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Abstract

Optimization Methods Leveraging V2X Communication and Traffic Management Apps for
Transportation Control

by

Mikhail Igorevich Burov

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

With a growing number of vehicles and an increasing complexity of transportation systems,
traffic management and traffic optimization become more and more crucial in mitigating
congestion, reducing travel delay and improving traffic state. The concept of a “Smart” city
that incorporates various intelligent systems related to infrastructure modification, wireless
communication, networking and centralized/decentralized controllers is considered to be the
next evolutionary stage of the modern urban world.

This dissertation focuses on optimization models and algorithms leveraging traffic manage-
ment apps (navigation and reservation) and vehicle-to-everything (V2X) communication for
mitigating congestion level, reducing fuel consumption and minimizing travel delay for ve-
hicles in urban areas. An ability to share data, receive and send requests and directions
allows traffic agents, both on-road (moving) and off-road (parked), to significantly improve
utilization of transportation resources. To demonstrate the impact network-level control
policies have on a system’s social delay, in our work [1], presented in Chapter 2, we propose
a greedy optimization algorithm that eliminates “Braess” routes and derives a paradox-free
subnetwork to be implemented in navigation apps. Prior literature that studied the Braess
paradox was not able to provide efficient tools for improving the equilibrium state. Topology
analysis methods could only predict the occurrence of the paradox but could not deal with
it. Results that focused on a single link or route removal were ineffective for large networks.
Other methods that discussed tolling or closing roads were too restrictive and required sig-
nificant infrastructure modifications. Our approach, on the other hand, is more flexible and
can be effectively applied to real-world systems to completely eliminate the inefficiency and
momentarily reduce total travel time. In addition, we address the challenging task of in-
corporating queue delay into the network representation by introducing “phantom links”.
The following chapters focus on link-level models dealing with local traffic inefficiencies. In
Chapters 3 (corresponding work [2]) and 4 (extension to the work [3]) we explore moving



2

traffic management methods and benefits their implementation has with respect to traffic
throughput, travel time and fuel consumption. We demonstrate how the optimal platoon
formation algorithm can improve traffic progression on urban streets and freeways. Earlier
methods either focused on the Ad-hoc protocols, which have limited application in mixed
traffic due to its short range, or tried to reduce the travel delay at the cost of the increased
traffic disturbance, which was both ineffective and potentially harmful. Our approach, aimed
at travel time minimization, takes on the local clustering method and proposes an intelligent
platoon merging system that addresses a major part of its common complications and difficul-
ties. In particular, minor infrastructure modifications accompanied by V2I communication
protocols enable efficient localization and coordination with minimal traffic disruption and
make it possible to artificially increase road capacity and improve congested regions. For fuel
consumption, we discuss a novel queue estimation procedure, built upon the vehicle labeling
system presented in [3], to be used in a prediction-based model that ties together Speed
Advisory System and actuated traffic lights to reduce idling at intersections and smooth
driving patterns. Moving on from thru-traffic optimization, in Chapter 5 we focus on curb
management issues and propose a delivery vehicles’ operation hours partitioning model to
be implemented in a reservation app. Previous works that discussed parking reservations
did not consider delivery vehicles and their specific arrival patterns and focused mostly on
general cars. Another commonly used parking policy, dynamic parking pricing, extensively
studied in the past, is not effective when dealing with delivery vehicles, since they do not
usually pay for parking. Our system, on the other hand, focuses on implementing parking
equilibrium by physically constraining delivery trucks’ parking choices. In particular, this
model is aimed at eliminating double-parking. In Chapter 6 we start looking at practical
implementation of curb management techniques. More specifically, we investigate a new
delivery vehicle activity monitoring method via dashcam video footage and data analysis
algorithms. Switching from the non-scalable and costly data collection techniques, such
as static surveillance, we propose a more flexible, low-cost and effective model for parking
patterns recognition and curb management implementation.
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Chapter 1

Introduction

The current state of transportation system management is far from being optimal. With
a growing number of vehicles ([4]), urban streets and freeways are failing to efficiently accom-
modate heavy traffic loads, resulting in high congestion levels ([5]) in the US. Straightforward
solutions, such as building additional roads, although intuitively should solve the existing
issues, are not only extremely expensive considering limited spatial resources of cities, but
might also have a completely unexpected effect: increased congestion and travel time (this
phenomenon is discussed in Chapter 2). Therefore, more elaborate control and optimization
methods are required to analyze and manage transportation systems.

The concept of a “Smart city” (studied in [6], [7], etc.), can be a potential solution to
the existing transportation crisis due to its versatility, flexibility and efficient resource uti-
lization. It is a collection of various intelligent systems serving a single purpose: creating a
complete monitoring and control infrastructure for effective traffic management. Intelligent
safety measures, such as “safety islands”, protected turns and pedestrian protection can min-
imize hazardous situations, prevent accidents and accident-related traffic issues. Different
types of wireless communication, such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), vehicle-to-everything (V2X) or Internet-based (navigation apps), allow traffic agent
to share data with the system. Providing GPS location, speed profile, ride information,
surrounding traffic conditions, path choice or driver’s preferences contributes to building a
complete and accurate online system representation and enables fast and optimal response
from the infrastructure. Advanced sensors, detectors and traffic cameras constituting a com-
plex monitoring network are responsible for building detailed data-sets for behavioral pattern
recognition, policy enforcement and analysis. The “brain” of a Smart city responsible for
making decisions and passing down commands and directions can be represented by a col-
lection of centralized and/or decentralized controllers relying on many different optimization
models. These models programmed to prioritize one or several traffic parameters (travel
time, parking occupancy, fuel consumption, air or noise pollution, etc.) are a powerful tool
in eliminating inefficiencies. The final structure of the “brain” may be different for every
region: a single ultimate controller responsible for the entire transportation system in one
city or many decentralized controllers limited to a single task, such as managing a traffic
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light, in another one. Building and implementing such optimization models and controllers
is the main objective of traffic management.

1.1 Optimization Models in Transportation

Management

This dissertation focuses on several optimization models and algorithms for transporta-
tion systems’ management leveraging V2X communication, navigation and parking reser-
vation apps. The overall structure of this work is shown in Fig. 1.1. In the first part of
the dissertation, consisting of Chapters 2, 3 and 4, we will demonstrate optimization algo-
rithms and models related to moving traffic (i.e. thru-traffic) management. First, focusing
on network-level control policies in Chapter 2 (the work was presented at ITSC 2021 - [1]),
we will continue with the link-level models in Chapters 3 (the work was presented at ITSC
2020 - [2]) and 4. The second part of the dissertation, Chapters 5 and 6, explores optimiza-
tion methods in application to static agents (parking policies) within the link-level models.
A parking reservation model, presented in Chapter 5 will be accompanied by a practical
monitoring system discussed in Chapter 6. The rest of the introduction is dedicated to
demonstrating the interconnection and interdependency of all part of the dissertation, as
well as providing further background and motivation for the research.

Figure 1.1: Dissertation structure. The work is clustered according to the common themes:
moving traffic analysis and parking optimization; Network-level and link-level controls.
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1.2 Detecting Braess Routes

The single greatest source of congestion and road utilization inefficiency is the behavioral
nature of moving traffic (thru-traffic) itself. Drivers, having limited information about the
local (surrounding traffic) and global (the entire network) states of the system, tend to make
selfish and non-optimal decisions resulting in significant excessive travel delay. Ordinary
traffic agents are not coordinated and unaware of the cumulative effects their behavior has on
occurring congestion, therefore, developing optimization and management models for thru-
traffic is essential. With the purpose of having a broad understanding of drivers’ decisions and
their collective impact on traffic state, we will first focus on the highest layer of transportation
systems: Network level. At this layer traffic management is closely related to adding or
removing available resources (roads or routes) and directing traffic flows within the system.

Unfortunately, due to the selfish nature of drivers’ intentions when choosing their strate-
gies, trivial solutions might be ineffective or even harmful. When planning their trips,
non-altruistic drivers tend to follow routes with smallest immediate delay (best-response
strategy) without caring about the well-being of the transportation system. Such behavior
is well characterized by Nash (Wardrop) equilibrium state, the system state at which no
agent (driver) benefits from individually switching his strategy (route). Being at equilib-
rium state, however, is not equivalent to exhibiting minimum travel delay, which means road
networks often suffer from various types of equilibrium inefficiencies. The well-known Braess
paradox, first studied in [8], is one of such inefficiencies. This counter-intuitive phenomenon
describes scenarios where adding resources (building additional roads or introducing new
routes) results in higher cost (travel time) for agents at equilibrium. One way to deal with
the paradox and reduce the social cost of the system at equilibrium is to reverse the process
by removing such Braess links or routes from the network bringing it back to the pre-Braess
state. This approach does not guarantee the optimality of the resulting network ([9] proved
the problem of finding the optimal subnetwork is NP-hard), but is capable of significantly
improving congestion.

The first solution corresponding to adding and removing road links, when applied in real-
world, requires effort-demanding physical modifications to the network (closing down roads)
and might be challenging to implement. On the other hand, in the era of Google Maps, when
most people rely on navigation apps, altering the pool of suggested routes is much easier and
efficient. First, it only requires software-related adjustments to the online maps; second, it
does not affect harmless (congestion-wise) short-range trips, since no links are closed down
completely. Therefore, in Chapter 2 we present a route elimination algorithm that searches
for Braess routes and removes them from the navigation system, leaving only a paradox-free
subset visible to agents.

But first, to analyze a physical transportation system and apply optimization methods,
we need to build a mathematical representation of it. We can transfer the problem to
the graph modeling domain and portray the network as a combination of edges and nodes
representing roads and intersections respectively (Fig. 1.2).

Each link has a corresponding delay function dependent on the link’s geometry, capac-



CHAPTER 1. INTRODUCTION 4

Figure 1.2: Graph representation of a real-world network in Las Vegas, NV. Graph links and
nodes represent road segments and intersections respectively.

ity, number of lanes, speed-limit, etc. These delay functions must be non-negative, non-
decreasing and continuous to reflect the real-world properties of travel delay and be suitable
for convex optimization methods used to derive the Nash state. One of the drawbacks of
a graph representation is difficulty in modeling traffic queues and the resulting delay. In
Chapter 2 we address this challenge by introducing “phantom” links accounting for queu-
ing delay. The further equilibrium derivation can be conducted using game theory, more
specifically population and congestion games, and convex optimization methods utilizing
Beckmann potentials.

Equilibrium analysis and optimization rely heavily on the throughput capabilities of
road links and intersections. However, high-level management techniques are not able to
affect these characteristics, and thus, to be most effective, must be accompanied by link-
level control methods, which can help in analyzing and regulating the links’ flows. In the
following chapters we will explore some of these link-level models.

1.3 Platoon Formation Optimization

The capacity and speed-density characteristics of a road link are the two most important
parameters defining the link’s delay function and the saturation rate. Here a link’s saturation
rate is defined as a maximum throughput in vehicles per hour achieved when the traffic flow
on the link is continuous and uninterrupted. The ability to alter these parameters can
potentially improve local traffic propagation and, as a consequence, reduce travel time. One
of the transportation concepts capable of such regulation is vehicle platooning ([10]). A
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platoon is a string of connected vehicles (CV) moving in a tight formation on the road
(Fig. 1.3). Due to the shorter headway maintained between the platooning vehicles, more
road space is made available for other traffic agents, which contributes to the road capacity
increase.

Figure 1.3: Vehicle platooning diagram. The leading vehicle shares data with all its followers,
while other vehicles communicate only with their immediate followers.

Connected vehicles, as the name suggests, are capable of wireless connection or com-
munication via V2V communication channels. In order to preserve a constant inter-vehicle
distance while accelerating, cruising and decelerating, platooning vehicles must coordinate
their motion. Maintaining string stability (more information on string stability can be found
in [11]) requires distance tracking and estimated speed trajectory sharing ([12], [13]). Remov-
ing human reaction time from the equation allows for an immediate response to any sudden
velocity changes. Such coordinated movement also helps in mitigating traffic shock-waves.

Forming platoons in heavy traffic, however, can be challenging in practice. Assuming local
clustering mechanism, where CVs willing to platoon are scattered within a relatively short
proximity on the road, the process of coordinating vehicles and merging them in a platoon
is non-trivial. Identifying relative positions and current lanes, deciding upon the order
and terminal lane without a centralized controller might be rather harmful than beneficial.
Multiple vehicles simultaneously performing maneuvers, such as lane changing, slowing down
or speeding up, can potentially disrupt the flow of surrounding traffic and risk the safety of
other traffic agents. To address this issue, in Chapter 3 we introduce a platoon formation
algorithm aimed at minimizing travel time built upon certain infrastructure modifications.
These changes include but are not limited to allocating a platoon-dedicated lane (similar
to a carpool lane) and installing Road-Side-Units (RSU). The latter not only enables V2I
communication for movement coordination and guidance, but also allows for traffic data
collection for further analysis.
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1.4 Queue Estimation for Speed Advisory and

Real-Time Phase Length Prediction

While in Chapter 3 we worked on improving traffic progressions on roads, in Chapter
4 we focus on traffic progression at intersections. Of a particular interest are signalized
intersections where the traffic flow is regulated by a traffic light (TL). The most common,
“fixed”, type of a traffic light, with a constant cycle length (time interval between two
consecutive green lights) and predefined phase durations (duration of green, red and yellow
lights) can be considered a baseline for traffic control due to its trivial functionality. A
more advanced version, dynamic traffic light, on the other hand, has a greater impact on
traffic progression and intersection throughput. Depending on the flow volume, its phase
length can be automatically extended beyond the minimum duration up to a certain limit.
This extension is triggered by travelling vehicles themselves and does not require human
supervision. Ability to provide longer green-light intervals to directions with higher demand
can help in dissolving queues and improving traffic regulation. However, the dynamic nature
of phase duration poses an implementation challenge for external intelligent systems that
rely on the knowledge of TL states and the remaining time in the current phase.

One of such systems is a Speed Advisory System (SAS), introduced in [14], and designed
to provide near-optimal speed trajectories reducing fuel consumption and minimizing idling
at intersections. By constructing bang-singular speed trajectories, a more driver-friendly ver-
sion of a bang-singular-bang pattern, SAS manages to reduce fuel-inefficient jerky movement
and guide vehicles through upcoming intersections without stopping (if possible). The latter
property of near-optimal speed profiles significantly improves progression quality, which is
closely related to queuing delay at an intersection due to arrival-departure patterns.

To perform required computations, however, the Speed Advisory System relies on the
availability of infrastructure parameters, such as distance to the intersection, speed limit on
the road, TL phase and the remaining time within the current phase. When interacting with
fixed traffic lights, connected vehicles can obtain this information via SPaT (signal, phase
and timing) messages, but since this information is unknown in case of dynamic TL, some
estimation technique is required.

In our work ([3]) we proposed a real-time phase length prediction algorithm that is
capable of providing such estimations. Using traffic data from an advanced road detector,
which we refer to as a “counter”, it evaluates whether a certain vehicle will be able to
trigger the phase prolongation at the upcoming intersection. The mentioned traffic data
saved in the system for one TL cycle consists of crossing times and vehicles’ speeds and is
further used to compute an estimated time when each particular vehicle reaches another
advanced detector, an “actuator”, responsible for phase extension. In this work we assumed
the time-gap actuation type, i.e. the phase is extended only if the time gap between two
consecutive vehicles crossing an actuator is smaller than a certain threshold. Combining
the knowledge of the actuation time gap and recorded arrival times, our algorithm labeled
vehicles “PASS” or “WAIT” according to their estimated ability to pass the intersection
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within the current phase. The last “‘PASS”-labeled vehicle served as an indicator of a phase
switch and its estimated arrival time could be used to derive the remaining time within
the current phase. Using 2-way V2I communication protocols, the infrastructure shared the
estimated parameters with vehicles enabling the Speed Advisory System to take actions.
Since this method requires computational power and communication channels for efficient
performance, the infrastructure modification must include installation of Road-Side-Units in
addition to the discussed advanced detectors (Fig. 1.4).

Figure 1.4: Diagram of V2I communication and labeling process. RSU receives speed and
time and transmits assigned labels and estimated remaining time withing the phase.

In [3], we did not consider queues which, according to the findings in Chapter 2, make
a significant contribution to travel delay and throughput reduction. Ignoring queues means
overestimating road space available for completing the SAS-suggested maneuvers, which
might partially negate the potential benefits. In Chapter 4, we provide our work [3] for
completeness and extend it focusing on queue estimation implementation for a more accurate
near-optimal speed trajectories derivation. The proposed method can further reduce fuel
consumption and progression quality at intersections equipped with dynamic traffic lights.

1.5 Parking Reservation

Although thru-traffic-related inefficiencies are the major cause of congestion and excessive
travel delay, the complete control over a transportation system cannot be achieved by the
vehicle flow management alone. A particular group of agents, parked or seeking parking
vehicles, whose actions are not affected by the control techniques presented in previous
chapters, can still influence local infrastructure parameters and disrupt traffic flow. Most
city streets have at least one lane allocated for on-street parking available for ordinary and
commercial vehicles on a First-come-First-served basis. This principle together with the lack
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of any regulation makes it impossible to ensure parking spot in advance, before arriving at
the location. Due to high demand and insufficient parking space, most ordinary drivers are
forced to cruise around searching for vacant parking spots slowing down the surrounding
traffic ([15]).

Commercial vehicles (delivery trucks, taxis, Ubers, etc.), on the other hand, are more
location- and time-sensitive when looking for a spot and usually cannot afford long searching
and remote parking. Dropping off passengers or delivering goods require a close proximity to
the final destination and minimal possible holdup. Their parking spot occupancy is usually
brief, therefore, some drivers may find it expedient to park illegally (double park, occupy
no-park zone or a bus lane) in the absence of a rapid law enforcement system (Fig. 1.5).
Such behavior results in direct road capacity reduction and a bottleneck effect, which has
a negative impact on traffic flow and traffic state in busy areas and during rush hours.
Another parking violation concerning bus stop occupation can be considered a safety issue
as well. Unable to stop at the bus stations, buses are forced to drop off passengers in less
convenient and more dangerous locations exposing them to traffic and further slowing down
other drivers.

Figure 1.5: Double-parked FedEx delivery vehicle blocking an entire lane during unloading.
The absence of a rapid law enforcement system leaves many of such drivers undeterred.

Some curb management methods aimed at improving utilization and eliminating illegal
parking, such as additional space allocation for delivery vehicles, might be effective only to
a certain extent (as long as the total parking demand does not exceed the space capacity).
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Dynamic parking pricing, commonly used for occupancy regulation, cannot be fully practical,
since delivery vehicle drivers generally do not pay for parking due to brief parking time.
One way to make sure every arriving delivery vehicle is able to legally park at a particular
location is to implement an online reservation system. Drivers having access to a parking app
can see available parking spots and book them beforehand, reducing unintentional parking
violations.

In Chapter 5 we introduce a parking reservation model for delivery vehicles based on a
partitioning of operation hours. By choosing the specific time-slot durations, we manage to
physically constrain delivery trucks’ parking choices and force them to follow the optimal
parking strategy, which is much more effective than applying pricing management tech-
niques. The main objective of our model is eliminating double-parking incidents caused by
uncoordinated and overlapping truck arrivals. We consider delivery truck drivers’ and city’s
preferences in the form of utility and penalty functions respectively to derive the optimal
parking equilibrium. By solving series of optimization problems we split delivery vehicles’
operation hours into non-overlapping intervals resulting in maximum social utility. The de-
rived partitioning is expected to be made available for booking in an online reservation app
which can also be designed to collect users’ preferences and travel data for a more accurate
action prediction.

1.6 Curb Monitoring

In Chapter 5 we discussed the optimization model capable of mitigating double-parking
and improving curb utilization, but what is necessary for an actual real-world implementation
of such systems? Which locations are in high demand among delivery vehicles and suffer the
most from double-parking? What is the parking demand distribution throughout the day,
week, month, year? How do delivery vehicles’ behavior patterns affect the overall congestion
level in the system? How effective and rapid is law enforcement in specific areas? The
uncertainty in spatial and temporal parking characteristics of an area of interest makes the
curb management a challenging engineering task.

The initial phase of any parking policy application is data collection and monitoring. A
city planner needs to identify problematic areas, which we refer to as “hot spots”, with the
highest traffic density and the day-to-day delivery vehicles number. In case of well-developed
social system built within a community with regular surveys and questionnaires for drivers,
residents, business owners, etc., some human-related perspective can be obtained through
civic agencies. Explicit monitoring can be achieved with an installation of surveillance cam-
eras recording the traffic state 24/7. The quality and completeness of the obtained data
would be exceptional, however, potential privacy issues, relatively small area of consider-
ation and high maintenance costs may force a designer to seek other monitoring methods.
Staying on the video-related side of data collection, having access to personal or public dash-
cam footage reflecting the vehicle-point-of-view picture can be a good alternative to fixed
cameras. The obtained information is expected to be less thorough and complete, but, on the
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other hand, it allows to analyze the system from various angles and evaluate the direct impact
delivery trucks have on the surrounding traffic (speed variation, lane changing maneuvers,
etc.). On-street advanced detectors and sensors collecting speed-density points and parking
occupancy can also contribute to building an accurate representation of the transportation
system. Further analysis using modern data-science and artificial intelligence methods, such
as neural networks, can produce a solid ground for implementing curb management models.

Chapter 6 starts looking at the practical implementation of the monitoring phase. We
focus on curb activity evaluation and delivery vehicles recognition on the South side of UC
Berkeley campus, Bancroft Way, Berkeley, CA. By installing a dashboard camera on the
Bear Transit bus cruising around the campus, we managed to collect hundreds of hours
of video footage for extensive traffic analysis. We developed and trained YOLOv5-based
neural network for delivery vehicle recognition and classification. Labeled data was used
to discover busy areas, construct temporal distribution of delivery activity and analyze the
delivery vehicles’ parking violations.
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Chapter 2

Detecting Braess Routes

2.1 Introduction

Road networks suffer from various types of equilibrium inefficiency due to selfish rout-
ing. Of particular interest is the Braess paradox, a counter-intuitive phenomenon describing
scenarios in which building new road links results in higher traffic delays at equilibrium.
Since its introduction in 1968 in [8], the Braess paradox has been studied extensively to find
efficient ways to predict, detect and prevent its existence.

Early results, such as [16], [17], [18], [19], [20], focus on the classic diamond-shaped, four-
node network with a single OD-pair. A later study [21] extends the analysis to general traffic
networks to predict the occurrence of the paradox; however, the applicability of the results is
limited by a restrictive assumption that all routes with non-zero flows in the original network
are also utilized after the addition of a road link. Moreover, [21] as well as related theoretical
papers [22] and [23] consider the special case when exactly one road link or route is built or
removed from the network.

Another approach to anticipating the Braess paradox is a network topology analysis.
The study [24] shows that a two-terminal network is immune to Braess paradox if and only
if it is series-parallel. In addition, the paper extends the result to account for any Pareto
inefficiency in a two-terminal network. References [25] and [26] extend the characterization
from undirected graphs to directed graphs and allow for multiple commodities. Another the-
oretical study, [27], explores the concept of matroids to identify networks that are immune to
the Braess paradox. Unfortunately, few transportation networks exhibit a matroid structure;
therefore, the applicability is limited in practice. A further shortcoming of the theoretical
studies mentioned above is that they present structures that are immune to the Braess para-
dox, but do not provide tools to modify existing networks to eliminate this paradox and
improve the efficiency of the equilibrium.

The computational study [28] proposes a mathematical programming method to detect
the Braess paradox in a given network. The problem is formulated as a bi-level structure
and then transformed into a single-level mixed integer program. By setting tolls to links and
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analysing the resulting network latency, the algorithm detects links that cause the Braess
paradox and penalizes them to imitate road closure.

Instead of links, in our work we search for ‘Braess routes’ (routes that cause the Braess
paradox) with a greedy optimization algorithm and remove them sequentially from the nav-
igation system. This leaves the drivers with a subset of routes that are immune to the
paradox, which they are free to choose from. We believe that removing routes is advanta-
geous over removing links, as removing a link adversely affects all other routes going through
this link. Among other scenarios, our approach enables removing through-traffic from resi-
dential roads, while allowing them to continue to serve the residents. One shortcoming of the
route removal approach, however, is that customers might simply switch to another naviga-
tion system if their freedom of choice is limited. Further research is needed to address this
issue, such as splitting populations into “selfish” and “altruistic” to model different levels of
cooperation or creating a system of benefits to encourage drivers’ participation.

Unlike other methods for detecting and eliminating the Braess paradox, our model ac-
counts for intersection structures and queues. A more accurate graph representation achieved
by fitting functions for link delays and queue delays from data allows us to make theoretical
methods applicable to real-world networks. We validate our approach on an extended graph
model of a road network from North Bethesda, Montgomery County, Maryland. We slightly
modified the geometry of this network with additional links to be able to test a bigger num-
ber of OD-pairs and routes. We were able to demonstrate up to 12% delay reduction on this
extended network. Despite this improvement, we do not claim the proposed route removal
strategy is optimal. Indeed, as shown in [9], the problem of finding the optimal subnetwork
is NP-hard. Instead we trade optimality with computational tractability and applicability
to real-world networks.

2.2 Network Specification

We consider a network with several routes available to each OD-pair. Every route is
represented by a set of consecutive links connecting the origin to the destination.

Link delay function

We estimate the time delay that a vehicle experiences on each link with a Bureau of
Public Roads (BPR) function [29]:

Φ(z) = t0

(
1 + a

(
z

cap

)b
)
, (2.1)

where
t0 is the free-flow time (t0 =

link−length
free−flow−speed

),
a and b are parameters that depend on the link’s properties,
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Figure 2.1: Montgomery County network, slightly modified with additional links to test a
bigger number of OD-pairs and routes. The red box demonstrates how one edge is represented
with a series of links, as discussed in Section 2.6.

cap is the link throughput capacity (in veh
hour

).
To compute the values of parameters a and b for a particular link, we followed the method

described in [30], which requires speed-density data points for a curve-fitting algorithm that
outputs appropriate parameters. We used Simulation of Urban Mobility (SUMO) open-
source software to build a test case based on the modified North Bethesda, Montgomery
County, Maryland network around the intersections of Montrose Rd and Montrose Pkwy
(Fig. 2.1). In the absence of historical data, we generated traffic data from the simulation
environment and estimated the delay functions. The derivation is detailed in Section 2.6.

Queue delay estimation

Link delay functions do not account for the queues, which accumulate when the link
throughput capacity is insufficient for the incoming flow. To address this issue and model
queue delay we introduce “phantom” links, i.e. links that have no physical analogue in the
real-world or simulation, but exist solely to account for additional delay related to queues.
We insert “phantom” links into routes between consecutive edges incoming to intersections
and edges leaving the same intersections (Fig. 2.2).

The analysis in Section 2.6 yields queue delay function:

Φq(z) =

{
d0 if z < s

αz + β otherwise,
(2.2)

where
d0 is expected constant delay due to intersection structure,
α and β are parameters that depend on the link’s properties,
s is the link’s saturation rate.
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Figure 2.2: A “phantom” link is virtually inserted after the congested edge whose queue-
related delay we would like to account for. ”Phantom” links have no physical representation
and exist only in the mathematical graph model.

The proposed function is a continuous non-decreasing non-negative piece-wise linear func-
tion. Therefore, it can be readily used in our route detection algorithm.

2.3 Braess Route Elimination Algorithm

Wardrop Equilibrium computation

To compute the Wardrop Equilibrium state we use a convex optimization problem that
utilizes Beckmann potentials [31] for delay functions. The objective function of the opti-
mization problem to minimize is the sum of Beckmann potentials, i.e. integrals of delay
functions, across all links: ∑

i∈L

ϕi(zi) (2.3)

where
L is the set of links in the network,
ϕi is the Beckmann potential of the link i (ϕ

′
i = Φi),

Φi is the delay function of the link i,
zi is the flow on the link i (zi = (RTx)i),
x is the vector of route flows,
R is the routing matrix defined as
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Rij =

{
1, if the route i goes through the link j

0, otherwise.
(2.4)

The first constraint ensures non-negative flows on routes:

xk
j ≥ 0, ∀j ∈ P k;∀k ∈ O, (2.5)

where
P k is the set of routes corresponding to the OD-pair k,
O is the set of OD-pairs.
The second constraint guarantees that flows on routes corresponding to the same OD-pair

sum up to the demand for that pair:∑
j∈Pk

xk
j = dk, ∀k ∈ O, (2.6)

where dk is the demand on the OD-pair k.
Therefore, the problem is:

min
x

(2.3) subject to (2.5)− (2.6). (2.7)

The solution of the problem (2.7) is the vector x∗ of route flows at equilibrium, which
results in the total network delay:

Y = x∗TR

 Φ1(z
∗
1)

...
Φm(z

∗
m)


|z∗i =(RT x∗)i

. (2.8)

Elimination procedure

The objective of our algorithm is to find subsets of links/routes such that the remain-
ing network has reduced latency. To achieve this we remove links and routes that cause
the Braess paradox, which we refer to as ‘Braess’ links/routes, from the original system.
Removing a route implies removing it from the set of options suggested by the navigation
system (e.g., Google Maps); removing a link implies either physically closing down the road
segment or reducing its capacity with tolls or signaling. As explained in the Introduction,
route removal is preferable in practice; however, for the completeness of the study we dis-
cuss several approaches for route and link elimination, as they are easily obtained from the
equilibrium computation method of the previous section. An important constraint in these
approaches is to keep the connectivity of the network unchanged, i.e. every OD-pair from
the original network must retain at least one route in the reduced network.

In each approach we attribute values to the links/routes with the help of the optimization
problem (2.7). First we obtain the equilibrium network delay, Y , for the original system.
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Then, we tentatively remove a link/route from the network (remove corresponding rows and
columns from the routing matrix (2.4)) and solve (2.7) again, deriving the new equilibrium
network delay, Ynew. Having both the original and the new network delays, the value V of
the removed link/route is:

V = Ynew − Y. (2.9)

Links/routes with negative values are associated with the Braess paradox, because removing
them reduces latency.

Greedy Single Link Removal

1. Find the link with the smallest value Vmin.

2. If Vmin < 0, remove the link and revert to step (1).

3. Otherwise, terminate.

As stated earlier, removing a link affects the entire set of routes going through this link,
which compromises the effectiveness of the algorithm. Moreover, this approach is slower
than some algorithms discussed further.

Link Combination Removal

1. Compute the values of all possible combinations of links and find the one with the
smallest value Vmin.

2. If Vmin < 0, remove the corresponding combination.

3. Otherwise, the network is Braess paradox-free.

Since the number of link combinations grows exponentially with the number of links, this
method is computationally expensive and does not scale well to large networks.

Link-Route Combination Removal This approach modifies the first method and tries
to address the issue with subset of routes elimination. Instead of removing links completely,

1. For each link find the subset of routes utilizing this link that results in the minimal
network delay.

2. Remove the routes that were not present in at least one optimal configuration.

Unlike previous algorithms, this method removes routes, but does it indirectly by working
with link-route combinations.

Greedy Single Route Removal

1. Find the route with the smallest value Vmin.

2. If Vmin < 0, remove the route and revert to step (1).

3. Otherwise, terminate.
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This approach, unlike the first method, deals with routes directly, which is faster since in
practice the number of commonly used routes is smaller than the number of links. An OD-
pair can potentially have a large number of possible routes; however the dominant part of the
drivers uses the a very limited subset of those routes. It also allows to identify the occurrence
of the Braess paradox after the first iteration: if the route with the minimal value has zero
initial flow at equilibrium, then the network is Braess paradox-free.

Route Combination Removal

1. Compute the values of all possible combinations of routes and find the one with the
smallest value Vmin.

2. If Vmin < 0, remove the corresponding combination.

3. Otherwise, the network is paradox-free.

This approach is similar to the second approach and has the same limitation due to compu-
tational complexity.

All five approaches were tested to identify the fastest and most accurate method for
further implementation and verification. The improvements achieved on the sample network
were comparable. Therefore, we report below the results for the fourth method (Greedy
Single Route Removal) due to its computational speed and advantages in implementation.

2.4 Model Verification via Simulation

Series of simulations were conducted to demonstrate the improvement, evaluate the pre-
diction accuracy and estimate the computational precision of our algorithm when applied
to physical networks. The testing was designed to model the behavior of a real-world traffic
system, therefore a complex structure of OD-pairs and corresponding routes was built upon
(Fig. 2.1). The parameters of the simulation model are presented in Table 2.1.

Table 2.1: Simulation parameters defining network characteristics and demand volume.

Parameters Values

Number of OD-pairs 12
Number of routes per OD-pair 1-5
Total number of routes 38
Number of simulated vehicles 500 - 3200

A side benefit of the route removal approach is that it may help small side-roads in
residential areas that usually suffer from congestion due to drivers attempting to avoid
busy freeways. In the era of Google maps, Waze and other navigation systems, which try to
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discover short-cuts and guide vehicles through neighborhoods to free up main roads, residents
of these regions face busy traffic consequences and spend significantly more time than usual
on short trips [32].

The testing procedure consists of the following steps:

1. Solve the problem (2.7) for the original network to obtain the equilibrium flow distri-
bution, x∗, and equilibrium network delay, Y .

2. Derive the route configuration resulting in minimal delay via route elimination algo-
rithm and reduce the network.

3. Solve the problem (2.7) for the reduced network to obtain the new equilibrium flow,
x∗
new, and network delay, Ynew. The theoretical delay reduction is: Ith = Y−Ynew

Y
.

4. Feed x∗ into the SUMO to obtain the simulation network delay, Y sim, as a sum of
travel times of all vehicles.

5. Feed x∗
new into the SUMO to obtain the new simulated network delay, Y sim

new . The

simulation delay reduction is Isim = Y sim−Y sim
new

Y sim .

6. Compare the theoretical and simulated delay reductions Ith and Isim, and estimated
total delays Y and Y sim.

Every simulation set was run with different initial demands corresponding to OD-pairs
(last row of Table 2.1). Congestion scenarios were of particular interest, because they allowed
us to test the developed queue delay estimation model.

It is important to mention that our model does not account for spillbacks (full occupation
of a link that causes the queue propagation to the upstream edge). Therefore, upper bounds
on demands were applied to avoid spillbacks. Further research is required for an appropriate
spillback representation.

2.5 Results

In this section we present the results of our algorithm for several scenarios. The first two
rows in Table 2.2 show the size of the simulated traffic. We addressed conditions associated
with different times of day.

We are interested in three main metrics when analyzing the efficiency of our approach,
which are presented in Table 2.2. The first metric (Row 3) is the theoretical improvement
in the network delay, i.e. total travel time saved by all vehicles after implementing our
algorithm. In the low demand scenario, the network was Braess paradox-free, and no travel
time reduction was achieved. For moderate and congested traffic the improvement ranges
from 3.2% to 11.8%, which is reasonable considering the insignificant effort required to modify
the network configuration.
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Table 2.2: Simulation results for various traffic demands.

Set-up 1 Set-up 2 Set-up 3 Set-up 4

Demand Low Medium High High
Number of vehicles 500 1600 2600 3300
Improvement (Ith) 0% 3.2% 11.8% 8.1%
Improvement Diff. 0% 5.3% 15.3% 10.7%
Network Delay Diff. 1.7% 8.1% 9.5% 9.2%

The second metric (Row 4) shows the difference between the theoretically predicted
delay improvement and the corresponding simulation result. For the free-flow set-up there
was no Braess paradox and no comparison was needed. For medium and high demands, the
difference varies between 5.3% and 15.3%. Taking into account the improvement value itself,
we can conclude that the algorithm makes a relatively accurate prediction. Additionally, the
theoretical solution always resulted in actual simulation improvement, i.e., Ith > 0 ⇒ Isim >
0.

The third metric (Row 5) is the difference between the predicted network delay and the
simulated one. According to the results, we managed to keep the deviation under 10% for
all scenarios. Furthermore, some cases demonstrated almost identical values for the network
delays. The accuracy of the prediction suggests that the proposed graph representation
accounting for queue delays yields a reasonable model to reflect real traffic conditions.

2.6 Derivation of Delay Functions

Link Delay Function

In this section we present a detailed link delay function derivation from empirical data
points. We treated flow data for each link individually, simulating traffic on one edge at a
time. To capture a wide range of flow values, we generated a new random flow from the
interval [0,3000] veh

h
every 200 seconds. The provided data were sufficient to construct BPR-

functions for 90% of links (Fig. 2.3). Tuning simulation parameters covered additional 70%
of the remaining links (Fig. 2.4). For the rest of the failed edges, we used parameter values
corresponding to delay functions of upstream successful links with minor modifications. We
assumed these parameters are likely to have close values and, therefore, can be almost
interchangeable. However, if this assumption is false the discrepancy between ground truth
delay and estimated delay produced by inaccurate parameter substitution of one link is
insignificant in a network scale.

The negligibility of this difference follows from the fact that road links constituting a
network are relatively short in general. One edge in the graph network representation is



CHAPTER 2. DETECTING BRAESS ROUTES 20

(a) BPR-function fitting. (b) Capacity estimation.

Figure 2.3: Examples of successful BPR function construction and road capacity estimation
based on the simulated traffic data.

Figure 2.4: Examples of failed BPR function construction due to inability to simulate high-
quality traffic data.

usually displayed by a series of short connected links in the SUMO simulation network
(Fig. 2.1). The travel time contribution of one link is in the order of few seconds, which
is insignificantly small to deviate from the ground truth. Moreover, since the number of
poorly-fitted links makes up less than 2% of the number of all links, we can conclude that
the proposed design is sufficiently accurate.

Additionally, the link capacities can be extracted from fundamental diagrams built upon
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the collected data (in veh
h
) (Fig. 2.3b). The first method is to set the capacity estimate to the

maximal recorded flow value. Another approach is to use a piece-wise-linear approximation
to derive the capacity as a y-coordinate of the intersection of two approximation lines.

Queue Delay Function

In this section we present a detailed queue delay function derivation based on the queue
formation analysis. Queues occur when the flow (z) on the link exceeds the saturation rate
(s) of this link. The saturation rate is the upper bound on the number of vehicles able
to leave the link within a period of time. Therefore, the queue formation depends on the
difference between the inflow and the outflow on a particular link. Depending on the link
type and its relative position with a specific intersection, we can distinguish several possible
options for saturation rate estimation:

• If the link incomes to a signalized intersection, its corresponding saturation rate
equals to the maximum number of vehicles (n) able to pass the intersection on green
light within one cycle normalized to one hour:

s =
3600n

D
(2.10)

where, D is the cycle duration (in seconds).

• If there is a STOP sign at the end of the link, its corresponding saturation rate
is:

s =
3600

w
(2.11)

where, w is the delay (in seconds) a vehicle experiences when forced to stop at the
STOP sign on an empty road. This value depends primarily on the speed limit on the
link and has a small fluctuation from edge to edge.

• If the link is free from any traffic regulation causing vehicles to stop or slow
down, the saturation rate equals to the link physical throughput capacity.

• The link is the secondary link, having no priority on an unsignalized inter-
section. Up to this point, the queue delay is given as Φq(z) which is a function of
the flow on the corresponding link. In this case, however, the delay incurred by the
intersection structure on the secondary link is also a function of the flow of the primary
link. Although this violates the fundamental assumption of delay being a function of
the corresponding link flow only, if the delay was symmetric for both the primary and
secondary links, we could have still implemented this in our optimization problem and
computed the equilibrium points. However, primary link sees no delay from the inter-
section hence the delay function is asymmetric which makes it hard if not impossible to
compute equilibrium points the same way. Therefore, this scenario is not represented
in our model and is subject to further research.
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Similar to the link delay function derivation, we need to use real-world or simulated
empirical data to estimate the parameters for queue delay function. We present the detailed
function computation procedure for only the first scenario, which features a link incoming
to a signalized intersection. Other scenarios utilize a slightly modified approach, which we
will mention at the end of this section.

Knowing the traffic light cycle length (D) and keeping in mind the queue size dependency
on the inflow-outflow difference, we estimate the one cycle queue growth rate as:

dq =
(z −N)D

3600
, (2.12)

where N is the throughput of the link.
Based on the flow value, we can distinguish two scenarios:

• The flow is smaller than the saturation rate (z < s). In this case, dq = 0, all
vehicles are able to pass the intersection and no queue is forming. To account for a
potential red phase arrival, instead of setting the queue delay to zero, we choose a
specific constant d0, which is the expected value of a delay due to phase change:

d0 = E(y) =
1

D

Lred∑
i=1

i =
Lred(1 + Lred)

2D
, (2.13)

where Lred is the duration of the red phase.

• The flow is greater than the saturation rate (z > s). In this case, dq > 0 and
the queue is growing. To find the growth rate, the flow-throughput dependency and,
thus, the saturation rate for a particular link are required.

Based on the queue formation model presented earlier, queue delay function depends on
the saturation rate of the link. To find the one-cycle throughput capacity of the link we
simulate flows of various values in ascending order for a short period of time (200 seconds)
each and record the number of vehicles leaving the link (entering the intersection) within one
cycle. The flow point at which the throughput linear growth stops (Fig. 2.5a) corresponds
to the one-cycle saturation rate of the link. To obtain the value for one-hour period, scale
the result by 3600

D
. The throughput of the link (in veh

h
) is a piece-wise function of the flow

which has the form:

N =

{
z if z < s
2(z−s)

z
+ s otherwise.

(2.14)

For the flows smaller than the saturation rate, the throughput is a simple linear function,
because all vehicles are able to leave the link. Otherwise, the throughput equals to the sum
of the saturation rate and an additional term, which never exceeds 2. This term accounts for
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(a) Saturation rate. (b) Throughput function.

Figure 2.5: Link throughput at a signalized intersection. The link’s saturation rate and the
throughput function are highlighted blue.

rare scenarios with one or multiple abnormally fast-moving vehicles that manage to exceed
the usual saturation rate.

Feeding the derived throughput function back into equation (2.12), we obtain a one-cycle
gain in numbers of vehicles to the queue due to excessive flow. It is important to note that
the imposed queue delay varies among vehicles within the same flow, and drivers in the head
of a heavy traffic would spend significantly less time in the queue, than the ones in the tail.
To avoid complications in the optimization problem formulation, an average delay can be
assigned to every vehicle on the link. Plotting the computed delay results in a piece-wise
linear function (Fig. 2.6a).

The last step is to fit a linear function αz+β to the non-constant area of the graph (Fig.
2.6b) and learn the parameters α and β resulting in equation (2.2).

The presented approach can also be used to determine queue delay functions for links
ending up with the STOP sign. Both the expected delay d0 and the cycle length D would be
artificially set to w from equation (2.11), since every vehicle without exception is required
to stop at the STOP sign, which takes it exactly w seconds to do.
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(a) Queue delay data. (b) Fitting delay function.

Figure 2.6: Signalised intersection flow-delay dependency. The plateau region corresponds
to an expected value of a delay due to phase change. After passing the saturation rate value,
the function becomes linear.
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Chapter 3

Platoon Formation Optimization

3.1 Introduction

Vehicle-formation methods (column, line, echelon, wedge) [33] and vehicle connectivity
can drastically improve traffic state. Of particular interest is column platooning, first intro-
duced in [10] by PATH (Partners for Advanced Transit and Highways) for Intelligent Vehicle
Highway System (IVHS), which aims to significantly increase road capacity and alleviate
congestion by clustering vehicles into road trains. It was shown that platooning can increase
throughput, improve safety and smooth traffic flow. In [34], the impact of Cooperative Adap-
tive Cruise Control (CACC) on freeway merge capacity was estimated. The results indicate
that the road capacity increases more rapidly as the penetration rate of CACC-equipped
vehicles increases. Moreover, it has been shown that platooning can improve fuel economy
and decrease emissions due to reduced air drag [35] among other benefits [36].

Platooning consists of three fundamental maneuvers: platoon formation, steady-state
cruising and platoon splitting. Various works focus on merging and splitting protocols to
establish a more detailed guidance. The study [37] gives an overview of the organization of
truck platoons. Vehicle dynamics, longitudinal and lateral control for an ad-hoc organization
scenario is studied in [38]. Challenges such as nonlinear vehicle dynamics, string-stable
operation and merge/split maneuvers in the presence of communication constraints were
handled in the design of the longitudinal control policy. The study in [39] presents different
control protocols based on Vehicular Ad-hoc Network (VANET). Platoons traveling on a
special reserved lane execute merging, splitting and lane-changing maneuvers. Introducing a
platoon-dedicated lane improves feasibility and safety, ensures minimal interaction between
platoons and the rest of the traffic, allowing them to perform basic maneuvers without
disturbing traffic flow or creating hazardous situations.

Another merging algorithm was discussed in [40], which proposes a Hybrid approach for
truck platooning alternative to the existing catch-up and slow-down methods. The hybrid
platooning strategy combines those two approaches in an optimal manner, forcing down-
stream and upstream trucks to change their speed trajectories to achieve the fastest merging
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time using the maximal platooning speeds of trucks.
A more detailed study of merging protocols is presented in [41], which promotes a dis-

tributed decision making algorithm. Another interaction protocol for platoon merging dis-
cussed in [42] was used to develop a communication framework for the i-Game project. The
work studies two platoons travelling in separate lanes and merging into one convoy due to
roadwork ahead. The study [43] focuses on traffic interaction scenarios, such as cut-ins from
ordinary cars or slower vehicles blocking the road.

Going beyond low-level control within merging protocols, the local clustering method [44]
attempts to match vehicles desiring to merge (VDMs) with existing platoons. Connected
vehicles and platoons within a certain range of each other are directed to slow down, speed
up or change lanes depending on their current positions. This approach is employed in the
SARTRE project [45], which studied platooning in a mixed setting of both heavy and light
vehicles. Local coordination was used to match potential participants through a third-party
provider. Drivers had an ability to reserve spots in platoons and once in close proximity, the
dashboard HMI (Human-Machine Interface) would guide a vehicle to complete the maneuver.

More challenges when implementing the local clustering mechanism were addressed in
[44]. According to the study, the biggest difficulty is accurately determining the relative
positions of all traffic participants and transferring that information to drivers.

Local clustering method serves as a foundation for many platoon formation procedures.
Platoon organization algorithms discussed in [37] and [45] cluster vehicles into groups and
order them within each group based on vehicle characteristics (length, weight, size, braking
capability, etc.) and drivers’ qualifications and preferences. This platoon formation ap-
proach works with a mixed set of vehicles and optimizes the drivers’ comfort and local fuel
consumption. However, the algorithm does not consider the travel times of vehicles and is
not aimed to minimize delays. Moreover, placing vehicles in a particular order on highways
can be challenging due to surrounding traffic and potential disturbance to the traffic flow.

Some of the attempts in optimizing travel time include works [46] [47], which consider
origin-destination (OD) pairs for optimal assignment of vehicles to platoons. Vehicles are
clustered to maximize the distance over which the platoon stays intact. Results show an
improvement in road utilization at the cost of increased lane changes, which can disturb other
traffic participants. Although the travel time in medium and high demand was reduced, the
improvement is not significant.

The assignment of vehicles to platoons is still a relatively unexplored concept while it has
a high potential to mitigate congestion and increase road utilization. Unlike the algorithms
mentioned earlier, our approach aims to minimize travel time. To do so we introduce a
double-layered algorithm, where the first layer optimally assigns VDMs to platoons and
the second layer chooses one of the vehicles to perform the merging. The first layer is
represented by a mixed-integer optimization problem to be solved by individual VDMs. It
assigns vehicles to platoons travelling in the dedicated high-occupancy platoon (HOP) lane
to minimize local travel time and derives score functions (estimated merging time) for each
vehicle. Since guiding all vehicles to the HOP lane results in significant flow disturbance and
in inability to predict system dynamics, we allow only one vehicle to merge at a time. The
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second layer is designed to select the vehicle with the minimal score among those competing
for the slot to minimize the total travel time of the system. We validated our algorithm
via extensive simulation studies and observed that up to 20% travel time reduction can be
achieved compared to random assignment procedures.

3.2 Platoon Formation Procedure

The implementation of our algorithm requires a specific highway structure where the
left-most lane is dedicated to platoons (similar to carpool lanes). We denote this lane a
high-occupancy platoon (HOP) lane and assume that non-platooning vehicles are prevented
from travelling in the HOP lane. Restricting platoons to a special lane can potentially
allow them to travel faster and consume less fuel (since their motion is not disturbed by
the surrounding traffic). This, in turn, would encourage drivers to form platoons and, thus,
improve the flow of traffic.

For simplicity, we focus on freeway links that are composed of only two lanes: one regular
and one HOP. Scenarios with more than two lanes differ only in lane-switching complexity
and traffic interaction density. We further assume that vehicles in the platoon dedicated
lane move faster than those in the regular one, providing an incentive for forming platoons
of vehicles. Moreover, we ignore the physical length of platoons to simplify calculations.
Thus, a single vehicle is treated as a unit mass point and a m-vehicle platoon is treated as
a point of mass m. Travel time of such platoon is considered to be mtpv, where tpv is the
travel time of a single vehicle in that platoon.

We split the road into segments with finite length (300 meters each) equipped with local
centralized controllers, i.e. road-side units, that are responsible for collecting and transmit-
ting data between platoons and VDMs via V2I (vehicle-to-infrastructure) communication,
making assignment decisions based on the optimization problem solutions and granting per-
missions to perform maneuvers. Every platoon in the range of communication (within the
zone) reports its speed, position and length (number of vehicles) to the infrastructure. This
information is further sent to VDMs. After necessary computations the data is transferred
back to the controller and transmitted to platoons. Since the length of every zone is small,
communication delays are assumed to be insignificant.

First, we consider one VDM and multiple platoons on a short road segment and then
generalize this later to multiple vehicles and multiple platoons.

One VDM, multiple platoons

First, consider a scenario with one VDM and k available platoons (Fig. 3.1). We assume
that a vehicle can join a platoon only if the platoon is located behind the vehicle at the
moment of decision making. We refer to such platoons as “active” platoons. This is a
reasonable assumption since the speed difference between the two lanes makes it impossible
for the VDM to catch up with the platoons that have already passed the VDM.
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Figure 3.1: The scenario with one VDM and k platoons on the road. A vehicle willing to
merge is highlighted green, “active” platoons are highlighted yellow.

After receiving the necessary data (HOP lane speed, positions of “active” platoons and
numbers of vehicles in each platoon) the algorithm determines the optimal platoon choice.
To do so, we choose a sample distance d long enough to complete all possible lane-switching
and merging maneuvers (300m) and precompute the times required for all participants to
reach the position pv + d (where pv is the current location of the vehicle): tix, t

i
y, t

i
z0 and tv

for platoon i and the vehicle respectively. The travel time of platoon i when joined from the
front is:

tix =


T x
FSD, if i = 1 and the platoon slows down

T x
NSD, if the platoon does not slow down

T x
NFSD, if i ̸= 1 and the platoon slows down

(3.1)

where

T x
FSD = tmFSD + ttFSD =

vp − vv
av

+
d− v2p−v2v

2av

vp
, (3.2)

T x
NSD =

d+ pv − pip
vp

= tmNSD + ttNSD = (3.3)

ttNSD +


2(pv−pip)

vp−vv
, if i = 1

pv+pi−1
p −2pip−dst

vp−vv
, otherwise.

,

T x
NFSD = tmNFSD + ttNFSD = (3.4)

pv − pi−1
p + dst

vp − vv
+

vp − vv
av

+

d+ pv − pi−1
p − vp

pv−pi−1
p +dst

vp−vv
− v2p−v2v

2av
+ dst

vp
.

Each of the colored terms represents merging time. tmFSD is the time required for the
VDM to accelerate from vv to vp with acceleration av and join the platoon. tmNSD is the time
required for the VDM to let non-optimal platoons pass (in case i ̸= 1) and accelerate from
vv to vp to synchronize the velocities with the platoon. tmNFSD is the time required for the
VDM to let the non-optimal platoons pass and accelerate from vv to vp with the acceleration
av. To perform merging maneuvers traffic participants need physical space which is further
substituted from the distance d to compute the travel times ttFSD, t

t
NSD and ttNFSD required

to cover the remaining distance with the speed vp.
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The platoon i travel time if joined at the back is (vp = vsl):

tiy =
pv − pip + dst

vp − vv
+

vp − vv
av

+ (3.5)

d− vv
pv−pip+dst

vp−vv
− v2p−v2v

2av

vp
=,

tmy + tty = tmwait + tmacc + tmsl + tty.

tmy =
pv − pip + dst

vp − vv
+

vp − vv
av

+ (3.6)

vp − vmin

2ap
+

(vmin − vv)
2

2av(vp − vmin)
+

dst
vp − vmin

.

The merging here consists of three maneuvers: waiting for platoons up to and including
the optimal one to pass (tmwait time required), accelerating from vv to vp with acceleration av
(tmacc time required) and catching up with the optimal platoon to join it (tmsl time required).
The last term represents platoon dynamics during the catch-up phase. The platoon slows
down to the speed vmin, which is slightly smaller than vp, to avoid serious traffic delays, then
it cruises at this speed and finally accelerates back to the speed of vp to synchronize the
velocities with the vehicle and complete the merging.

The travel time of platoon i when not joined at all and not affected by platoons down-
stream is simply a time required to travel the distance d+ pv − pip at the speed vp:

tiz0 =
d+ pv − pip

vp
, (3.7)

and the travel time of the not-merging vehicle is:

tv =
d

vv
, (3.8)

where
vp is the speed of the HOP lane (desired platoons’ speed);
vv is the speed of the regular lane;
vSL is the speed limit on the road;
vmin is the minimal comfortable speed that the platoon will slow down to so that another

vehicle can catch up;
av is the maximum comfortable acceleration of vehicles;
ap is the maximum deceleration rate of a platoon;
pv is the current position of the vehicle;
pi
p is the current position of platoon i.

Our objective is to minimize the total travel time composed of travel times of the VDM
and all active platoons:

k∑
i=1

ti − (
k∑

i=1

(xi + yi)− 1)tv (3.9)

where
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ti is the decision variable related to the total travel time of platoon i required to reach
the position pv + d, considering all possible interactions with other platoons,

xi, yi ∈ {0,1} are binary decision variables, with xi = 1 and yi = 1 representing merging
to platoon i from the front or back respectively,

tv is the non-merging vehicle’s travel time given by (3.8).
If one of the xi’s or yi’s (among all i) equals to one, the second term in (3.9) becomes

zero and the VDM is accounted for in ti; otherwise, tv is added separately.
Since the vehicle can physically join only one platoon and only from one side, the following

constraint ensures that at most one of the variables from the set {xi, yi}ui=1 equals to 1 (where
u is the number of active platoons):

k∑
i=1

(xi + yi) ≤ 1. (3.10)

Platoon i is allowed to accommodate at most Li
max vehicles to eliminate the possibility

of infinite length platoons. Thus, we impose the constraint:
αi + xi + yi ≤ Li

max; i = 1, . . . , k, (3.11)
where
αi is the current number of vehicles in platoon i.
The set of safety constraints ensures that the vehicle does not switch lanes if the platoon

is too close behind (crash avoidance) by checking if the distance between the platoon and
the vehicle in the beginning of the lane switching maneuver is greater than the safe distance:

(pi−1
p − pip − dst)xi ≥ dsafexi; i = 2, . . . , k, (3.12)

(pip − pi+1
p − dst)yi ≥ dsafeyi; i = 1, . . . , k − 1, (3.13)

(pv − p1p)x1 ≥ dsafex1, (3.14)
where
pi
p, pv are the current positions of platoon i and the VDM respectively,

dsafe is the minimal (“safe”) distance between the merging vehicle and the closest platoon
behind it that is sufficient to perform emergency braking and avoid collision,

dst is the estimated distance between the VDM and the platoon that just passed the
VDM, which exists due to the short delay between passing and beginning of lane-switching.

Here we introduce another decision variable tz, which is a vector of size k. Each entry tiz
represents the travel time of platoon i, when it is not joined by the VDM, which is different
from tiz0 presented earlier. Unlike tiz0, t

i
z takes into account the impact from downstream

platoons and can be increased if the platoon i− 1 in front slows platoon i down:
t1z = t1z0, (3.15)

tiz ≥ tiz0, i = 2, . . . , k. (3.16)
Equation (3.15) has the form of equality because the first active platoon cannot be

influenced by platoons in front of it, so t1z equals to t1z0. Equation (3.16) means that platoon
i cannot move faster than when nobody slowed it down.

Moreover, we want to set a lower bound on every ti according to the pre-computed values
of tix, t

i
y and decision variables tiz, so that the vehicle and platoon dynamics are taken into
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account. The idea is that according to the merging option front, back or not merging (in case
of insufficient amount of space, significant delays or exceeding the maximal platoon length),
the bound on ti equals to tix, t

i
y or tiz respectively, scaled by number of vehicles in platoon i:

(αi + 1)(xit
i
x + yit

i
y)−αi(xi + yi − 1)tiz ≤ ti, (3.17)

i = 1, . . . , k.
Finally, since we do not explicitly compute platoon dynamics, we want to make provisions

for collision avoidance when slowing down and accelerating. The following set of constraints
ensures that the distance between two tailgating platoons does not drop below d1 (minimal
safe distance). This is enforced by making sure that travel time of platoon i is greater than
the travel time of platoon i − 1 by at least the time required to travel the distance d1 at
speed vp:

−xi(−
d1
vp
+ti+1

z − tix) ≤ 0, i = 1, . . . , k − 1 (3.18)

−yi(−
d1
vp
+ti+1

z − tiy) ≤ 0, i = 1, . . . , k − 1 (3.19)

−xi(−
d1
vp
+ti+s

z − ti+s−1
z ) ≤ 0, (3.20)

i = 1, . . . , k − 2; s = 2, . . . , k − i

−yi(−
d1
vp
+ti+s

z − ti+s−1
z ) ≤ 0, (3.21)

i = 1, . . . , k − 2; s = 2, . . . , k − i
From before, our decision variables are vectors x, y, t, tz, but, only the values of x and y

matter, since they represent the optimal platoon choice. Moreover, xi’s and yi’s are binary,
and thus, the problem can be cast as a mixed-integer program:

min
x,y,t,tz

(3.9) (3.22)

subject to (3.10)− (3.21)
In addition to optimal platoon choice, the estimated merging time (tm) is extracted

from (3.2)-(3.6) depending on the problem solution. After receiving the suggested optimal
trajectory, the vehicle activates a joining protocol.

Furthermore, we introduce the score (S) of the VDM given as a function of several
variables: merging time tm, current waiting time (tw - the time passed after sending a request
to join the HOP lane), etc. For now we consider the score to be merging time (S = tm).
This value is necessary for complex scenarios with multiple vehicles desiring to platoon.

Multiple VDMs, multiple platoons

So far we considered a single VDM scenario. Now assume there are k ≥ 0 platoons in the
HOP lane and m ≥ 0 VDMs in the regular lane (Fig. 3.2). Allowing more than one vehicle
to merge at a time requires additional constraints and computations to take into account
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potential maneuver interference. Every VDM would have to estimate system dynamics and
adjust safety constraints depending on different combinations of merging vehicles. Moreover,
lane-switching maneuver might be initiated at different times for different vehicles influencing
system dynamics and forcing traffic participants to accommodate for the changing system
states in real time. Since the number of pre-computed parameters and combined vehicle
dynamics grows exponentially, it significantly increases computational time and problem
complexity. Thus, we allow only one VDM to merge at a time.

The zone has two flag configurations: “green” and “red”. Green flag indicates that all
merging and lane-switching maneuvers have been completed and the speed of each platoon
has stabilized to a constant velocity. Red flag indicates that some maneuver has begun
within the zone and not been completed yet. Our optimization procedure starts when the
flag turns green. This is required to determine initial positions of vehicle and platoons and
set-up the optimization problem.

Step 1. Each VDM receives traffic data from a local centralized controller (road-side
unit) and solves the optimization problem (3.22) independently of the rest of the vehicles.
As a result, every VDM obtains an optimal platoon assignment and a score. The score,
estimated merging time (if S ̸= tm) and optimal platoon choice are reported back to the
controller.

Step 2. The algorithm picks the VDM with the minimal score and grants it permission
to start the joining maneuver according to the solution from step 1. The optimal platoon to
merge into receives the vehicle’s ID and estimated merging time from the controller. This
information is used to compute the speed profile required for merging. The zone receives the
red flag indicating that a merging maneuver is taking place and the rest of the VDMs are
forbidden from changing lanes.

Step 3. Once the merging procedure is completed, the infrastructure is informed and
the zone switches back to the green flag, meaning that the remaining VDMs have permission
to solve their corresponding optimization problems.

Step 4. The procedure terminates if no VDM is remaining and reverts to step 1 other-
wise.

We note that our algorithm requires a certain local centralized infrastructure to control
the mechanism (gather traffic data, transfer it to VDMs and platoons and make merging
decisions). However, the optimization problem is solved in a decentralized manner by the
individual vehicles, reducing the overall computational time and taking a significant part of
computational effort from the infrastructure.

Figure 3.2: The scenario with m VDMs and k platoons on the road. Vehicles willing to
merge are highlighted green.
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Infrastructure

In this section we generalize the algorithm on a long freeway link. Consideration of
all vehicles at once is no longer possible due to large distances between them. Thus, we
propose splitting the road into alternating zones: “buffer” and “enabled”, 300 meters each
(Fig. 3.3). Enabled zones represent road segments discussed in Sections 3.2 and 3.2, i.e.
finite-length segments suitable for optimal trajectory computations and platoon assignment.
Each enabled zone is equipped with a road side unit.

Figure 3.3: Infrastructure diagram. “Buffer” zones, “enabled” zones and VDMs are high-
lighted red, blue and green respectively.

Since the zones are assumed to be isolated and incapable of communication among them-
selves, scenarios with two neighboring zones selecting VDMs close to the common edge (Fig.
3.4) are possible. To avoid such scenarios, we introduce buffer zones that disallow merging
or lane-switching maneuvers, unless it started in the proceeding enabled zone. This ensures
that vehicles simultaneously merging into HOP lane are at least 300 meters apart to prevent
any potential interference. This implies that only VDMs in the enabled zones will solve
optimization problem (3.22).

Figure 3.4: The scenario with conflicting merging vehicles. Green merging VDM is too close
to the yellow merging VDM, which can cause unpredictable traffic dynamics.

3.3 Simulations and Results

We study the performance of our algorithm in a simulated environment in MATLAB.
We use the following setup: the road segment of length 7200m ([-4800; 2400]) is inhabited



CHAPTER 3. PLATOON FORMATION OPTIMIZATION 34

with platoons and VDMs (Fig. 3.5). Platoons are distributed along the entire road segment,
whereas VDMs are only present along the last 2400 meters of that interval. Since platoons
are designed to move faster, this initial configuration ensures that all VDMs have an available
platoon to merge into within the road segment.

Figure 3.5: Schematic initial configuration of the network. Platoons are scattered within the
[-4800, 2400] interval. Ordinary cars are present only in the [0, 2400] region.

The number of vehicles in each platoon is set randomly to a value between 2 and Lmax.
The numbers of simulated VDMs nveh and platoons nplat, maximum acceleration av and
deceleration ap, minimal comfortable platoon speed to allow a VDM to catch up vmin are
chosen to reflect a realistic traffic scenario. The values of the parameters used in simulations
are compiled in Table 3.1.

Table 3.1: Simulation parameters

Param. Value Param. Value

dr 2400 m nveh 100
Lmax 5 nplat 120
vp 20 m

s
vmin 15 m

s

vv 5 m
s

av 2.5 m
s2

dst 5 m ap 4 m
s2

d1 5 m d 300 m

The main objective of the algorithm (not to be confused with the optimization problem
objective) is to minimize the total travel time (TTT), which can be estimated from:

TTT =

nplat∑
i=1

tip +

nveh∑
j=1

tjv, (3.23)

where
tip is the time that takes platoon i to reach a point of 4800m from max(piinit, 0) (recall

the simulation grid from Fig. 3.5), where piinit is the initial position of platoon i,
tjv is the time that takes VDM j to travel a distance of 2400m.
This calculation method ensures that all vehicles have the same weight in the combined

outcome regardless of initial positions. Moreover, the location of the endpoint guarantees
enough space to complete merging maneuvers and to stabilize platoons’ dynamics.
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To evaluate the performance of our algorithm, we consider two baselines. Both of them
allow for only one VDM to join at every time instance. We consider the first baseline to be
the one that decides on both the VDM and platoons randomly. We call it RTR (Random-
To-Random). In the second baseline which we call FTF (First-To-First), we let the first
VDM in a zone to join the closest “active” platoon.

The total travel time savings are presented in Table 3.2. First column represents the
savings for VDMs only. The second column contains the TTT improvement for only affected
simulation participants (platoons that were forced to change their speed and all VDMs).
The third column presents TTT reduction for all VDMs and all platoons.

Table 3.2: Travel time reduction comparison for three baseline procedures

Procedure VDMs Affected participants All participants

RTR 19.6% 6.3% 4.6%
FTF 14.8% 4.8% 3.3%
RTO 14% 4.5% 3.1%

Note that the results in the last two categories may not be representative, because the
majority of traffic participants are platooning vehicles, which do not experience significant
delays even when slowed down. Thus, the total travel time savings are relatively small
compared to the total time spent on the road. However, the trend is obvious: the vehicle-
platoon system benefits from the introduction of our optimization algorithm: 4.6% and 6.3%
time savings for all and affected participants respectively. On the other hand, the savings for
VDMs are much more representative. The double-layered optimization algorithm achieves
19.6% delay reduction compared to RTR. Moreover, our algorithm outperforms the FTF
procedure, which will probably be the most common behavior on the road due to its practical
heuristic, by 14.8%.

In addition, to understand the significance of each layer, we further compare our algorithm
to another baseline, which we call RTO (Random-To-Optimal). This procedure has one layer
of optimization, i.e. a vehicle to merge is chosen randomly, however the platoon it should
join is assigned based on the optimization problem (3.22) solution. The introduction of
optimal platoon assignment leads to 5.6% savings of travel time. Optimal choice of a vehicle
to merge decreases the travel time by additional 14%.

To further depict delay reduction we used histograms representing the travel time dis-
tribution among traffic participants (Fig. 3.6). Greater bins on the left-hand side represent
more fast-travelling vehicles with fewer delays. Fig. 3.6a is related to affected vehicles and
platoons and show a slight improvement in travel time. Fig. 3.6b, on the other hand, shows
that our algorithm was able to significantly reduce the delay of VDMs, as evidenced by the
leftward shift of the distribution of the travel times in the histogram. High peaks around
100-200 indicate that more VDMs joined the platoons within the first few minutes of the
simulation period. Moreover, our algorithm was able to accommodate all vehicles, i.e. guide
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them to the HOP lane, which is indicated by an absence of blue bins at the right side of the
figure: the area to vehicles that had no opportunity to merge.

(a) (b)

Figure 3.6: Travel time distribution for our algorithm (OTO - Optimal-to-Optimal) and
three baselines: Random-to-Random (RTR), Firts-to-First (FTF) and Random-to-Optimal
(RTO). (a) Affected participants. (b) Vehicles desired to merge.
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Chapter 4

Queue Estimation for Speed Advisory
and Real-Time Phase Length
Prediction

4.1 Introduction

Vehicles equipped with the Speed Advisory System (SAS) [14] use traffic light information
and traffic data to obtain the near-optimal speed trajectories to reduce fuel consumption.
These trajectories also benefit progression quality by minimizing idling at intersections. One
of the key parameters required by the SAS is the estimated remaining time until the end of the
current traffic light (TL) phase. In the case of static traffic light (constant phase length) this
information can be easily obtained directly from the traffic light via Signal Phase and Timing
(SPaT) messages or any other signaling system. However, if an intersection is equipped
with an actuated TL, the phase length depends on the traffic demand (vehicle flow) and,
therefore, may vary from “minimum duration” to “maximum duration” - specific variables
characterizing a particular traffic light. Since the exact phase length value is unavailable, a
prediction algorithm is required to provide an estimation to be used in near-optimal speed
trajectory derivation.

The software presented in [48] encourages drivers to use smartphone cameras to iden-
tify the traffic light color at the upcoming intersection and estimate the remaining time
within the current phase. The study reports error rates from 7.8% to 12.4%. The phase
length estimation, based on the five previous green-red/red-green transitions is also ineffi-
cient: according to the algorithm, the best prediction is just slightly better than estimating
the current phase length to be the same as the previous phase length.

A follow-on study [49] addresses the problem of finding optimal speed trajectories to
minimize fuel consumption. However, the work considers only pre-timed signals, leaving
behind issues with adaptive phase duration. The studies [50] and [51] also focus on pre-
timed traffic lights.



CHAPTER 4. QUEUE ESTIMATION FOR SPEED ADVISORY AND REAL-TIME
PHASE LENGTH PREDICTION 38

References [48] and [52] use noisy measurements of a signal phase to process SPaT esti-
mation. The study analyzes a large number of GPS position and speed samples from 4300
buses within a period of one month to estimate phase duration, cycle length and cycle start
time. However, a large percentage of the recorded data was not suitable for the analysis,
which limited the accuracy of the algorithm (6s error for 36s phase duration). The later
study [53] estimates the waiting time spent by buses in queues and presents significantly
better results for the SPaT estimate.

All of the noisy measurement-based algorithms are implemented only for pre-timed traffic
lights. In addition, collecting and processing noisy measurements may be computationally
inefficient, since most of the signal data are available from transportation authorities.

The study [54] makes probabilistic SPaT predictions based on the intersection traffic
data. At the beginning of each cycle, the empirical frequency distribution is computed.
Furthermore, for every second within the cycle, the algorithm tries to predict whether a
certain phase is G(green), R(red) or M(uncertain) with some level of confidence. Further
estimation of the phase residual time requires the knowledge of within-cycle time, which
even if available does not guarantee the accuracy of the prediction. In addition to the fact
that “80% confidence” predictions may be incorrect, the algorithm does not provide firm
guarantees and uncertainty may grow with the increase of confidence level.

An algorithm presented in [55] relies on the historical data from several intersections
in Munich and uses a Kalman Filter to predict future probability distributions of phase
durations. Although a high level of accuracy was achieved (95%), the practical applicability
is limited since the availability level is only 71% on average.

Another study [56] suggests using both the historical phase measurements and the real-
time information that locates the current time within the current phase to predict all future
phase transitions. Two approaches are considered: “conditional expectation based predic-
tion” and “confidence based prediction”. These methods greatly improve the prediction
of the residual time for the current phase as well as for the subsequent phase; however, as
stated in the paper, the proposed algorithms “pose a challenge to the design of speed profiles
that reduce fuel consumption”. Since both algorithms update their predictions every second,
SAS-equipped vehicles are forced to reevaluate the speed trajectories every second as well,
causing jerky motion and fuel consumption increase. Several other papers study vehicle flow
estimation at arterial roads using adaptive signal control predictions [57], [58], [59].

Most algorithms discussed above try to estimate or predict the phase length/residual time
of the phase using historical data and statistical methods. In contrast, our primary objective
is to determine whether or not a vehicle can pass the upcoming intersection during the current
green phase. Using real-time traffic data from advanced detectors and the upcoming actuated
TL, the algorithm analyzes downstream traffic, estimates the time vehicles can reach the
TL and assigns labels (“PASS”/ “WAIT”) depending on the vehicle’s passing capability.
According to the obtained labels, the algorithm derives an estimated phase residual time for
near-optimal speed trajectory computation for every participating vehicle.
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4.2 Vehicle Labeling Algorithm

We consider traffic lights with fixed cycle length and one actuated axis (later in the work
“green / red / yellow phase” refers to the phase of the actuated axis). Therefore, knowing
the time within the cycle allows us to compute the precise remaining time until the next
cycle (i.e. next green phase, assuming that every cycle starts with the green phase). In
other words, for a non-green phase the remaining time until the next green is known and
no predictions are required. However, if the current phase is green, the algorithm is used to
estimate the phase length.

All the computations and simulations were conducted in an open source simulator SUMO
(Simulation of Urban Mobility).

Simple and Complex Network Architecture

The project consists of two parts. First, we analyze a simple symmetric signalized inter-
section (Fig. 4.1) with East ↔ West actuated axis to test an idealistic set-up and obtain a
benchmark for further evaluation. The second part is a simulation of North Bethesda, Mont-
gomery County, Maryland network (around the intersections of Montrose Rd and Montrose
Pkwy), a complex system of 9 actuated traffic lights with different geometries and signal
schedules (Fig. 4.2). This set-up allows us to test the algorithm in realistic conditions in the
presence of various uncertainties.

Figure 4.1: Diagram of a simple network used in the first part of the project. The intersection
in the middle is equipped with an actuated traffic light.

Every incoming link on the actuated axis is equipped with a stop-bar detector and two
advanced detectors: an “actuator” and a “counter”. Actuators are responsible for prolonging
the green phase when a vehicle is detected. If all necessary conditions are satisfied, a vehicle
crossing an actuator triggers the green light extension. Actuators are placed 40-100 meters
before the intersection.
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Figure 4.2: Diagram of a complex network based on North Bethesda, Montgomery County,
MD. All nine intersections considered in the work are highlighted red.

Counters are advanced detectors that collect necessary information about the traffic state
and are located at least 50 meters upstream from actuators. When a vehicle crosses a counter,
the infrastructure records and stores the vehicle’s speed and time of passing for one cycle. At
the end of every cycle, the data are erased, since it is no longer relevant to the current phase
actuation. We assume Tth seconds is enough to travel from the counter to the intersection in
moderate traffic, therefore, counter data corresponding to the previous cycle has no impact
on the current one. The case when the vehicle fails to reach the intersection within Tth

seconds implies congestion that forces the vehicle to switch to the car-following model.

Traffic Light Properties

As stated earlier, the cycle length of the TL j is fixed and equals cycLenj ∈ [90, 120]
seconds. The cycle consists of 4 phases in the simple case (Tab. 4.1) and up to 8 phases in
the complex set-up.

Table 4.1: Traffic light states: groups of three from left to right: North → South, West →
East, South → North, East → West; r - red, G - green, y - yellow

Phase TL States Min Duration Max Duration

0 rrrGGGrrrGGG 39 s 48 s
1 rrryyyrrryyy 6 s 6 s
2 GGGrrrGGGrrr 30 s 39 s
3 yyyrrryyyrrr 6 s 6 s

Moreover, we assume that traffic lights are time-gap actuated, i.e. a vehicle can acti-
vate it only if the previous actuation was at most minGap seconds ago (3 seconds for our
simulations) and the maximum phase duration is not exceeded.
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Furthermore, the algorithm requires the knowledge of the travel time from the actuator

to the corresponding intersection j at speed limit: T j
a−i = ⌈ Dj

k

SLk
⌉, where Dj

k is the distance
from the actuator on the incoming link k to the intersection j and SLk is the link’s speed
limit. Since the duration of the phase must be at least minDurationj, the actuation must
be enabled only after the time passes a specific threshold T j

th = minDurationj − T j
a−i. The

first vehicle must arrive within minGap after the threshold to prolong the phase. If such
a vehicle exists, the next car has minGap seconds to trigger the TL again. The process
terminates when either no such vehicle is found or the maxDurationj is reached.

Speed Advisory System Modification

Since we augment our prediction algorithm with a simplified version of SAS proposed
in [14], we briefly summarize the main points of this system. The optimal (in terms of
fuel consumption) speed trajectory consists of bang-singular-bang segments: (1) accelerate
with maximal acceleration / decelerate with engine off - (2) keep the constant speed - (3)
decelerate with engine off / accelerate with maximal acceleration. The singular segment
is present only at very low speeds, so most of the time the optimal trajectory is bang-
bang shaped. This is both hard to implement in real life and uncomfortable for drivers, so
[14] suggests a near-optimal speed trajectory: bang-singular ((1) accelerate with maximal
acceleration / decelerate with engine off or with minimal deceleration - (2) keep the constant
speed).

We further assume the acceleration and deceleration to be constant. According to the
original dynamics, for speeds under 30m/s the engine-off deceleration ranges from 0.1460m/s2

to 0.1480m/s2. The difference is insignificantly small and, therefore, rounding the deceleration
up to 0.15m/s2 would not make any noticeable impact on the system compared to other
uncertainties and assumptions. The acceleration also follows an almost linear pattern, so
it was decided to set it to a constant value amax (2.5m/s2 in our model). In addition, it
simplified the simulation implementation, since the model presented in SUMO uses constant
acceleration.

The resulting near-optimal speed trajectory used in our simulation is one of the following
(Fig. 4.3):

1. accelerate with a constant maximal acceptable acceleration to a certain desired speed
(not exceeding the speed limit) and cruise,

2. decelerate with an engine off (≈ 0.15m/s2) to a certain desired speed and cruise,

3. apply a necessary constant braking to meet boundary conditions.
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(a) (b)

Figure 4.3: Simplified near-optimal speed trajectories implemented in the project. Nonlinear
areas corresponding to acceleration and deceleration have been approximated with linear
regions. (a) Accelerate-then-cruise case. (b) Glide-then-cruise case.

Algorithm

Estimation of actuation time

the moment a vehicle crosses the counter the algorithm estimates the time when this
vehicle is going to reach the downstream actuator and maps it to the time within the current
cycle.

Step 1. Compute the time required for the vehicle i to travel from the counter to the
actuator on the link k (accelerate with amax to reach the speed limit and cruise):

T i
travel =

SLk − vi
amax

+
dk −

SL2
k−v2i

2amax

SLk

(4.1)

where vi is the current speed of the vehicle i and dk is the distance between the counter and
the actuator on the link k.

Step 2. Compute the “counter” crossing time in the traffic light’s frame of reference
for the vehicle i: T i

count = Tcurrent − Tstart, where Tstart is the time when the current phase
started and Tcurrent is the current time of the day.

Step 3. Compute the estimated time within the phase when the vehicle i is expected to
arrive at the actuator: T j

est = T i
count + T i

travel and store it for one cycle for further computa-
tions.

Remark 1: This part of the algorithm is expected to be performed by the infrastructure,
more specifically, by the computer installed at the intersection.

“PASS” or “WAIT” procedure

After obtaining the estimated arrival time T k
est for the vehicle k, the algorithm proceeds

to determine whether or not this vehicle will make it through the intersection within the
current phase (Fig. 4.4). To receive the “PASS” label, the vehicle k must either arrive to
the actuator before the initial actuation threshold expires (T k

est < Tth + minGap) or have
a “PASS”-labeled vehicle k − 1 right in front of it and follow it with neither breaking the
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minimum gap nor exceeding maximum phase duration. In any other case, the vehicle k
receives the “WAIT” label. The “PASS” label implies that the vehicle is expected to be able
to pass the intersection within the current green phase. The “WAIT” label, in turn, suggests
that the remaining time is insufficient for the vehicle to cross the intersection and advises it
to wait for the next green phase.

Figure 4.4: Labeling algorithm diagram demonstrating the decision-making procedure based
on the counters data and estimated arrival times. “PASS”-labeled vehicles are advised to
proceed; “WAIT”-labeled vehicles are advised to slow down.

Complete labeling of all vehicles allows the algorithm to derive an estimation for the
current phase length:

T j
green = max(T ∗

est + T j
a−i,minDurationj) (4.2)

where T ∗
est is the estimated arrival time for the last vehicle with “PASS” label if any.

Remark 2: T j
green is not necessary for the near-optimal speed trajectory computation,

but might be important for further development of the algorithm, giving vehicles on the
“secondary road” (non-actuated axis) an opportunity to construct their desired trajectories.
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Remark 3: The proposed computations can be executed by either the infrastructure or
vehicles. A detailed examination of these options can be found in Section 4.4.

Combining predictions and SAS

At this stage, the near-optimal speed trajectory can be computed using the procedure
illustrated in Fig. 4.5. Vehicles labeled “PASS” are advised to proceed as fast as possible
to minimize their travel time. On the other hand, being labeled “WAIT” is fundamentally
equivalent to not being labeled at all (crossing the counter during a non-green phase). In both
cases the residual time until the beginning of the next green phase is Tres = cycLenj −T i

count

and can be obtained directly from the infrastructure.

Figure 4.5: Speed Advisory System diagram demonstrating the near-optimal speed trajectory
derivation based on the vehicle labeling.

Remark 4: The near-optimal speed trajectory is derived independently by the Speed
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Advisory System installed at each participating vehicle.

4.3 Algorithm Testing and Verification

The two main objectives of our algorithm are the correct prediction of the vehicles’ passing
capability and accurate phase residual time estimation for the Speed Advisory System. To
test how well our approach meets these objectives, we simulate every vehicle with and without
active SAS, and for each intersection on their path we compare the cycle numbers during
which both versions of the vehicle crossed that intersection. Moreover, we evaluate the
effectiveness of our algorithm by estimating fuel consumption in both cases and deriving the
resulting gas savings. Vehicles without any driver-assistance system, which we refer to as
“ordinary” vehicles, follow the Krauss car-following model.

Simple case

Simulations

To study various possible scenarios we conducted series of simulations featuring three
different traffic demands: low demand ( 1

40
veh
sec

); medium demand ( 1
10

veh
sec

) and high demand
(1
3
veh
sec

). Moreover, for every demand, different penetration rates of SAS-equipped vehicles
were tested: 0%, 20%, 60%, and 100%. Examination of different combinations of penetration
rates and demands not only allows us to compare the changes in fuel consumption, but also
to study the impact of SAS-equipped vehicles on other traffic participants.

Accuracy of “PASS”-“WAIT” algorithm

Given the required traffic data, Speed Advisory System proposes the near-optimal speed
trajectory (Fig. 4.3) that not only reduces fuel consumption but also results in minimal
travel time. Therefore, if a vehicle has a chance to cross the intersection within the current
phase, the algorithm must not advise it to stop and wait for the next green light. Failure
to guide the vehicle through the intersection even though the vehicle is capable of crossing
it is referred to as a “mismatch”. The simulation results demonstrating the number of
mismatches are compiled in Tab. 4.2.

The algorithm demonstrates 100% prediction accuracy in free traffic, allowing all vehicles
to pass the intersection within the earliest possible cycle.

For medium demand, we observe rare mismatches, which, however, are not caused by the
miscalculation but rather by a model specification. Speed Advisory System treats yellow and
red signals identically, disallowing intersection crossing during non-green phases. Ordinary
vehicles, on the other hand, do not hesitate passing the intersection on yellow, creating a
mismatch in our model.
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Table 4.2: Cycle mismatches for various traffic demands

Demand (veh
sec

)
SAS %

20% 60% 100%

Low ( 1
40
)

58 176 285 # Simulated Cars
0 0 0 # Mismatch

Medium ( 1
10
)

176 565 960 # Simulated Cars
1 1 3 # Mismatch

High (1
3
)

400 1251 2054 # Simulated Cars
3 20 27 # Mismatch

The congested traffic brings more uncertainty to the prediction calculation making it
less accurate. As a result, the number of errors increases; however, the accuracy remains
significantly high: more than 98%.

Fuel Consumption

The key benefit of the Speed Advisory System is fuel consumption reduction. By fol-
lowing near-optimal speed trajectories, vehicles manage to reduce idling at intersections and
increase energy efficiency. Introduction of prediction-based SAS demonstrates a significant
improvement in fuel consumption for low and medium traffic demands: 35% - 40% (Fig.
4.6a - 4.6b). According to Fig. 4.6a, the improvement is equivalent for all penetration rates
of SAS-equipped vehicles in free traffic. The number of ordinary cars on the road is insuf-
ficient to affect speed profiles of controlled vehicles as long as the SAS penetration rate is
above 20% for the 1

10
veh
sec

demand scenario. In this case, however, the interference with the
SAS-equipped vehicles becomes significant enough to slightly decrease fuel savings, but not
enough to drastically deviate controlled vehicles from their desired speed patterns.

Furthermore, according to Fig. 4.6c, congested traffic neutralizes most of the benefits
of the Speed Advisory System. Queues forming due to excessive demand force vehicles to
switch from the driver-assistance system to the car-following model, which negatively affects
fuel consumption.

In addition, we studied the impact the presence of SAS-equipped vehicles had on ordinary
cars. We discovered that traffic participants with no driver-assistance system also manage
to reduce fuel consumption, since they are forced to adjust their speed profiles to match the
patterns proposed by surrounding controlled vehicles. In free traffic, the change is negligibly
small: less than 1% (Fig. 4.7a). However, in mildly and highly congested scenarios, the
reduction is quite significant, ranging from 8.3% to 12.5% and from 8% to 13.2% respectively
(Fig. 4.7b - 4.7c).
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(a) (b) (c)

Figure 4.6: Fuel consumption reduction for SAS-equipped vehicles in mixed traffic. (a) Low
demand. (b) Medium demand. (c) High demand

(a) (b) (c)

Figure 4.7: Fuel consumption reduction for ordinary vehicles in mixed traffic. (a) Low
demand. (b) Medium demand. (c) High demand.

Phase Utilization

In addition to the primary objectives, several other performance measures were consid-
ered. First, we analyzed phase utilization, which can be effectively characterized by phase
termination metric [60]. There are four possible reasons for phase termination. An actuated
phase can be omitted when there is no actuation during the cycle; it can gap-out when the
TL was actuated at least once and then the actuation gap was broken; and it can max-out
when the phase duration reaches its maximum allowed length. Max-outs indicate that the
phase is exceeding capacity, while gap-outs and omits indicate that there is capacity to spare.
Our goal is to study the impact of the Speed Advisory System on the capacity utilization.

According to the simulation results (Fig. 4.8), driver-assistance system leaves the phase
utilization unchanged for all levels of traffic demands.

Progression Quality

Another important performance measure is progression quality (PQ), which is strongly
related to the queuing delay at an intersection due to arrival-departure patterns: high values
of progression quality correspond to low delay. We analyzed Percent-on-green (POG) values:
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(a) (b) (c)

Figure 4.8: Phase termination reasons for various demands and SAS percentages. (a) Low
demand. (b) Medium demand. (c) High demand.



CHAPTER 4. QUEUE ESTIMATION FOR SPEED ADVISORY AND REAL-TIME
PHASE LENGTH PREDICTION 49

Ng

N
, where Ng is the number of vehicles arriving during red and N is the total number of

vehicles arriving withing a cycle, to build an accurate representation of the PQ.

(a) (b) (c)

Figure 4.9: Percent on green (POG) for progression quality measure. (a) Low demand. (b)
Medium demand. (c) High demand.

According to the low-demand simulation (Fig. 4.9a), we were able to increase the POG to
100%, which corresponds to zero delay, for several cycles with 20% and 100% SAS penetration
levels. Average and minimal POG values also benefited from the presence of connected
vehicles.

In case of medium traffic demand (Fig. 4.9b), the algorithm demonstrated an improve-
ment only for the 100% SAS penetration rate scenario: three peaks of 100% POG compared
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to zero peaks with no SAS introduced. For any other SAS penetration level, the progression
quality is at least as good as the case with no SAS-equipped cars.

Finally, congested traffic (Fig. 4.9c), as expected, results in a relatively low progression
quality, which can hardly be improved due to constant indissoluble or slowly dissoluble
queues. In these conditions, Speed Advisory System is active for a short period of time before
the vehicle switches to a car-following model and, therefore, has very limited opportunity to
influence the vehicle’s behavior.

Montgomery County Network

Simulations

Due to the complex structure of the network it was possible to observe various traffic
loads (free traffic, medium demand and congestion) in one setting. We tested three different
SAS penetration levels: 0%, 50% and 100%. In addition, three possible options for vehicles’
accelerations were implemented to analyze robustness of the algorithm: predetermined and
fixed acceleration (a = 2.5m

s2
), random but known acceleration and random unknown ac-

celeration (for the last two scenarios a is drawn from a uniform distribution in the interval
[2, 3.5]). In the latter case the algorithm assumed that all vehicles had an average value of
acceleration (a = 2.75m

s2
).

Accuracy

The algorithm’s prediction accuracy for 9 intersections is demonstrated in Table 4.3.
Green rows indicate free traffic, yellow rows correspond to moderate demand, and red rows
are related to congestion. According to the data, the algorithm performs with an accuracy
of at least 99% in low demand for all possible acceleration scenarios. Having fewer vehicles
on the road implies minimal interference, which, in turn, ensures precise calculations.

Medium and high demands demonstrate at least 89% accuracy in the worst case and
≈ 95% on average. Vehicles interacting with each other are forced to slow down, accelerate
or stop causing rare miscalculations. Moreover, intersection’s geometry can have an impact
on accuracy. Intersection 6 has relatively short incoming links, which makes the estimation
of travel time difficult due to the discrete nature of the algorithm.

Furthermore, we compare the prediction errors of our algorithm (we will refer to it as
“Algorithm A”) with those resulting from the statistics-based approach [61], which we refer
to as “Algorithm B”. This approach is represented by an optimization problem, where phase
duration estimation is addressed as a constraint of the form: cip ≥ cir+F−1(η), where cip is the
vehicle passing time in TL i cycle clock, cir is minimal red-phase duration of the TL i, F−1 is
the inverse of the CDF function F of random variable α representing stochastic time of delay,
and η is the required reliability level. The algorithm relies on the assumption that CDF is
continuous and bijective. Moreover, the distribution function is non-parametric in general
and may vary depending on arbitrary conditions. Although the paper presents impressive
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Table 4.3: “PASS” algorithm prediction accuracy

Intersection
SAS %

50% 100%

100% 99.4% Fixed known acc
100% 99.4% Random known accIntersection 1
100% 99.4% Random unknown acc
99.6% 99.8% Fixed known acc
99.6% 99.5% Random known accIntersection 2
99.3% 99.6% Random unknown acc
98.7% 99.1% Fixed known acc
99% 99.2% Random known accIntersection 3
99% 99.2% Random unknown acc
96.4% 98.7% Fixed known acc
98.3% 97.5% Random known accIntersection 4
98.1% 97.8% Random unknown acc
98.5% 98.6% Fixed known acc
97.5% 97.5% Random known accIntersection 5
97.7% 97.8% Random unknown acc
89.3% 91.3% Fixed known acc
91.1% 91.3% Random known accIntersection 6
91.2% 91.3% Random unknown acc
93.4% 92.5% Fixed known acc
93.2% 94.9% Random known accIntersection 7
94.6% 94.2% Random unknown acc
97.9% 99.7% Fixed known acc
99.4% 99.7% Random known accIntersection 8
99.5% 99.7% Random unknown acc
98% 98.1% Fixed known acc
99.3% 99.2% Random known accIntersection 9
98.5% 99.3% Random unknown acc

results in terms of fuel consumption (50% - 57%), the algorithm can be used only on the
secondary road with no actuation capability (Effective Red implies that the perpendicular
direction is the actuated one).

Although our algorithm does not provide the actual value of the green phase duration to
the Speed Advisory System, we are able to estimate it based on the predicted arrival times,
as discussed in Section 4.2. These estimated phase durations were used in comparison with
the values provided by the Algorithm B for two confidence levels: η = 0.8 and η = 0.1.

Fig. 4.10 - 4.12 demonstrate the difference (in seconds) between the predictions and
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the actual registered data for both algorithms. Positive and negative values of these errors
correspond to overestimation and underestimation of the phase duration respectively. Each
row of every figure corresponds to one of the three tested acceleration scenarios (top to
bottom): fixed known accelerations, random known accelerations and random unknown
accelerations. We also assume that errors of less than 3 seconds are insignificant due to time
discretization and vehicle dynamics simplification.

Fig. 4.10 contains data for the intersection 1 with low traffic demand. All three methods
demonstrate high accuracy levels for every simulated scenario. Having fewer vehicles on
the road implies low probability of triggering the traffic light actuation, which means that
historical phase duration is almost always at minimal duration. Therefore, the CDF used in
Algorithm B is almost constant and the prediction is relatively accurate. Although most of
the errors can be viewed as insignificant, our method managed to precisely predict the phase
duration more often than Algorithm B.

Medium traffic demand is represented by the intersection 5 (Fig. 4.11). According to
the histograms, the performance of our algorithm is much better than the performance of
Algorithm B. Most of the errors produced by our method do not exceed 2 seconds compared
to up to 10-second deviation for the statistics-based approach and occur less frequently. In
the cases of random acceleration, greater errors appear, since Algorithm A has to rely on
approximations of unavailable parameter values. However, these errors are relatively rare and
have an insignificant impact on traffic flow. Regarding Algorithm B, setting the reliability
level η to 0.8 results in heavy overestimation for many cycles (up to 8-second errors). On
the other hand, with η = 0.1 we obtain a serious underestimation of the phase length. In
moderate traffic phase duration may vary from cycle to cycle with potentially high deviation.
One additional data point does not change the CDF function significantly, and therefore,
the phase length prediction for cycle k will most likely be very similar to the prediction for
cycle k − 1 even if the actual phase durations differ dramatically.

Congested traffic data recorded at intersection 7 are compiled into the Fig. 4.12. High
demand resulted in max-out termination (reaching the maximum allowed phase length) for
most of the green phases during the simulation. The initial CDF for the Algorithm B
corresponded to medium demand and required some time to receive enough data points to
adjust and provide accurate predictions. Within the first several cycles, we observe poor
performance for η = 0.1 with drastic underestimations up to 10 seconds. On the other hand,
Algorithm A and Algorithm B with reliability level at 0.8 demonstrate impressive results
with 100% accuracy for most cycles. The terminal stage of the simulation corresponds to
congestion dissolution and, as a result, to phase duration reduction. Algorithm B for both
reliability levels cannot adapt to the sudden change in demand and continues to output
maximum duration as the phase length prediction. Algorithm A, in comparison, manages to
reflect the change in the traffic state and correctly estimate the new phase length. Statistics-
based approach struggles to demonstrate sufficiently accurate results in the case of changing
traffic demands, while the real-time algorithm that relies on the current traffic data is able
to quickly adapt and accurately predict the phase length.
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(a) (b)

Figure 4.10: Prediction errors in free traffic for Algorithm A and Algorithm B with η = 0.8
and η = 0.1. (a) 100% SAS penetration. (b) 50% SAS penetration.

Fuel Consumption

We also compared the impact on fuel consumption for both algorithms (Fig. 4.13).
According to the histograms, Algorithm A performs better on average than Algorithm B
for both tested reliability levels. Setting η to 0.1 results in much smaller fuel consumption
reduction for all intersections and traffic demands. Moreover, choosing the reliability level
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(a) (b)

Figure 4.11: Prediction errors in medium demand for Algorithm A and Algorithm B with
η = 0.8 and η = 0.1. (a) 100% SAS penetration. (b) 50% SAS penetration.

to be 0.8 for Algorithm B results in a similar pattern as applying our algorithm. Switching
between scenarios with different acceleration settings and SAS-vehicle penetration rates does
not provide a significantly distinct outcome. In rare cases some intersections benefit more
from Algorithm B; however the difference in savings is small.

Next step is to analyze our algorithm’s performance independently of any other procedure.



CHAPTER 4. QUEUE ESTIMATION FOR SPEED ADVISORY AND REAL-TIME
PHASE LENGTH PREDICTION 55

(a) (b)

Figure 4.12: Prediction errors in high demand for Algorithm A and Algorithm B with η = 0.8
and η = 0.1. (a) 100% SAS penetration. (b) 50% SAS penetration.

We managed to achieve up to 29% fuel consumption reduction for free traffic set-ups. Medium
and high demand scenarios also benefit from the presence of real-time prediction algorithm
resulting in up to 18% and 7% fuel savings respectively. These results correlate with the
simple case simulations. The Speed Advisory System is most effective in terms of fuel
consumption in free and moderate traffic, because vehicles are less likely to be distracted from
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following the proposed near-optimal trajectories due to low interaction rates. Congestion,
on the other hand, forces traffic participants to switch from SAS to car-following model and
lose most of the impact driver-assistance could have on energy savings.

(a) (b)

Figure 4.13: Fuel consumption reduction for Algorithm A and Algorithm B with η = 0.8
and η = 0.1 in mixed traffic. (a) 100% SAS penetration. (b) 50% SAS penetration.



CHAPTER 4. QUEUE ESTIMATION FOR SPEED ADVISORY AND REAL-TIME
PHASE LENGTH PREDICTION 57

Phase utilization

We present the results for only known fixed acceleration scenario, since the other setups
(known random and unknown random) produce similar outcomes. The data from intersec-
tions 1, 5 and 7 are compiled into Fig. 4.14. The first, second and third rows corresponds
to 0%, 50% and 100% SAS-equipped vehicle penetration rates respectively.

(a) (b) (c)

Figure 4.14: Phase utilization for different SAS-equipped vehicle penetration levels. (a) Low
demand. (b) Medium demand. (c) High demand.

Similarly to the simple case, phase utilization is barely affected by the introduction
of the Speed Advisory System. Therefore, we can conclude that even if the difference is
insignificant, the Speed Advisory System does not harm the traffic state of the network.
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Progression Quality

Progression quality comparison is presented in Fig. 4.15. Each graph contains outcomes
for 0%, 50% and 100% SAS-vehicle penetration. All three tested acceleration options are
compiled by rows in the following order (starting from the top): known fixed, known random
and unknown random accelerations.

According to the results (Fig. 4.15a), progression quality for low traffic demand slightly
benefits from the introduction of SAS-equipped vehicles. Being able to achieve 100% POG
more frequently implies that during some cycles we managed to eliminated delays completely.
An important detail worth mentioning is that equipping 50% of traffic participants with the
Speed Advisory System results in almost the same improvement as making all of the vehicles
controlled.

In the case of moderate traffic (Fig. 4.15b), the algorithm achieves more impressive re-
sults. Implementation of both 50% and 100% SAS penetration rates resulted in noticeable
improvements in progression quality by at least 10% and 8% on average respectively. More-
over, in the case of known fixed accelerations and 100% penetration rate the maximal PQ
increase within one cycle was 20%; and in the case of unknown random acceleration and 50%
penetration rate the growth reached 33%. These results indicate that real-time prediction
was able to provide accurate enough information to significantly improve traffic conditions
at intersections in medium demand scenario.

Similarly to low demand, congested traffic (Fig. 4.15c) is not significantly affected by
the Speed Advisory System in terms of progression quality. On average, the impact on the
metric does not exceed 2%, which correlates with the simple case results.

4.4 Task distribution

It is important to highlight the responsibility distribution for each stage of the algorithm
execution.

First of all, as mentioned in the previous section, for each vehicle we need to estimate
the time within a cycle when this vehicle arrives at the actuator T i

est. This is expected to
be done by the infrastructure, since the traffic data get stored at the road-side unit, i.e.
computer, and no delay for data transmission is necessary.

The next step is labeling vehicles with “PASS” or “WAIT” labels, which can be done
by either the infrastructure or the vehicle itself. Choosing the first option, we face a
challenge of distinguishing vehicles, finding the correct recipient for a particular message and
transmitting the information to the vehicle in heavy traffic. On the other hand, by forcing
vehicles to conduct these calculations, we risk making a mistake in matching received data
with the current vehicle’s state due to delays and differences in timing. Further research is
needed to address these issues.

The final stage of the procedure consists of computing the near-optimal speed trajectory,
which is expected to be done by the Speed Advisory System installed at the vehicle.
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(a) (b) (c)

Figure 4.15: Progression quality for different SAS-equipped vehicle penetration levels. (a)
Low demand. (b) Medium demand. (c) High demand.

4.5 Extension: Queue Tail Location Estimation

In the previous sections we introduced the vehicle labeling algorithm for real-time phase
length prediction and remaining time within the current phase estimation. The derived ap-
proximations together with the infrastructure parameters (cycle length, counter-to-actuator
and actuator-to-intersection distances, etc.) were shared with connected vehicles enabling
further near-optimal speed trajectory computations. The proposed algorithm, however, did
not consider queues and their impact on road occupancy and travel delay for the incoming
vehicles, resulting in the Speed Advisory System under-performance. The suggested speed
profiles, ignoring the presence of any congestion, attempted to utilize the entire length of
the road for the required maneuvers, often making the vehicle hit the queue end at a large
velocity. Consider the scenario in Fig. 4.16, where a SAS-equipped connected vehicle (red)
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approaches a congested intersection with a dynamic traffic light. The Speed Advisory Sys-
tem at its current state proposes the same near-optimal trajectory (green) as if there was
a free road up until the intersection. According to the computed speed profile, the red car
is supposed to gradually slow down over the entire distance xTL before coming to a stop
at the intersection stop line. However, the road segment xq − xTL, in contrast with the
assumptions made by SAS, is occupied and cannot be traversed, forcing the vehicle to brake
sharply when approaching the end of the queue and switching to a car-following model. Such
speed trajectory (red line in Fig. 4.16) is not only uncomfortable for a driver and potentially
dangerous in mixed traffic, but can also result in higher fuel consumption.

Figure 4.16: Near-optimal speed trajectory inaccuracy due to the presence of queuing at
intersection. The predicted speed profile (green) is not feasible. The actual trajectory (red)
currently characterized by a sharp breaking must be converged to a more optimal (blue)
profile.

To address this issue, in this section we propose a queue estimation model based on
the labeling algorithm from Section 4.2, which improves the accuracy of near-optimal speed
profile computations in an under-saturated intersection scenario. Adding queue length to
the model inputs allows the system to assess the available road space and correctly predict
the stopping position of a connected vehicle. Our goal is to make the transition from the
speed advisory mode to the car-following model smooth and uninterrupted (blue trajectory
in Fig. 4.16), further reducing fuel consumption. One of the advantages of our model is
its ability to estimate the future length of the upcoming queue when the vehicle of interest
reaches its end. The detailed information about downstream traffic collected via counters
and the complete labeling of passing vehicles within the current cycle makes it possible to
propagate the state of the queue and predict its development.

The rest of the section is structured as follows. First, we will review the existing research
related to queue estimation. Then we will present our algorithm and discuss the statistics-
based methods in deriving an expected queue size for a complex intersection structure case.
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At the end we will demonstrate the simulation results and compare the proposed model to
the original algorithm from [3] with respect to multiple traffic metrics.

Literature Review

A road queue, as demonstrated in Chapter 2, has a significant impact on travel delay and
intersection utilization; its length is an important measure of intersection performance. In
order to develop effective intersection monitoring and management models, the position of
a queue end, among other traffic parameters, must be accurately approximated. Queue size
estimation methods can be divided into 2 groups depending on the source of traffic data:
vehicle-based and infrastructure-based approaches.

The first group relies on advanced positioning and communication technologies, mobile
sensors and their implementation within smartphones and vehicles. Probe vehicles (PV)
equipped with advanced sensors are able to build estimated trajectories of other traffic agents
for further analysis and state prediction. The estimation models using vehicle-produced data
can be further split into two major sets: probabilistic and trajectory-based methods.

The statistics-based work [62] derived analytical models for conditional expectations of a
queue length based on the last probe vehicle’s position. The later study, [63], in addition to
the PVs’ locations, also considered their joining times to estimate the total queue length. The
work [64] proposed closed-form real-time queue length prediction models assuming Poisson
arrivals with known arrival rates. Discrete wavelet transform (DWT), used in [65], is another
method in estimating a queue size, which does not rely on any specific arrival patterns and
is robust to the probe vehicles’ penetration rate variation.

Among the trajectory-based studies is the work [66] that used sample travel times from
PVs and intersection delay pattern changes to reconstruct the queue length in real time. The
study [67] estimated queue shockwave profiles based on the spatiotemporal probe data and
the LWR traffic theory. Another work based on the shockwave analysis, [68], predicted cycle-
based end of queue using low-penetration-rate probe trajectories. The method consisted
of two steps: estimating an one-cycle arrival rate (traffic state) via solving the maximum
likelihood problem with expectation maximum procedure and applying the shockwave theory
to derive initial and final queue lengths in cycle.

The second group of estimation models exploits fixed-location sensors and advanced
road detectors for traffic data collection. Cumulative input-output models, [69], [70], [71],
combined arrival and departure data to analyze the flow state of a single incoming link
and estimate the queue length. Another approach, presented in work [72], measured the
intersection queue length via queue dissipation modeling in the immediate past cycle using
the shockwave theory.

Some works ([73] and [74]), however, did not resort to the vehicle trajectories or the
infrastructure-based data alone and successfully incorporated both approaches (fusion al-
gorithm) for an accurate queue estimation. The former study presented an event-based
approach utilizing signal timing and probe trajectories for various PV penetration rates. A
weighted combination of loop detector data and probe trajectories was introduced as a data
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fusion method. The second study proposed a second-by-second traffic state (queue tail lo-
cation, vehicle accumulation and outflow) estimation model using the input flow from fixed
detectors together with the location and speed from connected vehicles. A probability-based
approach is used to compensate for low-penetration-rate-related errors.

Both the pure infrastructure-based and the fusion models rely heavily on static advanced
detectors, which has a significant downside: potentially high installation and maintenance
costs. Data collection by a single detector is limited to a single road link, therefore, to cover
a large network, a substantial number of detectors must be installed, which might be costly
as a strictly monitoring technology. To lighten the financial burden associated with road
sensors, in our work we exploit the already existing advanced detectors (counters, actuators
and stop-line detectors) previously used for the phase length prediction and the labeling
algorithms. Furthermore, our approach, although adopts the input-output concept of queue
modeling, does not simply count the excessive flow, but rather utilizes the labeling system
and statistics-based analysis for a queue tail location prediction.

Number of Queuing Vehicles Estimation

The first step in predicting the queue tail location for an individual incoming vehicle
is estimating the total number of queuing cars downstream of that particular vehicle. In
this section we demonstrate how this can be achieved using traffic data collected from the
counters and the complete information about the traffic agents’ labeling. As stated in the
previous section, our approach is designed for an under-saturated intersection scenario, which
is characterized by a full dissipation of the queue accumulated due to the traffic red light
in the previous immediate cycle. In this case, two consecutive cycles have non-overlapping
queue sets and can be treated as independent and isolated time intervals with their own
queue dynamics and traffic agent arrays. The over-saturated case is not considered, since it
exhibits the cycle-to-cycle queue propagation, which results in the road blockage preventing
new incoming vehicles from crossing the intersection. All vehicles, regardless of the assigned
labels, will most certainly hit the end of the queue and switch from the Speed Advisory
System to a car-following model. In this case, our current labeling algorithm is unable to
provide any substantial benefits for a queue length estimation. Further research is required
to develop a more elaborate models for over-saturated intersection scenarios.

Both connected and ordinary vehicles passing over advanced detectors (counters) receive
labels “PASS” or “WAIT” according to their ability to go through the intersection within the
nearest green phase, as discussed in Section 4.2. A schematic system diagram is presented
in Fig. 4.17. Vehicles in the green dynamic region (“PASS”-labeled) comply with the
traffic light extension requirements and will almost certainly make it through the intersection
without a significant delay in ideal conditions, i.e. conditions defined by the absence of a
propagating queue. These vehicles do not contribute to queue formation in the under-
saturated scenario and can be ignored in queue length estimation. Therefore, we turn our
attention to the vehicles in the red dynamic region (“WAIT”-labeled) and analyze their
impact on the queue formation.
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Figure 4.17: Labeling algorithm application to passing traffic in under-saturated intersection
scenario. Vehicles in the green zone are labeled “PASS”; vehicles in the red zone are labeled
“WAIT”.

Let us define W and Q to be the sets of all “WAIT”-labeled and queuing vehicles within
the current cycle respectively. Then, in an under-saturated intersection scenario, an incom-
ing vehicle will inevitably become a queuing vehicle if and only if it is “WAIT”-labeled. In
other words, W = Q.

According to the Section 4.3, “WAIT”-labeled vehicles with near 100% certainty will
not leave the link within the current green phase due to an actuation time-gap violation or
exceeding maximum green light duration. Therefore, while waiting for the next green light
to cross the intersection, these vehicles will be forces to join the queue at the end of the road
link: W ⊆ Q.

On the other hand, “WAIT”-labeled vehicles are essentially the only source of the queue
formation for the remainder of the cycle, since the previous cycle queue has successfully
dissipated and “PASS”-labeled vehicles from the current cycle, as we demonstrated earlier,
have already crossed the intersection. Therefore, the queue consists of only “WAIT”-labeled
vehicles from the current cycle: Q ⊆ W . Combining these two statements, we observe that
W = Q.

As a corollary, to estimate the queue end location for each incoming vehicle it is sufficient
to analyze the downstream “WAIT”-labeled cars. It is important to note that our queue
approximation model is vehicle-dependent, meaning that the queue length estimate provided
for a “WAIT”-vehicle k might be different from the estimate shared with a “WAIT”-vehicle
k + 1 behind it. This is due to the fact that the downstream-queuing-car sets Qk and Qk+1

for vehicles k and k + 1 respectively are not equivalent. In fact, Qk+1 = Qk ∪ {k}, which
can cause estimation discrepancies for these two vehicles. Moreover, the queue tail location
prediction for each vehicle is computed assuming all its downstream “WAIT’-labeled cars
have come to a complete stop. To visualize the statement, consider an example in Fig. 4.18.
Assume vehicles k − 2 and k − 1 are stopped, while vehicles k and k + 1 are still moving.
Since the first two cars on the link are stationary, the queue end position estimate for the
vehicle k is simply the location xk. The vehicle k + 1, on the other hand, has one moving
car (k) downstream, so the algorithm predicts where the vehicle k will stop and derives the
new queue tail location xk+1 to be shared with the vehicle k + 1.
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Figure 4.18: Queue tail location estimation for “WAIT”-labeled vehicles. The location is
estimated assuming all downstream traffic has come to a stop.

Queue Tail Location Estimation

Our main objective is to derive the queue tail location prediction for each “WAIT”-labeled
vehicle approaching the intersection. The number of queuing downstream cars, obtained
using the labeling system, cannot be trivially converted into a queue length, considering
an m-lane road link. One exception is an one-lane road (m = 1), where the queue size
simply equals to the number of downstream “WAIT”-labeled cars. For m > 1, due to a
potentially non-uniform distribution of queuing vehicles among lanes, a simple mean value
computation is insufficient for an accurate queue estimation. In this section we propose two
statistics-based approaches for deriving a queue tail location using the historical traffic data
and vehicle routing systems.

Each road link incoming to an intersection has a finite number n ≥ 1 of possible exiting
direction (Fig. 4.19) depending on the intersection geometry, traffic laws and number of
lanes. Some directions are uniquely mapped to single lanes (e.g. left-turn lanes); the others
can be allowed across multiple lanes. Similarly, a lane can either be reserved for a particular
direction or allow for multiple direction at the same time. We define Di as a set of exiting
direction allowed from the lane i. Since the general vehicles’ moving patterns utilize some
exiting directions more often than the others, deriving turning ratio (TR) distributions for
road links is essential for approximating lane occupancy and estimating the lane queue size.
A turning ratio of an exiting direction is defined as the probability of a vehicle leaving the
link to take this particular direction; the TR can be derived using historical data: road
sensor measurements, navigation system data, surveillance camera footage, etc.

From the number of downstream queuing vehicles and the turning ratio distribution of
a link it is possible to estimate lane-related queue sizes at the intersection. Consider an
m-lane road link allowing for n possible exiting direction with corresponding turning ratios
{T 1

R, . . . T
n
R}. We assume that the lanes assigned with the equal sets of exiting directions

(e.g. 2 lanes with only the ”straight” direction) have an equal probability of being utilized,
therefore, resulting in the equivalent expected queue size. Moreover, we assume that a vehi-
cle’s lane choice is independent of the current queue size on the lane, resulting in cumulative
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Figure 4.19: Turning ratio distribution for a 3-lane road link. Queuing vehicles’ positions
are derived based on exiting direction utilization probability.

utilization probabilities for lanes with multiple exiting directions. In other words, if a lane
allows for k > 1 exiting direction, its utilization probability will sum up from the weighted
turning ratios of each of these directions. Let p be the number of queuing vehicles at the
intersection, then, considering both assumptions, we derive the expected queue size for a
lane i:

N i
q = p

∑
j∈Di

T j
R

nj

, (4.3)

where nj is the number of lanes allowing for the exiting direction j.

Example 1. Consider a 3-lane road link from Fig. 4.19 with 3 possible exiting directions:
left, straight and right. The turning ratios for these directions are T 1

R = 0.2, T 2
R = 0.5,

T 3
R = 0.3 respectively. Note that the leftmost lane is a left-turn lane; from the middle lane

vehicles can go only straight; and the rightmost lane can be used for both straight and right
movements. This corresponds to n1 = 1, n2 = 2 and n3 = 1. Assuming the number of
queuing vehicles is 10 (p = 10), we can derive queue sizes for each of the three lanes, using
Eq. 4.3:
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N1
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One of the possible vehicle distributions among lanes is reflected in the figure.

The further queue tail location estimation can be performed using one of the two methods
depending on the vehicle’s navigation data accessibility and the existence of proper commu-
nication channels. The first method relies on a vehicle’s ability to share its desired exiting
direction j with the infrastructure via V2I communication. In this case, the system needs to
analyze only a subset of available lanes allowing the specified direction j, which negates the
impact of irrelevant lanes on the queue length estimation. The expected queue tail position
conditioned on the knowledge of the vehicle’s direction preference is give by:

xmethod−1 = E[x̂|j] = (l + h)× 1

nj

∑
i

N i
q1Di

(j), (4.4)

where l is the average vehicle length, h is the average headway distance between two queuing
vehicles, x̂ is the random variable that takes valuesN1

q , . . . , N
m
q with probabilities correspond-

ing to the likelihoods of the vehicle taking each of the m lanes, and 1A : X 7→ {0, 1} is the
indicator function, defined as

1A(x) =

{
1 if x ∈ A

0 otherwise
(4.5)

Going back to the Ex. 1, the expected queue end locations of each potential exiting
direction for the incoming vehicle:

Left: xmethod−1
1 = (l + h)×N1

q = 2(l+ h)

Straight: xmethod−1
2 = (l + h)× 1

n2

(
N2

q +N3
q

)
= 4(l+ h)

Right: xmethod−1
3 = (l + h)×N3

q = 5.5(l+ h)
Corresponding predicted stopping positions are represented by the blue lines in the Fig.

4.19. Note that the left and right directions are less than a vehicle-length away from the
ground truth. Straight direction has a slightly higher error, however, this discrepancy is not
significant, considering the manual speed adjustment required from the driver when switching
from the Speed Advisory System to a car-following model.

The second method assumes no access to the vehicles’ preferences and no means of
predicting the desired exiting directions. Therefore, all exiting directions must be accounted
for when computing the expected queue tail position:
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xmethod−2 =E[x̂] = (l + h)×
∑
i

N i
qP(the vehicle needs lane i) =

=(l + h)×
∑
i

∑
j∈Di

N i
q

T j
R

nj

=

=(l + h)p×
∑
i

(∑
j∈Di

T j
R

nj

)2

(4.6)

Applying the second method to the system setup from Ex. 1, we calculate the unconditional
expected queue tail location for the incoming vehicle:

xmethod−2 =10(l + h)×

((
T 1
R

n1

)2

+

(
T 2
R

n2

)2

+

(
T 2
R

n2

+
T 3
R

n3

)2
)

=10(l + h)×

((
0.2

1

)2

+

(
0.5

2

)2

+

(
0.5

2
+

0.3

1

)2
)

=4.05(l+ h)
The estimated stopping position is represented by the red line in the Fig. 4.19. Note a

significantly larger error for the left direction prediction compared to a similar value obtained
by the first method. This is due to a major contribution of the other two directions (80%)
in the queue end position computation while having no impact on the actual left-lane queue
formation.

Simulations and Results

To evaluate the accuracy of the proposed methods and their impact on fuel consumption,
intersection progression quality and phase utilization, we focus on the Montgomery County
network SUMO simulation (Fig. 2.1), which is similar to the one discussed in Section 4.3.
More specifically, we present the comparison between different vehicle configurations: with
or without the active SAS; using the original near-optimal speed trajectory computation or
the queue-related one.

Queue Tail Location Estimation Accuracy

The queue tail estimation methods play an important role in the near-optimal speed tra-
jectory computation. The main purpose of the queue prediction implementation, fuel con-
sumption reduction and intersection progression improvement, can be corrupted by incorrect
estimations causing traffic flow disturbance. To avoid the undesirable system behavior we
must first evaluate the accuracy of the proposed methods. Since the lane-to-lane count of
queuing vehicles depends only on the total number of these vehicles and the intersection’s
turning ratio distribution, different SAS-quipped vehicle penetration rates and acceleration
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options (discussed in Section 4.3), having no impact on the prediction accuracy, will not
be considered. To simplify the simulation process, we assume a fixed-known acceleration
set-up and a 50% SAS-penetration rate. The prediction accuracy is evaluated based on the
difference between the predicted queue tail location for a particular vehicle and its actual
stopping position (both in meters from the intersection stop-line). The simulation results
for the two under-saturated intersections are presented in Fig. 4.20.

(a) (b)

Figure 4.20: Queue tail location comparison between two prediction methods and the ground
truth. (a) Low demand - Intersection 1. (b) Moderate demand - Intersection 5.

Due to the complete queue dissipation between cycles, each new queue prediction starts
from the point zero growing as vehicles arrive at the intersection. General graph shapes for
low and medium demands are similar despite the significant difference in the numbers of
queuing cars. According to the results, both methods managed to estimate the queue tail
positions relatively accurately considering the total queue sizes. The predictions provided
by the first method, as expected, are more precise (within 2 vehicle-lengths from the ground
truth and with the mean error of 3 meters) and are able to track the queue formation for
directions with low turning ratios. The second method, on the other hand, results in a slightly
higher average error of 5 meters and up to 3 vehicle-lengths deviations from the actual values
at maximum. These large over-estimations are mostly related to the less probable exiting
directions as discussed in the Ex. 1.
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Fuel Consumption

The first metric we discuss is fuel consumption. In order to obtain a comprehensive
comparison we ran 24 simulations with various combinations of the following settings: (1)
50% and 100% SAS-equipped vehicle penetration rates; (2) three acceleration options (fixed
known, random known and random unknown); (3) four algorithm set-ups (no SAS, SAS
without the queue estimation and SAS with the both queue estimation methods).

According to Fig. 4.21, the first queue tail location estimation method utilizing the
shared vehicles’ desired exiting directions demonstrates the best performance among the
considered algorithms. It provides up to 4 additional percent of fuel savings, compared
to the no-queue estimation scenario. The second method, although is less effective than
the first one, still manages to reduce fuel consumption by up to 3 additional percent. The
highest energy-wise improvement is observed at intersections with moderate demands, since
the queues on the corresponding incoming links are large enough to cause significant speed
trajectory modifications when the queue estimation methods are implemented. Moreover,
varying SAS-penetration rates and acceleration types seems to have no influence on the queue
estimation algorithm performance. The only intersection that does not benefit from the
queue estimation is the intersection 7, which experiences high demand and is over-saturated
most of the time. However, since we mentioned that the proposed labeling algorithm is
ineffective for over-saturated intersections, this result is expected and can be discarded from
the further analysis.

Phase utilization

In this section we analyze the impact of the queue estimation methods on phase uti-
lization. Fig. 4.22 demonstrates the differences in phase utilization for Intersections 1 (low
demand) and 5 (moderate demand). According to the graphs, neither the free traffic sce-
nario nor the moderate demand case are affected by the introduction of the queue prediction
models. These findings follow directly from the fact that the implementation of our queue
tail position estimation algorithms does not change vehicles’ labels, i.e. ability to cross the
intersection, but rather provides better speed trajectories for the stopping cars.

Progression Quality

Now, we focus on another performance measure, progression quality, which is well charac-
terized by the POG value (Fig. 4.23). The improved near-optimal speed trajectories derived
using the queue tail predictions from our model, exhibit smoother deceleration patters keep-
ing the vehicle in motion for a longer time. In some cases, this time difference is sufficient
to postpone the vehicle’s arrival to the queue tail until the phase switch, increasing the
Percent-on-green and improving the progression quality at the intersection.

Considering the intersection 1 with the low traffic demand, progression quality can hardly
be improved by the queue estimation methods, since the number of incoming vehicles is in-
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(a) (b) (c)

Figure 4.21: Fuel consumption reduction for no queue estimation scenario and for both
estimation methods. (a) Fixed known acceleration. (b) Random known acceleration. (c)
Random unknown acceleration.

sufficient for forming long enough queues. The queue tail position, as was shown in Fig. 4.20,
is usually located relatively close (1-3 vehicle-lengths) to the intersection stop-line, making
the new speed trajectory almost identical to the one built without the queue estimation.
Intersection 5, on the other hand, benefits more from the implementation of our prediction
models. Although, the average progression quality improvement is relatively low (≈ 0.05 and
≈ 0.03 for methods 1 and 2 respectively), high values of peak POG changes (up to 0.25 and
0.16 for methods 1 and 2 respectively) suggest significant improvement of traffic propagation
at the intersection.
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(a) (b) (c)

Figure 4.22: Phase utilization comparison for no queue estimation scenario and for both
estimation methods. (a) No queue estimation. (b) Method 1. (c) Method 2.
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(a)

(b) (c)

Figure 4.23: Percent-on-Green (POG) for progression quality comparison with no queue
estimation and both prediction methods implemented. (a) Intersection 1 - Low demand. (b)
Intersection 5 - Moderate demand.
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Chapter 5

Parking Reservation

5.1 Introduction

With the continuing growth of number of vehicles in cities, transportation systems suffer
from congestion, over-utilization and inefficient usage of resources. In addition to flow-related
issues, such as exceeding road capacities, traffic shock-waves, etc., curb utilization plays a
significant role in stressing the network. Insufficient parking space forces ordinary cars to
cruise around in search for parking, slowing down traffic. On the other hand, commercial
vehicles (delivery trucks, taxis, etc.) follow different behavioral patterns and more often
resort to double-parking, thus blocking the road and creating a bottleneck effect (Fig. 5.7).

One of the possible parking management strategies is online reservation. Several systems
were proposed for allowing drivers to make online reservations for parking spots [75], [76], [77],
[78]. These models are designed to inform drivers about parking availability and pricing via
the Internet, SMS or any other type of wireless communication. These models alone, however,
do not provide sufficient tools for influencing drivers’ decisions and managing parking demand
distribution for congestion mitigation. In addition to a reservation mechanism, reference
[79] introduces a system that dynamically adjusts parking prices to prevent fragmentation
during the allocation of the parking slots, which is likely to improve the efficiency of traffic
management.

Dynamic parking pricing itself is an extensively studied (e.g. in [80], [81], [82]) and widely
implemented mechanism for curb utilization management. San Francisco was a study ground
for a demand-responsive parking pricing project (SFpark) conducted from 2011 until 2013
and evaluated in [83]. Over the course of two years, SFMTA made 10 on-street rate adjust-
ments to keep the occupation level at around 80%. Many side benefits, such as greenhouse
gas emission reduction, traffic improvement, peak hour congestion decrease, etc. were re-
ported as a result of dynamic pricing. Similar projects of smart parking include the SeaPark
in Seattle and LA ExpressPark program in Downtown Los Angeles.

An extensive data-driven study of the spatio-temporal characteristics of curbside parking
is presented in [84]. Using GPS location data, parking transaction data and block-face supply



CHAPTER 5. PARKING RESERVATION 74

data, the work estimates parking demand and analyzes parking occupancy. It further models
parking demand using a Gaussian mixture model to cluster spatially close regions with similar
demand and occupancy profiles for more effective parking policy implementation.

Existing literature on delivery vehicle behavior modelling and its impact on traffic con-
ditions can be divided into three groups: analytic models, simulation-based studies and
discrete-choice models. Among the analytic studies is the paper [85] – a generalization of
[86] – which describes a downtown parking model with delivery truck behavior and ana-
lyzes traffic congestion with respect to the number of parking spots allocated for commercial
vehicles and parking pricing.

The simulation-based study [87] analyzes the impact of double-parking on average travel
time via M/M/∞ queuing model and micro-simulation model. Another paper,[88], simu-
lates city traffic and delivery vehicles’ parking with respect to varying curb allocation to
loading/unloading zones and analyzes the environmental impact of the presence of such
zones. The common limitation of both papers is that other policies, such as parking en-
forcement and dynamic pricing, were not considered. The papers [89], [90], and [91] analyze
urban logistics, parking policies and their impact on the system from a strategic point of
view. The first two study logistics companies’ sensitivity toward parking pricing, availability
of loading/unloading bays and probability of finding them free via preference data collection.
The third work focuses on the receivers’ attitude towards off-hours delivery strategies and
the policy which uses Urban Distribution Centers.

The work [92] combines a simulation model capable of evaluating the traffic impact of
parking policy changes on truck parking choice and discrete parking choice model. A binary
logit model for determining the probability of parking at a location is estimated from truck
driver surveys and commercial vehicle parking observations. Drivers’ willingness to occupy
specific locations are predicted based on the distance from their final destinations and parking
spot types (loading zone or on-street). Agent-based simulation software is used to evaluate
parking space allocation. This work, however, does not consider parking pricing, enforcement
and illegal parking.

The work [93] models commercial vehicle driver parking choice behavior in the presence of
three possible parking options: loading zones, carpark areas and illegal on-street parking. By
applying different parking management strategies, such as dynamic pricing, parking capacity
variation, etc., and considering the proposed choice model, the study estimates the financial
and ecological impact on the transportation system. However, overall traffic congestion
improvement in the area of interest is not specifically studied.

In our work we put aside the idea of dynamic parking pricing for curbside management
due its impractical nature with respect to delivery vehicles. These vehicles occupy parking
spots for relatively short periods of time, do not pay parking fees and may find it expedient
to double park in the absence of a rapid law enforcement system. Instead, we focus on
methods which place physical limitations on delivery vehicles’ parking behaviour. Using an
intelligent partitioning of day-to-day operation time we are able to indirectly affect delivery
vehicle arrival times and encourage drivers to follow an optimal schedule.

Our model builds a terminal utility function based on the drivers’ utilities, available
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partitions and city’s preferences regarding demand distribution and delivery vehicles arrival
times. By solving a series of optimization problems we obtain an optimal partitioning that
maximizes social utility of the system at equilibrium.

The proposed system can be implemented in a parking reservation app to obtain a cen-
tralized information tool that connects all drivers, displays parking availability, structures
and synchronizes parking requests and collects data (driver’s preferences) for further analysis
and model improvement. In addition, cities can equip busy areas with cameras to enforce
the planned parking schedule.

5.2 Time-slot modelling

Delivery truck drivers, unlike ordinary car owners, must follow specific work schedules,
which limits possible delivery times. Corporate rules and regulations establish certain op-
eration hours, outside of which no delivery can be processed (e.g. 6 am - 10 pm). We
assume each business day can be viewed as an isolated and independent structure that has
no direct effect on the subsequent day. Delivery vehicles should be able to complete their
deliveries within the current day and proposed schedules should not be transferred to the fol-
lowing days. Therefore, we focus on scenarios that yield feasible solution to the partitioning
problem, providing suitable reservation periods for all participating agents.

The main objective of our system is reducing traffic congestion caused by double-parking.
Therefore, we must ensure that no two delivery trucks arrive at the same parking location
at the same time. Since delivery vehicles often do not pay for parking, well-known dynamic
parking pricing methods are not effective in altering their behavior. Instead, we propose a
new approach where we partition the operation hours into time slots, which we use as control
knobs to influence delivery patterns. Drivers reserve a parking spot for a particular time-slot
before making a delivery. Under the assumption of parking law enforcement implementation,
violating the time-slot length limitation results in large fines to discourage delivery drivers
from overstaying. We discuss how to design the optimal time slots in the following sections.

Reservation Model

Our reservation model is based on the following rules:

1. Time intervals for a parking spot can not overlap.

2. Only one vehicle can reserve a parking time slot at a time.

3. For each parking spot, a vehicle can reserve only one time slot at a time. To make a
new reservation the current reservation must be cancelled or must have expired.

4. In the event of a double parking incident, the vehicle that does not have a reservation
is penalized.
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5. A time slot can only be reserved before the beginning of the corresponding time slot
and, at any given time, a driver can see all of the available time slots for the rest of
the operation hours.

The reason for the first two rules is prevention of double parking. The third rule prevents
drivers from reserving several time slots at once when the arrival time is uncertain. The
fourth rule states that we only penalize the vehicle that does not have a reservation regardless
of the vehicle that double parks (if none of the vehicles have a reservation then the double
parked car is penalized). The last rule allows for First-come-first-serve drive-ins. If a parking
slot is unreserved and unoccupied after the beginning of a time-slot, any delivery vehicle or
ordinary car can safely park there and not be forced away by a late reservation. In this
model the decision variable of the designer is the length of each time slot. These time slots
are adjusted before any reservations take place. Each driver is able to see the available time
slots and their duration for the respective finite horizon (in this work we consider this to be
around five to six hours).

Time Slots

As the designer, our objective is to create a set of time slots in the operation hours
compliant with the proposed reservation model. Since time-slots do not overlap and leaving
gaps in between consecutive time-slots results in under-utilization, a new time-slot must
begin when another one ends (except the time-slot at the end of the operation hours).
Moreover, since time slots are disjoint and their union is equal to the operation hours, we
call each set of time slots a partition of operation hours. To keep the problem tractable, we
assume that each time slot is a multiple of some predefined interval of length δ units of time,
which we refer to as δ-interval. This assumption is reasonable, since arrival time estimation
is unlikely to be precise due to inaccurate traffic state assessment, delays at other delivery
locations, etc.

Suppose the operation hours are divided into m consecutive δ-intervals with starting
times, which we refer to as δ-times, enumerated with the index k ∈ {0, 1, . . . ,m − 1}.
Therefore, if the operation hours start at time t0, then k refers to the δ-time (t0 + kδ).
To indicate whether a δ-time marks the start of a new slot, we define the binary vector
y = [y0 y1 . . . ym−1]

T such that, for k = 0, 1, . . . ,m− 1,

yk =

{
1, if the kth δ-time is the beginning of a new slot

0, otherwise.
(5.1)

Note that the cardinality of the vector y is the number of distinct time-slots. Denoting
this number as l, we partition {0, 1, . . . ,m−1} into disjoint intervals (tsj , tej), j = 0, 1, . . . , l−1,
where tsj and tej are starting and ending δ-times in the time-slot j.
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5.3 Driver Behavior, Assumptions and Equilibrium

Our objective is to find a partition of the operation time that maximizes the social
utility (5.7) at the equilibrium. Since we are concerned about the social welfare of the
system, which depends on drivers’ preferences, city’s parking requirements and traffic state,
developing suitable utility functions is an essential step in posing an optimization problem.

Driver utility

We assume that drivers act selfishly to maximize their own utility functions. We further
assume that drivers make reservations as soon as they know the time that they need to park
and this information is available to the designer.

The following set of approximate parameters reflects a driver’s delivery inclinations:

• x ∈ R : preferred arrival time for a particular location;

• p ∈ R : processing time required to drop off a delivery item (taken to be deterministic,
since drivers usually have a good estimate of the time they need);

• r ∈ R : reservation time, which is an approximate time when a driver thinks they will
have a better estimate for their arrival time to be able to make a reservation in the
app. We assume ri ̸= rj for all i, j < n, where n is the total number of vehicles.

The utility function of a driver i, referred to as general utility Ui : R 7→ R, is a normal-
ized function of the potential arrival time that monotonically increases until reaching the
maximizer and monotonically decreases afterwards, sampled at the δ-times. A more complex
and accurate shape of a utility function can be obtained once the system is deployed and
sufficient operational data is gathered. Note that the general utility function is independent
of the partition since it simply reflects driver’s preference.

Cost function and Net Utility

We now define cost and utility functions for delivery vehicles based on the partitioning
structure introduced above. Drivers would like to avoid being penalized for overstaying.
Therefore, we derive a specific cost function that represents such penalty:

Ci(k, y) = max
j>k

[yjg(pi − (j − k))] + (1− yk), (5.2)

where g : R 7→ R is a step-function.
Here the first term represents the penalty incurred by overstaying and the second term

mathematically represents impossibility to reserve non-existing time-slots.
After combining the general utility function Ui(t) with the corresponding cost function

Ci(k, y), we obtain the net utility function of driver i:
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Un
i (k, y) = Ui(t0 + kδ)− Ci(k, y) (5.3)

This net utility function represents a driver’s actual preference space with respect to
potential partitions. Note that zero values as well as negative values of Un(k, y) are essentially
equivalent and both correspond to absolute inability or prohibition to arrive to the parking
location at this specific δ-time k. Therefore, we focus on the positive utility values in the
further analysis.

Equilibrium points

The equilibrium strategy profile is defined as the best response for all agents given the
partitioning and the set of available time-slots at the time of reservation. That is, each driver
books a time slot among the time slots which have not been reserved so far, that maximizes
their utility. Therefore, equilibrium can be obtained by solving one of the optimization
problems (Eq. 5.4, 5.5) for every partition and for every participating agent. Without loss
of generality, we index delivery vehicles in the order of their reservation times; therefore
r1 < r2 < · · · < rn.

Given the partition y, the optimal arrival time for driver i is obtained as follows:

• For the delivery truck with the highest priority (i = 1):
t∗1(y) = argmax

k
Un
1 (k, y)

s.t. Un
1 (k, y) > 0,

t0 + kδ ≥ r1.

(5.4)

• For delivery trucks with i > 1:
t∗i (y) = argmax

k
Un
i (k, y)

s.t. Un
i (k, y) > 0,

t0 + kδ ≥ ri,

t0 + kδ ̸= t∗j(y), ∀j : j < i.

(5.5)

If there is no feasible solution to an optimization problem given a partition (there are not
suitable time-slots for the corresponding delivery vehicle), the utility of that vehicle given this
partition is zero and no time-slot is occupied, leaving the decision space of the later drivers
unchanged. In a more restrictive case, where each delivery truck must be accommodated,
such partitions can be discarded from further analysis.

Above we have characterized drivers’ best responses independent of traffic conditions
and city’s requirements. Selecting the optimal partition now might result in scenarios when
multiple delivery trucks attempt package drops during rush hours, which have a significant
negative effect on congestion level and curb over-utilization. Therefore, some adjustments to
the model taking into account the city’s penalty function P : R 7→ R, which reflects traffic
conditions throughout the day, congestion levels and willingness to allow trucks occupy
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parking locations at specific times (Fig. 5.1) are required. This utility is not static, but
rather it may vary day to day, month to month, season to season. Such flexibility allows
for a more precise model tuning using the data obtained from curb activity monitoring and
drivers decisions recorded in the app.

Figure 5.1: General form of the city’s penalty function. To prevent excessive traffic load
during morning and evening rush hours, these time periods are penalized more than the rest
of the day.

The city’s penalty function is further subtracted from the net utilities to construct ter-
minal utility functions:

UT
i (k, y) = Un

i (k, y)− P (t0 + kδ) (5.6)
As the designer, our objective is to select a partition of the operation time which achieves

optimum at a corresponding equilibrium strategy profile. This selection is made via solving
an optimization problem:

max
y

n∑
i=1

(UT
i (t

∗
i (y), y)− ∥(tej − tsj)− pi∥)

s.t. tsj = t∗i (y)

(5.7)

This formulation considers terminal utilities evaluated at the optimal arrival times t∗

preserving the local equilibrium derived at the previous step. The second term is responsible
for penalizing under-utilization. If the assigned time-slot significantly exceeds the vehicle’s
processing time, the parking location would be unoccupied but still reserved after the truck’s
departure, causing under-utilization. The optimal partition would be made visible to the
drivers through the mobile app used for implementing the system.
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5.4 Simulations

Sample problem simulation

In this section we demonstrate our model on a sample problem. For simulations we
assume δ = 1 unit of time and t0 = 0. Assume the duration of operation hours is m = 3
units of time, which results in 4 different possible partitions: y = [1 0 0]T , y = [1 0 1]T ,
y = [1 1 0]T , and y = [1 1 1]T . Assume there are 2 trucks with general utility functions
U1(t) and U2(t) respectively. In this example, we use a specific form of general utility function
(Fig. 5.2) with parameters (kl, kr) characterizing the “flexibility” of a driver. Larger values
of these parameters indicate less flexibility in arrival time. Here kl is the left slope and −kr

is the right slope of the function around the maximizer. If the maximizer lands on the first
or the last δ-time, kl = 0 or kr = 0 respectively.

The complete sets of parameters (from Section 5.3) for trucks 1 and 2 are: {x1 = 1, p1 =
2, r1, (k

l, kr) = (0.5, 0.5)} and {x2 = 0, p2 = 1, r2, (k
l, kr) = (0, 1

3
)} respectively. Note that

r1 < r2 ≤ 0.

Figure 5.2: General utility function of a driver. The peak corresponds to the driver’s desired
delivery time and the parameters (kl, kr) represent the driver’s flexibility.

The next step is to construct the cost functions from Eq. 5.2. Since p1 = 2, the first
delivery vehicle requires yi = 1, yi+1 = 0 for some 0 ≤ i ≤ m − 1 within the partition.
Therefore, C1(k, y) = 1, unless yk = 1 and yk+1 = 0, where C1(k, y) = 0 (Fig. 5.3a). On the
other hand, the second truck is physically able to fit into any time-slot, thus, C2(k, y) = 0 if
yk = 1 and C2(k, y) = 1 otherwise (Fig. 5.3b).

At this stage the net utility functions can be derived for both trucks. Applying Eq.
5.3, we notice that there are only three potential arrival times for the first truck within the
time-partition space (Fig. 5.4a). The second delivery vehicle, however, has a significantly
wider choice of suitable time-slots (Fig. 5.4b). Another notable detail is that some partitions
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(a) (b)

Figure 5.3: Cost functions reflecting the overstaying penalty and mathematically represent-
ing impossibility to reserve non-existing time-slots. (a) Truck 1. (b) Truck 2.

cannot provide any suitable time-slots for one of trucks (y = [1 1 1]T for the first truck),
and, therefore, are discarded from further consideration.

(a) (b)

Figure 5.4: Net utility functions for both delivery vehicles. Optimal arrival time t∗(y) for
each partition is highlighted blue. (a) Truck 1. (b) Truck 2.

Having both net utility functions derived, we can proceed to identifying the optimal ar-
rival times t∗i (y) for i = {1, 2} as functions of a partition via solving optimization problems
(5.4) and (5.5). As mentioned before, we use a brute-force approach iteration over all parti-
tions and arrival times for each truck and finding the equilibrium. Note that the partition
y = [1 0 0]T yields no optimal arrival time for the second truck since the only arrival
time with positive utility (at time t = 0) is reserved by truck 1 with higher priority. Such
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partitions will not be considered either. We summarize the optimal arrival times in Tab.
5.1.

Assume further that due to the morning and evening rush hours it is undesirable to have
many delivery trucks at those periods. Therefore, the city’s penalty function (P (t)) has the
shape presented in Fig. 5.5. Times 0 and 2 represent morning and evening times respectively.

Figure 5.5: The city’s penalty function used in the sample problem. Times 0 and 2 represent
rush hours, and, therefore, are penalized more.

Lastly, a designer is able to derive terminal utility functions (Fig. 5.6) for both delivery
vehicles using Eq. 5.6 and solve the optimization problem (5.7) to find the optimal partition
that yields maximum social utility at equilibrium. In our scenario, the optimal partition
is y = [1 1 0]T with the corresponding total utility of 1.25 units. According to the
equilibrium arrival times, the first truck reserves a time-slot (1, 3) and the second truck
occupies the time-slot (0, 1). All intermediate and final values are compiled in Tab. 5.1.

Bancroft Way Simulation

For a more realistic example, we chose to study Bancroft Way, Berkeley, CA, on the
southern periphery of the UC Berkeley campus. Curb management is of major interest in
this location due to heavy traffic and excessive delivery activity to nearby businesses, which
adds to congestion. We simulate a single busy location (Fig. 5.7) in that area using historical
traffic data and derive an optimal time-slot configuration to mitigate parking issues.

Since we are using an extensive search, we chose to implement a shorter period of interest
(5-hour window with δ = 15 minutes) for parking reservation. Therefore, the total number
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(a) (b)

Figure 5.6: Terminal utility functions. Optimal arrival time t∗(y) for each partition is
highlighted blue. (a) Truck 1. (b) Truck 2.

Table 5.1: Optimal arrival times and corresponding utility functions values.

Partition (y) [1 0 0]T [1 0 1]T [1 1 0]T [1 1 1]T

t∗1(y) 0 0 1 N
t∗2(y) N 2 1 1
Un
1 (t

∗
1(y), y) 0.5 0.5 1 0

Un
2 (t

∗
2(y), y) 0 1/3 1 1

UT
1 (t

∗
1(y), y) 0 0 1 0

UT
2 (t

∗
2(y), y) 0 1/12 0.25 0.25

Total Utility 0 1/12 1.25 0.25

of potential starting times (number of δ-intervals) is 20, which results in 219 = 524288
partitions.

According to the data collected from dash cameras installed on UC Berkley campus
busses, a daily average number of distinct delivery trucks occupying the parking spot is 6,
which will be reflected in our simulation. Moreover, the city’s penalty function (Fig. 5.8) can
be approximated from the same data via demand distribution recognition and congestion
levels estimation. Utility function parameters for each driver are summarized in Tab. 5.2.
Note that r1 < · · · < r6 ≤ 0.

According to simulation results (Fig. 5.9), we managed to accommodate all delivery ve-
hicles avoiding arrival overlaps and potential double-parking. Moreover, the maximum social
utility of 4.633 units at equilibrium is achieved, resulting in minimal potential deviation in
drivers choices from the predicted behavior. In addition, the obtained partitioning demon-
strates complete utilization of time-slots, opening the parking location for other possible
purposes when not occupied.
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Figure 5.7: A dashboard camera image from Bancroft Way, Berkeley, CA on the southern
periphery of the UC Berkeley campus. The left and right lanes are blocked by delivery
trucks, creating a bottleneck.

Table 5.2: Parameters defining truck specific general utility functions.

Truck # p (kl, kr) x

1 2 (4/15, 1/6) 3
2 1 (0.2, 0.2) 9
3 1 (9/140, 0.18) 14
4 2 (1/3, 0.5) 4
5 3 (0.125, 0.25) 17
6 1 (0.2, 1) 10
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Figure 5.8: Bancroft Way city’s penalty function. Morning and afternoon rush-hours are
subject to a higher penalty for a delivery truck arrival time.

Figure 5.9: Bancroft Way optimal solution. Blue regions indicate time-slot utilization ac-
cording to delivery vehicles’ processing times.
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Chapter 6

Curb Monitoring

6.1 Introduction

In the modern world with the development of transportation systems and improvements
in logistics, commercial vehicles have earned their unique place in the transportation hi-
erarchy. Taxi services, such as Uber and Lyft, making millions of trips daily contribute
significantly to shaping the traffic states of networks. In the era of consumerism with grow-
ing production rates for all types of goods, ranging from food to high-tech components,
the product distribution requires efficient transportation solutions involving fleets of freight
trucks. With the increasing popularity of online shopping and internet ordering, the evolu-
tion of delivery services, such as Amazon, FedEx, UPS, DoorDash, GrubHub, etc., has never
been more rapid. Being no different from ordinary cars, commercial vehicles require parking
locations to be able to complete their tasks: dropping off passenger, delivering food/packages
or unloading large items.

The current state of the parking system, however, is unable to keep up with the growing
demand, resulting in parking deficit, and thus, in many local and global curb utilization
inefficiencies, such as illegal parking, cruising in search of available spots, etc. In the absence
of a rapid law enforcement system, commercial vehicles, due to the brief nature of their
parking needs, may find it expedient to resort to double-parking or bus-lane occupation,
causing traffic disturbance, congestion and hazardous situations for bus passengers. Various
curb management models involving dynamic parking pricing ([80], [81]), parking reserva-
tion ([75], [76]), operation time partitioning (Chapter 5) have been developed to address
the parking issue and improve curb utilization. However, the implementation of any control
policy requires an extensive parking analysis to identify area-specific curb characteristics,
spatiotemporal demand distributions, common congestion reasons and many other parame-
ters. Therefore, the detailed and comprehensive traffic data collection and data analysis are
essential for building a complete and informative representation of a transportation system.

Human-related data collection methods include surveys and questionnaires conducted
by logistics companies’ internal services or statistics-focused agencies. These methods can
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provide companies’ sensitivity towards various parking control policies ([89], [90]), common
drivers’ preferences on different delivery strategies ([91]), and individual agents’ utilities for
further curb management implementation. This approach, however, is subjective since the
analysis of the obtained data is mostly related to structuring public opinions rather than
deriving parking-related behaviour patterns. Therefore, human-related data collection must
be accompanied by more substantial and precise monitoring methods to build a complete
and comprehensive parking model of the network.

One of such methods, commonly used for curbside analysis involves static surveillance
cameras installed on urban streets. The 24/7 video recording of a particular location enables
an uninterrupted area monitoring regardless of weather conditions, operation time limita-
tions, etc. Surveillance cameras often have a high video resolution which allows to capture
distinctive vehicle characteristics, such as licence plate numbers, for the law enforcement
purposes or vehicle tracking. Unfortunately, this approach does not scale well due to the
limited monitoring area and a high maintenance cost for a single fixed camera. To discover
the locations of interest worth monitoring, a large number of surveillance cameras must be
installed around the city, which is both costly and effort-demanding.

To avoid the discussed issues while still being able to collect sufficiently detailed data,
static camera approach can be replaced with a dashcam-related method. Having access to
public (buses, taxis, commercial vehicles, etc.) and potentially private (personal cars) dash-
board camera footage makes it possible to build an extensive traffic data-set comprised of
thousands of hours of video recordings from multiple angles across a large region to identify
parking trends, busy areas and curb usage patterns. The vehicle-point-of-view camera po-
sition allows to visualize and analyze the direct impact parking inefficiencies have on traffic
agents. Although the completeness of the obtained data strongly depends on the penetration
rate of probe vehicles, i.e. vehicles supplying dashcam footage, even infrequent monitoring
of a particular area, as will be shown later, can be sufficient for a thorough analysis. In
addition, this solution is more flexible, low-cost, and scalable, compared to static cameras,
and thus is more preferable for a real-world implementation.

Several companies made attempts to develop a monitoring system for curb management
purposes. One of these companies is Coord, who used augmented reality technology to
capture the physical attributes of a scanned curb and make allocation suggestions for it.
The proposed technology, however, was unable to either provide real-time data, or recognize
moving objects, such as pedestrians and vehicles. Moreover, data collection is expected to be
done manually via the mobile app, which can be problematic for large and dense areas. These
limitations make the implementation of Coord’s approach ineffective. Another company,
Fehr and Peers, collaborated with various transportation authorities to study street-specific
curb activity and provide analysis based on the data gathered. Their methods involved
installing static video and photo cameras and manual processing of the obtained data (San
Francisco Curb Study), which, as discussed earlier, do not scale well. In addition, Fehr and
Peers relied on Uber’s data regarding the pick-up and drop-off patterns of their vehicles,
which has a limited application for the analysis of other commercial vehicles’ behavior.

In this work we present a curb monitoring model based on a single-source dashcam footage
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collection. To eliminate labor-demanding and inefficient manual data analysis, we developed
a YOLOv5-based neural network (NN) for delivery vehicle recognition and classification.
Further curb activity pattern identification is performed on the labeled and structured data-
sets provided by the NN. To demonstrate the performance of our approach in application
to the real-world, we conducted a case study of the southern periphery of the UC Berkeley
campus, Bancroft Way, Berkeley, CA.

6.2 Bancroft Way Case Study

To evaluate the performance of a curbside activity monitoring method it must be im-
plemented in a busy street setting with high parking demand and a significant number of
objects of interest (delivery vehicles). Bancroft Way on the southern side of UC Berkeley
campus (Fig. 6.1) falls perfectly under this description. Many local business, university
administrative buildings and an Amazon Drop-off location make Bancroft Way a popular
destination for all sorts of delivery and freight trucks. The great parking demand together
with the limited parking spot availability results in frequent incidents of parking violation,
including double parking and bus lane occupation (Fig. 5.7). The absence of curb monitoring
and managing systems makes it currently impossible to improve the parking situation.

To implement our model, we first need to establish the source of data collection that
provides stable day-to-day curbside activity monitoring on Bancroft. In collaboration with
the Berkeley Parking and Transportation Department we were given access to a Bear Transit
Peripheral bus (Fig. 6.2) cruising around the campus from 7.30 am till 7.30 pm daily (except
for weekends). The period of circulation is approximately 30 minutes, which might be a
limiting factor for some types of activity analysis (e.g. parking duration identification).
However, in the later sections we will demonstrate the sufficiency of the collected data for
the recognition of many important behavioral patterns. The project was conducted over
the course of 8 months, which resulted in over a thousand hours of dashcam video footage
from around different points of campus peripheral, including several hundreds of hours of
Bancroft Way recordings specifically.

First and foremost, to analyze the behavior of delivery trucks we must find a way to
distinguish them from other types of vehicles on the dashcam recordings. Each video sample
must be independently processed to identify whether it contains any valuable information.
The amount of data produced by a single dashcam monitoring a small road region is ex-
tremely difficult and time-consuming to analyze manually. Increasing the number of active
dashboard cameras and extending the application range of the approach would make the
task impossible to perform in reasonable time manually. Therefore, vehicle recognition and
classification must be automated to achieve the required performance level. In this project
we focused on a neural network approach based on the YOLOv5 framework. According to
the study [94], “You Only Look Once” (YOLO) object detection framework is reliable for
identifying traffic objects even in congested traffic situations, which completely meets our
requirements.
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Figure 6.1: UC Berkeley campus map. The monitored segment of Bancroft Way on the
southern side of the campus is highlighted pink.

Accurate classification of specific traffic objects requires an extensive neural network
training and tuning. Being unable to find any pre-trained machine learning solutions for
various types of delivery truck identification, we were forced to train our own neural network
capable of classifying different vehicles. The accuracy of a NN training heavily depends on
the size and quality of the training data-set. Large number of high resolution images with
clear labeling is essential for any efficient machine learning models. Unfortunately, data-sets
reflecting various types of delivery vehicles are not publicly available. All transportation-
related data-sets, while identifying trucks as a separate vehicle type, do not further distin-
guish their affiliations with different companies. Therefore, for the training and validation
purposes we created a labeled data-set consisting of images extracted from the collected
dashcam footage.

The technical difficulty of building a training data-set corresponds to the lack of alter-
natives for the manual selection and labeling of relevant images. To find a video frame
containing an object of interest, many video recordings must be reviewed and analyzed,
which is extremely time-consuming. One effective shortcut that allows for a significant sim-
plification of the process corresponds to filtering out video clips that do not contain any
types of trucks. For that purpose, using a public Berkeley data-set, BDD100K ([95]), we
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Figure 6.2: Bear Transit Perimeter bus cruising around UC Berkeley campus. Dashboard
camera installed at the bus served as a single data collection source for the model.

trained another, more general, machine learning model capable of recognizing trucks and
selecting corresponding footage for further manual review. Another benefit of this general
neural network is the ability to pre-process and trim the raw dashcam footage before feeding
it into our deliver vehicle classification model.

After training our YOLOv5 model on a custom training data-set, we were able to run
the remaining dashcam footage through the NN, processing it frame by frame, to classify
vehicles caught on the video. Each identified vehicle is outlined by a bounding box (Fig.
6.3) reflecting its relative location in the frame. The size and position of a bounding box are
important parameters correlated with the distance to the object and its position on a street.
In addition to the model-generated data, dashcam video clips provide the detailed metadata
consisting of date, time, GPS coordinates and current speed of the vehicle carrying the dash-
cam (Bear Transit bus in our case). By combining the vehicle classification from the neural
network with the camera-generated information, we were able to build a complete and com-
prehensive data-set of all delivery vehicle detections with the corresponding spatiotemporal
characteristics and bus speed measurements for extensive curbside activity analysis. GPS
coordinates also helped us to extract only Bancroft-related video clips through filtering.

Performance Metrics for Traffic Analysis

The first objective of our curb monitoring model is identifying “hot-spots”, busy street
regions with a high traffic density and a large number of delivery vehicle detections. These
areas tend to be most problematic in terms of congestion and curb utilization due to high
excessive parking demand and the resulting traffic flow disturbance. In case of limited mon-
itoring and management resources hot-spots should have the highest control priority among
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Figure 6.3: Vehicle detection and classification using YOLOv5 model. Bounding boxes
include objects’ labels and confidence levels. Dashcam provides additional metadata: date,
time, GPS coordinates, and speed of the bus. Red vertical line is the reference point for
the illegal bus lane occupation analysis. FedEx truck is located in the right-hand side of the
frame suggesting bus lane parking.

the street locations to achieve the maximum traffic improvement. Using the generated clas-
sification data-set, more specifically spatial (GPS coordinates) and temporal (date and time)
detection characteristics, it is possible to accurately determine the busy locations via data
point clustering. In most cases hot-spots are temporary and can be easily recognised only
within a limited period of time (rush hours, a grocery store’s scheduled delivery times, etc.).
On rare occasions, however, the discovered locations remain congested for the major part of
the day, which might require a more detailed monitoring and thorough examination for an
efficient regulation. Moreover, the hot-spot detection is essential for the curb management
model, presented in Chapter 5, since it allows to distinguish a particular popular parking
location to be reflected in the reservation app implementation.

Another component of the delivery vehicles’ behavioral analysis is a trucks’ arrival pat-
tern recognition. Filtering by the model-generated labels, we can derive spatiotemporal
detection distributions for each particular type of a delivery vehicle (Amazon, UPS, FedEx,
etc.). Depending on the arrival tendency for different hours within a day or different days
within a week, it is possible to predict the future demand distribution and anticipate poten-
tial congestion. Furthermore, arrival patterns specific for a particular company can provide
valuable insights about their internal delivery policies, and help estimate individual driver’s
preferences for a more accurate utility function approximation and effective curb manage-
ment. In addition, the detailed detection information allows us to identify relatively free
periods of time with sparse arrivals and low parking demand, which can serve as the buffer
zones in the process of redistributing delivery times for a more optimal curb utilization.



CHAPTER 6. CURB MONITORING 92

Another important deliverable of our model is the relative parking position of each in-
dividual delivery vehicle on the road (left curb, right curb). Of a particular interest is
recognising whether or not a delivery truck occupies a bus lane or a bus stop. As men-
tioned earlier, bounding boxes constructed by the object classification model, are capable
of providing the required estimations. Depending on the location of the box relative to the
central vertical of the frame we were able to approximate the detected vehicle’s position with
respect to the bus. Since normally buses tend to utilize the special dedicated lane (usually
rightmost lane), detecting a truck to the right of the bus almost certainly suggests the illegal
bus lane occupation (Fig. 6.3). To verify the accuracy of the result, additional manual
analysis can be applied. This information is valuable for analyzing illegal behavior on a
company-to-company basis and monitoring their lenience towards such parking violations.
Moreover, detecting bus lane occupation allows for a thorough investigation of the impact
such parking choices have on traffic progression and buses’ speed profiles. Furthermore, the
violation recognition method can potentially produce special traffic reports to be transferred
to the city’s transportation police department. NN-based monitoring can be a powerful tool
in the hands of the law enforcement system.

Lastly, we are interested in analysing the direct impact different parking behaviour has
on the traffic flow. One of the metadata parameters provided by the dashboard camera is
the instantaneous speed of the bus, which could serve as an accurate representation of the
traffic progression. Unfortunately, the delay in dashcam speed measurements was too high,
causing discrepancy with the ground truth. Therefore, we developed a different approach
utilizing GPS coordinates. Instead of computing the current speed of the bus, we derived
the average velocity within the specific road segments (Fig. 6.4). The breaking points for
the segments were chosen considering the locations of the bus stops and the hot-spots. To
avoid data corruption by long stopping delays, we kept the bus stops out of the segments; to
capture the impact of the hot-spots on the velocity profiles we kept them in the segments.
By combining the detection data with the average speed calculations, it is possible to analyze
how the parking behavior of particular delivery vehicles affects the actual traffic propagation.

Figure 6.4: Bancroft Way segmentation for the average bus speed computation using GPS
coordinates and travel time. Road regions are obtained based on the positions of the bus
stops to avoid long stops within regions.
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6.3 Data Analysis Findings and Conclusions

In this section we demonstrate the application of our curb monitoring model on Bancroft
Way. The parking trends and patterns derived by the data analysis algorithms coincide with
traffic observations.

Hot-spot detection

First, we focus on hot-spot identification based on the delivery trucks detection data.
After creating the overall heatmap covering all the occurrences across all the considered
delivery truck types, we identified the most busy location on Bancroft Way between the
intersections with Bowditch Street and Barrow Lane (Fig. 6.5).

Figure 6.5: Heatmap of delivery vehicle detections on Bancrofw Way. The most dense area
(hot-spot) is located between the intersections Bancroft-Telegraph and Bancroft-Bowditch.

This area is in close proximity to many local businesses and several university buildings,
which all require frequent deliveries. A large number of available parking spots makes this
location an easy and convenient parking destination (Fig. 6.6a). Another busy area is located
down the Bancroft Way, between Barrow Lane and Telegraph Street. This is the closest
parking street segment to the Amazon Drop-off location (Fig. 6.6b), which, in addition, has
a convenient road pocket on the right-hand side of the road, allowing the parked vehicles to
stay out of the traffic’s way and avoid flow disturbance.

The third busy area is located around the intersection of Bancroft and College. Similar
to the Bancroft and Telegraph hot-spot, this street location provides access to multiple
campus buildings. Nearby cafes and housing also contribute to the high frequency of delivery
vehicles detections by the bypassing Bear transit bus. All three locations were identified as
problematic by bus drivers and the Transportation department, which is now supported by
the analysis results.
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(a) (b)

Figure 6.6: The Bancroft Way road segments between Bowditch Street and Telegraph Avenue
identified as a hot-spot. Many local businesses, university buildings and the Amazon Drop-
off location make this area a popular destination for delivery vehicles. (a) Bowditch - Barrow.
(b) Barrow - Telegraph.

Delivery vehicle temporal distribution

The second important metric providing insights on different companies’ delivery schedules
and preferences is the temporal distribution of delivery vehicles detections. Based on the
dashcam data analysis, we discovered several interesting hourly and daily delivery trends on
Bancroft Way. First, we focused on the delivery vehicles’ arrival patterns between different
hours of a day. Since the Bear Transit bus has a fixed operation schedule (7.30am - 7.30pm),
only that fraction of a day is considered in our analysis. According to the Fig. 6.7a, UPS
and Amazon delivery trucks have similar detection distributions peaking at around 11am -
12pm and gradually decreasing towards the end of the day. FedEx vehicles, on the other
hand, tend to complete their deliveries earlier in the morning, 9am - 11am, having the last
delivery spike at around 11am.

For the day-to-day delivery trends across all considered delivery companies, based on the
collected data compiled in Fig. 6.7b, both FedEx and UPS have somewhat uniform arrival
distributions between different weekdays. A slightly different result is observed for Amazon
vehicles. Approximately half of their weekly detections fall on Thursdays and Fridays. One
possible reason for such uneven pattern could be related to the close proximity of the Amazon
Drop-off location. To optimize the utilization of delivery trucks, Amazon might schedule the
pick-ups of the returned packages from the Drop-off office on the last couple of days of the
week, shift the arrival frequency accordingly.

Bus speed analysis

In order to analyze the impact delivery vehicles have on the average speed of the bus
carrying the dashcam, we compare the velocity changes on each of the three segments of
Bancroft with and without truck detections. Based on the dashcam data summarized in Fig.
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(a) (b)

Figure 6.7: Temporal detection distribution for different types of delivery vehicles: Amazon,
FedEx, and UPS. (a) Hourly distribution. (b) Weekday distribution.

6.8, we were not able to detect any significant slow-downs caused by delivery vehicles. The
biggest difference we could measure does not exceed 3mph, which is insignificant. Further
investigation (manual review of dashcam video clips) revealed that due to the infrastructure
specifications of Bancroft (many crosswalks in busy areas), the delivery vehicles’ impact
on the average bus speed is overwhelmed by the delays caused by the pedestrian traffic.
Although delivery trucks indeed slowed down the bus, deriving the numerical evidence is
challenging at the current state of the project. To isolate the correlation between the parking
patterns and the traffic propagation, an extended traffic analysis is required.

Bus lane occupation

The last component of our curb monitoring model is related to the bus lane occupation by
delivery vehicles. As it was mentioned in the previous sections, this illegal parking behavior
can potentially cause the most damage not only to the traffic state of the system, but also
to the safety of bus passengers. According to the statistical breakdown from the collected
data (Fig. 6.9), FedEx trucks are the most frequently detected delivery vehicles on the bus
lane by a large margin.

It is important to note that the obtained outcome does not necessarily correspond to a
large number of violations from delivery vehicles. Bus lane occupation estimation is probably
the most uncertain algorithm considered in this study. First, having only one data source,
which monitors each location for a brief period of time, we are unable to identify whether a
particular vehicle is in motion or parked. Therefore, detecting a delivery truck on the right-
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Figure 6.8: Impact of the delivery vehicle detection on the average bus speed. The analysis
was conducted for three road segments: College Ave, Bus Stop, and Shattuck Ave.

Figure 6.9: Bus lane occupation analysis for each delivery vehicle type: FedEx, Amazon,
and UPS.

hand side of the video frame does not guarantee a parking violation. Second, the assumption
that the bus travels only on the bus lane whenever it is available is quite restrictive and may
cause some false-negative violation detections. For example, when the bus chooses the left-
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most lane, any vehicle on the right would be considered occupying+ the bus lane, even if this
is not the case. Lastly, not every road segment has a special dedicated bus lane (e.g. Fig.
6.6a), which makes the bus lane violation physically impossible at this location. Further
model development is required to optimize the proposed analysis method.
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Chapter 7

Conclusion and Future Directions

In this dissertation we presented various optimization methods and control algorithms for
transportation system management and showed how communication protocols, navigation
and reservation apps can be used to implement these models. The main focus of our work was
on eliminating local and global inefficiencies caused by non-optimal resource utilization and
infrastructure limitations. We first discussed the network-level control methods and their
impact on a transportation system state. In Chapter 2 we showed how the Braess route
elimination procedure applied to an extended graph representation of a network accounting
for queues can affect the system’s social delay when implemented in navigation apps. In order
to improve local road utilization, we then turned our attention to the link-level management
methods. In Chapter 3 we proposed the platoon formation algorithm capable of improving
traffic progression on roads and reducing travel delay of connected vehicles. Focusing on
traffic progression at intersections and fuel consumption, in Chapter 4 we developed the
queue estimation algorithm based on the vehicle labeling procedure for the real-time phase
length prediction and implementation in Speed Advisory Systems. Finally, to address the
congestion issues related to curb utilization and double-parking, Chapters 5 and 6 discussed
the parking reservation system for delivery vehicles based on operation time partitioning and
the curb monitoring system utilizing dash cam footage for traffic analysis respectively.

The complete implementation and deployment of a Smart city that can successfully
operate and effectively manage the transportation network still requires the development of
numerous intelligent control systems. Considering the models presented in this dissertation,
we now discuss several potential research topics extending our work.

Network Modeling and Congestion Estimation

Transportation modeling methods presented in Chapters 2 and 4 cover only a fraction
of possible traffic inefficiencies and congestion scenarios. Eliminating a single inefficiency,
such as Braess paradox, while reducing network delay, cannot guarantee the optiminality
of the derived system. Extending our traffic management models to account for various
congestion-related phenomena would significantly improve the traffic state of the system.
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Furthermore, queue modeling and estimation methods discussed in our work did not
consider either spatial or temporal queue propagation. For the former case, spillbacks are
particularly interesting to explore and incorporate in the network modeling. Being caused by
a severe congestion, spillbacks are capable of extending their impact far beyond the original
lanes they formed at, which makes it challenging to build their mathematical representations.

For the temporal queue propagation, a promising research direction corresponds to the
extension of our queue estimation model, presented in Chapter 4, to the over-saturated in-
tersection scenario. The proposed labeling method must be accompanied by some additional
flow prediction algorithm capable of keeping track of the traffic state at the intersection.
Incorporating both under-saturated and over-saturated scenarios in a single unified estima-
tion model can drastically simplify required calculations and provide a powerful tool for the
Speed Advisory System’s performance.

Implementation of Parking Management Techniques

Developing a complete and effective curb management system is a complex and multi-
faceted task consisting of many layers. In Chapter 6 we presented a preliminary activity
monitoring model that serves as a proof of concept for active data collection and analysis.
Eliminating various limitations regarding the project implementation could help us to build
a more accurate and broad curb monitoring system. First, the custom training data-set built
for our machine learning model consists of the minimal number of labeled images required
for a successful training. This leads to numerous delivery vehicle misclassifications when
processing the data and can potentially corrupt the analysis. Training the neural network
on a larger data-set will most definitely improve the accuracy and robustness of the model
and reduce the number of incorrect classifications.

Another potential direction for improvement corresponds to increasing the number of the
data collection sources (active dash cams) enabling a more detailed and frequent monitoring
of a larger area. The improved granularity and reliability of the collected data would allow
us to extend our machine learning models and extract additional features about the detected
delivery vehicles. In particular, we are interested in identifying whether a delivery truck is
parked or moving.

Having access to the combined video footage from several dash cams, we can build an
intelligent vehicle tracking model capable of locking on each individual truck and deriving
its specific parking patterns and preferences for further analysis. Increasing dash cam reso-
lution would also contribute to a more accurate vehicle identification and potential parking
enforcement.

The next step after building and perfecting the curb monitoring system is incorporating
the obtained activity data into curb management models. In particular, the partitioning
model for parking reservation from Chapter 5 requires the knowledge of the drivers’ utility
functions to derive the parking equilibrium. This information can be approximated from
the detailed parking pattern analysis for various delivery vehicles and further tuned based
on the system response to the applied parking policies. Demand distribution and delivery
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vehicles’ arrival schedules will allow the city planner to construct proper penalty and cost
functions for an accurate representation of the parking state.
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