 57].

Measurements are made by stepping in temperature and conducting a sweep

in frequency to see the resonant response of the film. In addition to the amplitude

response of the film,we are able to measure the phase response, see Figure 2.9.

We follow both the amplitude and phase of the film as TKT is approached from

below and above. Using this method, we are able to determine TKT to within
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L ( Å ) 270 300 305 344 480

TKT 2.167 2.1676 2.168 2.171 2.172

Table 2.1: Summary of results for the Kosterlitz-Thouless temperature of the films

studied.

0.5 mK. By using equation 2.7 and a sweep of the third sound resonances at the

base temperature, we are able to vary precisely measure the film thickness. We

estimate that the uncertainty in film thickness is comparable to the uncertainty in

the value of the Van der Waals coefficient, which is generally the dominant source

of uncertainty in determining the thickness of He films [10, 37]. Our uncertainty in

the film thickness is approximately 5 percent. The uncertainty in the onset tem-

perature is less than .5 mK. The uncertainty in the film thickness dominates over

the uncertainty in temperature or the location of TKT by an order of magnitude.

Our results for each film are listed in table 2.1.

In addition to measuring TKT of the films, we measure σs of the films at

the KT transition, in order to ensure that the KT transition is being measured

and not simply losing signal in the noise, see Figure 2.10. The result for all of

the measurements is σs
TKt

= 4.7 ± 1.5 × 10−9g cm−2 K−1 which is in agreement

with previous measurements and the theoretical value, σs
TKt

= 3.49 × 10−9g cm−2

K−1 [8, 31, 33, 32]. Recent measurements using Adiabatic Fountain Resonance

give a value of σs
TKt

= 4.5 × 10−9g cm−2K −1 [35] in agreement with the current

measurements.

We can now return to the question of what insight our results give for finite size

scaling of the KT transition, see Section 1.4. We can calculate ξKT from the TKT

we measure for each film using Equation 1.3. For the films we have measured, our

result is d
ξKT

= 2.13±0.1 which is in good agreement with previous measurements

of the KT transition in thick films [17, 35, 19], but not in agreement with thin film

measurements and Monte Carlo simulations, see Table 3.1. Assuming the validity
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of finite size scaling, we can conjecture as to why there is a difference in d
ξKT

for

thin versus thick films.

It is plausible that we are seeing the KT transition at lower temperature be-

cause the depletion layer gets to the size of the film thickness before the film can

get to the KT transition at a higher temperature relative to the film thickness as

it does in the unsaturated film measurements and the Monte Carlo simulations.

Given the uncertainties in the model of depletion, a better model of the depletion

layer needs to be developed in order to understand more completely why there

is this discrepancy between the results far from and near Tλ. As a first step, a

model of the depletion layer is developed in Appendix B. It is possible that the

depletion layer in thick films modify the surface effect such as to modify the ratio

of the healing length to the coherence length according to Reference [27].

2.4 Discussion

In this chapter, we have reviewed the model of third sound propagation in satu-

rated films of 4He. The experimental system used to study third sound in films

from 1.6 K to the λ point has been described. The measurements were used to

further understand the depletion of the superfluid density of the film. These re-

sults indicate that the model of third sound propagation may be improved by

including the anisotropy of the superfluid density as predicted in [56]. Depletion

of the superfluid density is well described by the model presented in Appendix B

at low temperature and near the λ point. A possible explanation of the lack of

depletion in the intermediate temperature range is presented. In order to progress

with the explanation, a reformulation of third sound in terms of an anisotropic

superfluid density is necessary.

The measurements of third sound attenuation are consistent with previous

measurements in thick films [6, 5, 49]. In this experiment, attenuation was mea-

39



sured over a larger temperature range than previously. Beyond the range of pre-

vious measurements, a peak in the attenuation was discovered at 2.134 K for all

of the films studied. In order to understand this peak, we explored the models of

attenuation in terms of the thermohydrodynamics and vortex-unbinding to see if

they could account for the peak. Neither model predicts a peak in the attenua-

tion at that temperature. In Appendix C, we develop a model of the boundary

transmission of third sound. This model yields a slight increase of 10 percent in

the attenuation of third sound. None of the models discussed can account for the

peak in attenuation. Interestingly, this new result may also be explained in terms

of the anisotropy in the superfluid density.

Finally, we use the cutoff temperature and speed of third sound in the films

to understand the KT transition. Both the loss of the amplitude and the phase

signals are used to identify the KT transition in the films. We find that our mea-

surements are consistent with the KT theory and previous measurements in thick

films. As well, in the context of finite size scaling, our results are consistent with

previous measurements in thick films, but disagree with Monte Carlo simulations

and measurements in thin films. In the next chapter, the temperature where the

KT transition occurs relative to the critical Casimir effect will be identified.
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CHAPTER 3

Critical Casimir Effect

Saturated superfluid 4He films are well suited for studying the critical Casimir

effect. In the vicinity of the λ point, the finite thickness of the film imposes a

constraint on the magnitude of the coherence length. This results in a contribution

to the free energy difference between the film and the bulk from the critical Casimir

effect, Eq. 1.8. Accordingly, equation (Eq. 1.7) relating the film thickness to the

height above the bulk must be modified to include this term. The expression

relating film thickness to the height, in the vicinity of the λ point, becomes

γ0

d3
(1 +

d

d1/2

)−1 +
V kBTc
d3

ϑ(d/ξ) = mHegh (3.1)

In the case of 4He, this will result in film thinning[22, 11]. By measuring the

resulting film thinning, the scaling function, ϑ(d/ξ) can be quantified. To date,

two systematic experimental studies[58, 10, 11]1 have been conducted prior to our

investigation. In addition to experimental studies, theoretical calculations and

more recently, Monte Carlo simulations can be conducted of the critical Casimir

effect[22, 60, 14, 12, 9, 61] in the context of superfluid 4He.

In this Chapter, we will review the previous work; both experimental and

theoretical. Follow the review, the experimental techniques used to measuring

the critical film thinning will be presented. The results will then be presented and

discussed.

1The first experimental signature of the effect was observed in 1989, it is described in Ref.
[59]

41



3.1 Theoretical Calculations and Simulations

Figure 3.1 taken from Ref. [9] summarizes much of the theoretical and experimen-

tal work for the critical Casimir effect in 4He films. To simplify the presentation,

we will adopt the convention used in Ref. [9] for the form of the scaling variable.

We will use x = l1/ν = t(d/ξ+)1/ν with ξ+=1.432 Å [27] for the scaling variable.

This choice will simply comparisons between different results.

Initial calculations of the critical Casimir effect were made through field the-

oretical techniques, unfortunately, these techniques are limited to temperatures

above Tλ [22]. Later on, mean field theoretical techniques were developed to study

the effect[12, 13]. By this time, experimental measurements of the effect had been

made[10, 11] and the agreement with the MFT results was only qualitative. The

MFT results are plotted in Fig. 3.1 as a dashed dotted blue line and labeled

’MFT’.

In 2007, A. Hucht developed a Monte Carlo simulation technique for studying

the critical Casimir effect which agrees very well with the experimental results

[14]. This result is plotted in Fig. 3.1 as a dashed black line. This simulation is

a generic simulation for the XY universality class and is not specific to superfliud

4He. Thus, it does include the Goldstone modes mentioned earlier in Section 1.4.

The dotted traces are the different results from Ref. [9] using a MC technique

based on Ref. [14]. As can be seen, the agreement with Ref. [14] looks reasonable,

though there is a considerable spread of the data.

The grey bar in the figure represents the KT transition in superfluid 4He

calculated from MC simulations in Ref. [15]. Their result is that xKT = −7.64(15)

this value agrees well with previous measurements on unsaturated films far from

Tλ, see Table 3.1. It will be seen, that our value for xKT does not agree with the

value from MC simulations. This will be discussed in Section 3.4.
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Figure 3.1: Figure 4 from Reference [9]. This figure summarizes much of the

theoretical and experimental result for the critical Casimir effect in 4He films.

The red trace is the experimental results from Refs. [10] and [11]. The MFT

trace is the Mean Field Theory results from Refs. [12] and [13]. The dotted black

line is the Monte Carlo results from Ref. [14]. And the dotted series are MC

results from Ref. [9]. The grey bar at x=-7.64(15) is the location of the KT

transition as calculated by Mote Carlo siimulations in Ref. [15].
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3.2 Previous Measurements

Figure 3.2 displays the results of the first systematic measurement of the critical

Casimir effect in 4He films near Tλ. To measure the film thickness versus tem-

perature, they use a capacitance bridge technique. By measuring the change of

capacitance between electrodes, they measure the film thickness of the 4He film

on the substrates which also act as electrodes for the capacitance bridge. For this

experiment, a stack of six copper disks forms five capacitors. From the bottom of

the cell to the top, they are labels 1 through 5. Accordingly, capacitor 1 should

have the thickest film and capacitor 5 would have the thinnest film. Their results

for the film thickness disagree when calculated from the change in capacitance

versus calculating the film thickness from the height, Eq. 1.7. The disagreement

varies from 10 percent for Cap. 5 to 100 percent for Cap. 3. As well, it can be

seen from the scaling plot in Fig. 3.2 that the results do not exhibit data collapse.

The authors speculated that the lack of data collapse could be related to the dis-

crepancy in the film thickness. They note that their copper substrates have visible

scratches and speculate that capillary filling of the rough surface could lead to an

effective film thickness enhancement.

The data in Ref. [10] was taken by allowing the cell temperature to drift

through the λ point by stepping the temperature of a thermal stage. The drift

rates varied from 200 µK/hr to 7 mK/hr. At the time, the only available theoret-

ical work to compare with were the field theoretical calculations above Tλ, Ref.

[16]. In the lower plot of Figure 3.2, they compare their measurements with the

prediction of Ref. [16] and the agreement looks reasonable. Although, there is a

large spread in their experimental data.

In Figure 3.3, the results from the second experimental measurement of the

critical Casimir effect in 4He films is displayed. In this experiment, N-doped

silicon substrates are used. This choice of substrate mitigates the issue of surface
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Figure 3.2: Figures 3 and 5 from Reference [10]. The upper left plot displays

the scaling function versus the scaling variable. The upper right plot displays a

normalized plot. The lower plot displays the scaling function results and a solid

curve from a theoretical prediction in Ref. [16]. Notice that the data does not

collapse.
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Figure 3.3: Figure 4 from Reference [11]. This is a plot of their main experimental

result, the scaling function versus the scaling variable. In this experiment the

results do exhibit data collapse. The legend displays the film thickness in Å for

each data set.
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roughness since the substrates are smooth to the atomic scale. The silicon is doped

so that it will retain electrical conductivity at low temperature. They utilize a

capacitance bridge technique to measure the film thickness. As can be seen in

Figure 3.3, the results of this experiment do exhibit data collapse. Interestingly,

they do not address how their data compares with the field theoretical calculations

[16] of the critical Casimir effect above Tλ. The data from this experiment seems

to display different behavior above Tλ from the data in Fig. 3.2. The data set for

the 285 Å film seems to have a peak just below Tλ. The data for the 340 Å film,

the thickest film for this experiment, is cut-off at Tλ. With this experiment, the

sweep rates varied from 40 µK/hr to 300 µK/hr. Interestingly, they mention that

gap filling was a major experimental challenge of their work. And that it could

be resolved by conducting repeated slow sweeps through the λ point.

3.3 The Capacitance Bridge

In this section, we will describe the experimental techniques specific for the study

of the critical Casimir effect. As noted previously, the general experimental set-up

is reviewed in Appendix A. Through proper design and fabrication, capacitance

bridges are able to measure extremely small changes of the dielectric constant

of a material in the measurement side of the bridge. Reference [55] contains an

introductory review of capacitance bridge technique.

We measure the capacitance between the main electrode and a specific quad-

rant or collection of quadrants in order to measure the film thickness, see Fig.

3.4 for schematics of the electrode assembly. The capacitance is measured with

a ratio transformer bridge using an identical substrate assembly mounted on the

exterior of the cell for a reference capacitor, see Fig. A.5. Our design is based on

previous measurements of helium films [62, 10, 11].

In order to limit the possibility of capillary filling of the small gap (60 µm)
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1 mm

2.5 mm

Figure 3.4: Schematics of the electrode assembly, exploded views on the left side.

The red arrows indicate the direction for the cross-sectional views on the right.

Sections in grey indicate the electrode supports. The brown sections label the elec-

trodes which define the capacitor. The yellow indicates the 60 µm thick Kapton

spacer.
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between the electrodes, we developed a novel substrate assembly design. The

channels around the electrodes isolate the measurement substrates from the me-

chanical assembly used to define the gap. Thus, if there is a wetting event in the

mechanical assembly, it is unlikely to fill the substrate gap. In the experiment

by Ganshin et. al. [11], they had considerable issues with the gap filling. In our

experiment, the gap did not fill even with the thickest film studied. With the split

quadrant design, this experiment would be sensitive to partial gap fills as well.

During the experimental run, no filling events were found.

As noted in the previous experiments[10, 11], surface roughness is a important

design consideration for film measurements. For the surface preparation of the

substrates used in this experiment, we utilized diamond turning to achieve surface

roughness on the level of 10 nm2. The substrate preparation and further details

of the experimental cell are contained in Chapter 2, Section 2.2.1. Within the

gap formed by the substrates, there is 4He vapor in addition to the helium film

adsorbed on the substrate surfaces. See Fig. 3.5 for a diagram of the space.

In order to extract the film thickness from the capacitance measurement, the

contribution to the gap capacitance from the vapor must be subtracted out from

the signal. As seen in Fig. 3.6, the change in the capacitance with temperature is

dominated by the changing density and thus the dielectric constant of the vapor.

Just below Tλ, a dip in the capacitance is observed. This dip corresponds to a

thinning of the film due to the critical Casimir effect, see Section 1.4.

The film thickness value is extracted from the capacitance using the same

technique as in Ref. [11]. For our experiment we make measurements on four

different film thicknesses; 270, 300, 344, and 480 Å. The capacitance of the gap

can be expressed in terms of three contributions; the empty cell capacitance,

the film contribution, and the vapor contribution. The dielectric constant of the

vapor can be calculated from the Clausius-Mossotti equation by calculating the

2The Diamond turning was performed by KAF Manufacturing, Inc.
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Figure 3.5: Sketch of capacitor gap displaying the film and vapor geometry.
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Figure 3.6: Data from the capacitance bridge for the 344 Å film. The effective

dielectric constant is plotted versus the temperature from Tλ.
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vapor density from the pressure using the second virial coefficient. The empty cell

capacitance is measured prior to the cell fill. Within our experimental uncertainty,

it is constant over the temperature range of the measurements. The dielectric

constant of the film is taken to be constant over the range of measurement. The

film thickness can be solved for in terms of the other quantities. The resultant

expression is

d =
G

2

(
1

εvapor
− 1

ε(T )

)
/

(
1

εvapor
− 1

εfilm

)
(3.2)

where G is the gap size, 60 µm for our experiment. The effective dielectric

constant, ε = C(T )/C0 is the ratio of the measured capacitance from bridge to

the empty cell capacitance. As found in Ref. [11], we have a small temperature

dependence which must be factored out. Following their analysis, we conjecture

that this temperature dependence is due to having the electrodes potted in the

holder. We find the correction is of the same order of magnitude as in Ref. [11].

The constant film thickness value is measured by performing a third sound

frequency sweep near the base temperature. This method is discussed in Section

2.2.3. There are two alternate ways of establishing the film thickness. One is

through estimating the height of the substrate above the surface of the bulk 4He

in the cell. This is done by estimating the amount of 4He introduced into the cell

during dosing. The other technique is to extract the film thickness change from

the change in capacitance of the electrodes using Eq. 3.2. The two alternate ways

are more subject to systematic error than the third sound technique. As will be

discussed in a later section, Section 3.4.2, there is some question as to what is the

actual equilibrium value of the film thickness far from the critical region.

The uncertainty in our film thickness measurement is limited by the stability

of the ratio transformer and the 4He film itself. The ratio transformer has a

temperature stability of δR
δT

=1 ppm K−1. We regulate the temperature of the
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Source ϑmin xmin

Monte Carlo [14, 9] -1.35(3)/1.396(6) -5.3(1)/5.43(2)

Measurements [11] -1.30(3) -5.7(5)

This Work -1.2(1) -6.0(5)

Table 3.1: Compilation of results for the Critical Casimir Effect in 4He films. The

values for the Monte Carlo simulations is the average from the results from the

cited sources.

ratio transformer by placing it in an insulating box. In this way we are able to

maintain a stability of .1 K for the ratio transformer for a time scale on the order

of days. Near the λ point, the thermomechanical effect is maximum [23] thus the

system is most sensitive to temperature gradients within the cell. A temperature

gradient across the substrate will lead to a corresponding pressure gradient across

the substrate. This pressure gradient will induce a film thickness change. In the

vicinity of Tλ, a 1 µK temperature gradient will change the film thickness by 1 Å.

In order to properly measure critical effect, the system must be thermally swept

at a very slow rate and must be in good thermal equilibrium with the bath. To

study the critical Casimir Effect, we use a sweep rate of 400 µK/hr. We find this

rate is sufficiently slow to measure the dip on film thickness in agreement with

previous measurements[10, 11]. For films thicker than 300 Å, the lower surface of

the substrate assembly is submerged in bulk 4He. This in conjunction with the fact

that we are using OFHC copper for our assembly provides the system with a very

good thermal system for studying effects in the vicinity of the λ point. Overall,

our uncertainty in film thickness changes is 0.5 Å. Whereas the uncertainty in the

total film thickness is about 10 Å.
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3.4 The Critical Casimir Effect

Our results for scaling and the dip agree well with previous measurements and

simulations, see Table 3.1. In Figure 3.7, we display the measured film thickness

change. Our results agree generally with those found by Gashin et al. [11]. We

find that there is a film offset below Tλ for all of our films expect for the thickest

one, 480 Å. This discrepancy may be explained by the film thickness dependence

of the surface modes as calculated in [18], thicker films should have a smaller

offset. For a 500 Å film, it will be less than one Å. As well, our measurements

for ϑmin and xmin agree reasonably well with previous results [14, 11, 9]. When

plotting the data for the films measured here on Fig 21 of [17], there is very good

agreement, see Figure 3.8. Our data confirms that the critical Casimir minimum

occurs at the same value of the scaling variable as the specific heat maximum, an

interesting result which for which there is no theoretical explanation as of yet.

We do find a somewhat smaller value for ϑmin than was found in previous

measurements. This may be due to surface roughness of the substrates in previous

measurements. Lowering the surface roughness of the substrate is critical for

properly measuring the dip as has been revealed by previously. The fact that

we see a smaller dip indicates that surface roughness is not an issue with our

measurements. The dominate source of uncertainty for our measurements of ϑmin

and xmin is the uncertainty in the equilibrium film thickness.

3.4.1 KT Transition versus the Casimir Dip

In addition to measurements of the film thickness, we are able to measure the

superfluid density in the film through measuring the third sound response of the

film, see Section 2.3.4. Through measuring the superfluid density we are able

to find the KT transition in the films[33]. We find with our measurements that

the KT transition in the film occurs at the beginning of the dip, xKT=-11.1(4).
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Monte Carlo simulations place the KT transition between the beginning the dip

and the dip minimum at xKT=-7.64(15) [9, 15]. Whereas mean field considerations

indicate that the KT transition should occur in the vicinity of the dip minimum

[12]. Our result indicates that the majority of the Casimir effect occurs when

the film is in the normal phase at long length scales. At short length scales and

finite frequency, the superfluid phase is present in the film [34]. This result may

aid in developing a clearer understanding of what underlies the critical Casimir

effect in 4He films. Interestingly, Vortex Loop calculations of the critical Casimir

effect predict that the film will undergo the KT transition at the beginning of the

dip [60]. As well, our location of the KT transition relative to the dip minimum

agrees well with a previous measurement [11].

3.4.2 Film Step at the λ point

For the data in Figures 3.7 and 3.9, the temperature is swept through the λ

point at a rate of 400 µK/hr. At this sweep rate there is a noticeable rise in

the film thickness at Tλ. In previous measurements, this rise is also discernible

[11, 19]. When the temperature is swept through the λ point at a much lower

rate (5 µK/hr), this rise becomes a step in film thickness, see figure 3.10 with

the film being thicker above Tλ. This result has not been reported in previous

measurements nor in simulations of critical effects in the vicinity of the λ point.

The magnitude of the step increases with increasing film thickness. When the step

size is used to calculate the change in the Van der Waals attraction at the surface

of the film it is found that for all of the film, the energy is approximately 1 µK

per atom. Since the 4He in the film is well away from it’s transition temperature,

TKT , the source of the changing free energy should lie in the bulk. In essence, the

film is acting as a probe of the bulk free energy. We can start from the expression

for the equilibrium film thickness, Eq. 1.7, and add a constant term for the free

energy change of the bulk. This yields;
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γ0

d3
(1 +

d

d1/2

)−1 + ∆F = mHegh (3.3)

Taking the differential of this, we find that;

∆d

d
=

∆F

Uvdw

(3.4)

In Figure 3.11, we plot the ratio of the film thickness change to the film

thickness and compare that to a plot of a constant 1 µK energy versus the Van

der Waals energy as a function of film thickness. From the plot we can see that the

measurements indicate that the step in film thickness at the λ point corresponds

to a constant change in the free energy of the bulk.

The fact that the shift is constant in energy, i.e. it scales with film thickness

is another indicator that the source of the change lies with the bulk. From our

measurement of the step height, we can estimate the change in the Van der Waals

energy of the film at the λ transition. For the different films we measured, we

found the same value of the change in the Van der Waals energy per atom, see

Fig. 3.11. The energy change is 1 µK per atom. We can interpret this as the

energy associated with the transition per atom in the bulk. We can multiply this

energy per atom by the number of atoms in the bulk to get an idea of the energy

change in the bulk at the transition.

∆Ubulk = 1
µK

atom
kBNA

.145g

4g
= 1

erg

cc
(3.5)

The energy change in the bulk is expected to be approximate 1 erg for a 1

cc bulk sample from this analysis. As a first step in understanding this new

effect, we can look to the second sound modes. In the film, the motion of the

normal component will be suppressed at low frequency through it’s viscosity and

proximity to a surface. This effect is characterized by the viscous penetration

depth [44, 63], see Section 2.1 for a description of the viscous penetration depth.
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For a 300 Åfilm, the viscous penetration depth is approximately 50 µm for a 100

Hz oscillation. When the oscillation frequency is 6 MHz, the viscous penetration

depth will be about 300 Å. The spectrum of thermally excited second in the film

will be either be reduced or entirely excluded relative to the bulk owing to the

viscous penetration depth. This should lead to a free energy difference between

the film and the bulk. The Debye model can be used to develop an estimate of

the free energy from second sound in the bulk [25]. To use the Debye model, we

require an expression for c2 and a cut-off frequency for second sound as functions

of temperature. In the hydrodynamic regime, where ξ is much smaller than the

wavelength of second sound excitation, there is ample data to generate those

expressions.

In Appendix D, we attempt to use data[2, 64] from the hydrodynamic regime

to get a result from the Debye model for the bulk free energy. The result is not

physically meaningful. Near the lambda transition, where ξ diverges, thermally

excited second sound enters a critical regime where qξ � 1, q is the wavenumber of

the characteristic excitation[65]. In this regime, there is not a good understanding

of the dynamics of thermal second sound. The experimental results from light

scattering [66] are not consistent with the results of dynamic critical phenomena.

The data shows that, at high frequency, c2 does not go to zero. Our results provide

new information for developing our understanding of thermal second sound in the

vicinity of the lambda transition.

From the energy of 1 µK per atom, we can estimate the upper limit of the

second sound fluctuations in the bulk at the λ point by using the data of Ref. [66]

to estimate c2(Tλ). Through this analysis, the upper bound for the frequency of

the modes is 10 MHz. This result could provide a point for future experiments

on the onset of thermal second sound in superfluid helium. These fluctuations are

distinct from those discussed in Ref. [18, 12] in that the second sound excitations

we are considering are non-universal because of the changing speed of the second
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sound and a viscous cut-off.

For the slow sweeps, the temperature is swept at 5 µ K/hr, we find that the

capacitance take approximately 12 -15 hours to equilibrate to a final value at Tλ.

There is no know vapor or bulk anomaly which this step could correspond to. The

step is reproducible when swept from above or below the λ point. As well, the

same magnitude of step is found when different quadrants in our cell are used to

measure the step. This excludes capillary filling from being the source of the step.

The hold time of our cryostat is 7 to 8 days. So, we are able to sweep through the

step anomaly without having to perturb the system with a bath transfer. Once

a transfer to the bath is performed, the capacitance of the system is perturbed

and takes approximately one day to recover the equilibrium value. We speculate

that the reason for the long time scale for the film to come to equilibrium for

the step is that the bulk He is connected to the film via a normal film. The He

atoms in the vapor respond to the free energy difference between the film and the

bulk through a concentration gradient. The equilibration time associate with the

gradient is on the order of hours based on modeling the vapor as an ideal gas and

computing the diffusion time. This calculation is reviewed in Appendix E.

3.5 Discussion

In summary, we have undertaken measurements of the critical Casimir effect and

superfluid density in thick films of 4He. We find that finite size scaling is valid

and that our measurements agree with previous measurements and simulations.

We locate the KT transition relative to the dip maximum and find that the KT

transition in the film occurs at the beginning of the dip. Additionally, we find a

step in film thickness which can be understood in terms of a new non-universal

component to the critical Casimir effect. We attempt to develop a model to

account for this new effect from the viscous suppression of second sound modes
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in the film, see Appendix D. This new critical Casimir effect may provide insight

for the question of thermal second sound in the vicinity of Tλ.
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Figure 3.8: Plot of data from Figure 21 from [17] with our data plotted in solid.
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Figure 3.9: This is our result for the ciritcal Casimir effect and our measurements

of the superfluid density. The traces in red are of the superfluid density. The

location of the KT transition xKT=-11.1(1) is indicated with an arrow.
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Figure 3.10: Results of slow sweeps across Tλ. The sweep rate is 5 µK/hr. The

step is reproducable when swept from above or below.
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Figure 3.11: Plot of the ratio of the film thickness step to the film thickness versus

the film thickness. The curve is the ratio of a fitting energy, ∆F, to the Van der

Waals energy of the film. The fitting energy corresponds to 1 µK.
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APPENDIX A

The Cryostat

In this appendix, the general experimental set-up and methods used for both the

third sound and the critical Casimir effect measurements are described. For this

experiment, a continuous flow 1 K pot cryostat on loan from the Jet Propulsion

Laboratory was rebuilt, see Figure A.1 for a picture of the cryostat. For a basic

review of 1 K pot cryostats, see Refs. [67, 55, 25]. A vacuum can attaches to the

bottom of the 4 K flange and defines the volume for the experimental space of the

system. The cryostat is inserted into a LN2 jacketed research dewar supported by

air springs to reduce vibrational sources of noise. The hold time of the 4He bath

is approximately 1 week. The hold time sets the limit for the time to perform

measurements of an undisturbed system. This is a fundamental limitation for

studying an undisturbed film. The thermal variations caused by the bath transfer

can take up to a day to dampen out. In Figure A.2, a diagram of the interior

space of the vacuum can is presented. In this Appendix, we will describe the major

components of the cryostat. Connections to the components within the vacuum

can are made through the 4 K flange via electrical and vacuum feedthroughs. The

primary components within the vacuum can are the 1 K pot, thermal regulation

stages, and the experimental cell. Each of these systems will be reviewed in the

following sections.
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300 K Flange

4 K Flange

Experiment 
Stage

Figure A.1: Picture of the Cryostat. The various stages of the cryostat are labeled

for reference.
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Figure A.2: Diagram of the experiment inside of the vacuum can. Heaters are

indicated in red, thermometers are indicated with blue. The cold valve is indicated

as being on the cell since it is thermally anchored to the cell. The purpose of this

diagram is to map the intended thermal network. External heat loads are not

indicated.
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Thermometer

Thermal
Link

Heater

Figure A.3: Picture of the 1 K pot as mounted in the cryostat. Components of

the pot are indicated in the figure. The impedance is a fine capillary tube. In the

picture, most of the impedance is wrapped around the top of the pot. The mating

surfaces of the pot are gold plated in order to minimize the thermal boundary

resistance.
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A.1 1 K Pot

The 1 K pot is the source of cooling power for this experiment. The 1 K pot

system can be understood as composed of three elements; a pumping line to room

temperature which connects to a pump, a volume to contain LHe, and a capillary

line connecting the volume to the LHe bath space exterior to the vacuum can.

The volume is often referred to as the ’pot’. The capillary line acts as a flow

impedance to regulate the filling rate of the volume. The pressure differential

across the impedance acts to siphon LHe in the pot. See Figure A.3 for a picture

of the pot used for this experiment. The recipe detailed in [55] was used to

construct (and troubleshoot) the 1 K pot system.

The base temperature and the ultimate cooling power of a 1 K pot are related

to each other through the impedance of the fill line by an empirical relation which

was first described by L.E. DeLong et al.[68]. This equation establishes the trade

offs in 1 K pot design. Through tuning the magnitude of the impedance, the base

temperature and the cooling power of the pot is determined. A higher impedance

will result in a lower base temperature, but that is at the expense of cooling power

and thus thermal equilibration times. The impedance of the pot line is adjusted

to optimize the cryostat performance to the requirements of the experiment. The

base temperature for our experimental run was approximately 1.5 K with a cooling

power of a few mW. It is critical to thermally isolate the 1 K pot from external

heat loads to maximize the available cooling power and attain the lowest base

temperature. The 1 K pot is thermally isolated from the 4 K flange by using a

thin walled stainless steel tube to mount the pot to its flange. The heat load from

thermal radiation propagating though the pumping line is minimized by placing

radiation baffles in the 1 K pot pumping line.

The 1 K pot is thermally anchored to the experimental cell through three

thermal stages, see Figure A.2. The connection to the thermal stages is through a
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link designed to maximize the thermal conductivity between the 1 K. The mating

surfaces are gold plated and the thermal link (see Fig. A.3) is fabricated from

OFHC copper.

A.2 Thermal Regulation

The remainder of our temperature regulation system is composed of three suc-

cessive thermal stages between the pot and the experimental cell, see Figure A.4.

Germanium resistance thermometers and resistive heaters are placed on each stage

and the pot. Two sets of a thermometer and a heater are mounted on the cell.

One set is on the cell body and the other set is on the λ stage, see Section A.3.

Thermal connections are made between successive stages through high conduc-

tivity OFHC Copper wire of 1
8

inch diameter. Copper washers are hard soldered

to the ends of the wires, the assemblies are ultrasonically cleaned with acetone

and then the mating surfaces are electroplated with gold. All of this is to ensure

the highest thermal conductivity between successive stages to minimize thermal

time constants and lower thermal resistance between stages [67]. Temperature

was measured and controlled using PID temperature controllers 1.

For experimental runs, the three thermal stages were controlled with the PID

temperature controllers and the experimental cell was not directly controlled.

Approximately 1 mW was used to control the temperature of the system near Tλ.

For our measurements near Tλ, above 2 K, we raise the base temperature of the

pot by throttling the conductance of the pot pumping lime. This is done to limit

the amount of heat that must be introduced to regulate the system temperature.

In this way, we further minimize thermal gradients in the cell.

A generic calibration curve is used for all the thermometers except for the one

mounted on the experimental cell. The cell thermometer is calibrated using the

1Neocera LTC-21
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Experiment
Stage

Figure A.4: Picture of the interior of the vacuum can. The various stages within,

the 1 K pot, and the cold valve are labeled for reference. The experimental cell is

bolted to the bottom the experimental stage.
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4He vapor pressure curve and the λ stage. The λ stage provides a measurement of

Tλ, it will be described in the following section. The bulk of the data to calibrate

the cell thermometer is from the vapor pressure curve calibration.

The vapor pressure calibration was performed by introducing enough helium

to achieve a saturated vapor in the vacuum can in order to thermally short the

thermometry to the bath. The bath was then pumped through a mechanical

pressure regulator2. The regulator was used to throttle an impedance between

the bath and the pumping line in order to regulate the pressure in the bath. In

this way, the pressure in the bath was stepped through the λ point allowing the

system to thermally equilibrate between pressure steps. The pressure in the bath

was measured with a Baratron pressure gauge. This calibration was conducted at

the end of the experimental run since it required the introduction of helium into

the vacuum can space. In the next section, the experimental cell will be described.

A.3 The Experimental Cell

The experimental cell has four primary components; the electrode assembly, flange,

body, and the reference capacitor assembly, see Figure A.5 for a picture of the

cell. The cell is fabricated from oxygen free high conductivity copper for it’s high

thermal conductivity in the temperature range of interest [55, 67]. Thermal con-

nections to the cell from the third stage are made in the same way as described in

the previous section. Nested within the cell is the electrode assembly. The helium

film is adsorbed onto all surfaces with the cell body, but measurements are only

performed on the the film adsorbed on the opposing surfaces of the electrodes

within the assembly, see Figure 3.4.

The electrode assembly is fashioned from oxygen free high conductivity copper

for the superior thermal conductivity it provides. The bottom half of the electrode

2Precision Pressure Regulator Mark II, Del Monte Technical Associates
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Capacitor
Assembly

Cell Flange

Cell Body

Cell GRT

Figure A.5: Picture of the experimental cell in the orientation for joining to the

experimental stage, see Figure A.4. The primary visible components are labeled.
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assembly has four quadrants(see Figures 3.4 and A.6) electrodes. These electrodes

are opposite the primary electrode. This geometry is used in order to probe the

helium films with third sound. As well, it allow the investigation of potential

systematic errors from tilt, particle contamination, or capillary wetting of the

gap. In this way, the different quadrants act as a control on the measurements we

are making. By measuring the film thickness change on multiple quadrants, we

are able to exclude these possible sources of film thickness change. A duplicate

electrode assembly is fabricated and mounted in the reference capacitor assembly,

see Figure A.5. It is used for the bridge circuit measurement described in Section

??.

The electrodes are potted with Stycast 1266 into the electrode supports. The

electrode supports are grounded to minimize cross talk between quadrants. As

well, the supports are used to set the gap between the opposing electrodes. Once

the electrode assemblies are fabricated, the surfaces are diamond turned to achieve

a nanometer scale surface roughness3, see Figure A.6. This is critical fabrication

step since the films we are measuring are on the order of 30 nm thick. Using an

AFM we are able to determine that the surface roughness is less than 10 nm. A

relief channel is machined out of the region surrounding the electrodes to forestall

capillary filling of the gap, see Figures 3.4 and A.6. The gap is set by placing a

spacer of 60 µm thick Kapton film between the electrode holders. The area of a

quadrant electrodes is 1 cm2. Thus the empty cell capacitance of a quadrant is

approximately 15 pF.

The electrode assembly is mounted on the cell flange, see Figure A.7. The

gap between the cell flange and the assembly is where the majority of the liquid

helium in the cell is contained. The gap height is about 3 mm. The film thickness

is changes by changing the height of the bulk helium in the cell. The interior

volume of the cell body is minimized (approximately 10 cc) in order to minimize

3The diamond turning step is performed by KAF manufacturing.
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Figure A.6: Picture of the electrode assembly. The assembly is fabricated at

UCLA and sent out for the final step of diamond turning of the faces. The

mirror-like quality of the surfaces can be seen in the picture.
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the change in the capacitance signal during temperature sweeps from condensa-

tion/evaporation of the liquid helium in the cell caused by the changing vapor

pressure. We estimate that the change in film thickness caused by the change in

film height is less than 0.1 Å over the full range of temperature measured in the

experiment.

The cell component are cleaned and assembled in a class 100 clean room4 to

minimize particulates within the cell. Additionally, the interior side of the fill

line to the cell is terminated with a 5 micron sintered filter disk to prevent large

particulates from entering the cell post assembly, see Figure A.8. The cell fill line

is routed through a pressure actuated cold valve thermally anchored to the cell,

see Figure A.4. The cold valve is closed each time the cell is dosed with helium

during the run. This ensures that thermomechanical effects along the fill line do

not perturb the helium within the cell. The cell fill line enters the cell through

the λ stage. The λ stage is integrated into the cell flange to accurately determine

the location of the λ transition in our system, see Figure A.8.

The λ stage consists of a copper block on the end of a quarter inch diameter

thin walled stainless steel tube, see Figure A.8. This forms a volume that contains

a 0.25 cc volume of LHe. When the cell crosses the λ point in temperature, a

discontinuity is registered in the resistance between the thermometers attached

to the cell and the λ stage. This is caused by the diverging heat capacity of the

helium in the cell at the λ point. Since the connection between the copper block

and the cell is made from a thin walled tube of stainless steel, the thermal link

between the λ stage and the cell is primarily through the LHe in the tube. Thus,

the λ stage can be used as a fixed point for the thermometry calibration. The λ

point is know to 10 µK for the system. The limit on the certainty for Tλ is from

the uncertainty in the measurement of temperature for the cell GRT.

The cold valve is a critical component of the experimental cell because it

4UCLA Nanoelectronics Research Facility
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Figure A.7: Picture of the electrode assembly mounted on the cell flange. The

gap between the cell flange and the assembly is filled with liquid helium during

the experimental run. The cell fill line is visible at the bottom of the flange.
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Fill Line

Connector
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Fill Line
Filter

Figure A.8: Pictures of the cell flange. The profile of the λ stage is displayed in

the upper panel. Flanking the λ stage are feedthroughs to connect to quadrant

electrodes. In the bottom pane the underside of the cell flange is displayed.
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isolates the cell once it is charged with a 4He fill. If the cell is not isolated, then

the 4He in the cell will form a film in the fill line which will thermally connect the

cell to other parts of the cryostat. Thus it would introduce a thermal gradient

in the system. The design of the cold valve is based on a published design[69].

The cold valve consists of a flow side and an actuation side, see Figure A.9.

When pressure is introduced on the actuation side, a stainless steel diaphragm

is deflected. Its deflection forces a torlon needle to press against a seat, thus

isolating the cell from the fill line. The valve is normally open and is closed with a

minimum of 120 PSI of pressure. Upon running the system, it was discovered that

when the valve is operated on the lower end of the operating range of pressure, a

heat load introduced on the cell. The origin of the load may be from coupling the

cell to the bath through the cold valve actuation line. This problem was resolved

by operating the valve at 450 PSI in order to solidify the helium in the actuation

line. See Figure A.9 for a schematic of the valve.

Two measurement configurations are used in the experiment; a capacitance

bridge to measure film thickness and a capacitive third sound generation with

charged bias detection scheme. The capacitance bridge measurement is described

in Section ??. This technique allows the for sub-Å resolution of film thickness

changes over long periods of time. While, the third sound generation and detection

configuration is described in Section 3.3. Essentially, the technique is to drive

one electrode with a sinusoidal electrical potential while detecting the response

on a diagonal electrode using the charged bias detection technique described in

Reference [5].
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Figure A.9: Diagram of the Cold Valve.
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APPENDIX B

Depletion of ρs in Thick Films

As mentioned earlier in Section 2.1.3, there are two components which determine

the depletion layer; the Van der Waals pressure in the film, and the coherence

length. We have developed a model of the pressure in the film based on the

exponential atmosphere model [70]. Following that model, a simple differential

equation can be used to describe the derivative of the pressure in the film in terms

of the Van der Waals force of the substrate on the film;

dP

dz
= −fvdW (z)ρ(z, P ) (B.1)

Assume a simple form for ρ, namely, the height variation in rho is simply from

the pressure and that ρ is a linear function of pressure. The Van der Waals force

is a know expression of the film height[2]. So, the differential equation becomes

dP

dz
= −γ0d0(3d0 + 4z)

z4(z + d0)2
(ρ0 + αP (z)) (B.2)

This equation can be solved numerically using the boundary condition that

the pressure far from the film is zero. The solution of Equation B.2 gives the

pressure in the film as a function of height. From the know properties of Helium

[2], a function can be constructed to describe the phase boundary of He II in the

Pressure, Temperature plane. This phase boundary includes the solid layer and

the pressure induced normal layer (above the lower λ point, 1.76 K). Using the

equations, the pressure induced depletion layer as a function of temperature can
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be interpolated.

The other contribution to the depletion layer comes from the healing length[40,

41, 27]. The healing length is the length over which the superfluid density recovers

to the bulk value near a boundary. The healing length is proportional to the

bulk coherence length, the constant of proportionality depends on the boundary

conditions. From previous measurements [28], the bulk coherence length is

ξ = ξ0t
−1/ν (B.3)

where ξ0 ≈ 3.5

A, t is the reduced temperature, and ν = 2/3. Using the numerical model of the

pressure effects and the healing length, we plot ρ̄s
ρs

in figure 2.7.
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APPENDIX C

Boundary Attenuation Model

In order to model the attenuation at the boundary, we model the problem as a

transmission and reflection problem. We model the boundary as the edge of the

substrate. At the substrate edge, the film surface follows the curvature of the

substrate edge. The curvature of the film surface increases the free energy at the

surface. Using the surface tension of Helium, we can estimate the contribution to

the surface energy from the boundary.

Uboundary ≈ α(T )r (C.1)

where α is the surface tension and r is the radius of curvature of the film edge.

We estimate that r is of the order of 10 µm based on the roughness of the edge. We

can then include this term into the expression which determines the equilibrium

film thickness and use this to estimate the thinning of the film on the boundary,

mgh =
γ0

d3

(
1 +

d

d1/2

)−1

+ Uboundary (C.2)

In this expression, γ0 is the Van der Waals acceleration constant for He on a

copper substrate, and d1/2 is the corresponding retardation parameter [37]. This

contribution acts to lower the film thickness relative to the film on the substrate.

The change in film thickness for a 300 Å film is approximately 30 Å. These changes

in the force on a He atom at the surface of the film and the film thickness lead

to a change in the third sound speed, see Equation 2.7. The ratio of the speed in
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the film and at the boundary can be used to calculate a reflection coefficient for

the boundary.

R =

(
cf
cb
− 1
)1/2

(
cf
cb

+ 1
)1/2

(C.3)

where cf is the third sound speed in the film and cb is the third sound speed in

the boundary. Using these expression we estimate that the reflection coefficient

drops by ten percent from 1.5 K to Tλ. The reflection coefficient is inversely

proportional to the attenuation. So, we can expect that changes in boundary

reflection will lead to an increase of 10 percent to third sound attenuation in the

films studied. This does not account for the peak in attenuation which is the

primary result of the measurements, Figure 2.8. There is a slight increase of the

attenuation from 1.6 to 2 K. This may be explained by the change in reflection

coefficient.

84



APPENDIX D

The Energy of Second Sound

Within tens of µK of the λ transition, there is a step in the film thickness which

scales with Van der Waals energy of the film, see Fig. 3.10. This step is only

observable when the thermal sweep rate is extremely small, µK per hour. That

the sweep rate must be so small points away from a non-equilibrium source of

film thickening such as the thermomechanical effect. The film in this temperature

regime is completely normal and is far from it’s transition temperature. In terms

of what is occurring in the cell, the most significant element is the bulk Helium in

the cell which is undergoing the λ transition. We can conjectured that the energy

driving the change in the film thickness arises from a bulk phenomena and the

film is acting as a probe of the bulk.

In this appendix, we will explore the possibility that the onset of thermally

excited second sound modes in the bulk is responsible for the step in film thickness

observed at the λ transition. In the following calculation, we will use second sound

data from the hydrodynamic regime to model the bulk free energy.

D.1 Debye Calculation

We can model the system as a Debye solid. The expression for the free energy per

unit volume of the sound modes for the Debye solid model is

FE =
3KBT

(2πC)3

∫ ωD

0

ω2ln
(

1 − e
− h̄ω
kBT

)
dω (D.1)
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where C is the speed of sound [71], the limit of integration is the Debye fre-

quency, ωD and the other terms have their usual connotations. For our calculation,

we are interested in the free energy of the second sound modes for 1 cc of bulk

4He. The expression becomes

FE2(T ) =
3V KBT

(2πC2(T ))3

∫ ωD(T )

0

ω2ln
(

1 − e
− h̄ω
kBT

)
dω (D.2)

where V is 1 cc, C2(T ) is the speed of second sound explicitly noting the

temperature dependence and the remaining terms have the same meaning. We

can estimate the Debye frequency cut-off using the second sound speed and the

damping coefficient for second sound, D2(T ) with units of cm2/s. We take the

Debye frequency to be

ωD =
C2

2

D2

(D.3)

In order to calculate the free energy, we introduce the change of variable,

xD =
h̄ωD
kBT

(D.4)

the expression for the free energy becomes,

FE2(T ) =
3V (KBT )4

C2(T )3h̄32π2

∫ xD

0

x2ln
(
1 − e−x

)
dx (D.5)

Using data for D2 from Ref. [64] and data for C2 from [2], we can now calculate

the free energy using a suitable mathematical program. The result of such a

calculation is presented in Fig. D.1. It fails to represent the phenomena we observe

because as the temperature decreases to far below the λ point, the free energy

gets much larger than a few ergs. For this model to be reasonable, there must be

some second sound modes in the film to drive the energy difference between the

film and the bulk to zero when the system is far from the λ point.
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Figure D.1: Plot of the bulk free energy using Eq. D.5. The insert is the same

curve close to Tλ.
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We develop an expression for the free energy in the film. The leading term

will be the same for the film and the bulk. The difference will lie in the limits

of the integration. Second sound modes in the film are limited by the viscous

penetration depth, Eq. 2.1. We expect that low frequency second sound will be

damped out in the film when the viscous penetration depth is on the order of the

film thickness. We can use the film thickness to set the cut off frequency in the

film by using the viscous penetration depth expression.

ωC =
2η

ρΓd2
(D.6)

In this expression, η is the viscosity, d is the film thickness, and ρ is the density.

We introduce the term Γ in the expression as a tuning parameter. Since we do

not know exactly the ratio of the film thickness to the viscous penetration depth

at the cut-off, we introduce this tuning parameter and expect it to be on the order

of one. The spectrum of second sound in the film would range from the cut-off

frequency to the debye frequency. Taking the difference of the two integrals would

result in changing the limits of integration. Instead of integrating from 0 to ωD,

we would integrate from ωD to ωC . Thus, we wound find the difference in energy

between the second sound modes in the film and in the bulk to be

∆FE2(T ) =
3V (KBT )4

C2(T )3h̄32π2

∫ xD

xC

x2ln
(
1 − e−x

)
dx (D.7)

With the choice of Γ=3, the result is plotted in Fig. D.2.

The issue of the energy difference far from the λ point seems to be resolved

by adding modes to the film. The energy difference has a very sharp fall off and

is thus consistent with our experimental data. The issue that remains with the

model is that there are practically no modes in the bulk near Tλ. The energy

difference of a few ergs between the bulk and the film is from modes in the film.

Close to Tλ, xC > xD. This is not a physically meaningful result.
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cutoff in green close to the λ point.
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Alternatively, we can return to Eq. D.5 to see at what temperature the free

energy of the bulk is on the order of an erg. This could be the temperature at

which there is onset of second sound in the film. In this way, second sound modes

in the film would drive the free energy difference to zero below the threshold

temperature. While above the threshold, second sound does not propagate in the

film. From inspecting the insert for Fig. D.1, the threshold temperature would

be approximately 100 µK. This is on the order the onset temperature we observe.
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APPENDIX E

Equilibration Time

In our measurements of the critical Casimir step at Tλ, the film takes approx-

imately 10 hours to equilibrate. Since the film is above TKT , a much longer

equilibration time is to be expected since Helium atoms will no longer be trans-

ported through the film in response to chemical potential gradients. Since this

channel for transport is closed, the only remaining channel is through the vapor.

As a first step to quantifying the expected time to equilibrium, we model the

system as a drift potential imposed on a thermal system where KBT >> Udrift.

From the Einstein diffusion relation and the properties of the 4He vapor, we can

get a time constant [71].

µ =
D

KT
=
vdrift
Fdrift

(E.1)

From the vapor properties we can estimate the diffusion constant. From the

Van der Waals energy change corresponding to the step we can estimate the drift

force. The diffusion constant can be estimated using the mean free path and the

thermal velocity;

D ≈ λvthermal = 5 × 10−2cm2/s (E.2)

Where λ = 4 × 10−6cm and vthermal = 1.2 × 104cm/s

Fdrift =
∆Uvdw
∆X

(E.3)
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∆X = .1cm is the distance from the bulk to the film and ∆Uvdw = 1µK.

Rearranging;

τdrift =
(∆X)2(KT )

(∆U)D
≈ 105seconds (E.4)

The result is an order of magnitude too large. Improving the model can be

done through refining the model of the diffusion constant E.2. This is a first step

for understanding the length of time necessary to achieve the equilibrium film

thickness value when the system is near Tλ.
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