
UC Berkeley
UC Berkeley Previously Published Works

Title
New operator approach to the CMB aberration kernels in harmonic space

Permalink
https://escholarship.org/uc/item/6q644954

Journal
Physical Review D, 89(12)

ISSN
2470-0010

Authors
Dai, Liang
Chluba, Jens

Publication Date
2014-06-15

DOI
10.1103/physrevd.89.123504

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6q644954
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

40
3.

61
17

v2
  [

as
tr

o-
ph

.C
O

]  
5 

Ju
n 

20
14

New operator approach to the CMB aberration kernels in harmonic space

Liang Dai and Jens Chluba
Department of Physics& Astronomy, Bloomberg Center,

The Johns Hopkins University, Baltimore, MD 21218, USA
(Dated: July 9, 2018)

Aberration kernels describe how harmonic-space multipolecoefficients of cosmic microwave background
(CMB) observables transform under Lorentz boosts of the reference frame. For spin-weighted CMB observ-
ables, transforming like the CMB temperature (i.e. Dopplerweightd = 1), we show that the aberration kernels
are the matrix elements of a unitary boost operator in harmonic space. Algebraic properties of the rotation and
boost generators then give simple, exact recursion relations that allow us to raise or lower the multipole quantum
numbersℓ andm, and the spin weights. Further recursion relations express kernels of other Doppler weights
d , 1 in terms of thed = 1 kernels. From those we show that on the full sky, to all orders in β = 3/c, E- and
B-mode polarization observables do not mix under aberrationif and only if d = 1. The new relations, fully
non-linear in the boost velocityβ, form the basis of a practical recursive algorithm to accurately compute any
aberration kernel. In addition, we develop a second, fast algorithm in which aberration kernels are obtained
using a set of ordinary differential equations. This system can also be approximately solved at small scales,
providing simple asymptotic formulae for the aberration kernels. The results of this work will be useful for fur-
ther studying the effect of aberration on future CMB temperature and polarization analysis, and might provide a
basis for relativistic radiative transfer schemes.

I. INTRODUCTION

The temperature and polarization anisotropies of the cos-
mic microwave background (CMB) radiation provide a great
deal of information about the origin and evolution of our Uni-
verse [1–4]. Inflation predicts that the primordial CMB fluc-
tuations have isotropic and gaussian statistics around an aver-
age temperature of̄T = 2.7260± 0.0013 K [5, 6] in the CMB
rest frame. The anomalously large temperature dipole (ℓ = 1)
∆T = 3.355± 0.008 mK [7] towards Galactic coordinates
(l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦) [8], however, indi-
cates that the solar system is moving with respect to the CMB
rest frame with a speedβ = 3/c = 0.00123. Therefore, due
to the Lorentz boost from the CMB rest frame into our frame,
the observed radiation deviates from what would be seen in
the CMB rest frame.

In addition to the change of the photon energy caused by the
Doppler effect (leading to the temperature dipole), due to light
aberration the photon’s apparent propagation direction isalso
modified under a Lorentz boost (and so are the polarization
direction and plane). This induces coherent, (nearly) dipo-
lar departures from statistical isotropy in both the temperature
and the polarization field. Although the Doppler and aberra-
tion effects occur independently, byaberrationwe henceforth
refer to both of them simultaneously, unless stated otherwise.

Aberration-induced off-diagonal elements in the CMB co-
variance matrix can serve as an independent handle to deter-
mine the observer’s motion [9–13]. The motion-induced dis-
tortion of the CMB statistics should be corrected for before
accurate cosmological information can be extracted from the
observed temperature/polarization power spectra. Although
Ref. [10] first found that the correction isO(β2) ∼ 10−6 for
the idealistic full-sky situation, it was later on realizedthat
in practice the bias can beO(β) ∼ 10−3 due to asymmet-
ric sky masks [14–17]. Moreover, current or incoming ex-
periments with high resolution, e.g. Planck [18], SPT [19],
ACT [20], ACTpol [21] and SPTpol [22], push the investiga-

tion of the aberration effects to even larger multipoleℓ (i.e.,
smaller scales). This will be particularly important for polar-
ization data, which encode primordial information to larger
ℓ [21, 22]. All those aspects call for modelling the aberration
effects, for both temperature and polarization anisotropies,on
very small angular scales and with great precision.

One could in principle undo the aberration effects by “de-
boosting” the sky in real space [23–25]. In reality, however,
real-space methods suffer from inaccuracies due to the reso-
lution of the pixelization scheme and imperfect knowledge of
the window function, because aberration does not preserve the
shape and the area of each pixel. This also causes changes to
the effective beam of the instrument that have to be consid-
ered carefully. To avoid these problems, Ref. [14] proposeda
harmonic-space strategy in which one first boosts the full sky
in harmonic space and then transforms into real space to apply
the sky mask. The precision of the harmonic-space approach
is then guaranteed by accurate determination of theaberra-
tion kernels— the linear transformation from multipole coef-
ficients in the rest frame to those in the observer’s frame.

The aberration kernels depend not only on the spherical har-
monic multipole numbersℓ,m, but also on the spin weight
s (s = 0 ands = ±2, for temperature and polarization, re-
spectively). Furthermore, they differ for different Doppler
weightd (which is the power of Doppler factor present in the
transformation rules), depending on whether the thermody-
namic temperature (d = 1), the specific intensity (d = 3) or
the frequency-integrated intensity (d = 4) are being boosted
[10, 12]. Below the typical angular scale of aberration, cor-
responding toℓ & 1/β ≃ 800 orδθ ≃ 4′, analytical results
up toO(β2) [10] for the kernels break down [26], and algo-
rithms non-perturbative inβ are needed. General integral ex-
pressions for the kernels have been known, but their highly
oscillatory nature makes direct numerical integration unfeasi-
ble. The first efficient algorithm for computation of the kernel
elements based on recursions was developed in Ref. [26] to
push into the non-perturbative regime. Fitting formula forthe
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kernel integrals, approximately valid at small angular scales
and tested up to intermediateℓ . 700, were given in Ref. [23]
to go beyond a power expansion inβ.

In this work, we take a more systematic route than previ-
ous studies. We show that thed = 1 kernels are the matrix
elements of a unitary boost operator, analogous of the Wigner
D-functions being the matrix elements of a rotation operator
in harmonic space. The unitary operator lives in the Hilbert
space of all spin-weighted functions on the sky. It is the
exponentiation of the boost generator (valid for infinitesimal
boost), parameterized by the rapidity parameterη = tanh−1 β

that is additive under successive boosts. Using rapidity instead
of β to describe the boost is one of the new insights into the
problem that allowed us to generalize previous discussions.
The Lorentz algebra, formed by the generators of rotation and
boost in harmonic space, then leads to simple linear recursions
that relate kernels of differentℓ, differentm and general spin
weight s. In particular, these expressions are more compact
than those given in Ref. [26] and do not require an order-by-
order treatment. Moreover, thed , 1 kernels can be obtained
from those ofd = 1 through another set of straightforward
recursions. This is particularly interesting since thed = 1 ker-
nels follow special symmetries that ease their computation.

Based on our novel representation of aberration kernels, we
obtain two efficient and accurate algorithms to cross check
against each other: (i) an elegant recursive algorithm thatim-
proves upon Ref. [26] and accounts for kernels of arbitrarys
andd (see Sec. V); (ii) a scheme in which kernels are com-
puted using ordinary differential equations (ODEs) as flows
in the rapidityη (Sec. VI). We explain how to implement both
algorithms as powerful solutions to boosting the sky in har-
monic space. The ODE approach furthermore allows us to de-
rive simple analytic approximations valid at small-scales. The
expressions are very similar to those obtained by Ref. [23],
however, here we derive them from analytic considerations
also improving the range of applicability and testing them to
very small scales (Sec. VI A). Our code will be available at
www.Chluba.de/Aberration.

This paper is organized as follows. Sec. II reviews the def-
initions of harmonic-space aberration kernels (for general s
andd), their integral representations, and their basic proper-
ties. In Sec. III, we introduce operators that generate a Lorentz
boost in harmonic space, and derive the matrix-element repre-
sentations for thed = 1 kernels. In Sec. IV, we show that aber-
ration does not generate mixing betweenE andB modes for
polarization observables with Doppler weightd = 1. Then in
Sec. V, based on the matrix-element representation, we make
use of operator algebra and derive recursion relations thatre-
lated = 1 kernels with adjacent values ofℓ, m, and the spin
weight s. Immediately following those recursion relations, a
practical recursive algorithm to compute the aberration ker-
nels needed is then presented in detail. An alternative method
based on solving ODEs, also derived from the operator ap-
proach, is developed in Sec. VI. We offer some concluding
remarks in Sec. VII. In App. A, we include a covariant deriva-
tion of the integral forms for both temperature and polariza-
tion kernels (we illustrate by thed = 1 case, but the derivation
can be easily generalized tod , 1). Some symmetry prop-

erties of the kernels are proved in App. B. App. C is a brief
derivation of how the boost generator acts on spherical har-
monic base functions. App. D details a key steps used to prove
the conclusion of Sec. IV. App. E elaborates on a few numeri-
cal techniques that provide initial conditions for our recursive
algorithm and quadrature.

II. ABERRATION IN HARMONIC SPACE

In this Section, we review the harmonic-space aberration
kernels. Imagine an observer that moves with respect to the
CMB rest frameS. Without loss of generality, the spatial co-
ordinates can be oriented such that he is moving along thez
direction relative toS with speedβ = 3/c. We call the rest
frame of the observerS′.

In frameS, a CMB observable can be defined as a function
of the directionn̂ in the skyX = X(n̂). It can be the blackbody
temperature of the radiationT(n̂), which has spin weights= 0
under a rotation about the line of sight. For polarization the
observables are thetemperature-weightedStokes parameters,
P± = T(n̂)[Q(n̂) ∓ iU (n̂)]/[

√
2I (n̂)], which have spin weight

s = ±2, respectively. A spherical harmonic expansion can be
applied to these observables,

X(n̂) =
∑

ℓm

aX
ℓm−sXYℓm(n̂), (1)

whereaX
ℓm =

∫

−sXY∗
ℓm(n̂)X(n̂) d2n̂. Aberration is the phe-

nomenon in which a photon coming from directionn̂ in S
will appear to have come from a different directionn̂′ in S′,
and in addition that its energy undergoes a Doppler shift. The
spherical-polar coordinates in both frames,n̂ = (θ, φ) and
n̂′ = (θ′, φ′), are related by

cosθ =
cosθ′ − β

1− β cosθ′
, φ = φ′. (2)

Therefore, the CMB observables,X′ = X′(n̂′), as measured
in S′, differ from those measured inS. Another harmonic
expansion similar to Eq. (1) can be conducted, and multipole
coefficientsa′X

ℓ′m′ measured inS′ are then obtained. Those are
related to the the multipole coefficientsaX

ℓm through a linear
transformation,

a′Xℓ′m =
∑

ℓ

sXKm
ℓ′ℓ(β) aX

ℓm, (3)

where sXKm
ℓ′ℓ(β) is called the aberration kernel for spin weight

sX. Note that for observer’s velocity in thezdirection, aberra-
tion does not mix multipoles with differentm’s.

Based on the transformation properties of photon’s energy
and its polarization tensor under a Lorentz boost, explicitex-
pressions for aberration kernels for both temperatureT and
polarizationsP± have been derived in the literature in the form
of an angular integral involving two (spin-weighted) spherical
harmonics [10],

sKm
ℓ′ℓ(β) =

∫

d2n̂′
[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

γ(1− β cosθ′)
(4)

www.Chluba.de/Aberration
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with Lorentz factorγ = 1/
√

1− β2. Here one has to view
n̂ as a function ofn̂′ by inserting Eq. (2). The temper-
ature kernels (s = 0) is easy to derive from the relation
T′(n̂′) = T(n̂)/[γ(1 − β cosθ′)]. For interested readers, the
derivation giving the polarization kernels (s= ±2) is outlined
in App. A 2. Unfortunately, the kernel integral Eq. (4) is nu-
merically difficult to compute (especially for largeℓ, ℓ′) due to
the fast oscillatory behaviors of (spin-weighted) spherical har-
monics. For this reason, recursion relations have been devel-
oped as alternative method to compute the kernels accurately
and efficiently [26]. Here, we generalize and improve these
recursion tos, 0.

A. Generalization to F′(n̂′)/ν′d ≡ F(n̂)/νd

The kernel Eq. (4) is applicable to any spin-weighted field
on the sphere transforming asF′(n̂′) ≡ F(n̂)/[γ(1− β cosθ′)]
or equivalentlyF′(n̂′)/ν′ ≡ F(n̂)/ν under Lorentz boosts.
Here ν and ν′ are the photon’s frequencies as measured in
S andS′ respectively. It is straightforward to generalize to
fields that transform asF′(n̂′)/ν′d ≡ F(n̂)/νd, with any (in-
teger) Doppler weightd, once sKm

ℓ′ℓ(β) for d = 1 is known.
Defining

d
sKm

ℓ′ℓ(β) =
∫

d2n̂′
[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

[γ(1− β cosθ′)]d
(5)

and using the identityγ2(1 − β cosθ′)(1 + β cosθ) = 1, with
the relation Eq. (C1) we have

d
sKm

ℓ′ℓ =

∫

d2n̂′[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)
[γ(1− β cosθ′)]d−1γ(1− β cosθ′)

=

∫

d2n̂′[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)γ(1+ β cosθ)
[γ(1− β cosθ′)]d−1

= γ d−1
s Km

ℓ′ℓ + γβ

[

sC
m
ℓ+1

d−1
s Km

ℓ′ℓ+1

+
sm

ℓ(ℓ + 1)
d−1
s Km

ℓ′ℓ + sC
m
ℓ

d−1
s Km

ℓ′ℓ−1

]

, (6)

where sCm
ℓ
=

√

(ℓ2 −m2)(ℓ2 − s2)/(4ℓ2 − 1)/ℓ for ℓ > 0 and
ℓ ≥ |m|, |s|, but zero otherwise. With this expression one can
raised by unity, providing recursions that can be started from
sKm

ℓ′ℓ =
1
sKm

ℓ′ℓ. Similarly, to lowerd we can use

d
sKm

ℓ′ℓ =

∫

d2n̂′[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)γ(1− β cosθ′)
[γ(1− β cosθ′)]d+1

= γ d+1
s Km

ℓ′ℓ − γβ
[

sC
m
ℓ′+1

d+1
s Km

ℓ′+1ℓ

+
sm

ℓ′(ℓ′ + 1)
d+1
s Km

ℓ′ℓ + sC
m
ℓ′

d+1
s Km

ℓ′−1ℓ

]

. (7)

These two relations are useful because, as we show below, the
kernel for the cased = 1 has special symmetry properties that
ease its calculation. The kernel for any other Doppler weight
d , 1 is then readily obtained with Eq. (6) and (7).

B. General properties of the kernel

Using the properties of the spin-weighted spherical har-
monic functions, with the definition of the kernel integralsit is
straightforward to show thatdsKm

ℓ′ℓ has the following general
properties (see Appendix B)

d
sKm

ℓℓ′ (β) = (−1)ℓ+ℓ
′ 2−d
−s Km

ℓ′ℓ(β) (8a)
d
sKm

ℓ′ℓ(−β) = (−1)ℓ+ℓ
′ d
−sKm

ℓ′ℓ(β) (8b)
d
−sK−m

ℓ′ℓ (β) = [ d
sKm

ℓ′ℓ(β)]∗ ≡ d
sKm

ℓ′ℓ(β) (8c)

These properties highlight useful symmetries of the kernels.
For instance, combining the first two equations for the case
d = 1 gives

sKm
ℓℓ′ (β) = sKm

ℓ′ℓ(−β). (9)

This means that the kernels are unitary and the total (tem-
perature or polarization) power is conserved under a Lorentz
boost [14]. The last expression furthermore emphasizes that
the aberration kernel (in the special coordinate system where
β is aligned with thez-axis) is a real quantity. In particular,
for s = 0 it implies that only elements form ≥ 0 have to be
computed, immediately determining those form < 0. This
just reflects the fact that a map of a real quantity remains real
under aberration and can be used to simplify the computation.
For s , 0 the situation is more involved, and properties of
the kernel under parity transformations depend ond, as we
explain in Sec. IV.

III. MATRIX-ELEMENT REPRESENTATION FOR THE
ABERRATION KERNELS

To generalize our discussion to arbitrary spin weights,
in this section we recast Eq. (4) into a different form using
WignerD-functions.

A. Hilbert space for functions with spin

While scalar fields on the sky depend on the two spherical
anglesφ andθ, fields with general spin weight depend on an
additional roll angleψ (that goes from 0 to 2π), which param-
eterizes a rotation about the normal direction at every point on
the sky. Consider the Hilbert space of all fields with general
spin weight, i.e. all functions ofφ, θ andψ. These angles
can also be thought as three Euler angles describing the ori-
entation of a rigid body. For two functions (or two states)
f = f (φ, θ, ψ) andg = g(φ, θ, ψ) living in this Hilbert space,
we borrow the notation from quantum mechanics and define
the overlap between the two as

〈 f |g〉 ≡
∫

d3ρ [ f (φ, θ, ψ)]∗g(φ, θ, ψ), (10)

where the integral over three angles is explicitly
∫

d3ρ ≡
∫ 2π

0
dφ

∫ π

0
sinθdθ

∫ 2π

0
dψ. (11)
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Similarly, a linear operator̂O defined in this Hilbert space has
a matrix element between the two states〈 f | Ô |g〉.

A complete set of base functions for this Hilbert space are
the familiar WignerD-functions, which are related to the spin-
weighted harmonics via [27]

Dℓ
sm(φ, θ, ψ) =

√

4π
2ℓ + 1

eisψ
−sYℓm(θ, φ). (12)

It is more convenient to use the normalized base functions
D̃ℓ

sm(φ, θ, ψ) =
√

(2ℓ + 1)/(8π2)Dℓ
sm(φ, θ, ψ). Sometimes it is

more compact to use the common bra-ket notation| slm〉 to
denote the base functions̃Dℓ

sm.

B. Aberration kernels as matrix elements

Using base functions̃Dℓ
sm, Eq. (4) can be unified as

sKm
ℓ′ℓ(β) =

∫

d3ρ′
[D̃ℓ′

sm(φ′, θ′, ψ′)]∗D̃ℓ
sm(φ, θ, ψ)

γ(1− β cosθ′)
. (13)

Of course, since we choose to use the variables in frameS′,
(φ, θ, ψ) must be viewed as functions of (φ′, θ′, ψ′); Since a
boost preserves the spin weight,ψ = ψ′ can be supplemented
to Eq. (2).

We are now in a position to show that the aberration ker-
nels are equal to the matrix elements of a unitary operator that
represents the Lorentz boost. Consider first an infinitesimal
boost. The relative speedβ = 3/c corresponds to therapidity
η = tanh−1 β, and we assume thatη is sufficiently small so that
it suffices to compute up to linear order inη. Now we insert
Eq. (2) andβ = tanhη into Eq. (13), and expand up to linear
order inη, giving

sKm
ℓ′ℓ(β) =

∫

d3ρ′ [D̃ℓ′

sm]∗D̃ℓ
sm

+ η

∫

d3ρ′ [D̃ℓ′

sm]∗
(

cosθ′ + sinθ′
∂

∂θ′

)

D̃ℓ
sm+ · · ·

=
〈

sl′m
∣

∣

∣

[

1+ iηŶz + O(η2)
]

| slm〉 . (14)

Since we have expanded inη, the integrands are now calcu-
lated along line of sight direction (φ′, θ′, ψ′) in S′, and the in-
tegrals evaluate to a matrix element. The differential operator
Ŷz is theboost generatoralong thezdirection,

Ŷz(φ, θ, ψ, ∂φ, ∂θ, ∂ψ) = −i (cosθ + sinθ∂θ) . (15)

It is independent of the azimuthal angle and the roll angle be-
cause a boost along thez direction leaves those two variables
unchanged.

Generalization of Eq. (14) to finiteη is straightforward.
The rapidity is additive under successive boosts. A boost
with finite η can be achieved by successively applying many
boosts along the same direction but each with a very small
rapidity parameter. For instance, we can takeN successive
boosts, each with rapidityη/N. The operator for the finite

boost is therefore the exponentiation of the infinitesimal one
limN→∞(1+ iηŶz/N)N = eiηŶz. Hence, we have

sKm
ℓ′ℓ(β) =

〈

sℓ′m
∣

∣

∣ eiηŶz | sℓm〉 , (16)

which provides an alternative way to express the kernel ma-
trix elements, Eq. (4), but using the language of operators in
Hilbert space.

C. Arbitrary boost direction

FrameS′ can in general move along other directions rel-
ative to frameS. To generalize the boost direction from the
z direction to any other direction, we re-orient the spatial co-
ordinate system. This can be done using the three angular
momentum operatorŝLa with a = x, y, z [27],

L̂x = i
(

sinφ∂θ + cotθ cosφ∂φ − cscθ cosφ∂ψ
)

,

L̂y = i
(

− cosφ∂θ + cotθ sinφ∂φ − cscθ sinφ∂ψ
)

,

L̂z = −i∂φ, (17)

which generate rotations aboutfixedaxes. These satisfy the
familiar S O(3) algebra. Nevertheless, a larger algebra exist
for tensorial functions on the sky [28], once three boost gen-
eratorsŶa with a = x, y, zare included. Together witĥLa, they
form a Lorentz algebra,

[ L̂a, L̂b] = iǫabcL̂c, [ L̂a, Ŷb] = iǫabcŶc,

[Ŷa, Ŷb] = −iǫabcL̂c, (18)

where ǫabc is the totally anti-symmetric Levi-Civita tensor.
From the explicit form ofŶz given by Eq. (15), we can de-
rive the other boost generators using Eq. (18):

Ŷx = −i
(

sinθ cosφ − cosθ cosφ∂θ + cscθ sinφ∂φ

− cotθ sinφ∂ψ
)

,

Ŷy = −i
(

sinθ sinφ − cosθ sinφ∂θ − cscθ cosφ∂φ

+ cotθ cosφ∂ψ
)

,

Ŷz = −i (cosθ + sinθ∂θ) . (19)

Rotating the coordinate system will simply takeŶz to some
linear combination of̂Ya’s, which generates a Lorentz boost
along a different direction. Therefore, for a boost along the di-
rectionn with boost velocityβ, a rapidity vector can be written
η = η n. The general aberration kernels then read

sKm′m
ℓ′ℓ (β, n) =

〈

sℓ′m′
∣

∣

∣ eiη·Ŷ | sℓm〉 , (20)

which determines the mixing betweena′s
ℓ′m′ in frameS′ with

as
ℓm in frameS. SinceŶa’s are hermitian operators with re-

spect to the inner product Eq. (10),eiηŶz andeiη·Ŷ are unitary,
and the unitarity of the aberration kernels is thus obvious [14].
Eq. (16) and its generalization Eq. (20) are the major results
of this paper.
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IV. MIXING OF E/B MODES

TheB-mode polarization is a unique signature in the CMB.
While detecting primordialB modes will be a confirmation
of an inflationary background of gravitational waves, various
secondary effects at late times can convertE modes intoB
modes and hence confuse the primordial signal, in particular
at small scales [29, 30]. It is therefore of great importance
to have accurate, unambiguous predictions for secondaryB-
mode contamination.

In this Section, we address the question of whether aberra-
tion mixes upE-mode andB-mode polarization. We find that,
depending on the Doppler weightd for the polarization ob-
servable, spuriousBmodes arenotproduced ford = 1, but are
converted fromE modes ford , 1. This statement neglects
cut-sky effects which we will discuss in a subsequent pub-
lication [17]. Previously, based on leading-order expansion
in β for the polarization kernels, Ref. [10] foundE/B-mode
mixing for polarization observables weighted by specific in-
tensity (d = 3) and by frequency-integrated intensity (d = 4),
and Ref. [12] demonstrated that no mixing occurs for the case
of d = 1. Ref. [23] state that they checked numerically that
no mixing occurs up toO(β6), again ford = 1. Here, we
analytically generalize to all orders inβ.

The E/B-mode multipoles are related to the helical multi-
poles through

aE
ℓm =

1
√

2

(

aP+
ℓm+ aP−

ℓm

)

, aB
ℓm =

1
√

2i

(

aP+
ℓm − aP−

ℓm

)

. (21)

Under aberration they transform as

a′Eℓ′m =
1
2

∑

ℓ

[(

2Km
ℓ′ℓ + −2Km

ℓ′ℓ

)

aE
ℓm

+i
(

2Km
ℓ′ℓ − −2Km

ℓ′ℓ

)

aB
ℓm

]

, (22a)

a′Bℓ′m =
1
2

∑

ℓ

[(

2Km
ℓ′ℓ + −2Km

ℓ′ℓ

)

aB
ℓm

−i
(

2Km
ℓ′ℓ − −2Km

ℓ′ℓ

)

aE
ℓm

]

. (22b)

It can be seen that no mixing occurs if2Km
ℓ′ℓ ≡ −2Km

ℓ′ℓ. In-
deed, we prove in App. D that

d
sKm

ℓ′ℓ(β) = d
−sKm

ℓ′ℓ(β) (22c)

holds for arbitraryβ if and onlyif d = 1.
What value of the Doppler weightd should the CMB po-

larization observables take? In general, it depends on which
physical quantity is exactly being measured. However, if we
assume that the CMB has a perfect blackbody spectrum, then
a given map-making procedure should allow us to faithfully
reconstruct the thermodynamic temperatures, for both linear
polarizations and also for the unpolarized average, on a pixel-
by-pixel basis. The map-making procedure should also pro-
duce the correct maps with the same experimental device op-
erating in any inertial frame. In that case, independent of
how the measurement is technically performed, the polariza-
tion observables have the same Doppler weightd = 1 as

the (polarization-averaged) temperature, and therefore do not
haveE andB modes mixed up under a Lorentz boost.

In reality, foreground contaminations have spectra that dif-
fer from that of a blackbody. A non-blackbody spectrum in
general will not preserve its spectrum shape under a change
of reference frame. Also, no frequency-independent temper-
ature can be unambiguously defined in the presence of fore-
grounds. The interpretation on the effect of Lorentz boost is
then less clear than in the ideal case of blackbody spectrum.
This issue, which is expected to be dependent on the details of
experimental approaches and further complicates our ability
to perform a ”de-boosting” operation, deserves more careful
consideration, but is left to a future work.

We would like to emphasize that for a single photon, a
Lorentz boost does not change the direction of the polarization
vector with respect to the new line of sight. In fact, the po-
larization plane is parallel-transported on the sky, and itonly
‘rotates’ to adjust to the curvature of the sky; there is no addi-
tional rotation about the line of sight whatsoever.

V. KERNEL RECURSION RELATIONS

Because the harmonic-space aberration kernels are the ma-
trix elements of a unitary transformation due to a Lorentz
boost, it is reasonable to believe that one might find simple re-
cursion relations between the matrix elements following from
the algebraic properties of̂Ya’s. In this Section, we derive
new, useful recursions from our operator formalism. These
improve upon previous recursive algorithms [26]: (i) they fol-
low directly from the Lorentz algebra, and are simple and el-
egant from a theoretical point of view; (ii) they do not rely
on power expansions inβ, and hence are efficient in the non-
perturbative regimeℓ & 1/β; (iii) the higher spin-weight ker-
nels are reduced to the zero spin-weight kernels in a simple
way, which allows for efficient computations for polarization.

A. Changing ℓ

As we have already seen, theŶz operator does not affectφ
andψ. Therefore, actinĝYz on the state| sℓm〉 only changes
the quantum numberℓ. Introducing

sB
m
ℓ = ℓ sC

m
ℓ =

√

(ℓ2 −m2)(ℓ2 − s2)
4ℓ2 − 1

(23)

for convenience, we find

iŶz | sℓm〉 = sB
m
ℓ+1 | sℓ + 1m〉 − sB

m
ℓ | sℓ − 1m〉 . (24)

A straightforward proof of this relation is given in App. C.
Next, we make use of the trivial commutator [Ŷz, eiηŶz] = 0.
By taking the matrix element of both sides, we find

〈

sℓ′m
∣

∣

∣ (Ŷze
iηŶz − eiηŶzŶz) | sℓ − 1m〉 = 0. (25)
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Applying Eq. (24), and also using the fact thatŶz is hermitian,
we find a relation involving four kernels

sKm
ℓ′ℓ =

sBm
ℓ′

sBm
ℓ

sKm
ℓ′−1ℓ−1 −

sBm
ℓ′+1

sBm
ℓ

sKm
ℓ′+1ℓ−1

+
sBm

ℓ−1

sBm
ℓ

sKm
ℓ′ℓ−2. (26)

Thus, for ℓ > |m|, one can computesKm
ℓ′ℓ from sKm

ℓ′−1ℓ−1,
sKm

ℓ′ℓ−2 and sKm
ℓ′+1ℓ−1. The recursion applies to kernels with

fixed m and spin weights. Notice that bothℓ andℓ′ change,
so that the recursions remind us of the discretized version of
first order partial differential equation in two dimensions.

B. Raising and loweringm

To raise and lower the azimuthal quantum numberm, we
use the operator relation [27]

L̂± | sℓm〉 =
√

(ℓ ∓m)(ℓ ±m+ 1) | sℓm± 1〉 , (27)

whereL̂± = L̂x ± i L̂y are the familiar angular-momentum rais-
ing and lowering operators. Furthermore, we define for the
boost generatorŝY± = Ŷx ± iŶy. Then by combining Eq. (24),
Eq. (27) and [̂Yz, L̂±] = ±Ŷ±, we obtain the action of̂Y± on
base states,

∓i Ŷ± | sℓm〉 = sB
m
ℓ

√

ℓ ∓m− 1
ℓ ±m

| sℓ − 1m± 1〉 (28)

+ sB
m
ℓ+1

√

ℓ ±m+ 2
ℓ ∓m+ 1

| sℓ + 1m± 1〉 .

Using Eq. (18) and the Baker-Campbell-Hausdorff formula,
we can also show that

L̂± eiηŶz = eiηŶz(coshη L̂± ∓ i sinhη Ŷ±). (29)

Taking the matrix element〈 sℓ′m− 1 | · · · | sℓm〉 on both sides,
applying Eqs. (27)–(28), and also using the fact thatL̂± and
Ŷ± are pairs of hermitian conjugation, respectively, we find

sKm
ℓ′ℓ = sC

0
ℓ sinhη

√

(ℓ ∓m)(ℓ ∓m− 1)
(ℓ′ ∓m)(ℓ′ ±m+ 1) sKm±1

ℓ′ℓ−1

+ coshη

√

(ℓ ∓m)(ℓ ±m+ 1)
(ℓ′ ∓m)(ℓ′ ±m+ 1) sKm±1

ℓ′ℓ (30)

+ sC
0
ℓ+1 sinhη

√

(ℓ ±m+ 1)(ℓ ±m+ 2)
(ℓ′ ∓m)(ℓ′ ±m+ 1) sKm±1

ℓ′ ℓ+1.

This recursively relates the kernel ofm to those ofm± 1.

C. Raising and lowerings

In the recursions derived so far, the spin weights has not
been touched. However, it is feasible to raise and lowers as
well, thus relating the polarization kernels directly to those

for the temperature. One realizes that there is a symmetry
between the azimuthal angleφ and the roll angleψ if (φ, θ, ψ)
are interpreted as three Euler angles. Whileφ is associated
with rotations about thez axis fixed in space,ψ is related to
rotations about a “body-fixedz” axis – the axis that points in
the normal direction and differs from point to point on the sky.

In fact, three “body-fixed” angular momentum operatorsÎa

with a = x, y, z can be obtained by swappingφ with ψ every-
where in Eq. (17),

Îx = i
(

sinψ∂θ + cotθ cosψ∂ψ − cscθ cosψ∂φ
)

,

Îy = i
(

− cosψ∂θ + cotθ sinψ∂ψ − cscθ sinψ∂φ
)

,

Îz = −i∂ψ. (31)

Similarly, three “body-fixed” boost generatorsẐa with a =
x, y, zsimilarly follow from Eq. (19),

Ẑx = −i
(

sinθ cosψ − cosθ cosψ∂θ + cscθ sinψ∂ψ

− cotθ sinψ∂φ
)

,

Ẑy = −i
(

sinθ sinψ − cosθ sinψ∂θ − cscθ cosψ∂ψ

+ cotθ cosψ∂φ
)

,

Ẑz = −i (cosθ + sinθ∂θ) . (32)

The symmetry betweenφ andψ implies thatÎa’s andẐa’s form
another copy of Lorentz algebra,

[ Îa, Îb] = iǫabcÎc, [ Îa, Ẑb] = iǫabcẐc,

[Ẑa, Ẑb] = −iǫabcÎc. (33)

The spin weights is nothing but the eigenvalue of the “body-
fixed” Îz operator. Because [Îa, L̂b] = 0, we have simultane-
nous eigenstates for̂Lz andÎz,

L̂z | sℓm〉 = m| sℓm〉 , Îz | sℓm〉 = s| sℓm〉 , (34)

which establishes a formal symmetry betweenm ands. This
implies that we can contructÎ± = Îx ± i Îy to raise and lowers,

Î± | sℓm〉 =
√

(ℓ ∓ s)(ℓ ± s+ 1) | s± 1ℓm〉 . (35)

Moreover, for “body-fixed” boost generators we similarly de-
fine Ẑ± = Ẑx ± iẐy. The result analogous of Eq. (28) but fors
thus reads

∓i Î± | sℓm〉 = sB
m
ℓ

√

ℓ ∓ s− 1
ℓ ± s

| s± 1ℓ − 1m〉 (36)

+ sB
m
ℓ+1

√

ℓ ± s+ 2
ℓ ∓ s+ 1

| s± 1ℓ + 1m〉 .

Repeating a derivation similar to the one in Sec. V B, and also
noting thatẐz = Ŷz, we can write

Î± eiηŶz = eiηŶz(coshη Î± ∓ i sinhη Ẑ±). (37)

In analogy to them-raising case, we take the matrix elements
〈 s− 1ℓ′m| · · · | sℓm〉 on both sides, and obtain a recursion
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similar to Eq. (30), with the roles ofm andsexchanged:

sKm
ℓ′ℓ = 0C

m
ℓ sinhη

√

(ℓ ∓ s)(ℓ ∓ s− 1)
(ℓ′ ∓ s)(ℓ′ ± s+ 1) s±1Km

ℓ′ℓ−1

+ coshη

√

(ℓ ∓ s)(ℓ ± s+ 1)
(ℓ′ ∓ s)(ℓ′ ± s+ 1) s±1Km

ℓ′ℓ (38)

+ 0C
m
ℓ+1 sinhη

√

(ℓ ± s+ 1)(ℓ ± s+ 2)
(ℓ′ ∓ s)(ℓ′ ± s+ 1) s±1Km

ℓ′ℓ+1.

This recursion relates the kernels of spin weights to those of
spin-weight raised/lowered by one unit. As we will see below,
this expression implies that the temperature and polarization
kernels are very similar onceℓ ≫ s.

D. A practical recursive scheme

To make practical use of the recursions given above, a few
additional steps are required. First of all, we have to decide
how to run through the recursions, combining them in a con-
venient way to a numerically stable scheme. The procedure in
particular depends on the required initial conditions thatcan
be obtained in a simple (closed) form. Secondly, we want to
compute the kernel elements in the most economic way, mak-
ing use of its symmetries.

For the temperature kernel, a method based on term-by-
term expansions inβwas already given by [26]. Once the tem-
perature kernel (s= 0) is computed, by applying thes-raising
operator, Eq. (38), twice the required polarization kernelis di-
rectly obtained and we are done. To compute the temperature
kernel, because0Km

ℓ′ℓ = 0K−m
ℓ′ℓ and 0Km

ℓ′ℓ = (−1)ℓ+ℓ
′
0Km

ℓℓ′ , we
only need those elements form ≥ 0 andℓ ≤ ℓ′, reducing the
number of independent coefficients by a factor of≃ 4. For our
purposes, this method in principle is sufficient, however, with
the expressions given above we can simplify the computation
significantly, as we explain now.

1. Applying the recursions

As shown earlier [26], atℓ & 1/β the kernel widens, cou-
pling more and more neighboringℓ-modes. In principle, by
knowing all matrix elements0Km

ℓℓ
(i.e., the diagonal at fixed

m) for ℓ ≤ ℓmax and using0Km
ℓ′m = 0 for ℓ′ < m, one could

obtain all elements0Km
ℓ+1ℓ−1, 0Km

ℓ+2ℓ−2, 0Km
ℓ+3ℓ−3 etc. us-

ing Eq. (26). Similarly, those elements0Km
ℓ+2ℓ−1, 0Km

ℓ+3ℓ−2,
0Km

ℓ+4ℓ−3 etc. could be obtained by knowing0Km
ℓ+1ℓ (i.e., the

first off-diagonal). In this way, one could nicely compute
all kernel elements0Km

ℓ′ℓ for ℓ′ − ℓ ≤ 2ℓmax. Since the off-

diagonal kernel elements drop like0Km
ℓ′ℓ ≃ β|ℓ

′−ℓ| in ampli-
tude [26], one could stop the recursions at some finite value
of ∆ℓ = ℓ′ − ℓ obtaining an extremely economic method for
computing the aberration kernel. We were, however, unable
to find a simple way to give all the required initial conditions,
0Km

ℓℓ
and 0Km

ℓ+1ℓ, so that this procedure is impractical.
Instead we start our recursions atℓ = ℓ′ = m = 0, us-

ing 0K0
00 = η/[βγ]. We then apply the term-by-term ex-

pansion inβ given by [26] to obtain the elements0K0
ℓ′0 for

0 ≤ ℓ′ ≤ 2ℓmax. Afterwards, we apply theℓ-changing re-
cursion, Eq. (26), to fill in the remaining matrix elements for
0K0

ℓ′ℓ up toℓ+ ℓ′ ≤ 2ℓmax, preceding in a row-by-row manner,
fixing ℓ and changingℓ′ within the row. By applying them-
raising operator, Eq. (30), we then compute the row0K1

ℓ′1 for
ℓ′ ≤ 2ℓmax−1 from which we obtain the whole layer0K1

ℓ′ℓ for
ℓ + ℓ′ ≤ 2ℓmax− 1, applying Eq. (26) again. We continue this
procedure untilℓ = ℓ′ = m = ℓmax. This scheme works very
well after rewriting the recursions, as we explain below.

2. Initial conditions and recursion for0K0
ℓ′0

To start the computation, we need to provide the initial con-
ditions and recursion for0K0

ℓ′0. As shown by [26], for the
temperature kernel element0Km

mm(β) we have

0Km
mm(β) =

1
γm+1

∑

k=0

(2k+m)!
2kk! m!

(2m+ 1)!! β2k

(2m+ 2k+ 1)!!
(39)

= 2F1

(

m
2
+

1
2
,
m
2
+ 1,m+

3
2
, β2

)

/γm+1,

where2F1 (a, b, c, z) is the hypergeometric function. We gen-
erally use this expression for all matrix elements0Km

mm(β),
even if in principle form > 0 simplem-raising would work.
To obtain all the matrix elements0K0

ℓ′0 for 0 ≤ ℓ′ ≤ 2ℓmax we
need to precede in a term-by-term manner as cancelations of
terms prevent the direct recursions from converging. From the
results of [26], we find

0K0
ℓ′0(β) =

βℓ
′

2ℓ′γ

∑

k=0

κℓ
′

k , κ0
k =

β2k

2k+ 1
(40)

κℓ
′

k =
2ℓ′

√

4ℓ′2 − 1
κℓ
′−1

k +
(ℓ′ + 1)β2

2
√

4(ℓ′ + 1)2 − 1
κℓ
′+1

k−1 .

We scaled out the main term≃ (β/2)ℓ
′
/γ which makes allκℓ

′

0
become of order unity at largeℓ′. For β . 0.01 andℓmax .

4000 we never needed more than 128 terms in the expansion
of β. For better convergence, we furthermore used long double
precision in the computations.

3. Rewriting the recursions

The off-diagonal kernel elements drop like0Km
ℓ′ℓ ≃ β|ℓ

′−ℓ| in amplitude [26]. This means that for large∆ℓ = ℓ′ − ℓ, the
kernel elements become extremely small, and since in the computation elements forℓ ≪ ℓ′ ≃ 2ℓmax are needed, it is crucial
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to rewrite the kernel recursions to improve the numerical stability. For this one has to scale out the leading order behavior
of the kernel. Applying the boost operatoriŶz several times to the state|sℓm〉 and then projecting onto|sℓ′m〉, with sKm

ℓ′ ℓ =

〈sℓ′m|exp(iηŶz) |sℓm〉 shows that the leading order term of the kernel scales like

sKm
ℓ+∆ℓ ℓ ≈

η∆ℓ

∆ℓ!

∆ℓ
∏

k=1

sB
m
ℓ+k =

η∆ℓ

∆ℓ!
(2ℓ − 1)!!
(2ℓ′ − 1)!!

√

(2ℓ + 1)
(2ℓ′ + 1)

(ℓ′ + s)!
(ℓ + s)!

(ℓ′ − s)!
(ℓ − s)!

(ℓ′ +m)!
(ℓ +m)!

(ℓ′ −m)!
(ℓ −m)!

ℓ≫s,m
↓≈ η∆ℓ

2∆ℓ∆ℓ!
ℓ′!
ℓ!

(41)

for ∆ℓ = ℓ′ − ℓ ≥ 0 andη = ln([1 + β]/[1 − β])/2 ≈ β. Rescaling the kernel by the leading order term, introducing sK̄m
ℓ′ ℓ =

sKm
ℓ′ ℓ/[

ηℓ
′−ℓ

(ℓ′−ℓ)!
∏ℓ′−ℓ

k=1 sBm
ℓ+k] and using Eq. (26) we find

sK̄m
ℓ′ ℓ = sK̄m

ℓ′−1ℓ−1 −
(sBm

ℓ′+1)2 η2
sK̄m

ℓ′+1ℓ−1

(ℓ′ − ℓ + 1)(ℓ′ − ℓ + 2)
+

(sBm
ℓ−1)

2 η2
sK̄m

ℓ′ ℓ−2

(ℓ′ − ℓ + 1)(ℓ′ − ℓ + 2)
(42)

for ℓ′ ≥ ℓ. The matrix elementssK̄m
ℓ′ ℓ are now all of order unity and hence the new recursion is numerically more stable. In a

similar manner, we obtain

sK̄m
ℓ′ ℓ =

ℓ +m
ℓ′ +m

[

coshη sK̄m−1
ℓ′ℓ +

sinhη
η

(

ℓ′ − ℓ
ℓ +m sK̄m−1

ℓ′ℓ+1 + (η sB
0
ℓ)

2 ℓ +m− 1
ℓ′ − ℓ + 1 sK̄m−1

ℓ′ℓ−1

)]

sK̄m
ℓ′ ℓ =

ℓ + s
ℓ′ + s

[

coshη s−1K̄m
ℓ′ℓ +

sinhη
η

(

ℓ′ − ℓ
ℓ + s s−1K̄m

ℓ′ℓ+1 + (η 0Bm
ℓ )2 ℓ + s− 1

ℓ′ − ℓ + 1 s−1K̄m
ℓ′ℓ−1

)]

. (43)

for them ands-raising recursions. These expressions are at the core of our numerical recursion scheme. We find them to work
even up toβ ≃ 0.01. In this case, the kernel is already rather broad at largeℓ, reaching∆ℓ ≃ 70 atℓ ≃ 4000. Forβ ≃ 10−3 we
find∆ℓ = 10− 20 to suffice.

VI. DIFFERENTIAL EQUATION REPRESENTATION

With the operator representation, we can write a system of
coupled ordinary differential equations (ODEs) for the aber-
ration kernels. Using the definition of the aberration kernel
element,sKm

ℓ′ℓ = 〈sℓ′m|exp(iηŶz) |sℓm〉, gives

∂ηsKm
ℓ′ℓ =

〈

sℓ′m
∣

∣

∣ iŶz exp(iηŶz) |sℓm〉

= sB
m
ℓ+1sKm

ℓ′ℓ+1 − sB
m
ℓ sKm

ℓ′ℓ−1

= sB
m
ℓ′+1sKm

ℓ′+1ℓ − sB
m
ℓ′ sKm

ℓ′−1ℓ. (44)

Notice that the two independent ways of computing theη-
derivative also directly give the recursion Eq. (26). Forη = 0,
we have the initial conditionsKm

ℓ′ℓ = δℓℓ′ . It is furthermore
clear that for finiteη the kernel only attains non-zero values
in a limited range|ℓ′ − ℓ| < ∆ℓ. We can thus write a system
of ODEs in some finite range around the diagonal elements
ℓ = ℓ′ for eachm (setting the matrix elements at the bound-
aries to zero), and then solve it as a function ofη. The system
is rather sparse and an explicit Runge-Kutta scheme turns out
to be sufficient for solving it. We successfully used a Runge-
Kutta-Fehlberg method with adaptive step size control.

The ODE representation has several benefits over the recur-
sion scheme. First of all, it works for any spin weight without
having to worry about specific initial conditions. It also does
not matter if the value ofβ is large or small (the integration
takes a little longer for largerβ). In contrast to the recur-
sion scheme, to obtain kernel elements for largeℓ, ℓ′, in the
ODE approach it is furthermore unnecessary to compute all

elements up to these values. Finally, the workload is signifi-
cantly reduced, since generally only matrix elements for small
∆ℓ are required.

Our final ODE scheme takes about≃ 80 seconds to com-
pute all non-negligible kernel elements forβ = 10−3 and
ℓmax ≃ 4000 on a single core (standard laptop). Parallelization
of the computation is straightforward and scales very well,
while this is more complicated for the recursion method. For
comparison, our best recursion scheme takes about≃ 35 min
for the same computation, while direct integration methods
remain impractical. This large increase in the performance
provides the basis for full sampling over different values ofβ.
A few examples computed with our ODE scheme forβ = 10−3

and largeℓ are given in Fig. 1.
For largeℓ, both temperature and polarization kernels co-

incide to high precision, so that we only show the curves for
s = 0. This is not surprising at the relative level of≃ O(s/ℓ),
however, it turns out that the difference is even smaller com-
parable to≃ O(s∆ℓ/ℓ2, η2). To understand this aspect a little
better, let us rewrite Eq. (38) as

sKm
ℓ′ℓ =

√

(ℓ ∓ s)(ℓ ± s+ 1)
(ℓ′ ∓ s)(ℓ′ ± s+ 1)

[

s±1Bm
ℓ

sinhη

ℓ ± s+ 1 s±1Km
ℓ′ℓ−1 (45)

+ coshη s±1Km
ℓ′ℓ +

s±1Bm
ℓ+1 sinhη

ℓ ∓ s s±1Km
ℓ′ℓ+1

]

.

This expressions shows that one modulation of the kernel val-
ues is caused by the difference betweenℓ and ℓ′ which is
captured by an overall normalization coefficient. For small
∆ℓ, this gives

√
(ℓ ∓ s)(ℓ ± s+ 1)/[(ℓ′ ∓ s)(ℓ′ ± s+ 1)] ≈ 1−



9

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
∆l

0

0.1

0.2

0.3

0.4

0.5

0.6
M

od
ul

us
 o

f t
he

 k
er

ne
l e

le
m

en
t

m = 0
m = 2000
m = 3000

l = 4000

β = 10
-3

s = 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
∆l

0

0.1

0.2

0.3

0.4

0.5

0.6

M
od

ul
us

 o
f t

he
 k

er
ne

l e
le

m
en

t

m = 0
m = 2000
m = 3000

l = 5000

β = 10
-3

s = 0

Figure 1: Modulus of the temperature kernel0Km
ℓ+∆ℓ ℓ

for β = 10−3,
ℓ = 4000 andℓ = 5000. For both cases, the corresponding polariza-
tion kernel (s= 2) is extremely similar.

∆ℓ/ℓ+O(∆ℓ2/ℓ2). However, at lowest order inη, this modula-
tion is precisely canceled by the variation of the other terms,
so that the overall correction is of second order. For smallη

andℓ′ > ℓ, the last two terms in Eq. (45) are dominant and by
using Eq. (44) we find

sKm
ℓ′ℓ ≈

[

1− ∆ℓ
ℓ
+
η ∂η

ℓ ∓ s

]

s±1Km
ℓ′ℓ.

Thus, withη ∂η s±1Km
ℓ′ℓ ≈ ∆ℓ[1 + O(η2)] s±1Km

ℓ′ℓ, this implies

sKm
ℓ′ℓ ≈

(

1± s
ℓ
∆ℓ
ℓ

)

s±1Km
ℓ′ℓ and 2Km

ℓ′ℓ ≈
(

1± 3∆ℓ
ℓ2

)

0Km
ℓ′ℓ, con-

firming our statement.
For similar reasons, changes of the magnetic quantum num-

ber m ≪ ℓ will cause corrections to the kernel of order
O(m∆ℓ/ℓ2).

A. Asymptotic expressions for the kernel

From Eq. (44), we can also obtain asymptotic expressions
for the aberration kernel in the limit of largeℓ andℓ′. Intro-

ducing the new variableηℓ = sBm
ℓ
η we find

∂ηℓ sKm
ℓ′ℓ =

sBm
ℓ+1

sBm
ℓ

sKm
ℓ′ℓ+1 − sKm

ℓ′ℓ−1

ℓ≫1
↓≈ sKm

ℓ′ℓ+1 − sKm
ℓ′ℓ−1.

The last line can be identified with the recurrence relation
2∂xJn(x) = Jn−1(x) − Jn+1(x) for the Bessel function of first
kind, Jn(x), when settingx ≡ 2ηℓ andn = ℓ′ − ℓ = ∆ℓ. Thus

sKm
ℓ′ℓ(η)

ℓ≫1,|∆ℓ|
↓≈ J∆ℓ

(

2η sB
m
ℓ

)

ℓ≫1,s,|∆ℓ|
↓≈ J∆ℓ

(

η
√
ℓ2 −m2

)

. (46)

We find that this expression already works very well for large
ℓ as long as the kernel does not become too wide so that the
assumption|∆ℓ| ≪ ℓ breaks down. Since to leading order in
x we haveJn(x) ≃ xn/[2nn!], by comparing with the leading
order term ofsKm

ℓ′ℓ(η), Eq. (41), we can further improve the
approximation:

sKm
ℓ′ℓ(η)

ℓ≫1,|∆ℓ|
↓≈ J∆ℓ
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[

(ℓ′ +m)!(ℓ′ −m)!
(ℓ +m)!(ℓ −m)!

]
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2∆ℓ

















(47)

for ℓ′ > ℓ, and then usesKm
ℓℓ

(η) ≈ J0

(

η
√
ℓ2 −m2

)

and

sKm
ℓ′ℓ(η) = (−1)ℓ

′−ℓ
sKm

ℓℓ′ (η) otherwise. This is similar to the
expressions in Eq. (8)-(10) given of [23], however, there the
functional form was obtained from fits to the numerical results
at ℓ . 700 rather than by analytic arguments. Our expression
also works well for very large values ofβ. This is illustrated
in Fig. 2 for β = 0.1, ℓ = 1000 andm = 0. Even for these
extreme values ofβ, our approximation reproduces the main
trend and amplitude of the numerical result, while Eq. (8)-
(10) of [23] become more crude [37]. Still, the approximation
Eq. (47) is valid only at∆ℓ/ℓ . 1, and since the kernel be-
comes wide asℓ andβ increase [26], the applicability of the
Bessel approximation is generally limited.

We carefully checked the precision of the approximations
against the results obtained with the ODE approach and found
that overall the typical error is very small (≃ 0.1%− 5% for
β = 10−3 and ℓ ≤ 4000). However, even for rather small
∆ℓ ≃ 1, ℓ ≫ 1 andβ ≃ 10−3 we occasionally find that
the approximation can be off by a large amount, when the
kernel value is close to zero-crossing (e.g., forβ = 10−3,
ℓ ≃ ℓ′ ≃ 2404 andm ≃ 0, which is off by a factor of
≃ 1.5). Also, the approximation is generally less accurate for
ℓ ≃ m. We thus do not recommend using the expressions for
real computations, also because the ODE approach already is
very fast and reliable.

B. Series expansion in orders ofη

From Eq. (44), we can also obtain simple term-by-term ap-
proximations for the aberration kernels. Rescaling them by
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Figure 2: Modulus of0Km
ℓ+∆ℓ ℓ

at ℓ ≃ ℓ′ for ℓ = 1000,m = 0 and
β = 0.1. We compare our numerical result with the approximation
Eq. (47) and Eq. (8)-(10) given in [23].

Nℓ′ℓ = η
∆ℓ

∏∆ℓ
k=1 sBm

ℓ+k, for ℓ′ > ℓ Eq. (44) becomes

∆ℓ sK̄m
ℓ′ℓ + η ∂ηsK̄m

ℓ′ℓ = sK̄m
ℓ′ℓ+1 − (ηsB

m
ℓ )2

sK̄m
ℓ′ℓ−1,

wheresK̄m
ℓ′ℓ = sKm

ℓ′ℓ/Nℓ′ℓ. Inserting the series ansatzsK̄m
ℓ′ℓ =

∑∞
k=0(−1)k sκ̄

m(k)
ℓ′ℓ η

2k/(2k+ ∆ℓ)!, after collecting terms we find

sκ̄
m(k)
ℓ′ℓ = sκ̄

m(k)
ℓ′ℓ+1 + (sB

m
ℓ )2

sκ̄
m(k−1)
ℓ′ℓ−1 , (48)

with sκ̄
m(0)
ℓ′ℓ = 1 and sκ̄

m(k)
ℓ′ℓ = 0 for k < 0.

For ℓ = ℓ′, we proceed similarly, finding

sκ̄
m(k)
ℓℓ
= (sB

m
ℓ+1)

2
sκ̄

m(k−1)
ℓ+1ℓ + (sB

m
ℓ )2

sκ̄
m(k−1)
ℓℓ−1 . (49)

With sκ̄
m(0)
ℓ′ℓ = 1, for theη2 correction to the diagonal term this

equation directly implies

sκ̄
m(1)
ℓℓ
= (sB

m
ℓ )2 + (sB

m
ℓ+1)

2. (50)

Inserting this back into Eq. (48), we then find

sκ̄
m(1)
ℓ′ℓ =

∆ℓ+1
∑

k=0

(sB
m
ℓ+k)

2. (51)

for ℓ′ > ℓ. Repeating the process, we have

sκ̄
m(2)
ℓℓ
=

1
∑

k=0

2
∑

p=0

(sB
m
ℓ+k)

2(sB
m
ℓ+k+p−1)

2 (52a)

sκ̄
m(2)
ℓ′ℓ =

1
∑

k=0

2
∑

p=0

(sB
m
ℓ′+k)

2(sB
m
ℓ′+k+p−1)2

+

∆ℓ−1
∑

k=0

∆ℓ+2−k
∑

p=0

(sB
m
ℓ+k)

2(sB
m
ℓ−1+k+p)

2 (52b)

for the η4 correction to the kernels. Higher order terms can
be obtained in a similar way, but generally it is simpler to

just evaluate the recursions Eq. (48) and (49) in an alternating
manner, so that we do not give additional explicit expressions
here. We note that the form of the recursions also explicitly
shows that the kernel ford = 1 does not depend on the sign of
the spin weight and hence directly provessKm

ℓ′ℓ(η) ≡ −sKm
ℓ′ℓ(η)

required to avoidE/B-mode mixing (Sect. IV).
From Eq. (51), we can also understand why the approxima-

tion Eq. (47) is only expected to work for∆ℓ ≪ ℓ. The first
two terms in the Taylor series are

sKm
ℓ′ℓ(η) ≈ η∆ℓ

∆ℓ
∏

k=1

sB
m
ℓ+k















1
∆ℓ!
−

∑∆ℓ+1
k=0 (sBm

ℓ+kη)
2

(∆ℓ + 2)!















≈
(2sBm

ℓ
η)∆ℓ

2∆ℓ∆ℓ!













1−
(2sBm

ℓ
η)2

4(∆ℓ + 1)













≈ J∆ℓ(2sB
m
ℓ η),

which only for∆ℓ ≪ ℓ and sκ̄
m(1)
ℓ′ℓ ≈ (∆ℓ + 2)(sBm

ℓ
)2 can be

identified with the Bessel approximation given above.

VII. CONCLUSION

In this paper, we found a novel matrix representation for
the harmonic-space aberration kernels. Several useful and
exact relations are then derived by utilizing the commuta-
tion relations for the rotation and boost operators. CMB ob-
servables with Doppler weightd = 1 (e.g., the polarization-
averaged temperature and the temperature-weighted Stokes
parameters), have the simplest transformation properties. We
showed that thed = 1 kernels are the matrix elements of a
boost operator, parameterized by the additive rapidity param-
eter, between two spherical harmonic base states.

The unitarity of the boost operator leads to power con-
servation laws under aberration, which are valid ford = 1.
The Lorentz algebra, satisfied by generators of rotations (both
space-fixed and body-fixed) and boosts, lead to recursion rela-
tions that raise or lower the spherical harmonic quantum num-
bersℓ andm, or the spin weights by one unit. These provide
useful identities in analytical calculations. Applying these re-
cursions repeatedly, starting from known kernels of the lowest
ℓ, |m| and |s| as suitable boundary conditions, yields kernels
with arbitraryℓ, m and s. Based on this, the new recursion
scheme developed here greatly simplifies previous recursive
algorithms at both conceptual and technical levels. It alsopro-
vides exact values for the aberration kernels to benchmark the
accuracy of existing fitting formula.

We proved that aberration does not mix upE andB modes
for d = 1 polarization observables to all orders inβ. We ar-
gued that for perfect blackbody spectra,d = 1 kernels are the
relevant ones for the study of CMB aberration, independent
of experimental details. In the presence of spectrum distor-
tions and foreground emissions, the correct way to account for
the aberration effect deserves further consideration. For gen-
eral purposes, we provided recipes to compute aberration ker-
nels of Doppler weightd , 1, relevant for boosting, e.g., the
specific intensity or the frequency-integrated intensity.Those
have been shown to be related to thed = 1 kernels viad-
raising/lowering recursions.
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Another major result derived from the matrix-element rep-
resentation is the flow of thed = 1 aberration kernels with the
rapidity parameterη. This leads to coupled ODEs for a set of
aberration kernels that in practice can be effectively truncated.
The ODE approach is very advantageous because the initial
conditions needed, i.e. the kernels forη = 0, are in all cases
trivial, and therefore extremely straightforward to set up. Uti-
lizing standard recipes, the ODE approach can improve upon
the recursive approach by a factor∼ 25 in terms of computa-
tional speed, for moderate values ofβ ∼ 10−3. Parallelization
is straightforward in the ODE approach, pushing the compu-
tation of the aberration kernel to a few seconds.

In the limit of largeℓ, we find simple asymptotic approxi-
mations for the kernel elements from the differential equation
system (Sec. VI A). While similar to the expressions given
earlier by [23], we obtain our approximations with purely ana-
lytic arguments. Our approximation generally work very well
(≃ 0.1%− 5% for β = 10−3 andℓ ≤ 4000), however, when
comparing with our ODE approach we find several cases for
which the approximation is very far off. For∆ℓ/ℓ ≪ 1, our
expressions also capture the main dependence of the kernel
even forβ ≃ 0.1; however, since the kernel becomes very

wide onceℓ ≫ 1/β, the approximation still has limited appli-
cability. We thus do not recommend using the expression for
real computations, also because the ODE approach already is
very fast and reliable.

Finally, we emphasize that most of the analytical results
obtained in this paper apply to all angular scalesℓ, arbitrary
spin weightsand Doppler weightd, being fully non-linear in
β. Therefore, our formalism might find applications in other
studies, where anisotropic radiation seen in a (relativistically)
boosted reference frame is involved. One example is the scat-
tering of diffuse photon backgrounds by fast-moving charged
particles within the jets of active galactic nuclei [31–33].
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Appendix A: Deriving the integral forms for the aberration k ernels

In the literature, different approaches of deriving the aberration kernels for both temperature and polarization have been presented (see
e.g. [10, 34]). All are essentially based on how the photon’sfour-momentum and polarization tensor transform under a Lorentz boost of the
reference frame. Here we adopt the covariant formalism of Ref. [35].

The photon phase space density needs to be described by a Lorentz tensorFµν (not to be confused with the usual electromagnetic field-
strength tensor), for there are two distinct polarization states. The observer’s motion defines a unique time-like unitvectoreµo, and its line of
sight direction (opposite to the direction of propagation)defines a space-like unit vectornµ orthogonal toeµo. The symmetric screen-projection
tensor can be defined as

Sµ
ν(eo,n) = gµν + eµoeo,ν − nµnν, (A1)

wheregµν is the flat Minkowski metric. A gauge-invariant phase space density fµν can be then obtained by screen-projection, i.e.fµν =
Sρ

µSσ
νFρσ. Neglecting circular polarization, which is irrelevant for the CMB, the gauge-invariantfµν can be decomposed into

fµν(E, n̂) =
1
2

N(E, n̂)Sµν + Pµν(E, n̂), (A2)

whereN = gµν fµν is the occupation number including both polarization states, and the symmetric trace-freePµν encodes the difference between
the two linear polarizations. Note that photon phase space density is a function of the measured photon 4-momentumpµ = E(eµo − nµ), or
equivalently a function of the measured energyE and the measured line of sight directionnµ. We have made this dependence manifest.

Next we need to know howfµν transforms under a Lorentz boost. Note that due to the screen-projection procedure it transforms differently
from how a usual Lorentz tensor does. To derive the correct transformation rule, let us consider another observer,

eµo′ = γ(eµo + vµ), γ = 1/
√

1− vµvµ = 1/
√

1− β2, eµovµ = 0, (A3)

which has velocityvµ relative to the original observer. The new observer will measure screen-projected phase space densityf ′µν = S′ρµS′σνFρσ,
whereS′µν = S′µν(eo′ ,n′) is the boosted screen-projection tensor constructed fromthe new time directioneµo′ and the aberrated line of sight
direction

n′µ = − eµo − nµ

γ(1+ nνvν)
+ γ(eµo + vµ). (A4)

Besides, the photon energy is shifted to

E = E′γ(1− n′µvµ). (A5)

A nice property is thatS′µν can be obtained fromSµ
ν simply through further screen-projectionsS′µν = S′µρS′σνSρ

σ. After simple algebra this
leads to the transformation ofN andPµν,

N′(E′ , n̂′) = N(E, n̂), P′µν(E
′ , n̂′) = S′ρµS

′σ
νPρσ(E, n̂). (A6)
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1. Temperature kernels

For a blackbody spectrum, we haveN(E, nµ) = 2/(eE/T(n̂) − 1). Under a Lorentz boost the blackbody shape is preserved. Eq. (A6) then
implies thatE′/T ′(n̂′) = E/T(n̂). Using Eq. (A5), we thus immediately confirmT ′(n̂′) = T(n̂)/[γ(1 − β cosθ′)]. We can then compute the
boosted temperature multipole coefficients,

a′Tl′m′ =
∫

d2n̂′Y∗l′m′ (n̂′)T ′(n̂′) =
∫

d2n̂′
Y∗l′m′ (n̂′)T(n)

γ
(

1− n′µvµ
) =

∑

lm

aT
lm

∫

d2n̂′
Y∗l′m′ (n̂′)Ylm(n̂)

γ
(

1− n′µvµ
) . (A7)

Given thatn′µvµ = β cosθ′ and that for boosts along thez-direction the azimuthal integral givesδmm′ , together with the definition Eq. (3) for
the aberration kernel, we confirm Eq. (4) fors= 0.

2. Polarization kernels

We use the notations and properties of tensor spherical harmonics as developed in Ref. [28]. We consider thetemperature-weighted
polarization tensor

Pµν(n̂) ≡ T(n̂)Pµν(E, n̂)/N(E, n̂). (A8)

Assuming no deviation from a blackbody spectrum, the photonenergyE cancels out inPµν.
Orthogonal toeµo and nµ, we can choose two space-like unit vectorseµa(n̂) with a = 1,2, which is unaffected by screen projection

eµa(n̂)Sν
µ(n̂) = eνa(n̂). SincePµν is screen-projected, we can construct the two-by-two transverse tensor

Pab(n̂) = eµa(n̂)eνb(n̂)Pµν(n̂). (A9)

We now compute the transformation ofPab

P′a′b′ (n̂′) = e′µa′ (n̂′)e′νb′ (n̂
′)P′µν(n̂′) = e′µa′ (n̂′)e′νb′ (n̂′)S′µ

ρ(n̂′)S′ν
σ(n̂′)

T ′(n̂′)
T(n̂)

Pρσ(n̂)

=
T ′(n̂′)
T(n̂)

e′ρa′ (n̂′)e′σb′ (n̂′)Pρσ(n̂) =
T ′(n̂′)
T(n̂)

e′ρa′ (n̂′)e′σb′ (n̂′)ea,ρ(n̂)eb,σ(n̂)Pab(n̂). (A10)

The spherical harmonic expansion for the polarization tensor reads

Pab(n̂) =
∑

ℓm

∑

s=±2

as
ℓmYs

(ℓm)ab(n̂), (A11)

and similar in the boosted frame. HereY±2
(ℓm)ab(n̂) are the tensor spherical harmonics of definite helicity [28]. A derivation parallel to that for

temperature then gives the tranformation of the multipole coefficients,

a′s
′

ℓ′m′ =
∑

ℓm

∑

s=±2

as
ℓ′m′

∫

d2n̂′
[Ys′

(l′m′)a′b′ (n̂′)]∗Ys
(lm)ab(n̂)

γ (1− n′νvν)
e′ρa′ (n̂′)e′σb′ (n̂′)ea,ρ(n̂)eb,σ(n̂). (A12)

We can relate the tensor spherical harmonics to the spin-weighted harmonicsY±2
(ℓm)ab(n̂) = ∓2Y(ℓm)(n̂)ε∓2,ab(n̂) [28], with ε∓2,ab(n̂) being the

usual spin-2 base tensors on the sphere. Then we find

a′s
′

ℓ′m′ =
∑

ℓm

∑

s=±2

as
ℓ′m′

∫

d2n̂′
[−s′Y(ℓ′m′)(n̂′)]∗−sY(ℓm)(n̂)

γ (1− n′νvν)
[ε′µν−s′ (n̂′)]∗ε−s,µν(n̂), (A13)

with εµν−s(n̂) = ε−s,ab(n̂)eµa(n̂)eνb(n̂), and similar definition forε′µν−s′ (n̂′) as measured in the boosted frame. By explicitly constructing the transverse
base vectorseµa(n̂), and similarly fore′µa (n̂′) in the boosted frame, one find simple results,

[ε′µν±2 (n̂′)]∗ε±2,µν(n̂) = 1, [ε′µν±2 (n̂′)]∗ε∓2,µν(n̂) = 0. (A14)

Eq. (A13) then simplifies to

a′±2
ℓ′m′ =

∑

ℓm

a±2
ℓ′m′

∫

d2 n̂′
[∓2Y(ℓ′m′)(n̂′)]∗∓2Y(ℓm)(n̂)

γ (1− n′νvν)
. (A15)

Again, given thatn′µvµ = β cosθ′ and that the integral givesδmm′ , together with the definition Eq. (3) for the aberration kernel, we obtain
exactly Eq. (4) fors= ±2.
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Appendix B: Proof of general kernel properties

Here, we briefly prove the general kernel properties, Eq. (8). We start with d
−sK−m

ℓ′ℓ (β) = d
sKm

ℓ′ℓ(β), which is the simplest to show. From
Eq. (5), with−sYℓ′−m(n̂′) = (−1)s+m[sYℓ′m(n̂′)]∗ we have

d
−sK−m

ℓ′ℓ (β) =
∫

d2n̂′
[sYℓ′−m(n̂′)]∗ sYℓ−m(n̂)

[γ(1− β cosθ′)]d
=

∫

d2 n̂′ −sYℓ′m(n̂′) [−sYℓm(n̂)]∗

[γ(1− β cosθ′)]d
= [ d

sKm
ℓ′ℓ(β)]∗ ≡ d

sKm
ℓ′ℓ(β), (B1)

which was our statement. Next we proved
sKm

ℓ′ℓ(−β) = (−1)ℓ+ℓ
′ d
−sKm

ℓ′ℓ(β). Imagine we perform a transformationθ → π − θ, φ → φ + π and
β → −β. Then this also meansθ′ → π − θ′ andφ′ → φ′ + π, so that the kernel returns to its initial state. Using the property of spin-weighted
harmonics

sYℓm (π − θ, φ + π) = (−1)ℓ−sYℓm(θ, φ), (B2)

from Eq. (5) we can directly inferdsKm
ℓ′ℓ(−β) = (−1)ℓ+ℓ

′ d
−sKm

ℓ′ℓ(β). This is a symmetry of the kernels for generald.
Finally, we proved

sKm
ℓℓ′ (β) = (−1)ℓ+ℓ

′ 2−d
−s Km

ℓ′ℓ(β), for which we need the identities, d cosθ′/(1 − β cosθ′) = d cosθ/(1+ β cosθ), dφ′ = dφ
and 1= γ2(1+ β cosθ)(1− β cosθ′):

d
sKm

ℓ′ℓ(β) =
∫

dφ′ d cosθ′
[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

[γ(1− β cosθ′)]d
=

∫

dφd cosθ
[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

γd (1− β cosθ′)d−1(1+ β cosθ)

=

∫

dφ d cosθ
γ2(d−1)(1+ β cosθ)d−1[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

γd(1+ β cosθ)
=

∫

dφ d cosθ
[−sYℓ′m(n̂′)]∗ −sYℓm(n̂)

[γ(1+ β cosθ)]2−d

= [ 2−d
s Km

ℓℓ′ (−β)]∗ ≡ 2−d
s Km

ℓℓ′ (−β) (B3)

from which our statement follows after usingd
sKm

ℓ′ℓ(−β) = (−1)ℓ+ℓ
′ d
−sKm

ℓ′ℓ(β).

Appendix C: Acting Ŷz on base states

To derive Eq. (24), we start with the following identities for spin-weighted harmonics [10, 36]

µ sYℓm(n̂) = sC
m
ℓ+1 sYℓ+1m(n̂) − sm

ℓ(ℓ + 1) sYℓm(n̂) + sC
m
ℓ sYℓ−1m(n̂), (C1a)

√

1− µ2 ∂θ sYℓm(n̂) = ℓ sCm
ℓ+1 sYℓ+1m(n̂) +

sm
ℓ(ℓ + 1) sYℓm(n̂) − (ℓ + 1) sCm

ℓ sYℓ−1m(n̂). (C1b)

whereµ = cosθ and sCm
ℓ
= sBm

ℓ
/ℓ ≡

√

(ℓ2 −m2)(ℓ2 − s2)/(4ℓ2 − 1)/ℓ. From Eq. (15), we see thatŶz is just the sum of cosθ and sinθ∂θ. When
acting on| sℓm〉, or explicitly D̃ℓ

sm, we just have to put back theψ-independence eisψ. The terms proportional to| sℓm〉 on the right hand side
cancel, and we obtain Eq. (24).

Appendix D: Independence of the kernel on the sign of the spinweight s for d = 1

For convenience, we regard aberration kernels as functionsof the rapidityη. Sinceβ → −β impliesη → −η, from Eq. (8) we also have
d
sKm

ℓ′ℓ(−η) = (−1)ℓ+ℓ
′ d
−sKm

ℓ′ℓ(η). By Taylor expanding Eq. (5) inη, the kernel for infinitesimal boost reads

d
sKm

ℓ′ℓ(η) = δℓ′ℓ + η

[

ℓ + d
ℓ + 1 sB

m
ℓ+1δℓ,ℓ′−1 +

(d − 1)sm
ℓ(ℓ + 1)

δℓℓ′ −
ℓ + 1− d

ℓ
sB

m
ℓ δℓ,ℓ′+1

]

+ O(η2). (D1)

The second term in the square brackets, being the only term depending on the sign ofs (note thatsBm
ℓ

only depends on|s|), vanishes ifd = 1.
Therefore, we find that at least for infinitesimal boost, Eq. (22c) holds if and only ifd = 1. We should expect thed = 1 case of Eq. (22c) is
also true for any finiteη, sinceη is additive under successive boosts, and a finite boost is equivalent to many boosts with infinitesimalη applied
successively.

To prove that, we write down a Taylor expansion inη (specialized tod = 1),

sKm
ℓ′ℓ =

∞
∑

n=0

sκ
m(n)
ℓ′ℓ η

n. (D2)

We want to show thatsκ
m(n)
ℓ′ℓ is nonzero only ifℓ+ℓ′+n=even. In order to show that, we usesKm

ℓ′ℓ = 〈 sℓ′m| exp(iηŶz) | sℓm〉, and Taylor-expand
the operator

exp(iηŶz) =
∞
∑

n=0

ηn

n!

(

iŶz

)n
. (D3)
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Then sκ
m(n)
ℓ′ℓ = (1/n!) 〈 sℓ′m| (iŶz)n | sℓm〉. We know that in harmonic space,Ŷz has matrix elements only for∆ℓ = ℓ′ − ℓ = ±1,

〈 sℓ′m| iŶz | sℓm〉 = sB
m
ℓ+1 δℓ,ℓ′−1 − sB

m
ℓ δℓ,ℓ′+1. (D4)

Then let us examine the matrix elements for (iŶz)n, which can be obtained by matrix multiplications. Each multiplication changes∆l by one
unit, thereforen successive multiplications will contribute to a particular value of∆ℓ, only if ∆ℓ + n =even, orℓ + ℓ′ + n = even. Therefore,
sκ

m(n)
ℓ′ℓ = 0 unlessℓ′ + ℓ + n = even.
Now we can apply the Taylor expansion Eq. (D2),

sKm
ℓ′ℓ(−η) =

∞
∑

n=0

sκ
m(n)
ℓ′ℓ (−1)nηn = (−1)ℓ+ℓ

′
∞
∑

n=0

sκ
m(n)
ℓ′ℓ η

n = (−1)ℓ+ℓ
′

sKm
ℓ′ℓ(η). (D5)

Becaused
sKm

ℓ′ℓ(−η) = (−1)ℓ+ℓ
′ d
−sKm

ℓ′ℓ(η), which holds for anyd, we obtain1
sKm

ℓ′ℓ(β) ≡ 1
−sKm

ℓ′ℓ(β), as stated in Eq. (22c).

Appendix E: Numerical computation of sKm
ℓ′ℓ(β)

To compute the aberration kernel,sKm
ℓ′ℓ(β), we need to evaluate the spin-weighted spherical harmonicfunctions (here we directly use that

the sign ofsdoes not matter),sYℓm(n̂). Since we aligned the direction of the motion with thez-axis, the dependence on the azimuthal angle,φ,
drops out of the problem and for convenience we can introducethe polynomials,

sP
m
ℓ (cosθ) =

√
4π e−imφ

sYℓm(φ, θ), (E1)

which are real functions. Fors = 0 we have0Pm
ℓ
(x) =

√
2ℓ + 1

√
(ℓ −m)!/(ℓ +m)! Pm

ℓ
(x), wherePm

ℓ
(x) define the usual associated Legendre

polynomials. With this definition the kernel reads

sKm
ℓ′ℓ(β) =

1
2

∫ 1

−1

sPm
ℓ′(µ

′) sPm
ℓ

(

µ′−β
1−βµ′

)

γ(1− βµ′) dµ′, (E2)

where we usedµ′ = cosθ′. The polynomialssPm
ℓ
(x) follow the recursion relation

sC
m
ℓ sP

m
ℓ (x) =

(

x+
sm

ℓ(ℓ − 1)

)

sP
m
ℓ−1(x) − sC

m
ℓ−1sP

m
ℓ−2(x), (E3)

with sCm
ℓ
= sBm

ℓ
/ℓ ≡

√

(ℓ2 −m2)(ℓ2 − s2)/(4ℓ2 − 1)/ℓ for ℓ > 0 and sCm
ℓ
= 0 otherwise. This expression directly follows from Eq. (C1a).

The recursions are best started atsPm
m(x). For s > 0, the initial conditions can be derived by subsequently applying the spin-raising operator,

ð = −(sinθ)s[∂θ + (i/ sinθ)∂φ]/(sinθ)s, to sYmm(φ, θ) and then converting back tosPm
ℓ
(x). For the first few values ofs, we find

0Pm
m(x) =

√

2m+ 1
(2m)!

Pm
m(x) = (−1)m

√
(2m+ 1)(2m)!

2mm!
(1− x2)m/2 (E4a)

1P0
1(x) =

√

3
2

(1− x2), 1Pm
m(x) =

√

m
m+ 1

√

1− x
1+ x 0Pm

m(x) (E4b)

2P0
2(x) =

√

15
8

(1− x2), 2P1
2(x) =

√

5
4

(1− x2)(1− x), 2Pm
m(x) =

√

m(m− 1)
(m+ 2)(m+ 1)

1− x
1+ x 0Pm

m(x). (E4c)

Since1P0
0(x) = 2P0

0(x) = 2P0
1(x) = 2P1

1(x) = 0, for s > 0 we needs additional expressions to start the recursions. To carry out the numerical
integrals we use Clenshaw-Curtis quadrature rules, which are very accurate even for largeℓ. We used the results for direct numerical integration
to confirm those obtained with the kernel recursion relations.
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