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Abstract

Essays on Quantitative Marketing Theory

By

Zihao Zhou

Doctor of Philosophy in Business Administration

University of California, Berkeley

Associate Professor Yuichiro Kamada, Co-Chair

Professor J. Miguel Villas-Boas, Co-Chair

In three essays, I present my work that uses mathematical modelling to analyse real-world prob-
lems in marketing. In the first chapter, I model the design of referral programmes and offer
normative advice about improving the cost-effectiveness of a referral programme. The second
chapter is joint work with my co-advisor, Yuichiro Kamada. In this work, we construct a tractable
game-theoretic model for multiple-priority queue management. Lastly, the third chapter analy-
ses the incentives of online bloggers that post product reviews to subscribers when the reviews
may be sponsored.

Customer referrals have become an increasingly important way for firms to grow their cus-
tomer base. Likely thanks to improvements to customer relationship management software as
well as growing awareness of the potential of word-of-mouthmarketing, referral programmes are
becoming increasingly popular among firms. In the first chapter, I study the design of customer
referral programmes by constructing a stylized static principal-agent model with hidden actions,
in which a firm designs a referral programme to incentivize an existing customer to exert costly
efforts to refer the customer’s friends to the firm. In the baseline model, I find it optimal for the
firm to pay the customer if and only if every friend of the customer is successfully referred. In
a number of extensions that are important and relevant to referral programmes, although the
optimal referral contract is no longer a threshold contract, this class of contracts still plays an
important role in the optimal referral programme design. Overall, my work shows that it is cost-
effective to use or include threshold contracts to incentivize efforts.

When access to a service facility is congested, service providers commonly implement a spe-
cial type of queue called priority queue, where each person/entity in the queue has an associated
priority such that those with a higher priority will be ahead of those with a lower priority in the
queue. Previous studies into second-degree price discrimination and queue management suggest
that the firm that manages the firm that manages the park should set a large number of different
priorities in order to improve price discrimination. In the second chapter, my co-author and I con-
struct a model in which an amusement park sells different priority passes to customers in a queue
whose utilities depend on positions in the queue. A customer’s valuation of a priority pass de-
pends on the distribution of customers buying each priority pass, and hence other customers’ pur-
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chase decisions have an externality on the customer’s valuation, which differentiates our model
from the standard screening models. Through the model, we discuss the implementability of sell-
ing multiple passes for different patterns of customer utility functions. The main result of our
work is that the externality makes the implementation of multi-pass schemes difficult, an issue
that persists even when customers have heterogeneous utilities of positions in a queue.

Thanks to the popularity of internet platforms such as YouTube and TikTok, more and more
customers are turning to their favourite internet bloggers for product reviews. That the bloggers
have many subscribers that rely on their reviews for purchase decision makes bloggers a poten-
tial sales channel. This type of marketing is often called influencer marketing. To incentivize the
bloggers to help promote a firm’s product, one common incentive is for the firm to sponsor a blog-
ger’s product review by offering sales commissions for purchases by the blogger’s subscribers. In
a sponsored review, since the blogger now benefits from higher sales, the blogger has a bigger
incentive to review the product favourably, even though the blogger’s own private signal about
the product’s quality says otherwise. On the other hand, the blogger cares about the accuracy of
the review because accurate reviews attract viewership. In the third chapter, I construct a styl-
ized model that analyses the incentives of a blogger posting reviews of products with uncertain
quality on an internet platform to the blogger’s subscribers. Specifically, the blogger receives a
costless private signal about the quality of the product and then sends a review message to the
subscribers. On the one hand, the platform rewards the blogger for posting accurate reviews. On
the other hand, higher sales of the product lead to higher sales commission offered by the firm
manufacturing the product. I find that the blogger has an incentive to truthfully communicate
the received signal when the signal is informative; otherwise, the blogger has an incentive to pre-
tend to receive a favourable signal even when the realized signal is unfavourable to the product.
Under a symmetric signal structure, my model shows that the blogger has an incentive for an
honest review when the product is perceived to be mid-end.
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Chapter 1

On the Design of Referral Programmes

1.1 Introduction
Customer referrals have become an increasingly important way for firms to grow their customer
base. Kumar, Petersen, and Leone (2007) find that customers that refer new customers are the
most valuable; through field and laboratory experiments, results of Garnefeld et al. (2013) suggest
that referral programmes improve customer loyalty; Schmitt, Skiera, and Van den Bulte (2011)
show that referred customers tend to have a higher contribution margin as well as a higher re-
tention rate. Likely thanks to improvements to customer relation management software as well
as growing awareness of the potential of word-of-mouth marketing, referral programmes are
becoming increasingly popular among firms.

While exact implementations vary considerably, every referral programme can be considered
as a scheme in which a firm’s existing customer gets rewarded (monetarily or non-monetarily)
for referring new customers to the firm.1 For example, Dropbox, a large cloud file-hosting ser-
vice provider, rewards customers with more free storage for making new referrals. Helping the
company grow its customer base from about 100, 000 to four million in 15 months, Dropbox’s
referral programme has been widely touted as one of the best examples of a successful referral
programme.

Another example of referral programme comes from Pinduoduo, which is the second-largest
e-commerce company in China. The company has been incentivizing its customers to refer their
friends to the platform with discounts soon after its launch in 2015. Specifically, the company
promises to sell a product to a customer for free if that customer manages to refer enough friends
to the platform within 24 hours, and the customer would get nothing if the number of referrals
falls short of the threshold. Thanks to its referral programme, Pinduoduo was able to grow its
user base from only 10 million in 2016 to more than 600 million in 2020.

Designing a referral programme has many dimensions to consider, such as the externality
between an existing/focal customer and the customer’s friends, the number of friends an existing
customer has, and how hard the existing customer exerts efforts towards successful referrals. In

1In this paper, referral rewards, either monetary or non-monetary, are encoded by the utility of the customer. See
Jin and Huang (2014) for a comparison on the effects of monetary and non-monetary referral rewards.
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light of the complexities of designing a referral programme, I qualify the scope of this paper and
focus on the hidden action part of designing a referral programme: a customer can choose how
large efforts to put in the referral attempts. In other words, the customer’s private efforts are
assumed to have an impact on the conversion rate of the customer’s friends: preparing a detailed
and comprehensive summary such as a short demonstration of the customer’s own user experi-
ence to the customer’s friends should tend to have a higher conversion rate than just sending an
uninformative referral link.

Overall, this paper finds it cost-effective to use or include threshold contracts to incentivize
efforts. A threshold contract is a step function with respect to the number of referrals. One exam-
ple of an actual referral programme that uses a threshold contract is the one used by Pinduoduo
described earlier. The use of threshold contracts in referral programmes is popular among e-
commerce companies in China that need market share growth. For example, many companies
in the online grocery shopping sector, which is rapidly growing in China, adopt threshold-based
referral programmes.

The main result of the baseline model is that it is optimal for the firm to pay the customer
if and only if every friend of the customer’s is converted. In the meantime, the baseline model
provides a complete cost-effectiveness ordering among different threshold contracts with very
interpretable insights. While using only threshold contracts is not always optimal in a number of
important extensions that are relevant to referral programmes, the paper shows that the inclusion
of threshold contracts still plays an important part in incentivizing efforts.

To motivate this paper’s model, consider the following minimal binary-outcome example.
Suppose that it is common knowledge that an existing customer has a friend that is a potential
new customer to the firm. The firm can design a referral programme in which the customer
gets paid for bringing in the new customer. Specifically, a referral contract specifies the referral
rewards the customer gets when the friend is converted and when the friend is not. In this case,
the customer’s optimal effort level is characterized by the customer’s first-order condition, and
the firm just needs to find the profit-maximizing effort level subject to the customer’s first-order
condition.

When the number of friends that are potential new customers is more than one, however,
the analysis is not straightforward. Suppose that with a fixed effort level, each of the customer’s
friend becomes the firm’s new customer independently with the same probability. When the cus-
tomer has multiple friends, the firm’s choice set of contracts is a multi-dimensional vector space,
which can be very large. Under this more general setup, the patterns of optimal contracts are un-
clear. One form of contracts to consider is the linear contracts, in which the customer gets a fixed
additional reward for each additional referral. Focusing on linear contracts is straightforward: in
a linear contract, it can be shown that the customer’s marginal rewards is constant in efforts, and
thus the customer’s optimal effort level is characterized by the customer’s first-order condition.
The firm then just needs to solve for the profit-maximizing effort level subject to the customer’s
first-order condition. Despite the popularity and ease of analysis, with little known about the
cost-effectiveness of the much larger class of non-linear contracts, linear contracts could be sub-
optimal, which this paper’s result of highest-threshold optimality implies.

In existing literature on referral programmes, the existing customer usually has a binary effort
space: the customer decides whether to send a referral message to a friend at a fixed cost, and
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the friend gets converted with a fixed probability. In this paper, efforts affect the distribution
of referral outcomes continuously. Furthermore, most studies focus on the referral of just one
friend, whereas this paper allows for the conversions of multiple friends, which greatly expand
the consideration set of referral contracts for the firm.

Since the firm cannot observe the customer’s chosen effort level, this paper’s baseline is a
hidden-action model with finite outcomes. There are a few assumptions in the baseline model.
The first is that the customer’s number of referrable friends is common knowledge. An empirical
interpretation of this assumption is that the firm has a good picture of the customer’s social net-
work as well as the convertibility of the customer’s friends. This assumption, though unlikely to
be entirely accurate, is highly relevant in today’s world of big data and hence the assumption’s
implications are worth analysing. In an extension of the baseline model, the number of referrable
friends becomes private information of the customer, and the result of highest-threshold optimal-
ity will be shown to hold for the customer with the larger number of referrable friends.

Another assumption is that if the customer chooses effort level 𝑞, then every friend becomes a
new customer independently with probability 𝑞. Under the context of referral programmes, this
assumption means that the customer’s efforts spill over to the customer’s friends’ conversion
homogeneously and independently. One interpretation is that the customer’s referral efforts
are freely applicable to each friend’s conversion. For example, suppose that a customer is to
recommend the firm’s new gadget to the customer’s friends. After spending time and efforts
looking into the specifications of the gadget and preparing the summary of the customer’s own
user experience, the customer can present the customer’s referral preparation to the friends at
no extra cost. This assumption may not hold precisely hold in practice, i.e., different friends may
respond to the same referral efforts differently. Still, given that referral efforts for one friend
are likely to be at least partially applicable towards the referral attempt for another friend, this
assumption is a good starting point to analyse.

Lastly, the customer is assumed to have limited liability in the sense whatever the realized
referral outcome is, the firm cannot charge the customer. This assumption is reasonable under the
context of referral programmes as there are few actual referral programmes where the customer
may end up owing the firm money.

In the next section, I discuss the existing literature relevant to this paper in terms of the mod-
elling approach and the topic. Section 1.3 introduces the baseline model, followed by extensions
of the model in Section 1.4. Section 1.5 analyses the case when the number of referral friend is
private information of the existing customer. Lastly, to make the baseline model more relatable
to studies into the broader principal-agent problem, Section 1.6 provides and discusses sufficient
conditions under which the result of highest-threshold optimality still holds.

1.2 Literature Review
There has been substantial work on the study of the principal-agent problem with hidden actions.
Grossman and Hart (1983) provide a general model for this class of problems with finite outcomes.
This paper has more restrictions that are relevant to referral programmes. These new assump-
tions lead to sharper results about the patterns of optimal referral contracts. To be specific, the
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binomial distribution, the first-order approach,2 and the limited liability of customer assumption
make the highest-threshold contracts the most cost-effective form of contract.

This paper is also closely related to the study of salesforce management. Basu et al. (1985)
provide a general theoretical framework in which a firm designs a quantity-dependent contract
to induce a salesperson’s private efforts. That paper discusses the comparative statics of different
structural parameters on the shape of the optimal salesforce compensation plan. In a later paper,
Raju and V. Srinivasan (1996) restrict the attention to the class of quota-based compensation plan,
which is analogous to the class of threshold contracts in this paper. Through numerical experi-
ments, the authors show that the use of quota-based contracts leads to only small suboptimality
in comparison to the general optimal compensation scheme in Basu et al. (1985). In contrast to
these two papers, this paper has different functional assumptions that lead to sharper and more
interpretable characterizations of the firm’s optimal contract in a number of settings that are
more relevant to referral programmes than to salesforce management.

The result in the baseline model that the highest threshold contracts are optimal is also estab-
lished in Balmaceda et al. (2016) with a similar mathematical setup; Innes (1990) and Poblete and
Spulber (2012) have results of similar flavour in the sense that these two papers with their appli-
cations find it optimal to concentrate payments in extreme outcomes. In contrast to these papers
with similar highest-threshold-optimality results, the baseline model in this paper provides more
interpretable insights about the cost-effectiveness of using high-threshold contracts, which are
useful for managerial recommendation. Additionally,in doing so, the baseline model also pro-
vides a complete ordering of different threshold contracts based on cost-effectiveness. Moreover,
this paper enriches the baseline model in a number of extensions that are highly relevant and im-
portant to referral programmes. In these extensions, threshold contracts are not always optimal,
but the paper still shows that the inclusion of threshold contracts still plays an important role in
the optimal referral contract.

This paper is not the first in which the customer can have multiple friends; nor is it the first to
look into non-linear referral contracts. Lobel, Sadler, and Varshney (2017) construct a dynamic
model to study the design of referral programmes. The authors find that non-linear contracts
are useful in screening the number of referrable friends an existing customer has, whereas linear
contracts can be used to compensate customers for their effort costs. Incidentally, this paper
finds linear contracts good for compensating efforts, whereas threshold contracts are great at
incentivizing efforts. With respect to focus, Lobel, Sadler, and Varshney (2017) focus on private
information and simplifies the effort-incentivizing consideration, whereas this paper provides
a richer analysis into the effort incentivizing through a referral programme. Specifically with
respect to the modelling of hidden action, in Lobel, Sadler, and Varshney (2017), efforts are ap-
plicable to only one friend, whereas this paper assumes efforts can be freely reused towards the
conversion of other friends.

As for the topic of the referral programme, there are several theoretical studies with different
focuses. Kamada and Öry (2020) study whether referral programmes are complements or sub-
stitutes for free contracts in the presence of externalities between the existing customer and the

2There are several moral-hazard models using the first-order approach, such as Hölmstrom (1979) and Mirrlees
(1976). See Rogerson (1985) and Jewitt (1988) for some excellent discussions on sufficient conditions that make the
first-order approach valid.
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customer’s friend. The authors find that the two are complements when externalities are small
and substitutes when the externalities are significant.

Biyalogorsky, Gerstner, and Libai (2001) have a similar goal to that of Kamada and Öry (2020),
yet with a different modelling approach. That paper assumes that the customer can be made
“delighted” through direct price cuts and treats referral rewards as indirect price cuts that are
useful in preventing free-riding on the discounts. The paper shows that referral rewards become
indispensable to the firm’s profits when it is difficult to make the customer delighted through
direct price cuts.

Lastly, Leduc, Jackson, and Johari (2017) use a dynamic social learning model in which con-
nected agents infer from their neighbours’ adoption choices of the firm’s product to make their
own adoption decisions. That paper’s main result is that referral rewards can be better than
inter-temporal price discrimination in some network structures.

1.3 Baseline Model
Assume there is a firm and an existing/focal customer. I build a static model through which
the firm incentivizes the customer to refer their friends to the firm. Assume that it is common
knowledge that the customer has 𝑁 friends/leads that are potential new customers. We call
these friends referrable friends because their conversion rates can be influenced by the existing
customer’s referral efforts. Assume each customer has a fixed customer lifetime value; in other
words, the firm gets a fixed profit from each new customer, denoted by 𝜋 > 0.3

The customer can exert effort level 𝑞 ∈ [0, 1] with disutility 𝑐(𝑞) such that each of the cus-
tomer’s 𝑁 friends is going to adopt the firm’s product with probability 𝑞 independently. Assume
the cost function 𝑐(𝑞) is continuously twice differentiable with 𝑐(0) = 0, 𝑐′(𝑞) > 0, and 𝑐″(𝑞) ≥ 0
for all 𝑞 ∈ (0, 1). The actual number of converted friends is a non-negative integer-valued ran-
dom variable ranging from 0 to 𝑁 , which is denoted by 𝑀(𝑞, 𝑁 ). By setup, 𝑀(𝑞, 𝑁 ) is a random
variable following the binomial distribution with 𝑁 trials and success rate 𝑞. Let 𝐹(⋅; 𝑞, 𝑁 ) be the
cumulative density function induced by effort level 𝑞, with 𝑓 (⋅; 𝑞, 𝑁 ) being its probability mass
function for 0 ≤ 𝑛 ≤ 𝑁 .4 One economic interpretation of the effect of efforts on the number
of referrals is that efforts have an independent and stochastically homogeneous effect on the
conversions of the customer’s 𝑁 friends.

1.3.1 First Best
First look at the first-best case where 𝑞 is contractible. In this case, the referral contract between
the firm and the customer can be of the form (𝛽, 𝑞) ∈ ℝ×[0, 1], in which the firm pays the customer
reward 𝛽 and the customer chooses effort level 𝑞. Since 𝑞 is contracted, the customer accepts the

3One extended interpretation of 𝜋 , which makes the model more powerful, is that 𝜋 is the ex-ante continuation
payoff the firm gets from each new referral in a dynamic setting where the referred friends can continue to refer
more friends to the firm.

4𝑁 as a variable of a function is omitted when there is no ambiguity, such as when 𝑁 does not change in a given
context.
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contract as long as the customer’s expected utility is above reserve utility, which is normalized
to 0. Therefore, the firm solves the following constrained optimization problem:

max
𝛽∈ℝ,𝑞∈[0,1]

𝜋𝑞𝑁 − 𝛽, s.t. 𝛽 − 𝑐(𝑞) ≥ 0. (1.1)

The solution is unique and the constraint binds at the solution. Let 𝑞𝐹𝐵(𝑁 ) denote the effort
level in the solution. If 𝑞𝐹𝐵 < 1, 𝑞𝐹𝐵(𝑁 ) is implied from the customer’s first-order condition
𝑐′(𝑞𝐹𝐵(𝑁 )) = 𝜋𝑁 . For the rest of this paper, assume that in the solution to (1.1), the first-order
condition holds.

1.3.2 Second Best
Now assume that the firm cannot observe the effort level chosen by the customer. Thus the firm
and the customer cannot sign a contract on efforts. However, since the number of referrals is
contractible and the customer’s efforts affect its distribution, the firm can sign a contract with
the customer on the realized value of 𝑀(𝑞, 𝑁 ), i.e., the realized number of referrals.

A referral contract is an (𝑁 + 1)-dimensional non-negative real vector 𝑏 = (𝑏0, 𝑏1, … , 𝑏𝑁 ),
with 𝑏𝑛 being the rewards the firm gives the customer when 𝑀(𝑞, 𝑁 ) = 𝑛. Given a referral
contract 𝑏, let 𝑣(𝑏; 𝑞, 𝑁 ) = 𝐸 [𝑏𝑀(𝑞,𝑁 )] be the expected referral rewards the customer gets from
the referral contract. By the assumptions so far, 𝑣(𝑏; 𝑞, 𝑁 ) is twice continuously differentiable in 𝑏
and 𝑞. Assume the utility of the customer’s outside option to be 0.5 The customer chooses effort
level 𝑞 ∈ [0, 1] to maximize the customer’s expected utility 𝑣(𝑏; 𝑞, 𝑁 ) − 𝑐(𝑞). By the continuity
of 𝑓 (𝑛; 𝑞) and 𝑐(𝑞) in 𝑞 ∈ [0, 1] for each 𝑛, an optimal effort level exists. Given a contract 𝑏 and
effort level 𝑞, let 𝑈 (𝑏; 𝑞, 𝑁 ) = 𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) be the firm’s profit if a customer with 𝑁 referrable
friends chooses effort level 𝑞 in 𝑏. Taking into account of the customer’s response to each referral
contract, the firm designs its referral programme to maximize the firm’s expected profits:

max
𝑏∈ℝ𝑁+1,𝑞∈[0,1]

𝑈 (𝑏; 𝑞) = 𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) (1.2)

s.t. 𝑣(𝑏; 𝑞) ≥ 𝑐(𝑞), (1.2a)
𝑣(𝑏; 𝑞) − 𝑐(𝑞) ≥ 𝑣(𝑏; 𝑞′) − 𝑐(𝑞′), ∀𝑞′ ∈ [0, 1], (1.2b)
𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 , (1.2c)

where (1.2a) is the customer’s participation constraint and (1.2b) denotes the continuum of
effort-choice constraints6 that the customer must find the effort level optimal. Assumption
(1.2c) is the limited liability of customer assumption that the firm can never charge a customer
in a referral programme, which is commonly observed in actual referral programmes. Given the
optimization problem (1.2), (𝑏, 𝑞) in (1.2) is said to be feasible if (𝑏, 𝑞) satisfies all the constraints

5This assumption is non-trivial: by setting the reserve utility to 0, every non-negative contract will satisfy the
customer’s participation constraint, which plays a role in the existence of second-best contracts. See Grossman and
Hart (1983) and Innes (1990) for the role of the reserve utility.

6The definition of incentive compatibility is reserved for the case where the number of referrable friends is private
information.
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of (1.2). Given a contract 𝑏, the contract is said to be strictly profitable with respect to (1.2) if
there exists some 𝑞 such that (𝑏, 𝑞) is feasible in (1.2) and 𝑈 (𝑏; 𝑞) > 0. Contract 𝑏 is said to be
optimal if there exists 𝑞 such that (𝑏, 𝑞) solves (1.2).7

Given an effort level 𝜃 and a referral contract 𝑏, the contract 𝑏 is said to induce 𝜃 if 𝜃 is
the unique optimal effort level to the customer in 𝑏. Graphically, the stronger effort-inducing
definition ensures that 𝑣𝑞(𝑏; 𝑞) crosses 𝑐′(𝑞) only once on (0, 1) at 𝜃 and from above.

The first-order approach is used to simplify the customer’s effort-choice constraints, i.e., the
continuum of effort-choice constraints in (1.2b) is simplified to one single constraint with respect
to the customer’s first order condition. Given a contract and effort level, the first-order condi-
tion is valid if the contract induces this effort level. Mirrlees (1999) shows that in general the
first-order approach is invalid: provided that effort level at the firm’s optimum is interior, the
constraint substitution enlarges the firm’s feasible set and hence the solution to the firm’s re-
laxed optimization could differ from the actual problem. Rogerson (1985) shows that with two
assumptions, MLRP8 and the convexity of the distribution function condition (CDFC),9 the first-
order approach is valid. Conditional on that the first-order approach is valid, it can be shown
that every profit-optimal contract must be non-decreasing, i.e., 𝑏0 ≤ 𝑏1 ≤ ⋯ ≤ 𝑏𝑁 . It turns out
that the effort-induced binomial distribution has MLRP, but not CDFC.10

It can be shown that the first-order approach is valid for the class of 𝑁 -threshold contract if
the increasing marginal cost of probability (IMCP) condition defined in Balmaceda et al. (2016)
holds, which is a single-crossing property between the marginal cost function and the marginal
cumulative distribution function with respect to efforts.11

Definition 1 (IMCP). IMCP holds if 𝑐′(𝑞)
𝑓𝑞(𝑁 ;𝑞) is increasing in 𝑞 ∈ (0, 1).

One example of cost function that together with the binomial distributional assumption sat-
isfies IMCP can be found from the power cost function of the form 𝑐(𝑞) = 𝛾𝑞𝑀 for some 𝑀 > 𝑁
and large 𝛾 > 0. For the rest of the paper, assume IMCP holds.

Given a contract 𝑏 ∈ ℝ𝑁+1 and 0 < 𝑛 ≤ 𝑁 , contract 𝑏 is said to be an n-threshold contract if
0 = 𝑏0 = 𝑏1 = ⋯ = 𝑏𝑛−1 < 𝑏𝑛 = 𝑏𝑛+1 = ⋯ = 𝑏𝑁 . Since IMCP makes the first-order approach valid
for the class of 𝑁 -threshold contracts, for each interior effort level, there exists an 𝑁 -threshold
contract that induces the effort level. In fact, it turns out that whenever an 𝑁 -threshold contract
induces some effort level, for every 1 ≤ 𝑛 ≤ 𝑁 , there exists an 𝑛-threshold contract inducing the
same effort level.

Proposition 1 (Threshold effort-inducing). Fix 𝜃 ∈ (0, 1). For each 1 ≤ 𝑛 ≤ 𝑁 , if there exists an
𝑁 -threshold contract inducing 𝜃 , then there exists an 𝑛-threshold contract inducing 𝜃 .

7The definition of optimal contract or menu will change analogously with respect to the change of the firm’s
optimization problem.

8Given that 𝑓 (𝑛; 𝑞) > 0 for 𝑞 ∈ (0, 1), the effort-induced distribution is said to satisfy MLRP if
𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) is non-

decreasing in 𝑛 for 𝑞 ∈ (0, 1).
9Let ℎ(⋅) be the inverse function of the cost function 𝑐(⋅), which is well-defined since 𝑐′(𝑞) > 0 for every 𝑞 ∈ (0, 1).

The effort-induced distribution is said to satisfy CDFC if 𝐹(𝑛; ℎ(𝑥)) is convex for every 𝑥 in 𝑐([0, 1]).
10In Appendix 1.A.1, CDFC is shown not to hold with any twice differentiable convex 𝑐(⋅).
11Appendix 1.A.2 provides the result that for every target interior effort level, there exists some 𝑁 -threshold

contract that that induces the effort level.
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Proof. Fix 𝜃 ∈ (0, 1). For every 1 ≤ 𝑛 ≤ 𝑁 , given an 𝑛-threshold contract 𝑡(𝑛) ∈ ℝ𝑁+1, 𝑣𝑞(𝑡(𝑛); 𝑞) =
−𝑡𝑛(𝑛)𝐹𝑞(𝑛 − 1; 𝑞) > 0 since 𝐹𝑞(𝑛 − 1; 𝑞) < 0 by the binomial distribution assumption. Therefore,
for every 1 ≤ 𝑛 ≤ 𝑁 , there exists an 𝑛-threshold contract such that 𝑣𝑞(𝑡(𝑛); 𝜃) = 𝑐′(𝜃). It remains
to show that 𝑡(𝑛) induces 𝜃 .

Let 𝑡(𝑁 ) ∈ ℝ𝑁+1 be the 𝑁 -threshold contract inducing 𝜃 . Since the customer’s first-order
conditions hold at 𝜃 in both contracts, 𝑣𝑞(𝑡(𝑛); 𝜃) ≥ 𝑣𝑞(𝑡(𝑁 ); 𝜃) and hence

(𝑁𝑛 )𝑞
𝑛−1(1 − 𝑞)𝑁−𝑛 ≥ 𝑁𝑞𝑁−1 ⟺ ( 𝑞

1 − 𝑞) ≤
(𝑁𝑛 )
𝑁 .

The inequality on the right-hand side holds for 𝑞 = 𝜃 and strictly holds for 𝑞 ∈ (0, 𝜃). Thus
𝑣𝑞(𝑡(𝑛); 𝑞) > 𝑣𝑞(𝑡(𝑁 ); 𝑞) for 𝑞 ∈ (0, 𝜃) and 𝑣𝑞(𝑡(𝑛); 𝑞) < 𝑣𝑞(𝑡(𝑁 ); 𝑞) for 𝑞 ∈ (𝜃, 1). Therefore,
𝑣𝑞(𝑡(𝑛); 𝑞) crosses 𝑐′(𝑞) exactly once on (0, 1) at 𝜃 from above, and hence 𝑡(𝑛) induces 𝜃 .

It turns out that given the existence of a strictly profitable contract, every optimal contract is
necessary an 𝑁 -threshold contract, i.e., a highest-threshold contract.

Proposition 2 (Threshold optimality). An optimal contract exists, i.e., (1.2) has a solution. Assume
IMCP holds. If there exists a contract that is strictly profitable with respect to (1.2), then every optimal
contract is an 𝑁 -threshold contract, with the customer choosing a strictly positive effort level.

The proof first shows that an optimal contract in which the customer exerts a strictly positive
effort level exist, and then shows that it is uniquely cost-efficient to use an 𝑁 -threshold contract
to incentivize that effort level.

Remark 1. It can be shown that the effort level chosen in an optimal contract is strictly less than
𝑞𝐹𝐵(𝑁 ), the first-best effort level. Indeed, if 𝜃 > 0 is the effort level induced in an optimal 𝑁 -
threshold contract, then 𝜋𝑁 ≥ 𝑣𝑞(𝑡; 𝜃) = 𝑐′(𝜃) for the firm’s optimality condition. Let 𝑞(𝑡) be the
optimal effort level the customer chooses in an𝑁 -threshold contract 𝑡 ∈ ℝ𝑁+1. The effort level 𝑞(𝑡)
is increasing in 𝑡𝑁 , which is the referral reward from contract 𝑡 when the outcome is𝑁 . Thus at the
optimal contract 𝑡 , 𝑑𝑣(𝑡;𝑞(𝑡))𝑑𝑞 > 𝑣𝑞(𝑡; 𝑞(𝑡)) when 𝑞(𝑡) = 𝜃 , where the right-hand side is the marginal

rewards to the customer in contract 𝑡 at effort level 𝑞(𝑡). Hence 𝜃 < 𝑞𝐹𝐵 by the strict convexity of
the effort cost function. In contrast, Grossman and Hart (1983) show that the principal (adapted
to this paper) can obtain the first-best payoff by setting 𝑏𝑛 = 𝜋𝑛 − 𝜋𝑁𝑞𝐹𝐵 − 𝑐′(𝑞𝐹𝐵) for 0 ≤ 𝑛 ≤ 𝑁 .
Under this contract, the principal would obtain the first-best payoff in each outcome, and the
agent would find it optimal to choose 𝑞𝐹𝐵 at which the customer’s first-order condition holds
and the participation constraint binds. This contract, however, is not allowed here, because in
this contract, the customer needs to pay when 𝑀(𝑞) = 0, which violates the customer’s limited
liability constraint.

To explain the intuition of the cost-effectiveness of highest-threshold contracts, I make the
simplifying assumption that the firm is committed to a non-decreasing referral contract, i.e., 𝑏0 ≤
𝑏1 ≤ ⋯ ≤ 𝑏𝑁 . The assumption is not necessary for proving Proposition 2 but it is reasonable
for referrable programmes and useful in providing interpretable insights. When we focus on
non-decreasing contracts, it suffices to focus on the class of threshold contracts because it turns

8



out that every non-decreasing contract is a convex combination of different threshold contracts
inducing the same effort level.

Proposition 3 (Non-Decreasing contracts as convex hull of threshold contracts). Fix 𝜃 ∈ (0, 1).
Let 𝑡(𝑛) be the 𝑛-threshold contract inducing 𝜃 . If 𝑏 is a non-decreasing contract such that 𝑏0 = 0 and
𝑣𝑞(𝑏; 𝜃) = 𝑐′(𝜃), then 𝑏 induces 𝜃 and is in the convex hull of {𝑡(𝑛)}𝑁𝑛=1.

Since the set of threshold contracts spans the set of non-decreasing contracts, it is sufficient
to explain how the highest-threshold contracts are the most cost-effective among all threshold
contracts. To do so, it is instructive to explain how threshold contracts can be cost-effective as
second-best approximation of first-best contracts in which efforts are contractible. In the hypo-
thetical first-best world where efforts are contractible, if the firm wishes to incentivize certain
effort level, the contract can be a step function of efforts so that referral reward is zero for sure
when the chosen effort level is below the contract requirement. In contrast, what happens in a
threshold contract is that the customer is likely to get nothing if the chosen effort level is too
low below the target effort level. In other words, a threshold contract can be interpreted as a
second-best attempt to mimic the effect of a first-best contract that directly contracts on efforts.

I now explain why the highest-threshold contracts are the most cost-effective among all thre-
shold contracts. It turns out that for every arbitrary target effort level, it is always more cost-
effective to use a higher-threshold contract than to use a lower-threshold contract to incentivize
that effort level.

Proposition 4 (Total order of threshold contracts). Fix 𝜃 ∈ (0, 1). Let 𝑡 be the 𝑛-threshold contract
and 𝑡′ be the 𝑛′-threshold contract such that both threshold contracts induce 𝜃 . Contract 𝑡 has a
strictly lower expected cost to the firm if 𝑛 > 𝑛′.

Figure 1.1 provides an example to illustrate the intuition of the result. In the example, the
firm incentivizes a customer with four referral friends to choose an effort level of 0.8. Each curve
is the marginal rewards curve of a different threshold contract, with the expected referral reward
obtained from the area under the curve from 0 to the target effort level. By comparing the areas
under the curve, we see that higher-threshold contracts are more cost-effective in incentivizing
this particular target effort level. The reason for the clear graphical comparison is that for every
pair of curve, the curve of the highest-threshold contract always single-crosses that of a lower-
threshold contract exactly at the target effort level on the open unit interval. It turns out that
this single-crossing property holds between every pair of threshold contracts for every interior
target effort level. To summarize this single-crossing property, we say that an effort-induced

distribution 𝐹(⋅; ⋅) is said to have the threshold single-crossing property (TSCP) if
𝑓𝑞(𝑛;𝑞)
𝐹𝑞(𝑛;𝑞) is

non-decreasing in 𝑞 ∈ (0, 1) for 0 < 𝑛 < 𝑁 . The effort-induced binomial distribution satisfies
strict TSCP. Section 1.6 discusses TSCP as a condition for highest-threshold optimality in detail.

TSCP has some nice interpretable economic insights. Marginal rewards can be interpreted as
a measure of responsiveness of a contract’s referral rewards with respect to extra efforts. With
this interpretation, TSCP implies that at low effort levels, the marginal rewards of low-threshold
contracts are high relative to high-threshold contracts. In other words, when effort levels are
low, the customer is able to gain relatively large extra rewards if working a little harder, whereas
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Figure 1.1: Marginal rewards Curves of Threshold Contracts with 𝑁 = 4

the extra rewards are small in higher-threshold contracts. Consequently, in a lower threshold
contract, the customer is able to get a relatively large expected referral reward even if the chosen
effort level is still far below the target effort level. In contrast, in a higher-threshold contract,
the customer’s expected referral reward is low unless the chosen effort level is sufficiently close
to the target. This difference makes higher-threshold contracts better approximation of effort-
dependent contracts than lower-threshold contracts, hence making higher-threshold contracts
more cost-effective.

1.3.3 Threshold vs Linear Contracts
Since linear contracts are popular among referral programmes, I compare the threshold contracts
with linear contracts based on their cost-effectiveness. One property of a linear contract 𝑏 is that
𝑣𝑞(𝑏; 𝑞) = Δ𝑏1 = ⋯ = Δ𝑏𝑁 , whereΔ𝑏𝑛 = 𝑏𝑛−𝑏𝑛−1 denotes the incremental reward in each outcome.
Given the convexity of 𝑐(⋅), for each interior effort level, there exists a linear contract inducing
this effort level. It turns out that given a fixed interior effort level, the threshold contracts, except
the highest-threshold contracts, are not always more cost-effective than the linear contracts.

Proposition 5 (Cost-Effectiveness comparison between threshold and linear contracts). Fix 𝜃 ∈
(0, 1) and assume there exists a contract in which the customer optimally chooses 𝜃 . There exist
0 = 𝑞∗1 ≤ ⋯ ≤ 𝑞∗𝑁 = 1 such that it is (weakly) more cost-efficient to use an 𝑛-threshold contract to
induce 𝜃 than to use a linear contract if and only if 𝜃 ≤ 𝑞∗𝑛 . If for some 𝑛, 𝑞∗𝑛 < 1, then 𝑞∗𝑛+1 > 𝑞𝑛.

Here is some intuition for the cost-effectiveness comparison between the linear contracts and
the highest-threshold contracts. Figure 1.2 draws the marginal rewards curve of two threshold
contracts and the linear contract when𝑁 = 4 and the target effort level is 𝜃 = 0.6. Since the curve
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Figure 1.2: Marginal rewards Curves of Threshold and Linear Contracts with 𝑁 = 4

of the highest-threshold contract is increasing, it is more cost-effective than the linear contract.
The comparison between the 2-threshold contract and the linear contract, however, is unclear at
𝜃 = 0.6. Since the curve of the 2-threshold contract is increasing for small efforts, the 2-threshold
contract is more cost-effective than the linear contract when the target effort level is low: in
the pink shaded region (on the left), the 2-threshold contract is increasingly more cost-effective
than the linear contract. As the effort level gets larger, however, the cost-effective advantage of
the 2-threshold contract wanes: when the area of the green shaded region (on the right) is more
than the pink region, then it is the linear contract that is more cost-effective than the 2-threshold
contract. The proof shows that there exists a unique cut-off such that a threshold contract is
more cost-effective than a linear contract if and only if the target effort level does not exceed this
cut-off.

1.4 Extensions of Baseline Model
This section analyses a number of extensions that are highly relevant to the design of referral
programmes. In these extensions, the highest-threshold contract is not always optimal, but the
inclusion of threshold contracts still acts as a powerful device for incentivizing efforts.

1.4.1 Positive Reserve Utility
One anecdotal observation from referral programmes is that it appears costly to have the cus-
tomer get started on referrals: a customer often does not respond to a referral programme at
all. One way to interpret this observation is that the customer’s reserve utility is strictly positive
but the referral programme does not offer enough payoffs. To model this interpretation, assume
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the customer’s reserve utility is 𝑟 ≥ 0. Consequently, the firm’s optimization problem in (1.2) is
changed to

max
𝑏∈ℝ𝑁+1,𝑞∈[0,1]

𝑈 (𝑏; 𝑞) = 𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) (1.3)

s.t. 𝑣(𝑏; 𝑞) − 𝑐(𝑞) ≥ 𝑟, (1.3a)
𝑣(𝑏; 𝑞) − 𝑐(𝑞) ≥ 𝑣(𝑏; 𝑞′) − 𝑐(𝑞′), ∀𝑞′ ∈ [0, 1], (1.3b)
𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 . (1.3c)

When the customer’s participation constraint binds at optimum, an optimal contract may not
necessarily be an𝑁 -threshold contract because the class of𝑁 -threshold contract may be too cost-
effective such that the firm becomes concerned about the customer overworking. For example, let
𝑡 ∈ ℝ𝑁+1 be the 𝑁 -threshold contract such that 𝑣𝑞(𝑡; 𝑞𝐹𝐵) = 𝑐′(𝑞𝐹𝐵).12 Assume 𝑣(𝑡; 𝑞𝐹𝐵)−𝑐(𝑞𝐹𝐵) <
𝑟 . If the firm still wants to use an 𝑁 -threshold contract, it needs to raise 𝑡𝑁 to give the customer
more surplus, but after 𝑞 exceeds 𝑞𝐹𝐵, doing so would lower the firm’s profit because the firm’s
marginal revenue with respect to efforts, which is 𝜋𝑁 , would be lower than the marginal rewards
the firm needs to pay the customer, which is 𝑣𝑞(𝑡; 𝑞). Moreover, if there exists a contract in which
the customer chooses 𝑞𝐹𝐵 and the participation constraint binds, this contract is optimal to the
firm since the first-best outcome is implemented.

Kim (1997) deals with the continuous-outcome case and discusses sufficient conditions for
implementing first-best outcome. That paper finds the first-best-implementing contract to be a
bonus contract: the customer gets a fixed additional reward for each additional new referral and
gets a fixed bonus reward for exceeding a threshold. In relation to this paper, I characterize the
optimal contract for different reserve utility, and show that when the reserve utility is moderate,
there exists a bonus contract that implements the first-best outcome.

Proposition 6 (Positive reserve utility). Assume there exists a strictly profitable contract with
respect to (1.3). There exists 𝑟 < 𝑟 such that

• if 𝑟 ≤ 𝑟 , then every optimal contract is an 𝑁 -threshold contract.

• if 𝑟 ∈ (𝑟 , 𝑟), then there exists an optimal contract as a strict combination of a linear and an
𝑁 -threshold contract. Moreover, the first-best outcome is implemented.

• if 𝑟 ≥ 𝑟 , then it is optimal for the firm not to have a referral programme.

Since the firm is not allowed to charge the customer in the referral programme, the customer
gets a strictly positive payoff in an 𝑁 -threshold contract. As a result, when the reserve utility
is low, it is business as usual to the firm as the optimal 𝑁 -threshold contract provides sufficient
payoff to the customer. When the reserve utility is excessively high, then it makes no sense for
the firm to have a referral programme even in the first-best case.

When the reserve utility is moderate, given the effort level at optimum, if the firm attempts to
use a linear contract, then the contract is able to satisfy both the effort-choice and participation

12It is assumed here that the first-best effort level stays the same, i.e., 𝑟 is assumed not to be too large that the
first-best effort level is zero.
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constraint, but it turns out that the linear contract alone is not cost-effective. On the other hand,
if the firm only uses an 𝑁 -threshold contract, then the customer’s effort-choice constraint holds,
but the participation constraint does not. What can be done here is to mix the linear and the
𝑁 -threshold contract together and the proof shows that there exists a unique combination that
cost-efficiently incentivizes the target effort level.

Note that this result about the first-best implementation is an existence result. For every
pair of contracts such that one contract induces 𝑞𝐹𝐵 in (1.3) and the other one induces 𝑞𝐹𝐵 in
(1.2) but violates (1.3a), then by the similar reasoning in the proof of Proposition 6, some convex
combination of this pair of contracts implements the first-best outcome.

1.4.2 Limited Liability of Firm
In a highest-threshold contract, the firm pays a large referral reward with a small probability.
Sometimes this highest-threshold reward can be larger than the total referral revenue, as the
following example shows.

Example 1. Consider the case with 𝑁 = 2, 𝜋 = 1, and 𝑐(𝑞) = 6𝑞3. The optimal 𝑁 -threshold
contract gives the customer a reward of √6 > 2𝜋 when both friends are referred. Hence the
firm’s limited liability condition would be violated in this contract.

In the optimal 𝑁 -threshold, the firm gets the entire surplus for most of the times. To incen-
tivize the customer to exert the desired effort level, it is possible that the firm is willing to lose
some money in some outcomes with very small probabilities. However, in practice, it is common
for the firm to set a budget constraint on its referral programme. One common example is that
the firm requires its referral programme to never run into a fiscal deficit in every referral outcome,
i.e., 𝑏𝑛 ≤ 𝜋𝑛 for all 𝑛. In the example above, the optimal 𝑁 -threshold contract is no longer feasi-
ble as the budget constraint is violated for the highest referral outcome. To reflect this particular
budget constraint requirement, the firm’s profit-maximization problem is changed to

max
𝑏∈ℝ𝑁+1
𝑞∈[0,1]

𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) (1.4)

s.t. 𝑣(𝑏; 𝑞) ≥ 𝑐(𝑞) (1.4a)
𝑣(𝑏; 𝑞) − 𝑐(𝑞) ≥ 𝑣(𝑏; 𝑞′) − 𝑐(𝑞′) ∀𝑞 ∈ [0, 1] (1.4b)
0 ≤ 𝑏𝑛 ≤ 𝜋𝑛 ∀0 ≤ 𝑛 ≤ 𝑁 (1.4c)

This newly imposed assumption, together with the limited liability of customer, leads to a
result with a similar flavour to the main result in Innes (1990). By Proposition 4, higher threshold
contracts are more cost-effective than lower threshold contracts. One may conjecture that the
upper bounds of referral rewards for higher outcomes should bind at the optimum. The following
result shows that this is indeed the case.

Theorem 1 (Optimal contract with limited liability of firm). Assume the firm has limited liability,
i.e., (1.4c) holds. An optimal contract exists, i.e., (1.4) has a solution. If a contract that is strictly
profitable with respect to (1.4) exists, then every optimal contract 𝑏 has the property that 𝑏𝑛1 > 0
implies 𝑏𝑛2 = 𝜋𝑛2 for every 𝑛2 > 𝑛1.
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In Innes (1990), since it is the agent that writes the contract, the agent would like to use the
most costly way to incentivize himself, leading to payments concentrated in the lowest outcomes,
whereas in this paper, as it is the firm that writes the contract, the goal of the contract instead
becomes using the least costly way to incentive efforts, leading to payments only in the highest
outcomes. Also, in Innes (1990), every positive payment binds the limited-liability constraint
because the agent in that model has an incentive to put a unit mass at the lowest outcome if no
upper bounds on payment exist.

The limited liability of firm assumption has an extended interpretation that the firm’s division
running the referral programme has an overall budget 𝜋 ≥ 0 such that for every contract 𝑏,
𝑏𝑛 −𝜋𝑛 ≤ 𝜋 . The same proof in Theorem 1 can be adapted to show that in every optimal contract,
if 𝑏𝑛 > 0, then 𝑏𝑛+1 − 𝜋𝑛 = 𝜋 . The case with limited liability of firm corresponds to the case with
𝜋 = 0; the base model without any limited liability of firm can be represented by 𝜋 = ∞ or 𝜋
being very large. The following result states that relaxing the budget constraint eventually leads
to every optimal contract being an 𝑁 -threshold contract.

Proposition 7 (Optimal contract with more flexible budget constraints for the firm). Fix 𝜃 > 0
and assume there exists a contract in which the customer chooses 𝜃 . Let 𝜋 be the budget constraint of
the firm such that for every contract 𝑏, 𝑏𝑛 − 𝜋𝑛 ≤ 𝜋 . Let 𝑏(𝜋) be the cost-efficient contract inducing
𝜋 and let 𝑛∗ be the smallest outcome such that 𝑏𝑛∗(𝜋) > 0. For another budget constraint 𝜋 ′ > 𝜋 ,
𝑛∗(𝜋 ′) ≥ 𝜋 ; for 𝜋 ′ large enough, 𝑛∗(𝜋 ′) = 𝑁 .

Proof. From the proof of Theorem 1, for every 𝑛 ≥ 𝑛∗(𝜋), 𝑓𝑞(𝑛; 𝜃) > 0. Therefore, by Theorem 1,
for 𝜋 ′ > 𝜋 , if 𝑏𝑛∗(𝜋)(𝜋 ′) ≥ 𝑏𝑛∗(𝜋)(𝜋), then 𝑣𝑞(𝑏(𝜋 ′); 𝜃) > 𝑐′(𝜃), a contradiction. Therefore, 𝑛∗(𝜋 ′) ≥
𝑛∗(𝜋). Lastly, for 𝜋 ′ large enough, the 𝑁 -threshold contract 𝑡 inducing 𝜃 has 𝑡𝑛 − 𝜋𝑛 ≤ 𝜋 ′, and
thus 𝑛∗(𝜋 ′) = 𝑁 for 𝜋 ′ large enough.

1.4.3 Risk-Averse Customer
The risk-neutrality of the customer contributes to the baseline model’s tractability. This section
digress to the analysis with a risk-averse customer. Specifically, assume the customer’s aggregate
utility is 𝑉 (𝑥) − 𝑐(𝑞), where 𝑥 is a referral reward and 𝑉 (⋅) is the customer’s utility of rewards.
Assume 𝑉 (0) = 0, 𝑉 ′(𝑥) > 0 and 𝑉″(𝑥) ≤ 0 for all 𝑥 . The firm’s profit-maximization problem is

max
𝑏∈ℝ𝑁+1
𝑞∈[0,1]

𝜋𝑁𝑞 −
𝑁
∑
𝑛=0

𝑏𝑛𝑓 (𝑛; 𝑞) (1.5)

s.t.
𝑁
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓 (𝑛; 𝑞) − 𝑐(𝑞) ≥ 0 (1.5a)

𝑁
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓 (𝑛; 𝑞) − 𝑐(𝑞) ≥
𝑁
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓 (𝑛; 𝑞′) − 𝑐(𝑞′), ∀𝑞′ ∈ [0, 1] (1.5b)

𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 (1.5c)
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The existence of an optimal contract can be established by a similar reasoning to that in Theo-
rem 2 proved in Section 1.6, which is omitted to avoid repetition. Additionally, by treating the
customer’s utility from rewards as referral rewards, it can be shown that for each 1 ≤ 𝑛 ≤ 𝑁 and
an interior effort level, there exists an 𝑛-threshold contract inducing this effort level.

It turns out that in when the customer is risk-averse, it is still useful for the firm to set a
threshold for the customer by not paying the customer anything if the referral outcome is below
the threshold.

Proposition 8 (No rewards in dis-incentivizing outcomes). Let 𝑏 be an optimal contract and as-
sume the customer chooses 𝜃 ∈ (0, 1) in this contract. For each 0 ≤ 𝑛 ≤ 𝑁 , if 𝜃 > 𝑛

𝑁 , then 𝑏𝑛 = 0.
Sketch of Proof. For each 𝑛, 𝑓𝑞(𝑛; 𝑞) < 0 if and only if 𝑞 > 𝑛

𝑁 , i.e., for 𝑞 > 𝑛
𝑁 , more efforts would

make outcome 𝑛 less likely. The proof shows that if in an effort level 𝜃 chosen by the customer
in an optimal contract 𝑓𝑞(𝑛; 𝜃) < 0, then 𝑏𝑛 = 0.

The result has an intuitive interpretation that the firm pays the customer to exert more efforts
instead of dis-incentivizing efforts, which is the case when 𝜃 > 𝑛

𝑁 . The following result uses
the sufficient condition derived in Grossman and Hart (1983) to show that optimal contracts are
convex.

Proposition 9 (Convex optimal contract). Assume 1/𝑉 ′(⋅) is concave. Let 𝑏 be an optimal contract
and the customer exerts effort level 𝜃 ∈ (0, 1), if 𝑏𝑛 > 0, then 𝑏𝑛+2 − 𝑏𝑛+1 ≥ 𝑏𝑛+1 − 𝑏𝑛 ≥ 0, i.e., every
optimal contract is non-decreasing and convex.

The proof shows that at optimum, the customer marginal monetary equivalent with respect
to utility is non-decreasing in the number of referrals. Since 1/𝑉 ′(⋅) is assumed to be positive
and concave, this implies that the incremental rewards must be non-decreasing for each outcome
and hence every optimal contract is non-decreasing and convex.

1.4.4 Communication Cost
The baseline model assumes that the customer’s effort cost only depends on the conversion rate
and is invariant to the number of referral messages. In practice, sending the referral message
itself can be costly. One immediate interpretation of this per-message communication cost is
the inconvenience that comes with sending a referral message. A more extended interpretation,
which makes this subsection more powerful, is the latent social cost: if the customer recommends
a product to a friend but the friend does not like the product, the customer may suffer some social
cost for recommending a “bad” product.

To analyse how the firm’s referral programme design problem changes with this new commu-
nication cost, assume the customer incurs a fixed communicate cost 𝑠 ≥ 0whenever the customer
tries to refer a friend. The extended cost structure in this subsection covers that in Lobel, Sadler,
and Varshney (2017), which only includes communication cost. If efforts and the number of re-
ferral messages were contractible, the firm’s optimization problem would be

max
𝛽∈ℝ,𝑞∈[0,1]
0≤�̃�≤𝑁

𝜋𝑞�̃� − 𝛽, s.t. 𝛽 − 𝑐(𝑞) ≥ 𝑠�̃� . (1.6)
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Assume (1.6) admits a solution such that 𝑞 > 0 and the objective function is strictly positive. Since
marginal revenue with respect to efforts is increasing in �̃� , if 𝑞 > 0 at optimum, then �̃� = 𝑁 in
every solution to (1.6).

When neither efforts nor the number of referral messages are contractible, the firm’s opti-
mization problem is

max
𝑏∈ℝ𝑁+1,
𝑞∈[0,1],
0≤�̃�≤𝑁

𝑈 (𝑏; 𝑞, �̃� ) = 𝜋�̃� 𝑞 − 𝑣(𝑏; 𝑞, �̃� ) (1.7)

s.t. 𝑣(𝑏; 𝑞, �̃� ) − 𝑐(𝑞) − 𝑠�̃� ≥ 0, (1.7a)

𝑣(𝑏; 𝑞, �̃� ) − 𝑐(𝑞) − 𝑠�̃� ≥ 𝑣(𝑏; 𝑞′, 𝑁 ′) − 𝑐(𝑞′) − 𝑠𝑁 ′, ∀𝑞′ ∈ [0, 1], 0 ≤ 𝑁 ′ ≤ 𝑁 (1.7b)
𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 . (1.7c)

Although this paper does not provide a characterization of the solution to (1.7), it can be shown
that using or including a threshold contract strictly improves the cost-effectiveness over using
only a linear contract.

Proposition 10. For every optimal linear contract, there exists a combination of linear contract and
an 𝑁 -threshold contract such that the firm’s profit is higher in the combined contract.

The proof first shows that in an optimal linear contract, it is necessary that the customer will-
ingly sends𝑁 referral messages. Given this result, by treating the communication cost of sending
𝑁 referral messages as the customer’s reserve utility, by Proposition 6, the optimal contract must
be either a 𝑁 -threshold contract or a combination of a linear and 𝑁 -threshold contract, which
is a strict improvement over the linear contract if the alternative contract indeed incentivizes 𝑁
messages.

Assume the optimal contract is an 𝑁 -threshold contract, since the customer gets nothing
for sure if sending �̃� < 𝑁 messages, the customer has an incentive to send 𝑁 messages. Now
assume the optimal contract is a combination of a linear and an 𝑁 -threshold contract. If the
customer sends �̃� < 𝑁 messages, then contract is effectively a linear contract. By the earlier
discussion on linear contract, the customer has an incentive to send 𝑁 messages without the
𝑁 -threshold contract. Since the 𝑁 -threshold contract only gives the customer more incentive to
send 𝑁 messages, the customer has an incentive to send 𝑁 messages in the combined contract.

1.5 Heterogeneity in Number of Referrable Friends
In practice, the firm may only have incomplete information about the number of referral friends.
To account for thismotivation, this section assumes that a customer’s number of referrable friends
is private to the customer. For simplicity, assume that there are two types of customers: the low
type has 𝑁1 > 0 friends, whereas the high type has 𝑁2 > 𝑁1 friends. Let 𝛼 ∈ (0, 1) denote the
proportion of customers that are low type and 1 − 𝛼 the proportion of the high type.

Given a contract 𝑏 ∈ ℝ𝑁+1, let 𝑉 ∗(𝑏; 𝑁 ) = max𝑞∈[0,1] 𝑣(𝑏; 𝑞, 𝑁 ′) − 𝑐(𝑞), the maximal utility the
agent can get if the customer takes up the contract. Given the continuity of 𝑣(𝑏; 𝑞, 𝑁 ) and 𝑐(𝑞) in

16



both 𝑏 and 𝑞, 𝑉 ∗(𝑏; 𝑁 ) is continuous in 𝑏. Given a contract 𝑏, define

𝑞∗(𝑏; 𝑁 ) = max {argmax𝑞∈𝑆 𝜋𝑞𝑁 − 𝑣(𝑏; 𝑞, 𝑁 )} , where 𝑆 = arg max
𝑞′∈[0,1]

𝑣(𝑏; 𝑞′, 𝑁 ), (1.8)

which is the maximal effort level that maximizes the firm’s profit among effort levels that are
optimal to a customer with 𝑁 friends in 𝑏.

1.5.1 With screening
First assume that the firm can offer amenu of referral contracts to customers. I focus on direct
mechanisms in which a customer reports the customer’s type, which is the number of referrable
friends, to get a corresponding referral contract. This setup is a model with both hidden actions
and hidden information.13

Amenu (𝑏1, 𝑏2) ∈ ℝ𝑁2+1×ℝ𝑁2+1 is said to be incentive compatible if 𝑉 ∗(𝑏1; 𝑁1) ≥ 𝑉 ∗(𝑏2; 𝑁1)
and 𝑉 ∗(𝑏2; 𝑁2) ≥ 𝑉 ∗(𝑏1; 𝑁2), i.e., each type has no incentive to choose the contract for a different
type.14 Given an incentive-compatible menu (𝑏1, 𝑏2) ∈ ℝ𝑁2+1 × ℝ𝑁2+1, define

Π(𝑏1, 𝑏2) = max
𝑞1∈[0,1],
𝑞2∈[0,1]

𝛼𝑈 (𝑏1; 𝑞1, 𝑁1) + (1 − 𝛼)𝑈 (𝑏2; 𝑞2, 𝑁2)

s.t. 𝑣(𝑏1; 𝑞1, 𝑁1) = 𝑉 ∗(𝑏1; 𝑁1)
𝑣(𝑏2; 𝑞2, 𝑁2) = 𝑉 ∗(𝑏2; 𝑁2),

which is the maximal profit the firm can obtain when both types choose effort levels optimally.
Under this setup, the firm’s profit-maximization problem is

max
𝑏1∈ℝ𝑁2+1,𝑏2∈ℝ𝑁2+1
𝑞1∈[0,1],𝑞2∈[0,1]

𝛼𝑈 (𝑏1; 𝑞1, 𝑁1) + (1 − 𝛼)𝑈 (𝑏2; 𝑞2, 𝑁2) (1.9)

s.t. 𝑣(𝑏𝑖; 𝑞𝑖, 𝑁𝑖) ≥ 𝑐(𝑞𝑖) 1 ≤ 𝑖 ≤ 2 (1.9a)

𝑣(𝑏𝑖; 𝑞𝑖, 𝑁𝑖) − 𝑐(𝑞𝑖) ≥ 𝑣(𝑏𝑗 ; 𝑞′, 𝑁𝑖) − 𝑐(𝑞′) 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 2, (1.9b)

𝑏𝑖𝑛 ≥ 0 1 ≤ 𝑖 ≤ 2, 0 ≤ 𝑛 ≤ 𝑁𝑖. (1.9c)

A menu (𝑏1, 𝑏2) is said to be strictly profitable with respect to (1.9) if there exists a pair of
effort levels (𝑞1, 𝑞2) such that the tuple (𝑏1, 𝑏2, 𝑞1, 𝑞2) is feasible in (1.9) and 𝛼𝑈 (𝑏1; 𝑞1, 𝑁1) + (1 −
𝛼)𝑈 (𝑏2; 𝑞2, 𝑁2) > 0. A menu is said to be optimal if there exists (𝑞1, 𝑞2) such that (𝑏1, 𝑏2, 𝑞1, 𝑞2)
solves (1.9).

Let 𝑡 𝑙 ∈ ℝ𝑁2+1 denote an 𝑁1-threshold contract that is optimal when there is only the low type
and 𝑡ℎ ∈ ℝ𝑁2+1 an 𝑁2-threshold contract that is optimal when there is only the high type. Since

13Aweakly more general modelling is to have a customer report both the type and effort level. These two ways of
modelling are outcome-equivalent in equilibrium since in equilibrium, customers of the same type choose the same
contract, which would translate into a contract for that type in the case where the customers only report their types.

14Let 𝑏1 ∈ ℝ𝑁2+1 so that the utility of the high type choosing 𝑏1 is defined.
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𝑁2 > 𝑁1, the low type has no incentive to choose 𝑡ℎ. For the high type, if 𝑉 ∗(𝑡ℎ; 𝑁2) ≥ 𝑉 ∗(𝑡 𝑙 ; 𝑁2),
then (𝑡 𝑙 , 𝑡ℎ) is incentive compatible. Since 𝑡ℎ and 𝑡 𝑙 are the optimal contract to the firmwhen there
is only type, (𝑡 𝑙 , 𝑡ℎ) is optimal if it is incentive compatible. However, the menu above may not be
incentive compatible, in which case the analysis is not straightforward. Partial characterizations
of optimal menus are provided. The following result establishes the existence of an optimal menu.

Proposition 11 (Positive efforts at optimum). An optimal menu exists, i.e. (1.9) has a solution. If
there exists a menu that is strictly profitable with respect to (1.9), then in every optimal menu, both
types choose strictly positive effort levels.

The rest of this section assumes the existence of a contract that is strictly profitable with
respect to (1.9). That both types exert strictly positive efforts implies that there is no exclusion
of the low type in an optimal menu whenever 𝛼 > 0, which is partially due to the limited liability
of the customer. Indeed, if only the high type exerts a positive effort level in an optimal menu,
then from the single-type case, the firm would necessarily offer an 𝑁2-threshold contract to the
high type, from which the high type would get a strictly positive payoff. The proof shows that
the firm can further improve the profit by giving the low type a contract that is near 0 ∈ ℝ𝑁2+1.

The following result provides a condition under which the contract for the high type must be
an 𝑁2-threshold contract in every optimal menu.

Proposition 12 (Threshold optimality for high type). Let 𝑡 𝑙 ∈ ℝ𝑁2+1 be an optimal contract when
there is only the low type. If there exists some 𝑁2-threshold contract 𝑡 ∈ ℝ𝑁2+1 such that 𝑉 ∗(𝑡; 𝑁2) =
𝑉 ∗(𝑡 𝑙 ; 𝑁2) and 𝑞∗(𝑡; 𝑁2) ≤ 𝑞𝐹𝐵(𝑁2), then in every optimal contract (𝑏1, 𝑏2), 𝑏2 is an 𝑁2-threshold
contract with 𝑞∗(𝑏2; 𝑁2) ≤ 𝑞𝐹𝐵(𝑁2), i.e., 𝑏2 induces the high type to choose an effort not exceeding
the first-best effort level.

The proof shows directly how the firm can strictly improve the profit if the contract for the
high type is not an 𝑁2-threshold contract. Specifically, the firm can provide an 𝑁2-threshold
contract such that either the high type exerts the same effort level yet with strictly lower expected
rewards or the high type becomes indifferent between the two contracts in the new menu and
chooses a strictly higher effort level, which brings more revenues to the firm as long as the effort
level is less than the first-best level. Indeed, the condition that 𝑞∗(𝑡; 𝑁2) ≤ 𝑞𝐹𝐵(𝑁2) is crucial.
To see this, consider the case where 𝛼 is close to 1. In this case, intuitively, the firm would like
the contract for the low type to be close to 𝑡 𝑙 . If 𝑞∗(𝑡; 𝑁2) ≤ 𝑞𝐹𝐵(𝑁2) in Proposition 12, then in
contract 𝑡 , both firm and the customer’s payoffs are increasing in 𝑞 ≤ 𝑞∗(𝑡; 𝑁2). However, when
the condition does not hold, then the firm’s profits are decreasing in 𝑞 > 𝑞𝐹𝐵(𝑁2), i.e., the firm
would like the customer to choose a lower effort level.

The result that the contract for the high type is necessarily an𝑁2-threshold contract contrasts
with other models with both hidden actions and hidden information. For example, Laffont and
Tirole (1986), McAfee and McMillan (1987), Rao (1990), and Melumad and Reichelstein (1989)
consider cases with a continuum of types and outcomes. In all of these papers, menus of linear
contracts are shown to be optimal, whereas, in this paper, this class ofmenus is strictly suboptimal.
Here is a short intuition for the difference in the results. In the models mentioned above, if the
contract for the high type is replaced with a strictly more cost-effective contract such that the
high type is induced to either exert the same effort level with strictly lower expected rewards
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or more efforts that improve the firm’s profits, the incentive-compatibility constraint of the low
type would not hold. However, in this model, the incentive-compatibility constraint of the low
type always holds when the high type’s contract is an 𝑁2-threshold contract.

1.5.2 No screening
Given the likely operational cost of maintaining complex referral programmes, which is exoge-
nous to this paper, the firm may wish to have only one referral programme even though there is
more than one type. An overall impression from the screening literature is that when there is no
screening, then the firm faces a simple choice between the optimal contract when there is only
the low type and the one when there is only high type. In this paper, however, the firm’s strategic
consideration is not straightforward. Indeed, given a contract 𝑏 ∈ ℝ𝑁2+1, any changes to 𝑏𝑛 for
𝑛 > 𝑁1 is not going to affect the low type’s incentives with respect to the contract. Therefore,
the firm needs to take into account the incentives of both types in the referral contract design.

This subsection imposes an additional assumption that the firm commits to providing only
non-decreasing referral contracts, i.e., 𝑏0 ≤ 𝑏1 ≤ ⋯ ≤ 𝑏𝑁 . The assumption is reasonable for
referral programmes since there are few actual referral programmes that are non-decreasing. One
possible conjecture in case that the firm does take away rewards from the customer for more
referrals is that a customer would ask the friends whom the customer has successfully converted
to let the customer know before going to the firm so that the customer could choose a subset of
friends to report to the firm as the customer’s referrals. Under this conjecture, the firm would
then have no incentives to have a contract in which rewards could decrease when the number of
referrals rises. Let �̃� (𝑏; 𝑞1, 𝑞2) = 𝛼𝑈 (𝑏; 𝑞1, 𝑁1)+(1−𝛼)𝑈 (𝑏; 𝑞2, 𝑁2). The firm’s profit-maximization
problem is therefore

max
𝑏∈ℝ𝑁2+1

𝑞1∈[0,1],𝑞2∈[0,1]
�̃� (𝑏; 𝑞1, 𝑞2) = 𝛼𝑈 (𝑏; 𝑞1, 𝑁1) + (1 − 𝛼)𝑈 (𝑏; 𝑞2, 𝑁2) (1.10)

s.t. 𝑣(𝑏; 𝑞𝑖, 𝑁𝑖) ≥ 𝑐(𝑞𝑖) 1 ≤ 𝑖 ≤ 2 (1.10a)
𝑣(𝑏; 𝑞𝑖, 𝑁𝑖) ≥ 𝑣(𝑏; 𝑞′, 𝑁𝑖) ∀𝑞′ ∈ [0, 1], 1 ≤ 1 ≤ 2 (1.10b)
0 ≤ 𝑏0 ≤ 𝑏1 ≤ ⋯ ≤ 𝑏𝑁2 (1.10c)

In this subsection, a contract 𝑏 is said to be optimal if there exists (𝑞1, 𝑞2) such that (𝑏, 𝑞1, 𝑞2)
solves (1.10). Given a contract 𝑏, Π(𝑏, 𝑏) = �̃� (𝑏; 𝑞∗(𝑏; 𝑁1), 𝑞∗(𝑏; 𝑁2)) is the maximal profit the
firm can get from 𝑏 if the two types choose their effort levels optimally. The following result
establishes the existence of an optimal contract.

Proposition 13 (Positive efforts for high type at optimum). An optimal contract exists, i.e. (1.10)
has a solution. If there exists a contract that is strictly profitable with respect to (1.10), then in every
optimal contract, the high type always chooses a strictly positive effort level.

For 1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁2, a contract 𝑏 ∈ ℝ𝑁2+1 is said to be an (𝑛1, 𝑛2)-threshold contract if
𝑏0 = 𝑏1 = ⋯ = 𝑏𝑛−1 < 𝑏𝑛1 = 𝑏𝑛1+1 = ⋯ = 𝑏𝑛2−1 ≤ 𝑏𝑛2 = 𝑏𝑛2+1 = ⋯ = 𝑏𝑛2 . Since setting 𝑏𝑛1 = 𝑏𝑛2
gives a contract with only one threshold, the set of contracts with a single threshold is included
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in the set of contracts with two thresholds. In the following result, the optimal contract with two
types is shown to be a contract with two thresholds.

Lemma 1 (Cost-Efficiency of contracts with two thresholds). Fix (𝜃1, 𝜃2) ∈ [0, 1]2 ⧵ (0, 0). Assume
there exists a contract 𝑏 such that (𝑏, 𝜃1, 𝜃2) is feasible in (1.10). There exists a contract with two
thresholds that is cost-efficient and induces (𝜃1, 𝜃2).
Sketch of Proof. Consider the relaxed problem of the cost-minimization part of (1.10), i.e., the
effort-choice constraints (1.10b) are replaced by the relaxed first-order conditions

𝑣𝑞(𝑏; 𝜃𝑖, 𝑁𝑖) = 𝑐′(𝜃𝑖), 1 ≤ 𝑖 ≤ 2.
The relaxed problemhas the same set of solutionswith the actual problem (1.10) because by Propo-
sition 3, the first-order condition uniquely characterizes the customer’s effort-choice constraints
in non-decreasing contracts. The constraint substitutions make the firm’s cost-minimization
problem a linear programming. With results from linear programming, there exists a contract
with two thresholds that is a solution to the relaxed cost minimization problem (1.17). Since the
two types’ effort choice constraints hold, the solution to the relaxed problem (1.17) also solves
the actual cost minimization part of (1.10).

The following result provides a partial characterization of an optimal contract. Specifically, it
can be shown that whenever the higher threshold is above 𝑛1, then setting the second threshold
to 𝑁2 improves the firm’s profits.

Proposition 14. Assume the existence of a contract that is strictly profitable with respect to (1.10).
There is an (𝑛1, 𝑛2)-threshold contract for some 1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁2 such that it is optimal. If 𝑛2 > 𝑁1
and 𝑏𝑛2 > 𝑏𝑛1 , then 𝑛2 = 𝑁2.

Sketch of Proof. For every contract 𝑏 that induces (𝜃1, 𝜃2), since the contract is assumed to be non-
decreasing, 𝑏𝑛 > 0 for 𝑛 > 𝑁1 always induces the high type to exert more efforts than when 𝑏𝑛 is
set to 0 for all 𝑛 > 𝑁1. The proof shows that to induce the high type to exert the extra efforts due
to payments 𝑏𝑛 for 𝑛 > 𝑁1, setting 𝑏𝑛 = 0 for 𝑁1 < 𝑛 < 𝑁2 and 𝑏𝑁2 > 0 is the cost-efficient way to
do so.

The search over contracts with two thresholds such that both thresholds are below 𝑁1 has
the computational costs 𝑂(𝑁 21 ); the search over contracts with two thresholds with the higher
threshold being 𝑁2 has computational costs of 𝑂(𝑁1). Therefore, given the result on the form of
optimal contracts, the firm’s search for an optimal contract has cost 𝑂(𝑁 21 ).
Remark 2. If a strictly profitable menu exists, Proposition 11 implies that menus of a single 𝑁2-
threshold contract only for the high type are not optimal. Furthermore, if the condition of Propo-
sition 12 holds, then every optimal menu necessarily has two distinct non-zero contracts. There-
fore, the firm is strictly better off with screening than without screening.15

15Melumad and Reichelstein (1989) show that whether screening is strictly better depends on how costly it is
for the principal to screen different types. In this model, the condition of Proposition 12 can be considered as a
requirement that it is not too costly to use an 𝑁2-threshold contract to screen: if the 𝑁2-threshold used to incentivize
the high type away from 𝑡 𝑙 in Proposition 12 is not too costly, then screening is valuable to the firm.
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1.6 Discussions
This section discusses the sufficient conditions for the highest-threshold optimality result in the
baseline model. The firm’s profit-optimization problem is still characterized by (1.2),16 but the
binomial distribution is not imposed.

Let 𝐹(⋅; 𝑞, 𝑁 ) be the cumulative distribution function of referral number with 𝑓 (⋅; 𝑞, 𝑁 ) being
its probability mass function when the existing with 𝑁 referrable friends chooses effort level
𝑞 ∈ [0, 1]. There are three distributional assumptions we discuss as (part of) sufficient conditions
for the highest-threshold optimality result, formally defined below.

Definition 2. The effort-induced distribution 𝐹(⋅; ⋅) is said to have

(a) the threshold single-crossing property (TSCP) if
𝑓𝑞(𝑛;𝑞)
𝐹𝑞(𝑛;𝑞) is non-decreasing in 𝑞 ∈ (0, 1) for

0 < 𝑛 < 𝑁 .

(b) the monotone likelihood ratio property (MLRP) if
𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) is non-decreasing in 𝑛 for 0 ≤ 𝑛 ≤

𝑁 .

(c) the decreasing hazard rate property (DHRP) if
𝑓𝑞(𝑛;𝑞)
1−𝐹(𝑛;𝑞) is non-increasing in 𝑞 ∈ (0, 1) for

0 ≤ 𝑛 < 𝑁 .

Balmaceda et al. (2016) show the optimality of highest-threshold contracts with MLRP. The
proof technique in Poblete and Spulber (2012), who deal with continuous outcomes, can be
adapted to this paper’s setup to show the same result with DHRP, which MLRP implies. How-
ever, Poblete and Spulber (2012) make the additional assumption that the referral contract must
be non-decreasing. In contrast, this paper shows that under the discrete-outcome setting, the
monotonicity assumption is not necessary.

To obtain the threshold-optimality result as in Proposition 2, we first make the following
regularity conditions about the distribution.

Assumption A1 (Distributional regularity).

(a) 𝐹(𝑛; 𝑞) is continuously differentiable in 𝑞 ∈ (0, 1] for 0 ≤ 𝑛 ≤ 𝑁 .

(b) 𝑓 (𝑛; 𝑞) > 0 for 𝑞 ∈ (0, 1) and 0 ≤ 𝑛 ≤ 𝑁 .

(c) 𝐹(0; 0) = 1.
(d) 𝐹𝑛(𝑛; 𝑞) < 0 for 0 ≤ 𝑛 < 𝑁 and 𝑞 ∈ (0, 1).
Among these assumptions, A1(b) is made mainly to ensure that DHRP and MLRP are well-

defined; A1(c) ensures that for the firm to have a strictly positive effort, the customer must exert
strictly positive efforts. Exerting efforts 𝑞 incurs a cost of 𝑐(𝑞) to the customer. The following
regularity assumption is imposed on the effort cost function. (A1(d)) is the condition that higher

16Note that the constraints of (1.2) implicitly impose the limited liability of customer assumption.
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efforts first-order stochastically dominate lower efforts. Note that this assumption is implied by
both MLRP and DHRP, and it is only necessary for the highest-threshold-optimality result for
DHRP.

Assumption A2 (Cost regularity). 𝑐(0) = 0, 𝑐′(𝑞) > 0 and 𝑐″(𝑞) > 0 for 𝑞 ∈ (0, 1).
The following assumption ensures that in every solution to (1.2), the contract is non-zero.

Assumption A3 (Existence of strictly profitable contract). There exists (𝑏, 𝑞) that is feasible in
(1.2) and 𝑈 (𝑏, 𝑞) > 0.

Before characterizing optimal contracts with respect to (1.2), it is necessary to clarify that
(1.2) has a solution.

Theorem 2 (Existence of optimal contract). Assume A1 and A2 hold. An optimal contract exists,
i.e., (1.2) has a solution. If further A3 holds, then in every solution (𝑏, 𝑞) to (1.2), 𝑞 > 0.

The assumptions so far, together with DHRP and IMCP, are sufficient for an optimal contract
to be a highest-threshold contract. In contrast to Poblete and Spulber (2012), the result does not
need the assumption that the firm must provide a non-decreasing contract.

Theorem 3 (Highest-Threshold optimality with DHRP). Assume IMCP and A1-A3 hold, and 𝐹(⋅; ⋅)
has strict DHRP. There exists a solution (𝑏, 𝑞) to (1.2) in which 𝑏 is an𝑁 -threshold contract. Moreover,
if 𝑞 < 1, then 𝑏 must be an 𝑁 -threshold contract.

The proof has two steps. Firstly, it shows that for every interior target effort level, it is
uniquely efficient to use a highest-threshold contract to incentivize that effort level. The proof
then proceeds to use linear programming to show that if the cost-efficient contract is not an 𝑁 -
threshold contract, then it can be written as an affine combination of two threshold contracts
matching the customer’s first-order condition, with the affine weight on the lower-threshold con-
tract being positive. It is shown in the proof that such a combination is not as cost-effective as
the highest-threshold contract, leading to the highest-threshold optimality result.

To show MLRP as a sufficient condition for highest-threshold optimality, note that MLRP is
known to imply DHRP and hence the highest-threshold optimality result with MLRP is immedi-
ately obtained. As for TSCP, it turns out that when A1 holds, then TSCP implies DHRP.

Proposition 15 (TSCP implies DHRP). If A1 holds, then TSCP implies DHRP.

With the result above, we can show how TSCP can lead to the same highest-threshold opti-
mality result.

Theorem 4 (Highest-Threshold optimality with TSCP). Assume IMCP and A1-A3 hold, and 𝐹(⋅; ⋅)
has strict TSCP. There exists a solution (𝑏, 𝑞) to (1.2) in which 𝑏 is an 𝑁 -threshold contract. Moreover,
if 𝑞 < 1, then 𝑏 must be an 𝑁 -threshold contract.
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Figure 1.3: Summary of Section 1.6

The result is an immediate consequence of Proposition 15 and Theorem 3, and hence its proof
is omitted. The three conditions for highest-threshold optimality, DHRP, MLRP, and TSCP, pro-
vide different intuitions, each of each is described below.

MLRP is about the substitution among referral rewards in different referral outcomes. Pro-

vided that 𝑓𝑞(𝑛; 𝑞) > 0 for some 𝑛 < 𝑁 , MLRP implies
𝑓𝑞(𝑛;𝑞)
𝑓𝑞(𝑁 ;𝑞) < 𝑓 (𝑛;𝑞)

𝑓 (𝑁 ;𝑞) . Therefore, the firm

can substitute rewards in outcome 𝑁 for rewards in outcome 𝑛 so that the customer exerts the
same amount of effort yet gets strictly lower expected rewards, and hence the cost-efficiency of
highest-threshold contracts.

DHRP has a similar intuition to MLRP, yet the intuition of DHRP is about the substitution
among incremental referral rewards in different outcomes. Specifically, DHRP ensures that it is
cost-saving for the firm to substitute incremental rewards in outcome 𝑁 for incremental rewards
in every outcome 𝑛 < 𝑁 .

Lastly, the new TSCP introduced in this paper concerns the change in the responsiveness
of referral rewards to the customer’s efforts. Specifically, as described in Section 1.3.3, TSCP
ensures that in higher-threshold contracts, rewards are relatively unresponsive to extra efforts
when the current effort level is low. Consequently, in higher threshold contracts, the customer
does not expect to accumulate large rewards until the effort level is high. This observation can be
interpreted as a second-best attempt to mimic the first-best contract contingent on effort levels.
In the first-best contract where efforts are contractible, the customer does not get paid until the
customer’s efforts reach the first-best effort level. In the second-best case, the customer is unlikely
to get paid anything in a higher threshold contract when the effort level is low. Since in higher
threshold contracts the customer gets most of the payoff for the higher part of the customer’s
efforts, higher-threshold contracts are more cost-effective than lower-threshold contracts as an
effort-incentivizing device.

The rest of this section discusses the relations between TSCP, DHRP, and MLRP. In general,
DHRP is a strictly weaker than both MLRP and TSCP; TSCP and MLRP do not imply each other.
Figure 1.3 summarizes the results in this section.

BetweenDHRP and TSCP, Proposition 15 has shown that whenA1 holds, TSCP implies DHRP.
However, in general, TSCP and DHRP do not imply each other. The following example shows
that TSCP does not imply DHRP.
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Example 2. Fix 𝑁 = 2. Let 𝑓 (1; 𝑞) = exp{19𝑞 +
1
9𝑞2−10} and 𝑓 (2; 𝑞) = (10− 𝑞) exp{19𝑞 +

1
9𝑞2−10}.

This distribution has TSCP but not DHRP (hence not MLRP, either).

Proof. Since 𝑓 (1;𝑞)
1−𝐹(1;𝑞) = 1

10−𝑞 is strictly increasing in 𝑞 ∈ (0, 1). The distribution does not have
DHRP. Additionally,

𝑓𝑞(2; 𝑞)
𝑓𝑞(1; 𝑞)

= 10 − 𝑞 + 9
1 + 2𝑞 ,

which is strictly increasing in 𝑞 ∈ (0, 1). Hence the distribution has TSCP.

Even when A1 holds, DHRP is still a strictly weaker condition than TSCP. The following
example provides a distribution that has MLRP and hence DHRP, but not TSCP. The example
hence also shows that MLRP does not imply TSCP.

Example 3. Fix 𝑁 = 2. Let 𝑓 (1; 𝑞) = 𝑞
4 , 𝑓 (2; 𝑞) = 5𝑞2−2𝑞3

4 . Under this distribution, A1 holds.
Additionally, this distribution has MLRP and hence DHRP, but not TSCP.

Proof. It is clear that A1(a) holds. Since both 𝑓 (1; 𝑞) and 𝑓 (2; 𝑞) are increasing, A1(d) holds. In
addition, since 𝑓 (0; 0) = 1 and 𝑓 (𝑛; 𝑞) ≠ 0 for every 0 ≤ 𝑛 ≤ 2 and 𝑞 ∈ (0, 1), A1(b) and A1(c) hold.
To see that MLRP holds, note that

𝑓 (1; 𝑞)
𝑓 (2; 𝑞) =

𝑞
5𝑞2 − 2𝑞3 = 1

5𝑞 − 2𝑞2 ,

which is decreasing in 𝑞 ∈ [0, 1]. Lastly, note that

𝑓𝑞(1; 𝑞)
𝑓𝑞(2; 𝑞)

= 1
10𝑞 − 6𝑞2 ,

which is increasing for 𝑞 > 5
6 , and hence TSCP does not hold.

Lastly, in the following example, A1 and TSCP hold, which together imply DHRP, but MLRP
does not hold. Since MLRP is known to imply DHRP, the following example also shows that
DHRP is strictly weaker than MLRP.

Example 4. Fix 𝑁 = 3. Let 𝑓 (1; 𝑞) = 𝑞
4 , 𝑓 (2; 𝑞) =

2𝑞−𝑞2
4 , 𝑓 (3; 𝑞) = 𝑞2

2 . The distribution has TSCP
and DHRP but not MLRP.

Proof. For MLRP, note that
𝑓 (1; 𝑞)
𝑓 (2; 𝑞) =

𝑞
2𝑞 − 𝑞2 = 1

2 − 𝑞 ,

which is increasing in 𝑞 and thus 𝐹(⋅; ⋅) does not have MLRP. Since A1 holds, by Proposition 15,
DHRP holds if TSCP and A1 hold. Thus it remains to show that TSCP holds. For 𝑓 (2; 𝑞) and
1 − 𝐹(2; 𝑞),

𝑓𝑞(2; 𝑞)
𝑓𝑞(3; 𝑞)

= 2 − 2𝑞
4𝑞 = 1

2𝑞 − 1
2,
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which is decreasing in 𝑞. For 𝑓 (1; , 𝑞) and 1 − 𝐹(1; 𝑞),
𝑓𝑞(1; 𝑞)

𝑓𝑞(2; 𝑞) + 𝑓𝑞(3; 𝑞)
= 1

2 − 2𝑞 + 4𝑞 = 1
2 + 2𝑞 ,

which is decreasing in 𝑞 ∈ [0, 1]. Hence TSCP holds.

1.7 Conclusion
I show with a stylized static model that when the number of referrals follows a binomial distri-
bution and the effort space is single-dimensional and compact, the highest-threshold contracts
would be the most cost-effective way of inducing customers to exert referral efforts. In a number
of important extensions, the optimal contract can deviate from the highest-threshold contract,
but the paper shows that the firm still has an incentive to include a threshold contract in its refer-
ral programme. For managerial implications, this paper provides new and interpretable insights
about how the use or inclusion of threshold contracts can help a firmmake its referral programme
more cost-effective.

One limitation of this paper is that efforts have perfect spillovers on the conversion probabil-
ity of each friend. This assumption makes it easier to have the customer’s action space be one-
dimensional, which helps to implement the first-order approach, but the assumption does elimi-
nate the likely factor that customer referral efforts could have different effects on each referrable
friend. For the sake of giving a more comprehensive understanding of the effort-incentivizing
part of referral programmes, it would be good for future works to have a model where the referral
efforts have only partial spillovers on each referrable friend.

1.A Auxiliary Results

1.A.1 Results about CDFC
In Grossman and Hart (1983) and Rogerson (1985), one condition used to make the first-order
approach valid is the convex distributional function condition, which is defined here.

Definition 3 (CDFC). The effort induced distribution 𝐹(⋅; 𝑞) satisfies the convexity of distribu-
tional function condition if 𝐹(𝑛; ℎ(𝑥)) is convex in 𝑥 , where ℎ(⋅) is the inverse function of 𝑐 with
domain [0, 𝑐(1)].

The following result shows that the effort-induced binomial distribution does not satisfy
CDFC for every convex 𝑐(⋅).
Proposition 16. If 𝑁 ≥ 4, the effort induced distribution is binomial, and the cost function 𝑐(⋅)
satisfies A2, then CDFC does not hold.
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Proof. Pick 0 < 𝑛 < 𝑁 such that 2𝑛 < 𝑁 − 1. By the property of the binomial distribution,

𝜕𝐹(𝑛; ℎ(𝑥))
𝜕𝑥 = 𝐹𝑞(𝑛; ℎ(𝑥))ℎ′(𝑥) ∝ (ℎ(𝑥))𝑛(1 − ℎ(𝑥))𝑁−𝑛−1ℎ′(𝑥),

and hence

𝜕2𝐹(𝑛; ℎ(𝑥))
𝜕𝑥2 ∝ [𝑛(ℎ)𝑛−1(1 − ℎ)𝑁−𝑛−1 − (𝑁 − 𝑛 − 1)(ℎ)𝑛(1 − ℎ)𝑁−𝑛−2] (ℎ′)2

+ (ℎ)𝑛(1 − ℎ)𝑁−𝑛−1ℎ″.
Since 𝑐″(𝑞) > 0 for 𝑞 ∈ (0, 1), ℎ″(𝑥) < 0 for 𝑥 ∈ (0, 𝑐(1)). In addition, the first term in the right-
hand side is negative for ℎ(𝑥)

1−ℎ(𝑥) ≥
𝑛

𝑁−𝑛−1 , where 𝑛
𝑁−𝑛−1 < 1. Therefore, 𝐹(𝑛; ℎ(𝑥)) is not convex

in 𝑥 and hence CDFC does not hold.

1.A.2 Result about IMCP
The following result shows that if IMCP holds, then for every target interior effort level, there
exists an 𝑁 -threshold contract that induces the effort level.

Proposition 17 (𝑁 -threshold effort-inducing). Assume IMCP and A1 hold. For every fixed 𝜃 ∈
(0, 1) and 1 ≤ 𝑛 ≤ 𝑁 , there exists a unique 𝑁 -threshold contract that induces 𝜃 .
Proof. Let 𝑡 be the 𝑁 -threshold contract such that 𝑣𝑞(𝑡; 𝜃) = 𝑐′(𝜃). The claim is that 𝑡 induces 𝜃 .
To show this, note that at 𝜃 ,

𝑣𝑞(𝑡; 𝜃) = 𝑡𝑁 𝑓𝑞(𝑁 ; 𝜃) = 𝑐′(𝜃).
Since 𝑓𝑞(𝑁 ; 𝑞) > 0 for every 𝑞 ∈ (0, 1), by IMCP, 𝑣𝑞(𝑡; 𝑞) > 𝑐′(𝑞) for 𝑞 ∈ (0, 𝜃) and 𝑣𝑞(𝑡; 𝑞) < 𝑐′(𝑞)
for 𝑞 ∈ (𝜃, 1). Thus in 𝑡 , to the customer, 𝜃 is the unique optimal effort level. Therefore, 𝑡 induces
𝜃 .

1.B Proofs

1.B.1 Proof of Proposition 2
Proof. The proof of the existence of a solution to (1.2) and the strict positiveness of the customer’
effort level is referred to Theorem 2. Assume the customer chooses 𝜃 ∈ (0, 1] in a contract. If
𝜃 = 1, then lim𝑞→1 𝑐(𝑞) < ∞ for such a contract to exist. Since 𝑓𝑞(𝑁 ; 1) > 0, there exists an 𝑁 -
threshold contract that induces 1 if lim𝑞→1 𝑐′(𝑞) < ∞. Let 𝑡 be an 𝑁 -threshold contract inducing
𝜃 , and 𝑏 be another contract in which the customer chooses 𝜃 . If 𝑏 is an 𝑁 -threshold contract,
then since 𝑣𝑞(𝑡; 𝜃) = 𝑐′(𝜃), 𝑏𝑁 ≥ 𝑡𝑁 and thus 𝑣(𝑏; 1) ≥ 𝑣(𝑡; 1). Assume instead that 𝑏 is not an
𝑁 -threshold contract. At 𝜃 , 𝑣𝑞(𝑏; 𝜃) ≥ 𝑐′(𝜃) = 𝑣𝑞(𝑡; 𝜃), which implies

𝑁
∑
𝑛=1

𝑏𝑛(𝑁𝑛 ) [𝑛𝜃
𝑛−1(1 − 𝜃)𝑁−𝑛 − (𝑁 − 𝑛)𝜃𝑛(1 − 𝜃)𝑁−𝑛−1] ≥ 𝑡𝑁𝑁𝜃𝑁−1.
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Multiply both sides by 𝜃
𝑁 and rearrange the terms to get

𝑁
∑
𝑛=1

𝑏𝑛(𝑁𝑛 )
𝑛
𝑁 𝜃𝑛(1 − 𝜃)𝑁−1 − 𝑡𝑁 𝜃𝑁 ≥

𝑁
∑
𝑛=1

𝑏𝑛(𝑁𝑛 )
𝑁 − 𝑛
𝑁 𝜃𝑛+1(1 − 𝜃)𝑁−𝑛−1 > 0,

where the last inequality is strict because 𝑏𝑛 > 0 for some 𝑛 < 𝑁 for 𝑏 is not an 𝑁 -threshold
contract. Since

𝑣(𝑏; 𝜃, 𝑁 ) − 𝑣(𝑡; 𝜃 , 𝑁 ) =
𝑁
∑
𝑛=1

𝑏𝑛(𝑁𝑛 )𝜃
𝑛(1 − 𝜃)𝑁−1 − 𝑡𝑁 𝜃𝑁

>
𝑁
∑
𝑛=1

𝑏𝑛(𝑁𝑛 )
𝑛
𝑁 𝜃𝑛(1 − 𝜃)𝑁−1 − 𝑡𝑁 𝜃𝑁 > 0

the 𝑁 -threshold contract has a strictly lower expected cost to the firm. Therefore, every optimal
contract must be an 𝑁 -threshold contract.

1.B.2 Proof of Proposition 3
Proof. For 𝑏 to incentivize 𝜃 ,

𝑣𝑞(𝑏; 𝜃) = −
𝑁
∑
𝑛=1

Δ𝑏𝑛𝐹(𝑛 − 1; 𝜃) = 𝑐′(𝜃).

Additionally, since 𝐹𝑞(𝑛 − 1; 𝑞) < 0 in 𝑞 ∈ (0, 1) and 𝑣𝑞(𝑡(𝑛); 𝜃) = −𝑡𝑛(𝑛)𝐹(𝑛 − 1; 𝜃) = 𝑐′(𝜃) for 1 ≤
𝑛 ≤ 𝑁 , 0 ≤ Δ𝑏𝑛 ≤ 𝑡𝑛(𝑛). For the same 𝑛, since 𝑣𝑞(𝑡(𝑛); 𝜃) = 𝑐′(𝜃), 𝑡𝑛(𝑛) > 0. Let 𝜆𝑛 = Δ𝑏𝑛

𝑡𝑛(𝑛) ∈ [0, 1]
for each 1 ≤ 𝑛 ≤ 𝑁 . By construction, 𝜆𝑛 ∈ [0, 1] for 1 ≤ 𝑛 ≤ 𝑁 and 𝑏 = ∑𝑛

𝑛=1 𝜆𝑛𝑡(𝑛). Additionally,
since 𝑣𝑞(𝑏; 𝜃) = 𝑣𝑞(𝑏(𝑛); 𝜃) for each 1 ≤ 𝑛 ≤ 𝑁 , by the linearity of 𝑣𝑞(⋅; 𝑞) for 𝑞 ∈ [0, 1],∑𝑁

𝑛=1 𝜆𝑛 = 1
and hence 𝑏 is in the convex hull of {𝑡(𝑛)}𝑁𝑛=1.

Lastly, for each 1 ≤ 𝑛 ≤ 𝑁 , 𝜃 is the unique optimal effort level to the customer in 𝑡(𝑛). By the
linearity of 𝑣(⋅; 𝑞) for 𝑞 ∈ [0, 1], 𝜃 must be the unique optimal effort level to the customer in 𝑏, i.e.,
𝑏 induces 𝜃 .

1.B.3 Proof of Proposition 4
Proof. The following lemma is very useful in proving the proposition.

Lemma 2 (Partial order on contracts). Fix 𝜃 ∈ (0, 1). Let 𝑏 and 𝑏′ be two different contracts such
that both induce 𝜃 and 𝑏0 = 𝑏′0. If there exists some 𝑛∗ such that Δ𝑏𝑛 − Δ𝑏′𝑛 ≥ 0 for 𝑛 ≥ 𝑛∗ and
Δ𝑏𝑛 − Δ𝑏′𝑛 ≤ 0 for 𝑛 ≤ 𝑛∗, then 𝑏 has a strictly lower expected cost to the firm.
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Proof of lemma. Since both contracts induce 𝜃 and 𝑐′ > 0 on (0, 1), we get 𝑣𝑞(𝑏; 𝑞) > 0 and
𝑣𝑞(𝑏′; 𝑞) > 0 for 𝑞 ∈ (0, 𝜃). Note that 𝑣𝑞(𝑏; 𝑞, 𝑁 ) ≤ 𝑣𝑞(𝑏′; 𝑞, 𝑁 ) for some 𝑞 ∈ (0, 1) is equivalent to

−
𝑁
∑
𝑛=1

Δ𝑏𝑛𝐹𝑞(𝑛 − 1; 𝑞) ≤ −
𝑁
∑
𝑛=1

Δ𝑏′𝑛𝐹𝑞(𝑛 − 1; 𝑞),

which is equivalent to

−
𝑁
∑
𝑛=𝑛∗

(Δ𝑏𝑛 − Δ𝑏′𝑛)𝐹𝑞(𝑛 − 1; 𝑞) ≤ −
𝑛∗−1
∑
1
(Δ𝑏′𝑛 − Δ𝑏𝑛)𝐹𝑞(𝑛 − 1; 𝑞). (1.11)

The inequality binds at 𝑞 = 𝜃 . Since strictMLRP holds,−𝐹𝑞(𝑛−1; 𝑞) > 0. In addition, asΔ𝑏𝑛−Δ𝑏′𝑛 ≥
0 for 𝑛 ≥ 𝑛∗ and Δ𝑏𝑛 − Δ𝑏′𝑛 ≤ 0 for 𝑛 ≤ 𝑛∗, every term (including the preceding minus sign) in
the summations on both sides are non-negative. If either side sums up to 0, then either 𝑏 = 𝑏′ or
the inequality does not bind at 𝑞 = 𝜃 , a contradiction. Assume instead that both sides are strictly
positive.

Note that 𝐹𝑞(𝑛; 𝑞) < 0 for 0 ≤ 𝑛 < 𝑁 . If for every 0 ≤ 𝑛 < 𝑁 ,
𝐹𝑞(𝑛−1;𝑞)
𝐹𝑞(𝑛;𝑞) is strictly decreasing

in 𝑞 ∈ (0, 1), which is the strict TSCP introduced in the main text, then (1.11) would hold strictly

for every 𝑞 ∈ (0, 𝜃). Since 𝑏0 = 𝑏′0 = 0, 𝑣(𝑏; 𝜃) = ∫𝜃0 𝑣𝑞(𝑏; 𝜃) and 𝑣(𝑏′; 𝜃) = ∫𝜃0 𝑣𝑞(𝑏′; 𝜃). Thus
𝑣(𝑏; 𝜃) < 𝑣(𝑏′; 𝜃) and the result is proved. Therefore, to complete the proof, it suffices to show
that the binomial distribution satisfy TSCP. For each 0 ≤ 𝑛 ≤ 𝑁 ,

𝐹𝑞(𝑛; 𝑞) =
𝑛
∑
𝑖=0

𝑓𝑞(𝑖; 𝑞) =
𝑛
∑
𝑖=0

(𝑁𝑖 ) [𝑖𝑞
𝑖−1(1 − 𝑞)𝑁−𝑖 − (𝑁 − 𝑖)𝑞𝑖(1 − 𝑞)𝑁−𝑖−1]

=
𝑛−1
∑
𝑖=0

[( 𝑁
𝑖 + 1)(𝑖 + 1) − (𝑁𝑖 )(𝑁 − 𝑖)] 𝑞𝑖(1 − 𝑞)𝑁−𝑖−1

= −(𝑁𝑛 )(𝑁 − 𝑛)𝑞𝑛(1 − 𝑞)𝑁−𝑛−1.

(1.12)

Thus for every 𝑛1 < 𝑛2, 𝐹𝑞(𝑛1; 𝑞)
𝐹𝑞(𝑛2; 𝑞)

∝ (1 − 𝑞
𝑞 )

𝑛2−𝑛1
,

which is strictly decreasing in 𝑞 on (0, 1). Therefore, the effort-induced binomial distribution
satisfies TSCP and hence 𝑣(𝑏; 𝜃) < 𝑣(𝑏′; 𝜃). The proof of the lemma is complete.

Assume 𝑛 > 𝑛′ and pick any integer 𝑛∗ from 𝑛 to 𝑛′. For 𝑛 ≤ 𝑛∗, Δ𝑡𝑛 − Δ𝑡′𝑛 ≤ 0; for 𝑛 ≥ 𝑛∗,
Δ𝑡𝑛 − Δ𝑡′𝑛 ≥ 0. Thus 𝑡 has a strictly lower expected cost by Lemma 2.
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1.B.4 Proof of Proposition 5
Proof. If 𝑛 = 𝑁 , by the optimality of 𝑁 -threshold contracts established in Proposition 2, 𝑞∗𝑁 = 1.
Fix 𝑛 < 𝑁 . Let 𝑏(𝜃) be the linear contract with incremental payment ℓ𝜃 > 0 that induces 𝜃 and
let 𝑡(𝑛; 𝜃) be the 𝑛-threshold contract that induces the same effort level. Since 𝑣𝑞(𝑡(1); 𝑞) < 0 for
𝑞 ∈ (0, 1), 𝑞∗1 = 0. Assume instead 1 ≤ 𝑛 < 𝑁 . At 𝜃 , the first-order conditions of the two contracts
imply 𝑣𝑞(𝑏(𝜃; 𝜃)) = 𝑣𝑞(𝑡(𝑛; 𝜃); 𝜃), which is

ℓ𝜃𝑁 = −𝑡𝑛(𝑛; 𝜃)𝐹𝑞(𝑛 − 1; 𝜃).

Since 𝑣𝑞(𝑡(𝑛; 𝜃); 𝑞) is strictly increasing for 𝑞
1−𝑞 < 𝑛−1

𝑁−𝑛 and strictly decreasing beyond the thre-

shold. Therefore, 𝑡𝑛(𝑛; 𝜃)/ℓ𝜃 is decreasing in 𝜃 for 𝜃
1−𝜃 < 𝑛−1

𝑁−𝑛 and increasing after the thre-

shold. If 𝜃
1−𝜃 < 𝑛−1

𝑁−𝑛 , then since 𝑣𝑞(𝑡(𝑛; 𝜃); 𝑞) is increasing and 𝑣𝑞(𝑏(𝜃); 𝑞) is constant for 𝑞 < 𝜃 ,
𝑣(𝑏(𝜃); 𝜃) > 𝑣(𝑡(𝑛; 𝜃); 𝜃). Now define

𝐷(𝜃) = 𝑣(𝑡(𝑛; 𝜃); 𝜃) − 𝑣(𝑏(𝜃); 𝜃)
ℓ𝜃

= 𝑡𝑛(𝑛; 𝜃)
ℓ𝜃 ∫

𝜃

0
𝑛(𝑁𝑛 )𝑞

𝑛−1(1 − 𝑞)𝑁−𝑛𝑑𝑞 − 𝑁𝜃,

where the first part of the right-hand side comes from (1.12) and the fact that 𝑓 (𝑛; 0) = 0 for all
𝑛 > 0. Hence

𝐷′(𝜃) = 𝜕
𝜕𝜃 (

𝑡𝑛(𝑛; 𝜃)
ℓ𝜃

)∫
𝜃

0
𝑣𝑞(𝑡(𝑛; 𝜃); 𝑞)𝑑𝑞 +

𝑣𝑞(𝑡(𝑛; 𝜃); 𝜃)
ℓ𝜃

− 𝑁 .

= 𝜕
𝜕𝜃 (

𝑡𝑛(𝑛; 𝜃)
ℓ𝜃

)∫
𝜃

0
𝑣𝑞(𝑡(𝑛; 𝜃); 𝑞)𝑑𝑞,

where the last equality comes from the first-order condition of the two contracts at 𝜃 . Hence
𝐷′(𝜃) has the same sign with 𝜕

𝜕𝜃 (𝑡𝑛(𝑛; 𝜃)/ℓ𝜃 ). Therefore, 𝐷(𝜃) < 0 and is decreasing for 𝜃
1−𝜃 < 𝑛−1

𝑁−𝑛
and increasing otherwise. Since ℓ𝜃 > 0 and is increasing in 𝜃 , if 𝐷(𝜃) > 0, then 𝐷′(𝜃) > 0 and
𝐷(𝑞) > 0 for all 𝑞 > 𝜃 . Thus, there exists some 𝑞∗𝑛 ∈ [0, 1] such that 𝑣(𝑡(𝑛; 𝜃); 𝜃) ≤ 𝑣(𝑏(𝜃); 𝜃) if and
only if 𝜃 ≤ 𝑞∗𝑛 .

Fix 1 ≤ 𝑛 < 𝑁 . To show that 𝑞∗𝑛+1 > 𝑞∗𝑛 if 𝑞∗𝑛 < 1, note that by Proposition 4, the (𝑛 + 1)-
threshold contract that induces 𝜃 has a strictly lower expected cost than does the 𝑛-threshold
contract. Therefore, 𝑣(𝑡(𝑛 + 1; 𝑞∗𝑛 ); 𝑞∗𝑛 ) < 𝑣(𝑡(𝑛; 𝑞∗𝑛 ); 𝑞∗𝑛 ) ≤ 𝑣(𝑏(𝜃); 𝑞∗𝑛 ) and hence 𝑞∗𝑛+1 > 𝑞∗𝑛 if
𝑞∗𝑛 < 1.

1.B.5 Proof of Proposition 6
Proof. Since a strictly profitable contract with respect to (1.3) exists, in every solution to (1.3), the
firm gets a strictly positive profit, and hence in every solution to (1.3), the effort level must be
strictly positive.

Let 𝑡∗ be the 𝑁 -threshold contract that incentivizes 𝑞𝐹𝐵. Define 𝑟 = 𝑣(𝑡∗; 𝑞𝐹𝐵) − 𝑐(𝑞𝐹𝐵) and
𝑟 = 𝜋𝑁𝑞𝐹𝐵 − 𝑐(𝑞𝐹𝐵).
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𝑟 ≤ 𝑟 Assume 𝑟 ≤ 𝑟 . Let 𝑡 be the 𝑁 -threshold contract ignoring the participation constraint.
Let 𝑞(⋅) map a threshold contract to the incentivized effort level. By Remark 1, 𝑞(𝑡) < 𝑞𝐹𝐵. If the
participation constraint does not hold, then raising 𝑡𝑁 will incentivizing the customer to work
more as well as improving the customer’s payoff. Raise 𝑡𝑁 until the customer’s participation
constraint binds and denote the new contract by 𝑡′. Now let 𝑏 ≠ 𝑡′ be a contract that is feasible
in (1.3) and incentivizes an effort level less than 𝑞(𝑡′). From 𝑏 to 𝑡′, the rise of expected reward
is capped above by 𝑐(𝑞(𝑡′)) − 𝑐(𝑞(𝑡)) and the firm’s referral revenue increases by 𝜋𝑁 (𝑞(𝑡′) − 𝑞(𝑡)).
Since 𝑞(𝑡′) ≤ 𝑞𝐹𝐵 by the assumption of 𝑟 , the increase in revenue is more than the increase in
expected reward. Therefore, 𝑡′ is better than any contract that is feasible in (1.3) and incentivizes
an effort level less than 𝑞(𝑡′).

Now suppose 𝑏 is feasible in (1.3) and incentivizes an effort level more than 𝑞(𝑡′), there ex-
ists an 𝑁 -threshold contract that incentivizes the effort level, i.e., the participation constraint
holds. Since the 𝑁 -threshold contract is uniquely cost-efficiently, 𝑏 is not optimal. Therefore, 𝑡′
is optimal when 𝑟 < 𝑟 .

𝑟 ≥ 𝑟 If 𝑟 ≥ 𝑟 , then the firm’s first-best profit is zero, and hence it is optimal not to have a
referral programme.

𝑟 ∈ (𝑟 , 𝑟) Assume 𝑟 ∈ (𝑟 , 𝑟). Let 𝑡 be the𝑁 -threshold contract incentivizing 𝑞𝐹𝐵 and ℓ be the linear
contract incentivizing 𝑞𝐹𝐵. To be precise, Δℓ = 𝜋 , i.e., the customer gets all the referral revenue as
referral reward. By construction, the participation constraint does not hold in 𝑡 and the constraint
holds strictly in ℓ. Therefore, there exists some 𝜆 ∈ (0, 1) such that 𝑣(𝜆𝑡 +(1−𝜆)ℓ; 𝑞𝐹𝐵)−𝑐(𝑞𝐹𝐵) = 𝑟 .
It suffices to show that the mixture incentivizes 𝑞𝐹𝐵. To see this, note that

𝑣𝑞(𝑡; 𝑞) − 𝑐′(𝑞) = {≤ 0 𝑞 ≤ 𝑞𝐹𝐵
> 0 𝑞 > 𝑞𝐹𝐵

, 𝑣𝑞(ℓ; 𝑞) − 𝑐′(𝑞) = {≤ 0 𝑞 ≤ 𝑞𝐹𝐵
> 0 𝑞 > 𝑞𝐹𝐵

.

Since 𝑣𝑞(⋅; 𝑞) is linear in the contract, the single-crossing property continues to hold for 𝜆𝑡+(1−𝜆)ℓ.
Therefore, the combined contract cost-efficiently incentivizes 𝑞𝐹𝐵 and the participation constraint
binds.

1.B.6 Proof of Theorem 1
Proof. The proof uses a similar Lagrangian approach to the one used in Innes (1990). Consider
the firm’s relaxed profit-maximization problem

max
𝑏∈ℝ𝑁+1
𝑞∈[0,1]

𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) (1.13)

s.t. 𝑣(𝑏; 𝑞) ≥ 𝑐(𝑞) (1.13a)
𝑣𝑞(𝑏; 𝑞) ≥ 𝑐′(𝑞) ∀𝑞 ∈ [0, 1] (1.13b)

0 ≤ 𝑏𝑛 ≤ 𝜋𝑛 ∀0 ≤ 𝑛 ≤ 𝑁 . (1.13c)
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This problem is a relaxed problem of (1.4) because (1.4b) implies (1.13b). The relaxed problem
has a solution because the objective function is continuous and the feasible set is non-empty and
compact. Assume a contract that is strictly profitable with respect to (1.4) exists. Since the firm
has zero revenue (before referral rewards) if 𝑞 = 0, in every solution to (1.13), 𝑞 > 0.

Let (𝑏, 𝑞) be a solution to (1.13). The Lagrangian function of (1.13) associated with (𝑏, 𝑞) is

𝐿 = 𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) − 𝜆[𝑣(𝑏; 𝑞) − 𝑐(𝑞)] − 𝜇[𝑣𝑞(𝑏; 𝑞) − 𝑐′(𝑞)] +
𝑁
∑
𝑛=0

𝜂𝑛𝑏𝑛 − 𝜓[𝑏𝑛 − 𝜋𝑛].

The Lagrangian function’s first-order condition with respect to 𝑏𝑛 is

𝐿𝑏𝑛 = −𝑓 (𝑛; 𝑞) + 𝜆𝑓 (𝑛; 𝑞) + 𝜇𝑓𝑞(𝑛; 𝑞) + 𝜂𝑛 − 𝜓𝑛.

Assume 𝜇 > 0 and 𝑞 ∈ (0, 1). Since 𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) is strictly increasing in 𝑛, if 𝑏𝑛 > 0 and 𝑏𝑛+1 < 𝜋(𝑛 =

1), 𝐿𝑏𝑛+1 > 0, a contradiction. Hence if 𝑏𝑛 > 0, then 𝑏𝑛+1 = 𝜋(𝑛 + 1).
Assume 𝜇 > 0 and 𝑞 = 1. Since 𝜇 > 0, the customer’s first-order condition binds. Since

𝑓 (𝑁 ; 1) = 1, 𝑓𝑞(𝑛; 𝑞) ≤ 0 for each 𝑛 < 𝑁 . Therefore, if the customer chooses 1 in 𝑏, then there
exists an 𝑁 -threshold contract 𝑡 inducing 1. By the proof of Proposition 2, 𝑣(𝑏; 1) > 𝑣(𝑡; 1), con-
tradicting the optimality of 𝑏.

Assume 𝜇 = 0. Since 𝑏 ≠ 0, it is necessary that 𝜆 > 0 and hence the customer’s participation
constraint binds. If 𝑏𝑛 > 0 but 𝑏𝑛+1 < 𝜋(𝑛 + 1), by lowering 𝑏𝑛 and adjusting 𝑏𝑛+1 simulta-
neously by an appropriate ratio, the customer’s participation constraint binds, and the relaxed
first-order condition holds. However, this implies the existence of a non-decreasing contract in-
ducing a strictly positive effort level yet gets zero payoffs, which is a contradiction because by
Proposition 3, the first-order condition uniquely determines the customer’s optimal effort level.
Therefore, 𝜇 > 0.

It has been shown that (𝑏, 𝑞) to (1.13)must have the property that 𝑏𝑛 > 0 implies 𝑏𝑛+1 = 𝜋(𝑛+1).
Since 𝜇 > 0 and the contract is non-decreasing, the customer optimally choose 𝑞 in such a contract,
and hence (𝑏, 𝑞) is a solution to the actual optimization problem (1.4).

1.B.7 Proof of Proposition 8
Proof. The relaxed optimization problem of (1.5) is

max
𝑏∈ℝ𝑁+1
𝑞∈[0,1]

𝜋𝑁𝑞 −
𝑁
∑
𝑛=0

𝑏𝑛𝑓 (𝑛; 𝑞) (1.14)

s.t.
𝑁
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓 (𝑛; 𝑞) − 𝑐(𝑞) ≥ 0 (1.14a)

𝑛
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓𝑞(𝑛; 𝑞) ≥ 𝑐′(𝑞) (1.14b)

𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 (1.14c)

31



Let (𝑏, 𝑞) be a solution to (1.14). The Lagrangian associated with (𝑏, 𝑞) is

𝐿 = 𝜋𝑁𝑞 −
𝑁
∑
𝑛=0

𝑏𝑛𝑓 (𝑛; 𝑞)

+ 𝜆 [
𝑁
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓 (𝑛; 𝑞) − 𝑐(𝑞)] + 𝜇 [
𝑛
∑
𝑛=0

𝑉 (𝑏𝑛)𝑓𝑞(𝑛; 𝑞) − 𝑐′(𝑞)] +
𝑁
∑
𝑛=0

𝜂𝑛𝑏𝑛, (1.15)

where 𝜆 ≥ 0, 𝜇 ≥ 0, and 𝜂𝑛 ≥ 0 for every 𝑛 are the Lagrangian multipliers associated with 𝑏. For
each 𝑛,

𝐿𝑏𝑛 = −𝑓 (𝑛; 𝑞) + 𝜆𝑉 ′(𝑏𝑛)𝑓 (𝑛; 𝑞) + 𝜇𝑉 ′(𝑏𝑛)𝑓𝑞(𝑛; 𝑞) + 𝜂𝑛. (1.16)

If 𝜇 = 0, then 𝜆 > 0 and the customer’s participation constraint binds. MLRP implies that
𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) is

non-decreasing in 𝑞. Therefore, whenever 𝑏𝑛 > 0 and 𝑛 < 𝑁 , by lowering 𝑏𝑛 and raising 𝑏𝑁 by an
appropriate ratio, the customer’s participation constraint stays bound and the customer’s relaxed
first-order condition still holds. However, this implies the existence of an 𝑁 -threshold contract
that induces at least 𝑞 and the customer’s participation constraint binds, which is a contradiction
since the customer gets strictly payoff from a non-decreasing contract inducing the customer to
choose a strictly positive effort level. Therefore, 𝜇 > 0, i.e., at (𝑏, 𝑞), the customer’s first-order
condition binds.

If 𝑏𝑛 > 0 but 𝑓𝑞(𝑛; 𝑞) < 0, then 𝐿𝑏𝑛 < 0, a contradiction. Note that 𝑓𝑞(𝑛; 𝑞) < 0 if and only if
𝑞 > 𝑛/𝑁 . Therefore, 𝑏𝑛 = 0 if 𝑞 > 𝑛/𝑁 . To complete the proof, it is left to show that (𝑏, 𝑞) as a
solution to (1.14) also solves (1.5). By MLRP, for 𝑏𝑛 = 𝑏𝑛+1, 𝐿𝑏𝑛+1 ≥ 𝐿𝑏𝑛 , implying that the solution
must be non-decreasing. With a similar reasoning to Proposition 3, the first-order approach is
valid for (𝑏, 𝑞) and hence (𝑏, 𝑞) solves (1.5).

1.B.8 Proof of Proposition 9
Proof. The proof uses the conditions in Grossman and Hart (1983) to prove the convexity of
optimal contracts. The firm solves the same optimization problem (1.5) with the same relaxed
problem (1.14). With a similar reasoning to that in the proof of Proposition 8, 𝜇 > 0 and 𝜆 = 0 in
(1.15).

Since strict MLRP holds for 𝑞 ∈ (0, 1), in (1.16), for 𝑏𝑛 = 𝑏𝑛′ with 𝑛′ > 𝑛, if 𝐿𝑏𝑛 ≥ 0, then
𝐿𝑏𝑛′ > 0. Thus in every solution, if 𝑏𝑛 > 0, then 𝑏𝑛+1 > 𝑏𝑛. In addition, for 𝑏𝑛 > 0 in a solution,
the first-order condition is

1
𝑉 ′(𝑏𝑛)

= 𝜇 𝑓𝑞(𝑛; 𝑞)𝑓 (𝑛; 𝑞) ,
and thus

1
𝑉 ′(𝑏𝑛+1)

− 1
𝑉 ′(𝑏𝑛)

= 𝜇 [
𝑓𝑞(𝑛 + 1; 𝑞)
𝑓 (𝑛 + 1; 𝑞) − 𝑓𝑞(𝑛; 𝑞)

𝑓 (𝑛; 𝑞) ] .

With 𝜇 > 0 and 1/𝑉 ′(⋅) concave, if it can be shown that
𝑓𝑞(𝑛+1;𝑞)
𝑓 (𝑛+1;𝑞) −

𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) is non-decreasing in 𝑛,

which is a condition introduced in Grossman and Hart (1983), then 𝑏𝑛+2 − 𝑏𝑛 ≥ 𝑏𝑛+1 − 𝑏𝑛 ≥ 0.
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Given the binomial distribution,

𝑓𝑞(𝑛; 𝑞)
𝑓 (𝑛; 𝑞) = 𝑛

𝑞 − 𝑁 − 𝑛
1 − 𝑞 ,

and hence
𝑓𝑞(𝑛+1;𝑞)
𝑓 (𝑛+1;𝑞) −

𝑓𝑞(𝑛;𝑞)
𝑓 (𝑛;𝑞) = 1

𝑞 +
1

1−𝑞 , which is constant and hence non-decreasing in 𝑛.

1.B.9 Proof of Proposition 10
Proof. Let ℓ ∈ ℝ𝑁+1 be an optimal linear contract with respect to (1.7), with 𝛽 = Δℓ1 being the
constant incremental reward in the linear contract. If (1.7) is zero in ℓ, then the proposition is
trivially true. Now assume instead that (1.7) is strictly positive in ℓ. Since the objective function
is zero with 𝑞 = 0 or the number of messages being zero, in ℓ, the customer chooses an effort level
𝑞 > 0 and sends a positive number of messages at optimum.

For the customer to send a positive number of messages, it is necessary that 𝛽𝑞 ≥ 𝑠. Since
(1.7) is strictly positive at optimum, 𝛽 < 𝜋 and hence the customer must send 𝑁 referral messages
at the firm’s optimum. It thus remains to prove the existence of a contract that is a combination
of a linear contract and an 𝑁 -threshold contract, feasible in (1.7), and improves (1.7).

By treating the communication cost of sending 𝑁 messages in the customer’s reserve utility,
Proposition 6 implies that there exists a contract 𝑏 ∈ ℝ𝑁+1 that is a combination of a linear
contract and an𝑁 -threshold contract, such that conditional on that the customer has an incentive
to send 𝑁 messages, 𝑏 improves (1.7) over ℓ. Therefore, it suffices to show that in 𝑏, the customer
has an incentive to send 𝑁 messages.

Let 𝑏 = ℓ∗ + 𝑡 , where ℓ∗ ∈ ℝ𝑁+1 is the linear part of 𝑏 and 𝑡 ∈ ℝ𝑁+1 the 𝑁 -threshold part.
Since the customer’s participation constraint holds in 𝑏, the customer has no incentive to send
no messages. Now assume that it is optimal for the customer to send �̃� < 𝑁 messages and exert
effort level 𝑞 > 0. By the construction of 𝑏, for �̃� < 𝑁 , the customer is in a linear contract,
and hence 𝑞Δℓ∗1 ≥ 𝑠, and thus �̃� = 𝑁 − 1 is optimal to the customer. However, if the customer
sends 𝑁 messages instead of 𝑁 −1 with the same effort level 𝑞, then the extra expected reward is
𝑞Δℓ∗1+𝑓 (𝑁 ; 𝑞, 𝑁 ) > 𝑠, and hence the customer is strictly better off by sending𝑁 messages instead,
a contradiction. Hence in 𝑏, sending 𝑁 messages is uniquely optimal and hence 𝑏 is feasible in
(1.7). Therefore, 𝑏 improves (1.7) over ℓ.

1.B.10 Proof of Proposition 11
Proof. If there exists no menu that is strictly profitable with respect to (1.9), then the zero menu
is optimal. If an optimal menu exists and is strictly profitable, then at least one type must choose
a strictly positive effort level.

It can be shown both types choose strictly positive effort levels. Let (𝑏1, 𝑏2) be an optimal
menu that is strictly profitable. To arrive at a contradiction, first assume that only the low type
chooses a strictly positive effort level. The firm’s profit from the high type is non-positive by
the limited liability of customer assumption. If 𝑉 ∗(𝑏1; 𝑁2) ≤ 0, then the firm can offer the high
type the optimal contract 𝑡 ∈ ℝ𝑁2+1 when there is only the high type. By Proposition 2, 𝑡 is
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an 𝑁2-threshold contract. Therefore, (𝑏1, 𝑡) is incentive-compatible because 𝑉 ∗(𝑡; 𝑁1) = 0 and
𝑉 ∗(𝑡; 𝑁2) > 0. Therefore, Π(𝑏1, 𝑡) > Π(𝑏1, 𝑏2), a contradiction. If 𝑉 ∗(𝑏1; 𝑁2) > 0, then 𝑏20 > 0. It is
without loss of generality to assume that 𝑏2 = 𝑉 ∗(𝑏1; 𝑁1) and 𝑏2𝑛 = 0 for 𝑛 > 0. Assume that the
firm uses an𝑁2-threshold contract 𝑡 to induce the high type to choose some small 𝜃2 > 0. To make
the new menu incentive compatible, the firm also needs to give the high type an unconditional
reward of 𝑟 to make the high type’s IC constraint bind. Since the high type’s utility is increasing
in 𝑡𝑁2 , 𝑟 < 𝑏20 , and hence 𝑉 ∗(𝑡 + 𝑟; 𝑁1) < 𝑉 ∗(𝑏1; 𝑁1). The high type’s expected rewards increase by
𝑐(𝜃2), whereas the firm’s revenue increase by 𝜋𝑁2𝜃2. Since 𝑐′(𝑞) < 𝜋𝑁2 for small 𝑞, 𝜋𝑁2𝜃2 > 𝑐(𝜃2),
and thus Π(𝑏1; 𝑡 +𝑟) > Π(𝑏1, 𝑏2), contradicting the optimality of (𝑏1, 𝑏2). Therefore, if the low type
chooses a strictly positive effort level in an optimal contract, then the high type also chooses a
strictly positive effort level.

If only the high type exerts efforts in an optimal menu, then by Proposition 2, it is optimal to
have 𝑏2 be an 𝑁2-threshold contract. Assume the high type chooses 𝜃 > 0 in 𝑏2. From the proof
of Proposition 2, 𝑣(𝑏2; 𝜃 , 𝑁2) > 𝑐(𝜃). However, this implies that if 𝑏1 is set to an 𝑁1-threshold
contract with 𝑏1𝑁1 > 0 being small, (𝑏1, 𝑏2) is incentive compatible and the low type chooses a
strictly positive effort level. In addition, for small 𝑏1𝑁1 > 0, the firm gets a strictly positive profit
from the low type. Therefore, in every optimal contract, both types exerts strictly positive efforts.

It remains to show that (1.9) has a solution. To see this, note that the limited liability of cus-
tomer assumption bounds the objective function above. Additionally, since the objective function
is continuous and the feasible set of (1.9) is closed, a maximizer exists.

1.B.11 Proof of Proposition 12
Proof. Let (𝑏1, 𝑏2) be an optimal menu and assume 𝑏2 is not an 𝑁2-threshold contract. Let 𝑞′2 =
𝑞∗(𝑏2; 𝑁2) and 𝑡2 be the 𝑁2-threshold contract inducing the high type to choose 𝑞′2. By the proof
of Proposition 2, 𝑣(𝑡2; 𝑞′2, 𝑁2) < 𝑣(𝑏2; 𝑞′2, 𝑁2).

If 𝑉 ∗(𝑏1; 𝑁2) ≥ 𝑉 ∗(𝑡 𝑙 ; 𝑁2), let 𝑡1 = 𝑡 𝑙 ; otherwise, let 𝑡1 = 𝑏1. If 𝑉 ∗(𝑡2; 𝑁2) ≥ 𝑉 ∗(𝑡1; 𝑁2), then
(𝑡1, 𝑡2) is incentive-compatible. When 𝑡1 = 𝑡 𝑙 , the firm gets a weakly higher profit from the low
type since 𝑡 𝑙 is optimal when there is only the low type. Additionally, since the high type exerts
the same effort level yet at a strictly lower expected rewards in 𝑡2 than in 𝑏2, the firm gets a strictly
higher profit from the high type in (𝑡1, 𝑡2). Therefore, Π(𝑏1, 𝑏2) < Π(𝑡1, 𝑡2), a contradiction.

Assume instead that 𝑉 ∗(𝑡2; 𝑁2) < 𝑉 ∗(𝑡1; 𝑁2), i.e., (𝑡1, 𝑡2) is not incentive-compatible. In this
case, redefine 𝑡2 by raising 𝑡2𝑁2 so that 𝑉 ∗(𝑡2; 𝑁2) = 𝑉 ∗(𝑡1; 𝑁2). Let 𝑞2 = 𝑞∗(𝑡2; 𝑁2). By the choice
of 𝑡1, since 𝑉 ∗(𝑡1; 𝑁2) ≤ 𝑉 ∗(𝑏1; 𝑁2) and 𝑉 ∗(𝑡2; 𝑁2) is strictly increasing in 𝑡2𝑁2 , 𝑞2 ≤ 𝑞𝐹𝐵(𝑁2). By
the choice of (𝑡1, 𝑡2),

𝑉 ∗(𝑡2; 𝑁2) = 𝑉 ∗(𝑡1; 𝑁2) ≤ 𝑉 ∗(𝑏1; 𝑁2) ≤ 𝑉 ∗(𝑏2; 𝑁2),
which means

𝑐(𝑞2) − 𝑐(𝑞′2) ≥ 𝑣(𝑡2; 𝑞2, 𝑁2) − 𝑣(𝑏2; 𝑞′2, 𝑁2).
Since 𝑞2 ≤ 𝑞𝐹𝐵(𝑁2) and 𝑞2 > 𝑞′2,

𝜋𝑁2(𝑞2 − 𝑞′2) > 𝑐(𝑞2) − 𝑐(𝑞′2) ≥ 𝑣(𝑡2; 𝑞2, 𝑁2) − 𝑣(𝑏2; 𝑞′2, 𝑁2).
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Thus the firm gets a strictly higher profit from the high type and Π(𝑡1, 𝑡2) > Π(𝑏1, 𝑏2), contra-
dicting the optimality of (𝑏1, 𝑏2). Therefore, if (𝑏1, 𝑏2) is optimal, then 𝑏2 is an 𝑁2-threshold con-
tract.

1.B.12 Proof of Proposition 13
Proof. If there exists no contract that is strictly profitable with respect to (1.10) exists, then the
zero contract is optimal. Assume instead that such a strictly profitable contract exists. In that
case, if an optimal contract exists, then the firm’s profits would be strictly positive, and at least
one type chooses a strictly positive effort level. Since referral contracts are now assumed to be
non-decreasing, if the low type chooses a strictly positive effort level, then by exerting the same
effort level, the high type would get at least the payoff of the low type. Therefore, the high type
always chooses a strictly positive effort level.

Because of the limited liability of customer, the firm’s profits cannot exceed 𝜋(𝑁1+𝑁2). There-
fore, let Π = sup{Π(𝑏, 𝑏)} ∈ (0, ∞) and find a sequence of contracts (𝑏𝑖)∞𝑖=1, where each 𝑏𝑖 ∈ ℝ𝑁2+1
such that Π(𝑏𝑖, 𝑏𝑖) ≤ Π(𝑏𝑖+1, 𝑏𝑖+1) for every 𝑖 and lim𝑖→∞ Π(𝑏𝑖, 𝑏𝑖) = Π. Since [0, 1]2 is compact, it
can be assumed that 𝜃 𝑖1 = 𝑞∗(𝑏𝑖; 𝑁1) and 𝜃 𝑖2 = 𝑞∗(𝑏𝑖; 𝑁2) converge to some 𝜃1 and 𝜃2.

It remains to show that (1.10) admits a solution. The objective function is bounded above
thanks to the limited liability of customer assumption. Additionally, since the feasible set is
closed, (1.10) has a solution.

1.B.13 Proof of Lemma 1
Proof. If there exists �̃� ∈ ℝ𝑁2+1 such that �̃�0 > 0 and the two types choose (𝜃1, 𝜃2), define 𝑏 = �̃�−�̃�0,
which is non-decreasing and non-negative contract since �̃� is non-decreasing and non-negative.
By Proposition 3, the customer would still choose 𝜃1 if given contract 𝑏. At every 𝑞 ∈ (0, 1),

𝑣(�̃�; 𝑞, 𝑁1) = �̃�0 +
𝑁2
∑
𝑛=1

Δ𝑏𝑛 [1 − 𝐹(𝑛 − 1; 𝑞, 𝑁1)] = 𝑣(𝑏; 𝑞; 𝑁1) − �̃�0,

and thus 𝑏 pays the low type lower expected rewards. Similarly, it can be shown that the high
type would choose 𝜃2 under 𝑏 and 𝑏 has a lower expected cost to the firm. Therefore, given (𝜃1, 𝜃2),
every cost-efficient contract must have 𝑏0 = 0. For the rest of the proof, set 𝑏0 = 0.

If 𝜃1 = 0, then by Proposition 2, the 𝑁2-threshold inducing 𝜃2 by the high type is cost-efficient.
Assume (𝜃1, 𝜃2) ∈ [0, 1]2. Consider the following relaxed cost-minimization problem to the firm:

min
𝑏∈ℝ𝑁2

𝛼𝑣(𝑏; 𝜃1, 𝑁1) + (1 − 𝛼)𝑣(𝑏; 𝜃2, 𝑁2) (1.17)

s.t. 𝑣𝑞(𝑏; 𝜃𝑖, 𝑁𝑖) = 𝑐′(𝜃𝑖), 1 ≤ 𝑖 ≤ 2 (1.17a)

0 ≤ 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤ 𝑏𝑁2 (1.17b)

Problem (1.17) has the same solution to the actual cost-minimization part of (1.10), because by
Proposition 3, the first-order condition is sufficient for the effort-choice constraints with non-
decreasing contracts. Since (1.17) is a linear programming problem with linear constraints, there
exists a minimizer that is an extreme point of the feasible set of (1.17).
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In (1.17), each extreme point is found by binding 𝑁2 linearly independent constraints. Since
the zero contract is not a solution, for each extreme point, either exactly 𝑁 − 1 or 𝑁 − 2 of the
inequality constraints bind, which is a contract with two thresholds. Since the solution to (1.17)
also solves the cost-minimization part of (1.10), (1.10) admits a solution that has a contract with
two thresholds.

1.B.14 Proof of Proposition 14
Proof. The following lemma is useful in proving the proposition.

Lemma 3 (Highest-threshold for high type). Fix (𝜃1, 𝜃2) ∈ (0, 1]2. Assume there exists an (𝑛1, 𝑛2)-
threshold contract such that the two types optimally choose (𝜃1, 𝜃2). If 𝑁1 < 𝑛2 < 𝑁2 and 𝑏𝑛2 > 𝑏𝑛1 ,
then there exists an (𝑛1, 𝑁2)-threshold contract that induces (𝜃1, 𝜃2) and has strictly lower expected
rewards.

Proof of lemma. Let �̃� ∈ ℝ𝑁2 be an (𝑛1, 𝑛2)-threshold contract that induces (𝜃1, 𝜃2). Let �̂� ∈ ℝ𝑁2

be an 𝑛1-threshold contract such that �̂�𝑛 = �̃� for 𝑛 ≤ 𝑛1 and �̂�𝑛 = �̂�𝑛1 for 𝑛 ≥ 𝑛1. As �̃�𝑛2 > �̃�𝑛1 ,
�̃� is non-decreasing, and 𝐹(𝑛; 𝑞, 𝑁2) is strictly decreasing in 𝑞 for 𝑞 ∈ (0, 1), 𝑣𝑞(�̂�; 𝜃2, 𝑁2) < 𝑐′(𝜃2).
Since 𝑓𝑞(𝑁 ; 𝑞, 𝑁2) > 0 for 𝑞 ∈ (0, 1), there exists an (𝑛1, 𝑁2)-threshold contract 𝑏 that induces
(𝜃1, 𝜃2) and 𝑏𝑛 = �̃� for 1 ≤ 𝑛 ≤ 𝑛1. It can be shown that 𝑏 strictly improves the firm’s cost. At 𝜃2,
𝑣𝑞(�̃�; 𝜃2, 𝑁2) = 𝑣𝑞(𝑏; 𝜃2, 𝑁2), which implies

(𝑁2
𝑛1
)�̃�𝑛1𝑛1𝜃

𝑛1−12 (1 − 𝜃2)𝑁2−𝑛1 + (𝑁2
𝑛2
) (�̃�𝑛2 − �̃�𝑛1) 𝑛2𝜃

𝑛2−12 (1 − 𝜃2)𝑁2−𝑛2

= (𝑁2
𝑛1
)�̃�𝑛1𝑛1𝜃

𝑛1−12 (1 − 𝜃2)𝑁2−𝑛1 + (𝑏𝑁 − �̃�𝑛1)𝑁2𝜃𝑁2−12 .

The equation can be simplified to

(𝑁2
𝑛2
) (�̃�𝑛2 − �̃�𝑛1) 𝑛2 = (𝑏𝑁 − �̃�𝑛1)𝑁2 (

𝜃2
1 − 𝜃2

)
𝑁2−𝑛2

.

Since the right-hand side is strictly increasing in 𝜃2,

(�̃�𝑛2 − �̃�𝑛1) 𝑛2 > (𝑏𝑁 − �̃�𝑛1)𝑁2 (
𝑞

1 − 𝑞)
𝑁2−𝑛2

for every 𝑞 ∈ (0, 𝜃). Hence 𝑣(�̃�; 𝜃2, 𝑁2) > 𝑣(𝑏; 𝜃2, 𝑁2), i.e., 𝑏 has a strictly lower expected cost to
the firm. The proof of the lemma is complete.

By Proposition 13, the two types exert strictly positive efforts in every optimal contract. As-
sume the two types choose (𝜃1, 𝜃2) ∈ (0, 1]2 in an optimal contract. By Lemma 1, there exists
a contract with two thresholds that is cost-efficient to induce (𝜃1, 𝜃2). Let (𝑛1, 𝑛2) be the two
thresholds of this contract. If 𝑛2 > 𝑁2, then by Lemma 3, 𝑛2 = 𝑁2.
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1.B.15 Proof of Theorem 2
Proof. Since the customer has a limited liability, the objective function in (1.2) is bounded above.
By the continuity as assumed in A1 and A2, the constraint set of (1.2) is closed, and hence (1.2)
has a solution. Let (𝑏, 𝑞) be a solution to (1.2). By A3, 𝑈 (𝑏, 𝑞) > 0. Lastly, by A1(c), 𝑞 > 0.

1.B.16 Proof of Theorem 3
Proof. Note that strict DHRP implies that higher interior efforts strictly first-order stochastically
dominate lower efforts, i.e., 𝐹𝑞(𝑛; 𝑞) < 0 for all 0 ≤ 𝑛 < 𝑁 and 𝑞 ∈ (0, 1).17 The following
lemma, which establishes the relatively cost-effectiveness of different threshold contracts without
consideration of actual effort-choice constraints, is useful.

Lemma 4. Assume A1 holds. Fix 𝜃 ∈ (0, 1), 𝑛 and 𝑛′ such that 0 ≤ 𝑛′ < 𝑛 < 𝑁 . For 𝛽 > 0 and
𝛽′ > 0 such that −𝛽𝐹𝑞(𝑛; 𝜃) = −𝛽′𝐹𝑞(𝑛′; 𝜃) > 0, 𝛽(1 − 𝐹(𝑛; 𝜃)) < 𝛽′(1 − 𝐹(𝑛′; 𝜃)).
Proof of lemma. Note that

1 − 𝐹(𝑛′; 𝑞)
1 − 𝐹(𝑛; 𝑞) =

𝑛−1
∏
𝑚=𝑛′

1 − 𝐹(𝑚; 𝑞)
1 − 𝐹(𝑚 + 1; 𝑞) ,

and each term in the product on the right-hand side is strictly decreasing in 𝑞 ∈ (0, 1) by DHRP.
Therefore, the left-hand side is strictly decreasing in 𝑞 ∈ (0, 1), which implies

𝐹𝑞(𝑛′; 𝑞) [1 − 𝐹(𝑛; 𝑞)] < −𝐹𝑞(𝑛; 𝑞) [1 − 𝐹(𝑛′; 𝑞)] ⟹
−𝐹𝑞(𝑛′; 𝑞)
−𝐹𝑞(𝑛; 𝑞)

< 1 − 𝐹(𝑛′; 𝑞)
1 − 𝐹(𝑛; 𝑞) ,

The denominator on the right-hand side of the second inequality is non-zero because 1−𝐹(𝑛; 𝑞) >
0 by A1(b). The second inequality holds because −𝐹𝑞(𝑛; 𝑞) > 0. Multiply both sides of the second
inequality by 𝛽′/𝛽 to get

1 = −𝛽′𝐹𝑞(𝑛′; 𝑞)
−𝛽𝐹𝑞(𝑛; 𝑞)

< 𝛽′ [1 − 𝐹(𝑛′; 𝑞)]
𝛽 [1 − 𝐹(𝑛; 𝑞)] ,

and hence 𝛽 [1 − 𝐹(𝑛; 𝑞)] < 𝛽′ [1 − 𝐹(𝑛′; 𝑞)].
Since A3 holds, by Theorem 2, (1.2) has a solution (𝑏, 𝑞) and it is necessary that 𝑞 > 0. Assume

17To see this, assume to the contrary that for some 𝑞 ∈ (0, 1), 𝐹𝑞(𝑛; 𝑞) ≥ 0 for some 0 ≤ 𝑛 < 𝑁 . Let 𝑛 be the

smallest 𝑛 such that 𝐹𝑞(𝑛; 𝑞) ≥ 0. If 𝑛 = 0, then at 𝑞, 𝑓 (0;𝑞)
1−𝐹(0;𝑞) is not strictly decreasing at 𝑞, a contradiction. If 𝑛 > 0,

then for 𝑓 (𝑛;𝑞)
1−𝐹(𝑛;𝑞) to be strictly decreasing at 𝑞, it is necessary that 𝑓𝑞(𝑛; 𝑞) ≤ 0, implying that 𝐹𝑞(𝑛 − 1; 𝑞) ≥ 0 at 𝑞, a

contradiction to the choice of 𝑛. Hence 𝐹𝑞(𝑛; 𝑞) < 0 for all 0 ≤ 𝑛 < 𝑁 and 𝑞 ∈ (0, 1).
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𝑞 < 1. Given the effort level, consider the following relaxed cost-minimization problem

min
𝑏∈ℝ𝑁+1

𝜋𝑁𝑞 − 𝑣(𝑏; 𝑞) (1.18)

s.t. 𝑏𝑛
𝑁
∑
𝑛=0

𝑓𝑞(𝑛; 𝑞) = 𝑐′(𝑞), (1.18a)

𝑏𝑛 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁 . (1.18b)

The cost-minimization problem is relaxed in the sense that the customer’s participation constraint
is discarded and the customer’s first-order condition is substituted for the actual effort-choice
constraint. Given the optimal effort level 𝑞, if we can show that (𝑏, 𝑞) solves (1.18) and is feasible
in (1.2), then (𝑏, 𝑞) also solves (1.2).

Let 𝑏 ∈ ℝ𝑁+1+ solve (1.18). Since (1.18) is a linear programming with a linear constraint, there
exists a solution that is an extreme point to the constraints. Each extreme point can be found
by binding 1 + 𝑁 linearly independent constraints. Since 𝑏𝑛 = 0 for every 𝑛 cannot solve (1.18),
exactly 𝑁 inequalities are bound in an extreme point that solves (1.18). Therefore, one solution
is such that 𝑏𝑛∗ > 0 for some 𝑛∗ and 𝑏𝑛′ = 0 for 𝑛′ ≠ 𝑛∗. Since 𝑐′(𝑞) > 0 and 𝑓𝑞(0; 𝑞) < 0, 𝑛∗ ≠ 0.
If 0 < 𝑛∗ < 𝑁 , then by the FOC,

− 𝑏𝑛∗𝐹𝑞(𝑛∗ − 1; 𝑞) + 𝑏∗𝐹𝑞(𝑛∗; 𝑞) = 𝑐′(𝑞). (1.19)

Since 𝐹𝑞(𝑛∗ − 1; 𝑞) < 0 and 𝐹𝑞(𝑛∗; 𝑞) < 0, we can find an 𝑛∗-threshold contract 𝑡′ and an (𝑛∗ + 1)-
threshold contract 𝑡 such that −𝑡′𝑛∗𝐹𝑞(𝑛∗ − 1; 𝑞) = −𝑡𝑛∗+1𝐹𝑞(𝑛∗; 𝑞) = 𝑐′(𝑞) and 𝑣(𝑡; 𝑞) < 𝑣(𝑡′; 𝑞)
by Lemma 4. By (1.19), we can find 𝜆 > 1 such that 𝑏 = 𝜆𝑡′ + (1 − 𝜆)𝑡 . Since 𝜆 > 1 and
𝑣(𝑡; 𝑞) < 𝑣(𝑡′; 𝑞), 𝑣(𝑡; 𝑞) < 𝑣(𝑏; 𝑞), a contradiction. Therefore, it is necessary that 𝑛∗ = 𝑁 and
hence 𝑏 is an 𝑁 -threshold contract. Lastly, since IMCP holds, (𝑏, 𝑞) is feasible in (1.2) and hence
(𝑏, 𝑞) solves (1.2).

If 𝑞 = 1, then it is necessary that 𝐹𝑞(𝑁 −1; 1) < 0. If otherwise 𝐹𝑞(𝑁 −1; 1) = 0, then by DHRP,
𝐹𝑞(𝑛; 1) = 0 for all 0 ≤ 𝑛 < 𝑁 , but this implies no contract can incentivize 𝑞 = 1, a contradiction.
Since 𝐹𝑞(𝑁 − 1; 𝑞) < 0, there exists an 𝑁 -threshold contract that incentivizes 𝑞 = 1. Since for
𝑞 < 1, the cost-efficient contract is uniquely an 𝑁 -threshold contract, the cost-efficiency of the
𝑁 -threshold contract for 𝑞 = 1 follows from continuity of 𝑣(𝑏; 𝑞) in both 𝑏 and 𝑞.

1.B.17 Proof of Proposition 15
Proof. If 𝑁 = 1, then the statement is vacuously true since TSCP is not defined. Assume 𝑁 ≥ 2
and TSCP holds. The following lemma is useful in proving the proposition.

Lemma 5. Let 𝑓 , 𝑔 ∶ [0, 1] → ℝ+ be two functions that are not constant and 𝑓 (0) = 𝑔(0) = 0.
Assume both 𝑓 and 𝑔 are continuously differentiable on (0, 1), with 𝑔′(𝑥) > 0 for every 𝑥 ∈ (0, 1). If
𝑓 ′(𝑥)
𝑔′(𝑥) is non-increasing for every 𝑥 ∈ (0, 1), then 𝑓 (𝑥)

𝑔(𝑥) is non-increasing on (0, 1).
Proof of lemma. Since 𝑔′ > 0 on (0, 1), 𝑔(𝑥) > 0 for every 𝑥 ∈ (0, 1).18 With this observation
and the assumption that 𝑓 and 𝑔 are both continuously differentiable, the condition that 𝑓

𝑔 is

18I would like to thank Xiaohan Yan for the great discussion that leads to this proof.
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non-increasing is equivalent to

(𝑓𝑔 )
′
= 𝑓 ′𝑔 − 𝑓 𝑔′

𝑔2 ≤ 0.

Since 𝑔 > 0 and 𝑔′ > 0, the above inequality is equivalent to

𝑠(𝑥) = 𝑓 ′(𝑥)
𝑔′(𝑥) −

𝑓 (𝑥)
𝑔(𝑥) ≤ 0.

Therefore, 𝑆 = {𝑥 ∈ [0, 1] ∶ 𝑠(𝑥) > 0} is the set on which (𝑓 /𝑔)′ < 0. To arrive at a contradiction,
assume 𝑆 ≠ ∅. Since both 𝑓 ′ and 𝑔′ are continuous, 𝑆 is open, and hence there exists some
non-empty open interval (𝑎, 𝑏) ∈ 𝑆. It remains to show that 𝑎 ∈ 𝑆.

Since 𝑓 ′/𝑔′ is non-increasing by assumption and 𝑓 /𝑔 is strictly increasing on (𝑎, 𝑏), 𝑠 is strictly
decreasing on (𝑎, 𝑏) and hence lim𝑥→𝑎 𝑠(𝑥) > 0. Since 𝑎 > 0, 𝑔′(𝑎) > 0, 𝑠(𝑎) is definedwith 𝑠(𝑎) > 0
and hence 𝑎 ∈ 𝑆. If 𝑠 = inf 𝑆 > 0, then 𝑠 ∈ 𝑆 and there exists some 𝜖 > 0 such that 𝑠 − 𝜖 ∈ 𝑆 since 𝑆
is open, contradicting the definition of 𝑠. Therefore, inf 𝑆 = 0 and (0, 𝑏) ∈ 𝑆 for some 𝑏 > 0. Since
𝑠 is shown to be strictly decreasing on any open interval of 𝑆, lim𝑥→0 𝑠(𝑥) > 0.

Since 𝑓 (0) = 𝑔(0) = 0, 𝑓 (𝑥) = ∫𝑥0 𝑓 ′(𝑦)𝑑𝑦 and 𝑔(𝑥) = ∫𝑥0 𝑔′(𝑦)𝑑𝑦 . For 𝑥 ∈ (0, 1), define
ℎ(𝑥) = 𝑓 ′(𝑥)/𝑔′(𝑥). By assumption, ℎ is non-increasing. In addition, since 𝑓 ≥ 0, 𝑓 (0) = 0, and 𝑓
is not constant, 𝑓 ′(𝑥) > 0 on (0, 𝑏) for some 𝑏 > 0 and hence ℎ > 0 on (0, 𝑏). For every 𝑥 ∈ (0, 𝑏),

𝑓 (𝑥)
𝑔(𝑥) = ∫𝑥0 𝑓 (𝑦)𝑑𝑦

∫𝑥0 𝑔(𝑦)𝑑𝑦
= ∫𝑥0 ℎ(𝑦)𝑔(𝑦)𝑑𝑦

∫𝑥0 𝑔(𝑦)𝑑𝑦
≥ ℎ(𝑥)∫

𝑥
0 𝑔(𝑦)𝑑𝑦
∫𝑥0 𝑔(𝑦)𝑑𝑦

= 𝑓 ′(𝑥)
𝑔′(𝑥) ,

which implies 𝑠(𝑥) ≤ 0 on (0, 𝑏) and there exists a sequence (𝑥𝑛)∞𝑛 converging to 0 such that
𝑠(𝑥𝑛) ≤ 0 for every 𝑛. However, this is a contradiction to the earlier result that lim𝑥→0 𝑠(𝑥) > 0.
Thus if 𝑓 ′/𝑔′ is non-increasing on (0, 1), then so is 𝑓 /𝑔 non-increasing on (0, 1). The proof of
the lemma is complete.

Fix 0 < 𝑛 < 𝑁 . Since TSCP holds, − 𝑓𝑞(𝑛;𝑞)
𝐹𝑞(𝑛;𝑞) is non-increasing in 𝑞 ∈ (0, 1). By A1(c), 𝑓 (𝑛; 0) = 0

and 1 − 𝐹(𝑛; 0) = 0. Additionally, −𝐹𝑞(𝑛; 𝑞) > 0 by A1(d); 𝑓 (𝑛; 𝑞) and 𝐹(𝑛; 𝑞) are continuously
differentiable by A1. The conditions of Lemma 5 are satisfied with 𝑓 (𝑥) = 𝑓 (𝑛; 𝑥) and 𝑔(𝑥) =
1 − 𝐹(𝑛; 𝑥), and hence 𝑓 (𝑛;𝑞)

1−𝐹(𝑛;𝑞) is non-increasing in 𝑞 on (0, 1). Therefore, TSCP implies DHRP if
A1 holds.

39



Chapter 2

Flash Pass

1

2.1 Introduction
When access to a service facility is congested, service providers commonly implement a special
type of queue called priority queue, where each person/entity in the queue has an associated
priority such that those with a higher priority will be ahead of those with a lower priority in the
queue. For example, an amusement park with a queue of customers can sell two types of priority
passes to the customers, one called regular and the other called flash pass. A customer holding
a flash pass is ahead of a customer holding a regular pass in the queue. There are many other
applications of priority queue other than amusement parks. For example, for cloud computing,
different computing requests queue for the computing resources; within a computer, different
programs need to queue for access to the CPU; a popular museum has a queue of customers
outside often let patrons with paid memberships skip the line; for large events hosting many
visitors such as en exhibition, event organizers can let VIP pass holders cut in the line and enter
the event venue ahead of regular pass holders. This paper considers the pricing problem faced
by the seller that manages the priority queue, i.e., an amusement park.

When a park manages a priority queue by selling different priority passes, other customers’
purchase decisions affect a customer’s valuation of a pass, which makes the pricing problem of
a priority queue different from one where a customer’s valuation of a pass is fixed. For example,
if many customer purchase a priority pass, then the congestion in that priority pass will lead
to longer waiting time for customers with the same and lower priorities, lowering the valuation
of passes with those priorities. Moreover, with the purchase decisions of other customers fixed,
which priority pass a new customer will choose depends on the distribution of customers in each
priority pass. In other words, the purchase behavior of one customer imposes externalities on
other customers, and this paper aims to understand the implications of these externalities.

Specially, we observe that parks usually sell only a small number of priority passes. For
example, Six Flags, a large amusement park corporation in the US, sells only three tiers of priority

1This is joint work with Yuichiro Kamada.
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passes: THE FLASH Pass, THE FLASH Pass Gold, and THE FLASH Pass Platinum; Disneyland, a
large theme park corporationwith franchises all over the world, has two tiers of passes in terms of
queuing priority: FASTPASS and regular ticket. Motivated by this observation, this paper focuses
on the implementability of multi-pass schemes, i.e., whether a park can offer many priority passes
and price them so that each pass has at least one willing customer. For example, this paper shows
that when customers have the same utility function, the park cannot sell a different priority pass
to each customer. We further show under some conditions on each customers’ utility function,
implementing a multi-pass scheme is not possible unless there exist large enough “gaps” between
“adjacent” types. We formalize that the difficulty with selling many priority passes is due to the
existence of externalities, which is explained in detail in the analysis.

This paper does not claim to thoroughly explain the constraint on the number of passes. The
main objective of this paper is to show that externalities can contribute to the constrained number
of priority passes, but other factors could contribute to the constraint in parallel. For example,
selling many priority passes may incur considerable logistic costs, which could prompt the park
to sell a small number of priority passes. Too many choices may also overwhelm customers (Park
and Jang 2013; Kuksov and Villas-Boas 2010).

Queuing literature, such as Balachandran (1972), Adiri and Yechiali (1974), Hassin and Haviv
(1997), and Alperstein (1988), has studied managing priority queues with setup different from
this paper’s. In these papers, each customer arrives sequentially, observes the state of the queues,
makes a forecast about the waiting time for each pass, and then chooses a priority pass to max-
imize the customer’s expected utility or leaves the queue. In particular, Alperstein (1988), who
discusses the optimal pricing and the number of passes to sell, finds the profit-optimal number
of passes equal to the number of customers, i.e., each customer is in a different priority pass.
However, the number of priority passes is usually much smaller than the number of customers,
and this paper provides one possible explanation for the disparity. In the queuing literature men-
tioned above, pricingmany priority passes so that each priority has at least one customer does not
pose a big difficulty: Adiri and Yechiali (1974) show that in equilibrium, early-arriving customers
will purchase the lower-priority passes and later-arriving customers will purchase higher-priority
passes as the queue gets large, which makes each priority pass have at least one customer.2 This
paper changes the assumption about each customer’s information at decision-making time: each
customer does not observe the state of the entire queue, whereas customers in the cited queu-
ing studies do. We later show that this paper’s setup, which is absent of the dynamic strategic
consideration and changes each customer’s payoff function, leads to a small number of priority
passes.

This paper uses the mechanism-design approach to analyze the pass-selling problem, but it
differs from the standard screening models in the following sense. In standard screening studies
such as Guesnerie and Laffont (1984) and Maskin and Riley (1984) with a seller and buyers, the
seller can manipulate the “quality” of a product, and a buyer’s evaluation of a product does not
depend on the purchase decisions of other buyers. This capability of the seller in the standard
screening models, together with the setup that each buyer’s valuation of a product is indepen-

2The intuition is that early arriving customers want to buy lower-priority passes because the queue is not con-
gested at the time of arrival, whereas those arriving much later will want to buy the higher-priority passes in order
to cut in the long queue.
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dent of other buyers’ decisions, allows the seller to separate different types of customers. In
contrast, in this paper, the park cannot fully control the “quality” of a pass, and how much a
customer values a pass depends on other customers’ purchase decisions.3 In short, the external-
ity among customers, which is characteristic of queue management, makes our model different
from the standard screening models. Because the standard screening studies just mentioned do
not consider the externalities among customers, which contributes to the park’s inability to have
full control over the “qualities” of the priority passes, implementability in this paper cannot be
extended from these studies: the externality makes implementation harder, which Section 2.6.2
discusses in detail.

Several existing studies consider externalities. Segal (1999) considers the bilateral contracting
between a principal and a number of agents. To each agent, the principal offers a contract that
specifies the trade quantity between the principal and the agent. The agent then chooses whether
to accept the contract.4 The contracting outcomes of other agents can affect the reserve utility
of an agent, and that paper provides sufficient conditions about the externalities under which
the principal-optimal aggregate trade quantity would be above or below the socially optimal
aggregate trade quantity.5 If we wish to fit our model to the setup of Segal (1999), given a priority
queue, we can treat a customer’s priority pass as the trade profile6 and the optimal deviation
payoff of the customer as a customer’s reserve utility. The externalities in the fitted model do not
satisfy the conditions for the results of Segal (1999), and hence that paper’s results do not cover
ours.

For existing applied literature that includes externalities, the nature of externalities varies by
application. For example, Katz and Shapiro (1986) analyze the adoption of new technology under
the presence of network effects that greater adoption of the technology increases the utility of
adoption; Csorba (2008) considers the externalities when the utility of using a product increases
with the rise in demand; Shi, Zhang, and K. Srinivasan (2019) and Kamada and Öry (2020) both
consider product-line design and pricing questions in which new customers boost the utility of
existing customers. These papers and this paper differ by the form of externalities: each paper

3Even though to some extent the park can fine-tune the prices to adjust the quality, the park is still not in full
control. For example, lowering the price of a higher-priority pass attracts more customers from the lower-priority
passes, creating more congestion in the higher-priority pass and hence lowering the quality of that pass. However,
at the same time, the quality of a lower-priority pass is affected as well, because to customers staying in the lower-
priority pass, there are now even more customers with a strictly higher priority, hence lowering the quality of the
lower-priority pass.

4Segal and Whinston (2003), in a follow-up paper, considers the convergence to competitive equilibrium in ver-
tical contracting when the principal and each agent contract on a private menu. With respect to multilateral con-
tracting, Gomes (2005) and Bloch and Gomes (2006) consider dynamic multilateral bargaining among agents forming
coalitions and bargaining to split coalition-structure-dependent surplus.

5Specifically, Segal (1999) finds that when the externalities are positive (negative), i.e., an agent’s reserve utility
is non-decreasing (non-increasing) if other agents are trading more with the principal, then the principal-optimal
aggregate trade quantity will be below (above) the socially optimal aggregate trade quantity. See Bergstrom, Blume,
and Varian (1986) for an application with positive externalities and Rasmusen, Ramseyer, and Wiley Jr (1991) for an
application with negative externalities.

6A trade profile is a collection that can be mapped to an outcome. For example, under this paper’s context, a
trade profile can be considered as the collection of each customer’s priority pass. This collection of priority passes
is then mapped to the resulting priority queue as the outcome.
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models externalities to cater to that paper’s application, and none of the papers cited in this
paragraph deals with externalities in queues. In this paper, the externality that plays a crucial
part in results of this paper is the externality created when a customer switches to a different
priority pass with other customers’ purchase decisions fixed.

Section 2.2 and 2.3 introduce the main model. Section 2.4 discusses selling multiple priority
passes with one utility type. Section 2.5 extends the main model to cases with multiple types
of utility functions. Section 2.6 provides a more detailed discussion of the derived results, with
Section 2.7 concluding the paper.

2.2 Model
An amusement park sells 𝐾 ≥ 1 different types of priority passes, {𝜃𝑘}𝐾𝑘=1, to 𝑁 ≥ 1 customers,
where 𝜃𝑘 is the 𝑘-th highest priority pass. Let 𝜃0 denote the option of leaving the queue. The
park sets 𝑝 = (𝑝1, … , 𝑝𝐾 ) ∈ ℝ𝐾+ where 𝑝𝑘 is the price of 𝜃𝑘 . For completeness, set 𝑝0 = 0. Having
observed 𝑝, customers make purchase decisions simultaneously: each customer either buys some
priority pass or leaves the park with reserve utility denoted by 𝑢0, which is set to zero unless
otherwise specified.7

After the purchase decisions, the customers that purchase a priority pass form a queue, with
the possible positions in the queue being 1, 2, … , 𝑁 . A customer’s valuation of visiting an amuse-
ment park depends solely on the customer’s position in the queue and the price the customer
pays for the priority pass. A base utility function 𝑢 ∶ ℕ → ℝ assigns a utility to each position in
the queue, where 𝑢𝑛 denotes the utility from being at the 𝑛-th position in the queue.8

For customer 𝑖, let 𝐴𝑖 = {𝜃𝑘}𝐾0 denote the set of customer’s possible purchase decisions and
define 𝐴 = ×𝑁𝑖=1𝐴𝑖. Given 𝑎 ∈ 𝐴, define ̄𝑞(𝑎) = ( ̄𝑞𝑘(𝑎))𝐾𝑘=0, where ̄𝑞𝑘(𝑎) = |{𝑖 ∶ 𝑎𝑖 = 𝜃𝑘}|, which
is the number of customers choosing 𝜃𝑘 . If 1 ≤ 𝑘 ≤ 𝐾 and 𝑎𝑖 = 𝜃𝑘 , the customer is guaranteed
to be ahead of every customer in 𝜃𝑗 if 𝑗 > 𝑘 and behind every customer in 𝜃𝑗 if 1 ≤ 𝑗 < 𝑘.9 For
customers in the same priority pass, assume each order of these customer happens with the same
probability. See Figure 2.1 for an example of priority queue. This assumption implies that to each
customer in a priority pass, the customer’s position in the queue is uniformly distributed on the
possible positions of that priority pass.

Let 𝜇𝑖 ∶ 𝐴 → ℝ denote the utility of customer 𝑖 from a strategy profile. Given 𝑞 = 𝑞(𝐴), if
1 ≤ 𝑘 ≤ 𝐾 , let 𝑄𝑘(𝑞) = ∑𝑘

𝑗=1 𝑞𝑗 denote the last position of 𝜃𝑘 and set 𝑄0(𝑞) = 0. The assumptions

7In Section 2.6.3, we let the number of customers grow toward infinity, and in this case, the reserve utility is
non-zero.

8To clarify, ℕ denotes the set of strictly positive integers.
9Such priority queue is called preemptive as every higher-priority customer is ensured a faster entry than a lower-

priority customer. Not all priority queues are preemptive and whether preemptive priority queue is optimal does
not fall under the scope of this paper. While this paper’s setup does not fit perfectly to the applications in this paper,
it can capture some important aspects of implementing a priority queue.
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Customer Pass Bought Price Paid Expected Utility

𝐴 𝜃1 𝑝1 𝑢1+𝑢2
2 − 𝑝1

𝐵 𝜃1 𝑝1 𝑢1+𝑢2
2 − 𝑝1

𝐶 𝜃2 𝑝2 𝑢3+𝑢4+𝑢5
3 − 𝑝2

𝐷 𝜃2 𝑝2 𝑢3+𝑢4+𝑢5
3 − 𝑝2

𝐸 𝜃2 𝑝2 𝑢3+𝑢4+𝑢5
3 − 𝑝2

𝐹 𝜃3 𝑝3 𝑢6 − 𝑝3
𝐺 𝜃0 𝑝0(= 0) 0

Amusement
Park

G stays at home

Queue

A B with probability 1/2
B A with probability 1/2

C D E with probability 1/6
C E D with probability 1/6
D E C with probability 1/6
D C E with probability 1/6
E C D with probability 1/6
E D C with probability 1/6

F with probability 1

q1 = 2 q2 = 3 q3 = 1

Figure 2.1: Example of a scheme: (𝑞0, 𝑞1, 𝑞2, 𝑞3) = (1, 2, 3, 1).

made so far imply that 𝜇𝑖 can be written as

𝜇𝑖(𝑎) =
⎧
⎨
⎩

∑𝑄𝑘( ̄𝑞(𝑎))
𝑛=𝑄𝑘−1( ̄𝑞(𝑎))+1 𝑢𝑛

̄𝑞𝑘(𝑎)
if 𝑎𝑖 = 𝜃𝑘 ≠ 𝜃0

𝑢0 if 𝑎𝑖 = 𝜃0
.

Note that each customer position in the queue and the customer’s utility depend on other cus-
tomers’ purchase decisions. Given 𝑁 and 𝐾 , define 𝒬(𝑁 , 𝐾) = {𝑞 ∈ (0 ∪ ℕ) ×ℕ𝐾 ∶ ∑𝐾

𝑘=0 𝑞𝑘 = 𝑁}
to be the set of schemes for (𝑁 , 𝐾). If 𝑞0 > 0, then some customers stay at home and do not join
the queue. The assumption that 𝑞𝑘 > 0 if 𝑘 > 1means that the model requires a scheme to have at
least one customer for each priority pass. See Figure 2.1 for an example that illustrates the setup
of the model.

The above setup can be modeled as a strategic-form game. Given the tuple (𝑁 , 𝐾, 𝑝, 𝑢), define
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a strategic-form game 𝐺(𝑁 , 𝐾, 𝑝, 𝑢) = ⟨𝑁 , 𝐴, (𝜋𝑖)𝑁𝑖=1⟩, where 𝜋𝑖 ∶ 𝐴 → ℝ is each customer’s
(common) payoff function, which is assumed to be of a quasi-linear form: for every 𝑎 ∈ 𝐴, 𝜋𝑖(𝑎) =
𝜇𝑖(𝑎) − 𝑝(𝑎𝑖), where 𝑝(𝑎𝑖) is the price paid by customer 𝑖, i.e., 𝑝(𝑎𝑖) = 𝑝𝑘 if 𝑎𝑖 = 𝜃𝑘 .

2.3 Preliminaries
We now define implementability, the main concept of this paper. In short, a scheme is imple-
mentable if it results from each customer’s optimal purchase decision that factors in other cus-
tomers’ decisions.

Definition 4 (Implementation). Fix (𝑁 , 𝐾, 𝑢). A price vector 𝑝 implements a scheme 𝑞 ∈ 𝒬(𝑁 , 𝐾)
if 𝐺(𝑁 , 𝐾, 𝑝, 𝑢) has a (pure-strategy) Nash equilibrium 𝑎∗ such that ̄𝑞(𝑎∗) = 𝑞. A scheme 𝑞 is
implementable for (𝑁 , 𝐾, 𝑢) if there exists a price vector 𝑝 that implements 𝑞.

When (𝑁 , 𝐾, 𝑢) is without ambiguity, we only write “𝑞 is implementable” without includ-
ing (𝑁 , 𝐾, 𝑢). To give an intuitive understanding, an equivalent formulation of implementa-
tion based on incentive constraints is provided. We first define the utility of deviating from a
strategy profile. Given 𝑞 ∈ 𝒬(𝑁 , 𝐾), define 𝑣(⋅; 𝑞) ∶ {𝜃𝑘}𝐾𝑘=0 → ℝ such that 𝑣(𝜃0; 𝑞) = 𝑢0 and

𝑣(𝜃𝑘 ; 𝑞) = ∑𝑄𝑘𝑛=𝑄𝑘−1+1 𝑢𝑛/𝑞𝑘 if 𝑘 ≠ 0, which is the average utility of positions of 𝜃𝑘 in 𝑞.
Definition 5 (Pass-Utility function). Fix (𝑁 , 𝐾, 𝑢) and a scheme 𝑞 ∈ 𝒬(𝑁 , 𝐾). For each 𝑗 and 𝑘
from {0, … , 𝐾} such that 𝑞𝑗 > 0, define 𝑣(𝜃𝑘 ; 𝜃𝑗 ; 𝑞) = 𝑣(𝜃𝑘 ; 𝑞′), where 𝑞′ is the resulting scheme
when one customer holding 𝜃𝑗 in 𝑞 switches to 𝜃𝑘 . We call 𝑣 the pass-utility function constructed
from 𝑢.

In words, 𝑣(𝜃𝑘 ; 𝜃𝑗 ; 𝑞) gives the utility a customer will get (before payment) if the customer
switches from 𝜃𝑗 to 𝜃𝑘 . For example, given a scheme 𝑞, if 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 and a customer switches
from 𝜃𝑗 to 𝜃𝑘 , then the positions of 𝜃𝑘 in the new queue are from 𝑄𝑘−1 to 𝑄𝑘 , and thus 𝑣(𝜃𝑘 ; 𝜃𝑗 ; 𝑞) =
∑𝑄𝑘𝑛=𝑄𝑘−1 𝑢𝑛/(1 + 𝑞𝑘).

When without ambiguity, such as when the scheme in consideration is fixed, 𝑞 is omitted and
𝑣(𝜃𝑘 ; 𝜃𝑗) is written instead. Abuse notation to write 𝑣(𝜃) ∶= 𝑣(𝜃; 𝜃) for each 𝜃 ∈ {𝜃𝑘}𝐾𝑘=0. In words,
𝑣(𝜃) denotes the utility of a customer choosing 𝜃 in a scheme. The following result illustrates
some important properties of the pass utility function, which is fundamental to the results in this
model.

Claim 1 (Properties of pass-utility function). Fix (𝑁 , 𝐾, 𝑢) and 𝑞 ∈ 𝒬(𝑁 , 𝐾). If 1 ≤ 𝑗1 ≤ 𝑗2 < 𝑘 ≤
𝑙1 ≤ 𝑙2 ≤ 𝐾 , then

𝑣(𝜃𝑘 ; 𝜃𝑗1) = 𝑣(𝜃𝑘 ; 𝜃𝑗2) > 𝑣(𝜃𝑘) > 𝑣(𝜃𝑘 ; 𝜃𝑙1) = 𝑣(𝜃𝑘 ; 𝜃𝑙2). (2.1)

The first equality means that the utility of an downgrade does not depend on “how much”
higher priority the higher-priority pass has than the lower-priority pass; similarly, the second
equality means the utility of an upgrade does not depend on “how much” higher priority the
higher-priority pass has than the lower-priority pass. Additionally, the two inequalities mean
that a downgrade improves the utility of the lower-priority pass and an upgrade lowers the utility
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of the higher-priority pass. The intuition is that when a customer downgrades to a lower-priority
pass, say 𝜃𝑘 , the first position is 𝜃𝑘 improves by one and the last position of 𝜃𝑘 is unchanged, leading
to a higher average utility of positions of 𝜃𝑘 ; when a customer upgrades to a higher-priority pass
𝜃𝑘 , the first position of 𝜃𝑘 is unchanged and the last position of 𝜃𝑘 decreases by one, lowering the
average utility of positions of 𝜃𝑘 .

We now define implementation with respect to customers’ incentive constraints. Fix (𝑁 , 𝐾, 𝑢)
and 𝑖 such that 1 ≤ 𝑖 ≤ 𝑁 . Fix 𝑞 ∈ 𝒬(𝑁 , 𝐾) and a price vector 𝑝. For 𝑗 from {1, … , 𝐾}, (𝑝, 𝑞) is said
to satisfy the individual-rationality constraint of 𝜃𝑗 (henceforth IR𝑗 ) if every customer buying 𝜃𝑗 in
𝑞 has no incentive to leave the queue, i.e.,

𝑣(𝜃𝑗) − 𝑝𝑗 ≥ 𝑢0 = 0. (IR𝑗 )

Let the set of IR constraints be the collection of IR𝑗 over 𝑗 such that 1 ≤ 𝑗 ≤ 𝐾 . Secondly, for 𝑗 and
𝑘 such that 0 ≤ 𝑗 ≤ 𝐾 and 1 ≤ 𝑘 ≤ 𝐾 , (𝑝, 𝑞) is said to satisfy the incentive-compatibility constraint
from 𝜃𝑗 to 𝜃𝑘 (henceforth IC𝑗𝑘) if every customer with 𝜃𝑗 in 𝑞 has no incentive to switch to 𝜃𝑘 , i.e.,

𝑣(𝜃𝑗) − 𝑝𝑗 ≥ 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 . (IC𝑗𝑘)

Let the set of IC constraints be the collection of IC𝑗𝑘 over 𝑗 and 𝑘 such that 0 ≤ 𝑗 ≤ 𝐾 , 1 ≤ 𝑘 ≤ 𝐾 ,
and 𝑞𝑗 > 0.10 We now show that implementability can be defined with respect to IC and IR
constraints.

Claim 2 (Implementation with respect to incentive constraints). A scheme 𝑞 ∈ 𝒬(𝑁 , 𝐾) is imple-
mentable if and only if there exists a price vector 𝑝 such that (𝑝, 𝑞) satisfies every constraint in the
set of IC and IR constraints.

Fix an IC constraint IC𝑗𝑘 where 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . The constraint IC𝑗𝑘 is a downward IC constraint
if 𝑗 < 𝑘, a local downward IC constraint if 𝑘 = 𝑗 + 1, an upward IC constraint if 𝑗 > 𝑘, and a local
upward IC constraint if 𝑗 = 𝑘 + 1. In standard screening models such as Guesnerie and Laffont
(1984) and Maskin and Riley (1984), the set of incentive constraints can be reduced to IR𝐾 and
the set of local downward IC constraints.11 Similarly, we will show that the set of downward IC
constraints can be reduced to the set of local downward IC constraints: IC𝑗𝑘 holds if IC𝑙 ,𝑙+1 holds
for every 𝑙 such that 𝑗 ≤ 𝑙 < 𝑘. Unlike the standard screening models, however, the set of upward
IC constraints cannot be simplified to the set of local upward IC constraints. The following lemma
summarizes the constraint reduction results in this model and provides a condition that is useful
for proving some negative results about implementation.

Lemma 6 (Constraint reduction). Fix 𝑞 ∈ 𝒬(𝑁 , 𝐾) and a price vector 𝑝 ∈ ℝ𝐾+ . Fix 𝑗 and 𝑘 such that
1 ≤ 𝑗 < 𝑘 ≤ 𝐾 .

10If 𝑞𝑗 = 0, then IC𝑗𝑘 does not need to hold for 𝑞 to be implementable. By definition, 𝑞𝑗 > 0 if 𝑗 > 0.
11Carroll (2012) provides a comprehensive discussion about when local incentive constraints are sufficient for

global incentive constraints. This paper’s setup is most closely related to the case with transfers and interdependent
preferences in that paper. Carroll (2012) shows that in that case, if each agent’s utility is linear in the reported type
and each agent’s type space is convex, then local incentives are sufficient. The conditions cover screening studies
like Guesnerie and Laffont (1984) and Maskin and Riley (1984), but not this paper because the linearity condition
does not hold in our model.
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(a) If (𝑝, 𝑞) satisfies IC𝑙 ,𝑙+1 for every 𝑙 such that 𝑗 ≤ 𝑙 < 𝑘, then (𝑝, 𝑞) satisfies IC𝑗𝑘 .
(b) If (𝑝, 𝑞) satisfies IR𝑘 and IC𝑗𝑘 , then (𝑝, 𝑞) satisfies IR𝑗 .
(c) If (𝑝, 𝑞) satisfies both IC𝑗𝑘 and IC𝑘𝑗 , then

𝑣(𝜃𝑗 ; 𝜃𝑘) − 𝑣(𝜃𝑘) ≤ 𝑣(𝜃𝑗) − 𝑣(𝜃𝑘 ; 𝜃𝑗). (ID𝑗𝑘)

A scheme 𝑞 is said to satisfy ID𝑗𝑘 if the inequality above holds. Let the set of increasing
difference (ID) conditions be the collection of ID𝑗𝑘 for 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . Note that
ID𝑗𝑘 holds only if IC𝑗𝑘 and IC𝑘𝑗 hold simultaneously. Thus the set of ID conditions is necessary for
implementation. To see the intuition, note that IC𝑗𝑘 , under which every customer holding 𝜃𝑗 has
no incentive to downgrade to 𝜃𝑘 , implies an upper bound on 𝑝𝑗 − 𝑝𝑘 , whereas IC𝑘𝑗 , under which
every customer holding 𝜃𝑘 has no incentive to upgrade to 𝜃𝑗 , implies a lower bound on 𝑝𝑗 − 𝑝𝑘 .
Implementation necessitates that the upper bound must be weakly higher than the lower bound,
and hence ID𝑗𝑘 . The following simple example illustrates this intuition.

Example 5 (ID condition). Consider a case with 𝑁 = 3, 𝐾 = 2, (𝑞0, 𝑞1, 𝑞2) = (0, 1, 2). Assume
there exists a price vector (𝑝1, 𝑝2) that implements 𝑞. Note that IC12, under which a customer
holding 𝜃1 has no incentive to switch to 𝜃2, implies

𝑝1 − 𝑝2 ≤ 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1) = 𝑢1 −
𝑢1 + 𝑢2 + 𝑢3

3 = 2𝑢1 − 𝑢2 − 𝑢3
3 ,

while IC21, under which a customer holding 𝜃2 has no incentive to switch to 𝜃1, implies

𝑝1 − 𝑝2 ≥ 𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2) =
𝑢1 + 𝑢2

2 − 𝑢2 + 𝑢3
2 = 𝑢1 − 𝑢3

2 .

The two inequalities together imply

𝑢1 − 𝑢3
2 = 𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2) ≤ 𝑝1 − 𝑝2 ≤ 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1) =

2𝑢1 − 𝑢2 − 𝑢3
3 , (2.2)

which is equivalent to ID12.

The ID conditions are commonly assumed in the screening literature. In existing studies such
as Maskin and Riley (1984) and Guesnerie and Laffont (1984), the ID conditions are necessary
and sufficient for implementation if the set of IC constraints is reduced to the set of local IC
constraints.12 In this paper, while the ID conditions are necessary for implementation, they are
not sufficient because constraint reduction does not work for the set of upward IC constraints.
The only special case where the ID conditions are necessary and sufficient for implementation is
when 𝐾 = 2 with every customer buying some pass because 𝐾 = 2 is the only case where the
set of local IC constraints is the same as the set of IC constraints. For 𝐾 ≥ 3, the ID conditions
are not sufficient in this model, and thus conditions more than just the ID conditions are needed,
which the next section discusses.

12See Chapter 2 of Bolton and Dewatripont (2005) for a summary of these results.
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2.4 Implementability
This section discusses the implementability of schemes with different patterns of base utility
functions. Although some results, such as Proposition 20, are applicable to more general base
utility functions, we pay special attention to the following three patterns of base utility functions,
each of which has reasonable applications and hence is worth some analysis.

• Concave base utility function (𝑢𝑛 −𝑢𝑛+1 ≤ 𝑢𝑛+1 −𝑢𝑛+2 for each 𝑛): the concave case applies
when queueing has an opportunity cost to a customer. Specifically, assume that a cus-
tomer’s utility from a park depends on the time spent in the park. Assume the customer
has a total amount of available time 𝑇 . If the customer spent 𝑥 units of time in the park,
where 0 ≤ 𝑥 ≤ 𝑇 , then the customer’s utility would be 𝑦(𝑥), where 𝑦 ′ > 0 and 𝑦″ < 0,
i.e., the customer enjoys spending time in the park but faces diminishing marginal utility.
Assuming that being at 𝑛-th position means that the customer will wait for 𝑛 units of time
before going into the park, the customer’s utility is 𝑢𝑛 = 𝑦(𝑇 − 𝑛), which is decreasing and
concave in 𝑛.

• Linear base utility function (𝑢𝑛−𝑢𝑛+1 = 𝑢𝑛+1−𝑢𝑛+2 for each 𝑛): the linear case is commonly
assumed in queuing literature from operations research, e.g., Balachandran (1972), Adiri
and Yechiali (1974), and Alperstein (1988).

• Convex base utility function (𝑢𝑛−𝑢𝑛+1 ≥ 𝑢𝑛+1−𝑢𝑛+2 for each 𝑛): the convexity assumption
is applicable when queuing is inherently unpleasant and a customer becomes less sensitive
to longer queuing time. Additionally, the convexity assumption holds when upon entry,
the customer obtains a fixed instantaneous utility that is exponentially discounted with
respect to queuing time that is linear in the positions.

Start with the concave base utility functions. It turns out when the base utility function is
strictly concave, i.e., 𝑢𝑛 −𝑢𝑛+1 < 𝑢𝑛+1−𝑢𝑛+2 for every position 𝑛, then no scheme with more than
one pass and more than two customers is implementable.

Proposition 18 (Implementation with strictly concave utility). Fix (𝑁 , 𝐾, 𝑢) where 𝐾 > 1, 𝑁 > 2,
and 𝑢 is strictly concave. If 𝑞 ∈ 𝒬(𝑁 , 𝐾), then 𝑞 is not implementable.

The reason for this negative result for strictly concave base utility functions is that every
scheme with more than one pass necessarily violates some ID condition. The following example
illustrates the intuition.

Example 6 (Example 5 continued). Assume 𝑢 is strictly concave, i.e., 𝑢𝑛 − 𝑢𝑛+1 < 𝑢𝑛+1 − 𝑢𝑛+2
for 1 ≤ 𝑛 ≤ 𝑁 . For the scheme 𝑞 to be implementable, ID12 in (2.2) requires 𝑢1−𝑢3

2 ≤ 2𝑢1−𝑢2−𝑢3
3 ,

which implies 𝑢1 − 𝑢2 ≥ 𝑢2 − 𝑢3, which contradicts the strict concavity assumption. Hence ID12
is violated.

The key intuition is that each customer has some positive size. In other words, when a cus-
tomer switches to a different pass, externalities are created in the new pass. Indeed, in the hy-
pothetical situation without externalities, i.e., 𝑣(𝜃𝑘 ; 𝜃𝑗) = 𝑣(𝜃𝑘) for every 𝑗 and 𝑘, IC12 for the
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aforementioned example implies 𝑝1 − 𝑝2 ≤ 𝑢1 − 𝑢2+𝑢3
2 and IC21 implies 𝑝1 − 𝑝2 ≥ 𝑢1 − 𝑢2+𝑢3

2 ,
making the scheme implementable as in the standard screening models.

With a simple modification of the proof of Proposition 18, it can be shown that when 𝑢 is
convex, i.e., 𝑢𝑛 − 𝑢𝑛+1 ≥ 𝑢𝑛+1 − 𝑢𝑛+2 for every position 𝑛, all ID conditions are satisfied. Since the
ID conditions can be shown to be sufficient for implementation with 𝐾 = 2, for convex 𝑢, every
scheme is implementable, as follows.

Proposition 19 (Two-pass implementation with convex utility). Fix (𝑁 , 𝐾, 𝑢) where 𝐾 = 2 and
𝑢 is a convex base utility function. Fix 𝑞 ∈ 𝒬(𝑁 , 2). If 𝑣(𝜃2) ≥ 𝑢0, then 𝑞 is implementable.

When 𝐾 ≥ 3, not every scheme is implementable. For example, we show later in Propo-
sition 21 that when the base utility function is linear, which is a special case of convexity, no
schemes with three or more priority passes are implementable. The different implementability
results between Proposition 18 and Proposition 19 show that implementability depends on the
shape of 𝑢. It turns out that to check implementability of a scheme, it is sufficient and neces-
sary to check whether the price vector binding all local downward IC constraints implements the
scheme.

Lemma 7 (Implementation condition). Fix (𝑁 , 𝐾, 𝑢) where 1 ≤ 𝐾 ≤ 𝑁 . Let 𝑞 ∈ 𝒬(𝑁 , 𝐾) be such
that 𝑞0 = 0. Let 𝑝 be a price vector such that 𝑝∗𝐾 = 𝑣(𝜃𝐾 ) and 𝑝∗𝑘 − 𝑝∗𝑘+1 = 𝑣(𝜃𝑘) − 𝑣(𝜃𝑘+1; 𝜃𝑘) for
every 𝑘 such that 1 ≤ 𝑘 < 𝐾 . The scheme 𝑞 is implementable if and only if (𝑝∗, 𝑞) satisfies every
upward IC constraint and 𝑣(𝜃𝐾 ) ≥ 0.

The lemma above is relatable to Theorem 1 in Rochet (1987). In that paper, the necessary and
sufficient condition for a scheme 𝑞 to be implementable is that given any finite cycle of passes,
𝑘0, 𝑘1, … , 𝑘𝑚, 𝑘𝑚+1 = 𝑘0 in {0, … , 𝐾}, if IC𝑘𝑙𝑘𝑙+1 is bound for 𝑙 = 0, … , 𝑚 − 1 with the implied price
difference 𝑝𝑘0 − 𝑝𝑘𝑚 , then this price difference must satisfy IC𝑘𝑚𝑘𝑚+1 . Lemma 6 shows that if IR𝐾
and every local downward IC constraint are bound, then all downward IC and IR constraints hold.
Hence in the above lemma, it only remains to check whether given the scheme 𝑞, (𝑝∗, 𝑞) satisfies
every upward IC constraint.

In the standard screening models, with a fixed scheme 𝑞, 𝑝∗ binds every local downward IC
constraint, and then every IC and IR constraint holds thanks to the ID conditions and constraint
reductions. What differentiates this paper’s model is that the set of upward IC constraints cannot
be reduced to the set of local upward IC constraints, hence the necessity of Lemma 7.

Lemma 7 also illustrates how a scheme fails to be implementable. If 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 ,

𝑝∗𝑗 − 𝑝∗𝑘 =
𝑘−1
∑
𝑙=𝑗

𝑝∗𝑙 − 𝑝∗𝑙+1 = 𝑣(𝜃𝑗) − 𝑣(𝜃𝑘) −
𝑘+1
∑
𝑙=𝑗

𝑣(𝜃𝑙+1; 𝜃𝑙) − 𝑣(𝜃𝑙+1), (2.3)

where 𝑝∗ is defined in Lemma 7, and the summation is the accumulated externalities from down-
grading to the next-lower-priority pass. At the same time, IC𝑘𝑗 implies

𝑝𝑗 − 𝑝𝑘 ≥ 𝑣(𝜃𝑗 ; 𝜃𝑘) − 𝑣(𝜃𝑘) = 𝑣(𝜃𝑗) − 𝑣(𝜃𝑘) − [𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑗+1)] , (2.4)
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where the second difference term is the externality of upgrading from 𝜃𝑗+1 to 𝜃𝑗 . Whenever the
sum of downgrade externalities in (2.3) exceeds the upgrade externality in (2.4), the scheme is not
implementable.

In Alperstein (1988), it profit-optimal to set the number of priority passes equal to the number
of customers. The following result shows that this scheme is not implementable in our model.

Proposition 20 (Implementation with 𝑁 = 𝐾 ). Fix (𝑁 , 𝐾, 𝑢) and 𝑞 ∈ 𝒬(𝑁 , 𝐾). If 𝐾 > 2 and
𝑞𝑘 = 1 for every 𝑘 such that 1 ≤ 𝑘 ≤ 𝐾 , then 𝑞 is not implementable.

The result is shown by contradiction. Towards this end, suppose that there is such a scheme
that is implementable and consider the incentives of the first three customers, each of whom
buys a different priority pass. For the first customer, it is tempting to switch to 𝜃1 from 𝜃2, since
the customer pays less but still has the chance of being at the same position after switching. To
incentivize the first customer from downgrading, 𝑝1 − 𝑝2 needs to be small. Similarly, 𝑝2 − 𝑝3
needs to be small so that the second customer does not want to downgrade to 𝜃3 from 𝜃2. For the
third customer, however, upgrading to the first pass can be tempting since by doing so, the third
customer strictly improves the customer’s position in the queue, albeit at a higher price. Hence
𝑝1 − 𝑝3 needs to be large enough to disincentivize the customer from upgrading to 𝜃1 from 𝜃3.
The proof shows that the upper bound on 𝑝1 − 𝑝3 implied by the upper bounds on 𝑝1 − 𝑝2 and
𝑝2 − 𝑝3 is strictly less than the lower bound on 𝑝1 − 𝑝3, which is a contradiction.

Another special case of the base utility function 𝑢 is the linear utility function. Since the linear
case is weakly convex, by Proposition 19, every scheme with 𝐾 = 2 is implementable. For 𝐾 > 2,
it can be shown that no scheme is implementable.

Proposition 21 (Implementation with linear utility). Fix (𝑁 , 𝐾, 𝑢), where 𝑢 is linear, i.e., 𝑢𝑛 −
𝑢𝑛+1 = 𝑑 > 0 for every 𝑛 such that 1 ≤ 𝑛 < 𝑁 . Fix 𝑞 ∈ 𝒬(𝑁 , 𝐾) such that 𝑣(𝜃𝐾 ) ≥ 𝑢0. The scheme 𝑞
is implementable if and only if 𝐾 ≤ 2.

The proof shows that when 𝐾 ≥ 3, IC31 implies 𝑝1 − 𝑝3 ≥ 𝑣(𝜃1) − 𝑣(𝜃3) − 𝑑
2 , but binding IC12

and IC23 implies 𝑝1 −𝑝3 = 𝑣(𝜃1) − 𝑣(𝜃3) − 𝑑 , arriving at a contradiction. Therefore, for linear base
utility functions, when the local downward IC constraints are bound, the externalities created
by downgrades lower 𝑝1 so much that the lowest-priority pass customers have an incentive to
upgrade.

We have assumed that all customers have the same base utility function. The next section
considers the case where customers have different base utility functions. We are going to show
that although the heterogeneity in the utility functions makes it possible to implement a scheme
with more than two passes as Six Flag does, the conflict between the upgrade and downgrade
incentives can persist when there are multiple types of base utility functions.

2.5 Extension to Heterogeneous Utilities
Name the case with one base utility function the single-type case. Now consider the case where
customers have heterogeneous base utility functions, which we call the multi-type case. To be
precise, assume each customer’s base utility function comes from {𝑢𝑡 }𝑇𝑡=1, where 1 ≤ 𝑡 ≤ 𝑇 and 𝑡 is
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the index for utility type. For each 𝑡 = 1, … , 𝑇 , let𝑁 𝑡 be the number of customers with base utility
function 𝑢𝑡 . Let 𝑁 = ∑𝑇

𝑡=1 𝑁 𝑇 . Assume that the reserve utility of each customer type is zero, i.e.,
𝑢𝑡0 = 0 for all type 𝑡 .13 Let 𝐺((𝑁 𝑡)𝑇𝑡=1, 𝐾 , 𝑝, (𝑢𝑡)𝑇𝑡=1) be the strategic-form game defined analogously
to that in the single-type case. Given (𝑁 , 𝐾), let 𝒬 (𝑁 , 𝐾) = {𝑞 ∈ ({0} ∪ ℕ)𝐾+1 ∶ ∑𝐾

𝑘=1 𝑞𝑘 = 𝑁}.
Define the set of schemes as

𝒬 ((𝑁 𝑡)𝑇𝑡=1 , 𝐾) = {(𝑞𝑡 ∈ 𝒬(𝑁 𝑡 , 𝐾))𝑇𝑡=1 ∶
𝑇
∑
𝜏=1

𝑞𝜏𝑘 > 0 if 1 ≤ 𝑘 ≤ 𝐾} .

The restriction that ∑𝑇
𝑡=1 𝑞𝑡𝑘 > 0 if 1 ≤ 𝑘 ≤ 𝐾 ensures that every priority pass has at least one

customer, which is analogous to the definition in the single-type case. For each customer type 𝑡 ,
the pass utility function 𝑣 𝑡 is constructed from 𝑢𝑡 . Given 𝑗 and 𝑘 such that 0 ≤ 𝑗 ≤ 𝐾 and 1 ≤ 𝑘 ≤ 𝐾 ,
IC𝑡

𝑗𝑘 and IR𝑡𝑘 are defined analogously to the single-type case with respect to 𝑣 𝑡 . Different from
the single-type case, IC𝑡

𝑗𝑘 and IR𝑡𝑘 may not need to hold for implementation. To be precise, in an
implementable scheme, IC𝑡

𝑗𝑘 needs to hold only if there is some customer of type 𝑡 in 𝜃𝑗 , i.e., 𝑞𝑡𝑗 > 0.
Similarly, IR𝑡𝑘 needs to holds only if 𝑞𝑡𝑘 > 0.

Given {𝑢𝑡 }𝑇𝑡=1, assume that if 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 , then at every position 𝑛, 𝑢𝜏1𝑛 > 𝑢𝜏2𝑛 and 𝑢𝑡𝑛−𝑢𝑡𝑛+1 >
𝑢𝜏2𝑛 − 𝑢𝜏2𝑛+1. A customer of type 𝜏1 is said to be of a (weakly) higher type than a customer of type
𝜏2 if 𝜏1 ≤ 𝜏2.14

2.5.1 Two Utility Types
For now, consider the case where there are two types of base utility functions called the high and
low types. Denote the high type’s base utility function by 𝑢ℎ and that of the low type’s by 𝑢𝑙 . Fix
((𝑁 ℎ, 𝑁 𝑙), 𝐾) and a scheme 𝑞 ∈ 𝒬((𝑁 ℎ, 𝑁 𝑙), 𝐾). For 𝑗 and 𝑘 such that 0 ≤ 𝑗 ≤ 𝐾 and 1 ≤ 𝑘 ≤ 𝐾 ,

both ICℎ
𝑗𝑘 and IC𝑙

𝑗𝑘 are constraints about upper bounds on 𝑝𝑗 −𝑝𝑘 , and hence there must exist one
constraint that implies the other. Specifically, by the construction of types, if 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , then
IC𝑙

𝑗𝑘 implies ICℎ
𝑗𝑘 ; if 1 ≤ 𝑘 < 𝑗 ≤ 𝐾 or 𝑗 = 0, then ICℎ

𝑗𝑘 implies IC𝑙
𝑗𝑘 .

With the above observation that one IC𝑡
𝑗𝑘 for some type 𝑡 is sufficient to describe all the incen-

tives of switching from 𝜃𝑗 to 𝜃𝑘 , we can define IC𝑗𝑘 as we did in the single-type case. Specifically,

fix 𝑗 and 𝑘 such that 0 ≤ 𝑗 < 𝑘 ≤ 𝐾 . If 𝑗 > 0 and 𝑞𝑙𝑗 > 0, let IC𝑗𝑘 = IC𝑙
𝑗𝑘 ; if 𝑗 = 0 and 𝑞ℎ𝑗 > 0, let

IC𝑗𝑘 = ICℎ
𝑗𝑘 ; if 𝑗 > 0 and 𝑞𝑙𝑗 = 0, let IC𝑗𝑘 = ICℎ

𝑗𝑘 . If 𝑗 > 0 and 𝑞ℎ𝑘 > 0, let IC𝑘𝑗 = ICℎ
𝑘𝑗 ; if 𝑗 > 0 and

𝑞ℎ𝑘 = 0, let IC𝑘𝑗 = IC𝑙
𝑘𝑗 . Similarly, we can define IR𝑘 . Specifically, if 𝑞𝑙𝑘 > 0, then let IR𝑘 = IR𝑙𝑘 ; if

𝑞𝑙𝑘 = 0, let IR𝑘 = IRℎ𝑘 .
13The homogeneous reserve utility assumption introduces some loss of generality as constraint reduction results

of this section need to additionally take care of each type’s different reserve utility. Since introducing heterogeneous
reserve utilities further complicates the analysis without providing new insights about the pass-switching incentives,
this paper makes the simplifying homogeneous reserve utility assumption.

14A customer type 𝜏1 is said to be higher than 𝜏2 in the sense that the utility of customers of type 𝜏1 decreases faster
than those of type 𝜏2 with respect to positions in a queue. We assign lower indices to higher customer types because
results introduced later show that in implementable schemes, customers of higher customer types necessarily hold
higher-priority passes and so they occupy lower-indexed positions in a queue.
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Let the set of IC constraints be the collection of IC𝑗𝑘 over 𝑗 and 𝑘 such that 0 ≤ 𝑗 ≤ 𝐾 ,
1 ≤ 𝑘 ≤ 𝐾 and 𝑞ℎ𝑗 + 𝑞𝑙𝑗 > 0; let the set of IR constraints be the collection of IR𝑘 over 𝑘 such that
1 ≤ 𝑘 ≤ 𝐾 . With this notation, implementation is defined with respect to the set of IR and IC
constraints just like the single-type case. For 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , let 𝑡 𝑗 be the customer type such that

IC
𝑡 𝑗
𝑗𝑘 = IC𝑗𝑘 and 𝑡𝑘 be the customer type such that IC𝑡𝑘𝑘𝑗 = IC𝑘𝑗 .15
The addition of this heterogeneity introduces some complications for constraint reduction.

In the single-type case, Lemma 6 and 7 reduce the set of downward IC constraints to the set of
local downward IC constraints and the set of IR constraints to only IR𝐾 . Generally, neither types
of constraint reductions holds in the two-type case, but there are conditions under which the
reductions of IR and downward IC constraints hold.16 It turns out that the constraint reduction
results as in the single-type case can be obtained if we impose the restriction that 𝑞𝑙𝑗 > 0 implies
𝑞𝑙𝑘 > 0 if 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝐾 . This restriction eliminates schemes where a low-priority pass has only
high-type customers but a high-priority pass has at least one low-type customer.

Now focus on the linear utility, a special case of concave utility functions. If a scheme 𝑞
is implementable, then 𝐾 ≤ 4 by the proof of Proposition 21.17 The next result presents the
conditions under which there exists 𝑞 ∈ ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) that is implementable for 𝐾 = 4.
The intuition of the second condition in the result is that the slopes of 𝑢ℎ and 𝑢𝑙 need to be
sufficiently different from each other.

Theorem 5 (Implementation with Two Linear Utilities). Consider ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)), where
𝐾 = 4. Suppose 𝑢𝑙𝑛 = 𝛼 𝑙 − 𝑛𝑑 and 𝑢ℎ𝑛 = 𝛼ℎ − 𝛽ℎ𝑛𝑑 , where 𝑑 > 0, 𝑢ℎ𝑁 ℎ+𝑁 𝑙 − 𝑢𝑙𝑁 ℎ+𝑁 𝑙 > 0, and 𝛽ℎ > 1.
Consider 𝑞 = ((𝑞ℎ1 , 𝑞ℎ2), (𝑞𝑙1, 𝑞𝑙2)) ∈ 𝒬 ((𝑁 ℎ, 𝑁 𝑙), 𝐾) such that 𝑞ℎ0 = 𝑞𝑙0 = 0. Assume 𝑣 𝑙(𝜃𝐾 ) ≥ 0. There
exists 𝑏 ≥ 0 such that 𝑞 is implementable if and only if the following two conditions hold:

(a) 𝑞ℎ1 + 𝑞ℎ2 = 𝑁 ℎ and 𝑞𝑙1 + 𝑞𝑙2 = 𝑁 𝑙 .

(b) 𝛽ℎ ≥ 𝑏.
Part (a) of Theorem 5 is a special case for the restriction that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , then 𝑞𝑙𝑗 > 0 implies

𝑞𝑙𝑘 > 0. The restriction is used for the constraint reduction results. As implied by Theorem 5, it
turns out that the restriction is necessary for implementation with two concave utilities. To be
precise, implementationwith two concave base utility functions implies a condition stronger than
the restriction for constraint reduction.

Proposition 22 (Implementable schemes with two concave utilities). Fix ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙))
such that both 𝑢ℎ and 𝑢𝑙 are concave. If 𝑞 ∈ ((𝑁 ℎ, 𝑁 𝑙), 𝐾) is implementable and 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , then
𝑞𝑙𝑗 > 0 implies 𝑞ℎ𝑘 = 0.

15The choice of type is unique as 𝑢ℎ𝑛 − 𝑢ℎ𝑛+1 > 𝑢𝑙𝑛 − 𝑢𝑙𝑛+1 at every position 𝑛.
16See Lemma 8 and Lemma 9 in Appendix 2.A.
17If 𝐾 > 4, there is at least one customer type with customers in three different passes. The same argument as in

Proposition 21 shows that this is not implementable.
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uh = (5, 1)
ul = (4, 0)

Figure 2.2: An example where low type
buys some pass but high type does not.

(q0h, q1h, q2h)= (0, 0, 2) 
(q0l, q1l, q2l)  = (0, 1, 0)
p1 = 4.65  p2 = 1.65
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1
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6 uh

ul
uh = (6.3, 2.2, 1.1)
ul = (6, 2, 1)

Figure 2.3: An example where high type buys some
strictly lower-priority pass than low type.

The above condition is relatable to a monotonicity property that the standard screening mod-
els predict: if some type buys some pass, then every higher-type customer buys a (weakly) higher-
priority pass. This monotonicity property does not generally hold in the setup of this paper be-
cause of the existence of externalities. There are two different intuitions on why monotonicity
does not hold, which are illustrated by the following two examples.

Example 7 (Non-monotonicity 1). Let ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) be such that𝑁 ℎ = 𝑁 𝑙 = 1 and𝐾 = 1.
Let 𝑢𝑙 = (4, 0) and 𝑢ℎ = (5, 1) be the base utilities of the two types. Consider the scheme 𝑞 with
only the low-type customer in the queue. It can be verified that 𝑝1 = 4 implements 𝑞 and the high-
type customer buys no pass. Calculations are shown in Figure 2.2. In this example, monotonicity
fails because given the price, the second position is bad enough even for the high type and the
high type would not want to join the queue.

Example 8 (Non-monotonicity 2). Consider ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) where 𝑁 ℎ = 2, 𝑁 𝑙 = 1, and
𝐾 = 2. Let 𝑢𝑙 = (6, 2, 1) and 𝑢ℎ = (6.3, 2.2, 1.1) be the base utility functions of the two types.
Consider the scheme 𝑞 = (𝑞ℎ, 𝑞𝑙) such that (𝑞ℎ0 , 𝑞ℎ1 , 𝑞ℎ2) = (0, 0, 2) and (𝑞𝑙0, 𝑞𝑙1, 𝑞𝑙2) = (0, 1, 0). It can
be verified that the price vector with 𝑝1 = 4.65 and 𝑝2 = 1.65 implements 𝑞. In this scheme, the
high-type customers buy the lower-priority pass while the low-type customer buys the higher-
priority pass. Calculations are shown in Figure 2.3. In this example, monotonicity fails because
when a high type attempts to buy the higher-priority pass, the customer creates congestion to
this pass, the externality of which can be larger than the utility of higher-priority customers when
the base utility functions are convex and the two customer types are not very different.

By the definition of monotonicity, when the property does not hold, either a high type buys
a strictly lower-priority pass, or the high type does not buy any pass at all. In Example 7, a low
type buys some pass, but the high type does not buy any pass; in Example 8, the low type buys
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the higher-priority pass whereas the high type buys the lower-priority pass. Proposition 24 in
the next subsection provides sufficient conditions under which some partial monotonicity holds.

Upper hemicontinuity of pure-strategy Nash equilibria with respect to the utility function
means that when the two types are only slightly different, a two-pass scheme with two strictly
concave base utilities is still not implementable. Intuitively, if the two types are sufficiently dif-
ferent, then we can separate the two types. The following proposition provides a cutoff of this
closeness for a fixed scheme so that separation is impossible below the cutoff and possible above
the cutoff.

Proposition 23 (Two-pass with two strictly concave utilities). Let ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) be such
that 𝐾 = 2. Assume 𝑢ℎ = 𝑢 and 𝑢𝑙 = 𝛽 𝑙𝑢, where 𝑢 is a strictly concave base utility function and
𝛽 𝑙 ∈ (0, 1). Let 𝑞 ∈ 𝒬((𝑁 ℎ, 𝑁 𝑙), 2) be such that 𝑞ℎ1 = 𝑁 ℎ and 𝑞ℎ2 = 𝑁 𝑙 . The scheme 𝑞 is implementable
if and only if 𝛽 𝑙 ≤ 𝑣(𝜃1)−𝑣(𝜃2;𝜃1)

𝑣(𝜃1;𝜃2)−𝑣(𝜃2) , where 𝑣 is the pass utility function constructed from 𝑢.

We explain the result in relation to the standard screening models. Consider a scheme 𝑞 such
that 𝑞ℎ1 = 𝑁 ℎ and 𝑞𝑙2 = 𝑁 𝑙 . The implementability of 𝑞 can be checked by the price vector 𝑝
according to the formula18

𝑝2 = 𝑣 𝑙(𝜃2), 𝑝1 = 𝑣ℎ(𝜃2) − [𝑣ℎ(𝜃2; 𝜃1) − 𝑝2] = 𝑣ℎ(𝜃2) − [𝑣ℎ(𝜃2; 𝜃1) − 𝑣 𝑙(𝜃2)] ,
where the term in the bracket on the right-hand side is the surplus given to the high-type cus-
tomers. In this price vector, each high-type customer holding the high-priority pass is indifferent
between the two passes, whereas each low-type customer holding the low-priority pass gets zero
surplus. This property of the pricing formula is consistent with the optimal pricing formula in
the standard screening models. However, the pricing formula in this paper has different compo-
sitions that lead to different results of implementability. For the pricing formula here,

𝑝1 − 𝑝2 = 𝑣ℎ(𝜃1) − 𝑣ℎ(𝜃2; 𝜃1) = 𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃2) −
Total information rent

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑣ℎ(𝜃2; 𝜃1) − 𝑣ℎ(𝜃2))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Downgrade externality

− (𝑣ℎ(𝜃2) − 𝑣 𝑙(𝜃2))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Information rent in
standard screening

, (2.5)

where the second parenthesized difference is often called the information rent of the high-type
customers in the standard screening models. In this paper, the additional term 𝑣ℎ(𝜃2; 𝜃1) − 𝑣ℎ(𝜃2)
is the externality created when a high-type customer unilaterally downgrades to the low-priority
pass. The externality is strictly positive and gives the higher-type customer higher total informa-
tion rent, which further lowers 𝑝1. To check whether 𝑞 is implementable, IC21 of 𝑞 implies

𝑝1 − 𝑝2 ≥ 𝑣 𝑙(𝜃1; 𝜃2) − 𝑣 𝑙(𝜃2) = 𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃2) − [(𝑣 𝑙(𝜃1) − 𝑣 𝑙(𝜃1; 𝜃2)) + (𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃1))] , (2.6)

where the first parenthesized difference in the bracket is the externality created when the low-
type customer upgrades to the high-priority pass. Since 𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃1) > 𝑣ℎ(𝜃2) − 𝑣 𝑙(𝜃1) > 0, in
the standard screeningmodels without externalities, the price difference from the pricing formula

18Lemma 10 in Appendix 2.A shows why the pricing formula can be used to check implementability.
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would satisfy IC21, making 𝑞 implementable. However, from the proof of Proposition 18, when the
base utility functions are strictly concave, 𝑣ℎ(𝜃2; 𝜃1)−𝑣ℎ(𝜃2) > 𝑣ℎ(𝜃1)−𝑣ℎ(𝜃1; 𝜃2) > 𝑣 𝑙(𝜃1)−𝑣 𝑙(𝜃1; 𝜃2),
which could still potentially make the price difference in (2.5) violate IC21. When there is only
one customer type, i.e.,

𝑢ℎ = 𝑢𝑙 ⟹ 𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃1) = 𝑣ℎ(𝜃2) − 𝑣 𝑙(𝜃2) = 0,
the right-hand side of (2.5) is strictly below the right-hand side of (2.6), making the scheme not
implementable as in Proposition 18. When there are two different customer types, the proof
of Proposition 23 shows that when the two customer types are sufficiently different, the price
difference satisfies IC21, making 𝑞 implementable.

The condition for the implementation result above is about the two types being sufficiently
different from each other. The next subsection shows that this intuition about different types
being sufficiently different is still relevant as the model is extended to the general multi-type
case.

2.5.2 General Multiple Utility Types
Suppose there are 𝑇 types of basic utility functions. Like the two-type case, use superscripts
to distinguish variables of different utility types and define other variables similarly. As in the
two-type case, given a scheme 𝑞, for 𝑗, 𝑘, 𝜏1, and 𝜏2 such that 0 ≤ 𝑗 ≤ 𝐾 , 1 ≤ 𝑘 ≤ 𝐾 , and
1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 , IC𝜏2𝑗𝑘 implies IC𝜏1𝑗𝑘 if 0 < 𝑗 < 𝑘; IC𝜏1𝑗𝑘 implies IC𝜏2𝑗𝑘 if 𝑗 = 0 or 1 ≤ 𝑘 < 𝑗 ≤ 𝐾 .
Additionally, IR𝜏2𝑘 implies IR𝜏1𝑘 . Let 𝑡 𝑗 = max{1 ≤ 𝜏 ≤ 𝑇 ∶ 𝑞𝜏𝑗 > 0}, which is the lowest type in 𝜃𝑗 ,
and 𝑡 𝑗 = min{1 ≤ 𝜏 ≤ 𝑇 ∶ 𝑞𝜏𝑗 > 0}, which is the highest type in 𝜃𝑗 . If 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , let IC𝑗𝑘 = IC

𝑡 𝑗
𝑗𝑘 ;

if 𝑗 = 0, 1 ≤ 𝑘 ≤ 𝐾 , and 𝑡 𝑗 ≠ ∅,19 let IC𝑗𝑘 = IC
𝑡 𝑗
𝑗𝑘 ; if 1 ≤ 𝑘 < 𝑗 ≤ 𝐾 , let IC𝑗𝑘 = IC

𝑡 𝑗
𝑗𝑘 . If 1 ≤ 𝑘 ≤ 𝐾 , let

IR𝑘 = IR
𝑡𝑘𝑘 .

Let the set of IC constraints be the collection of IC𝑗𝑘 over 𝑗 and 𝑘 such that ∑𝑇
𝑡=1 𝑞𝑡𝑗 > 0; let

the set of IR collection of IR𝑘 over 𝑘 such that 1 ≤ 𝑘 ≤ 𝐾 . Like the one-type case, implementation
can be similarly defined with respect to the set of IC and IR constraints.

In Appendix 2.B, the lemmas for the two-type case are extended to the general multi-type case.
An extension of Lemma 10 can be used to check the implementability of a scheme satisfying the
restriction that 𝑡 𝑗 ≤ 𝑡𝑘 if 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . Similar to the restriction introduced in the two-type
case, the restriction for the multi-type case implies that every customer in a lower-priority pass
cannot have a strictly higher type than does any customer in a higher-priority pass. It turns out
that the restriction is part of a (partial) monotonicity property with concave base utility functions:
if a customer of some type buys a pass, then every higher-type customer will buy a pass with a
weakly higher priority in an implementable scheme.20

19The case where 𝑡 𝑗 = ∅ is when no customer is in 𝜃𝑗 . By the definition of schemes, 𝑡 𝑗 = ∅ only if 𝑗 = 0.
20Recall that the monotonicity property does not hold in general, as Example 7 and Example 8 in the two-type

case show.
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Proposition 24 (Monotonicity with multiple concave utilities). Fix ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1), where
𝐾 ≥ 2 and 𝑢𝑡 is concave for every 𝑡 . Assume 𝑞 ∈ ((𝑁 𝑡)𝑇𝑡=1, 𝐾) is implementable. Fix 𝜏1, 𝜏2, and 𝑙 such
that 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 , 1 ≤ 𝑙 ≤ 𝐾 , and 𝑞𝜏2𝑙 > 0. If 𝑘 > 𝑙, then 𝑞𝜏1𝑘 = 0. If 𝜏1 ≤ 𝑡𝐾−1, then 𝑞𝜏1𝑗 > 0 for
some 𝑗 such that 1 ≤ 𝑗 ≤ 𝑙.

The first part of the result says that in an implementable scheme, if a higher type buys some
priority pass, then the pass cannot have a strictly lower priority than a lower-type customer does.
The second part says that if a customer’s type is also (weakly) higher than the lowest-type in
the second-to-last priority pass, then this customer must purchase some (weakly) higher-priority
pass than the lower-type customer does.21

When there are multiple customer types, implementing multi-pass schemes is possible if cus-
tomers have utility functions that are sufficiently different from each other. The following result,
a generalization of Theorem 5, characterizes the implementation conditions with respect to cus-
tomer types.

Theorem 6 (Implementation with multiple linear utilities). Fix ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1). For every 𝑡
and 𝑛 such that 1 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑛 ≤ 𝑁 , let 𝑢𝑡𝑛 = 𝛼 𝑡 − 𝛽 𝑡𝑛𝑑 , where 𝑑 > 0. Assume 𝛽1 > 𝛽2 >
⋯ > 𝛽𝑇 = 1 and 𝑢1𝑛 > 𝑢2𝑛 > ⋯ > 𝑢𝑇𝑛 for every 𝑛 such that 1 ≤ 𝑛 ≤ 𝑁 . Let 𝑞 = 𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾)
be such that 𝑣𝑇 (𝜃𝐾 ) ≥ 0 and 𝑞𝑡0 = 0 if 1 ≤ 𝑡 ≤ 𝑇 . For each 𝑘 such that 2 ≤ 𝑘 ≤ 𝐾 , there exists
𝑏𝑘(𝜃 𝑡1 , … , 𝛽 𝑡𝑘−1 ; 𝑞) > 0 such that 𝑞 is implementable if and only if the following two conditions hold:

(a) 𝑡 𝑗 ≤ 𝑡𝑘 if 1 ≤ 𝑗 < 𝑘 ≤ 𝐾

(b) If 2 ≤ 𝑘 ≤ 𝐾 , then 𝛽 𝑡𝑘 ≤ 𝑏𝑘(𝜃 𝑡1 , … , 𝛽 𝑡𝑘−1 ; 𝑞).
Since a linear base utility function is concave, Part (a) of the result is immediate from Propo-

sition 24. The inequality in Part (b) says that the slopes of different customer types need to be
different enough. Similar intuitions can be applied to the strictly concave case. For the strictly
concave case, focus on the case of 𝐾 = 2, which is not implementable in the single-type case.
When 𝐾 = 2, implementation is possible for 𝑡1 < 𝑡2. Specifically, given a scheme 𝑞 with 𝐾 = 2
and strictly concave utility functions, by Proposition 24, it is necessary that 𝑡1 < 𝑡2. Given this
necessary condition, the necessary and sufficient condition for the implementation of 𝑞 is

𝑣 𝑡1(𝜃1) − 𝑣 𝑡1(𝜃2; 𝜃1) ≥ 𝑣 𝑡2(𝜃1; 𝜃2) − 𝑣 𝑡2(𝜃2),
which holds if 𝑡1 and 𝑡2 are sufficiently different. Thus for two-pass implementation, only the in-
centive constraints of two specific types matter. In other words, to implement a two-pass scheme
where every customer type has at least one customer in the queue, it suffices to look for “gaps”
between adjacent types.

For the family of strictly concave utility functions, the above notion of “gap” is not straight-
forward to illustrate. To simplify the intuition, consider a particular functional form where every
pair of two functions from the family are an affine transformation of the other. The following
result extends Proposition 23 and shows that two-pass implementation with multiple strictly con-
cave utilities needs the lowest customer type in the first pass to be sufficiently different from the
highest type in the second pass.

21Note that in Example 7, the condition is not met and the monotonicity property does not hold.
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Proposition 25 (Two-pass implementation with multiple strictly concave utilities). Let 𝑢 be a
strictly concave base utility function. Consider ((𝑁 𝑡)𝑇𝑡=1, 𝐾 = 2, (𝑢𝑡)𝑇𝑡=1), where 𝑢𝑡 = 𝛼 𝑡 − 𝛽 𝑡𝑢,
𝛽1 > 𝛽2 > ⋯ > 𝛽𝑇 = 1, and 𝑢1𝑛 > 𝑢2𝑛 > ⋯ > 𝑢𝑇𝑛 for every 𝑛 such that 1 ≤ 𝑛 ≤ 𝑁 . Let
𝑞 ∈ 𝒬 ((𝑁 𝑡)𝑇𝑡=1, 2) be such that 𝑣𝑇 (𝜃2) ≥ 0 and 𝑞𝑡0 = 0 if 1 ≤ 𝑡 ≤ 𝑇 . The scheme 𝑞 is implementable
if and only if

𝛽 𝑡1
𝛽 𝑡2

≥ 𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2)
𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1)

, (2.7)

where 𝑣 is the pass utility function constructed from 𝑢. In addition, the right-hand side of (2.7) is
strictly greater than 1, and converges to 1 as 𝑁 𝑡 → ∞ for every 𝑡 such that 𝑡2 ≤ 𝑡 ≤ 𝑇 .

The inequality in the result is the requirement that the two adjacent customer types be suffi-
ciently different. When the condition holds, the upper bound of 𝑝1−𝑝2 implied by the downward
IC constraint is above the lower bound implied by the upward IC constraint, making the scheme
implementable.

In summary, when there are multiple types of utility functions, the issue with resolving the
upgrade and downgrade incentives is abated yet could persist. Specifically, when each customer
type is an affine transformation of the other, implementing multi-pass schemes that are not im-
plementable in the single-type case depends on how different (with respect to the slope) each pair
of adjacent types are. In other words, the “gaps” between adjacent types need to large enough
for implementation.

2.6 Discussions
In the single-type case, the one-pass scheme maximizes the profit, since by setting 𝑝1 = 𝑣(𝜃1),
the park extracts all the surplus. In contrast, Section 2.6.1 revisits the two-type case and shows
that a multi-pass scheme can be optimal. Section 2.6.2 discusses how the externality affects imple-
mentability. Section 2.6.3 discusses implementation in large queues where the size of externalities
approaches zero. We also look at 𝜖-implementation, where the customer does not switch to a dif-
ferent pass unless doing so improves the payoff by at least 𝜖. Lastly, Section 2.6.4 looks at quantile
queues, where the utility of positions in a queue depends on the relative quantiles in the queue.

2.6.1 Profits
In the standard screening models, provided that all customers are in the queue, having more
passes weakly improves the profit because the park can extract even more surplus from those
with a higher valuation. In contrast, for the single-type case in this paper, having more passes
weakly hurts the profit: when 𝐾 = 1 and 𝑞0 = 0, setting 𝑝1 = 𝑣(𝜃1) implements (𝑞0, 𝑞1) = (0, 𝑁 )
and extracts all the customer surplus. On the other hand, implementing a multi-pass scheme
means that the park needs to give away surplus to customers with higher-priority passes, making
multi-pass scheme suboptimal with regard to profits. The critical intuition is that in the standard
screening models, a single-pass scheme would not change the valuation of customers in the last
pass. In contrast, in this paper, having all customers in one single pass increases the utility of
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those who used to be in the lowest-priority pass since now they have a probability of being at
the front of the queue.

For the multi-type case, however, the single-pass scheme does not always dominate a multi-
pass one. For the previously discussed two-type case with strictly concave utilities, the following
proposition shows that for some values of 𝛽 𝑙 , the two-pass scheme is more profitable than a
single-pass scheme. The proposition focuses on all-serving schemes, where every customer of
every type buys some pass.

Proposition 26 (Profitability of two-pass schemes). Consider the two-type case and fix 𝑁 ℎ and
𝑁 𝑙 . Let 𝑢ℎ = 𝑢, where 𝑢 is strictly concave, and 𝑢𝑙 = 𝛽 𝑙𝑢, where 𝛽 𝑙 ∈ (0, 1). There exists ̄𝛽 ∈ (0, 1)
such that 𝐾 = 2 is implementable, and the profit from the optimal all-serving two-pass scheme is
higher than that of the optimal all-serving one-pass scheme if and only if 𝛽 𝑙 ≤ ̄𝛽 .

When the one-pass scheme serves both types, the park needs to respect the low type’s IR
constraint, lowering the price. If the two types are sufficiently different, then the park will have
an incentive to add a higher-priority pass to extract more surplus from the high-type customer.

2.6.2 Implementation and Externality
In the standard screening models, every upward IC constraint holds if every local upward IC
constraint holds, and every downward IC constraint hold if every local downward IC constraint
holds. This constraint reduction does not hold in this paper. In the standard screeningmodels, the
crucial step to achieve this simplification for 1 < 𝑗 < 𝐾 would be 𝑣(𝜃𝑗−1; 𝜃𝑗)−𝑣(𝜃𝑗) ≥ 𝑣(𝜃𝑗−1; 𝜃𝑗+1)−
𝑣(𝜃𝑗 ; 𝜃𝑗+1), which does not hold in this paper as 𝑣(𝜃𝑗−1; 𝜃𝑗) = 𝑣(𝜃𝑗−1; 𝜃𝑗+1), i.e., the utility from
switching only depends on whether the new pass has a higher or lower priority.

The lack of reduction of the upward IC constraints makes the implementation of multi-pass
schemes non-trivial. In the standard screening models, the ID conditions imply that binding
local downward IC constraints satisfies all upward IC constraints, and the local IC constraints
together imply all the IC constraints. Hence the ID conditions are sufficient for implementation
in the standard setup. However, in this paper, as the set of local upward IC constraints does not
imply the set of upward IC constraints, the ID conditions do not guarantee implementation.

The IC constraints in this paper differ from the standard screening models in the existence of
externality from switching: when one customer switches to another pass, the customer creates
congestion if switching to a higher-priority pass and improves the waiting time if switching to a
lower-priority pass. It turns out that the existence of this type of externality makes implementa-
tion harder than a model without externalities. We focus on the single-type case and formalize
the externality with which relative implementability is discussed.

Definition 6. Fix (𝑁 , 𝐾) and 𝑞 ∈ 𝒬(𝑁 , 𝐾). A pass utility function 𝑣
(a) creates externalities if (2.1) holds.

(b) creates more downgrade externalities if 𝑣 creates externalities and for every 𝑗 and 𝑘 such that
1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , 0 < 𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑘) < 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑣(𝜃𝑘).
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(c) creates zero externality if 𝑣(𝜃𝑗) = 𝑣(𝜃𝑗 ; 𝜃𝑘) for every 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 .

By the definition of “constructed from 𝑢”, for every base utility function 𝑢, the pass utility func-
tion 𝑣 constructed from 𝑢 creates externalities; furthermore, the proof of Proposition 18 shows
that if 𝑢 is strictly concave, 𝑣 creates more downgrade externalities. When 𝑣 creates zero exter-
nality, every scheme is implementable. In contrast, if 𝑣 creates more downgrade externalities and
𝐾 ≥ 2, no scheme is implementable.

Proposition 27 (Externalities vs no externality). Fix (𝑁 , 𝐾) and 𝑞 ∈ 𝒬(𝑁 , 𝐾).
(a) If 𝑣 creates zero externality, then 𝑞 is implementable by setting 𝑝𝑘 = 𝑣(𝜃𝑘) for each pass 𝜃𝑘 .
(b) If 𝑣 creates more downgrading externalities and 𝐾 ≥ 2, then 𝑞 is not implementable.

By Part (a), since every pass is implementable when 𝑣 creates zero externality, the set of
implementable schemes when 𝑣 creates externalities is a subset of the set when 𝑣 creates zero
externality. Moreover, Part (b) implies that the externalities can strictly shrink the set of imple-
mentable schemes. Specifically, when 𝑣 creates more downgrade externalities, the externalities
created by downgrading to a lower-priority pass are large relative to the externalities created
by upgrading to a different pass, to the extent that the difference brings about an unresolvable
conflict between incentivizing against upgrading and against downgrading when 𝐾 ≥ 2.

2.6.3 Implementation in Large Queues
This section analyzes how implementability changes when the total size of the queue grows. The
interpretation here is that we are looking at a sequence of “markets” and see how implementabil-
ity evolves with respect to 𝑁 . The implementation results so far depend on the externalities
customers impose on each other. By 𝑝∗ in Lemma 7, a scheme fails to be implementable when
the externalities from downgrading are too large, the price of a higher-priority pass has to be low
to the extent that a customer in a lower-priority pass will have an incentive to upgrade. It turns
out when the downgrade externalities can be sufficiently small with enough customers, which
limits the price decrease of a higher-priority pass, then implementing schemes with many passes
is possible.

Proposition 28 (Implementation with fixed 𝐾 and large 𝑁 ). Fix 𝐾 and a strictly decreasing se-
quence (𝑢𝑛)∞𝑛=1. If lim𝑛→∞

𝑢𝑛
𝑛 = 0, then there exist 𝑀 and 𝑢 ∶ ℕ → ℝ such that 𝑁 ≥ 𝑀 implies the

existence of 𝑞 ∈ 𝒬(𝑁 , 𝐾) that is implementable with 𝑢0 = 𝑢(𝑁 ), i.e., there exists an implementable
scheme for (𝑁 , 𝐾, 𝑢) when the reserve utility is 𝑢(𝑁 ).

The condition lim𝑛
𝑢𝑛
𝑛 = 0 ensures that the local downgrade externality 𝑣(𝜃𝑘 ; 𝜃𝑘−1) − 𝑣(𝜃𝑘)

converges to 0 when 𝑞𝑘 → ∞ if 1 < 𝑘 ≤ 𝐾 . The condition allows an unbounded utility function.
For example, 𝑢𝑛 = − log 𝑛 is unbounded and lim𝑛→∞

𝑢𝑛
𝑛 = 0. On the other hand, the condition

implies a slow rate of decrease, excluding the linear and concave base utility functions.
If customers do not pay attention to small deviation gains, then the downward pressure on

the price of a higher-priority pass is reduced. This inattention to small deviation gains can be
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formalized by the concept of 𝜖-implementation, where each constraint of the park’s optimization
problem can be relaxed by an arbitrary and fixed 𝜖 > 0. Specifically, IR𝑘 in 𝜖-implementation
becomes

𝑣(𝜃𝑘) − 𝑝𝑘 + 𝜖 ≥ 𝑢0, (𝜖IR𝑘)
and IC𝑗𝑘 in 𝜖-implementation becomes

𝑣(𝜃𝑗) − 𝑝𝑗 + 𝜖 ≥ 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 , (𝜖IC𝑗𝑘)

and the definition of implementation is defined similarly to the exact-implementation case.

Definition 7 (𝜖-implementation). Fix 𝑁 ≥ 𝐾 .

(a) A scheme 𝑞 ∈ 𝒬(𝑁 , 𝐾) is 𝜖-implementable if for each 𝜖 > 0, there exists some price vector
𝑝 such that 𝜖IR𝑘 and 𝜖IC𝑗𝑘 hold for 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 .

(b) (𝑁 , 𝐾, 𝑢) is 𝜖-implementable if there exists an 𝜖-implementable scheme with 𝑁 customers
and 𝐾 passes.

Let 𝑁 grow and keep 𝐾 fixed. Use the same condition lim𝑛→∞
𝑢𝑛
𝑛 = 0 to ensure that local

downgrade externalities are small with many customers. It turn out that in this case, with 𝜖-
implementation, the surplus-extracting price i.e., 𝑝𝑘 = 𝑣(𝜃𝑘) for every 𝑘, 𝜖-implements some
schemes when 𝑁 is allowed to grow.

Proposition 29 (𝜖-implementation). Fix 𝐾 , 𝜖 > 0, and a strictly decreasing sequence (𝑢𝑛)∞𝑛=1. If
lim𝑛→∞

𝑢𝑛
𝑛 = 0, then there exist𝑀 and 𝑢 ∶ ℕ → ℝ such that 𝑁 > 𝑀 implies that some 𝑞 ∈ (𝑁 , 𝐾, 𝑢)

is 𝜖-implementable with 𝑢0 = 𝑢(𝑁 ) and leaves zero surplus to the customers, i.e., 𝑝𝑗 = 𝑣(𝜃𝑗) − 𝑢0 for
every 𝑗 such that 1 ≤ 𝑗 ≤ 𝐾 .

To see how setting 𝑝𝑘 = 𝑣(𝜃𝑘) − 𝑢0 implements a scheme, when 𝑣(𝜃𝑘 ; 𝜃𝑘−1) − 𝑣(𝜃𝑘) is strictly
smaller than 𝜖, then 𝜖IC𝑘−1,𝑘 holds with 𝑝𝑘 = 𝑣(𝜃𝑘) − 𝑢0. The proof for the existence of 𝑀 in
the proposition statement is constructive: the cutoff 𝑀 needs to be large enough so that the
externality created from downgrading to a lower-priority pass is smaller than 𝜖. This constructed
cutoff is sufficient for 𝜖-implementation yet not necessary. Particularly, given the assumptions,
the higher-priority passes can have however many customers as long as there are much more
customers in lower-priority passes.

2.6.4 Quantile Queues
So far, a customer’s utility in a queue depends on the absolute position in the queue. Here we
consider a special type of base utility function that depends on the relative position in a queue.
Specifically, we look at quantile queues, where the utility of each position depends on the relative
quantile of the position in a queue. Let 𝑢 be a strictly decreasing and continuous linear function
on [0, 1], with 𝑢(1) = 1 and 𝑢(0) = 0. The utility of being in position 𝑛 in a queue of 𝑁 customers
is 𝑢( 𝑛−1𝑁−1).
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Assume there are 𝑇 types of customers, each with 𝑚 customers. Let 𝑢𝑡 = 𝛽 𝑡𝑢 for some 𝛽 𝑡 ≥ 1
be the base utility function of type 𝑡 . Fix 𝑏 and 𝑐 such that 0 < 𝑏 < 𝑐, and assume 𝛽 𝑡 ranges
uniformly from 𝑏 to 𝑐 as 𝑡 ranges from 1 to 𝑇 . Implementability of a particular type of scheme
is analyzed: there are 𝑇 priority passes, with every customer of the 𝑡-th type in the 𝑡-th priority
pass.

Proposition 30 (Multi-Type quantile queues). Assume there are 𝑇 > 2 types of customers, each of
which has 𝑚 customers and whose slopes are uniformly located on [𝑏, 𝑐] for some 𝑏 and 𝑐 such that
0 < 𝑏 < 𝑐. Let 𝑞 be the scheme in which there are 𝑇 passes and every customer of the 𝑡-th type is in
the 𝑡-th priority pass. There exists 𝑀(𝑇 ) ∈ ℝ such that 𝑀(𝑇 ) is strictly increasing and linear in 𝑇
and 𝑞 is implementable if and only if 𝑚 ≥ 𝑀(𝑇 ).

With fixed 𝑐 and 𝑇 , when there are sufficiently many customers in each priority pass, the
externalities get small relative to the information rent as described in (2.5), making a scheme
implementable. Specifically, the proof shows that 𝑀(𝑇 ) = 𝑏

6(𝑐−𝑏)(𝑇 − 1) + 1
6 , which is linear in 𝑇 .

With larger 𝑐, 𝑀(𝑇 ) grows more slowly in 𝑇 . Figure 2.4 sets 𝑏 = 1 and varies 𝑐 and 𝑇 to illustrate
the evolution of𝑀(𝑇 )with respect to 𝑇 and 𝑐. Fix the value of𝑀(𝑇 ). Consider the 𝑇 ′-pass scheme
in which each customer type has 𝑀(𝑇 ) customers and every customer of the 𝑡-th type is in the
𝑡-th priority pass. The scheme is implementable under (𝑇 ′, 𝑐) if (𝑇 ′, 𝑐) is on the left or on the
curve of𝑀(𝑇 ) and not implementable if strictly on the right. Since 𝑐

𝑐−𝑏 ≥ 1, for each𝑀(𝑇 ), when
𝑇 ′ is large enough, the scheme is not implementable for every 𝑐, and hence the vertical line at the
tail of every curve.

2.7 Conclusions
This paper has shown the difficulty with implementing a multi-pass scheme under a static setting
where customers make purchase decisions simultaneously and have uncertainty about the final
position within each priority pass. The difficulty with implementing many passes derives directly
from the conflict between incentivizing customers from upgrading and downgrading. When the
base utility function is strictly concave, implementing a multi-pass scheme cannot be incentive
compatible if there is only one type. This paper has shown show that such incentive conflicts can
persist even when there are multiple types of base utility functions.

This paper uses a stylized model to deliver clear and concise insights that cover some impor-
tant aspects of selling priority passes in a priority queue. Further enrichment to this paper’s setup
with respect to the paper’s application merits further research. One suggested direction would be
the combination of the simultaneous setup in this paper and the sequential setup in the queueing
literature from operation research. Many parks sell priority passes as memberships with which a
customer can enjoy the same priority for the customer’s every visit in a given period. For exam-
ple, if a customer buys a Platinum Season THE Flash Pass at Six Flags, the customer will enjoy
the platinum priority for that customer’s every visit to the park in that year. In such a scenario,
if a customer has not purchased any priority pass upon the customer’s first arrival at the park,
the customer can observe the status of the queue at arrival time, which can affect the customer’s
pass purchase incentives. On the other hand, the purchase incentive is also going to be affected
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Figure 2.4: Evolution of 𝑀(𝑇 ) with respect to 𝑇 and 𝑐, with 𝑏 = 1. With fixed 𝑀(𝑇 ) and 𝑐, the 𝑇 ′-pass
scheme in which every 𝑡-th type customer is in the 𝑡-th priority is implementable if the point (𝑇 ′, 𝑐) is on
or to the left of the curve of 𝑀(𝑇 ); the scheme is not implementable if it is on the right.

by the forecast about the customer’s future visits to the park. Both the number of future visits
and the position in the queue for a future visit can be uncertain, which the simultaneous setup
in this paper fits better. More complex modeling setups such as the one just described are out of
the scope of this paper, and we leave the studies of these structures to future research.

2.A Lemmas for Two-Type Case
This section provides the intermediate results useful in proving the results in the two-type case.
Figure 2.5 provides a roadmap of how results in this section contribute to the results in the two-
type case.

The following two lemmas provide conditions under which the downward IC and IR con-
straint reductions hold in the two-type case.

Lemma 8 (IC Reduction with two utilities). Fix ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) with 𝐾 ≥ 2. Given a scheme
𝑞 with a price vector 𝑝. Pick 𝑗 and 𝑚 with 1 ≤ 𝑗 < 𝑚 ≤ 𝐾 and assume (𝑝, 𝑞) satisfies IC𝑘,𝑘+1 for
every k such that 𝑗 ≤ 𝑘 < 𝑚. If 𝑞𝑙𝑗 = 0 or 𝑞𝑙𝑘 > 0 for every 𝑘 such that 𝑗 < 𝑘 < 𝑚, then (𝑝, 𝑞) satisfies
IC𝑗,𝑚.

Proof. Assume 𝑞𝑙𝑗 = 0, which implies IC𝑗,𝑚 = ICℎ𝑗,𝑚. Note that by the construction of customer
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types, for 𝑗 ≤ 𝑘 < 𝑚, IC𝑘,𝑘+1 implies ICℎ
𝑘,𝑘+1. Therefore, if IC𝑘,𝑘+1 holds for every 𝑘 such that

𝑗 ≤ 𝑘 < 𝑚, then IC𝑚
𝑘,𝑘+1 and thus ICℎ𝑗,𝑚 holds by Lemma 6.

Now assume 𝑞𝑙𝑘 > 0 for every 𝑘 such that 𝑗 ≤ 𝑘 < 𝑚. By the construction of customer types,
IC𝑘,𝑘+1 = IC𝑙

𝑘,𝑘+1 for every 𝑘 such that 𝑗 ≤ 𝑘 < 𝑚, and thus IC𝑗𝑚 holds, again Lemma 6.

Lemma 9 (IR Reduction with two utilities). Fix ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) such that 𝐾 ≥ 2, 𝑞 ∈
𝒬((𝑁 ℎ, 𝑁 𝑙), 𝐾) and a price vector 𝑝. Assume for every 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , (𝑞, 𝑝)
satisfies IC𝑗𝑘 and IR𝑘 . If 𝑞𝑙𝑗 = 0 or 𝑞𝑙𝑘 > 0, then (𝑞, 𝑝) satisfies IR𝑗 .
Proof. If 𝑞𝑙𝑗 = 0, then IR𝑗 = IRℎ𝑗 and IC𝑗𝑘 = ICℎ

𝑗𝑘 . By IC𝑗𝑘 and the construction of customer types,
𝑣ℎ(𝜃𝑗) − 𝑝𝑗 ≥ 𝑣ℎ(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 ≥ 𝑣 𝑡𝑘 (𝜃𝑘) − 𝑝𝑘 ≥ 0, and thus IR𝑗 holds.

If 𝑞𝑙𝑘 > 0, then IR𝑘 = IR𝑙𝑘 . By IC𝑗𝑘 and the construction of types, 𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑝𝑗 ≥ 𝑣 𝑡 𝑗 (𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 ≥
𝑣 𝑙(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 ≥ 0, and thus IR𝑗 holds.

The following result extends Lemma 7 in the single-type case and provides a pricing formula
to check implementability.

Lemma 10 (Two-type implementation). Fix ((𝑁 ℎ, 𝑁 𝑙), 𝐾 , (𝑢ℎ, 𝑢𝑙)) and 𝑞 ∈ 𝒬((𝑁 ℎ, 𝑁 𝑙), 𝐾) where
every customer buys some pass. Assume for 𝑗 and 𝑘 such that 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝐾 , 𝑞𝑙𝑗 > 0 implies 𝑞𝑙𝑗+1 > 0.
Let 𝑝∗ = (𝑝∗1 , … , 𝑝∗𝐾 ) such that 𝑝∗𝐾 = 𝑣 𝑙(𝜃𝐾 ) and 𝑝∗𝑗 − 𝑝∗𝑗+1 = 𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗+1; 𝜃𝑗). The scheme 𝑞 is
implementable if and only if (𝑝∗, 𝑞) satisfies every upward IC constraint and 𝑣 𝑙(𝜃𝐾 ) ≥ 0.
Proof. Since 𝑞𝑙𝑘 > 0 implies 𝑞𝑙𝑘+1 > 0 for every 𝑘, 𝑞𝑙𝐾 > 0 and hence IR𝐾 = IR𝑙𝐾 . Regardless of the
implementability of 𝑞, (𝑝∗, 𝑞) satisfies every local downward IC constraint. Pick 𝑗 and 𝑘 such that
1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . If 𝑞𝑙𝑗 = 0, then Lemma 8 implies IC𝑗𝑘 holds. If 𝑞𝑙𝑗 > 0, then by assumption 𝑞𝑙𝑟 > 0 for
every 𝑟 such that 𝑗 ≤ 𝑟 < 𝑘, and hence again by Lemma 8, IC𝑗𝑘 holds. Therefore, (𝑝∗, 𝑞) satisfies
every downward IC constraint. Since in addition IR𝑙𝐾 holds, by Lemma 9, all the IR constraints
also hold. Therefore, 𝑞 is implementable if (𝑝∗, 𝑞) satisfies every upward IC constraint.

Now assume 𝑞 is implementable and let 𝑝 implements 𝑞. Given 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , IC𝑘𝑗 implies

𝑝𝑗 − 𝑝𝑘 ≥ 𝑣 𝑡𝑘 (𝜃𝑗 ; 𝜃𝑘) − 𝑣 𝑡𝑘 (𝜃𝑘). On the other hand, IC𝑙 ,𝑙+1 for 𝑗 ≤ 𝑙 < 𝑘 implies

𝑝𝑗 − 𝑝𝑘 =
𝑘−1
∑
𝑙=𝑗

𝑝𝑙 − 𝑝𝑙+1 ≤
𝑘−1
∑
𝑙=𝑗

𝑣 𝑡 𝑙 (𝜃𝑙) − 𝑣 𝑡 𝑙 (𝜃𝑙+1; 𝜃𝑙) =
𝑘−1
∑
𝑙=𝑗

𝑝∗𝑙 − 𝑝∗𝑙+1 = 𝑝∗𝑗 − 𝑝∗𝑘 .

63



Lemma 11
IC reduction

Lemma 12
IR reduction

Lemma 13
Implementability-checking
price vector

Theorem 6
Implementation with multi-
ple linear utilities

Proposition 24
Monotonicity property of
implementable schemes

Proposition 25
Two-Pass implementation
with multiple strictly con-
cave utilities

Figure 2.6: Roadmap of Appendix 2.B

Therefore, 𝑝∗𝑗 − 𝑝∗𝑘 ≥ 𝑝𝑗 − 𝑝𝑘 ≥ 𝑣 𝑡𝑘 (𝜃𝑗 ; 𝜃𝑘) − 𝑣 𝑡𝑘 (𝜃𝑘), and hence (𝑝∗, 𝑞) satisfies IC𝑘𝑗 .

2.B Lemmas for Multi-Type Case
The lemmas in this section generalize the lemmas in the two-type case to the general multi-type
case. A roadmap of how lemmas in this section contributes to the results in the multi-type case
is illustrated in Figure 2.6.

Lemma 11 (Generalization of Lemma 8). Fix ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1) with 𝐾 ≥ 2, a scheme 𝑞 ∈
𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾), and a price vector 𝑝. Given 𝑗 and 𝑙 such that 1 ≤ 𝑗 < 𝑙, assume IC𝑘,𝑘+1 holds for every
𝑘 such that 𝑗 ≤ 𝑘 < 𝑙. If 𝑡 𝑗 ≤ 𝑡𝑘 for every 𝑘 such that 1 ≤ 𝑗 ≤ 𝑘 < 𝑙 , then IC𝑗𝑙 holds.

Proof. Since 𝑡 𝑗 ≤ 𝑡𝑘 for every 𝑘 such that 𝑗 ≤ 𝑘 < 𝑙, IC𝑘,𝑘+1 implies IC
𝑡 𝑗
𝑘,𝑘+1. Thus IC𝑗𝑙 holds by

Lemma 6.

Lemma 12 (Generalization of Lemma 9). Given ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1) with 𝐾 ≥ 2, fix a scheme
𝑞 ∈ 𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾) and a price vector 𝑝. Assume there exists some 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 such that 𝑡 𝑗 ≤ 𝑡𝑘 . If
IC𝑗𝑘 and IR𝑘 hold, then IR𝑗 holds.

Proof. The proof is similar to that of Lemma 9 and hence the proof is omitted.

The following result is an extension of Lemma 10 from the two-type case to the general multi-
type case.

Lemma 13 (Implementation conditions in multi-type case). Fix ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1). Let 𝑞 ∈
𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾) be such that 𝑡 𝑗 ≤ 𝑡𝑘 for 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 and every customer buys

some pass. Let 𝑝∗ = (𝑝∗1 , … , 𝑝∗𝐾 ) such that 𝑝∗𝐾 = 𝑣𝑇 (𝜃𝐾 ) and 𝑝∗𝑗 − 𝑝∗𝑗+1 = 𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗+1; 𝜃𝑗). The
scheme 𝑞 is implementable if and only if (𝑝∗, 𝑞) satisfies every upward IC constraint and 𝑣𝑇 (𝜃𝐾 ) ≥ 0.
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Proof. Since every customer buys some pass and 𝑡 𝑗 ≤ 𝑡𝑘 for 𝑗 and 𝑘 such that 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝐾 , 𝑞𝑇𝐾 > 0
and IR𝑇𝐾 holds. By Lemma 11 and Lemma 12, (𝑝∗, 𝑞) satisfies every downward IC constraint and
IR𝑗 for 𝑗 such that 1 ≤ 𝑗 ≤ 𝐾 . Therefore, 𝑞 is implementable if (𝑝∗, 𝑞) satisfies every upward IC
constraint. The rest of the proof is exactly the same with that of Lemma 10

2.C Proofs of Results in Main Text

2.C.1 Proof of Claim 1
Proof. When a customer downgrades from 𝜃𝑗1 to 𝜃𝑘 , the range of positions is the same as when
the customer downgrades from 𝜃𝑗2 to 𝜃𝑘 . Therefore, 𝑣(𝜃𝑘 ; 𝜃𝑗1 = 𝑣(𝜃𝑘 ; 𝜃𝑗2). With the same reasoning,
𝑣(𝜃𝑙 ; 𝜃𝑙1) = 𝑣(𝜃𝑘 ; 𝜃𝑙2).

Without any switching, positions of 𝜃𝑘 range from 𝑄𝑘−1 + 1 to 𝑄𝑘 . If a customer downgrades
to 𝜃𝑘 from 𝜃𝑗2 , then the range of positions of 𝜃𝑘 are now 𝑄𝑘−1 to 𝑄𝑘 . Since the front position of 𝜃𝑘
improves by one after the downgrade and the last position stays the same, 𝑣(𝜃𝑘 ; 𝜃𝑗2) > 𝑣(𝜃𝑘).

If a customer upgrades to 𝜃𝑘 from 𝜃𝑙1 , then the positions of 𝜃𝑘 now range from 𝑄𝑘−1 + 1 to
𝑄𝑘 + 1. Since the front position of 𝜃𝑘 after the downgrade stays the same but the last position
increases by one, 𝑣(𝜃𝑘) > 𝑣(𝜃𝑘 ; 𝜃𝑙1).

2.C.2 Proof of Claim 2
Proof. Let 𝑎 ∈ 𝐴 be a strategy profile such that 𝑞(𝑎) = 𝑞 and fix a price vector 𝑝. We look at the
incentives of customer 𝑖. If 𝑎𝑖 = 𝜃0, then the customer has no incentive to deviate to 𝜃𝑗 ≠ 𝜃0 if and
only if IC0𝑗 holds.

Now assume 𝑎𝑖 = 𝜃𝑗 ≠ 𝜃0. The customer has no incentive to leave the queue if and only if IR𝑗
holds. Lastly, for every 𝑘 such that 1 ≤ 𝑘 ≤ 𝐾 and 𝑘 ≠ 𝑗, the customer has no incentive to deviate
to 𝜃𝑘 if and only if IC𝑗𝑘 holds. Therefore, 𝑞 is implementable if and only if there exists some price
𝑝 such that (𝑝, 𝑞) satisfies every constraint in the set of IR and IC constraints.

2.C.3 Proof of Lemma 6
Proof. Fix 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . To prove Part (a), assume IC𝑙 ,𝑙+1 for 𝑗 ≤ 𝑙 < 𝐾 . If 𝑘 = 𝑗 + 1, Part (a) is
immediate. By induction, assume IC𝑗,𝑘−1 and IC𝑘−1,𝑘 hold, which implies

𝑣(𝜃𝑗) − 𝑝𝑗 ≥ 𝑣(𝜃𝑘−1; 𝜃𝑗) − 𝑝𝑘−1 ≥ 𝑣(𝜃𝑘−1) − 𝑝𝑘−1 ≥ 𝑣(𝜃𝑘 ; 𝜃𝑘−1) − 𝑝𝑘 = 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 ,
where the second and third inequalities come from IC𝑗,𝑘−1 and IC𝑘,𝑘−1; the first inequality and
the last equality come from (2.1). Thus IC𝑗𝑘 holds.

To prove Part (b), assume IC𝑗𝑘 and IR𝑘 hold, which implies

𝑣(𝜃𝑗) − 𝑝𝑗 ≥ 𝑣(𝜃𝑗 ; 𝜃𝑘) − 𝑝𝑘 ≥ 𝑣(𝜃𝑘) − 𝑝𝑘 ≥ 0,
where the inequalities come from (2.1), IC𝑗𝑘 and IR𝑘 respectively. Thus IR𝑗 holds.

Lastly, Part (c) is immediate when both IC𝑗𝑘 and IC𝑘𝑗 hold.
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2.C.4 Proof of Proposition 18
Proof. Assume 𝑞 ∈ 𝒬(𝑁 , 𝐾) is implementable. To arrive at a contradiction, it is without loss
of generality to assume 𝑁 = 𝑄𝐾 because 𝑞 is implementable with respect to (𝑄𝐾 , 𝑁 , 𝑢) if 𝑞 is
implementable with respect to (𝑁 , 𝐾, 𝑢). Since 𝑢 is strictly concave and 𝑁 > 2, there exists 𝑛 such
that 𝑢𝑛−𝑢𝑛+1 < 𝑢𝑛+1−𝑢𝑛−2. If 𝑞𝑘 = 1 for every 𝑘 such that 1 ≤ 𝑗 ≤ 𝐾 , then 𝑞 is not implementable
by Proposition 20 and the proof is complete. Therefore, assume we can pick 𝑗 such that 1 ≤ 𝑗 < 𝐾
and 𝑞𝑗 > 1 or 𝑞𝑗+1 > 1.

For 𝑚 = 0,… , 𝑞𝑗 , define 𝑥𝑚 = 𝑢𝑄𝑗−𝑚+1. Similarly, for 𝑚 = 0,… , 𝑞𝑗+1, define 𝑦𝑚 = 𝑢𝑄𝑗+𝑚. By
construction, 𝑦𝑞𝑘+1 < ⋯ < 𝑦0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑞𝑗 . Note ID𝑗,𝑗+1 implies

∑𝑞𝑗
𝑚=1 𝑥𝑚
𝑞𝑗

− ∑𝑞𝑗+1
𝑚=0 𝑦𝑚

𝑞𝑗+1 + 1 ≥ ∑𝑞𝑗
𝑚=0 𝑥𝑚
𝑞𝑗 + 1 − ∑𝑞𝑗+1

𝑚=1 𝑦𝑚
𝑞𝑗+1

⟺∑𝑞𝑗
𝑚=1(𝑥𝑚 − 𝑥0)
𝑞𝑗(𝑞𝑗 + 1) ≥ ∑𝑞𝑗+1

𝑚=1(𝑦0 − 𝑦𝑚)
𝑞𝑗+1(𝑞𝑗+1 + 1) .

(2.8)

By the concavity of 𝑢, ∑𝑞𝑗
𝑚=1(𝑥𝑚 − 𝑥0) ≤ 𝑞𝑗(𝑞𝑗+1)(𝑥1−𝑥0)

2 , ∑𝑞𝑗+1
𝑚=1(𝑦0 − 𝑦𝑚) ≥ 𝑞𝑗+1(𝑞𝑗+1+1)(𝑦0−𝑦1)

2 , and
𝑥1 − 𝑥0 ≤ 𝑦0 − 𝑦1, which together imply

∑𝑞𝑗
𝑚=1(𝑥𝑚 − 𝑥0)
𝑞𝑗(𝑞𝑗 + 1) ≤ 𝑥1 − 𝑥0

2 ≤ 𝑦0 − 𝑦1
2 ≤ ∑𝑞𝑗+1

𝑚=1(𝑦0 − 𝑦𝑚)
𝑞𝑗+1(𝑞𝑗+1 + 1) .

The first inequality is strict if 𝑞𝑗 > 1 and the lsat inequality is strict if 𝑞𝑗+1 > 1. Thus at least one
inequality must be strict, which violates ID𝑗,𝑗+1 and 𝑞 is not implementable.

2.C.5 Proof of Proposition 19
Proof. Let 𝑞 ∈ 𝒬(𝑁 , 2). For 𝑛 = 0, … , 𝑞1, let 𝑥𝑛 = 𝑢𝑄1−𝑛+1. For 𝑛 = 0, … , 𝑞2, let 𝑦𝑛 = 𝑢𝑄1+𝑛. By

construction, 𝑥𝑞1 > ⋯ > 𝑥0 = 𝑦0 > ⋯𝑦𝑞2 . By convexity of 𝑢, ∑𝑞1𝑛=1(𝑥𝑛 − 𝑥0) ≥ 𝑞1(𝑞1+1)(𝑥1−𝑥0)
2 ,

∑𝑞2𝑛=1(𝑦0 − 𝑦𝑛) ≤ 𝑞2(𝑞2+1)(𝑦0−𝑦1)
2 , and 𝑥1 − 𝑥0 ≥ 𝑦0 − 𝑦1, which together imply

∑𝑞1𝑚=1(𝑥𝑚 − 𝑥0)
𝑞1(𝑞1 + 1) ≥ 𝑥1 − 𝑥0

2 ≥ 𝑦0 − 𝑦1
2 ≥ ∑𝑞2𝑚=1(𝑦0 − 𝑦𝑚)

𝑞2(𝑞2 + 1) ,

where the two ends form a presentation of ID12 by (2.8).
It remains to show IC0𝑘 holds for 𝑘 = 1, 2. Consider 𝑝2 = 𝑣(𝜃2) and 𝑝1 = 𝑝2 + 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1).

Since 𝑝 binds IC12, IC21 holds by ID12. Since IR2 is bound, IC02 holds. For IC01, note that

𝑣(𝜃1; 𝜃2) − 𝑝1 = 𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2) − 𝑣(𝜃1) + 𝑣(𝜃2; 𝜃1) ≤ 0,
where the last inequality comes from ID12. Thus IC01 holds and 𝑞 is implementable.
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2.C.6 Proof of Lemma 7
Proof. By construction, (𝑝∗, 𝑞) binds every local downward IC constraint and hence every down-
ward IC constraint holds by Lemma 6. Since IR𝐾 and every downward IC constraint hold, IR𝑘
holds for 𝑘 such that1 ≤ 𝑘 ≤ 𝐾 by Lemma 6. Hence if (𝑝∗, 𝑞) satisfies every upward IC constraint,
𝑝∗ implements 𝑞.

Now assume 𝑞 is implementable and let 𝑝 be a price vector that implements 𝑞. For 𝑗 and 𝑘
such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , IC𝑘𝑗 implies 𝑝𝑗 − 𝑝𝑘 ≥ 𝑣(𝜃𝑗 ; 𝜃𝑘) − 𝑣(𝜃𝑘). On the other hand, IC𝑙 ,𝑙+1 for
𝑗 ≤ 𝑙 < 𝑘 implies

𝑝𝑗 − 𝑝𝑘 =
𝑘−1
∑
𝑙=𝑗

𝑝𝑙 − 𝑝𝑙+1 ≤
𝑘−1
∑
𝑙=𝑗

𝑣(𝜃𝑙) − 𝑣(𝜃𝑙+1; 𝜃𝑙) = 𝑝∗𝑗 − 𝑝∗𝑘 .

Thus 𝑝∗𝑗 − 𝑝∗𝑘 ≥ 𝑝𝑗 − 𝑝𝑘 ≥ 𝑣(𝜃𝑗 ; 𝜃𝑘) − 𝑣(𝜃𝑘), and (𝑝∗, 𝑞) satisfies IC𝑘𝑗 .

2.C.7 Proof of Proposition 20
Proof. Let 𝑞 ∈ 𝒬(𝑁 , 𝐾) where 𝑞𝑘 = 1 for 1 ≤ 𝑘 ≤ 𝐾 . Assume 𝑞 is implementable. By 𝑝∗ in
Lemma 7,

𝑝∗1 − 𝑝∗3 =
2
∑
𝑙=1

𝑣(𝜃𝑙) − 𝑣(𝜃𝑙+1; 𝜃𝑙) = 𝑢1 −
𝑢1 + 𝑢2

2 + 𝑢2 −
𝑢2 + 𝑢3

2 = 𝑢1 − 𝑢3
2 .

On the other hand, if 𝑣(𝜃1; 𝜃3) − 𝑣(𝜃3) = 𝑢1−𝑢2−2𝑢3
2 > 𝑝∗1 − 𝑝∗3 . Thus (𝑝∗, 𝑞) does not satisfy IC31,

and by Lemma 7, 𝑞 is not implementable.

2.C.8 Proof of Proposition 21
Proof. If 𝐾 ≤ 2, by Proposition 19, every 𝑞 ∈ 𝒬(𝑁 , 𝐾) such that 𝑣(𝜃𝐾 ) ≥ 0 is implementable since
𝑢 is convex.

Assume 𝐾 ≥ 3 and let 𝑞 ∈ 𝒬(𝑁 , 𝐾). It is without loss of generality to assume 𝑁 = 𝑄𝐾 . Let
𝑑 = 𝑢1 − 𝑢2 > 0. For 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 ,

𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑘) =
∑𝑄𝑗

𝑛=𝑄𝑗−1+1 𝑢𝑛
𝑞𝑗

−
∑𝑄𝑗+1

𝑛=𝑄𝑗−1+1 𝑢𝑛
𝑞𝑗 + 1 =

∑𝑄𝑗
𝑛=𝑄𝑗−1+1(𝑢𝑛 − 𝑢𝑄𝑗+1)

𝑞𝑗(𝑞𝑗 + 1) = 𝑑
2 .

Similarly, 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑣(𝜃𝑘) = 𝑑
2 . Therefore, by 𝑝∗ in Lemma 7,

𝑝∗1 − 𝑝∗3 =
2
∑
𝑙=1

𝑣(𝜃𝑙) − 𝑣(𝜃𝑙+1; 𝜃𝑙) = 𝑣(𝜃1) − 𝑣(𝜃3) − [
2
∑
𝑙=1

𝑣(𝜃𝑙+1; 𝜃𝑙) − 𝑣(𝜃𝑙+1)] = 𝑣(𝜃1) − 𝑣(𝜃3) − 𝑑.

On the other hand, 𝑣(𝜃1) − 𝑣(𝜃1; 𝜃3) = 𝑣(𝜃1) − 𝑣(𝜃3) − 𝑑
2 > 𝑝∗1 − 𝑝∗2 . Thus 𝑝∗ does not satisfy IC31

and 𝑞 is not implementable by Lemma 7.
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2.C.9 Proof of Theorem 5
Proof. By Proposition 21 and Proposition 22, when 𝐾 = 4, it is necessary 𝑞𝑙1 = 𝑞𝑙2 = 0 and
𝑞ℎ3 = 𝑞ℎ4 = 0. By Lemma 10, it suffices to check whether 𝑝∗ implements 𝑞. Since 𝑣 𝑙(𝜃𝐾 ) ≥ 0, IR𝐾
holds.

It remains to show that (𝑝∗, 𝑞) satisfies every upward IC constraint. Begin with IC41, which
implies 𝑝∗1 − 𝑝∗4 ≥ 𝑣 𝑙(𝜃1) − 𝑣 𝑙(𝜃4) − 𝑑

2 . By the construction of 𝑝∗,

𝑝∗1 − 𝑝∗4 = 𝑣ℎ(𝜃1) − 𝑣ℎ(𝜃2) + 𝑣ℎ(𝜃2) − 𝑣ℎ(𝜃3) + 𝑣 𝑙(𝜃3) − 𝑣 𝑙(𝜃4) − 𝛽ℎ𝑑 − 𝑑
2 ,

and hence (𝑝∗, 𝑞) satisfies IC41 if and only if 𝑣 𝑙(𝜃1; 𝜃4) − 𝑣 𝑙(𝜃4) ≤ 𝑝∗1 − 𝑝∗4 , i.e.,

𝑣ℎ(𝜃1) − 𝑣 𝑙(𝜃1) − [𝑣ℎ(𝜃3) − 𝑣 𝑙(𝜃3)] − 𝛽ℎ𝑑 ≥ 0,

which implies 𝛽ℎ ≥ 𝑞1+2𝑞2+𝑞3
𝑞1+2𝑞2+𝑞3−2 > 1. Similarly, IC42 implies 𝛽ℎ ≥ 𝑞2+𝑞3

𝑞2+𝑞3−1 > 1 and IC31 implies

𝛽ℎ ≥ 𝑞1+2𝑞2+𝑞3−1
𝑞1+2𝑞2+𝑞3−2 > 1. Hence there exists 𝑏 such that 𝑞 is implementable if and only if 𝛽ℎ ≥ 𝑏.

2.C.10 Proof of Proposition 22
Proof. Fix 𝑞 ∈ 𝒬((𝑁 ℎ, 𝑁 𝑙), 𝐾) such that for some 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , 𝑞𝑙𝑗 > 0 and 𝑞ℎ𝑘 > 0. By the

construction of customer types, IC𝑗𝑘 = IC𝑙
𝑗𝑘 and IC𝑘𝑗 = ICℎ

𝑘𝑗 . Note that

𝑣 𝑙(𝜃𝑗) − 𝑣 𝑙(𝜃𝑗 ; 𝜃𝑘) < 𝑣ℎ(𝜃𝑗) − 𝑣ℎ(𝜃𝑗 ; 𝜃𝑘) ≤ 𝑣ℎ(𝜃𝑘 ; 𝜃𝑗) − 𝑣ℎ(𝜃𝑘),
where the first inequality comes from the construction of customer types and the second inequal-
ity comes from the concavity of 𝑣ℎ. However, the inequality from the two ends above violates
ID𝑗𝑘 , and hence 𝑞 is not implementable.

2.C.11 Proof of Proposition 23
Proof. With 𝑝∗ in Lemma 10, IC21 implies

𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1) = 𝑝∗1 − 𝑝∗2 ≥ 𝑣 𝑙(𝜃1; 𝜃2) − 𝑣 𝑙(𝜃2) = 𝛽 𝑙 [𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2)] ,

which holds if and only if 𝛽 𝑙 ≤ 𝑣(𝜃1)−𝑣(𝜃2;𝜃1)
𝑣(𝜃1;𝜃2)−𝑣(𝜃2) .

2.C.12 Proof of Proposition 24
Proof. The two parts of the results are shown through the following two lemmas. The first lemma
shows that if a higher-priority customer never buys a strictly lower-priority pass than a lower-
type customer does in an implementable scheme; the second lemma shows that if the customer’s
type is (weakly) higher than the highest-type in 𝜃𝐾−1, then this customer must necessarily buy
some pass.
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Lemma 14 (Higher-Priority for higher type). Fix ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1) and 𝑞 ∈ ((𝑁 𝑡)𝑇𝑡=1, 𝐾) that
is implementable. Assume 𝑢𝑡 is concave for every 𝑡 . If 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 , then 𝑡 𝑗 ≤ 𝑡𝑘 .

Proof of lemma. Fix 𝑞 ∈ 𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾) where 𝑡 𝑗 > 𝑡𝑘 for some 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . It is without loss of
generality to assume that every customer buys some pass. Note that

𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝑘) < 𝑣 𝑡𝑘 (𝜃𝑗) − 𝑣 𝑡𝑘 (𝜃𝑗 ; 𝜃𝑘) ≤ 𝑣 𝑡𝑘 (𝜃𝑘 ; 𝜃𝑗) − 𝑣 𝑡𝑘 (𝜃𝑘),

where the first inequality comes from the assumption 𝑡 𝑗 > 𝑡𝐾 and the second inequality comes
from the concavity of base utility functions. However, the inequality from the two ends violates
ID𝑗𝑘 and hence 𝑞 is not implementable.

Lemma15 (Pass-Buyingwith concave utilities). Consider ((𝑁 𝑡)𝑇𝑡=1, 𝐾 , (𝑢𝑡)𝑇𝑡=1)where 𝑇 ≥ 2,𝐾 ≥ 2,
and 𝑢𝑡 is concave for every 𝑡 . Let 𝑞 ∈ 𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾) be implementable. Given 1 ≤ 𝑗 < 𝐾 and 𝜏 ≤ 𝑡 𝑗 ,
if 𝜏 < 𝑡 𝑗 or 𝑡 𝑗 < 𝑡𝐾 , then 𝑞𝜏0 = 0.
Proof of lemma. By Lemma 14, 𝑡𝑘 ≤ 𝑡𝐾 . Fix 𝑝∗ in Lemma 13. Note that

𝑣 𝜏 (𝜃𝑗 ; 𝜃𝐾 ) − 𝑝∗𝑗 ≥ 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝐾 ) − 𝑝∗𝑗 = 𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑝∗𝑗 − [𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝐾 )]
≥ 𝑣 𝑡 𝑗 (𝜃𝐾 ; 𝜃𝑗) − 𝑝∗𝐾 − [𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝐾 )]
= 𝑣 𝑡 𝑗 (𝜃𝐾 ; 𝜃𝑗) − 𝑣 𝑡𝐾 (𝜃𝐾 ) − [𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝐾 )]
≥ 𝑣 𝑡 𝑗 (𝜃𝐾 ; 𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝐾 ) − [𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑗 (𝜃𝑗 ; 𝜃𝐾 )] ≥ 0,

where the first inequality comes from the assumption 𝜏 ≤ 𝑡 𝑗 , the second inequality comes from
IC𝑗𝐾 , and the last equality comes from the concavity of base utility functions. If 𝑡 𝑗 = 𝑡𝐾 , then
𝜏 < 𝑡 𝑗 and the first inequality is strict; if 𝑡 𝑗 < 𝑡𝐾 , then the third inequality is strict. Therefore, IC𝜏0𝑗
does not hold and hence 𝑞𝜏0 = 0.

Let 𝑞 ∈ 𝒬((𝑁 𝑡)𝑇𝑡=1, 𝐾) be implementable. Fix 𝜏1, 𝜏2, and 𝑙 such that 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 , 1 ≤ 𝑙 ≤ 𝐾 ,
and 𝑞𝜏2𝑙 > 0. If 𝑞𝜏1𝑘 > 0 for some 𝑘 > 𝑙, then 𝑡𝑘 < 𝑡 𝑙 and 𝑞 is not implementable by Lemma 14, a
contradiction.

Suppose 𝜏1 ≤ 𝑡𝐾−1. Since 𝑢𝑡 is concave for every 𝑡 , 𝑡𝐾−1 ≤ 𝑡𝐾 ≤ 𝑡𝐾 by Lemma 14. If 𝑡𝐾−1 = 𝑡𝐾 ,
then 𝜏1 < 𝜏2 ≤ 𝑡𝐾 = 𝑡𝐾−1. In this case, by Lemma 15, 𝑞𝜏10 . If 𝑡𝐾−1 < 𝑡𝐾 , then by the same lemma,
𝑞𝜏10 = 0. Therefore, 𝑞𝜏10 = 0, and 𝑞𝜏1𝑗 > 0 for some 𝑗 such that 1 ≤ 𝑗 ≤ 𝑙 by Lemma 14.

2.C.13 Proof of Theorem 6
Proof. Since every customer buys some pass, Part (a) is immediate from Lemma 14. By 𝑝∗ in
Lemma 13, for 𝑗 and 𝑙 such that 1 ≤ 𝑗 < 𝑙 ≤ 𝐾 ,

𝑝∗𝑗 − 𝑝∗𝑙 =
𝑙−1
∑
𝑘=𝑗

𝑝∗𝑘 − 𝑝∗𝑘+1 =
𝑙−1
∑
𝑘=𝑗

𝑣 𝑡𝑘 (𝜃𝑘) − 𝑣 𝑡𝑘 (𝜃𝑘+1) − 𝛽 𝑡𝑘 𝑑2 .
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Hence (𝑝∗, 𝑞) satisfies IC𝑙𝑗 if and only if

𝑝∗𝑗 − 𝑝∗𝑙 =
𝑙−1
∑
𝑘=𝑗

𝑣 𝑡𝑘 (𝜃𝑘) − 𝑣 𝑡𝑘 (𝜃𝑘+1) − 𝛽 𝑡𝑘 𝑑2 ≥ 𝑣 𝑡 𝑙 (𝜃𝑗 ; 𝜃𝑙) − 𝑣 𝑡 𝑙 (𝜃𝑘) = 𝑣 𝑡 𝑙 (𝜃𝑗) − 𝑣 𝑡 𝑙 (𝜃𝑙) − 𝛽 𝑡 𝑙 𝑑2 .

Rearrange the terms to get

[𝑣 𝑡 𝑗 (𝜃𝑗) − 𝑣 𝑡 𝑙 (𝜃𝑗)] − [𝑣 𝑡 𝑙−1(𝜃𝑙) − 𝑣 𝑡 𝑙 (𝜃𝑙)] − [
𝑙−2
∑
𝑘=𝑗

𝑣 𝑡𝑘 (𝜃𝑘+1) − 𝑣 𝑡𝑘+1(𝜃𝑘+1)] + 𝑑
2 [𝛽 𝑡 𝑙 −

𝑙−1
∑
𝑘=𝑗

𝛽 𝑡𝑘] ≥ 0.

Plug the utility functions 𝑢𝑡𝑛 = 𝛼 𝑡 − 𝛽 𝑡𝑛𝑑 in the inequality above to get

[𝛼 𝑡 𝑗 − 𝛼 𝑡 𝑙 − (𝛽 𝑡 𝑗 − 𝛽 𝑡 𝑙 )𝑄𝑗−1𝑑 −
(𝛽 𝑡 𝑗 − 𝛽 𝑡 𝑙 )(1 + 𝑞𝑗)

2 𝑑]

− [𝛼 𝑡 𝑙−1 − 𝛼 𝑡 𝑙 − (𝛽 𝑡 𝑙−1 − 𝛽 𝑡 𝑙 )𝑄𝑙−1𝑑 −
(𝛽 𝑡 𝑙−1 − 𝛽 𝑡 𝑙 )(1 + 𝑞𝑙)

2 𝑑]

− [
𝑙−2
∑
𝑘=𝑗

𝛼 𝑡𝑘 − 𝛼 𝑡𝑘+1 − (𝛽 𝑡𝑘 − 𝛽 𝑡𝑘+1)𝑄𝑘𝑑 −
(𝛽 𝑡𝑘 − 𝛽 𝑡𝑘+1)(1 + 𝑞𝑘+1)

2 𝑑] + 𝑑
2 [𝛽 𝑡 𝑙 −

𝑙−1
∑
𝑘=𝑗

𝛽 𝑡𝑘] ≥ 0,

from which 𝛽 𝑡 𝑙 can be solved for to get

𝛽 𝑡 𝑙 ≤
𝑙−1
∑
𝑘=𝑗

−1 + 𝑞𝑘 + 𝑞𝑘+1
−1 + 𝑞𝑗 + 𝑞𝑙 + 2∑𝑙−1

𝑚=𝑗+1 𝑞𝑚
𝛽 𝑡𝑘 .

Let 𝛽 𝑡 𝑙𝑗 be the right-hand side of the inequality above, which is independent of 𝑑 . For 2 ≤ 𝑙 ≤ 𝐾 ,

let 𝑏𝑙(𝛽 𝑡1 , … , 𝛽 𝑡𝑘−1) = min𝑗<𝑙 𝛽 𝑡 𝑙𝑗 . Conditional on Part (a), 𝑞 is implementable if and only if 𝛽 𝑡 𝑙 ≤
𝑏𝑙(𝛽 𝑡1 , … , 𝛽 𝑡𝑘−1) for every 𝑙 such that 2 ≤ 𝑙 ≤ 𝐾 .

2.C.14 Proof of Proposition 25
Proof. Since every customer buys some pass and each 𝑢𝑡 is strictly concave, by Proposition 18
and Lemma 14, 𝑡1 = 𝑡2 − 1. Since 𝐾 = 2, ID12 is sufficient and necessary for implementation,
which implies

𝛽 𝑡1
𝛽 𝑡2

≥ 𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2)
𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1)

> 1,

where the second inequality comes from the strict concavity of 𝑢. If 𝑁 𝑡 → ∞ for every 𝜏 such
that 𝑡2 ≤ 𝜏 ≤ 𝑇 , then 𝑞2 tends to infinity, and hence both 𝑣(𝜃2) and (𝜃2; 𝜃1) converge to −∞. Thus
the right-hand side converges to 1.
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2.C.15 Proof of Proposition 26
Proof. By Proposition 23, a two-pass all-serving implementable scheme exists if and only if 𝛽 𝑙 ≤
𝑣(𝜃1)−𝑣(𝜃2;𝜃1)
𝑣(𝜃1;𝜃2)−𝑣(𝜃2) . By 𝑝∗ in Lemma 10, the revenue of the all-serving two-pass scheme is

𝑁 𝑙𝑝∗2 + 𝑁 ℎ𝑝∗1 = 𝑁 𝑙𝛽 𝑙𝑣(𝜃2) + 𝑁 ℎ [𝛽 𝑙𝑣(𝜃2) + 𝛽 𝑙(𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2))] .

The revenue of the all-serving one-pass scheme is 𝛽 𝑙(𝑁 ℎ𝑣(𝜃1)+𝑁 𝑙𝑣(𝜃2)). Thus conditional on
𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1) ≥ 𝛽 [𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2)], the two-pass scheme is better than the one-pass scheme if
and only if

𝑁 𝑙𝛽 𝑙𝑣(𝜃2) + 𝑁 ℎ [𝛽 𝑙𝑣(𝜃2) + 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1)] ≥ 𝛽 𝑙 (𝑁 𝑙𝑣 (𝜃2) + 𝑁 ℎ𝑣(𝜃1)) .
The inequality implies

𝛽 𝑙 ≤ 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1)
𝑣(𝜃1) − 𝑣(𝜃2)

≤ 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1)
𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2)

,

where the right-hand side is in (0, 1). To conclude, let 𝛽 = 𝑣(𝜃1)−𝑣(𝜃2;𝜃1)
𝑣(𝜃1)−𝑣(𝜃2) .

2.C.16 Proof of Proposition 27
Proof. Assume 𝑣 creates zero externality. Consider the price vector 𝑝𝑘 = 𝑣(𝜃𝑘) for every pass 𝑘.
For every pass 𝑗, IR𝑗 holds. Additionally, since 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 = 𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑣(𝜃𝑘) = 0, IC𝑗𝑘 holds.
Thus 𝑝 implements 𝑞 when 𝑣 creates zero externality.

Now assume 𝐾 ≥ 2 and 𝑣 creates more externalities. Given 𝑞 ∈ 𝒬(𝑁 , 𝐾), to arrive at a
contradiction, assume 𝑝 implements 𝑞. Thus IC12 and IC21 imply

𝑣(𝜃1; 𝜃2) − 𝑣(𝜃2) ≤ 𝑝1 − 𝑝2 ≤ 𝑣(𝜃1) − 𝑣(𝜃2; 𝜃1).
However, as 𝑣 creates more downgrade externalities, 𝑣(𝜃1)−𝑣(𝜃1; 𝜃2) < 𝑣(𝜃2; 𝜃1)−𝑣(𝜃2), and hence
IC12 and IC21 cannot both hold, a contradiction.

2.C.17 Proof of Proposition 28
Proof. The proof focuses on schemes with every customers buying some pass. To construct a
𝐾 -pass implementable scheme, first fix 𝑞1 > 0. By 𝑝∗ in Lemma 7, IC21 holds if

𝑣(𝜃2; 𝜃1) − 𝑣(𝜃2) ≤ 𝑣(𝜃1) − 𝑣(𝜃1; 𝜃2).
The right-hand side is strictly positive, and thus for IC21 to hold, it is sufficient for the left-hand
side to converge to 0 as 𝑞2 grows. To see this, note that for every 𝑘 such that 1 < 𝑘 ≤ 𝐾 ,

𝑣(𝜃𝑘 ; 𝜃𝑘−1) − 𝑣(𝜃𝑘) =
𝑢𝑄𝑘−1
𝑞𝑘 + 1 − 𝑣(𝜃𝑘)

𝑞𝑘 + 1.
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The first term,
𝑢𝑄𝑘−1
𝑞𝑘+1 , converges to 0 as 𝑞𝑘 → ∞. For the second term, note that

lim𝑞𝑘→∞
𝑣(𝜃𝑘)
𝑞𝑘 + 1 = lim𝑞𝑘→∞

1
𝑞𝑘 + 1

∑𝑄𝑘𝑛=𝑄𝑘−1+1 𝑢𝑛
𝑞𝑘

= 0,

where the last equality holds because lim𝑛→∞
𝑢𝑛
𝑛 = 0. Therefore, for fixed 𝑞1, IC21 holds strictly

with large 𝑞2. Suppose that with this procedure, we have picked 𝑞1, 𝑞2, … , 𝑞𝑙−1 for some 2 < 𝑙 ≤ 𝐾
such that IC𝑘𝑗 holds strictly for every 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 < 𝑙. Since IC𝑙−1,𝑗 holds strictly
for every 𝑗 such that 1 ≤ 𝑗 < 𝑙 − 1,

𝑣(𝜃𝑗) − 𝑣(𝜃𝑙−1) − [𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑙−1)] = 𝑣(𝜃𝑗 ; 𝜃𝑙−1) − 𝑣(𝜃𝑙−1)

<
𝑙−2
∑
𝑘=𝑗

𝑣(𝜃𝑘) − 𝑣(𝜃𝑘+1; 𝜃𝑘)

= 𝑣(𝜃𝑗) − 𝑣(𝜃𝑙−1) −
𝑙−1
∑

𝑘=𝑗+1
[𝑣(𝜃𝑘 ; 𝜃𝑘+1) − 𝑣(𝜃𝑘)] ,

and thus

𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑙−1) >
𝑙−1
∑

𝑘=𝑗+1
[𝑣(𝜃𝑘 ; 𝜃𝑘+1)] .

Now similarly for IC𝑙𝑗 to hold with 𝑝∗, it is necessary that

𝑣(𝜃𝑗) − 𝑣(𝜃𝑗 ; 𝜃𝑙−1) ≤ 𝑣(𝜃𝑙 ; 𝜃𝑙−1) − 𝑣(𝜃𝑙) +
𝑙−1
∑

𝑘=𝑗+1
[𝑣(𝜃𝑘 ; 𝜃𝑘+1) − 𝑣(𝜃𝑘)] ,

which holds strictly with large 𝑞𝑙 since we have shown that 𝑣(𝜃𝑘 ; 𝜃𝑘−1) − 𝑣(𝜃𝑘) converges to 0 as
𝑞𝑘 → ∞ for every 𝑘 such that 1 < 𝑘 ≤ 𝐾 . Therefore, there exists large enough 𝑞𝑙 such that IC𝑘𝑗
holds with 𝑝∗ for every 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝑙. Repeat this procedure for all 1 < 𝑙 ≤ 𝐾 ,
and we have constructed an implementable scheme. Therefore, there exists 𝑀 > 0 such that if
𝑁 > 𝑀 then there exists 𝑞 ∈ 𝒬(𝑁 , 𝐾) that is implementable.

2.C.18 Proof of Proposition 29
Proof. If there exists some 𝑞 ∈ 𝒬(𝑁 , 𝐾) and 𝑝 such that (𝑝, 𝑞) that satisfies every IC constraint,
then setting 𝑢(𝑁 ) = 𝑣(𝜃𝐾 ) − 𝑝 makes 𝑞 implements 𝑞 with 𝑢0 = 𝑢(𝑁 ). Fix 𝑞 ∈ 𝒬(𝑁 , 𝐾) where
every customer buys some pass. For every 𝑘 such that 1 ≤ 𝑘 ≤ 𝐾 , let 𝑝𝑘 = 𝑣(𝜃𝑘). With this
construction, 𝜖IC𝑘𝑗 holds for every 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 . For 𝜖IC𝑗𝑘 to hold, it is
necessary that

𝑣(𝜃𝑘 ; 𝜃𝑗) − 𝑝𝑘 − [𝑣(𝜃𝑗) − 𝑝𝑗] − 𝜖 = 𝑢𝑄𝑘−1
𝑞𝑘 + 1 − 𝑣(𝜃𝑘)

𝑞𝑘 + 1 − 𝜖 < 0.
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Note that lim𝑞𝑘→∞
𝑢𝑄𝑘−1
𝑞𝑘+1 = 0. It remains to show that lim𝑞𝑘→∞

𝑣(𝜃𝑘)
𝑞𝑘+1 = 0, which can be shown

to be implied by lim𝑛→∞
𝑢𝑛
𝑛 = 0. To see this, note that 𝑣(𝜃𝑘)

𝑞𝑘+1 = 1
𝑞𝑘+1 ∑

𝑄𝑘𝑛=𝑄𝑘−1+1
𝑢𝑛
𝑞𝑘 , which would

converge to 0 when 𝑞𝑘 tends to infinity if lim𝑛→∞
𝑢𝑛
𝑛 = 0. Hence 𝜖IC𝑗𝑘 holds. Therefore, given

𝑞1 > 0, there exists 𝑞2 large enough such that IC12 holds with 𝑝𝑘 = 𝑣(𝜃𝑘) for every 𝑘 such that
1 ≤ 𝑘 ≤ 𝐾 . Then given 𝑞1, … , 𝑞𝑘−1 for some 𝑘 ≤ 𝐾 , there exists 𝑞𝑘 large enough such that IC𝑗𝑘
holds for every 𝑗 such that 1 ≤ 𝑗 ≤ 𝑘 − 1. The procedure terminates after a finite number of times
since 𝐾 is fixed. Thus there exists 𝑀 such that for all 𝑁 ≥ 𝑀 , there is a scheme (𝑞1, … , 𝑞𝐾 ) that
can be implemented by 𝑝𝑘 = 𝑣(𝜃𝑘) for every 𝐾 such that 1 ≤ 𝑘 ≤ 𝐾 .

2.C.19 Proof of Proposition 30
Proof. Let 𝑏 = 𝛽1 > ⋯ > 𝛽𝑇 = 𝑐 be the 𝑇 customer types. Fix 𝑗 and 𝑘 such that 1 ≤ 𝑗 < 𝑘 ≤ 𝐾 = 𝑇 .
Given the construction of base utility functions in this setup, 𝑣 𝑡(𝜃𝑗) − 𝑣 𝑡(𝜃𝑘) = 𝛽𝑘(𝑘−𝑗)𝑚

𝑚𝑇−1 . With 𝑝∗
in Lemma 13, IC𝑘𝑗 implies ∑𝑘−1

𝑡=𝑗 𝑣 𝑡(𝜃𝑡) − 𝑣 𝑡(𝜃𝑡+1; 𝜃𝑡) ≥ 𝑣𝑘(𝜃𝑗 ; 𝜃𝑘) − 𝑣𝑘(𝜃𝑘), which is equivalent to

𝑘−1
∑
𝑡=𝑗

𝛽 𝑡𝑚
𝑚𝑇 − 1 − 𝛽 𝑡

2(𝑚𝑇 − 1) ≥
𝛽𝑘(𝑘 − 𝑗)𝑚
𝑚𝑇 − 1 − 𝛽𝑘

2(𝑚𝑇 − 1) .

Multiply both sides by 2(𝑚𝑇 − 1) and rearrange the terms to get

2𝑚 ≥ 1 + 𝛽𝑘(𝑘 − 𝑗 − 1)
∑𝑘−1

𝑡=𝑗 (𝛽 𝑡 − 𝛽𝑘)
.

Thus IC𝑘𝑗 holds if the inequality above holds. For fixed 𝑗 and 𝑘 such that 1 < 𝑗 < 𝑘 ≤ 𝐾 , the
right-hand side of the inequality is larger if both 𝑗 and 𝑘 decrease by 1, because the denominator
would be the same but 𝛽𝑘−1 > 𝛽𝑘 . Therefore, to find the pair of 𝑗 and 𝑘 such that the right-hand
side is maximized, it is sufficient to pick from 𝑗 and 𝑘 such that 𝑗 = 1. For each 2 < 𝑘 ≤ 𝑇 , set

𝑚𝑘(𝑇 ) = 1
2 + 𝛽𝑘(𝑘 − 2)

2∑𝑘−1
𝑙=1 (𝛽 𝑙 − 𝛽𝑘)

= 1
2 + 𝛽𝑘(𝑇 − 1)

𝑐 − 𝑏 × 𝑘 − 2
𝑘(𝑘 − 1) . (2.9)

Note that max𝑘≥2 𝑚𝑘(𝑇 ) can be explicitly expressed. To see this, since 𝑑
𝑑𝑘 (

𝑘−2
𝑘(𝑘−1)) = −(𝑘2−4𝑘+2)

𝑘2(𝑘−1)2 ,

the derivative is positive for 𝑘 ∈ (2 − √2, 2 + √2) and negative otherwise. Therefore, for integers
𝑘 > 2, the right-hand side of (2.9) is maximized at either 𝑘 = 3 or 𝑘 = 4. It turns out that
𝑘−2

𝑘(𝑘−1) =
1
6 for both 𝑘 = 3 and 𝑘 = 4. Since 𝛽𝑘 is decreasing in 𝑘 , (2.9) is maximized at 𝑘 = 3. Let

𝑀(𝑇 ) = 𝑚3(𝑇 ), i.e.,
𝑀(𝑇 ) = 1

2 + 𝛽3(𝑇 − 1)
6(𝑐 − 𝑏) = 𝑐

6(𝑐 − 𝑏)(𝑇 − 1) + 1
6.

Since (𝑝∗, 𝑞) satisfies every IC constraint if and only if 𝑚 ≥ 𝑀(𝑇 ), 𝑞 is implementable if and only
if 𝑚 ≥ 𝑀(𝑇 ). Lastly, observe that 𝑀(𝑇 ) is strictly increasing in 𝑇 and 𝑀(∞) = ∞.
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Chapter 3

A Model of Sponsored Reviews

3.1 Introduction
Thanks to the popularity of internet platforms such as YouTube and TikTok, more and more
consumers are following internet bloggers for the bloggers’ reviews of new products. That the
bloggers have many subscribers that rely on their reviews for purchase decision makes bloggers
a potential sales channel. This type of marketing is often called influencer marketing. To incen-
tivize the bloggers to help promote a firm’s product, one common incentive is for the firm to
sponsor a blogger’s product review by offering sales commissions for purchases by the blogger’s
subscribers. In a sponsored review, since the blogger now benefits from higher sales, the blogger
now has a bigger incentive to review the product favourably, even though the blogger’s own
private signal about the product’s quality says otherwise. On the other hand, the blogger cares
about the accuracy of the review. The motivation for the desire for accuracy could be both inter-
nal and external: an internal motivation could be the blogger’s self-esteem from writing accurate
reviews; an external motivation could be the understanding that accurate reviews attract more
viewership, for which the internet platform on which the blogger publishes reviews rewards the
blogger. The research question in this question is under what conditions it would be possible for
the blogger to provide an accurate review.

The main finding of the paper is that whether a blogger has an incentive to provide a honest
review depends crucially on how informativeness the blogger’s private signal about the reviewed
product’s quality is. The more informative the blogger’s signal is, the more likely that the in a
biased review, the review will turn out to be inaccurate, which disciplines the blogger to provide
an honest review. Given the intuition about signal informativeness, the paper finds that with
regard to the prior belief about a reviewed product’s quality, the blogger has an incentive to
truthfully review if the prior is within some middle range of quality priors because it turns out
the blogger’s signal is most informative within this middle range. The paper is to show that this
middle range of priors in which the incentive for an honest review is the strongest is widened if
the blogger has higher signal precision or the sales commission rate offered by the firm is lower.
Lastly, the paper finds that the existence of the sponsorship, in the form of sales commissions,
also creates a commitment problem to the blogger in face of multiple equilibria: if the blogger
can commit to an equilibrium before the signal arrives, the blogger will still prefer to commit to
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truthfully reviewing the product even when the review is sponsored.
For the blogger’s subscribers, when the blogger offers a sponsored review, it is in their in-

terest to work out whether the blogger is being honest about the review, since now the blogger
can also profit from leading the subscribers to belief the reviewed product is good with a high
probability. For example, when the blogger says that the reviewed product is above expectation,
the blogger needs to figure out how likely that the product is actually below expectation but the
blogger inflates the probability of the quality being good. When the subscribers have no way
to verify the blogger’s message, talk is cheap. Indeed, this paper answers the research question
by modelling a specialized cheap-talk game, which Crawford and Sobel (1982) provides a foun-
dational framework.1 Specifically, in this paper, the blogger communicates with the subscribers
through costless and unverifiable messages to the subscribers to try to lead the subscribers to
form an intended belief. In contrast to that paper, in this paper, the blogger, which is the sender
in that paper, has incomplete yet useful information about the state. Moreover, in this paper,
the blogger’s signal structure is finitely discrete, which enables us to provide sharper prediction
about when the blogger has an incentive to always truthfully reveals the blogger’s information
to the subscribers.

With regard to sponsored blogs and reviews, Hwang and Jeong (2016) conducts an empirical
analysis on consumer perception of different forms of sponsor disclosure. The consideration
about sponsorship disclosure is moot in this paper because this paper makes the assumption that
the subscribers have no way to verify whether the blogger has taken a sponsorship for the review.
Since having a sponsorship brings extra income to the blogger and a blogger has no way to show
to the subscribers that the review is not sponsored, this paper is to show that in equilibrium, the
blogger always takes up the sponsorship from the firm.

There are a number of theoretical studies in product reviews. For example, Yubo Chen and
Xie (2005) looks into how a firm can adapt its marketing strategy to product reviews made by
third-parties such as magazines. A later study by the same authors analyse how the firm can
adjust its marketing mix to address several strategic issues related to online consumer reviews.
In contrast to these papers, this paper focuses on the strategic consideration of the reviewers
themselves. In the two papers cited here, the blogger’s strategic consideration is taken as given
and these papers study how the firm reacts to these reviews. In contrast, this paper takes as given
the reaction of the firm to the blogger’s review, such as the design of the sponsorship contract.
Instead, this paper studies the blogger’s reviewing incentive with the offer of a sponsorship.

Section 3.2 constructs themodel of sponsored review, with results and some discussions about
the results presented in Section 3.3. Lastly, Section 3.4 concludes the paper with some comments
on future research.

3.2 Model
A blogger has a finitely sized continuum of subscribers each of whom has type 𝜇 ∈ [0, 1], which
is the lowest probability of a product being good that the subscriber of this type is willing to
purchase the product. Assume the distribution of the subscribers’ types follows a continuous

1See Farrell and Rabin (1996) for a nice survey and discussion of cheap talk.
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Figure 3.1: Timing of the model

distribution whose cumulative distribution function is 𝐹 ∶ [0, 1] → [0, 1]. The blogger samples
a product to review. Let 𝜃 ∈ {0, 1} be the quality of a product, with 1 meaning that the product
quality is good and 0 indicating a bad quality. Let 𝜆 ∈ [0, 1] be the prior probability of the product
being good and assume the prior belief is common knowledge. After sampling the product, the
blogger receives a costless private signal 𝑠 ∈ {0, 1} such that Pr(𝑠 = 𝑖|𝜃 = 𝑖) = 𝑟 ∈ (1/2, 1),
i.e., the precision of the blogger’s signal is 𝑟 .2 Assume the blogger’s signal structure is common
knowledge, i.e., each subscriber knows the distribution of the blogger’s signal conditional on the
product’s quality.

Upon receiving the signal of a product with prior 𝜆, the blogger updates the belief about 𝜃
using Bayes rule, and then makes a decision on whether to take up a sponsorship for the review.
If he does not take a sponsorship, he only makes money from the platform on which he publishes
his reviews. If the reviewer accepts the sponsorship, in addition to the income from the platform,
the reviewer receives sales commission from the firm for each purchase by the blogger’s sub-
scribers. We assume that subscribers cannot observe nor verify whether the blogger has taken a
sponsorship.

After the decision on whether to take the sponsorship, if the blogger’s realized signal is 𝑠, the
blogger sends his subscribers a message 𝑚 ∈ ℳ(𝑠) ⊆ ℝ, where ℳ(𝑠) is the message space when
the realized signal is 𝑠.3 Assume ℳ(𝑠) ≠ ∅ for 𝑠 ∈ {0, 1}. Having received the blogger’s message,
the subscribers form a belief about the product’s quality and then make purchase decision based
on the belief and each subscriber’s type. Assume ℳ(1) ⊆ ℳ(0), i.e., when the signal is low, the
blogger can replicate any message sent when the signal is high. With some abuse of notation,
denote the aggregate message space by ℳ = ℳ(0) ∪ ℳ(1) and assume ℳ has at least two
elements.4 Figure 3.1 draws the timing of the model.

2The assumption that 𝑟 > 1/2 is without loss of generality since if 𝑟 < 1/2, then the blogger could simply use the
alternative signal ̃𝑠 such that ̃𝑠 = 0 when 𝑠 = 1 and ̃𝑠 = 1 when 𝑠 = 0.

3That the messaging space does not depend on whether the blogger takes up a sponsor is consistent with the
assumption that sponsorship is neither observable nor verifiable.

4For example, the message space could consist of only two messages that claim to have received the high or low
signal.
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3.2.1 Subscribers’ strategy
Each subscriber makes a decision on whether to purchase the reviewed product after receiving
hte blogger’s message. Given the prior 𝜆, let 𝑏(⋅; 𝜆) ∶ ℳ → [0, 1] be a belief mapping that
maps a message to a probability of the quality being good. If a subscriber with type 𝜇 ∈ (0, 1)
has belief 𝑏 ∈ (0, 1) after receiving the blogger’s message, then the subscriber purchases the
reviewed product if and only if 𝜇 ≤ 𝑏. Since the blogger’s signal structure is common knowledge,
the subscribers know that for a product with prior 𝜆, the blogger’s posterior probability of the
product being good is 𝑞1(𝜆) = 𝜆𝑟

𝜆𝑟+(1−𝜆)(1−𝑟) when 𝑠 = 1 and 𝑞0(𝜆) = 𝜆(1−𝑟)
𝜆(1−𝑟)+(1−𝜆)𝑟 when 𝑠 = 0.

Therefore, for a subscriber to form a belief about the product’s quality after receiving the message,
the subscriber first forms a belief about which signal the blogger got, and then updates the belief
about quality using Bayes rule. In equilibrium, which is to be formally defined later, we require
the each subscriber’s belief is consistent with the blogger’s strategy using Bayes rule.

3.2.2 Blogger’s strategy
Given a prior 𝜇 and realized signal 𝑠, the blogger’s strategy is Φ(𝑠; 𝜆) ∈ Δ(ℳ(𝑠)), where Δ(ℳ(𝑠))
is the set of probability measures onℳ(𝑠). With some abuse of notation, let Φ(𝜆) = Φ(0; 𝜆) Pr(𝑠 =
0|𝜆) + Φ(1; 𝜆) Pr(𝑠 = 1|𝜆) be the unconditional message distribution given the blogger’s strategy.
One regularity condition we impose on the blogger’s strategy throughout the paper is that for
every 𝑚 ∈ supp(Φ(𝜆)), Pr(𝑠 = 1|𝑚, {Φ( ̃𝑠; 𝜆)} ̃𝑠) is defined.5 After the subscribers have made their
decisions, the state, which is the quality of the product, is revealed to everyone. The platform
on which the blogger posts reviews rewards the blogger for posting accurate reviews, i.e., where
an accurate review is where the subscribers are led to a belief that is close to the revealed state.
An interpretation of this assumption under the paper’s context is that good reviews tend to have
more viewership, which translates into more traffic to the platform, and hence the website is
willing to reward the blogger for an accurate review. In addition, if the blogger takes the firm’s
sponsorship, the firm rewards the blogger for bringing revenue to the firm. If 𝑏 is the subscribers’
belief after the blogger’s message, then the blogger’s utility, conditional on the acceptance of the
sponsorship, is

𝑢(𝑏, 𝜃) = 𝑀 [𝐶 − (𝑏 − 𝜃)2 + 𝛼𝐹(𝑏)] , (3.1)

where 𝑀 denotes the size of the subscribers. Assume 𝑀 = 1. The second term (𝑏 − 𝜃)2 measures
the disutility of deviating from the revealed state, which can be interpreted both through the
platform’s rewards and the blogger’s interval desire for accurate reviews. The interpretation of
the assumption that the blogger’s utility is decreasing in the deviation from the revealed state
is that inaccurate reviews attract smaller traffic than an accurate one, and hence the platform
rewards the bloggermore for an accurate review than for an inaccurate one. The quadratic form is
to capture the assumption that the farther away from the revealed state, the faster is the disutility
of deviation growing. The last term, 𝛼𝐹(𝑏), measures the utility from promoting the product,
which comes from the firm’s sponsorship. In this linear form, 𝐹(𝑏) is the proportion of customers
whose type is below 𝑏, which is the demand for the product when the subscribers’ belief is 𝑏. The

5Given a probability measure 𝒫 over ℝ, 𝑥 ∈ supp(𝒫 ) if for every open set 𝑈 such that 𝑥 ∈ 𝑈 , 𝒫 (𝑢) > 0.
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linearity is assumed to capture the assumption that the blogger gets a fixed commission for each
sale. In this paper,𝑀 and 𝛼 are both exogenous. The constant 𝐶 is assumed to be large enough so
that the blogger’s utility is higher with larger subscriber size. Moreover, the assumption spares
us the need to check whether the blogger has an incentive to be a reviewer, and hence enables us
to focus on analysing the blogger’s incentive about the choice of messaging strategy.

Fix the prior 𝜆 and a subscriber belief mapping 𝑏(⋅; 𝜆). The blogger chooses the messaging dis-
tribution Φ(𝑠, 𝜆) to maximize 𝐸(𝑢(𝑏, 𝜃)|𝑠, 𝜆, Φ(𝑠, 𝜆)), the expected utility of the blogger conditional
on the messaging distribution Φ(𝑠, 𝜆). The exact formula of the expected utility of the blogger
when the belief mapping is 𝑏, the prior is 𝜆, and is as below:

𝐸(𝑢(𝑏(𝑚; 𝜆), 𝜃)|𝑠, 𝜆, Φ(𝑠, 𝜆)) = 𝑞𝑠(𝜆) ∫ 𝑢(𝑏(𝑚; 𝜆), 1)𝑑Φ(𝜆, 𝑠)(𝑚)+

[1 − 𝑞𝑠(𝜆)] ∫ 𝑢(𝑏(𝑚; 𝜆), 0)𝑑Φ(𝜆, 𝑠)(𝑚) (3.2)

If 𝑢(𝑏, 𝜃) is concave in 𝑏, then 𝐸(𝑢(𝑏, 𝜃)|𝑠) is concave in 𝑏 for every signal 𝑠. In this case, if the
blogger can control the subscribers’ belief, the belief 𝑏∗ that maximizes the blogger’s expected
utility is characterized by the first-order condition,

𝑏∗ = 𝑞𝑠(𝜆) + 𝛼
2 𝑓 (𝑏

∗), (3.3)

where 𝑓 (⋅) is the probability density function of 𝐹(⋅) and 𝑞𝑠(𝜆) = Pr(𝜃 = 1|𝑠, 𝜆), the blogger’s
posterior belief about the product’s quality upon receiving signal 𝑠. For simplicity, we assume the
subscribers’ types follow the standard uniform distribution. With this simplification, 𝑓 (𝑏∗) = 1,
and 𝑢(𝑏, 𝜃) is concave in 𝑏. The second term on the right side is the belief markup the blogger
would like to add if he could freely modulate his subscribers’ belief. With 𝐹 assumed to be the
uniform distribution, the belief markup is constant. In general, the blogger is unable to achieve
the optimal belief markup since the blogger’s signal structure is common knowledge. Instead,
the blogger chooses a message distribution that leads to a market belief that is optimal among
the attainable beliefs.

3.3 Equilibrium analysis
LetΦ(𝑠, 𝜆) ∈ Δ(ℳ(𝑠)) denote the strategy of the blogger when the realized signal is 𝑠 and the prior
is 𝜆. Let Ψ(𝑚; 𝜇, 𝜆) ∈ {0, 1} denote the strategy of the subscriber with type 𝜇 when the realized
message is 𝑚 and the prior is 𝜆. We make the following equilibrium definitions.

Definition 8 (Perfect Bayesian Equilibrium). Fix a prior 𝜆, a belief mapping 𝑏(⋅; 𝜆), and a strategy
profile ({Φ(𝑠; 𝜆)}𝑠 , {Ψ(⋅; 𝜇)}𝜇).

(a) The strategy profile is a perfect Bayesian equilibrium if the following three conditions
hold.

Subscriber optimality For a subscriber of type 𝜇 and each message 𝑚 ∈ ℳ, Ψ(𝑚; 𝜇) =
1(𝜇 ≤ 𝑏(𝑚; 𝜆)).
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Bayesian consistency If 𝑚 ∈ supp(Φ(𝜆)), then 𝑏(𝑚; 𝜆) = Pr(𝜃 = 1|𝑚, {Φ(𝑠; 𝜆)}𝑠), i.e., the
belief mapping agrees with the posterior belief about quality given a message and the
blogger’s strategy.6

Blogger optimality Given signal 𝑠, for almost every message 𝑚 ∈ supp(Φ(𝑠; 𝜆)),
𝐸(𝑢(𝑏(𝑚; 𝜆), 𝜃)|𝜆, 𝑠) = sup

�̃�∈ℳ(𝑠)
𝐸(𝑢(𝑏(�̃�; 𝜆), 𝜃)|𝜆, 𝑠).

(b) A perfect Bayesian equilibrium is a pooling equilibrium if 𝑏(𝑚) = 𝜆 with probability 1.
(c) A perfect Bayesian equilibrium is a separating equilibrium if 𝑏(𝑚) ∈ {𝑞0(𝜆), 𝑞1(𝜆)} with

probability 1.
For the sake of concision, we say an equilibrium instead of a perfect Bayesian equilibrium

unless ambiguity arises. In equilibrium, we require the blogger’s messaging strategy to maximize
the blogger’s expected payoff in each signal realization. For the subscribers, they purchase the
reviewed product if and only if their belief about quality exceeds their types, and we require
the beliefs given the blogger’s message to be consistent with the blogger’s strategy according to
Bayes update rule.

We define a pooling equilibrium to be the case in which the subscribers do not get new infor-
mation from the blogger whereas in a separating equilibrium, the subscribers would be able to
know for sure whether the blogger’s realized signal is high or low.

Before showing that the existence of a Perfect Bayesian equilibrium is guaranteed, we first
look at the incentives of the blogger to take a sponsorship. It turns out that in this paper, the
blogger always has a strictly incentive to accept the sponsorship.

Proposition 31 (Always sponsored). In every perfect Bayesian equilibrium, the blogger always
has an incentive to accept the sponsorship.

The intuition for the result is immediate. If in an equilibrium the blogger does not accept
the sponsorship, the blogger can deviate by accepting sponsorship and keeping the message dis-
tribution unchanged. This deviation brings additional income to the blogger in each realized
message and hence strictly improves the blogger’s expected utility. Hence the blogger always
has an incentive accept the sponsorship in equilibrium. The result assumes the existence of an
equilibrium, which is validated by the following result.

Proposition 32 (Existence of pooling equilibrium). For every 𝜆 ∈ (0, 1), a pooling equilibrium
exists.

The result is consistent with the result from cheap talk that babbling, in which no information
is communicated, is always an equilibrium outcome: once the belief mapping is fixed to the pool-
ing belief, there is no way for the blogger to effectively change the subscribers’ belief and hence
no communication becomes an equilibrium. In general, there could be multiple equilibria as in

6The posterior probability is defined since we assume for every 𝑚 ∈ supp(Φ(𝜆)), Pr(𝑠 = 1|𝑚, Φ(⋅; 𝜆)) is defined,
which makes Pr(𝜃 = 1|𝑚, Φ(⋅; 𝜆)) defined.
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cheap talk. However, we can show that whenever an equilibrium is not a pooling or separating
equilibrium, then there exists a separating equilibrium in which the blogger’s expected utility is
weakly improved in both signal realizations.

Proposition 33 (Focus on separating and pooling). Fix a prior 𝜆 and a perfect Bayesian equilib-
rium. If the equilibrium is neither a pooling nor separating equilibrium, then there exists a separat-
ing equilibrium in which the blogger’s expected utility is unchanged for signal 𝑠 = 0 and strictly
improved for signal 𝑠 = 1.

The proof has two steps. In the first step, we show that the blogger always has an incentive
to choose the message that maximizes the subscribers’ belief, provided that the belief mapping
maps messages out of equilibrium path to the prior. The intuition is that with the sponsorship,
the blogger has incentive to mark up the subscribers’ belief from the blogger’s belief, not to mark
down, hence the incentive to maximize the subscribers’ belief. The belief maximizing incentive
of the blogger when the signal is high implies that the equilibrium belief mapping should be the
same for almost every message the blogger sends in equilibrium when the belief is high. Since
the belief mapping is Bayesian consistent with the blogger’s strategy, if there exists a message
𝑚 ∈ supp(Φ(1; 𝜆)) but 𝑚 ∉ supp(Φ(0; 𝜆)), for almost every such message, 𝑏(𝑚; 𝜆) = 𝜆 because
the probability of the signal being low given 𝑚 would be 1. In this case, the blogger would be at
least between the separating outcome and the partial pooling outcome. Since the blogger would
always prefer a separating outcome when the signal is high, whenever an equilibrium is neither
separating nor pooling, there exists a separating equilibrium that makes the blogger’s payoff
unchanged when the signal is low and strictly improved when the signal is high.

So far, Proposition 33 shows that for any equilibrium that is neither a pooling nor separating
contract, there exists a separating equilibrium in which the blogger’s expected utility is improved
for each signal. Meanwhile, a separating outcome reveals all the available information about
product quality to the subscribers. With these observations, this paper is to focus on pooling and
separating equilibrium. Proposition 32 has shown that a pooling equilibrium always exists. The
following result provides conditions under which a separating equilibrium exists. Specifically, if
there is some prior that admits a separating equilibrium, then a separating equilibrium exists for
a middle range of priors and only a pooling equilibrium exists when the priors are near 0 or 1.
Theorem 7 (Conditions for separation). If there exists some interior prior belief about quality
admits a separating equilibrium, then there exists a separating equilibrium when the prior is 1/2.
Moreover, when a separating equilibrium exists for some prior, there exists 𝜆 and 𝜆 such that 0 ≤
𝜆 ≤ 𝜆, 𝜆 + 𝜆 = 1, and a prior 𝜆 ∈ (0, 1) admits a separating equilibrium if and only if 𝜆 ∈ [𝜆, 𝜆].

Since the blogger always prefers the separating outcome, it is only left to show in the proof
that for 𝜆 ∈ [𝜆, 𝜆], when the signal is low, the blogger has no incentive to deviate in a strategy
profile that leads to the separating outcome. Since by (3.2), for each signal, the blogger’s expected
utility is quadratic and concave in subscribers’ belief 𝑏, when the signal is low, the blogger has no
incentive to deviate in a separating strategy profile if Δ𝑞(𝜆) ∶= 𝑞1(𝜆) − 𝑞0(𝜆) is more than twice
the optimal belief markup. The proof shows that Δ𝑞(𝜆) is strictly increasing and then strictly
decreasing for 𝜆 ∈ (0, 1). Since the optimal belief markup is constant for every interior prior
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thanks to the uniform distribution assumption, this intermediate result implies that there indeed
exists 𝜆 ≤ 𝜆 such that the blogger has no incentive to deviate in a separating strategy profile if
and only if 𝜆 ∈ [𝜆, 𝜆]. In words, a separating equilibrium exists for mid-end product; for very
low-end and high-end products, only a pooling equilibrium exists.

The proof of Theorem 7 also provides some very interpretable insights about the conditions
for a separating equilibrium. When the blogger’s signal is very informative in the sense that
Δ𝑞(𝑠) is large, it becomes costly for the blogger to pretend to have received a high signal when
the realized signal is actually low, because pretending to receive a high signal leads to a high
probability of an inaccurate review. As a result, the blogger has an incentive to truthfully reveal
a low signal if and only if the signal is very informative.

The result that 𝜆 + 𝜆 = 1 is immediate from the symmetric signal structure: since Δ𝑞(𝜆) =
Δ𝑞(1 − 𝜆), whenever a separating equilibrium exists for prior 𝜆 ∈ (0, 1), it also exists for prior
1 − 𝜆.

Lastly, the claim that whenever a separating equilibrium exists for some interior prior, then
it must exist when the prior is 1/2 holds because it turns out that the blogger’s signal is most
informative when the prior is 1/2. Indeed, the proof shows that Δ𝑞(𝜆) is maximized at 𝜆 = 1/2.
To see why the signal is most informative at 𝜆 = 1/2, consider the case where 𝜆 is near 1/2 and
near 0 or 1. When the prior is near 1/2, the before-signal uncertainty is larger than when the
prior is near 0 or 1. As a result, when a signal arrives, reduction in uncertainty is larger when
the prior is near 1/2 than when it is near 0 or 1. Indeed, for the prior very close to 0 or 1, the
change to the belief about quality is very small. Therefore, a signal is more informative when the
prior is close to the half than when it is near the two ends. Consequently, whenever a separating
equilibrium exists for some 𝜆 ≠ 1/2, such an equilibrium exists for products whose priors are
in the medium range. For products that are perceived to be very good or very bad before the
blogger’s signal, the blogger has an incentive to pretend to have received a high signal because
the blogger’s signal does not change the belief about quality very much.

Since a pooling equilibrium always exists, it is of interest to understand how the blogger’s
expected utility compare between a pooling and a separating equilibrium. Since by the proof of
Proposition 33, the blogger would also wishes to maximize the Bayesian-consistent belief about
quality when the signal of high, the expected utility comparison will mostly focus on the analysis
for the case where the signal is low. In other words, we wish to know which between a pooling
and a separating equilibrium the blogger would choose when the signal is low and a separating
equilibrium exists.

Since the optimal markup to the blogger is positive, intuitively, when the signal is low, the
blogger would prefer a separating equilibrium to a pooling equilibrium if the pooling belief is
sufficiently different from the low-signal belief: when the two beliefs are very different, it is costly
for the blogger to lead the subscribers to a belief much higher than the blogger’s belief because of
the high probability of an inaccurate review. The following result shows that the blogger prefers
the separating equilibrium to a pooling equilibrium for some middle range of quality priors.7

Theorem 8 (Condition for separation preference). Assume some interior prior admits a separating
7See Ying Chen, Kartik, and Sobel (2008) for a more in-depth analysis of equilibria selection in cheap-talk games.
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Figure 3.2: Conditions for separating equilibrium and for preference for separating equilibrium

equilibrium and let 𝜆 and 𝜆 be as defined in Theorem 7. Either the blogger always strictly prefers a
pooling equilibrium to a separating equilibrium for every 𝜆 ∈ (0, 1), or there exists 𝜆 ≤ 𝑙 ≤ 𝑙 ≤ 𝜆
such that for 𝜆 ∈ (0, 1), when the signal is low, the blogger prefers a separating equilibrium to a
pooling equilibrium if and only if 𝜆 ∈ [𝑙, 𝑙].

To show whether a blogger would prefer a separating equilibrium to a pooling equilibrium
is equivalent to showing whether the blogger would have an incentive to choose a message that
the subscribers’ belief mapping maps to the pooling belief. With the similar reasoning to that of
Theorem 7, the blogger would have such an incentive when the signal is lowwhen 𝜆 is sufficiently
above 𝑞0(𝜆) so that it would be costly for the blogger to choose the pooling belief. Then, similar
to the proof of Theorem 7, the proof of Theorem 8 shows that 𝜆 − 𝑞0(𝜆) is decreasing and then
increasing in 𝜆 ∈ (0, 1).

Figure 3.2 draws Δ𝑞(𝜆0) and 𝜆 − 𝑞0(𝜆), with 𝑟 = 2/3 and 𝛼 = 0.1. The horizontal line in the
graph is twice the optimal markup. The graph illustrates the result that a separating equilibrium
exists for a middle range of quality priors and the blogger prefers a separating equilibrium to a
pooling equilibrium for a smaller middle range of quality priors. For the smaller middle range
of priors, when the signal is low, the blogger would have an incentive to truthfully reveal the
realized signal even if there were a message that would lead the subscribers to have the pooling
belief. Another observation from the graph is that whereas the curve of Δ𝑞(𝜆) centres around
1/2, the curve of 𝜆 − 𝑞0(𝜆) leans more above 1/2. The intuition for the latter’s inclination above
1/2 is that when 𝜆 > 1/2, the prior is already in favour of a high quality. In this case, a low signal
would come as a surprise, which would lead to a larger change from the prior than a high signal.
Indeed, the next result formally shows that the exact middle between 𝑙 and 𝑙 is always above 1/2.
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Proposition 34 (More preference for separation when high prior). Assume there exist 𝑙 and 𝑙 as
defined in Theorem 8. If 𝑙 < 𝑙, then 𝑙 > 1/2 and 𝑙 + 𝑙 > 1.

Here are some additional statistical intuitions of the result. When 𝜆 < 1/2, since a low signal
is more likely and 𝜆 = Pr(𝑠 = 1|𝜆)𝑞1(𝜆) + Pr(𝑠 = 0|𝜆)𝑞0(𝜆), 𝜆 − 𝑞0(𝜆) < 𝑞1(𝜆)𝜆. By symmetry,
(1 − 𝜆) − 𝑞0(1 − 𝜆) = 𝑞1(𝜆) − 𝜆. Therefore, if 𝜆 − 𝑞0(𝜆) is large enough for the blogger to prefer a
separating equilibrium to a pooling equilibrium with low signal when the prior is 𝜆 < 1/2, then
the same is strictly true for the blogger when the prior is 1−𝜆, which leads to the conclusion that
𝑙 + 𝑙 > 1.

We now provide some comparative statics results regarding the conditions for the existence
of a separating equilibrium. The following result shows that, fixing everything else constant,
higher signal precision and lower commission rate widen the middle range of priors that admit
a separating equilibrium.

Proposition 35 (Comparative statics). Fixing everything else constant, 𝑙 and 𝜆 as defined in Theo-
rem 7 and Theorem 8 are increasing decreasing in 𝑟 and increasing in 𝛼 ; 𝑙 and 𝜆 are increasing in 𝑟
and decreasing in 𝛼 .

The proof of this result is very intuitive. When the signal precision improves, signals become
more informative in the sense that change in belief from the prior is larger. As a result, it becomes
more costly for the blogger to pretend to have received a high signal and to choose a message
that leads to the pooling belief. Therefore, higher 𝑟 makes it easier for a separating equilibrium
to exist and for the blogger to prefer a separating equilibrium to a pooling equilibrium when the
signal is low.

When 𝛼 , the sales commission rate, gets larger, the blogger has a larger optimal belief markup,
which makes the requirement on signal informativeness more demanding. As a result, higher 𝛼
makes it harder for a separating equilibrium to exist and for the blogger to prefer a separating
equilibrium to a pooling equilibrium when the signal is low.

The results so far concern the incentives of the blogger conditional on signal realization.
Given the prior, it is of interest to knowwhat equilibrium the blogger would choose if the blogger
could choose an equilibrium before the signal arrives. The following result shows that the blog-
ger has a commitment issue: before the signal arrival, the blogger always prefers a separating
equilibrium if there one exists, but Theorem 8 shows that for some quality priors, a separating
equilibrium exists but the blogger would prefer a pooling equilibrium when the signal is low.

Proposition 36 (Commitment issue). Fix a prior that admits a separating equilibrium. Before the
signal arrives, the blogger is always better off with a separating equilibrium than with a pooling
equilibrium.

Proof. By (3.1) and the distributional assumption of 𝐹(⋅), 𝛼𝐹(𝑏) is linear in the subscribers’ belief
𝑏. Since in an equilibrium where the belief mapping is 𝑏(⋅; 𝜆) and the blogger’s strategy is Φ(⋅; 𝜆),
the belief mapping is Bayesian consistent, we have

𝐸 [𝐸(𝑏(𝑚; 𝜆)|Φ(𝑠; 𝜆), 𝜆)] = 𝜆. (3.4)
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As the expected subscribers’ belief is unchanged in every equilibrium for the same fixed prior,

𝐸 [𝛼𝐸(𝐹(𝑏(𝑚; 𝜆))|Φ(𝑠; 𝜆), 𝜆)] = 𝛼𝜆. (3.5)

For the loss minimization of deviation from the revealed state in (3.2), note that in a separating
equilibrium,

𝑞𝑠(𝜆) = arg inf
𝑏∈(0,1)

𝐸 [(𝑏 − 𝜃)2|𝑠, 𝜆] . (3.6)

Since the loss function in the expectation operator is strictly convex, the solution to the mini-
mization problem is unique, and hence

𝐸 [(𝑞𝑠(𝜆) − 𝜃)2|𝑠, 𝜆] < 𝐸 [(𝜆 − 𝜃)2|𝑠, 𝜆] , (3.7)

for each signal 𝑠. Therefore, in a separating equilibrium, the expected loss is strictly lower than
that in a pooling equilibrium. Hence the blogger always prefers a separating equilibrium to a
pooling equilibrium before the signal realization.

Thanks to the restriction that the subscribers’ belief mapping in an equilibrium must be
Bayesian consistent, the expected subscribers’ belief before the signal realization in every equi-
librium is the prior. Since the blogger’s expected utility from sales commissions is linear with
respect to subscribers’ belief, the blogger’s expected utility from sales commissions is the same in
every equilibrium. With regard to the loss of deviating from the revealed state as shown in (3.2),
the separating equilibrium reaches the unique minimal expected loss conditional signal realiza-
tion. Therefore, to the blogger before the signal arrives, a separating equilibrium is able to deliver
a strictly better loss minimization than does a pooling equilibrium. Hence to the blogger before
the signal realization, a separating equilibrium is always preferred to a pooling equilibrium when
a separating equilibrium exists for the prior of the reviewed product.

3.4 Conclusion
This paper has studied the reviewing incentive of a blogger that sends a review message to the
blogger’s subscribers, with the reviewed product’s firm offering to sponsor the blogger’s review
through sales commissions. The paper shows that the blogger’s incentive to truthfully communi-
cate the private signal to the subscribers is closely linked to the informativeness of the blogger’s
signal: when the signal is more informative, then the blogger is more likely to provide an honest
review; when the signal is less informative, then the blogger is more likely to pretend to receive
a high signal even if the realized the signal is low. When the blogger’s signal structure is binary
and symmetric, it has been shown that with a fixed signal precision, the blogger’s signal is infor-
mative enough for truthful communication when the prior belief about quality is within some
middle range of priors. In other words, the blogger has an incentive for an honest review when
the product is a mid-end product and for a biased review when the product is very low-end or
high-end.

The paper does have some limitations. For example, the paper uses a very simplified signal
structure that consists of one binary signal about the product’s overall quality. An alternative
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approach is to treat the review process as receiving a number of (possibly costly) binary signals
about different attributes of the product. There have been a number of studies from consumer
search, such as Branco, Sun, and Villas-Boas (2012) andWeitzman (1979), that look at the optimal
sequential information acquisition problem of an agent. In the context of product reviewing, if
a product has multiple attributes and each attributes require a costly signal to learn more about
that attribute, then the blogger would need to solve an optimal stopping problem as in other
consumer search models. After the information acquisition stage, the blogger needs to work out
amessage for the subscribers and then the subscribers are going to form a belief about the product.
In this case, the blogger is in a multidimensional cheap-talk game and the blogger’s information
acquisition strategy is likely to be affected by the blogger’s communication strategy. We leave
this type of more complex yet important analysis for future research.

3.A Proofs

3.A.1 Proof of Proposition 31
Proof. Suppose there is an equilibrium in which a blogger decides not to accept the sponsorship
after receiving the signal. If the blogger deviates by accepting the sponsorship and chooses the
same message distribution as the one the blogger chooses in equilibrium, the distribution of the
subscribers’ beliefs is unchanged. Now for each realized message, the blogger gets additional
income from the sales commissions, making the blogger strictly better off. Therefore, it is prof-
itable for the blogger to deviate to accept the sponsorship, contradicting the definition of the
equilibrium. Thus in every equilibrium, the blogger always accepts the sponsorship.

3.A.2 Proof of Proposition 32
Proof. Consider the strategy profile where Φ(0; 𝜆)(𝑚) = Φ(1; 𝜆)(𝑚) for every 𝑚 ∈ ℳ(1) and
the belief mapping is Bayesian consistent with the blogger’s strategy. If 𝑚 ∉ supp(Φ(0; 𝜆)) ∪
supp(Φ(1; 𝜆)), let 𝑏(𝑚; 𝜆) = 0. For each signal realization, the blogger’s optimal subscriber belief
is above the blogger’s belief. Moreover, as the blogger’s expected utility is concave and quadratic
in the subscribers’ belief, having the zero belief is never optimal. Therefore, for each signal realiza-
tion, the blogger has no incentive to choose a message not in the support of the proposed strategy.
Since the belief mapping is constant for messages in the support of the blogger’s messaging dis-
tributions, the proposed strategy is trivially optimal to the blogger for both signal realizations.
Therefore, a pooling equilibrium always exists.

3.A.3 Proof of Proposition 33
Proof. We can show that for given the subscribers’ belief about quality conditional on realized
message, it is optimal for the blogger choose a message that maximizes the subscribers’ belief,
which is summarized in the following lemma.
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Lemma 16 (Optimality of belief maximization with high signal). Fix a prior 𝜆 and strategy profile
where the blogger’s strategy is Φ(⋅; 𝜆). Let 𝑏(⋅; 𝜆) be a belief mapping that is Bayesian consistent with
the blogger’s strategy and 𝑏(𝑚; 𝜆) = 𝜆 for every 𝑚 ∉ supp(Φ(𝜆)). When 𝑠 = 1, sending any message
from arg sup𝑚∈ℳ(1) 𝑏(𝑚; 𝜆) is optimal to the blogger.

Proof of lemma. Fix a prior 𝜆. By (3.3) and Proposition 31, when the signal is high, the optimal
subscriber belief to the blogger is strictly above 𝑞1(𝜆). Moreover, by (3.2), the blogger’s expected
utility is concave and quadratic in the subscriber’s belief. Therefore, 𝐸(𝑢(𝑞1(𝜆), 𝜃)|𝑠 = 1, 𝜆) >
𝐸(𝑢(𝑏, 𝜃)|𝑠 = 1, 𝜆) for every 𝑏 < 𝑞1(𝜆). Thus it is optimal for the blogger to assign measure zero to
the complement of supp(Φ(𝜆)) when the signal is high, i.e., the blogger has no incentive to send
a message not in supp(Φ(𝜆)) when the signal is high.

Since the belief mapping 𝑏(⋅; 𝜆) is Bayesian consistent with the blogger’s strategy, for 𝑚 ∈
supp(Φ(𝜆)), 𝑏(𝑚; 𝜆) ∈ [𝑞(0; 𝜆), 𝑞(1; 𝜆)], and thus

𝐸(𝑢(𝑏(𝑚; 𝜆), 𝜃)|𝜆, 𝑠, Φ(𝑠, 𝜆)) ≤ 𝐸(𝑢(𝑏(𝑚∗; 𝜆), 𝜃)|𝜆, 𝑠, 𝛿𝑚∗),
where 𝑚∗ = arg sup𝑚∗∈ℳ(𝑠) 𝑏(𝑚; 𝜆) and 𝛿𝑚∗ is the Dirac measure at 𝑚∗.8 Therefore, it is optimal
for the blogger to choose the message that maximizes the subscribers’ belief when the signal is
high and the belief mapping is Bayesian consistent. The proof of the lemma is complete.

By Lemma 16, in an equilibrium, for almost every 𝑚1 and 𝑚2 in supp(Φ(1; 𝜆)) with respect to
Φ(1; 𝜆), 𝑏(𝑚1; 𝜆) = 𝑏(𝑚2; 𝜆), i.e., the belief mapping is constant among messages that the blogger
finds it optimal to send when 𝑠 = 1. If for almost every 𝑚 ∈ supp(Φ(1; 𝜆)), 𝑏(𝑚; 𝜆) = 𝜆, then the
equilibrium is necessarily a pooling equilibrium since Φ(0; 𝜆)must integrate to 1 on supp(Φ(1; 𝜆))
for 𝑏(𝑚; 𝜆) = 𝜆.

Now assume 𝑏(𝑚; 𝜆) ≠ 𝜆 for almost every 𝑚 ∈ supp(Φ(1; 𝜆)) with respect to Φ(1, 𝜆). In this
case, it is necessary that the event 𝑏 ∈ supp(Φ(0, 𝜆)) and 𝑏(𝑚; 𝜆) = 𝑞0(𝜆) has a strictly positive
measure with respect to Φ(0, 𝜆). If the measure of the event is 1 with respect to Φ(0; 𝜆), then the
equilibrium is a pooling equilibrium. If the measure is strictly less than one, then supp(Φ(0; 𝜆))−
supp(Φ(1; 𝜆)) has a strictly positive measure w.r.t Φ(0; 𝜆). By the blogger’s optimality condition,
when 𝑠 = 0, the blogger is indifferent between Φ(0; 𝜆) restricted to supp(Φ(0; 𝜆)) ⧵ supp(Φ(1; 𝜆))
and the same measure restricted to supp(Φ(1; 𝜆)). In the first restriction, when 𝑠 = 0, the blogger
is getting the expected payoff in a separating equilibrium if there exists one. Moreover, since
𝑞1(𝜆) > 𝑏(𝑚; 𝜆) for a.e. 𝑚 ∈ supp(Φ(1; 𝜆)), and since 𝐸(𝑢(𝑏; 𝜃)|𝜆, 𝑠) is concave and quadratic in 𝑏,
for a.e. 𝑚 ∈ supp(Φ(1; 𝜆)),

𝐸(𝑢(𝑞0(𝜆), 𝜃)|𝜆, 𝑠 = 0) = 𝐸(𝑢(𝑏(𝑚; 𝜆), 𝜃)|𝜆, 𝑠 = 0) > 𝐸(𝑢(𝑞1(𝜆), 𝜃)|𝜆, 𝑠 = 0), (3.8)

which implies that the blogger will have no incentive to deviate in a strategy profile that would
be a separating equilibrium if it is a PBE. Since the blogger would always prefer a separating
equilibrium when 𝑠 = 1, the blogger has no incentive to deviate in such a strategy profile, either.
Additionally, since in such a strategy profile, 𝑏(𝑚; 𝜆) = 𝑞1(𝜆) for a.e. 𝑚 ∈ supp(Φ(1; 𝜆)), the blog-
ger’s expected utility is strictly improved in this strategy profile. Therefore, when an equilibrium
is neither a pooling nor separating equilibrium, there exists a separating equilibrium in which
the blogger’s expected utility is unchanged when 𝑠 = 0 and strictly improved when 𝑠 = 1.

8Formally, 𝛿𝑚∗ is a probability measure such that for every measurable set 𝑈 , 𝛿𝑚∗(𝑈 ) = 1(𝑚∗ ∈ 𝑈 ).
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3.A.4 Proof of Theorem 7
Proof. Fix a prior 𝜆, a strategy profile, and a belief mapping 𝑏(⋅; 𝜆) such that subscriber optimal
and Bayesian consistency hold. Assume the strategy profile leads to the separating outcome and
let Φ(⋅; 𝜆) be the blogger strategy in this profile. For 𝑚 ∉ supp(Φ(𝜆)), assume 𝑏(𝑚; 𝜆) = 𝑞0(𝜆).

As the subscriber type distribution is assumed to be the standard uniform distribution, 𝐹(𝑥) =
𝑥 and 𝑓 (𝑥) = 1 for 𝑥 ∈ [0, 1]. By (3.3), when the prior is 𝜆, for each signal, the blogger’s optimal
subscriber belief is min{𝑞𝑠(𝜆)+ 𝛼

2 , 1}. Since by (3.2), the blogger’s expected utility is quadratic and
concave, when the signal is low, the blogger has no incentive to deviate to a message 𝑚 where
𝑏(𝑚; 𝜆) = 𝑞1(𝜆) if and only if 𝑞1(𝜆) − 𝑞0(𝜆) ≥ 𝛼 . By the Bayes rule,

Δ𝑞(𝜆) ∶= 𝑞1(𝜆) − 𝑞0(𝜆) = 𝜆(1 − 𝜆)(2𝑟 − 1)
[𝑟 + 𝜆(1 − 2𝑟)][1 − 𝑟 + 𝜆(2𝑟 − 1)] , (3.9)

and the difference’s first-order derivative with respect to 𝜆 is

𝜕Δ𝑞(𝜆)
𝜕𝜆 = 𝑟(1 − 𝑟)(2𝑟 − 1)(1 − 2𝜆)

[𝑟 + 𝜆(1 − 2𝑟)]2[1 − 𝑟 + 𝜆(2𝑟 − 1)]2 . (3.10)

Note that the numerator is always non-negative. Thus to solve 𝛼𝑞(𝜆)/𝜕𝜆 ≥ 0, we have

𝜕Δ𝑞(𝜆)
𝜕𝜆 ≥ 0 ⟹ 0 ≤ 𝜆 ≤ 1

2. (3.11)

Therefore, Δ𝑞(𝜆) is increasing for 𝜆 ∈ (0, 1/2) and decreasing for 𝜆 ∈ (1/2, 1). If Δ𝑞(1/2) < 𝛼 ,
then for every 𝜆 ∈ (0, 1), there is no separating equilibrium. Otherwise, there exists 0 ≤ 𝜆 <
1/2 < 𝜆 ≤ 1 such that Δ𝑞(𝜆) ≥ 𝛼 if and only if 𝜆 ∈ [𝜆, 𝜆]. Therefore, a separating equilibrium

exists if and only if 𝜆 ∈ [𝜆, 𝜆].
To see that 𝜆+𝜆 = 1, it suffices to show that if a prior 𝜆 ∈ (0, 1) admits a separating equilibrium,

then the prior 1−𝜆 also admits a separating equilibrium. To see this, note that Δ𝑞(𝜆) = Δ𝑞(1−𝜆).
Therefore, if Δ𝑞(𝜆) ≥ 𝛼 , then Δ𝑞(1 − 𝜆) ≥ 𝛼 , meaning that when the prior is 1 − 𝜆, there exists a
separating equilibrium. Thus 𝜆 + 𝜆 = 1.

3.A.5 Proof of Theorem 8
Proof. Pick a prior 𝜆 that admits a separating equilibrium. When the signal is low, to compare
whether the blogger would prefer a separating equilibrium to a pooling equilibrium is the same
to see whether the blogger has an incentive to send a message which the belief mapping maps to
𝜆. With the same reasoning in the proof of Theorem 7, when the signal if low, the blogger prefers
𝑞0(𝜆) to 𝜆 if and only if 𝜆 − 𝑞0(𝜆) ≥ 𝛼 . To prove this, we are to show that 𝜆 − 𝑞0(𝜆) is strictly
increasing and then decreasing for 𝜆 ∈ (0, 1). To show the pattern, first we have

𝜆 − 𝑞0(𝜆) = 𝜆 − (1 − 𝑟)𝜆
𝜆(1 − 𝑟) + (1 − 𝜆)𝑟 = 𝜆(1 − 𝜆)(2𝑟 − 1)

𝑟 + 𝜆(1 − 2𝑟) .
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If we take the first-order derivative of 𝜆 − 𝑞0(𝜆), we get

𝜕
𝜕𝜆 [𝜆 − 𝑞0(𝜆)] = (2𝑟 − 1)([(2𝑟 − 1)𝜆2 − 2𝑟𝜆 + 𝑟])

[𝑟 + 𝜆(1 − 2𝑟)]2 .

The denominator is non-negative, and it can be shown that the numerator is strictly positive if

and only if 𝜆 < 𝑟−√𝑟(1−𝑟)
2𝑟−1 . Denote the right-hand of the inequality by 𝑙∗. If 𝜆 − 𝑞0(𝑙∗) < 𝛼 , then

when the signal is low, the blogger always strictly prefers a pooling equilibrium to a separating
equilibrium for each interior prior. Otherwise, we can find 𝑙 < 𝑙 such that 𝜆−𝑞0(𝜆) ≥ 𝛼 if and only
if 𝜆 ∈ [𝑙, 𝑙], and hence the blogger would prefer a separating equilibrium to a pooling equilibrium
when the signal is low if the prior is in that range.

3.A.6 Proof of Proposition 34

Proof. Assume 𝑙 and 𝑙 as defined in Theorem 8 exist. Note that Pr(𝑠 = 1|𝜆) ≥ 1/2 if and only if
𝜆 ≥ 1/2. Therefore, since 𝜆 = Pr(𝑠 = 1|𝜆)𝑞1(𝜆) + Pr(𝑠 = 0|𝜆)𝑞0(𝜆), 𝑞1(𝜆) − 𝜆 ≤ 𝑞0(𝜆) if and only if
𝜆 ≥ 1/2.

Assume 𝑙 < 𝑙. If 𝑙 ≥ 1/2, then 𝑙 > 1/2 and clearly 𝑙 + 𝑙 > 1. Assume instead that 𝑙 < 1/2 and
pick a prior 𝑙 ∈ [𝑙, 𝑙] such that 𝑙 < 1/2. Note that for every �̃� ∈ (0, 1),

𝑞1(�̃�) = 1 − 𝑞0(1 − �̃�) (3.12)

which implies Δ𝑞(�̃�) = Δ𝑞(1 − �̃�). Therefore, if Δ𝑞(𝜆) ≥ 𝛼 , then Δ𝑞(1 − 𝜆) ≥ 𝛼 . In other words,
when the prior is 1 − 𝜆, a separating equilibrium exists. Moreover, by (3.12),

𝜆 − 𝑞0(𝜆) = 𝑞1(1 − 𝜆) − (1 − 𝜆). (3.13)

If 𝜆 − 𝑞0(𝜆) ≥ 𝛼 , then since 1 − 𝜆 > 1/2,
(1 − 𝜆) − 𝑞0(1 − 𝜆) > 𝑞1(1 − 𝜆) − (1 − 𝜆) = 𝜆 − 𝑞0(𝜆) ≥ 𝛼. (3.14)

Therefore, when the prior is 1 − 𝜆, a separating equilibrium exists and the blogger prefers a
separating equilibrium to a pooling equilibrium. This implies 𝑙 ≥ 1/2 and 𝑙 + 𝑙 ≥ 1.

3.A.7 Proof of Proposition 35
Proof. Fix 𝜆 ∈ (0, 1). Since 𝑞0(𝜆) is decreasing in 𝑟 and 𝑞1(𝜆) is increasing in 𝑟 , both Δ𝑞(𝜆) and
𝜆−𝑞0(𝜆) are increasing in 𝑟 . By the proof of Theorem 7 and 8, 𝜆 and 𝑙 are decreasing in 𝑟 , whereas
𝑙 and 𝜆 are increasing in 𝑟 .

When 𝛼 gets larger, the blogger’s optimal belief markup gets larger, which raises the require-
ment on Δ𝑞(𝜆) larger for a separating equilibrium to exists. Similarly, larger 𝛼 also raises the
requirement on 𝜆 − 𝑞0(𝜆) for the blogger to prefer a separating equilibrium when the signal is
low. Therefore, 𝜆 and 𝑙 are increasing in 𝛼 , whereas 𝑙 and 𝜆 are decreasing in 𝛼 .
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