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We can know only that we know nothing.
And that is the highest degree of human wisdom...

Leo Tolstoy

All good things must come to an end.

Geoffrey Chaucer

The excellency of every art is its intensity,
capable of making all disagreeable evaporate.

John Keats
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The multicore era has initiated a move to ubiquitous parallelization of software.

In the process, cores have scaled out but the memory subsystem resources have not

kept up. Memory subsystem contention within and between applications makes it

challenging to extract performance scaling that matches the increase in the number

of cores. This dissertation explores the diagnosis of memory subsystem contention,

identifies associated performance and energy efficiency opportunities, and suggests

techniques and optimizations to both precisely measure and reduce the contention. The

dissertation begins by exploring contention within a single and between multiple, large-
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scale, distributed scientific applications and moves to exploring the impact of memory

subsystem contention on graphics processing units, accelerators that are seeing increasing

usage in both commercial data centers and scientific clusters. The findings of the studies

demonstrate that memory subsystem contention is a serious impediment to achieving high

performance and energy efficiency but also that relatively simple techniques that control

job placement, resource sharing, tuning of parallelism, and algorithmic optimizations

at the application level provide significant opportunities to improve performance and

energy efficiency.

The dissertation comprises four distinct works. (1) It begins by quantifying the

performance and energy efficiency opportunities afforded by co-scheduling large-scale

distributed scientific applications within a supercomputer. (2) From there, it studies the

design of a prototype system for dynamically quantifying inter-application interference

between co-located supercomputer jobs and uses those estimates to reform the accounting

system to more fairly reflect end-user utility. (3) Next, it explores performance and energy

scaling of analytic database workloads on graphics processors and finds that disabling

whole compute units can reduce both query execution time and energy by throttling back

the number of threads at any instant that actively contend for the shared last level cache.

(4) The dissertation ends by describing the Horton table, a hash table that accelerates in-

memory data-intensive computing by more efficiently using hardware cache and memory

bandwidth.
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Chapter 1

Introduction

Recent trends in computing have seen a proliferation of multicore systems, from

small embedded devices and smart phone processors up to the large multisocket multicore

servers that are found in large-scale data centers. A key consequence of multicore systems

is that to obtain high performance for a single application, serial legacy code has needed

to undergo parallelization. In addition, even existing parallel programs from the era of

multichip symmetric multiprocessor systems have undergone substantial revisions as

the degree of hardware parallelism has scaled. While harnessing parallelism is one part

of the story, that alone is often insufficient for crafting applications whose performance

doubles with a doubling of cores and where per-thread performance is highly optimized.

There are many factors that determine the performance scaling of parallel pro-

grams on multicore hardware (e.g., synchronization primitives [127] and contention

for IO peripherals [141, 161]). This dissertation focuses on a subset of problems that

arise from interaction between parallel workloads and the memory subsystem of today’s

multicores. Research into software-memory interaction has seen renewed importance due

to a surge in large-scale, distributed in-memory computing frameworks that have seen

increasing adoption in both the commercial and scientific computing domains. In the

enterprise domain, there is increasing emphasis on deriving real-time insights from large

datasets [184]. These low-latency requirements have driven the creation of in-memory

1
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Figure 1.1. A high-level view of a chip multiprocessor. One or more narrow buses typi-
cally connect off-chip memory to the processor and often are a performance bottleneck
when the last level cache suffers more misses per cycle than the memory buses have
bandwidth to immediately service.

computing systems such as Spark [254], Storm [200], Tez [206], Dryad [120], and

Naiad [178], and a move away from their predecessors that were designed and opti-

mized with network and IO-bound hardware in mind [31, 78]. In the scientific domain,

in-memory distributed computing remains ubiquitous. At the same time, continued

scaling has become paramount to realizing the scientific potential afforded by exascale

computing [47]. For both the commercial and scientific domains, understanding how

software applications interact with the memory subsystem is crucial.

Figure 1.1 shows a high-level depiction of a multicore system. For the purposes

of this discussion, we have simplified key elements to generalize between different

architectures. At the top level are the processing elements that operate directly on fast

registers. Subsequent levels in the memory hierarchy include one or more levels of caches
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and then the main memory.

Often there are one or more levels of private cache (typically L1 and L2) that

are exclusive to each processing element followed by a last level cache (LLC) that is

shared among a plurality of processing elements. Caches that are higher in the memory

hierarchy and closer to the processing elements most often have higher bandwidth, lower

latency, but reduced capacity relative to caches closer to main memory like the LLC.

In the ideal case, programs operate almost exclusively on registers and make loads

that almost always hit in the private L1 caches. While there are a class of workloads

that exhibit this behavior, there is also a growing important class of memory-intensive

workloads that does not. Graph [43,213,256], in-memory data-stores [90,96], and sparse

linear algebra [104, 241] are examples of workloads that continue to proliferate in their

application and utility to commercial and scientific computing, but which interact poorly

with the cache hierarchies of today.

Whereas a ”well-behaved” application might achieve almost perfect performance

scaling as it expands to run across more cores, in contrast, these applications often do not.

Instead, they may plateau or perhaps suffer performance collapse even before all of the

cores have been assigned application threads. Often, the root of this poor scaling is that

although the cores have scaled, many of the buses, controllers, and caches have failed to

keep up with the increase in cores. Worse yet, parallel algorithms often need to replicate

or allocate additional space over their serial variants, further reducing the effectiveness

of hardware caches as parallelism scales. Thus cache- and bandwidth-limited workloads

often achieve severely reduced performance as a result of this inter-thread contention.

In this dissertation, we consider the role of software to reduce memory subsystem

contention with the goal of improving execution time, increasing throughput, reducing

energy, or a combination of all of the above. Software’s role in this domain is essential

because it can greatly offset hardware’s limitations when executing parallel programs.
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While some degree of poor scaling or performance may be inherent to the semantics of a

program’s core algorithms and lead to memory contention that is practically unsolvable

due to the limitations of today’s hardware, there are also significant performance and

energy efficiency opportunities that arise when software is properly tuned to reduce

memory subsystem contention. Managing these detrimental inter-thread interactions

is of high importance because it can improve performance by more than 2x [58, 59].

These effects are often amplified on large-scale systems, especially when they lead to

or worsen the severity of straggler tasks, tasks that lag behind others with which they

synchronize. Stragglers often increase program critical path length and lead to resource

underutilization by forcing other tasks to wait for their completion long after the other

tasks have finished [28, 57, 58, 78].

To address the various challenges associated with memory subsystem contention,

this dissertation is divided into several parts, which we detail in the text that follows.

• Chapter 2 explores the performance and energy benefits associated with co-locating

distributed scientific applications across a shared set of supercomputer nodes.

• Chapter 3 proposes and evaluates a system architecture for online determination of

contention between co-located workloads to drive fairer accounting on supercom-

puters with node sharing between jobs.

• Chapter 4 explores the scaling of in-memory database workloads on graphics pro-

cessors and examines how disabling compute units can reduce memory subsystem

contention and also improve performance and energy efficiency.

• Chapter 5 presents a hash table design known as a Horton table that is optimized to

more efficiently use cache and memory bandwidth.

• Chapter 6 concludes.
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Below we give a more in-depth summary of each of the main projects that

comprise this dissertation.

1.1 Job Co-locations on Supercomputers

Memory contention is often a serious impediment for achieving ideal performance

scaling of large-scale parallel applications on supercomputers [69]. Parallel tasks within

a single application contend with one another for scarce resources such as cache capacity,

cache bandwidth, interconnection networks, and off-chip bandwidth to main memory.

Severe performance degradation due to inter-thread interference is in large part due

to the common application traits in scientific computing workloads: the widespread

use of single program multiple data semantics (tasks execute the same program but on

different data) [240], tight synchronization between tasks, and large working sets that can

easily put large amounts of pressure on shared caches and off-chip memory bandwidth.

Although these types of applications may achieve near-optimal performance scaling

across compute nodes, there are a number of applications where either single-thread

performance, intra-node performance scaling, or a combination thereof is severely hurt by

similar threads from the same application contending for the shared memory subsystem in

a similar fashion and in relative lock-step. Taken together these behaviors frequently lead

to cache thrashing of the LLC, saturation of off-chip memory bandwidth, and ultimately

performance degradation. Further, the high levels of fine-grain synchronization that are

present in many of the distributed scientific applications that use the Message Passing

Interface (MPI) [105] and similar communication libraries can cause a straggler task that

has been slowed down by memory subsystem contention to also slow down all tasks with

which it synchronizes, provided that they collectively wait at shared synchronization

points. At large scales, this effect can be quite pronounced [141]. Worse yet, MPI

typically allocates large memory buffers to send and receive messages [70, 159], which
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can further exacerbate the problem by adding to the existing memory contention that the

computational part of the code generates.

To reduce this memory subsystem contention, we evaluate thread placements that

aim to decrease the number of threads that actively create pressure on memory resources

at any one time. We first leverage a variant of undersubscription where the total number

of distributed tasks is fixed but tasks are spread out over more nodes, which we term

job spreading. Job spreading reduces memory subsystem contention and some forms of

network contention by reducing the number of tasks that contend for resources within

a node. However, job spreading underutilizes compute resources by leaving half of the

cores idle. This deficit motivates the need to explore an alternative policy to improve

throughput, known as job striping, where two or more jobs of approximately equal size

are assigned disjoint sets of cores on each compute socket across a shared set of compute

nodes. Because the co-located applications typically stress hardware resources in distinct

ways, they often reduce contention over the de facto practice of assigning each application

its own set of compute nodes. Further, contentious phases of one application can fall

out of sync with contentious phases of another [141]. Contrast this with assigning a set

of nodes to a single, distributed SPMD application. Its tasks are all likely to stress the

system resources in the same way, and contentious phases are less likely to fall out of

sync with one another due to shared synchronization points. Leveraging job striping

achieves much of the same benefits as job spreading but also improves net throughput by

12% on real applications and reduces energy use by a similar amount when processing a

workload consisting of real, large-scale scientific applications [58].



7

1.2 Fair Pricing for Supercomputers with Node
Sharing

After the study of Chapter 2, we consider challenges associated with delivering a

supercomputing system where node sharing is practical. One of the largest road blocks is

that resource contention between jobs that share nodes is variable [49, 58, 124, 207, 253].

This variability poses a challenge because depending on an application’s sensitivity to

differing types of resource contention and both the severity and types of contention that

other jobs generate, a job’s execution time can vary wildly. When this variation manifests

as a significant increase in run time over the status quo, it can reduce the utility of the job

to the user. Prior work demonstrates that end-user utility is integrally tied to the time for

a job to complete [148]. Even though queuing delays in a typical supercomputer batch

scheduling environment are many hours, job execution times are also often quite long.

Contention that stretches a job’s execution from 20 hours to 40 hours is significant and

could lead to the cluster manager prematurely killing the job for exceeding its allocated

time. Such events are serious because they impact a user’s productivity, with fair reaching

consequences like missing grant fulfilment or conference deadlines. While this example

is an extreme, it illustrates the need to precisely quantify inter-application contention in

co-located environments to be able to detect and mitigate these types of scenarios.

Fair accounting is also an integral issue when considering job co-locations in

high-performance computing environments. On supercomputers, scientists use a bank

of credits known as service units to pay to execute jobs. When jobs run, they gradually

deplete a user’s service units at a rate proportional to the product of their execution time

and the number of servers that are utilized. Thus if one co-located job dilates the run

time of another, the user of the slowed down job would pay a greater price than if their

job had experienced no contention at all. Worse yet, jobs that are particularly sensitive
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to shared resource contention are likely to suffer both a slow down and receive the

greatest surcharge. These traits mean that the current pricing scheme is unfair, and rather,

a revised pricing scheme that discounts users for lost utility from run time dilation is

necessary for co-location on supercomputers to be practical. However, achieving a fairer

accounting mechanism requires accurately measuring the contention that jobs suffer from

degradation. Further, this measurement must be done with little to no additional resource

consumption, which is a hard problem.

To combat these detractors, Chapter 3 presents POPPA a prototype system that

precisely quantifies performance degradation that results from destructive interference

due to shared resource contention within the memory subsystem. The POPPA system

works by gathering measurements from hardware performance counters that track forward

progress of application threads at regular intervals. To increase the insight gained from

these samples, POPPA also selectively deschedules all applications but one that share a

group of compute nodes. By comparing the values of the performance counters of an

application when it is coscheduled and when its corunners are briefly paused, POPPA

determines the precise degradation that an application suffers from sharing its compute

nodes with other jobs. We then propose incentivizing users to run on a supercomputer

with node sharing by discounting them proportionally to their application’s reduction

in performance. As an example, an application that takes 5/4 times longer to run due

to inter-job contention would cause the user to be billed at 4/5 of the baseline price.

POPPA achieves a mean prediction error of 4% and prices jobs at a level of fairness that

approaches what an oracle with complete information achieves. At the same time, careful

performance tuning allows it to maintain an overhead of 1% or less [59].
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1.3 Black Box Performance and Energy Efficiency
Optimizations for GPU-Accelerated Databases

Chapter 4 shifts focus to lessening the effects of memory subsystem contention

on graphics processors when running analytic database workloads. The motivation of

studying these workloads on GPUs comes from the fact that GPUs are seeing increasing

use in large scale systems [24], both commercial and otherwise, due to their improved

energy efficiency and performance [107, 150]. We focus on database workloads because

40% of all the expenditure in the server hardware market goes to procuring systems to

run them, making them the single largest segment of the market [140]. In contrast to

Chapters 2 and 3, which largely focus on job co-location and inter-application contention,

we instead consider the effect that tuning the compute-to-memory-bandwidth ratio of a

GPU that runs a single application, which executes thousands of parallel threads with

data-intensive code, has on performance and energy efficiency. Much as multiple appli-

cations can contend with one another for resources on a traditional chip multiprocessor

and degrade one another’s performance, the thousands of in-flight threads from a sin-

gle application running on a GPU can face similar degradation from shared resource

contention [202].

Chapter 4 begins by asking a simple question: can current analytic database

workloads fully utilize all of the compute units of a modern GPU? Posing this question

is important given the historical significance of the memory wall [247] in in-memory

database systems [25, 54]. Scaling the memory wall prompted 20-plus years of research

within the high-performance database community on columnar databases and memory-

conscious database operators and optimizations to thwart its effects [23, 53]. In light

of the relative maturity of these optimizations coupled with a GPU’s superior memory

bandwidth and both its high degree of hardware multithreading and memory-level par-
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allelism for latency hiding [205], a careful study is required to precisely quantify the

degree that the memory wall impedes the performance scaling of these applications on

today’s GPUs.

Our study begins by showing that like CPUs, the memory subsystem still does

very much curtail the performance of online analytical processing workloads on GPUs. By

using a tool that allows us to dynamically modify the GPU’s firmware, we incrementally

disable the compute units (akin to clusters of cores) on the GPU and measure the change

in performance from the baseline configuration where all the compute units are enabled.

We find that for most of the workloads, near-optimal performance can be achieved when

only about half or less of the compute units are enabled. When all compute units are

enabled, the additional in-flight threads cause excessive pressure on the last level cache

and contention for off-chip bandwidth. Instead, it is often preferable to have fewer threads

and fewer compute units enabled. To further exploit this property, we explore employing

coarse-grain power-gating of disabled compute units to reduce the static power that is

present even when transistors do not actively switch [88, 136]. We demonstrate that

tuning the active number of compute units can reduce query run time and energy by as

much as 24% and 42%, respectively.

1.4 Fast Hash Tables for Data-Intensive Computing

Chapter 5 follows from some of the insights derived from Chapter 4, where

part of the study consisted of characterizing the workload at the level of computational

motifs [33], routines, and database operators [74,75]. In particular, we found that routines

employing hash tables accounted for a majority of execution time in a large minority

of the queries. Further, in-memory hash tables are frequently used in key-value stores

for supporting fast point queries [96, 115], which illustrates their ubiquity throughout

the data management space, where they are an essential, practical, and interesting
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primitive to consider for optimization. Upon examination of the state-of-the-art hash

table design known as a bucketized cuckoo hash table [87], we found inefficiencies in

terms of how it moves data within the memory hierarchy when probing the table. When

performing a lookup on a key associated with a potential key-value pair within the table,

the operation typically issues loads to between 1.5 to 2.0 cache lines from the table

on average [90, 153, 203]. Given that hash tables often have poor temporal and spatial

locality, once a hash table is too large to fit in private caches or for that matter cache at

all, the performance quickly degrades because the majority of lookups trigger accessing

cache lines from the level in the memory hierarchy that can adequately store the table.

The further down in the memory hierarchy that is, the more limited bandwidth that is

available and the more imperative it is to reduce the number of unique cache lines that

are accessed per queried key. Thus, reducing the number of table-containing cache lines

that are accessed per lookup query has a large impact on performance, especially when

the table is quite large because it reduces the amount of data that needs to pass over the

comparatively low-bandwidth and high-latency off-chip memory buses per query. Given

that the prevalence of these tables is growing with the proliferation of data, studying

ways of optimizing these memory-bound tables is imperative.

For our approach, rather than completely abandoning the prior art, which has a

number of attractive properties (lookups that require examining at most 2 buckets [87],

the ability to consistently fill the table between 95% to 99.99% full [87], and high

performance when implemented with SIMD instructions such as AVX [190]), we instead

retrofit the table to reduce its average lookup cost per key-value pair to close to 1 cache

line (assuming 4 or more key-value pairs can fit in a single cache line, which is typical of

columnar database workloads). The revised table inserts most key-value pairs using a

single hash function and employs one of several alternate functions to map the item to

a free bucket when the first function maps the item to a bucket that is already full. To
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track remapped items, one of the cells of each bucket that overflows is converted into

a special structure known as a remap entry array. The remap entry array permits all

remapped elements to be located by accessing at most 2 buckets, and hence, 2 cache

lines. It also accelerates negative lookups (lookups where an element is not found

in the table) by acting as an approximate set membership data structure that filters

lookups to subsequent buckets when a key’s entry is not found in the bucket to which

it was initially mapped. On a 95% full table, these optimizations reduce the expected

lookup cost per key-value pair from 1.5 to 2.0 cache lines down to 1.06 to 1.18 cache

lines, respectively. These optimizations improve lookup throughput on a performance-

optimized GPU implementation by 5% to 95% depending on workload composition and

table size. Although these workloads typically remain profoundly bandwidth-limited,

they make much better use of the bandwidth that is available by cutting out extraneous

accesses to buckets that do not hold the queried key [60].



Chapter 2

Evaluating the Benefits of Job
Co-locations on Supercomputers

Recent studies into the feasibility of exascale computing have shown that exascale

will present a series of unique challenges [44,47,66,211]. To conquer these challenges, a

reexamination of every level of the supercomputing infrastructure will be necessary, from

the facility, to hardware, and up through all levels of the software stack. In this study, we

show that the de facto supercomputing scheduling mechanism can be inefficient, and that

there is a significant performance and energy efficiency opportunity with an alternative

approach.

Most data center supercomputers are a collection of individual nodes or server

blades that are connected to one another over a high speed network. Nodes are parallel

computers in their own right, often containing multiple sockets and dozens of cores. Such

supercomputers are inherently hierarchical and exhibit multiple levels of shared resources

including on-chip buses and cache structures, on-node shared memory bandwidth and

network interfaces, and the system-wide network interconnect. While shared structures

help facilitate the function of a massively parallel machine, their presence necessitates

conscientious orchestration of the sharing of these resources.

The prevailing approach to this coordination of resource sharing is simple: sched-

13
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ule jobs from different users on disjoint sets of compute nodes. While this limits the

potential chaos of an ungoverned scheduling environment where any user can monopo-

lize the system, it also eliminates the advantages that cooperative sharing can offer. In

particular, prior work on multiprogrammed workloads shows that system performance

is significantly increased when heterogeneous threads are intelligently coscheduled on

the same computational resources [49, 71, 139, 191, 214, 248]. Across a suite of different

architectures, these studies find benefit in enforcing policies that facilitate fairer sharing

of resources, which avoids thread starvation and accordingly increases throughput.

The reason colocating heterogeneous threads usually improves system perfor-

mance is because each thread executes distinct code and thus taxes the system in largely

different ways. In contrast, homogeneous threads execute nearly identical code and

consequently often make very similar demands on the system. As such, they are more

likely to impede one another’s progress by competing over shared resources such as

last level caches (LLC) and memory bandwidth. Avoiding these collisions on shared

resources is key to realizing high aggregate system performance.

For the purposes of this study, we examine the performance opportunity provided

by harnessing HPC workload heterogeneity at scale. Most large distributed scientific

applications fall under the Single Program Multiple Data (SPMD) programming model.

SPMD parallel programs are comprised of multiple identical or nearly identical tasks that

operate on distinct data. Since they are similar, the colocation of these tasks on the same

computing resources produces contention and hurts performance. Unfortunately, this is

exactly what happens on present day supercomputing systems. Each application is given

a private set of compute nodes. While this approach makes it easier to guarantee quality

of service, it causes homogeneous tasks to be placed together, consequently increasing

contention and accordingly decreasing throughput and energy efficiency.

For these reasons, we propose job striping, a process-to-core mapping technique
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for supercomputing clusters. Job striping reduces contention by capitalizing on the

heterogeneity in workloads found on today’s supercomputers. On a job-striped set of

compute nodes, half the cores of each processor run one parallel application and the other

half run another. By interleaving two distinct jobs with one another, system contention is

reduced.

To validate the efficacy of job striping, we conduct large-scale experiments on two

complete racks (2048 cores) of the state-of-the-art Gordon supercomputer at SDSC. For

the 1024 process NAS parallel benchmarks [35], job striping improves single application

throughput by as much as 81%, and more than 26% on average. In addition, energy

efficiency increases by as much as 52%, and 22% on average.

We also evaluate job striping on three very common scientific applications,

GTC [158], LAMMPS [11], and MILC [13] at 1024 processes. On these applications,

job striping increases mean throughput by 12% and energy efficiency by 11%. MILC

improves the most from striping, with throughput improving by 23% and 32% when it is

paired with GTC and LAMMPS, respectively.

This chapter also identifies the critical resources that benefit most from hetero-

geneity – the memory subsystem and the communication network. All applications

whose performance improves from striping exhibit reduced contention for one or both of

these resources when the workload is heterogeneous.

The primary contribution of this work is to demonstrate that colocating large scale

HPC applications yields a performance benefit. Prior work on heterogeneous scheduling

focuses almost exclusively on uni- and multi-threaded benchmarks or synthetic workloads

run on a single server. In addition, it largely glosses over energy efficiency and network

contention while using benchmark suites that are not representative of HPC workloads.

This study, in contrast, demonstrates both the necessity for and the mechanisms to enable

heterogeneous workload scheduling for real-world HPC environments.
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Additional contributions of this study are as follows:

(1) We motivate job striping for HPC and describe a particular software solution.

(2) We present a new energy efficiency metric Scaled Energy Efficiency (SEE), which

approximates the ratio of before and after power-delay products.

(3) We demonstrate that job striping significantly increases energy efficiency and through-

put on real applications.

(4) We show that job striping achieves its performance gains by reducing contention on

shared resources, through analysis of application profiles.

(5) We provide a simple mechanism to predict low performing application pairs.

(6) We show that pairing GTC with MILC, two applications commonly run at

NERSC [30], improves energy efficiency by 13%.

2.1 Motivation

In this study, we motivate job striping by exploring an application’s behavior

when mapped in two commonly found processor affinities, one which we refer to as

compact and the other which we refer to as spread. These terms are consistent with

what is found in the literature on NUMA affinity optimizations [64] and in software

and system user guides [20, 194]. The best way to explain these configurations is by an

illustrative example.

Suppose we are given a distributed application A that is comprised of p single-

threaded processes and a set of chip multiprocessors (CMPs) with c cores each. The

compact configuration would assign CMPs to A such that each process is mapped to a

single core with no cores left unassigned. In contrast, the spread configuration instead

opts to use twice as many CMPs but to leave each socket half full. Thus spread uses c
2

cores per CMP versus the c that the compact configuration uses.

The spread affinity specification often offers a significant performance advantage
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over compact because each process experiences less cache contention from its neighbors.

In the compact configuration, the shared last level cache (LLC) and memory bandwidth

are split among c processes. However, in the spread configuration they are divided

between c
2 processes. This means that the mean available memory bandwidth and LLC

space per core are 2x higher in the spread configuration. Since both of these resources

are critical for achieving high performance, the spread configuration almost always

outperforms compact. While this is likely a win for raw performance, job spreading has

its limitations.

In real supercomputing systems, users are charged for the combined number of

CPU hours that their application uses. The price of execution is derived by a simple

formula where cost is the product of the number of nodes assigned to a job (N), the

number of cores per node (P), the total time the job ran (T), and a rate constant (k) (shown

below).

C = k ∗P∗N ∗T (2.1)

Consequently, if a user spreads their job, they are charged for the cores that they

leave unassigned. While this would not be a problem if spread offered a 2x increase

in performance, in many cases it does not. As such, users have a monetary incentive

to maximize their application’s performance per CPU hour, not per core. Thus users

commonly request only enough nodes such that every process has a core to run on

(compact). While this makes sense from the user’s economic perspective, this may not

yield the best overall system performance. For many scientific computing applications,

the memory bandwidth requirements per core are quite high, and when the processor

is fully occupied with multiple identical threads or processes, memory bandwidth is

insufficient for delivering maximal throughput per process.
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Figure 2.1. Methods for scheduling two 16 process distributed applications A and B on a
supercomputer with two 8-core processor sockets (as in Gordon). In compact, A runs
on one node and B on another. With spread, A and B are still isolated but run on two
compute nodes each, with half the cores empty per CMP. Lastly in striped, A and B share
all sockets of two compute nodes.

In fact, recent studies that examine single-process multi-threaded and distributed

programs demonstrate that the optimal number of threads per CMP is highly application

specific and rarely equal to the number of cores on the processor. In such cases, the

optimal number of threads is either moderately lower or much higher than the number of

cores available on a CMP [118, 195].

In such an environment, what we desire is a way to schedule that takes the best

features of both compact and spread. We want the full occupancy that compact provides,

but we also need the reduction in resource contention that spread offers. To do this, we

develop and investigate job striping. Job striping takes two spread jobs and interleaves

them such that every core is occupied by a uniquely identified single-threaded process.
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In the striped configuration, even cores get assigned one application and the odd cores

another. This process is repeated across all processor sockets. Figure 2.1 illustrates the

compact, spread, and striped configurations.

Our intuition for why this can be effective is simple: distributed applications

using MPI, or another mechanism such as UPC or SHMEM, often execute near identical

tasks. As such, their constituent processes make very similar demands on the system.

Suppose we are given a parallel program named A that largely follows the SPMD model.

If each process comprising A requires that 6MB of its working set remain in L3 cache for

high performance, then if one places 8 of these processes on the same 8-core processor,

then at least 48MB of shared L3 cache will be required to avoid a reduction in throughput.

However, on today’s HPC systems, most L3 caches top out at 32MB. The requirement

for a larger combined working set than the L3 offers will undoubtedly cause an increase

in cache misses and, subsequently, a drop in performance.

However, job striping could remedy this problem. If A is striped with another

job B whose processes each require 1MB in L3 cache, then the net performance is likely

to be much better. While A scheduled as compact will almost certainly bottleneck on

L3 capacity, when paired as striped with B, the sum of their working sets in L3 will be

28MB, small enough to fit within the 32MB L3 cache.

Communication over the inter-node network can also benefit from job striping.

Many distributed scientific applications spend up to 35% of their total execution time

sending and receiving messages [208]. Depending on the nature of this communication,

similar processes can heavily contend for shared hardware such as the network interface

card and switches. Suppose A exhibits short but intense bursts of communication.

During these periods, it is quite likely that there will be a backlog of communication

requests. If computation cannot be done to hide the latency of this communication, then

performance will suffer. However, if there are half as many copies of A per node and B
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does comparatively little communication, then A is likely to benefit from less waiting on

the network and B will continue to make progress. In addition, even if A and B both are

communication-heavy, their communication patterns are likely to be more out of phase

than those of single parallel application [141].

In particular, a parallel program’s tasks are limited in the distance they can run

ahead of one another by the time length between global synchronization points. For

highly synchronous codes, this means that all threads or processes execute the same

set of instructions in relative lock step. For a communicating application A, this means

that all of its processes very well might attempt to send messages over the network at

roughly the same time. However, if A is paired with another code B, then the temporal

communication patterns of A and B’s processes can fall largely out of sync. This fact is

corroborated by a closely related work by Koop et al. [141] where they show that pairs of

symbiotic NAS parallel benchmarks often communicate over largely non-overlapping

time intervals. For programs that make heavy use of synchronous communication such

as MPI Send and MPI Receive, striping two applications in this way can significantly

speed up program execution.

2.2 Methodology

2.2.1 Performance Metrics

To evaluate effective coschedules, we utilize a number of key metrics. To quantify

system throughput, we use a variant of the weighted speedup metric from Snavely and

Tullsen’s work on symbiotic coscheduling for an SMT processor [214]. We call this

metric scaled throughput (STP). STP is shown in Equation 2.2.

ST P =
1
n

n

∑
i=1

Si

Mi
(2.2)
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In this equation, n is the number of parallel programs that are coscheduled together, Si is

the runtime of a program i when run alone in the compact configuration and Mi is the

runtime of the program i when either the spread or striped affinity is applied to it. This

variant of STP is the mean weighted speedup of the applications in a coschedule. For

instance, a coschedule with an STP of 1.2 would exhibit a 20% average speedup over

each job being scheduled using the compact policy.

For the purposes of determining energy efficiency, we have developed a new

metric—Scaled Energy Efficiency (SEE). SEE is shown in Equation 2.3.

SEE =
ST P
Ps

n

∑
i=1

Pc,i (2.3)

P̄s is the mean power of the striped or spread job schedule. P̄c,i is the mean power of

job i when run in the compact configuration. SEE is the product of scaled throughput

and scaled power consumption. SEE is a reasonable energy efficiency metric because

energy can be defined as the product of average power and time. Consequently, the metric

approximates the ratio of the before (compact) and after (striped) power-delay products.

The P̄c,i’s terms are additive because the energy used by two jobs running isolated

in the compact configuration is the sum of their individual energies. We can divide this

by P̄s because the number of compute nodes occupied by two jobs A and B scheduled

compactly is the same as when the two are striped together. The P̄s term is necessary

because it is currently not possible to measure the contribution to net power from each

job when they are striped. Only a combined measurement is realistically feasible.

2.2.2 Gordon Supercomputer

All of our experiments are conducted on San Diego Supercomputer Center’s

(SDSC) Gordon Supercomputer [183]. Gordon is a particularly innovative machine.
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It is the first supercomputer to incorporate Intel’s Sandy Bridge processors and has

state-of-the-art Intel NAND Flash solid state drives on every node. The system features

a 3D torus network topology with dual-rail QDR infiniband with 8GB/s of bandwidth

in each direction between nodes. Each compute node is dual-socketed, each socket

being occupied by an 8-core 2.6 GHz Xeon processor with 32KB of L1 and 256KB of

L2 private cache per core and 20MB of shared L3 per socket for a total 40MB. Every

compute node has 64GB of main memory with 32GB per NUMA node. We obtain this

information by using the lstopo command from HWLOC [63] and from the Gordon

user guide [20].

2.2.3 NAS Parallel Benchmarks

For one part of our study, we use the message passing interface (MPI) version of

the NAS Parallel Benchmarks (NPBs) [36, 179]. As of version 3.3, the NPBs consist of 9

parallel benchmarks with input sizes ranging from W,S,A,B,C,D,E, and F where jumps be-

tween classes roughly scale runtime by 4 to 16x. NAS binaries are named as <benchmark

name>.<class size>.<number of compiled processes>. For our experiments, we chose

to use bt.D.1024, cg.E.1024, ep.E.1024, ft.D.1024, lu.E.1024, mg.E.1024, sp.D.1024.

These input sizes ensure that each application runs for at least 20 seconds when scheduled

in the compact mode.

The NAS Parallel Benchmarks are important for our study because they repre-

sent common computational kernels or motifs that comprise more complex real-world

applications. In addition, they are open source, well studied, and exhibit strict versioning.

Thus our experiments are repeatable.



23

2.2.4 Real Scientific Applications

We also conducted a study using three ubiquitous scientific applications: the

3D Gyrokinetic Toroidal Code (GTC) [158], LAMMPS [11], and the MIMD Lattice

Computation (MILC) [13]. GTC is used for modeling microturbulence in plasma and

is very heavily used at NERSC at the Lawrence Berkeley National Laboratory (LBL)

as well as other Department of Energy (DOE) sites. LAMMPS is a classical molecular

dynamics code that has been identified as one of the Department of Defense’s key

applications. In addition, it is currently being used by Lawrence Livermore National

Laboratory (LLNL) as one of the applications to benchmark the new IBM BlueGene/Q

Sequoia supercomputer [2]. Our third application MILC is a quantum chromodynamics

program that enables the study of subatomic particle interactions. GTC and MILC were

selected along with four other scientific applications to benchmark the petascale Hopper

Supercomputer at LBL [30].

For GTC, we use an input file that is a modification of one provided by one of its

lead developers. With LAMMPS, we use the embedded atom model (EAM) potential

input provided with the Sequoia Benchmarks and scale the lattice by a factor of 32 in

each of the x, y, and z directions. With MILC, we use the input provided in the NERSC-6

benchmarks for 1024 processes.

2.2.5 Compilation

We compiled both the NAS parallel benchmarks and the scientific codes using

the Intel compilers (version 12.1). For our MPI library, we use MVAPICH2 (version

1.8) because it is optimized for multirail QDR infiniband. For GTC, we largely left the

makefile untouched. LAMMPS requires an FFT library – we use the FFTW3 module

(version 3.5) that defaults on Gordon when the Intel compilers and MVAPICH2 modules

are loaded. In addition, we compile MILC with NETCDF (version 4.0.1).
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Figure 2.2. This figure represents a trial of running two striped applications A and B.

2.2.6 Experimental Setup

For each application, we spawn 1024 processes using mpirun rsh. We run all

of the experiments on two full racks of Gordon, totaling 128 compute nodes and 2048

processor cores. We evaluate NPBs and real applications separately. For each job, we

run it in the compact, spread, and striped configurations. During trials using the compact

scheduling method, we execute one copy of the application on one rack and another copy

on the other. In the spread configuration, we bind four processes to each processor socket

by setting MV2 CPU BIND=0:2:4:6:8:10:12:14 (see [194]). We do this to enforce job

spacing in the hope that the absence of processes on adjacent cores will improve energy

efficiency [77]. In both the compact and spread schemes, we restart a job as soon as it

finishes.

For striped jobs, we set the affinity masks of the first and second job to

MV2 CPU BIND=0:2:4:6:8:10:12:14 and MV2 CPU BIND=1:3:5:7:9:11:13:15, re-
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spectively. We start both jobs at the same time, and as soon as one job finishes, we restart

it. Each striped coschedule is run for a fixed time interval, and the final trial from each

job is discarded. For a visual representation, see Figure 2.2. This methodology allows us

to (1) ignore unwanted tail effects and (2) sample the jobs co-executing at a variety of

time staggers.

For the NPBs, we run each job in the compact and striped configurations for 12

minutes. After that, we run each possible pairing of NPBs for 12 minutes as well. This is

adequate time so that each job completes execution at least three times. Between jobs,

we sleep for 90 seconds to allow the system to go back down to steady state. For our real

applications, we repeat the same steps but increase runtime per experiment to 30 minutes.

With this time allowance, each application runs for at least 4 iterations per experimental

trial. After running all trials, we repeated the same experiments several days later.

2.2.7 Power Measurement

We measure power consumption using a key feature of the Gordon supercomputer.

For each rack, there are two power sources that provide the energy necessary for operation.

On each of these sources is an embedded power monitoring unit (PMU). Each PMU

makes a power measurement approximately every 3 to 5 seconds, however not in sync.

The Performance Monitoring and Characterization (PMaC) laboratory at SDSC has

developed a system whereby these data are sent over the network to a remote host and

the readings are compiled into logs. To find average power, we take the discretized

integral over the power readings of each PMU device during the runtime interval. As

previously mentioned, this interval is 12 minutes for the NPBs and 30 minutes for the real

applications. Once we have these values, we sum them together and divide by the runtime

(12 or 30 minutes) to get average power. We do this rather than just taking the average

over each power measurement because the time intervals between such measurements
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are not uniform.

2.2.8 Performance Correlation

The first time we run the experiments, we dynamically instrument each executable

at runtime with the IPM [243] profiler. When we rerun the experiments, we instead

instrument with the profiling capabilities of PSiNS [227]. During each run of every

experiment, we collect the L1, L2, and L3 cache misses, the total dynamic instructions,

and the number of cycles without instruction issue for each MPI task. These data are

aggregated at the process level through the use of PAPI [65] performance counters. In

addition, both tools report the percent of time spent in each MPI routine for every process.

The total penalty of instrumenting each application is at most 10%. This instrumentation

is present in every run of the compact, spread and striped experiments. We do not believe

that this instrumentation fundamentally alters application behavior. To make sure this is

the case, we have repeated a large subset of our experiments without instrumentation and

have observed no significant change in coschedule outcomes.

This instrumentation allows us to categorize the behavior of an application through

the analysis of the traits of each of the parallel tasks that comprise it. From these data,

we draw correlations between increase in striped performance and a reduction in system

contention.

2.3 Performance Results

2.3.1 Compact Versus Spreading Versus Striping

Figure 2.3 shows the performance results for the first set of experiments with

the NAS parallel benchmarks and the second set of experiments with GTC, LAMMPS

and MILC. For the NAS parallel benchmarks, the mean performance increase from

job spreading is 50%. If one examines striped coschedules of non-identical NPBs,
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Figure 2.3. Increase in system throughput (STP) over compact when applying job
spreading and striping to the NAS parallel benchmarks and GTC, LAMMPS and MILC

the average performance increase is 26%. If one selects the best running mate other

than embarrassingly parallel (EP) for each benchmark, then the average increase in

performance is 36%. We choose to exclude EP because EP is minimally contentious.

Each EP task’s working set fits entirely in the private levels of cache, and EP spends very

little time in active communication. Because of these traits, EP universally causes every

application that it stripes with to achieve its best striped performance. Thus for the sake

of fairness and realism, we exclude these results from the “Best” average.

For the NAS parallel benchmarks, random striping yields about 50% of the

performance benefit of job spreading and striping each job with its best running mate

provides 70% of the performance benefit of spreading. This trend continues for real
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Figure 2.4. Increase in system throughput and energy efficiency when applying job
striping to pairs of 1024 process NAS parallel benchmarks

applications as well. For the GTC, LAMMPS and MILC, job spreading increases

throughput by 23%, and the mean heterogeneous striping and the mean best striping

improve performance by 12% and 16% respectively.

2.3.2 NAS Parallel Benchmarks

In this section, we examine the increase in collective throughput and energy

efficiency for pairs of striped NAS Parallel Benchmarks. The results are presented in

Figure 2.4.

For completeness, we run all pairwise combinations. This includes both heteroge-

neous pairings (e.g., CG striped with LU) and homogenous pairings (e.g., CG striped

with CG). However, homogeneous pairings typically combine the worst of compact

(maximized pressure on bottleneck resource) and the worst of spread (some increased

communication as communicating threads are farther apart). Thus, AVG1 refers to the

average of all possible pairings and AVG2 to the mean performance of only heteroge-



29

neous pairs. It is reasonable to assume that a job striping runtime system would avoid

pairing identical applications together.

Overall, striping provides improved performance. Even in the worst case where

we are limited to pairs of identical benchmarks, job striping in aggregate still increases

both STP and SEE by 6%. Although the kernels are identical, the two instances do not

synchronize with one another, and as a result they compete less for the inter-node network.

FT-FT is the best homogeneous pairing and exhibits a 19% increase in performance and

a 17% increase in energy efficiency. For additional discussion of the FT-FT pairing, see

[141].

Heterogeneous striping improves system throughput by 26% and energy efficiency

by 22%. With every benchmark, striping improves scaled throughput (except EP striped

with EP -0.2%) and energy efficiency (except for CG striped with CG -0.5%). The best

coschedule is the FT-MG pairing. FT speeds up by 51% and MG by 60% for a total

STP increase of 55%. Energy for the FT-MG pairing improves by 52%. The next best

coschedule in terms of throughput and energy efficiency is CG paired with FT. CG speeds

up by 51% and FT by 39% for a total combined performance improvement of 45%. The

next two best pairings are EP-FT and FT-LU.

The EP-FT pairing is particularly interesting because it is one of the instances

where one application benefits at the expense of another. If we saw no benefit from

heterogeneous scheduling, we would expect this to be the common case – that job striping

would sacrifice one job for the benefit of another (e.g., a cache-intensive job would

accelerate, but the co-scheduled job would suffer from the increased cache pressure). In

fact, in over half the cases, job striping improves the throughput of both applications.

However, EP-FT is one of the exceptions. EP suffers a 4.6% loss in performance, whereas

FT’s throughput increases by 92%. There are 13 such cases. In these pairings, the average

performance decrease to the victim application is 4.1%, whereas the average performance
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Figure 2.5. Increase in system throughput and energy efficiency when applying job
striping to pairs of 1024 process scientific codes; AVG1 is the mean over all coschedules,
and AVG2 is the mean over heterogeneous ones.

increase of the accelerated application is 48.9%. BT and EP are the most commonly

victimized kernels, with BT suffering a performance hit from five out of seven pairings,

and EP suffering a throughput hit in all seven. Besides these, only CG-SP and CG-LU

exhibit victimization (SP and LU victims).

We can partition the pairings into the set of jobs where both improve, and those

where one is slowed. Interestingly, the overall system performance gain of the two

sets is similar. The former sees 19.4% gain from striping, while the latter gains 19.1%.

The gap is only a bit larger if we examine energy efficiency. The former group gains

an SEE improvement of 19.3%, while the latter gains 16.4%. These results do raise

questions about fairness for the users who initiated the striped jobs. These concerns will

be addressed further in Section 2.5 and Chapter 3.
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2.3.3 Real Scientific Applications

For the production scientific codes, job striping again improves throughput and

energy efficiency. Figure 2.5 illustrates the scaled throughput and energy efficiency per

striping. As with the NAS parallel benchmarks, we observe that some applications benefit

more than others from striping. The application that benefits most from striping is MILC

(at 1024 processes on the NERSC input). When it is paired with GTC and LAMMPS, its

throughput increases by 23% and 34% respectively. GTC also exhibits performance gains

when striped. Striping GTC with LAMMPS and MILC improves GTC’s throughput by

12% and 6%.

LAMMPS is the only application that does not benefit from heterogeneous strip-

ing and the only one whose performance improves from homogeneous striping. It suffers

a mean 1.7% decrease in throughput when striped with GTC and 3.4% performance loss

when paired with MILC.

In addition to improving application throughput, job striping also raises energy

efficiency. Similar to the NAS parallel benchmarks, there is little change in power

consumption relative to the increase in useful execution. For heterogeneous coschedules,

mean energy efficiency increases by 11%, almost as much as the 12% increase in scaled

throughput.

Stability of Results

Table 2.1 reports the minimum and maximum observed runtime per real appli-

cation over eight or more trials. From the table, we observe that the results from the

previous section are quite stable and reliable. Over the multiple runs of each application,

the maximum variance in runtime for all applications in each of the three heteroge-

neous pairings is less than 2% and is no larger than running applications compactly.

Consequently, the behavior of a striped coschedule is highly consistent between runs.
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Table 2.1. Minimum and maximum runtime in seconds for each of the three applications
scheduled compactly, spread, or striped.

Compact Spread GTC LAMMPS MILC

GTC
MIN 198.9 167.6 227.9 172.7 187.9
MAX 202.2 170.2 231.7 174.3 191.5

LAMMPS
MIN 289.9 280.0 295.2 288.3 300.8
MAX 292.0 282.9 296.3 290.2 302.9

MILC
MIN 511.4 350.2 416.7 383.5 515.7
MAX 514.7 354.7 424.6 388.3 527.4

2.4 Interaction Between Striped Pairs

Thus far we have only focused on the performance benefit of job striping. In this

section, we investigate how it is achieved. From our point of view, the best way to predict

how a job’s performance will change when striped is to look at the change in its relative

L3 misses and communication when spread. Since striping is the interleaving of two

spread jobs, a job’s change in behavior when spread should largely dictate how and when

it will benefit from striping. Figure 2.6 presents the change in relative L3 misses, the

time spent in computation and communication, and the increase in performance.

2.4.1 Spread Performance Relative to Compact

We examine L3 cache misses because previous studies have demonstrated that

applications with high L3 cache miss ratios often have lower instruction throughput than

ones with fewer L3 misses. In addition, the literature shows that pairing heterogeneous

uniprocess single and multithreaded programs together can often reduce L3 misses, and

boost performance [49]. On real machines, an L3 cache miss incurs a latency penalty

that is often an order of magnitude greater than misses to the higher level private caches.

On Intel Sandy Bridge processors, the quoted L3 access time is 26 cycles. However,

the latency to access main memory is much greater. We use lmbench to measure the

relative latencies and find the L3 access time to be 42 cycles and the time to access main
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Figure 2.6. Shown are the change in application performance and performance counters
when jobs are spread versus compact: L3 change is scaled relative to the mean L3
misses per 1000 instructions of all ten codes when individually scheduled (compact) and
communication and computation changes are scaled by percentage of total runtime. The
increase in computation is relative to the total percentage of time spent in computation
versus communication.

memory to be 220 cycles [170, 204]. Thus, for each miss to the L3 cache, we incur an

additional latency penalty of 180 cycles for that cache line. If this miss occurs on a

read, it is unlikely that the processor can completely hide this latency. These latencies

are of particular concern for CG and MG which exhibit 5.7 and 2.7 L3 misses per 1000

instructions.

In Figure 2.6, we observe that certain benchmarks show a significant reduction

in L3 cache misses when spread. CG, MG and MILC realize substantial benefit when
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spread. This is not surprising: CG, MG and MILC have the largest working sets, each

allocating 873, 499, 716 MB per active process, and also the highest L3 miss ratios of

their peers. Thus the spread configuration greatly reduces cache and memory pressure.

However, certain programs such as BT, FT, and SP actually incur more misses as

a result. While an increase in performance despite more L3 misses may seem counter

intuitive, if we examine the increase in useful computation and the decrease in communi-

cation, these numbers make sense. All three benchmarks exhibit substantial increases

in computation per unit time. Thus, even though they incur penalty from more cache

misses, this can be offset by an increase in useful work and less waiting on the network.

Most applications exhibit both a decrease in L3 misses and decrease in commu-

nication per unit time. To weigh the importance of these changes, one must first look

at the applications’ characteristics. EP for instance has almost no L3 cache misses per

1000 instructions, thus pairing it with other applications can only hurt. In addition, EP

performs much less communication than the other applications. Thus when it is hetero-

geneously paired, its performance universally suffers. BT is also interesting because

spreading significantly increases its relative L3 misses. Thus BT can only benefit from

striping if it reduces BT’s communication contention. If we look at BT’s best pairings,

they all occur when it is paired with applications that do as much or less communication

than it does (itself and EP).

If we examine the highest throughput coschedules, almost all include FT. FT’s

L3 misses go up when it is paired with other applications, but this is expected given

that spreading alone increases its relative L3 misses. This fact is however offset by

the savings due to communication. In particular, FT.D.1024 spends more time in MPI

routines than any other program, and it has the second lowest relative L3 cache misses of

any program (0.48 per thousand instructions). In addition, reducing the time it spends in

communication sharply increases its actual computation per unit time. Thus, it can afford
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additional cache misses.

When FT is paired with CG and MG its communication per unit time decreases

by 8.0% and 4.5% respectively. While this may not seem like much, remember that FT

originally spends over 87% of its time communicating. Thus decreasing communication

per cycle by 8.0% means FT spends 20% of its time executing meaningful computation

instead of 13%. Thus, it executes 54% more computation per unit time. This figure

almost exactly matches the 55% increase in throughput for FT, when it is paired with

MG. The same is also true for FT paired with CG. FT now spends 30% more time doing

computation. This number roughly matches the 39% increase in performance that we

observe when it is paired with CG. In addition, we note that CG and MG also spend

a large percentage of their total time in communication, 57% and 37% respectively.

However, their communication patterns are distinct from FT’s. FT spends approximately

80% of its total communication time executing MPI Alltoall, and thus each process, and

hence every compute node sends every other compute node its results.

CG on the other hand spends 53% of its total computation time in synchronous

point to point MPI Send communication and 43% waiting. We believe FT benefits

from this pairing because CG’s communication pattern is distinct and CG is largely

inactive in MPI Wait for large periods of time. Thus FT benefits from CG waiting on

communication and also by the fact that the nature and phases of CG’s communication

are largely orthogonal to its own.

MG’s behavior is also highly distinct from FT’s. MPI Wait and MPI Init together

account for 73% of its total time in MPI routines. Thus, FT can largely run without

interference, as MG executes a brief burst of initial communication and then largely

tapers off. For this reason, MG is particularly symbiotic with other benchmarks. Rather

than having 16 MG processes all competing for network access during initialization,

there are only eight. After initialization, it does very little active communication, and its
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partners profit.

For CG, we believe that the majority of its performance improvement when striped

is from reduced L3 cache misses. Only when CG is paired with MG does the percentage

of execution spent in communication sharply drop (from 57% to 40%). However, even

though the percentage of time CG spends communicating in most coschedules does not

change, the communication composition does. Pairing CG with FT causes the time spent

in MPI Wait to decrease by 20 percent. This result is particularly interesting because it

reiterates an important point about job striping: job striping can improve performance by

reducing LLC contention, communication interference, or a combination thereof. When

job striping pairs an application with a large working set and a high LLC cache miss ratio

with another application with a small working set and low LLC cache miss ratio, the

first application benefits because more of its working set now fits in cache. The second

application consequently then suffers more cache misses because less of its working

set now fits in cache. However, we observe that many applications with large working

sets often spend more time in computation, and applications with smaller working sets

usually spend more time doing communication. Applications that exhibit both high

communication and high cache contention usually do not scale. Thus, even though

the cache-benign application now has a higher LLC miss rate, it is now paired with

an application that spends either less time in communication or with a communication

pattern distinct from its own.

2.4.2 Real Applications

For real applications, we observe behavior that is similar to that observed with

NPBs. MILC’s L3 cache misses per 1000 instructions drop significantly when paired

with both LAMMPS and MILC. Scheduled compactly, MILC has 1.7 misses per 1000

instructions. When scheduled with GTC or LAMMPS, this figure respectively drops to
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1.03 and 0.78. Scheduling using the spreading method decreases this number further to

0.58. If we correlate these numbers to what we see with performance, a trend becomes

clear. MILC runs for 513 seconds in compact, 413 seconds paired with GTC, 382 seconds

when paired with LAMMPS, and 353 seconds when run in spread. If we fit a linear

y = mx+ b function to these data (runtime vs. L3 misses per 1000 instructions), we

get a coefficient of determination of r2 = 0.998. A coefficient of determination of 1

corresponds to perfectly collinear data, and so the linear model is highly representative

of the actual trend in the data. Thus, if we pair MILC on the NERSC input with another

application and measure MILC’s L3 misses per 1000 instructions, we expect to be able

to accurately predict MILC’s run time by using our linear model.

The number of cycles without instruction issue also drops when MILC is striped.

In the compact configuration, MILC has 22 cycles without instruction issue for every

1000 instructions. Spreading MILC reduces this number to 10, and pairing MILC with

GTC and LAMMPS improves this figure to 17 and 13 respectively over the compact

baseline. When plotting runtime versus cycles without instruction issue per instruction,

r2 = 0.964. While this correlation is slightly weaker, this is to be expected. Depending

on where an L3 miss occurs in the code, it may or may not cause the pipeline to stall.

When we conduct a linear correlation on L3 misses and cycles without instruction issue

per 1000 instructions, r2 = 0.976. Thus we conclude that MILC’s speedup when striped

is almost entirely tied to a decrease in contention over last level cache. These findings

are similar to those found in the SPEC2006 MILC benchmark [49].

GTC benefits the second most from job striping. Like MILC, spreading sig-

nificantly improves its L3 miss rate per 1000 instructions, while communication as a

percentage of runtime remains essentially constant. We believe GTC runs well with MILC

because their communication patterns and cache accesses are largely synergistic. GTC

spends approximately equal time in MPI Allreduce, MPI Sendrecv, and MPI Barrier.
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MILC on the other hand spends 66% of its communication time in MPI Wait and 24%

in MPI Allreduce. Thus for both codes, the majority of communication time is spent

waiting for the data to propagate. This explains why spreading does not reduce the

communication time percentage for either application, as waiting is not a contentious

activity. In terms of cache behavior, GTC makes very few L3 cache accesses. Thus even

though MILC’s working set in L3 is large, GTC does not suffer.

LAMMPS exhibits very little change in performance when striped with itself and

other applications. This is reasonable given that spreading LAMMPS only increases

performance by 3%. While we expected the increase in LAMMPS’ performance to be

more significant due to the marked decrease in L3 misses for LAMMPS when spread,

we conclude that these misses must be less detrimental than those incurred by GTC or

MILC. In addition to little benefit from reduced cache contention, LAMMPS cannot

profit much from improved communication either. In total, LAMMPS spends (7%) of

total execution in MPI calls, so that even though pairing LAMMPS with GTC decreases

its communication time by 15%, this has a largely inconsequential impact on runtime.

We attribute minor benefit to the composition of LAMMPS’s communication. LAMMPS

spends over 65% of its communication time in bursts of synchronous MPI Send. By

having fewer processes executing MPI Send at any one time, performance is improved.

Pairing LAMMPS with itself very slightly improves performance, and we attribute

this to the communication of each LAMMPS parallel job being out of synchronization

with one another. This is consistent with the fact that our communication-intensive or

highly synchronous NAS parallel benchmarks also sped up when homogeneously striped.

2.4.3 Per Process Improvement from Striping

In the previous section, the overall benefit to the system from job striping was

demonstrated in terms of both scaled throughput and energy. Figure 2.7 provides the im-
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Figure 2.7. Improvement to scaled throughput per NAS benchmark in each pairing.
Pairings are sorted by the worse performer of the pair.

Table 2.2. Benchmarks categorized by the reduction in execution time from running
spread over running compact.

Improvement of Spread over Compact
High ≥ 40% Medium ≥ 20% and < 40% Mild < 20%

NAS CG, FT, MG LU, SP BT, EP
Real MILC GTC, LAMMPS

provement to runtime per process in each pairing of the NAS benchmarks and Figure 2.8

provides the improvement per process for our real benchmarks. Although most of these

pairings are an overall benefit to the system (see prior section), individual jobs may suffer

from the pairing. Approximately half (16/34) of the striping pairs achieve symbiosis—

each of the jobs in the pair benefit. 12 out of 34 of the striped pairs experience one of the

jobs suffering less than a 5% degradation in performance. Lastly, in 6 out of the 34 pairs,

one of the benchmarks suffers by greater than 5%.

Table 2.2 groups benchmarks by their gains from being run spread over compact.
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Figure 2.8. Improvement to scaled throughput per Real benchmark in each pairing.
Pairings are sorted by the worse performer of the pair.

This produces groups of “High,” “Medium,” and “Low” spread performers. In general,

striping with another job will provide worse execution time than if run alone spread. This

allows us to use the spread behavior to infer the behavior of running striped. Table 2.3

presents the performance impact of pairing across different groups of benchmarks. It

summarizes results from a combination of Figures 2.7 and 2.8 with Table 2.2.

When scheduling a High spread performer for striping, that benchmark always

benefits from the striping with the one exception of MILC striped with MILC (where each

suffers a minor slowdown). This is fairly intuitive: if the benchmark gains 40% or more

running spread alone, it is unlikely (but possible) the interference from the coscheduled

job will counteract the large spread gains.

Striping with Medium spread performers is more problematic as they always

do well when scheduled with other Medium spread performers, but can suffer when

scheduled with High spread performers. Four out of six such pairings of High-Medium
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Table 2.3. Number of pairs which fall under the outcome of Symbiotic, Minor Interfer-
ence (one benchmark loss of < 5%), or Non Symbiotic (one benchmark loss of ≥ 5%)
when pairing benchmarks from different categories of spread benefit (High, Medium,
and Low).

Pairing Symbiotic Minor Interference Moderate Interference
(< 5% Loss) (≥ 5% Loss)

High-High 6 1 0
High-Medium 4 0 2

High-Low 1 5 2
Medium-Medium 3 0 0

Medium-Low 0 3 1
Low-Low 2 3 1

are Symbiotic, but two of those six exhibit Moderate Interference. As examples, CG-LU

is a High-Medium pair where CG does very well at the expense of LU and the FT-LU pair

is a High-Medium pair where both benchmarks benefit from the striping. Medium paired

with Low always benefits the Medium spread performer. Although only one such pairing

is non-Symbiotic, in three of the four cases the Medium benchmark benefits while the

Low benchmark experiences a minor loss.

Striping of Low with Medium or High always benefits the Medium or High

spread performer more than the Low. Although in many of these cases (8/11) the Low

spread performer only suffers a minor loss in performance, in some cases (3/11) the Low

spread performer suffers more substantially. Scheduling pairs of Low spread performers

is generally of dubious benefit.

Although the interactions across the different categories of High, Medium, and

Low spread performers can cause some complications, a simple trend remains true. When

scheduling a High with Medium or Low, High ends up getting the better benefit. When

scheduling Medium with Low, Medium receives the majority of the benefit of striping.

We will address how one might use this information to address fairness concerns in the

following section.
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2.5 Fairness

As we have previously identified, striping can lead to colocations where one appli-

cation speeds up relative to compact while the other slows down. Different systems have

different models of charging users for use and each of these different models may choose

to handle fairness concerns related to job striping differently. For example, in highly

collaborative systems where all users value overall system throughput over individual job

latencies, job striping could be enacted uniformly with everyone recognizing the value.

In contrast, in systems where users are charged by the CPU hour, a fairer mechanism

may be necessary (as is argued in Chapter 3). We offer the following suggestions that

may be used individually or in concert with one another:

• Separate job queues could be provided. Users interested in running striped could

submit to that queue.

• Submission to the striped job queue could be incentivized by the system admin-

istration in the form of additional running hours or reduced cost. In this study,

reducing the cost to users by 23% would be enough to guarantee that no user paid

more in the striped queue versus running their job in a traditional queue. This cost

reduction would be equivalent to passing on the efficiency savings from running

NAS-like codes on to the user. Chapter 3 builds on this idea by proposing awarding

users discounts that scale in proportion to how much their job’s spread performance

degrades from being striped with another job.

• Users informed of the implications of spread performance on striped performance

could use that information to aid in fairness decisions. For example, high spread-

benefit jobs might be charged extra for submission to the striped job queue and low

spread-benefit jobs might be charged less. When those jobs are paired, each user is
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charged a more “fair” value and the overall system benefits.

• Future work may develop striped performance prediction which could be used to

inform the accounting mechanism. Chapter 3 describes one such mechanism, but

techniques that draw on prior work on diagnosing inter-thread contention [49, 164,

191] are also likely to be effective.

Fairness concerns vary by system and may conflict with concerns for overall

system performance. Each system may need to re-address these concerns in light of job

striping. This work does not aim to provide a panacea for these potential concerns but to

instead inform the reader of the value of job striping and of potential mechanisms to aid

in fairness decisions.

2.6 Related Work

This study is the only one to our knowledge that combines use of real scientific

applications, power measurement and analysis, and coscheduling at thousands of cores

into a single work. Previous studies on CMP-based systems have largely focused on

single server coscheduling with multithreaded benchmarks or commercial applications.

The study that most resembles our own is by Koop et al [141]. They show that by

colocating pairs of NAS parallel benchmarks across several machines, performance can

be improved by reducing communication contention. They present data that shows that

symbiotic applications communicate during largely disjoint time intervals.

Snavely and Tullsen proposed symbiotic scheduling for SMT processors [214].

Weinberg and Snavely evaluate the potential of symbiotic workload space sharing on an

HPC platform [237] and the users’ ability to accurately determine resource bottlenecks

on that platform [238]. Paired gang scheduling proposes pairing I/O bound jobs with

compute intensive jobs for better overall throughput in HPC [242].
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Shared levels of cache have long been recognized as a point of contention. Yan and

Zhang aim to predict worst case run-times by using profiled control flow information to

predict i-cache contention between two threads [252]. Anderson et al. evaluated grouping

processes by L2 miss ratios to avoid coscheduling those with high miss ratios, for real-

time tasks on multicores [29]. Fedorova et al. recognize the potential of using heuristics

for better scheduling on SMT processors. They use predicted L2 miss ratios based on

reuse distance [46] to inform their scheduler on in-order, simulated, SMT processors [93].

StatCC was developed to predict shared cache miss ratios and subsequently coscheduled

thread CPI [83]. StatCC evaluated 2-thread coschedule prediction against results from an

in-order processor simulator. Blagodurov et al. recently evaluated various classification

metrics for thread coscheduling [71, 139, 248]. Based on their evaluation, they used

performance counters to derive metrics to aid in scheduling as to reduce LLC cache

contention [49].

Cache partitioning for Quality of Service and fairness has been evaluated for SMT

processors [67] as well as CMPs [106, 137, 157]. Hardware support for QoS or Fairness

has limitations—namely higher expense, less flexibility, and longer time to market, and

proposed software solutions often require dedicated time slicing to ensure disadvantaged

threads make fair progress on existing systems [95].

More recent work by Iancu et al. in [118] looked at the benefit of over-subscription

of multicore processors for various implementations of the NAS parallel benchmarks.

They too found heterogeneity to be beneficial.

In the commercial domain, there has been some recent work on coscheduling.

Tang et al. investigate how the performance of Google’s workloads changes when using

different thread-to-core mappings [225]. Mars et al. present Bubble-Up, a mechanism that

can very precisely trade a small decrease in the QoS of certain applications for significant

gains in data center utilization [164]. In addition to these works, the multi-tiered Déjà
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Vu system provides a practical solution for intelligent colocation of virtual machines by

combining a lookup table of virtual machine signatures, a clustering algorithm, and a

small testbed of machines for periodic profiling when the runtime system’s assumptions

are violated [232].

2.7 Conclusion

This work has shown that there is tangible benefit in placing heterogeneous

distributed applications from different users on the same set of shared resources. We

validated the job striping approach at large scales on NAS parallel benchmarks and on

three real applications and realized performance benefit both in terms of throughput and

energy efficiency.

Random heterogeneous coschedules of 1024 process NAS parallel benchmarks

improved throughput by 26% and energy efficiency by 22%. If we could select the best

coschedule for each benchmark, throughput and energy efficiency improved further to

31% and 26% over the baseline.

For our real applications, we have shown that GTC and MILC benefited signifi-

cantly from heterogeneous coscheduling and that LAMMPS boosts the throughput of

any coschedule. MILC’s throughput when striped with different applications increases

by an average of 26%; in addition, we have illustrated that MILC’s improvement from

job striping is highly correlated to reductions in L3 misses and cycle stalls.

Furthermore, we have characterized how job striping works. Job striping improves

the throughput of some applications by reducing communication contention (BT and

FT). On others such as CG, MG and MILC, it reduces LLC misses. A combination of

communication and LLC contention is also observed for some applications (LU and SP).

Job striping’s performance can be predicted by examining how an application’s

traits change when spread. Applications that exhibit marginal benefit from spreading do
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not exhibit performance benefit from striping.

We have also shown that job striping yields reliable performance on real appli-

cations. Striped jobs that run over similar length time intervals exhibit performance

variation that is no higher than compactly scheduling jobs in the traditional manner.

Going forward, we propose extensive reexamination, validation, and testing of the

existing software infrastructure. Our work shows that a simple change in the scheduling

framework can produce a significant benefit. We are certain that further examination of

other established practices will reveal additional opportunities for optimization.
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Chapter 3

Fair Job Pricing for Supercomputers
with Node Sharing

Supercomputers typically have hundreds to thousands of users and consist of tens

to thousands of individual servers connected over a high-speed optical interconnect. At

any one time, many users concurrently utilize the system. The current approach has been

to give each user a non-overlapping set of compute nodes on which to run his or her

application. While this approach prevents jobs from different users from clobbering one

another, it leads to a missed performance opportunity. Chapter 2 and recent work show

that co-location, where a set of jobs from different users runs on a shared set of compute

nodes, can increase mean application performance and system energy efficiency by 20%

by reducing contention for shared resources in the memory subsystem and inter-node

network [58, 118, 141]. In addition, current architectural trends and exascale computing

studies suggest that the benefit of co-location is likely to increase. The studies project that

compute nodes will have hundreds to thousands of cores [47]. For some applications, it

may not be possible to use all of these cores efficiently. In particular, 80% of all XSEDE

jobs use less than 512 cores [21, 176], which means co-location will likely be necessary

to utilize all of a node’s cores.

Co-location seems inevitable for larger jobs as well. Projected scaling trends

48
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Figure 3.1. Performance of GTC, a plasma physics code, when co-located with the
applications on the x-axis. The current pricing mechanism penalizes the user for co-
locating their job by charging them more when their job degrades more.

suggest an increase in the number of cores per node that outpaces increases in memory

bandwidth and cache capacity, which will reduce the resources available per core [47]. To

mitigate contention, resource-hungry jobs will have to be spread out over more compute

nodes and paired with resource-light jobs to maintain high system utilization [58].

Although co-location is beneficial to performance and energy efficiency, it also

creates a new set of challenges, one of which is fair pricing. Fair pricing is a concern

because although there is a net benefit from co-location, some pairings can cause one

of the applications to slow down.1 When this happens, we argue that the user should

be discounted. However, if we apply the current state-of-practice (SOP) in HPC infras-

tructures, where users are billed proportionally to the time to execute their job, we find

there is gross inequity – users whose jobs benefit from co-location pay comparatively

less while users whose jobs do not benefit pay more.

1Chapter 2 presents and discusses corroborating findings on real, large-scale distributed applications in
Sections 2.4 and 2.5.
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Figure 3.1 illustrates the challenge. Under the current state-of-practice, a user

running GTC [158], a plasma physics code, pays 60% more when co-located with

LAMMPS [11], a molecular dynamics code, versus AMG [2, 37], a parallel algebraic

multigrid solver. To remedy this problem, we suggest discounting a user based on the

interference caused by the other co-running applications. The greater the interference,

the greater the discount. The green bars show one such scheme. Because co-location

increases machine throughput per unit time, these discounts can be viewed as passing

the efficiency savings from co-location back to the end user when their expectation of

service is violated.

Although the concept of progressive discounts is simple, the realization of such

a policy on real systems poses a number of practical challenges. In particular, a fair

pricing model of this nature requires precisely quantifying the interference due to shared

resource contention. While there has been significant research into predicting cross-core

interference, many of the techniques make heavy use of static profiling or have been

tailored to specific machines or applications [84, 85, 164]. Even though this work has

yielded considerable insight into the problem of shared resource contention, we argue

that in practice, it is not practical for precise pricing on a real HPC cluster. In this domain,

static profiling and machine- or application-specific approaches are not suitable as jobs

may run very shortly after submission and their characterizations may not be known a

priori. Although application profiling may enrich the solution space, we note that altering

even a single input parameter for an application can vastly change its characteristics. For

example, doubling a single array dimension can often radically transform an application’s

sensitivity to and aggressiveness on the memory subsystem. Thus, an instantaneous and

dynamic mechanism is needed to continuously monitor and quantify the interference

jobs suffer to drive precise pricing.

In addition to being dynamic and precise, the fundamental pricing mechanism
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must also be lightweight. The underlying pricing agent has to be mostly invisible to

the application and therefore must have a negligible overhead, below the system noise

threshold. These objectives lead us to the two key insights of the work – only a software

system that uses empirical, online tests is suitable for this problem domain, and such an

approach must be agnostic to the underlying software and hardware.

In this work, we present such a solution: the Persistent Online Precise Pricing

Agent (POPPA). POPPA is a lightweight runtime system that utilizes a cyclic, fine-grain,

interference sampling mechanism to accurately deduce the interference between co-

runners. The key design feature of POPPA is a dynamic contention detection technique

we call shuttering. For brief periods of execution, POPPA pauses all applications but

one and measures how the selected application’s performance changes versus running

co-located. From the disparity between the application’s rate of forward progress made

while running co-located versus shuttered, POPPA is able to precisely determine the

impact of interference resulting from co-location and use these measurements to drive

fair pricing for all users’ jobs.

The contributions of this work are as follows:

• We introduce POPPA, a lightweight, workload and machine agnostic runtime

system that enables fair pricing for HPC clusters. POPPA functions entirely in

software, requires no changes to the system stack in current HPC clusters, and is

readily deployable.

• We present the design of precise shuttering, a mechanism for the precise online

measurement of the performance impact of cross-core interference. Our precise

shuttering approach functions dynamically and requires no a priori knowledge or

profiling of the applications.

• We present a new pricing model for HPC clusters based on POPPA to provide fair

pricing to users.
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• We provide a thorough evaluation of POPPA’s efficacy and robustness as the central

accounting mechanism on HPC clusters with a mix of MPI benchmarks and real

workloads.

POPPA predicts co-located application run time with 4% mean absolute error and

incurs less than 1% overhead. Using POPPA, we are able to discount the average user

by 7.4% and deliver a pricing distribution that closely resembles that of an omniscient

oracle.

3.1 Background and Motivation

In order to better understand why fair pricing is of such importance, we must

first explore the current state-of-practice in accounting on supercomputers. We start by

examining the accounting and allocation model found in the United States Department of

Energy Office of Science INCITE program [22] and the National Science Foundation

XSEDE program [21], two of the largest U.S. programs that provide resources to the

general HPC research community. Each of these programs facilitates access to a number

of large scale computing infrastructures. To successfully obtain an allocation, researchers

submit grant proposals and, after reviews, are awarded time on those systems as a finite

number of service units (SUs). When a user runs a job on a system, they deplete their

bank of SUs at a rate proportional to the length of their programs’ execution and the

number of compute nodes that they request.

In this model, users need strong guarantees that the value of an SU will not

be negatively affected by other users’ jobs running on the same computing resources.

Similarly, supercomputer administrators care about user satisfaction and are incentivized

to provide users with the best possible experience because individual supercomputing

centers are awarded funds largely based on the success and popularity of their facilities.
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Consequently, we observe that throughout all levels of the funding ladder, fair pricing

and accounting are crucial concerns. Regardless of what mechanisms are implemented

to improve supercomputer performance, energy efficiency or fault tolerance, they must

not pervert the fairness of the pricing scheme.

3.1.1 MPI Programming Model

Most large scale scientific applications utilize the Message Passing Interface

(MPI) as the core abstraction to facilitate workload distribution across a cluster. Two

main characteristics of MPI programs are as follows:

1) Single Program Multiple Data (SPMD): MPI processes execute the same

static program binary and use unique identifiers called ranks to dictate communication

patterns as well as which blocks of code get executed by different processes. While this

allows for a large amount of potential diversity between processes, in practice most MPI

programs are Single Program Multiple Data (SPMD): all processes execute the same

core algorithm on different data. Thus within an MPI program, all the processes have

high similarity, e.g., they all compete for the same resources.

2) Tightly coupled communication synchronization: The vast majority of MPI

programs exhibit tightly coupled communication synchronization. Because of this tight

synchronization, processes must execute in relative lock-step. If a process reaches an

explicit or implicit barrier before the other necessary parties, it must wait until all others

make similar progress before proceeding.

3.1.2 Co-location of MPI programs

When we reason about the nature of MPI programs, it quickly becomes evident

that executing a single MPI program across a private set of compute nodes is an inefficient

use of system resources. The homogeneity between MPI processes and the fact that they
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are tightly coupled mean that many processes will execute the same program regions

with high concurrency. When this happens, there is high risk for resource contention and

performance degradation – homogeneous processes have high propensity to evict one

another’s data in the shared last level cache (LLC), contend for the memory controller,

saturate off-chip bandwidth to main memory, and cause a backlog of messages for

internode communication.

Previous research shows that homogeneous MPI processes can degrade one

another’s performance by more than 2x [58, 141]. In addition, these works show that

introducing heterogeneity in workloads by co-locating multiple MPI programs on disjoint

cores can drastically improve performance and energy efficiency. In fact, both studies

find that aggregate throughput increases by 12 to 23% on average over the current state

of practice, and [58] shows that system energy efficiency increases by 11 to 22%.

In conclusion, given the high cost of large supercomputers and the great perfor-

mance and efficiency benefit of co-location, it is essential that we provide fair pricing

mechanisms to make co-location practical.

3.2 POPPA Overview

In this section, we present the overview of the Persistent Online Precise Pricing

Agent (POPPA) framework. Our primary design objective for POPPA is to provide

accurate performance interference estimates for parallel applications with negligible

overhead. As shown in Figure 3.2, POPPA consists of a main monitoring agent called the

Controller and a series of Execution Managers.

Execution Manager: Each Execution Manager is responsible for launching

and overseeing the entire execution of a parallel application on a given machine. The

Execution Managers read from the central job queue and select the next job to run

according to the job priority and its resource needs. An Execution Manager launches
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the selected job and attaches a performance monitoring context (PMC) to the job. The

PMC monitors the job performance by reading and evaluating appropriate hardware

performance counters. During execution, the Execution Manager updates and reports the

current status and performance data of the job to the Controller.

Controller: The Controller is the main component of POPPA. Its principle respon-

sibility is to conduct shuttering, a mechanism to measure and quantify the performance

interference among the co-running applications. In essence, the Controller periodically

pauses each application but one for a very short period and monitors the performance

impact on the lone running application. To measure this impact, the Controller probes the

PMCs of each active job to acquire the performance data and logs it. We present more

details of the shuttering mechanism including our algorithms and policies in Section 3.4

and evaluate its accuracy and overhead in Section 3.7.

Figure 3.2 presents how POPPA can be used for pricing. After execution of a

job has completed, the Pricer thread analyzes the raw performance data logged by the

Controller and quantifies the performance interference and degradation. More details of

the analysis and pricing are presented in Sections 3.3 and 3.5. Based on the quantification,

the Pricer produces the price to be charged and propagates it to the Account Manager,

which then deducts the price from the user’s bank of SUs.

3.3 Pricing Model

In this section, we discuss the key issues related to pricing and accounting

on current supercomputers and extend those notions to a supercomputer with job co-

locations.
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Figure 3.2. Interaction between POPPA components and other entities

3.3.1 Pricing Without Co-location

For purposes of this discussion, assume that a user wants to run a job i on a

supercomputer and that Pi denotes the price that the user is charged for running i.

In present day systems, Pi is given by Equation 3.1, where L is a rate constant in

terms of service units per core per time quanta, Ci is the number of cores that a job uses

in whole compute node increments, and Ti is the run time of the program.

Pi = L∗Ci ∗Ti (3.1)

From this equation, we can see that the price variable Pi is linearly proportional

to both the cores variable Ci and the time variable Ti.
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3.3.2 Pricing With Co-location

In this section, we propose how one could modify the existing pricing model to

more fairly price applications when co-locations are present. In particular, if we have

a job i that is co-located with a set of jobs J, we want a formula that will produce a

reasonable price Pco(J)
i , which takes into account the net interference from all applications

in J. To this end, we replace L with a rate function F , yielding Equation 3.2, where

F : R×R→ R. T solo
i is the run time when the job i gets all compute nodes to itself and

T co(J)
i is the run time of the job i when i is co-located with the set J of other jobs.

Pco(J)
i = F(T solo

i ,T co(J)
i )∗Ci ∗T solo

i (3.2)

Ideally, F is monotonically non-increasing so that the more degradation an

application suffers from co-location, the more the user is discounted. For the purposes of

this work, we assume utility is proportional to 1 minus the rational degradation. Therefore

if we equate utility to fairness, then we select F such that users are discounted at a rate

proportional to the degradation that each of their jobs experiences due to contention from

co-runners. Thus if Dco(J)
i is the degradation, then we want Pco(J)

i = (1−Dco(J)
i )∗Psolo

i .

Consequently we define F as follows:

F(T solo
i ,T co(J)

i ) = L∗
T solo

i

T co(J)
i

= L∗ (1−Dco(J)
i ) (3.3)

By substituting Equation 3.3 into Equation 3.2 we see that we achieve the specific

pricing model shown in Equation 3.4.

Pco(J)
i = L∗

T solo
i

T co(J)
i

∗Ci ∗T solo
i (3.4)

While Equation 3.4 is good for the user, we acknowledge that it is an idealistic
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Figure 3.3. Shown here is shuttering in action on two separate jobs. During a shutter,
one job executes while all others sleep.

model. Its simplicity makes it easy for end users to understand; however, we note other

factors such as resource manager queue wait times, job priority, workload composition,

the ratio of each shared resource a job consumes, machine architecture, and scheduling

policy, i.e. capability versus capacity are also important factors when determining a fair

price. Thus supercomputing facilities will have to decide what F makes sense for each

of their systems.

3.4 Precise Shutter Mechanism

As previously mentioned, POPPA’s chief design objective is to produce fair prices

with high precision, low overhead, and without the need for a priori knowledge. To

achieve these goals we have designed precise shuttering, an online co-runner interference

masking approach. Essentially, the precise shuttering mechanism functions by alternating

an application’s execution environment between one where co-runners are executing and

another where they are effectively absent.

Figure 3.3 shows shuttering in action on two applications A and B that are co-
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located. The shuttering algorithm alternates between execution regions where A and B

co-execute, A executes while B sleeps, A and B co-execute, and B executes while A

sleeps. We repeat this pattern throughout the execution of the programs.

To gain insight from shuttering, we must measure the performance of each

application before, during, and after shutter regions. During each shutter of duration

S, we leverage hardware performance monitors via libpfm4 [15, 86] to measure the

instructions per cycle of the sole non-sleeping application. To infer the degradation due

to co-runners, we also measure the instructions per cycle (IPC) of all active applications

S microseconds before the shutter and S microseconds directly after it.

Since we are primarily concerned by how performance changes with the presence

or absence of contention, we only need to monitor the performance during small windows

around shutters. We also perform each shutter infrequently to minimize the perturbation

of application execution and parameterize the rate of shutter samples to control POPPA’s

overhead. As we show in this work, frequent shutters are not required to produce an

accurate predictive model.

Algorithm 1. Measure(i, S, K)

1: Initialize array perfValue of length |A[i]|
2: for k = 0 to K−1 do
3: for each thread t that is part of A[i] do
4: perfValue[t] = ReadCounters(t)
5: end for
6: Sleep for S µs
7: for each thread t that is part of A[i] do
8: perfDict[t].append(ReadCounters(t)-perfValue[t])
9: end for

10: end for
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Algorithm 2. Shutter Core(j, S, K)

1: for i = 0 to |A|−1, where i 6= j do
2: for each thread t that is part of A[i] do
3: Pause t
4: end for
5: end for
6: Measure(j, S, K)
7: for i = 0 to |A|−1, where i 6= j do
8: for each thread t that is part of A[i] do
9: Resume t

10: perfDict[t].append(THREAD ASLEEP)
11: end for
12: end for

Algorithm 3. POPPA Core
1: j = 0
2: while true do
3: for i = 0 to |A|−1 in parallel do
4: Measure(i, S, K)
5: end for
6: Shutter Core( j, S, K)
7: for i = 0 to |A|−1 in parallel do
8: Measure(i, S, K)
9: end for

10: j = ( j+1) mod |A|
11: Sleep Pµs
12: end while

3.4.1 Algorithms

In this section, we present the logic of the shutter mechanism, whose core parts

are shown in Algorithms 1, 2 and 3. Below we define a list of common data structures

and constants used by the algorithms:

• A, an array of co-located applications

• perfDict, a lookup table that stores the measured IPC values of each application

• K, the number of IPC measurements to make in a row in a specific region2

2We fix K = 1 for experiments and analyses in Section 3.7.



61

• S, the length of the each measurement in µs

• P, the length of time between groups of measurements, i.e. the normal execution

period, in µs

• S, the length of a shutter, approximately K ∗S

The core routine is Algorithm 3. At each iteration, we first measure the IPC of

each application while co-located (lines 3-5). We then shutter application j by calling

Shutter Core (line 6), which subsequently calls Measure to measure the IPC while j is

running alone. After that, we measure the IPC of all applications and increment j (lines

7-10). Then the shutter component of POPPA goes to sleep for Pµs of normal execution

(line 11). Since POPPA is persistent, this process repeats continually as applications end

and new applications enter the application pool.

3.4.2 Tuning the Shutter Mechanism

The shutter implementation presents a number of challenges. In particular, se-

lecting the correct granularity to shutter at is key to accurately quantifying interference

without noticeably adding to it. The first parameter is the gap between shutters P. As

P is decreased, the amount of time that POPPA is active increases, consequently also

increasing overhead. Since utilization in supercomputers is often above 95%, we assume

that each core has an application thread assigned to it. Due to this fact, POPPA must time

slice with application threads. If POPPA is active for x% of a single core’s execution time,

then assuming POPPA threads do not migrate, one of the co-running applications is likely

to suffer at least an x% hit to performance due to synchronization between processes.

Since the POPPA runtime inevitably has overhead, we experimented with conduct-

ing round-robin migration of the POPPA threads to distribute the performance impact of

time slicing across all application threads; however, we determined that a better solution

was to select values for K, P and S that make POPPA’s CPU utilization very low, as
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migration is not guaranteed to be fine-grain enough to mitigate the effect of time slicing.

Another important parameter is S the duration of a shutter. In our implementation,

this quantity is equal to the base cost of doing a shutter on 8 MPI processes, approximately

120 to 200µs (see Figure 3.4 in Section 3.7.1), plus K ∗ S, where K ∗ S is the product

of the number of consecutive measurements and the length of each such measurement.

During a shutter, the paused application makes no progress, thus keeping shutter duration

very short relative to P is a primary concern.

An unexpected find relating to the shutter mechanism is that in certain cases,

POPPA actually slightly improves the performance of co-located applications. During

shutters, applications that sleep sacrifice a small amount of forward progress and the

lone runner receives a performance boost from reduced contention. When the net

performance boost from running in isolation offsets the net performance loss from

sleeping, applications speed up relative to the baseline co-schedule performance. For

pairs of two applications, speedup occurs when a co-schedule increases one application’s

run time by more than 2x relative to running with half the cores idle per socket. This

phenomenon is demonstrated empirically in Section 3.7.2.

3.5 Estimating Degradation

In this section, we present our method for linking the raw data that POPPA

produces to the actual prices we charge.

3.5.1 Idealized Model for Degradation

Our pricing model assumes that for an application i, we know the degradation

Dco(J)
i that i suffers as a result of co-location with a set J of applications. In our pricing

model discussion, we formulated 1−Dco(J)
i as T solo

i

T co(J)
i

. While this gives us a precise way

to calculate degradation, POPPA cannot directly measure T solo
i . Thus, we modify the
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formulation such that it is amenable to the IPC data that POPPA produces.

On modern chip multiprocessors, if we are given an execution time in seconds,

we can convert this to a value in clock cycles. Thus if we know the clock ticks per second,

we can write the performance of i normalized to running alone as the ratio of clock cycles

Csolo
i and Cco(J)

i (see below).

Per f norm
i = 1−Dco(J)

i =
Csolo

i

Cco(J)
i

(3.5)

Additionally, if we assume i to be a truly serial program, then it is the case that

i’s dynamic instructions Ii do not change. Thus Isolo
i = Ico(J)

i , and consequently we

can transform Equation 3.5 into a ratio of IPCs by multiplying by Ico(J)
i
Isolo
i

, yielding the

following:

Per f norm
i =

IPCco(J)
i

IPCsolo
i

(3.6)

3.5.2 Known Challenges with Parallel Programs

For parallel programs, however, it turns out that Equation 3.6 is often imprecise.

Many parallel programs contain mutexes, semaphores, and other locking mechanisms to

enforce program correctness by preventing data races. When a load imbalance occurs,

that is, one parallel process advances faster than its siblings, these locking mechanisms

can distort both dynamic instruction count and CPU clock cycles.

With MPI, this issue is quite prevalent. If a communication routine is implemented

as blocking, then it is common practice to have the thread that initiated the routine to

poll for a certain number of cycles and then sleep. During this polling period, the

thread executes a while loop where it continually tests whether the communication

operation has completed. If the thread fails to finish the communication operation within

a certain interval, it is put to sleep and signaled to wake up when the operation has
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completed. Because contention and background noise on the system can cause this

polling period to change in duration, the number of dynamic instructions attributed to

these communication regions is variable. With MVAPICH2, the MPI-2 implementation,

the maximum polling period can be adjusted [194]. While we were tempted to disable

polling, we knew that doing so would be disadvantageous. In particular, polling greatly

increases individual application performance because the blocking thread avoids the

performance hit associated with going to sleep and waking back up, as it can proceed

as soon as communication has finished. Thus, we decided to keep the parameters that

maximized performance even though it made precise prediction more challenging.

3.5.3 Filtering

Even though Equation 3.6 is imprecise in the presence of variable execution, we

find that in practice, it is still sufficient for producing reasonable degradation estimates.

We also assume that the average over the N IPC samples that we collect is roughly

equivalent to the actual average IPC during shutters (IPCsolo
i ) and during normal paired

execution (IPCco
i ). These assumptions are presented below in Equations 3.7 and 3.8.

Per f norm
i ≈

IPCco(J)
i

IPCsolo
i

(3.7)

IPCsolo
i ≈

∑
Nsolo

i
j=0 IPCsolo

i, j

Nsolo
i

and IPCco
i ≈

∑
Nco

i
j=0 IPCco

i, j

Nco
i

(3.8)

POPPA gives us data in the form of a stream of blocks of IPC measurements,

each consisting of K IPC measurements just before a shutter, K measurements during a

shutter, and K afterward. We denote this stream of blocks as B and the lth such block

as Bl; within each block Bl , the K IPC values in Bl before the shutter are denoted as

IPCbe f ore
l , the K IPC values during a shutter as IPCduring

l , and the K IPC values after a
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shutter as IPCa f ter
l . Thus Bl = (IPCbe f ore

l , IPCduring
l , IPCa f ter

l ). We denote the arithmetic

means of each of these values as IPCbe f ore
l , IPCduring

l and IPCa f ter
l . Using this notation,

we present the filtering algorithm (Algorithm 4) that allows us to increase the precision

of the performance estimate.

Algorithm 4. Filtered Prediction(IPC Tuples B)

1: Initialize IPCco and IPCsolo to 0
2: for each (IPCbe f ore

l , IPCduring
l , IPCa f ter

l ) in B do

3: if |IPCbe f ore
l −IPCa f ter

l |< δ and IPCbe f ore
l < IPCduring

l and IPCa f ter
l < IPCduring

l
then

4: IPCco +
= 0.5(IPCbe f ore

l + IPCa f ter
l )

5: IPCsolo +
= IPCduring

6: end if
7: end for
8: Return ( IPCsolo−IPCco

IPCsolo )

Algorithm 4 aims to reduce noise from sampling IPC. It removes groups of IPC

values where the IPC during a shutter is not greater than the IPC directly before and after.

Since a shutter can only relieve shared resource contention, the IPC during a shutter

should always exceed the IPC before and after a shutter if all measurements occur during

the same computational phase. The second mechanism, which states that the absolute

difference in IPC before and after cannot exceed δ works to ensure that clusters that cross

phase boundaries are removed. We empirically determined δ = 0.05 to be a reasonable

value.

3.6 Experimental Setup

This section describes our methodology. We ran our experiments on the Gordon

Supercomputer [110, 183]. Each node is dual-socket. For each socket, there is an 8-core

Intel EM64T Xeon E5 (Sandy Bridge) processor. Simultaneous multithreading is dis-

abled [231]. The CPU frequency is 2.6Ghz, and each core has private 32KB instruction
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Table 3.1. Benchmarks and applications used in the study. NAS parallel benchmarks
appear in the top row in plain text, proxy applications in the middle in italicized font, and
full-scale scientific applications at the bottom in bold face.

Benchmarks, Miniapps and Applications
Swim [17], ADVECT3D [192], pcubed [145]
NAS Parallel Benchmarks: CG, FT, LU, MG [35, 179]
Lulesh [129], MiniGhost [12], MiniFE [12], NekBone [14, 16]
GTC [158], LAMMPS [11], MILC [13], POP [6]

and data L1 caches, a private 256KB L2 cache, and each socket has 20MB of L3. There

are 64GB of DRAM. Compute nodes run CentOS linux with kernel version 2.6.32. The

interconnect is QDR InfiniBand with 8GB/s of bidirectional bandwidth, and the topology

is a 3D torus of switches [20, 221]. Our applications and benchmarks are shown in the

table that follows. These benchmarks and applications encompass a wide variety of

scientific domains such as subatomic particle physics [13], plasma physics [158], molec-

ular dynamics [11], ocean modeling [6], computational fluid dynamics [14, 16], shock

hydrodynamics [129], finite element methods [12] along with various other numerical

methods that are of high interest to the HPC community. We also note that GTC and

MILC, in particular, use a substantial number of dedicated allocation hours on many

leadership class machines.

We compile GTC, LAMMPS, MILC, POP, CG, FT, LU and MG with GNU

compilers version 4.7 and MVAPICH2 version 1.7. LULESH, MiniGhost, MiniFE, and

NekBone are compiled with PGI compilers version 11.9 and OpenMPI version 1.6.

In our experiments, we co-locate two 8 process MPI applications together on the

same set of sockets. Each socket has half its cores run one application and the other

half run the other. Applications co-run together for a minimum of 5 iterations of both

applications. As soon as one application ends, we immediately restart it. Data collection

stops once both applications have completed 5 iterations. For the shutter mechanism, we
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fix K = 1 and P = 200ms.

3.7 Evaluation

In this section, we evaluate the accuracy, overhead, and the pricing fairness of

POPPA.

3.7.1 Quantifying POPPA’s Base Overhead

In this section, we quantify the minimum time to execute components within the

main loop of the POPPA daemon. The main loop consists of the three core operations of

Algorithm 3 – measuring the IPC of the application just prior to the shutter, issuing the

shutter and measuring the IPC of the application during that window, and measuring the

IPC of the application immediately following the shutter.

For these experiments, we co-locate two MPI benchmarks, an auto-generated

loop from the pcubed benchmark suite and a busy loop, called the NULL co-runner, that

runs for the duration of the pcubed loop. In POPPA, we set all of the sleep parameters to

0, so we can measure the minimum execution time for all subcomponents of the loop.

During each iteration of the main loop, we measure its total execution time, the time

to measure the IPC both before and after the shutter, the total execution time of the

shutter, the time to send the SIGSTOP and SIGCONT signals, and the time to make the IPC

measurements during the shutter.

Figure 3.4 presents the results. On the x-axis we vary the number of threads

in each job. So 4 corresponds to four pcubed tasks bound to cores 0, 2, 4, and 6 and

four busy loop tasks bound to cores 1, 3, 5, and 7. The y-axis shows the total time

in µs to execute the main loop. When studying this figure, several interesting trends

emerge. Not surprisingly, adding more threads increases the minimum loop execution

time. Execution time is dominated by IPC measurement in the form of calls to libpfm,
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Figure 3.4. Breakdown of the base overhead to execute a single iteration of POPPA’s
core algorithm, where reading PMC values dominates total time

particularly those outside the shutter region. In fact, we spend about 4x as much time

measuring the IPC outside of shutter regions compared to within them. This difference

in overhead results from 1) we only measure active threads within a shutter, which is an

optimization decision that we made, so the overhead to read the performance counters

doubles outside of a shutter, and 2) we make two sets of IPC measurements outside of a

shutter (before and after) versus a single set of measurements during one.

We see that the mean time to shutter does not exceed 130µs and the mean

time to execute the main loop does not exceed 500µs. Thus, our mechanism is fine

grained enough to measure the IPC at sub-millisecond intervals for thread counts that are

representative of contemporary multi-socket systems.

In addition to the minimum delays incurred by shuttering, we quantify the effect

of enlarging the amount of time spent in a shutter. For this experiment, we fix the sleep

time at the end of the main loop, P (see Section 3.4.1), to 200,000µs and increase the
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Figure 3.5. The relative overhead of expanding the duration of a shutter, where points
correspond to measurements and lines correspond to instantiations of the model

shutter duration, S (see Section 3.4.1), multiplicatively by factors of 2 from 200µs to

409,600µs. We separately co-run each of the NAS Parallel Benchmarks (NPB) with the

busy loop NULL. Since NULL generates no interference, any dilation in run time is a

direct result of increasing the shutter window.

Figure 3.5 presents the results. All four benchmarks exhibit a similar trend. When

S is small relative to P, the overhead is small, but as the ratio S : P increases, so does the

overhead. However, the overhead begins to flatten out as S approaches and exceeds the

value of P.

We need to formulate an analytical model for the overhead that a pricing shutter

creates for an arbitrary co-located pool of n jobs. To do so, we examine the overhead

from n consecutive shutters. Over the course of n shutters, each job will run in isolation

once and sleep n−1 times while a single other job enjoys the privilege. Each such shutter

has duration S. Thus each job will sleep for (n−1)∗S seconds.
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The total time for n iterations of the main loop of the daemon is also important

for the analysis. Measuring the IPC before, during and after a shutter is 3S, as each takes

S time. After this, the daemon sleeps P seconds. This pattern is cyclic, so the combined

time is n∗ (3S+P). Equation 3.9 shows ratio of sleep time to total time.

Z(S,P) =
sleep time
total time

=
(n−1)∗S

n∗ (3S+P)
(3.9)

The model for the execution time of the jobs in Figure 3.5 is shown below:

T (S,P) = Ti ∗
1

1−Z(S,P)
= Ti ∗

n∗ (3S+P)
2nS+nP+S

(3.10)

Here Ti is the run time of application i when co-located with the NULL co-

runner. When we examine the model fit to the data in Figure 3.5, we observe that

CG-FIT, FT-FIT, LU-FIT, MG-FIT almost exactly predict the actual overhead of the

shutter for all S in {100 ∗ 2kµs|1 <= k <= 12} and a fixed P of 200ms. This model

incorporates S, P, and T; if we know any two of these quantities, we can solve for the

third. Thus administrators can decide on a system by system basis what is exactly an

acceptable amount of degradation due to the pricing shutter and choose values of S and P

accordingly.

3.7.2 Determining the Sampling Rate

In this section, we evaluate the precision and overhead of the POPPA daemon

for different shutter lengths (S values) while keeping P fixed to 200ms. We saw in the

previous section, that the overhead due to the shuttering mechanism has an analytical

upper bound given by Equation 3.10. Using this equation, we selected values of S with

less than 5% overhead: 200, 400, 800, 1600, 3200, 6400, 12800, and 25600µs.

We ran two sets of pairwise experiments. In the first, we co-located the NPBs
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(c) LU (d) MG

Figure 3.6. Effect of shutter duration on accuracy and overhead for each NPB co-run
with ADVECT3D-256

with a contentious co-runner (ADVECT3D with a grid size of 2563), and in the other

we co-scheduled the NPBs with a moderately contentious co-runner (Swim with a grid

dimension of 1503). Figures 3.6a, 3.6b, 3.6c, and 3.6d show the performance prediction

accuracy of the POPPA daemon for CG, FT, LU, and MG when they are co-located with

ADVECT3D. Both the accuracies of the unfiltered and filtered predictors are shown. For

clarity, we opt not to present the results for 400, 1600 and 6400µs.

In this set of experiments, we are able to very accurately predict the contention

with negligible overhead. Filtering improves prediction performance. Our predictors

have the largest error for FT. S= 200µs gives the highest accuracy, but as S increases,

so does the error. This error results from FT’s very fine grain phases, which coarser
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Figure 3.7. Effect of shutter duration on accuracy and overhead for each NPB co-run
with Swim-150

granularity shutters have trouble capturing.

Figures 3.7a, 3.7b, 3.7c, and 3.7d show the prediction accuracy for the NPBs

paired with Swim. Again, our prediction accuracy is very precise. In this case, we note

that the filtered prediction is sometimes overly zealous when predicting contention. How-

ever, this result is unsurprising given that filtering removes clusters of IPC measurements

where the IPC measured during a shutter does not exceed the IPC directly before and

after.

A contrasting finding between the experiments with ADVECT3D and Swim

concerns daemon overhead as a function of S. In the experiments with ADVECT3D,

overhead is flat regardless of S whereas it sharply increases with Swim. This divergence
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Figure 3.8. Overhead of POPPA on NAS benchmarks when co-located with ADVECT-
256

is caused by the fact that ADVECT3D is configured to be contentious whereas Swim is

not. During a shutter, the lone running application receives a respite from the contention

generated by the other application. In the case of the NPBs with ADVECT3D, this

causes each NPB to speed up by approximately 2x, which offsets the lost throughput

from sleeping during alternate shutters. By contrast, Swim degrades each NPB by at

most 15%, so the time spent sleeping cannot be masked.

These experiments show that the shutter duration S is largely irrelevant for

accuracy. Thus when selecting S, it makes sense to select a value that induces minimal

overhead and run time variation. Figures 3.8 and 3.9 present both the daemon’s overhead

and its distribution for the surveyed values of S. In Figure 3.8, regardless of the value of

S, overhead due to the pricing shutter never exceeds 2%. However, in Figure 3.9, this

value exceeds 4%, which is clearly too costly. S= 3200µs delivers an overhead of less

than 1% and with the smallest variation. For this reason, we use S = 3200µs for the
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Figure 3.9. Overhead of POPPA on NAS benchmarks co-located with Swim-150

remainder of our experiments.

3.7.3 Pairwise Evaluation

In this section, we evaluate the precision of POPPA on pairwise co-locations.

Since our filtered prediction was better in aggregate in our previous experiments, we

apply that prediction mechanism rather than the simple one. We run co-schedules of all

possible combinations of our 12 benchmarks and real applications.

Figure 3.10 shows the accuracy of our filtered predictor at quantifying degrada-

tion. The x-axis lists the names of the benchmarks, and the y-axis lists the co-runners.

Individual cells present the percentage difference in predicted run time versus actual,

where negative values represent underprediction and positive values represent overpredic-

tion. The top row “mean” presents the mean absolute error across the apps, and the right

most column “mean” presents the mean absolute error that an application creates in the

prediction accuracy for the other codes.
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Figure 3.10. Run time prediction accuracy (%) for jobs on the x-axis co-located with
jobs on the y-axis
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Figure 3.11. Performance degradation (%) for jobs on the x-axis co-located with jobs on
the y-axis
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Figure 3.11 presents the degradation of each application as a percentage of run

time relative to running with the NULL co-runner, i.e half the cores vacant on each socket.

The top row presents the mean degradation of each scientific code on the x-axis and the

right most column presents the mean degradation each application on the y-axis causes

to its co-runners.

If we study Figures 3.10 and 3.11 in concert, a number of interesting trends

emerge. POPPA does well at quantifying degradation for all pairings consisting exclu-

sively of our real applications, GTC, LAMMPS, MILC, and POP. Our mean absolute

error is 2.5% and absolute error never exceeds 5.8%. We accurately characterize both

ends of the spectrum. We predict high degradation for MILC paired with itself and we

neither significantly underpredict or overpredict for pairings with low mutual contention

such as GTC-LAMMPS and LAMMPS-POP. For pairings of real apps with benchmarks,

the prediction accuracy is generally quite good except for when MILC is co-located with

MiniFE and FT.

For our proxy apps LULESH, MiniFE, MiniGhost and NekProxy (NekBone), the

results are more mixed. We are able to predict their performance with a mean absolute

error of 3.8%. MiniFE is a particularly interesting because in each case we overpredict

the degradation for its co-runner (mean of 7.5%). This overprediction is an artifact of the

filtering algorithm. When we use our unfiltered predictor, we overpredict by at most 1.5%

for MiniFE’s co-runners. MiniGhost, by contrast causes us to underpredict contention

for some of its co-runners.

On the NPBs, our prediction error is slightly higher. If we exclude FT, our mean

absolute prediction error is within 5.3%. FT however, poses challenges both for its

prediction and applications it is co-located with. In both cases, we underpredict the

actual degradation. This underprediction is due to the duration S of the shutter. If we

reexamine Figure 3.6b, we observe that S = 200µs yields the highest accuracy when
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Figure 3.12. The distribution of prices a user would pay for a given application when
using either the state-of-practice (SOP), POPPA, or the maximally fair Oracle

FT is co-located with a contentious co-runner. We also observe in Figure 3.7b that out

of the possible values for S, S= 3200µs prognosticates the lowest contention. On the

whole, our system is generous and tends towards modestly underpredicting contention.

Our mean absolute error across all pairings is 4.0%.

3.7.4 Pricing Fairness

In this section, we show POPPA’s pricing fairness versus the state-of-practice and

the oracle. Figure 3.12 shows the distribution of relative SUs charged for each application

using the different pricing schemes. On average, the state-of-practice would charge users

14% more as result of co-locating their jobs. Jobs that degrade more, pay more. POPPA

on the other hand discounts users by an average of 7.4%, which is close to the 11.5%

discount that the oracle would offer.

When we examine the minimum and maximum relative SUs charged, we also

see favorable results for POPPA. The maximum discount given by POPPA is 40.8%,

which is close to the oracle’s 38.3%. The max normalized price paid by a user using

POPPA’s counsel is 103.8% of the spread baseline versus the oracle’s 99.8%. In the

minority of cases where POPPA charges more than the spread baseline (23/144), it is

usually smaller than run-to-run variation, with a mean surcharge of 1.3%. In addition,
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the mean price paid for each application never exceeds 99.2% of the baseline, and thus

over time, all users will receive a discount. Contrast this with the state-of-practice, where

a user running MILC in the worst case can pay up to 62.1% more and on average would

expect to pay 24.9% more as a result of cross-application interference.

If we consider the impact of POPPA’s discounts, we find they are entirely tenable.

Recall that the job striping study [58] found that co-locating MPI benchmarks and

full-scale applications at scale increased mean system throughput by 12 to 23%. Thus

discounting users by a mean 7.4% does not inflate the purchasing power of SUs, and so

SU allocation need not be changed.

3.8 Related Work

There are a number of works that investigate pricing or identify pricing as a key

issue for large scale grid and cloud infrastructures [32, 182, 212, 236]. Our work differs

from these works in that we address the pricing issue in supercomputers with co-locations.

To the best of our knowledge, our work is the first to explore this problem space.

Although this work addresses challenges related to fair pricing, it shares similari-

ties with research that addresses identifying and mitigating contention in multicore sys-

tems. Early work on simultaneous multi-threading processors investigated co-scheduling

of heterogeneous threads [67, 214, 215] as a way to increase throughput by reducing

contention.

Cross core contention has also been extensively studied [71, 165, 166, 249]. A

mechanism similar to the pricing shutter is explored in [166] but differs in that it is in the

commercial data center space and in that it focuses on L3 miss rates with and without the

presence of contention.

Another solution to mitigating contention has been cache partitioning both in

software and in hardware [72, 177, 196, 223]. Core fusion is an architectural design
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that helps reduce the cross core contention problem by dynamically combining simpler

cores into larger cores [119, 224]. Others have examined using scheduling to mitigate

contention [48, 49, 94, 95, 242] and [189, 226] investigate scheduling considerations in

mapreduce environments.

There are also studies that evaluate the effectiveness of analytical and statistical

models to solve problems related to contention [82, 103, 156, 232]. The computational

complexity, heuristics and approximation algorithms for optimal multiprocessor schedul-

ing are explored in [51, 101, 124, 130].

3.9 Conclusion

We have provided a mechanism to enable fair pricing on HPC systems, one of the

fundamental roadblocks to enable node sharing on HPC systems. By employing POPPA,

we can accurately measure performance degradation across a range of MPI applications.

Using this data, we price users in a fashion that approaches the optimal fairness provided

by the oracle, and our mean absolute prediction error is 4% across all combinations of 12

application codes.

POPPA is not a definitive solution to the pricing problem but a key part of a more

holistic solution. Going forward, the development of additional, light-weight techniques

for application introspection will become essential. By harnessing this dynamic informa-

tion, further optimization opportunities will arise. Through combining these solutions,

the road to exascale supercomputers looks bright.
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Chapter 4

Black Box Performance and Energy
Optimizations for GPU-Accelerated
Databases

Recent years have seen an exponential increase in the amount of data, with year-

on-year growth of digital information estimated at 40% to 65% [3,18,163,218]. Designing

scalable systems to sift through the data and derive insights poses a monumental challenge.

At the same time, CPU performance scaling has tapered due to the end of Dennard

scaling [79, 88, 233], and Moore’s law [175] appears to be slowing [235]. Taken together,

these trends mean that there is no longer a free lunch for performance and that database

systems must scale out both within and between servers. In this work, we examine

this performance scaling on GPUs, one of the many candidate accelerators for database

acceleration.

Unlike general-purpose CPUs which have seen comparatively meager annual

improvements in performance in recent years, GPUs have seen rapid increases in through-

put. A study by Phoronix found that over the last 8 years GPU performance has increased

by 15x under a roughly fixed power budget [144]. Further, the two principal limitations

of GPUs, (1) draconian programming models that lead to difficult to optimize code

and (2) narrow PCIe R© buses that lead to complex, slow data marshalling, both seem

81
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poised to greatly improve in the next five years. Forthcoming support for C++11 [1, 9]

and higher-level programming abstractions (e.g., OpenMP 4.5 [167]) promise to reduce

the programmer’s burden. Further, the introduction of fast new interconnect technolo-

gies that offer superior latency and bandwidth to PCIe technology(e.g., NVLink [7],

CAPI [222], and CCIX [5]), promise to significantly reduce the cost of moving data

to and from the GPU. These two trends coupled with (1) an increase in the bandwidth,

capacity, and energy efficiency of GPU memory (e.g., 3D memory technologies such as

HBM [10,135,147,209]) and (2) the inclusion of storage on GPUs (e.g., AMD Radeon
TM

Pro SSG GPU with an on-board terabyte capacity SSD [4]) herald a new era of unprece-

dented practical computing capability and promise to spur widespread adoption of GPUs

for many tasks beyond traditional consumer graphics and scientific computing.

One of those application domains is analytical database workloads. Due to the

current challenges of transferring data over a high-latency, low-bandwidth PCIe bus,

much of the effort has been spent on orchestrating efficient data transfers between CPUs

and GPUs and not on fundamental challenges associated with scaling GPU-side code.

As a result, much of the GPU-side database code remains in a comparatively nascent,

unoptimized state that is hidden by the cost of data transfers. However, with forthcoming

interconnect technologies, much of these performance trade-offs are likely to change.

Instead, performance scaling of GPU-side code will become much more significant to

the overall throughput of the database.

In light of these current and forthcoming advancements, this work aims to assess

where we are in terms of database performance scaling on GPUs and suggests an agenda

for further research opportunities within the space. Our study consists of asking a simple

question: do current GPU-accelerated databases take full advantage of the resources

that GPUs afford? In particular, can most GPU-deployed database operators even make

meaningful use of all of the available compute capability? We conduct our study by
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incrementally disabling compute units (CUs), the processors of the GPU. Disabling

CUs artificially shifts the compute-to-bandwidth ratio of the GPU and facilitates the

emulation of different hardware design points within a single device. When we disable

CUs, we measure the impact on low-level performance metrics. In addition, we model

the projected impact on energy and power of using coarse-grain per-CU power gating, a

technique whereby an entire set of CUs is switched off.

As a result of these studies, we make several important observations that form

the basis of our technical contributions:

• Current GPU databases cannot effectively utilize all of the computational resources

on a GPU. Disabling of CUs almost universally leads to reduced query execution

time and energy.

• The primary source of this poor scaling is rampant contention for the last level

cache (L2) and off-chip bandwidth that is so severe that it often leads to perfor-

mance stagnation or collapse as progressively more CUs are enabled. On a TPC-H

workload, disabling CUs reduces query latency by as much as 24%.

• Although GPUs are already quite energy efficient, we show that the TPC-H work-

load is particularly suited to coarse-grain per-compute-unit power gating, often

reducing energy usage by 10% to 40% with little to no performance loss.

• We corroborate earlier findings that the scan primitive is particularly benefited by

GPUs by showing that it scales better with the number of active CUs than the other

operators we surveyed [193].

Our studies suggest that there is a rich opportunity space for building per-database-

operator power-performance cost models for GPUs. These models would permit the

database to reduce its energy usage per query by actively directing sub-device-level
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power gating. Further, we posit that a high-performing GPU database will likely require

integrating all of the optimizations from columnar databases and recent work on GPUs.

Without these optimizations, our study shows that it is unlikely that performance will

properly scale in rough proportion to the enabled CUs. New memory technologies like

HBM that would deliver terabytes per second (TB/s) of memory bandwidth to a single

GPU may reduce these problems.

4.1 Brief Background on GPUs

GPUs are massively parallel computing devices that use multiple multiprocessors

known as compute units (CUs) to accelerate workloads. A CU contains one or more

vector processors known as SIMDs. Since SIMDs are vector processors, each instruction

that they run executes in lockstep across multiple lanes, where lanes are similar to

simple cores. In the AMD Graphics Core Next (GCN) family of GPU architectures,

CUs have four SIMD units with 16 lanes per SIMD. SIMDs share an L1 data cache

and L1 instruction cache that is private to their CU [19]. Often, GPUs have several to

tens of CUs per device that collectively share an L2 cache and bandwidth to the off-chip

main-memory.

Work on the GPU is composed into blocks of threads known as work groups,

and each work group is mapped at execution to a CU where it is processed. Work groups

are further subdivided into wavefronts, effectively a collection of threads that share the

same program counter. Typically, multiple wavefronts are assigned to each CU to hide

latency: when one instruction from one wavefront produces a stall, typically due to a high

latency load, the hardware can swap in another wavefront that is ready to run. Wavefronts

are further decomposed into a number of coupled threads known as work items that

share the same program counter. In general, each wavefront is a multiple of the width

in lanes of each SIMD. In GCN-based GPUs, a wavefront consists of 64 work items.
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During execution, each wavefront is consumed by one of the SIMDs of the CU to which

it was assigned. Since SIMDs are only 16 lanes wide, and each instruction has 64 lanes

worth of work, each instruction’s work is processed in batches of 16 work items. Thus,

each lane per SIMD processes four work items per wavefront [19].

To achieve high performance on GPUs, both control flow divergence and mem-

ory divergence must be avoided. Control flow divergence occurs when some lanes do

not participate in executing an instruction due to program control flow semantics. It

reduces the effective parallelism of the device because it leads to lanes being disabled and

therefore also the number of active arithmetic logic units (ALUs). Memory divergence

occurs when lanes within a CU need to load data from memory locations that cannot

be combined by a hardware coalescer into a single memory request, thereby typically

increasing the number of cache lines that need to remain or be brought into cache to

satisfy each load. Severe memory divergence can lead to performance collapse due to

cache pollution and excess demand for off-chip memory bandwidth.

Like CPUs, each of the successive levels of memory from registers down to the

main memory have reduced bandwidth and higher latency the farther they are from the

compute elements. Therefore, optimizations such as blocking for cache via partition-

ing [54] and batching (a.k.a. vectorization [55]) are also important for GPUs [109].

4.2 Experimental Methodology

We conduct our studies on an AMD Radeon Firepro W9100 GPU, which has

44 CUs, 1 MB of L2 that is shared among all CUs, 16 KB of private L1 data cache per

CU, and 16 GB of GDDR5 (a DRAM technology that serves as the main memory of

the GPU). Execution time and other performance metrics were collected with AMD’s

CodeXL profiler. To modify the GPU’s configuration, we use a single internal tool that

modifies the GPU’s firmware. The GPU’s CUs and GDDR5 memory are located in two
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different clock domains. We fix both the compute and memory clock domains at their

maximum values of 930 MHz and 1250 MHz, respectively, which reduces run-to-run

time variation due to dynamic voltage frequency scaling. In the studies, we disable CUs

in multiples of 4. When CU are disabled, the L2’s capacity is not reduced.

Ocelot [112] is the database we use; it is an extension to the in-memory columnar

database MonetDB [53] that allows for offloading the bulk of query processing to the

GPU. We chose Ocelot over other GPU-accelerated databases for several key reasons:

1. Ocelot aims to execute the full query on the GPU. Unlike many other candidates,

this means that it gives a more balanced picture of the opportunities that GPUs

afford for query processing.

2. Because Ocelot leverages many of the optimizations that MonetDB and other

in-memory databases pioneered (e.g., dictionary encoding, bitmap joins, columnar

storage), its evaluation provides insight into how well these optimizations perform

on the GPU and directions for further research.

3. Ocelot aims to be cross platform. Given the enormous cost associated with opti-

mizing code for discrete platforms, it is necessary to see how well such a system

can perform.

4. Ocelot achieves rough performance parity with newer works like GPL [187], which

demonstrates that the implementation is comparatively high quality.

Our queries are the modified TPC-H queries that come standard with Ocelot [112],

apart from queries 9 and 14, which are from the GPL work [187]. All experiments are

conducted on a database with a scale factor of 10, a measure of the database size for

the TPC-h benchmark. We conducted additional experiments at a scale factor of 50,

but the results were similar, and so we omit them. In addition, we explored dynamic



87

voltage and frequency scaling (DVFS) [125, 146, 239] and varied the CU and memory

frequencies. However, we found that these DVFS studies had secondary, unintended

effects beyond controlling the compute-to-bandwidth ratio of the GPU. For instance,

reducing the CU frequency not only affected the vector arithmetic logic units (VALUs)

but also the bandwidth of data buses and the L1 data caches. Thus, even though the

workloads were bandwidth bound and in theory reducing compute frequency could

improve energy efficiency with little reduction in performance, it had the secondary effect

of reducing the rate at which caches could issue requests to the memory controllers and

thus the peak memory bandwidth of the system. Similarly, reducing memory frequency

was almost always a bad idea because most of the workloads were severely bandwidth

bound, and so every bit of off-chip memory bandwidth was precious.

4.2.1 GPU Power and Energy Models

In this section, we briefly detail our power and energy models. Since disabling of

CUs primarily affects the GPU, we do not report results for the rest of the server’s power.

Our GPU does not support programmatic power gating at the CU granularity

when CUs are disabled. Thus, we model power using an equation that we validated on

one of our integrated GPUs that has both the same Graphics Core Next microarchitecture

and that power gates CUs when they are disabled. Equation 4.1 calculates the combined

mean GPU die and GDDR5 power during execution of a GPU kernel. It excludes

GPU fan power and AC to DC conversions. We determine each of the parameters by

running FurMark [8], a compute-intensive benchmark and profile power using an Extech

380801 power meter. Idle Power Other corresponds to idle power that corresponds to

components other than CUs. VALU Activity Factor, the VALU activity factor measures

the mean fraction of lanes that execute arithmetic instructions on their VALUs per
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compute cycle. A low VALU activity factor reduces GPU dynamic power.

Kernel Power = Enabled Compute Units ∗ Idle Power Per CU

+ Idle Power Other + GDDR5 Power

+ Enabled Compute Units∗ VALU Activity Factor ∗

(Peak Total Power Per CU − Idle Power Per CU)

(4.1)

The mean query power is computed using Equation 4.2, which computes an

average over the mean powers of each of the kernels weighted by each one’s execution

time. Query energy is computed using Equation 4.3, which is the sum over the individual

energy contributions of each of the kernels that is executed.

Query Power =
Σ

Kernels
k=1

(
Kernel Powerk ∗ Timek

)
Σ

Kernels
k=1 Timek

(4.2)

Query Energy = Σ
Kernels
k=1

(
Kernel Powerk ∗ Timek

)
(4.3)

In addition to energy, we also compute energy-delay product [102] using Equa-

tion 4.4, where EDP is calculated as the product of the combined energy of each kernel

and the total kernel execution time. Because EDP is the product of energy and delay

(execution time), an improvement in EDP means that either (1) both energy and delay

improve or (2) that the improvement in one metric multiplicatively offsets any degrada-

tion in the other. For example, a decrease in energy of 20% (4
5x) and an increase in delay

of 25% (5
4x) would cancel out and lead to no change in EDP. In general, policies that

decrease EDP relative to a baseline are considered favorable.

EDP = Query Energy ∗
(
Σ

Kernels
k=1 Timek

)
(4.4)
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4.3 Results

In this section, we present the impact of scaling the active CUs in the GPU. We

begin by examining the breakdown of execution time for each query (Figure 4.1). In

keeping with prior work, joins account for the majority of execution time for most queries.

Queries 3, 4, 5, 7, 8, 9, 10, 11, and 21 spend upwards of 50% of their time executing

joins. Queries 6, 12, 14, and 19 spend most of their time in scans, and only 15 and 17 are

dominated by grouping operations.
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Figure 4.1. Ratio of execution time by kernel. Joins dominate execution time for most
queries. Labeled kernels contribute at least 5% or more of the run time of one or more
queries. Other kernels are excluded for clarity of exposition.

To better understand how query composition by operator affects run time, we con-

tinue by analyzing how their make-up impacts low-level metrics (derived from hardware
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Figure 4.2. Private L1 cache misses per 1000 dynamic instructions (lower is typically
better). Most of the queries exhibit many private L1 misses per 1000 instructions.
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Figure 4.3. Shared last level (L2) cache miss ratio (lower is typically better). As the
number of active CUs increases, for most queries, pressure on the last level L2 cache
balloons and so does the miss ratio.
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Figure 4.4. Shared last level (L2) cache misses per 1000 instructions (lower is typi-
cally better). For many queries, there are approximately 1 to 2 memory transactions per
instruction.

performance counters), performance, energy, and energy delay product (energy * run

time).

L1 Miss Metrics – We begin by analyzing private L1 data cache misses per 1000

instructions (a.k.a. L1 MPKI). Figure 4.2 presents the results. In general, queries that are
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Figure 4.5. Vector ALU Activity Factor (higher is better). This metric measures the
average number of lanes per enabled CU that perform useful work per clock cycle.
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Figure 4.6. Performance normalized to 44 active CUs (lower is better). Most queries
see little performance benefit from having all CUs active.

1 3 4 5 6 7 8 9 10 11 12 14 15 17 18 19 21
TPC-H Query ID

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
iz

ed
 E

ne
rg

y

4 cus 8 cus 12 cus 16 cus 24 cus 36 cus 44 cus

Figure 4.7. Energy normalized to 44 active CUs (lower is better). Somewhere between
8 to 24 active CUs yields the lowest energy for the surveyed queries.

dominated by bitmap joins (queries 5, 8, and 9) have the highest L1 MPKI. Since we fix

the number of threads when disabling CUs, some if not all of the remaining enabled CUs

receive more work groups to process. For many kernels, Ocelot intentionally launches a

single work group per CU to lessen the severity of the memory subsystem contention.

Due to this consolidation, many CUs have more active threads in flight than when all
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Figure 4.8. Mean Power. A low VALU activity factor leads to low mean power
utilization that is dominated by GDDR5 and idle power. Results are normalized to the
sum of Idle Power Other and GDDR Power.
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Figure 4.9. Energy delay product normalized to 44 active CUs (lower is better).

CUs are enabled. While having more threads in-flight increases contention on the L1

and the L1 MPKI, as each additional wavefront generates additional L1 cache pressure,

we find that most of the workloads showed no reduction in performance. For these

workloads, the delta in L1 misses due to consolidation on fewer CUs is a poor indicator

of performance and performance scaling. Even though most queries see an increase in

L1 data cache misses as we disable CUs, this increase is not reflected in an increase in

application execution time. Similarly, having little to no change in L1 data cache misses

as we vary the number of CUs does not appear to be a strong indicator of performance

either. Instead the deltas in the L2 miss ratio and L2 MPKI yield superior insights.

L2 Miss Metrics – High L1 MPKI yield high L2 accesses with the potential to thrash

the L2 to due to resource contention. For these workloads, much of the time, high L1

MPKI values also herald high L2 miss ratios. However, that is not always the case. It
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is possible for the collective set of in-flight wavefronts to have a hot working set that is

too big to cache in the combined L1 data cache capacity across all CUs (44 * 16 KB =

704 KB) but which mostly fits in the 1.7 MB of combined L1 and L2 caches. Figure 4.3

shows these two contrasting trends. Queries 5 and 8, which have some of the highest L1

MPKI also exhibit high L2 miss ratios. By contrast, query 9 has the highest L1 MPKI,

yet it incurs the second lowest L2 miss ratio. Its working set can be fit almost entirely in

the L1 and L2 caches.

A high L2 miss ratio alone is not sufficient to make the cache the bottleneck.

If the bulk of loads hit in the L1, the L2 is able to keep pace with demand, and the

latency can be hidden through hardware multithreading, then performance is unlikely

to acutely suffer. If we examine L2 misses per 1000 dynamic instructions (L2 MPKI)

in Figure 4.4, we observe that most queries exhibit on the order of 0.5 to 2.0 L2 misses

per dynamic instruction. These figures prove problematic because they are indicative of

applications that crave more off-chip demand than the hardware can satisfy, which can

lead to long stalls in the execution pipeline. Further, they suggest that loads are poorly

coalesced (memory divergence). A load without any coalescing can trigger up to 64

different 64-byte cache lines to be brought into cache from memory. If the prevalence

of these loads is frequent and temporal reuse is poor, then with high probability many

loads are likely to suffer the latency penalty of retrieving data from memory. While the

GPU is adept at hiding memory latency, this latency hiding is dependent on at least one

wavefront per SIMD being able to run. If no such wavefront exists, then the latency is

placed on the critical path. The challenge with highly memory divergent code is that the

additional wavefronts’ contribution to thrashing the cache and contending for off-chip

bandwidth may outweigh the latency-hiding benefit that they provide. When examining

Figures 4.3 and 4.4, it becomes clear that most queries see a marked decrease in both the

L2 miss ratio and MPKI metrics as more CUs are disabled. We attribute the bulk of this
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benefit to having fewer active CUs. With fewer CUs, there are also fewer threads actively

contending for the L2 at any one time. This reduced contention increases the likelihood

that a greater fraction of a thread’s state remains in L2. As a result, threads benefit from

accessing more of their data from the higher bandwidth, lower-latency L2 and less from

the lower bandwidth, higher-latency GDDR5-based main memory.

VALU Activity Factor – To understand the relationship between memory subsystem

contention and useful computation, we measure both the VALU activity factor (Figure 4.5)

and execution time as we vary the number of active CUs from 4 to 44 (Figure 4.6). Ideal

activity factors are close to 100%. Figure 4.5 shows that as pressure on the L2 and

off-chip bandwidth is alleviated by disabling CUs, arithmetic logic units spend a greater

ratio of the time in active computation. The low activity factor demonstrates that CUs

frequently stall due to resource contention. Further, as L2 cache hit ratios improve due to

reduced active CUs issuing cache and memory requests, stalls reduce, and the VALUs

show increased activity.

Execution Time – Figure 4.6 presents the run time of each query normalized to the

default configuration where all CUs are active. Due to the high contention for the

memory subsystem, many queries perform best when a large minority or majority of the

CUs are disabled. Of the queries, only those that are scan heavy (6, 14, and 19) fail to

achieve performance benefit from disabling CPUs. The queries that see the most benefit

are queries 5 and 7, which have some of the sharpest reductions in L2 cache misses

(Figure 4.4). The optimum CUs per query varies and is integrally tied to its operator

composition.

Power, Energy, and EDP – For most of the queries, there are large flat regions where

varying CUs has little to no impact on performance (Figure 4.6). For many of the

queries, these regions occur both when most of the CUs are disabled and near the

region of peak performance. This trait allows for significant savings in energy without
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adversely compromising on performance. In Figure 4.7, we see that most queries realize

an approximately 20% to 40% reduction in energy by disabling CUs. A large part of

those savings comes from reducing idle power, i.e., power that is consistently consumed

regardless of whether a component is conducting active computation. In Figure 4.8, we

present the mean power that running each query consumes when varying the number

of enabled CUs. Plotted values are normalized to the sum of the GDDR5 memory’s

power and the idle power attributed to components other than the CUs. For these TPC-H

workloads, the low VALU activity factor means that transistors spend much less time

actively switching, and thus dynamic power is significantly reduced. Since total power

is the sum of idle power and dynamic power, reducing dynamic power means that idle

power constitutes a much greater percentage of the total power. Further, because much

of that idle power comes from the CUs, power gating CUs can sharply reduce the total

power.

With all 44 CUS enabled, CU idle power accounts for about 56% of the total idle

power or approximately 23% to 30% of the total power for the surveyed TPC-H queries.

For each group of 4 CUs that we disable and power gate, we reduce the total power

by about 2% to 3%. Since most of the queries can operate at improved or near-peak

performance with a large plurality of the CUs disabled, much of the energy savings

come from this power gating. A representative TPC-H query that observes equivalent

performance with 12 CUs and 44 CUs enabled, would see a 22% to 25% reduction in total

energy. These figures are in line with the mean savings that our study achieves. Cases

where energy savings exceed these values occur when performance also improves (e.g.,

queries 5 and 7).

We also examine EDP (Figure 4.9). Because EDP factors in both run time and

energy, it is a good indicator of whether energy savings are fundamentally at odds with

throughput. Since the EDP results are as good or better, this validates that per-CU power
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gating is not at odds with performance for this decision support workload.

4.4 Discussion

In this section, we describe the implications of these results as well as important

caveats. First and foremost, Ocelot is a research prototype that attempts to span multiple

platforms. While it includes many of the optimizations of MonetDB, we observed that

some of the GPU kernel implementations were simple and did not use the fastest known

algorithm. For instance, the hash join does not use the state-of-the-art bucketized cuckoo

hash table and employs a no-partitioning join rather than a radix-hash join [54]. We

spotted other simplifications that led to memory and branch divergence (Section 4.1).

Many of these simplifications are justified by the fact that PCIe bus transfer bandwidth

and CPU-side marshalling code consume much of the execution time. However, once

these optimizations are applied, it is likely that there will be a reduction in some of the

energy savings and performance scaling should improve.

Despite that, these results are still valuable because they demonstrate areas for

further optimization once new hardware obviates the PCIe bus bottleneck. Further, given

that we modelled coarse-grain power gating, there is almost certainly a much greater

opportunity for databases to specify power gating at the region of individual operators or

routines. A GPU-centric research effort into this space is warranted.

4.5 Related Work

Much of the work on GPU databases has been inspired by two decades of

research on in-memory columnar databases [54, 55, 143, 199, 220]. With the proliferation

of inexpensive, dynamic random access memory in the 1990s, the bottleneck shifted

from IO to memory [25, 54, 247].
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Many works have looked at leveraging GPUs for query processing [38, 61, 108,

109, 111, 112, 128, 187, 244, 245]. Bress et al. provide an excellent survey [62]. Much

of the early work was done by He et al. [108, 109] and modularized the problem into

expressing query operators as a combination of one or more parallel processing primitives

(e.g., scatter, gather, and sort). Further optimizations have followed including leveraging

new hardware-software support for automated asynchronous migration of data between

the CPU and GPU’s memory.

Wu et al. provided a methodology to automated JIT compilation of SQL to GPU

kernel code, with fusion of operators and their kernels to reduce memory traffic [244,245].

Other works examined additional trade-offs in systems where query co-processing occurs

on a CPU with an integrated GPU [61, 111].

On the power management side, a number of works have attempted to make

database systems and operating systems more power aware. Weiser et al. pioneered

early work that used trace-based simulation to evaluate different scheduling algorithms

when coupled with DVFS on a time-sharing system [239]. Follow-on work has aimed to

address similar issues [97,180]. Recent work has argued for and demonstrated the success

of incorporating DVFS into operating and runtime systems for power management of

multicore systems [139,160,216,234]. Other techniques such as racing or computationally

sprinting through work followed by entering a low-power state or napping have also been

employed [171, 197].

In the databases space, Tsirogiannis et al. was one of the first works to characterize

the performance and energy trade-offs within a database system. Due to the lack of

energy proportionality in server hardware [42, 160], they find that optimizing for the

performance of key database operators often leads to the best energy efficiency [230].

More recent work by Xu et al. presents a control system for DVFS of a PostgreSQL

system [251] and energy-aware query planning [250].
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Our study shows that memory subsystem contention presents challenges to scaling

OLAP database workloads on the GPU and that reducing the number of enabled CUs,

and thus the pressure on the shared L2, has the potential to improve performance or

energy efficiency. Other works explore similar challenges related to memory contention

and factor this in to determining the ideal parallelism to employ. In the GPU architecture

community, a number of works in simulation demonstrate that small microarchitectural

modifications to the hardware that (1) reduce the number of in-flight threads [131, 202],

cap the number of loads that threads can issue per cycle [202], (2) prioritize the scheduling

of some work groups and their memory requests over others [126,210], (3) switch between

greedy and round-robin hardware wavefront schedulers subject to the scaling behavior of

the application as a function of the work groups per CU [149], and (4) schedule work

groups or wavefronts in a locality-conscious fashion [126, 202] can greatly improve

performance by reducing contention for the L1 data caches, shared L2, and off-chip

bandwidth to GDDR5.

Our study is distinct from these works in that it considers both performance and

energy scaling of GPGPU databases on real hardware. Further, we believe this work to

be the first to evaluate the implications of per-compute-unit power gating for database

workloads and to show its potential for energy savings and performance improvement on

real hardware.

4.6 Conclusions

We have presented a detailed evaluation of the performance of an in-memory

columnar database on a GPU running TPC-H. Our results show that further research into

memory-subsystem-aware database primitives is necessary to exploit the full potential

of GPUs for query processing: current code saturates in performance for the bulk of the

queries when only a minority of the CUs are enabled. We then proposed powergating the
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disabled CUs. Our evaluation of power gating showed that query latency, energy, and

energy-delay product can be reduced by as much as 24%, 42%, and 53%, respectively.

The findings demonstrate that there is a ripe opportunity for databases to orchestrate

power gating within accelerators to boost both energy efficiency and performance. Finer

grain power gating, both at the time and hardware level, will almost certainly lead to

further benefit.
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Chapter 5

Optimizing Hash Tables for the
Memory Hierarchy

Hash tables are fundamental data structures that are ubiquitous in high perfor-

mance and big-data applications such as in-memory relational databases [54,80,133] and

key-value stores [90, 96].1 Typically these workloads are read-heavy [34, 199]: the hash

table is built once and is seldom modified in comparison to total accesses. A hash table

that is particularly suited to this behavior is a bucketized cuckoo hash table (BCHT), a

type of open-addressed hash table.2 BCHTs group their cells into buckets: associative

blocks of two to eight slots, with each slot capable of storing a single element.

When inserting an element, BCHTs typically select between one of two indepen-

dent hash functions, each of which maps the key-value pair, call it KV , to a different

candidate bucket. If one candidate has a free slot, KV is inserted. In the case where nei-

ther has spare slots, BCHTs resort to cuckoo hashing, a technique that resolves collisions

by evicting and rehashing elements when too many elements vie for the same bucket. In

this case, to make room for KV , the algorithm selects an element, call it KV ′, from one of

KV ’s candidate buckets, and replaces it with KV . KV ′ is then subsequently rehashed to

1Figure 4.1 in Chapter 4 demonstrates the importance of optimizing hash tables for OLAP database
workloads. The figure shows that Ocelot spends the bulk of its kernel execution time for TPC-H queries 3,
4, 11, 15, 17, 18, and 21 in routines that operate on hash tables. These routines primarily consist of hash
joins and group-and-aggregate operations that employ grouping hash tables.

100
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its alternate candidate using the remaining hash function. If the alternate bucket for KV ′

is full, KV ′ evicts yet another element and the process repeats until the final displaced

element is relocated to a free slot.

Although these relocations may appear to incur large performance overheads,

prior work demonstrates that most elements are inserted without displacing others and,

accordingly, that BCHTs trade only a modest increase in average insertion and deletion

time in exchange for high-throughput lookups and load factors that often exceed 95%

with greater than 99% probability [87], a vast improvement over the majority of other

techniques [190, 203].
BCHTs, due to this space efficiency and high throughput, have enabled recent

performance breakthroughs in relational databases and key-value stores on server proces-

sors [90, 190, 203] as well as on accelerators such as GPUs [255], the Xeon Phi [73, 190],

and the Cell processor [117,203]. However, although BCHTs are higher-performing than

other open addressing schemes [190,203], we find that as the performance of modern com-

puting systems becomes increasingly constrained by memory bandwidth [25,53,169,247],

they too suffer from a number of inefficiencies that originate from how data is fetched

when satisfying queries.

Carefully coordinating table accesses is integral to throughput in hash tables.

Because of the inherent randomness of hashing, accesses to hash tables often exhibit

poor temporal and spatial locality, a property that causes hardware caches to become

increasingly less effective as tables scale in size. For large tables, cache lines containing

previously accessed hash table buckets are frequently evicted due to capacity misses

before they are touched again, degrading performance and causing applications to become

memory-bandwidth-bound once the table’s working set cannot be cached on-chip. Given

these concerns, techniques that reduce accesses to additional cache lines in the table prove

2Under open addressing, an element may be placed in more than one location in the table. Collisions
are resolved by relocating elements within the table rather than spilling to table-external storage.
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invaluable when optimizing hash table performance and motivate the need to identify

and address the data movement inefficiencies that are prevalent in BCHTs.

Consider a BCHT that uses two independent hash functions to map each element

to one of two candidate buckets. To load balance buckets and attain high load factors,

recent work on BCHT-based key-value stores inserts each element into the candidate

bucket with the least load [90, 255], which means that we expect half of the elements to

be hashed by each function. Consequently, on positive lookups, where the queried key is

in the table, 1.5 buckets are expected to be examined. Half of the items can be retrieved

by examining a single bucket, and the other half require accessing both. For negative

lookups, where the queried key is not in the table, 2 lookups are necessary. Given that

the minimum number of buckets that might need to be searched (for both positive and

negative lookups) is 1, this leaves a very significant opportunity for improvement.

To this end, this chapter presents Horton tables,3 a carefully retrofitted bucketized

cuckoo hash table, which trades a small amount of space for achieving positive and nega-

tive lookups that touch close to 1 bucket apiece. Our scheme introduces remap entries,

small and succinct in-bucket records that enable (1) the tracking of past hashing decisions,

(2) the use of many hash functions for little to no cost, and (3) most lookups, negative and

positive alike, to be satisfied with a single bucket access and at most 2. Instead of giving

equal weight to each hash function, which leads to frequent fetching of unnecessary

buckets, we employ a single primary hash function that is used for the vast majority

of elements in the table. By inducing such heavy skew, most lookups can be satisfied

by accessing only a single bucket. To permit this biasing, we use several secondary

hash functions (7 in our evaluations) to rehash elements to alternate buckets when their

preferred bucket lacks sufficient capacity to directly store them. Rather than forgetting

our choice of secondary hash function for remapped elements, we convert one of the slots

3Named for elephants’ remarkable recall powers [81].



103

in each bucket that overflows into a remap entry array that encodes which hash function

was used to remap each of the overflow items. It is this ability to track all remapped

items at low cost, both in terms of time and space, that permits the optimizations that

give Horton tables their performance edge over the prior state-of-the-art.

To achieve this low cost, instead of storing an explicit tag or fingerprint (a succinct

hash representation of the remapped object) as is done in cuckoo filters [89] and other

work [45, 56], we instead employ implicit tags, where the index into the remap entry

array is a tag computed by a hash function Htag on the key. This space optimization

permits all buckets to use at most 64 bits of remap entries in our implementation while

recording all remappings, even for high load factors and tables with billions of elements.

As a further optimization, we only convert the last slot of each bucket into a remap entry

array when necessary. For buckets that do not overflow, they remain as standard buckets

with full capacity, which permits load factors that exceed 90 and 95 percent for 4- and

8-slot buckets, respectively.

Our main contributions are as follows:

• We develop and evaluate Horton tables and demonstrate speed improvements of 17

to 89% on graphics processors (GPUs). Although our algorithm is not specific to

GPUs, GPUs represent the most efficient platform for the current state of the art,

and thus it is important to demonstrate the effectiveness of Horton tables on the

same platform.

• We present algorithms for insertions, deletions, and lookups on Horton tables.

• We conduct a detailed analysis of Horton tables by deriving and empirically

validating models for their expected data movement and storage overheads.

• We investigate additional optimizations for insertions and deletions that further

reduce data movement when using multiple hash functions, reclaiming remap
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entries once their remapped elements are deleted, even when they are shared by

two or more table elements.

This chapter is organized as follows: In Section 5.1 we elaborate on the interplay

between BCHTs and single instruction multiple data (SIMD) processors, in Section 5.2

we describe BCHTs, in Section 5.3 we provide a high-level overview of Horton tables, in

Section 5.4 we describe the lookup, insertion, and deletion algorithms for Horton tables,

and then in Section 5.5 we present our models for Horton tables that include the cost

of insertions, deletions, and remap entry storage. Section 5.6 covers our experimental

methodology, and Section 5.7 contains our performance and model validation results.

Related work is described in Section 5.8 and Section 5.9 concludes.

5.1 The Role of SIMD

In key places in this chapter, we make references to SIMD and GPU architectures.

Although not necessary for understanding our innovations, these references are present

due to SIMD’s importance for high-throughput implementations of in-memory hash

tables and BCHTs in particular.

Recent work in high-performance databases that leverages BCHTs has shown

that SIMD implementations of BCHTs, as well as larger data processing primitives, are

often more than 3× faster than the highest performing implementations that use scalar

instructions alone [40,150,190]. These SIMD implementations enable billions of lookups

per second to be satisfied on a single server [190, 255], an unimaginable feat only a few

years ago. At the same time, SIMD implementations of BCHTs are faster than hash tables

that use other open addressing methods [190, 203]. Such implementations are growing

in importance because both CPUs and GPUs require writing SIMD implementations to

maximize performance-per-watt and reduce total cost of ownership.
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For these reasons, we focus on a SIMD implementation of BCHTs as a starting

point and endeavor to show that all further optimizations provided by Horton tables not

only have theoretical models that justify their performance edge (Section 5.5) but also

that practical SIMD implementations deliver the performance benefits that the theory

projects (Section 5.7).4

5.2 Background on BCHTs

In this section, we describe in detail BCHTs and the associated performance

considerations that arise out of their interaction with the memory hierarchy of today’s

systems.

To begin, we illustrate two common scenarios that are triggered by the insertion

of two different key-value pairs KV1 and KV2 into the hash table, as shown in Figure 5.1.

Numbered rows correspond to buckets, and groups of four cells within a row to slots.

In this example, H1 and H2 correspond to the two independent hash functions that are

used to hash each item to two candidate buckets (0 and 2 for KV1, 3 and 6 for KV2).

Both H1 and H2 are a viable choice for KV1 because both buckets 0 and 2 have free slots.

Deciding which to insert into is at the discretion of the algorithm (see Section 5.2.3 for

more details).

For KV2, both H1 and H2 hash it to buckets that are already full, which is resolved

by evicting one of the elements (in this case u), and relocating it and other conflicting

elements in succession using a different hash function until a free slot is found.5 So e

moves to the empty position in bucket 5, m to e’s old position, u to m’s old position, and

KV2 to u’s old position. Li, et al. demonstrated that an efficient way to perform these

4For a primer on SIMD and GPGPU architectures, we recommend these excellent references: H&P
(Ch. 4) [113] and Keckler et al. [132].

5So in this example, elements on the chain that were originally hashed with H1 would be rehashed
using H2 and vice versa.
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Figure 5.1. Inserting items KV1 and KV2 into a BCHT

displacements is to first conduct a breadth-first search starting from the candidate buckets

and then begin moving elements only once a path to a free slot is discovered [153].

5.2.1 State-of-Practice Implementation

A number of important parameters affect the performance of BCHTs. In particular,

the number of hash functions (f ) and the number of slots per bucket (S) impact the

achievable load factor (i.e., how full a table can be filled) as well as the expected lookup

time. A hash table with more slots per bucket can more readily accommodate collisions

without requiring a rehashing mechanism (such as cuckoo hashing) and can increase the

table’s load factor. Most implementations use four [90, 190, 203] or eight [255] slots per

bucket, which typically leads to one to two buckets per hardware cache line. Using more

slots comes at the cost of more key comparisons on lookups, since the requested element

could be in any of the slots.

Increasing f , the number of hash functions, allows a key-value pair to be mapped
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to more buckets, as each hash function maps the item to one of f different buckets. This

improved flexibility when placing an item permits the hash table to achieve a higher load

factor. However, on lookups, more buckets need to be searched because the element

could be in more locations. In practice, f = 2 is used most often because it permits

sufficient flexibility in where keys are mapped without suffering from having to search

too many buckets [90, 173, 201].

BCHTs are primarily designed for fast lookups. The get operation on any key

requires examining the contents of at most f buckets. Because buckets have a fixed

width, the lookup operation on a bucket can be unrolled and efficiently vectorized.

These traits allow efficient SIMD implementations of BCHTs that achieve lookup rates

superior to linear probing and double-hashing-based schemes on past and present server

architectures [190, 203] and accelerators such as Intel’s Xeon Phi [190].

5.2.2 Memory Traffic on Lookups

Like prior work, we divide lookups into two categories: (1) positive, where the

lookup succeeds because the key is found in the hash table, and (2) negative where the

lookup fails because the key is not in the table.

Prior work diverges on the precise method of accessing the hash table during

lookups. The first method, which we term latency-optimized, always accesses all

buckets where an item may be found [153, 203]. Another technique, which we call

bandwidth-optimized, avoids fetching additional buckets where feasible [90, 255].

Given f independent hash functions where each of them maps each item to one

of f candidate buckets, the latency-optimized approach always touches f buckets while

the bandwidth-optimized one touches, on average, ( f +1)/2 buckets on positive lookups

and f buckets on negative lookups. For our work, we compare against the bandwidth-

optimized approach, as it moves less data on average. Reducing such data movement
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is a greater performance concern on throughput-oriented architectures such as GPUs,

since memory latency is often very effectively hidden on these devices [92]. Thus, we

compare against the more bandwidth-oriented variant of BCHT, which searches 1.5

buckets instead of 2 (or more, if there are more hash functions) for positive lookups.

5.2.3 Insertion Policy and Lookups

Unlike the latency-optimized scheme, the bandwidth-optimized algorithm

searches the buckets in some defined order. If an item is found before searching the

last of the f candidate buckets, then we can reduce the lookup’s data movement cost

by skipping the search of the remaining candidate buckets. Thus if f is 2, and we

call the first hash function H1 and the second H2, then the average lookup cost across

all inserted keys is 1 * (fraction of keys that use H1) + 2 * (fraction of

keys that use H2). Therefore, the insertion algorithm’s policy on when to use H1 or

H2 affects the lookup cost.

Given that hash tables almost always exhibit poor temporal and spatial locality,

hash tables with working sets that are too large to fit in caches are bandwidth-bound and

are quite sensitive to the comparatively limited off-chip bandwidth. In the ideal case, we

therefore want to touch as few buckets as possible. If we can strongly favor using H1

over H2 during insertions, we can reduce the percentage of buckets that are fetched that

do not contain the queried key, which reduces per-lookup bandwidth requirements as

well as cache pollution, both of which improve lookup throughput.

Existing high-throughput, bandwidth-optimized BCHT implementations [90,255]

attempt to load-balance buckets on insertion by examining all buckets the key can map

to and placing elements into the buckets with the most free slots. As an example, in

Figure 5.1, KV1 would be placed in the bucket hashed to by H2. The intuition behind

this load balancing is that it both reduces the occurrence of cuckoo rehashing, which
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is commonly implemented with comparatively expensive atomic swap operations, and

increases the anticipated load factor. Given this policy, H1 and H2 are both used with

equal probability, which means that 1.5 buckets are searched on average for positive

lookups. We refer to this approach as the load-balancing baseline.

An alternative approach is to insert items into the first candidate bucket that

can house them. This technique reduces the positive lookup costs, since it favors the

hash functions that are searched earlier. We refer to this as the first-fit heuristic. As an

example, in Figure 5.1, KV1 would be placed in the final slot of the top bucket of the table

even though bucket 2 has more free slots. This policy means that items can be located

with fewer memory accesses, on average, by avoiding fetching candidate buckets that

follow a successful match. When the table is not particularly full, most elements can be

inserted and retrieved by accessing a single table cache line.

Although prior work mentions this approach [87, 203], they do not evaluate its

performance impact on lookups. Ross demonstrated its ability to reduce the cost of

inserts but does not present data on its effect on lookups, instead opting to compare

his latency-optimized lookup algorithm that always fetches f buckets to other open

addressing methods and chaining [203]. Erlingsson et al. use the first-fit heuristic, but

their results focus on the number of buckets accessed on insertions and feasible load

factors for differing values of f and S (number of slots per bucket) and not the heuristic’s

impact on lookup performance [87]. For the sake of completeness, we evaluate both the

load-balancing and first-fit heuristics in Section 5.7.

One consequence of using first-fit is that, because it less evenly balances the load

across buckets, once the table approaches capacity, a few outliers repeatedly hash to

buckets that are already full, necessitating long, cuckoo displacement chains when only

2 hash functions are used. Whereas we were able to implement the insertion routine

for the load-balancing baseline and attain high load factors by relocating at most one
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or two elements, the first-fit heuristic prompted us to implement a serial version of the

BFS approach described by Li et al. [153] because finding long displacement chains

becomes necessary for filling the table to a comparable level. One solution to reducing

these long chains is to use more hash functions. However, for BCHTs, this increases

both the average- and worst-case lookup costs because each item can now appear in more

distinct buckets. In the sections that follow, we demonstrate that these tradeoffs can be

effectively circumvented with our technique and that there are additional benefits such as

fast negative lookups.

5.3 Horton Tables

Horton tables are an extension of bucketized cuckoo hash tables that largely

resolve the data movement issues of their predecessor when accessing buckets during

lookups. They use two types of buckets (Figure 5.2): one is an unmodified BCHT

bucket (Type A) and the other bucket flavor (Type B) contains additional in-bucket

metadata to track elements that primarily hash to the bucket but have to be remapped

due to insufficient capacity. All buckets begin as Type A and transition to Type B once

they overflow, enabling the aforementioned tracking of displaced elements. This ability

to track all remapped items at low cost, both in terms of time and space, permits the

optimizations that give Horton tables their performance edge over the prior state of the

art.

Horton tables use Hprimary, the primary hash function, to hash the vast majority

of elements so that most lookups only require one bucket access. When inserting an item

KV = (K,V ), it is only when the bucket at index Hprimary(K) cannot directly store KV

that the item uses one of several secondary hash functions to remap the item. We term

the bucket at index Hprimary(K) the primary bucket and buckets referenced by secondary

hash functions secondary buckets. Additionally, primary items are key-value pairs that
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Figure 5.2. Horton tables use 2 bucket variants: Type A (an unmodified BCHT bucket)
and Type B (converts final slot into remap entries)

are directly housed in the bucket referenced by the primary hash function Hprimary, and

secondary items are those that have been remapped. There is no correlation between

the bucket’s type and its primacy; Type A and B buckets can simultaneously house both

primary and secondary elements.

Type B buckets convert the final slot of Type A buckets into a remap entry array,

a vector of k-bit6 elements known as remap entries that encode the secondary hash

function ID used to rehash items that cannot be accommodated in their primary bucket.

Remap entries can take on one of 2k different values, 0 for encoding an unused remap

entry, and 1 to 2k−1 for encoding which of the secondary hash functions R1 to R2k−1

was used to remap the items. To determine the index at which a remapped element’s

remap entry is stored, a tag hash function known as Htag is computed on the element’s

key which maps to a spot in the remap entry array.

6k could range from 1 to the width of a key-value pair in bits, but we have found k = 3 to be a good
design point.
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Remap entries are a crucial innovation of Horton tables, as they permit all sec-

ondary items to be tracked so that at most one primary and sometimes one secondary hash

function need to be evaluated during table lookups regardless of whether (1) the lookup

is positive or negative and (2) how many hash functions are used to rehash secondary

items. At the same time, their storage is compactly allocated directly within the hash

table bucket that overflows, boosting the locality of their accesses while still permitting

high table load factors.

With Horton tables, most lookups only require touching a single bucket and a

small minority touch two. At the same time remap entries typically use at most several

percent of the table’s capacity, leaving sufficient free space for Horton tables to achieve

comparable load factors to BCHTs.

Figure 5.2 shows the Type A and Type B bucket designs given 4-byte keys and

values and 8-slot buckets. The bucket type is encoded in one bit of each bucket. For Type

A buckets, this costs us a bit from just one of the value fields (now 31 bits). For Type B

buckets, we encode 21 3-bit remap entries into a 64-bit slot, so we have a bit to spare

already. If we have a value that requires all 32 bits in the last slot of a Type A bucket, we

can move it to another slot in this bucket or remap to another bucket.

Because Type B buckets can house fewer elements than Type A buckets, Type A

buckets are used as much as possible. It is only when a bucket has insufficient capacity

to house all primary items that hash to it that it is converted into a Type B bucket, a

process known as promotion. To guarantee that elements can be found quickly, whenever

possible we enforce that primary elements are not displaced by secondary items. This

policy ensures both that more buckets remain Type A buckets and that more items are

primary elements.
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Figure 5.3. Comparison of a bucketized cuckoo hash table (L) and a Horton table (R). E
= empty remap entry.

5.3.1 A Comparison with BCHTs

Figure 5.3 shows a high-level comparison of Horton tables with an f = 2, tradi-

tional BCHT that stores the same data. Buckets correspond to rows and slots to individual

cells within each row. In the Horton table (right), each item maps to its primary bucket

by default. Bucket 2 (zero indexing) has been promoted from Type A to Type B because

its 4 slots are insufficient to directly house the 6 key-value pairs that Hprimary has hashed

there: 35, 18, 22, 7, 23, and 4. Because there is insufficient space to house 7, 23, and 4

directly in Bucket 2, they are remapped with hash functions R7, R2, and R5, respectively,

and the function IDs are stored directly in the remap entry array at the indices referenced

by Htag(7) = 0, Htag(23) = 3, and Htag(3) = 2. If we contrast the Horton table and the

associated cuckoo hash table, we find that, of the shown buckets, the Horton table has

a lookup cost of 1 for elements 8, 5, 33, 15, 2, 35, 18, 22, and 37 and a lookup cost of

2 for 7, 23, and 4, which averages out to 1.25. By contrast the bucketized cuckoo hash

table has an expected lookup cost of 1.5 [90, 255] or 2.0 [153, 203], depending on the

implementation.
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Figure 5.4. Horton table lookups. KNF and REA are abbreviations for key not found
and remap entry array.

5.4 Algorithms

In this section, we describe the algorithms that we use to look up, insert, and

delete elements in Horton tables. We begin each subsection by detailing the functional

components of the algorithms and then, where relevant, briefly outline how each algorithm

can be efficiently implemented using SIMD instructions.

5.4.1 Lookup Operation

Our lookup algorithm (Figure 5.4) works as follows. 1 Given a key K, we

first compute Hprimary(K), which gives us the index of K’s primary bucket. 2 We next

examine the first S− isTypeB() slots of the bucket, where isTypeB() returns 1 if Bucket

x is Type B and 0 if it is Type A by checking the bucket’s most significant bit. 3 If the

key is found, we return the value. In the case that the key is not found and the bucket is

Type A, then the element cannot appear in any other bucket, and so we can declare the

key not found.
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Figure 5.5. Common execution path for secondary inserts. REA is an abbreviation of
remap entry array.

4 If, however, the bucket is Type B, then we must examine the remap entry array

when the item is not found in the first S−1 slots of K’s primary bucket (Bucket x). We

first compute Htag(K) to determine the index into the remap entry array (shown as t = 14

in the figure). 5 If the value at that slot is 0, which signifies empty, then we declare the

key not found because the key cannot appear in any other bucket. However, if the remap

entry is set, then 6 we evaluate the secondary function Ri specified by the remap entry

(R3 in Figure 5.4) on a combination of the primary bucket and remap entry index (see

Section 5.4.3) to get the index of the secondary bucket (Bucket w). We then compare K

to the first S− isTypeB() elements of w. 7 If we get a match, then we return it. If we do

not get a match, then because an element is never found outside of its primary bucket or

the secondary bucket specified by its remap entry, then we declare the key not found. It

cannot be anywhere else.

5.4.2 SIMD Implementation of Lookups

Our approach leverages bulk processing of lookups and takes a large array of keys

as input and writes out a corresponding array of retrieved values as output. We implement

a modified version of Zhang et al.’s lookup algorithm [255], which virtualizes the SIMD

unit into groups of S lanes (akin to simple cores that coexecute the same instruction

stream) and assigns each group a different bucket to process. When an element is found in

the first S− isTypeB() slots, we write the value out to an in-cache buffer. For the minority
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of lookups where more processing is necessary, e.g. computing the tag hash, indexing

into the remap entry array, computing the secondary hash function, and searching the

secondary bucket, we maintain a series of additional in-cache buffers where we enqueue

work corresponding to these less frequent execution paths. When there is a SIMD unit’s

worth of work in a buffer, we dequeue that work and process it. Once a cache line worth

of contiguous values have been retrieved from the hash table, we write those values back

to memory in a single memory transaction.7

5.4.3 Insertion Operation

The primary goal of the insertion algorithm is to practically guarantee that lookups

remain as fast as possible as the table’s load factor increases. To accomplish this, we

enforce at all levels the following guidelines:

1. Secondary items never displace primary items.

2. Primary items may displace both primary and secondary items.

3. When inserting into a full Type A bucket, only convert it to Type B if a secondary

item in it cannot be remapped to another bucket to free up a slot.8

These guidelines ensure that as many buckets as possible remain Type A, which is

important because converting a bucket from Type A to Type B can have a cascading

effect: both the evicted element from the converted slot and the element that caused

the conversion may map to other buckets and force them to convert to Type B as well.

Further, Type B buckets house fewer elements, so they decrease the maximum load factor

of the table and increase the expected lookup cost.

7A simpler algorithm can be used when S is a multiple of the number of lanes, as all lanes within a
SIMD unit process the same bucket.

8An item’s primacy can be detected by evaluating Hprimary on its key. If the output matches the index
where it is stored, then it is primary.
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Figure 5.6. Steps for converting from Type A to Type B. REA is an abbreviation of
remap entry array.

Primary Inserts

Given a key-value pair KV to insert into the table, if the primary bucket has a

spare slot, then insertion can proceed by assigning that spare slot to KV . Spare slots

can occur in Type A buckets as well as Type B buckets where a slot has been freed due

to a deletion, assuming that Type B buckets do not atomically pull items back in from

remap entries when slots become available. For the primary hash function, we use one of

Jenkins’ hash functions that operates on 32-bit inputs and produces 32-bit outputs [121].

The input to the function is the key, and we mod the output by the number of buckets to

select a bucket to map the key to.

In the case where the bucket is full, we do not immediately attempt to insert

KV into one of its secondary buckets but first search the bucket for secondary elements.

If we find a secondary element KV ′ that can be remapped without displacing primary

elements in other buckets, then we swap KV with KV ′ and rehash KV ′ to another bucket.

Otherwise, we perform a secondary insert (see Sections 5.4.3, 5.4.3, and 5.4.3).

Secondary Inserts

We make a secondary insert when the item that we want to insert, KV = (K,V ),

hashes to a bucket that is full and in which all items already stored in the bucket are

primary. Most of the time, secondary inserts occur when an element’s primary bucket
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has already been converted to Type B (see Section 5.4.3 and Figure 5.6 for the steps for

converting from Type A to B); Figure 5.5 shows the most common execution path for a

secondary insert.

1 We first determine that a primary insert is not possible. 2 We then compute

the tag hash function on the key. If the remap entry at index Htag(K) is not set, we

proceed to step 3 . Otherwise, we follow the remap entry collision management scheme

presented in Section 5.4.3 and Figure 5.7. 3 At this point, we need to find a free cell in

which to place KV . We check each candidate bucket referenced by the secondary hash

functions R1 through R7, and we place the remapped element in the bucket with least

load, Bucket y in Figure 5.5. Alternatively, we could have placed KV into the candidate

bucket with the first free slot – we chose the load-balancing approach because it reduced

the prevalence of expensive cuckoo chains for relocating elements. 4 Lastly, we update

the remap entry to indicate which secondary hash function was used. In this example, R3

was used and Htag on K evaluated to 12, so we write 3 in the 12th slot of the remap entry

array of x, KV ’s primary bucket.

Conversion from Type A to Type B

Figure 5.6 shows the series of steps involved for converting a bucket from Type A

to Type B. 1 – 2 If there are no secondary elements that can be displaced in the primary

bucket, then the bucket evicts one of the items (h) to make room for the remap entry

array, 3 – 5 rehashes it to another bucket, and 6 – 7 then proceeds by rehashing the

element that triggered the conversion. As in the algorithm in Section 5.4.3, we attempt to

relocate both items to their least loaded candidate buckets. 8 – 10 Once moved, the

numerical identifier of each secondary hash function that remapped each of the two items

(KV and h) is stored in the remap entry array of the primary bucket at the index described

by Htag of each key.
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Remap Entry Collision Management

A major challenge of the remap entry approach is when two or more items that

require remapping map to the same remap entry. Such collisions can be accommodated

if all items that share a remap entry are made to use the same secondary hash function.

However, if the shared secondary hash function takes the key as input, it will normally

map each of the conflicting items to a different bucket. While this property poses no

great challenge for lookups or insertions, it makes deletions of remap entries challenging

because without recording that a remap entry is shared, we would not know whether

another item is still referenced by it. Rather than associating a counter with each remap

entry to count collisions as is done in counting Bloom filters [56, 91], we instead modify

the secondary hash function so that items that share a remap entry map to the same

secondary bucket. Since they share the same secondary bucket, we can check if it is

safe to delete a remap entry on deletion of an element KV that the entry references by

computing the primary hash function on each element in KV ’s secondary bucket. If none

of the computed hashes reference KV ’s primary bucket for any of the elements that share

KV ’s secondary bucket, then the remap entry can be deleted.

To guarantee that items that share remap entries hash to the same secondary

bucket, we hash on a combination of the primary bucket index and the implicit tag as

computed by Htag(key). Since this tuple uniquely identifies the location of each remap

entry, we can create a one-to-one function from tuples to unique secondary hash function

inputs, shown in Equation 5.1, where i is a number that uniquely identifies each secondary

hash function and which ranges from 1 to 2k−1 for k-bit remap entries (e.g. R3 is the

third secondary function out of 7 when k is 3), HL1 and HL2 are hash functions, ksec is the

secondary key derived from the tuple, and n is the number of remap entries per remap
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entry array. The uniqueness of these tuples as inputs is important for reducing collisions.

Ri(ksec) = (HL1(ksec) +HL2(ksec, i)) % Total Buckets

where ksec(bucket index, tag) = bucket index∗n + tag
(5.1)

By modifying the characteristics of HL1 and HL2, we are able to emulate different hashing

schemes. We employ modified double hashing by using Jenkins’ hash [121] for HL1 and

Equation 5.2 for HL2 where KT is a table of 8 prime numbers. We found this approach

preferable because it makes it inexpensive to compute all of the secondary hash functions,

reduces clustering compared to implementing HL2 as linear probing from HL1, and, as

Mitzenmacher proved, there is no penalty to bucket load distribution versus fully random

hashing [174].

HL2(ksec, i) = KT [ksec%8] ∗ i (5.2)

Sometimes the secondary bucket cannot accommodate additional elements that

share the remap entry array. If so, we swap the item that we want to insert with another

element from its primary bucket that can be rehashed. Because both elements in the swap

are primary elements, this swap does not adversely affect the lookup rate.

Figure 5.7 presents a visual depiction of a remap entry collision during insertion

that is resolved by having the new item map to the same bucket as the other items

referenced by the remap entry. It continues from the example in Figure 5.6 and follows

with inserting a new item KV ′. 1 When inserting KV ′, we first check for a free slot

or an element that can be evicted from Bucket x because it is a secondary item when

in x. 2 If no such item exists, then we begin the process of remapping KV ′ to another

bucket. 3 We first check the remap entry, and if it is set, 4 we proceed to the bucket it

references, z in Figure 5.7. 5 We check for a free slot or a secondary item in z that can

be displaced. If it is the former, we immediately insert KV ′. Otherwise, we recursively
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Figure 5.7. Resolution of a remap entry collision

evict elements until a free slot is found within a certain search tree height. Most of the

time, this method works, but when it does not, we resort to swapping KV ′ with another

element in its primary bucket that can be recursively remapped to a secondary bucket.

5.4.4 Deletion Operation

Deletions proceed by first calculating Hprimary on the key. If an item is found in

the primary bucket with that key, that item is deleted. However, if it is not found in the

primary bucket, and the bucket is Type B, then we check to see whether the remap entry

is set. If it is, then we calculate the secondary bucket index and examine the secondary

bucket. If an item with a matching key is found, then we delete that item. To determine

whether we can delete the remap entry, we check to see if additional elements in the

secondary bucket have the same primary bucket as the deleted element. If none do, we

remove the remap entry.
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Repatriation of Remapped Items

On deletions, slots that were previously occupied become free. In Type A buckets,

there is no difference in terms of lookups regardless of how many slots are free. However,

with Type B buckets, if a slot becomes free, that presents a performance opportunity

to move a remapped item back into its primary bucket, reducing its lookup cost from

2 to 1 buckets. Similarly, if a Type B bucket has a combined total of fewer than S+1

items stored in its slots or remapped via its remap entries, it can be upgraded to a Type A

bucket, which allows one more item to be stored and accessed with a single lookup in the

hash table. Continual repatriation of items is necessary for workloads with many deletes

to maximize lookup throughput and the achievable load factor. Determining when best

to perform this repatriation, either via an eager or lazy heuristic, is future work.

5.5 Feasibility and Cost Analysis

In this section, we investigate the feasibility of using remap entries, the associated

costs in terms of storage overhead, and the expected cost of both positive and negative

hash table lookups.

5.5.1 Modeling Collisions

One of the most important considerations when constructing a Horton table is

that each bucket should be able to track all items that initially hash to it using the primary

hash function Hprimary. In particular, given a hash table with BT buckets and n inserted

items, we want to be able to compute the expected number of buckets that have exactly x

elements hash to them, for each value of x from 0 to n inclusive. By devising a model that

captures this information, we can determine how many remap entries are necessary to

facilitate the remapping and tracking of all secondary items that overflow their respective

primary buckets.
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Figure 5.8. Histogram of the number of buckets to which Hprimary assigns differing
amounts of load in elements for two load factors. Curves represent instantiations of
Equation 5.3 and bars correspond to simulation.

If we assume that Hprimary is a permutation (i.e., it is invertible and the domain

is the codomain), and that it maps elements to bins in a fashion that is largely indistin-

guishable from sampling a uniform random distribution, then given a selection of random

keys and a given table size, we can precisely compute the expected number of buckets

to which Hprimary maps exactly x key-value pairs by using a Poisson distribution based

model [122]. The expected number of buckets with precisely x such elements, Bx, is

given by Equation 5.3.

Bx(λ ,x) = Total Buckets ∗ P(λ ,x)

where P(λ ,x) =
e−λ λ x

x!

where λ = Load Factor ∗ Slots Per Bucket

i.e., λ =
Elements Inserted

Total Buckets

(5.3)

The parameter λ is the mean of the distribution. Given a load factor, the average

number of items that map to a bucket is the product of the load factor and the slots per
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bucket. Figure 5.8 coplots the results of a bucketized hash table simulation with results

predicted by the analytical model given a hash table with 222 8-slot buckets. In our

simulation, we created n unique keys in the range [0, 232−1] using a 32-bit Mersenne

Twister pseudorandom number generator [168] and maintained a histogram of counts of

buckets with differing numbers of collisions. We found little to no variation in results

with different commonly utilized hash functions (e.g., CityHash, SpookyHash, Lookup3,

Wang’s Hash, and FNV [99, 121, 188]). Therefore, we show only the results using one

of Jenkins’ functions that maps 32-bit keys to 32-bit values. Figure 5.8 shows a close

correlation between the simulation results and Equation 5.3 for two load factors. Bars

correspond to simulation results and curves to Equation 5.3. In each case, the model very

closely tracks the simulation.

A high-level conclusion of the model is that with billions of keys and 8-slot

buckets, there is a non-trivial probability that a very small subset of buckets will have on

the order of 30 keys hash to them. This analysis informs our decision to use 21 remap

entries per remap entry array and also the need to allow multiple key-value pairs to share

each remap entry in order to reduce the number of remap entries that are necessary per

bucket.

5.5.2 Modeling Remap Entry Storage Costs

In our hash table design, each promoted bucket trades one slot for a series of

remap entries. To understand the total cost of remap entries, we need to calculate what

percentage of buckets are Type A and Type B, respectively. For any hash table with S

slots per bucket, Type A buckets have no additional storage cost, and so they do not

factor into the storage overhead. Type B buckets on the other hand convert one of their S

slots, i.e. 1/S of their usable storage, into a series of remap entries. Thus the expected

space used by remap entries Ore, on a scale of 0 (no remap entries) to 1 (entire table is
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Figure 5.9. Expected percentage of hash table storage that goes to remap entries as the
load factor is varied

remap entries), is the product of the fraction of Type B buckets and the consumed space

1/S (see Equation 5.4). For simplicity, we assume that each item that overflows a Type

B bucket is remappable to a Type A bucket and that these remaps do not cause Type A

buckets to become Type B buckets. This approximation is reasonable for two reasons.

First, many hash functions can be used to remap items, and second, secondary items are

evicted and hashed yet again, when feasible, if they prevent an item from being inserted

with the primary hash function Hprimary.

Ore =
1
S

n

∑
x=S+1

P(λ ,x) (5.4)

Figure 5.9 shows the expected percentage of hash table storage that goes to remap

entries when varying the number of slots per bucket as well as the load factor. As the

remap entries occupy space, the expected maximum load factor is strictly less than or
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equal to 1−Ore. We see that neither 1 slot nor 2 slots per bucket is a viable option if we

want to achieve load factors exceeding 90%. Solving for the expected bound on the load

factor, we find that 4-, 8-, and 16-slot hash tables are likely to achieve load factors that

exceed 91, 95, and 96%, respectively, provided that the remaining space not consumed

by remap entries can be almost entirely filled.

5.5.3 Modeling Lookups

The expected average cost of a positive lookup is dependent on the percentage of

items that are first-level lookups, the percentage of items that are second-level lookups,

and the associated cost of accessing remapped and non-remapped items. For a bucket

with S slots, if x > S elements map to that bucket, x − S +1 elements will need to be

remapped, as one of those slots now contains remap entries. In the case where x ≤ S,

no elements need to be remapped from that bucket. The fraction of items that require

remapping, Iremap, is given by Equation 5.5, and the fraction that do not, Iprimary, is given

by Equation 5.6. As stated previously, lookups that use Hprimary require searching one

bucket, and lookups that make use of remap entries require searching two. Using this

intuition, we combine Equations 5.5 and 5.6 to generate the expected positive lookup

cost given by Equation 5.7. Since Iprimary is a probability, and 1 − Iremap is equivalent

to Iprimary, we can simplify the positive lookup cost to 1 plus the expected fraction of

lookups that are secondary. Intuitively, Equation 5.7 makes sense: 100% of lookups need

to access the primary bucket. It is only when the item has been remapped that a second

bucket needs to be searched.

Iremap =
∑

n
x=S+1(x −S +1)∗P(λ ,x)

λ
(5.5)

Iprimary =
∑

S
x=1(x)∗P(λ ,x)+∑

n
x=S+1(S−1)∗P(λ ,x)

λ
(5.6)
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Positive Lookup Cost = Iprimary +2Iremap

= 1 + Iremap

(5.7)

Figure 5.10 shows the expected positive lookup cost in buckets for 1-, 2-, 4-,

8-, and 16-slot bucket designs. Like before, buckets with more slots are better able to

tolerate collisions. Therefore, as the number of slots per bucket increases for a fixed load

factor, so does the ratio of Type A buckets to total buckets, which reduces the number of

second-level lookups due to not needing to dereference a remap entry. In the 1- and 2-slot

bucket cases, the benefit of remap entries is less pronounced but is still present. For the

1-slot case, there is a point at LF = 0.70 where we expect a baseline bucketized cuckoo

hash table to touch fewer buckets. However, this scenario is not a fair comparison as, for

a baseline BCHT with 1-slot buckets and two functions, the expected load factor does not

reach 70%. To reach that threshold, many more hash functions would have to be used,

increasing the number of buckets that must be searched. For the 4-, 8-, and 16-slot cases,

we observe that the expected lookup cost is under 1.1 buckets for hash tables that are

up to 60% full, and that even when approaching the maximum expected load factor, the

expected lookup cost is less than 1.3 buckets. In the 8-slot and 16-slot cases, the expected

costs at a load factor of 0.95 are 1.18 and 1.1 buckets, which represents a reduced cost of

21% and 27%, respectively, over the baseline.

The cost of a negative lookup follows similar reasoning. On a negative lookup,

the secondary bucket is only searched on a false positive tag match in a remap entry. The

expected proportion of negative lookups that exhibit tag aliasing, Ialias, is the product of

the fraction of Type B buckets and the mean fraction of the tag space that is utilized per

Type B bucket (Equation 5.8). In the implicit tag scheme, for a 64-bit remap entry array

with 21 3-bit entries, the tag space is defined as the set {i ∈N| 0≤ i≤ 20} and has a tag
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Figure 5.10. The expected buckets accessed per positive lookup in a Horton table vs. a
baseline BCHT that uses two hash functions

space cardinality, call it Ctag, of 21. Alternatively, with explicit t-bit tags, Ctag would be

2t minus any reserved values for designating states such as empty. For our model, we

assume that there is a one-to-one mapping between remapped items and remap entries

(i.e., each remap entry can only remap a single item). We further assume that conflicts

where multiple items map to the same remap entry can be mitigated with high probability

by swapping the element that would have mapped to an existing remap entry with an item

stored in one of the slots that does not map to an existing remap entry, then rehashing the

evicted element, and finally initializing the associated remap entry. These assumptions

allow for at most S−1+Ctag elements to be stored in or remapped from a Type B bucket.

Ialias =
∑

S−1+Ctag
x=S+1 ((x −S +1) ∗ P(λ ,x))

Ctag
(5.8)
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Negative Lookup Cost = Ino alias + 2Ialias

= 1 + Ialias

(5.9)

Like before, we can simplify Equation 5.9 by observing that all lookups need

to search at least one bucket, and it is only on a tag alias that we search a second one.

Because secondary buckets are in the minority and the number of remapped items per

secondary bucket is often small relative to the tag space cardinality, the alias rate given in

Equation 5.8 is often quite small, meaning that negative lookups have a cost close to 1.0

buckets.

In Figure 5.11, we plot the expected negative lookup cost for differing numbers

of slots per bucket under progressively higher load factors with a tag space cardinality

of 21. In contrast to positive lookups, adding more slots has a tradeoff. At low load

factors, a table with more slots has a smaller proportion of elements that overflow and

less Type B buckets, which reduces the alias rate. However, once the buckets become

fuller, having more slots means that buckets have a greater propensity to have more items

that need to be remapped, which increases the number of remap entries that are utilized.

However, despite these trends, we observe that for 1-, 2-, 4-, 8-, and 16-slot buckets,

aliases occur less than 8% of the time under feasible load factors, yielding an expected,

worst-case, negative lookup cost of 1.08 buckets. Thus we expect Horton tables to reduce

data movement on negative lookups by 46 to 50% versus an f = 2 BCHT.

5.6 Experimental Methodology

We run our experiments on a machine with a 4-core AMD A10-7850K with

32GB of DDR3 and an AMD RadeonTM R9-290X GPU with a peak memory bandwidth
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Figure 5.11. The expected buckets accessed per negative lookup in a Horton table vs. a
baseline BCHT that uses two hash functions

of 320 GB/s and 4GB of GDDR5. The L2 cache of the GPU is 1 MiB, and each of the 44

compute units has 16 KiB of L1 cache. Our system runs Ubuntu 14.04LTS with kernel

version 3.16. Results for performance metrics are obtained by aggregating data from

AMD’s CodeXL, a publicly available tool that permits collecting high-level performance

counters on GPUs when running OpenCLTM programs.

For the performance evaluation, we compare the lookup throughput of the load-

balanced baseline, first-fit, and Horton tables. Our baseline implementation is most

similar to Mega-KV [255], with the greatest difference being that we only use a single

hash table rather than multiple independent partitions and use Jenkins’ hash functions.

Insertions and deletions are implemented in C and run on the CPU. As our focus

is on read-dominated workloads, we assume that insertion and deletion costs can largely

be amortized and do not implement parallel versions. For each of the hash table variants,

lookup routines are implemented in OpenCL [219] and run on the GPU, with each

implementation independently autotuned for fairness of comparison. Toggled parameters
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include variable loop unrolling, the number of threads assigned to each compute unit,

and the number of key-value pairs assigned to each group of threads to process. When

presenting performance numbers, we do not count data transfer cost over PCIe because

near-future integrated GPUs will have high-bandwidth, low-latency access to system

memory without such overheads. This approach mirrors that of Polychroniou et al. [190]

on the Xeon Phi [73].

As part of our evaluation, we validate the models presented in Section 5.5. We

calculate the remap entry storage cost and lookup cost per item in terms of buckets by

building the hash table and measuring its composition. Unless indicated elsewhere, we

use 32-bit keys and values, 8-slot buckets and remap entry arrays with 21 3-bit entries.

The probing array that we use for key-value lookups is 1 GiB in size. All evaluated hash

tables are less than or equal to 512 MiB due to memory allocation limitations of the

GPU; however, we confirmed that we were able to build heavily-loaded Horton tables

with more than 2 billion elements without issue.

Keys and values for the table and the probing array are generated in the full 32-bit

unsigned integer range using C++’s STL Mersenne Twister random integer generator that

samples a pseudo-random uniform distribution [168]. We are careful to avoid inserting

duplicate keys into the table, as that reduces the effective load factor by inducing entry

overwrites rather than storing additional content. Since the probing array contains more

keys than there are elements in the hash table, most keys appear multiple times in the

probing array. We ensure that all such repeat keys appear far enough from one another

such that they do not increase the temporal or spatial locality of accesses to the hash table.

This approach is necessary to precisely lower bound the throughput of each algorithm for

a given hash table size.
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5.7 Results
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Figure 5.12. Comparison of BCHTs with a Horton table (load factor = 0.9 and 100% of
queried keys found in table)
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Figure 5.13. Comparison of BCHTs with a Horton table (load factor = 0.9 and 0% of
queried keys found in table)

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
t R

em
ap

 E
nt

rie
s Model

Implementation

(a) Remap entry storage cost

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ck

et
s 

Ac
ce

ss
ed

 P
er

 L
oo

ku
p

Model
Implementation

(b) Positive lookup cost

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ck

et
s 

Ac
ce

ss
ed

 P
er

 L
oo

ku
p

Model
Implementation

(c) Negative lookup cost

Figure 5.14. Validation of our models on an 8 MiB Horton table

In this section, we validate our models and present performance results. Fig-

ures 5.12a and 5.12b compare the lookup throughput and data movement (as seen by
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the global memory) between the load-balancing baseline (Section 5.2.3), BCHT with

first-fit insert heuristic (Section 5.2.3) and Horton tables (Section 5.3) for tables from 16

KiB to 512 MiB in size. We see that Horton tables increase throughput over the baseline

by 17 to 35% when all of the queried keys are in the table. In addition, they are faster

than a first-fit approach, as Horton tables enforce primacy (Section 5.4.3, Guideline 1) on

remapping of elements whereas first-fit does not. This discrepancy is most evident from

512 KiB to 8 MiB, where Horton tables are up to 29% faster than first-fit BCHTs.

These performance wins are directly proportional to the data movement saved.

Initially, there is no sizeable difference in the measured data movement cost between the

baseline, first-fit, and Horton tables, as the hash tables entirely fit in cache. Instead, the

bottleneck to performance is the cache bandwidth. However, at around 1 MiB, the size at

which the table’s capacity is equal to the size of the last level cache (L2), the table is no

longer fully cacheable in L2, and so it is at this point that the disparity in data movement

between the three approaches becomes visible at the off-chip memory.

Figures 5.13a and 5.13b show the opposite extreme where none of the queried

keys are in the table. In this case, Horton tables increase throughput by 73 to 89% over

the baseline and first-fit methods because, unlike a BCHT, Horton tables can satisfy most

negative searches with one bucket access. These results and those for positive lookups

from Figures 5.12a and 5.12b align very closely with the reduction in data movement

that we measured with performance counters. For a workload consisting entirely of

positive lookups, baseline BCHTs access 30% more cache lines than Horton tables.

At the opposite extreme, for a workload of entirely negative lookups, both first-fit and

baseline BCHTs access 90% more hash table cache lines than Horton tables.

If we examine the total data movement, we find that both our BCHT and Horton

table implementations move an amount of data close to what our models project. At a

load factor of 0.9, our model predicts 1.15 and 1.05 buckets accessed per positive and
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negative query, respectively. Since cache lines are 64 bytes, this cost corresponds to 74

and 67 bytes per query worth of data movement. On top of that, for each lookup query

we have an additional 8 bytes of data movement for loading the 4-byte query key and 4

bytes for storing the retrieved value, which puts our total positive and negative lookup

costs at 82 and 75 bytes, respectively. These numbers are within 10% of the total data

movement that we observe in Figures 5.12b and 5.13b once the hash table is much larger

than the size of the last-level cache. Similarly, we found that our models’ data movement

estimates for BCHTs were within similar margins of our empirical results.

Figures 5.14a, 5.14b, and 5.14c show that each of our models accurately capture

the characteristics of our implementation. On average, our table requires fewer than

1.15 bucket lookups for positive lookups and fewer than 1.05 for negative lookups

at a load factor of 0.9, and both have a cost of essentially 1.0 up to a load factor of

0.55. These results are a dramatic improvement over the current state of practice and

validate the soundness of our algorithms to achieve high load factors without measurably

compromising on the percentage of primary lookups.

5.8 Related Work

There has been a long evolution in hash tables. Two pieces of work that share

commonality with our own are the cuckoo filter [89] and MemC3 [90]. MemC3 is a

fast, concurrent alternative to Memcached [96] that uses a bucketized hash table to index

data, with entries that consist of (1) tags and (2) pointers to objects that house the full

key, value, and additional metadata. For them, the tag serves two primary functions:

(1) to avoid polluting the cache with long keys on most negative lookups and (2) to

allow variable-length keys. Tags are never used to avoid bringing additional buckets

into cache. If the element is not found in the first bucket, the second bucket is always

searched. Similarly, the cuckoo filter is also an f = 2 function, 4-slot bucketized cuckoo
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hash set that is designed to be an alternative to Bloom filters [52] that is cache friendly

and supports deletions.

Another related work is Stadium Hashing [134]. Their focus is to have a fast hash

table where the keys are stored on the GPU and the values in the CPU’s memory. Unlike

us they use a non-bucketized hash table with double hashing and prime capacity. They

employ an auxiliary data structure known as a ticket board to filter requests between

the CPU and GPU and also to permit concurrent put and get requests to the same table.

Barber et al. use a similar bitmap structure to implement two compressed hash table

variants [41].

The BCHT [87] combines cuckoo hashing and bucketization [98, 185, 186].

Another improvement to cuckoo hashing is by way of a stash—a small, software victim

cache for evicted items [138].

Other forms of open addressing are also prevalent. Quadratic hashing, double

hashing, Robin Hood hashing [68], and linear probing are other commonly used open

addressing techniques [76]. Hopscotch hashing attempts to move keys to a preferred

neighborhood of the table by displacing others [114]. It maintains a per-slot hop informa-

tion field that is often several bits in length that tracks element displacements to nearby

cells. By contrast, Horton tables only create remap entries when buckets exceed their

baseline capacity.

Other work raises the throughput of concurrent hash tables by using lock free

approaches [172,228,229] or fine-grain spinlocks [153]. Additional approaches attempt to

fuse or use other data structures in tandem with hash tables to enable faster lookups [154,

198, 217].

In application, hash tables find themselves used in a wide of variety of data

warehousing and processing applications. A number of in-memory key-value stores

employ hash tables [90, 96, 115, 181, 255], and others accelerate key lookups by locating
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the hash table on the GPU [115, 116, 255]. Early GPU hash tables have been primarily

developed for accelerating applications in databases, graphics and computer vision [26,

27, 100, 142, 151]. In in-memory databases, there has been significant effort spent on

optimizing hash tables due to their use in hash join algorithms on CPUs [39,40,50,54,190],

coupled CPU-GPU systems [109, 111, 128], and the Xeon Phi [123, 190].

This work on high-performance hash tables is complementary to additional

research efforts that attempt to retool other indexes such as trees to take better advantage

of system resources and new and emerging hardware [152, 155, 162, 246].

5.9 Conclusion

This chapter presents the Horton table, an enhanced bucketized cuckoo hash table

that achieves higher throughput by reducing the number of hardware cache lines that are

accessed per lookup. It uses a single function to hash most elements and can therefore

retrieve most items by accessing a single bucket, and thus a single cache line. Similarly,

most negative lookups can also be satisfied by accessing one cache line. These low

access costs are enabled by remap entries: sparingly allocated, in-bucket records that

enable both cache and off-chip memory bandwidth to be used much more efficiently.

Accordingly, Horton tables increase throughput for positive and negative lookups by as

much as 35% and 89%, respectively. Best of all, these improvements do not sacrifice the

other attractive traits of baseline BCHTs: worst-case lookup costs of 2 buckets and load

factors that exceed 95%.
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Chapter 6

Concluding Remarks

In this dissertation, we explore several key problems within the domain of ac-

curately measuring and improving application performance and energy efficiency for

today’s often memory-limited multicore systems. We demonstrated that this domain

presents a number of challenges but also that relatively simple solutions can yield modest

to large performance and energy improvements.

Chapter 2 explores the performance and energy efficiency opportunities afforded

by investigating two alternate policies for mapping large, distributed supercomputer

applications to compute nodes. The first, job spreading, explored undersubscribing

compute nodes as a way to reduce memory subsystem contention. When undersubscribing

compute nodes by a factor of 2, some applications run more than 2x faster. For them,

using more nodes for a fixed number of processes is more cost effective for the user

than requesting the minimum number of compute nodes necessary to assign one MPI

task to each core. The second, job striping, builds on the intuition behind job spreading

by scheduling pairs of applications on a shared set of servers, with each application

receiving half of the cores per socket. Job striping yields most of the per-application

performance improvements of job spreading but requires only half as many machines

to process both jobs concurrently. On real-world scientific applications at a scale of

128 machines, job striping improves throughput and reduce energy by 12% and 11%,
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respectively. These figures are significant because 12% more jobs can be processed on

the same infrastructure for the same budget. Alternatively, a smaller system could be

bought to run the same load, which would reduce cost and allow for more systems to be

built.

Chapter 3 examines one of the practical implications of transitioning to employing

job striping on a supercomputer, which is how to fairly handle accounting of applica-

tions that share compute nodes. Because co-located applications have threads that can

contend for the same scarce memory subsystem, network, and IO resources, co-located

applications affect one another’s run time. Depending on the co-located jobs and the

types of resource sensitivities that each job possesses coupled with the types of resource

demands that their partners make, run time for a job can be markedly different. This

disparity in run time requires revamping the default job pricing system that bills users

proportionally to application run time. Otherwise jobs that are particularly sensitive

to resource contention pay comparatively more than peers that are not. Further, the

potential variability in job pricing makes it difficult for a scientist to properly budget

their limited pool of credits. To combat these challenges, we propose and implement a

prototype runtime system that dynamically determines contention between co-running

applications that share a node. These degradation estimates then served as inputs to a

revised accounting scheme that achieves greater fairness by discounting users when their

jobs suffer degradation. This system shows it is indeed possible to support fair pricing in

environments where jobs are co-located.

Chapter 4 shifts focus to combating memory subsystem contention for GPU-

accelerated databases. We focus on GPUs due to their continued strong performance

scaling and because their high memory bandwidth and ability to hide memory latency

through hardware multithreading aligns well with the data-intensive nature of analytical

database workloads. However, even a GPU is comparatively bandwidth-limited compared
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to its peak compute capability, and so we pose a simple question: can a GPU even use all

of its parallel capability productively on database workloads, and if not, how much can

query latency and energy be reduced through disabling whole compute units? What we

found is that when all compute units are active, many of the TPC-H queries experience

last level cache hit ratios below 20%. However, as compute units are disabled, these

figures drastically improve due to fewer threads actively contending for the last level

cache. By optimally disabling compute units at the query granularity, query run time and

energy use reduce by as much as 24% and 42%, respectively, without modifying existing

database code. On the whole, there is a large potential to save energy in this manner on

systems with GPUs and coupling this technique with other methods will yield further

opportunities for improving performance and reducing energy use.

Chapter 5 proposes the Horton table, a novel hash table design that is specifically

tailored to make efficient use of cache and memory bandwidth. The study in Chapter 4

demonstrates that for several of the queries, the majority of time on the GPU is spent

executing kernels that operate on hash tables. This concurs with prior work that demon-

strates that high-performance hash tables are necessary for a fast, OLAP query processing

system, because of their breadth of time-intensive uses. They employed both in joins

and grouping operations, each of which typically consume a considerable portion of

query processing time. At the same time, large data workloads often employ hash tables

that are many times larger than the last level cache, and thus most table lookups require

transferring cache lines over the relatively narrow memory buses from main memory.

Thus any savings in the number of unique cache lines accessed per lookup query sig-

nificantly improves the number of key-value pairs that can be retrieved from memory

per unit time. Motivated by this knowledge, we identify that the prior state-of-the-art

bucketized cuckoo hash table often accesses 1.5x to 2.0x more cache lines than should

be ideally necessary when satisfying a lookup query. The Horton table largely reduces
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this waste and improves lookup performance by as much as 1.95x.

Going forward we anticipate conducting continued work in workload management

and scheduling (Chapters 2 and 3), tuning of software parallelism on parallel computing

platforms (Chapters 2 and 4), and application-level optimizations for data movement

(Chapter 5). There is significant research that remains to be done in resolving the best way

to harness multicore systems. The recent move to multicore and the relatively nascent

support for integration of accelerators such as GPUs means that many applications

can only capture a small amount of the performance and energy efficiency provided

by today’s hardware. New operating system primitives, application libraries, runtime

systems, and computing frameworks are necessary to address the challenges facing

performance scaling in an age of increasingly diverse and complex hardware that offers a

rich set of features. We intend to remain active in this space and to continue advancing

software technologies that better enable use of computing platforms from across the

spectrum.
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[192] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J Ramanu-
jam, and P Sadayappan. Combined Iterative and Model-Driven Optimization
in an Automatic Parallelization Framework. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International Conference for. IEEE,
2010.

[193] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A. Wood.
Toward GPUs Being Mainstream in Analytic Processing: An Initial Argument
Using Simple Scan-aggregate Queries. In Proceedings of the 11th International
Workshop on Data Management on New Hardware, DaMoN’15, pages 11:1–11:8,
New York, NY, USA, 2015. ACM.

[194] MVAPICH Team. Mvapich2 1.8 user guide. http://mvapich.cse.ohio-state.edu/
support/mvapich2-1.8 user guide.pdf, 2012.

[195] K.K. Pusukuri, R. Gupta, and L.N. Bhuyan. Thread Reinforcer: Dynamically
Determining Number of Threads via OS Level Monitoring. In Workload Charac-
terization (IISWC), 2011 IEEE International Symposium on, nov. 2011.

[196] Moinuddin K Qureshi and Yale N Patt. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches.
In Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. IEEE Computer Society, 2006.

[197] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou, Kevin P
Pipe, Thomas F Wenisch, and Milo MK Martin. Computational Sprinting on a
Hardware/Software Testbed. In ACM SIGARCH Computer Architecture News,
volume 41, pages 155–166. ACM, 2013.

[198] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M Hellerstein, and Scott Shenker.
Prefix Hash Tree: An Indexing Data Structure Over Distributed Hash Tables. In
Proc. of the ACM Symp. on Principles of Distributed Computing (PODC), 2004.

[199] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. DB2 with BLU
Acceleration: So Much More Than Just a Column Store. Proc. of the VLDB
Endowment, 6(11):1080–1091, 2013.

http://mvapich.cse.ohio-state.edu/support/mvapich2-1.8_user_guide.pdf
http://mvapich.cse.ohio-state.edu/support/mvapich2-1.8_user_guide.pdf


160

[200] Rajiv Ranjan. Streaming Big Data Processing in Datacenter Clouds. IEEE Cloud
Computing, 1(1):78–83, 2014.

[201] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The Power of Two Random
Choices: A Survey of Techniques and Results. In Sanguthevar Rajasekaran,
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