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Abstract

Automated Model Construction for Image-Based Cardiac Computational Simulations

by

Fanwei Kong

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Shawn Shadden, Chair

This dissertation seeks to develop novel data-driven algorithms to automatically construct
simulation-suitable meshes from volumetric medical image data to enable high-throughput,
large-cohort analyses of patient cardiac function from medical image data. Image-based
cardiac modeling derives geometries from patient medical image data, and can simulate a
variety of aspects of cardiac function, including electrophysiology, hemodynamics, and tissue
mechanics to explore improvements in cardiovascular diagnoses and treatments, and the
biomechanical underpinnings of diseases. However, creating accurate models of the heart
from patient image data requires significant time and human efforts and is the primary
challenge of image-based modeling.

Deforming-domain computational fluid dynamics (CFD) simulations of the intracardiac
hemodynamics, in particular, require both the geometry and the deformation of the heart
from a sequence of image snapshots throughout the cardiac cycle. In the first part of the the-
sis, we present a two-stage approach to automatically generate CFD-ready left ventricle (LV)
models from patient image data. This approach first uses deep-learning-based automatic seg-
mentation and then uses geometry processing algorithms to robustly create CFD-suitable
LV models from image data.

In the remainder of this dissertation, we developed end-to-end deep-learning algorithms to
directly construct the surface meshes of the whole heart from volumetric medical image data
without the need for a multistage approach. These algorithms leverage shape templates,
shape deformation methods, and regularization functions during optimization to generate
meshes that are suitable for computational simulations. Namely, we trained a graph convo-
lutional neural network to deform a pre-defined mesh template to fit the whole heart in a
target 3D image volume. Various mesh deformation methods were combined with deep learn-
ing to create whole heart surfaces, including direct displacements on meshes, free-form de-
formation by control lattices as well as control-handle-based deformation using bi-harmonic
coordinates. We demonstrated the application of our method in constructing a dynamic
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whole heart mesh from time-series CT image data to simulate the cardiac flow driven by
the cardiac motion. We also demonstrated the capability to switch template meshes to
accommodate different modeling requirements.

The algorithms developed in this thesis were able to construct a 4D dynamic simulation-
suitable mesh of the heart within a minute on a standard desktop computer whereas prior
methods require hours of human efforts and multiple programs. The code was implemented
in Python, fully open-sourced, and can be conveniently executed from the command line.
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Chapter 1

Introduction

1.1 Motivations

The heart is a complex physical system involving the coupling of electrophysiology, solid
mechanics, and fluid mechanics. During a heartbeat, the sinoatrial node, which is a small
bundle of specialized cells in the right atrium, initiates a voltage signal or action potential
that is produced periodically. Due to this reason, the sinoatrial node is also called the
natural ”pacemaker” of the heart. Next, the action potential travels to the atrioventricular
node through the Bundle of His, causing the atrium to contract and forcing part of the blood
in the atrium into the ventricles. The electrical signals further travel down the branches of
the Purkinje Fibers to the myocardium, causing the ventricles to contract, pumping blood
out of the heart.

Heart disease is the leading cause of death worldwide and in the United States alone,
659,000 people die from heart disease each year, which is 1 in every 4 deaths [158]. Un-
derstanding the malfunctioning of the heart is difficult due to the complex interaction of
biomechanics, electrophysiology, and hemodynamics within the heart. Treatments of cardiac
diseases are further complicated by the interaction between the heart and implantable med-
ical devices, the variations of cardiac physiology among patients, and the currently limited
capability of extracting information about the (patho)physiological process for individual
patients [100]. Current treatment strategies for cardiac diseases have been primarily based
on randomized clinical trials which study therapies that are beneficial at the population
level. However, there has been a growing realization that patient groups are less uniform
and can show variability in response to the same medical therapies [23, 76].

Consequently, one area of research that currently receives considerable attention is com-
putational modeling of the heart from patient-specific clinical data to provide tailored un-
derstanding and treatment that suits an individual’s pathology. This approach derives per-
sonalized geometries of the heart from image data, integrates the patient’s diagnostic clinical
measurements, and numerically solves mathematical equations that describe various physi-
ology on discretized computational domains. A few review articles have thoroughly summa-
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rized computational modeling of electrophysiology [152, 151, 149, 102], hemodynamics [9,
94, 177, 147], tissue mechanics [160, 103] and multi-physics coupling [123, 100, 104]. Such
“digital twin” modeling of a patient’s heart can provide information that cannot be readily
measured to facilitate diagnosis and treatment planning for individual patients [2, 171, 56,
122, 135, 146, 71]. It can also be used further quantify biomechanical underpinnings of car-
diac diseases [37, 119, 92, 145]. This paradigm has motivated numerous research efforts on
a wide range of clinical applications, such as simulations of the stress and strain of cardiac
tissues when interacting with implantable cardiac devices[69], the cardiac flow pattern after
surgical corrections [56, 71], and cardiac rhythm outcome after ablation surgery [171, 122].

Generating simulation-suitable models of the heart from image data has remained a time-
consuming and labor-intensive process. While earlier computational cardiac modeling often
used generic idealized shapes of the heart, personalized shape models provide necessary geo-
metric details for personalized treatment planning and optimization. Segmentation of cardiac
tissues is often obtained manually or semi-automatically from medical imaging techniques
(computerized tomography, magnetic resonance, X-ray, and echocardiogram), followed by
manual construction of computational meshes and complicated steps to label various sur-
faces or regions for the assignment of boundary conditions or parameters for computational
simulations. Much of the challenge is related to the entwined nature of the heart, difficulty
differentiating individual cardiac structures from each other and the surrounding tissue, and
the large deformations of these structures over the cardiac cycle. Consequently, model con-
struction is the major bottleneck limiting large-cohort validations and clinical translations of
functional computational heart modeling[94, 144, 75, 107]. Indeed, prior studies have been
limited to only a few subjects[94, 56, 97, 20, 14, 98, 61, 131, 121, 5].

Deep learning methods can train deep artificial neural networks from existing data to
automatically process information. As their names suggest, deep neural networks are in-
spired by the connections of biological neurons in the human brain. Namely, they are often
designed to include many layers of artificially connected ”neurons” or computational nodes
that have associated weights and operations to produce the corresponding outputs given the
input information that they received from the previous layers. The computational nodes will
send information to the next layer if their outputs activate some non-linear activation func-
tions. The weights within a neural network will be optimized using a set of training data so
that the outputs from the neural network will approximately minimize an objective function.
During the past decade, a class of artificial neural networks, convolutional neural networks
(CNNs) have demonstrated great success in visual pattern recognition, powered by the re-
cent availability of big data. They were inspired by the organization of the animal visual
cortex to use layers of localized convolutional kernels with trainable weights that are shared
across the entire image to hierarchically process image features from low levels to high levels
[35, 73, 172].The effectiveness of deep learning using CNNs was first demonstrated in image
classification [70, 124] but then rapidly expanded to a wide range of computer vision appli-
cations, including segmentation [138, 17], object detection [125, 127], image restoration[89,
175], super-resolution[74, 28], and synthesis[40, 59, 178].

Deep learning methods using CNNs have since been widely adopted in many medical
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image analysis applications [82]. Among the most popular methods are nnU-Net for seg-
mentation [51] and VoxelMorph for registration [8] of anatomical and/or pathological struc-
tures from patient medical scans. Within the field of whole heart segmentation that this
dissertation is related to, several deep-learning-based approaches using CNNs have achieved
higher segmentation precision of the heart than prior model- or atlas-based segmentation
approaches and are much faster in practice [6, 182, 10, 99]. The prior model- or atlas-based
segmentation approaches work by fitting surface meshes of the heart to target images using
local optimization to match with tissue boundaries on input images [30, 31, 117]. Therefore,
they are often sensitive to initialization and require complicated steps and manual efforts to
construct a mean template of the heart.

Most deep learning methods for medical image segmentation have, however, focused on
segmentation (pixel classification) rather than the construction of a computer model of the
heart, usually represented by tessellated meshes. They are often optimized for pixel-wise ac-
curacy and thus lack awareness of the overall shape and anatomy of the target organs. A few
prior studies have combined deep learning and CNNs with atlas propagation or geometry-
aware shape refinements to incorporate anatomical shape priors in deep-learning-based seg-
mentations [29, 47, 162]. Others have leveraged carefully designed objective functions to
encourage more anatomically plausible segmentations [79, 87, 93]. However, how to use deep
neural networks to directly produce heart geometries that are suitable for various types of
functional computational modeling of the heart remains to be addressed.

Geometric deep learning has extended the concepts of the convolutional neural network
on irregular graphs to work with 3D shapes [25, 11, 44]. There are two major types of graph
convolutional neural networks (GCNs) and different GCNs along with their applications have
been summarized in [174]. The first type defines graph convolutions in the spectral domain
based on the graph Fourier transform [25], and the second type defines convolution in the
spatial domain based on aggregations of node features within the node neighborhoods [44].
Computational heart models require surface or volumetric meshes, which can be represented
as irregular graphs. Following the success of GCNs, a few learning-based approaches have
been proposed to automatically reconstruct 3D objects in the form of surface meshes from
2D camera images [159, 54, 36, 111, 81]. However, these methods cannot be directly applied
to generate meshes from medical images, which are inherently different from camera images.
The major challenge is the high dimensionality of medical image data, which is often available
as 3D volumes where various internal tissues or organs appear with different signal intensity
values. Each 3D medical image volume often contains a few million voxels, which poses
difficulties in efficiently generating high-resolution 3D meshes of complex cardiac structures
within the limits of computational resources.

1.2 Contributions

The goal of this dissertation is to develop novel data-driven algorithms to automatically
construct simulation-suitable meshes from volumetric medical image data to enable high-
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throughput, large-cohort analyses of patient-specific cardiac function. Among various func-
tional simulations, the dissertation targets the deforming-domain CFD simulations of the in-
tracardiac hemodynamics, which is particularly labor-intensive since it requires reconstruct-
ing temporally-consistent deformations of the heart from a sequence of images snapshots [94,
97, 20, 14, 98, 61, 131].

Chapter 2 first presents a multi-stage framework to automatically generate CFD-ready
left ventricle (LV) models from patient image data. The framework first uses a deep con-
volutional neural network to automatically and accurately segment cardiac structures and
then uses geometry processing algorithms to robustly create CFD-suitable LV models from
segmentations, as well as registration algorithms to obtain the motion of the heart over time.

The intermediate segmentation step often produces extraneous regions containing topo-
logical anomalies that are unphysical and unintelligible for simulation-based analyses. A
major contribution of this dissertation is thus to address the end-to-end learning between
volumetric medical images and simulation-suitable surface meshes of the whole heart, namely,
heart chambers and great vessels. We propose to directly reconstruct the surface meshes of
the whole heart from volumetric medical image data without the need for a multistage ap-
proach that involves an intermediate segmentation step. Despite the entwined nature of the
heart, we observe that all of the individual cardiac structures are homeomorphic to spheres.
We thus propose to reconstruct whole heart surface meshes by learning to deform meshes
of spheres and thereby naturally produce topologically correct cardiac structures. Chapter
3 presents our approach that directly reconstructs the surface meshes of multiple cardiac
structures in a 3D image volume by using graph convolutional neural networks to deform
pre-defined mesh templates of spheres.

Meshes for computational simulations need to be smooth (i.e. polygons are smoothly
connected except along the feature edges) and free of topological artifacts. These require-
ments can only be weakly enforced with mesh regularizers (Laplacian, edge length, normal
consistency, etc) in the objective functions, as done in chapter 3. Furthermore, image-based
computational simulations have various requirements for what cardiac structures to include
in the computational domains, mesh resolutions, and ways to define boundary geometries.
Chapters 4 and 5 present our approaches to directly construct meshes that are suitable for
cardiac computational simulations from patient image data. Namely, our approaches com-
bine space deformation techniques with neural networks to ensure the smoothness of the
predicted meshes intrinsically and learn to deform the space enclosing a whole heart tem-
plate to construct meshes that match with patient image data and satisfy various modeling
requirements. In contrast to learning per-vertex mesh displacements directly, as described
in chapter 3, the neural networks learn the translations of a small set of control points that
parameterize the deformation of the space and thereby smoothly deform the template mesh.
The space parameterization method can be either free-form deformation by control lattices
described in chapter 4 or, in chapter 5, control-handle-based deformation using biharmonic
coordinates to support more detailed local deformation with fewer control points.

The approaches presented in this dissertation are the first to demonstrate capability in
the direct generation of simulation-suitable meshes of the heart from medical images. We
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demonstrated the application of our methods in constructing dynamic meshes of the heart
from time-series CT image data to simulate the cardiac flow driven by the cardiac motion.
We also demonstrated the capability to readily switch template meshes to accommodate
different modeling requirements after training.

1.3 Prior Publication and Software Availability

Much of the content presented in this dissertation has been previously published or is cur-
rently under review. These publications are the results of joint efforts with my advisors
Shawn Shadden and Nathan Wilson. My contributions include conceptualization, method-
ology development, conducting experiments, and preparing the drafts of the papers. All
co-authors have provided written consent for the inclusion of their work in this dissertation.
A list of papers used to develop Chapters 2, 3, 4, and 5 are listed below.

Chapter 2 Fanwei Kong and Shawn C. Shadden. “Automating Model Generation for
Image-Based Cardiac Flow Simulation”. In: Journal of Biomechanical Engineering 142.11
(Sept. 2020). 111011. issn: 0148-0731. doi: 10.1115/1.4048032

Chapter 3 Fanwei Kong, Nathan Wilson, and Shawn Shadden. “A Deep-Learning Ap-
proach For Direct Whole-Heart Mesh Reconstruction”. In: Medical Image Analysis (2021),
p. 102222. issn: 1361-8415. doi: 10.1016/j.media.2021.102222

Chapter 4 Fanwei Kong and Shawn C. Shadden. “Automatic Whole Heart Meshes
Generation For Image-Based Computational Simulations By Learning Free-From Deforma-
tions”. In: International Conference on Medical Image Computing and Computer Assisted
Intervention (2021)

Chapter 5 Fanwei Kong and Shawn C. Shadden. “Learning Whole Heart Mesh Gen-
eration From Patient Images For Computational Simulations”. In: ArXiv abs/2203.10517,
Under review in IEEE Transactions on Medical Imaging (2022)

The code for all the chapters is open-source and available on GitHub 1. The code for
Chapter 2 has been integrated into SimVascular [155], which is an open-source software
suite for cardiovascular simulation. The code for the rest chapters will also be integrated
into SimVascular in the future.

1https://github.com/fkong7
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Chapter 2

Automating Model Generation For
Image-Based Left Ventricle Flow
Simulation

2.1 Introduction

Image-based modeling of blood flow is an important research area in biomedical engineering.
It is based on applying computational fluid dynamics (CFD) to image-based computer models
of the heart, arteries, or veins to compute patient-specific blood flow information that is not
measurable in vivo. This paradigm has also recently gained broad clinical use for coronary
artery disease diagnosis [19].

The vast majority of applications of image-based hemodynamics modeling have been in
vascular domains. Cardiac applications, while existing, are far less common. This is despite
the fact that intracardiac hemodynamics are known to be important in the initiation and
progression of heart diseases, e.g., [115, 34, 90, 38, 114, 32, 33]. There are two main ap-
proaches to modeling intracardiac hemodynamics. The first approach tracks the deformation
of the heart from time-resolved imaging and imposes this motion to the fluidic domains in-
side the heart, which leads to a deforming-domain CFD problem[20, 14, 98, 61, 131, 9]. The
second approach couples electrophysiology, structural mechanics and fluid dynamics in the
heart so that the heart motion is solved for rather than measured [130, 56, 4]. This second
approach is formidable and is generally unnecessary if the purpose of the model is to derive
intracardiac hemodynamics. Therefore, a deforming-domain CFD approach is considered
the de facto method to derive patient-specific modeling of LV hemodynamics; it is, however,
not without its challenges. Namely, in comparison to most vascular applications, cardiac
structures undergo large deformations, and individual cardiac structures can be difficult to
differentiate from each other and the surrounding tissue. This makes generating CFD-ready
cardiac models from medical image data a substantial challenge and this is regarded as the
largest bottleneck in image-based CFD modeling of cardiac hemodynamics [94].
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Figure 2.1 shows a typical model construction workflow of CFD simulations of LV flow.
It starts with the delineation of endocardial surfaces by manual or semi-automated image-
segmentation. Most studies target left ventricle (LV) hemodynamics, and thus segment the
LV, and often portions of the left atrium (LA) and aorta (Ao) inflow and outflow tracks.
This is done for a sequence of image snapshots of the heart throughout the cardiac cycle,
resulting in a sequence of segmentations over time. The segmented regions from a chosen
time instant are used to generate a reference volumetric mesh of the fluidic domain using
appropriate mesh generation software. Then a registration process is performed to deform
this reference volumetric mesh so that its boundary is consistent with the image segmentation
sequence. These steps are generally performed using separate software tools, which further
complicates the workflow and data management. And the manual nature of the process
is prone to operator-dependent errors that are unpredictable, complicating reliability and
reproducibility.

Figure 2.1: A typical model construction workflow of CFD simulations of LV flow.

Some recent works have sought to accelerate part of the model construction process.
Schenkel, et al. [132] accelerated LV segmentation by fitting LV contours that depended on
manual seed placements and manual segmentation of the valve ring. Nguyen, et al. [101] pre-
sented a semi-automatic, minimal operator involvement approach for LV meshing, smooth-
ing and reconstruction but used simplified LV geometries generated from a closed-source
software. Khalafvand, et al. [60] developed a semi-automatic pipeline using automated
multi-atlas segmentation and statistic shape modeling of the LV, but only studied the ef-
fect of shape changes on LV flow and did not apply the method to patient-specific image
data. Vellguth, et al.[157] developed an efficient pipeline using semi-automatic segmentation
and geometric modeling packages but applied the pipelines to only one set of patient data.
These recent approaches, while accelerating some part of the model construction process,
still require various operator-dependent steps, employ closed-source software packages, or
have been tested with very few examples. A need remains to develop an automated method
to reliably generate patient-specific LV CFD models directly from image data.

Following recent developments in deep learning, automated segmentation of cardiac struc-
tures using convolutional neural networks (CNNs) has gained momentum. However, since
most deep learning approaches focus on voxel-based classification, e.g., without consideration
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of the overall topology of segmented structures, the utility of automatic CNN-based segmen-
tation for computational modeling remains unclear. Building on prior work in the area of
learning-based image classification, we present here an automated framework to generate
CFD-ready models from cardiac CT or MR scans. Our framework proposes a CNN-based
method to perform automatic segmentation of cardiac tissues from clinical imaging. We
demonstrate that our method outperforms several recently-published grand-challenge seg-
mentation algorithms [182]. We further develop automated surface processing and image
registration to generate deforming volumetric computational models suitable for deforming
mesh CFD simulations. The proposed framework can be executed from the command line
(i.e., requires no visual interventions from the user) as an automated process and has only
open-source software dependencies. We validate our model construction using both CT and
MR benchmark image data sets, and we demonstrate the viability of using the models to
perform CFD simulations of LV hemodynamics.

2.2 Methods

The proposed automated framework consists of three major steps to generate CFD-compatible
models for LV flow simulations: segmentation, mesh generation and registration. For refer-
ence, the proposed process is over-viewed in Figure 2.2.

Patient Image Data

The MMWHS dataset was recently established as part of a grand challenge to evaluate
different algorithms of whole heart segmentation[182]. The CT images were obtained from
routine cardiac CT angiography and the MR images were acquired by using 3D b-SSFP
sequences. The mean axial in-plane resolution for CT was 0.78 x 0.78 mm and the aver-
age slice thickness was 1.6 mm. The image resolution for the MR data was re-sampled to
around 2 mm along each direction. The imaging window generally spanned from the upper
abdomen to the aortic arch. The patients imaged by MR had a variety of cardiovascular
diseases, including myocardium infarction, atrial fibrillation, tricuspid regurgitation, aortic
valve stenosis, Alagille syndrome, Williams syndrome, dilated cardiomyopathy, aortic coarc-
tation, and Tetralogy of Fallot [182]. The dataset includes 60 CT and 60 MR scans. 20
CT and 20 MR scans were released as training data, which contained manual segmentation
of seven cardiac structures: LV, LA, RA, RV, myocardium, aorta and pulmonary artery.
The remaining 40 CT and 40 MR scans were considered test data, with no provided manual
segmentation as ground truth. Some datasets included segmentation of the coronary arteries
and/or LA appendage, but these were not considered for the analyses herein.

Image-based CFD simulation of LV hemodynamics requires cardiac motion over one or
more cardiac cycles. The MMWHS dataset only contains CT or MR scans of a single time
frame. This is sufficient for testing the accuracy of our automated segmentation process,
which is expected to be the most critical step in developing accurate models. However, to
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Figure 2.2: Diagram of the automated model generation framework for LV CFD simulations

test the registration process (and ultimately run CFD simulations) time-resolved image data
is required. For this purpose, time-resolved CT data sets were used to verify the complete
framework. The time-resolved CT data came from a 74-year-old male patient and a 73-year-
old male patient, respectively. Both patients had left ventricular diastolic dysfunction. The
data was de-identified and previously collected for other purposes. The mean axial in-plane
resolution was 0.44 x 0.44 mm and the slice thickness was 1.25 mm. The temporal resolution
was around 100 ms and 10 time frames were constructed for one cardiac cycle.

Intensity normalization and re-sampling were applied to all 3D image volumes to obtain
consistent image dimensions, pixel spacing and pixel intensity range. The pre-processed
image volumes can then serve as inputs to an automatic segmentation framework to generate
segmentations. We first normalized pixel intensity values of each image volume such that
they ranged from -1 to 1. Namely, CT intensity values, nominally ranging from around
-1000 to 3000, were clipped to intensity values from -750 to 750. The cardiac tissues are
well within this range while the intensity variations from bones or background noise could
be mostly removed. The intensity values were then divided by 750 such that they ranged
from -1 to 1. For MR, the intensity values depend not only on tissue properties but also on
the MR signal intensity in individual patient scans. Therefore, for each patient’s MR scan,
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the pixels intensity values were clipped between 0 and the 99th percentile to reduce bright
artifacts. The pixel values were then normalized by the maximum intensity after clipping
and then shifted such that they ranged from -1 to 1. The 3D image volumes were resampled
to have isotropic spacing and resized to 256×256×256, which maintained image resolution
with a manageable computational cost.

Automated Segmentation

Automatic Segmentation Using an Ensemble of CNNs

Our framework employed an ensemble of CNN models as described here. Broadly, using the
images as inputs, a CNN-based model outputs the probability of each image pixel belonging
to a particular anatomical domain (LV, LA, RA, RV, myocardium, aorta and pulmonary
artery). Limited by their high memory consumption and computational cost, CNN-based 3D
segmentation algorithms usually require down-sampling the input data or adopting a sliding-
window strategy to avoid running out of memory. Such compromises may lead to either low
spatial resolution of the segmentation results or high time complexity, respectively. Since 2D
CNN-based algorithms can be directly end-to-end trained, it is possible to slice 3D image
data into a number of 2D slices and then use a 2D-based algorithm on each slice. However,
2D CNN-based algorithms ignore the spatial connection between adjacent slices and thus
are not able to fully explore inter-slice information as compared to 3D CNNs. Therefore, to
overcome the memory constraint of performing a 3D CNN, and information loss of performing
2D CNNs, we utilized an ensemble of 2D CNNs to generate a 3D segmentation (Figure 2.3a).
Since deep neural network models generally have high prediction variance, ensemble learning
with deep neural networks can reduce the variance and thus better generalize to unseen data
[53, 176]. We sliced the 3D image volumes along the axial, sagittal or coronal axis to obtain
corresponding 2D image datasets. A CNN model was trained for each 2D dataset to predict
the probability of each pixel belonging to each cardiac structure. To automatically segment a
new 3D image volume, we sliced the image volume into 2D images along the axial, coronal and
sagittal axes, respectively, and utilized the corresponding trained 2D CNN model to predict
the 2D probability maps of the sliced images in each viewing axis. The 2D predictions for
slices along the same viewing axis were stacked together to form 3D predictions. These three
3D predictions, each derived from a different viewing axis, were then averaged to obtain
the final probability prediction. The determination of each 3D anatomical domain was then
achieved by finding the regions with the largest probability for each pixel. This automatic
segmentation process is summarized in Algorithm 1.

Network Architecture

The 2D CNN models were implemented based on the U-Net architecture specialized for
medical image segmentation[128] (Figure 2.3b). The network architecture included a down-
sampling path (left side) to extract features from input images and an up-sampling path
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Algorithm 1: Automatic Segmentation Using an Ensemble of CNNs

Input 3D CT/MR image I; 2D CNNs trained separately for three views
Output 3D segmentation S
Initialize a 3D probability volume P with zeros
for each view i do

for each 2D slice s in view i do
Compute the 2D probability map with the 2D CNN trained for view i

end
Assemble 2D probability maps into a 3D probability volume Pi
P ← P + Pi

end
P ← P/3 ; // Compute average probability map

for each voxel k in S do
S(k)← segmentation domain with the highest probability value in P (k)

end

(right side) to reconstruct segmentation from extracted features. The down-sampling path
included five convolution blocks. Each convolution block consisted of repeated convolutions
with multiple 3×3 convolution kernels, followed by activation functions and 2×2 max pooling
operations. The activation function was the rectified linear unit (ReLU), f(x) = max(0, x).
The max-pooling operation selected the maximum value within a 2×2 window applied across
the activation output and thus halved the spatial resolution of the output. The up-sampling
path included four convolution blocks and each block consisted of a transpose convolution and
repeated convolutions with multiple 3× 3 convolution kernels, followed by ReLU activation
functions. The transpose convolutions utilized 2×2 kernels with trainable weights to recover
the spatial dimension of the intermediate output. An additional convolution layer was applied
at the end to generate an 8-channel probability map, with each channel corresponding to
each cardiac domain. Skip connections concatenated the intermediate output from each
convolution block of the down-sampling path to the corresponding convolution block input
of the up-sampling path.

CNN Optimization

The training of our CNN models was supervised by the manual ground truth segmentation
in the MMWHS dataset. We considered a hybrid loss function that contained both multi-
class cross-entropy and dice-score loss. Namely, let L(I,G) denote the loss between the CNN
prediction P for image I and the corresponding one-hot coded ground truth segmentation
G. The hybrid loss function was

L(I,G) = − 1

N

N∑
i=1

∑
x∈I

Gi(x) log(Pi(x)) +N −
N∑
i=1

2
∑

x∈I Gi(x)Pi(x)∑
x∈I Gi(x) +

∑
x∈I Pi(x)

(2.1)
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Figure 2.3: a) Diagram of the proposed automatic segmentation approach using an ensemble
of CNNs. b) Network architecture of the 2D U-Net CNN model. Numbers illustrate the
number of convolution kernels used.

whereN denotes the total number of the segmentation (anatomical) domains, while x denotes
the pixel in the input image I. Pi(x) represents the predicted probability of pixel x belonging
to the segmentation domain i. Weights of the convolution kernels we computed by minimizing
the above loss function using the Adam stochastic gradient descent algorithm[62]. The initial
learning rate was set to be 0.0001, while β1 and β2 for the Adam algorithm were set to 0.9 and
0.999, respectively. Among the 20 CT and 20 MR patient scans, 16 CT and 16 MR scans were
randomly chosen as training data. The other CT and MR scans were considered as validation
data to select the best-performing model. Dice score was evaluated on the validation data
after each training epoch and the CNN model was saved after one epoch only if the validation
dice score had improved. Therefore, only the CNN model with the best validation dice score
was chosen for future evaluation on the held-out test dataset (which contained another set of
40 CT and 40 MR scans). We adopted a learning rate schedule where the learning rate was
reduced by 20% if the validation dice score had not improved for 5 epochs. The minimum
learning rate was 5× 10−6. The CNN models were trained on a GeForce GTX 1080 Ti GPU
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until the validation dice score converged. Data augmentation techniques of random flipping,
random shifting, random scaling and random intensity changes were also applied during
training to improve robustness. This automated segmentation algorithm was implemented
using the functionality of TensorFlow (version 1.12)[1].

Evaluation Metrics And Statistical Methods

Segmentation accuracy was evaluated with an executable provided by MMWHS organizers
[182], which computed the surface-to-surface distance errors as well as dice and jaccard
scores between our segmentation results and the (hidden) ground truth as determined by
the MMWHS organizers. Dice and jaccard scores are similarity indices that range from 0 to
1 as given by

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2.2)

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(2.3)

, where |A| and |B| are the cardinalities of the two sets of pixels belonging to a certain tissue
class in the groud truth segmentation and in the CNN-produced segmentation. Differences
in segmentation accuracy among segmentation domains were quantified using paired t-tests.

Geometry Reconstruction and Mesh Generation

We automated the geometry reconstruction and mesh generation process as described here.
The entire process was implemented in Python with open-source, Python scriptable depen-
dencies, VTK and SimVascular. For each segmentation region (LV, LA, Ao), the largest
connected region of each segmentation domain was extracted to remove any disconnected
islands. These segmentations were then smoothed by a closing filter that filled any sharp
corners and holes with a diameter smaller than 5 mm to correct non-physical segmentation
artifacts. Conversely, an opening filter was applied to remove any extrusions with diame-
ters smaller than 5 mm. Boundaries of the Ao and LA were identified. Since the ground
truth segmentation results did not consider the tissue thickness of the LA or Ao, LA and Ao
segmentations were sometimes connected, leading to an incorrect fusion between the con-
structed LA and Ao surfaces. Therefore, LA and Ao segmentations at the location of any
shared boundary were eroded until they were distinctly separated. The segmentation vol-
ume containing LA, Ao and LV segmentations was then converted to a binary segmentation
volume and re-sampled with a resolution of 1.2 × 1.2 × 1.2 mm. Illustrations of the above
segmentation processing is shown in Figure 2.4.

A marching cube algorithm [86] was applied to the processed segmentations to generate
a watertight surface mesh of the LV, LA and aorta. In order to define appropriate inlet
and outlet surfaces, clipping of the Ao and LA is generally necessary. To achieve this,
the boundary between the LV and LA (LV and Ao) was identified as the set of points
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Figure 2.4: Illustrations of segmentation errors corrected by segmentation processing. The
top and bottom images display segmentation results before and after described segmentation
processing. Red arrows indicate locations of artifacts that segmentation processing corrects.
Orange, red and blue shadings on the left and middle panels represent respectively, LV, AO
and LA segmentations. The orange shading on the right panel shows the processed binary
segmentation of LV with parts of AO and LA combined.

shared between the respective segmentations. The mitral plane (aortic plane) was fitted
through those points. The mitral plane origin (aortic plane origin) was defined by the
centroid. The LA was clipped by defining a clipping plane parallel to, and 22 mm from,
the mitral plane. The aorta was clipped using a plane parallel to, and 45 mm from, the
aortic plane origin. Based on our observations, these distances were large enough to avoid
substantial boundary effects but small enough to avoid the computational model from being
unnecessarily large. We note that naive trimming would generally truncate other parts of
the model than intended. We, therefore, constructed trimmers that isolated, respectively,
the LA or Ao regions, trimmed these isolated regions, and mapped the results back to the
unified model. The resulting mitral opening (MO) and aortic opening (AO) were smoothed
by projecting the mesh vertices to their fitted plane and applying Laplacian smoothing on
nearby mesh elements. The obtained MO and AO were then triangulated using a constrained
2D Delaunay algorithm.

SimVascular meshing functionality [155], utilizing a combination of custom code, MMG,
VMTK and TetGen, was used to generate high-quality surface and volume meshes. First,
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the trimmed model is remeshed with a maximum mesh edge size of 1.0 mm. Second, a
volume mesh is generated with a maximum mesh edge size of 1.5 mm and a boundary
layer meshing near walls. Third, non-rigid image registration of the segmentations was
performed automatically (by python scripting of SimpleElastix [64]), to appropriately deform
the volume mesh over time. During this process, points located on the MO or AO were
projected to their least-square fit plane to ensure that they remained co-planar. The mesh
generation process is shown schematically in Figure 2.5.

Figure 2.5: Surface processing strategies for converting raw surfaces processed by the march-
ing cube algorithm to CFD-suitable LV meshes. From left to right showing a raw surface
generated by the marching cube algorithm, the raw surface with its aorta (red) and LA
(light blue) trimmers, the trimmed LV model with parts of aorta and LA, the LV model
with smoothed aortic and mitral openings, and the completed LV model with identified
boundary faces of LV wall, mitral opening (MO) and aortic opening (AO) in dark blue, gray
and red.

Image-Based LV CFD Simulations

We applied the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible
Navier-Stokes equations to simulate the intraventricular flow and account for deforming
volumetric mesh. The weak formulation of the Navier-Stokes equations defined in ALE
coordinates for the 3D moving domain Ω(t) ∈ R3 is given as follows:

Find fluid velocity v ∈ Sv and pressure p ∈ Sp, such that for all test functions w ∈ Vv
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and q ∈ Vp,

B({w, q}, {v, p}, v̂) = F (w) where, (2.4a)

B({w, q}, {v, p}, v̂) = ⟨w, ρ (v̇ + (v − v̂) · ∇v)⟩Ω(t)

− ⟨∇ ·w, p⟩+ ⟨∇sw, 2µ∇sv⟩Ω(t) + ⟨q,∇ · v⟩Ω(t)

(2.4b)

F (w) = ⟨w,h⟩Γ(t) (2.4c)

where ⟨., .⟩ represents the integral inner product over domain Ω(t), ∇s is the symmetrization
of gradient operator ∇, v̂ represents the mesh velocity defined as v̂ = xt+1−xt

∆t
. h represents

boundary traction. Blood was assumed to have a viscosity µ of 4.0 × 10−3Pa · s and a
density ρ of 1.06g/cm3. The equations were solved with the open-source svFSI solver from
the SimVascular project [155, 141].

We note that LV surface and volume meshes were created at the end of diastole and
propagated to different time frames. Since the time resolution of the image data is too
coarse to be used directly in time-stepping of the Navier-Stokes equations, cubic spline
interpolation of the mesh motion was applied to generate 2000 interpolated meshes. The
mesh motions computed from these interpolated meshes were imposed as Dirichlet boundary
conditions on walls, and to the MO during systole, or to the AO during diastole. Neumann
(prescribed pressure) boundary conditions were applied to the mitral inlet during diastole
or to the aortic inlet during systole. Diastole and systole phases were determined based on
the increase and decrease of LV volume.

2.3 Results

We tested segmentation accuracy on the 40 patient CT scans and 40 patient MR scans
from the MMWHS test data set. These data were not used in any way to train the model.
Table 2.1 displays the dice and Jaccard scores and average surface distance errors of the
LV, LA and Ao produced by our automated segmentation framework. The MMWHS grand
challenge [182] reports these measures for whole-heart (WH) segmentation results (which
includes all seven segmented cardiac tissue domains) from challenge participants. In Table
2.1 we compare our WH segmentation accuracy with the top performing algorithm from the
grand challenge. For CT data, our WH segmentations outperformed the top-performing
algorithm in all metrics–mean dice score, Jaccard score and mean average surface distance
error. For MR data, our WH segmentation results achieved better mean average surface
distance errors than the top-performing algorithm but had slightly lower mean dice and
Jaccard scores.

To provide further details on segmentation accuracy, the box plots in Fig. 2.6 give the
distributions of the segmentation accuracy measures for LV, Ao, LA and WH segmentation.
For CT data, both LV and Ao segmentations were more accurate than WH segmentation in
terms of dice score (p < 0.01) and Jaccard score (p < 0.001). For MR data, LV segmentation
was more accurate than WH segmentation across all metrics (p < 0.001). Altogether, our
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LV LA Ao WH
WH (top)

[182]

CT
Dice 0.938±0.042 0.936±0.027 0.95±0.02 0.92±0.022 0.908±0.086
Jaccard 0.886±0.07 0.88±0.047 0.905±0.036 0.852±0.036 0.823±0.037
SD (mm) 0.84±0.647 0.941±0.318 0.498±0.177 0.978±0.283 1.117±0.25

MR
Dice 0.915±0.051 0.871±0.064 0.869±0.083 0.871±0.05 0.874±0.039
Jaccard 0.847±0.077 0.776±0.089 0.776±0.113 0.775±0.072 0.778±0.06
SD (mm) 1.155±0.667 1.393±0.524 2.384±1.758 1.612±0.577 1.631±0.58

Table 2.1: Dice and jaccard scores and surface distance (SD) accuracy of our LV, LA, Ao and
WH segmentations. Our WH segmentation accuracy is compared with the top-performing
algorithm from the MMWHS grand challenge [182]. All accuracy measures are represented
by mean ± standard deviation, which are computed over different patients.

segmentation algorithm performance was comparable to or better than the most accurate
grand challenge algorithms in terms of WH segmentation, and moreover, our LV segmenta-
tion, in particular, was generally more accurate than WH segmentation.

Testing the accuracy of the segmentation process is important, but only assesses the
accuracy of pixel classification. This does not directly assess if segmentations will lead to
valid model geometries, or domains that can be effectively meshed for CFD purposes and
therefore post-processing of the segmentation results was necessary. Thus we evaluated the
robustness of our geometry reconstruction and mesh generation process on the 40 CT and
40 MR scans in the MMWHS test set. We evaluated the accuracy of the post-processed
LV segmentation, whether there were any errors in geometry construction or volumetric
meshing, and finally visually inspected the models for obvious artifacts. Segmentation post-
processing slightly improved the LV dice score and average surface distance errors for MR
data. For CT data where our segmentation framework already generated more accurate LV
segmentation than MR data, post-processing slightly reduced the LV segmentation accuracy.
Figure 2.7 displays the segmentation and the constructed LV models from the CT data
within the 10th, 50th, and 90th percentiles and the “worst case” scenario encountered in
terms of LV surface distance errors. For all but one segmentation result obtained from the
40 CT patient scans, our framework was able to generate the reconstructed LV geometry
with LA and Ao extensions and produce a valid volumetric mesh. The remaining case had
segmentation that contained holes too large to be removed by our baseline, automatic post-
processing. Although model geometry and mesh were constructed, visual inspection detected
large artifactual indentations. Not surprisingly this model was the one that exhibited the
largest average LV surface distance error of 4.44 mm among the CT test set.

Figure 2.8 displays the segmentation and the corresponded LV models for MR patient
data with the 10th, 50th, 90th percentiles and the “worst-case” that had the largest LV
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Figure 2.6: Box plots of dice scores, jaccard scores and surface distance errors for LV, LA,
Ao and WH segmentation results from the MMWHS test data sets.

segmentation surface distance errors. Our framework was able to successfully generate CFD-
suitable LV meshes automatically for 36 out of the 40 MR patient data. For 3 out of the
4 cases, we observed missing segmentation in the middle of the aorta due to poor image
quality, causing the framework to be unable to identify the aortic outlet. However, this
particular problem was readily corrected in practice by moving the cutting plane of the aorta
towards LV to reduce the length of the aorta required to generate aortic outflow. Indeed, by
decreasing the aortic cutting plane locations, our framework was able to succeed in these 3
cases. However, our framework was not able to generate CFD-suitable LV meshes for one
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remaining case without manual correction of the segmentation results. The failed case had
erroneous segmentations that missed part of the cardiac structures and corresponded to the
lowest WH dice scores of 0.679 and the largest mean LV surface distance errors of 3.96mm.

Figure 2.7: Segmentation results, raw surfaces and constructed models for CT test cases with
the 10th, 50th, 90th percentiles and the largest average LV segmentation surface distance
errors. Segmentation and raw surfaces of LA, AO and LV are shown in blue, red and orange,
respectively. The identified boundary faces of the LV wall, mitral opening and aortic opening
on the constructed models are shown in orange, blue and red, respectively.

Figure 2.9 displays the distribution of model construction time, which is the time re-
quired to go from image data to a volumetrically meshed 3D model for single-phase patient
CT or MR scans in the MMWHS test dataset. A 3.5 GHz Intel Core i7 CPU processor was
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Figure 2.8: Segmentation results, raw surfaces and constructed models for MR test cases with
the 10th, 50th, 90th percentiles and the largest average LV segmentation surface distance
errors. Segmentation and raw surfaces of LA, AO and LV are shown in blue, red and orange,
respectively. The identified boundary faces of the LV wall, mitral opening and aortic opening
on the constructed models are shown in orange, blue and red, respectively.

used to evaluate geometry and mesh construction time, and an Nvidia Tesla K80 GPU was
used to evaluate CNN segmentation time. The maximum, median and minimum total model
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generation times were 172, 126 and 102 seconds respectively for CT data and were 188, 138
and 71 seconds respectively for MR data. Model generation time for MR data was signifi-
cantly longer than for CT data (p < 0.01) due to a longer segmentation post-processing time.
On average, the percentages of time spent in segmentation, segmentation post-processing,
geometry reconstruction and meshing were 42%, 3%, 5% and 50%, respectively for CT data
and were 38%, 8 %, 5 % and 49%, respectively for MR data.

Figure 2.9: Histogram distribution of the time spent in segmentation, post-processing, ge-
ometry reconstruction and meshing for CT and MR data

CFD-ready LV models were automatically generated from the time-series CT data of two
patients with diastolic dysfunction, as shown in figure 2.10. Non-rigid image registration
took an average of 160 seconds to propagate the constructed LV model to the next time
frame on a 3.5 GHz Intel Core i7 CPU processor. Interpolating the registered meshes and
writing the CFD-ready model to SimVascular input files took another 158 seconds on av-
erage. To evaluate the accuracy of the reconstructed LV geometries on these time-resolved
data, we used manual and semi-automatic segmentation tools provided by the open-source
software SimVascular to generate a ground-truth segmentation of each time frame. We also
constructed ground truth LV models with LA and Ao extensions from the ground truth
segmentation. Compared with the ground truth models, the maximum value of the average
surface distance errors among all time frames was 1.40 mm for patient A, and was 1.87 mm
for patient B. Fig. 2.10b shows that volume curves computed from the interpolated meshes
generated with our framework were similar to those computed from the ground truth for
both patients and the maximum percentage differences among all time frames were 3.6%
and 6.3% for patient A and B, respectively. Fig. 2.11 shows simulated velocity streamlines
of LV flow at different time frames of the cardiac cycle. During the ejection phase, the
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velocity streamlines of LV demonstrated a converging flow pattern for both patients. The
maximum outflow velocity during systole for patient A and patient B was 1.36 and 1.25 m/s,
respectively. During diastole, we observed early filling, diastasis and atrial filling phases for
both patients as shown at times C, E and F in Fig. 2.11. The mitral jet entered LV during
early filling, changed direction due to impact with the LV wall and formed circulatory flow
within the LV. During diastasis, patient A had a dominant LV vortex. With a smaller LV
diameter to length ratio, patient B had a more complicated flow pattern with two major
circulations, in the upper and lower parts of the LV, respectively. The maximum inflow
velocity during early filling and atrial fillings were 0.69 and 0.37 m/s for patient A and 0.56
and 0.28 m/s for patient B, respectively.

Figure 2.10: Patient-specific CFD-ready LV models: a) constructed model geometries at
middle diastole and b) comparisons of volume curves computed from interpolations of LV
models generated with our framework (blue) and LV models generated manually (yellow)
during one cardiac cycle.

2.4 Discussion

Image-based CFD simulations of LV flow, although powerful in understanding patient cardiac
hemodynamics, usually require significant user interactions in the model generation process.
Prior studies have thus involved only a single or very few patient-based models. In the present
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Figure 2.11: Patient-specific CFD simulation results from time-resolved patient CT data.
Top and middle panels show velocity streamlines at five different time frames, peak systole
(A), late systole (B), early diastolic filling (C), diastasis (D) and atrial filling (E), as labeled
on the flow rate curves on the bottom panel. The color map represents velocity magnitude
(m/s).

study, we demonstrated an automated framework to efficiently generate CFD-suitable LV
models from patient data from two common imaging modalities (CT and MR) using a
novel combination of deep-learning-based segmentation, geometric processing and image
registration techniques.

The automated segmentation framework based on an ensemble of CNNs demonstrated
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promising accuracy for both CT and MR scans. Testing on the same benchmark CT data
set, our framework outperformed the previous best algorithm by Payer et al. who used a
two-stage 3D CNN pipeline[182, 113]. Besides increased accuracy, another advantage of our
segmentation pipeline was the increased resolution of segmentation results (33% along each
dimension). By using three 2D CNNs rather than 3D CNNs, our segmentation pipeline
reduced the computation and memory requirements during training and thus was able to
handle a larger input image size of 256 × 256 × 256. A higher segmentation resolution is
beneficial to the downstream model generation process for CFD simulations since it helps to
avoid the staircase artifacts due to poor image resolutions, which can affect computed hemo-
dynamics. Moreover, most prior deep-learning-based automatic segmentation algorithms for
cardiac structures have been trained on a single imaging modality, except for Tong et al.
who trained on both MR and CT data but did not achieve very good performance [150, 182].
We demonstrated that it is feasible to train a single system of CNN models on MR and CT
data simultaneously while still achieving good performance for both modalities. This could
be explained by the high capacity of CNNs due to the large number of parameters they
possess [95]. With this advantage, our framework did not require manual specification of
which imaging modality to operate on and may store only one set of CNN model parameters
for both MR and CT data. Compared with CT data, MR data presented larger intensity
variation, acquisition field of view, image quality and uncertainties in ground truth seg-
mentation [182]. Consistent with prior segmentation algorithms, our framework performed
better in segmentation for CT data than for MR data [182]. More training data of MR scans
may be required for the deep neural networks to better capture the inherently more diverse
distribution of MR data.

Although deep-learning-based algorithms have been extensively applied to LV segmen-
tation, to our knowledge, our framework was the first to explore the downstream geometry
reconstruction procedures required to generate CFD-suitable models. Maher et al. con-
structed vascular models for CFD simulations from segmentation generated by deep-learning
algorithms[88]; however, LV models have different geometric considerations than those of
vascular models. In contrast to atlas-based segmentation approaches that attempt to map
an existing atlas to new images, deep-learning-based segmentation algorithms are usually
trained to optimize the voxel-wise segmentation accuracy between predicted segmentation
and the ground truth, thus have no constraints on the shapes of the segmented structures.
The lack of shape constraints encourages better generalization to the new and diverse data
and avoids the tremendous computational cost related to atlas registration [48]; however,
it poses challenges to the down-stream LV geometry reconstruction process required for
generating a CFD-suitable geometry since the segmentation results are not guaranteed to
have valid global topology. Indeed, it is possible to have good segmentation accuracy based
on conventional ”closeness metrics” but not have a segmentation suitable for CFD model
construction. In this study, we demonstrated that with a reliable deep-learning-based seg-
mentation framework, along with simple and automatic post-processing techniques, we were
able to successfully construct LV CFD models for the vast majority of cases considered.
Specifically, from the segmentation results of LV, LA and aorta, small and isolated regions
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needed to be removed by extracting the largest connected region; boundaries between LA
and aorta needed to be clearly separated to generate anatomically correct LA and aorta
geometries with the marching cube algorithms; noisy extrusions or holes within and on the
boundary of segmentation needed to be removed or filled. These operations were conve-
niently achieved by a combination of image foreground dilation or erosion functions and
were successful on 39 out of 40 tested CT image data and 39 out of 40 tested MR image
data. Not surprisingly, reliable segmentation results were essential to obtain accurate LV
model geometries. The failed cases were due to erroneous segmentation results with large
surface distance errors, missing structures or extrusions, or holes too large to be corrected
by the post-processing algorithms. For the small number of failed cases, manual corrections
may be required to generate acceptable LV model geometries. Since our deep-learning-based
segmentation algorithm was developed based on a limited number of samples, it may not
generalize to all kinds of image abnormalities, such as low image quality, artifacts or extreme
tissue intensity. Indeed, it is impossible to guarantee an automated approach will always
produce a valid result when image quality is not controlled.

Although this study focused on the image-to-volume-mesh process, and not the analysis
of intraventricular hemodynamics, we did demonstrate the capability to perform ALE-based
CFD simulations of LV hemodynamics from the generated models. The fact that the time-
resolved CT image data were from clinical scans and a completely different source than
the MMWHS dataset demonstrates the potential robustness of the approach. Compared
with ground truth LV models created through manual efforts, LV models created by our
framework had a relatively small percentage of volume difference over the cardiac cycle.
We note that the ground truth models were created by only one observer with no repeats.
Zhuang et al. reported that while LV was the least challenging cardiac structure to segment
manually among others, the inter-and intra- observer variabilities were 6.3% and 5.8% for LV
segmentation in MR data [182]. Therefore, the volume differences of the LV models generated
automatically are comparable to inter-and intra- observer variabilities. Our CFD simulations
provided detailed LV flow patterns throughout the cardiac cycle and the converging flow
pattern during systole and the circulatory flow patterns were consistent with prior studies
[61, 97]. Although both patients had diastolic LV dysfunction, their LV shapes were different
especially in terms of LV sphericity. We observed a dominating flow circulation in the patient
LV with higher sphericity but not in the patient LV with lower sphericity. Such difference
was in agreement with Martinez-Legazpi et. al., who demonstrated that reduced LV chamber
sphericity could reduce vortex contribution to the diastolic filling of LV [91].

Our framework was able to generate meshed LV model for a single phase in around two
minutes on average, using a modern desktop computer with the help of a GPU. When includ-
ing the time spent in segmentation registration to propagate LV model to other time frames,
interpolating meshes and creating compatible input files for SimVascular svFSI solver, our
framework took around 30 minutes in total to construct CFD-ready LV simulation input
files for one set of time-resolved patient image data with 10 time frames. Segmentation reg-
istration was the most time-consuming step in our model construction framework. However,
this step could be parallelized in the future to reduce the total model generation time[136].
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In contrast, prior approaches of generating one CFD-ready LV model from images could
take anywhere from 20–50 hours of work and significant human efforts[94, 4]. Using the
semi-automatic segmentation techniques and geometry processing algorithms in SimVascu-
lar, we spent around 10 hours constructing each LV model on the same patient data, which
we consider to be typical for an “experienced” user. Therefore, compared with prior model
construction approaches using manual or semi-automatic techniques, our framework could
save on the order of hours of time and human efforts.

Limitations of the current automated LV CFD model generation framework include the
lack of explicit mitral valve and aortic valve structures. However, valve leaflets are generally
not resolvable from clinical scans. Therefore, patient-specific geometry reconstruction of
valves is very challenging due to limited image resolution and large deformation of the valve
structures. Recent advances in machine-learning-based approaches to obtain heart valve
geometry based on statistical information could be applied in the future to improve our
framework[120, 80]. Similar to the valve leaflet, the papillary muscles and trabeculae struc-
tures of the LV were not modeled in our framework since these are generally not resolvable
from clinical imaging. Although smoothed LV geometry is a common simplification adopted
by many prior studies, recent studies have demonstrated that these structures could lead
to improved apical washout, enhanced viscous dissipation rate, increased intra-ventricular
pressure drop and reduced the wall shear stress and thus should be incorporated for better
simulation accuracy[129, 156].

With improved insights into the importance of RV dysfunction in the pathogenesis and
outcomes of cardiovascular diseases over recent years, there has been a growing interest
in understanding the intraventricular flow pattern in RV [112, 137, 106, 24]. Image-based
CFD simulations of RV flow may provide patient-specific, spatially and temporally well-
resolved analysis of RV hemodynamics. We note that although this study focused on LV,
we expect the proposed framework could be readily adapted for the automated construc-
tion of patient-specific CFD-ready RV models. Our framework was able to automatically
produce segmentations of RV, RA and pulmonary arteries. From those segmentations, sim-
ilar segmentation post-processing and surface reconstruction procedures could be applied to
reconstruct the RV geometry with appropriate inlet and outlet structures.

2.5 Conclusions

We have developed a streamlined framework to automatically generate CFD-ready LVmodels
from patient image data. The framework leveraged a novel combination of deep-learning-
based automatic segmentation algorithms and geometry processing algorithms to robustly
create CFD-suitable LV models from both CT and MR image data. We utilized an en-
semble of 2D CNNs to achieve high 3D segmentation resolution and outperformed previous
automatic segmentation approaches evaluated on the same dataset. To support CFD sim-
ulation of LV hemodynamics using an ALE formulation, the framework can automatically
identify boundary faces of mitral and aortic opening, and LV as well as compute displace-
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ment information of the mesh vertices throughout the cardiac cycle using image registration
techniques. Compared with prior manual or semi-automatic methods, our framework of-
fers orders of magnitude savings in time and human efforts in developing image-based CFD
simulations of LV flow. The entire framework was implemented in Python and can be con-
veniently executed from the command line as a program with all dependencies (TensorFlow,
VTK, SimVascular and SimpleElastix) being open-source and Python-scriptable. The above
advantages may enable our framework to aid in future higher throughput, large-cohort anal-
yses of patient-specific LV hemodynamics in relation to LV dysfunction.
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Chapter 3

A Deep-Learning Approach For Direct
Whole-Heart Mesh Reconstruction

3.1 Introduction

In the previous chapter, we presented a multistage approach whereby 3D segmentations of
cardiac structures are first obtained from image volumes, meshes of the segmented regions are
then generated using marching cube algorithms, and finally manual surface post-processing
or editing is performed. However, the quality of reconstructed surfaces highly depends on the
quality of segmentation and the complexity of the anatomical structures. Automatic heart
segmentation has been a popular research topic and previously published algorithms have
been summarized in detail [180, 182, 116, 43]. Generally, there are two common approaches to
whole heart segmentation: multi-atlas segmentation (MAS) [7, 179, 181] and deep-learning-
based segmentation [128, 21]. Compared with MAS, deep-learning-based approaches have
become more popular as they have demonstrated higher segmentation precision [182, 113]
and are much faster in practice. While a couple of recent studies have reduced the processing
time of MAS approaches down to a couple of minutes [12, 13], deep-learning-based approach
can generally process a whole heart segmentation within a couple of seconds. However,
while deep-learning-based methods may produce segmentations that achieve high average
voxel-wise accuracy, they can contain extraneous regions and other nonphysical artifacts.
As we described in the previous chapter, correcting such artifacts would require a number
of carefully designed post-processing steps and sometimes manual efforts [66]. Indeed, since
the CNN-based segmentation methods are based on the classification of each image voxel
to a particular tissue class, the neural networks are often trained to reduce the voxel-wise
discrepancy between the predicted segmentation and the ground truth and therefore lack
awareness of the overall anatomy and topology of the target organs.

Moreover, CNN-based 3D segmentation methods are memory intensive and therefore
require downsampling of the data to fit within memory and thus can only generate seg-
mentation with limited resolution. However, high-resolution geometries are often required
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for downstream applications such as computational simulations, and direct or low-resolution
segmentation will often produce surfaces with staircase artifacts that require additional post-
processing [166, 165, 154]. Compared with representing whole heart geometries as segmen-
tations on a dense voxel grid, representing the geometries as meshes is a more compact
representation, as only point coordinates on the organ boundaries need to be stored. This
advantage may enable efficient reconstruction of high-resolution surface meshes on a limited
memory budget and avoid the stair-case artifacts of surfaces constructed from low-resolution
3D segmentation. Moreover, for low-resolution input images, voxel-wise segmentation would
be a coarse representation of the underlying cardiac structures, but a surface mesh repre-
sentation can still function as a smoother and more realistic representation of the shapes as
the mesh vertices are defined in a continuous coordinate space and do not have to align with
the input voxel grid.

Some studies have adopted a model-based approach to directly fit surfaces meshes of the
heart to target images [30, 31, 117]. Such approaches deform a template mesh using local
optimization to match with tissue boundaries on input images. However, they are often
sensitive to initialization and require complicated steps and manual efforts to construct
a mean template of the heart. A recent study by [173] proposed deep learning to learn
the initialization of the active contour method–a model-based approach–to help solve for
the contours of the target tissues. Alternatively, others have turned to pure deep learning
methods that do not require test-time optimization.[170] proposed a deep learning approach
to jointly predict the segmentation and the geometry of the left ventricle in the form of a
point cloud from the image data.

Recent progress in geometric deep learning has extended the concepts of the convolutional
neural network on irregular graphs [25, 11]. Recent deep-learning-based approaches have
shown promise in reconstructing shapes as surface meshes from image data using graph
convolutional neural networks [159, 167, 118]. However, these approaches have focused on
reconstructing a single shape from a 2D camera image and thus cannot be directly applied
to reconstructing multiple anatomical structures from volumetric medical image data. A
recent study from [168] extended the work of [159] to 3D volumetric medical image data and
demonstrated improved segmentation results. However, their method demonstrated success
only on simple geometries such as the liver, hippocampus, and synaptic junction but not on
the whole heart that involves multiple cardiac structures with widely varying shapes.

To overcome these shortcomings, we explore the problem of using a deep-learning-based
approach to directly predict surface meshes of multiple cardiac structures from volumet-
ric image data. Our approach leverages a graph convolutional neural network to predict
deformation on mesh vertices from a pre-defined mesh template to fit multiple anatomical
structures in a 3D image volume. The mesh deformation is conditioned on image features ex-
tracted by a CNN-based image encoder. Since cardiac structures such as heart chambers are
homeomorphic to a sphere, we use spheres as our initial mesh templates, which can be con-
sidered as a topological prior of the cardiac structures. Compared with classification-based
approaches, our approach can reduce extraneous regions that are anatomically inconsistent.
Using a generic initial mesh also enables our approach to be easily adapted to other anatom-
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ical structures.
The key contributions of our work are as follows:

1. We propose the first end-to-end deep-learning-based approach to predicte multiple
anatomical structures in the form of surfaces meshes from 3D image data. We show
that our method was able to better produce whole-heart geometries from both CT and
MR images compared to classification-based approaches.

2. We investigate and compare the impact of dataset size and variability on whole-heart
reconstruction performance to different methods. When having trained on both small
and larger training datasets, our method demonstrated better Dice scores for most of
the cardiac structures reconstructed than prior approaches.

3. As cardiac MR image data often have large variations across different data sources,
we compare different methods and demonstrate the advantage of our approach on MR
images with varying through-plane resolution as well as on low-resolution MR images
that differ significantly from our training datasets.

4. Since our approach predicts deformation from a template mesh, we show that our
reconstructions generally have point correspondence across different time frames and
different patients by consistently mapping mesh vertices on the templates to similar
structural regions of the heart. We demonstrate the potential application of our method
in efficiently constructing 4D whole heart dynamics that captures the motion of a
beating heart from a time series of images.

3.2 Methods

Dataset Information

Since cardiac medical image data is sensitive to a number of factors, including differences
in vendors, modalities and acquisition protocols across clinical centers, deep-learning-based
methods can be easily biased to these factors. Therefore, we aimed to develop our models
using whole heart image data collected from different sources, vendors and imaging modal-
ities. We included data from four existing public datasets that contain contrast-enhanced
CT images or MR images that cover the whole heart. These four datasets are from the
multi-modality whole heart segmentation challenge (MMWHS) [182], orCalScore challenge
[169], left atrial wall thickness challenge (SLAWT) [57] and left atrial segmentation chal-
lenge (LASC) [148]. The use of such diverse data enables us to not only better evaluate the
reconstruction accuracy of our trained model but also evaluate the impact of dataset size
and variability on model performance.

Additional time-series CT and MR images were collected to evaluate the performance of
our trained neural network models on time-series image data acquired from different data
sources from the training data. The time-series CT data were from 10 patients with left
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CT data MR data
MMWHS
[182]

OrCaScore
[169]

SLAWT [57] time-series CT MMWHS
[182]

LASC [148] cine MR

Vendor Philips GE, Philips,
Siemens and
Toshiba

Philips
Achieva 256
iCT

GE 1.5T Philips
and 1.5T
Siemens
Magnetom
Avanto

1.5 T Philips
Achieva

1.5 T Philips

# of clinical
sites involved

2 4 1 1 2 1 1

# of 3D image
volumes

60 72 10 100 60 27 200

# of patients
involved

60 72 4 10 60 27 10

In-place
resolution
(mm)

0.78 by 0.78 0.4-0.5 by
0.4-0.5

0.4 by 0.4 0.44 by 0.44 1.6-2.0 by
1.6-2.0

1.25 by 1.25 0.65-1.75 by
0.65-1.75

Slice thickness
(mm)

1.6 0.5-0.625 0.8-1.0 0.625 2.0-3.2 2.7 8-10

Temporal
resolution
(ms)

N/A N/A N/A 100 N/A N/A 50

Public or
private

public public public private public public private

Table 3.1: Summary of data characteristics for whole heart CT and MR data included.

ventricular diastolic dysfunction. The 9 sets of cine cardic MR data were from 5 healthy
subjects and 4 patients with cardiac diseases. All data was de-identified and previously
collected for other purposes. The details of the datasets used and collected are described
in the following sub-sections and summarized in Table 3.1. We followed the same method
of [182] to manually delineate seven cardiac structures: LV, LA, RA, RV, myocardium,
aorta and pulmonary artery for the collected image data that did not have ground truth
annotations of the whole heart.

Geometry Reconstruction From Volumetric Images

Our framework consists of three components to predict the whole-heart meshes from a volu-
metric input image: (1) an image encoding module that extracts and encodes image features,
(2) a mesh deformation module that combines features from images and meshes to predict
deformation of mesh vertices, and (3) a segmentation module that predicts a binary seg-
mentation map to allow additional supervision using ground truth annotations. Figure 3.1
shows the overall architecture.

Image Encoding Module

For an input image data, the image encoding module uses a series of 3D convolutional lay-
ers to extract volumetric image feature maps at multiple resolutions. These feature maps
are required by the following mesh deformation module to predict whole-heart geometries.
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Figure 3.1: Diagram of the proposed automatic whole heart reconstruction approach. The
framework uses 3D convolutional layers (shown in blue) to encode image features and predict
a binary segmentation map from an input image volume. The corresponding image features
are sampled by pooling layers (shown in orange) based on the vertex coordinates of the
template mesh. From the combined image and mesh features, graph convolutional layers
(shown in green) are then used to predict the deformation of mesh vertices to generate the
final mesh predictions

Therefore, the image encoder should both be effective for better geometric reconstruction
and be memory-efficient to process a 128 × 128 × 128 volumetric input image in a single
pass. Our image feature encoder is based on an improved 3D UNet architecture that was
designed to work effectively for large volumetric image data [50]. Briefly, the feature encoder
architecture consists of multiple levels of residual blocks that encode increasingly abstract
representations of the input. Residual connections are known to facilitate gradient prop-
agation during training and improve generalization [45]. Each residual block contains two
3 × 3 × 3 convolutional layers and a dropout layer before the last convolutional layer. The
input to the first convolutional layer is then added to the output of the last one. After
each residual block, we use a 3× 3× 3 convolutional layer with input stride 2 to reduce the
resolution of the feature maps.
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Segmentation Module

While our purpose is to reconstruct surface meshes directly from image data, the ground
truth segmentation can function as an additional supervision to the network to further fa-
cilitate training. From our experiments, including the segmentation module helped avoid
non-manifold geometries due to local minimums and thus improve reconstruction accuracy.
Since the ground truth mesh is a sparse representation of the cardiac structures compared
with a volumetric segmentation, including the segmentation as a dense supervision with skip
connections to the image feature encoder can improve gradient propagation to the image
encoding module to better interpret the full volumetric input data. However, since we are
only interested in reconstructing meshes, rather than predicting segmentations for all cardiac
structure, our segmentation module is trained to predict only a binary segmentation repre-
senting the occupancy of the heart in the input image. The adopted network architecture
is simplified from the decoder architecture of [50] with only a small number of filters in the
convolutional layers. Briefly, the segmentation module contains multiple levels of decoder
convolutional blocks that correspond to the residual blocks from the image encoding module
to reconstruct segmentation from extracted features. Following a 3 × 3 × 3 convolution of
the up-sampled intermediate output, a decoder convolutional block concatenates the current
output with the corresponding output from the residual blocks of the image encoding module
and then uses a 1×1×1 convolutional layer to process the concatenated features. Binary seg-
mentation predictions were generated from three different levels of the segmentation module
and added together to form the final prediction.

Graph Convolution on Mesh

Our neural network uses graph convolutions on a template mesh to predict deformation
vectors on its vertices. Unlike for structured data such as images, convolution in the spatial
domain is not well defined for manifold structures such as meshes. Therefore, we apply graph
convolution in the frequency domain following recent process in graph convolutional neural
networks [11, 25]. Briefly, our template mesh is represented by a graphM = (V , E), where
V = {vi}Ni=1 is the set of N vertices and E = {ei}Ei=1 is the set of E edges that define the
connections among mesh vertices. The graph adjacency matrix A ∈ {0, 1}N×N is a sparse
matrix that defines the connection between each pair of vertices, with Aij = 0 if vertices vi
and vj are not connected and Aij = 1 if the two vertices are connected. The degree matrix D
is a diagonal matrix that represents the degree of each vertex, with Dii =

∑
j Aji. Therefore,

the graph Laplacian matrix is a real and symmetric matrix defined as L = D − A, which
can then be normalized as Lnorm = I − D−1/2AD−1/2. The normalized Laplacian matrix
can be diagonalized by the Fourier basis on graph U ∈ RN×N as Lnorm = UΛUT . The
columns of U are the orthogonal eigenvectors of L and Λ is a diagonal matrix containing the
corresponding eigenvalues. The Fourier transform of a function defined on mesh vertices,
f ∈ L2(V), is thus described by f̂ = UTf and the inverse Fourier transform is f = Uf̂ .
Therefore, convolution between f and g ∈ L2(V) is described as f ∗ g = U((UTf)⊙ (UTg)).
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If we parameterize g with learnable weights, a graph convolution layer can then be defined
as fout = σ(Ugθ(Λ)U

Tfin), where fin and fout are the input and output and σ is the ReLU
activation function.

The above expression is computationally expensive for meshes with a large number of
vertices, since U is not sparse and the number of parameters required can be as many as
the number of vertices. Therefore, we followed [25] to approximate gθ(Λ) using Chebyshev
polynomials so that Ugθ(Λ)U

T =
∑K

k=0 θkTk(L̃), where L̃ is the scaled sparse Laplacian
matrix L̃ = 2Lnorm/λmax − I, where λmax is the maximum eigenvalue of Lnorm. θk is the
parameter for the kth order Chebyshev polynomial and Tk is the kth order polynomial that
can be computed recursively as T0 = I, T1 = L̃ and Tk(L̃) = 2L̃Tk−1(L̃) − Tk−2(L̃). We
chose K = 1 since a lower order polynomial can effectively avoid fitting the noise on our
ground truth surfaces and reduce the amount of parameters to learn. Therefore, the graph
convolution on the mesh using a first-order Chebyshev polynomial approximation is described
as fout = σ(θ0fin + θ1finL̃), where θ0, θ1 ∈ Rdout×din are trainable weights. fout ∈ Rdout×N

and fin ∈ Rdin×N are, respectively, the input and output feature matrices, where din and dout
are, respectively, the input and output dimensions of the mesh features.

Mesh Initialization

Our method uses a single network to simultaneously deform multiple sphere templates to
corresponding cardiac structures on the input image. Since the relative locations and scales
of different cardiac structures of the heart are generally consistent across a population,
we leverage this prior knowledge into our neural network by scaling and positioning the
corresponding initial sphere mesh template based on the relative sizes and locations of the
cardiac structures. We then used a graph convolution layer to augment the coordinates of
the initial meshes such that they have comparable contribution as the image features, in
terms of the length of feature vectors, to the following deformation block. Namely, after pre-
processing the volumetric training data and obtaining the corresponding ground truth meshes
as described in detail in section 3.2, we computed the corresponding image coordinates of
the vertices of the surface meshes in the volumetric training image data. For each cardiac
structure, we then computed the average centroid location and the average length between
surface and centroid, across all the ground truth meshes in the training data. For each input
image, we then used this approximated center and radius to initialize each sphere. By having
a closer initialization compared with using centered unit spheres as in prior approaches [168,
159], our network can have reduced distance between predictions and ground truths and thus
avoid large deformation during the early phase of training. From our experiments, this is
an important and effective technique to avoid getting stuck in local minimums and achieve
faster convergence.



CHAPTER 3. A DEEP-LEARNING APPROACH FOR DIRECT WHOLE-HEART
MESH RECONSTRUCTION 35

Mesh Deformation Module

Our proposed mesh deformation module consists of three deformation blocks with graph
convolutional layers that progressively deform our initial template meshes based on both ex-
isting mesh vertex features and image features extracted from the image encoding module.
Meshes of all different cardiac structures are deformed simultaneously by these shared mesh
deformation blocks. The volumetric feature maps have increasing level of abstraction but
decreasing spatial resolution as we progress deeper in the image encoding module. Therefore,
as shown in Figure 3.1, we used more abstracted, high-level image feature maps for the initial
mesh deformation blocks to learn the general shapes of cardiac structures while using low-
level, high-resolution feature maps for the later mesh deformation blocks to produce more
accurate predictions with detailed features. For each mesh deformation block, we project
image features from the image encoding module to the mesh vertices and then concatenate
the extracted image feature vector with the existing vertex feature vector. As we deform the
mesh through multiple deformation blocks, we decrease the size of the graph convolutional
filters to reduce the dimension of mesh feature vectors to match with the reduced number
of filters used in upper levels of the image encoding module. Within each mesh deforma-
tion block, the concatenated feature vectors are processed by three graph residual blocks,
which contains two graph convolutional layers with residual connections. We then use an
additional graph convolutional layer to predict deformation as 3D feature vectors on mesh
vertices and add those with the vertex coordinates of the initial mesh or the mesh from the
previous deformation block to obtain the current predicted vertex coordinates. To project
corresponding image features onto mesh vertices, from the vertex locations of the initial or
previously deformed mesh, we compute the corresponding image coordinates in the volumet-
ric image feature maps. We then tri-linearly interpolate the feature vectors that correspond
to the 8 neighboring voxels of the computed image coordinates in the volumetric feature
maps.

Loss functions

The training of our networks was supervised by 3D ground truth meshes of the whole heart
as well as a binary segmentation indicating occupancy of the heart on the voxel grid that
corresponds to the input image volume. The whole heart meshes were extracted from segmen-
tation of cardiac structures using the marching cube algorithm and the binary segmentation
was also obtained from segmentation by setting all non-background voxels to 1 and the rest
to 0. We used two categories of loss functions, geometry consistency losses and regulariza-
tion losses in the training process. The geometry consistency losses include point and normal
consistency losses while the regularization losses include edge length and Laplacian losses.
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Segmentation loss

We used a hybrid loss function that contained both cross-entropy and dice-score losses. This
loss has been used in training UNets and has demonstrated promising results on various med-
ical image segmentation tasks [51]. Namely, let Loccupancy(Ip, Ig) denote the loss of between
the predicted occupancy probability map IP and the ground truth binary segmentation of
the whole heart IG. The hybrid loss function was

Loccupancy(IP , IG) = −
∑
x∈IG

(IG(x) log(IP (x)) + (1− IG(x)) log(1− IP (x)))

−
2
∑

x∈I IG(x)IP (x)∑
x∈I IG(x) +

∑
x∈I IP (x)

(3.1)

where x denotes the pixel in the input image I.

Point loss

We used Chamfer loss to regulate the accuracy of the vertex locations on predicted meshes.
For a point from the predicted mesh or the ground truth mesh, Chamfer loss finds the nearest
vertex in the other point set and adds up all pair-wise distances. The point loss is defined
by,

Lpoint(Pi,Gi) =
∑
p∈Pi

min
g∈Gi

||p− g||22 +
∑
g∈Gi

min
p∈Pi

||p− g||22 (3.2)

where p and g are, respectively, points from the vertex sets of the predicted mesh Pi and
the ground truth mesh Gi of cardiac structure i.

Normal loss

We used a normal consistency loss to regulate the accuracy of the surface normal on the
predicted meshes. For each point, the surface normal is estimated by the cross product
between two edges of a face connected to the point. The predicted surface normal is then
compared with the ground truth surface normal at the nearest vertex. Namely,

Lnormal(Pi,Gi) =
∑

p∈Pi;g=argmin
g∈Gi

||p−g||22

∥(p1 − p)× (p2 − p)− ng∥22 (3.3)

where p1 and p2 are the two vertices sharing the same face with vertex p.

Edge length loss

We used an edge length loss to encourage a more uniform mesh density on the predictions.
That is, we regularize the difference between each edge length and an estimated average
edge length µi of the corresponding cardiac structure Gi. Namely, we compute the average
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surface area of our ground truth mesh for each cardiac structure and estimate the average
edge length based on the surface area ratio between the template and ground truth meshes,
leading to

Ledge(Pi) =
∑
p∈Pi

∑
kp∈N (p)

∣∣∥p− kp∥22 − µ
2
i

∣∣ , (3.4)

where N (p) represents the neighborhood of vertex p.

Laplacian loss

To encourage a smoother mesh prediction, we used a Laplacian loss to regularize the dif-
ference between a vertex location p and the mean location of its neighboring vertices kp

as

Llap(Pi) =
∑
p∈Pi

∥∥∥∥∥∥p−
∑

kp∈N (p)

1

||N (p)||
kp

∥∥∥∥∥∥
2

2

. (3.5)

Total loss

Prior approaches of mesh reconstruction from images commonly formulated the total loss
function as a weighted sum of multiple loss functions [159, 168]. However, for multi-loss
regression problems, different loss functions are different in scales. Manually tuning the
weight assigned to each loss function is difficult and expensive since losses can differ by
orders of magnitude. Therefore, we express the total loss on predicted meshes as a weighted
geometric mean of the individual losses so that the gradient for an individual loss function
can be invariant to its scale relative to other loss functions [18]. Thus, for predicted meshes
G and ground truth meshes P with N cardiac structures, the total mesh loss is expressed
as,

Lmesh(P,G) =
N∑
i

Lpoint(Pi,Gi)
λ1Lnormal(Pi,Gi)

λ2Ledge(Pi)
λ3Llap(Pi)

λ4 , (3.6)

where each λ is a hyperparameter to weight each individual loss based on its importance
without being affected by its scale. We can thus choose hyperparameters from a consistent
range for all the losses. We generated 8 sets of random numbers ranging from 0 to 1 and
chose the best out of the 8 sets of hyperparameters that produced the smallest point loss on
the validation data. The chosen hyperparameters are λ1 = 0.3, λ2 = 0.46, λ3 = 0.16 and
λ4 = 0.05. For total loss, we added up losses from all three deformation blocks as well as
the binary segmentation loss:

Ltotal = Lmesh(PB1,G) + Lmesh(PB2,G) + Lmesh(PB3,G) + Loccupancy(Ip, Ig) . (3.7)

The network parameters were computed by minimizing the total loss function using the
Adam stochastic gradient descent algorithm [62].
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Implementation Details

Image Pre-Processing

Intensity normalization and resizing were applied to all 3D image volumes to obtain con-
sistent image dimensions and pixel intensity range. We followed the procedures in [66] to
normalize pixel intensity values of each CT or MR image volume such that they ranged from
-1 to 1. The 3D image volumes were then resized using linear interpolation to a dimension of
128 × 128 × 128, which maintained image resolution with a manageable computational cost.
The ground truth meshes were generated by applying the Marching Cube algorithm [86] on
the segmentations, followed by 50 iterations of Laplacian smoothing.

Image Augmentation

Data augmentation techniques were applied during training to improve the robustness of the
neural network models to the variations of input images. Specifically, we applied random
scaling (−5% to 5%), random rotation (−5◦ to 5◦), random shearing (−10◦ to 10◦) as well
as elastic deformations [140] on the input images. For elastic deformations, 16 control points
were placed along each dimension of the 3D image volume and were randomly perturbed.
The input images are then warped according to the displacements of the control points using
the B-spline interpolation.

Training

The model parameters were computed by minimizing the total loss function using the Adam
stochastic gradient descent algorithm [62]. The initial learning rate was set to be 0.001, while
β1 and β2 for the Adam algorithm were set to 0.9 and 0.999, respectively. Point losses were
evaluated on the validation data after each training epoch and the model was saved after one
epoch only if the validation point loss had improved. We adopted a learning rate schedule
where the learning rate was reduced by 20% if the validation point losses had not improved
for 10 epochs. The minimum learning rate was 5 × 10−6. The network was implemented
in TensorFlow and the training was conducted on a Nvidia GeForce GTX 1080 Ti graphics
processing unit (GPU) until the validation loss converged.

Evaluation Metrics

We used Dice, Jaccard scores as well as average symmetric surface distance (ASSD) and
Hausdorff distance (HD) to evaluate the accuracy of our reconstructions. Dice and Jaccard
scores are similarity indices that range from 0 to 1 as given by

Dice(IP , IG) =
2|IP ∩ IG|
|IP |+ |IG|

(3.8)

Jaccard(IP , IG) =
|IP ∩ IG|
|IP ∪ IG|

(3.9)
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The ASSD and HD measure the average and the largest inconsistency in terms of Euclidean
distance between the reconstruction result and the ground truth, respectively. For recon-
structed meshes P and the ground truth meshes G, the ASSD and HD are given by

ASSD(P,G) =
∑
p∈P

min
g∈G

||p− g||2
|P|

+
∑
g∈G

min
p∈P

||p− g||2
|G|

(3.10)

HD(P,G) = max

{
max
p∈P

min
g∈G
||p− g||2,max

g∈G
min
p∈P
||p− g||2

}
(3.11)

Normal discrepancy between the reconstruction result and the ground truth was evaluated
by an average normal error (ANE). Namely, for nx, ny being the vertex normals at points x
and y, respectively,

ANE(P,G) =
∑

p∈P;g=argmin
g∈G

||p−g||2

1− ⟨np,ng⟩
|P|

(3.12)

Surface smoothness was evaluated by the average normalized Laplacian distance (ANLD).
ANLD measures the Euclidean distances between the coordinates of mesh vertices and the
mean coordinates of their neighbours, normalized by the average edge length between the
mesh vertices and their neighbours. Namely,

ANLD(P) =
∑
p∈P

∥∥∥p−∑
kp∈N (p)

1
|N (p)|kp

∥∥∥
2

|P |
|N (p)|

∑
kp∈N (p) ∥p− kp∥2

. (3.13)

The percentage mesh self-intersection was calculated as the percentage of intersected mesh
facets among all mesh facets. The intersected mesh facets were detected by TetGen [139].

3.3 Experiments and Results

Baselines

We considered the following three baselines to compare our method against: 2D UNet [128],
a residual 3D UNet [50] and Voxel2Mesh [168]. The UNets are arguably the most successful
architecture for medical image segmentation and thus can function as strong baselines. In
particular, the 2D UNet is a part of the whole-heart segmentation framework implemented
in [66] that recently demonstrated state-of-the-art performance on the MMWHS challenge
dataset. The residual 3D UNet has demonstrated improved performance than a regular 3D
UNet and won the KiTS2019 Challenge [49, 46]. To ensure a fair comparison, the same
network architecture and convolutional filter numbers were used for the image encoding
module between our method and the residual 3D UNet and the same image pre-processing
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and augmentation methods were applied during the training of all methods. For Voxel2Mesh,
we reduced the resolution of the template mesh such that the total memory consumption
during training can fit within the memory available on our Nvidia GeForce GTX 1080 Ti GPU
(11 GB). The final mesh resolution is thus halved compared to the original implementation
[168] and contains 3663 vertices for each cardiac structures. In contrast, our method can
process a template mesh with 11494 mesh vertices for each cardiac structures within the
available GPU memory.

Whole Heart Reconstruction for CT and MR images

We first compare the performance of whole-heart reconstruction from our method against
our baselines. In this experiment, we trained and validated our method using both CT
and MR images collected from existing public datasets except for the held-out test dataset
of the MMWHS challenge, which we used for test-time evaluation. Our training set thus
contained 87 CT images and 41 MR images and the validation set contained 15 CT images
and 6 MR images. The MMWHS held-out test dataset contained 40 CT images and 40 MR
images. We analyzed the performance of our method against baselines in terms of both the
accuracy and the quality of the surface reconstructions. We converted the surface predictions
of our method and those of Voxel2Mesh to segmentations at the spatial resolution of the
input image data, which is the same as the resolution of the segmentations produced by 2D
UNet and 3D UNet. This allowed us to evaluate the accuracy of different methods at the
same resolution against the ground truth segmentation using the executable provided by the
MMWHS challenge organizers. We also manually labeled the testing images and compared
this with the ground truth segmentation of the MMWHS challenge to provide a comparison
between the evaluated reconstruction accuracy of our deep-learning-based method and the
inter-observer variability in manual delineations. The surface quality was evaluated in terms
of surface smoothness, normal consistency and topological correctness.

Table 3.2 shows the average Dice and Jaccard scores, average symmetric surface distance
(ASSD) and Hausdorff distance (HD) of the reconstruction results of both the whole heart
and individual cardiac structures for the MMWHS test dataset. For both CT and MR data,
our method consistently outperformed our baselines in terms of Dice and Jaccard scores
for both whole heart and all individual cardiac structures. In terms of surface ASSD and
HD measures for the whole heart or individual cardiac structures, our method was the best
or the second among the four deep-learning-based methods compared. To provide further
details on segmentation accuracy, Figure 3.2 gives the distribution of different segmentation
accuracy metrics for whole heart and individual cardiac structures. Overall, our method
demonstrated advantages of whole heart reconstruction for both CT and MR images, and
2D UNet was the closest to ours compared with 3D UNet or Voxel2Mesh. All methods
produced better reconstruction for CT images than for MR images. Furthermore, there are
no significant differences between the evaluated Dice scores of our methods and those of
our manual labeling, except for left ventricle epicardium (p<0.05). That is, the discrepancy
between our predicted whole-heart reconstruction and the ground truths provided by the
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Epi LA LV RA RV Ao PA WH

CT

Dice (↑)

Ours 0.899 0.932 0.940 0.892 0.910 0.950 0.852 0.918
2DUNet 0.899 0.931 0.931 0.877 0.905 0.934 0.832 0.911
3DUNet 0.863 0.902 0.923 0.868 0.876 0.923 0.813 0.888
Voxel2Mesh 0.775 0.888 0.910 0.857 0.885 0.874 0.758 0.865
Manual 0.919 0.938 0.941 0.894 0.917 0.955 0.854 0.925

Jaccard (↑)

Ours 0.819 0.875 0.888 0.809 0.837 0.905 0.755 0.849
2DUNet 0.817 0.872 0.873 0.787 0.828 0.879 0.726 0.837
3DUNet 0.762 0.825 0.861 0.769 0.783 0.860 0.695 0.799
Voxel2Mesh 0.638 0.801 0.839 0.754 0.795 0.778 0.619 0.763
Manual 0.852 0.884 0.890 0.814 0.848 0.914 0.759 0.860

ASSD (mm) (↓)

Ours 1.335 1.042 0.842 1.583 1.176 0.531 1.904 1.213
2DUNet 0.808 1.049 0.905 1.719 1.064 0.645 1.551 1.088
3DUNet 1.443 1.528 1.024 1.943 1.663 0.814 2.194 1.552
Voxel2Mesh 1.714 1.696 1.266 2.020 1.492 1.341 3.398 1.848
Manual 1.437 0.936 0.815 1.541 0.983 0.480 1.455 1.106

HD (mm) (↓)

Ours 14.393 10.407 10.325 13.639 13.360 9.407 26.616 28.035
2DUNet 9.980 8.773 6.098 13.624 10.016 10.013 27.834 28.727
3DUNet 13.635 10.814 9.580 16.031 15.635 13.326 26.941 31.088
Voxel2Mesh 13.564 8.743 6.248 12.116 9.601 12.080 26.252 27.459
Manual 14.446 12.677 12.619 15.313 13.496 11.189 25.449 27.181

MR

Dice (↑)

Ours 0.797 0.881 0.922 0.888 0.892 0.890 0.816 0.882
2DUNet 0.795 0.864 0.896 0.852 0.865 0.869 0.772 0.859
3DUNet 0.761 0.852 0.879 0.866 0.828 0.742 0.764 0.840
Voxel2Mesh 0.602 0.734 0.852 0.774 0.830 0.700 0.506 0.766
Manual 0.830 0.885 0.925 0.887 0.894 0.885 0.807 0.887

Jaccard (↑)

Ours 0.671 0.791 0.858 0.801 0.812 0.805 0.697 0.790
2DUNet 0.668 0.765 0.817 0.752 0.771 0.774 0.641 0.757
3DUNet 0.626 0.756 0.802 0.766 0.728 0.650 0.639 0.732
Voxel2Mesh 0.443 0.584 0.752 0.635 0.721 0.552 0.352 0.626
Manual 0.713 0.797 0.862 0.799 0.812 0.798 0.681 0.798

ASSD (mm) (↓)

Ours 2.198 1.401 1.183 1.611 1.333 2.648 2.689 1.775
2DUNet 1.830 1.488 1.455 1.715 1.483 2.447 1.820 1.690
3DUNet 2.175 2.503 1.836 1.890 2.871 4.092 1.952 2.037
Voxel2Mesh 2.505 3.365 2.506 3.475 2.233 4.614 6.078 3.359
Manual 1.837 1.301 1.070 1.463 1.218 2.159 1.581 1.485

HD (mm) (↓)

Ours 16.923 11.723 10.891 14.810 13.463 22.219 19.345 27.701
2DUNet 19.139 10.781 9.958 14.530 13.082 22.567 16.721 28.350
3DUNet 28.159 23.640 21.494 18.949 21.095 37.937 17.055 43.022
Voxel2Mesh 20.156 13.416 10.301 15.796 11.672 27.806 26.464 33.020
Manual 15.854 12.444 12.125 14.376 13.145 21.783 13.754 25.336

Table 3.2: A comparison of prediction accuracy on MMWHS MR and CT test datasets from
different methods.
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Figure 3.2: Comparison of segmentation accuracy for whole heart and individual cardiac
structures from different methods. White circles on the boxes indicate mean values across
patients. Cardiac structures are sorted based on the accuracy of our method.

MMWHS challenge is comparable to the inter-observer variability of manual whole-heart
segmentation.

Figure 3.3 displays two examples of the reconstruction results for CT and MR from the
MMWHS test dataset, including the surface meshes of individual cardiac structures. Despite
starting from a generic template, our method is able to accurately map a template sphere
to various cardiac structures with disparate shapes such as the left ventricle epicardium and
the pulmonary artery. Moreover, we are able to generate smooth surface reconstruction with
consistent normal while capturing the details of individual cardiac structures such as mitral
annulus on the left ventricle epicardium, aortic outlet of the left ventricle and the aortic
sinus.

Figure 3.4 and 3.5 visualize the median and worst results from the different methods
for CT and MR images, respectively, from the MMWHS test dataset. The surface meshes
of 2D UNet and 3D UNet were extracted from the segmentation results using the march-
ing cube algorithm. As shown, our method is able to construct smooth geometries while
segmentation based methods, such as 2D UNet or 3D UNet, produced surfaces with stair-
case artifacts. Such artifacts require surface post-processing techniques such as Laplacian
smoothing that often also degrade true features. Generally, all four methods are able to
produce reasonable median cases from CT data. For MR data, our method produced rea-
sonable reconstructions, while the 2D UNet and 3D UNet produced reconstructions with



CHAPTER 3. A DEEP-LEARNING APPROACH FOR DIRECT WHOLE-HEART
MESH RECONSTRUCTION 43

Figure 3.3: Example reconstructions from our method for CT (left) and MR (right) data
selected from MMWHS test dataset. Our method reconstructs the whole heart consisting of
seven cardiac structures, including the four heart chambers, left ventricle epicardium, aorta
and pulmonary arteries. Geometry of each reconstructed cardiac structure is demonstrated
in two different views, with the bottom view also displaying the meshes.

disconnected regions that would require post-processing to remove or connect. Voxel2Mesh
was unable to capture detailed shapes of some structures such as the bifurcation of the pul-
monary artery branches. In the worst cases for both CT and MR, our method nonetheless
produced realistic shapes. However, 2D UNet and 3D UNet predicted geometries with miss-
ing parts, noisy surfaces, incorrect classifications and/or disconnected regions that would
require significant post-processing. Voxel2Mesh predicted worst-case geometries that devi-
ated largely from ground truths and had major surface artifacts. To provide quantitative
comparison on the surface quality produced by different methods, Table 3.3 displays aver-
age normal error (ANE), average normalized Laplacian distance (ANLD), and percentage
mesh self-intersection of the reconstruction results. Overall, our method demonstrated the
best surface smoothness and normal consistency for all cardiac structures for CT data and
for most cardiac structures for MR data. For topology correctness, our method produced
meshes with a small number of self-intersections. In contrast, the segmentation-based ap-
proaches apply the Marching Cube algorithm to generate uniform and watertight surface
meshes without self-intersection.

Figures 3.6 and 3.7 provide further qualitative comparisons of the results from the differ-
ent methods. As shown in Fig. 3.7, our method was able to generate smoother reconstruction
than the ground truth segmentation on MR images that have relatively large voxel spacing.
In contrast, 2D UNet that produces segmentation on a slice-by-slice manner along the sagittal
view, may suffer from inconsistency between adjacent slices, leading to coarse segmentation
when looking from the axial view that the 2D UNet was not trained on. 3D UNet, limited
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Figure 3.4: Visualizations of the median and worst reconstruction results among the
MMWHS CT test dataset in terms of whole-heart Dice scores for all compared methods.

Figure 3.5: Visualizations of the median and worst reconstruction results among the
MMWHS MR test dataset in terms of whole-heart Dice scores for all compared methods.

by the memory constrain of GPU, can only produce coarse segmentation on a down-sampled
voxel grid of 128× 128× 128 for high-resolution CT image data. Although Voxel2Mesh can
also produce smooth surface meshes, it tends to predict surfaces that lack shape details and
do not match well with the true boundary of many cardiac structures.

Figure 3.8 shows reconstruction results for the 10 most challenging CT and MR images
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Epi LA LV RA RV Ao PA

CT

ANE (↓)

Ours 0.004 0.003 0.003 0.006 0.006 0.002 0.008
2DUNet 0.036 0.012 0.014 0.022 0.030 0.010 0.023
3DUNet 0.033 0.015 0.014 0.017 0.021 0.010 0.016
Voxel2Mesh 0.136 0.171 0.129 0.150 0.136 0.143 0.105

ANLD (↓)

Ours 0.091 0.078 0.085 0.085 0.080 0.076 0.090
2DUNet 0.287 0.280 0.287 0.282 0.286 0.265 0.278
3DUNet 0.292 0.284 0.295 0.295 0.290 0.273 0.291
Voxel2Mesh 0.113 0.119 0.129 0.134 0.126 0.140 0.160

Intersection (%) (↓)

Ours 0.014 0.006 0.017 0.007 0.024 0.005 0.049
2DUNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3DUNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Voxel2Mesh 0.269 0.000 0.000 0.003 0.000 0.000 0.020

MR

ANE (↓)

Ours 0.015 0.012 0.007 0.010 0.013 0.015 0.017
2DUNet 0.057 0.016 0.022 0.024 0.033 0.026 0.018
3DUNet 0.056 0.017 0.035 0.020 0.034 0.037 0.014
Voxel2Mesh 0.104 0.189 0.130 0.136 0.150 0.123 0.160

ANLD (↓)

Ours 0.103 0.093 0.088 0.101 0.092 0.088 0.103
2DUNet 0.287 0.274 0.285 0.282 0.276 0.275 0.289
3DUNet 0.296 0.283 0.299 0.297 0.288 0.296 0.304
Voxel2Mesh 0.130 0.132 0.129 0.144 0.139 0.155 0.159

Intersection (%) (↓)

Ours 0.069 0.018 0.023 0.069 0.069 0.108 0.134
2DUNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3DUNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Voxel2Mesh 0.189 0.000 0.000 0.070 0.000 0.059 0.020

Table 3.3: A comparison of the quality of the whole heart surfaces from different methods
on MMWHS MR and CT test datasets.

for which 2D UNet (the method that demonstrated closest performance to our method)
predicted less accurate segmentations in terms of Dice scores compared with the rest images
in the test datasets. For all the 10 MR images and 8 out of the 10 CT images, our method
produced whole-heart reconstructions with improved Dice scores. For all these CT cases,
we were able to generate accurate reconstruction with Dice scores above 0.87 and smooth
surfaces without obvious artifacts. However, for the 10 MR cases, although we demonstrated
improvement against 2D UNet predictions, we observed buckling and bumpiness on mesh
surfaces of one or more cardiac structures for 5 out of 10 cases.

Interestingly, as indicated by the point-correspondence color maps in Figure 3.8, although
we did not explicitly train our method to generate feature-corresponding meshes across
different input images, our method was generally able to consistently deform template meshes
to map mesh vertices to similar structural features of the heart for different images. This
behavior allowed convenient generation of the mean whole heart shapes from the test dataset
by computing the average coordinates of each vertex. Figure 3.9 demonstrates the mean
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images
and predictions from different test cases with the 10th, 50th, 90th percentiles of Dice scores

based on our method.

Figure 3.6: Comparison of the predicted whole heart surfaces from different methods for CT
test cases. Different rows demonstrated the zoomed-in axial view of the

whole heart shapes for MR and CT images from the MMWHS test dataset, respectively,
and the distribution of the average surface distance errors on the whole heart compared with
manual ground truths. For both CT and MR data, locations that suffer from higher surface
errors include the ends of the aorta and pulmonary arteries, boundaries between the right
ventricle and the pulmonary artery, boundaries between the right atrium and the ventricle,
and the inferior vena cava region on the right atrium. We note that several of the locations
of largest error are artificial boundaries, or arbitrary truncations of vessels extending away
form the heart.

Generalization to Low-Resolution MR Images

Cardiac MR image data are often acquired in a slice-by-slice manner and thus often vary
in through-plane resolution due to the use of different acquisition protocols and vendors.
For MR images with low through-plane resolution, accurately constructing smooth surface
geometries is challenging since a method would need to complete the cardiac structures
that are not captured between the slices. Therefore, having trained our method on MR
images with high through-plane resolution to produce detailed whole heart geometries, we
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images
and predictions from different test cases with the 10th, 50th, 90th percentiles of Dice scores

based on our method.

Figure 3.7: Comparison of the predicted whole heart surfaces from different methods for MR
test cases. Different rows demonstrated the zoomed-in axial view of the

evaluate the performance of our method on MR images with lower through-plane resolution
and compare it with our baselines. To disentangle the effect of through-plane resolution
from the effect of other variations of MR images, we first generate low-resolution MR images
from our validation data by down-sampling the images to various slice thicknesses. We then
evaluate the robustness of different methods to challenging real low-resolution MR images
that significantly differ from our training datasets. Namely, we used data from our cine MR
images, which were acquired with large slice thicknesses (8-10 mm), different acquisition
planes, and from a different clinical center.

Synthetic Low-resolution MR data

Figure 3.10 displays an example of down-sampling an input image dataset along the longitu-
dinal direction of the left ventricle to various slice thickness of 1 mm, 6 mm, and 10 mm, as
well as the corresponding predictions from our method, 2D UNet and 3D UNet, respectively.
For low through-plane resolution images, the same linear resampling method was applied
as before to interpolate the 3D image volume to the sizes required by the neural network
models. As the slice thickness was increased to up to 10 mm, while 2DUNet can generally
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Figure 3.8: Whole heart reconstruction results from the 10 most challenging CT and MR
images for which 2D UNet predicted less accurate segmentations in terms of Dice scores
compared with the rest images in the MMWHS test datasets. On top of each case is the
whole-heart Dice score of our result and the difference in whole-heart Dice score compared
with 2D UNet reconstruction. The color map denotes the indices of mesh vertices and
demonstrates the correspondence of mesh vertices across reconstructed meshes from different
images.

produce consistent segmentation on 2D slices, it produces uneven 3D geometries due to poor
inter-slice consistency. In contrast, the 3D UNet is able to produce smoother surfaces by
accounting for inter-slice information. However, as slice thickness increases, the 3D UNet
produces less accurate segmentation, such as incorrectly classifying a part of the RV into
the RA and a part of the PA into the aorta, as shown by the arrows in Figure 3.10. Our
method, however, for all different slice thicknesses, produces consistent reconstructions that
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Figure 3.9: Distribution of the average surface distance errors on mean whole heart shapes
from the CT and MR data in MMWHS test dataset.

closely resembles the ground truth surfaces and are free of any major artifacts. Figure 3.11
displays quantitative evaluations of the reconstruction performance on various image reso-
lutions. Regardless of slice thickness values considered, our method out-performed 2D UNet
and 3D UNet both in terms of Dice and ASSD. Moreover, as slice thickness increases from
1 mm to 10 mm, in general, we observed increasing improvement of our method compared
with 2D UNet or 3D UNet. Furthermore, by taking a 3D image volume as the input, our
method and 3D UNet are more robust to additional in-plane resolution changes than the 2D
UNet. Both our method and the 3D UNet demonstrated a smaller reduction in accuracy
with 4 times reduction of in-plane resolution.

Real Low-resolution MR data

We evaluated the robustness of our method on the challenging cine MR dataset, which signif-
icantly differs from our training datasets in terms of the through-plane resolution, imaging
plane orientation and coverage of the heart. To generate ground truth segmentation and
meshes from low-resolution MR data, we re-sampled such 3D image volume and linearly
interpolated between the slices to have an isotropic spacing of 1 mm along all three axes.
The ground truth segmentations were obtained by manually segmenting the interpolated
image data and manually correcting artifacts due to low through-plane resolution based on
prior human expert knowledge of the heart to obtain smooth and physiologically plausible
geometries that match with the low-resolution image data as much as possible. Table 3.4
compares the reconstruction accuracy between our method and the baselines. The recon-
struction accuracy was evaluated at two time frames, end diastole and end systole, for each
patient. Overall, our method demonstrated high reconstruction accuracy and outperformed
the other methods for most cardiac structures in terms of average Dice score and ASSD.

Figure 3.12 compares the whole-heart geometries reconstructed by our method with oth-
ers for one example of cine cardiac MR images. Our method was able to produce clean surface
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Figure 3.10: Robustness of different methods to through-plane resolution changes of MR
images. Left panel shows the front and back views of the ground truth surfaces; top panel
shows example slices along the down-sampling axis of images down-sampled to varying slice
thicknesses, and bottom panel shows front and back views of predicted whole-heart surfaces
from different methods corresponding to different slice thickness values.

meshes while at the same capture most of the cardiac structures with reasonable accuracy. In
contrast, since these images were acquired on imaging planes that were different from those
used in acquiring the training data, 2D UNet produced inaccurate reconstruction and discon-
nected surfaces. 3D UNet produces more complete reconstruction of the cardiac structures
but often produced many disconnected false positive regions. Voxel2Mesh is able to produce
clean surface meshes with generally correct topology but the predictions are not accurate.
Furthermore, as changes in input images over different time frames are small, our method
produced consistent reconstruction over different time phases. However, segentation-based
methods, 2D UNet or 3D UNet, often produce inconsistent reconstruction with significant
shape or topology changes, despite small changes in input images over different time frames.
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Figure 3.11: Relation of Dice and ASSD values of whole-heart surfaces to through-plane
resolution of MR images. Comparison between different methods and different in-plane
resolutions are indicated by lines with different color and different styles, respectively. The
bottom panel shows the average percentage differences of Dice or ASSD values between our
method and 2D UNet or 3D UNet across all validation images.

Epi LA LV RA RV Ao PA WH

Dice (↑)

Ours 0.656±0.169 0.708±0.187 0.822±0.104 0.672±0.114 0.643±0.228 0.543±0.255 0.445±0.225 0.693±0.112
2D UNet 0.543±0.263 0.517±0.283 0.734±0.218 0.274±0.218 0.644±0.184 0.393±0.215 0.487±0.286 0.598±0.166
3D UNet 0.546±0.244 0.702±0.22 0.782±0.134 0.598±0.169 0.631±0.144 0.495±0.175 0.285±0.249 0.627±0.131
Voxel2Mesh 0.438±0.178 0.529±0.275 0.669±0.135 0.54±0.206 0.598±0.273 0.395±0.246 0.223±0.195 0.527±0.167

ASSD (mm) (↓)

Ours 4.009±1.118 4.775±2.522 4.534±2.195 5.299±1.883 5.468±1.856 6.713±3.233 7.463±3.14 5.466±1.613
2D UNet 4.585±3.501 6.665±5.147 5.204±3.3 10.638±6.918 4.12±2.493 8.36±7.738 7.914±9.257 6.784±3.951
3D UNet 3.498±2.47 4.841±5.061 3.228±2.945 8.537±5.393 5.234±2.466 10.022±6.599 11.643±8.608 6.715±3.091
Voxel2Mesh 5.104±1.767 7.105±3.082 6.763±2.528 6.945±3.163 7.775±4.613 9.181±4.593 12.079±7.703 7.85±2.881

Table 3.4: A comparison of prediction accuracy on cine MR dataset from different methods.
All accuracy measures are represented by mean ± standard deviation, which are computed
over different patients and time frames.

Construction of Whole-Heart 4D Models from Motion Image Data

We further tested our method on time-series CT datasets. Table 3.5 compares the recon-
struction accuracy between our method and the other baseline methods. Similar to above,
the reconstruction accuracy was evaluated at two time frames, end diastole and end systole,
for each patient. Overall, our method demonstrated high reconstruction accuracy and out-
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Figure 3.12: Short axis and long axis slices at different time frames for an example cine cardic
MR data and the corresponding reconstructed whole heart surfaces from different methods.

performed the other methods for most cardiac structures in terms of average Dice score and
ASSD.

Furthermore, we explore the potential capability of our method to reconstruct dynamic
4D whole-heart models to capture the motion of the heart from time-series image data.
Figure 3.13 displays example whole-heart reconstruction results of our methods on time-
series CT data that consisted of images from 10 time frames over the cardiac cycle for
each patient. Although our model predicts mesh reconstructions independently from each
time frame, it is able to consistently deform the template meshes such that the same mesh
vertices on the template meshes are generally mapped to the same region of the reconstructed
geometries across different time frames, as shown by the color maps of vertex IDs in Figure
3.13. Moreover, as demonstrated by the segmentation in Figure 3.13, our method is able to
capture the minor changes between time frames. Therefore, our method can potentially be
applied to efficiently construct 4D dynamic whole-heart models to capture the motion of a
beating heart.
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Epi LA LV RA RV Ao PA WH

Dice (↑)

Ours 0.902±0.035 0.96±0.018 0.956±0.033 0.946±0.014 0.944±0.017 0.974±0.006 0.798±0.129 0.94±0.012
2D UNet 0.913±0.028 0.958±0.014 0.957±0.023 0.927±0.041 0.925±0.041 0.971±0.009 0.867±0.114 0.937±0.022
3D UNet 0.884±0.03 0.935±0.012 0.946±0.03 0.928±0.019 0.92±0.02 0.955±0.01 0.831±0.059 0.922±0.014
Voxel2Mesh 0.786±0.072 0.933±0.019 0.928±0.037 0.92±0.021 0.928±0.019 0.924±0.011 0.651±0.123 0.894±0.014

ASSD (mm) (↓)

Ours 0.697±0.308 0.54±0.205 0.574±0.399 0.781±0.21 0.756±0.219 0.28±0.073 2.714±3.079 0.906±0.5
2D UNet 0.634±0.281 0.569±0.181 0.538±0.25 1.097±0.668 1.099±0.737 0.281±0.103 1.155±1.019 0.767±0.291
3D UNet 0.811±0.34 0.871±0.277 0.711±0.381 0.993±0.325 1.017±0.267 0.504±0.19 1.598±1.183 0.929±0.259
Voxel2Mesh 1.297±0.451 0.916±0.208 0.993±0.423 1.194±0.327 1.034±0.275 0.844±0.124 3.788±2.008 1.438±0.325

Table 3.5: A comparison of prediction accuracy on time-series CT dataset from different
methods. All accuracy measures are represented by mean ± standard deviation, which are
computed over different patients and time frames.

Figure 3.13: Whole-heart reconstruction results for time-series CT data. From left to right,
each column displays results at one time frame from middle diastole to early diastole. The
top row shows predicted segmentation overlaid with CT images and the bottom row shows
the correspondence maps of mesh vertices across reconstructed meshes from different time
frames, with same color denoting the same mesh vertices on reconstructed meshes.

Impact of Post-Processing on Reconstruction Performance

Post processing techniques have been commonly applied to correct prediction artifacts from
segmentation-based deep-learning methods. Therefore, we investigated how the performance
of our method compare with that of the 2D UNet and 3D UNet after post-processing.
Namely, for each cardiac structure, we applied a median filter with a kernel size of 5× 5× 5
voxels to fill any small gaps within the segmentation and smooth segmentation boundaries.
We then removed any disconnected regions from the segmentation by computing the largest
connected component for each cardiac structure. To correct for gaps between the predicted
cardiac structures we leveraged the ability of our method to consistently map the same
vertices to the similar regions of the heart. Thus, we can readily identify the vertices on the
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Epi LA LV RA RV Ao PA WH

CT

Dice (↑)
Ours-Post 0.902 (0.003) 0.933 (0.001) 0.940 0.892 0.910 0.950 0.856 (0.003) 0.919 (0.001)
2DUNet-Post 0.895 (-0.004) 0.924 (-0.006) 0.928 (-0.002) 0.878 (0.001) 0.904 (-0.001) 0.926 (-0.008) 0.831 (-0.001) 0.908 (-0.002)
3DUNet-Post 0.864 (0.001) 0.903 (0.001) 0.930 (0.007) 0.871 (0.003) 0.877 (0.001) 0.920 (-0.003) 0.793 (-0.019) 0.889 (0.001)

Jaccard (↑)
Ours-Post 0.823 (0.004) 0.876 (0.001) 0.888 0.809 0.837 ( -0.001) 0.905 0.760 (0.005) 0.850 (0.001)
2DUNet-Post 0.812 (-0.006) 0.861 (-0.011) 0.869 (-0.004) 0.787 0.827 (-0.001) 0.864 (-0.015) 0.724 (-0.002) 0.833 (-0.004)
3DUNet-Post 0.763 (0.001) 0.825 0.870 (0.009) 0.774 (0.005) 0.785 (0.002) 0.854 (-0.006) 0.678 (-0.017) 0.801 (0.001)

ASSD (mm) (↓)
Ours-Post 0.874 (-0.461) 1.020 (-0.022) 0.823 (-0.020) 1.549 (-0.034) 1.139 (-0.037) 0.528 (-0.003) 1.896 (-0.009) 1.112 (-0.100)
2DUNet-Post 0.863 (0.054) 1.125 (0.0750 0.960 (0.056) 1.681 (-0.038) 1.129 (0.065) 0.819 (0.174) 1.701 (0.149) 1.171 (0.083)
3DUNet-Post 1.295 (-0.148) 1.455 (-0.073) 0.958 (-0.066) 1.906 (-0.036) 1.680 (0.017) 0.905 (0.090) 3.135 (0.941) 1.649 (0.097)

HD (mm) (↓)
Ours-Post 13.978 (0.415) 7.960 (-2.447) 6.252 (-4.074) 11.735 (-1.904) 10.958 (-2.401) 9.044 (-0.363) 26.616 28.041 (0.006)
2DUNet-Post 9.194 (-0.786) 8.368 (-0.406) 6.287 (0.189) 12.243 (-1.381) 9.750 (-0.266) 10.161 (0.148) 26.100 (-1.734) 26.900 (-1.826)
3DUNet-Post 10.250 (-3.386) 9.828 (-0.986) 6.618 (-2.961) 13.251 (-2.779) 12.614 (-3.020) 12.500 (-0.826) 28.700 (1.759) 30.582 (-0.506)

MR

Dice (↑)
Ours-Post 0.800 (0.002) 0.879 (-0.002) 0.921 (-0.001) 0.888 0.892 0.889 (-0.001) 0.817 0.881
2DUNet-Post 0.790 (-0.005) 0.850 (-0.014) 0.892 (-0.004) 0.842 (-0.010) 0.862 (-0.003) 0.862 (-0.008) 0.764 (-0.008) 0.854 (-0.005)
3DUNet-Post 0.770 (0.009) 0.848 (-0.004) 0.881 (0.002) 0.868 (0.001) 0.830 (0.003) 0.817 (0.076) 0.761 (-0.003) 0.844 (0.004)

Jaccard (↑)
Ours-Post 0.674 (0.003) 0.788 (-0.003) 0.856 (-0.002) 0.800 (-0.001) 0.812 0.804 (-0.001) 0.697 0.790
2DUNet-Post 0.661 (-0.007) 0.746 (-0.019) 0.811 (-0.006) 0.741 (-0.011) 0.766 (-0.005) 0.762 (-0.012) 0.632 (-0.009) 0.749 (-0.008)
3DUNet-Post 0.635 (0.010) 0.752 (-0.004) 0.811 (0.009) 0.768 (0.002) 0.733 (0.006) 0.715 (0.065) 0.633 (-0.007) 0.737 (0.005)

ASSD (mm) (↓)
Ours-Post 1.967 (-0.231) 1.373 (-0.028) 1.155 (-0.028) 1.581 (-0.029) 1.310 (-0.023) 2.650 (0.001) 2.692 (0.002) 1.713 (-0.061)
2DUNet-Post 1.805 (-0.013) 1.699 (0.211) 1.520 (0.065) 2.008 (0.288) 1.523 (0.058) 2.747 (0.300) 2.151 (0.331) 1.952 (0.286)
3DUNet-Post 2.167 (-0.206) 2.151 (-0.318) 1.600 (-0.618) 1.658 (-0.338) 2.454 (-0.312) 2.512(-1.277) 2.209 (0.265) 2.042 (-0.073)

HD (mm) (↓)
Ours-Post 16.516 (-0.406) 9.658 (-2.065) 8.070 (-2.820) 13.558 (-1.252) 11.025 (-2.438) 22.219 19.319 (-0.026) 27.569 (-0.133)
2DUNet-Post 13.759 (-5.398) 11.185 (0.404) 9.972 (0.014) 13.825 (-1.005) 11.544 (-1.556) 24.912 (2.346) 17.056 (0.335) 28.024 (-0.273)
3DUNet-Post 17.024 (-11.432) 11.564 (-12.263) 11.531 (-11.178) 12.474 (-7.048) 12.699 (-8.295) 23.113 (-11.226) 17.021 (0.140) 27.065 (-15.400)

Table 3.6: A comparison post-processed prediction accuracy on MMWHS MR and CT test
datasets from different methods. Numbers in parentheses display the accuracy differences
(if any) before and after post processing.

adjacent surfaces between the cardiac structures from our training data. For test cases, we
can then project each of these vertices to the closest vertex on the adjacent surface.

Table 3.6 compares the reconstruction accuracy for our method, 2D UNet, and 3D UNet
after the above post-processing steps as well as the accuracy differences before and after
post-processing for each method. For both CT and MR data, our method consistently out-
performed the baselines for all cardiac structures in terms of Dice and Jaccard scores, and for
most cardiac structures in terms of ASSD and HD measures, respectively. In general, post-
processing techniques did not bring major improvements in Dice, Jaccard or ASSD measures
for all the methods. Indeed, these post-processing techniques are designed to correct artifacts
small in size and thus do not significantly contribute to the improvements in global accuracy
measures. In contrast, for local accuracy measure HD, post-processing techniques brought a
major improvement in HD measure for 3D UNet for MR data due to the removal of discon-
nected regions from the predictions. Figure 3.14 displays the segmentation and reconstruc-
tion results for a challenging MR case before and after post-processing. Segmentation-based
approaches, 2D and 3D UNets, predicted topological incorrect LV myocardium geometries
with large holes, whereas our template-based method predicted topological-correct geome-
tries. Post-processing techniques were able to reduce, but not fully close these holes. For
this MR case, our method produced a small gap between the LV and myocardium as these
two structures are represented by individual surfaces. However, our post-processing method
on the mesh was able to automatically seal this gap.
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Figure 3.14: Example of whole heart segmentation and surface reconstruction results before
and after post-processing.

Impact of Limited Training Data on Reconstruction Performance

We investigate how well our method can reconstruct whole-heart geometries using only a
small number of training data. In this experiment, our neural network model was trained
using only the training set of MMWHS challenge, which consists of 20 CT images and 20
MR images. 16 out of 20 image volumes from each modality were used for training and the
rest were used for validation. We compared our method against the baseline methods for
the same MMWHS test set described above. The baseline methods were trained using the
same training and validation splits.

Table 3.7 compares the Dice and Jaccard scores, ASSD and HD of the reconstruction
results for the methods trained with the reduced training set, as well as the accuracy dif-
ferences compared with training models using more data, as described above. For CT data,
our method consistently outperformed others in terms of Dice and Jaccard scores for the
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whole heart and individual cardiac structures except for pulmonary arteries. In terms of
ASSD and HD, our method outperformed 3D UNet and Voxel2Mesh and was comparable to
2D UNet. For MR data, our method demonstrated better performance than others in terms
of whole heart Dice and Jaccard scores, as well as surface HD of whole heart. 2D UNet
demonstrated the best whole heart ASSD performance. For individual cardiac structures,
our method showed better Dice and Jaccard scores for Epi, LV, RA and RV, smaller ASSD
values for Epi, LV, RA and smaller surface HD values for most of the cardiac structures
except for LA and Ao. Figure 3.15 shows the distribution of different segmentation accuracy
metrics for whole heart and individual cardiac structures among the MMWHS test dataset.

As shown in Table 3.7, when trained with a smaller training dataset, the methods gen-
erally showed reduced Dice or Jaccard scores and increased ASSD and HD values for both
whole heart and individual cardiac structures compared with when trained with a larger
dataset, as summarized in Table 3.2. Exceptions include the smaller HD values of Epi, LA,
LV, RV and PA from our method for CT data and the better LV and aorta segmentation
from 3D UNet for MR data in terms of all four metrics. Compared with CT data, all methods
generally demonstrated more significant reduction of segmentation accuracy for MR data,
in terms of average values of reduction for all four metrics. While performance drops due to
reduced size of training data is consistent, the actually amount of performance drop is minor
for our method, 2D UNet and 3D UNet. For example, although the number of CT training
data was reduced from 87 to 16, we only observed a small average reduction (0.01-0.02) of
whole heart Dice scores for 2D UNet, 3D UNet and our method. However, the performance
drop for Voxel2Mesh in relation to the number of training data was much more significant,
with a 0.27-0.28 reduction of whole-heart Dice scores for CT and MR data. Among all the
cardiac structures, our method had the most significant performance reduction of PA recon-
struction for both CT and MR data while segmentation based approaches, 2D UNet and 3D
UNet, demonstrated a more uniform performance drop across all cardiac structures. Indeed,
the shapes of the PA differ significantly from our initial sphere template mesh and therefore
accurately capturing the shapes of PA might require more training data for our method.
Figure 3.15 gives the distribution of different segmentation accuracy metrics for whole heart
and individual cardiac structures.

Sensitivity Studies

We compare the effect of design choice changes on the whole heart reconstruction perfor-
mance of our method. Namely, we trained another three models while, respectively, using
reduced number of convolutional filters in the image encoding module, using reduced resolu-
tion of template meshes or excluding the elastic deformation from our image augmentation
techniques. Specifically, the number of convolutional filters in the last four residual blocks
were reduced from 48, 96, 192 and 384 to 32, 64, 128 and 256, respectively. The number of
mesh vertices of the template mesh was reduced from 11494 to 3260. As shown in Table 3.8,
reducing the number of filters or template mesh vertices mildly reduced the reconstruction
accuracy of the whole heart or most cardiac structures compared with the our final model.



CHAPTER 3. A DEEP-LEARNING APPROACH FOR DIRECT WHOLE-HEART
MESH RECONSTRUCTION 57

Epi LA LV RA RV Ao PA WH

CT

Dice (↑)

Ours 0.880 0.926 0.931 0.868 0.885* 0.945 0.786* 0.900*
2DUNet 0.877* 0.916 0.926 0.855 0.876* 0.916 0.805 0.892*
3DUNet 0.816* 0.916 0.914 0.848 0.878 0.923 0.793 0.877
Voxel2Mesh 0.501* 0.748* 0.669* 0.717* 0.698* 0.555* 0.491* 0.656*

Jaccard (↑)

Ours 0.790 0.863 0.874 0.773 0.798* 0.897 0.666* 0.819*
2DUNet 0.784* 0.847 0.864 0.753 0.787* 0.850 0.692 0.807*
3DUNet 0.696* 0.848 0.844 0.741 0.787 0.860 0.670 0.782
Voxel2Mesh 0.337* 0.600* 0.510* 0.570* 0.543* 0.397* 0.337* 0.491*

ASSD (mm) (↓)

Ours 1.357 1.137 0.966 1.750 1.320 0.729* 2.020 1.333*
2DUNet 1.014* 1.141 0.911 1.702 1.433* 0.808 1.754 1.240*
3DUNet 1.809* 1.389 1.134 2.176 1.585 0.832 2.276 1.668
Voxel2Mesh 3.412* 3.147* 4.973* 3.638* 4.300* 4.326* 5.857* 4.287*

HD (mm) (↓)

Ours 13.789 10.362 9.628 14.467 12.766 12.740* 25.362 27.567
2DUNet 13.582 10.221 6.700 14.788 16.608* 11.410 28.128 32.514
3DUNet 15.044 40.157* 9.730 15.037 13.777 10.821 27.467 48.731
Voxel2Mesh 15.526* 13.683* 22.146* 16.834* 18.390* 19.419* 35.322* 37.065*

MR

Dice (↑)

Ours 0.773 0.826* 0.913 0.838* 0.861 0.824* 0.663* 0.846*
2DUNet 0.751 0.831 0.880 0.815 0.852 0.838* 0.747 0.834
3DUNet 0.733 0.811 0.885 0.827* 0.829 0.825 0.741 0.823
Voxel2Mesh 0.282* 0.498* 0.515* 0.599* 0.539* 0.241* 0.300* 0.483*

Jaccard (↑)

Ours 0.639 0.712* 0.842 0.727* 0.768 0.715* 0.517* 0.737*
2DUNet 0.611* 0.720 0.793 0.702 0.753 0.726* 0.608 0.719*
3DUNet 0.588 0.695* 0.803 0.718* 0.727 0.718 0.615 0.709
Voxel2Mesh 0.170* 0.339* 0.367* 0.442* 0.388* 0.144* 0.187* 0.327*

ASSD (mm) (↓)

Ours 2.385 2.166* 1.300 2.358* 1.812 3.243 3.138 2.235*
2DUNet 2.692* 1.688 1.603 3.151* 1.736 2.920 2.281* 1.897
3DUNet 2.713 3.866 1.551 2.475 1.931 4.049 2.259 2.120
Voxel2Mesh 6.886* 5.987* 8.679* 6.173* 8.192* 7.877* 9.200* 7.419*

HD (mm) (↓)

Ours 16.804 15.559* 12.197 17.286* 14.480 26.012 19.927 29.983
2DUNet 23.798 14.887* 14.651 22.028* 22.810* 24.237 22.883* 39.724*
3DUNet 20.136 32.978 13.643 23.735 22.351 31.900 21.363 43.475
Voxel2Mesh 27.272* 22.748* 31.327* 24.456* 28.987* 29.381 33.637* 40.072*

Table 3.7: A comparison of prediction accuracy on MMWHS MR and CT test datasets from
different methods trained with images from MMWHS training set. An asterisk ∗ indicates
statistically significant accuracy differences, compared with Table 3.2, resulted from training
on a smaller datset based on t-tests (p<0.05).

However, without elastic deformation augmentation, we observed a significant drop in re-
construction performance. Indeed, elastic deformation augmentation may improve model
robustness to minor local perturbations of the anatomical structures, thereby facilitating
accurate predictions of detailed cardiac structures.

Ablation Studies on Loss components

We performed an ablation study on the mesh loss functions to evaluate the contribution
of individual loss components. Namely, we trained additional models with the normal loss,
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Figure 3.15: Comparison of segmentation accuracy for whole heart and individual cardiac
structures from different methods trained using the small MMWHS training dataset. White
circles on the boxes indicate mean values across patients. Cardiac structures are sorted based
on the accuracy of our method.

Epi LA LV RA RV Ao PA WH

CT

Dice

Final Model 0.899 0.932 0.940 0.892 0.910 0.950 0.852 0.918
Reduced Number of Filters 0.893 0.932 0.936 0.888 0.906 0.949 0.847 0.915
Reduced Number of Vertices 0.842 0.929 0.931 0.888 0.892 0.943 0.837 0.899
No Elastic Deformation Augmentation 0.546 0.882 0.878 0.801 0.757 0.882 0.552 0.773

ASSD (mm)

Final Model 1.335 1.042 0.842 1.583 1.176 0.531 1.904 1.213
Reduced Number of Filters 1.404 1.063 0.892 1.523 1.122 0.536 1.744 1.195
Reduced Number of Vertices 1.768 1.126 1.029 1.664 1.425 0.583 1.768 1.378
No Elastic Deformation Augmentation 3.055 1.742 1.731 2.479 3.188 1.117 5.823 2.920

MR

Dice

Final Model 0.797 0.881 0.922 0.888 0.892 0.890 0.816 0.882
Reduced Number of Filters 0.813 0.873 0.919 0.888 0.881 0.876 0.789 0.879
Reduced Number of Vertices 0.774 0.870 0.903 0.887 0.861 0.860 0.792 0.863
No Elastic Deformation Augmentation 0.487 0.810 0.867 0.795 0.744 0.724 0.413 0.735

ASSD (mm)

Final Model 2.198 1.401 1.183 1.611 1.333 2.648 2.689 1.775
Reduced Number of Filters 2.053 1.556 1.238 1.488 1.429 2.143 2.205 1.645
Reduced Number of Vertices 2.405 1.615 1.516 1.561 1.651 2.390 2.222 1.845
No Elastic Deformation Augmentation 3.794 2.151 2.003 2.976 3.575 3.700 5.166 3.348

Table 3.8: A comparison of prediction accuracy on MMWHS MR and CT test datasets from
different variants of our methods.
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the edge loss or the Laplacian loss removed by changing λ2, λ3, or λ4 to 0, respectively, in
Equation 3.6. We also evaluated the effect of using L2 norm on the edge length loss rather
than the L1 norm originally used in Equation 3.4. The rest of the hyperparameters were
kept the same. As shown in Table 3.9, removing the Laplcaian loss caused the most accuracy
drop on the MMWHS MR and CT test datasets, followed by the edge length loss, the normal
loss and using the L2 edge length loss.

3.4 Discussion

Image-based reconstruction of cardiac anatomy and the concomitant geometric representa-
tion using unstructured meshes is important to a number of applications, including visualiza-
tion of patient-specific heart morphology and computational simulations of cardiac function.
Prior deep-learning-based approaches have shown great promise in automatic whole heart
segmentation [182], however converting the segmentation results to topologically valid mesh
structures requires additional, and often manual, post-processing, and is highly-dependent
on the resolution of the image data. In this work, we present a novel deep-learning-based
approach that uses graph convolutional neural networks to directly generate meshes of mul-
tiple cardiac structures of the whole heart from volumetric medial image data. Our ap-
proach generally demonstrated improved whole heart reconstruction performance compared
with the baseline methods in terms of accuracy measures, Dice and Jaccard scores, ASSD
and HD. Furthermore, our method demonstrated advantages in generating high-resolution,
anatomically and temporally consistent geometries, which are not reflected by the accuracy
measures.

Our method reconstructs cardiac structures by predicting the deformation of mesh ver-
tices from sphere mesh templates. We have demonstrated the advantages of this approach
over segmentation-based approaches in terms of both precision and surface quality. Namely,
the use of a template mesh can introduce topological constraints so that predicted cardiac
structure are homeomorphic to the template. Thus, our template based approach enables
one to eliminate disconnected regions and greatly reduce erroneous topological artifacts of-
ten encountered with existing deep-learning-based segmentation methods. While the cardiac
structures of interest were homeomorphic to spheres, the presented method has the potential
to be generalized to organs with different topology, by using a different template mesh with
the required surface topology.

When trained on a relatively large dataset with 87 CT and 41 MR images, our method
was able to achieve comparable accuracy to manual delineations, which is considered the gold
standard. Furthermore, since we explicitly regularized the surface smoothness and normal
consistency, our method produced smooth and quality meshes while capturing the detailed
features of the cardiac structures. Namely, these factors along with the use of a template
enable our method to generate realistic cardiac structures even when image quality was poor
and segmentation methods struggled to provide realistic topology. From our observations,
the locations on the heart that our neural network models produced high surface errors are
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Epi LA LV RA RV Ao PA WH

CT

Dice

Final 0.899 0.932 0.940 0.892 0.910 0.950 0.852 0.918
L2 edge 0.871 0.926 0.932 0.886 0.904 0.938 0.840 0.907
No normal 0.806 0.925 0.939 0.885 0.904 0.942 0.854 0.896
No edge 0.631 0.866 0.880 0.809 0.793 0.881 0.511 0.788
No Laplacian 0.439 0.870 0.803 0.799 0.760 0.870 0.546 0.746

Jaccard

Final 0.819 0.875 0.888 0.809 0.837 0.905 0.755 0.849
L2 edge 0.776 0.864 0.875 0.799 0.828 0.885 0.735 0.831
No normal 0.676 0.861 0.887 0.797 0.826 0.891 0.754 0.812
No edge 0.464 0.766 0.792 0.684 0.663 0.790 0.349 0.652
No Laplacian 0.284 0.773 0.680 0.671 0.619 0.773 0.380 0.597

ASSD (mm)

Final 1.335 1.042 0.842 1.583 1.176 0.531 1.904 1.213
L2 edge 1.609 1.127 0.933 1.657 1.243 0.641 1.826 1.314
No normal 2.039 1.154 0.838 1.701 1.200 0.726 2.147 1.469
No edge 2.599 2.014 1.723 2.350 2.741 1.597 7.567 3.343
No Laplacian 3.488 1.950 3.086 2.469 3.040 1.853 6.008 3.296

HD (mm)

Final 14.393 10.407 10.325 13.639 13.360 9.407 26.616 28.035
L2 edge 15.500 10.098 8.977 13.055 12.406 10.178 26.034 27.030
No normal 14.261 11.269 10.027 13.502 11.768 12.500 27.737 29.066
No edge 15.000 10.304 9.668 13.104 14.236 12.677 34.336 34.852
No Laplacian 17.412 11.317 15.194 13.407 15.992 18.786 34.145 36.281

MR

Dice

Final 0.797 0.881 0.922 0.888 0.892 0.890 0.816 0.882
L2 edge 0.794 0.871 0.915 0.876 0.873 0.867 0.776 0.868
No normal 0.753 0.878 0.922 0.878 0.884 0.857 0.760 0.866
No edge 0.505 0.745 0.853 0.818 0.789 0.783 0.498 0.743
No Laplacian 0.450 0.765 0.846 0.786 0.772 0.747 0.471 0.733

Jaccard

Final 0.671 0.791 0.858 0.801 0.812 0.805 0.697 0.790
L2 edge 0.665 0.775 0.845 0.783 0.783 0.769 0.645 0.770
No normal 0.609 0.787 0.857 0.786 0.798 0.755 0.629 0.765
No edge 0.347 0.603 0.750 0.699 0.667 0.653 0.338 0.596
No Laplacian 0.296 0.626 0.742 0.654 0.641 0.608 0.317 0.582

ASSD (mm)

Final 2.198 1.401 1.183 1.611 1.333 2.648 2.689 1.775
L2 edge 2.224 1.563 1.288 1.738 1.599 3.017 2.345 1.909
No normal 2.330 1.458 1.149 1.774 1.396 2.691 2.978 1.923
No edge 4.013 3.291 2.397 2.556 3.094 3.448 6.763 3.730
No Laplacian 4.117 2.658 2.362 2.827 3.007 6.512 6.047 3.850

HD (mm)

Final 16.923 11.723 10.891 14.810 13.463 22.219 19.345 27.701
L2 edge 18.361 10.705 8.969 14.247 13.455 22.754 17.124 29.339
No normal 15.460 12.190 10.354 16.143 13.493 23.968 21.291 29.490
No edge 20.087 16.863 14.517 14.365 15.953 21.623 25.522 30.149
No Laplacian 21.755 13.721 12.063 15.423 16.613 35.356 25.437 38.581

Table 3.9: Impact of using L2 edge length loss or removing edge length loss, Laplacian loss
or normal loss on the prediction accuracy on MMWHS MR and CT test datasets
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Ours Ours (Reduced Number of Filters) Ours (Reduced Number of Vertices) 2D UNet 3D UNet Voxel2Mesh
# of Parameters 16,765,112 8,474,257 16,765,112 31,110,152 18,556,552 9,124,521
Time (s) 0.425 0.378 0.240 1.555 0.367 3.492

Table 3.10: A comparison of neural network sizes and the average prediction time among
our methods, 2D UNet, 3D UNet and Voxel2Mesh. The prediction time was measured on a
Nvidia GeForce GTX 1080Ti GPU.

consistent with the locations that could suffer from high inter- or intra-observer variations,
such as the arbitrary length of aorta and pulmonary arteries, boundaries between atria and
ventricles and between the right atrium and the inferior vena cava. Indeed, these boundaries
are not distinguishable by voxel intensity differences and are often subject to uncertainties
even for human observers.

Compared with segmentation-based approaches, our method predicts whole heart sur-
faces directly in the physical space rather than on a voxel grid of the input image. The
whole heart geometries are represented using surface meshes rather than a dense voxel grid.
Hence, our method is able to generate high-resolution reconstructions (11K mesh vertices
for each cardiac structure) efficiently on a limited memory budget and within a shorter or
comparable run-time (table 3.10). Prior 3D segmentation-based approaches have sought
to increase the segmentation resolution by training separate neural networks to first locate
the region of interest or generate low resolution segmentations, and then generate refined
segmentations within the localized region [113, 51]. Our method does not require training
multiple neural networks and can make predictions directly from the entire down-sampled
cardiac image volume. As we used a cascade of three mesh deformation blocks, we observed
that the first deformation block can already effectively position and deform the meshes to
the correct locations and the subsequent deformation blocks can further refine the predicted
mesh vertex locations. High resolution segmentation may also be obtained by recent methods
that represent geometries using implicit surfaces [63]. Namely, for each point in the physical
space, this approach predicts the probability of this point belonging to a certain tissue class.
Therefore, by sampling a large number of points in the physical space, these methods can
also achieve high-resolution reconstruction that are not constrained by the voxel resolution
of the input image or GPU memory. However, the inference process for such methods is
computationally expensive [42] as it requires prediction on a large number of points. In
contrast, our method represents the mesh as a graph (i.e., a sparse matrix) and takes less
than a second to predict a high resolution whole heart mesh.

Compared with prior deep-learning-based mesh reconstruction methods from image data
[159, 168], our method used a shared graph neural network to simultaneously predict surface
meshes of multiple cardiac structures. This is made possible by initializing the template
meshes at various scales and locations corresponding to individual cardiac structures. We
observed that proper template initialization is essential to avoid local minimums due to
large mesh deformation at the beginning stage of training. In contrast, prior approaches are
designed for predicting a single geometry from image data and require training a separate
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graph neural network for each anatomical structure and thus do not easily scale to reconstruct
multiple cardiac structures at a high-resolution from a single image volume. Furthermore,
while prior approaches proposed various up-sampling scheme to construct a dense mesh
from a coarse template [168, 159], we directly deformed a high resolution template. Since the
majority of weights is in the image feature encoder to process a dense volumetric input image,
more mesh vertices can provide more effective gradient propagation to the image feature
encoder. Indeed, using a coarse mesh with 3K mesh vertices for each cardiac structures, we
observed a 2% reduction of whole heart dice score as shown in our supplemental materials
(table 3.8). However, our method was still able to outperform Voxel2Mesh by 3% and 10% for
CT and MR data using a coarse mesh template with a similar amount of mesh vertices. These
design choices allowed our method to demonstrate promising generalization capabilities to
unseen MR images and maintain good performance when trained with a smaller number of
samples. In contrast, Voxel2mesh suffered from a large performance drop when trained on a
smaller dataset.

When applied to time-resolved images, our method consistently deformed the template
mesh such that mesh vertices were mapped to the similar regions of the heart across different
time frames. Learning such semantic correspondence is purely a consequence of our model
architecture and did not require any explicit training. This behavior of producing seman-
tic corresponding predictions was also observed in DeepOrganNet, which reconstructed lung
shapes from single-view X-ray images by deforming lung templates [161]. Point-corresponded
meshes across different input images are required for numerous applications, such as build-
ing statistical shape models, constructing 4D dynamic whole-heart models for motion anal-
ysis and deriving boundary conditions for deforming-domain CFD simulations. Current
approaches that construct feature corresponding meshes for the heart mostly use surface or
image registration methods to deform a reference mesh so that its boundary is consistent
with the target surfaces or image segmentation [108, 60, 66]. However, registration algo-
rithms are often very computationally expensive to align high-resolution meshes and they
often suffer from inaccuracies for complex whole heart geometries due to local minimums
during the optimization process. In the case of time-series image data, our method naturally
produces point corresponding meshes with high resolution (10K mesh vertices per cardiac
structure) across time frames within a couple of seconds, while prior methods could require
hours to generate a 4D dynamic whole-heart model at a similar resolution. Although not
considered here, it is possible to include another loss function that minimizes the point dis-
tances between the vertex locations on the predicted meshes and ground truth landmarks
when available to further enhance feature correspondence.

Limitations of the proposed method include a lack of diffeomorphic constraints to estab-
lish a differentiable mapping from the initial spheres and the predicted surfaces. While we
used the Laplacian loss to regularize the smoothness of the meshes, a diffeomorphic con-
straints may help to further prevent face intersections. Recently, [42] proposed to learn
neural ordinary differential equations to predict a diffeomorphic flow that maps a sphere
mesh template to the target shapes, thus implicitly preserving the manifoldness of the tem-
plate mesh without explicit regularizations. This approach could be combined with our
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image-based whole-heart mesh prediction framework in the future to deform the whole heart
geometry while preserving the manifoldness of the meshes so that they could be directly
used in applications such as numerical simulations and 3D printing. Furthermore, while our
method can simultaneously predict multiple structures from image data, those structures
are not coupled to each other. Small intersections or gaps could appear between adjacent
cardiac structures. While we have demonstrated that simple projection can generally correct
such artifacts, future work could include more explicitly constraining the coupling of cardiac
structures within the learning framework.

3.5 Conclusions

We have developed a deep-learning-based method to directly predict surface mesh recon-
structions of the whole heart from volumetric image data. The approach leverages a graph
convolutional neural network to predict deformation on mesh vertices from a predefined mesh
template to fit multiple anatomical structures in a 3D image volume. The mesh deforma-
tion is conditioned on image features extracted by a CNN-based image encoder. The method
demonstrated promising performance of generating accurate high-resolution and high-quality
whole heart reconstructions and outperformed prior deep-learning-based methods on both
CT and MR data. It also demonstrated robust performance when evaluated on MR or CT
images from new data sources that differ from our the training datasets. Furthermore, the
method produced temporally consistent predictions and feature-corresponding predictions
by consistently mapping mesh vertices on the templates to similar structural regions of the
heart. Therefore, this method can potentially be applied for efficiently constructing 4D
dynamics whole heart model that captures the motion of a beating heart from time-series
images data.
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Chapter 4

Learning Free-Form Deformation For
Whole Heart Mesh Generation

4.1 Introduction

Direct mesh reconstruction using geometric deep learning [25, 11] provides a recent avenue
to address the end-to-end learning between volumetric medical images and simulation-ready
surface meshes of the heart [168, 161, 68, 3, 30]. Particularly, our previous chapter leverages
a graph convolutional neural network to predict deformation on mesh vertices from a pre-
defined mesh template to fit multiple anatomical structures in a 3D image volume [68].
However, different structures were represented by decoupled mesh templates and thus still
require post-processing to merge different structures for computational simulations involving
multiple cardiac structures. Similarly, [3] uses deep neural networks and patient metadata
to predict cardiac shape parameters of a pre-built statistical shape model of the heart.
However, these approaches often assume the connectivity of the meshes. That is, the shape
and topology of the predicted meshes from these approaches are pre-determined by the
mesh template and cannot be easily changed to accommodate various mesh requirements for
different cardiac simulations.

In this chapter, we are motivated to automatically and directly generate meshes that
are suitable for computational simulations of cardiac function. We present herein, in con-
trast, an approach that deforms the space enclosing the mesh template. Once trained on the
whole heart template, our network can deform alternative template meshes that represent a
subset of the geometries in the template to accommodate different modeling requirements.
Prior work by Wang et. al. [161] proposed to learn the space deformation by predicting the
displacements of a control point grid to deform template meshes of the lung. However, it
leveraged memory-intensive, fully-connected neural network layers to predict the displace-
ments with a small number of control points from a 2D X-Ray image and thus cannot be
directly applied to model complex whole-heart geometries with large geometric variations
from 3D image volumes. A few studies have focused on learning space deformation fields.
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Figure 4.1: Diagram of the proposed automatic whole heart reconstruction approach.

[110] used a 3D UNet to predict the deformation field to deform only heart valve templates
from CT images. To overcome these shortcomings, our method learns the multi-resolution
B-spline free-form deformation of the space to produce detailed whole heart meshes from
volumetric CT images by a novel graph convolutional module and effective feature sampling
method. When applied to time-series image data, our approach is able to generate tem-
porally consistent meshes that capture the motion of a beating heart and are suitable for
cardiac hemodynamics simulations.

4.2 Methods

Fig 4.1 shows our proposed whole-heart mesh generation pipeline. Our framework consists
of three components to predict the whole-heart meshes from a volumetric input image:
(1) an image encoding module, (2) a image feature sampling module, (3) a deep free-form
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deformation module that predicts control point displacements to deform the template mesh
and (4) a segmentation module that predicts a binary segmentation map to allow additional
supervision using ground truth annotations.

B-Spline Based FFD

We used a 3D tensor product of the 1D cubic B-spline formulation to deform the space.
Namely, for a control point gird of (l + 1) × (m + 1) × (n + 1), the relation between a
deformed mesh vertex v and the control points p is described by

v(s, t, u) =
l∑

i=0

m∑
j=0

n∑
k=0

Bi,3(s)Bj,3(t)Bk,3(u)pi,j,k (4.1)

, where Bi,3 is the cubic B-spline basis. Such relation can be expressed in the matrix form

V = BP, V ∈ RN×3, B ∈ RN×ψ, P ∈ Rψ×3 (4.2)

, where N and ψ are the number of mesh vertices and control points, respectively. B is the
trivariate B-spline tensor and can be pre-computed from the template mesh. P is the control
point coordinates that the network will learn to predict. Compared with the Bernstein
deformation tensor implemented in [161], the B-spline-based deformation matrix is sparse
since the B-spline basis are defined locally and thus can greatly reduce the computational
cost for high-resolution control point grids.

Deep FFD Module

Since the heart involves complicated geometries and significant shape variations during the
cardiac cycle and across patients, a dense control point grid is necessary to produce accurate
reconstruction of the cardiac structures. Therefore, flattening the image feature vectors of
a 3D image and using fully connected layers to predicted control point displacements as
proposed in [161] is no longer computationally feasible. We therefore propose to use a graph
convolutional network (GCN) to predict the control point displacements based on sampled
image feature vectors.

Graph Convolution On Control Grid

We represent the control point grid as a graphM = (V , E). Each control point is connected
with all its 26 neighbors (7, 11, and 17 neighbors at the corner point, edge point, and surface
point, respectively). The graph convolution on a mesh follows [25] and [68]. Briefly, we used a
first-order Chebyshev polynomial approximation described as fout = σ(θ0fin+θ1finL̃), where
θ0, θ1 ∈ Rdout×din are trainable weights, fin ∈ Rdin×N , fout ∈ Rdout×N are input and output
feature matrices of a graph convolution layer applied on the control point grid, respectively,
and L̃ = 2Lnorm/λmax − I, L̃ ∈ RN×N is the scaled and normalized Laplacian matrix [25].
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N is the number of control points. din and dout are the input and output graph feature
dimensions, respectively. The feature lengths of the intermediate layers match with the
numbers in Fig 4.1, with 3 for displacements. Compared with conventional convolution with
trainable filters, graph convolution requires far fewer parameters as the connection among
vertices is encoded in the graph Laplacian matrix.

Deep Multi-Resolution FFD

Our proposed graph decoding module consists of three deformation blocks to progressively
deform the template mesh. For the initial mesh deformation blocks, we used lower resolution
control point grids conditioned on the more abstracted, high-level image feature maps while
using high-resolution control point grids with low-level, high-resolution feature maps for
the later mesh deformation blocks. Within each deformation block, we concatenate the
sampled image feature vector with the vertex feature vectors on the control points and then
use residual graph convolutional blocks to predict the displacements on the control points
to deform the template meshes. Between two deformation blocks, we used used trilinear
interpolation to upsample the features on lower-resolution control point grid to the same
grid resolution as in the next deformation block. The numbers of control points along each
dimension were 6, 12, and 16, respectively for the 3 deformation blocks.

Probability Sampling of Image Features

Effective sampling of the image features is essential for training a dense volumetric feature
encoder. We randomly sample 16 points on the whole heart per control point based on a
normal distribution centered at each control points with the covariance determined by the
grid resolution (Fig 4.1). In each FFD block, we update the coordinates of sampled points
based on FFD, sample image features at these coordinates and then compute the expectation
of image features over the sampled points for each grid point. These image features are then
concatenated with the grid features for displacement prediction using GCN. Control points
in the low-resolution grid thus have a larger field of selection than those in the high-resolution
grid. Fig 4.1 visualizes the probability distribution and sampled points correspond to one
control point from control grid at different resolutions.

Loss functions

The training of our networks was supervised by 3D ground truth meshes of the whole heart
as well as a binary segmentation indicating occupancy of the heart on the voxel grid that
corresponds to the input image volume. The total loss is a weighted combination of a point
loss, a grid elasticity loss and a segmentation loss over all deformation blocks Bi. Namely,

Ltotal =
3∑
b

Lpoint(PBi ,GBi) + α1

3∑
b

Lgrid(∆CBi) + α2Lseg(Ip, Ig). (4.3)
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We used α1 = 100 selected from 10, 100, 1000 based on the validation accuracy. α2 was
initially set to 200 (selected from 10, 100 and 200) and decreased by 5% every 5 epochs
during training. We use the Chamfer loss as the point loss

Lpoint(Pi,Gi) =
∑
p∈Pi

min
g∈Gi

||p− g||22 +
∑
g∈Gi

min
p∈Pi

||p− g||22 (4.4)

, where p and g are, respectively, points from vertex sets of the predicted mesh Pi and
the ground truth mesh Gi of cardiac structure i. Since excessive deformation of the control
points especially during early phase of training may introduce undesirable mesh artifacts,
we use the grid elasticity loss to regularize the network to predict small displacements of the
control points,

Lgrid(∆C) =
∑
c∈C

||∆c− 1

N

∑
c∈C

∆c||22. (4.5)

We used a hybrid loss function Lseg(Ip, Ig) that sums the cross-entropy and the dice losses
between the predicted occupancy probability map Ip and the ground truth binary segmen-
tation of the whole heart Ig. The validation loss converged in 36 hrs on a GTX1080Ti
GPU.

Cardiac flow simulation

We applied the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible
Navier-Stokes equations to simulate the intraventricular flow and account for deforming
volumetric mesh using the finite element method. The volumetric mesh was created auto-
matically from our FFD predicted surface mesh using TetGen [139]. Blood was assumed to
have a viscosity µ of 4.0 × 10−3Pa · s and a density ρ of 1.06g/cm3. The equations were
solved with the open-source svFSI solver from the SimVascular project [155].

4.3 Experiments and Results

Dataset and Preprocessing

We applied our method to public datasets of contrast-enhanced CT images from both normal
and abnormal hearts and mostly cover the whole hearts, MMWHS [182], orCalScore [169]
and SLAWT [57]. Intensity normalization and resizing as well as data augmentation tech-
niques, random scaling, rotation, shearing and elastic deformation were applied following the
procedures in [68]. The training and validation datasets contained 87 and 15 CT images,
respectively. The 40 CT images from MMWHS test dataset and 10 sets of times-series CT
data [68] were left out for evaluations. The ground truth labels include the 4 heart chambers,
aorta, pulmonary artery, parts of the pulmonary veins and venae cavae for the training and
validation data.
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Figure 4.2: Whole-heart reconstruction results for time-series CT data. The first row shows
predicted segmentation overlaid with CT images. The second and third rows shows mesh
predictions from the first and the last deep FFD blocks. The predictions at the first time
frame are overlaid with ground truths. Color maps denotes the mesh vertex IDs.

Generation of 4D Meshes for CFD Simulations

We applied our method on time-series CT image data that consisted of images from 10 time
frames over the cardiac cycle for each patient. Fig 4.2 compares the predictions from the
first and last FFD blocks. A low-resolution control point grid can capture the general shape
and location of the heart in the image stack whereas the high-resolution control point grid
can capture further detailed features. From the segmentation results in Fig 4.2, our method
is able to capture the minor changes between time frames. Furthermore, as denoted by the
color maps of vertex IDs, our method consistently deforms the template meshes such that
predictions across different time frames have feature correspondence.

We also evaluated the potential of our method to generate simulation-ready meshes for
deforming-domain CFD simulations of cardiac flow. We used a simulation ready template
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Figure 4.3: a) Simulation-ready templates and example predictions. b) CFD simulation
results using the predicted 4D meshes.

with trimmed inlet/outlet geometries and tagged face IDs for prescribing boundary condi-
tions. Fig 4.3a shows the template mesh and our prediction for a representative patient. As
our method does not constrain the faces of inlets or outlets to be co-planer, we post-processed
our prediction using automatic scripts to project the points on the tagged inlet and outlet
faces to fitted planes. We used the resulting meshes to simulate the filling phase of heart
after interpolating the 4D meshes to increase the temporal resolution to 0.001s. For the fluid
domain, Dirichlet (displacements) boundary conditions were applied on the chamber walls
as well as on aorta and pulmonary outlets, while Neumann (pressure) boundaries conditions
were applied on pulmonary vein and vena cava inlets. Fig 4.3b displays the simulation results
of the velocity streamlines at multiple time steps during diastole. Videos of the predicted
meshes and simulation results of more cases are in our supplementary materials.

Comparison of different methods

We compared the whole heart reconstruction performance of different FFD strategies, namely,
1) using the same resolution of control point grid for all deformation blocks as in [161] and
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Epi LA LV RA RV Ao PA WH

Dice

Singe-Res+US 0.72±0.09 0.82±0.08 0.81±0.07 0.79±0.07 0.81±0.06 0.78±0.09 0.69±0.14 0.79±0.05
Multi-Res+US 0.81±0.06 0.89±0.05 0.88±0.07 0.84±0.07 0.86±0.05 0.87±0.07 0.76±0.13 0.86±0.04

Multi-Res+WHS 0.84±0.05 0.91±0.04 0.89±0.07 0.86±0.06 0.88±0.04 0.91±0.04 0.8±0.1 0.88±0.03

ASSD
(mm)

Singe-Res+US 2.28±0.76 2.61±0.97 2.72±1.02 2.87±0.93 2.42±0.56 2.41±0.96 3.55±1.62 2.69±0.69
Multi-Res+US 1.61±0.43 1.5±0.56 1.62±0.66 2.09±0.92 1.59±0.4 1.29±0.52 2.5±1.38 1.75±0.41

Multi-Res+WHS 1.41±0.38 1.4±0.47 1.46±0.68 1.87±0.84 1.49±0.42 1.08±0.35 2.19±1.17 1.54±0.34

HD
(mm)

Singe-Res+US 15.44±2.42 11.54±3.47 10.45±3.13 15.22±5.35 12.02±2.5 14.9±7.32 26.41±11.49 27.87±10.59
Multi-Res+US 14.45±2.49 9.25±2.92 8.04±2.25 13.55±5.84 10.86±2.59 12.54±5.53 23.97±12.62 25.67±11.51

Multi-Res+WHS 13.51±2.59 8.58±2.87 7.66±2.61 12.75±5.46 10.09±2.48 12.24±6.86 24.79±12.52 26.76±11.17

Table 4.1: A comparison of prediction accuracy on MMWHS CT test datasets from different
deep FFD methods.

Figure 4.4: Qualitative comparisons among different methods

uniformly sample the image feature space based the the coordinates of the control points
(Single-Res + US), 2) using multi-resolution control point grids and uniformly sample the
image feature space based on the coordinates of the high resolution grid (Multi-Res + US)
and 3) our final model that uses multi-resolution control point grids and probability sampling
of the image feature space based on the coordinates of the whole heart template (Multi-Res
+ WHS). Furthermore, we compared these FFD-based methods with prior whole-heart re-
construction or segmentation methods, Kong et al [68], 2DUNet [128, 66], residual 3D UNet
[49] and Voxel2Mesh[168]. We followed procedures described in [68] to implement those
methods.

Table 4.1 presents the accuracy scores of different FFD-based methods evaluated on the
MMWHS test dataset. Since the ground truths of MMWHS test dataset do not contain the
pulmonary veins or venae cavae, we used a template without those structures to generate
our predictions. For FFD-based methods, Multi-Res consistently produced more accurate
geometries for all cardiac structures (Table 4.1). Multi-Res + WHS produced more accurate
geometries with less surface artifacts than Multi-Res + US, indicating the contribution of our
proposed sampling method. Fig 4.4 displays qualitative whole-heart reconstruction results
from different methods. Mesh-deformation based methods, ours and [68], are able to gen-
erate smoother and more anatomically consistent geometries compared with segmentation-
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Epi LA LV RA RV Ao PA WH

Dice

FFDNet 0.839 0.905 0.894 0.863 0.877 0.906 0.802 0.878
Kong et al. [68] 0.899 0.932 0.940 0.892 0.910 0.950 0.852 0.918
2DUNet [128] 0.899 0.931 0.931 0.877 0.905 0.934 0.832 0.911
3DUNet [49] 0.863 0.902 0.923 0.868 0.876 0.923 0.813 0.888

Voxel2Mesh [168] 0.775 0.888 0.910 0.857 0.885 0.874 0.758 0.865

Jaccard

FFDNet 0.725 0.829 0.814 0.764 0.783 0.831 0.680 0.784
Kong et al. [68] 0.819 0.875 0.888 0.809 0.837 0.905 0.755 0.849
2DUNet [128] 0.817 0.872 0.873 0.787 0.828 0.879 0.726 0.837
3DUNet [49] 0.762 0.825 0.861 0.769 0.783 0.860 0.695 0.799

Voxel2Mesh [168] 0.638 0.801 0.839 0.754 0.795 0.778 0.619 0.763

ASSD (mm)

FFDNet 1.406 1.404 1.455 1.870 1.488 1.080 2.193 1.544
Kong et al. [68] 1.335 1.042 0.842 1.583 1.176 0.531 1.904 1.213
2DUNet [128] 0.808 1.049 0.905 1.719 1.064 0.645 1.551 1.088
3DUNet [49] 1.443 1.528 1.024 1.943 1.663 0.814 2.194 1.552

Voxel2Mesh [168] 1.714 1.696 1.266 2.020 1.492 1.341 3.398 1.848

HD (mm)

FFDNet 13.508 8.584 7.665 12.753 10.089 12.243 24.794 26.765
Kong et al. [68] 14.393 10.407 10.325 13.639 13.360 9.407 26.616 28.035
2DUNet [128] 9.980 8.773 6.098 13.624 10.016 10.013 27.834 28.727
3DUNet [49] 13.635 10.814 9.580 16.031 15.635 13.326 26.941 31.088

Voxel2Mesh [168] 13.564 8.743 6.248 12.116 9.601 12.080 26.252 27.459

Table 4.2: Quantitative comparison of the geometric accuracy of the reconstruction results
between the proposed method and prior methods, [68], [128], [49] and [168] on MMWHS CT
test dataset. Detailed implementation of the prior methods has been described in [68] and
we used the same image pre-processing and training data for all methods. Our method is
able to provide similar or slightly reduced level of accuracy compared with prior methods
while having the additional advantage of directly support various cardiac simulations.

based approaches, which produced surfaces with staircase artifacts and disconnected regions
(Fig 4.4). However, Kong, et al., 2021 produced overly smoothed pulmonary veins and vena
cava geometries, likely because these are elongated structures and that method deforms
spheres rather than a more fitting template of each structure as used in our method here.
Quantitatively, our method is generally able to produce similar geometric accuracy com-
pared with prior state-of-the-art methods, while having the additional advantage of directly
support various cardiac simulations 4.2. Nonetheless, we did observe slightly reduced level
of accuracy (see supplementary materials), likely because it is challenging to use a single
whole-heart template to fully capture the geometric variations across patients.

We conducted an ablation study of individual loss components and the use of GCN
decoder. As table 4.3 shows, removing Lgrid or Lseg as well as using a classical 3×3× convo-
lution resulted in drop of geometric accuracy of the whole heart reconstruction on MMWHS
CT test dataset. Table 4.4 shows that our method is robust to different initialization and
data splits.
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Epi LA LV RA RV Ao PA WH

Dice

Final FFDNet 0.839 0.905 0.894 0.863 0.877 0.906 0.802 0.878
CNN Decoder 0.806 0.872 0.874 0.826 0.846 0.843 0.764 0.845
No Grid Loss 0.772 0.889 0.855 0.833 0.850 0.879 0.772 0.843

No Segmentation Loss 0.781 0.884 0.859 0.837 0.851 0.874 0.780 0.845

Jaccard

Final FFDNet 0.725 0.829 0.814 0.764 0.783 0.831 0.680 0.784
CNN Decoder 0.679 0.777 0.781 0.710 0.737 0.736 0.628 0.734
No Grid Loss 0.636 0.804 0.755 0.720 0.743 0.790 0.642 0.731

No Segmentation Loss 0.647 0.796 0.761 0.726 0.745 0.783 0.651 0.734

ASSD (mm)

Final FFDNet 1.406 1.404 1.455 1.870 1.488 1.080 2.193 1.544
CNN Decoder 1.709 1.782 1.668 2.281 1.846 1.650 2.470 1.898
No Grid Loss 1.899 1.574 2.009 2.165 1.770 1.257 2.599 1.904

No Segmentation Loss 1.816 1.638 1.865 2.084 1.711 1.250 2.473 1.832

HD (mm)

Final FFDNet 13.508 8.584 7.665 12.753 10.089 12.243 24.794 26.765
CNN Decoder 14.076 9.713 7.694 14.037 10.905 12.886 24.533 26.413
No Grid Loss 14.330 9.521 10.086 14.163 12.013 12.607 25.361 27.688

No Segmentation Loss 14.268 9.122 9.154 13.567 10.792 13.408 23.862 26.036

Table 4.3: Ablation study: a comparison of prediction accuracy on MMWHS CT test dataset
after removing grid loss Lgrid, removing segmentation loss Lseg, and using conventional con-
volution with 3× 3× filters rather than graph convolution in the decoder.

Epi LA LV RA RV Ao PA WH

Dice 0.835±0.004 0.905±0.003 0.895±0.001 0.86±0.004 0.878±0.005 0.904±0.004 0.813±0.007 0.878±0.002
Jaccard 0.72±0.005 0.829±0.004 0.815±0.002 0.76±0.005 0.786±0.007 0.827±0.008 0.697±0.01 0.784±0.004

ASSD (mm) 1.459±0.036 1.404±0.035 1.439±0.015 1.932±0.043 1.468±0.043 1.005±0.054 2.077±0.102 1.536±0.031
HD (mm) 13.954±0.264 8.61±0.132 7.647±0.014 12.971±0.226 10.447±0.228 11.753±0.758 23.439±0.815 25.592±0.722

Table 4.4: Mean geometric accuracy measures and their standard deviations on the MMWHS
CT test dataset for our proposed FFDNet trained using 5 different random initialization and
training/validation data splits.

4.4 Conclusion

We proposed a novel deep-learning approach to directly construct whole heart meshes from
image data. We learn to deform a template mesh to match the input data by predicting
displacements of multi-resolution control point grids. To our knowledge, this is the first
approach that is able to directly generate whole heart meshes for computational simulations
and allows switching template meshes to accommodate different modeling requirements. We
demonstrated application of our method on constructing a dynamic whole heart mesh from
time-series CT image data to simulate the cardiac flow driven by the cardiac motion. Our
method was able to construct such meshes within a minute on a standard desktop computer
(3 GHz Intel Core i5 CPU) whereas prior methods can take hours of time and human efforts
to generate simulation-ready 4D meshes.
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Chapter 5

Learning Whole Heart Mesh
Generation From Patient Images For
Computational Simulations

5.1 Introduction

The previous chapter combined free-form deformation (FFD) with deep learning to predict
the displacement of a control point grid to deform the space enclosing a simulation-ready
whole heart template[65]. However, predicting the deformation fields requires many degrees
of freedom to produce accurate results. Namely, the control handles are distributed in the
physical space, rather them directly on the template meshes. The deformation is thus biased
by the initial locations of mesh vertices in the Euclidean space rather than on the mani-
fold. For example, cardiac structures that are close together in the template are not freely
separable during the deformation. Consequently, our prior method required a dense grid
of thousands of control points to achieve acceptable whole heart reconstruction accuracy.
Herein we demonstrate that using control-handle-based deformation with biharmonic coor-
dinates achieves higher reconstruction accuracy while using far fewer control points than the
FFD-based approach.

Shape deformation using low-dimensional control of deformation fields has been exten-
sively studied for decades in computer graphics and has been ubiquitously used in animated
characters. These methods usually interpolate the transformation of a sparse set of control
points to all points on the shape. Besides the free-form-deformation that uses a regular
control point lattice to deform the shape enclosed within the lattice [133], more recent ap-
proaches include cage-deformation that uses a convex control cage that encloses the shape
[105], as well as control-handle-based approaches that directly place control points on the
surface of the shape [142, 52, 164]. These approaches addressed some of the abovementioned
drawbacks of FFD and enabled more flexible shape deformations.

Recent studies have shown success in integrating these shape deformation methods in
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deep-learning frameworks for automated mesh reconstruction from single-view camera im-
ages[72], generative shape modeling[83] as well as deformation transfer [163]. However, these
approaches were designed to take 2D camera images or 3D meshes as input and used memory-
intensive CNNs or fully connected neural networks to predict the transformation of control
points. They thus cannot be directly applied to deform complicated whole heart structures
from high-resolution 3D medical image data. We propose to use graph convolutional net-
works (GCN) and sparsely sample the volumetric image feature map to predict control point
translations and thus can efficiently produce meshes from 3D medical images.

To overcome these shortcomings, in this chapter, we propose to learn to deform the space
enclosing a whole heart template mesh to automatically and directly generate meshes that
are suitable for computational simulations of cardiac function. Here we propose to leverage a
control-handle-based shape deformation method to parameterize the smooth deformation of
the template with the displacements of a small set of control handles and their biharmonic
coordinates. Our approach learns to predict the control handle displacements to fit the
whole heart template to target image data. We also introduce a few effective learning biases
as objective functions to produce meshes that better satisfy the modeling requirements for
computational simulation of cardiac flow. The contributions of this work are summarized as
follows:

1. We propose a novel end-to-end learning method combining deformation handles to
predict the deformation of whole heart mesh templates from volumetric patient image
data. We show that our approach achieves comparable geometric accuracy for whole
heart segmentation as prior state-of-the-art segmentation methods.

2. We introduced novel mesh regularization losses on vessel inlet and outlet structures
to better satisfy the meshing requirements for CFD simulations. Namely, our method
predicts meshes with coplanar vessel caps that are orthogonal to vessel walls for CFD
simulations.

3. We validated our method for creating 4D dynamics whole heart and left ventricle
meshes for CFD simulation of cardiac flow. Our method can efficiently generate
simulation-ready meshes with minimal post-processing to facilitate large-cohort com-
putational simulations of cardiac functions.

5.2 Methods

Shape Deformation Using Biharmonic Coordinates

Our approach constructs whole heart meshes by deforming a pre-defined whole heart mesh
template. We parameterize deformations of whole heart meshes with the translations of a
small set of deformation handles sampled from the mesh template. Given a set of mesh
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Figure 5.1: Example mesh deformation using control handles and biharmonic coordinates.
Color map indicates the weights on mesh vertices corresponding to the translated control
handle colored in red.

vertices V ∈ Rn×3 and a set of control points P ∈ Rc×3, we compute the biharmonic co-
ordinates W ∈ Rn×c, which is a linear map, V = WP . W is defined based on biharmonic
functions and can be pre-computed by minimizing a quadratic deformation energy function
while satisfying the handle constraints with linear precision [164]. Namely, let Q ∈ Rc×n

be the binary selector matrix that selects rows of X corresponding to the control handles,
and let T ∈ R(n−c)×n be the complementary selector matrix of Q corresponding to the free
vertices. W is computed by

V = argmin
X∈Rn×3

1

2
trace(XTAX), subject to QX = P (5.1)

V = (QT − T T (TAT T )−1TAQT )︸ ︷︷ ︸
W

P (5.2)

where A is positive semi-definite quadratic form based on the squared Laplacian energy to
encourage smoothness [164]. Under this framework, displacements of the control handles can
smoothly deform the underlying mesh template. Figure 5.1 visualizes the deformation of a
whole heart mesh template by moving a single control handle using biharmonic coordinates.
The density of control handles affects the range of mesh vertices that each handle can control.
That is, a higher control handle density (Figure 5.1, right) allows more localized deformation
of the template, while fewer control handles (Figure 5.1, left) spreads the deformation over
a larger area.
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Network Architecture

Figure 5.2: Diagram of the proposed automatic whole heart reconstruction approach. A
total of three deformation blocks were used to progressively deform the mesh templates,
using increasing number of control handles (75, 75 and 600, respectively).

Figure 5.2 shows the overall architecture of our mesh reconstruction network. The central
architecture is the novel control-handle-based mesh deformation module, which learns to
predict the displacements of control handles based on image features, so that the underlying
mesh templates can be smoothly deformed to match the input 3D image data.

Image Encoding and Segmentation Modules

We applied a residual 3D CNN backbone to extract and encode image features at multiple
resolutions [49]. The CNN backbone involves 4 down-sampling operations so that image
feature volumes at 5 different resolution are obtained. These image features volumes are
used as inputs to GCN layers to predict the displacements of control handles. Similar to
[68], we also use a segmentation module that predicts a binary segmentation map to enable
additional supervision using ground truth annotations. This module is only used during
training and can be removed during testing.
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Mesh Deformation Module

Biharmonic coordinates constrain the displaced control handles to be located on the deformed
mesh template. Therefore, regardless of which set of control handles are sampled, these
handles will be located at the corresponding positions on the template mesh. We use a
neural network to update the coordinates of all points (S ∈ Rn×3) on the mesh template and
obtain the coordinates of the selected control handles (P ∈ Rc×3) from the updated mesh
vertex locations to deform the template using the pre-computed biharmonic coordinates.
This design allows picking arbitrary sets of control handles to deform the template at various
resolutions after training. Furthermore, training to predict the coordinates of every mesh
vertex provides additional supervision that can speed up training.

Since the mesh template can be represented as a graph, a GCN was used to predict the
mesh vertex displacements. We chose to approximate the graph convolutional kernel with
a first order Chebyshev polynomial of the normalized graph Laplacian matrix [25]. At each
mesh vertex, we extract the image feature vectors at the corresponding image coordinates
from multiple image feature volumes with various resolution. These image feature vectors
are then concatenated with the mesh feature vectors following a GCN layer. The combined
vertex feature vectors are then processed by three graph residual blocks. We then use an
additional GCN layer to predict displacements as 3D feature vectors on mesh vertices.

Network Training

The training of the networks was supervised by 3D ground truth meshes of the whole heart
as well as a binary segmentation indicating occupancy of the heart on the input image grid.
We used the following loss functions (illustrated in figure 5.3) in training to produce accurate
whole heart geometries while ensuring the resulting mesh is suitable to support simulations.

Geometric Consistency Losses

The geometric consistency loss Lgeo is the geometric mean between the point and normal
consistency losses to supervise the geometric consistency between the prediction and the
ground truth[68]. We note that edge length and Laplacian regularization losses, such as
used in [68], are not necessary since the smoothness of the mesh prediction is naturally
constrained by the biharmonic coordinates used to deform the template. Since only the
selected control points were used to deform the mesh template while the displacements of
all mesh points were predicted, we need to regularize the L2 distances between the mapped
mesh points (S ∈ Rn×3) and the corresponding mesh vertices on the deformed mesh template
(V ∈ Rn×3). This consistency loss between the points and the mesh ensures that coordinates
of other unselected control points also result in reasonable deformations. In other words, the
deformation results should not be sensitive to the choice of pre-selected control points.
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Figure 5.3: Graphical illustration of different loss functions. Yellow and teal on the right
panel shows the caps and walls to apply the mesh regularization losses, respectively, and
arrows shows cap normal vectors.

Mesh Regularization for CFD Simulations

Cardiac models generally included portions of the great vessel connected to the heart (e.g.,
pulmonary veins and arteries, venae cavae, and aorta). For CFD simulation of cardiac
flow, locations where these vessels are truncated (so-called inflow and outflow boundaries, or
“caps”) should be planar and nominally orthogonal to the vessel. On our training template,
we labeled these caps, as well as the associated vessel walls. The caps were identified semi-
automatically on the template by manually selecting seeds on the centers of the caps and
then automatically selecting connected mesh faces with normal vectors close to that of the
seed point. Figure 5.3 shows the identified cap and wall faces on left atrium (LA), right
atrium (RA) and aorta. We applied a co-planar loss on each cap that penalizes the L2
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differences of the surface normals on the cap. Namely,

Lcoplanar =
∑
k

∑
j∈Ck

||nj −
1

|Ck|
∑
j∈Ck

nj||22 (5.3)

where Ck is the set of mesh faces for the kth cap and nj is the normal vector for the jth face
on Ck. For mesh vertices that are on the vessel walls near the caps, we minimize the absolute
value of the dot products between their surface normal vectors and the surface normal vector
of the caps to encourage orthogonality. Namely,

Lorthogonal =
∑
k

∑
j∈Wk

|⟨nk,
1

|Ck|
∑
p∈Ck

np⟩| , (5.4)

where Wk is the set of mesh faces on the vessel wall that corresponds to the kth cap.

Weighted Mesh Losses

Patient images may not always contain the targeted cardiac structures. As shown in Figure
5.3 (left), cardiac structures such as, pulmonary veins, pulmonary arteries and the aorta are
often not captured in full, although these structures can be necessary for simulations. We
thus aim to predict a complete whole heart shape from incomplete image data. Namely,
we compute the bounding box of the ground truth meshes and assign zero weights within
the geometric consistency loss for predicted mesh vertices that located outside the bounding
box. Furthermore, as the geometry of inlet vessels are important to the accuracy of CFD
results, we applied a higher weight for the geometric consistency loss on mesh vertices that
are located on vessel walls near the inlets.

Total Losses

The total loss on a predicted mesh M is

Lmesh(M,G,W ) =
∑
i

Lgeo(Mi, Gi,wi) + α
∑
k

(Lcoplanar(M) + βLorthogonal(M)) (5.5)

whereGi represents the ground truth mesh for individual cardiac structure, andwi represents
the weighting vector for each mesh point. M can be both the deformed whole heart mesh
template V and the mesh obtained from mapping all mesh points S. The total loss for
training is a weighted sum of the mesh losses and the segmentation loss, which is the sum
of the binary cross-entropy and the dice losses between the predicted occupancy probability
map Ip and the ground truth binary segmentation of the whole heart Ig.

Ltotal = λ1Lmesh(S,G,W ) + λ2Lmesh(V,G,W ) + λ3||S − V ||2F + Lseg(Ig, Ip) (5.6)
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Figure 5.4: Visualization of augmented input image crops and the corresponding ground
truth meshes.

Image Augmentation for Shape Completion

Leveraging the mesh template, we train our method to predict the geometries of the whole
heart represented by the template mesh when the images do not cover the complete cardiac
structures. Since CT images often do not cover the whole heart, we selected CT images that
did cover the whole heart (n=10) from our training set and then generated 10 random crops
for each image while keeping the ground truth meshes to be the same. Figure 5.4 visualizes
example image crops and the corresponding ground truth meshes. We also applied random
shearing, rotations and elastic deformations, following the same augmentation strategies
described in our prior work [68].

Deforming-Domain CFD simulations of Cardiac Flow

We applied the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible
Navier-Stokes equations to simulate the intraventricular flow and account for deforming volu-
metric mesh using the finite element method. For the fluid domain, displacements boundary
conditions were applied on the chamber walls as well as on vessel outlets, while pressure
boundaries conditions were applied on vessel inlets. Blood was assumed to have a viscosity
µ of 4.0 × 10−3Pa · s and a density ρ of 1.06g/cm3. T he volumetric mesh was created au-
tomatically from our predicted surface mesh using TetGen [139]. The equations were solved
with the open-source svFSI solver from the SimVascular project [155].



CHAPTER 5. LEARNING WHOLE HEART MESH GENERATION FROM PATIENT
IMAGES FOR COMPUTATIONAL SIMULATIONS 82

5.3 Experiments and Results

Datasets and Experiments

Task-1: Whole Heart Segmentation for 3D Images

We applied our method to public datasets of contrast-enhanced 3D CT images and 3D MR
images from both normal and abnormal hearts. Namely, 87 CT images and 41 MR images
from the multi-modality whole heart segmentation challenge (MMWHS)[182], orCalScore
challenge[169], left atrial wall thickness challenge [57] and left atrial segmentation challenge
[148] were used for training. 15 CT images and 6 MR images were used for validation and
hyper-parameter tuning. The geometric accuracy of the whole heart reconstruction was first
evaluated on the 40 CT and 40 MR images from the MMWHS test dataset. We followed the
MMWHS dataset to create ground truth segmentation of seven cardiac structure including
the blood cavities of left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium
(RA), LV myocardium (Epi), aorta (Ao), and pulmonary artery (PA) for all images in our
training and validation datasets.

We compared the geometric accuracy of the reconstructed whole heart surfaces against
prior deep-learning methods that demonstrated promising performance of segmenting whole
heart geometries from 3D medical images. Namely, we considered HeartFFDNet[65], our
prior work that generates simulation-ready whole heart surface meshes from images by
learning free-form deformation from a template mesh, MeshDeformNet [68] that predicts
displacements on sphere mesh templates, as well as 2D UNet [128] and a residual 3D UNet
[49] that are arguably the most successful neural network architecture for image segmenta-
tion. All methods were trained on the same dataset and used the same pre-processing and
augmentation procedures to ensure a fair comparison.

Task-2: Whole Heart Mesh Construction for 4D Images

We applied our method on time-series CT images to evaluate its performance on creating
whole heart meshes for CFD simulations. Since the MMWHS dataset does not include
pulmonary veins, LA appendage or venae cavae, we prepared another set of ground truth
segmentations to include these structures. The geometric accuracy and the mesh quality
of the reconstructed meshes for CFD simulations were then evaluated on 10 sets of time-
series CT images against the learning-based mesh reconstruction baselines, HeartFFDNet
and MeshDeformNet.

Task-3: CFD Simulations

We conducted CFD simulations of cardiac flow using the predicted whole heart meshes from
time-series CT images. Since our predicted structure do not contain heart valves, only
diastolic flow was simulated. We also conducted CFD simulations for the LV and simulated
the LV flow for the entire cardiac cycle. Figure 5.5 visualizes the simulation-ready templates
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Figure 5.5: Visualization of simulation-ready templates with trimmed inlet/outlet geometries
and tagged face IDs for prescribing boundary conditions.

of the 4 heart cambers and the LV with trimmed inlet/outlet geometries and tagged face IDs
for prescribing boundary conditions. We linearly interpolated the pre-computed biharmonic
coordinates onto the new templates so that our trained models can readily deform these
new templates. The simulation results were compared against time-series ground truth
meshes created manually in a surface processing software, SimVascular. We also compared
simulation results among our method, HeartFFDNet, and a conventional semi-automatic
model construction pipeline based on image registration, where a manually created ground
truth mesh was morphed based on transformations obtained from registering images across
different time points.

Evaluation Metrics

We used Dice similarity coefficient (DSC) and Hausdorff Distance (HD) to measure segmen-
tation accuracy. For mesh-based methods, we converted the predicted surface meshes to
segmentation prior to evaluation. Mesh quality was compared in terms of the percentage
self-intersection, which measures the local topological correctness of the meshes, orthogonal-
ity of the vessel caps with respect to the vessel walls, as well as the coplanarity of the vessel
caps. The percentage mesh self-intersection was calculated as the percentage of intersected
mesh facets detected by TetGen [139] among all mesh facets. The orthogonality between
vessel caps and walls (Cap-Wall-Orthogonality) was measured by the normal consistency
between the mean cap normal vector and the vector connecting the centroids of the mesh
points on the cap and on the wall, respectively. Namely,

CWO =
∑
k

1− ⟨ 1

|Wk|
∑
i∈Wk|

ni,
1

|Ck|
∑
j∈Ck|

nj⟩ (5.7)
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where Wk and Ck represent the sets containing the mesh vertices on a vessel wall and the
corresponding vessel cap. Vessel caps coplanarity was measured by the projected distance
between the mesh vertices on the cap and the best fit plane over those mesh vertices. For
CFD simulations, we compared the integrative measures during a cardiac cycle, namely, LV
volume and volume averaged kinetic energy density KE ′ = 1

2VLV

∫ ∫ ∫
ρu2dV , where VLV is

the volume of the LV and u is the flow velocity. We also compared the mean velocity near
the mitral valve opening (MO) and aortic valve opening (AO) during a cardiac cycle. Paired
t-test was used for statistical significance.

Comparative Studies on MMWHS Dataset

CT MR

Epi LA LV RA RV Ao PA WH Epi LA LV RA RV Ao PA WH

DCS

Ours (S) 90.07 93.18 93.47 89.48 91.48 93.33 85.6 91.76 80.45 86.98 91.61 88.08 88.09 85.76 78.14 87.41
Ours (V) 88.38* 92.53* 91.99* 88.76* 90.592* 91.25* 84.73* 90.538* 78.62* 86.27* 89.38* 87.79* 87.2* 83.3* 77.55* 86.04*
HeartFFDNet 83.85* 90.55* 89.38* 86.33* 87.65* 90.65* 80.2* 87.82* 70.67* 83.27* 86.92* 84.47* 82.77* 79.71* 69.68* 81.33*
MeshDeformNet 89.94* 93.23 93.98 89.18 91.0 94.98* 85.22 91.8 79.71 88.13 92.23* 88.82 89.24 88.98* 81.6* 88.17*
2DUNet 89.87 93.08 93.06* 87.71 90.49* 93.43 83.23* 91.09* 79.47* 86.41 89.61* 85.21 86.48 86.94 77.24 85.94*
3DUNet 86.34* 90.17* 92.28* 86.77* 87.58* 92.34* 81.29* 88.78* 76.11* 85.2* 87.9* 86.63* 82.77* 74.18* 76.38 84.04*

HD

Ours (S) 14.41 10.72 10.41 13.75 11.63 9.49 26.68 27.92 16.39 12.12 11.23 13.52 13.5 19.77 16.15 23.86
Ours (V) 14.4* 8.18 6.87* 12.41* 9.55* 9.5 27.02* 28.23 15.96* 10.15* 8.27* 12.27* 11.13* 20.44* 16.4 23.96
HeartFFDNet 13.51* 8.58* 7.66* 12.75* 10.09* 12.24* 24.79* 26.76 16.59 11.06 10.8 13.55 12.41 22.2* 18.74* 25.27
MeshDeformNet 14.39 10.41 10.33 13.64 13.36 9.41 26.62 28.03 16.92 11.72 10.89 14.81 13.46 22.22 19.34* 27.7*
2DUNet 9.98* 8.77* 6.1* 13.62* 10.02 10.01 27.83 28.73 19.14 10.78 9.96 14.53* 13.08 22.57 16.72 28.35
3DUNet 13.64 10.81 9.58* 16.03 15.63* 13.33* 26.94 31.09 28.16* 23.64* 21.49* 18.95* 21.09* 37.94* 17.05 43.02*

Table 5.1: Comparison of Whole-Heart Segmentation Performance, DSC (↑)and HD (mm)
(↓), from different methods on the MMWHS CT and MR test datasets.* Denotes Significant
Difference Of ”Ours (S)” From the Others (p-Values¡0.05)

Figure 5.6: Example segmentation results for CT (top row) and MR (bottom row) images
from different methods. The CT or MR images that had median Dice scores among the test
data were selected, thus illustrating typical segmentation results.
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Table 5.1 compares the average Dice scores and Hausdorff distances of the reconstruction
results of both the whole heart and the individual cardiac structures for the MMWHS test
dataset. For our approach, we show the accuracy of deforming the template by mapping
all mesh points (S) and by interpolating the mesh deformation using only 600 uniformly-
sampled control handles (V ). Mapping all points consistently achieved higher dice scores
than using 600 selected control handles, but the HDs are worse for some cardiac structures.
For both CT and MR data, in terms of Dice scores, our method consistently outperformed
HeartFFDNet and 3D UNet for all cardiac structures and achieved comparable performance
with MeshDeformNet and 2D UNet for most cardiac structures. Our method achieved the
best HDs for LA, RA and RV for CT data and for all cardiac structures for MR data.

Figure 5.6 presents typical segmentation results of CT and MRI images and provides
qualitative comparisons of the results from the different methods. As shown, mesh-based
approaches, ours, HeartFFDNet and MeshDeformNet produced smooth and anatomically
consistent cardiac geometries while segmentation-based approaches, 2D UNet and resid-
ual 3D UNet produced segmentations with stair-case artifacts and missing parts. However,
MeshDeformNet produced gaps between adjacent cardiac structures by deforming un-coupled
spheres. Our method and the HeartFFDNet were able to avoid this limitation by deform-
ing the space enclosing a whole heart template, preserving the connections among cardiac
structures.

Construction of Cardiac Meshes for CFD Simulations

Ablation Study of Individual Loss Components on Vessel Inlet/Outlet
Structures

CoP+
Ortho+HW

CoP+Ortho CoP None

Cap-Wall
Orthogonality (↓)

LA 0.128±0.121 0.032±0.012 0.365±0.265 0.273±0.266
RA 0.023±0.008 0.012±0.008 0.105±0.038 0.066±0.026
Ao 0.019±0.023 0.005±0.006 0.467±0.117 0.127±0.024

Cap Coplanarity
(mm) (↓)

LA 0.228±0.041 0.256±0.029 0.12±0.024 0.312±0.058
RA 0.34±0.073 0.339±0.055 0.185±0.043 0.466±0.114
Ao 0.447±0.115 0.429±0.063 0.263±0.068 0.852±0.16

Wall Chamfer
Distance (mm) (↓)

LA 2.093±0.803 2.715±1.105 2.487±0.898 2.042±0.857
RA 2.021±1.176 2.66±1.301 2.231±0.983 1.899±0.952

Table 5.2: Ablation study of mesh regularization losses on vessel inlet and outlet structures
on CT test dataset (N=20).
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Figure 5.7: Visualization of example whole heart surface predictions following addition of
regularization losses on vessel inlet/outlet structures.

CFD simulations of cardiac flow requires well-defined inlet and outlet vessel structures to
prescribe boundary conditions for the inflow and outflow. Figure 5.7 and table 5.2 demon-
strate the effect of applying individual regularization loss components on the predicted inlet
and outlet geometries (pulmonary veins, vena cava, and aorta). The coplanar loss and the
orthogonal loss succeeded in producing more planar cap geometries that are more orthogonal
to vessel walls. We observed a trade-off between the geometric accuracy of these vessel struc-
tures and their quality for simulations. Namely, adding regularization losses improved the
structural quality of inlet geometries but slightly reduced their geometric accuracy in terms
of Chamfer distances. Applying a higher weight on the inlet mesh vertices in the geometric
consistency loss was able to improve the accuracy of inlet geometries.

Comparison with Other Methods on Time-Series CT Data

Table 5.3 compares the reconstruction accuracy between our method and the other baseline
methods on end-diastolic and end-systolic phases of a cardiac cycle. Overall, our method
demonstrated high accuracy comparable to prior state-of-the-art approach MeshDeformNet,
both in terms of Dice scores and Hausdorff distances. Figure 5.8 shows a qualitative com-
parison of the reconstructed whole heart surfaces at end-systolic and end-diastolic phases
and the estimated surface motion by computing the displacements of mesh vertices over
time. MeshDeformNet produced gaps between cardiac structures as well as overly smoothed
pulmonary veins and vena cava geometries, since that method is biased by the use of sphere
templates rather than a more fitting template of the whole heart. In contrast, our method
produced high-quality geometries of the vessel inlets and outlets as well as whole heart ge-
ometries that best match with the ground truth. Furthermore, our method demonstrated a
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Epi LA LV RA RV Ao PA WH

DCS

Ours (S) 89.53 93.30 94.48 92.91 94.32 96.20 85.31 93.14
Ours (V) 88.27* 91.60* 93.21* 92.18* 93.21* 95.62* 83.48* 91.97*
HeartFFDNet 84.37* 88.38* 91.41* 90.26* 90.19* 93.03* 70.44* 88.94*
MeshDeformNet 90.58* 95.18* 95.85* 93.50* 94.63 97.50* 80.21* 93.94*

HD

Ours (S) 6.04 10.21 4.95 10.04 6.61 3.80 19.71 16.02
Ours (V) 5.91 10.64* 5.36 10.32 7.03 4.16* 19.14 15.69
HeartFFDNet 6.78 12.01* 6.37* 10.85 8.77* 5.13* 23.20* 16.46
MeshDeformNet 5.98 9.29 4.39 10.42 6.35 3.42* 23.25 15.77

Table 5.3: Comparison of DCS (↑) and HDs (mm) (↓) of predictions from different methods
on 4D CT test images (n=20). * Denotes Significant Difference Of ”Ours (S)” From the
Others (p¡0.05)

Figure 5.8: Qualitative comparison of whole heart surfaces from different methods at the end-
diastolic phase and the end-systolic phase of a set of time-series image data. The colormap for
end-systolic surfaces shows vertex displacement magnitude from end-systole to end-diastole.
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Figure 5.9: Comparison of whole heart surface predictions between using control handles as
in our approach and using FFD as in HeartFFDNet.

more accurate estimation of surface deformation over time, which is required for prescribing
boundary conditions for CFD simulations.

Figure 5.9 provides further qualitative comparisons between using FFD and using bihar-
monic coordinates to deform the template. Using biharmonic coordinates allows more flexible
deformation and can thus more closely capture detailed geometries such as the left atrial ap-
pendage. In contrast, geometries of left atrial appendage predicted from HeartFFDNet were
strongly biased by the geometries of the template, although it used far more control points
(4096) than our method (600). Furthermore, our method was able to predict the shape of the
heart that was not covered in the image data. Namely, thanks to our augmentation pipeline,
our method generated reasonable geometries of the pulmonary arteries and pulmonary veins.
In contrast, manual segmentation can only produce surface meshes of the cardiac structures
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Cap-Wall Orthogonality (↓) Cap Coplanarity (mm) (↓) % Face Intersection (↓)
LA RA Ao LA RA Ao WH

Ours (V) 0.038±0.046 0.013±0.007 0.013±0.012 0.22±0.024 0.284±0.044 0.292±0.088 0.018±0.022
HeartFFDNet 0.137±0.08 0.228±0.182 0.494±0.386 0.398±0.068 0.45±0.125 0.949±0.557 0.262±0.191
MeshDeformNet 0.106±0.104 0.044±0.038 0.209±0.117 1.145±0.165 0.917±0.379 0.36±0.216 0.034±0.068

Manual 0.04±0.04 0.034±0.054 0.025±0.023 0.037±0.009 0.035±0.007 0.02±0.003 0.0±0.0

Table 5.4: A comparison of the quality of the inlet/outlet geometries and whole heart surface
quality from different methods.

captured in the images and HeartFFDNet predicted flat and unphysiological geometries
despite starting from a realistic whole heart template.

Table 5.4 compares the quality of the predicted inlet and outlet geometries as well as the
percentage face intersection of the whole heart meshes. Besides comparing with our base-
lines, HeartFFDNet and MeshDeformNet, we also comparied our method with the surface
meshes generated from applying the Marching Cube algorithm on manual ground truth seg-
mentations, where the vessel inlet and outlet geometries were manually trimmed by human
experts. Our method produced significantly better vessel inlet and outlet geometries than
HeartFFDNet and MeshDeformNet. In particular, our method outperformed the manual
segmentation in terms of Cap-Wall Orthogonality. When deforming the mesh template us-
ing control handles, our method achieved the lowest percentage of face intersection than
other deep-learning methods, and the small amount of face intersections that occurred could
be easily corrected by a few iterations of Laplacian smoothing.

CFD Simulations of Cardiac Flow

We were able to successfully conduct CFD simulations using the automatically constructed
LV meshes for all 10 patients, as well as for 9 of 10 patients with the 4-chamber meshes. The
1 failed case had structure penetrations between two pulmonary veins, causing the simulation
to diverge. Figure 5.10 displays the simulation results of the velocity streamlines at multiple
time steps during diastole for 2 different patients. The simulation results demonstrate the
formation of typical vortex flow during ventricle filling.

Figure 5.11 provides quantitative comparisons of the accuracy of CFD simulation results
of LV flow. Both our approach and HeartFFDNet significantly outperformed the image-
registration-based approach in terms of all metrics. Namely, the image-registration-based
method significantly underestimated the LV volume during diastole since the reconstructed
meshes did not capture the large deformation of LV from systole to diastole. Our proposed
approach demonstrated comparable or slightly better accuracy than HeartFFDNet in gen-
eral, with smaller volume errors throughout a cardiac cycle and smaller errors in volume
averaged kinetic energy density and mean aortic flow velocity during systole.

Figure 5.12 qualitatively compares the simulated LV flow pattern during both systole and
diastole using meshes automatically constructed by our proposed approach and HeartFFD-
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Figure 5.10: Velocity streamlines from CFD simulations of 2 different patients using the
predicted 4D meshes.
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Figure 5.11: Quantitative comparisons of the % errors in LV volume, volume averaged KE
density, mean velocity near the MO during diastole and mean velocity near the AO during
systole among different methods. Lines show the mean values and shades show the 95%
confidence intervals.

Net, semi-automatically constructed by conventional image registration and manually con-
structed by human observers. Image registration underestimated the LV expansion from
end systole to diastole, leading to underestimated flow velocity and disparate flow pattern
compared with the ground truth. Both of our approaches generally produced similar vortex
structures during diastole and converging flow during systole, with moderate differences in
flow velocity and vortex locations compared with the ground truth.

5.4 Discussion

Automated image-based reconstruction of cardiac meshes is important for computational
simulation of cardiac physiology. While deep-learning-based methods have demonstrated
success in tasks such as image segmentation and registration, few studies have addressed the
end-to-end learning between images and meshes for modeling applications. Furthermore,
prior learning-based mesh reconstruction approaches suffer from a number of limitations
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Figure 5.12: Qualitative comparisons of the simulated velocity streamlines from different
methods at different time phases during a cardiac cycle. Color map shows the velocity
magnitude.
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Ours HeartFFDNet MeshDeformNet 2D UNet 3D UNet
# of Parameters 8.7M 8.5M 16.8M 31.1M 18.6M
Training Time 18 hrs 26 hrs 32 hrs 7 hrs 37 hrs
Test Time 0.230s 0.177s 0.425s 1.555s 0.367s

Table 5.5: Comparison of model size, training and testing time.

such as using decoupled meshes of individual cardiac structures and assumed mesh topology,
thus unable to directly support different cardiac simulations without additional efforts [168,
68]. We addressed this challenge herein using a novel approach that learns the translation
of a small set of control handles to deform the space enclosing a whole heart template from
volumetric image data. Our method demonstrated promising whole-heart reconstruction
accuracy and was able to generate simulation-ready meshes from time-series image data for
CFD simulations of cardiac flow.

Our approach achieved comparable geometric accuracy to the prior state-of-the-art whole
heart mesh reconstruction method MeshDeformNet [68] while having the additional advan-
tage of directly support various cardiac simulations. We note that our approach used fewer
parameters in the CNN encoder compared to MeshDeformNet (Table 5.5) and the use of
biharmonic coordinates naturally ensures the smoothness of deformation without using ex-
plicit mesh regularization (e.g., Laplacian and/or edge length loss constraints [68]). This is
important since mesh regularization schemes can complicate the optimization process [42],
whereas we observed our approach to converge significantly faster than MeshDeformNet (18
vs 32 hrs on a GTX2080Ti GPU).

For CFD simulations requiring the time-dependent motion of the heart over the cardiac
cycle, our method has the advantage of deforming the template mesh in a temporally consis-
tent manner, enabling automated construction of dynamic cardiac meshes within minutes on
a standard desktop computer. Registration-based approaches, in contrast, often require test
time optimizations that are computationally expensive and prone to local minimums, which
often lead to inaccurate registration results such as underestimation of large deformation.
Although deep-learning approaches have been proposed to speed-up the registration process
[8, 96], large-deformation registration on cardiac images remains challenging for learning-
based approaches. The establishment of temporal feature correspondence of our method is
due to similar features of time-series images naturally being encoded into similar feature vec-
tors by the CNN encoders and does not require explicit training. Nevertheless, ground truth
data of anatomical landmarks could be incorporated in the future during training to further
improve the accuracy of feature correspondence across different time frames or patients.

Blood flow simulations developed from our automated mesh generation process demon-
strated clockwise circulatory flow patterns during diastole and converging flow patterns dur-
ing systole in the ventricular cavity consistent with prior studies [156, 94]. However, we
observed an average of 15-25% of errors in the simulated mean velocity and kinetic energy
density, despite a promising mean LV Dice scores of 93% and an mean volume error of 6%.
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Such amount of volume error is consistent with the inter- and intra-observer variations of
manual LV segmentation[182, 68]. Indeed, simulation of blood flow is sensitive to uncer-
tainties in geometry, such as inflow directions and vessel and/or LV wall smoothness [156,
16]. We plan to conduct intra- and inter-observer studies on the ground truth meshes to fur-
ther understand the relationship between prediction uncertainties and the accuracy of CFD
simulations. Nevertheless, our approach is among the first to enable creation of simulation-
suitable meshes from patient images. And our design of using template meshes and control
handles could support shape editing and analysis to study the effect of geometric variations
on CFD simulations.

A limitation of the proposed method is that the used a single whole-heart template may
not capture the full geometric variations observed clinically. In particular, the current tem-
plate assumes four separate and distinct pulmonary vein ostia and thus may not fully capture
pulmonary veins with alternate branching patterns, which can be important for preopera-
tive planning of pulmonary and cardiac surgery [55]. Similarly, the template used would not
be suitable for cardiac malformations such as single-ventricle patients with congenital heart
diseases since the structures of the heart are significantly different from our current training
template. Nonetheless, this framework could still be utilized if sufficient training data of,
say, single-ventricle patients were available and a corresponding single-ventricle mesh tem-
plate were used. To better handle the above applications, in future work we aim to add
a template retrieval module to automatically select a template that best suits the input.
Furthermore, implicit shape representation [27] can be combined with our learning-based
shape deformation approach to predict cardiac structures with different anatomies.

5.5 Conclusion

We proposed a novel deep-learning approach that directly constructs simulation-ready whole
heart meshes from image data and allows switching of template meshes to accommodate
different modeling requirements. Our method leverages a graph convolutional network to
predict the translations of a small set of control handles to smoothly deform a whole heart
template using biharmonic coordinates. Our method consistently outperformed prior state-
of-the-art methods in constructing simulation-ready meshes of the heart, and was able to
produce geometries that better satisfy modeling requirements for cardiac flow simulations.
We demonstrated application of our method on constructing dynamic whole heart meshes
from time-series CT image data to simulate the cardiac flow driven by the cardiac motion.
The presented approach is able to automatically construct whole heart meshes within sec-
onds on a modern desktop computer and has the potential in facilitating high-throughput,
large-cohort validation of patient-specific cardiac modeling, as well as its future clinical ap-
plications.
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Chapter 6

Conclusion

In this thesis, we developed methods for automated mesh reconstruction from volumetric
medical images to support computational simulations of cardiac functions. In chapter 2, we
developed a streamlined and automated approach combining convolutional neural networks
(CNN) to generate segmentations of cardiac tissues and surface post-processing techniques
to generate meshes of the left ventricle for computational fluid dynamics simulations.

Direct construction of meshes can circumvent the intermediate CNN-based segmentation
steps that are prone to topological artifacts due to a lack of awareness of the overall anatomy
and topology of the target organs. In chapter 3, we developed a method to directly construct
surface meshes of the whole heart from volumetric image data by learning to deform mesh
templates of spheres, which are topologically equivalent to the cardiac structures modeled.
This approach demonstrates the advantages of generating accurate, high-resolution meshes
regardless of input image resolution, and the meshes are also anatomically consistent as they
are topologically equivalent to the template. Nevertheless, learning deformation directly on
decoupled sphere mesh templates still requires surface processing to join cardiac structures
together for computational simulations involving multiple cardiac structures. In chapters
4 and 5, we further developed a learning-based mesh deformation method that deforms
the space enclosing a realist whole heart mesh template, and once trained, the developed
approaches can readily generate meshes of arbitrary subsets of cardiac structures by swapping
the training template. In chapter 4, we combined free-form deformation with deep learning
to predict the deformation of a control point grid from medical images. In chapter 5, we
further improved this approach by using control handles and their biharmonic coordinates to
parameterize the deformation of the whole heart. This approach uses fewer control handles
while enabling more flexible and accurate deformation of the whole heart surface mesh. Our
methods can efficiently construct 4D simulation-ready meshes within a minute on a standard
desktop computer whereas prior methods may take hours of time and human efforts. It thus
may potentially be used for large-cohort validation of computational simulations and clinical
translations.
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6.1 Future Directions

While these are encouraging progress towards the goal of efficient, automatic, and robust
reconstruction of whole heart meshes for computational simulations of cardiac function, a
number of challenges remain. We discuss some of these below and highlight interesting future
directions.

Heart valves, thickness, and scarring of cardiac tissues: This thesis developed
methods to construct the blood pools of four heart chambers, the left ventricle myocardium,
and the blood pools of major vessels, namely aorta, pulmonary arteries, pulmonary veins,
and vena cava. However, the heart valves and thickness of cardiac structures except for the
left ventricle are not constructed. These structures could be important for computational
simulations. For example, heart valves significantly affect the flow patterns and thus are
necessary for accurate CFD simulation of the blood flow [34, 114, 134]. Tissue thicknesses
are important for electromechanics simulations of cardiac contraction where the propagation
of the electrical signals within the cardiac tissues needs to be modeled [152]. However, the
heart valves and the tissues of the atrium and vessels in the heart are very thin compared
to the image resolution of patient CT and MR scans. Identification of the thickness of
these tissues is challenging even for radiology experts. A few approaches, however, have
applied supervised deep learning methods to construct heart valves from high-resolution
patient images [109, 110]. Furthermore, the scarring of cardiac tissues alters their material
properties and affects the propagation of electrical signals [143, 22]. The shape and locations
of the scars need to be incorporated into electrophysiology simulation to accurately model
the propagation of electrical signals for individual patients [152, 26]. A few studies have
applied deep learning to the segmentation of infractions in myocardium or atriums [153, 78].
It would be an interesting direction to combine these efforts with our methods to construct
more detailed whole heart models.

Model construction for cardiac malformations: Our methods learn to deform a
template mesh of the heart of a healthy subject and assume that the anatomies of the hearts
of the target patients have the same topology as the initial heart template. This is typically
true for many cardiac diseases but patients with cardiac malformation or congenital heart
defects can have altered structures in their hearts, such as holes and missing parts that
cannot be modeled by deforming a template of a normal heart. In contrast to explicitly
representing shapes as surface meshes, a few recent studies represent shapes implicitly as
signed distance functions and leveraged differentiable iso-surface extraction to construct
meshes with varying topology [126, 41]. Furthermore, existing deep learning methods are
usually trained on homogeneous datasets that primarily contain adult subjects with normal
cardiac anatomies [58]. In the future, datasets containing pediatric subjects with congenital
heart defects would be extremely valuable for developing learning-based methods to robustly
construct cardiac geometries and computer models for those patients.
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Generalization to unseen medical imaging domains: While learning-based ap-
proaches have demonstrated success in many medical image analysis tasks, these approaches
have been often trained and validated using patient images from a single clinical center
or acquired using homogeneous imaging protocols. Therefore, an important challenge for
learning-based methods for medical image analysis is how well the proposed methods would
generalize on unseen medical images from different scanner vendors or new imaging pro-
tocols. In this thesis, we validated our approaches on CT images acquired from a different
source than the training dataset and demonstrated promising performance [68, 67]. However,
our method performed worse on cine MR images that significantly differ from our training
datasets [68]. Indeed, MR data are sensitive to a number of factors, including differences
in vendors, magnetic coil types, and/or acquisition protocols. A few studies have published
MR datasets across different clinical centers, imaging conditions, or scanner vendors, and
attempted to develop domain-generalization approaches for medical image segmentation [15,
85, 84]. In the future, we plan to combine these approaches with our methods to robustly
construct simulation-suitable meshes from unseen MR images. Furthermore, automatic un-
certainty quantifications [39] and quality assessments [77] of the predicted whole heart sur-
face meshes are both interesting directions to provide additional insights to clinicians and
engineers when analyzing the outputs from deep-learning-based whole heart reconstruction
methods.
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[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural
Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc.,
2016, pp. 3844–3852. url: https://proceedings.neurips.cc/paper/2016/file/
04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

[26] Dongdong Deng et al. “A feasibility study of arrhythmia risk prediction in patients
with myocardial infarction and preserved ejection fraction.” In: Europace : European
pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on
cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European
Society of Cardiology 18 suppl 4 (2016), pp. iv60–iv66.

[27] Yu Deng, Jiaolong Yang, and Xin Tong. “Deformed Implicit Field: Modeling 3D
Shapes with Learned Dense Correspondence”. In: 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2021), pp. 10281–10291.

[28] Chao Dong et al. “Image Super-Resolution Using Deep Convolutional Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (2016), pp. 295–
307.

[29] Jinming Duan et al. “Automatic 3D bi-ventricular segmentation of cardiac images by
a shape-refined multi-task deep learning approach”. In: IEEE transactions on medical
imaging 38 (2019), pp. 2151–2164.

[30] O. Ecabert et al. “Automatic Model-Based Segmentation of the Heart in CT Images”.
In: IEEE Transactions on Medical Imaging 27.9 (2008), pp. 1189–1201. issn: 1558-
254X. doi: 10.1109/TMI.2008.918330.



BIBLIOGRAPHY 101

[31] Olivier Ecabert et al. “Segmentation of the heart and great vessels in CT images
using a model-based adaptation framework”. In: Medical Image Analysis 15.6 (2011),
pp. 863–876. issn: 1361-8415. doi: https://doi.org/10.1016/j.media.2011.06.
004. url: http://www.sciencedirect.com/science/article/pii/S1361841511000910.

[32] Mohammed S.M. Elbaz et al. “Assessment of viscous energy loss and the association
with three-dimensional vortex ring formation in left ventricular inflow: In vivo eval-
uation using four-dimensional flow MRI”. In: Magnetic Resonance in Medicine 77.2
(Feb. 2016), pp. 794–805. doi: 10.1002/mrm.26129. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/mrm.26129. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/mrm.26129.

[33] Jonatan Eriksson et al. “Quantification of presystolic blood flow organization and
energetics in the human left ventricle”. In: American journal of physiology. Heart and
circulatory physiology 300 (Mar. 2011), H2135–41. doi: 10.1152/ajpheart.00993.
2010.
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