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Abstract

Spatio-Temporal Reconstruction Techniques for Optical Microscopy

by

Nikhil Chacko

Optical microscopy offers the unique possibility to study living samples under condi-

tions akin to their native state. However, the technique is not void of inherent problems

such as optical blur due to light diffraction, contamination with out-of-focus light from

adjacent focal planes, and spherical aberrations. Furthermore, with a dearth of tech-

niques that are capable of imaging multiple focal sections in quick succession, the multi-

dimensional capture of dynamically changing samples remains a challenge of its own.

Computational techniques that use auxiliary knowledge about the imaging system and

the sample to mitigate these problems are hence of great interest in optical microscopy.

The first part of this thesis deals with the design of a discrete model to characterize

light propagation. Following the scalar diffraction theory in optics, we propose a dis-

crete algorithm, based on generalized sampling theory, to reverse the coherent diffraction

process via back propagation. The algorithm consists of a wavelet-based model for the

spherical waves emanating from the object of interest and an optimized multi-rate filter-

ing protocol for reconstruction from the diffraction data recorded by non-ideal detectors.

The second part of this thesis describes a spatial registration tool designed for multi-

view microscopy. Here, the imaged sample is rotated about a lateral axis for the ac-

quisition of multiple 3D datasets from different views in order to subsequently alleviate

the severe axial blur found in each such dataset. Automatic algorithms that only rely

on maximizing pixel-based similarity provide poor results in such applications owing

to the anisotropic point-spread-function (PSF) of optical microscopes. We propose a

x



pyramid-based spatial registration algorithm that re-blurs the multi-view datasets with

transformed forms of the PSF in order to make them comparable, before maximizing

their pixel-based similarity for registration.

The third part of this thesis describes a fast converging iterative multi-view deconvo-

lution technique that can be applied to the spatially registered forms of the 3D datasets

acquired using multi-view microscopy. Our sparsity based algorithm solves a non-linear

objective function to jointly deconvolve and fuse the multi-view datasets to finally pro-

duce a single deblurred 3D result that has nearly isotropic spatial resolution.

The fourth part of this thesis addresses problems due to spherical aberrations en-

countered during the imaging of thick samples in optical microscopy. The depth-varying

nature of the optical blur found in such cases renders fast and efficient shift-invariant

deconvolution techniques to be inapplicable. Here, we propose a fast iterative-shrinkage-

thresholding shift-variant 3D deconvolution method that uses depth-dependent PSFs to

reconstruct a 3D deblurred form of the imaged thick specimen.

The final part of this thesis describes a non-rigid temporal registration tool that aids

in the multi-dimensional imaging of quasi-periodic processes such as cardiac cycles. We

propose a variant of dynamic time warping that is capable of both temporally warping

and wrapping an input sequence by allowing for jump discontinuities in the non-linear

temporal alignment function akin to those found in wrapped phase functions.

This work provides a new set of tools for spatio-temporal reconstruction in optical

microscopy and we anticipate them to be useful for a wide range of problems in practice.
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Chapter 1

Introduction

Optical microscopy offers the unique possibility to analyze living samples under condi-

tions akin to their native state. The advent of natural fluorescent probes such as the

green fluorescent protein (GFP) [20] has further led to the widespread use of fluorescence

microscopy [61, 113] for the analysis of specific living cells and tissues. A number of

innovations from the fields of physics, optics, as well as genetic, mechanical, and electri-

cal engineering have been combined to enter this new era of biological imaging. Though

optical microscopy has historically been an observational technique, the development of

digital sensing technologies has led to a parallel surge in the use of digital signal and

image processing to model and analyze the data made available through these systems.

1.1 Motivation

Even an ideal aberration-free objective in an optical microscope produces a distorted

image of the object due to optical blur, which is a consequence of light diffraction through

the optical system, resulting in limited spatial resolution. This limitation is inherent to

any optical system and can be described using the wave-like nature of light. According

1



Introduction Chapter 1

to the Huygens-Fresnel principle [11], the spherical wave emanating from a point source

in the object plane consists of a multitude of other spherical waves. All such waves

from the same wave front have the same phase origin and interfere together in the image

plane, resulting in a diffraction pattern known as the Airy pattern, consisting of a series

of concentric spheres. Furthermore, these spherical waves interfere not only in the image

plane, but also throughout the 3D space. This is apparent during optical sectioning,

where images are sequentially recorded while the focal plane is varied through the sample,

with each focal plane getting inadvertently contaminated with out-of-focus information

from the adjacent planes above and below that examined. Consequently, the image of

a point source located in the object plane is a three-dimensional diffraction pattern,

centered on the conjugate image of the point source located in the image plane. The

ensemble of such individual diffraction patterns emanating from different point sources

in the object plane finally constitutes the impulse response of the device and the image

observed through the eyepiece of the microscope. Assuming the imaging system to follow

a linear and shift-invariant nature, this leads the image formation process to be modeled

as a convolution between the ideal signal representing the imaged object and the impulse

response of the device. While techniques such as confocal [117] and light-sheet microscopy

[47] aim to limit the optical blur caused due to contamination from adjacent planes by

either blocking the out-of-focus light with a pinhole or by only illuminating a plane of

interest at a time, respectively, the use of computational methods as an alternative or

supplementary measure to reverse this process continues to be of great interest to the

imaging and signal processing community.

The computational technique of deconvolution [87] aims at reducing optical blur us-

ing the underlying assumption that the image formation process is approximately linear

and shift-invariant, so that it can be characterized by a 3D impulse response or point-

spread-function (PSF). However, this is often an ill-posed problem owing to the zeros

2
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present along the axial direction in the transfer function of the PSF, commonly referred

to as the optical-transfer-function (OTF). One of the solutions deployed to mitigate this

problem is to acquire multiple image stacks after rotating the sample about a lateral axis

(orthogonal to the optical axis) and use them during post-processing to reconstruct a

representation that has nearly isotropic 3D spatial resolution [90]. However, this tech-

nique, commonly referred to as multi-view microscopy, has its own set of difficulties

when used in practice. One of the leading challenges in this technique is that of the

spatial registration of the multi-view acquisitions, owing to the strong anisotropic spatial

resolution in each such acquisition, often rendering conventional intensity-based compar-

isons inapplicable. Following spatial registration, the subsequent challenge consists of

using the acquisitions within the framework of a multi-view deconvolution and fusion

algorithm having low computational complexity for a final reconstruction with nearly

isotropic spatial resolution.

The primary assumption of spatial shift-invariance for conventional deconvolution

algorithms is, however, not always valid along the axial direction in practice. This is

unfortunately the case for the imaging of thick biological samples, where light passes

through various media with different refractive indices during image formation [36]. When

the optical paths differ from the optimal paths for which the objectives are designed, they

manifest as spherical aberrations, with the image of a point source becoming dependent

on its position in the sample. In general, only the plane position immediately adjacent to

a cover-slip of specified refractive index, separated from the objective by an immersion

medium of specified thickness and refractive index, will produce an aberration-free image.

This solicits the need for spatially-variant deconvolution algorithms that accommodate

for such aberrations.

In addition to volumetric acquisitions, the ongoing progress in the hardware and pro-

cessing capabilities of microscopy techniques have made the collection of multi-dimensional
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data ubiquitous. Despite advances in 2D dynamic imaging, the techniques available to-

day still remain slow for acquiring optical sections at successive depths, making it difficult

to directly capture the dynamics of fast moving structures. However, when the studied

motion has a repetitive nature, such as that in cardiac and pulmonary imaging, one way

to circumvent this problem is to sequentially acquire sets of 2D + time sequences at in-

creasing focal depths and later subject them to temporal registration schemes to finally

reconstruct a 3D + time sequence. At macroscopic scales, this is often aided by external

gating signals such as an electrocardiogram. However, since such signals are either un-

available or cumbersome to acquire in microscopic organisms, fast temporal registration

algorithms to efficiently use the information solely contained in the acquisitions, without

the need for any data redundancies, aid in minimizing any potential photo damage to

the samples during imaging as well as reducing the computational complexity.

1.2 Contribution and Thesis Organization

In this thesis, we propose techniques to model wave propagation inherent in the image

formation process and to mitigate the spatial and temporal non-idealities brought about

by data acquisition in optical microscopy. We briefly summarize our contributions below.

• Non-bandlimited and multi-rate generalized discrete characterization of

wave propagation (Chapter 2)

Based on the scalar diffraction theory in optics and a Hilbert space framework, we

propose a digital algorithm to accurately characterize the physical phenomenon of

wave propagation that forms an integral part of the image formation process in

optical microscopes. Wave propagation can be modeled as an analog convolution

operation and its discretization is conventionally performed in the optics commu-

nity by relying on the assumptions of the classical sampling theory. This is based
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Introduction Chapter 1

on the notion that the spherical waves emanating from the object are band-limited

and that the sampling is ideal. However, these conditions are rarely met in practice,

where signals have finite support or abrupt edges and where sampling is performed

by non-ideal detectors such as finite fill-factor cameras. To solve this problem, we

propose to approximate the wavefront in analog, shift-invariant function spaces,

which do not need to be band-limited. This allows their representation using dis-

crete coefficients that are related via a multi-rate digital filtering operation that

accurately models the analog convolution operator while taking into account non-

ideal sampling devices. This approach retains the efficiency of fast digital filtering

operations and direct sampling but without the band-limiting assumption.

• Automatic spatial registration for anisotropic PSFs in multi-view optical

microscopy (Chapter 3)

Multi-view microscopy involves rotating the sample about a lateral axis orthogonal

to the optical axis and acquiring multiple 3D datasets from different views in order

to subsequently alleviate the severe axial blur found in each such dataset. However,

before such datasets can be fused for reconstruction, it is necessary that they are

spatially aligned to each other. This is a challenging task since these datasets

have a strong anisotropic blur and are geometrically transformed with respect to

each other. Automatic algorithms that only rely on maximizing the pixel-based

similarity or matching the moments provide poor results in such applications. To

solve this problem, we propose an automatic intensity- and pyramid-based spatial

registration algorithm that re-blurs the multi-view datasets with transformed forms

of the PSF in order to make them comparable for spatial registration. This is in

contrast to existing spatial registration techniques that either naively assume an

isotropic image formation process, or need manual supervision of landmarks in the
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data, or rely on identifying data-specific landmarks, or need fiducial markers added

together with the sample for registration (which can inadvertently affect visibility

of the sample during imaging), or need hardware calibration.

• Multi-view deconvolution and fusion with equivalent complexity as single-

view processing (Chapter 4)

Multi-view deconvolution aims at deconvolving the measurements acquired from

different views in multi-view microscopy. We model this multi-view imaging setup

as a filter-bank composed of PSFs transformed with respect to each other. We

propose a technique to deconvolve these measurements using an iterative shrinkage

thresholding technique that seeks a solution that is consistent with the multi-view

measurements, while also having a sparse representation with a chosen wavelet

basis. Our sparsity based algorithm solves a non-linear objective function to jointly

deconvolve and fuse the multi-view datasets to finally yield a single deblurred 3D

result with significantly less axial blur than the measurements. Furthermore, the

computational complexity of our multi-view deconvolution technique is essentially

the same as its single-view counterpart, allowing a fast implementation in practice.

• Depth-variant deconvolution and fusion for depth-dependent PSFs in

optical microscopy (Chapter 5)

The imaging of thick samples often involves light passing through various media

with different refractive indices, leading to the spatial shift-invariance assumption

not being well satisfied along the axial direction. The depth-varying nature of

the optical blur found in such 3D datasets renders fast and efficient shift-invariant

deconvolution techniques to be inapplicable. In this work, we model the imaging

setup using a multi-rate filter-bank structure, where each plane along the optical

axis is assigned to a channel with a different PSF. We propose an iterative shrinkage-

7
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thresholding depth-variant 3D deconvolution method that uses depth-dependent

PSFs to reconstruct a deblurred form of the imaged thick specimen. We present

an approach that directly considers a depth-variant PSF deconvolution problem,

yet preserves the form of a highly efficient shift-invariant deconvolution method.

The filter bank structure leads to a Landweber deconvolution that uses an iterative

shrinkage thresholding algorithm.

• Non-redundant quasi-periodic temporal registration for in vivo cardiac

microscopy (Chapter 6)

In vivo cardiac microscopy involves optical imaging of the beating heart as volumes

using various imaging modalities at different stages of its morphological develop-

ment. This often requires the temporal registration of multiple cardiac movies

acquired in a serial manner. Using a Hidden Markov Model (HMM), we propose a

non-rigid temporal registration tool designed for quasi-periodic signals such as car-

diac sequences. Our method is a variant of dynamic time warping that is capable

of both temporally warping and wrapping an input sequence by allowing for jump

discontinuities in the non-linear temporal alignment function akin to those found in

wrapped phase functions. This lifts the need for redundant cycles in the acquired

data that are otherwise required for the sole sake of temporal registration. Further-

more, when redundant cycles are indeed available, we show how such redundancies

can be used constructively towards frame-rate improvement and noise reduction.

Finally, in Chapter 7, we summarize our contributions towards reconstruction tech-

niques in optical microscopy and provide an outlook for future research.
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Throughout this thesis, by convention, we denote the D-dimensional Fourier trans-

form of a function f(x), x ∈ RD, as f̂(ν), ν ∈ RD, with the following definition:

f̂(ν)
def
=

∫
RD
f(x) · exp(−j2πν>x) dx, (1.1)

f(x)
def
=

∫
RD
f̂(ν) · exp(j2πν>x) dν, (1.2)

where > denotes the conjugate transpose operator.
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Chapter 2

Non-bandlimited and Generalized

Multi-rate Discrete Model for Wave

Propagation

Abstract1

Discretization of analog convolution operators by direct sampling of the convolution

kernel and use of fast Fourier transforms (FFT) is highly efficient. However, it assumes

the input and output signals are bandlimited, a condition rarely met in practice, where

signals have finite support or abrupt edges and sampling is non-ideal. Here, we propose

to approximate signals in analog, shift-invariant function spaces, which do not need to

be bandlimited, resulting in discrete coefficients for which we derive discrete convolution

kernels that accurately model the analog convolution operator while taking into account

non-ideal sampling devices (such as finite fill-factor cameras). This approach retains the

efficiency of direct sampling but not its limiting assumption. We propose fast forward and

inverse algorithms that handle finite-length, periodic, and mirror-symmetric signals with

1This chapter is based on the reference [19] co-authored with T. Blu and M. Liebling.
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rational sampling rates. We provide explicit convolution kernels for computing coherent

wave propagation in the context of digital holography. When compared to bandlimited

methods in simulations, our method leads to fewer reconstruction artifacts when signals

have sharp edges or when using non-ideal sampling devices.

2.1 Introduction

Continuous2 convolution operations are central to model many optical systems and

physical phenomena such as wave propagation and diffraction, with applications ranging

from optical image formation to digital holography and X-ray scattering [11, 38, 118, 39].

However, since computers can only handle discrete signals, the implementation of such

operators requires an accurate mechanism to switch between analog and discrete signals.

Convolution operations are commonly discretized by sampling both the analog input

signal and the convolution kernel, with the classical Nyquist-Shannon sampling theory

justifying this approach when the signals at hand are bandlimited [89]. However, such

an approach suffers from multiple drawbacks. Firstly, most practical signals are not well

approximated by bandlimited signals, especially when they have finite support or sharp

edges, leading to Gibbs oscillations. Secondly, traditional approaches offer little flexibility

regarding the sampling rates of the input and output signals. Thirdly, from a practical

perspective, sampling devices, such as digital cameras, gather light over extended areas

as opposed to infinitely small points assumed in the ideal sampling model.

Here, we address the problem of approximating continuous convolution operations

within the context of generalized sampling theory [109, 107, 46], where analog signals

are represented by linear combinations of shifted basis functions that need not be ban-

dlimited. The expansion coefficients in such representations are spatially localized and

2We use the terms continuous and analog interchangeably in this work.
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correspond to discrete signals that can readily be processed by a computer. The for-

malism also accommodates bandlimited signals and therefore includes the traditional

approach as a special case. However, in addition to the slow-decaying sinc function—the

underlying building block tied to bandlimited signals—a variety of basis functions can

be used to model analog signals with finite support or discontinuities.

Our approach consists of (a) approximating the input signal (via an orthogonal Hilbert

projection [55]) in a shift-invariant (SI) space using basis functions adapted to the signal,

(b) computing an exact analog convolution, and (c) sampling the result by approximating

it again (via an orthogonal Hilbert projection) using suitable basis functions. This allows

characterizing the input and output signals by a set of discrete coefficients, which are

related by a discrete convolution. The design, therefore, retains the efficiency of the

traditional approach and can readily be implemented using FFT.

While our approach applies to any general convolution operator, we illustrate our

method using operators related to wave propagation problems. Specifically, we consider

the scalar diffraction theory for wave propagation, the Rayleigh-Sommerfield diffraction

integral and its Fresnel approximation [11, 38]. In this context, sampling strategies have

been explored previously for Fresnel fields [40, 77, 97, 72] and more general classes of

transforms that include the Fresnel transform as a special case [98, 45, 42]. In the partic-

ular case of the Fresnel transform, implementations are either convolution-based or involve

two chirp multiplications and a single FFT [39, 118], the latter thereby providing some

computational advantage (though applicable only in the far-field region [54, 73, 71]). The

single FFT approach also has its input and output sampling rates as parameter-dependent

variants. Methods to address this issue [121, 32] require zero-padding the original signal

and thereby offset the computational advantage of the approach. The generalized form of

the convolution-based approach, which we propose in this work, is related to the Fresnelet

formalism [63], with which it shares the basis function representation. Here, however, we

12
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do not require that the underlying functions yield multi-resolution spaces.

The chapter is organized as follows. In Section 2.2, we introduce the challenges related

to discretizing continuous convolution operations, specifically in the context of coherent

propagation of monochromatic scalar wave fields. We derive our method in Section 2.3

and discuss its applicability to digital holography in Section 2.4. In Section 2.5, we

evaluate our algorithm in a series of simulation experiments and conclude in Section 2.6.

2.2 Problem Formulation

We consider linear and SI systems, characterized by an impulse response, h(x), x =

(x, y) ∈ R2, where the output g(x) is given by the continuous-space (analog) convolution

between the complex-valued input signal f(x) and h(x) as:

g(x)
def
=

∫
R2

f(ξ) · h(x− ξ) dξ
def
= (f ? h)(x). (2.1)

When f is bandlimited, with maximal frequency less than 1/(2∆x) and 1/(2∆y) in the

x and y directions, respectively, it is possible to retrieve samples of the continuous con-

volution, g[k] = g(k∆x, `∆y) from uniformly-spaced samples of f , f [k] = f(k∆x, `∆y),

k = [k, `] ∈ Z2, via the discrete convolution:

g[k] =
∑
m∈Z2

f [m] · hBL[k−m]
def
= (f ∗ hBL)[k], (2.2)

where hBL[k] = hBL(k∆x, `∆y) denotes samples of the bandlimited impulse response:

hBL(x)
def
=

1

∆x ·∆y

(
h(x) ? sinc

( x

∆x

)
sinc

(
y

∆y

))
. (2.3)

13
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However, this straightforward implementation no longer holds if f is not bandlimited. In

this work, we consider samples of functions f that are not necessarily bandlimited, and

use them to estimate samples of g (and vice-versa). Our approach retains the general

form of a discrete convolution as in Eq. (2.2), but we replace hBL[k] by a digital filter

that is ideally adapted to the problem.

Before proceeding further, we recall the definitions of the scalar wave propagation

operators. The Rayleigh-Sommerfeld diffraction integral [38], which relates the scalar

field of a propagating wave (having wavelength λ) across two parallel planes separated

by a distance z, is a convolution operation as in Eq. (2.1), with the kernel:

hRS,λ,z(x)
def
=

z

jλ
·

exp
(
j 2π
λ

√
‖x‖2 + z2

)
‖x‖2 + z2

, (2.4)

whose frequency response is given by [38]:

ĥRS,λ,z(ν) = exp

(
j2πz

√
1

λ2
− ‖ν‖2

)
, ν = (νx, νy) ∈ R2. (2.5)

In the Fresnel approximation, h has the form [38]:

hFrA,λ,z(x)
def
=

exp
(
j 2π
λ
z
)

jλz
· exp

(
jπ

λz
‖x‖2

)
, (2.6)

which, unlike the Rayleigh-Sommerfield kernel hRS,λ,z, is separable:

hFrA,λ,z(x)
def
= −j exp

(
j

2π

λ
z

)
· hFrT,τ (x) · hFrT,τ (y), (2.7)
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where the 1D kernel hFrT,τ (x), with its associated parameter τ =
√
λz, is defined as:

hFrT,τ (x)
def
=


exp

(
j π

4

)
· δ(x), τ = 0

1
τ

exp
(
jπ x

2

τ2

)
, otherwise,

(2.8)

with its frequency response given by:

ĥFrT,τ (ν) = exp
(
j
π

4

)
· exp

(
−jπτ 2ν2

)
, ν ∈ R. (2.9)

This leads to the definition of the unitary 1D Fresnel transform (FrT) [63] of f :

F̃τ {f} (x)
def
= f̃τ (x) = (f ? hFrT,τ )(x), x ∈ R. (2.10)

Being a unitary transform, the convolution kernel and the frequency response for the

inverse FrT are given by the complex conjugates, h−1
FrT,τ (x) = h∗FrT,τ (x) and ĥ−1

FrT,τ (ν) =

ĥ∗FrT,τ (ν), respectively.

When f is bandlimited, discretizing the wave propagation problem via Eq. (2.3), using

the frequency spectrum of the associated convolution kernel, is known by different names

in literature, including the angular-spectrum method and the convolution (CV) based

method [54, 73, 71, 121]. In the rest of this work, we refer to such a discretization of any

convolution operation using FFT as CV-FFT. For example, the discrete FrT associated

with an N -periodic 1D input sequence, f [k] (samples of f at regular intervals ∆x), is

computed using CV-FFT as:

f̃CV−FFT
τ [k]

def
= F−1

N

{
FN(f)× UCV-FFT[k0]

}
[k], −bN/2c ≤ k, k0 < dN/2e, (2.11)
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(a) (b) 

(c) (d) 

using 
Fresnel 

integrals

recovery
using 
CV-FFT

recovery
using 
IGCV-FFT

Figure 2.1: (a) A box signal formed with N = 4096 samples where ∆x1 = 10µm and
aperture width w = 5.15mm; (b) Fresnel transform computed using Fresnel integrals
[80] with λ = 632nm and z = 5mm (only real values shown); (c) Inverse Fresnel
transform of (b) computed using CV-FFT and (d) using IGCV-FFT where prior
knowledge (ϕ1, ϕ2,∆x1) is exploited for filter design.

where

UCV-FFT[k0]
def
= rect (k0/N)× ĥFrT,τ (k0/(N∆x)) (2.12)

rect (ν)
def
=


1, |ν| < 1

2

0, otherwise,

(2.13)

with FN and F−1
N referring to the forward and inverse N -point FFT, respectively. How-

ever, when the signals involved are not bandlimited, such a strategy results in ringing

artifacts due to the enforced band-limiting operation, even for a near-field region where

the technique is usually thought to be effective [54, 73, 71], as shown in Fig. 2.1(a).
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2.3 Proposed Method

Our approach considers a class of functions far more general than bandlimited signals.

We follow the formalism of generalized sampling theory and Hilbert space projections

[10], a brief review of which is given in Subsection 2.3.1. The basic assumptions about

the functional space to which the input signal belongs are (a) integer shift-invariance,

(i.e. a basis function shifted by integer-multiples of the signal’s sampling step spans the

space) and (b) periodicity (i.e. the signals it encompasses are periodic; the special case

of aperiodic signals is covered when the period tends to infinity).

In this work, we consider the following two problems: (P1) given a sampled form

of a signal, f , that belongs to a known SI space, compute samples (or measurements

with a known camera) of g(x) = (f ? h)(x) and conversely, (P2) given measurements of

g(x) = (f ? h)(x), obtained with a known acquisition device, recover the samples of f .

We discuss the solutions to these problems in Sections 2.3.2 and 2.3.3, respectively.

2.3.1 Discrete Representation of Analog Signals in Shift-Invariant

Spaces using Generalized Sampling Theory

In order to generalize the classical sampling theory, we consider the Hilbert space

L2, which consists of all functions that are square-integrable in Lebesgue’s sense. While

we focus on 1D signals, extension to higher dimensions will be straightforward. The

corresponding L2-norm in the Hilbert space is:

‖f‖L2

def
=

√∫ ∞
−∞
|f(x)|2dx =

√
〈f, f〉, (2.14)
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where the L2-inner product is defined as:

〈f, g〉 def
=

∫ ∞
−∞

f(x) · g∗(x) dx. (2.15)

We now assume that the input function that we want to sample is in L2, a space that

is considerably more general than the conventional subspace of bandlimited functions.

We further consider SI subspaces of L2 that are generated by scaled and shifted versions

of a basis function, ϕ1, denoted as:

V1
def
=

{
f
∣∣f(x) =

∑
k∈Z

c[k] · ϕ1

(
x

∆x1

− k
)

; ‖c‖`2 =
∑
k∈Z

|c[k]|2 <∞

}
. (2.16)

While it would be possible to consider arbitrary basis functions, we want a sampling

scheme that is practical and retains the SI nature of the classical Nyquist-Shannon sam-

pling theory. Any function f ∈ V1, which is continuously defined, is characterized by

the sequence of coefficients c as its discrete signal representation, which is not necessarily

samples of the signal. For such a continuous/discrete model to be theoretically sound, we

need to lay down few mathematical safeguards. First, the sequence of coefficients must

be square-summable: c ∈ `2. Second, the representation should be stable and unambigu-

ously defined. In other words, the family of functions ϕ1(x− k)k∈Z should form a Riesz

basis of V1, which is the next best thing after an orthogonal basis [27]. This is satisfied

when there exists two strictly positive constants A and B such that

A‖c‖2
`2
≤

∥∥∥∥∥∑
k∈Z

c[k] · ϕ1(x− k)

∥∥∥∥∥
2

L2

≤ B‖c‖2
`2
, ∀c ∈ `2. (2.17)

A direct consequence of the lower inequality in Eq. (2.17) is that
∑

k c[k] · ϕ1(x− k) = 0

implies that c = 0. Thus, the basis functions are linearly independent, which also means
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that every signal in V1 is uniquely specified by its coefficients c. The upper bound

implies that the L2-norm of the signal is finite, so that V1 is a valid subspace of L2.

Note that the basis is orthonormal if and only if A = B = 1, in which case we have a

perfect norm equivalence between the continuous and the discrete domains (Parseval’s

relation). Because of the translation-invariant structure of the construction, the Riesz

basis requirement has an equivalent expression in the Fourier domain:

A ≤
∑
k∈Z

|ϕ̂1(ν + k)‖2 ≤ B, ∀ν ∈ R. (2.18)

The final requirement is that the model should have the capability of approximating

any input function as closely as desired by selecting a sampling step ∆x1 that is suf-

ficiently small (similar to the Nyquist criterion). This is equivalent to the partition of

unity condition [109]:

∑
k∈Z

ϕ1(x+ k) = 1, ∀x ∈ R. (2.19)

In practice, it is this last condition that puts the strongest constraint of the selection of an

admissible generating function ϕ1. Possible basis functions include the sinc function from

the classical Nyquist-Shannon sampling theory, with ϕ̊1(x) = ϕ1(x) = sinc(x), where

V1 then corresponds to the subspace of L2 that encompasses functions bandlimited by

1/(2∆x1) and c refers to signal samples after the band-limiting operation. Alternatively,

B-splines are a popular choice to represent signals with finite-support [108, 25]. The

B-spline of degree n is defined as:

βn(x)
def
=
(
β0 ? β0 ? · · · ? β0

)︸ ︷︷ ︸
n+1 terms

(x), (2.20)
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where β0(x)
def
= rect(x) from Eq. (2.13), using which its frequency response can be deduced

as β̂n(ν) = sincn+1(ν).

Having defined such basis functions, we now focus on the fact that any function f ∈ L2

can be orthogonally projected [55] onto such an SI subspace, V1 ⊂ L2, to yield an optimal

approximation, fV1 , that is well defined and yields the minimum-error approximation of

f into V1:

fV1 = arg min
f̃∈V1

‖f − f̃‖2
2. (2.21)

Note that fV1(x) = f(x), if f ∈ V1 ⊂ L2. Specifically, the orthogonal projection operation

is defined as:

fV1(x)
def
=

1

∆x1

∑
k∈Z

〈
f, ϕ̊1

(
•

∆x1

− k
)〉
· ϕ1

(
x

∆x1

− k
)

(2.22)

def
=
∑
k∈Z

c[k] · ϕ1

(
x

∆x1

− k
)
, (2.23)

where ϕ̊1 is the dual of the basis function ϕ1, the integer shifted-versions of which span

the same space V1 and also satisfy the biorthogonality condition:

〈ϕ̊1(· −m), ϕ1(· − n)〉 = δ[m− n], m, n ∈ Z. (2.24)

Note that the dual basis function ϕ̊1 can be generated as a linear combination of the

basis function ϕ1 as:

ϕ̊1(x)
def
=
∑
k∈Z

w[k] · ϕ1(x− k), (2.25)

where w is the sequence of weights with its discrete-time Fourier transform given by [10]:

W (ej2πν) =
1∑

k∈Z |ϕ̂1(ν + k)|2
(2.26)
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leading to the frequency response of the dual basis function:

ˆ̊ϕ1(ν) =
ϕ̂1(ν)∑

k∈Z |ϕ̂1(ν + k)|2
. (2.27)

The projection interpretation of the sampling process has the advantage that it does

not require the bandlimited hypothesis and is applicable for a more general class of

functions. However, perfect reconstruction is generally not possible when the signal

f /∈ V1. In the classical scheme with ideal anti-aliasing filtering, the error is entirely due

to the out-of-band portion of the signal and its magnitude can be estimated simply by

integrating the portion of the spectrum above the Nyquist frequency. For more general

spline-like spaces, we can turn to approximation theory [55] to make use of general error

bounds that have been derived for similar problems. We can determine the dependence

of the approximation error on the sampling step ∆x1 as [109]:

εf (∆x1)
def
= ‖f − fV1‖2 (2.28)

=

[∫ ∞
−∞

Êϕ(∆x1ν)|f̂(ν)|2 dν

]1/2

︸ ︷︷ ︸
ε̄f (∆x1)

+εcorr, (2.29)

where

Êϕ(ν)
def
=

(
1− |ϕ̂1(ν)|2∑

k∈Z |ϕ̂1(ν + k)|2

)
, (2.30)

and εcorr is a correction term negligible under most circumstances. Specifically, if f ∈ W r
2

(Sobolev space of order r) with r > 1/2, then εcorr < γ∆xr1‖f (r)‖, where γ is a known

constant. Moreover, εcorr = 0, provided that f is bandlimited to νmax = 1/(2∆x1)

(Nyquist frequency). Therefore, the estimate ε̄f (∆x1) accounts for the dominant part of

the approximation error, while εcorr is merely a perturbation which may be positive or

negative and is guaranteed to vanish provided that f is bandlimited or at least sufficiently
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smooth to have r > 1/2 derivatives in the L2-sense (i.e. f ∈ W r
2 ). In the latter case, the

error can be made arbitrarily small by selecting a sampling step sufficiently small with

respect to the smoothness scale of f as measured by ‖f (r)‖, the norm of its r-th derivative.

The minimum requirement for the error to vanish as ∆x1 → 0, is Êϕ1(0) = 0, a condition

that implies the partition of unity [109]. Specifically, if Êϕ1(ν) = C2ν2L + O(ν2L+2) as

ν → 0, then the approximation error takes the form [109]:

εf (∆x1) =

[∫ ∞
−∞

C2∆x2L
1 (ν)2L|f̂(ν)|2dν

]1/2

(2.31)

= C ·∆xL1 · ‖f (L)‖2, as ∆x1 → 0, (2.32)

where it is assumed that f ∈ WL
2 so that ‖f (L)‖ is finite. This implies that the error

decays globally as O(∆xL1 ). This rate of decay is called the order of approximation and

plays a crucial role in wavelet and approximation theory. For example, the B-splines

of degree n have an order of approximation L = n + 1 and they are also the shortest

and smoothest scaling functions of order L. These provide alternatives to the Nyquist

frequency criterion for selecting the appropriate sampling step ∆x1. The error will not

be zero in general, but it can be made arbitrarily small without any restriction on f .
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2.3.2 Discretization of Analog Convolution Operators

We now proceed to show that continuous convolution operations of the form:

g̃(x) =
(
fV1 ? h

)
(x), (2.33)

can be numerically computed without aliasing, even in cases where fV1 is not bandlimited.

With fV1 fully characterized by the discrete sequence c, we also wish to represent g̃ using

a similar discrete sequence and therefore approximate it via an orthogonal projection

onto an SI space, V2 = span{ϕ2(•/∆x2 − k)}k∈Z, to obtain

g̃V2(x) =
∑
k∈Z

d̃[k] · ϕ2

(
x

∆x2

− k
)
. (2.34)

This pipeline of operations is illustrated in Fig. 2.2. Despite fV1(x) and g̃V2(x) be-

ing both functions of the continuous variable x, they are uniquely characterized by the

discrete sequences c[k] and d̃[k], respectively. Remarkably, when the ratio between their

sampling steps is rational, ∆x2/∆x1 = p/q (p, q ∈ N), the sequences c[k] and d̃[k] are

related via a discrete convolution with a digital filter, u[k], shown in Fig. 2.2, whose exact

expression we introduce in the following theorem.

Theorem 1 (Equivalent digital filter for analog convolutions): Let fV1(x) =∑
k∈Z c[k] ·ϕ1 (x/∆x1 − k), g̃(x) = (fV1 ? h)(x), and d̃[k] = (∆x2)−1 · 〈g̃, ϕ̊2 (·/∆x2 − k)〉,

with ∆x2/∆x1 = p/q (p, q ∈ N). Then, the coefficients uniquely characterizing fV1 and

g̃V2 are related via a digital filter and sampling-rate conversions as:

d̃[k] =
∑
`∈Z

c[`] · u[pk − q`], (2.35)
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where

u(x) =
1

∆x2

{
ϕ1

(
x

∆x1

)
? h(x) ? ϕ̊>2

(
x

∆x2

)}
, (2.36)

u[k] = u (k∆x2/p) . (2.37)

Proof: See Appendix 2.A.1 2

When the input function is periodic, the discrete convolution in Eq. (2.35) simplifies

to a circular convolution that can be implemented using FFT, leading to a generalized

CV-FFT algorithm (GCV-FFT), as described in the following theorem.

Theorem 2 (DFT algorithm for computing periodic analog convolutions): Let

fV1(x) =
∑

k∈Z c[k] ·ϕ1 (x/∆x1 − k) be an N∆x1-periodic function (N ∈ N) and let h(x)

be a stable filter with known frequency response ĥ(ν). Then, the orthogonal projection

of the continuous convolution g̃(x) = (fV1 ? h)(x) in an SI space V2, g̃V2(x) =
∑

k∈Z d̃[k] ·

ϕ2 (x/∆x2 − k), with ∆x2/∆x1 = p/q (p, q,Nq/p ∈ N), is completely characterized by

the discrete relation between d̃[k] and c[k]:

d̃[k] = (1/p) · F−1
Nq/p {FN(c)× U} [k], 0 ≤ k < Nq/p (2.38)

where FN and F−1
N denotes the N -point DFT and IDFT, respectively, and

U [k0] = q
∑
m∈Z

ϕ̂1

(
k0

N
−mq

)
· ĥ
(

k0

N∆x1

− mq

∆x1

)
· ˆ̊ϕ∗2

(
pk0

Nq
−mp

)
, 0 ≤ k0 < Nq.

(2.39)

Proof: See Appendix 2.A.2 2

Note that the N -periodic FN(c) is concatenated with its copies to have length Nq,

before its point-wise multiplication with the Nq-periodic vector U . The Nq-periodic

product vector is then made to fold (alias), with every p-th alternate element added
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together, changing its periodicity to Nq/p, before computing its Nq/p-point IDFT. In

practice, the infinite-sum in Eq. (2.39) can be truncated to reach any desired accuracy.

Note that this infinite sum will converge if ĥ is bounded and if the basis functions ϕ1, ϕ2

generate Riesz bases. An illustration of the discrete implementation of a 1D convolution

operation using the above result is shown in Fig. 2.2.

The following corollary describes the special case when g̃(x) =
(
fV1 ? h

)
(x) is directly

sampled without a final orthogonal projection onto V2.

I Corollary 2.1 (Equivalent digital filter linking input coefficients to samples of the con-

tinuous convolution): Samples of the convolved signal g̃[k] = g̃(k∆x2) are obtained via

g̃[k] = (1/p) · F−1
Nq/p {FN(c)× U s} [k], 0 ≤ k < Nq/p (2.40)

where U s is the Nq-point vector,

U s[k0] = q
∑
m∈Z

ϕ̂1

(
k0

N
−mq

)
· ĥ
(

k0

N∆x1

− mq

∆x1

)
, 0 ≤ k0 < Nq. (2.41)

Proof: Substitute ˆ̊ϕ2(ν) = 1 in Eq. (2.39). 2

While the input signal fV1 is uniquely defined by the coefficients c, it may also be

directly defined by its discrete samples. For this case, the following corollary provides a

discrete relationship between the samples of fV1 and g̃V2 via a digital filter, uint.

I Corollary 2.2 (Equivalent digital filter linking input-output samples of the analog convo-

lution): If f ∈ V1 and f [k] = f(k∆x1) are its uniform samples, then g̃V2 [k] = g̃V2(k∆x2),

with ∆x2/∆x1 = p/q, is given by:

g̃V2 [k] = (1/p) · F−1
Nq/p

{
FN(f)× U int

}
[k], 0 ≤ k < Nq/p (2.42)
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where U int is the Nq-point vector,

U int[k0] = q
∑
m∈Z

η̂1

(
k0

N
−mq

)
· ĥ
(

k0

N∆x1

− mq

∆x1

)
· ˆ̊η∗2
(
pk0

Nq
−mp

)
, 0 ≤ k0 < Nq

(2.43)

with

η̂i(ν) =
ϕ̂i(ν)∑

m∈Z ϕ̂i(ν +m)
, i = 1, 2 (2.44)

ˆ̊ηi(ν) =
ϕ̂i(ν) ·

(∑
m∈Z ϕ̂

∗
i (ν +m)

)∑
n∈Z |ϕ̂i(ν + n)|2

. (2.45)

Proof: Since f ∈ V1, f(x) = fV1(x) and can be represented as in Eq. (2.23), with c[k]

and ϕ1 replaced by f [k] and η1, respectively, where η1 is the equivalent interpolating

(i.e. η1(k) = δ[k], k ∈ Z) basis function that also spans V1 [10]. Similarly, g̃V2(x) can

also be represented using g̃V2 [k] and η2. The DFT of the digital filter uint is then found

by replacing ϕ̂1 and ˆ̊ϕ2 in Eq. (2.39) by η̂1 and ˆ̊η2, respectively. Note that the discrete

samples g̃[k] can also be directly obtained from f [k], using Eq. (2.42), by substituting

ˆ̊η2(ν) = 1 in Eq. (2.43). 2
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(a) 

(c) 

(b) 

Figure 2.3: The two boundary conditions discussed for discrete Fresnel transform: (a)
periodic boundaries; (b) Propagation of a finite-sized object/field confined within a
rectangular waveguide lined with mirrors on its four interior planar surfaces, analogous
to using (c) mirror-symmetric boundaries for the discrete transform.
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The number of computations required to carry out the discrete convolution in Theo-

rem 2 can be further reduced when the signals involved have symmetric boundary condi-

tions. In what follows, we distinguish between discrete periodic signals with whole-sample

(WS) and half-sample (HS) mirror-symmetry [13]. Such signals are symmetric about a

sample and about a point midway between two samples, respectively. Such boundary

conditions are illustrated in Fig. 2.3.

I Corollary 2.3 (Low complexity DFT algorithm for analog convolution of signals with

mirror-symmetry): Let fV1(x) =
∑

k∈Z c
HS[k] ·ϕ1(x/∆x1−k), with cHS being a 2N -point

periodic sequence having HS mirror-symmetry,

cHS[k] = c[min(k, 2N − 1− k)], 0 ≤ k < 2N (2.46)

If u(x) = u(−x) in Eq. (2.36) and ∆x1 = ∆x2, then we have g̃V2(x) =
∑

k∈Z d̃
HS[k] ·

ϕ2(x/∆x1 − k), where d̃HS[k] is also a 2N -point sequence with HS mirror-symmetry.

Furthermore, the even and odd elements of its corresponding N -point first-half, d̃[k], are

given by:

d̃[2k] = d̃HS[2k]
def
= d̃HS

even[k], 0 ≤ k < dN/2e (2.47)

d̃[2k + 1] = dHS
even[N − 1− k], 0 ≤ k < d(N − 1)/2e (2.48)

where

d̃HS
even[k] = F−1

N

{F2N

{
d̃HS
}

[◦] + F2N

{
d̃HS
}

[◦+N ]

2

}
[k], 0 ≤ k < N (2.49)
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and

F2N

{
d̃HS
}

[k0]
def
= F2N

{
cHS
}

[k0]× UWS, 0 ≤ k0 < 2N (2.50)

F2N

{
cHS
}

[k0] = FN
{
cHS

even

}
[k0] +

{
exp

(
j
π

N
k0

)
· FN

{
cHS

even

}
[N − k0]

}
, (2.51)

UWS[k0] =
∑
m∈Z

ϕ̂1

(
k0

2N
−m

)
· ĥ
(

k0

2N∆x1

− m

∆x1

)
· ˆ̊ϕ∗2

(
k0

2N
−m

)
. (2.52)

Proof: When c[k] and u[k] have HS and WS symmetry respectively, d̃[k] = (c ∗ u)[k]

has HS symmetry [13]. The mirror-symmetry in the input and output signals thereby

allows their DFT/IDFT to be computed using half-length counterparts [33]. Note that

Eq. (2.52) is exactly similar to Eq. (2.39), with N replaced by 2N and p = q = 1. 2

It follows that if ϕ1, ϕ2 have even symmetry (e.g. B-splines), the stated requirement

of u(x) = u(−x) is satisfied if h(x) = h(−x) (e.g. Fresnel transform). The fact that the

calculations involve non-redundant signals of half and quarter the original size in the 1D

and 2D cases, reduces the FFT/IFFT computational complexity involved by around 50%

and 75%, respectively.

2.3.3 Invertibility of the Equivalent Digital Filters

Having discussed our solution to the forward problem (P1), we next look at the

inverse problem (P2) to estimate samples of the original signal f from the measurements

of g(x) = (f ? h)(x), obtained with a known acquisition device. We refer to this as the

inverse GCV-FFT algorithm (IGCV-FFT), corresponding to a continuous filter, h.

Invertibility is particularly important in digital systems [8] and has been investigated

for Fresnel-like transforms before [2, 49]. Here, we seek a sequence cLS[k] whose forward

transform closely matches d[k] in the least-squares sense. In the following theorem, we

prove that the coefficients cLS[k] can be obtained from d[k] by applying a digital filter,
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v[k] (Fig. 2.4), and provide its FFT coefficients.

Theorem 3 (Least-squares reconstruction from sampled analog convolution):

Let f(x) be an N∆x1-periodic function (N ∈ N) and let h(x) be a stable filter. Let the

orthogonal projection of the analog convolution g(x) = (f ? h)(x) in an SI space V2 be

denoted as gV2(x) =
∑

k∈Z d[k] · ϕ2 (x/∆x2 − k), with ∆x2/∆x1 = p/q (p, q,Nq/p ∈ N).

Then, given d, the coefficients that give the least-squares solution cLS in the SI space V1:

cLS = arg min
c̃∈`2

Nq/p−1∑
k=0

∣∣∣∣∣d[k]− 1

∆x2

N−1∑
`=0

c̃[l] · ϕ1

(
x

∆x1

− `
)
? h(x) ? ϕ̊>2

(
x

∆x2

) ∣∣∣
x=k∆x2

∣∣∣∣∣
2

(2.53)

is obtained through the linear filtering operation,

cLS[k] = (1/q) · F−1
N

{
FNq/p(d)× VLS

}
[k], 0 ≤ k < N (2.54)

where

VLS[k0] = pq U†k0 mod N [0, 0] , 0 ≤ k0 < Nq (2.55)

and U†r denotes the Moore-Penrose pseudo-inverse of the q × p-sized matrix Ur:

Ur[m,n] = U

[
r +Nm+

Nq

p
n

]
, 0 ≤ m < q, 0 ≤ n < p (2.56)

with U defined as in Eq. (2.39).

Proof: See Appendix 2.A.3 2

When ∆x1 = ∆x2 (p = q = 1), the above result simplifies to VLS[k0] = 1/U [k0],

0 ≤ k0 ≤ N − 1, for non-zero values of U , and zero otherwise. In particular, when

h = hFrT,τ is the Fresnel transform kernel and ϕ1, ϕ2 are chosen as B-spline functions
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with ∆x1 = ∆x2, the FFT coefficients U [k0] in Eq. (2.39) are always non-zero, thereby

ensuring the possibility of perfect reconstruction. For arbitrary choices of ϕ1, ϕ2, ∆x1,

∆x2 and h, the minimum `2-norm solution yields perfect reconstruction, if and only if the

q × p matrices in Eq. (2.56) are full-rank matrices, with their rank equal to p. A similar

inverse to Corollary 2.2 is straightforward in this context, where f́V1 [k] = f́V1(k∆x1),

f́V1(x) =
∑

k∈Z cLS[k] · ϕ1 (x/∆x1 − k), can be obtained from g̃V2 [k] using a digital filter,

vint[k], whose FFT coefficients V int can be obtained from Eq. (2.55), with U in Eq. (2.56)

replaced by U int of Eq. (2.43).

We next consider minimizing the worst-case regret over all possible values of f ∈ L2

that are consistent with the given samples of g(x) = (f ? h)(x) measured in V2.

Theorem 4 (Minimax regret reconstruction from sampled analog convolu-

tion): Let f(x) be an N∆x1-periodic function (N ∈ N) and let h(x) be a stable fil-

ter. Let the orthogonal projection of the analog convolution g(x) = (f ? h)(x) in an

SI space V2 be denoted as gV2(x) =
∑

k∈Z d[k] · ϕ2 (x/∆x2 − k), with ∆x2/∆x1 = p/q

(p, q,Nq/p ∈ N). Then, given d, the coefficients that give the minimax regret solution

cMR in the SI space V1:

cMR = arg min
c̃∈`2

max
f∈S

∥∥∥∥∥
N−1∑
`=0

c̃[`] · ϕ1

(
x

∆x1

)
− fV1(x)

∥∥∥∥∥
L2

(2.57)

where S ⊂ L2 is the subset of all functions f that when subjected to the analog convo-

lution with h and orthogonal projection onto V2 give the same samples d:

S = {f : f(x) ?
1

∆x2

(
h(x) ? ϕ̊>2

(
x

∆x2

)) ∣∣∣
x=k∆x2

= d[k]}, (2.58)
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is obtained through the linear filtering operation,

cMR[k] = (1/q) · F−1
N

{
FNq/p(d)× VMR

}
[k], 0 ≤ k < N, (2.59)

where

VMR[k0] = p
∑
m∈Z

ϕ̂3

(
pk0

Nq
−mp

)
· ˆ̊ϕ∗1

(
k0

N
−mq

)
, 0 ≤ k0 < Nq, (2.60)

ϕ̂3(ν) =
ϕ̂2(ν) · ĥ∗(ν/∆x2) ·

∑
m∈Z |ϕ2(ν +m)|2∑

n∈Z

∣∣∣ϕ̂2(ν + n) · ĥ∗ ((ν + n)/∆x2)
∣∣∣2 . (2.61)

Proof: As shown in Fig. 2.4(b), if the analog convolution and the dual basis function

for V2 is grouped together as ϕ̊>3 (x/∆x2) = h(x) ? ϕ̊>2 (x/∆x2), then this is comparable

to the problem of reconstructing a signal from the samples obtained with a non-ideal

acquisition device characterized by ϕ3. We refer the reader to [30] for a similar proof to

the above problem. 2

2.4 Application to Digital Holography

We now derive discrete filters for the Rayleigh-Sommerfield diffraction integral and the

Fresnel transform. This is achieved by replacing the continuous filter h in the expression

for the digital filter u[k], derived in Eq. (2.37) of Theorem 1, by hRS,λ,z and hFrT,τ (or

hFrA,λ,z), respectively. The 2D FFT coefficients of the digital filter corresponding to the

Rayleigh-Sommerfield diffraction integral can be thus obtained by extending Eq. (2.39)

to 2D as follows:

URS[k0, l0] = qxqy
∑
m,n∈Z

{
ϕ̂1

(
k0 −mNxqx

Nx

,
l0 − nNyqy

Ny

)
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· ĥRS,λ,z

(
k0 −mNxqx
Nx∆x1

,
l0 − nNyqy
Ny∆y1

)
· ˆ̊ϕ∗2

(
k0 −mNxqx
Nxqx/px

,
l0 − nNyqy
Nyqy/py

)}
,

(2.62)

for 0 ≤ k0 < Nxqx, 0 ≤ l0 < Nyqy, where ∆x2/∆x1 = px/qx, ∆y2/∆y1 = py/qy. Similarly,

the 1D FFT coefficients of the digital filter corresponding to the separable and unitary

FrT can be deduced as:

UFrT[k0] = q
∑
m∈Z

{
ϕ̂1

(
k0 −mNq

N

)
· ˆ̊ϕ∗2

(
k0 −mNq
Nq/p

)
· exp

(
j
π

4

)
· exp

(
−jπτ 2

(
k0 −mNq
N∆x1

)2
)}

, (2.63)

for 0 ≤ k0 < Nq. Note that the bandlimited CV-FFT approach in Eq. (2.11) reduces to

a special case of Eq. (2.63), where ϕ̂1(ν) = ϕ̂2(ν) = rect(ν) and ∆x1 = ∆x2.

34



Non-bandlimited and Generalized Multi-rate Discrete Model for Wave Propagation Chapter 2

A
/D

D
/A

(a
) 

L
ea

st
-s

q
u
ar

es
 r

ec
o

n
st

ru
ct

io
n

A
/D

(b
) 

M
in

im
ax

 r
eg

re
t 

re
co

n
st

ru
ct

io
n

D
/A

A
/D

D
/A

L
S

L
S

M
R

M
R

L
S

M
R

M
R

L
S

ar
g

M
R

ar
gM

R

F
ig

u
re

2.
4:

(a
)

F
o
r

th
e

in
v
er

se
op

er
at

io
n
,

gi
v
en

th
e

ex
p

an
si

on
co

effi
ci

en
ts

of
g
V

2
,

th
os

e
o
f
( g?

h
−

1
) V 1⊥

V
3
,

w
h

er
e
V

3

is
th

e
S
I

sp
ac

e
sp

an
n

ed
b
y
ϕ̊

3
(x
/∆

x
2
)

=
h

(x
)
?
ϕ̊

2
(x
/∆

x
2
),

co
rr

es
p

on
d

to
a

le
as

t-
sq

u
a
re

d
re

co
n

st
ru

ct
io

n
an

d
ca

n
b

e
co

m
p

u
te

d
v
ia

a
d

is
cr

et
e

co
n
vo

lu
ti

on
w

it
h

a
d

ig
it

al
fi

lt
er

,
v L

S
.

(b
)

S
im

il
ar

ly
,

th
e

m
in

im
a
x
-r

eg
re

t
re

co
n

st
ru

ct
io

n
ca

n
al

so
b

e
co

m
p

u
te

d
v
ia

a
d

is
cr

et
e

co
n
v
ol

u
ti

on
w

it
h

a
d

ig
it

al
fi

lt
er

,
v M

R

35



Non-bandlimited and Generalized Multi-rate Discrete Model for Wave Propagation Chapter 2

2.5 Experimental Results and Discussion

With the framework for the numerical implementation of convolution operations laid

out in the previous sections, we now illustrate its features and practical applicability, via

simulation results.

2.5.1 Inverse Transform from Sampled Fresnel Integral

Here, we compare the reconstruction fidelity for CV-FFT and IGCV-FFT, by individ-

ually estimating a signal from its Fresnel transform samples, where the latter is originally

calculated using the more computationally-intensive and accurate Fresnel integrals [38].

We consider a box signal, f(x), with aperture-width w = 5.15mm, composed of N = 4096

samples, spaced apart by ∆x1 = 10µm (Fig. 2.1(a)). We use a box function as the refer-

ence since its Fresnel transform can be numerically computed using Fresnel integrals in

an accurate manner. Using a C implementation of the integral [80], we obtain the Fresnel

transform samples f̃τ (k∆x1), with τ = (λz)0.5 given by λ = 632nm and z = 5mm, as in

Fig. 2.1(b). We then estimate f(k∆x1) from f̃τ (k∆x1), using CV-FFT and IGCV-FFT.

While the inverse FrT computed with CV-FFT can be seen to suffer from Gibbs

oscillations (Fig. 2.1(c)), the reconstruction obtained using IGCV-FFT (with ϕ1(x) =

β0(x), h(x) = hFrT,τ (x), ϕ2(x) = δ(x) and ∆x1 = ∆x2 in Eq. (2.39)) produces a more

fair reconstruction (Fig. 2.1(d)).

2.5.2 Reconstruction of Non-bandlimited Signals Leveraging A

Priori Knowledge

We now illustrate how the knowledge that the recovered signal lies in a space V1 can

be exploited during inversion using IGCV-FFT. We consider the signal f(x) shown in
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Fig. 2.5(a), defined as a linear combination of box, linear and cubic B-splines. Due to

the inherent linearity and shift-invariance of the system, the Fresnel transform samples

of f(x) are given by adding the output of three instances of GCV-FFT, where ϕ1(x) =

βi(x) and ϕ2(x) = δ(x), for i = 0, 1, 3, respectively (Fig. 2.5(b)). We then attempt

to reconstruct f(x) by alternately assuming that it lies in a bandlimited space (which

it does not) or in any one of the three different SI spaces V1 = span {βi (• − k)}k∈Z,

i = 0, 1, 3 (which it does not either, since f is a combination of all three). The CV-FFT

approach, in Fig. 2.5(c), suffers from severe ringing artifacts, particularly because none of

the three basis functions constituting the input signal is similarly bandlimited. Instead,

using the inverse filter in Eq. (2.55) with ϕ1(x) = βi(x), ϕ2(x) = δ(x) and ∆x1 = ∆x2 for

i = 0, 1, 3, the reconstructions are all ringing-free, yet they faithfully recover only those

spatial regions of f(x) that are well represented in V1 (Fig. 2.5(d-f)).

2.5.3 Modeling of Acquisition Sensors with Finite Fill-factors

We next look at how GCV-FFT can naturally model the imaging process with digital

cameras, where each sensor spatially-averages the incoming signal over its active area

(Fig. 2.6(a)) to give a pixel value. Note that this boils down to taking ϕ2(x) = β0(x/γ)

(Fig. 2.6(b)), with d[k] then representing the pixel values. The corresponding dual basis

is similarly defined as ϕ̊2(x) = (1/γ)β0(x/γ), where 0 < γ ≤ 1 is the fill-factor [97],

defined as the ratio between the integration area and the pixel size it represents.

As an example, we consider the Fresnel transform of a square aperture that is mea-

sured by its projection onto VCCD = span {ϕ2 (•/∆x2 − k)}k∈Z, where ϕ2(x) = β0(x/γ)

(Fig. 2.6(c)). Since the model underlying the CV-FFT reconstruction does not match the

acquisition procedure, the bandlimited reconstruction produces ringing artifacts. These

artifacts can be visually highlighted as dark regions using the Structural Similarity Map
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Figure 2.5: (a) f(x) composed of three types of basis functions (β0, β1 and β3);
(b) f̃τ (x), where τ = 1, (only real values shown) and its samples used for the re-
covery of f(x); (c) The reconstructed signal and samples in the bandlimited space,
obtained using CV-FFT; (d)-(f) The recovered signal in the three separate SI spaces,
V1 = span

{
βi (• − k)

}
k∈Z, i = 0, 1, 3, using IGCV-FFT. Clover leaves indicate recon-

struction artifacts (e.g. Gibbs oscillation) and hearts denote perfect reconstruction.

(SSIM) [116], which associates a high index (1) to regions similar to the ground truth

and a low index (0) to regions that differ, as shown in Fig. 2.6(e). Instead, by using

ϕ1(x) = β0(x), h(x) = hFrT,τ (x), ϕ2(x) = β0(x/γ), the IGCV-FFT algorithm is well

adapted to the problem at hand and hence yields perfect reconstruction (Fig. 2.6(f-g)).

In the particular context of digital holography, Stern et al. [97], and more recently

Kelly et al. [51], have shown that finite-size pixels attenuate high spatial frequencies in

the propagated signal, in addition to the artifacts introduced by the sampling operation,

rendering perfect reconstruction virtually impossible. Here, we overcome this limitation

by leveraging prior knowledge of the basis functions that underly the acquisition device
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(a) (b) (c) 

(d) (e) (f) (g) 

Figure 2.6: (a) A typical CCD with finite-size detector elements, and (b) its corre-
sponding family of 1D basis functions; (c)f̃VCCD

(λ·z)0.5(k∆x2) (only absolute values shown)

(λ = 632nm, z = 1cm, ∆x1 = ∆x2 = 10µm, γ = 0.7) for a square aperture, f(x) (not
shown); (d) Reconstruction using CV-FFT and (e) its SSIM map showing the presence
of artifacts (white: SSIM=1, black: SSIM=0); (f) reconstruction using IGCV-FFT,
yielding (g) an SSIM map that is uniformly 1 (white, perfect reconstruction).

and the signal.

2.5.4 Comparison of GCV-FFT with IGCV-FFT

Since GCV-FFT allows discretizing forward convolutions with h, it could also be used

to approximate the inverse operation h−1. However, this is not equivalent to comput-

ing the IGCV-FFT algorithm for h. Specifically, for a signal f ∈ V1, the sequence of

operations consisting of (a) continuous convolution with h, (b) projection onto V2, (c)

continuous convolution with h−1 and finally (d) projection onto V1, is usually not identity.
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Figure 2.7: Comparison of methods to estimate f from f̃V2
τ (not shown), where τ = 2.5

and ϕ2 = β1, using discrete-inverse f́V1 with IGCV-FFT, and alternatively, using
discretized-continuous-inverse (f̃V2

τ ? h−1
FrT,τ )V1 with GCV-FFT.

In order to illustrate the difference between using (i) GCV-FFT for h−1 and (ii)

IGCV-FFT for h, we consider a signal f ∈ V1 = span {β1 (•/∆x1 − k)}k∈Z, as shown in

Fig. 2.7. Using GCV-FFT, we compute its discretized FrT, f̃V2
τ , measured via projection

into V2 = span {β1 (•/∆x2 − k)}k∈Z, with ∆x2/∆x1 = 1 or 1/2. We then estimate f from

f̃V2
τ using either approach and compare the reconstruction results. The reconstruction

obtained using (i) differs from f , while (ii) proves to be a perfect reconstruction (Fig. 2.7).

The quality of the reconstructed signal using (i) improves when ∆x2/∆x1 = 1/2. The

IGCV-FFT approach yields perfect reconstruction for both ∆x2/∆x1 = 1 and 1/2.
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2.6 Discussion and Conclusion

By approximating input and output functions as linear combinations of localized basis

functions we obtain a flexible framework to compute continuous convolutions. Its main

features are summarized below: (i) it does not require assuming the input or output

signals are bandlimited, thereby limiting Gibbs oscillation artifacts near sharp edges, (ii)

it takes into account variable sampling rates between the input and output signals mak-

ing it suitable for multi-resolution algorithms [63, 62], (iii) the implementation retains

the form of a discrete convolution, making it directly applicable wherever bandlimited

methods are in use, (iv) the basis functions can be chosen to match the experimental,

camera-specific setups, (v) both periodic and mirror-periodic boundary conditions can be

selected (with a fast algorithm for mirror-periodic signals that reduces the computational

complexity by a factor of around 2 (in 1D) and 4 (in 2D) over direct periodic implemen-

tation), and (vi) the equivalent discrete inverse operator, optimal in the least-squares

sense, can be implemented using the same algorithm. Our approach could be applied

to a wide range of analog operators. Experiments to compute and reconstruct complex

wave-fields indicate that our approach might be particularly well suited for digital holog-

raphy applications. To facilitate integration with existing methods (which could include

recent compressed-sensing methods [24, 69, 86]) and spur new uses, we make the software

implementation of our algorithms available [16].
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2.A Appendix

2.A.1 Proof of Theorem 1

The coefficients d characterizing g̃V2 are given by the L2-inner product:

d[k] =
1

∆x2

∫ ∞
−∞

g̃(η) · ϕ̊>2
(
k − η

∆x2

)
dη (2.64)

=
1

∆x2

∫ ∞
−∞

(∫ ∞
−∞

fV1(ξ) · h(η − ξ)dξ
)
ϕ̊>2

(
k − η

∆x2

)
dη (2.65)

=
1

∆x2

∫ ∞
−∞

(∫ ∞
−∞

∑
`∈Z

c[`] · ϕ1

(
ξ

∆x1

− `
)
· h(η − ξ)dξ

)
ϕ̊>2

(
k − η

∆x2

)
dη (2.66)

=
1

∆x2

∑
`∈Z

c[`]

∫ ∞
−∞

(∫ ∞
−∞

ϕ1

(
ξ

∆x1

− `
)
· h(η − ξ)dξ

)
ϕ̊>2

(
k − η

∆x2

)
dη (2.67)

=
1

∆x2

∑
`∈Z

c[`]

∫ ∞
−∞

(
ϕ1

(
η

∆x1

)
? h(η − `∆x1)

)
· ϕ̊>2

(
k − η

∆x2

)
dη (2.68)

=
1

∆x2

∑
`∈Z

c[`] ·
(
ϕ1

(
x

∆x1

)
? h(x) ? ϕ̊>2

(
x

∆x2

)) ∣∣∣
x=k∆x2−`∆x1

(2.69)

=
∑
`∈Z

c[`] · u[pk − q`] (2.70)

where u is defined as in Theorem 1. 2

2.A.2 Proof of Theorem 2

The frequency response of the digital filter in Eq. (2.37) is

U(ej2πν∆x1/q) = q
∑
m∈Z

{
ϕ̂1 (∆x1ν −mq) · ĥ

(
ν − mq

∆x1

)
· ˆ̊ϕ∗2 (∆x2ν −mp)

}
. (2.71)

The corresponding Nq-point FFT vector is obtained by sampling Eq. (2.71) at ∆ν =

1/(N∆x1), yielding the expression in Eq. (2.39).

42



Non-bandlimited and Generalized Multi-rate Discrete Model for Wave Propagation Chapter 2

2.A.3 Proof of Theorem 3

We denote by c and d the column vectors that contain the N input and Nq/p output

coefficients in GCV-FFT:

d = A · c, (2.72)

A = W−1
Nq/p ·U ·WN , (2.73)

U =

[
INq/p . . . INq/p

]
· DU ·


IN
...

IN

 , (2.74)

WN [m,n] = exp (−j2πmn/N) , 0 ≤ m,n < N (2.75)

DU [m,n] = U [m] · δ[m− n], 0 ≤ m,n < Nq (2.76)

IN [m,n] = δ[m− n], 0 ≤ m,n < N (2.77)

so that rank(A) = rank(U). It can be verified that U is a sparse matrix having only the

Nq FFT coefficients in DU as its non-zero entries, and that,

rank(U) =

N/p−1∑
r=0

rank(Ur), (2.78)

where Ur is as given in Eq. (2.56). This allows the pseudoinverse [8] of U to be calculated

from smaller matrices Ur. The pseudoinverse of A is given by:

A† = W−1
N ·U

† ·WNq/p, (2.79)

and has essentially the same form as Eq. (2.73), involving up-sampling, convolution and

down-sampling operations.
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Chapter 3

Automatic and Anisotropic Spatial

Registration for Multi-View Optical

Microscopy

Abstract3

We present an algorithm to spatially register two volumetric datasets related via a rigid-

body transform and degraded by an anisotropic point-spread-function (PSF). Registra-

tion is necessary, for example, when fusing data in multi-view microscopy. Automatic

algorithms that only rely on maximizing pixel similarity, without accounting for the

anisotropic image formation process, provide poor results in such applications. We pro-

pose to solve this problem by re-blurring the reference and test data with transformed

forms of the PSF, in order to make them comparable, before minimizing the mean squared

intensity difference between them. Our approach extends the pyramid-based sub-pixel

registration algorithm proposed by Thévenaz et al., 1998 [105], that employs an improved

form of the Marquardt-Levenberg algorithm. We show, via simulations, that our method

3This chapter is based on the reference [15] co-authored with K. Chan and M. Liebling.
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is more accurate than the conventional approach that does not account for the PSF. We

demonstrate our algorithm in practice by registering multi-view volumes of a zebrafish

larva acquired using a wide-field microscope.

3.1 Introduction

Optical microscopy allows the study of living samples under conditions similar to their

native state. However, the technique often suffers from anisotropic resolution owing to

the image formation process, which consists of a 3D convolution operation with the imag-

ing system’s (anisotropic) point-spread-function (PSF) [90]. Despite recent advances to

design instruments that exhibit nearly isotropic PSFs, many commonly used microscopes

have a PSF that is more elongated in the axial direction, with wide-field microscopy hav-

ing the most severe form of anisotropy, and techniques such as confocal, two-photon, and

light-sheet microscopy having the least. This anisotropy translates to an axial resolution

that is worse than the lateral resolution in the acquired data. Multi-view microscopy

attempts to circumvent this problem by merging acquisitions from multiple tilted direc-

tions [90, 22, 44, 43, 100, 56, 17]. However, operations therein, such as multi-view fusion

and deconvolution, require the volumes to be precisely registered beforehand.

Several approaches have been proposed to address this registration problem. Heintz-

mann et al. [44] presented a mostly manual registration algorithm that relies on an

interactive selection of salient points in the input volumes, which are used as an align-

ment aid. However, such a manual technique tends to be both laborious and inaccurate.

A second class of algorithms that can be considered automatic relies on fiducial mark-

ers, such as fluorescent beads, added in moderate concentration to the prepared sample

[79, 103], which are subsequently detected and used for registration. Although these

approaches were shown to be accurate, they require a special method of sample prepara-
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(g)(d)(a)

(h)(e)(b)

(i)(f)(c)

Figure 3.1: An illustration of how an anisotropic PSF affects data registration. The
red circle denotes the center of mass in each case. (a-c) Registration of datasets
uncorrupted by PSF. (d-f) Reference, test, and registered test, respectively. (g-i)
Cross-blurred forms of the datasets in (d-f). Note that the center of mass coincides
in (g) and (i), unlike that in (d) and (f).

tion. Moreover, the markers added can interfere with the visibility of the sample being

imaged. To alleviate this problem, Krzic et al. [56] designed an imaging system where

such fiducial markers are only used for hardware calibration, thereby averting the need

to add beads along with the sample during imaging. In lieu of external markers, Keller

et al. [50] followed a data-specific strategy to automatically detect cell nuclei and treat

them as landmarks for multi-view registration. Others have used techniques such as

cross-correlation [90, 22, 43, 100, 85] based on the pixel-wise similarity between datasets

for registration. However, such approaches can lead to inaccuracies because they ignore

the anisotropy inherent in the image formation process. A simple example is detailed
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in Fig. 3.1, where a sample (Fig. 3.1(a-c)) is convolved with an anisotropic PSF. The

convolution shifts the optical center of mass (and other moments) in directions within

the object coordinates4 [60] (Fig. 3.1(d-f)), leading conventional pixel-based matching

methods (which would also match the center of mass) to yield a biased solution.

In this work, we propose to modify the registration cost function by cross-blurring the

reference and test datasets (Fig. 3.1(d-f)) using PSFs tilted by the candidate transforma-

tion, so that the image volumes are comparable and identically degraded at convergence

(Fig. 3.1(g-i)). We demonstrate our approach using simulations and experimental data.

The chapter is organized as follows. In Section 3.2, we describe our notations, the

cost function that we wish to minimize, and our optimization strategy. In Section 3.4, we

illustrate the applicability of our method on simulated and experimental datasets, and

we finally conclude in Section 3.5.

3.2 Proposed Method

3.2.1 Problem Formulation

We consider a function f(x), x ∈ R3, that represents an object being imaged. We

assume f undergoes a geometric transformation that can be parameterized by (i) a shear-

ing matrix, A ∈ R3×3, and (ii) a translation vector, b ∈ R3. We represent this using (i)

a shearing operator, AA, and (ii) a translation operator, Tb, defined as follows:

AA {f} (x)
def
= f(Ax), (3.1)

Tb {f} (x)
def
= f(x + b). (3.2)

4The effect of the PSF on the center of a mass of an imaged volume is derived in Appendix 3.A.1.
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Note that rigid body transforms are a special case of affine transforms AA, when the

shearing matrix A is a rotation matrix Rϕ,θ,ψ, where ϕ, θ, and ψ represents the Euler

angles5. We define the rotation operator Rϕ,θ,ψ and its inverse R−1
ϕ,θ,ψ as:

Rϕ,θ,ψ{f}(x)
def
= f (Rϕ,θ,ψx) , (3.3)

R−1
ϕ,θ,ψ{f}(x)

def
= f

(
R−1
ϕ,θ,ψx

)
. (3.4)

We jointly express the parameters A and b as p
def
= {p0, p1, . . . , pM−1}. For an affine

transform, we have M = 12 parameters given by p
def
= {b0, b1, b2, a00, a01, . . . , a22}, where

bk and ak,` denote the matrix entries b[k] and A[k, `], respectively. Similarly, for a rigid

body transform, we have M = 6 parameters given by p
def
= {b0, b1, b2, ϕ, θ, ψ}6. We

represent the sequence of transformations parameterized by p as:

Qp {f} (x)
def
= (AA ◦ Tb ◦ f) (x) (3.5)

= AA {Tb {f}} (x) (3.6)

= f (Ax + b) , (3.7)

Q−1
p {f} (x)

def
= (T−b ◦ AA−1 ◦ f) (x) (3.8)

= (AA−1 ◦ T−A−1b ◦ f) (x) (3.9)

= f
(
A−1(x− b)

)
. (3.10)

In particular, we consider two volumes–the reference gR and the test gT (which is to

be geometrically transformed to match gR)–defined as follows:

gR(x)
def
= (f ? h)(x), (3.11)

5The convention used for Euler angles in rigid body transformations is described in Appendix 3.A.2.
6The composite and norm rules for both the affine and rigid body transformations are described in

Appendix 3.A.3 and 3.A.4, respectively.
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gT (x)
def
=
(
Q−1

p? {f} ? h
)

(x), (3.12)

where ? denotes the convolution operation. Specifically, p? represents the unknown set of

parameters (A? and b?) that we wish to estimate and that characterize the geometrical

transformation undergone by the object f between the acquisitions of gR and gT .

3.2.2 Proposed Registration Approach

The motivation of our approach stems from the fact that even if the correct geomet-

rical transform Qp? is applied to the test data gT , the resulting volume Qp?{gT} will

be different from the reference gR in terms of point-wise comparison of their signal in-

tensities. This is because the geometrical transform Qp? also applies to the convolution

kernel h, thus making an intensity-based similarity criterion unsuitable (Fig. 3.1(d-f)).

To overcome this problem, we propose to cross-blur the reference and test data with each

other’s effective PSF before using any candidate transform Qp̃ (Fig. 3.1(g-i)).

Using Eq. (3.11) in conjunction with properties of convolution operations, the convo-

lution between gR and a rotated version of h can be expressed as:

(gR ? AA?{h}) (x) = (f ? h ? AA?{h}) (x). (3.13)

Similarly, using Eq. (3.12) and properties of affine transforms [12], applying Qp? after

subjecting gT to a convolution with an inverse-rotated form of h is equivalent to7:

Qp?

{
gT ? AA−1

?
{h}
}

(x) = |A?| (Qp?{gT} ? h) (x) (3.14)

= |A?|2 (f ? AA? {h} ? h) (x), (3.15)

7The effect of an affine transformation on a convolution operation is derived in Appendix 3.A.5.
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Figure 3.2: The proposed cost function ε2 to be minimized using cross-blurred forms
of the reference gR and test gT datasets.

where |A| denotes the determinant of the matrix A. For the correct transform, since the

cross-blurred volumes are equivalent except for a scaling constant (compare Eqs. (3.13)

and (3.15)), we can estimate the optimal set of parameters p? via the following cost

function (see also Fig. 3.2):

ε2(p̃)
def
=
∥∥∥|Ã| (gR ? AÃ {h}) (x)− |Ã|−1Qp̃ {gT ? AÃ−1{h}} (x)

∥∥∥2

L2

, (3.16)

=
1

|Ã|

∥∥∥(Q−1
p̃ {gR} ? h

)
(x)− |Ã|−1 (gT ? AÃ−1 {h}) (x)

∥∥∥2

L2

, (3.17)

where p̃ comprises the shearing matrix Ã and the translation b̃.

To estimate the optimal set of parameters p?, we solve a variant of ∂ε2(p̃)/∂p̃ = 0

with an improved form of the Marquardt-Levenberg (ML) algorithm, an iterative gradient

based algorithm for nonlinear least-squares optimization problems [70], using an approach

similar to that proposed by Thévenaz et al. [105], as described in the next section.

3.3 Optimization

The Marquardt-Levenberg (ML) method is a standard technique used to solve nonlin-

ear least squares problems, which is designed as a combination of the gradient descent and

the Gauss-Newton method. Specifically, it acts more like the gradient-descent method

when the parameters are far from their optimal value and resembles the Gauss-Newton
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method when the parameters are almost optimal.

3.3.1 Optimization with Affine Transformation

In order to use the improved form of the ML algorithm [105], we represent Qp̃ as a

combination of two transformations Qp̃ = Qp◦∆p = Qp ◦Q∆p, where Qp = AA ◦ Tb and

Q∆p = AI+∆A ◦ T∆b and rewrite the cost function in Eq. (3.16) as:

ε2(p ◦∆p) =
∥∥∥ |(I + ∆A)A|

(
gR ? A(I+∆A)A {h}

)
(x)

− |(I + ∆A)A|−1Qp◦∆p

{(
gT ? A((I+∆A)A)−1{h}

)}
(x)
∥∥∥2

L2

(3.18)

=
1

|A|

∥∥∥|I + ∆A| (Qp−1 {gR} ? AI+∆A {h}) (x)

− |A|−1 (Q∆p {gT} ? AA−1 {h}) (x)
∥∥∥2

L2

. (3.19)

Specifically, instead of trying to directly minimize ε2(p) in Eq. (3.17), we try to find the

optimal incremental update ∆p by minimizing ε2(p ◦∆p) with an initial guess for p in

Eq. (3.19). This strategy is superior because the gradient of the criterion ε2(p ◦ ∆p)

with respect to ∆p is independent of the initial guess p and is computed about a fixed

point in the parameter space (unlike the gradient of ε2(p̃) with respect to p̃) [105]. On a

sampled spatial grid, the cost function can be approximated using the discrete norm as:

ε2(p ◦∆p) ≈ χ2(p ◦∆p) (3.20)

def
=

1

|A|

N−1∑
i=0

∣∣∣|I + ∆A| (Qp−1 {gR} ? AI+∆A {h}) (xi)

− |A|−1 (Q∆p {gT} ? AA−1 {h}) (xi)
∣∣∣2, (3.21)

where xi denotes coordinates in the the sampled grid and N is the total number of pixels.
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We can then estimate the ideal incremental update ∆p = {∆p0,∆p1, . . . ,∆pM−1} for

the guess p by solving for:



(1 + λ)α0,0 α0,1 . . . α0,M−1

α1,0 (1 + λ)α1,1 . . . α1,M−1

...
...

. . .
...

αM−1,0 αM−1,1 . . . (1 + λ)αM−1,M−1





∆p0

∆p1

...

∆pM−1


def
=



β0

β1

...

βM−1


, (3.22)

αλ ·∆p
def
= β, (3.23)

where βk is proportional to the gradient and αk,` is derived through the Hessian matrix

calculated in the parameter space at ∆p = 0, similar to the approach in [105], as8:

βk
def
= −

(
1

2

)
∂χ2(p ◦∆p)

∂∆pk

∣∣∣∣∣
∆p=0

, 0 ≤ k < M, (3.24)

αk,`
def
=

(
1

2

)
∂2χ2(p ◦∆p)

∂∆pk ∂∆p`

∣∣∣∣∣
∆p=0

, 0 ≤ k, ` < M, (3.25)

and where λ ≥ 0 determines the degree to which the update ∆p conforms to a Gauss-

Newton method or to a gradient-descent approach. The characteristic of ML is to adapt

λ at each iteration such that λ is decreased for successful updates (where the value of

the cost function has decreased) to resemble the Gauss-Newton method. Conversely, λ

is increased for less successful updates to resemble the gradient-descent approach.

3.3.2 Optimization with Rigid Body Transformation

Following a similar approach as before, for the special case of rigid body transfor-

mations, we can represent Qp̃ as a combination of two transformations Qp̃ = Qp◦∆p =

8The gradient and Hessian matrix values are derived for affine transformations in Appendix 3.A.6.
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Qp ◦ Q∆p, where Qp = Rϕ,θ,ψ ◦ Tb and Q∆p = R∆ϕ,∆θ,∆ψ ◦ T∆b, and rewrite the cost

function in Eq. (3.16) as (ignoring the determinants, since they are equal to unity for

rigid body transformations):

ε2(p ◦∆p) =
∥∥∥ (gR ? Rϕ,θ,ψ {R∆ϕ,∆θ,∆ψ {h}}) (x)− (Qp◦∆p {gT} ? h) (x)

∥∥∥2

L2

, (3.26)

=
∥∥∥(Qp−1 {gR} ? R∆ϕ,∆θ,∆ψ {h}) (x)−

(
Q∆p {gT} ? R−1

ϕ,θ,ψ {h}
)

(x)
∥∥∥2

L2

,

(3.27)

which can be approximated on a sampled spatial grid using the discrete norm as:

χ2(p ◦∆p) =
N−1∑
i=0

∣∣∣(Qp−1 {gR} ? R∆ϕ,∆θ,∆ψ {h}) (xi)−
(
Q∆p {gT} ? R−1

ϕ,θ,ψ {h}
)

(xi)
∣∣∣2.

(3.28)

We can compute the gradient and Hessian matrix values9 as in Eqs. (3.24) and (3.25) in

the parameter space at ∆p = 0, similar to the approach in [105].

3.3.3 Multi-resolution Processing

Following the approach proposed by Thevenaz et al. [105], we employ a multi-

resolution approach by using a dyadic pyramid based on cubic B-splines to represent

the volumes in shift-invariant (SI) spaces Vk at multiple scales k, 0 ≤ k < J . Following a

coarse-to-fine strategy, the algorithm first achieves a quick registration based on the large-

scale features in the data, and subsequently makes changes for progressively finer details.

This is advantageous with respect to both computation time and robustness against local

minima, especially since computations (and convolutions during re-blurring) are in 3D.

We consider the routine to have converged at each scale when the total relative change in

the parameters has dropped below a set threshold, as illustrated in Algorithm 3.1. Since

9The gradient and Hessian matrix values are derived for rigid transformations in Appendix 3.A.7.

53



Automatic and Anisotropic Spatial Registration for Multi-View Optical Microscopy Chapter 3

the method is implemented by a multi-resolution approach, the gradient and Hessian ma-

trices have to be computed at each resolution level and the transformation parameters

need to be propagated between the levels, as described in Appendix 3.A.8.

Algorithm 3.1 Proposed PSF-aware form of the improved ML algorithm

1: Input: gT (x), gR(x), h(x), p (initial guess), λ
2: Initial condition: p̃← p;
3: for k = coarsest to finest scale do
4: Retrieve parameters p̃ corresponding to present scale;
5: Compute gVkR , gVkT , and hVk (orthogonal projection onto SI B-spline space Vk);

6: χ2(p̃)←
∑N−1

i=0

∣∣∣|Ã|(gVkR ? AÃ

{
hVk
})

(xi)−
(
Qp̃

{
gVkT

}
? hVk

)
(xi)

∣∣∣2;

7: if convergence is achieved then
8: if finest scale then
9: return Output;

10: else
11: Go to next finer level;
12: end if
13: else
14: if χ2(p̃) has reduced from previous iteration then
15: Decrease λ (to resemble the Guass-Newton approach);
16: p← p̃ (update the initial guess of parameters);
17: else
18: Increase λ (to resemble the gradient-descent approach);
19: end if
20: Compute Hessian and gradient matrices αλ and β;
21: Solve for ∆p in αλ ·∆p = β;
22: Use composite rules to update parameters p̃← p ◦∆p;
23: Repeat from step 6 to calculate new value of cost function;
24: end if
25: end for
26: Output: Qp̃ {gT} (x)
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3.4 Experiments

3.4.1 Validation with Simulated Data

For validation purposes, we considered a synthetic dataset consisting of six parallel

hollow bars [41] (Fig. 3.3(a-b)) as our uncorrupted volume, f . We then used a software

package [52] to generate a Gibson & Lanni 3D PSF model [36] (Fig. 3.3(c)), h, applicable

for wide-field microscopes, with the following parameters: immersion refractive index =

1 (air), sample refractive index = 1.33, numerical aperture (NA) = 0.7, working distance

= 2 mm, particle position = 0 µm, sampling step ∆x = ∆y = ∆z = 0.5µm, excitation

wavelength = 495 nm, and emission wavelength = 509 nm. Using f and h, we generated

the reference gR (Fig. 3.3(d)). Next, we rotated f by an angle of 30 about the x-axis,

and translated it by a vector [b0, b0, b1]>, where b0, b0, and b1 were chosen from a uniform

distribution between 0 and 5, and finally convolved it with h to form gT (Fig. 3.3(e)).

With an initial guess equal to the identity transformation, we then attempted to estimate

p? using two different approaches: (i) using the PSF ignorant form of the improved

ML algorithm [105] (i.e assuming h(x) = δ(x)), and (ii) using our proposed algorithm.

The simulation was run over 10 random instances, and the mean error in the estimated

angle was found to be 11.55 using the traditional approach, and 1.71 using our proposed

algorithm. Examples of the registered results obtained using the two algorithms are

shown in Fig. 3.3(f) and (g), respectively. We repeated this experiment by also using a

Gaussian approximation of the PSF corresponding to a disk scanning confocal microscope

[120] with NA = 0.3, pinhole radius = 5 Airy units, and similar parameters as before. For

this case, the mean error in the estimated angle was recorded as 5.69 using the traditional

approach, and 0.39 using our proposed algorithm.
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(a)
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Figure 3.3: (a) 3D perspective of the object used in simulations. (b-g) Maximum in-
tensity projection (MIP) in the yz plane of f , h (after gamma-correction of γ = 0.3),
gR, gT , the registered results using the traditional, and our proposed approach, re-
spectively. For comparison, (b) has been overlaid on the registered results shown in
(f) and (g). Scale bar is 25µm.
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Figure 3.4: An illustration of the multi-view acquisition setup where the zerbrafish
sample is placed inside an FEP tube filled with agar gel and placed within a chamber
of water, with the tube being connected to a stepper motor in order to be rotated.

3.4.2 Illustration with Experimentally Acquired Data

To prove the applicability of our approach for experimental datasets, we used an

inverted wide-field microscope equipped with a 10×/0.3 dry objective to acquire 3D vol-

umes of a 25-hpf (hours post-fertilization)-old transgenic zebrafish larva (Tg(fli1a:EGFP)),

which expresses green fluorescent protein in the vasculature. We inserted the larva in a

tube made from fluorinated ethylene propylene (FEP), whose refractive index is close to

that of water, and rotated the tube using a stepper motor for six multi-view acquisitions

(Figs. 3.4, 3.5(d)). Treating the first volume as the reference, we recursively registered

each subsequent dataset to its aligned predecessor. The registered form of the final vol-

ume is shown together with the first reference in Fig. 3.5(a-c). The results demonstrate

that despite the anisotropic resolution, characteristic of wide-field microscopy, our ap-

proach correctly matches the curvature and bright features of the vasculature, without

erroneously matching the dominant blur.
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Figure 3.5: (a-c) MIP of the first volume (green) and the recursively registered final
volume (magenta) (originally acquired after a rotation of about 90 about the x-axis)
in the xy, yz, and xz planes, respectively. (d) A schematic representation showing
the relative position of the sample and the axis of rotation in our experimental setup.
Scale bar is 200µm.
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3.5 Conclusion

We have derived an automatic intensity-based registration routine and have demon-

strated its suitability for aligning volumes that were acquired using imaging systems with

severely anisotropic PSFs. The simulation results, which showed an accuracy of around

an order of magnitude over the traditional scheme, demonstrates the benefits of such

an approach that integrates the imaging model. The good alignment we observed using

multi-view volumes from a wide-field microscope, whose PSF anisotropy is particularly

strong, confirms our method’s potential for applications in multi-view microscopy.

3.A Appendix

3.A.1 Effect of PSF on Center of Mass

Consider a signal that is the result of an analog convolution operation g(x)
def
=

(f ? h) (x), where x ∈ R3. The abscissa of its center of mass is defined as:

〈x〉g
def
=

∫∫∫
R3 x · g(x)dx∫∫∫
R3 g(x)dx

. (3.29)

Using the substitution g0(x) = x ·g(x) and the properties of Fourier transforms, we have:

〈x〉g
def
=

∫∫∫
R3 g0(x)dx∫∫∫
R3 g(x)dx

(3.30)

=
ĝ0(0)

f̂(0) · ĥ(0)
(3.31)

=

(
1

f̂(0) · ĥ(0)

)(
j

2π

)(
∂ĝ(u)

∂u

∣∣∣
u=0

)
(3.32)

=

(
1

f̂(0) · ĥ(0)

)(
j

2π

)∂
(
f̂(u) · ĥ(u)

)
∂u

∣∣∣∣∣
u=0

 (3.33)
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=

(
1

f̂(0)

)(
j

2π

)(
∂f̂(u)

∂u

∣∣∣∣∣
u=0

)
+

(
1

ĥ(0)

)(
j

2π

)(
∂ĥ(u)

∂u

∣∣∣∣∣
u=0

)
(3.34)

=

∫∫∫
R3 x · f(x)dx∫∫∫
R3 f(x)dx

+

∫∫∫
R3 x · h(x)dx∫∫∫
R3 h(x)dx

(3.35)

def
= 〈x〉f + 〈x〉h, (3.36)

i.e. the centers of abscissa of the center of mass add up in a convolution operation.

3.A.2 Euler Angle Conventions

Using a right-handed coordinate system with positive angles in the anti-clockwise

direction, we use the following convention for matrices characterizing the Euler angles:

Rx
ϕ

def
=


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 (3.37)

Ry
θ

def
=


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (3.38)

Rz
ψ

def
=


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (3.39)

Rϕ,θ,ψ
def
= Rx

ϕ ×Ry
θ ×Rz

ψ. (3.40)
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3.A.3 Composite Rules for Affine and Rigid Transformations

The consecutive application of affine transformations can be combined as follows:

(Tb ◦ Ta ◦ f) (x) = (Ta+b ◦ f) (x), (3.41)

(Tb ◦ AA ◦ f) (x) = (AA ◦ TAb ◦ f) (x), (3.42)

(AA ◦ Tb ◦ f) (x) = (TA−1b ◦ AA ◦ f) (x), (3.43)

(AB ◦ AA ◦ f) (x) = (AAB ◦ f) (x). (3.44)

Two consecutive 3D rotations can be combined as a single rotation as:

(Rϕ2,θ2,ψ2 ◦Rϕ1,θ1,ψ1 ◦ f) (x)
def
= (Rϕ3,θ3,ψ3 ◦ f) (x), (3.45)

where

θ3
def
= sin−1 (α0 cos(θ2) + sin(θ2) cos(θ1) cos(ψ1)) , (3.46)

ψ3
def
= sin−1

(
sin(ψ2)

cos(θ3)
(cos(θ2) cos(θ1) cos(ψ1)− α0 sin(θ2))− α1

cos(ψ2)

cos(θ3)

)
, (3.47)

ϕ3
def
= sin−1

(
cos(θ2)

cos(θ3)
(cos(ϕ2) sin(ϕ1) cos(θ1) + α2 sin(ϕ1))− α3

sin(θ1)

cos(θ3)

)
, (3.48)

α0
def
= cos(ϕ2) sin(θ1) + sin(ϕ2) cos(θ1) sin(ψ1), (3.49)

α1
def
= sin(ϕ2) sin(θ1)− cos(ϕ2) cos(θ1) sin(ψ1), (3.50)

α2
def
= cos(ϕ1) cos(ψ1)− sin(ψ1) sin(θ1) sin(ψ1), (3.51)

α3
def
= cos(ϕ1) sin(ψ1) + sin(ϕ1) sin(θ1) cos(ϕ1). (3.52)

Two transformations Q∆p
def
= AI+∆A ◦ T∆b and Qp

def
= AA ◦ Tb can be combined as:

(Qp ◦Q∆p ◦ f) (x)
def
= (Qp̃ ◦ f) (x), (3.53)
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where Qp̃
def
= AÃ ◦ Tb̃ is characterized by:

Ã = (I + ∆A)A, (3.54)

b̃ = (I + ∆A)b + ∆b. (3.55)

3.A.4 Norm Rules for Affine and Rigid Transformations

The norm of any given signal is affected by affine and rigid body transformations as:

∥∥∥Tb {f} (x)
∥∥∥2

L2

=
∥∥∥f(x)

∥∥∥2

L2

, (3.56)∥∥∥AA {f} (x)
∥∥∥2

L2

=
1

|A|

∥∥∥f(x)
∥∥∥2

L2

, (3.57)∥∥∥Rϕ,θ,ψ {f} (x)
∥∥∥2

L2

=
∥∥∥f(x)

∥∥∥2

L2

. (3.58)

Therefore, for general affine transformations,

∥∥∥Qp {f} (x)
∥∥∥2

L2

=
∥∥∥AA {Tb {f}} (x)

∥∥∥2

L2

=
1

|A|

∥∥∥Tb {f} (x)
∥∥∥2

L2

=
1

|A|

∥∥∥f(x)
∥∥∥2

L2

,

(3.59)

while for rigid body transformations,

∥∥∥Qp {f} (x)
∥∥∥2

L2

=
∥∥∥Rϕ,θ,ψ {Tb {f}} (x)

∥∥∥2

L2

=
∥∥∥Tb {f} (x)

∥∥∥2

L2

=
∥∥∥f(x)

∥∥∥2

L2

. (3.60)
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3.A.5 Affine Transform of a Convolution Operation

Consider the affine transform Qp
def
= AA ◦Tb characterized by the parameters p : A ∈

R3×3,b ∈ R3×1 applied to a 3D coordinate system x ∈ R3:

x′
def
= Ax + b. (3.61)

Given a signal, g(x), and its affine transformed form, Qp{g}(x) = g(x′), the 3D Fourier

transform of Qp{g}, denoted as Q̂p{g}, can be calculated as:

Q̂p{g}(u)
def
=

∫∫∫
R3

Qp{g}(x) · exp(−j2πu>x)dx (3.62)

=
1

|A|

∫∫∫
R3

g(x′) · exp(−j2πu>A−1(x′ − b))dx′ (3.63)

=
1

|A|
exp(j2πu>A−1b) · ĝ

((
A−1

)>
u
)
. (3.64)

If g(x)
def
= (f ? h)(x), then ĝ(u) = f̂(u) · ĥ(u). Therefore, we have:

Q̂p{g}(u) =
1

|A|
exp(j2πu>A−1b) · f̂

((
A−1

)>
u
)
· ĥ
((

A−1
)>

u
)

(3.65)

= Q̂p{f}(u) · ĥ
((

A−1
)>

u
)
, (3.66)

which implies the following:

g(Ax + b) = |A| · (f(Ax + b) ? h(Ax)) , (3.67)

i.e. Qp{(f ? h)}(x) = |A| · (Qp{f}(x) ? AA{h}(x)) . (3.68)
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3.A.6 Gradient and Hessian Matrix for Affine Transformations

The gradient βk and Hessian matrix αk,` calculated in the parameter space at ∆p = 0

can be calculated as (ignoring similar constants and second derivative terms):

βk
def
= −

(
1

2

)
∂χ2(p ◦∆p)

∂∆pk

∣∣∣∣∣
∆p=0

, 0 ≤ k < M, (3.69)

= −
N−1∑
i=0

(
(Qp−1 {gR} ? h) (xi)− |A|−1 (gT ? AA−1 {h}) (xi)

)
(
∂|I + ∆A|
∂∆pk

(Qp−1 {gR} ? h) (xi) +

(
Qp−1 {gR} ?

∂AI+∆A {h}
∂∆pk

)
(xi)

− |A|−1

(
∂Q∆p {gT}
∂∆pk

? AA−1 {h}
)

(xi)

)
, (3.70)

αk,`
def
=

(
1

2

)
∂2χ2(p ◦∆p)

∂∆pk∂∆p`

∣∣∣∣∣
∆p=0

, 0 ≤ k, ` < M, (3.71)

=
N−1∑
i=0

(
∂|I + ∆A|
∂∆p`

(Qp−1 {gR} ? h) (xi) +

(
Qp−1 {gR} ?

∂AI+∆A {h}
∂∆p`

)
(xi)

− |A|−1

(
∂Q∆p {gT}
∂∆p`

? AA−1 {h}
)

(xi)

)
(
∂|I + ∆A|
∂∆pk

(Qp−1 {gR} ? h) (xi) +

(
Qp−1 {gR} ?

∂AI+∆A {h}
∂∆pk

)
(xi)

− |A|−1

(
∂Q∆p {gT}
∂∆pk

? AA−1 {h}
)

(xi)

)

+
(

(Qp−1 {gR} ? h) (xi)− |A|−1 (gT ? AA−1 {h}) (xi)
)

(
∂2|I + ∆A|
∂∆pk∂∆p`

(Qp−1 {gR} ? h) (xi)

)
(3.72)
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3.A.6.1 Derivatives of Affine Transformed Volume w.r.t. Parameters

Consider the affine transform Q∆p
def
= AI+∆A ◦ T∆b characterized by the parameters

∆p : ∆A ∈ R3×3,∆b ∈ R3×1 applied to a 3D coordinate system, x ∈ R3:

x′
def
= (I + ∆A)x + ∆b =


1 + ∆a00 ∆a01 ∆a02

∆a10 1 + ∆a11 ∆a12

∆a20 ∆a21 1 + ∆a22



x

y

z

+


∆b0

∆b1

∆b2

 . (3.73)

Given a signal, g(x), the derivatives of its affine transformed form Q∆p{g}(x) = g(x′)

with respect to each of the 12 parameters in ∆p, computed at ∆p = 0, is essential for

the improved ML algorithm. For example,

∂Q∆p {gT} (x)

∂∆b0

=
∂gT (x′)

∂x′
· ∂x

′

∂∆b0

+
∂gT (x′)

∂y′
· ∂y

′

∂∆b0

+
∂gT (x′)

∂z′
· ∂z′

∂∆b0

. (3.74)

At ∆p = 0, the derivatives with respect to all the 12 parameters can be computed as:

∂Q∆p {gT} (x)

∂∆b0

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂x
(3.75)

∂Q∆p {gT} (x)

∂∆b1

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂y
(3.76)

∂Q∆p {gT} (x)

∂∆b2

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂z
(3.77)

∂Q∆p {gT} (x)

∂∆a00

∣∣∣∣∣
∆p=0

= x
∂gT (x)

∂x
(3.78)

∂Q∆p {gT} (x)

∂∆a01

∣∣∣∣∣
∆p=0

= y
∂gT (x)

∂x
(3.79)

∂Q∆p {gT} (x)

∂∆a02

∣∣∣∣∣
∆p=0

= z
∂gT (x)

∂x
(3.80)
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∂Q∆p {gT} (x)

∂∆a10

∣∣∣∣∣
∆p=0

= x
∂gT (x)

∂y
(3.81)

∂Q∆p {gT} (x)

∂∆a11

∣∣∣∣∣
∆p=0

= y
∂gT (x)

∂y
(3.82)

∂Q∆p {gT} (x)

∂∆a12

∣∣∣∣∣
∆p=0

= z
∂gT (x)

∂y
(3.83)

∂Q∆p {gT} (x)

∂∆a20

∣∣∣∣∣
∆p=0

= x
∂gT (x)

∂z
(3.84)

∂Q∆p {gT} (x)

∂∆a21

∣∣∣∣∣
∆p=0

= y
∂gT (x)

∂z
(3.85)

∂Q∆p {gT} (x)

∂∆a22

∣∣∣∣∣
∆p=0

= z
∂gT (x)

∂z
(3.86)

3.A.6.2 Derivatives of Sheared Volume w.r.t. Parameters

Note that the derivatives for the pure shearing transformation (without translation)

at ∆p = 0 follows directly as:

∂AI+∆A {gT} (x)

∂∆pk

∣∣∣∣∣
∆p=0

=


0, if ∆pk = ∆b0,∆b1,∆b2

∂Q∆p{gT }(x)

∂pk

∣∣∣
∆p=0

, otherwise.

(3.87)

3.A.6.3 Derivatives of Transform Determinant w.r.t. Parameters

The determinant of the shearing transformation I + ∆A can be computed as:

|I + ∆A| =

∣∣∣∣∣∣∣∣∣∣
1 + ∆a00 ∆a01 ∆a02

∆a10 1 + ∆a11 ∆a12

∆a20 ∆a21 1 + ∆a22

∣∣∣∣∣∣∣∣∣∣
(3.88)

= (1 + ∆a00) ((1 + ∆a11)(1 + ∆a22)−∆a12∆a21)
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−∆a01 ((1 + ∆a22)∆a10 −∆a12∆a20)

+ ∆a02 (∆a10∆a21 − (1 + ∆a11)∆a20) . (3.89)

The derivatives with respect to all the 12 parameters can be computed as:

∂|I + ∆A|
∂∆a00

= (1 + ∆a11)(1 + ∆a22)−∆a12∆a21 (3.90)

∂|I + ∆A|
∂∆a01

= ∆a12∆a20 − (1 + ∆a22)∆a10 (3.91)

∂|I + ∆A|
∂∆a02

= ∆a10∆a21 − (1 + ∆a11)∆a20 (3.92)

∂|I + ∆A|
∂∆a10

= ∆a02∆a21 − (1 + ∆a22)∆a01 (3.93)

∂|I + ∆A|
∂∆a11

= (1 + ∆a00)(1 + ∆a22)−∆a02∆a20 (3.94)

∂|I + ∆A|
∂∆a12

= ∆a01∆a20 − (1 + ∆a00)∆a21 (3.95)

∂|I + ∆A|
∂∆a20

= ∆a01∆a12 − (1 + ∆a11)∆a02 (3.96)

∂|I + ∆A|
∂∆a21

= ∆a02∆a10 − (1 + ∆a00)∆a12 (3.97)

∂|I + ∆A|
∂∆a22

= (1 + ∆a00)(1 + ∆a11)−∆a01∆a10 (3.98)

At ∆p = 0, the derivatives can be computed as:

∂|I + ∆A|
∂∆pk

∣∣∣∣∣
∆p=0

=


1, if ∆pk = ∆a00,∆a11,∆a22

0, otherwise.

(3.99)

At ∆p = 0, the second derivatives can be computed as:

∂2|I + ∆A|
∂∆a00 ∂∆a11

∣∣∣∣∣
∆p=0

= 1 (3.100)
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∂2|I + ∆A|
∂∆a00 ∂∆a22

∣∣∣∣∣
∆p=0

= 1 (3.101)

∂2|I + ∆A|
∂∆a11 ∂∆a22

∣∣∣∣∣
∆p=0

= 1 (3.102)

∂2|I + ∆A|
∂∆a01 ∂∆a10

∣∣∣∣∣
∆p=0

= −1 (3.103)

∂2|I + ∆A|
∂∆a02 ∂∆a20

∣∣∣∣∣
∆p=0

= −1 (3.104)

∂2|I + ∆A|
∂∆a12 ∂∆a21

∣∣∣∣∣
∆p=0

= −1 (3.105)

and zero for all other combinations of parameters.

3.A.7 Gradient and Hessian Matrix for Rigid Transformations

The gradient βk and Hessian matrix αk,` calculated in the parameter space at ∆p = 0

can be calculated as (ignoring similar constants and second derivative terms):

βk
def
= −

(
1

2

)
∂χ2(p ◦∆p)

∂∆pk

∣∣∣∣∣
∆p=0

, 0 ≤ k < M (3.106)

= −
N−1∑
i=0

(
(Qp−1 {gR} ? h) (xi)−

(
gT ? R

−1
ϕ,θ,ψ {h}

)
(xi)

)
((

Qp−1 {gR} ?
∂R∆ϕ,∆θ,∆ψ {h}

∂∆pk

)
(xi)−

(
∂Q∆p {gT}
∂∆pk

? R−1
ϕ,θ,ψ {h}

)
(xi)

)
,

(3.107)

αk,`
def
=

(
1

2

)
∂2χ2(p ◦∆p)

∂∆pk∂∆p`

∣∣∣∣∣
∆p=0

, 0 ≤ k, ` < M (3.108)

=
N−1∑
i=0

((
Qp−1 {gR} ?

∂R∆ϕ,∆θ,∆ψ {h}
∂∆pk

)
(xi)−

(
∂Q∆p {gT}
∂∆pk

? R−1
ϕ,θ,ψ {h}

)
(xi)

)
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((
Qp−1 {gR} ?

∂R∆ϕ,∆θ,∆ψ {h}
∂∆p`

)
(xi)−

(
∂Q∆p {gT}
∂∆p`

? R−1
ϕ,θ,ψ {h}

)
(xi)

)
.

(3.109)

3.A.7.1 Derivatives of Rigid Transformed Volume w.r.t. Parameters

Consider the rigid body transform Q∆p = R∆ϕ,∆θ,∆ψ ◦ T∆b characterized by the

parameters ∆p : {∆ϕ,∆θ,∆ψ}, ∆b ∈ R3×1 applied to x ∈ R3. At ∆p = 0, the

derivatives with respect to the 6 parameters can be computed as:

∂Q∆p {gT} (x)

∂∆b0

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂x
(3.110)

∂Q∆p {gT} (x)

∂∆b1

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂y
(3.111)

∂Q∆p {gT} (x)

∂∆b2

∣∣∣∣∣
∆p=0

=
∂gT (x)

∂z
(3.112)

∂Q∆p {gT} (x)

∂∆ϕ

∣∣∣∣∣
∆p=0

= y
∂gT (x)

∂z
− z∂gT (x)

∂y
(3.113)

∂Q∆p {gT} (x)

∂∆θ

∣∣∣∣∣
∆p=0

= z
∂gT (x)

∂x
− x∂gT (x)

∂z
(3.114)

∂Q∆p {gT} (x)

∂∆ψ

∣∣∣∣∣
∆p=0

= x
∂gT (x)

∂y
− y∂gT (x)

∂x
. (3.115)

3.A.7.2 Derivatives of Rotated Volume w.r.t. Parameters

Note that the derivatives for the pure rotation transformation (without translation)

at ∆p = 0 follows directly as:

∂R∆ϕ,∆θ,∆ψ {gT} (x)

∂∆pk

∣∣∣∣∣
∆p=0

=


0, if ∆pk = ∆b0,∆b1,∆b2

∂Q∆p{gT }(x)

∂pk

∣∣∣
∆p=0

, otherwise.

(3.116)
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3.A.8 Propagation of Transform Parameters across Scales

Since the method is implemented by a multi-resolution approach, the derivatives and

the Hessian matrices have to be computed at each resolution level, and the transformation

parameters need to be propagated between levels. For example, consider the following

affine transform at the coordinate system in the finest scale (Level-0):

x′0
def
= Ax0 + b. (3.117)

Say, at the next coarser scale (Level-1), the coordinates change by a scalar factor sx, sy, sz

along x, y, z, respectively:

x′0
def
= Sx′0 and x0

def
= Sx0, (3.118)

where S ∈ R3×3 is a diagonal matrix with weights sx, sy, sz. We then have:

x′0 = S
(
AS−1x0 + b

)
(3.119)

= SAS−1x0 + Sb. (3.120)

In a dyadic pyramid scheme where sx = sy = sz = 1/2, the general affine transform

parameters at Level-k would be:

x′k = Axk + 2−kb, (3.121)

i.e., only the translation parameters change by a factor of 1/2 across scales, while the

shearing matrix remains the same.
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Chapter 4

Multi-View Deconvolution and

Fusion for Optical Microscopy

Abstract10

3D deconvolution in optical microscopy aims at recovering deblurred forms of optical

sections acquired through objects. This is generally an ill-posed problem owing to the

zeros prevalent along the axial direction of the optical-transfer-function (OTF). One of

the ways to mitigate this problem is by acquiring data from multiple, mutually-tilted

directions, which helps fill the missing cone of information in the OTF. Here, we pro-

pose a fast-converging iterative deconvolution method for multi-view deconvolution mi-

croscopy. Specifically, we formulate the imaging problem using a filter-bank structure,

and present a multi-channel variation of a thresholded Landweber deconvolution algo-

rithm with wavelet-sparsity regularization. Notably, the computational complexity of

the multi-channel algorithm presented is equivalent to its single-channel counterpart.

Decomposition of the minimization problem into subband-dependent terms ensures fast

convergence. We demonstrate the applicability of the algorithm via simulation results.

10This chapter is based on the reference [17] co-authored with M. Liebling.
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4.1 Introduction

Deconvolution is a classical inverse problem [8] with applications in fields as diverse as

optical microscopy [87, 113], medical imaging [74], astronomy, [95] and photography [119].

It is widely employed both as a stand-alone computational method and as an adjunct to

physical modifications in the instrument design, aimed at improving the image quality.

In general, deconvolution from a single contaminated observation is an ill-posed problem,

due to the complete loss of signal information at frequencies corresponding to the zeros

of the filter. One of the ways to mitigate this problem is by the acquisition of multiple

images of the same specimen blurred differently (single-input, multiple-output), where

the lack of information in one observation is compensated in others. This better posed

inverse problem can be referred to as multi-channel deconvolution, in contrast to the

conventional single-channel deconvolution.

This holds particular significance in optical fluorescence microscopy, where the resolu-

tion along the optical axis is well known to be worse than that along the lateral directions.

The resolution anisotropy is explainable since all objective lenses have an angular aper-

ture of less than 90◦, which means that the rays originating from a point source do not

perfectly converge to a single point [11]. Instead, due to diffraction, it manifests itself as

a blurred counterpart in the image, widely known as the point-spread-function (PSF).

The central section of the PSF is an Airy disc, which diverges into a conical form on ei-

ther side of the focal plane. The Fourier transform of the PSF, referred to as the optical

transfer function (OTF), offers a different insight in the nature of degradation, where the

lack of resolution in the axial direction is evident as a cone of zeros. This underscores

the difficulty in recovering a good estimate of the imaged specimen from a single blurred

observation alone.

In their seminal work, Shaw et al. [90] had proposed to alleviate this problem by
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using multiple mutually-tilted, through-focal section views of the same object. Their

original work followed an individual deconvolution of the tilted views and a final fusion

of the reoriented data for an improved estimate of the imaged Drosophila melanogaster

embryo nuclei. This idea has evolved since then to have a more holistic nature, where

the deconvolution algorithm is applied to the ensemble of the available blurry observa-

tions, rather than to each of them separately. They have yielded results with relatively

low computational complexity and have been demonstrated in various optical microscopy

types, including widefield, confocal and light-sheet-based microscopy [111, 100, 85, 104].

This broad class of algorithms have come to be known as multi-view deconvolution mi-

croscopy, which is essentially a special case of multi-channel deconvolution, where the

filter in each channel can be interpreted as a tilted form of one common filter.

Several single-channel deconvolution algorithms have been proposed for 3D microscopy.

They can be broadly classified as: (a) no-neighbors, (b) neighboring, (c) linear, (d) non-

linear, (e) statistical, (h) transform-domain sparsity-based, and (g) blind deconvolution

techniques. We direct the interested reader to reviews on the subject [91, 87] for a de-

tailed description. In this work, we specifically focus on a multi-channel deconvolution

algorithm of type (h), where the `1-norm of the wavelet coefficients of the object acts as

the sparsity-inducing regularizer to the deconvolution problem.

Wavelet-based 3D deconvolution microscopy is a relatively new technique. Several

researchers have established the theoretical foundation underlying this approach, which

alternates between a Landweber update and wavelet-coefficient thresholding [94, 34, 28,

6, 21], referred to as the thresholded Landweber (TL) or iterative shrinkage thresholding

algorithm (ISTA). Recently, fast implementations were proposed for this method by

Vonesch et al. [114, 115] and Beck et al. [5]. The main objective of this work is to derive

a multi-channel analogue for this framework, and show that it can be be implemented

without adding to its computational complexity, and demonstrate its applicability for
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multi-view deconvolution in fluorescence microscopy.

The chapter is organized as follows. In Section 4.2, we introduce the imaging model

and state the problem. We describe the method in Section 4.3, and present our experi-

mental results in Section 4.4. We finally conclude in Section 4.5.

4.2 Problem Statement

4.2.1 Image Formation Model

We consider images formed by an optical microscope that allows rotating the sample

around an axis perpendicular to the imaging direction with the coordinate system repre-

sented as x ∈ R3. Following the representation in Chapter 3, we model the M different

measured volumes as a convolution between rotated form of the sample and the PSF as:

gi(x)
def
=
(
Q−1

pi
{f} ? h

)
(x) + ni(x), i = 0, . . . ,M − 1 (4.1)

where gi denotes the measured volume for the i-th angle, f is the original volume being

imaged, ni is an additive noise component, h is the PSF corresponding to the microscope,

and Q−1
pi

def
= AA−1

i
◦ T−A−1

i bi
is a general affine operator involving a shearing matrix

A−1
i ∈ R3×3 and translation of −A−1

i bi ∈ R3, as defined in Eq. (3.9). We choose

the measured volume at the first angle as the golden reference and apply geometrical

transformations to other volumes to match it. In other words, we assume A0 is the

identity matrix and b0 = 0, and estimate the transform parameters pi, as discussed in

Chapter 3, which is subsequently applied to gi to reverse the geometrical transformations

74



Multi-View Deconvolution and Fusion for Optical Microscopy Chapter 4

underwent by the sample during acquisition:

g̃i(x)
def
= Qpi {gi} (x) i = 0, . . . ,M − 1 (4.2)

= |Ai| (f ? AAi
{h}) (x) +Qpi{ni}(x) (4.3)

def
= (f ? hi) (x) + ñi(x), (4.4)

where g̃i
def
= Qpi{gi} and hi

def
= |Ai|AAi

{h} denotes geometrically transformed forms of gi

and hi, respectively. This shift-invariant imaging model can be discretized and cast into

a multi-channel matrix formulation. Specifically, the signal measured in the ith channel

(angle) can be represented as:

g̃i
def
= Hif + ñi, i = 0, . . . ,M−1 (4.5)

where g̃i, f , and ñi are column vectors that represent the N lexicographically ordered

samples of g̃i, f , and ñi, respectively, while Hi is the N × N transform matrix corre-

sponding to the filtering operation with the discretized PSF hi. All the measured signals

g̃i can then be concatenated to a single vector g̃, represented as:

g̃
def
=


g̃0

...

g̃M−1

 =


H0

...

HM−1

 f +


ñ0

...

ñM−1

 def
= Hf + ñ, (4.6)

The inverse problem that we wish to solve is finding an estimate f̄ of f , given the collection

of the spatially registered multi-view measurements g̃ and the transform matrices H.

75



Multi-View Deconvolution and Fusion for Optical Microscopy Chapter 4

4.2.2 Cost-function

We follow a transform-domain sparsity-based approach to solve this inverse problem.

Specifically, we wish to use the assumption that objects of interest f can often be ap-

proximated well using only a few large wavelet coefficients. We represent the object in a

dyadic multi-resolution wavelet space as:

fV (x) =
J∑
j=1

∑
s∈Sj

∑
k∈Z3

2−j〈f, ψ̊>s
(
·/2j − k

)
〉ψs
(
x/2j − k

)
(4.7)

def
=

J∑
j=1

∑
s∈Sj

∑
k∈Z3

wj,s[k] · ψj,s (x− k) . (4.8)

where ψj,s(x)
def
= ψs(x/2

j) and wj,s represents the wavelet (or scaling) basis function

and wavelet coefficients corresponding to the subband s at scale j, respectively, J is

the number of scales, and Sj = {1, . . . , S} denotes the S wavelet subbands at scale

1 ≤ j ≤ J . For example, S = 3 and 7 in 2D and 3D coordinate systems, respectively. At

the coarsest scale j = J , we also include the scaling subband as SJ = {0, . . . , S}. The

wavelet coefficients wj,s can be arranged in a vector form and defined in terms of matrix

multiplications as:

wj,s
def
= Ψ̊>j,sf , (4.9)

where Ψ̊>j,s is the matrix that represents the combination of filtering/downsampling oper-

ations for the analysis action corresponding to the wavelet coefficients wj,s. The ensemble
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of wavelet coefficients can then be represented as:

w
def
=



wJ,0

wJ,1

...

w1,S


=



Ψ̊>J,0

Ψ̊>J,1
...

Ψ̊>1,S


f

def
= Ψ̊>f . (4.10)

Similarly, the discrete samples of fV can be arranged in a vector form and defined in

terms of matrix multiplications as:

fV
def
=

J∑
j=1

∑
s∈Sj

Ψj,swj,s =

(
ΨJ,0 ΨJ,1 . . . Ψ1,S

)


wJ,0

wJ,1

...

w1,S


def
= Ψw, (4.11)

where wj,s is the vectorized form of the wavelet coefficients wj,s and Ψj,s is the matrix that

represents the combination of upsampling/filtering operations for the synthesis action

corresponding to the wavelet coefficients wj,s.

Similar to wavelet-sparsity-based inverse problems in the literature [94, 34, 28, 6, 21,

114, 115], we pursue the solution f̄ = Ψw̄, where w̄ minimizes the cost function:

C(w)
def
= ‖g̃ −HΨw‖2

`2
+ λ‖w‖`1 , (4.12)

where λ is a non-negative scalar quantity. The two terms in the cost function C(w) of

Eq. (4.12) serve the purposes of data-consistency and regularization, respectively.

Replacing the general form of g̃ and H in Eq. (4.12) by taking advantage of its
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structure specific to our problem, we get:

C(w) =
M−1∑
i=0

‖g̃i −HiΨw‖2
`2

+ λ‖w‖`1 . (4.13)

In the following sections, we show that the special form of the matrix H in a multi-

channel scheme allows for the direct application of the fast, wavelet-based minimization

technique originally developed by Vonesch and Unser [115] in an implicit single-channel

framework and which is efficiently implemented in the Fourier domain.

4.3 Method

We start by discussing a simpler inverse problem, where there is no regularization

(λ = 0) before recalling Vonesch and Unser’s method [115] and finally addressing the

special case of multi-view deconvolution.

4.3.1 Multi-channel Landweber Iteration

When λ = 0, the cost function in Eq. (4.12) takes the form:

C(w) = ‖g̃ −HΨw‖2
`2
, (4.14)

making it a pure least-squares minimization problem. The minimizer to this problem can

be directly obtained by the pseudo-inverse of H, when H is non-singular. However, if H

is ill-conditioned, this is a poor choice since it is highly susceptible to errors in g̃ and can

amplify the noise component. As a viable solution, the minimization can be performed

iteratively by gradient descent [92], which is similar to the Landweber iteration [57] in

this context, and can be stopped after a fixed number of iterations or when the variation
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-1
(c)

-1

(a) (b)

Figure 4.1: Block diagram showing (a) the forward imaging model with M angles,
where the OTF in the first angle has zeros along the axial direction νz, and the

re-blurred signal f̃ ; (b) the computation of the subband dependent residual r
(n−1)
s

for the nth Landweber iteration, from f̃ , Heff and f (n−1) =
∑

s∈S1
Ψsw

(n−1)
s ; (c) the

two-step procedure of Landweber iteration and soft-thresholding (T ), characteristic
in the fast TL algorithm, to update the wavelet coefficients ws in each subband s and
eventually construct the updated estimate f (n).

in the update is below a set threshold.

Starting from an initial estimate w(0), we can arrive at an updated sequence w(n)

that eventually converges to the minimizer of C(w). Since H is a linear operator, the

Landweber iteration holds:

w(n) def
= w(n−1) + τ ·Ψ>H>

(
g −HΨw(n−1)

)
(4.15)

def
= w(n−1) + τ · r(n−1), (4.16)

where r(n−1) is the residual that acts as the correction term in each iteration, while τ is

79



Multi-View Deconvolution and Fusion for Optical Microscopy Chapter 4

the step size that controls the contribution of r(n−1) to the latest update. Owing to the

special structure of the matrices in our present context, we can rewrite the residual in

each iteration as:

r(n−1) = Ψ>
(
f̃ −HeffΨw(n−1)

)
(4.17)

where f̃ is the sum of the re-blurred spatially registered multi-view measurements:

f̃ =
M−1∑
i=0

H>i g̃i, (4.18)

and Heff is the matrix corresponding to the effective single-channel filter (Fig. 4.1(b))

defined as:

Heff =
M−1∑
i=0

H>i Hi. (4.19)

Note that this multi-channel equivalent of the Landweber iteration could be easily

implemented in the frequency domain, just as in the single-channel problem. This follows

from the fact that H and H> are analogous to the analysis and synthesis sides of a filter-

bank, respectively, and can be combined to form an effective single-channel filter, as

illustrated in Fig. 4.1(a).

4.3.2 Fast Iterative Shrinkage Thresholding Algorithm

We follow the approach proposed by Vonesch and Unser [115] in the single-channel

scheme to minimize C(w). For the purpose of completeness, we briefly recall the algorithm

below, before discussing its multi-channel counterpart.
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4.3.2.1 Single-channel Fast Iterative Shrinkage Thresholding Algorithm

For better clarity, we rewrite the cost function in Eq. (4.12), for the single-channel

scenario (M = 1) as:

C(w) = ‖g0 −H0Ψw‖2
`2

+ λ‖w‖`1 . (4.20)

Since minimizing C(w) is non-trivial, the algorithm proceeds to minimize an auxiliary

cost function A(n)(w), which closely approximates C(w) and is easier to minimize:

A(n)(w)
def
= C(w) +

J∑
j=1

∑
s∈Sj

αj,s

∥∥∥w(n−1)
j,s −wj,s

∥∥∥2

`2
−
∥∥H0Ψ

(
w(n−1) −w

)∥∥2

`2
, (4.21)

where the subband dependent constants αj,s are such that

‖H0Ψw‖2
`2
≤

J∑
j=1

∑
s∈Sj

αj,s‖wj,s‖2
`2
. (4.22)

This auxiliary cost function A(n)(w) has two important characteristics for any w ∈ `2:

A(n)(w) ≥ C(w), (4.23)

A(n)(w(n−1)) = C(w(n−1)). (4.24)

These characteristics imply that if a new estimate w(n) = arg minA(n)(w) can be found,

it will also effectively decrease C(w), since

C(w(n)) ≤ A(n)(w(n)) ≤ A(n)(w(n−1)) = C(w(n−1)). (4.25)

A key aspect of the multi-resolution approach [115] is that A(n)(w) in Eq. (4.21) can
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be rewritten in terms of scale and subband-dependent sub-functions :

A(n)(w) =
J∑
j=1

∑
s∈Sj

αj,s

(∥∥∥w(n−1)
j,s + α−1

j,s r
(n−1)
j,s −wj,s

∥∥∥2

`2
+ λα−1

j,s ‖wj,s‖`1

)
+ γ, (4.26)

def
=

J∑
j=1

∑
s∈Sj

αj,s · A(n)
j,s (ws) + γ, (4.27)

where γ is a constant independent of w and r
(n−1)
j,s is the residual for the wavelet subband

s at scale j during the nth iteration defined as:

r
(n−1)
j,s

def
= Ψ>j,sH

>
0

(
g0 −H0Ψw(n−1)

)
. (4.28)

Note that Eq. (4.27) reveals that the auxiliary functional is essentially a weighted sum

of sub-functionals A(n)
j,s that depend on distinct subbands. This implies that one can

individually minimize each sub-functional as:

w
(n)
j,s

def
= arg min

w
A(n)
j,s (w), (4.29)

and effectively minimize A(n)(w):

w(n) def
= arg min

w
A(n)(w) =


w

(n)
J,0

...

w
(n)
1,S

 , (4.30)

i.e. w(n) is a collection of the wavelet subband coefficients w
(n)
j,s that minimize each

sub-functional A(n)
j,s . The minimization of A(n)

j,s is readily given by the wavelet shrinkage
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algorithm of Donoho and Johnstone [29]:

w
(n)
j,s = Tλα−1

j,s/2

{
w

(n−1)
j,s + α−1

j,s r
(n−1)
j,s

}
. (4.31)

where Tθ is the soft-thresholding operation defined as:

Tθ(w)
def
= sgn(w) max (|w| − θ, 0) . (4.32)

The thresholded Landweber algorithm thus involves alternating between two steps:

(a) a Landweber update of the wavelet coefficients from the previous iteration, and (b)

a soft-thresholding of the coefficients computed in (a), as evident in Eq. (4.31).

The scaling factors αj,s that satisfy Eq. (4.22) can be efficiently estimated for all

subbands s ∈ Sj, j = 1, . . . , J , as:

αj,s ≥
∑
s′∈Sj

ρ
(
Ψ>j,s′H

>
0 H0Ψj,s

)
, ∀s ∈ Sj (4.33)

if the wavelet coefficients in only one scale are updated at a time [115], where ρ(A)

denotes the spectral radius [37] of the square matrix A. This is easily computed in the

frequency domain using DFT. Specifically, in a wavelet decomposition with a dyadic

subsampling scheme,

ρ
(
Ψ>j,s′H

>
0 H0Ψj,s

)
= max

k0

∣∣∣∣∣∣
2j−1∑
k=0

ψ̂∗j,s′

[
k0 + k

N

2j

]
ψ̂j,s

[
k0 + k

N

2j

] ∣∣∣∣ĥ0

[
k0 + k

N

2j

]∣∣∣∣2
∣∣∣∣∣∣ ,
(4.34)

where ĥ0 denotes the DFT coefficients of the discretized h0. The subband dependent

constants αj,s form the backbone of the fast TL algorithm and is in direct contrast to

the traditional TL algorithm, where α = ρ(H>0 H0) is used for all subbands, adversely
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affecting the convergence rate of the algorithm. By letting j vary at every iteration, it

is then possible to successively update the subbands at all scales. This can be efficiently

realized by several multi-grid techniques, without explicitly recomputing the subband

residuals across different scales [115].

The performance of ISTA can be further sped up by computing the next iterate based

not only on the previous one, but also on two or more previously computed iterates (fast

ISTA, (FISTA) [5]). Specifically, the steps of the minimization are:

w
(n)
j,s

def
= w̃

(n)
j,s +

(
τ(n−1) − 1

τ(n)

)(
w̃

(n)
j,s − w̃

(n−1)
j,s

)
, (4.35)

where w
(n)
j,s are the wavelet coefficients in the sub-band s at scale j during the n-th

iteration, and the temporary coefficients:

w̃
(n)
j,s

def
= Tλα−1

j,s/2

{
w

(n−1)
j,s + α−1

j,s r
(n−1)
j,s

}
, (4.36)

are obtained via the soft-thresholding operation defined in Eq. (4.32), with the weighing

factors defined as:

τ(n)
def
=

1 +
√

1 + 4τ 2
(n−1)

2
. (4.37)

Commonly used initial conditions include τ(0) = 1 and w̃
(0)
j,s = w

(0)
j,s = Ψ̊>j,sg.

4.3.2.2 Multi-channel Fast Iterative Shrinkage Thresholding Algorithm

For the multi-channel framework, we can redefine the auxiliary cost function A(n)(w)

in Eq. (4.21) as:

A(n)(w)
def
= C(w) +

J∑
j=1

∑
s∈Sj

αj,s
∥∥w(n−1)

s −wj,s

∥∥2

2
−

M−1∑
i=0

∥∥HiΨ
(
w(n−1) −w

)∥∥2

2
, (4.38)
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where the constants αj,s are such that

M−1∑
i=0

‖HiΨw‖2
2 ≤

J∑
j=1

∑
s∈Sj

αj,s‖wj,s‖2
2. (4.39)

As in the single-channel case, we can rewrite A(n)(w) in terms of scale and sub-

band dependent sub-functionals A(n)
s , as given in Eq. (4.27), where the wavelet subband

residual r
(n−1)
s now takes the form:

r
(n−1)
j,s

def
= Ψ>j,s

(
f̃ −HeffΨw(n−1)

)
. (4.40)

This new expression for r
(n−1)
j,s can be easily computed (Fig. 4.1(c)) similar to that in

the single-channel form and thus has an equivalent computational complexity. The soft-

thresholding of the Landweber updated wavelet coefficients is exactly identical to that

discussed for the single-channel case, yielding w
(n)
j,s

def
= arg minA(n)

j,s (w), as in Eq. (4.31).

The scaling factors αj,s that satisfy Eq. (4.39) can be calculated for all subbands

s ∈ Sj, j = 1, . . . , J , similar to that in Eq. (4.33), as:

αj,s ≥
∑
s′∈Sj

ρ
(
Ψ>j,s′HeffΨj,s

)
. (4.41)

Again, this can be easily computed in the frequency domain using DFT, where the

counterpart to Eq. (4.34) is given by:

ρ
(
Ψ>j,s′HeffΨj,s

)
= max

k0

∣∣∣∣∣∣
2j−1∑
k=0

ψ̂∗j,s′

[
k0 + k

N

2j

]
ψ̂j,s

[
k0 + k

N

2j

]M−1∑
i=0

∣∣∣∣ĥi [k0 + k
N

2j

]∣∣∣∣2
∣∣∣∣∣∣ .

(4.42)

Therefore, owing to the special structure of the multi-channel framework, all the
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efficient multi-grid techniques discussed by Vonesch and Unser [115] for the single-channel

case still holds valid for any general wavelet basis. As before, the performance of ISTA

can be further improved using FISTA.

4.4 Results

We demonstrate the performance of the discussed algorithm by deconvolving an inten-

tionally blurred confocal stack of a mouse brain section showing the brain-brain barrier

[23]. The specimen is immunostained for glial fibrillary acidic protein (GFAP) (red) to

show the astrocytic processes and Factor 8 (FVIII) (green) in the vesicles in the endothe-

lial cells of the blood microvessel walls. (Fig. 4.4(a)). For the confocal dataset available,

where the original voxel size is 0.2× 0.2× 0.5 µm, cubic interpolation is employed along

the last dimension to make the resolution uniform as 0.2× 0.2× 0.2 µm. The size of this

data stack is finally chosen as 256 × 256 × 256, where zero-padding is employed in the

absence of data. The two channels in the dataset are processed separately, by treating

the gray-scale values as pixel values recorded by a 16-bit camera. In order to have a good

visual reference to assess the restoration quality along the axial direction z, we rotate

the original confocal stack available by 90◦ about the y-axis, to arrive at our phantom

object f (Fig. 4.4(a)).

The ImageJ plugin ‘PSF Generator’ [53] is used to create a phantom wide-field micro-

scope PSF (Fig. 4.2) that is eventually used to blur the data (Fig. 4.4(i-iv)). Richards and

Wolf model is used for this purpose and the parameters chosen are as follows: numerical

aperture (NA) = 0.7, refractive index of immersion medium = 1, emission wavelength

= 515 nm, lateral and axial resolution = 0.2 µm, size = 256× 256× 256. The effective

filters hi are normalized such that ρ(H>H) = 1.

In order to simulate the presence of noise components, Gaussian white noise is added
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(a) (b) (c) (d)
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Figure 4.2: The x = 0 planes of the M = 4 mutually-tilted PSFs hi, generated by the
Richards and Wolf model (shown with gamma = 0.5). The angles shown correspond
to (a) 0◦, (b) 45◦, (c) 90◦ and (d) 135◦. The scale bar is 10 µm.

to the blurred result from each angle. The variance (σ2) is set the same for all angles

and is computed such that the blurred signal-to-noise ratio (BSNR) [114] in the first

observation, defined as:

BSNR = 10 log10

(
‖g0‖2

2 −N (mean(g0))2

Nσ2

)
, (4.43)

is equal to 40 dB. The initial estimate for the iterative process is computed using a

filtering operation akin to linear Wiener or Tikhonov filtering, following Figueiredo et al.

[34]:

w(0) = W̊>(H>H + βσ2I)−1H>g̃, (4.44)

where I denotes an identity matrix and β is chosen as 10−8 to yield best results in our

experiment.

The conventional single-channel fast TL deconvolution result after 10 iterations, us-

ing a J = 5 level decomposition in Daubechies-4 wavelet basis, is shown in Fig. 4.4(b),

with the regularization factor chosen as λ = 0.1. As was done by Vonesch and Unser

[115], we use a random shift of the estimate at the beginning of every fast TL iteration.

Using the same parameters and M = 4 mutually-tilted blurred observations acquired
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Figure 4.3: Comparison of the evolution of the SER values with the number of itera-
tions corresponding to single-view and multi-view FISTA deconvolution. Even though
both cases achieve convergence within 10 iterations, multi-view FISTA has a steeper
rise in SER due to the relatively less ill-posed nature of the deconvolution problem.

at angles uniformly-spaced over 180◦, about the x-axis, the multi-channel fast TL de-

convolution yields the result shown in Fig. 4.4(c), with evidently better axial resolution

than Fig. 4.4(b). For a quantitative comparison of the results, we next calculated the

signal-to-error ratio (SER), defined as:

SER(f ′)
def
= 10 log10

(
‖f‖2

2

‖f ′ − f‖2
2

)
. (4.45)

The SER values corresponding to the red channel of the datasets are shown in Fig. 4.3.

Note that both the single-channel and multi-channel forms of the algorithm achieve

convergence within around 10 iterations. However, since the deconvolution problem is

less ill-posed in the multi-channel scenario, the evolution of the SER results is much

steeper than the single-channel case, corroborating the results shown in Fig. 4.4.

Note that unless the microscope is specially designed to acquire images from multiple
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angles [99], it becomes necessary to tilt the samples appropriately using an external

hardware for multi-view microscopy. In our experiment, we simulate the stack rotations

to arrive at g̃, which is subsequently fed to our deconvolution algorithm.

The algorithm was run in Matlab (R2012b) on a Windows 64-bit machine, equipped

with a dual-core Intel Xeon 3.4-GHz CPU and 16 GB RAM. The coarse-to-fine [115]

update strategy was followed for both single-channel and multi-channel deconvolution,

which each took around 4 minutes for 10 iterations in our experiment involving 256 ×

256× 256 data stacks.

4.5 Conclusion

In this work, we have presented a multi-channel variation of the fast thresholded

Landweber algorithm for wavelet-regularized deconvolution. We have discussed the ap-

plicability of the framework in particular significance to multi-view 3D deconvolution

microscopy, where the filter in each channel can be interpreted as the microscope PSF at

a different angle. This was shown to improve upon the ill-posed nature of the conventional

deconvolution problem, with the information lost in any one channel being compensated

for in a different channel. Furthermore, we have shown that the iterative joint multi-

view deconvolution and fusion algorithm can be executed with the same computational

complexity as its single-view variant.
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Figure 4.4: Maximum intensity projections of experimental data stacks for two chan-
nels (red and green) representing fluorescence in (a) the specimen f , (i-iv) the M = 4
blurred observations gi, i = 0, . . . ,M−1, from the PSFs shown in Fig. 4.2(a) - (d), re-
spectively, (b) single-channel fast TL deconvolution result from (i) after 10 iterations,
and (c) multi-channel fast TL deconvolution result from (i-iv) after 10 iterations. The
subfigures represent the zoomed forms of the regions shown. The scale bar is 10 µm.
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Chapter 5

Depth-Variant Deconvolution and

Fusion for Optical Microscopy

Abstract11

Deconvolution offers an effective way to improve the data resolution in optical mi-

croscopy. While fast algorithms are available when the point-spread-function (PSF) is

shift-invariant, they are not directly applicable in thick samples, where the problem is

depth-variant (DV). Here, we propose a fast iterative-shrinkage-thresholding 3D decon-

volution method that uses different PSFs at every depth. This is realized by modeling the

imaging system as a multi-rate filter-bank, with each channel corresponding to a distinct

3D PSF dependent on the position along the optical axis. The complexity associated with

the thresholded Landweber update in each iteration of our DV algorithm is equivalent

to that of an iteration in an SI algorithm, multiplied by the number of channels in the

filter-bank. We have illustrated the effectiveness of our algorithm with simulated images

of a set of beads embedded in an aqueous gel and varying PSFs along the optical axis.

11This chapter is based on the reference [18] co-authored with M. Liebling.
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Figure 5.1: Each 2D plane imaged with optical sectioning, gi, is an inner-product
(along z) between the original 3D data f and the depth-varying PSF h>i .

5.1 Introduction

Optical microscopy is an important tool for imaging live samples. Volumetric 3D

imaging is possible in weakly-scattering objects by collecting a stack of images while

focusing the microscope objective at different depths in the sample. In wide-field mi-

croscopy, images are contaminated by out-of-focus light from planes above and below the

examined plane. This results in a spatial blur, particularly in the axial direction. The

image formation process is usually modeled as a linear space-invariant (SI) operation,

where the 3D object is magnified and convolved with the point-spread-function (PSF).

The 3D object can then be restored via suitable deconvolution algorithms [1], including

the classical Landweber deconvolution [57]. While the space-invariance assumption is

reasonable for relatively thin samples, when imaging thick samples, the shape of the PSF

varies with depth, particularly when there is a mismatch between the refractive indices

of the immersion medium (ni), any cover-slip (ng) and sample (ns) (Fig. 5.1).
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To restore images obtained with depth-dependent PSFs, several algorithms have been

proposed that involve breaking the dataset into smaller blocks on which efficient SI de-

convolution algorithms can be applied [67, 104]. The quality of such approaches depends

on the size of the blocks and the careful design of transition masks to merge them once de-

convolved. Other approaches approximate the depth-varying blur as a spatially weighted

combination of SI convolutions [81, 7]. In this work, we present an approach that di-

rectly considers a depth-variant PSF deconvolution problem, yet preserves the form of a

highly efficient SI deconvolution method. Specifically, we model the imaging system as

a multi-rate filter bank, where each plane along the optical axis is assigned to a channel

with a different PSF; the filter bank structure leads to a Landweber deconvolution that

uses an iterative-shrinkage-thresholding algorithm (ISTA).

This chapter is organized as follows. In Section 5.2, we introduce the image formation

model and the inverse problem. In Section 5.3, we describe the proposed method. In

Section 5.4, we characterize the algorithm on simulated images. In Section 5.5, we finally

offer our conclusions.

5.2 Problem Statement

We consider a 3D object with local intensity f(x, z), x = (x, y) ∈ R2, z ∈ R, imaged

with a system characterized by 3D PSFs hi(x, z) that are dependent on the axial position

(depth) of the microscope stage di = i∆d, where ∆d is the uniform step by which the

stage is moved between the acquisition of each slice during optical sectioning. The 2D

blurred image acquired by the camera for stage position d = di can then be modeled as:

gi(x)
def
=

∫∫∫
R3

f(ξ, η)·h>i (ξ−x, η) dξdη + ni(x), i = 0, . . . ,M−1 (5.1)

93



Depth-Variant Deconvolution and Fusion for Optical Microscopy Chapter 5

-1

z

y
x

(a)

(b)

(c)

-1

Figure 5.2: Block diagram of shift-invariant FISTA deconvolution (SI-FISTA, (a)+(c))
and proposed depth-variant FISTA deconvolution (DV-FISTA = (b) + (c)). Both
algorithms are based on a reblurring operation and Landweber iterations: (a) reblur-
ring in SI-FISTA [114, 115]; (b) reblurring in proposed DV-FISTA; (c) thresholded
Landweber deconvolution: the structure and complexity of the thresholding stage
remains the same for SI-FISTA and DV-FISTA.

for the i-th measured slice, where h>i (x, z)
def
= hi(−x,−z), and ni denotes additive mea-

surement noise. Note that this model is laterally shift-invariant and axially shift-variant,

since we do not require hi(x, z) = h0(x, di + z).

We sample f and hi on a discrete 3D grid with Nx×Ny×Nz voxels, with lateral and

axial sampling steps ∆x and ∆z, respectively. Similarly, we sample gi to form an Nx×Ny

image, with lateral sampling step ∆x. Note that the stage position i∆d (associated to

image gi) can be different from i∆z (the position of the i-th slice in f) [112]. This

mismatch is captured by the space variant PSF model, which we assume is known a

priori. After discretization, Eq. (5.1) can be rewritten in terms of matrices as:

gi
def
= DHif + ni, (5.2)
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where Hi are (Nx ·Ny ·Nz)× (Nx ·Ny ·Nz)-sized block-circulant matrices (for 3D circular

convolution with hi), D is the (Nx · Ny) × (Nx · Ny · Nz)-sized down-sampling matrix

that selects only the first z-plane of Hif , and where gi, f and ni are vectors containing

lexicographically arranged samples of gi, f and ni, respectively. The individual slices can

then be grouped together to be represented as:

g
def
=


g0

...

gM−1

 =


DH0

...

DHM−1

 f +


n0

...

nM−1

 def
= Hf + n. (5.3)

The inverse problem that we wish to solve is to find an estimate f̄ of f , given g and

H. We follow a transform-domain sparsity-based reconstruction approach [28, 114, 115]

that assumes f has a sparse wavelet representation f = Ψw, where Ψ is the synthesis

matrix whose columns are the elements of the wavelet basis and w is a set of (sparse)

wavelet coefficients. The estimate f̄ = Ψw̄ is found via minimization of the cost function:

C(w)
def
= ‖g −HΨw‖2

`2
+ λ‖w‖`1 , (5.4)

=
M−1∑
i=0

‖gi −DHiΨw‖2
`2

+ λ‖w‖`1 , (5.5)

where λ is a non-negative scalar quantity controlling wavelet regularization. Efficient

solutions to this problem have been proposed for the shift-invariant case when H is

block circulant using Shannon [114] and generic wavelet bases [115] with the sub-band

dependent ISTA (Fig. 5.2 (a) and (c)). We have previously showed that this method

remained applicable in the context of multi-view microscopy with an equivalent compu-

tational complexity as single-view processing [17]. Although our axially depth-variant

(DV) deconvolution problem also has the similar form of a multi-channel filter-bank, the

95



Depth-Variant Deconvolution and Fusion for Optical Microscopy Chapter 5

down- and up-sampling operations (Fig. 5.2 (b)) require additional adjustments for the

implementation to be efficient, as detailed in the section below.

5.3 Method

Vonesch and Unser [114, 115] have introduced an efficient multi-level sub-band de-

pendent ISTA solution to the minimization problem defined in Eq. (5.5) by considering

the wavelet decomposition f = Ψw =
∑J

j=1

∑
s∈Sj Ψj,swj,s, where wj,s = Ψ̊>j,sf denotes

the wavelet coefficients in the sub-band s ∈ Sj at scale j that is characterized by its

analysis and synthesis matrices Ψ̊j,s and Ψj,s, respectively. These notations are similar

to those described in Chapter 4. The ISTA solution involves alternating between two

steps: (i) a Landweber update of the wavelet coefficients from the previous iteration,

and (ii) wavelet sub-band weighted soft-thresholding of the coefficients computed in (i).

The performance of ISTA can be further sped up by computing the next iterate based

not only on the previous one, but also on two or more previously computed iterates (fast

ISTA, (FISTA) [5]). The steps of the minimization scheme can be outlined as follows:

w
(n)
j,s

def
= w̃

(n)
j,s +

(
τ(n−1) − 1

τ(n)

)(
w̃

(n)
j,s − w̃

(n−1)
j,s

)
, (5.6)

where w
(n)
j,s are the wavelet coefficients in the sub-band s at scale j during the n-th

iteration, and the temporary coefficients:

w̃
(n)
j,s

def
= Tλα−1

j,s/2

{
w

(n−1)
j,s + α−1

j,s r
(n−1)
j,s

}
, (5.7)
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are obtained via the soft-thresholding operation defined in Eq. (4.32), with the subband

dependent residuals defined as:

r
(n−1)
j,s

def
= Ψ>j,sH

>

g −H
J∑
j=1

∑
s′∈Sj

Ψj,s′w
(n−1)
j,s′

 , (5.8)

with the weighing factors defined as:

τ(n)
def
=

1 +
√

1 + 4τ 2
(n−1)

2
, (5.9)

αj,s ≥
∑
s′∈Sj

ρ
(
Ψ>j,s′H

>HΨj,s

)
, ∀s ∈ Sj. (5.10)

The weights αj,s for the subband s ∈ Sj at scale j are obtained from the spectral radius

operator ρ [37] which greatly accelerate convergence [115]. Commonly used initial condi-

tions include τ(0) = 1 and w̃
(0)
j,s = w

(0)
j,s = Ψ̊>j,sg. The block diagram of this minimization

approach is summarized in Fig. 5.2.

We emphasize that the matrix formulation is only formal as the matrices’ large sizes

are computationally prohibitive in practice. Efficient implementations of this algorithm

have been derived when H>H is block circulant [114, 115, 17], which, however, is not the

case for the DV problem at hand (due to the axial downsampling-upsampling operations).

Therefore, we have derived efficient ways to compute (a) H>H, and (b) the sub-band

dependent constants αj,s. Note that although H>H is not block-circulant, each Hi is

block-circulant and all operations executed in the analysis and synthesis side of the

filter-bank can still be computed using only point-wise multiplications and additions

using 3D discrete Fourier transforms (DFT). Specifically, the equivalent implementation
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of f̃ = H>g and f̃ (n) = H>Hf (n) using 2D/3D DFTs is given by:

ˆ̃f [u, w] =
M−1∑
k=0

ĝk[u] · ĥ∗k[u, w], (5.11)

ˆ̃f (n)[u, w] =
M−1∑
k=0

(
Nz−1∑
`=0

ĥk[u, `] · f̂ (n)[u, `]

Nz

)
ĥ∗k[u, w], (5.12)

where â (and â∗) denotes the 2D/3D DFT (and its complex-conjugate) of discrete im-

age/volume a, u = [u, v], for 0 ≤ u < Nx, 0 ≤ v < Ny, and 0 ≤ w < Nz. Using similar

expressions, we determine the sub-band dependent weights αj,s in Eq. (5.10) using the

power method [37] for an undecimated wavelet decomposition as:

αj,s = lim
m→∞

∑
s′∈Sj

∑
u,w

(
b̂ · â(m)

j,s′,s

)
[u, w]∑

u′,w′

(
b̂ · â(m−1)

j,s′,s

)
[u′, w′]

, (5.13)

â
(m)
j,s′,s[u, w] =

M−1∑
i=0

Nz−1∑
`=0

(
ĥi · ψ̂j,s · â(m−1)

j,s′,s

)
[u, `]

Nz

 · (ψ̂∗j,s′ · ĥ∗i) [u, w], (5.14)

where ψ̂j,s denotes the DFT of the wavelet (or scaling function) that spans the sub-

space associated with sub-band s at scale j, while b̂ and â
(0)
j,s′,s are random (nonzero)

signals. This can be readily extended for a wavelet decomposition scheme with dyadic

sub-sampling by aliasing the frequency components of â
(m)
j,s′,s (s′, s ∈ Sj) in Eq. (5.14) to

be periodic by Nx/2
j, Ny/2

j and Nz/2
j, along x, y and z, respectively. Good estimates

of αj,s can be obtained from as few as 10 iterations in Eq. (5.13).

5.4 Experimental Results

In order to illustrate the performance of our algorithm, we considered a 3D stack

(64 × 64 × 64) with 15 point sources located at different axial positions (Fig. 5.3(a-b)).
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We next generated M = 64 blurred 2D observations using the following PSF parameters

(Fig. 5.1): objective NA = 0.9, ni = 1, working distance ti = 1.9mm, ng = 1.515,

thickness of cover-glass tg = 175µm, ns = 1.33, ∆x = ∆y = 0.5µm, ∆z = 0.8µm,

∆d = 0.59µm. We added Gaussian white noise to the blurred result (Fig. 5.3(c)) with

noise variance set such that the blurred signal-to-noise ratio (BSNR) [114] was 40 dB.

We conducted two independent deconvolution experiments with the blurred observa-

tions. In the first case, we applied spatially-invariant FISTA deconvolution (SI-FISTA,

adapted from [115] using a Level-1 cubic spline dyadic wavelet decomposition and λ =

0.1), where we used only a single 3D PSF at a time (either h0, h20, h40, h60, or the mean

of all 64 PSFs hmean, after compensating for axial-shift). Since the PSF shape varies

with depth, none is appropriate as is evident from the deconvolved volume estimated

with hmean after 50 iterations (Fig. 5.3(d)). Next, we used our proposed depth-variant

FISTA deconvolution (DV-FISTA) to estimate the deconvolved volume using 64 different

PSFs (Fig. 5.3(e)), with all other parameters set similar to the SI-FISTA experiment. As

illustrated in Fig. 5.3(e), the reconstructed volume has fewer artifacts when compared

to Fig. 5.3(d). The evolution of the signal-to-error gain (SERG) in both experiments is

shown in (Fig. 5.3(f)), where

SERG(f ′)
def
= 20 log10

( ‖g − f‖`2
‖f ′ − f‖`2

)
. (5.15)

We implemented the algorithm in Matlab (R2011b) and ran the experiments on a

Windows 64-bit machine, equipped with a dual-core Intel Xeon 3.4-GHz CPU and 16

GB RAM. The pre-computation of the sub-band dependent weight constants (αj,s) for

the given set of parameters was done using 10 iterations of the power method in Eq. (5.13),

which took about 1 minute per iteration. Note that computation of these weights is only

required once for a given imaging setup (i.e. all frames of a time-lapse would use the
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same weights). The iterative image reconstruction process took about 5.5 seconds per it-

eration, of which 5 seconds were spent computing the reblurred signal by applying H>H.

In contrast, the shift-invariant method took about 0.55 seconds for each iteration. In

both cases, updating the wavelet coefficients by soft-thresholding the Landweber update

is computed in 0.5 seconds, since the DV filter-bank structure does not introduce any

additional complexity (Fig. 5.2(c)). These results are in line with the theoretical com-

plexity, whose order is M times more complex than that of the shift-invariant method.

Because the computation in each of the M -channels could be done independently of that

of the other channels, the workload could be delegated to a cluster of computers at each

iteration to bring down the effective computation time.

5.5 Conclusion

We have presented a fast ISTA algorithm for the joint deconvolution and fusion

problem with PSFs that are depth-variant. The algorithm naturally handles differing

sampling steps associated with the blurred data stack (stage position step ∆d) and the

PSF kernel (∆z). Also, the multi-channel framework can handle a number of blurred

z-slices (M) independent of the dimensions of the PSF kernel and reconstruction (in

practice, we set M ≥ Nz), which could even be non-uniformly spaced. Furthermore,

since the proposed DV-FISTA is applied to the entire dataset rather than blocks, it does

not require post-processing operations with suitable transition masks to fuse individually

deblurred sub-regions in the data.

100



Depth-Variant Deconvolution and Fusion for Optical Microscopy Chapter 5

(b)

(d) (e)

(c)

(f)

z

x

0 10 20 30 40 50
−4

−2

0

2

4

6

8

10

12

Iterations

S
E

R
G

 (
d

B
)

 

SI-FISTA

DV-FISTA

x

y

z

(a)

(v)

(ii)

(iii)

(iv)

(vi)

(i)

(vi)

(i) (ii)

(iii) (iv)

(v)

Figure 5.3: Deconvolution results: (a)-(b) f , (c) g, (d) SI-FISTA result (using hmean),
(e) DV-FISTA result, (f) SERG comparison of the SI-FISTA and DV-FISTA results.

101



Chapter 6

Non-redundant Temporal

Registration for In Vivo Cardiac

Microscopy

Abstract12

Dynamic time warping (DTW) permits the elastic alignment of an input time sequence to

a reference. Here, we propose quasi-periodic dynamic time warping (QPDTW), a variant

of DTW, for signals derived from quasi-periodic processes. Our method is capable of both

temporally warping and wrapping the input sequence by allowing for jump discontinuities

in the non-linear alignment function akin to those found in wrapped phase functions.

This enables input sequences to have durations as short as a single cycle starting at any

arbitrary phase, for reference sequences with any arbitrary duration. Our method is

particularly useful in cardiac imaging for applications such as the synchronization of 2D

+ time image sequences to reconstruct 3D + time volumetric sequences, virtual frame-

12This chapter is based on the reference [14] co-authored with K. Chan, J. Ohn, S. Bhat, and M.
Liebling, and is deployed in the reference [84] co-authored with C. Ramspacher et al. to study the
implications of developmental aberrations in heart biomechanics.
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rate improvement via reordering of sequences, and noise reduction by the utilization of

multiple time-points with an equivalent phase. We evaluate our method via experiments

on simulated 1D signals, B-spline based heart phantoms, and in vivo cardiac sequences

acquired in live transgenic zebrafish embryos using fluorescence microscopy.

6.1 Introduction

The development and dynamics of the living vertebrate heart is widely studied in

modern biology using model organisms such as zebrafish, mice, quails, and chicks. This

typically requires imaging the beating embryonic heart as volumes using various imaging

modalities at different stages of its morphological development. Several imaging tech-

niques have been employed for this purpose such as confocal microscopy [64], optical

coherence tomography (OCT) [48, 58], and light-sheet microscopy [47, 106]. However,

the imaging speed of these techniques is currently not high enough to capture the dy-

namics of fast moving cardiovascular structures in 3D and time concurrently. Although

hardware advances have allowed to effectively acquire 3D volumes of the beating heart

[31], the number of optical sections that can be acquired is still limited.

The speed limitation of current imaging techniques can be mitigated by exploiting

the repetitive heart motion and acquiring several 2D + time sequences separately that

are finally used together to reconstruct dynamic volumes. Such approaches require either

prospective or retrospective gating. Prospective gating techniques work by only triggering

snapshots at a desired phase in the cardiac cycle via hardware customization [102, 101].

Retrospective gating techniques, on the other hand, rely on image processing algorithms

for the temporal registration of unsynchronized sequences [64]. To ensure that a full

cardiac cycle (starting at the same cardiac phase as the reference) is available within

the data at the time of post-processing, retrospective gating methods often require that
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Figure 6.1: Our imaging model comprises (a) periodic sequences fk(t) = fk(t + T ),
related to (b) quasi-periodic (measured) sequences gk(t) = fk(pk(t)), 0 ≤ t ≤ Lk, via
(c) phase functions pk, k = 0, 1.

at least two cardiac cycles be collected, which increases both collection time and size,

potentially damaging the samples.

In this work, we address the limitations of (non-)rigid temporal registration algo-

rithms used in retrospective gating by deriving a modified dynamic time warping (DTW)

technique applicable for quasi-periodic signals. Our method enables the input sequence

to be temporally wrapped (in addition to being warped) in order to match a reference

signal, thereby alleviating the constraints on the minimal duration of the data collected.

We also show how such a framework can be used when multiple cycles are available in

a single quasi-periodic sequence to infer intermediary frames by rearrangement and to

reduce noise by combining frames of equivalent phases.

This work is organized as follows. We introduce our imaging model in Section 6.2 and

discuss the existence of functions capable of warping a quasi-periodic sequence to match

a reference in Section 6.3. We describe our proposed algorithms for synchronization,

re-binning, and compounding discrete-time quasi-periodic sequences in Section 6.4. We

discuss practical applications of our algorithms for cardiac imaging in Section 6.5. We
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present our simulations and experimental evaluations in Section 6.6. We discuss the

features of our method in Section 6.7 and finally conclude in Section 6.8.

6.2 Model of Quasi-Periodic Signals

We consider two vectors f0(t) and f1(t), each with P time-dependent components:

fk(t)
def
=


fk,0(t)

...

fk,P−1(t)

 ∈ RP , t ∈ R, k = 0, 1. (6.1)

The signals are T -periodic:

fk(t)
def
= fk(t+ T ), t ∈ R, k = 0, 1. (6.2)

We will further assume that f0 and f1 are in synchrony, and that time-shifts by an

integer number of periods s = nT , n ∈ Z, in f0 minimize the following quantity:

Q(s)
def
=

∫ T

0

Ψ (f0(t+ s), f1(t)) dt, (6.3)

where Ψ : RP ×RP → R is a dissimilarity function such as the `1-norm of the difference

of the input vectors:

Ψ`1 (a,b)
def
= ‖a− b‖1 , a,b ∈ RP . (6.4)

We next define two quasi-periodic sequences g0 (reference) and g1 (input) by warp-

ing the time axis of the periodic sequences f0 and f1 via phase functions φ0 and φ1,
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respectively:

gk(t)
def
= fk(φk(t)), 0 ≤ t ≤ Lk, k = 0, 1, (6.5)

where φ0(0)
def
= 0 and φ1(0) ∈ [0, T ). We only consider phase functions φk : [0, Lk] →

[φk(0), φk(Lk)] that are continuous, differentiable, and monotonically increasing. We also

assume that their derivatives are bounded by αmin and αmax:

αmin ≤
d

dt
φk(t) ≤ αmax, 0 ≤ t ≤ Lk, (6.6)

where 0 < αmin ≤ 1 ≤ αmax. The duration of the shortest and longest cycles possible in

g0 and g1 can then be inferred as Tmin = T/αmax and Tmax = T/αmin, respectively.

We define ηk ∈ R+, the (possibly non-integer) number of cycles in gk, as:

ηk
def
=
φk(Lk)− φk(0)

T
, (6.7)

which lies in the range:

Lk
Tmax

≤ ηk ≤
Lk
Tmin

. (6.8)

We define pk : [0, Lk]→ [0, T ), the T -wrapped phase function of φk, as:

pk(t)
def
= WT (φk(t)) , 0 ≤ t ≤ Lk, k = 0, 1, (6.9)

where WT : R→ [0, T ) represents the T -wrapping operator:

WT (x)
def
= x−

⌊ x
T

⌋
T, (6.10)

with b·c denoting the floor operator. Since fk is T -periodic, the relation between fk and
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Figure 6.2: We seek a temporal re-warping function that warps g1 to match the phase
of g0. (a-b) If g1 spans at least one cycle more than g0 (η1 ≥ η0 + 1), there exists
at least one continuous and monotonically increasing re-warping function w0. (c-d)
If g1 spans at least one cycle (η1 ≥ 1), there exists at least one piece-wise continuous
re-warping function w(0). The colors represent different cycles in the sequences.

gk, expressed in Eq. (6.5), can also be written using pk as:

gk(t)
def
= fk (pk(t)) , 0 ≤ t ≤ Lk, k = 0, 1, (6.11)

which is illustrated in Fig. 6.1.
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Table 6.1: Notations used in the quasi-periodic imaging model.

Symbol Meaning
f0(t), f1(t) T -periodic & pre-synchronized time-sequences
g0(t),g1(t) Quasi-periodic time-sequences
Lk Time-length of gk, k = 0, 1
ηk No. of quasi-periodic cycles in gk, k = 0, 1
φk(t) Phase function for gk, k = 0, 1
pk(t) T -wrapped form of φk, k = 0, 1
wj(t) Continuous re-warping functions
w(j)(t) Piece-wise continuous re-warping functions
wmin, wmax Min., max. value of dwj(t)/dt
Tmin, Tmax Min., max. time-period of cycles in g0 & g1

gk[n] = gk(n∆t) Temporally sampled gk, k = 0, 1
g̃k[n] ≈ gk(n∆t/ρ) Temporally over-sampled gk, k = 0, 1
Nk No. of discrete time points in gk, k = 0, 1

Ñk No. of discrete time points in g̃k, k = 0, 1
w̃j[n] Discrete estimate of wj
w̃(j)[n] Discrete estimate of w(j)

∆wmin, ∆wmax Min., max. value of w̃j[n]− w̃j[n− 1]

T̃min, T̃max Min., max. discrete time-period of cycles in g̃k
Ψ Dissimilarity function in objective function
Γ Regularization function in objective function
ξ Max. no. of discontinuities allowed in solution
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Figure 6.3: We seek a temporal re-warping function that warps g1 to match the phase
of g0. (a-b) If g1 spans at least one cycle more than g0 (η1 ≥ η0 + 1), there exists
at least one continuous and monotonically increasing re-warping function w0. (c-d)
If g1 spans at least one cycle (η1 ≥ 1), there exists at least one piece-wise continuous
re-warping function w(0). The colors represent different cycles in the sequences.

6.3 Existence of Re-warping Functions

We examine the existence of functions w that satisfy:

p1 (w(t))
def
= p0(t), (6.12)

so that applying w to g1 re-warps it as:

g1 (w(t)) = f1 (p0(t)) , (6.13)

matching the phase of the input g1 to that of the reference g0. We recall that, by

definition, f1 is in synchrony with f0 and g0(t) = f0 (p0(t)) [see Eq. (6.11)]. Re-warping
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functions w that satisfy Eq. (6.12) for any t ∈ [0, L0] are guaranteed to exist when g1

spans at least one period, i.e. η1 ≥ 1, or, equivalently, when L1 ≥ Tmax, which ensures

that all phases potentially contained in g0 are also contained in g1.

In the following subsections, we will explore the conditions for the existence of re-

warping functions w(t) valid over all or part of the interval t ∈ [0, L0] and that are either

continuous or piece-wise continuous.

6.3.1 Continuous Re-warping Functions

If g1 spans at least one cycle more than g0, i.e. η1 ≥ η0 + 1 (which is guaranteed

when L1 ≥ L0Tmax/Tmin + Tmax), then there exist J ≥ 1 continuous and monotonically

increasing re-warping functions that satisfy Eq. (6.12) for all t ∈ [0, L0]. These functions

are obtained as:

wj(t)
def
=


φ−1

1 (φ0(t) + jT ) , if p1(0) = 0

φ−1
1 (φ0(t) + (j + 1)T ) , otherwise,

(6.14)

for j = 0, . . . , J − 1, where J is given by:

J
def
=


⌊
φ1(L1)−φ0(L0)

T

⌋
+ 1, if p1(0) = 0⌊

φ1(L1)−φ0(L0)
T

⌋
, otherwise.

(6.15)

In addition, there also exist I continuous and monotonically increasing re-warping

functions wj(t), j = −1,−2, . . . ,−I, defined as in Eq. (6.14), that satisfy Eq. (6.12) for
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only t ∈ [tstart
j , L0], with:

tstart
j

def
=


φ−1

0 (p1(0)− jT ) , if p1(0) = 0

φ−1
0 (p1(0)− (j + 1)T ) , otherwise,

(6.16)

and

I
def
=


⌊
φ0(L0)−p1(0)

T

⌋
, if p1(0) = 0⌊

φ0(L0)−p1(0)
T

⌋
+ 1, otherwise.

(6.17)

Additionally, there exist K continuous and monotonically increasing re-warping func-

tions wj(t), j = J, J+1, . . . , J+K−1, defined as in Eq. (6.14), and that satisfy Eq. (6.12)

for only t ∈ [0, tend
j ], with:

tend
j

def
= φ−1

0 (p1(L1) + (J +K − 1− j)T ) , (6.18)

and

K
def
=

⌈
φ0 (L0)− p1(L1)

T

⌉
, (6.19)

where d·e denotes the ceiling operator.

These continuous and monotonically increasing re-warping functions are shown in

Fig. 6.2(a-b). Note that for a given pair of integers k and `, where k < `, we have (i)

wk(t) < w`(t), (ii) tstart
k > tstart

` , and (iii) tend
k > tend

` , when they are each defined.

Using the relations in Eqs. (6.6) and (6.14), the minimum and maximum values of

the derivatives of re-warping functions wj are given by wmin and wmax:

wmin =
αmin

αmax

≤ d

dt
wj(t) ≤ wmax =

αmax

αmin

. (6.20)

When the quasi-periodic sequences g0 and g1 are identical to each other, there is only
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one continuous and monotonically increasing re-warping function that satisfies Eq. (6.12)

for all t ∈ [0, L0] (i.e. J = 1), namely the identity function w0(t) = t, 0 ≤ t ≤ L0.

Interestingly, in this special case, the functions wj and w−j are symmetric about the

diagonal (Fig. 6.4):

wj(t) = w−1
−j (t), 0 ≤ t ≤ tend

j , j = 1, . . . , K, (6.21)

where tend
j = w−j(L0). In this case, note that K = I = bη1c.

6.3.2 Piece-wise Continuous Re-warping Functions

If g1 spans at least one cycle, i.e. η1 ≥ 1 (which is guaranteed when L1 ≥ Tmax),

then there exists at least one piece-wise continuous re-warping function w(0) that satisfies

Eq. (6.12) for all t ∈ [0, L0]. We define this and a family of related piece-wise continuous

functions as:

w(j)(t)
def
=


φ−1

1 (p0(t) + jT ) , if p0(t) ≥ p1(0)

φ−1
1 (p0(t) + (j + 1)T ) , otherwise,

(6.22)

for j = 0, . . . , bη1c−1. Each w(j) is monotonically increasing except when jump disconti-

nuities occur at tstart
−1 , . . . , tstart

−I . Additionally, if the number of cycles in g1 is non-integer,

i.e η1 ∈ [1,∞)\{1, 2, . . .}, there exists an extra piece-wise continuous re-warping function

w(bη1c)(t) defined only for a disconnected set of sub-intervals of t ∈ [0, L0] that satisfy:

φ1

(
w(bη1c−1)(t)

)
< φ1(w(0)(t)) + bη1cT ≤ φ1 (L1) . (6.23)

The continuous solutions wj defined in Eq. (6.14) can be constructed by combining

the piece-wise continuous solutions w(j) in Eq. (6.22), as depicted in Fig. 6.2(b).
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(b)

0

(a)
0

Input sequence (with multiple cycles)

Warped and wrapped input sequence

to identify all time points with similar phase

Figure 6.4: (a-b) When g0 = g1, there only exists one continuous and monotonically
increasing re-warping function w0(t) = t, valid for all t ∈ [0, L0]. The other continuous
warping functions wj and w−j have a symmetric nature about the identity function
for j = 1, . . . ,K. The colors represent different cycles in the sequence.

If g1 spans exactly one cycle (η1 = 1), then w(0) represents the unique piece-wise

continuous and monotonically increasing solution that satisfies Eq. (6.12), as shown in

Fig. 6.3(a-b). A summary of the notations introduced so far is summarized in Table 6.1.
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Figure 6.5: The regularization function used for QPDTW. The regularization function
serves to penalize excessive dilation/contraction of the input sequence and to also allow
jump discontinuities (from monotonicity) in the re-warping solution, when necessary.

6.4 Algorithms for Synchronizing, Re-binning, and

Compounding Discrete-Time Sequences

We now present two discrete-time algorithms to (A) synchronize a pair of quasi-

periodic sequences, and (B) identify all time points in a single quasi-periodic sequence

with an equivalent phase by comparing the sequence to itself.

6.4.1 Discrete-time Re-warping for Sequence Synchronization

We consider two discrete-time sequences g0[n] and g1[n] that are obtained by sampling

g0(t) and g1(t) in time as:

gk[n]
def
= gk(n∆t), 0 ≤ n < Nk, k = 0, 1, (6.24)
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Figure 6.6: An example of the discrete re-warping function w̃ returned by QPDTW for
the quasi-periodic signals shown. Note that the maximum number of discontinuities
in the estimated solution shown here is set as ξ = 1.

where ∆t refers to the temporal sampling step. We also consider g̃1, a temporally over-

sampled version of g1 estimated via temporal interpolation:

g̃1[n] ≈ g1(n∆t/ρ), 0 ≤ n < Ñ1
def
= ρ(N1 − 1) + 1, (6.25)

where ρ ∈ N denotes the over-sampling factor. We then consider the problem of estimat-

ing a discrete-time re-warping function w̃ : {0, . . . , N0− 1} → {0, . . . , Ñ1− 1}, a discrete

equivalent of w in Eq. (6.12), such that g̃1 [w̃[n]] is synchronized to g0[n], 0 ≤ n < N0.

We solve for w̃ by finding the global minimum to the following objective function:

O{w} def
=

N0−1∑
n=0

Ψ (g̃1 [w[n]] ,g0[n]) + λ

N0−1∑
i=1

Γ [w[i], w[i− 1]] , (6.26)

subject to the constraint that the number of jump discontinuities in w does not exceed a

chosen value of ξ. This constraint provides the end-user with the additional flexibility to

choose solutions that have limited number of discontinuities. However, if inconsequential
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for an application, this number can be set to ξ → ∞ with no significant repercussions,

since, as we shall discuss shortly, we regularize the objective function to allow for discon-

tinuities only when they are reasonable.

Here, the first term compares a temporally warped form of g1 (using a candidate

discrete warping function w[·]) with g0 and rewards similarity. The second term comprises

a regularization function Γ whose influence is controlled by a non-negative scalar λ. The

regularization term serves to (i) prevent the warping function from excessively distorting

(contracting or dilating) the signal, and (ii) ensure the warping function is monotonically

increasing except at a few time points (equivalent to tstart
j ), that join partial solutions.

We fulfill these requirements expected of the regularization in two steps.

To realize (i), we employ a polynomial function of the form:

γ [m]
def
=


a |m− ρ|b + c, ∆wmin ≤ m ≤ ∆wmax

∞, otherwise,

(6.27)

where a, b, c ≥ 0 are three constants (empirically set to a = b = c = 1), and ∆wmin =

bρ · Tmin/Tmaxc and ∆wmax = dρ · Tmax/Tmine are the minimum and maximum possible

values for the finite difference ∆w[n] = w[n]−w[n− 1], n = 1, . . . , N0 − 1. The function

γ penalizes slopes that differ from identity (after taking into account the over-sampling

factor ρ) and forbids slopes gentler than ∆wmin (excessive dilation) or steeper than ∆wmax

(excessive contraction), as shown in Fig. 6.5(a).

Though the concept of jump discontinuities for re-warping functions no longer applies

in a discrete setting, the requirement represented in (ii) for the regularization term is

essential since it relaxes the strict requirement on the slope given in Eq. (6.27) and

allows for the discrete equivalent of jump discontinuities (finite differences outside the

bounds of ∆wmin and ∆wmax) found in piece-wise continuous re-warping functions. We
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achieve this by assigning a fixed cost γjump to the finite difference ∆w[n] when:

0 ≤ w[n] < ∆wmax, 1 ≤ n < N0, (6.28)

and require that the discontinuities, when they occur, be of a minimum amount T̃min [see

Fig. 6.5(b)]:

w[n−1] ≥ w[n]+T̃min, 1 ≤ n < N0, (6.29)

where T̃min = Tmin · ρ/∆t represents the discrete equivalent of Tmin. Similarly, we will use

T̃max = Tmax · ρ/∆t to denote the discrete equivalent of Tmax.

We finally define the function Γ used in Eq. (6.26) as:

Γ [w[n], w[n− 1]]
def
=


γjump, if Eqs. (6.28) and (6.29) hold

γ [∆w[n]] , otherwise.

(6.30)

When the similarity and regularization terms are normalized to unity, setting λ ≥ 0.5 is

a typical choice when the sequences are nearly periodic in nature. On the other hand,

if there is significant quasi-periodicity in the sequences, we set 0 < λ < 0.5 to avoid

excessive penalization of the dilation and contraction necessary in the temporal warping

function. As long as the values of λ are varied within these limits, there is no notable

effect on the results estimated. Furthermore, in order to allow for jump discontinuities

(only when necessary) in an otherwise monotonically increasing temporal re-warping

function, we assign γjump = max(γ(∆wmin), γ(∆wmax)) in our model. Albeit, assigning

0 < γjump ≤ max(γ(∆wmin), γ(∆wmax)) does not significantly affect the accuracy of the

re-warping functions estimated owing to the conditional safeguards placed by Eqs. (6.28)

and (6.29) in the regularization function defined in Eq. (6.30).

117



Non-redundant Temporal Registration for In Vivo Cardiac Microscopy Chapter 6

We minimize the objective function in Eq. (6.26) by using a dynamic programming

framework since it conforms to a Hidden Markov Model (see Appendix 6.A.1). Our

approach will be similar to the DTW technique [76]. Since it extends it by accounting

for quasi-periodicity and phase wrappings (that account for select discontinuities), we

refer to our method as quasi-periodic dynamic time warping (QPDTW). We start by

forming a cumulative cost matrix C defined as:

C[m, 0]
def
= Ψ (g̃1[m],g0[0]) , (6.31)

C[m,n]
def
= C[I[m,n], n− 1] + Ψ (g̃1 [m] ,g0[n]) + λ · Γ [m, I[m,n]] · M[m, I[m,n], n− 1],

(6.32)

where I[m,n] is a matrix entry that records the best index in the preceding column n−1

defined as:

I[m,n]
def
= arg min

i
C[i, n− 1] + λ · Γ[m, i] · M[m, i, n− 1], (6.33)

for m = 0, . . . , Ñ1−1, and n = 1, . . . , N0−1. Here,M is a mask matrix that ensures the

number of discrete discontinuities in the solution does not exceed ξ and is defined as:

M[m, i, n] =


∞, if D[i, n] > ξ

1, otherwise,

(6.34)

for i,m = 0, . . . , Ñ1 − 1, and n = 0, . . . , N0 − 1. The number of discontinuities in the

path found by back-propagating from the reference time index 0 ≤ n < N0 and the
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interpolated time index 0 ≤ i < Ñ1 is entered in the matrix D cumulatively as:

D[i, n]
def
=


0, if n = 0

D[I[i, n], n− 1], if ∆wmin ≤ i− I[i, n] ≤ ∆wmax

D[I[i, n], n− 1] + 1, otherwise,

(6.35)

for i = 0, . . . , Ñ1− 1, and n = 0, . . . , N0− 1. The optimal function w̃ can be traced back

as in the Viterbi algorithm [82]:

w̃[n] = I[w̃[n+ 1], n+ 1], (6.36)

for n = N0 − 2, . . . , 1, 0 with the initial condition:

w̃[N0 − 1] = arg min
i∈{0,...,Ñ1−1}

C [i, N0 − 1] . (6.37)

The solution w̃ estimated with QPDTW is a discrete approximation with sections that

coincide with the discrete equivalent of re-warping functions wj and w(j) defined in

Eqs. (6.14) and (6.22), respectively, with discontinuities (if any) only occurring at time

points where w(0) has discontinuities, as illustrated in the example shown in Fig. 6.6,

where the maximum number of discontinuities (from monotonicity) is chosen as ξ = 1.

6.4.2 Intra-sequence Processing

We now adapt our QPDTW framework to estimate intermediary time points of a

single quasi-periodic sequence by using other cycles in the same sequence—an approach

we term self-QPDTW. Since only one sequence is involved, we drop the subscripts for

brevity, i.e. g = g1 and N = N1.
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We aim to find discrete-time warping functions that act as discrete estimates of wj,

which we denote as w̃j, for j = −1,−2, . . . ,−I defined in the range ñstart
j ≤ n < Ñ ,

and for j = 1, 2, . . . , I, defined in the range 0 ≤ n ≤ ñend
j . Starting with w̃0[n] = n,

0 ≤ n < Ñ , we proceed to determine the I sequences w̃j recursively, j = −1,−2, . . . ,−I,

by repeatedly minimizing the objective function:

O{w} def
=

Ñ−1∑
n=0

Ψ (g̃[w[n]], g̃ [n]) + λ
Ñ−1∑
i=1

Γ [w[i], w[i− 1]] , (6.38)

subject to the following constraints:

T̃min ≤ |n− w[n]| < Ñ (6.39)

T̃min ≤ w̃j+1[Ñ − 1]− w̃j[Ñ − 1] ≤ T̃max. (6.40)

Given the function w̄[n] that minimizes the criterionO with conditions given in Eqs. (6.39)

and (6.40), for n = 0, . . . , Ñ − 1, we define w̃j[n] as the last jump-free sub-sequence:

w̃j[n]
def
=


w̄[n], ñstart

j ≤ n < Ñ

undefined, otherwise,

(6.41)

where we define ñstart
j , the discrete equivalent of tstart

j , as the minimum time index n such

that:

∆wmin ≤ w̃[n+ 1]− w̃[n] ≤ ∆wmax. (6.42)

Since the objective function for self-QPDTW in Eq. (6.38) is similar to that for QPDTW

in Eq. (6.26), by substituting g0 = g̃ and g1 = g, we minimize it using the same dynamic

programming framework as described in the previous subsection. However, in order to

account for the constraints placed for self-QPDTW in Eqs. (6.39) and (6.40), we redefine
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the mask matrix M used in Eq. (6.34) as:

M[m, i, n] =


1, T̃min ≤ |m− n| < Ñ

∞, otherwise,

(6.43)

for 0 ≤ m,n < Ñ . We then recursively find the I local minima and trace back using the

Viterbi algorithm [82] as:

w̃j[Ñ − 1] = arg min
w̃j+1[Ñ−1]−T̃max≤i≤w̃j+1[Ñ−1]−T̃min

C[i, Ñ − 1], (6.44)

w̃j[n] = I[w̃j[n+ 1], n+ 1], (6.45)

for j = −1,−2, . . . ,−I and for n = Ñ − 2, . . . , ñstart
j . Recalling Eq. (6.21), we estimate

the discrete equivalent of wj(t) = w−1
−j (t), j = 1, . . . , I, as:

w̃j
[
ñend
j

]
= Ñ − 1, (6.46)

w̃j[n] = I[w̃j[n+ 1], n+ 1], (6.47)

where ñend
j = w̃−j[Ñ − 1] and n = ñend

j − 1, . . . , 0.

We denote S−n = {w̃−1[n], . . . , w̃j[n], . . . , w̃−I [n] | ñstart
j ≤ n < Ñ}, as the set of all time

indices anterior to n that have an equivalent phase as n [see Fig. 6.9(a-b)]. Similarly, we

denote S+
n = {w̃1[n], . . . , w̃j[n], . . . , w̃I [n] | 0 ≤ n ≤ ñend

j }, as the set of all time indices

posterior to n that have an equivalent phase as n [see Fig. 6.9(a-b)]. Finally, we denote

Sn = S−n ∪ S+
n as the collection of all time indices that have an equivalent phase as n.
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...

...

...

...

...

Figure 6.7: For each sequence gin
k , the reference index R(k) ∈ {0, . . . , k − 1} defines

which sequence (that has already been synchronized) acts as its intermediary reference.

6.5 Applications in Cardiac Imaging

In this section, we describe how the algorithms described in Section 6.4 can be used

for applications in cardiac imaging.

6.5.1 Synchronization of Multi-dimensional Cardiac Sequences

When using QPDTW for the temporal synchronization of multi-dimensional cardiac

sequences, multiple quasi-periodic sequences gin
k , k = 0, . . . ,M − 1, are involved, where

they may each represent measurements at a different axial location, imaging modality,

or age. All these sequences need to be mutually synchronized before they can be mean-

ingfully visualized. For each input sequence gin
k , k = 1, . . . ,M − 1, a reference index,

R(k) ∈ {0, . . . , k − 1}, can be chosen according to the manner in which the synchro-

nization is to be performed. For instance, if every sequence gin
k is to be compared with

a common reference gin
0 , then R(k) = 0, for k = 1, . . . ,M − 1 (such a geometry would

apply to the method described in [59]). Alternatively, given a set of parallel sections

acquired sequentially at different axial positions, each sequence can be synchronized to

its neighbor, starting from the center and proceeding recursively towards both ends [64].

On numbering the sequences following the example shown in Fig. 6.7, the reference index
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sequence would then be R(k) = k − 1, for k ∈ {1, . . . ,M − 1} \ {dM/2e} and R(k) = 0,

for k = dM/2e. The general registration algorithm is described below.

Algorithm 6.1 Sequential synchronization of multiple sequences

1: For each sequence index k = 1, . . . ,M − 1, designate a reference index R(k) ∈
{0, . . . , k − 1}.

2: gout
0 ← gin

0 .
3: for k ← 1 to M − 1 do
4: g1 ← gin

k .
5: g0 ← gout

R(k).
6: Given g0 and g1, use QPDTW to find w̃.
7: w̃out

k ← w̃.
8: gout

k [n]← g̃k[w̃
out
k [n]], 0 ≤ n < N0.

9: end for

6.5.2 Temporal Over-sampling using Multiple Cycles

Self-QPDTW can be used to temporally rearrange frames belonging to multiple cycles

in a quasi-periodic cardiac sequence to yield an output sequence with higher frame-rate, as

illustrated in Fig. 6.8. This is in contrast with techniques that assume perfect periodicity

and attempt to estimate the time-period of the cycles to subsequently rearrange and re-

sample the sequence with a higher frame-rate [35, 66]. Specifically, given a quasi-periodic

sequence g, the self-QPDTW technique can be used to find multiple warping functions

w̃j, j = ±1,±2, . . . ,±I. Using this information, the best estimate of the intermediary

frame at n, denoted as ẘ[n], can be found among all the warping functions returned by

self-QPDTW as:

ẘ[n]
def
= arg min

i∈Sn
Ψ (g [round (i/ρ)] , g̃[n]) , 0 ≤ n < Ñ, (6.48)
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Figure 6.8: (a-b) The multiple warping functions found using self-QPDTW for a
sequence, g, with η = 7.5 cycles, T = 10.125, ∆t = 1, αmin = 0.65, αmax = 1.35, and
ρ = 2, overlaid with ẘ[n] shown as red dots for each n. (c) The time points in g are
rearranged to yield (d) g̊ with the frame-rate increased by ρ = 2. The orange dots in
(d) represent the new time-points added as a result of temporal rearrangement.
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and the temporally rearranged sequence can be estimated as:

g̊[n]
def
= g [round (ẘ[n]/ρ)] , 0 ≤ n < Ñ. (6.49)

6.5.3 Multi-cycle Noise Reduction

The self-QPDTW framework can be used to find all frames with the same cardiac

phase as any given frame in the sequence. Given such a set of same-phase frames,

techniques ranging from pixel-wise median filtering [9] to non-local-means [4] can be

used to reduce noise. Our algorithm relieves limitations of past algorithms that require

pre-cutting the sequence into multiple pieces [9] and that are limited to noise removal on

a subset of the entire sequence.

Considering the example of point-wise averaging for noise reduction, the denoised

output can be estimated as:

ḡ[n]
def
=

1

card (Snρ) + 1

(
g[n] +

∑
i∈Snρ

g [round (i/ρ)]
)
, (6.50)

for 0 ≤ n < N , where card(S) denotes the number of frames in the set S. This is

illustrated in Fig. 6.9 using a noisy quasi-periodic sinusoidal signal.
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Figure 6.9: (a-b) The multiple warping functions found using self-QPDTW for a
sequence, g, with η = 12.5 cycles, T = 30.125, ∆t = 1, αmin = 0.65, αmax = 1.35, and
ρ = 2. The set S = S−n ∪ S+

n consist of all time points that have an equivalent phase
as n. (c) The time points with an equivalent phase in the noisy input sequence g can
be used with a suitable denoising algorithm to yield (d) ḡ. Point-wise averaging is the
denoising algorithm used for the results shown in (d).
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6.6 Validation

6.6.1 Performance Evaluation on Simulated Datasets

6.6.1.1 Sinusoidal Signals (0D + time)

We first evaluated the performance of QPDTW using two quasi-periodic sinusoidal

signals defined as:

gk[n]
def
= sin

(
2π

T
φk(n∆t)

)
, 0 ≤ n < Nk, k = 0, 1, (6.51)

where φk is modeled with linear B-splines [108] β1 as:

φk(t)
def
=

Nk−1∑
m=0

φk[m] · β1

(
t

∆t
−m

)
. (6.52)

We chose the coefficients defining the phase function φk as:

φk[n]
def
=


0, k = n = 0

φ ∼ U(0, T ), n = 0

φk[n− 1] + φ′, 1 ≤ n < Nk,

(6.53)

where φ′ ∼ U (αmin∆t, αmax∆t) and U(a, b) denotes a uniform distribution between a and

b. For clarity, we assigned αmin = 1/(1 + δ) and αmax = 1/(1− δ), where 0 ≤ δ ≤ 0.5, so

that Tmin = (1− δ)T and Tmax = (1 + δ)T . We then varied the values of δ and ∆t, and

estimated the discrete warping function w̃ using the following three techniques: (a) string

length method (SLM) [96] to estimate the period of the sequence and cross-correlation to

find the best time-shift for temporal alignment [64, 35, 66], (b) our previously proposed

form of DTW [65], and (c) our proposed method, QPDTW. For a fair comparison, the
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Figure 6.10: (a-d) The experimental phase errors ēp calculated for sinusoidal signals
with varying levels of quasi-periodicity (δ), sampling step (∆t), and number of cy-
cles (η0 and η1), are consistently lowest with QPDTW. Since η1 < η0 + 1 in (c-d),
conventional DTW (not shown) is inapplicable.

sequences were interpolated using the same over-sampling factor ρ in each method. We

evaluated the performance of each algorithm by calculating the phase error as:

ēp
def
=

1

TN0

N0−1∑
n=0

min
s∈{0,1}

sT + (−1)s
∣∣∣∣p1

(
w̃[n]

∆t

ρ

)
− p0 (n∆t)

∣∣∣∣ . (6.54)

We first considered the case where temporal wrapping is not necessary by setting

η0 = 1 and η1 = 2.2. Using parameters T = 10.2 and ∆t = 1, the root-mean-square

(RMS) and standard deviation values of the phase error ēp observed over 100 different

instances are shown in Fig. 6.10(a). The first technique, which involves using SLM and

cross-correlation is, by design, unable to apply any non-uniform warping function other

than a linear function for synchronization. Therefore, as expected, it was only reliable
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when the two sequences differed by a pure phase-offset (δ = 0), and its performance

deteriorated rapidly for higher values of δ. On the other hand, our previously proposed

DTW performed reasonably well for high values of δ, but failed to the first approach

for relatively low values of δ. This can be attributed to a design flaw in the DTW

technique proposed in [65] that involves two steps of interpolation, thereby causing the

errors incurred during interpolation to accrue. This problem is mitigated in QPDTW,

which uses only a single step of interpolation for synchronization. Our algorithm thus

yielded lower phase errors for all values of δ considered. The performance of all the three

algorithms improved when the temporal sampling rate was increased using ∆t = 0.5,

as shown in Fig. 6.10(b). We next considered the case where temporal wrapping was

necessary by choosing η0 = 1 and η1 = 1.1, and repeated the same set of experiments

using the only two compliant methods: (a) SLM + cross-correlation, and (b) QPDTW,

yielding the results shown in Fig. 6.10(c) and (d). The consistently low errors obtained

with QPDTW confirm the latter’s effectiveness even when temporal wrapping is necessary

for alignment.

6.6.1.2 B-spline Based Quasi-Periodic Heart Phantom (3D + time)

We next considered a simplified B-spline based periodically deforming model of the

heart (see Appendix 6.A.2) to validate the QPDTW recursive volume registration de-

scribed in subsection 6.5.1. Using phase functions similar to Eqs. (6.52) and (6.53), we

generated 2D + time quasi-periodic sequences gin
k , k = 0, . . . ,M − 1, corresponding to

M = 25 different axial locations of the heart model. Specifically, we treated the sequence

at the center axial location as gin
0 , and proceeded in both axial directions to recursively

synchronize each slice gin
k , k = 1, . . . ,M−1 to its reference gout

R(k), where R(k) = k−1, for

k ∈ {1, . . . ,M − 1} \ {dM/2e} and R(k) = 0, for k = dM/2e, as illustrated in Fig. 6.11.

As in the previous experiments, we evaluated the performance of the algorithms when
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Figure 6.11: Quasi-periodic sequences gin
k , k = 0, . . . , 24, correspond to unsynchro-

nized measurements at different axial locations of the heart phantom.
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Figure 6.12: Following recursive synchronization beginning from the center for the
data shown in Fig. 6.11, the phase error ēp tends to accrue towards both ends. For
all cases considered, the error accumulation is least with QPDTW.
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strictly monotonically increasing re-warping solutions existed, using η0 = 1, ηk = 2.2,

as well as when temporal wrapping was necessary, using η0 = 1, ηk = 1.1, for k =

1, . . . ,M − 1. Furthermore, in order to test robustness against quasi-periodicity, we ran

experiments for both δ = 0 and δ = 0.25, where αmin = 1/(1+δ) and αmax = 1/(1−δ), as

in the previous experiment. The RMS and standard deviation values of the phase error

ēp [see Eq. (6.54)] calculated for each of the M = 25 sequences over 25 different instances

of this experiment are shown in Figs. 6.12(a-d). Since we followed a recursive order of

synchronization, the errors made during synchronization accrued as we proceeded from

the center towards the sequences at both the first and last axial position. As evident in

Figs. 6.12(a-d), the errors accrued using QPDTW were lowest for all cases considered,

corroborating its relatively higher robustness against error accumulation.

Note that the errors made during synchronization do not accumulate if all input se-

quences gin
k are compared to a common reference gin

0 by choosing the reference indices

as R(k) = 0, for k = 1, . . . ,M − 1. However, in problems such as the synchronization of

sequences acquired at multiple focal positions, a common reference that is comparable

to all input sequences does not exist. Therefore, this requires a recursive synchroniza-

tion procedure, as followed in the experiment here, relying on the assumption that the

sequences at adjacent focal positions are sufficiently comparable.

We then proceeded to evaluate the performance of the temporal re-binning algorithm

using multiple cycles of the single quasi-periodic sequence g0. We varied the number

of frames available for each cycle (T/∆t), the number of cycles (η0), the amount of

quasi-periodicity (δ), and increased the frame-rate of the sequence by a factor of ρ.

We estimated the intermediary frames by solving for ẘ in Eq. (6.48) and evaluated

performance by calculating the ratio of the phase errors after and before temporal re-
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binning as:

e̊p
def
=

Ñ−1∑
m=0

min
s∈{0,1}

sT + (−1)s
∣∣∣∣p(ẘ[m]

∆t

ρ

)
− p

(
m

∆t

ρ

)∣∣∣∣
Ñ−1∑
n=0

min
s∈{0,1}

sT + (−1)s
∣∣∣∣p(round

(
n

∆t

ρ

))
− p

(
n

∆t

ρ

)∣∣∣∣
. (6.55)

The value of this ratio averaged over 50 different experiments is shown in Table 6.2. The

ratio of the phase errors was found to decrease with an increase in the number of cycles

η0, frames per cycle (T/∆t), and with a decrease in the factor of temporal re-binning

(ρ). This follows from the observation that with higher number of cycles and frames

per cycle, there are more frames available that potentially have an intermediate phase

and can hence be used favorably for temporal re-binning. Also, lower values of ρ lead to

more accurate estimates of intermediate phases and higher probability for a frame with

an equivalent phase to exist in a different cycle in the sequence.

6.6.2 Performance Evaluation on In Vivo Acquired Datasets

For evaluating our algorithm in practice, we used a wide-field microscope (Leica DMI

6000B) to collect movies of the beating heart in transgenic zebrafish larvae (see Table 6.3),

wherein cardiac tissues produce fluorescent proteins [Fig. 6.13(a)-(j)].

For each fish sample, we sequentially collected movies at Z > 1 different axial loca-

tions. Note that since the movies at the different focal depths were collected serially,

they each depict different cardiac cycles. Moreover, since these movies were acquired at

arbitrary times, the movies were not mutually synchronized. To match our notation, we

denote these movie frames as P -dimensional vectors Ik[n] ∈ RP , 0 ≤ n < N , 0 ≤ k < Z,

where P is the total number of pixels in each frame and N is the number of frames.

Since the ground-truth phase functions of these experimentally-acquired sequences
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Table 6.2: The ratio of the phase errors e̊p for different experimental parameters in
the temporal re-binning experiment.

δ η0 ρ
Frames per cycle (T/∆t)

10.2 20.2 30.2
2 0.3333 0.2533 0.2533

4 4 0.3867 0.3133 0.2956
8 0.4639 0.3655 0.3647
2 0.3333 0.2530 0.2356

0 8 4 0.4067 0.2990 0.2733
8 0.4274 0.3033 0.2932
2 0.3333 0.2432 0.2213

12 4 0.3333 0.2733 0.2667
8 0.3560 0.2790 0.2760
2 0.3820 0.3369 0.2788

4 4 0.5363 0.4461 0.4373
8 0.5931 0.5089 0.4792
2 0.2537 0.1916 0.1857

0.25 8 4 0.3907 0.2671 0.2402
8 0.4316 0.3087 0.2866
2 0.2379 0.1474 0.1409

12 4 0.3406 0.2112 0.1971
8 0.4175 0.2577 0.2225

Table 6.3: The database of transgenic zebrafish lines used in our experiments along
with its age in hours-post-fertilization (hpf) and spatial resolution (∆x,∆y,∆z). Ev-
ery sequence was acquired at a frame-rate of 30 frames-per-second, and the period of
the cardiac cycles lies in the range 1/3 ≤ T ≤ 1/2.

Transgenic zebrafish hpf ∆x,∆y,∆z (µm)
1. Tg(fli1a:EGFP) 27 0.8, 0.8, 5.0
2. Tg(fli1a:EGFP) 30 0.8, 0.8, 4.0
3. Tg(fli1a:EGFP) 57 0.8, 0.8, 4.0
4. Tg(fli1a:EGFP) 78 1.6, 1.6, 5.3
5. Tg(fli1a:EGFP) 96 0.8, 0.8, 5.0
6. Tg(cmlc2:EGFP) 51 0.8, 0.8, 5.0
7. Tg(cmlc2:EGFP) 55 0.8, 0.8, 5.0
8. Tg(cmlc2:EGFP) 81 0.8, 0.8, 4.5
9. Tg(cmlc2:EGFP) 100 1.6, 1.6, 4.4

10. Gt(desma:mCherry)ct122aR 82 0.8, 0.8, 5.0
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Figure 6.13: (a)-(j) Examples of frames depicting the cardiac cycle in 10 different in
vivo datasets used for evaluation. (k) Validation using circular registration: shorter se-
quences gin

k generated from the actual measurements Imin(k,2Z−2−k), k = 0, . . . , 2Z−2,
with gin

2Z−2 = gin
0 , are recursively synchronized to check for error accumulation.

were unknown, we implemented a circular registration validation experiment, where we

recursively synchronized the sequences from first to last and then continued backward to

the first sequence to quantify the synchronization error cumulated from multiple recursive

synchronizations. (In practice, for 3D + time reconstruction, the registration is typically

carried out starting from the central axial location, with the sequences recursively regis-

tered while proceeding towards the top and bottom positions [64], as shown in Fig. 6.7.)
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Figure 6.14: Experimental results for the temporal synchronization of in vivo cardiac
sequences when the number of cycles in the test sequences are (a) redundant and
(b) non-redundant. For all cases considered, the errors in the estimated re-warping
function are least with the proposed QPDTW algorithm.

Specifically, for each evaluation experiment, we extracted 2Z−1 shorter sequences gin
k [n]

∈ RP , 0 ≤ n < Nk < N , 0 ≤ k < 2Z − 1, from the sequences Imin(k,2Z−2−k), starting at a

randomly chosen frame nk ∈ Z:

gin
k [n]

def
=


I0 [WT̃ (n+ n0)] , k = 0 or 2Z − 2

Imin(k,2Z−2−k) [n+ nk] , 1 ≤ k < 2Z − 2

(6.56)

for 0 ≤ n < Nk, where T̃ denotes the number of frames belonging to the first cycle

in I0 and with the offsets nk ∈ Z chosen from a discrete uniform distribution, nk ∼

U{0, N − Nk}, to assign a random starting phase in gin
k . We purposefully assigned

gin
2Z−2 = gin

0 so that, using the reference indices R(k) = k − 1, for k = 1, . . . , 2Z − 2, it

was possible to evaluate the performance of our algorithm by comparing the recursively
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estimated solution w̃out
2Z−2 to the identity function w̃out

0 [n] = n, 0 ≤ n < N0. Furthermore,

we also made gin
2Z−2 periodic by T̃ , so that we could also treat w̃out

2Z−2 to be periodic by

T̃ , and hence ensure that whole-period offsets were not wrongfully penalized. This is

illustrated in Fig. 6.13(k).

We then evaluated the performance of different algorithms by checking whether the

estimated warping function for the last sequence was equivalent to identity (or full-period

offsets) as captured by the following error metric:

ēw
def
=

1

(2Z − 2)T̃N0

N0−1∑
n=0

min
s∈{0,1}

sT̃ + (−1)s
∣∣∣∣WT̃

(
w̃out

2Z−2[n]

ρ

)
−WT̃ (n)

∣∣∣∣ . (6.57)

Similar to the simulations in Section 6.6.1, we assigned the first sequence gin
0 to

span one cycle (η0 = 1), and considered the number of cycles in each of the subsequent

sequences gink to be either ηk = 2.2 or ηk = 1.1, for 1 ≤ k < 2Z − 1. The RMS and

standard deviation values of ēw observed over 25 experimental instances for the cardiac

sequences depicted in the in vivo datasets in our database are shown in Fig. 6.14. While

the error in the warping function for each synchronization was found to be around 1-2%

of the cardiac cycle duration using SLM and cross-correlation, it was around 0.1-0.4%

using DTW and QPDTW, with QPDTW having the added advantage that it needed

only one cycle of the cardiac sequence for synchronization.

6.6.3 Multi-cycle Denoising: DTW vs. QPDTW

The idea of noise reduction by exploiting the redundant nature in quasi-periodic

sequences was earlier presented by Bhat et al. [9]. The work presented therein involved

extracting shorter sequences from the measured sequence and synchronizing them to a

template that spans one cycle in order to finally arrive at a denoised cycle. However,

since DTW is not capable of seeking piece-wise continuous solutions, it was necessary
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Figure 6.15: Example of frames belonging to (a) original, (b) noisy, (c) denoised
sequence after cutting and multi-cycle averaging [9], and (d) using self-QPDTW. The
plots shows the lower- and upper-limit of (e) the ratio of cycles lost by cutting the
sequence using [9] and (f) the PSNR improvement (in dB) gained by self-QPDTW
over [9], for η = 10 and varying levels of quasi-periodicity δ.

that each of the extracted sequences had at least two cycles. This subsequently meant

that some data were sacrificed for the sole purpose of accommodating synchronization

using DTW. Given a quasi-periodic sequence, g, spanning multiple cycles, the procedure

proposed by Bhat et al. [9] requires creating multiple shorter sequences defined as:

g0(t) = g(t), 0 ≤ t ≤ L0, (6.58)
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gk(t) = g(t+ L0 + (k − 1)(Lk−1 − Tmin + εT )), (6.59)

for 1 ≤ k ≤ Mcut, 0 ≤ t ≤ Lk, where ε is a small positive quantity, g0 is the reference

template that spans η0 = 1 cycle, and with the rest of g spanning a total of η cycles. The

extracted sequences gk, k = 1, . . . ,Mcut, need to be of a duration Lk ≥ L0 · Tmax/Tmin +

Tmax, so that ηk ≥ η0+1, for synchronization using DTW. Since g is of finite duration, the

number of such sequences Mcut that can be extracted is restricted to lie in the following

range:

Mcut ≥
⌊

η/αmin − 1/αmax + ε

(αmax + αmin)/α2
min − 1/αmax + ε

⌋
, (6.60)

Mcut ≤
⌊

(η − 1)/αmax + ε

2/αmin − 1/αmax + ε

⌋
, (6.61)

which is always less than η, leading to a loss of η −Mcut cycles from g. Note that this

loss increases as the cycles in the sequence g become more quasi-periodic (that is, less

regular). On the other hand, our proposed technique of self-QPDTW avoids this loss of

cycles since there is no need for extracting shorter sequences, thereby making it possible

to use all the cycles constructively.

To illustrate this, we used our B-spline based heart phantom to generate a sequence,

g, spanning 11 cycles with varying levels of quasi-periodicity defined by αmin = 1/(1 + δ)

and αmax = 1/(1 − δ) [see Fig. 6.15(a)]. We next added additive white Gaussian noise

(AWGN) of variance σ = 0.3 to generate a noisy sequence [see Fig. 6.15(b)]. We then

proceeded to denoise the first cycle in g by multi-cycle averaging (and hard-thresholding)

using both the procedure given in [9] (using ε = 0.1) and self-QPDTW. An example of

these denoised results for δ = 0.5 is shown in Fig. 6.15(c-d). The number of cycles lost

in [9] increases as the quasi-periodicity in the sequence increases, as given by the ratio of

1−Mcut/η in Eqs. (6.60) and (6.61), and illustrated in Fig. 6.15(e). The increase in the
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peak signal-to-noise ratio (PSNR) calculated in the denoised results using self-QPDTW

compared to that using [9] is shown in Fig. 6.15(f), which shows improvements of up to

3 dB for a quasi-periodicity of 50% simply because more frames from the same sequence

can now be combined to reduce noise.

6.7 Discussion

6.7.1 Computation Time and Complexity

The computation of the similarity term Ψ has O(P × N0 × Ñk) complexity. To

reduce the complexity as well as to increase robustness against noise and brightness in

the sequences, we use only the high-frequency components of the coarse-scale 2D-wavelet

coefficients of each frame (identical to [64]) in the input sequences to compute Ψ. For

P = 32×32, N0 = Nk = 100, ρ = 2, our Matlab (R2013b) MEX routine takes around 1.7

seconds to compute Ψ`1 on a Windows 64-bit machine, equipped with a dual-core Intel

Xeon 3.4-GHz CPU and 16 GB RAM. The dynamic programming approach to estimate

the warping function using QPDTW has O(N0×((Ñk−∆wmax)×(∆wmax−∆wmin +1)+

∆wmax × (Ñk − T̃min))) complexity. For N0 = Nk = 100, ρ = 2, ∆wmin = 1, ∆wmax = 3,

and T̃min = 10, our Matlab MEX routine for dynamic programming takes less than

5 milliseconds. The final temporal interpolation of the sequences has O (P ×N0 × ρ)

complexity. For P = 256× 256, N0 = 100, and ρ = 2, Matlab takes less than 0.5 seconds

for nearest neighbor interpolation.

6.7.2 Features and Limitations

The primary advantage of QPDTW is its ability to account for both warping and

wrapping operations, thereby eliminating the need for redundancies in input sequences.
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This is especially significant for multi-dimensional datasets, where data size and efficient

memory management bears high importance. Moreover, since we perform comparisons

between quasi-periodic sequences themselves (without estimating their underlying peri-

odic forms), an accurate calculation of the phase function or the time period of the cycles

is not necessary to successfully deploy our techniques. Finally, as we use the framework

of dynamic programming for all our algorithms, they are fast and have low complexity.

Our approach is limited by the assumption that the sequences are not sparsely sam-

pled in time. This is to ensure that each sequence has at least few key frames that are

close to those in the reference. Our experiments (not shown here) have indicated that

the algorithm consistently gives good results as long as there are at least 10 time points

representing a cardiac cycle in zebrafish embryos. This is based on the knowledge that

the heart beats at the rate of 2-3 Hz in zebrafish embryos and the frequency content

in each cardiac cycle is typically well represented within the first five harmonics of the

base frequency, where the fifth harmonic frequency acts as the Nyquist frequency in the

Nyquist-Shannon sampling theorem. This allows the temporal registration algorithms

to be used as long as the frame-rate of acquisition is at least 20-30 frames-per-second,

which is well within the standard configuration of acquisitions used in cardiac imaging.

We emphasize that only a single non-redundant cycle is required to be acquired at this

rate for temporal registration, although the acquisition of multiple cycles is conducive

to applications such as frame-rate improvement and noise reduction. We also assume

that the (spatial) changes between successive time points are not large enough to cause

significant artifacts when the sequences are interpolated in time.

While developed for other purposes, our method bears some resemblance to algo-

rithms previously used for phase estimation [68], cyclic motion detection [26], and gait

analysis [75]. The main difference between QPDTW and these approaches designed for

their respective applications remains that QPDTW avoids the need for expensive com-
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putations of the time period and phase functions, owing to the relatively higher frame

rates typically available in cardiac imaging.

6.8 Conclusion

We have presented a fast and efficient dynamic programming algorithm that is capable

of both temporally warping and wrapping a quasi-periodic sequence to match the phase

of a reference, lifting the need for redundant cycles in the former. This has significant

consequences especially for the temporal registration of multiple 2D + time sequences

taken at hundreds of different focal positions in order to finally allow a 3D + time analy-

sis, common in cardiac microscopy. The non-redundant nature of the proposed algorithm

allows reductions in the required data acquisition size and computational complexity by

more than 50%. Moreover, this alleviates the problem of signal deterioration over time

due to photo-bleaching in techniques such as fluorescence microscopy, which otherwise

poses a major challenge for multi-dimensional registration during post-processing. Fur-

thermore, the non-redundant acquisition protocol also minimizes the duration for which

the samples are subjected to illumination in fluorescence microscopy, which has been

shown to be favorable for the medical health of samples, which in turn allows long term

imaging protocols for purposes such as time-lapse imaging. When multiple cycles are

indeed available, we have also shown how these redundancies can be used constructively

towards frame-rate improvement and noise reduction.
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6.A Appendix

6.A.1 Hidden Markov Model Analogy

Consider a hidden Markov model [82] (HMM) where the observed sequence is repre-

sented by the sequence g0[n], 0 ≤ n < N0, and the most probable sequence of states is

given by the best warping function w̃1[n] ∈ S, n = 0, . . . , N0 − 1, S = {0, . . . , Ñ1 − 1}.

Given the first n observations g0[k], k = 0, . . . , n−1, we use P [m,n] to denote the proba-

bility of the most probable sequence of states w[i], i = 0, . . . , n that has a state w[n] = m

as its nth state. This can be formulated (up to a multiplicative constant) using the rules

of conditional independence in HMM as:

P [m,n] = p
(
g0[n]

∣∣∣g̃1[m]
)

max
i∈S

σi,m · P [i, n− 1] (6.62)

for m = 0, . . . , Ñk − 1, n = 1, . . . , N0 − 1, where σi,m refers to the transition probability

from state i to state m and, assuming equally probable initial states,

P [m, 0] = p
(
g0[n]

∣∣∣g̃1[m]
)
. (6.63)

The most probable state sequence w̃1 can then be retrieved using the Viterbi algorithm

[82] as:

w̃[N0 − 1] = arg max
i∈S
P (i, N0 − 1) (6.64)

w̃[n] = arg max
i∈S

σi,w̃[n+1] · P [i, n] , (6.65)
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for n = N0−2, . . . , 0. In comparison to our notations, we can infer the following relations

(up to an additive constant):

− log {P [m,n]} = C[m,n], (6.66)

− log
{
p
(
g0[n]

∣∣∣g̃1[m]
)}

= Ψ {g̃1[m],g0[n]} , (6.67)

− log
{
σw[n−1],w[n]

}
= λ · Γ [w[n], w[n− 1]] · M[w[n], w[n− 1], n− 1]. (6.68)

6.A.2 B-spline Based Quasi-Periodic Heart-Tube Phantom

Our heart-tube phantom is a periodically varying structure with intensity:

f(x, y, z, t) = I0 · β3

(
y2 + z2 − d(x, t)

w

)
· [1 + A cos(Sxx) cos(Syy) cos(Szz)] , (6.69)

d(x, t) = d0 +
K−1∑
m=0

xm
(
am sin (Gx) + bm sin

(
2π

T
t

))
, (6.70)

where I0 denotes the magnitude of the intensity, β3 is the cubic B-spline function [108], w

is the wall thickness, d is the space- and time-dependent diameter of the tube, G, d0, am,

bm are 2K constant parameters that determine tube geometry, and A is the amplitude

of the regular spatial pattern of frequency Sx, Sy, Sz along x, y, z, respectively.
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Conclusion

7.1 Summary of Contributions

We have developed a set of imaging models and reconstruction tools tailored for

optical microscopy. We emphasize the novelties of our proposed methods with respect to

other contemporary techniques in the following paragraphs.

To model light propagation using a well-defined digital model, we have extended tech-

niques from the area of generalized sampling and reconstruction in the signal processing

community and used it in conjunction with the scalar diffraction theory [11, 38]. This was

made possible since the phenomenon of light propagation between two parallel planes in

a homogeneous and isotropic medium can be modeled as an analog convolution operation

between the spherical waves emanating from the object plane and a filter kernel [11]. The

digital model for this operation requires a discrete representation of the spherical waves

at both the object and image plane. Unser et al. [110] had shown that an analog signal

of finite energy can be optimally approximated in a shift-invariant spline space via pre-

filtering, sampling, and post-filtering, which is similar to the pipeline of operations in the

classical sampling theory and is yet not limited to bandlimited signals. This allowed the
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Table 7.1: Overview of the methods for generalized sampling and reconstruction.

Discretization of Analog Convolution Operators (Chapter 2)
References Main Contribution

Unser et al. [110]
The least-squares spline approximation of analog signals via
pre-filtering, sampling, and post-filtering.

Aldroubi et al. [3]
The least-squares reconstruction of analog signals from discrete
samples recorded by non-ideal acquisition devices.

Unser [107]
The discretization of analog signal processing operators using a
Hilbert space framework.

Eldar et al. [30]
The minimax-regret reconstruction of analog signals from discrete
samples recorded by non-ideal acquisition devices.

Ramani et al. [83]
The estimation of the best shift-invariant space for reconstruction
of analog signals from discrete samples recorded by non-ideal
acquisition devices.

Chacko et al. [19]

The multi-rate discretization of analog convolution operators
using a Hilbert space framework and the reconstruction of
analog (deconvolved) signals from samples of the analog convolved
signals recorded by non-ideal acquisition devices.

unique representation of non-bandlimited signals using a finite number of discrete samples

acquired at sub-Nyquist rates. Other researchers [3, 30, 83] had later shown that such

discrete samples representing the approximation of the signal in a known non-ideal shift-

invariant space can be subjected to a digital filtering operation to estimate the discrete

samples representing the analog signal in a different shift-invariant space that is more

appropriate. The approximation of continuous signal processing operators in a Hilbert

space framework was first introduced by Unser [107]. Extending this framework, we have

shown that an analog convolution operation can be characterized by a multi-rate digi-

tal filtering protocol that relates the discrete samples representing the analog input and

convolved signals in shift-invariant spaces with different sampling rates (see Table 7.1).

Building on the purely mathematical treatment that the methodology has been given in

the past, we have provided efficient implementations of our proposed techniques [16] for

reproducibility and easy adaptation to other applications that involve analog convolution

operators such as the computation of derivatives from discrete samples of a signal.

To solve the problem of spatially registering the anisotropically blurred volumes ac-
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Table 7.2: Overview of the spatial registration methods for multi-view optical microscopy.

Spatial Registration for Multi-View Optical Microscopy (Chapter 3)
Assumes Requires Requires Requires

Method Isotropic Manual Data-Specific Fiducial References
PSF? Supervision? Landmarks? Markers?

Yes No No No

Shaw et al. [90]
Conventional Cogswell et al. [22]
intensity-based Heintzmann et al. [43]
(cross-correlation) Swoger et al. [99, 100]

Remmele et al. [85]
Manual-based No Yes No No Heintzmann et al. [44]
Nuclei-based No No Yes No Keller et al. [50]

No No No Yes
Preibisch et al. [79]

Bead-based T.-Ott et al. [103]
Krzic et al. [56]

PSF-based No No No No Chacko et al. [15]

quired in multi-view optical microscopy, we have proposed an automatic PSF-aware

intensity- and pyramid-based registration algorithm. Our algorithm consists of re-blurring

the measured volumes with geometrically transformed forms of the PSF in order to make

them comparable during the process of spatial registration. This is partly reminiscent of

techniques used in multi-channel blind deconvolution techniques, where re-blurred forms

of the measurements are used to determine the blurring filter kernel corresponding to

each channel [93]. A wide array of techniques have been used for the spatial registration

problem in multi-view microscopy. The early approaches were based on the naive as-

sumption that the datasets have isotropic spatial resolution and used simple techniques

such as cross-correlation to align one dataset to another [90, 22, 43, 100, 85]. However,

such approaches generally lead to inaccuracies as they ignore the anisotropy inherent in

the image formation process. Conventional moment-based registration techniques also

fail for this class of problems since the anisotropic PSF shifts the optical center of mass

(and other moments), leading traditional pixel-based matching methods (which would

match the center of mass) to yield a biased solution. Heintzmann et al. [44] had pre-

sented a mostly manual registration algorithm that relies on an interactive selection of
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salient points in the input volumes, which are used as an alignment aid. However, such

a manual technique tends to be both laborious and inaccurate. Following a data-specific

approach, Keller et al. [50] had used a method to automatically detect cell nuclei and

treat them as landmarks for multi-view registration. Other researchers [79, 103] have

proposed a different class of algorithms that can be considered automatic, which relies

on fiducial markers, such as fluorescent beads, added in moderate concentration to the

prepared sample, which are subsequently detected and used for registration. Although

these approaches have been shown to be accurate, they require a special method of sample

preparation. Moreover, the markers added can interfere with the visibility of the sample

being imaged. To alleviate this problem, Krzic et al. [56] designed an imaging system

where such fiducial markers are only used for hardware calibration, thereby averting the

need to add beads along with the sample during imaging. To work around the shortcom-

ings of these previous approaches, we have proposed an automatic and data-independent

spatial registration technique that is capable of handling anisotropic PSFs and is free of

fiducial markers (see Table 7.2). Furthermore, since we have employed a multi-resolution

approach by using a dyadic pyramid (based on cubic B-splines) to represent the volumes

at multiple scales, the algorithm first achieves a quick registration based on the large-

scale features in the data, and subsequently makes changes for progressively finer details.

This is advantageous with respect to both computation time and robustness against local

minima, especially since computations (and convolutions during re-blurring) are in 3D.

To deconvolve the volumes acquired using multi-view optical microscopy, we have

proposed a multi-view fast iterative-shrinkage-thresholding algorithm that models the

imaging setup as a filter-bank structure, where each filter corresponds to a geometrically

transformed of the PSF for the microscope. We have shown how such a framework can

be used to jointly deconvolve and fuse the multi-view measurements. Furthermore, we

have shown that the computational complexity of our proposed multi-view deconvolu-
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Table 7.3: Overview of the deconvolution methods for multi-view optical microscopy.

Deconvolution for Multi-View Optical Microscopy (Chapter 4)

Method

Single-View

Iterative?

Iteration

References
Deconv. Complexity

and Increases with
Fusion? No. of Views?

Max. Freq. Content Retention
No No - Satzler et al. [88]

(no explicit deconvolution)
Weighted Frequency Avg.

No No - Swoger et al. [99]
(no explicit deconvolution)
Tikhonov Filtering Yes No - Shaw et al. [90]
Iterative Constrained Wiener,
Maximum A Posterioi Yes Yes Yes Swoger et al. [100]
with Gaussian Noise & Prior

Modified Richardson-Lucy Yes Yes Yes
Remmele et al. [85]
T.-Ott et al. [104]

Multi-View Richardson-Lucy No Yes Yes Preibisch et al. [78]
Multi-View FISTA No Yes No Chacko et al. [17]

tion algorithm is equivalent to its single-view counterpart. This is in contrast to previous

techniques that only rely on fusing the multi-view measurements without an explicit step

of deconvolution [88, 99]. Other researchers have resorted to deconvolving each of the

measurements separately before applying suitable fusion algorithms [100, 85, 104]. How-

ever, recently, a multi-view extension of the Richardson-Lucy deconvolution technique

(analogous to our multi-view extension of FISTA) was proposed that is capable of both

deconvolving and fusing the measurements [78] (see Table 7.3).

To solve the depth-variant deconvolution problem arising due to spherical aberrations

encountered during the imaging of thick samples in optical microscopy, we have modeled

the imaging setup as a multi-rate filter-bank structure, where each filter corresponds to

the PSF at a different focal depth in the sample. We have used such a model to propose

a depth-variant form of the FISTA deconvolution technique that uses depth-dependent

PSFs to reconstruct a 3D deblurred version of the imaged thick specimen. We have

shown that our technique is capable of deconvolving the measurements without having

to apply shift-invariant deconvolution techniques in sub-regions within the sample or rely
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Table 7.4: Overview of the depth-variant deconvolution methods for optical microscopy.

Depth-Variant Deconvolution for Optical Microscopy (Chapter 5)

Method
Requires Deconv.

References
in Sub-Regions?

Expectation-Maximization Yes Preza et al. [81]
Linear Least-Squares Minimization Yes Maalouf et al. [67]
Total-Variation Minimization Yes Hadj et al. [7]
Modified Richardson-Lucy Yes T.-Ott et al. [104]
Depth-Variant FISTA No Chacko et al. [18]

on suitable fusion algorithms to alleviate blocking artifacts [81, 67, 7, 104] (see Table 7.4).

To solve the temporal registration problem of aligning cardiac sequences acquired

sequentially, we have proposed a quasi-periodic variant of the DTW algorithm based on

an HMM. Unlike prospective techniques that rely on external gating signals based on

hardware customization [48, 101], we have proposed a retrospective technique that only

relies on the information contained in the acquired sequences for non-rigid temporal reg-

istration. Our method is general enough to accommodate for quasi-periodicities in the

acquired cardiac sequences as opposed to previous algorithms that assume perfect peri-

odicity for registration [64, 35, 66]. Our method is capable of both temporally warping

and wrapping an input sequence by allowing for jump discontinuities in the non-linear

temporal alignment function akin to those found in wrapped phase functions. We have

shown that this averts the need for redundant cycles in the acquired data, thereby re-

ducing the computational complexity and the data to be collected by more than 50%

compared to previous algorithms [65]. When redundant cycles are indeed available, we

show how such redundancies can be used constructively towards frame-rate improvement

and noise reduction without the need to extract sub-sequences (which potentially leads

to data loss) for multi-cycle processing [9]. Furthermore, since we have used a dynamic

programming framework, our algorithms have been implemented in a fast and efficient

manner for multi-dimensional cardiac sequences [84] (see Table 7.5).
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Table 7.5: Overview of the temporal registration methods for in vivo cardiac microscopy.

Temporal Registration for In Vivo Cardiac Microscopy (Chapter 6)

Method
Requires Assumes Leads to No. of Acquired:

ReferencesGating Perfect Data Cycles Denoised
Signal? Periodicity? Loss? Required Cycle Ratio

Prospective
∗

Yes No - - -
Jenkins et al. [48]
Taylor [101]

Retrospective

No Yes No > 1 -
Liebling et al. [64]
Gargesha et al. [35]
Liu et al. [66]

No No Yes > 2 - Liebling et al. [65]
No No Yes > 2 5 : 1 Bhat et al. [9]
No No No > 1 1 : 1 Chacko et al. [14]

∗ Prospective gating techniques rely on gating signals and hardware customization to trigger the
acquisition of snapshots at specific cardiac phases. Acquisition of whole cardiac cycles either require the
assumption of perfect periodicity or repeated acquisitions of images at explicit intermediate phases.

7.2 Future Outlook

The series of tools described here have allowed us to model and mitigate artifacts

typically encountered in optical microscopy. Future directions of work might include

exploring the possibility of using multi-view microscopy to analyze dynamically changing

structures such as the beating heart from different views. This would be possible by

utilizing the tools developed for spatial and temporal registration described in Chapters

3 and 6, respectively, together with the multi-view deconvolution technique described in

Chapter 4. In addition to in vivo cardiac microscopy, the use of the temporal registration

tool could also be explored for other applications in pattern recognition such as cyclic

motion detection [26] and gait analysis [75]. Similarly, the use of the multi-view spatial

registration tool could also be investigated for potential applications in computer vision

such as the spatial alignment of multiple images affected by camera-shake blur [119, 122]

or video frames having different types of motion blur. In addition to other potential uses

for optical microscopy, exploring such applications would greatly enhance the practical

relevance of the techniques developed in this thesis for a much wider research community.
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