
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Toward Understanding and Dealing with Failures in Cloud-Scale Systems

Permalink
https://escholarship.org/uc/item/6nn0x49p

Author
Huang, Peng

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6nn0x49p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Toward Understanding and Dealing with Failures in Cloud-Scale Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Peng Huang

Committee in charge:

Professor Yuanyuan Zhou, Chair

Professor Tara Javidi

Professor Ranjit Jhala

Professor George Porter

Professor Stefan Savage

2016

Copyright

Peng Huang, 2016

All rights reserved.

The Dissertation of Peng Huang is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

iii

DEDICATION

To my parents, brother and fiancée for their unconditional love and support.

iv

EPIGRAPH

Quis custodiet ipsos custodes? (But who can watch the watchmen?)

Juvenal

Anything that can go wrong, will go wrong.

Murphy’s law

Those who fail to learn from the mistakes are doomed to repeat them.

George Santayana

In the middle of the night, [...] He would awaken and find himeself wondering if one of

the machines had stopped working for some new, unknown reason. Or he would wake

up thinking about the latest failure, the one whose cause they’d been looking for a whole

week and sitll hadn’t found. The bogeyman—la machine—was there in his bedroom.

Tracy Kidder, The Soul of a New Machine

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

List of Listings . xii

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1

1.1 Understanding Cloud Service Failures . 4

1.2 Misconfiguration in Cloud . 6

1.3 ConfValley: A Systematic Configuration Validation Framework 7

1.4 Terminology . 10

1.5 Organization . 10

Chapter 2 Understanding Cloud Service Failure . 12

2.1 Introduction . 12

2.2 Note and Disclaimer . 13

2.3 Case Studies . 14

2.3.1 Case #1 Amazon Web Services Multi-Day Outage 16

2.3.2 Case #2 Microsoft Azure 2.5-Hour Outage 18

2.3.3 Case #3 Facebook 2.5-hour Outage . 19

2.3.4 Case #4 Google Compute Engine Global Outage 20

2.4 Observations . 21

2.4.1 Every failure is unique . 22

2.4.2 Small changes have big impact . 22

2.4.3 Single point of failure is rare . 23

2.5 When Faults Were Not Tolerated . 24

2.5.1 Fault Tolerance Techniques . 25

2.5.2 A Taxonomy of Fault-Tolerance Failures 27

vi

2.6 Were Faults Contained? . 33

2.6.1 Visualization with Impact Graph . 33

2.6.2 Fault propagation length . 34

2.7 What Caused These Failures? . 35

2.7.1 Root Cause Type . 35

2.7.2 Multiple Root Causes . 37

2.8 Zooming in on Misconfiguration . 38

2.8.1 What Components Were Misconfigured? 38

2.8.2 What Introduced the Misconfiguration? . 39

2.8.3 What Constraints Were Violated? . 40

2.9 Conclusion . 43

2.10 Acknowledgements . 43

Chapter 3 CPL: A Configuration Specification Language 45

3.1 Introduction . 45

3.2 Background and Motivation . 48

3.2.1 Configuration in cloud systems . 49

3.2.2 Configuration validation . 49

3.3 Design Considerations . 52

3.3.1 Language support . 52

3.4 Configuration Predicate Language . 56

3.4.1 Concepts . 57

3.4.2 Unified configuration representation . 59

3.4.3 Piping . 64

3.4.4 Commands . 66

3.4.5 Grammar and Examples . 66

3.4.6 Extending CPL . 66

3.5 Validation Policy and Runtime Information . 67

3.6 Error Messages . 68

3.7 Evaluation . 68

3.7.1 Baselines . 68

3.7.2 Rewriting Existing Validation Code . 69

3.8 Conclusion . 71

3.9 Acknowledgements . 71

Chapter 4 ConfValley: A Cloud Configuration Validation Framework 72

4.1 System Design . 73

4.1.1 Overview . 73

4.2 Inference Engine . 74

4.3 Implementation . 76

4.3.1 Usage Scenarios . 76

4.3.2 Optimizations . 77

4.4 Evaluation . 78

vii

4.4.1 Automatic Inference . 79

4.4.2 Preventing Configuration Errors . 81

4.4.3 Performance . 82

4.5 Conclusion . 84

4.6 Acknowledgements . 84

Chapter 5 Limitations and Future Work . 85

5.1 Limitations . 85

5.2 Future Work . 86

Chapter 6 Related Work . 87

6.1 Failure Studies . 87

6.2 Fault tolerance and recovery . 88

6.3 Characteristics of system misconfiguration . 88

6.4 Misconfiguration detection, diagnosis and fix . 88

6.5 System resilience to misconfiguration . 89

6.6 Configuration languages . 90

6.7 Configuration management . 90

Chapter 7 Concluding Remarks . 91

Bibliography . 92

viii

LIST OF FIGURES

Figure 1.1. Event chain of a failure that happened in Microsoft Azure Storage

service on December 28, 2012. 2

Figure 2.1. Fault tolerance in different layers of a simplified cloud storage ser-

vice. 26

Figure 2.2. Taxonomy of why faults may not be not tolerated, resulting in fail-

ures. 28

Figure 2.3. A contrived example of impact graph for analyzing fault isolation. 34

Figure 2.4. Root cause distribution for the 34 public cloud service outages that

we investigated . 36

Figure 2.5. Patterns of how multiple root causes contribute together in an inci-

dent. 38

Figure 3.1. Configuration data in cloud systems. 46

Figure 3.2. The spectrum of typical configuration specifications. 51

Figure 4.1. Architecture of ConfValley. 73

Figure 4.2. Examples of CPL compiler optimizations. 78

Figure 4.3. Histogram of number of inferred constraints on a type of Microsoft

Azure configuration data . 79

ix

LIST OF TABLES

Table 2.1. Dataset of 34 notable cloud service outages from 2009 to 2016 that

we gathered using publicly available information. 14

Table 2.2. Example public cloud service outages in recent years. 15

Table 2.3. SLA compensations in Microsoft Azure. 18

Table 2.4. Representative fault tolerance techniques used by cloud practition-

ers. 25

Table 2.5. Operation that introduces misconfiguration . 39

Table 2.6. Violated constraints in the studied misconfigurations 41

Table 3.1. Examples of configuration notations and their meanings 61

Table 3.2. Express validation code for three kinds of configuration data used

inside Microsoft Azure into CPL specifications. 70

Table 3.3. Express validation code in two open-source cloud systems into CPL

specifications. 70

Table 4.1. Driver code to convert different types of configuration data in Mi-

crosoft Azure into a unified representation. 76

Table 4.2. Validation constraint inference on three kinds of configuration data

in Microsoft Azure. 80

Table 4.3. Breakdown on the types of inferred constrains in Table 4.2 80

Table 4.4. Running expert-written validation specifications on three latest con-

figuration data branches in Microsoft Azure. 81

Table 4.5. Running inferred validation specifications on three latest configura-

tion data branches in Microsoft Azure. 82

Table 4.6. Latency (in seconds) of sequential validation on three types of con-

figuration data in Microsoft Azure. 82

Table 4.7. Latency (in seconds) of simple parallel validation on three types of

configuration data in Microsoft Azure. 83

x

Table 4.8. Inference latency (in seconds) on three types of configuration data

in Microsoft Azure. 83

xi

LIST OF LISTINGS

Listing 3.1. A snippet that represents configurations (Setting elements) at dif-

ferent scopes using XML. 50

Listing 3.2. Validation snippet that operates on configuration instances rather

than configuration classes. 53

Listing 3.3. An imperative validation snippet that prescribe the implementation

details of a simple type constraint. 54

Listing 3.4. An imperative validation snippet that prescribe the implementation

details of a simple value range constraint. 54

Listing 3.5. An imperative validation snippets that prescribe the implementa-

tion details of a simple uniqueness constraint. 55

Listing 3.6. CPL grammar . 63

Listing 3.7. Example validation specifications in CPL . 65

xii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor,

Professor Yuanyuan Zhou for inspiring me with her wisdoms, passion, and creativity,

for teaching me how to do research, for sharing interesting stories about start-ups, and

for supporting me at every stage of my PhD. Her encouragement, feedback, and honest

critics have been a steady force that helped me keep improving. Obviously I would not

have been able to go through the PhD grind without her help. But her inspiration to

students is far beyond the PhD course. She will always be a role model and lighthouse

for me.

I am thankful to my internship mentor Bill Bolosky for teaching me a lot of

useful lessons on distributed systems and exposing me to the interesting war stories

from operating real-world large-scale systems like Azure. They opened my eyes.

I would also like to thank the remaining members of my thesis committee: Pro-

fessor Stefan Savage, Professor Ranjit Jhala, Professor George Porter, and Professor

Tara Javidi for the helpful discussions and feedback that improved this dissertation.

I am indebted to members in the Opera research group. Ding Yuan, Xiao Ma,

Soyeon Park, and Weiwei Xiong coached me on how to drive research projects in my

junior years, which is tremendously helpful for me to conduct independent research later

on. The other fellow Opera group members also gave me countless help along the way.

I want to especially thank Xinxin Jin and Tianyin Xu for their friendship that kept me

enlightened and inspired even in dark times. I am grateful. I also want to apologize

to my co-authors on the failure analysis paper for being the victim of the publication

withdrawl incident. I wish I could repay your efforts.

I feel lucky to be a student in UCSD, and the sysnet group. The faculty members

and other students in sysnet set the bar for what a world-class research group should

be. The various activities like SysLunch and CNS reviews are great opportunities for

xiii

students to stay connected.

My PhD would have been colorless without the love and support from my fianceé

Rui. Even though we have been enduring long-distance relationship, she has always

been the closet in my heart. She went through every bit of this journey together with me

and painted it with endless joy. Words cannot express how grateful I am for having her

as the love and sole mate in my life.

Finally, I owe my thanks forever to my parents and my brother for their uncon-

ditional love and support that they pour to me, withouth which none of the achivements

that I have today is possible.

Chapter 2 contains material of a paper retracted from 11th USENIX Symposium

on Operating Systems Design and Implementation 2014. Huang, Peng; Jin, Xinxin;

Bolosky, Bill; Zhou, Yuanyuan. The dissertation author was the primary investigator

and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the Tenth European

Conference on Computer Systems 2015. Huang, Peng; Bolosky, Bill; Singh, Abhishek;

Zhou, Yuanyuan. The dissertation author was the primary investigator and author of this

paper.

Chapter 4, in part, is a reprint of the material as it appears in the Tenth European

Conference on Computer Systems 2015. Huang, Peng; Bolosky, Bill; Singh, Abhishek;

Zhou, Yuanyuan. The dissertation author was the primary investigator and author of this

paper.

xiv

VITA

2010 B.S., Peking University, China

2010 B.A., Peking University, China

2014 M.S., University of California, San Diego

2016 Ph.D, University of California, San Diego

PUBLICATIONS

“DefDroid: Towards a More Defensive Mobile Os Against Disruptive App Behavior”.

Peng Huang, Tianyin Xu, Xinxin Jin, and Yuanyuan Zhou. In Proceedings of the 14th

International Conference on Mobile Systems Applications and Services (MobiSys), Sin-

gapore, June 2016.

“Saving Mobile App Developers from Network Disruptions”. Xinxin Jin, Peng Huang,

Tianyin Xu, and Yuanyuan Zhou. In Proceedings of the 11th European Conference on

Computer Systems (EuroSys), London, UK, April 2016.

“ConfValley: A Systematic Configuration Validation Framework for Cloud Services”.

Peng Huang, Bill Bolosky, Abhishek Singh, and Yuanyuan Zhou. In Proceedings of the

10th European Conference on Computer Systems (EuroSys), Bordeaux, France, April

2015.

“Why Does a Cloud-Scale Service Fail Despite Fault-Tolerance?”. Peng Huang, Xinxin

Jin, Bill Bolosky, and Yuanyuan Zhou. Withdrawn from 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), Broomfield, CO, October 2014.

“Performance Regression Testing Target Prioritization via Performance Risk Analysis”.

Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. In Proceedings of the 36th

International Conference on Software Engineering (ICSE), Hyderabad, India, May 2014

“Do Not Blame Users for Misconfigurations”. Tianyin Xu, Jiaqi Zhang, Peng Huang,

Jing Zheng, Tianwei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP),

Farminton, Pennsylvania, November 2013.

“EDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on Smartphones”.

Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, Yuanyuan

Zhou, Lawrence K. Saul, and Geoffrey M. Voelker. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation (NSDI), Lombard, IL,

April 2013

xv

“Be Conservative: Enhancing Failure Diagnosis with Proactive Logging”. Ding Yuan,

Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou,

and Stefan Savage. In Proceedings of the 10th USENIX Conference on Operating Sys-

tems Design and Implementation (OSDI), Hollywood, CA, October 2012.

xvi

ABSTRACT OF THE DISSERTATION

Toward Understanding and Dealing with Failures in Cloud-Scale Systems

by

Peng Huang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Yuanyuan Zhou, Chair

In cloud-scale systems, fault is a fact of life. To tolerate faults and provide

highly-available service is arguably the single most important task for cloud builders.

Yet, despite the considerable efforts into fault-tolerance and software engineering for

reliability, all cloud scale services continue to experience costly failures. A natural

question to ask is: why do cloud-scale services still fail despite the abundant fault-

tolerance and how we can further improve? This thesis attempts to shed light on this

question.

In the first part of this thesis, we study a set of 34 publically disclosed cloud ser-

xvii

vice outages that we gathered and consider them from the point of view of fault-tolerance

mechanisms. We present a novel taxonomy to categorize why the mechanisms may be

ineffective; it includes faults that cannot be handled by replication, insufficient redun-

dancy, and undetected faults. We also explore the root causes of failures, and investigate

the interactions of system components in failures that were caused by multiple faults.

We find that, in many cases, while cloud systems are robust to tolerate tradi-

tional faults, they are fragile under misconfiguration, which is a major source of service

unavailability. To further improve cloud service quality, it is crucial to reduce miscon-

figuration.

In the second half of this thesis, we propose a framework, ConfValley, to sys-

tematically validate configuration and catch errors before production. At the core of

ConfValley is a language called CPL to allow experts to express configuration speci-

fications declaratively. To further reduce operators’ burdens of writing configuration

specifications, our framework also includes a component to automatically infer specifi-

cations.

We evaluate ConfValley in a leading cloud service provider, Microsoft Azure, on

its various types of configuration data. We rewrite existing configuration validation code

in Microsoft Azure in CPL with more than 10x fewer lines of code. The framework also

automatically infers thousands of CPL specs with high accuracy. With the translated and

automatically generated specifications, we prevented a number of configuration errors

from rolling out in production in Microsoft Azure.

xviii

Chapter 1

Introduction

In 2006, Amazon launched a product that offers infrastructure services to third-

party companies. At that time, it was not part of Amazon’s core business but rather a side

product that stemmed from Amazon’s own struggle in building scalable infrastructure.

Ten years later, this “side product”, the Elastic Compute Cloud (Amazon Web Services),

becomes a $10 billion dollar business with more than 60% yearly growth rate for Ama-

zon that is even bigger than Amazon.com. More importantly, it has led a paradigm shift

in the whole computing landscape—the rise of cloud computing.

For developers who want to build large-scale applications economically, instead

of spending substantial resources operating their own infrastructure which may turn

out to mismatch the growth requirement, now the de facto standard is to leverage the

readily-available, on-demand computing resources offered in various abstractions such

as virtual machine, batch jobs, and object storage. Many popular services today such as

Netflix, Dropbox, and AirBnB are built in this way.

For end users who need convenient access to data and services, instead of going

through the pain of installing, upgrading, and patching software in individual devices,

moving to a centralized cloud that is available from a variety of devices has become

a much simpler solution. The migration from traditional standalone office software to

web application such as Google Docs for many users is such an example.

1

2

Forget to turn on

node protection

Misconfig. Fail to detect

node protec-

tion misconfig.

Misconfig.

Fabric con-

troller fails

Code bug

New controller
primary reformats
managed nodes

Code bug

Fail over
1.8% storage

accounts

impacted

Disabled node

protection

Bad disk

H/W fault

Figure 1.1. Event chain of a failure that happened in Microsoft Azure Storage service

on December 28, 2012 [39]. Fabric controller is to Microsoft Azure as the kernel is to

Windows operating system.

By definition, cloud service needs to be accessed anywhere, anytime. What this

means for the underlying infrastructure is that the system availability1 is of paramount

importance [71, 77, 66]. Indeed, in almost all the cloud practitioners that we have inter-

acted with have expressed similar emphasis that “availability is arguably the single most

important KPI (Key Performance Indicator) now for cloud vendors”. However, provid-

ing high availability at the scale and complexity of cloud systems is challenging: in an

industrial-strength cloud, on any day, there is almost always some system component

in a data center that is experiencing glitches [84, 114, 75, 83, 123]. For example, in a

typical first year of a cluster, there can be thousands of hard drive faults [75]; a very rare

Linux race condition bug was triggered 500 times per day inside Facebook [22]. Cloud

builders often summarize this harsh reality as “fault is a norm rather than exception”.

In response, cloud builders spend extensive efforts to reduce faults by improv-

ing software engineering, enforcing code reviews, training operators regularly, adopting

safer programming languages, etc. Moreover, fault-tolerance is treated as a first-class

citizen so that even if some component fails the system as a whole is still available.

For example, RAID and erasure coding [91] cope with disk failures. Primary-backup

1 Ratio of time the system is functional to the total time during an observation period.

3

and quorum-based replication [98, 69, 96, 105] defend against node failures. Data cen-

ter networks [53, 88, 102] provide redundant paths and failover protocols in case of

network failures. Software in the upper layer such as MapReduce [76] also expects

failures and adds application specific failure handling logic. In addition, fast failure

detection [70, 101] and cheap failure recovery [110, 68] expedite responses to failures.

Despite these efforts, all cloud-scale systems today continue to experience ser-

vice disruptions or outages [7, 3, 16, 14, 38, 39, 40, 29, 27, 33, 46]. Figure 1.1 shows

a cloud service failure in Microsoft Azure that is caused by a combination of hardware

failure, code bug and misconfiguration.

When a cloud service failure occurs, the impact and cost is significant due to

users’ increasing reliance on cloud. The service disruption in Figure 1.1 lasted 77 hours,

affecting 1.8% of the Microsoft Azure Storage accounts; a major outage in Amazon

Web Services (AWS) in 2015 took down popular online services like Netflix, Reddit

and AirBnB [17]; in a recent outage Google Compute Engine went down for all of its

customers everywhere [32]. In these failure incidents, users are not the only ones who

suffer. The service providers also sustain significant financial loss. Microsoft provided

100% service credit to compensate the affected customers during the incident in Fig-

ure 1.1; an AWS outage can potentially result in a nearly $1 million-per-hour loss of

sales to Amazon (based on its recent earnings statement [2]).

To systematically reduce the prevalence of cloud failures, it is crucial to under-

stand 1). why do cloud services fail?, and 2). what can be done to further improve?

This thesis aims to shed lights on the first question by presenting a study on real-world

cloud failures to analyze their unique characteristics. Based on the analysis result and

our interactions with cloud practitioners, configuration error is detrimental fault to cloud

that calls for attention. Therefore, the second half of this thesis is devoted for the second

question with a solution for reducing cloud configuration error.

4

Thesis Statement: Analyzing failures in cloud needs to closely examine the fault toler-

ance mechanisms. Misconfiguration is a common cloud fault that is difficult to tolerate

with existing techniques. Using a declarative specification language can effectively pre-

vent misconfiguration.

1.1 Understanding Cloud Service Failures

Failure analysis has long proven to be an indispensable part of reliability engi-

neering. For example, the tragic Air France 447 accident was investigated with years

of efforts to recover the black box and diagnose the root causes, which discovered a

number of issues including the pitot tubes, side-stick control and pilot errors [1]. At the

very least, learning from existing mistakes is an effective way to avoid making the same

mistakes again in the future. More importantly, failures are usually a manifestation of

some fundamental flaw that is applicable to a set of systems. Analyzing failures in depth

can uncover such flaw and help improve design to eliminate errors. For example, the

landmark study on Tandem mainframe system failures by Gray pointed out the lack of

software fault-tolerance and inspired various techniques [87].

Conducting cloud failure analysis is even more important. First, as mentioned

earlier, reliability/availability has become the topmost priority for cloud, which is al-

most hard to improve without getting feedback from past failures. In our experiences,

it is common for vendors to organize weekly or even daily internal meetings to dis-

cuss recent failure incidents and summarize the lessons. Second, despite a number of

studies on failure characteristics in different environments such as personal comput-

ers [107], networked systems [127], high-performance computing systems [119], In-

ternet services [108] and Hadoop clusters [116], to the best of our knowledge, there

is no large-scale study of cloud service failures. Compared with the prior studied sys-

tems, cloud systems have a number of unique characteristics such as orders of mag-

5

nitudes more components, frequent component failures, highly dynamic environment,

and abundant fault tolerance. Thirdly, a study on cloud failure can not only benefit

cloud providers but also provide important lessons for the system research community

to understand what major problems remains to be addressed. As cloud computing grows,

the understandings and solutions derived from the study will benefit the design of future

cloud systems.

But analyzing failures in a real-world cloud systems is not easy. Apart from the

challenge of data collection, the irregularities of real-world failures also makes analysis

difficult to generalize. The war stories from our industrial collaborators are typically in-

cidents about cloud failing in a complex, unique and bizarre fashion (e.g., the data center

gets too hot that renders disks to be flaky which triggers a software bug and in response

the operators made some mistakes). It is the scenario where Murphy’s law seems to con-

stantly hold: “anything that can go wrong, will go wrong”. When presented with these

real-world failure cases, without a proper angle, failure analysis can quickly degrade to

a case-by-case study, which sheds little light on how to fundamentally eliminate system

flaws.

The conventional methodology of failure analysis as used in companies’ internal

incident reviews and prior research failure studies [87, 108, 119, 107, 116] put a lot of

emphasis on analyzing root causes of component faults in a service failure. While this

works fine for traditional systems, this root-cause based analysis is not enough for un-

derstanding cloud failures. This is because with hundreds of thousands of commodity

components in a changing environment, component-level faults are just too many for de-

velopers to comprehend and react (otherwise, there is no point of adding fault-tolerance).

The overarching design philosophy for cloud is to embrace faults and harden the system

with abundant fault-tolerance mechanisms so that the system can continue to run even if

some components fail.

6

Our insight on understanding cloud failure builds upon this unique nature of

cloud systems: we should analyze not only “why do cloud systems fail” but also “why

do cloud systems fail despite the abundant fault-tolerance techniques that were sup-

posed to prevent component faults from causing service disruptions”. With this insight,

we thought about the potential reasons for failures of the fault-tolerance techniques and

develop a novel tree-based taxonomy to clarify our thinking. The taxonomy can be a

useful tool to navigate a specific complex failure case as well as to aggregate multiple

failure cases. In addition, we develop some other analysis methods to capture the unique

patterns of cloud failures such as analyzing how faults propagated in different system

components and how multiple root causes contribute to a failure.

To understand cloud failures quantitatively, we collected detailed failure data

from the service incidents that happened in a major cloud service provider over a 13-

month period. By using our methodology to analyze this failure data, we reveal findings

that triggered wide discussion inside the cloud company. But due to confidentiality

agreement, this thesis will mainly focus on discussion on our methodology, high-level

observations, and independent analysis on a small set (34) of public cloud outages that

we gathered from the Internet.

1.2 Misconfiguration in Cloud

Cloud systems today use an astonishingly large number of configuration arti-

facts of wide variety to control components across the stack: e.g., network routing, end-

point IP assignment, service authentication, recovery actions, resource locations, and

caching. Compared to traditional distributed systems which get updated sparsely for

stability, cloud environment is inherently dynamic. Along with the software, hardware

and workload changes, configurations are frequently updated to adjust to the new need.

For example, at Facebook, there are hundreds of configuration changes committed, a

7

throughput that is even higher than its source code commit rate [122].

Given the many configurations and frequent updates, which are mostly authored

by developers and operators, it is inevitable to introduce configuration errors. And be-

cause configurations are used to control some of the most critical functionalities in a

system, a seemingly small misconfiguration can affect the entire system. For exam-

ple, misconfiguring the endpoints of load balancing components could cause all traf-

fic to be directed to one server, overwhelming that server and effectively making the

whole service unavailable; misconfiguring the backup options of a redundant service

pair could cause the backup to be useless should the primary go down. It is not un-

common to see misconfiguration being the root cause for many public service disrup-

tions [25, 3, 16, 14, 39, 40, 27, 50, 33].

In our cloud failure study, we find that configuration error is a dominant source

of the studied cloud failures, especially for these high-severity incidents. From fault-

tolerance analysis perspective, configuration error often causes failures that are difficult

to be tolerated by the abundant fault-tolerance techniques used in cloud. Even worse,

many fault-tolerance mechanisms themselves are controlled by configuration, and the

any error in such configurations can make those mechanisms useless in case of hardware

or software errors. Neither can traditional bug detection tools help catch the configura-

tion error because the errors are external in the system.

This motivates us to further analyze these misconfigurations as part of our failure

characteristics study. Chapter 2 discusses the high-level findings we summarized.

1.3 ConfValley: A Systematic Configuration Validation

Framework

The problem of misconfiguration is not a unique in cloud. Many solutions have

been proposed to attack misconfiguration in traditional systems ranging from misconfig-

8

uration detection [130, 131], diagnosis [125, 124, 126, 56] and repair [121, 97] to system

resilience [94, 128]. These solutions greatly alleviate end users’ pain in configuring un-

familiar software. However, they are often postmortem efforts or incur overhead (e.g.,

instrumentation, record and replay) that is too expensive to deploy for evolving cloud-

scale production systems. For cloud services, the availability requirement dictates a

proactive approach to prevent misconfiguration rather than reactively fix misconfigu-

ration. The solution should also be efficient enough to handle frequent configuration

changes at a large scale.

From our failure characteristics study, we find that a significant portion of the

misconfiguration can be caught by explicitly validating the configuration against some

constraints, e.g., a flag must be enabled, or a parameter must be a file that exists with

write permission. But unfortunately the current practices for validating configuration is

inefficient and ad hoc, by using manual configuration reviews that are time consuming,

and/or bulky validation code that is tedious to write and hard to maintain. Developers

and operators have no incentives to proactively write configuration checking code. As

a result, there is insufficient validation to catch errors, and the validation often after

service failures occurred.

The fundamental issue with the current practices for validating configuration is

that there are no guiding principles and validation primitives to describe the kind of

expectations developers/operators would like to express. Thus developers mindset of

configuration validation is restricted to be an ad-hoc scripting at low-level using pro-

gramming languages that are unfit for this task. We believe that by providing the proper

abstractions and right tools to practitioners, configuration validation can be made an

ordinary part of cloud-scale system deployment and can proactively prevent misconfig-

uring production services.

Toward this end, we take a language-based approach and design a declarative

9

language, CPL, to describe various configuration specifications for validation purpose.

The language decouples the core validation logic from implementation details, allowing

the specifications to be described compactly and independently of underlying config-

uration representations. Given a specification written in CPL, a running service will

continuously validate configuration whenever configuration is updated, and report error

if it finds violation of the specifications. In this way, misconfiguration can be prevented

before rolling out to production. Chapter 3 describes the design of CPL in details.

Even with a compact language like CPL, writing all configuration specifications

from scratch can be tiresome. Therefore, we also develop a component to automatically

infer and generate CPL specifications. In this way, cloud practitioners can focus on

writing complex and domain specific specifications that are hard to infer. Additionally,

auto-inference can keep the specifications up to date as the systems evolve.

The specification language CPL, the validation service, an interactive console,

and the specification-inference engine together form our framework ConfValley. Conf-

Valley is designed for practitioners operating cloud-scale systems to efficiently conduct

validate configuration and proactively prevent misconfiguration from causing service

failures.

Our experience in using ConfValley inside Microsoft Azure [35] as well as on

two open-source cloud systems shows that CPL makes configuration validation is much

easier and compared to prior practice. For example, a previous validation module used

in Microsoft Azure with more than 3000 lines of code became only 109 lines of code

in 62 CPL specifications, out of which 27 specifications could be automatically inferred.

With the inferred CPL specifications, we prevented a number of configuration errors in

Microsoft Azure. Chapter 4 shows the evaluation in more details.

10

1.4 Terminology

In this thesis we use the word fault to mean a situation in which a system com-

ponent did not behave as intended (or had a problem that would eventually result in in-

correct behavior in the case of latent faults). This includes hardware stopping, software

misbehaving, power loss, and any other problem with any component in the system.

When the fault-tolerance mechanisms employed in the systems are insufficient a failure

occurs. We use the word failure (or service disruption) to mean any event that resulted

in a postmortem analysis (because there was a service failure of some sort). This is

analogous to the usage of these words suggested by Patterson [111], where we restrict

the system-level to components of cloud services that warrant postmortems.

1.5 Organization

The remaining of this thesis is organized as follows:

Chapter 2 discusses cloud service failures using cases publicly disclosed by var-

ious cloud vendors, presents several analysis angles in studying cloud failures, and a

novel taxonomy for categorizing failures.

Chapter 3 presents the background, motivation and design of a declarative con-

figuration specification language, CPL, that we developed to catch misconfiguration and

prevent cloud failures. We compare writing configuration validation in CPL with exist-

ing ad hoc approach.

Chapter 4 describes the tool chain, ConfValley, that we developed along with

CPL to make the configuration validation practices easier and more systematic. We

show how the tool chain generates basic specifications written in CPL, and evaluate the

effectiveness of the tool in a commercial cloud environment, Microsoft Azure.

Chapter 6 discusses the prior work that is related to this thesis and compare them

11

with our work.

Chapter 7 summarizes the contributions of this thesis and discusses future direc-

tions.

Chapter 2

Understanding Cloud Service Failure

2.1 Introduction

Cloud-scale systems [58] are built with hundreds of thousands of commodity

servers [59]. Operating at this scale, faults are inevitable [84, 114, 75, 83, 123]. To

cope with this fact of life, their designers harden them with abundant fault handling

techniques such as RAID [112], erasure coding [91], primary-backup and quorum-based

replication [98, 69, 96, 105], path-redundant and failover networking [53, 88, 102], and

app-specific fault handling logic [76] to detect, tolerate and recover from various faults

in different layers of the systems. Additionally, careful software engineering, extensive

testing and gradual roll-out are widely adopted to catch problems before they manifest as

failures. By and large, these techniques have been spectacularly successful, as evidenced

by the fact that several cloud-scale services operate with good quality of service and

only a handful of major outages. Nevertheless, all cloud-scale systems still encounter

smaller-scale failures [7, 3, 16, 14, 38, 39, 40, 29, 27, 33, 46].

To reduce the prevalence of these failures in the future, we ask: Why do failures

occur even in systems designed for fault tolerance and equipped with many fault han-

dling techniques?; What kind of faults are especially hard to tolerate?; Which parts are

still lacking and need to be improved?

12

13

We look into failures in cloud-scale systems along two independent dimensions.

First, we ask why fault-tolerance did not prevent a fault from turning into a failure. This

can be explained by reasons such as deterministic faults, insufficient redundancy, or

failing to trigger the fault-tolerance when needed. In Section 2.5 we develop a novel

taxonomy of why faults were not tolerated.

Second, when trying to build reliable services, it is useful both to tolerate faults

and to remove them altogether. Understanding the types of faults (e.g., contained faults

versus propagating faults) and root causes of faults (e.g., code bug, misconfiguration) is

helpful for both. We therefore look at the set of faults that underlie failures and the set

of root causes that give rise to faults. We answer questions like how faults propagated

in different system components and how many failures were caused by multiple root

causes. In Section 2.6 we visualize the fault propagation pattern with an impact graph.

While it would be ideal to gather fault and failure data from all cloud-scale ser-

vices and investigate the common and specific patterns, because these services are oper-

ated as independent companies, we were unable to aggregate such confidential data.

Nevertheless, we conduct the first comprehensive study of failures inside a major

cloud service, CloudA. In particular, we studied all service disruptions over a one year

period for which a postmrtem was written by the service team. The reports contain

sufficiently detailed information such as the fault events, root causes and impacts for us

to investigate each case. CloudA had very few major outages (and no data losses) during

our study, so we were unable to generalize about major problems. Rather, almost all of

the failures we investigated are limited in scope and/or effect.

2.2 Note and Disclaimer

For confidentiality reason, this thesis will not report any quantitative findings

drawn from the confidential failure data from CloudA. This thesis only focuses on the

14

Table 2.1. Dataset of 34 notable cloud service outages from 2009 to 2016 that we

gathered using publicly available information.

Vendor Examined outage cases

Google Cloud 9

AWS 8

Microsoft Azure 5

Rackspace 5

Other 7

Total 34

analysis methodology we developed during the study that is independent of the data in

the hope that it can inspire future studies of similar kind. Some high-level observation

will be discussed in the context of re-applying our independent analysis methodology

on 34 publicly available failure outages that we gathered for cloud service outages from

multiple vendors as shown in Table 2.1. The descriptions throughout this thesis are not

specifically referring to issues in CloudA. Thus, this thesis does not reflect in any way,

nor should it be used to imply by any means, the service quality of CloudA.

2.3 Case Studies

As shown in Table 2.1, we collected 34 notable cloud service outages from mul-

tiple cloud providers using publicly available information such as the official blog as

a public dataset for use in this thesis. Table 2.2 lists some examples from this public

dataset. The descriptions and discussions in this thesis are based on this dataset rather

than the confidential dataset from CloudA. In the remaining of this section, we describe

several cases from this dataset.

15

Table 2.2. Example public cloud service outages in recent years.

Service Date Summary Impact

AWS 9/20/2015
Capacity pressure affected meta-

data service [13]

5 hrs; Dy-

namoDB

AWS 8/26/2013
Networking device grey failure

caused packet loss [12]

49 mins; one

availability zone

AWS 12/24/2012
Deleted ELB state data caused load

balancer misconfiguration [14]

22 hrs; 6.8% of

ELB instances

AWS 10/22/2012
Memory leak due to stale DNS

record causes EBS outage [16]

6 hrs; EBS, ELB,

EC2, RDS

AWS 6/29/2012
Generator failed to transfer power

during severe storm [15]

2 hrs; EC2, EBS,

ELB, RDS

AWS 4/21/2011
Incorrect network traffic shift dur-

ing configuration change [3]

3 days 18 hrs;

EBS, EC2, RDS

Microsoft

Azure
11/18/2014

Incorrect configuration change ex-

poses infinite loop bug [37]

2 days 10 hrs;

storage, VM

Microsoft

Azure
2/22/2013

Storage service disruption due to ex-

pired certificate [40]

12 hrs; storage in

all regions

Microsoft

Azure
12/28/2012

Multiple issues caused storage ser-

vice disruption [39]

3 days 5 hrs; 1.8%

storage accounts

Microsoft

Azure
7/26/2012

Improper throttle limit trigger bugs

in hardware devices [38]

2 hrs; compute in

one cluster

Microsoft

Azure
2/29/2012

Leap day bug resulted in VM ser-

vice outage [36]

34 hrs; compute

in all clusters

Google

Cloud
4/11/2016

Accidental IP blocks removal cause

connectivity loss [32]

18 mins; all re-

gions

Google

Cloud
11/23/2015

New network link overloaded due

to improper announcement [31]

1 hrs; GCE in one

region

Google

Cloud
2/18/2015

Stale routing information led to traf-

fic loss [30]

2.7 hrs; majority

of GCE instances

Google

Cloud
1/24/2014

Invalid authentication server IPs

caused service outage [27]

1.5 hrs; 100%

API requests

Dropbox
1/10/2014

Script bug caused OS upgrade on

production servers [21]

3 hrs; service of-

fline

16

2.3.1 Case #1 Amazon Web Services Multi-Day Outage

Sources

Official blog: [3]. Other coverage: [4, 8, 5, 6, 11].

Summary

Description On April 21st, 2011, at around 1 AM PDT, multiple AWS customers ex-

perienced a large number of I/O errors. After 40 minutes, Amazon acknowledged

that they were having problems with EBS (Elastic Block Store) services in US-

East-1 region. The failures propagated to clusters across the region. By 12:04

PM, the outrage was contained to its source Availability Zone. But recovering

the affected zone took more than two days, involving physical installation of new

capacity to the cluster. Amazon RDS (Relational Database Service) service was

also affected because of its dependency on EBS for storage.

Impact Many customers include Reddit, Quora, Heroku and Foursquare were affected.

For example, Quora was completely down because of the incident. Reddit had

to operate in read-only mode. “0.07% of the volumes in the affected Availability

Zone for the customers could not be restored in consistent state”. There is no

further detail about the lost data.

Cost Amazon provides “a 10 day credit equal to 100% of their usage of EBS Volumes,

EC2 Instances and RDS database instances that were running in the affected Avail-

ability Zone” to all customers in the affected Availability regardless of whether

they were impacted or not.

Root Cause

Prior to the outage, Amazon performed a scaling activity in one US East Region

Availability Zone to upgrade the primary EBS network (high bandwidth network in

17

normal operation) capacity. This involved a network configuration change step to re-

route the traffic to the redundant routers in the primary network to allow the upgrade.

But it’s mistakenly configured to route to the low capacity secondary network, which

cannot handle such high load. As a result, both the primary and secondary network

were disrupted, with many EBS nodes isolated from its replicas.

When a node could not connect to the node it’s replicating data to, it will try to

find another node to “re-mirror”. Once Amazon the correct the configuration mistake

and restored the network, the re-mirror operations began to soar dramatically as the

number of isolated nodes is too big and “re-mirror” is performed in peer-to-peer fashion.

The surge created a “re-mirror storm” that quickly exhausted the cluster’s free space.

This problem has a dramatic cascading effect to impact not only that Availability

Zone but also other Zones in the EBS control plane. In EBS, a regional thread pool

is allocated to serve API requests. Since the exhausted cluster cannot accept volume

creation API requests, the large number of pending requests quickly absorbed all threads

in the pool and caused API requests for other Availability Zones in that region to fail as

well. This “ripple effect” kept going. What exacerbated the situation is that “re-mirror

storm” reveals a rare concurrency bug that could crash the nodes, further reducing the

number of available nodes.

After about 10 hours, Amazon managed to contain the outage to the source fail-

ure zone by disabling its API accesses to the EBS control plane. But recovering the

initial failure zone was very time consuming. First, failed nodes cannot be reused until

every data replica is re-mirrored. New capacity has to be provided for these nodes to

find free space for re-mirroring and then reusing them. Physical relocation and instal-

lation of such capacity took about one day, which brought back 97.8% of the “stuck”

volumes. Second, when the team started to restore the frozen API accesses to EBS con-

trol plane, there were a large number of operations in the backlog to be synced between

18

the failure zone and EBS control plane. To avoid another communication storm, restor-

ing was carried out gradually in more than one day. After opening up the API accesses,

the team spent another day to restore the remaining 2.2% data from early snapshots of

these volumes in S3. In the end, 0.07% of the data could not be restored.

2.3.2 Case #2 Microsoft Azure 2.5-Hour Outage

Sources

Official blog: [38]. Others: [42, 41, 43], etc.

Summary

Description On July 26th, 2012, a network device misconfiguration caused Microsoft

Azure service disruption in Western Europe sub-region at 11:09 AM GMT. The

disruption lasts around 2.5 hours.

Impact It triggered a burst of Tweets about the incident. For example, SoundGecko,

a text-to-audio translation service, tweeted “SoundGecko is currently unavailable

due to data centre outage on Windows Azure. Apologies for inconveniences”1.

Cost Like other cloud vendors, Microsoft compensates the customers for SLA credits.

According to the official document [52], the SLA compensations are:

Table 2.3. SLA compensations in Microsoft Azure.

Monthly Uptime Percentage Service Credit

<99.95% 10%

<99% 20%

1 https://twitter.com/SoundGecko/status/228467305112293378

https://twitter.com/SoundGecko/status/228467305112293378

19

Root Cause

In Microsoft Azure network infrastructure, to prevent network failure cascading,

datacenter network devices has a “safety valve” mechanism to limit the connections it

can accept. When such limit is exceeded, there will be management message exchanges

between the device and some manager nodes (probably to redirect requests, exact mech-

anisms unknown).

Before the incident, Microsoft added new capacity to the West Europe sub-

region. But the safety-valve setting was not adjusted accordingly. A rapid increase

of traffic to the cluster exceeded the connection limit. This resulted in a considerable

amount of network management messages. The surge exposed some hardware device

driver bug that hogs the CPU to 100% utilization, preventing these machines from ac-

cepting connections. The main fix is to increase the limit and patch the exposed bugs.

Microsoft also says it will improve the network monitoring systems to prevent such

outage.

2.3.3 Case #3 Facebook 2.5-hour Outage

Sources

Official blog: [25]. Other coverage: [23, 26, 24].

Summary

Description On September 23rd 2010, Facebook went down at around 11:30 a.m. PST.

The site did not come back online for most users until around 3 p.m. PST.

Impact This is Facebook’s “worst outage in over four years”.

Cost There is no direct cost to compensate users. But the incident did cause a lot of

user dissatisfaction and hurt Facebook’s reputation.

20

Root Cause

Facebook uses automatic configuration management system. Clients (internal

system component) will query and store configuration from the system. There is also a

caching layer that sits between the persistent storage and client. Whenever the configu-

ration management system detects there is a problem in the configuration cache, it will

query the persistent storage in hope it has a valid, new configuration.

In the incident, an invalid configuration was pushed to the persistent storage.

When every client attempts to read the invalid configuration from cache, it will send

a query to the database to “fix” the invalid cache. This caused thousands of queries

to database per second, which quickly overwhelm the database system. Furthermore,

when the client gets no result from the database, it interprets the value as invalid and

will delete the cache entry and retry. This means as long as some clients do not get

results, the database will get more and more queries even when the bad configuration is

fixed.

2.3.4 Case #4 Google Compute Engine Global Outage

Sources

Official blog: [32]. Other coverage: [51, 28].

Summary

Description On April 11th, 2016, at around 19:09 Pacific Time, Google Compute En-

gine instances in all regions lost connectivity for a total of 18 minutes.

Impact Even though the 18 minutes connecitivity does not sound terribly long, this

incident impacted all customers everywhere, which is very rare for cloud.

Cost Google issued 10% to 25% service credits to the impacted customers. These

21

credits are more than the defined service level agreement to keep “with the spirit

of those SLAs and our ongoing intention to provide a highly-available Google

Cloud product suite to all our customers”.

Root Cause

Google Compute Engine use IP blocks for external network routing. The IP

blocks are announced from different locations using standard BGP protocol. In the in-

cident, the engineers removed an unused IP block from the network configuration. Dur-

ing this configuration change, the configuration management software detected inconsis-

tency of this configuration in different files and decided to revert to the old configuration.

Unfortunately, due to a bug in the software, instead of reverting, the software removed

all IP blocks from the new configuration and pushed this change.

What is even more interesting about this incident is that like other companies

Google employs a number of safety mechanisms to prevent bad changes causing wide

impact. In particular, a configuration change will typically go through a canary stage

to be deployed at a single site. The canary stage in this incident indeed caught the bag

change. But unfortunately, a second software bug here did not send the canary result

back to stop the deployment. As a result, the invalid configuration is propagated to all

regions.

2.4 Observations

From the above case studies and the public dataset, we made a few high-level

observations about cloud failure characteristics.

22

2.4.1 Every failure is unique

In the failure cases that we examined, there are no two cases that happen in

identical or even similar fashions. Every case fails because of some seemingly random

combination of unexpected factors: temperature getting too high, device driver hit a bug,

recovery protocol overly aggressive, backup component having insufficient capacity, ca-

nary phase ignoring alert signals, operator redirecting the traffic to a wrong route, etc.

Although this uniqueness characteristics could be due to the different architecture and

implementations for the systems we investigated, even within the same system, it still

applies.

The failure uniqueness characteristics in part reflects the scale and complexity of

cloud systems: with a large number of complex components, from probability point of

view, it is very likely different failures are caused by unique combinations of component

faults. We can also view the failure uniqueness as a positive sign in the vendors’ system

quality assurance process. When a failure happens, if a vendor learn from the mistake

and take actions, it will help prevent the same failures from happening again, On the

contrary, if failures are only dismissed as a discrete accident without being carefully

analyzed, it is likely that the failure “will repeat itself”.

But when cloud failures are happening in a unique way, it also raises the chal-

lenge for how to analyze past failures and proactively prevent new failures. It is tempting

to treat failures as random events and analyze them case by case. Being able to treat fail-

ures from novel perspectives and identify underlying patterns is a rewarding but difficult

problem.

2.4.2 Small changes have big impact

Change is a constant theme in various cloud system components, e.g., rolling

out software feature, fixing glitches, upgrading capacity, and adjusting workload. This

23

is one of the defining characteristics of commercial cloud systems. But frequent changes

also become the dominant trigger of failures. Most of the incidents that we examined

happened because the developers/operators made some changes to the system. For ex-

ample, Facebook similarly found that incidents happen much less frequent in weekends

than in weekdays, and much less frequent in holiday months like December compared

to other months [104]. This fact should not be used for discouraging developers from

making changes. For systems like cloud, it is impractical to develop and maintain in a

traditional conservative and slow fashion. However, how to better assess changes before

pushing them to global scope requires solutions beyond traditional testing.

Interestingly, as observed in our dataset, the changes that lead to large-scale fail-

ures are often small changes, especially those changes that developers assumed to be

safe. But when rolled out, these “safe” small changes caused catastrophic impact. The

most common type of this kind of small change with big negative impact is miscon-

figuration, e.g., the removal of a single IP block [32], traffic shift [3], change message

sampling rate. Part of the reason that many failure-inducing changes are small is that big

changes often go through more thorough code review and testing while small changes

are often some activities that are so frequently performed that developers become less

cautious about them. For example, in Google’s recent global outage, “by itself, this

sort of change was harmless and had been performed previously without incident” [32];

in AWS’s catastrophic EBS outage, “a network change was performed as part of our

normal AWS scaling activities” [3].

2.4.3 Single point of failure is rare

In traditional systems, failures are often caused by a single defect, e.g., a null

pointer dereference bug crashing MySQL server, Nasdaq halt due to data link fail-

ure [49]. In cloud-scale systems, at component-level, single-defect failure is still com-

24

mon. However, at service-level, it is to see widespread failures caused by a single defect.

The level of resilience comes from cloud system fault-tolerance by design philosophy:

with modularity, redundancy and coordination, the impact of a single fault is restricted.

Instead, many of the cloud failures that we examined result from a combination of mul-

tiple faults, e.g., disk flakiness plus incorrect recovery plus misconfigured protection

mechanism [39].

Misconfiguration is an exception, though. We see from many failure incidents

that while the examined industrial-strength cloud systems are robust against single hard-

ware fault or software bug, they are fragile when facing misconfiguration: in the dataset

it is rare to see a single software bug bringing down the entire service across regions;

and almost all of the high-impact failure incidents that caused all-region outages such

as the recent Google one [32] are caused by some configuration error. In these cases,

the system designers did not foresee that misconfiguration was the single point of fail-

ure in the system. For example, even though the storage systems are replicated and

geo-distributed to tolerate fail-stop faults, all storage servers might be using the same

service certificate and therefore a single misconfiguration in the certificate can impact

all HTTPS traffic [40].

2.5 When Faults Were Not Tolerated

Faults are the norm in a cloud environment. For example, thousands of disk

faults can occur in the first year of a new cluster [75]. Therefore, fault-tolerance is

necessary for high availability. Towards this end, a wide body of work has been proposed

to tolerate faults in different layers (e.g., [63, 112, 99, 69, 64, 96, 53, 93, 91, 105]).

25

Table 2.4. Representative fault tolerance techniques used by cloud practitioners.

Technique Type Example

Physical redundant PDUs, routers, servers

Redundancy
Temporal timeout and retry

Information
data replicas, checksum, erasure

coding

Protocol
Primary/backup DNS servers

Paxos RSM fabric controller, database

Load Balance
ECMP, VLB VL2 [88], B4 [92]

S/W load balancer Ananta [109], Maglev [80]

2.5.1 Fault Tolerance Techniques

A fault tolerance mechanism is usually designed for a particular fault type. There

are two common fault types: fail-stop and Byzantine faults. The fail-stop model as-

sumes that components either behave correctly or stop. A Byzantine fault is when the

faulty component behaves arbitrarily due to hardware errors [7], race conditions and/or

malicious software. Byzantine faults are harder to tolerate than fail-stop. Other fault

types include omission faults, in which the component fails to respond to requests due

to crash(es) or lost messages, response faults, in which the components respond incor-

rectly, and fail-slow, in which the component responds correctly but too slowly.

Table 2.4 lists some representative fault tolerance techniques used by cloud prac-

titioners. We include load balancing techniques for discussion about fail-slow. Although

load balancing does not guarantee fault tolerance, proactive load balancing can alleviate

fail-slow by offloading the requests to less loaded replicas.

Redundancy is typically key to achieving fault tolerance. Three forms of re-

dundancy exist: physical redundancy that duplicates functionality in multiple resources;

temporal redundancy for tolerating transient or intermittent faults by repeating requests

in case of faults (e.g., TCP retransmission); and, information redundancy that provides

26

Primary region

LB

Front
End

Front
End

Front
End

Partition

Stream

LB

Front
End

Front
End

Front
End

Partition

Stream

Service
Discovery

Secondary region

Data center network

Request

Figure 2.1. Fault tolerance in different layers of a simplified cloud storage service.

redundant data or information related to data (e.g., error correcting codes). With redun-

dant components, coordinating replicas is necessary. Paxos [99] and Byzantine fault

tolerance [100, 69, 96, 105] are common consensus protocols that tolerate fail-stop and

Byzantine faults respectively. A system is said to be t fault tolerant if it can continue

providing service if no more than t replicas fail.

These tolerance techniques are used in different layers. For example, in a typical

cloud storage service, a request is usually routed via the network to the load balancer in

the primary region and dispatched to one of the front end servers. The request then goes

through the storage partition and stream layers. In this scenario, redundancy exists in

the network, load balancer, front end, partition layer and stream layer to defend against

possible faults. The service can also be failed over to another region when there is a

region-wide failure (Figure 2.1).

27

2.5.2 A Taxonomy of Fault-Tolerance Failures

With abundant fault tolerance techniques in place, why do failures still occur?

There are three top level reasons:

1. Faults occur in all or most replicas, so replication-based fault tolerance simply

cannot handle them.

2. The faults can be tolerated but the fault tolerance mechanism is not triggered.

3. Fault tolerance is triggered but is ineffective.

Different improvement strategies are needed for different cases, which also de-

pend on the sub-categories within each case. Based on the studied service disruptions,

we present our taxonomy and summarize the distribution in Figure 2.2.

Untolerable faults

Even though fault tolerance techniques can defend against various faults, some

are not tolerable no matter how high the redundancy. In replication-based fault tolerance

systems, deterministic faults or faults that happen too frequently or with no way for

replicas to tell that they are faults are untolerable.

From the public reference dataset, we find a significant number of cloud fail-

ures occurred due to untolerable faults. These failures cannot be mitigated by restarting,

fail-over or retrying. The faulty components must be repaired, e.g., with a bug or mis-

configuration fix.

For these untolerable faults, we can further break them down by different fault

types as shown in Figure 2.2. The fault type could be a repeated omission fault (i.e.,

failure to respond), specifically a persistent connectivity issue, repeated crash or hang.

The persistent connectivity issues, often due to misconfiguration, can affect all redun-

dant paths. For repeated crashes/hangs, even if the system automatically fails over in

28

Service
disruption

Tolerable

Not Tolerable

Impl.

Not impl.

Triggered

Persistent conn. issue

Num. of instances

Capacity

Retry

Insufficient
redundany

Broken fault tolerance

Slow recovery

Not triggered
Exceptional state

Accidentally disabled

Fault
undetected

Severe perf. issue

Hang

Conn. issue

Intentionally disabled

Repeated crashOmission fault

Repeated hang

Consistent response fault

X%

Y%

100%

a%

b%

c%

d%

Why not triggered?

Why triggered but
disruptions still

occurred?

Why not tolerable?

Figure 2.2. Taxonomy of why faults may not be not tolerated, resulting in failures. The

branches can annotated with occurrence rates. “Response fault” means responding incor-

rectly. “Omission fault” means not responding. “Exceptional state” means an exception

event (e.g., error message) was generated but not leveraged by the failure detector. Note

that there were probably several orders of magnitude more faults that are handled and

do not result in failures, but we have no visibility into them and in any case they do not

belong in this taxonomy.

29

the face of a crash/hang, the same fault will soon be triggered in the new primary and

cause frequent fail-overs, resulting in a failure.

Except for repeated omission faults, the remaining untolerable faults are con-

sistent response faults (i.e., responding/behaving incorrectly). Examples of this type

include the Active Directory service returning wrong tokens and IPs getting reallocated.

Since these faults happen deterministically due to permanent defects like code bugs or

misconfigurations, even Byzantine fault tolerant systems could not tolerate them: each

replica behaves consistently and incorrectly. N-version Programming [57] might make

some untolerable faults tolerable, but we are not aware of its use in any cloud service.

In terms of root causes for untolerable faults, we find from the public service

outage cases that misconfigurations were a common source. This is because configura-

tion is often applied to all replicas and the effect of misconfiguration is persistent. For

example, when the same SSL certificates for the storage service were used in all servers

across regions, misconfigured certificates could impact all HTTPS traffic [40]. As an-

other example, an erroneous configuration change made to all front ends can result in

crash of all web server processes. The misconfiguration must be corrected to recover

the service. In a way, the misconfiguration poses a single point of failure in the system.

In comparison, only 1 case was caused by permanent hardware faults in all replicas.

Since almost all fault tolerance techniques employed today are replication based,

they cannot tolerate those faults that are deterministic and duplicated to all replicas. The

primary way to deal with untolerable faults is to eliminate the defects before they’re

able to manifest as faults. To further reduce their incidence, it may be necessary either

to increase diversity [57, 118] (e.g., different communications, mechanisms, implemen-

tations), or to further improve software engineering or process (even better tooling, still

more careful development practices, increased thoroughness in testing and/or rollouts

that are staged more gently than they already are) to catch the problems (both in bina-

30

ries and configurations) before they become faults [90].

Fault tolerance not triggered

Within the tolerable faults, service disruption could still occur because the redun-

dancy that could have helped was not in place. But since redundancy and replication is

an overreaching theme in cloud system design, the case of no redundancy in place rarely

happens. The other reason for service disruption to still occur in spite of tolerable faults

is that fault tolerance was not triggered as shown in Figure 2.2.

Improper failure detection was often the reason fault tolerance was not triggered.

Failure detection is an important, yet often overlooked [101], part of fault tolerance and

recovery. The inability to detect component health correctly or in a timely manner pre-

vents fault tolerance from taking corrective action. One consequence we see from public

cloud service outage cases is that when an unhealthy node was incorrectly reported as

healthy, the same unhealthy node would be used to service certain functionality again

and again, each time resulting in failures.

The standard way to gather component health information is through heartbeats

and leases [86]. If these failure detectors are not run frequently enough, they may gen-

erate false negatives. For example, an improper configuration change in a DNS server

may result in NIC restarts, which would cause intermittent network failures. But if the

NIC restarts were frequent enough, the heartbeats may not be missed. A failure detector

can also be too-coarse grained: the components are in a bad state but still appear healthy

to the detector. For example, in a typical cloud storage system, faults were detected

both by the table master maintaining a heartbeat to the table servers and the table server

maintaining lease with a lock service. When either the heartbeat or the lease is consis-

tently lost, the system will kill the table server and offload the partitions to other table

servers. It could be the case that a table server was in degraded states but still appeared

31

healthy because it maintained both heartbeats and leases. Fine grained detection [101],

or determining health from different layers could be useful to detect these faults.

A common reason that faults went undetected is the failure was severe perfor-

mance problems (e.g., 95% CPU utilization). The faulty components in these failure

cases would exhibit high resource usage. To monitor these faults, performance coun-

ters need to be proactively collected. When high resource usage is detected, to quicken

recovery, consider fail-fast (e.g., reboot) and automatic shifting of load rather than just

throttling requests.

It is crucial to prevent cascade failures in fault-tolerant systems. These kinds of

failures happen when fault-tolerance actions induce more faults, which in turn trigger

more fault-tolerance actions. Cascade failures can turn a small failure into a complete

service outage. One technique to prevent them is a “circuit-breaker” that disables fault-

tolerance when it has been too active, and asks for help from the operations staff. For

example, the circuit breaker technique was helpful in making the Netflix API more re-

silient [34]. However, if the circuit breaker engages, it disables fault-tolerance and can

result in tolerable faults turning into failures. These cases would fall into the “Intention-

ally disabled” category in Figure 2.2.

Besides, fault tolerance in some failures was not triggered because of code bugs

or misconfigurations.

Fault tolerance triggered but ineffective

In a industrial-strength cloud service such as AWS, Microsoft Azure or Google

Cloud, the fault tolerance mechanisms in place were usually triggered for tolerable

faults, but they were unsuccessful in preventing the failures mainly due to three reasons.

Slow recovery: In some cases, the fault tolerance in place succeeded in mitigating the

failures. The systems self-recovered without manual intervention (e.g., automatic fail-

32

over, quorum reestablished), but the detection and recovery process took too long to

prevent the failures from being visible. With enough number of such self-recovered

cases, an analysis on the statistics of the recovery time for may expose the systematic

flaw in the service design. A long recovery time could be due to the large number of im-

pacted replicas, intermediate stale data, or inefficient protocols. For these cases, a more

efficient fault tolerance implementation or better protocols were needed to automatically

restore the services without the user noticing the faults.

Insufficient redundancy: In some cases, the redundancy level in the employed fault

tolerance was insufficient to tolerate the number of faults that occurred. For example,

in a 5-instance quorum, faults happening in 3 instances exceeds the level of tolerance.

Insufficient redundancy also includes insufficient retries or capacity. Figure 2.2 shows

the breakdown of what was lacking for these cases due to insufficient redundancy. De-

termining appropriate redundancy levels entails effective capacity planning and analysis

of historical failure rates and patterns.

Broken fault tolerance: In the remaining cases, the tolerance mechanisms failed to

work properly. Code bugs and misconfigurations in the fault tolerance path are often

the root causes. Figure 1.1 is an example of misconfiguration breaking fault tolerance:

when the fabric controller incorrectly carried out a reformat action for a node, a mech-

anism should protect the node provided that it is configured so. If a node is mistakenly

configured not to be protected, the mechanism will not prevent the problematic reformat

action. As expected, fault tolerance related code or configuration is usually much less

well tested because it would require extensive fault injection and recovery testing [89].

33

2.6 Were Faults Contained?

Cloud systems consist of many dependent and interactive components that func-

tion together to provide services. Faults in one component can impact others. Therefore,

understanding failures in a cloud environment requires a whole system view instead of

a per-component view as taken in prior studies [85, 120, 123, 83]. Such a whole system

view of whether/how faults propagate is important for enhancing fault containment of

the system. In this section, we look into the fault propagation pattern of cloud service

disruptions.

2.6.1 Visualization with Impact Graph

We find a useful tool in understanding fault isolation and which component in-

teraction needs hardening is to visualize the fault propagation information in an impact

graph of internal cloud components. Figure 2.3 is a contrived impact graph that is not

specific to a particular cloud service provider.

Such impact graph can be extracted manually from postmortem reports of cloud

service failures. Automatically constructing such graph with failure-path inference tech-

niques as proposed by Candea et al. [67] is a more efficient way to continuously generate

the graph via fault injection.

The impact graph can be applied to a subset of services, coarse-grained compo-

nents (e.g., storage and load balancer), fine-grained sub-components (e.g., front ends in

storage), or even a particular type of failure. The differences in the resulted graphs may

reveal specific fault propagation patterns. For example, we can draw an impact graph

for just misconfiguration related failures. Compared to the impact graph for all failures,

this impact graph may make some component more predominant in propagating faults

while leaving other components less evident.

34

Control Plane

Networking Load Balancer

Storage

Compute

Management Console

OS

ServiceA

Database

ServiceBServiceC

All

Front End Power

Figure 2.3. A contrived example of impact graph for analyzing fault isolation. Each

vertex in the graph represents a major component of an interested service. The darker

the color of a component, the more peers it affected. An edge A→B means failures in

A impacted B. Weight can be added to the edge to denote the percentage or number of

cases. A self-pointing edge means in some failure, the failed component only impacted

itself.

Based on the public reference dataset, we find that while cloud system builders

take careful efforts of enforcing fault isolation in design (e.g., divide data center re-

sources into logical clusters that are managed by different instances of controller com-

ponents), faults in a major component still frequently propagated to other components.

The cross-component impact happens due to dependencies on data (e.g., a com-

pute service uses a database), control (e.g., storage needs the lock service for coordina-

tion), connectivity and utility (e.g., power). For service disruptions contained within a

component, the component is usually an external service.

2.6.2 Fault propagation length

Except for the impact graph, the analysis can further zoom into the distribution of

number of major components impacted across the service disruption cases. We find from

our public service failure dataset that most faults only impacted a small number of major

35

components, including the component where the fault originated. This means while

faults propagated to other components in the system, the length of such propagation

was limited. A short propagation path usually indicates a system is carefully decoupled

and thus reduces unexpected cross-component interactions which are common in tightly

coupled systems [113].

To be more effective in confining faults, further reducing dependencies among

components (e.g., stateless services) is one way. But if the dependency is inevitable,

hardening the interaction boundaries and having cross-component monitoring will be

helpful [90] so that when the dependent component(s) are down, the depending compo-

nent(s) can take some corrective actions (e.g., fallback to temporary storage) [34]. In

terms of testing, major components are often managed by different teams and tested

independently. Reducing cross-component failures calls for more joint testing of depen-

dent components.

2.7 What Caused These Failures?

When building reliable services, it is useful both to tolerate faults and to remove

them altogether. Understanding the root caus(es) that give rise to faults is helpful for

both. In this section, we investigate what caused the faults that underlie these studied

failures.

2.7.1 Root Cause Type

Common root causes for failures in traditional systems include software bugs,

misconfigurations, hardware faults and human errors. Other root causes that arise in

cloud environments are power losses and lacks of capacity.

A failure can be the result of multiple root cause types. In our public reference

dataset the majority of multi-cause cases involve either software bugs or misconfigu-

36

0

10

20

30

Softw
are Bug

Softw
are Bug+

Softw
are Bug+Misconfig.(+)

Misconfig.+

Misconfig.

Hardware Failure

Human Erro
r

Power L
oss

P
er

ce
n

t.
 o

f
in

ci
d

en
ts

Figure 2.4. Root cause distribution for the 34 public cloud service outages that we

investigated. Categories with “+” in their name represent incidents with multiple root

cause types.

rations. Therefore, we simplify counting the combination of cause types using only

software bugs and misconfigurations. To be specific, we first categorize cases involving

both software bugs and misconfigurations, and optionally other cause types into “Soft-

ware Bug+Misconfig.(+)”. The remaining multi-cause cases will be put into “Software

Bug+”, “Misconfig.+” or “Other”. Based on this counting method, Figure 2.4 shows the

root cause type distribution for the 34 public cloud service outages.

We call a cause type a single-contributor if it is the only cause type for a failure,

and co-contributor if it is at least one cause type for a failure. The first and fifth bars in

Figure 2.4 are the single-contributor software bugs and misconfigurations, respectively.

The cases where a software bug is a co-contributor are the sum of the first to the third

bars. Similarly misconfiguration as a co-contributor is the sum of the third to fifth bars.

37

Based on the public reference dataset, we find misconfiguration is a dominant

single-contributor and co-contributor to the collected public cloud service outages, es-

pecially for the outages with servere impact. This suggests that misconfiguration is an

important issue in the cloud environment. Hardware faults were responsible for only

a small number of the failures. This reflects the resilience in industrial-strength cloud

systems.

2.7.2 Multiple Root Causes

One characteristic of fault-tolerant systems such as aircraft is that a system-level

incident is often a result of multiple root causes. This is also the case for industrial-

strength cloud systems. A significant number of cloud failures today are a result of

multiple cause types. Even for those cases with a single cause type, there can be multiple

causes (e.g., two code bugs).

There are two common patterns of multi-cause failure. Concurrent causes are

separate causes (e.g., improper local preference and wrong community strings in BGP

routers) that in combination lead to the failure. Concurrent causes need to be investi-

gated and addressed independently. In chained causes, multiple causes form an ordered

sequence. An initial cause leads to or exposes another cause.

For chained causes, fixing one of the causes can mitigate the issue. A more

tricky pattern is a compound of concurrent and chained causes. These three patterns are

illustrated in Figure 2.5. Our experiences in reviewing the public cloud service outages

suggest that the majority of multi-cause incidents are chained and compound causes,

partially due to the interactive nature of cloud systems. This may indicate opportunities

to model and prevent multi-cause incidents.

38

defect a

defect b

defect c

X

X

X

(a). Concurrent causes

defect a Xdefect b

defect c

(b). Chained causes

defect a

defect c

X

X

X

X

defect b

defect d

(c). Compound causes

Figure 2.5. Patterns of how multiple root causes contribute together in an incident.

2.8 Zooming in on Misconfiguration

After understanding why faults were not tolerated and what caused the failures,

it is clear that misconfiguration was a major source of the untolerable faults, of high-

severity outages cases, and of the unavailability incurred by service outages. These

facts motivate us to further look into misconfiguration in cloud service failures.

2.8.1 What Components Were Misconfigured?

From the publically disclosed cloud service disruptions, we can find that a sig-

nificant percentage of the misconfigured components were network elements such as

routers and software load balancers. For example, most of the public Google cloud

failures are caused by misconfiguration in networking.

This phenomenon comes from the fact that configuring network elements relies

heavily on the orchestration of correct configuration for various aspects (e.g., interface,

routing, ACL) and other network elements. In a way, configuring a network is like

39

Table 2.5. Operation that introduces misconfiguration

Update

None
Missing update

Long-standing

writing a distributed program. Yet the available network configuration primitives are

often low level (e.g., route maps), which makes configuring a large-scale network a

daunting task even for trained operators [62]. Moreover, compared to other components,

network elements often have low redundancy but high impact on connectivity.

Misconfigurations in management nodes affect their functioning (e.g., broadcast,

recovery). Although more configuration errors lay in regular nodes than management

nodes, misconfigurations in management nodes can have large-scale impact. For exam-

ple, a misconfiguration in the network manager could cause incorrect DNS suffixes to

be issued to all rebooted VMs.

An often overlooked type of cloud components that can get misconfigured are

the monitoring nodes, which are used for end-to-end failure detection. Misconfiguration

in these nodes can prolong the detection times, which in turn delayed mitigation and

recovery.

2.8.2 What Introduced the Misconfiguration?

The tediousness of conducting similar configuration tasks has motivated many

automation tools that generate and manage configuration entities. Bugs in these tools

then become another source for misconfigurations. For example, a recent service outage

in Google was caused by a bug in the configuration generation system [33]. We suspect

with more configuration automation tools, the percentage of bug-induced misconfigura-

tions may go higher (though the total misconfigurations may be reduced). How to detect

bug-induced misconfiguration remains to be explored.

40

Another aspect of looking at what introduced misconfiguration is through the op-

erations as listed in Table 2.5. Often cloud misconfiguration happen due to both config-

uration changes that occur frequently in the dynamic cloud environment. For example,

when there are workload increases or hardware updates, a session limit parameter may

be adjusted. To detect changes related misconfigurations, tools analyzing configuration

change impact will be useful. It is also necessary to track configuration change and own-

ership so when failures happen, they can be fixed quickly. For example, failures due to

problematic network configuration changes usually can be quickly fixed by reverting the

changes. Knowing who made the changes and what the change was will help expedite

failure handling.

Except for change-induced misconfiguration, cloud misconfigurations can also

be long standing or occur due to missing update(s). Long-standing misconfigurations

exist in the system for a while but do not cause immediate impact when they were intro-

duced (e.g., protection misconfigurations in Figure 1.1). For the missing update category,

the configuration is initially good but becomes invalid when the environment changes

or its validity expires (e.g., a temporary timeout increase to accommodate planned main-

tenance downtime persists after the maintenance). These misconfigurations emphasize

the need to automatically detect what configuration should be changed when the envi-

ronment changes as well as to periodically clean up legacy configurations.

2.8.3 What Constraints Were Violated?

Misconfigurations happen because some inherent constraints are violated. Based

on the public cloud service outages as well as misconfiguration from prioer studies, we

identified several constraints commonly violated as described in Table 2.6.

The simplest type of misconfigurations were format violations. These miscon-

figurations are easily eliminated with operator training, configuration review and regular

41

Table 2.6. Violated constraints in the studied misconfigurations

Constraint Description Example of Constraint Violation

Format
Basic lexical and syntax re-

quirements.

partition = 1 (extra

spaces)

Consistency

When similar configura-

tion entries exist in mul-

tiple places, the settings

should be in agreement.

Cluster A in some config. file

was incorrectly considered as

part of cluster B while in other

files it was not. This caused

wrong (B’s) certifate to be

picked up in deploying cluster

A.

Dependency

A configuration depends

on other configuration(s)

that may lie in different

components.

New IPs were added to clus-

ter. But ACLs in edge routers

were not updated.

Scope

The configuration is only

applicable to a particular

environment or scope.

Standby node mistakenly in-

herited some settings from ac-

tive node, causing the standby

to also process requests and

silently drop the result.

Time

The configuration is legiti-

mate initially. But it has a

validity time limit.

A scheduled maintenance to

migrate circuits exposed the

legacy config. in a router,

causing intermittent failures.

Global

The effect of configuration

is only meaningful in the

context of peers’ settings.

Local pref. of a subnet ad-

dress was set to 400, while

other addresses had it set to

100. It attracted overwhelm-

ing traffic.

Intention

Default constraint: the

effect of configuration

matches what is expected.

All tenant VLANs were

configured with DHCP relay

pointing to a few management

nodes, causing all DHCP

requests to be forwarded to

these nodes.

42

testing. But even with these practices, the exact effect of a configuration setting can still

be difficult to grasp. This is why the biggest violation is the intention violation. Check-

ing intention violation requires radically new configuration languages and systems to

allow expressing high-level intention [79, 78].

A common type of misconfigurations in cloud environment is a violation of

some consistency constraints. The consistency constraints refer to consistency of the

same configuration entries in multiple instances (e.g., BGP export policies among edge

routers should be consistent) as well as the consistency of seemingly different config-

uration entities that contain the same information (e.g., a host name appearing in both

the database connection string and the hosts file should be consistent for the name to be

resolved). Inconsistency can be reduced with better configuration management that cen-

tralizes and keeps configurations up-to-date in all instances/entities and monitors these

configurations in case of out-of-band edits.

A constraint related to consistency constraints is cross-component configuration

dependency constraint. These dependency requirements often lay across components.

For instance, the rule for bypassing NAT to support direct communication between pri-

vate IPs depends on the ACLs in the destination components. Tracking configuration

dependencies across components demands extensions to existing techniques [56, 128].

At cloud scale, it is inevitable to have different software versions, hardware (e.g.,

router models), and cluster types (e.g., storage and compute clusters). As a result, the

configuration that gets deployed might be for a different environment or software ver-

sion, i.e., violating scope constraint. In one case, the configuration for software in ver-

sion A was applied to version B binaries, which enabled a feature with a known bug in

the version B binaries resulting in a crash. These cases require configuration tagging

and versioning and tooling enforcement to check that the configuration is compatible

with the target environment.

43

Other violated constraints include time and global constraints. A certificate is

a typical time-constrained configuration. Temporary configuration workarounds also

have validity time limits. An example of a global constraint is the local preference

configuration in BGP. The effect of this setting is determined by peers. The route with

higher local preference will be preferred over other routes.

2.9 Conclusion

Cloud service disruptions are costly to both end users and vendors. As more

systems evolve towards cloud scale, studying cloud service disruptions becomes more

important. This chapter makes an attempt to examine 34 notable cloud failure incidents

that we collected using public information. We take a novel perspective of revisiting

the pervasively used fault tolerance mechanisms in cloud and analyze why failures still

occurred despite abundant fault tolerance.

We find that many cloud failures occurred due to some faults that cannot be tol-

erated by existing replication-based fault tolerance techniques. A major cause of these

“untolerable” faults were misconfigurations. For these faults that could have been toler-

ated, fault tolerance in place may not be triggered often because the failures were not

detected. For the remaining cases where fault tolerance was triggered, but still did not

successfully prevent the service disruptions, the reasons could be that the self-recovery

was too slow, redundancy was insufficient or the fault tolerance mechanisms were bro-

ken. We also zoomed into misconfiguration as it was often a major cause of the untoler-

able faults and service unavailability in failures from multiple providers.

2.10 Acknowledgements

Chapter 2 contains material of a paper retracted from 11th USENIX Symposium

on Operating Systems Design and Implementation 2014. Huang, Peng; Jin, Xinxin;

44

Bolosky, Bill; Zhou, Yuanyuan. The dissertation author was the primary investigator

and author of this paper.

Chapter 3

CPL: A Configuration Specification

Language

3.1 Introduction

Cloud-scale systems today use a wide variety of configuration entities to con-

trol different features and components. These configurations are further duplicated and

customized for different deployment environments (Figure 3.1), creating a large volume

of configuration data. A misconfiguration can affect the entire system. For example,

misconfiguring the endpoints of load balancing components could cause all traffic to be

directed to one server, overwhelming that server and effectively making the whole ser-

vice unavailable; misconfiguring the backup options of a redundant service pair could

cause the backup to be useless should the primary go down. It is not uncommon to

see misconfiguration(s) being the root cause(s) for service disruptions in today’s highly

fault-tolerant systems [25, 3, 16, 14, 39, 40, 27, 50, 33], causing considerable financial

cost [20].

Misconfiguration is a thorny issue. Many solutions have been proposed to attack

it ranging from misconfiguration detection [130, 131], diagnosis [125, 124, 126, 56]

and repair [121, 97] to system resilience [94, 128]. These solutions greatly alleviate end

users’ pain in configuring unfamiliar software. However, they are often post-mortem

45

46

Compute cluster Storage cluster

Network V2
cluster

Small storage
cluster

MonitorTenant = true
RequestRetries = 3
ProxyIPs = 10.0.0.1,10.0.0.2
VLAN = {“StartIP”: 10.53.129.1,
 “EndIP”: 10.53.129.2}
OSPath = \\share\OS\v2
…

RequestRetries =

5

OSPath =

\\share\OS\v2

MonitorTenant =

false

OSPath =

\\share\OS\v3

Configurations

customize

duplicate

Figure 3.1. Configuration data in cloud systems.

efforts or incur overhead (e.g., instrumentation, record and replay) that is too expensive

to deploy for evolving cloud-scale production systems.

Handling misconfigurations in cloud systems needs to be both proactive to pre-

vent service downtime, and lightweight to continuously operate as systems undergo fre-

quent changes. Deployment testing is a proactive solution that can prevent misconfigu-

ratons from being introduced into production. But due to resource constraints, not all

configuration updates will be tested before rolling into production. Additionally, some

misconfigurations are latent (e.g., misconfiguration in fault-tolerance options) and there-

fore can escape testing. Even when a misconfiguration is uncovered during deployment

testing, the setup and roll-out of the bad deployment at cloud scale is costly.

Configuration validation checks if configurations satisfy some specification, e.g.,

a file path that should exist, an IP range that should not overlap with others, a timeout

that should be consistent with others. The earlier and more thorough the validation,

the less likely misconfigurations would damage production services. Moreover, when

a misconfiguration is detected, the pre-defined specifications and validation results can

help pinpoint which part of the configuration is problematic. Configuration validation is

47

complementary to deployment testing.

Configuration validation is a feasible practice for cloud services because the sys-

tems are operated by dedicated, trained staff who collaborate with developers (cf. Dev-

Ops movement [117]). These practitioners have expertise to understand the constraints

of some configurations, e.g., proxy endpoints should be HTTPS if the SSL option is

enabled; disabling security token and setting token service endpoints could cause an

authentication outage. Practitioners use their expertise to validate configurations by con-

stantly reviewing configuration changes before the changes are applied. They also write

plenty of code and scripts to programmatically validate configurations.

However, the current configuration validation practice is inefficient and ad hoc.

The manual configuration reviews are time consuming. Validation code is scattered in

different code regions and sometimes invoked too late at runtime. The validation code

is bulky and hard to maintain. Practitioners often waste time writing similar checks.

Writing validation code becomes a reactive effort, e.g., after incidents occurred.

We believe that by providing the right tools to practitioners, configuration valida-

tion can be made an ordinary part of cloud-scale system deployment and can proactively

prevent misconfiguring production services. Towards this end, we present ConfValley,

a systematic framework for practitioners operating cloud-scale systems to efficiently

conduct configuration validation.

The challenges in building such a validation framework lie in how to allow prac-

titioners to express configuration specifications easily and precisely; how to minimize

tedious manual efforts so practitioners have incentives to conduct validation; how to

avoid investing repeated efforts on similar validations; and, how to run validation effi-

ciently on a large volume of diverse configurations in evolving environments.

At the core of ConfValley is a simple, declarative configuration validation lan-

guage, CPL, to describe various specifications easily. The language decouples the core

48

validation logic from implementation details, allowing the specifications to be described

compactly and independently of the underlying configuration representations. The ben-

efits are that validation code become maintainable, modular, parallizable, and adaptable

to various configuration sources.

Even with a compact language, writing all configuration validation specifications

from scratch can be tiresome. Therefore, ConfValley contains a component to automat-

ically infer and generate specifications. In this way, experts can focus on writing com-

plex or domain specific specifications that are hard to infer. Additionally, auto-inference

makes it feasible to keep the specifications up to date as the systems evolve.

Our experience in using ConfValley inside Microsoft Azure [35] as well as on

two open-source cloud systems shows that using the framework for configuration vali-

dation is much easier and systematic compared to prior practice. To be specific, the ad

hoc configuration validation code that was used in Microsoft Azure could be expressed

in our new language with more than a 10x reduction in lines of code. For example, a

previous validation module with more than 3000 lines of code became only 109 lines of

code in 62 CPL specifications, out of which 27 specifications could be automatically in-

ferred. The new concise validation code is more declarative and easier to read. Second,

the inference component in ConfValley infers thousands of specifications with high ac-

curacy. With the inferred specifications, we validated the latest configuration snapshot

in Microsoft Azure and reported 43 violations, 32 of which were true configuration er-

rors. With specifications written by experts, ConfValley reported 8 configuration errors,

all of which were confirmed.

3.2 Background and Motivation

In this section, we introduce characteristics of configurations in cloud systems,

practices of configuration validation, and the issues in these practices.

49

3.2.1 Configuration in cloud systems

A wide variety of configurations are used in cloud systems to control features,

endpoints (e.g., cache server addresses), security, fault tolerance, tunable behaviors (e.g.,

timeouts, throttling limits) and so on. These configurations lie in different system com-

ponents and software stacks. Their representations also vary (e.g., XML, key-value, .INI

files). In Microsoft Azure, there are many thousands of configuration entities in tens of

different representations.

Configurations in cloud systems are intertwined. Improper changes to a config-

uration in one place can affect the correctness of configuration(s) in other places. In

these cases, cross-validating configurations across different sources is useful. For in-

stance, account configurations need to be consistent across controller and authentication

components.

Additionally, configurations in cloud systems are heavily replicated and cus-

tomized for different deployment environments to tailor them to heterogeneous infras-

tructure, services, workloads and customer needs. This replication and customization

creates notions of configuration class and configuration instance, which are compara-

ble to class definition and instantiation in object-oriented programming. In Listing 3.1,

MonitorNodeHealth is a configuration class that has instances in each of the 4 Tenant

scopes (line 5, 8, 11, 18). The ratio of configuration instance to configuration class is

as high as 80:1 to 14,000:1 in the repository of static configuration data in Microsoft

Azure.

3.2.2 Configuration validation

Configuration validation is the process of checking a configuration against some

explicit specifications. The specifications impose constraints on configurations, e.g., pa-

rameter A should be a file path that exists, parameter B should be smaller than parameter

50

<CloudGroup Name = "East1 Production">

<Setting Key = "MonitorNodeHealth" Value = "True">

<Setting Key = "ControllerReplicas" Value = "5">

<Cloud Name = "East1Storage1">

<Tenant Type = "A">

<Setting Key = "MonitorNodeHealth" Value = "False">

</Tenant>

<Tenant Type = "B" />

</Cloud>

<Cloud Name = "East1Storage2">

<Tenant Type = "A" />

</Cloud>

</CloudGroup>

<CloudGroup Name = "SSD Cluster">

<Setting Key = "MonitorNodeHealth" Value = "True">

<Setting Key = "ControllerReplicas" Value = "3">

<Cloud Name = "East1Compute1">

<Tenant Type = "A">

<Setting Key = "ControllerReplicas" Value = "5">

</Tenant>

</Cloud>

</CloudGroup>

Listing 3.1. A snippet that represents configurations (Setting elements) at differ-

ent scopes using XML. For example, MonitorNodeHealth is inherited by all Tenant

scopes, some of which override the value to be False.

51

Correctness

confidence

Format, nonempty

Value range

Consistency, uniqueness

Relation

Intent

PrimaryIP is a nonempty IP adddress

PrimaryIP lies in a CIDR block

PrimaryIP is unique within clusters

PrimaryIP != BackupIP

PrimaryIP points to desired component

Specification Example

high

low

Figure 3.2. The spectrum of typical configuration specifications.

C.

Like other validation approaches, configuration validation is unsound in that it is

unable to reject all invalid configurations. In other words, a configuration that fails any

specification is invalid but a configuration that passes all specifications is not necessarily

correct. For example, a parameter for the VM image path can pass the validation of

the data type (file path), matching pattern (ends with .vhd), existence (path exists),

consistency (same values across clusters), etc., while still being the wrong version of

the VM image.

Despite the unsoundness, having configurations validated with respect to various

specifications can increase confidence in the correctness of a configuration in the same

way as testing provides confidence in code quality. Typically, the overall value space

for a configuration parameter is large, within which the space of correct values is small

(and often just one). Validating configurations against various specifications shrinks the

invalid value space and increases the correctness confidence. Figure 3.2 shows some

typical types of specifications and examples.

52

The existing practice of configuration validation is often inefficient and ad hoc.

There are time-consuming manual configuration reviews in which practitioners look for

errors in each configuration update. There is also programmatic configuration checking,

but the checking code is interspersed with other code in different regions. When invoked

at runtime, some checks can be too late to prevent misconfigurations. Practices that use

separate code and scripts to check configurations are often ad hoc. The validation code

buries essential validation logic in details that are not very relevant to the validation.

Consequently, the validation code becomes bulky and hard to maintain. For example, in

Microsoft Azure, there are thousands of lines of validation code with high redundancy.

The validation code in OpenStack [44] and CloudStack [10] is mixed with other code

and scattered in different source regions.

3.3 Design Considerations

In this section, we examine the design trade-offs in making configuration valida-

tion an efficient and systematic activity.

3.3.1 Language support

The lack of efficiency and systematicness in existing configuration validation

practices can be addressed by software engineering processes such as refactoring. But

we observe that the issues are often due to the lack of better language support for con-

figuration validation. In bulky ad hoc validation code, the validation logic is entangled

with tedious implementation details and tailored for a specific configuration source or

validation scenario.

For example, ad hoc validation code operates on configuration instances, while

the validation logic essentially applies to configuration classes. This means the core

validation code will be interspersed with code that discovers all instances for a configu-

53

ration class. For example, to check a simple requirement that MonitorNodeHealth is

a boolean type, existing code will first find all instances of MonitorNodeHealth in all

scopes as shown in Listing 3.2. In a cloud system, a configuration class can have a high

number of instances in various scopes. The code to discover instances becomes tedious

to write and obscures the essential validation logic, and may even harbor bugs itself.

// Check if MonitorNodeHealth class is boolean

Settings = Parse("setting.xml");

foreach (CloudGroup in Settings.CloudGroups) {

foreach (Cloud in CloudGroup.Clouds) {

foreach (Tenant in Cloud.Tenants) {

if (!CheckBoolean(Tenant.MonitorNodeHealth))

return false;

}

}

}

Listing 3.2. Validation snippet that operates on configuration instances rather than con-

figuration classes.

Additionally, ad hoc validation code is fairly imperative and needs to prescribe

how to implement each constraint. Listing 3.3, 3.4 and 3.5 show three imperative val-

idation snippets taken from existing cloud systems to check simple constraints. For

example, to check that a parameter is a list of IP addresses involves splitting the value

and check if each part is an IP address. Also, to check uniqueness of different parame-

ters, a set needs to be created and tested for each parameter like the snippet in Listing 3.5.

With many configuration parameters and properties to be checked, imperative validation

becomes clumsy.

While designing a completely new configuration language that provides inher-

ent validation capabilities (e.g., type-safety) would be revolutionary, the cost of such a

solution, e.g., changes to existing infrastructure to support it, makes it an elusive goal.

We chose the less ambitious direction of refining the language used for writing config-

54

// Check if IpRanges is a list of IP ranges

bool passed = true;

string [] ranges = IpRanges.Split(’;’);

foreach (string range in ranges) {

if (!IsIPRange(range)) {

passed = false;

break;

}

}

Listing 3.3. An imperative validation snippet that prescribe the implementation details

of a simple type constraint.

// Check if parameters are positive integers

configForValidation = new HashSet<String>();

configForValidation.add("event.purge.interval");

configForValidation.add("alert.wait");

Class<?> type = config.getType();

if (type.equals(Integer.class) &&

configForValidation.contains(config.name)) {

try {

int val = Integer.parseInt(config.value);

if (val <= 0) {

throw new InvalidParameterValueException(

"Enter a positive value for:" + config.name);

}

} catch (NumberFormatException e) {

throw new InvalidParameterValueException(

"Error parsing integer value for:" + config.name);

}

}

Listing 3.4. An imperative validation snippet that prescribe the implementation details

of a simple value range constraint.

55

// Check if address and location are unique

HashSet<string> ipList = new HashSet<string>();

HashSet<string> locationList = new HashSet<string>();

foreach (LoadBalancer loadBalancer in loadBalancers) {

if (!ipList.Add(loadBalancer.Address)) {

Console.WriteLine("LoadBalancer address {0} is " +

"not unique: \t", loadBalancer.Address);

DumpList(ipList);

}

if (!locationList.Add(loadBalancer.Location)) {

Console.WriteLine("LoadBalancer location {0} is " +

"not unique: \t", loadBalancer.Location);

}

}

Listing 3.5. An imperative validation snippets that prescribe the implementation details

of a simple uniqueness constraint.

uration validation code and adding correctness constraints on top of existing diverse

configurations.

In the context of cloud-scale systems, the characteristics of the configurations

(see Section 3.2.1) dictate several desired properties for a refined configuration valida-

tion language:

• Scalable: fast and easy to evaluate over a large volume of configuration instances

• Representation-independent: the validation logic is not tied to specific configu-

ration representations

• Expressive: the ability to specify various configuration constraints easily

• Precise: the ability to precisely refer to the intended scope for a constraint

• Modular: easy to group constraints and compose constraints from existing mod-

ules

56

• Extensible: the ability to add new constraints

• Debuggable: debugging support when a validation fails

There are existing languages that provide some of these properties but fall short

in others. For example, C# LINQ and XQuery provide convenient ways to query data,

which is useful for finding target configurations to validate. But they lack inherent sup-

port for validation and domain knowledge of configurations. XML Schema Definition

provides constructs to write rules to which XML documents must conform. But the

types of validation that can be expressed are very limited (mainly formats). The lan-

guage is also tied to XML documents and is complicated to use. While it is possible

to add extensions to these languages to achieve the missing properties, designing a new

domain-specific language specially for configuration validation is a cleaner approach.

3.4 Configuration Predicate Language

CPL is a simple, domain-specific language that makes validation specifications

easy to write, systematic and maintainable, and which in turn encourages practitioners

in cloud systems to put more validation in place, which in turn increases their confidence

in overall system correctness.

The general design principle of CPL is to focus on validation logic rather than

implementation. In particular, CPL:

• Refers to configurations conveniently

• Describes constraints declaratively

• Describes the scope of validation precisely

• Covers common constraint primitives

57

• Allows extensions to the language

• Encourages modular validation specifications

• Supports convenient debugging constructs

3.4.1 Concepts

Before describing the details of CPL, we first explain several of its key concepts.

Predicate. The essential construct in CPL is a predicate. A predicate is used to

characterize a boolean property of some entity. For example, “X is an IP address”, “X

lies in the range from 1 to 10”, “X is consistent”, “A is greater than B”, and “X has

read-only permission” are simple predicates described in natural language. In CPL, we

provide a set of primitives for common properties such as data types, relation among

multiple entities, pattern matching, value ranges, consistency, and uniqueness.

We denote predicates using lower case bold letters, e.g., r, s, t. When evaluating

a predicate over some entity, we use the form of a function over arguments like r(x), in

which r is a predicate and x is the argument.

With logical operators such as AND, OR and IMPLIES, a predicate can be defined

recursively from other predicates. Therefore, s can be defined from (r AND t), (NOT r OR t),

or (r IMPLIES t). CPL also allows shorthand notations that are familiar to programmers.

For example, (r IMPLIES s) can be written as (IF r THEN s); (r IMPLIES s) AND (NOT r

IMPLIES t) is the same as (IF r THEN s ELSE t).

Domain. A predicate describes properties of an entity. When there are multiple

related entities to be tested for the same properties, e.g., x, y, and z, instead of associating

a predicate with each entity, e.g., r(x), r(y), and r(z), we can group these related entities

into a domain and associate the domain with the predicate. A domain is the source that

provides entities to evaluate one or multiple predicates.

58

In our specific context, a domain mainly refers to the values of a group of related

configuration instances. For example, configuration class C is a domain and r(C) :=

x ∈ C | r(x) is a predicate over all the instances of C. Users of CPL would be mainly

concerned with defining domains like configuration class C using unified notation (see

Section 3.4.2). The system will automatically try to find all elements that belong to the

specified domain.

Transformation. It is often useful to transform an entity and then evaluate a pred-

icate on the transformed entity. For example, suppose that predicate r(x) represents “x

ends with .xml”. But we may need to perform the test on values of x of mixed cases.

To support these cases, we can apply a lowercase transformation function f over x first

and then evaluate r, i.e., r(f (x)). Without transformation, we would have to redefine a

new predicate s that represents “x ends with .xml case-insensitively”, even though the

main logic between r and s are the same. Transformation improves the modularity and

extensibility of predicates.

In addition to specific entities, transformation functions are also applicable to

domains. There are two styles when applying a transformation function to a domain:

the “map-like” style applies the transformation to each member in the domain (e.g.,

split each member with a comma) and the “reduce-like” style applies the transformation

to all members in the domain as a whole (e.g., the union of all range-type members).

In addition to a single domain, transformation functions also may be applied

to multiple domains. For example, transformation functions can be standard binary

operators like + and - to connect two domains as a typical arithmetic expression. By

default, a transformation over multiple domains will be applied to the Cartesian product

of the members in these domains. We also provide a construct (see Section 3.4.2) to

override this behavior. The transformed domain(s) form a new domain, which can be

tested using predicates.

59

Quantifier. While a domain provides necessary arguments to a predicate, the quan-

tity of elements in a domain that should satisfy the predicate can vary. For example,

some cases require every possible argument value to satisfy the predicate while others

require only one possible argument to satisfy the predicate. CPL provides quantifier

construct to describe quantification for a predicate. ∃ means that there exists at least one

argument in the domain that satisfies the predicate. ∀ enforces that every argument in the

domain should satisfy the predicate, which is the default quantifier in CPL. ∃! denotes

that there should exist exactly one argument in the domain that satisfies the predicate.

3.4.2 Unified configuration representation

Since components in cloud systems are developed and typically managed by dif-

ferent teams, configurations for these components can be in diverse representations. For

example, some use standard INI or YAML format, others use customized XML hierar-

chies, key-value stores or REST APIs. In ad hoc validation code, the validation logic is

tied to the underlying configuration representations, which makes it painful to maintain

and adapt to representation changes. To avoid such entanglement, our framework uses

a set of drivers to abstract the diverse representations of configuration sources into a

unified representation to expose to the validation engine and the validation language.

Consequently, domains in CPL are referred to with a consistent, representation-

independent notation. In the simplest form of the notation, a configuration class is repre-

sented with a single key such as SecurityConfigFile. This key refers to all configuration

instances in the underlying configuration source(s). Many configuration parameters in

cloud-scale systems are organized and categorized based on factors like the components

or features for which these parameters are used. Therefore, a more generic form of con-

figuration notation in CPL attaches a scope to a key. This qualified notation allows prac-

titioners to easily specify target configurations. For example, Fabric.RecoveryAttempts

60

represents the configuration class RecoveryAttempts in the component Fabric.

To map the language-level scope notation to the underlying configuration

sources, our framework gets the scope information for configuration data in three ways.

First, if the configuration data already encodes scopes in the configuration parameter

name, out framework will directly extract the scope information. Second, if the configu-

ration data is in a hierarchical format, our framework uses domain knowledge to encode

the hierarchy. For example, the configuration parameter MonitorNodeHealth in List-

ing 3.1 can be parsed into a qualified notation CloudGroup.Cloud.MonitorNodeHealth

based on its tree path. Third, the configuration source loading statement in CPL allows

users to provide an optional scope to place before all the parameter names in the con-

figuration source. For example, if users indicate that a configuration source comes from

the Fabric component, the parameters in the configuration source will be prefixed by

Fabric.

Similar to configuration keys, scopes in qualified notations can refer to multiple

instances. For example, the scope Fabric can have multiple instances because of multi-

ple Fabric components. CPL specifications primarily deal with configuration and scope

classes. But there are cases where it is necessary to check for particular instance(s).

To allow this precise specification of target configurations, CPL supports fully qualified

notation with named styles (e.g., Fabric::inst1.RecoveryAttempts) and numbered styles

(e.g., Fabric[1].RecoveryAttempts). During internal processing in our framework, we

assign a unique fully qualified key for each configuration instance from the underlying

sources.

To add to the expressiveness of configuration references, CPL also supports wild-

card patterns as well as substitutable variables in a notation (both in the scope and key

parts). During evaluation, the validation engine in our framework will process these no-

tations in the specifications, substitute variables in any part of the notations and perform

61

Table 3.1. Examples of configuration notations and their meanings

Notation Refers to

Cloud.Tenant.SecretKey SecretKey in all tenants in all clouds

Cloud::CO2test2.Tenant.SecretKey SecretKey in all tenants in cloud

CO2test2

Cloud::$CloudName.Tenant.SecretKey SecretKey in all tenants in clouds

named with values of $CloudName

Cloud[1].Tenant::SLB.SecretKey SecretKey in tenant SLB in the first

cloud

*.SecretKey SecretKey under any top-level scope

*IP Any parameter with a key that ends

with IP in any scope

pattern matching to find all relevant instances in the underlying configuration sources to

validate.

Table 3.1 shows examples of supported configuration notations in CPL. In our

experience, we find that another benefit of the unified configuration notation is that

it makes it easy to cross-validate different configuration sources, which is commonly

needed for configuration validation. For example, we easily can validate that the se-

cret keys for the controller component are consistent with the configuration data in a

component providing authentication services.

Namespace. Since scopes are commonly used in configuration notations, CPL sup-

ports a namespace concept that is very similar to namespaces in modern languages like

C++ or C#. But rather than avoiding name collisions, the namespace keyword in CPL

is syntactic sugar to avoid repeatedly writing long scopes for a configuration key. For

example, instead of referring to r.s.k1, r.s.k2, and r.s.k3, we can just use k1, k2, and

k3 when inside namespace r.s. Multiple namespaces can be assigned in one predicate

block.

When resolving a configuration notation in a predicate block with namespaces,

62

we try to prefix the reference for each specified namespace in order and stop upon finding

its existence. For example, inside a namespace n, we resolve the notation a.k1 by first

trying to prefix the notation with n, i.e., n.a.k1, and if it does not exist then look for a.k1.

Compartment. In CPL, a predicate is evaluated iteratively on all instances of a

domain. When a predicate is defined over multiple domains, the instances to be eval-

uated, by default, will be the Cartesian product of the instance sets for these domains.

This might be unwanted. For example, the predicate r(VLAN.StartIP, VLAN.EndIP) :=

VLAN.StartIP ≤ VLAN.EndIP represents the assertion that StartIP should be smaller

than EndIP under the VLAN scope. If there are 5 instances for each of the two

domains, VLAN[1].StartIP, VLAN[1].EndIP, VLAN[2].StartIP, VLAN[2].EndIP, etc.,

the default evaluation will check the predicate on 25 pairs like (VLAN[1].StartIP ≤

VLAN[2].EndIP). But what is often needed is instead to check the predicate on StartIP

and EndIP instances that appear under the same VLAN instance. In other words, only 5

pairs should be checked.

CPL provides the construct compartment to override the default evaluation be-

havior for predicates involving multiple domains. A compartment is similar to a names-

pace in that resolving configuration notations inside a compartment will try to prefix

the notation with the compartment name. But unlike namespace, every instance of the

compartment name is treated as an isolated scope when evaluating any predicate. In

other words, a predicate in a compartment will repeatedly be evaluated the same num-

ber of times as the number of compartment instances, each time with the configuration

keys being under a specific compartment instance. If inside a particular compartment

instance, some domain in the predicate does not have any instance predicate evaluation

will skip this compartment instance and continue to next compartment instance.

Using the previous example, we can put r(StartIP, EndIP) := StartIP ≤

EndIP in compartment VLAN. During evaluation, the predicate is evaluated 5 times,

63

〈statement〉 ::= 〈predicate〉 | 〈command〉

〈predicate〉 ::= 〈domain〉 ‘→’ 〈predicate〉
| ‘if’ ‘(’ 〈predicate〉 ‘)’ 〈predicate〉
| ‘if’ ‘(’ 〈predicate〉 ‘)’ 〈predicate〉 ‘else’ 〈predicate〉
| 〈quantifier〉 〈predicate〉
| 〈predicate〉 ‘&’ 〈predicate〉
| 〈predicate〉 ‘|’ 〈predicate〉
| ‘∼’ 〈predicate〉
| ‘namespace’ 〈qid〉 ‘{’ 〈predicate〉 ‘}’

| ‘compartment’ 〈qid〉 ‘{’ 〈predicate〉 ‘}’

| 〈primitive〉
| . . .

〈primitive〉 ::= 〈type〉 | 〈relation〉 | 〈match〉 | 〈range〉 | 〈consistent〉 | 〈unique〉 | 〈order〉 |

‘@’ 〈id〉 | . . .

〈quantifier〉 ::= ∃ | ∀ | ∃!

〈domain〉 ::= ‘$’ 〈qid〉
| 〈transform〉 ‘(’ 〈domain〉 ‘)’

| 〈domain〉 ‘→’ 〈transform〉
| 〈domain〉 〈binary_op〉 〈domain〉
| 〈unary_op〉 〈domain〉
| ‘#’ 〈compartment〉 〈domain〉 ‘#’

| . . .

〈qid〉 ::= 〈qid〉 ‘.’ 〈wid〉
| 〈qid〉 ‘::’ ‘$’? 〈wid〉
| 〈qid〉 ‘[’ ‘$’? 〈wid〉 ‘]’

| 〈qid〉 ‘[’ 〈int〉 ‘]’

| 〈wid〉

〈wid〉 ::= 〈wid〉 〈wsym〉 | ‘_’ | ‘*’ | 〈letter〉

〈wsym〉 ::= ‘_’ | ‘*’ | 〈letter〉 | 〈digit〉

〈command〉 ::= 〈let〉 | 〈load〉 | 〈get〉 | 〈include〉 | . . .

Listing 3.6. CPL grammar

64

VLAN[1].StartIP ≤ VLAN[1].EndIP, VLAN[2].StartIP ≤ VLAN[2].EndIP, etc.. If a

VLAN instance does not have StartIP or EndIP keys, the predicate will skip this instance

(if needed, a predicate can easily be written that assures that appearances of StartIP in a

VLAN implies an EndIP).

Compartments are also useful for predicates defined over a single domain. For

example, suppose that we need to validate that the location identifier assigned to a

blade is unique in the rack it belongs to. The qualified configuration notation is

Rack.Blade.Location. But we cannot simply write a predicate that validates that this

class is unique because the location identifier is allowed to overlap across different

racks. In other words, the uniqueness should be enforced only within a rack. With a

compartment and the way we resolve the configuration notation, we can write a predi-

cate r that represents “Blade.Location is unique” and put it under compartment Rack.

The framework will then find all instances for the compartment and check if uniqueness

for instances of Blade.Location under each compartment instance.

3.4.3 Piping

Domains in CPL provide the data instances to be validated in constraints. In

some scenarios, constraints are enforced on only part of the data values or transformed

data values. To avoid superfluous temporary assignments, CPL allows domains to go

through a data pipeline and be applied in a final constraint at the end of the pipeline.

Each step of the pipeline can be a transformation function or predicated transformations.

The result values of a step, if any, will be passed on as implicit arguments to the trans-

formation functions in the next step, iteratively or as a whole based on transformation

functions. A step can also access the result of its prior step explicitly with the variable

$_.

65

/* Prepare configuration sources for (cross -)validation , define

macros */

load ’runninginstance’ ’10.119.64.74:443’

load ’cloudsettings’ ’/path/to/settings’

load ’assets ’ ’example.com/resources’

include ’type_checks.prop’

let UniqueCIDR := unique & cidr

// machinepool in cluster is

// one of the defined machinepool names

$Cluster.MachinePool → {$MachinePool.Name}

// threshold is a nonempty integer in range

$Fabric. AlertFailNodesThreshold → int & nonempty & [5 ,15]

// consistent fill factors within a data center

#[Datacenter] $Machinepool.FillFactor# → consistent

compartment Cluster {

// IP is in range within each cluster

$ProxyIP → [$StartIP , $EndIP]

// either empty or unique CIDR notation

$IPv6Prefix → ∼nonempty | @UniqueCIDR

}

// if any gateway points to loadbalancer

// a loadbalancer device should exist

if (∃ $RoutingEntry.Gateway ==

’LoadBalancerGateway’)

$LoadBalancerSet.Device → nonempty

// if not a type of cloud , TenantName in the

// corresponding fabric starts with UfcName

if ($CloudName → ∼match(’UtilityFabric’)) {

$Fabric:: $CloudName.TenantName

→ split(’:’) → at(0) → $_ == $UfcName

} else {

$Fabric:: $CloudName.TenantName → ∼nonempty

}

// VipRanges value is like ’ip1 -ip2;ip3 -ip4 ’

// each item within should be in range

$MachinPoolName → foreach($MachinPool::$_.LoadBalancer.VipRanges)

→ if (nonempty) split(’-’)

→ [at(0), at(1)] → ∃ [$StartIP , $EndIP]

Listing 3.7. Example validation specifications in CPL

66

3.4.4 Commands

CPL defines a set of commands to prepare or facilitate validation. For example,

the load command is used to provide configuration sources for a validation session; the

include command adds existing specifications to the current session, which is useful

for making specifications modular; the let command defines common constraints as a

“macro”, e.g., let UniqueIP := unique & ip, which can be used later in a predicate

(with @ symbol).

3.4.5 Grammar and Examples

Listing 3.6 shows the main CPL grammar. A simple validation statement in

CPL is 〈domain〉 → 〈predicate〉, For example, $OSBuildPath → path & exists

checks if each instance of configuration OSBuildPath is an extant path. Listing 3.7

shows more CPL code examples, written to replace some ad hoc validation code snip-

pets. These examples are much more concise in CPL than their original counterparts.

The examples also show cross-validation of different configuration sources in CPL does

not require cumbersome handling.

3.4.6 Extending CPL

CPL provides a common set of predicate primitives and the recursive construc-

tion of predicates from other predicates to cover typical validation requirements. Yet it

can be the case that some predicates cannot be described in CPL.

There are two approaches to extend CPL to support more validation logic. The

first one is to add predicates into CPL language primitives (e.g., keyword reachable).

This requires modifying the CPL compiler, which is written on top of a modern frame-

work. It is relatively straightforward to extend the compiler. We provide base classes in

the compiler for extending new types of predicates. On average, the implementation of

67

existing predicates that inherit the provided interfaces takes about 70 lines of C# code.

The second approach is to leverage new transformation functions to transform

the domain to be validated into a new domain so that it is easy to validate the new

domain without new language primitives (see Section 3.4.1). We allow user-defined

transformation functions to be added as plug-ins. In this way, there is no need to modify

the syntax or compiler of CPL.

We also plan to allow predicates to be added as plug-ins without modifying the

CPL compiler. A current workaround to achieve this is to define a predicate as a binary

transformation function. In this way, the predicate can be added as a plug-in. But users

need to explicitly test that the transformation result is TRUE, which is not needed for

predicates that are CPL language primitive.

3.5 Validation Policy and Runtime Information

In addition to the main validation logic, a separate policy can be provided during

evaluation to control the validation behaviors. We currently allow policies to describe

violation severity, violation handling (e.g., stop on first violation, continue on viola-

tions), failed actions and validation priority (i.e., assigning priorities for configuration

parameters so that specifications involving critical parameters are evaluated first).

The validation engine may also collect some runtime information such as the

host environment to evaluate predicates that require this information. For example, the

OS name of a host or date time can be used in predicates. The current support for such

dynamic validation involving runtime information is limited in CPL. We plan to extend

the support for dynamic validation in future work.

68

3.6 Error Messages

An error message is commonly used in validation to help understand why the

target configuration failed the validation. In existing configuration validation code, an

explicit error message is manually crafted after a check is violated. When there are

many such checks, writing error messages becomes tedious. In addition, these error

messages are usually just a repetition to the semantic of a check plus information about

the configuration. In CPL, we automatically generate the error messages based on the

checks and configuration key values. For instance, if the predicate is a range, the error

message is that a value for the key is out of the range. We also allow overriding this

default error message for an individual check.

3.7 Evaluation

In this section, we evaluate CPL inside Microsoft Azure as well as on two open-

source cloud systems, OpenStack and CloudStack. We seek to answer how expressive

and easy is it to write configuration validation specifications in our proposed language

CPL.

3.7.1 Baselines

Our main evaluation subject is Microsoft Azure. Microsoft Azure practitioners

currently typically use stand-alone validation tools and scripts written mainly in C# and

PowerShell to validate different kinds of configurations. The high-level languages that

are used to write these tools have features that are suitable for certain configuration val-

idation tasks, e.g., LINQ in C# for querying configuration data. But the core validation

part is imperative and is tightly coupled with individual validation needs. This creates

repeated validation development costs and hurts code maintainability. We compare writ-

69

ing validation in CPL with the ad hoc code in these validation tools.

We also compare with configuration validation practices in two major open-

source cloud systems, OpenStack and CloudStack. Configuration validation in Open-

Stack is lacking. Its developers recently raised a discussion to improve this situation [19]

and took initial efforts, e.g. adding type validation. But a concrete solution is missing.

A third-party tool called Rubick [47] that is written in Python exists to provide configu-

ration validation for OpenStack. Therefore, we compare writing validation in CPL with

the Python code in Rubick. In CloudStack, the validation code is embedded in its Java

source code files and is very imperative. We compare writing validation in CPL with the

scattered Java validation code in CloudStack.

3.7.2 Rewriting Existing Validation Code

One criterion to test the expressiveness of CPL is to rewrite existing ad hoc

validation code in CPL. With the background knowledge of the baseline systems and

configurations, we manually went over existing validation code and expressed the vali-

dation requirements in CPL specifications. We measured the code size reduction as well

as the development time.

Table 3.2 shows the result for the Microsoft Azure evaluation. The validation

specifications in CPL are substantially more concise than the original validation code,

as much as a 30x reduction. For example, an existing module of validation code of more

than 3300 lines was rewritten in 109 lines of CPL code that consisted of 62 specifications.

The CPL specifications are also much easier to read according to anecdotal feedback

from practitioners. The time it takes to write these specifications ranges from half an

hour to 6 hours, a large portion of which is spent on extracting the precise validation

requirements from the original imperative code. Table 3.2 also shows that on average

one third of the translated specifications can be automatically inferred by our inference

70

Table 3.2. Express validation code for three kinds of configuration data used inside

Microsoft Azure into CPL specifications. *: time it takes to understand the original

code and then write specifications in CPL.

Config.
Orig. code Specs in CPL

Dev. time ∗

LOC LOC Count Inferable (man-hour)

Type A 800+ 50 17 6 1

Type B 3300+ 109 62 27 6

Type C 180+ 14 6 1 0.5

Table 3.3. Express validation code in two open-source cloud systems into CPL spec-

ifications. *: time it takes to understand the original code and write specifications in

CPL.

System
Orig. code Specs in CPL

Dev. time∗

LOC LOC Count (man-hour)

OpenStack 480 40 19 1

CloudStack 340 18 15 1.5

components.

Table 3.3 shows the result for two open-source systems, OpenStack (Rubick)

and CloudStack. We can see similar code reduction and small development time from

writing specifications in CPL.

The high code reduction and ease-of-writing mainly come from three advantages

of CPL. First, validation requirements are described declaratively in CPL with predi-

cates without prescribing the implementations. Second, configurations are referred by

concise unified notations in CPL, which disentangles the essential specifications from

details of handling specific diverse configuration instances. Third, CPL makes it easy

to reuse specifications because of the modular nature of the specifications and language

constructs like let.

We also encountered cases where some parts of the existing validation code were

71

hard to express in CPL (they are not counted in the results in Table 3.2 and Table 3.3).

These are mainly validations that require complex dynamic workflow or multiple com-

ponents to be running, e.g., verifying with authentication services that certificates are

acceptable. We plan to extend CPL to improve support for dynamic validation require-

ments. But it is not a design goal of CPL to be all-encompassing, which may make

it hard to use. Instead, these few complex scenarios can still be handled by old-style

imperative, hand-written validation code.

3.8 Conclusion

Configuration validation is an important quality assurance activity to catch con-

figuration errors before production. But the current practice for configuration validation

is ad-hoc and error-prone, eventually leaving practitioners with little incentives to add

comprehensive validation code.

We design a specification language, called CPL, for developers to write config-

uration validation code in a declarative way. The language provides several essential

abstractions to relieve developers’ burden of prescribing tedious validation details and

allow developers to focus on the core validation logic.

Using CPL, we can express the existing validation code in Microsoft Azure and

two open-source cloud systems with 10x to 30x fewer lines of code and much smaller

development efforts.

3.9 Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in the Tenth European

Conference on Computer Systems 2015. Huang, Peng; Bolosky, Bill; Singh, Abhishek;

Zhou, Yuanyuan. The dissertation author was the primary investigator and author of this

paper.

Chapter 4

ConfValley: A Cloud Configuration

Validation Framework

An improved validation language is not a panacea for the bad practices of config-

uration validation. We also aim to improve the tooling support for configuration valida-

tion. For example, configuration validation can be carried out at different stages of the

configuration life cycle: while editing configurations, before checking-in to the reposi-

tory, before deployment or at runtime. These validation scenarios require different tools

such as an IDE that provides auto-completion and quick warnings for simple mistakes,

a validation service that runs continuously on the configuration repository, and an inter-

active console for operators to validate production configurations on the fly. As another

example, as the configuration data and services are constantly evolving, keeping the

validation specifications up to date calls for effective tools.

In this chapter, we describe our framework, ConfValley, that aims to make con-

figuration validation in cloud systems easy, systematic and efficient.

72

73

Spec Inference
Engine

Validation
Executor

CPL

specs

validation
policy

Unified Configuration Representation

runtime information

Storage
Config

Web Server
Config

Network
Config

Cache
Config

…

update update update update

drivers

validation

report

Figure 4.1. Architecture of ConfValley.

4.1 System Design

4.1.1 Overview

Figure 4.1 shows an overview of ConfValley. The core validation engine in Con-

fValley takes validation specifications and an optional validation policy (e.g., actions

for failed validations and the priorities for different specifications). It will find all the

instances of target configuration entities according to the specifications, gather some

runtime information if necessary, and then evaluate whether the constraints in the speci-

fications are satisfied.

The validation specification is written in our new language CPL (cf. Chapter 3).

The specification and validation engines interact with unified configuration representa-

tions that are abstracted from diverse configuration sources by a set of drivers. In this

74

way, the validation core logic is disentangled from tedious details.

Since there are a considerable number of configuration parameters in cloud sys-

tems, writing all the validation code from scratch can be time-consuming. ConfVal-

ley contains a component to automatically infer as many specifications as possible, es-

pecially basic ones. Automatic inference also helps address the issue of how to keep

specifications up-to-date when the properties of some configurations change, e.g., new

value ranges of timeout parameters.

4.2 Inference Engine

Manually writing all the validation code can be time-consuming even for experts

using a concise language like CPL. Therefore, ConfValley provides an inference engine

to automatically generate as much CPL code as possible, especially basic checks such

as data types and value ranges. In this way, experts can focus on writing advanced

validation code.

Since validation specifications essentially depend on configuration constraints,

the inference engine needs to extract configuration constraints. There are two options.

White-box approaches use static analysis to infer configuration constraints from source

code [128, 115]. Black-box approaches mine constraints from configuration data [131,

125, 124, 95]. White-box approaches usually have higher inference accuracy compared

to black-box approaches. But their static analysis is difficult to scale to multi-component

cloud-scale systems.

The inference engine in ConfValley follows the black-box approach to provide

scalability, and leverage the fact that a configuration parameter has many instances in

a cloud system, from which it is possible to extract useful information. The inference

engine runs on samples of configuration data that are considered good (e.g., the config-

urations have been scrutinized carefully and caused few incidents in the past). It infers

75

a constraint when there is enough evidence based on the samples. For example, to in-

fer the data type of parameter A, if all the instances for parameter A can be parsed as

integers, we infer the integer-type constraint for parameter A. The constraints we can

currently infer include data types, non-emptiness, value range, enumeration elements,

equality among multiple parameters, uniqueness, and consistency.

With the inferred constraints, the inference engine generates CPL specifications

to evaluate on new configuration data. The inference does not need to be re-run each

time configuration data is updated. This is because the properties of a configuration

parameter can remain stable even though the values assigned to that parameter change

frequently. In general, the inference is re-run when there are major changes to the sys-

tem.

To improve inference accuracy, the inference engine tolerates irregularity and

noise in the input configuration data. For example, some instances of parameter A may

be integer values while other instances are comma-separated list of integers. In this case,

we define an ordering on types and infer the type constraint of parameter A to be the

highest-order type (list of integer). Like other black-box solutions [131, 125, 124, 95],

we also use heuristics for noise-filtering. For example, we determine an enumeration

constraint of a configuration class if ln(values.size)≥ value_set.size∧value_set.size ≤

MAX_ENUM_VALS; in determining the equality constraints, we ignore configuration

values whose string-lengths are smaller than 6 and configuration classes that have fewer

than 20 instances to avoid over-clustering (e.g., irrelevant boolean configurations).

As another example, we infer the equality constraint by clustering configuration

classes based on the value set and enforce a constraint that configuration classes in the

same group should be equal. We take into consideration of the scopes in which the value

instances lie in and may enforce the equality constraint under a certain compartment (see

Section 3.4.2).

76

Table 4.1. Driver code to convert different types of configuration data in Microsoft

Azure into a unified representation.

Config. format Driver (LOC)

Generic XML settings 400

Type A 150

Type B 30

Type C 80

Type D 30

Type E 50

4.3 Implementation

We have implemented our validation framework, ConfValley, with 9,000 lines

of C# code. The compiler component for our validation language CPL is built on top

of a popular framework, ANTLR [9]. In the current implementation, CPL provides 19

predicate primitives and 13 transformation functions. We wrote driver code to convert

different types of configuration data to a unified representation. Table 4.1 shows the

code size of such drivers for common configuration formats used in Microsoft Azure.

4.3.1 Usage Scenarios

Three usage scenarios are supported in ConfValley. In the first scenario, we

extend configuration editors to support CPL specifications and perform validation as

configuration data is edited. The instant feedback can help correct simple errors (e.g.,

incorrect type or format) before the wrong data is committed. In the second scenario,

we provide an interactive console to allow practitioners to write short (one-liner) spec-

ifications and validate production data on-the-fly. The main usage scenario is a batch

validation mode where ConfValley takes an input specification file and (re)validates it

continuously as configuration specifications or data are updated.

77

4.3.2 Optimizations

Performance is an important factor for continuous configuration validation. We

discuss two performance optimizations that have been implemented in ConfValley.

The first optimization is in the instance discovery component, i.e., processing do-

main notations (see Section 3.4.2 in Chapter 3) in CPL specifications to find correspond-

ing configuration instances in the underlying data sources for validation. Internally in

ConfValley, each configuration instance is assigned a key that uniquely identifies this in-

stance. The key consists of multiple segments describing the scope of the configuration

instance, e.g., a::inst.b[1].c. To find appropriate configuration instances, we need

to match the configuration domain keys in CPL specifications with the instance keys.

Such matching may not be a literal match. For example, domain key a in CPL matches

all more specific instance keys such as a::inst1, a::inst2. Also, any wildcards in

domain keys require pattern matching.

In our initial implementation of the instance discovery, we got all instance keys

that had the same number of segments as the domain key, and then iterated segment-

by-segment to gradually filter out instance keys whose segment did not approximately

match the corresponding segment of the domain key. But this implementation was inef-

ficient in handling the high load of discovery queries, which is typical in large systems

like Microsoft Azure (in some runs we see more than 5 million configuration instance

discovery queries). Therefore, our initial implementation became a bottleneck in the

validation process. We rewrote the this part with better data structures (e.g., trie) and

caching support. The optimizations improved the processing time by 5x to 40x.

The second optimization is in the CPL compiler. Manually written validation

code can contain inefficiencies. For example, multiple predicates for the same domain

may be used by multiple specifications, causing repeated instance queries for that do-

78

$s.k1 ip
compartment s{
 $k1 unique
 $k1 $k2
}

compartment s{
 $k1 ip & unique & $_ $k2
}

$s.k1 ip & unique & [$range]
$s.k2 ip & unique & [$range]

$s.k1,$s.k2 ip & unique & [$range]

$k1 string & nonempty & {‘compute’,‘storage’}

$k1 {‘compute’,‘storage’}

(a). aggregate predicates with same domains

to avoid repeated instance discovery

(b). aggregate domains with same predicates

to reuse internal predicate memory objects

(c). omit constraints implied by others to

avoid unnecessary checking

→

→

≤

≤→

→

→

→

→

→

Figure 4.2. Examples of CPL compiler optimizations.

main. Conversely, a number of domains for the same predicate may be in separate

specifications, causing excessive predicate memory objects to be created during valida-

tion. Additionally, some constraints in a specification can be implied by others, causing

unnecessary checking. Our compiler rewrites these types of inefficient specifications by

aggregating predicates, aggregating domains or omitting implied constraints. Figure 4.2

shows examples of these compiler optimizations.

4.4 Evaluation

In this section, we evaluate ConfValley inside Microsoft Azure as well as on

two open-source cloud systems, OpenStack and CloudStack. We seek to answer the

79

0

200

400

600

0 1 2 3 4
of constraints inferred

of

 c
on

fig
ur

at
io

n
ke

ys

Figure 4.3. Histogram of number of inferred constraints on a type of Microsoft

Azure configuration data with 1,391 configuration keys and 67,231 instances.

following questions: First (Section 4.4.1), how effective is the inference engine in Conf-

Valley? Second (Section 4.4.2), how effective are human-written and inferred validation

specifications in catching configuration errors? Lastly (Section 4.4.3), how efficient is

the validation and inference process? All the experiments were carried out on a single

machine with a 2.8 GHz Intel Core i7 CPU and 8 GB RAM running Windows.

4.4.1 Automatic Inference

An effective inference component should automatically generate many con-

straints, especially tedious ones, leaving experts to focus on complex constraints. Our

inference engine can mine constraints from a large volume of stable configuration data.

On a type of configuration data with 1,391 configuration keys, and 67,231 total

instances, Figure 4.3 shows the histogram of inferred constraints. We can see that the

majority of the configuration keys had at least 2 constraints inferred. There were 79 con-

figuration keys that had no constraints inferred. They were configuration parameters that

did not have much associated semantics or constraints by nature, e.g., IncidentOwner,

ClusterName.

80

Table 4.2. Validation constraint inference on three kinds of configuration data in Mi-

crosoft Azure.

Config.
of config. analyzed Inferred

Class Instance constraints

Type A 1,391 67,231 2,706

Type B 162 2,306,935 375

Type C 95 2,253 261

Table 4.3. Breakdown on the types of inferred constrains in Table 4.2

Config. Type Nonempty Range Equality Consistency Uniqueness

Type A 1,026 317 203 367 722 71

Type B 126 114 62 1 29 43

Type C 93 75 18 0 75 0

Table 4.2 and Table 4.3 shows the result of running our inference component on

three kinds of configuration data in Microsoft Azure. Most configuration data had at

least data type (we only count data types other than default string) or nonemptiness

constraints inferred. Inference of other constraints such as value range and equality

depends on whether the constraint is applicable to the particular configuration.

We manually examined the inferred constraints. The accuracy is around 80%,

which is acceptable. The inaccuracies (e.g., incorrect range inferred) come from insuffi-

cient samples for a configuration and from suboptimal heuristics for certain inferences.

With more configuration data and tuning, the accuracy can be improved. We also plan

to explore whether the heavy-weight white-box solutions can be efficiently combined in

our inference component to improve accuracy.

In practice, we find that inaccurately inferred constraints are usually easy to

spot after running the inferred specifications on real configuration data. Practitioners

can first inspect the validation reports generated by ConfValley, which can group failed

81

Table 4.4. Running expert-written validation specifications on three latest configuration

data branches in Microsoft Azure.

Config. branch Reported errors

Trunk 4

Branch 1 2

Branch 2 2

validations by constraint. If many configuration instances fail a constraint, it is likely

that constraint is problematic because it is rare that configuration data in an enterprise

environment has a large error percentage.

4.4.2 Preventing Configuration Errors

The ultimate goal of a configuration validation framework is to prevent config-

uration errors from being introduced into production. We used both manually crafted

and automatically inferred validation code to run on the latest configuration data in Mi-

crosoft Azure.

With manually-written validation specifications, Table 4.4 shows that Conf-

Valley reported 8 errors in total, all of which are confirmed. The reported errors included

that “the VIP range of a load balancer set is not contained in VIP range of its cluster” ,

“bad BladeID”, and “inconsistent number of addresses in MAC range and IP range”.

With inferred validation specifications, Table 4.5 shows that ConfValley re-

ported 43 errors, among which 11 are false positives. Examples of the true errors are

“empty FccDnsName” and low ReplicaCountForCreateFCC (these errors have previ-

ously caused deployment incidents). The false positives are due to the inaccurately in-

ferred specifications. For example, the value range inferred from the input configuration

is incomplete; the type seen in the input data is in a simplified form, e.g., configuration

instances in input are a single IP address but their true types are a list of IP address.

82

Table 4.5. Running inferred validation specifications on three latest configuration data

branches in Microsoft Azure.

Config. branch Reported errors False positives

Trunk 12 3

Branch 1 15 5

Branch 2 16 3

Table 4.6. Latency (in seconds) of sequential validation on three types of configuration

data in Microsoft Azure.

Config. Instances
Specs

Time

Count Source

Type A 44,102 182 Inferred, optimized 10

Type B 1,969,588 62 Human-written 518

Type C 1,529 95 Inferred 0.4

4.4.3 Performance

The performance of the validation framework affects whether it can be practi-

cally adopted to run continuously. We evaluate the efficiency of both the validation and

automatic inference processes.

Table 4.6 shows that the validation time has wide variation, depending on the

number and types of specifications and configuration data. We show the performance

of the single-threaded implementation of ConfValley on a single machine. The maxi-

mum time in these sequential experiments is less than 9 minutes, which is acceptable

given that the validation happens before deployment and therefore will not interfere with

online services.

Since each specification in CPL is independent, the validation process can be

made parallel. We demonstrate the potential speedup with parallel validation by simply

83

Table 4.7. Latency (in seconds) of simple parallel validation on three types of configura-

tion data in Microsoft Azure by splitting the specifications into 10 pieces, and validating

each piece in parallel. (Min, Median, Max) measures the (min, median, max) validation

time of the 10 jobs.

Config. Instances
Specs Time

Count Source Min Median Max

Type A 44,102 182 Inferred, optimized 2 2 4

Type B 1,969,588 62 Human-written 49 52 208

Type C 1,529 95 Inferred 0.3 0.3 0.3

Table 4.8. Inference latency (in seconds) on three types of configuration data. *: the

time it takes to parse all configuration sources and convert into unified representations.

Config. Instance
Time

Total Parsing* Inference

Type A 67,231 19.7 19.5 0.2

Type B 2,306,935 82 75 7

Type C 2,253 0.09 0.08 0.01

splitting the specifications into 10 partitions and running 10 validation jobs in parallel.

We can see from Table 4.7 that the maximum time reduces to 3.5 minutes. The speed-

ups are not always linear because some specifications are more complex than others, and

also each validation job parses configuration sources independently.

Table 4.8 shows the automatic inference time. The total elapsed time is within 2

minutes for all evaluated configuration data. The break-down shows that the bottleneck

lies in parsing the configuration data into a unified representation, while the actual infer-

ence time is fairly small. Because inference only runs at specification-creation time, it

would be acceptable even if it were orders of magnitude slower.

84

4.5 Conclusion

Configuration errors continue to haunt practitioners of large-scale systems. We

believe that making configuration validation an ordinary part of system deployment is

crucial to prevent misconfigurations from impacting production services. The valida-

tion should go beyond just employing ad hoc checking code that is added and invoked

reactively.

We present a generic framework, ConfValley, to allow experts operating produc-

tion cloud services to easily, systematically, and efficiently conduct validation for dif-

ferent configuration data in various scenarios. Evaluating ConfValley inside Microsoft

Azure and two open-source cloud systems showed that with our declarative validation

language, we can express the existing validation code in a much more concise and read-

able form. Using both the rewritten and automatically inferred validation specifications,

our framework detected 40 configuration errors in the latest configuration data to be

deployed inside Microsoft Azure.

4.6 Acknowledgements

Chapter 4, in part, is a reprint of the material as it appears in the Tenth European

Conference on Computer Systems 2015. Huang, Peng; Bolosky, Bill; Singh, Abhishek;

Zhou, Yuanyuan. The dissertation author was the primary investigator and author of this

paper.

We thank the anonymous reviewers, and the OPERA research group members

for their valuable feedback. We are grateful to the Microsoft Azure teams for their

help and support. This work was partially supported by NSF CNS-1017784, NSF CNS-

1321006 and Microsoft CNS Research Fund.

Chapter 5

Limitations and Future Work

5.1 Limitations

While the evaluation demonstrates the advantages of ConfValley, our solution

has the following limitations. First, our proposed validation language is not able to

express certain types of validation requirements, especially those involving dynamic,

complex requirements. We are continuing to work with the developers and operators to

refine the language to support more validation needs.

Second, we target generic configuration data and thus the tool is not optimized

towards a particular sub-type of configuration. Therefore, our framework has limited

support for validation methods targeting domain-specific configurations such as network

configurations.

Third, like any other validation approach, ConfValley is not a verification tool

and therefore does not guarantee that validated configurations are fault free. Further-

more, not all types of parameters benefit much from validation. For example, there are

fewer validation benefits for tunable parameters like ipc.timeout compared to other

types of parameters. This is because tunable parameters have a large space of correct val-

ues and require constant tuning to determine the optimum. Validation can only eliminate

a portion of obviously incorrect values.

85

86

5.2 Future Work

There are several directions that we would like to work on in the future along

the line of dealing with cloud configuration error. First, we are interested in enhancing

CPL to be able to validate not only static constraints of configurations but also dynamic

system states. For example, developers often have some expectations on a particular con-

figuration change’s effect on some dynamic metric (e.g., load distribution). Providing

primitives in CPL for developers to express such expectations would be useful.

Second, most of state of the art solutions (including ConfValley!) for tack-

ling misconfiguration mainly deal with configuration errors that violate some clear con-

straints. But in many misconfiguration-inducing failure incidents, the misconfiguration

is some seemingly normal settings that are subtle to detect. For example, Facebook re-

ported that 36% of the configuration issues they encountered belong to this type [122].

We would like to further investigate how to effectively deal with such subtle misconfig-

uration.

Third, in the ConfValley project, our choice of designing a configuration valida-

tion language instead of a new configuration language was based on practical reasons:

convincing tens of teams to replace their configuration and libraries with a brand new

languages faces significant cultural acceptance challenge while CPL can support all the

teams’ existing configuration languages. But moving forward, we still believe changing

the interfaces and languages of how large systems are configured is the ultimate way to

fundamentally attack the notorious configuration problem. We are interested in building

upon our experience of designing CPL to design a much better configuration language.

Chapter 6

Related Work

6.1 Failure Studies

Since Gray’s pioneering study [87] of failures in mainframes and how to make

software fault tolerant, a number of studies have been conducted to understand failure

characteristics in different environments such as personal computers [107], networked

systems [127], high-performance computing systems [119], Internet services [108] and

Hadoop clusters [116]. We present the first large-scale study of cloud service disruptions.

Compared with the prior studied systems, our study subject has many more components,

frequent component failures and abundant fault tolerance in place.

Recent studies investigate failures in data center hardware [120, 83, 123], net-

works [85], storage systems [83] and service events [58]. But these failure events are

mainly at the component level, most of which are successfully tolerated and do not

correspond to service level disruptions. We study visible service disruptions and focus

on why the service disruptions occur despite fault tolerance and the characteristics of

misconfiguration.

87

88

6.2 Fault tolerance and recovery

Fault tolerance design is an extensively studied topic in different areas such as

hardware (e.g., [112, 60]), networks (e.g., [73]), and distributed systems (e.g., [63, 99,

69, 64, 96, 93, 105]). Fast failure detection [70, 101] and cheap recovery [110, 68] are

also important for system availability. The proposed techniques are adopted in different

layers of large-scale distributed systems to provide high availability. Complementary to

these works, we examine why component faults escape these mechanisms and lead to

service disruptions.

6.3 Characteristics of system misconfiguration

Studies over the past decades have shown operator mistakes are a common cause

of system unavailability [87, 108, 106, 129, 116, 58]. Among these works, Yin et

al. [129] and Rabkin et al. [116] investigate further about misconfiguration character-

istics.

We find misconfiguration has similar dominance in cloud service disruptions.

This motivates us to zoom into these configuration errors. Compared with the in-depth

misconfiguration studies by Yin’s and Rabkin’s studies, we study misconfiguration in

cloud-scale systems, which consist of many components interacting with each other and

in which the environment is undergoing frequent changes. Additionally, the configura-

tion practitioners in our studied system are trained operators rather than end users/cus-

tomers.

6.4 Misconfiguration detection, diagnosis and fix

A wide body of work has been done to detect and troubleshoot misconfigu-

rations [125, 126, 124, 82, 121, 74, 82, 61, 55, 130, 56, 131]. For example, Con-

89

fAid [56] and X-ray [54] use dynamic information-flow tracking to find possible con-

figuration errors that cause failures or performance anomalies; AutoBash [121] specu-

latively executes processes and tracks causality to automatically fix misconfigurations;

Strider [125] and PeerPressure [124] leverage a set of configuration settings from dif-

ferent machines to narrow down the problematic configuration on a sick machine; En-

Core [131] learns configuration rules and exploits environment information to detect

misconfigurations. KarDo [97] automates configuration tasks on a computer by search-

ing a solution database to replay traces from other computers.

Compared to systems that diagnose and fix misconfigurations, we target config-

uration validation, which is a complementary direction that aims to proactively prevent

configuration errors from being introduced into production services. Compared to the

misconfiguration detectors, which attack a specific type of misconfiguration or follow

some heuristics, our work proposes a generic validation framework that provides a com-

pact language for practitioners to explicitly specify the validation requirements based on

their expertise and experience.

6.5 System resilience to misconfiguration

Research has been done to test system resilience to misconfigurations [94, 128,

65]. ConfErr [94] uses a human error model from psychology and linguistics to inject

misconfigurations into systems. SPEX [128] takes a white box approach to automati-

cally extract configuration parameter constraints from source code and generates mis-

configurations to test systems by violating these constraints.

Making systems gracefully handle misconfigurations and eliminating configura-

tion errors are two orthogonal directions. The former helps improve system robustness

and eases diagnosis. This is especially important for software that will be widely dis-

tributed to end users. Our work belongs to the latter case, which is useful to prevent

90

errors in the first place.

6.6 Configuration languages

There is growing interest in new configuration languages [79, 103, 81, 72] to

reduce configuration errors induced by fundamental deficiencies in existing languages

(e.g., untyped, too low-level). This is especially the case in the network configuration

management area, where it is an onerous task to configure diverse network devices and

protocols to support evolving service scenarios. PRESTO [81] automates the generation

of device-native configurations with configlets in a template language. Loo et al. [103]

adopt Datalog to express routing protocols in a declarative fashion. COOLAID [72]

proposes a language to describe domain knowledge about network devices and services

to ease network reasoning and management.

Different from this work, it is not our goal to replace existing configuration lan-

guages, which would require extensive changes in the software stack that manages and

uses existing configuration data. Our proposed language, CPL, is for writing validation

code for existing configuration data. Moreover, our framework provides more than just a

new language but also other tool chains such as an inference component and an iterative

validation console.

6.7 Configuration management

A variety of tools such as Puppet [45], Chef [18] and Salt [48] have been devel-

oped to ease configuration management in cloud-scale infrastructure. These tools focus

on the resource-arrangement aspect of configuration, whereas our work, like most others

in literature, target the system-options aspect of configuration.

Chapter 7

Concluding Remarks

Cloud services have brought, and will continue to bring, significant disruptions

to the computing landscapes and real life with a plethora of new application domains.

For system researchers, how to design and operate systems as complex as cloud to pro-

vide high-availability to enable the new applications is a billion-dollar question. This

thesis attempts to shed some lights on this question by taking a bottom-up approach to

first study carefully how existing, state-of-the-art cloud systems fail and then present a

solution that is inspired by the study to tackle a type of plague in cloud, misconfigura-

tion. The common theme of both parts centers on the classic question in system research:

what is the right level of abstraction? For cloud failure analysis, we believe that, differ-

ent from traditional failure analysis, the level uniquely lies in the fault-tolerance mech-

anisms rather than the original root cause. For attacking cloud misconfiguration, we

demonstrate that with a declarative specification language instead of ad-hoc, low-level

scripting, configuration validation can be made significantly more efficient.

91

Bibliography

[1] Air france flight 447 accident final report. http://www.bea.aero/docspa/2009/f-

cp090601.en/pdf/f-cp090601.en.pdf.

[2] Amazon earnings statement for 2015. http://www.sec.gov/Archives/edgar/data/

1018724/000101872416000170/amzn-20151231xex991.htm.

[3] Amazon EC2 and RDS service disruption on April 21st, 2011. http://aws.amazon.

com/message/65648.

[4] Amazon EC2 outage downs Reddit, Quora. http://money.cnn.com/2011/04/21/

technology/amazon_server_outage/index.htm.

[5] Amazon EC2 outage explained and lessons learned. http://www.infoq.com/news/

2011/04/Amazon-EC2-Outage-Explained.

[6] Amazon EC2 outage: summary and lessons learned. http://blog.rightscale.com/

2011/04/25/amazon-ec2-outage-summary-and-lessons-learned.

[7] Amazon S3 availability event on July 20th, 2008. http://status.aws.amazon.com/

s3-20080720.html.

[8] Amazon’s trouble raises cloud computing doubts. http://www.nytimes.com/2011/

04/23/technology/23cloud.html.

[9] ANTLR tool. http://www.antlr.org.

[10] Apache CloudStack. http://cloudstack.apache.org.

[11] The AWS outage: The cloud’s shining momen. http://broadcast.oreilly.com/2011/

04/the-aws-outage-the-clouds-shining-moment.html.

[12] AWS service disruption on August 26th, 2013. http://www.geekwire.com/2013/

vine-instagram-stop-working-time-users-freak-twitter.

[13] AWS service disruption on September 20th, 2015. https://aws.amazon.com/

message/5467D2.

92

http://www.bea.aero/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
http://www.bea.aero/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
http://www.sec.gov/Archives/edgar/data/1018724/000101872416000170/amzn-20151231xex991.htm
http://www.sec.gov/Archives/edgar/data/1018724/000101872416000170/amzn-20151231xex991.htm
http://aws.amazon.com/message/65648
http://aws.amazon.com/message/65648
http://money.cnn.com/2011/04/21/technology/amazon_server_outage/index.htm
http://money.cnn.com/2011/04/21/technology/amazon_server_outage/index.htm
http://www.infoq.com/news/2011/04/Amazon-EC2-Outage-Explained
http://www.infoq.com/news/2011/04/Amazon-EC2-Outage-Explained
http://blog.rightscale.com/2011/04/25/amazon-ec2-outage-summary-and-lessons-learned
http://blog.rightscale.com/2011/04/25/amazon-ec2-outage-summary-and-lessons-learned
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://www.nytimes.com/2011/04/23/technology/23cloud.html
http://www.nytimes.com/2011/04/23/technology/23cloud.html
http://www.antlr.org
http://cloudstack.apache.org
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html
http://www.geekwire.com/2013/vine-instagram-stop-working-time-users-freak-twitter
http://www.geekwire.com/2013/vine-instagram-stop-working-time-users-freak-twitter
https://aws.amazon.com/message/5467D2
https://aws.amazon.com/message/5467D2

93

[14] AWS service outage on December 24th, 2012. http://aws.amazon.com/message/

680587.

[15] AWS service outage on June 29th, 2012. http://aws.amazon.com/message/67457.

[16] AWS service outage on October 22nd, 2012. https://aws.amazon.com/message/

680342.

[17] AWS service outage on September 20th, 2015. https://aws.amazon.com/message/

5467D2.

[18] Chef software. http://www.getchef.com/chef.

[19] Discussions on configuration validation in OpenStack. http://lists.openstack.org/

pipermail/openstack-dev/2013-November/018557.html.

[20] Downtime, outages and failures - understanding their true costs. http://www.

evolven.com/blog/downtime-outages-and-failures-understanding-their-true-

costs.html.

[21] Dropbox service outage on January 10th, 2014. https://blogs.dropbox.com/tech/

2014/01/outage-post-mortem.

[22] Facebook and the kernel. http://lwn.net/Articles/591780.

[23] Facebook downtime explained. http://mashable.com/2010/09/23/facebook-

downtime-explained.

[24] Facebook gives a post-mortem on worst downtime in four years. https://

techcrunch.com/2010/09/23/facebook-downtime.

[25] Facebook outage on September 23rd, 2010. https://www.facebook.com/notes/

facebook-engineering/more-details-on-todays-outage/431441338919.

[26] Facebook outage was its bigger ever. http://www.cnn.com/2010/TECH/social.

media/09/24/facebook.outage.

[27] Google API infrastructure outage on April 30th, 2013. http://googledevelopers.

blogspot.com/2013/05/google-api-infrastructure-outage_3.html.

[28] Google apologizes for cloud outage that one person describes as a ‘comedy

of errors’. http://www.businessinsider.com/google-apologizes-for-cloud-outage-

2016-4.

[29] Google App Engine outage on October 26th, 2012. http://googleappengine.

blogspot.com/2012/10/about-todays-app-engine-outage.html.

http://aws.amazon.com/message/680587
http://aws.amazon.com/message/680587
http://aws.amazon.com/message/67457
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/5467D2
https://aws.amazon.com/message/5467D2
http://www.getchef.com/chef
http://lists.openstack.org/pipermail/openstack-dev/2013-November/018557.html
http://lists.openstack.org/pipermail/openstack-dev/2013-November/018557.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem
http://lwn.net/Articles/591780
http://mashable.com/2010/09/23/facebook-downtime-explained
http://mashable.com/2010/09/23/facebook-downtime-explained
https://techcrunch.com/2010/09/23/facebook-downtime
https://techcrunch.com/2010/09/23/facebook-downtime
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
http://www.cnn.com/2010/TECH/social.media/09/24/facebook.outage
http://www.cnn.com/2010/TECH/social.media/09/24/facebook.outage
http://googledevelopers.blogspot.com/2013/05/google-api-infrastructure-outage_3.html
http://googledevelopers.blogspot.com/2013/05/google-api-infrastructure-outage_3.html
http://www.businessinsider.com/google-apologizes-for-cloud-outage-2016-4
http://www.businessinsider.com/google-apologizes-for-cloud-outage-2016-4
http://googleappengine.blogspot.com/2012/10/about-todays-app-engine-outage.html
http://googleappengine.blogspot.com/2012/10/about-todays-app-engine-outage.html

94

[30] Google compute engine incident #15045. https://status.cloud.google.com/

incident/compute/15045.

[31] Google compute engine incident #15064. https://status.cloud.google.com/

incident/compute/15064.

[32] Google compute engine incident #16007. https://status.cloud.google.com/

incident/compute/16007?post-mortem.

[33] Google service outage on January 24th, 2014. http://googleblog.blogspot.com/

2014/01/todays-outage-for-several-google.html.

[34] Making the Netflix API more resilient. http://techblog.netflix.com/2011/12/

making-netflix-api-more-resilient.html.

[35] Microsoft Azure. https://azure.microsoft.com/en-us.

[36] Microsoft Azure service disruption on February 29th, 2012. http://blogs.msdn.

com/b/windowsazure/archive/2012/03/09/summary-of-windows-azure-service-

disruption-on-feb-29th-2012.aspx.

[37] Microsoft Azure service disruption on November 18th, 2014. https://azure.

microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-

nov-18-azure-storage-service-interruption.

[38] Microsoft Azure service interruption in western Europe on July 26th,

2012. https://azure.microsoft.com/en-us/blog/root-cause-analysis-for-recent-

windows-azure-service-interruption-in-western-europe.

[39] Microsoft Azure storage disruption in US south on December 28th,

2012. http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-

december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx.

[40] Microsoft Azure storage disruption on February 22nd, 2013. http://blogs.msdn.

com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-

windows-azure-storage-disruption.aspx.

[41] Microsoft blames last week’s Azure outage on a configuration error. http://www.

pcworld.com/article/260336/microsoft_blames_last_weeks_azure_outage_on_

a_configuration_error.html.

[42] Microsoft explains last weekâĂŹs Azure outage: Whoops! http://allthingsd.com/

20120803/microsoft-explains-last-weeks-azure-outage-whoops.

[43] Microsoft investigates Azure outage in europe. http://www.informationweek.

com/cloud-computing/infrastructure/microsoft-investigates-azure-outage-in-e/

240004433.

https://status.cloud.google.com/incident/compute/15045
https://status.cloud.google.com/incident/compute/15045
https://status.cloud.google.com/incident/compute/15064
https://status.cloud.google.com/incident/compute/15064
https://status.cloud.google.com/incident/compute/16007?post-mortem
https://status.cloud.google.com/incident/compute/16007?post-mortem
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://techblog.netflix.com/2011/12/making-netflix-api-more-resilient.html
http://techblog.netflix.com/2011/12/making-netflix-api-more-resilient.html
https://azure.microsoft.com/en-us
http://blogs.msdn.com/b/windowsazure/archive/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012.aspx
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption
https://azure.microsoft.com/en-us/blog/final-root-cause-analysis-and-improvement-areas-nov-18-azure-storage-service-interruption
https://azure.microsoft.com/en-us/blog/root-cause-analysis-for-recent-windows-azure-service-interruption-in-western-europe
https://azure.microsoft.com/en-us/blog/root-cause-analysis-for-recent-windows-azure-service-interruption-in-western-europe
http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
http://www.pcworld.com/article/260336/microsoft_blames_last_weeks_azure_outage_on_a_configuration_error.html
http://www.pcworld.com/article/260336/microsoft_blames_last_weeks_azure_outage_on_a_configuration_error.html
http://www.pcworld.com/article/260336/microsoft_blames_last_weeks_azure_outage_on_a_configuration_error.html
http://allthingsd.com/20120803/microsoft-explains-last-weeks-azure-outage-whoops
http://allthingsd.com/20120803/microsoft-explains-last-weeks-azure-outage-whoops
http://www.informationweek.com/cloud-computing/infrastructure/microsoft-investigates-azure-outage-in-e/240004433
http://www.informationweek.com/cloud-computing/infrastructure/microsoft-investigates-azure-outage-in-e/240004433
http://www.informationweek.com/cloud-computing/infrastructure/microsoft-investigates-azure-outage-in-e/240004433

95

[44] OpenStack. http://www.openstack.org.

[45] Puppet software. http://puppetlabs.com/.

[46] Rackspace ORD service interruption on June 20th, 2013. https://blog.managebac.

com/2013/06/21/rackspace-downtimes-full-incident-reports.

[47] Rubick project for OpenStack. https://wiki.openstack.org/wiki/Rubick.

[48] Salt software. http://www.saltstack.com.

[49] Server crash spurs 3-hour nasdaq halt as data link lost. http://www.bloomberg.

com/news/articles/2013-08-26/nasdaq-three-hour-halt-highlights-vulnerability-

in-market.

[50] Twilio billing incident post-mortem: Breakdown, analysis and root cause.

https://www.twilio.com/blog/2013/07/billing-incident-post-mortem-breakdown-

analysis-and-root-cause.html.

[51] Why Google’s cloud went dark for 18 minutes. http://www.ciodive.com/news/

why-googles-cloud-went-dark-for-18-minutes/417404.

[52] Windows Azure SLA. http://www.windowsazure.com/en-us/support/legal/sla.

[53] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In Proceedings of the ACM SIGCOMM 2008 Conference

on Data Communication, SIGCOMM ’08, pages 63–74, New York, NY, USA,

2008. ACM.

[54] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause diagno-

sis of performance anomalies in production software. In Proceedings of the

10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, pages 307–320, Hollywood, CA, USA, 2012.

[55] M. Attariyan and J. Flinn. Using causality to diagnose configuration bugs. In

Proceedings of the 2008 USENIX Annual Technical Conference, ATC’08, pages

281–286, Boston, Massachusetts, 2008.

[56] M. Attariyan and J. Flinn. Automating configuration troubleshooting with dy-

namic information flow analysis. In Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, OSDI’10, pages 1–11, Van-

couver, BC, Canada, 2010.

[57] A. Avizienis. The N-version approach to fault-tolerant software. Software Engi-

neering, IEEE Transactions on, SE-11(12):1491–1501, Dec 1985.

http://www.openstack.org
http://puppetlabs.com/
https://blog.managebac.com/2013/06/21/rackspace-downtimes-full-incident-reports
https://blog.managebac.com/2013/06/21/rackspace-downtimes-full-incident-reports
https://wiki.openstack.org/wiki/Rubick
http://www.saltstack.com
http://www.bloomberg.com/news/articles/2013-08-26/nasdaq-three-hour-halt-highlights-vulnerability-in-market
http://www.bloomberg.com/news/articles/2013-08-26/nasdaq-three-hour-halt-highlights-vulnerability-in-market
http://www.bloomberg.com/news/articles/2013-08-26/nasdaq-three-hour-halt-highlights-vulnerability-in-market
https://www.twilio.com/blog/2013/07/billing-incident-post-mortem-breakdown-analysis-and-root-cause.html
https://www.twilio.com/blog/2013/07/billing-incident-post-mortem-breakdown-analysis-and-root-cause.html
http://www.ciodive.com/news/why-googles-cloud-went-dark-for-18-minutes/417404
http://www.ciodive.com/news/why-googles-cloud-went-dark-for-18-minutes/417404
http://www.windowsazure.com/en-us/support/legal/sla

96

[58] L. Barroso and U. Hölzle. The Data Center as a Computer: An Introduction

to the Design of Warehouse- Scale Machines. Synthesis lectures on computer

architecture, ISSN 1935-3235. Morgan & Claypool Publishers, 2009.

[59] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google

cluster architecture. IEEE Micro, 23(2):22–28, Mar. 2003.

[60] J. F. Bartlett. A NonStop kernel. In Proceedings of the Eighth ACM Symposium

on Operating Systems Principles, SOSP ’81, pages 22–29, New York, NY, USA,

1981. ACM.

[61] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigu-

rations in access-control systems. In Proceedings of the 13th ACM Symposium on

Access Control Models and Technologies, SACMAT ’08, pages 185–194, Estes

Park, CO, USA, 2008.

[62] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of network man-

agement. In Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation, NSDI’09, pages 335–348, Berkeley, CA, USA, 2009.

USENIX Association.

[63] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceed-

ings of the Fifteenth ACM Symposium on Operating Systems Principles, SOSP

’95, pages 1–11, New York, NY, USA, 1995. ACM.

[64] M. Burrows. The Chubby lock service for loosely-coupled distributed systems.

In Proceedings of the 7th Symposium on Operating Systems Design and Imple-

mentation, OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Asso-

ciation.

[65] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs. In Proceedings of

the 8th USENIX Conference on Operating Systems Design and Implementation,

OSDI’08, pages 209–224, San Diego, California, 2008.

[66] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,

S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,

V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq,

D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-

vannan, and L. Rigas. Windows Azure Storage: a highly available cloud storage

service with strong consistency. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, SOSP ’11, pages 143–157, New York,

NY, USA, 2011. ACM.

[67] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic failure-path inference:

A generic introspection technique for internet applications. In Proceedings of

97

the The Third IEEE Workshop on Internet Applications, WIAPP ’03, pages 132–,

Washington, DC, USA, 2003. IEEE Computer Society.

[68] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot –

a technique for cheap recovery. In Proceedings of the 6th Conference on Sym-

posium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,

pages 3–3, Berkeley, CA, USA, 2004. USENIX Association.

[69] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-

ery. ACM Trans. Comput. Syst., 20(4):398–461, Nov. 2002.

[70] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267, Mar. 1996.

[71] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for

structured data. In Proceedings of the 7th USENIX Symposium on Operating Sys-

tems Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley,

CA, USA, 2006. USENIX Association.

[72] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative configuration

management for complex and dynamic networks. In Proceedings of the 6th Inter-

national Conference, Co-NEXT ’10, pages 6:1–6:12, Philadelphia, Pennsylvania,

2010.

[73] D. Clark. The design philosophy of the DARPA internet protocols. In Symposium

Proceedings on Communications Architectures and Protocols, SIGCOMM ’88,

pages 106–114, New York, NY, USA, 1988. ACM.

[74] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting access control

misconfigurations. In Proceedings of the 19th USENIX Conference on Security,

USENIX Security’10, pages 11–11, Washington, DC, 2010.

[75] J. Dean. Designs, lessons and advice from building large distributed systems.

Keynote from LADIS 2009, Oct. 2009.

[76] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In Proceedings of the 6th Conference on Symposium on Opearting Sys-

tems Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA,

USA, 2004. USENIX Association.

[77] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avail-

able key-value store. In Proceedings of Twenty-first ACM SIGOPS Symposium on

Operating Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA,

2007. ACM.

98

[78] T. Delaet and W. Joosen. Podim: A language for high-level configuration man-

agement. In Proceedings of the 21st Conference on Large Installation System

Administration Conference, LISA’07, pages 21:1–21:13, Dallas, 2007.

[79] J. DeTreville. Making system configuration more declarative. In Proceedings

of the 10th Conference on Hot Topics in Operating Systems, HOTOS’05, pages

11–11, Santa Fe, NM, 2005.

[80] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,

A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A fast and

reliable software network load balancer. In Proceedings of the 13th Usenix Con-

ference on Networked Systems Design and Implementation, NSDI’16, pages 523–

535, Berkeley, CA, USA, 2016. USENIX Association.

[81] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao, and

W. Aiello. Configuration management at massive scale: System design and ex-

perience. In Proceedings of the 2007 USENIX Annual Technical Conference,

ATC’07, pages 6:1–6:14, Santa Clara, CA, 2007.

[82] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults with static

analysis. In Proceedings of the 2nd Conference on Symposium on Networked Sys-

tems Design & Implementation, NSDI’05, pages 43–56, Boston, Massachusetts,

2005.

[83] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,

C. Grimes, and S. Quinlan. Availability in globally distributed storage systems.

In Proceedings of the 9th USENIX Conference on Operating Systems Design and

Implementation, OSDI’10, pages 1–7, Berkeley, CA, USA, 2010. USENIX Asso-

ciation.

[84] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceed-

ings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP

’03, pages 29–43, New York, NY, USA, 2003. ACM.

[85] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data centers:

Measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM

2011 Conference, SIGCOMM ’11, pages 350–361, New York, NY, USA, 2011.

ACM.

[86] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for dis-

tributed file cache consistency. In Proceedings of the Twelfth ACM Symposium on

Operating Systems Principles, SOSP ’89, pages 202–210, New York, NY, USA,

1989. ACM.

[87] J. Gray. Why do computers stop and what can be done about it? In Symposium

on Reliability in Distributed Software and Database Systems, pages 3–12, 1986.

99

[88] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. In

Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,

SIGCOMM ’09, pages 51–62, New York, NY, USA, 2009. ACM.

[89] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-Dusseau,

R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur. FATE and DESTINI: A frame-

work for cloud recovery testing. In Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, NSDI’11, pages 18–18, Berke-

ley, CA, USA, 2011. USENIX Association.

[90] J. Hamilton. On designing and deploying Internet-scale services. In Proceedings

of the 21st Conference on Large Installation System Administration Conference,

LISA’07, pages 18:1–18:12, Berkeley, CA, USA, 2007. USENIX Association.

[91] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and

S. Yekhanin. Erasure coding in Windows Azure storage. In Proceedings of the

2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,

pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[92] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experi-

ence with a globally-deployed software defined wan. In Proceedings of the ACM

SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 3–14, New

York, NY, USA, 2013. ACM.

[93] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin. All

about eve: Execute-verify replication for multi-core servers. In Proceedings of

the 10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, pages 237–250, Berkeley, CA, USA, 2012. USENIX Association.

[94] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A tool for assessing resilience

to human configuration errors. In Proceedings of the 38th International Confer-

ence on Dependable Systems and Networks, DSN’08, pages 157–166, Anchorage,

Alaska, USA, 2008.

[95] E. Kiciman and Y.-M. Wang. Discovering correctness constraints for self-

management of system configuration. Technical Report MSR-TR-2004-22, Mi-

crosoft Research, March 2004.

[96] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative

Byzantine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Sympo-

sium on Operating Systems Principles, SOSP ’07, pages 45–58, New York, NY,

USA, 2007. ACM.

100

[97] N. Kushman and D. Katabi. Enabling configuration-independent automation by

non-expert users. In Proceedings of the 9th USENIX Conference on Operat-

ing Systems Design and Implementation, OSDI’10, pages 1–10, Vancouver, BC,

Canada, 2010.

[98] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–

169, May 1998.

[99] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[100] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[101] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish. Detecting

failures in distributed systems with the falcon spy network. In Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,

pages 279–294, New York, NY, USA, 2011. ACM.

[102] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-tolerant

engineered network. In Proceedings of the 10th USENIX Conference on Net-

worked Systems Design and Implementation, nsdi’13, pages 399–412, Berkeley,

CA, USA, 2013. USENIX Association.

[103] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing:

Extensible routing with declarative queries. In Proceedings of the 2005 Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’05, pages 289–300, Philadelphia, Pennsylvania,

USA, 2005.

[104] B. Maurer. Fail at scale. Queue, 13(8):30:30–30:46, Sept. 2015.

[105] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus in egal-

itarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY, USA,

2013. ACM.

[106] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Under-

standing and dealing with operator mistakes in Internet services. In Proceedings

of the 6th Conference on Symposium on Opearting Systems Design & Implemen-

tation, OSDI’04, pages 5–5, San Francisco, CA, 2004.

[107] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells and platters: An

empirical analysisof hardware failures on a million consumer pcs. In Proceedings

of the Sixth Conference on Computer Systems, EuroSys ’11, pages 343–356, New

York, NY, USA, 2011. ACM.

101

[108] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet services

fail, and what can be done about it? In Proceedings of the 4th conference on

USENIX Symposium on Internet Technologies and Systems - Volume 4, USITS’03,

pages 1–1, Berkeley, CA, USA, 2003. USENIX Association.

[109] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. Kern,

H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta: Cloud scale load bal-

ancing. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, pages 207–218, New York, NY, USA, 2013. ACM.

[110] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,

A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,

J. Traupman, and N. Treuhaft. Recovery Oriented Computing (ROC): Motivation,

definition, techniques,. Technical report, Berkeley, CA, USA, 2002.

[111] D. A. Patterson. An introduction to dependability. ;login:, 27(4):pp. 61–65, 2002.

[112] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inex-

pensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, pages 109–116, New York,

NY, USA, 1988. ACM.

[113] C. Perrow. Normal accidents: living with high-risk technologies. Basic Books,

1984.

[114] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive

population. In Proceedings of the 5th USENIX Conference on File and Storage

Technologies, FAST ’07, pages 2–2, Berkeley, CA, USA, 2007. USENIX Associ-

ation.

[115] A. Rabkin and R. Katz. Static extraction of program configuration options. In

Proceedings of the 33rd International Conference on Software Engineering, ICSE

’11, pages 131–140, Waikiki, Honolulu, HI, USA, 2011.

[116] A. Rabkin and R. Katz. How Hadoop clusters break. Software, IEEE, 30(4):88–

94, 2013.

[117] B. Rockwood. The DevOps transformation. http://www.usenix.org/events/lisa11/

tech/slides/rockwood.pdf.

[118] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve

fault tolerance. In Proceedings of the Eighteenth ACM Symposium on Operating

Systems Principles, SOSP ’01, pages 15–28, New York, NY, USA, 2001. ACM.

[119] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-

performance computing systems. In Proceedings of the International Conference

http://www.usenix.org/events/lisa11/tech/slides/rockwood.pdf
http://www.usenix.org/events/lisa11/tech/slides/rockwood.pdf

102

on Dependable Systems and Networks, DSN ’06, pages 249–258, Washington,

DC, USA, 2006. IEEE Computer Society.

[120] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: A large-

scale field study. In Proceedings of the Eleventh International Joint Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’09, pages

193–204, New York, NY, USA, 2009. ACM.

[121] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: Improving configuration man-

agement with operating system causality analysis. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages

237–250, Stevenson, Washington, USA, 2007.

[122] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen, A. Narayanan,

P. Dowell, and R. Karl. Holistic configuration management at facebook. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,

pages 328–343, New York, NY, USA, 2015. ACM.

[123] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hardware re-

liability. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC

’10, pages 193–204, New York, NY, USA, 2010. ACM.

[124] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic misconfig-

uration troubleshooting with PeerPressure. In Proceedings of the 6th Conference

on Symposium on Opearting Systems Design & Implementation, OSDI’04, pages

17–17, San Francisco, CA, 2004.

[125] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan, and

Z. Zhang. Strider: A black-box, state-based approach to change and configu-

ration management and support. In Proceedings of the 17th USENIX Conference

on System Administration, LISA ’03, pages 159–172, San Diego, CA, 2003.

[126] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging as search:

Finding the needle in the haystack. In Proceedings of the 6th Conference on

Symposium on Opearting Systems Design & Implementation, OSDI’04, pages

6–6, San Francisco, CA, 2004.

[127] J. Xu, Z. Kalbarczyk, and R. Iyer. Networked Windows NT system field failure

data analysis. In Dependable Computing, 1999. Proceedings. 1999 Pacific Rim

International Symposium on, pages 178–185, 1999.

[128] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S. Pasupathy.

Do not blame users for misconfigurations. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 244–259,

Farminton, Pennsylvania, 2013.

103

[129] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy. An

empirical study on configuration errors in commercial and open source systems.

In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-

ciples, SOSP ’11, pages 159–172, Cascais, Portugal, 2011.

[130] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar. Context-

based online configuration-error detection. In Proceedings of the 2011 USENIX

Conference on USENIX Annual Technical Conference, ATC’11, pages 28–28,

Portland, OR, 2011.

[131] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y. Zhou. En-

Core: Exploiting system environment and correlation information for misconfig-

uration detection. In Proceedings of the 19th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS

’14, pages 687–700, Salt Lake City, Utah, USA, 2014.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Understanding Cloud Service Failures
	Misconfiguration in Cloud
	ConfValley: A Systematic Configuration Validation Framework
	Terminology
	Organization

	Understanding Cloud Service Failure
	Introduction
	Note and Disclaimer
	Case Studies
	Case #1 Amazon Web Services Multi-Day Outage
	Case #2 Microsoft Azure 2.5-Hour Outage
	Case #3 Facebook 2.5-hour Outage
	Case #4 Google Compute Engine Global Outage

	Observations
	Every failure is unique
	Small changes have big impact
	Single point of failure is rare

	When Faults Were Not Tolerated
	Fault Tolerance Techniques
	A Taxonomy of Fault-Tolerance Failures

	Were Faults Contained?
	Visualization with Impact Graph
	Fault propagation length

	What Caused These Failures?
	Root Cause Type
	Multiple Root Causes

	Zooming in on Misconfiguration
	What Components Were Misconfigured?
	What Introduced the Misconfiguration?
	What Constraints Were Violated?

	Conclusion
	Acknowledgements

	CPL: A Configuration Specification Language
	Introduction
	Background and Motivation
	Configuration in cloud systems
	Configuration validation

	Design Considerations
	Language support

	Configuration Predicate Language
	Concepts
	Unified configuration representation
	Piping
	Commands
	Grammar and Examples
	Extending CPL

	Validation Policy and Runtime Information
	Error Messages
	Evaluation
	Baselines
	Rewriting Existing Validation Code

	Conclusion
	Acknowledgements

	ConfValley: A Cloud Configuration Validation Framework
	System Design
	Overview

	Inference Engine
	Implementation
	Usage Scenarios
	Optimizations

	Evaluation
	Automatic Inference
	Preventing Configuration Errors
	Performance

	Conclusion
	Acknowledgements

	Limitations and Future Work
	Limitations
	Future Work

	Related Work
	Failure Studies
	Fault tolerance and recovery
	Characteristics of system misconfiguration
	Misconfiguration detection, diagnosis and fix
	System resilience to misconfiguration
	Configuration languages
	Configuration management

	Concluding Remarks
	Bibliography

