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New operator approach to the CMB aberration kernels in harmanic space

Liang Dai and Jens Chluba
Department of Physicé Astronomy, Bloomberg Center,
The Johns Hopkins University, Baltimore, MD 21218, USA
(Dated: July 9, 2018)

Aberration kernels describe how harmonic-space multipolgficients of cosmic microwave background
(CMB) observables transform under Lorentz boosts of theregice frame. For spin-weighted CMB observ-
ables, transforming like the CMB temperature (i.e. Doppleightd = 1), we show that the aberration kernels
are the matrix elements of a unitary boost operator in hartrepace. Algebraic properties of the rotation and
boost generators then give simple, exact recursion rekatitat allow us to raise or lower the multipole quantum
numbers? andm, and the spin weighs. Further recursion relations express kernels of other Roppeights
d # 1 in terms of thed = 1 kernels. From those we show that on the full sky, to all agdeg = v/c, E- and
B-mode polarization observables do not mix under aberrafiand only if d = 1. The new relations, fully
non-linear in the boost velocity, form the basis of a practical recursive algorithm to ac@lyacompute any
aberration kernel. In addition, we develop a second, fagirshm in which aberration kernels are obtained
using a set of ordinary fferential equations. This system can also be approximatdhed at small scales,
providing simple asymptotic formulae for the aberratiomiets. The results of this work will be useful for fur-
ther studying theféect of aberration on future CMB temperature and polarizagioalysis, and might provide a
basis for relativistic radiative transfer schemes.

I. INTRODUCTION tion of the aberrationféects to even larger multipole(i.e.,
smaller scales). This will be particularly important forlge

The temperature and polarization anisotropies of the COsization data, which encode primordial information to large

mic microwave background (CMB) radiation provide a greatiff,'[3)‘r'a‘bl(l)ttr:1 Ec)esri a:f;ﬁi;?:ldfoglr;ﬁg:tlil(')nngz:zza?grr.zgo
deal of information about the origin and evolution of our Uni ’ P p oIS,

verse [124]. Inflation predicts that the primordial CMB fluc- very small angular scales and with great precision.

tuations have isotropic and gaussian statistics aroungern a ~ One could in principle undo the aberratioffiezts by “de-
age temperature af = 2.7260+ 0.0013 K [5,6] in the CMB  boosting” the sky in real space [23+25]. In reality, however
rest frame. The anomalously large temperature dipbte])  real-space methods fer from inaccuracies due to the reso-
AT = 3.355+ 0.008 mK [7] towards Galactic coordinates lution of the pixelization scheme and imperfect knowledfe o
(I,b) = (26399 + 0.14°,48.26° + 0.03°) [8], however, indi-  the window function, because aberration does not preskeve t
cates that the solar system is moving with respect to the CMBhape and the area of each pixel. This also causes changes to
rest frame with a spee@l = v/c = 0.00123. Therefore, due the dfective beam of the instrument that have to be consid-
to the Lorentz boost from the CMB rest frame into our frame,ered carefully. To avoid these problems, Ref| [14] propased
the observed radiation deviates from what would be seen iharmonic-space strategy in which one first boosts the fyll sk
the CMB rest frame. in harmonic space and then transforms into real space tgy appl

In addition to the change of the photon energy caused by th&'€ sky mask. The precision of the harmonic-space approach
Doppler dfect (leading to the temperature dipole), due to lightiS then guaranteed by accurate determination ofetberra-
aberration the photon’s apparent propagation directiatsis ~ fion kernels— the linear transformation from multipole coef-
modified under a Lorentz boost (and so are the polarizatioficients in the rest frame to those in the observer’s frame.

direction and plane). This induces coherent, (nearly) dipo  The aberration kernels depend not only on the spherical har-
lar departures from statistical isotropy in both the terapge  monic multipole numberg, m, but also on the spin weight
and the polarization field. Although the Doppler and aberra- (s = 0 ands = =2, for temperature and polarization, re-
tion effects occur independently, laperrationwe henceforth_ spectively). Furthermore, they ftkr for diferent Doppler
refer to both of them simultaneously, unless stated ottserwi weightd (which is the power of Doppler factor present in the
Aberration-induced fi-diagonal elements in the CMB co- transformation rules), depending on whether the thermody-
variance matrix can serve as an independent handle to deteramic temperatured(= 1), the specific intensityd( = 3) or
mine the observer's motiohl[9=13]. The motion-induced dis-the frequency-integrated intensitgt & 4) are being boosted
tortion of the CMB statistics should be corrected for before[10,[12]. Below the typical angular scale of aberration-cor
accurate cosmological information can be extracted fraen thresponding to@ > 1/8 ~ 800 ors8 ~ 4, analytical results
observed temperatypolarization power spectra. Although up to O(8?) [10] for the kernels break down [26], and algo-
Ref. [10] first found that the correction @(82) ~ 10°® for  rithms non-perturbative i are needed. General integral ex-
the idealistic full-sky situation, it was later on realizdtht  pressions for the kernels have been known, but their highly
in practice the bias can b@(8) ~ 102 due to asymmet- oscillatory nature makes direct numerical integratioreasf-
ric sky masks[[14-17]. Moreover, current or incoming ex-ble. The first @icient algorithm for computation of the kernel
periments with high resolution, e.g. Planckl[18], SPTI [19],elements based on recursions was developed in Reéf. [26] to
ACT [20], ACTpol [21] and SPTpol [22], push the investiga- push into the non-perturbative regime. Fitting formulatfe
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kernel integrals, approximately valid at small anguladesa erties of the kernels are proved in Ajgd. B. App. C is a brief

and tested up to intermediateg 700, were given in Refl [23] derivation of how the boost generator acts on spherical har-

to go beyond a power expansiondn monic base functions. Aplp] D details a key steps used to prove
In this work, we take a more systematic route than previthe conclusion of SeC. V. ApplE elaborates on a few numeri-

ous studies. We show that tide= 1 kernels are the matrix cal techniques that provide initial conditions for our resive

elements of a unitary boost operator, analogous of the Wignelgorithm and quadrature.

D-functions being the matrix elements of a rotation operator

in harmonic space. The unitary operator lives in the Hilbert

space of all spin-weighted functions on the sky. It is the IIl. - ABERRATION IN HARMONIC SPACE
exponentiation of the boost generator (valid for infiniesi
boost), parameterized by the rapidity parameter tanh* 8 In this Section, we review the harmonic-space aberration

that is additive under successive boosts. Using rapiditead  kernels. Imagine an observer that moves with respect to the
of B to describe the boost is one of the new insights into theCMB rest frameS. Without loss of generality, the spatial co-
problem that allowed us to generalize previous discussion®rdinates can be oriented such that he is moving along the
The Lorentz algebra, formed by the generators of rotatiah andirection relative taS with speed3 = v/c. We call the rest
boostin harmonic space, then leads to simple linear remssi frame of the observes'.
that relate kernels of fierent¢, differentm and general spin In frameS, a CMB observable can be defined as a function
weights. In particular, these expressions are more compaaef the directiomi in the skyX = X(f). It can be the blackbody
than those given in Ref._[26] and do not require an order-bytemperature of the radiatiai(fi), which has spin weight = 0
order treatment. Moreover, tlte# 1 kernels can be obtained under a rotation about the line of sight. For polarizatioa th
from those ofd = 1 through another set of straightforward observables are titemperature-weighte8tokes parameters,
recursions. This is particularly interesting sincedhe 1 ker- P, = T(A)[Q(A) F iU (A)]/[ V2I(A)], which have spin weight
nels follow special symmetries that ease their computation s= +2, respectively. A spherical harmonic expansion can be
Based on our novel representation of aberration kernels, wapplied to these observables,
obtain two dficient and accurate algorithms to cross check
against each other: (i) an elegant recursive algorithmithat X(h) = Z & s Yern( ), (1)
proves upon Ref[ [26] and accounts for kernels of arbiteary ém
andd (se_e Sed:_k/), (i) a sch_eme in v_vhlch kernels are COM- hereaX = f_s Y: (A)X(R)d?A. Aberration is the phe-
puted using ordinary elierential equations (ODES) as flows (. - T m : N
! S : ; nomenon in which a photon coming from directiénin S
in the rapidityy (Sec[V]). We explain how to implement both _ . S
algorithms as powerful solutions to boosting the sky in har—WIII appear to have come from aftérent direction’ in S '
monic space. The ODE approach furthermore allows us to dea}nd n addition that Its energy undergoes a Doppler shife Th
R I Co : Spherical-polar coordinates in both framés,= (6, ¢) and
rive simple analytic approximations valid at small-scalBse

expressions are very similar to those obtained by Ref. [23],n = (¢, ¢"), are related by

however, here we derive them from analytic considerations cost — 8 ,

also improving the range of applicability and testing them t cosd = mv p=¢. )
very small scales (SeC._VIA). Our code will be available at

www.Chluba.de/Aberration. Therefore, the CMB observableX, = X'(f'), as measured

This paper is organized as follows. SEt. Il reviews the defin S’, differ from those measured 8. Another harmonic
initions of harmonic-space aberration kernels (for genera €xpansion similar to Eq{1) can be conducted, and multipole
andd), their integral representations, and their basic propercodficientsa)yl  measured ir§’ are then obtained. Those are
ties. In SedTll, we introduce operators that generate atar  related to the the multipole cfigientsay,, through a linear
boost in harmonic space, and derive the matrix-elemengrepr transformation,
sentations for thd = 1 kernels. In Se€. 1V, we show that aber- < «
ration does not generate mixing betwdemnd B modes for A = Z K0 (B) &, (3)
polarization observables with Doppler weight 1. Then in ¢

Sec[V, based on the matrix-element representation, we makg, e e 5 KM,(B) is called the aberration kernel for spin weight
use of operator algebra and derive recursion relationgéhat g Note that for observer's velocity in thedirection, aberra-
lated = 1 kernels with adjacent values 6fm, and the spin iy does not mix multipoles with fferentms.

weights Immediately fo!lowing those recursion relatiions, & Based on the transformation properties of photon’s energy
practical recursive algorithm to compute the aberration ke 44 its polarization tensor under a Lorentz boost, expgicit

nels needed is then presented in detail. An alternativeadeth pressions for aberration kernels for both temperafurnd
based on solving ODEs, also derived from the operator aps|arizationsP. have been derived in the literature in the form

proach, is developed in SeC.]VI. Wefer some concluding o an angular integral involving two (spin-weighted) spibak
remarks in Se¢_ V1. In Apf. A, we include a covariant deriva- harmonics/[10]

tion of the integral forms for both temperature and polariza
tion kernels (we illustrate by theé= 1 case, but the derivation G _ @A [sYem(A)]* _sYem(R) 4
can be easily generalized tb# 1). Some symmetry prop- KeeB) = n y(1 - B cos®) )
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with Lorentz factory = 1/+/1- 2. Here one has to view
fi as a function of@’ by inserting Eq.[[2). The temper-
ature kernels§ = 0) is easy to derive from the relation
T'(f") = T(A)/[y(1 - Bcos#)]. For interested readers, the
derivation giving the polarization kernels £ +2) is outlined

in App.[A2. Unfortunately, the kernel integral Eq] (4) is nu-
merically dificult to compute (especially for larget”) due to
the fast oscillatory behaviors of (spin-weighted) spledtiar-

monics. For this reason, recursion relations have beer-deve
oped as alternative method to compute the kernels accyratel
and dficiently [26]. Here, we generalize and improve these

recursion tos # 0.

A. Generalization to F'(/)/v'® = F(A)/»*

The kernel Eq.[(4) is applicable to any spin-weighted field

on the sphere transforming &$(f") = F(A)/[y(1 - B cosy’)]
or equivalentlyF’(/")/v' F(A)/v under Lorentz boosts.

S and S’ respectively. It is straightforward to generalize to
fields that transform ab’(/')/v'% = F(A)/»*, with any (in-
teger) Doppler weighd, once <X}, (8) for d = 1 is known.

Defining
dgem (o _ o [=sYem(A)]" —sYem(R)
SW[’[(ﬂ) - fdzn [’y(l —ﬂCOS@’)]d

and using the identity?(1 — S cos#’)(1 + fcost) = 1, with
the relation Eq[{Q1) we have

i = f [y
f

=y K, + 7’/3[ .8t
SM_ 41
(e+1)3

(5)

A [_sYem(A)]* —sYem(P)
(1-pBcost)]*1y(1 - Bcose)

A2 [_sYem(A)]* —sYem(R)y(1 + B cosd)
[¥(1 - Bcosy)]o?

re+1

m md-1g-m
+ Kop+ Cp's Kol

(6)

where C" = +/(£2 — m?)(£2 — ) /(402 - 1)/¢ for ¢ > 0 and

Herev andy’ are the photon’s frequencies as measured ir{bOOSt
he aberr

B. General properties of the kernel

Using the properties of the spin-weighted spherical har-
monic functions, with the definition of the kernel integriais
straightforward to show tha@?(g‘g has the following general
properties (see Appendid B)

Ik (B) = (1) 20K, (B) (8a)
K (-B) = (-1)C KD (B) (8b)
IIGTB) = [SKL B = KT(B) (8c)

These properties highlight useful symmetries of the ketnel
For instance, combining the first two equations for the case
d =1 gives

S(](?;’(ﬂ) =s 2}(‘:3)- (9)

This means that the kernels are unitary and the total (tem-
perature or polarization) power is conserved under a Larent
]. The last expression furthermore emphasizds tha
ation kernel (in the special coordinate systenrevhe
B is aligned with thez-axis) is a real quantity. In particular,
for s = 0 it implies that only elements fan > 0 have to be
computed, immediately determining those for< 0. This

just reflects the fact that a map of a real quantity remains rea
under aberration and can be used to simplify the computation
For s # 0O the situation is more involved, and properties of
the kernel under parity transformations dependdomas we
explain in Sed_1V.

lll.  MATRIX-ELEMENT REPRESENTATION FOR THE

ABERRATION KERNELS

To generalize our discussion to arbitrary spin weight
in this section we recast Ed.](4) into afférent form using
WignerD-functions.

A. Hilbert space for functions with spin

While scalar fields on the sky depend on the two spherical
anglesyp andé, fields with general spin weight depend on an

¢ > |m|,|s, but zero otherwise. With this expression one canadditional roll angley (that goes from 0 toz), which param-
raised by unity, providing recursions that can be started frometerizes a rotation about the normal direction at everytpsin

m _ lgem imi
K}, = $K7,. Similarly, to lowerd we can use

dgem _
S(]([’[_f

= 7’?17(2} - 7’/3[ Ca g+1 1
+ sm
o +1)

dzﬁ/[—sYK’m(ﬁ/)]* ~sYm(N)y(1 - B cosd)
[¥(1-Bcoss)]d+

d+1ge-m m d+1g-m
s Kpr+ Cpsm Koy |-

(7)

the sky. Consider the Hilbert space of all fields with general
spin weight, i.e. all functions of, 6 andy.. These angles
can also be thought as three Euler angles describing the ori-
entation of a rigid body. For two functions (or two states)

f = f(¢,0,¢) andg = g(¢, 0, ¥) living in this Hilbert space,

we borrow the notation from quantum mechanics and define
the overlap between the two as

(flg) = f Ao [£(6.0.0)]"9(6.6.1). (10)

These two relations are useful because, as we show below, th@ ere the integral over three angles is explicitly

kernel for the casd = 1 has special symmetry properties that
ease its calculation. The kernel for any other Doppler wieigh
d # 1 is then readily obtained with Eq.1(6) arid (7).

(11)

21 T 21
fdgpzf d¢f sinedef dy.
0 0 0
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Similarly, a linear operata® defined in this Hilbert space has boost is therefore the exponentiation of the infinitesina o

a matrix element between the two staté$O| g). iMoo (1 + in\?Z/N)N = @Yz, Hence, we have
A complete set of base functions for this Hilbert space are .
the familiar WigneiD-functions, which are related to the spin- S (B) = ( Sg/ml ez | stm), (16)

weighted harmonics via [27]
which provides an alternative way to express the kernel ma-

Ar . trix elements, Eq[{4), but using the language of operators i
Dan#,6:4) = A/ T &% _sYm(0. ). (12)  Hilbert space.

It is more convenient to use the normalized base functions

DL (0. 60.4) = /(20 + 1)/(872)DL (¢, 6, ). Sometimes it is C. Arbitrary boost direction
more compact to use the common bra-ket notatm) to
denote the base functiobX,,, FrameS’ can in general move along other directions rel-

ative to frameS. To generalize the boost direction from the
z direction to any other direction, we re-orient the spat@l ¢

B. Aberration kernels as matrix elements ordinate system. This can be done using the three angular
momentum operatoils, with a = x, y, z [27],

Using base functionB’,,, Eq. [4) can be unified as ~

-
<
|

= i(Singdy + COtH COSPA, — CSCHCOSPA, ),

[D4e, 6/, w)]" Dinl 0, 6, 1) (13) Ly = i(~cospdy + cotdsingd, — cscosingd, ),

v(1-pBcosy) ’ L, = —idg a7)

s«?}(ﬁ)z fdgp'

Of course, since we choose to use the variables in fréme
(¢, 0,¥) must be viewed as functions od’(¢’,y’); Since a
boost preserves the spin weight= ¢’ can be supplemented

which generate rotations abdiitedaxes. These satisfy the
familiar S (3) algebra. Nevertheless, a larger algebra exist
for tensorial functions on the sky [28], once three boostgen

to Eq. [2). . o . eratorsY, with a = x, y, zare included. Together with,, they
We are now in a position to show that the aberration kerTorm a Lorentz algebra

nels are equal to the matrix elements of a unitary operagar th
represents the Lorentz boost. Consider first an infinitelsima [La Lo = i€mwcle, [La Yo = i€ancYe,
boost. The relative spegtl= v/c corresponds to theapidity Vo o] = —i€apel (18)

n = tanir* B, and we assume thais suficiently small so that [Ya: Yo] = ~i€avclc.

it suffices to compute_up to linear ordersin Now we |n§ert where ey is the totally anti-symmetric Levi-Civita tensor.
Eq. (2) ands = tanhy into Eq. [13), and expand up to linear g,y the explicit form ofY, given by Eq. [I5), we can de-

order inz, giving rive the other boost generators using Eq] (18):

KM(B) = fdsp’ [D. "D Yy = —i (sineco&p — COSH COSPAy + CSCHSINGI,

. 0 - —cot93in¢6¢),
+nfd3p’[D§m]*(cose’+sm6’@) DL+

Yy = —i(sin6sing — cosdsingd, — cscd cospd,
_ ’ Y, 2
= (sI'm|[1+inY, + 0G| IsIm). (14) +cotcospdy),
Since we have expanded in the integrands are now calcu- Y, = —i(cosd +singdy). (19)

lated along line of sight directio(, ¢, y’) in S’, and the in-

tegrals evaluate to a matrix element. Théatential operator X0tating the coordinate system will simply takgto some

¥, is theboost generatoalong thez direction linear combination of.’s, which generates a Lorentz boost
’ along a diferent direction. Therefore, for a boost along the di-
Yoo, 0,0 B4 09, 0,) = —i (COSH + SINGy) . (15) rectionn with boost velocitys, a rapidity vector can be written

1 = nn. The general aberration kernels then read

It is independent of the azimuthal angle and the roll angite be o .
cause a boost along thalirection leaves those two variables Ko (B,n) = (st'm
unchanged. . . L : ,

Generalization of Eq[{14) to finite is straightforward. Wh'(_:h determme; the mixing betwe_a.f,fm in frameS V_V'th
The rapidity is additive under successive boosts. A boos®y in frameS. SinceYz's are hermitian operators with re-
with finite  can be achieved by successively applying manyspect to the inner product EG._{1@)"> ande” Y are unitary,
boosts along the same direction but each with a very smaknd the unitarity of the aberration kernels is thus obvilidg.[
rapidity parameter. For instance, we can takeuccessive Eg. [I6) and its generalization EG.{20) are the major result
boosts, each with rapidity/N. The operator for the finite of this paper.

& 1stmy, (20)
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IV. MIXING OF E/BMODES the (polarization-averaged) temperature, and therefonsod
haveE andB modes mixed up under a Lorentz boost.

The B-mode polarization is a unique signature in the CMB.  In reality, foreground contaminations have spectra that di
While detecting primordiaB modes will be a confirmation fer from that of a blackbody. A non-blackbody spectrum in
of an inflationary background of gravitational waves, vasio general will not preserve its spectrum shape under a change
secondary ffects at late times can conveftmodes intoB  Of reference frame. Also, no frequency-independent temper
modes and hence confuse the primordial signal, in particulaature can be unambiguously defined in the presence of fore-
at small scales [29, BO]. It is therefore of great importancegrounds. The interpretation on théegt of Lorentz boost is
to have accurate, unambiguous predictions for seconBary then less clear than in the ideal case of blackbody spectrum.
mode contamination. This issue, which is expected to be dependent on the details o

In this Section, we address the question of whether aberr&xperimental approaches and further complicates ourtyabili
tion mixes upE-mode and3-mode polarization. We find that, to perform a "de-boosting” operation, deserves more carefu
depending on the Doppler weigttfor the polarization ob- consideration, but is left to a future work.
servable, spuriouB modes ar@otproduced fod = 1, but are We would like to emphasize that for a single photon, a
converted fromE modes ford # 1. This statement neglects Lorentz boost does not change the direction of the polaoizat
cut-sky dfects which we will discuss in a subsequent pub-vector with respect to the new line of sight. In fact, the po-
lication [17]. Previously, based on leading-order expamsi larization plane is parallel-transported on the sky, arahly
in B for the polarization kernels, Ref. [10] four/B-mode  ‘rotates’ to adjust to the curvature of the sky; there is ndiad
mixing for polarization observables weighted by specific in tional rotation about the line of sight whatsoever.
tensity @ = 3) and by frequency-integrated intensit/<£ 4),
and Ref.[[12] demonstrated that no mixing occurs for the case
of d = 1. Ref. [23] state that they checked numerically that
no mixing occurs up ta)(s%), again ford = 1. Here, we

analytically generalize to all orders fh ) _
The E/B-mode multipoles are related to the helical multi- Because the harmonic-space aberration kernels are the ma-

poles through trix elements of a unitary transformation due to a Lorentz
boost, it is reasonable to believe that one might find simple r

V. KERNEL RECURSION RELATIONS

1 1 cursion relations between the matrix elements followirogrfr
E _ L (JPe, AP B _ * (.P._ P L
Am = \2 (afm + afm)’ &m = V2i (afm afm)' (21) the algebraic properties ofy’s. In this Section, we derive
new, useful recursions from our operator formalism. These
Under aberration they transform as improve upon previous recursive algorithis [26]: (i) thel f
1 low directly from the Lorentz algebra, and are simple and el-
/E E i i iew; (ii
af = 5 Z [(27(21[ + 727(215) at egant from a the(_)rethal point of view; (||)_ they do not rely
7 on power expansions jf, anqluhence _areﬁément in t_he non-
. m m\ B perturbative regimé > 1/p; (iii) the higher spin-weight ker-
+ (27(7 a —Z(KN) afm]’ (222) nels are reduced to the zero spin-weight kernels in a simple
, 1 way, which allows for &icient computations for polarization.
af,Bm = E Z [( 27(% + _27(%) a?m y P P
l
=i (2K, - 2Kp) ag, |- 22b
(2 re= -2 ”) [m] (22b) A. Changing¢
It can be seen that no mixing occursAK}, = K7, In- R
deed, we prove in Apf.ID that As we have already seen, tNgoperator does notfiect¢
andy. Therefore, acting; on the statésfm) only changes
KB = LKT(B) (22c)  the quantum numbet Introducing

holds for arbitrary3 if and onlyif d = 1. )
What value of the Doppler weighit should the CMB po- B =L = \/2— (23)

larization observables take? In general, it depends ontwhic ac -1

physical quantity is exactly being measured. However, if W& convenience. we find

assume that the CMB has a perfect blackbody spectrum, then '

a given map-making procedure should allow us to faithfully

reconstruct the thermodynamic temperatures, for botlatine

polarizations and also for the unpolarized average, onel-pix _ . o .

by-pixel basis. The map-making procedure should also pro? Straightforward proof of this refation is given in Apppl C.

duce the correct maps with the same experimental device oplext, we make use of the trivial commutatdf,[€7"] = 0.

erating in any inertial frame. In that case, independent oBY taking the matrix element of both sides, we find

how the measurement is technically performed, the polariza . o

tion observables have the same Doppler weight 1 as (st'm| (Y™ — 7Y, [st - 1m) = 0. (25)

iYz|sm)y = BN |sC+1m)— BN |st—1m).  (24)



Applying Eq. [Z3), and also using the fact thaiis hermitian, ~ for the temperature. One realizes that there is a symmetry

we find a relation involving four kernels between the azimuthal angleand the roll angle if (¢, 0, )
" are interpreted as three Euler angles. Whils associated
Hm By om SBz/+1 m with rotations about the axis fixed in spacey is related to
SheCT B STl T g ST rotations about a “body-fixed! axis — the axis that points in
B, the normal direction and fiers from point to point on the sky.
—gm S o (26) In fact, three “body-fixed” angular momentum operatiars
s=e with a = x,y, z can be obtained by swappiggwith ¢ every-
Thus, for¢ > |mj, one can computeXT, from (KT, ., where in Eq.[(TI7),
sK},_, and <K}, ;. The recursion applies to kernels with L
fixed m and spin weighs. Notice that bottt and¢’ change, [ = i(sinyd, + cotd cosyd, — sl cosydy).,
so that the recursions remind us of the discretized version o iy =i (_ cosydy + cotd sinyd,, — csch sinw6¢),

first order partial dierential equation in two dimensions.

[, = —id,. (31)
B. Raising and loweringm Similarly, three “body-fixed” boost generatofs with a =

X, Y, zsimilarly follow from Eq. [19),
To raise and lower the azimuthal quantum numimemwe A

use the operator relation [27] Zy

—i (sine COSY — COSH COSYdy + CSCH SiNYdy,

C.istmy = EFm)(+m+ 1)|sfm= 1), @7) — cotosinyd,)
= —i (sine siny — cosd sinydy — €SCh cosyrdy,

<
|

wherel, = [, + iI:y are the familiar angular-momentum rais-
ing and lowering operators. Furthermore, we define for the + cotd coswaa,),
boostgeneratofs'é+ Yy |Yy Then by combining qu]24) 5 .
Eq. (Z7) and Y, L.] = +VY., we obtain the action of. on Z; = ~1(Ccosd + sinGdy). (32)

base states, The symmetry betweepandy implies thatiy’s andZ,’s form

e another copy of Lorentz algebra,
iV, |stm) = (BP +7|S€—lmil) (28) .
t+m [la, Ib] = i€anclc, [la, Zb] = i€ancZe,

feme’ Zas Zs] = —icapclc. 33
+ Bl \/t;;IISZ+1m+1) [Za, Zo] I€anclc (33)

The spin weighsis nothing but the eigenvalue of the “body-
Using Eq. [IB) and the Baker-Campbell-HausBiéormula,  fixed” I, operator. Becauséd L] = 0, we have simultane-
we can also show that nous eigenstates far andl,

L. &% = & (coshy L. ¥ isinhy V.. (29) C,1sfm)y = mistmy, [,lstm)y = s|stmy,  (34)

Taking the matrix elemeritst’ m— 1| - -|s‘m) on both sides, ~ which establishes a formal symmetry betweeands. This
applying Eqs.[(27)£(28), and also using the fact thand  implies that we can contruét = I + iy to raise and lowes,

Y. are pairs of hermitian conjugation, respectively, we find
l1stm)y= /(T 9 +s+1)|s+1fm). (35)
(]{ m = SCO Slnh \/ (Z + m)(f Fm- 1) (](mtl

(@ Fm)( +m+1)S 0t Moreover, for “body-fixed” boost generators we similarly de
+ = Lx ®
fineZ. = Zy +iZ,. The result analogous of EG.(28) but fer
(¢FmE+m+1) . thus reads
) 30

+C°S“7\/(5/¢m)(f'im+1)s e (30) ETE]

Z 0 5 Fil.|stm) = B} o [s+£1(-1m) (36)

+ + +

L0 Sinhn\/( EM+DEEM+2) oy

- . sheeir /é’ 2
(& Fm)( +m+1) + BN, %|s+ 10+ 1m).
+

This recursively relates the kernelwfto those ofm+ 1. ) S _
Repeating a derivation similar to the one in $ec]V B, and also

. . noting thatZ, = Y;, we can write
C. Raising and lowerings
[, &7 = ez(coshy i, FisinhnZ.). (37)
In the recursions derived so far, the spin weightas not
been touched. However, it is feasible to raise and losves  In analogy to then-raising case, we take the matrix elements
well, thus relating the polarization kernels directly tmsle  (s—1¢'m|---|sfm) on both sides, and obtain a recursion
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similar to Eq. [3D), with the roles ofiands exchanged: diagonal kernel elements drop lik&?, ~ g~ in ampli-
tude [26], one could stop the recursions at some finite value
" " (tT9)(Fs-1) " of A¢ = " — £ obtaining an extremely economic method for
sKpy = oC;' sinhy CF({C xs+1) selprp g computing the aberration kernel. We were, however, unable
B to find a simple way to give all the required initial conditggn
(CF(C+s+1) . oKy and oK, so that this procedure is impractical.
+ coshy T s1 Ky (38) Instead we start our recursions@t= ¢ = m = 0, us-
B ing O‘Kgo = n/[By]. We then apply the term-by-term ex-
o (Cts+l)(lxs+2) . pansion ing given by [26] to obtain the elementsk?, for
+0Cyj4 sinhy T 25+ 1) s:1%Kppia- 0 < ¢ < 2lmax Afterwards, we apply thé-changing re-

cursion, Eq.[(2B), to fill in the remaining matrix elements fo

This recursion relates the kernels of spin weight those of oKp, uptol+ ' < Z_Zmé}X’ preceding in a row-by-row manner,
spin-weight raisetiowered by one unit. As we will see below, fiXing £ and changing” within the row. By applying then-

this expression implies that the temperature and polisizat "2iSing operator, EqL(30), we then compute the Wi, for
kernels are very similar onde> s. U’ < 26max— 1 from which we obtain the whole Iaye)rK},{, for

C+ U < 2lmax— 1, applying Eq.[(26) again. We continue this
procedure untit = ¢ = m = £nax. This scheme works very
D. A practical recursive scheme well after rewriting the recursions, as we explain below.

To make practical use of the recursions given above, a few
additional steps are required. First of all, we have to decid 2. Initial conditions and recursion fayk?,
how to run through the recursions, combining them in a con-

venient way to a numerically stable scheme. The procedure in To start the computation, we need to provide the initial con-

particular depends on the required initial conditions teat A
be obtained in a simple (closed) form. Secondly, we want tc?é%);;;ﬁ?erigmzloeqefﬁf« (Q)Svig?]gceby 261, for the

compute the kernel elements in the most economic way, mak-
ing use of its symmetries. 2k
For the temperature kernel, a method based on term-by-  ¢Kh(B) = n:hl Z (Zl:T m')! (2m+ 1) 5 0
term expansions i was already given by [26]. Once the tem- Y™ 2Km 2m+ 2k+ D!
perature kernelg= 0) is computed, by applying theraising m 3
operator, Eq[(38), twice the required polarization kera€li- =2F1 ( ) +1m+ 2’ B2 Iy
rectly obtained and we are done. To compute the temperature
kernel, becausek}l, = oK, 1" and oK}, = (1) 0K}, we  where,F; (a,b,c,2) is the hypergeometric function. We gen-
only need those elements for> 0 and¢ < ¢, reducing the  erally use this expression for all matrix elemeg#™, (5),
number of independent cfiients by a factor of 4. Forour  even if in principle form > 0 simplem-raising would work.
purposes, this method in principle isfBaient, however, with  To obtain all the matrix elemenw(o for0 < ¢ < 2lmaxWe
the expressions given above we can simplify the computatiofeed to precede in a term-by- _term manner as cancelations of
significantly, as we explain now. terms prevent the direct recursions from converging. Fiuen t
results of [25], we find

(39)

1. Applying the recursions ﬁf’ ﬁZk
KoolB) = 57 D K = 5T (40)
As shown earlier [26], af > 1/B the kernel widens, cou- k,o / ,
pling more and more neighborifgmodes. In principle, by Kl = 2t KLy (+1pB k(L
knowing all matrix eIement@‘K[”; (i.e., the diagonal at fixed \Vae? — 1 24 +12 -1

m) for £ < £max and usingoX;,, = 0 for £ < m, one could

obtain all elementK}",, |, 07(642[ » 0K["s, 5 €tc. us-  We scaled out the main term (3/2)" /y which makes alk{
ing Eq. [26). Similarly, those elemengK)",, ;. oK}5, ». become of order unity at larg8. Forg < 0.01 andfmax <

oK1 4,5 €tc. could be obtained by knowingk}",, (i.e., the 4000 we never needed more than 128 terms in the expansion
first off-diagonal). In this way, one could nicely compute of 3. For better convergence, we furthermore used long double

all kernel elementsX}), for ' — £ < 2(max. Since the - precision in the computations.

3. Rewriting the recursions

The df-diagonal kernel elements drop lik&™, = g~ in amplitude [25]. This means that for large’ = ¢ - ¢, the
kernel elements become extremely small, and since in the@uotation elements fof < ¢’ ~ 2(max are needed, it is crucial
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to rewrite the kernel recursions to improve the numericabitity. For this one has to scale out the leading order bienav
of the kernel. Applying the boost operatiof, several times to the stafefm) and then projecting ontis'm), with <X, =

(st’'m exp(nY,) |stm) shows that the leading order term of the kernel scales like

(41)

. MR A -0 [+ 1) () (@ =) (M) (@ —m) T A
Kesace ® 1_[ X

AL LT A o= N @+ D) €+ 9! ((-9 (C+m) ((—m) 2508 o

for Al = ¢’ —¢ > 0andnp = In([1 + B]/[1 - B])/2 ~ B. Rescaling the kernel by the leading order term, introc@g’@‘,} =
37(2“[/[% 14 sBM ] and using Eq[(26) we find

m 2.2 gem m 2.2 qem
(B ) m” K4 (B " K7,

/M qem _
Kee = Keores -+ —(+2) @+ —(+2)

(42)

for ¢/ > £. The matrix elementsKj, are now all of order unity and hence the new recursion is nioalgr more stable. In a
similar manner, we obtain

— £+ m — sinhyp (¢’ =€ — {+m-1 —
SR = g cosm K S T 0 800 g K|
— {+s — sinhyp (¢ =€  — t+s-1 —
K = 7 s [COShU s-1Kpy + — (m 1K1 + (0B} 71 917(21[1)] : (43)

for them ands-raising recursions. These expressions are at the corer ofumerical recursion scheme. We find them to work
even up tg8 ~ 0.01. In this case, the kernel is already rather broad at lgrgsachingA? ~ 70 atf ~ 4000. Foig ~ 1073 we
find A¢ = 10— 20 to sufice.

VI. DIFFERENTIAL EQUATION REPRESENTATION elements up to these values. Finally, the workload is signifi
cantly reduced, since generally only matrix elements falbm
With the operator representation, we can write a system of¢ are required.
coupled ordinary dferential equations (ODES) for the aber-  Our final ODE scheme takes about80 seconds 1o com-
ration kernels. Using the definition of the aberration kérne Pute all non-negligible kernel elements f6r= 10 and

element K™, = (st'm|exp(nYy) |s(m), gives £max ~ 4000 on a single core (standard laptop). Parallelization
of the computation is straightforward and scales very well,
By KT, = (s£’m| i, explnYs) |stm) while th?s is more complicate_zd for the recursion methoq. For
comparison, our best recursion scheme takes ab@% min
= BN KM . — BIKT for the same computation, while direct integration methods
(+187 e e+1  SPe STM -1 .. . . . .
remain impractical. This large increase in the performance
= B, 1K1, — sBYSKD 4, (44)  provides the basis for full sampling oveffidirent values of.

. . _ A few examples computed with our ODE schemefer 103
Notice that the two independent ways of computing e  and largef are given in Fig[L.
derivative also directly give the recursion Hg.l(26). For 0, For larget, both temperature and polarization kernels co-
we have the initial conditiogXy, = 6. Itis furthermore incide to high precision, so that we only show the curves for
clear that for finitep the kernel only attains non-zero values s = 0. This is not surprising at the relative levelofO(s/¢),
in a limited range¢’ — ¢ < A¢. We can thus write a system however, it turns out that the fiérence is even smaller com-

of ODEs in some fini'ge range aro_und the diagonal elementgarable tox O(sA¢/¢2,5?). To understand this aspect a little
¢ = ¢ for eachm (setting the matrix elements at the bound- petter, let us rewrite Eq_{88) as

aries to zero), and then solve it as a functiom.oThe system

is rather sparse and an explicit Runge-Kutta scheme tuins ou i \/ (€ S)(C+5+1) [ 1B sinhy

to be stfficient for solving it. We successfully used a Runge- K, = —

Kutta-Fehlberg method with adaptive step size control. CF9(Cxs+1)| Lxs+1
The ODE representation has several benefits over the recur- m . s=1Bp, sinhy m

sion scheme. First of all, it works for any spin weight withou + COSy 1Ky + T&ﬂ(f%l :

having to worry about specific initial conditions. It alsoedo

not matter if the value oB is large or small (the integration This expressions shows that one modulation of the kernel val

takes a little longer for larges). In contrast to the recur- ues is caused by the fitBrence betweedi and ¢’ which is

sion scheme, to obtain kernel elements for lafg#, in the  captured by an overall normalization ¢beient. For small

ODE approach it is furthermore unnecessary to compute alhZ, this givesV({lF S)({ = s+ 1)/[(C’ F (' £+ s+ 1)] =~ 1 -

s1Kpy_1 (45)




e I B A B A A A ducing the new variablg; = sBM we find

>
v
hA

0.5

Qe

m
s
m _ {+1 m m m m
67115 e Bm sNer1l 57({”{’—1 37({”{41 - 37({”[—1'
s=e

04 The last line can be identified with the recurrence relation
20xJn(X) = Jn-1(X) — Inra2(X) for the Bessel function of first

o3 kind, Jn(X), when settingc = 2, andn = ¢’ — ¢ = A¢. Thus

>1]Al >15]Al

KO A Ja(2nsBf) & ue(n VE-mE). (46)

0.2~

Modulus of the kernel element

0.1 We find that this expression already works very well for large
L . N ¢ as long as the kernel does not become too wide so that the
ol T g ! assumptionA¢] < ¢ breaks down. Since to leading order in
W09 876 548321012345678910  yxwe havely(X) = x"/[2"!], by comparing with the leading
order term ofsX7,(n), Eq. [41), we can further improve the
06T T T T T T T T T T T T T T T T T T ] approximation:
- ﬁ; 9000 ;z gooo | >t AL &
= 05 = m= 3000 p=10° | 57(2][(77) ~ Jac|2n HSB?lk
5 . ) 1 k=1
[0} | 2 N |
E 0.4 /‘l"’\'\"\ :I.‘ s jl ' y " | Lz
g f (AN A A . + m)!(¢ — m)!
2 0.3+ J I: \ ',‘ ,‘ :I i \'. 3 — (f + m)(é’ - m)
S+ I i ! N VA |
ERy i vl AW A 4 for ¢ > ¢ and then useX((n) ~ Jo(n V- nP) and
I vl : VA , . .. L
§ L I i ‘;‘ ,:' W ] K7,(n) = (__1)‘ LK () otherwise. This is similar to the
01 /./I,’ Ny W\ 4 expressions in Eq. (8)-(10) given &f [23], however, there th
L o | ! PR A functional form was obtained from fits to the numerical resul
0 S A R at¢ < 700 rather than by analytic arguments. Our expression
0-98-765-4-3-2-101234567 8910 jzlsoworks well for very large values gf This is illustrated

Al N
in Fig.[@ forg = 0.1, ¢ = 1000 andm = 0. Even for these
Figure 1: Modulus of the temperature kerg&"

m forg =103,  e€xtreme values g8, our approximation reproduces the main

¢ = 4000 and’ = 5000. For both cases, the corresponding polarizatrend and amplitude of the numerical result, while Eq. (8)-
tion kernel § = 2) is extremely similar. (10) of [23] become more crude [37]. Still, the approximatio

Eq. (47) is valid only atA¢/¢ < 1, and since the kernel be-

comes wide ag andg increasel[26], the applicability of the
AL/ +O(AL?/€7). However, at lowest order i, this modula-  Bessel approximation is generally limited.
tion is precisely canceled by the variation of the other term  We carefully checked the precision of the approximations
so that the overall correction is of second order. For smpall against the results obtained with the ODE approach and found
and¢’ > ¢, the last two terms in Eq_(#5) are dominant and bythat overall the typical error is very sma (0.1% — 5% for
using Eq.[(4%) we find B = 103 and¢ < 4000). However, even for rather small
At ~ 1,¢ > 1 andB ~ 10 we occasionally find that
the approximation can beffoby a large amount, when the
kernel value is close to zero-crossing (e.g., for= 1073,
¢ =~ ¢ ~ 2404 andm =~ O, which is df by a factor of
Thus, withn 9, 1K}, = AL[1 + o) s:1K}, this implies = 1.5). Also, the approximation is generally less accurate for
m o~ (1+ §M) s KT and ;KT ~ (1+ w) oK™, con- ¢ =m We thus do not recommend using the expressions for

firrﬁing our statement. Coe)rrer real computations, also because the ODE approach already is

For similar reasons, changes of the magnetic quantum nun¥€'Y fast and reliable.
berm < ¢ will cause corrections to the kernel of order
o(mae/62).

AL  no
57(2][ X |:1— 7 + FHS] 5117{2}.

A. Asymptotic expressions for the kernel B. Series expansion in orders ofy

From Eg. [4%4), we can also obtain asymptotic expressions From Eq.[4%), we can also obtain simple term-by-term ap-
for the aberration kernel in the limit of largeand¢’. Intro-  proximations for the aberration kernels. Rescaling them by



0.1

o
o
©

ODE approach
Our approximation
Notari et al.

T
(I, m s = (1000, 0, 0) |
B=0.1

o©
o
>

0.04

Modulus of the kernel element

0.02

Al

Figure 2: Modulus obk}},,, at{ ~ ¢ for £ = 1000,m = O and
B = 0.1. We compare our numerical result with the approximationidentified with the Bessel approximation given above

Eq. [47) and Eq. (8)-(10) given in [23].

Nee = 7 [1iel4 sBM,, for ' > ¢ Eq. (43) becomes

ALKy + 1 0ysKpy = Ky — (1B )s Pr-1s

wheresKy, = <K}, /Nee.

k) _

K (k)

—m(k-1)
ee = Kppr

2
+ (SBm) g/( 1

with S/???(O) =1and S/?"?([k) =0fork < 0.
For¢ = ¢’, we proceed similarly, finding

~m(k-1)

Y+ (SB?])Z Kep1 -

k) _ m \2
= (sBria)” skps1y

With SE%O) = 1, for then? correction to the diagonal term this

equation directly implies
—m(1
Kee ) = Bm)2 +(sB +1)2
Inserting this back into Eg[_(#8), we then find

Al+1

Z (SBHk

for ¢’ > ¢. Repeating the process, we have

-m(1) _
sKpr

_ 2 2
SKg[ = (sB +k) (SB;Hrker—l)

Sk

‘ Z PIREHR A

k=0 p:O

Inserting the series ansagfg‘g =
T o(=1)K k92 (2k + AC)!, after collecting terms we find

(48)

(49)

(50)

(51)

(52a)

(52b)

10

just evaluate the recursions E[g.](48) dnd (49) in an altempat
manner, so that we do not give additional explicit expressio
here. We note that the form of the recursions also explicitly
shows that the kernel far = 1 does not depend on the sign of
the spin weight and hence directly prov@§’, () = X7, (1)
required to avoide/B-mode mixing (Secf1V).

From Eq.[[51), we can also understand why the approxima-
tion Eq. [47) is only expected to work fax¢ < ¢. The first
two terms in the Taylor series are

A Al 1 A€+l(s " kn)z
m ~ m | _= _ _ K7
sKeen) ~n lkl sBrak [Aé’! (AL 1 2)! }
(ZSB?] TI)M (235?77)2 m
SO NI v I Jac(2:87'1).

which only forA¢ < ¢ and &% ~ (A¢ + 2)(sBI"? can be

VII. CONCLUSION

In this paper, we found a novel matrix representation for
the harmonic-space aberration kernels. Several useful and
exact relations are then derived by utilizing the commuta-
tion relations for the rotation and boost operators. CMB ob-
servables with Doppler weight = 1 (e.g., the polarization-
averaged temperature and the temperature-weighted Stokes
parameters), have the simplest transformation propeities
showed that thel = 1 kernels are the matrix elements of a
boost operator, parameterized by the additive rapiditaipar
eter, between two spherical harmonic base states.

The unitarity of the boost operator leads to power con-
servation laws under aberration, which are valid doe 1.
The Lorentz algebra, satisfied by generators of rotatiooth(b
space-fixed and body-fixed) and boosts, lead to recursian rel
tions that raise or lower the spherical harmonic quantum-num
bers¢ andm, or the spin weighs by one unit. These provide
useful identities in analytical calculations. Applyingte re-
cursions repeatedly, starting from known kernels of theslsiw
¢, |m and|g as suitable boundary conditions, yields kernels
with arbitrary¢, m ands. Based on this, the new recursion
scheme developed here greatly simplifies previous rea@irsiv
algorithms at both conceptual and technical levels. It ptse
vides exact values for the aberration kernels to benchrhark t
accuracy of existing fitting formula.

We proved that aberration does not mix B@andB modes
for d = 1 polarization observables to all ordersgnWe ar-
gued that for perfect blackbody spectias 1 kernels are the
relevant ones for the study of CMB aberration, independent
of experimental details. In the presence of spectrum distor
tions and foreground emissions, the correct way to accaunt f
the aberration féect deserves further consideration. For gen-
eral purposes, we provided recipes to compute aberratien ke
nels of Doppler weightl # 1, relevant for boosting, e.g., the
specific intensity or the frequency-integrated intensityose

for the * correction to the kernels. Higher order terms canhave been shown to be related to the= 1 kernels viad-
be obtained in a similar way, but generally it is simpler toraisinglowering recursions.
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Another major result derived from the matrix-element rep-wide oncef > 1/8, the approximation still has limited appli-
resentation is the flow of the¢= 1 aberration kernels with the cability. We thus do not recommend using the expression for
rapidity parametes. This leads to coupled ODEs for a set of real computations, also because the ODE approach already is
aberration kernels that in practice can Iffieetively truncated. very fast and reliable.

The ODE approach is very advantageous because the initial Finally, we emphasize that most of the analytical results
conditions needed, i.e. the kernels foe 0, are in all cases obtained in this paper apply to all angular scalearbitrary
trivial, and therefore extremely straightforward to set Ui- spin weights and Doppler weightl, being fully non-linear in
lizing standard recipes, the ODE approach can improve upop. Therefore, our formalism might find applications in other
the recursive approach by a facter25 in terms of computa-  studies, where anisotropic radiation seen in a (relatbzty)
tional speed, for moderate valuespf 1073, Parallelization  boosted reference frame is involved. One example is the scat
is straightforward in the ODE approach, pushing the computering of difuse photon backgrounds by fast-moving charged
tation of the aberration kernel to a few seconds. particles within the jets of active galactic nuclei|[81-33]

In the limit of large¢, we find simple asymptotic approxi-
mations for the kernel elements from thé&diential equation
system (Sed_VIA). While similar to the expressions given
earlier by [28], we obtain our approximations with purelyaan
lytic arguments. Our approximation generally work verylwel
(= 0.1%- 5% forg = 1073 and¢ < 4000), however, when The authors thank Donghui Jeong, Marc Kamionkowski
comparing with our ODE approach we find several cases foand Jared Kaplan for useful discussions. We also thank
which the approximation is very farfio ForA¢/¢ < 1, our  Miguel Quartin and Alessio Notari for comments on the first
expressions also capture the main dependence of the kerraiaft of the paper. This work was supported by DoE SC-
even forg =~ 0.1; however, since the kernel becomes very0008108 and NASA NNX12AE86G.
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Appendix A: Deriving the integral forms for the aberration k ernels

In the literature, dierent approaches of deriving the aberration kernels fan benperature and polarization have been presented (see
e.g. [10]34]). All are essentially based on how the photéots-momentum and polarization tensor transform under reiz boost of the
reference frame. Here we adopt the covariant formalism 6f[RE].

The photon phase space density needs to be described by ritd wesorfF,, (not to be confused with the usual electromagnetic field-
strength tensor), for there are two distinct polarizatitates. The observer’s motion defines a unique time-like wattore;, and its line of
sight direction (opposite to the direction of propagatidajines a space-like unit vectat orthogonal tagy. The symmetric screen-projection
tensor can be defined as

St (e, n) = ¢, + €56y, — 1N, (A1)

whereg,, is the flat Minkowski metric. A gauge-invariant phase spaeasity f,, can be then obtained by screen-projection, ifg. =
S$*,S7,F,. Neglecting circular polarization, which is irrelevant the CMB, the gauge-invariarff, can be decomposed into

£(E. ) = ZN(E. S, + P, 1) (»2)

whereN = g f,, is the occupation number including both polarization staded the symmetric trace-frég, encodes the fierence between
the two linear polarizations. Note that photon phase spacsity is a function of the measured photon 4-momenpins E(€, — n¥), or
equivalently a function of the measured enekggnd the measured line of sight directigh We have made this dependence manifest.

Next we need to know how, transforms under a Lorentz boost. Note that due to the sqremaction procedure it transformsfidirently
from how a usual Lorentz tensor does. To derive the corransformation rule, let us consider another observer,

& =yE+v),  y=UyVI-wy, =1 V1-p ey, =0, (A3)
which has velocity relative to the original observer. The new observer will mea screen-projected phase space defi§ity S, S, F,,

whereS*, = S™,(ey, ') is the boosted screen-projection tensor constructed fhermew time directior, and the aberrated line of sight
direction

e —

= ——
v(1+nv,)

+ y(e + V). (A4)

Besides, the photon energy is shifted to
E = E'y(1-n*v,). (A5)

A nice property is tha8™, can be obtained fror8#, simply through further screen-projectiog4’, = S*,S"7,S”,,. After simple algebra this
leads to the transformation &f andP,,,,

N'(E’, /") = N(E, h), P, (E', V) = S7,S",P,(E, A). (AB)
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1. Temperature kernels

For a blackbody spectrum, we habd&E, ) = 2/(e5/T™ — 1). Under a Lorentz boost the blackbody shape is preservgd(A8) then
implies thatE’/T’(i) = E/T(A). Using Eq. [A%), we thus immediately confirlif(7") = T(A)/[y(1 — Bcoss’)]. We can then compute the
boosted temperature multipole ¢beients,

-~ N 2A,Yf,m(ﬁ’)T(n) 2y Yo (1) Yien(1)
,m_fdnvl,m(n)T(n)_fd |m fd . (A7)

1 n/#v l n’#v)

Given thatn™v, = gcos’ and that for boosts along thedirection the azimuthal integral givés., together with the definition Eq](3) for
the aberration kernel, we confirm Efj (4) fo& 0.

2. Polarization kernels

We use the notations and properties of tensor spherical dracsi as developed in Ref,_[28]. We consider temperature-weighted
polarization tensor

P (N) = T(N)P,,(E, N)/N(E, A). (A8)

Assuming no deviation from a blackbody spectrum, the phetwrgyE cancels out irP,,.
Orthogonal to€; and ¥, we can choose two space-like unit vectet$n) with a = 1,2, which is unffected by screen projection
ey (M)S”,(N) = e;(f). SinceP,, is screen-projected, we can construct the two-by-two wrense tensor

Pan(R) = e5(N)e (NP, (). (A9)
We now compute the transformation®f,

T'(f)

P () = e (V)ey ()P, (V) = e (N)ey()S;/ (V)S,” (i )T() Q)
— TR M (P () = T (Mo (Pl (A10)
The spherical harmonic expansion for the polarizationdereads
Pao) = Y > & Yeman(), (A11)

m s=+2

and similar in the boosted frame. Hé(@fn (7)) are the tensor spherical harmonics of definite helicit}].[28derivation parallel to that for

temperature then gives the tranformation of the multipoketicients,

A=y Na, f aoay e 1 Vi & ()l ()eas (Men.r (). (A12)

{m s=+2 y(1-nv)

We can relate the tensor spherical harmonics to th.e spightex harmonics@fn)ab(ﬁ) = 22Y(em)(A)ez2.a0(N) [28], with £:5.5(R) being the
usual spin-2 base tensors on the sphere. Then we find

= 2 2 ey [ Ol O ey, ), (A13)

(m s=+2 y(L-nv)

with £7¢(A) = e_san(M)e(N)e; (), and similar definition foe™ (i) as measured in the boosted frame. By explicitly constngatie transverse
base vectorsg, (), and similarly fore} (i) in the boosted frame one find simple results,

(5 (A)] &22,0(R) = (25 (W] &x2,0(R) = (A14)
Eq. [AI3) then simplifies to
- [=2Y(em) ()] 2 Y(em (N)
12 2 A7
a2 = a,rw f d?f A=) : (A15)

Again, given thanv, = Bcos¢ and that the integral givesn., together with the definition Eq[](3) for the aberration lerwe obtain
exactly Eq.[(#) fors = +2.
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Appendix B: Proof of general kernel properties

Here, we briefly prove the general kernel properties, Elq. Y& start with¢ 7B = Q‘K[“,‘[(/}), which is the simplest to show. From
Eq. (@), with_sYp-m(/) = (-1)*"[sYrm(R)]* we have

m o [sYe-m(A)]" sYe-m(R) R (IR (5)) .
"SR = f &' [y(1-Bcoso)d f &*h [y(1= Bcoso)]" =[CL@)]" = $KT8), (B1)

which was our statement. Next we progﬁ(["ﬂg(—ﬁ) = (-1 E;K;‘?[(ﬁ). Imagine we perform a transformation— = — 0, ¢ — ¢ + = and
B — —B. Then this also mear®s — = — ¢ and¢’ — ¢’ + =, so that the kernel returns to its initial state. Using thepprty of spin-weighted
harmonics

Yem(m = 60,0 + 1) = (1) _sYem(6. ), (B2)

from Eq. [3) we can directly infef X (=) = (= 1)+ 9 K (B). This is a symmetry of the kernels for genedal
Finally, we provelX™, (8) = (- 1)M Z9qm.(B), for which we need the identities, d a®g(1 — Bcost’) = d cost/(1 + fcosb), dp’ = do
and 1= y?(1 + S cosb)(1 - S coss’):

degrm _ , L [sYem(A)]* sYem(R) [—sYom(P)]* _sYem()
SHKob) = f W d oSt = A B cosa]? f 00 4 Cost T~ B c0s#) (1 + f cosh)

_ Y24 D1+ Bcost) [ sYom(A)]" _sYem() _ [-sYem(P)]" —sYem(R)
- [ avdcos YL+ feosh) - Jeoscon

=290 (=B = 2K (-B) (B3)

from which our statement follows after usidg™, (=) = (-1)** 9.KT,(8).

Appendix C: Acting Y, on base states

To derive Eq.[(2¥), we start with the following identities f;pin-weighted harmonich [110,136]

1sYm(R) = sc?ll sYeram() — sYem(N) + sC{ sYe_im(N), (Cla)

é’(f 1)
VI=12 35 sYm(R) = €CPly sYeram() + m $Yem(R) = (€ + 1) C7 sYeam(R). (C1b)

whereu = cosd and C]" = sBJ'/{ = V(2 = mR)(¢2 — &) /(42 — 1)/¢. From Eq.[(Th), we see th¥( is just the sum of cagand sirvd,. When
acting on| sfmy, or epr|C|tIy Dsm, we just have to put back the-independence¥. The terms proportional tesfm) on the right hand side
cancel, and we obtain Eq.(24).

Appendix D: Independence of the kernel on the sign of the spiwmeight sfor d = 1

For convenience, we regard aberration kernels as functibtiee rapidityn. Since — —g impliesp — —n, from Eq. [8) we also have
4K (—n) = (1) 9K, (). By Taylor expanding Eq[I5) in, the kernel for infinitesimal boost reads

(+d (d-1)sm (+1-d

— sBp10cr-1 + w0 w — 7 B, |+ O0P). (D1)

d(]([' [(77) =0pc+1

The second term in the square brackets, being the only tependéng on the sign o (note thatsB}" only depends ots)), vanishes id = 1.
Therefore, we find that at least for infinitesimal boost, B&d) holds if and only ifd = 1. We should expect the = 1 case of Eq[{22c) is
also true for any finitey, sincer is additive under successive boosts, and a finite boost isagnt to many boosts with infinitesimalapplied
successively.

To prove that, we write down a Taylor expansiomi(specialized tal = 1),

Kpry = Z Ko’ (D2)
n=

We want to show tha;K;’,‘(,“) is nonzero only i + ¢’ +n=even. In order to show that, we us&j), = (s{'m| exp(inY,) | stm), and Taylor-expand
the operator

o0

eXPGn\A(z)= - IYz . (D3)
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Then SK?,]([,H) = (1/n!) (s'm| (iY,)"| stm). We know that in harmonic spacé, has matrix elements only fax? = ¢ — ¢ = +1,
(st'm|iYy|stm) = sBfL; 6701 = sBf 611, (D4)

Then let us examine the matrix elements fidt,", which can be obtained by matrix multiplications. Each fplittation changesl by one
unit, thereforen successive multiplications will contribute to a partiawalue ofA¢, only if A + n =even, orf + ¢’ + n = even. Therefore,
oV = 0 unless” + £+ n = even.

Now we can apply the Taylor expansion Hg.[D2),

) )

KR = D 1P = (1Y O = (1) K ). (D5)

n=0 n=0

Because!KT,(—n) = (—1)"*“ 4K, (n), which holds for anyd, we obtainkT,(8) = 1.K7,(8), as stated in EqL{2Rc).

Appendix E: Numerical computation of sX7,(5)

To compute the aberration kerngk),(8), we need to evaluate the spin-weighted spherical harnfaniions (here we directly use that
the sign ofs does not matter),Y,m(f). Since we aligned the direction of the motion with thaxis, the dependence on the azimuthal angle,
drops out of the problem and for convenience we can introtheg@olynomials,

sPP'(cosd) = Var e ™ Ym(9,6), (E1)

which are real functions. Far= 0 we have,P'(x) = V2 + 1+/(€ — m)I/(¢ + m)! P"(x), whereP"(X) define the usual associated Legendre
polynomials. With this definition the kernel reads

1 (1 SPRO) PP (455)
K.(B) = —f — P, E2
S [[(ﬁ) 2 1 7(1—ﬂ,u’) I ( )

where we use@l’ = cost’. The polynomialsP}'(x) follow the recursion relation

sm
LGP0 = (x4 7220 P00 - PP (€3)

with C" = BI/¢ = /(62— m?)((2 — )/(4¢2 - 1)/¢ for £ > 0 and C" = 0 otherwise. This expression directly follows from Hg. (F1a
The recursions are best startedBf(x). Fors > 0, the initial conditions can be derived by subsequently\épg the spin-raising operator,
8 = —(sind)[0y + (i/ sinB)d,]/(sinb)®, to sYmm(¢, 6) and then converting back t&}'(x). For the first few values df, we find

oPRO) = || T PA) = (- Y B 1 ey (E4a)

PO = 300, 1P = [T P (E4b)
15 5 —— mm-1) 1-x m
S R T R A R L L= B ) (E40)

Since1P3(x) = 2P5(X) = 2PJ(X) = 2P1(X) = 0, for s > 0 we needs additional expressions to start the recursions. To cartyr@inumerical
integrals we use Clenshaw-Curtis quadrature rules, whiegkiery accurate even for largeWe used the results for direct numerical integration
to confirm those obtained with the kernel recursion relation
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