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Abstract

Essays on the Economics of Energy and the Environment

by

Maya Papineau-Koritar

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Peter Berck, Chair

This dissertation explores two aspects of environmental economics and the evaluation of
energy policies in the buildings sector. The first chapter focuses on energy standards, and
the second chapter focuses on green labels.

The first chapter assesses whether commercial real estate market participants are willing to
pay a premium for an energy efficient building that has not received a green label. I utilize a
unique dataset of detailed building-level observations and a spatial semiparametric matching
framework that exploits quasi-experimental state-by-year variation in the implementation of
mandatory building energy codes, to estimate selling price and rent premiums for a more
stringent code. I find that buildings constructed under a more stringent energy code are
associated with rent and selling price premiums of approximately 2.7% and 10%, respectively,
compared to buildings constructed just before the code came into effect. When tenants pay
directly for utilities, buildings constructed under an energy code are associated with 5.7%
higher rents. While building energy codes have been promoted to address landlord-tenant
informational asymmetries that would not be addressed by a carbon-pricing strategy, these
estimated premiums are consistent with complete capitalization of estimated building-level
savings, and as such they cast doubt on the existence of an energy efficiency gap resulting
from adverse selection between landlords and tenants.

In the second chapter, I assess whether nonrandom selection affects the frequently-touted
benefits of green-labeling policies in the commercial building stock. While green-labeled
buildings have been found to sell at a premium compared to nearby controls with similar
observable characteristics, the voluntary nature of the labeling decision implies green-labeled
buildings may have different unmeasured characteristics that may account for at least a
portion of the premium. Therefore, it is unclear whether green-labeled building premiums
are a causal effect of the labels. I use data on repeat sales transactions and detailed hedonic
characteristics to test whether green-labeled office buildings were selling at a premium before
they were labeled, and combine these results with post-labeling price premium estimates to
identify realized cost-benefit ratios for green-labeling policies. The data suggest the causal
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net benefits of green labels range from $11.50-$19.95 per square foot. The estimated net
benefits are smaller than previous estimates that have focused solely on the benefits and
ignored the potential biases from nonrandom selection.
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1. Energy Codes and the Landlord-Tenant Problem

Commercial buildings consume close to 40% of the electricity and 20% of all energy in the

U.S. economy, and mandatory building energy codes affecting the energy efficiency of most

new construction in the U.S. have been credited with delivering significant, net beneficial

energy savings.1 If these codes deliver valuable energy savings, both prospective owners and

tenants should be willing to pay a premium to purchase or locate in buildings constructed

under a more stringent energy code, as the energy savings are internalized in these market

transactions. However, market premiums from energy efficiency investments may be miti-

gated due to asymmetric information about a building’s energy use characteristics, which

has been a long-standing subject of debate among economists and policymakers (Gillingham

et al. (2009)).

A frequently cited informational market failure is the landlord-tenant problem in resi-

dential and commercial buildings: when a building’s energy efficiency is costly to observe,

prospective tenants or buyers may not be willing to pay a premium for higher efficiency lev-

els because they are unaware, or unconvinced, of a building’s efficiency attributes, thereby

weakening the owner’s incentive to invest in energy efficiency, even in cases when it is eco-

nomically efficient to do so. Such foregone net beneficial investments may contribute to

an energy efficiency ‘gap’ between realized levels of energy conservation investment versus

the larger set of economically efficient ones (Jaffe and Stavins (1994)). The landlord-tenant

problem has been widely cited as a likely source of investment inefficiency that may merit

policy intervention (Brown (2001), EPA (2003), Murtishaw and Sathaye (2006), Allcott and

Greenstone (2012)), yet remarkably few empirical studies have evaluated the impact of infor-

mational market failures on the economic efficiency of energy use in commercial real estate,

and no work thus far has empirically assessed the prevalence of landlord-tenant informational

asymmetries in the commercial building stock. This leaves a considerable gap in our knowl-

edge given that conservative estimates indicate close to 50% of office and retail buildings are

multi-tenanted or non-owner-occupied.
1Department of Energy (1993), Cort et al. (2002), CEC (2007), EPA (2009).
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Market premiums have been demonstrated in office buildings that have received a green

label in recognition of their superior energy efficiency characteristics. Nevertheless, the open

question of whether similar premiums accrue to the stock of unlabeled, energy efficient build-

ings remains a first order concern, for several reasons that extend beyond the potential for

information market failures in unlabeled energy efficient buildings. The value of purchasing

or locating in green-labeled buildings is at least partly related to the intangible effects of

the label (Eichholtz et al. (2010)), and the voluntary nature of the labeling decision suggests

unobservable building characteristics may account for at least a portion of the premium. In

addition, the commercial building stock is increasingly composed of small, low-rise buildings

located at the urban fringe, whereas green-labeled buildings are disproportionately made up

of large structures located in central cities and account for less than three percent of the

office building stock (EIA (2003a), Glaeser and Kahn (2004), Kok et al. (2011)), such that

it remains to be determined whether commercial real estate markets are internalizing the

benefits of energy efficiency in the average newly constructed commercial building.2

In this study I assess whether prospective owners and tenants are willing to pay a pre-

mium to purchase or locate in unlabeled office buildings constructed with more stringent

energy efficiency characteristics. My identification strategy makes use of a unique dataset of

geocoded building-level observations that includes information on rental rates, transaction

prices, and whether tenants or landlords pay for utilities, combined with a spatially explicit

semiparametric matching framework that assigns each building to a particular efficiency

level by exploiting quasi-experimental year of adoption variation in the implementation of

state-level mandatory energy codes. To obtain a credible control sample I match buildings

constructed within three years of each other, just before and just after an energy code came

into effect, located an average of half a mile apart. By constructing a dataset that identifies

energy code adoptions in thirty six states over the past twenty years, I have been able to
2This is particularly salient given that many unlabeled buildings constructed under mandatory energy

codes are associated with similar estimated energy savings as green-labeled buildings. Compared to the av-
erage office building in the Energy Information Administration’s Commercial Building Energy Consumption
Survey, both Energy Star and LEED office buildings use approximately 35% less energy (Turner and Frankel
(2008), EPA (2006)), whereas buildings constructed in compliance with ASHRAE standards 90.1-1999 or
90.1-2004 are estimated to use 45-50% less energy (Federal Register (2002), Federal Register (2008)).
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match a large proportion of recently erected U.S. office buildings with their energy code sta-

tus, and thereby estimate the value premium associated with energy codes in the commercial

building sector.

The results indicate that unlabeled buildings constructed under an energy code are as-

sociated with significant rent and selling price premiums of approximately 2.7% and 10%,

respectively. In buildings where tenants pay directly for utilities, buildings constructed under

an energy code are associated with approximately 5.7% higher rents relative to structures

built just before a code came into effect. These rent and selling price premiums suggest

owners obtain returns to energy conservation investments even in buildings where it is more

difficult to precisely observe energy efficiency characteristics. Further calculations suggest

these premiums are consistent with complete capitalization of estimated building-level sav-

ings. The results are invariant to a number of robustness checks. These premiums cast

doubt on the existence of an energy efficiency gap resulting from adverse selection between

office building landlords and tenants, particularly when building occupants pay for their own

utility bills.

The remainder of the chapter is organized as follows. Section 1.1 presents background

information on building energy codes in the U.S., explains how energy codes differ from green

labels, and how these differences can lead to adverse selection in buildings constructed under

an energy code. Section 1.2 outlines the identification strategy and empirical model. Section

1.3 provides a detailed overview of the data and provides an estimate of building-level energy

and operating cost savings. Section 1.4 presents the empirical results, and Section 1.5 briefly

concludes.

1.1 Background

The primary goal of this paper is to estimate the average premium from an increase

in the stringency of the building energy codes that govern the efficiency characteristics of

the building stock. I exploit variation in state-year energy code adoptions that allows me

to identify whether real estate market participants are willing to pay for more stringent

estimated levels of energy efficiency. Some details of these energy codes are summarized
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below.

1.1.1 Energy Codes

Building energy codes or energy standards are designed to provide minimum criteria for

designing energy-efficient buildings through guidelines that affect insulation levels, heat loss

and heat gain from doors and windows, the size and energy use of heating, ventilation and

air-conditioning equipment, as well as the number, location and type of lighting installations

(ASHRAE (2007)).3

The first commercial building energy standard in the U.S., Standard 90-75, emerged in the

1970s as the result of a collaboration between the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE), the Illuminating Engineering Society of North

America (IES) and the American National Standards Institute (ANSI). Federal involvement

in energy standard development formally began with passage of the Energy Conservation

Standards for New Buildings Act of 1976 and the establishment of the Building Energy

Standards Program (BESP), which brought together the Department of Energy (DOE),

ASHRAE, ANSI, IES, state governments, and other stakeholders with the aim to improve

the energy savings and enforceability of Standard 90-75 (Hattrup (1995)).4 As a result of the

BESP collaboration, Standard 90-75 was updated to Standard 90A-1980 (hereafter ASHRAE

1980). DOE continued to work with ASHRAE and other stakeholders throughout the 1980s,

bringing together experts in the design, construction, and measurement/estimating fields

to develop cost-effective energy efficiency improvements to ASHRAE-1980. This resulted in

Standard 90.1-1989 (hereafter ASHRAE 1989), and a similar collaborative process has led to

the development of Standards 90.1-1999, 90.1-2004 and 90.1-2007 (heareafter ASHRAE 1999,

ASHRAE 2004 and ASHRAE 2007). In addition, some states have adopted the commercial

requirements of the International Energy Conservation Code 2000 edition (hereafter IECC

2000), which is equivalent to ASHRAE 1989 except for the lighting requirements; the IECC
3Following common practice, the terms energy standard and energy code are used interchangeably.
4The Energy Conservation Standards for New Buildings Act mandated the DOE to develop energy stan-

dards for buildings “to achieve the maximum practicable improvements in energy effciency and use of non-
depletable resources for all new buildings."

4



2000 lighting requirements are equivalent to ASHRAE 1999 (Winiarski et al. (2003)).5

In response to low rates of voluntary state-level energy standard adoption and compliance

efforts, the Energy Policy Act (EPAct) of 1992 included a requirement that states adopt

the most recent ASHRAE standard. EPAct also mandated the Department of Energy to

promote adoption and compliance activities at the state-level by providing resources for

training building officials and other industry stakeholders, developing compliance software,

and producing both state-level and national benefit-cost studies to demonstrate the benefits

of energy standards (Department of Energy (1999), ASHRAE (2010)). Before formally

adopting a new version of the ASHRAE Standard, several individual states commissioned the

DOE to conduct simulation studies specific to their state to ensure that positive net benefits

could be attained from a new standard level.6 At present, 44 states have formally adopted

an energy standard that is at least as stringent as ASHRAE 1989. Given that most states’

decisions to adopt or update their building standard in the post-1992 timeframe has been

based on a combination of the EPAct mandate and the demonstration of net benefits for the

average building, the statewide implementation date provides a source of quasi-experimental

variation in energy efficiency that I will exploit in my identification strategy.

1.1.2 How energy standards differ from green labels

The process of constructing a building in accordance with an energy standard differs

from that of obtaining a green label in many respects. Green labels can be obtained for

either new construction or existing buildings. The labeling procedure for new construction

requires third-party verification and monitoring of building performance through all stages

of construction. This begins at the building design stage and continues through to building

commissioning and at least the first year of building operation, which may culminate in

official recognition and certification (USGBC (2009a)). A building is certified as ‘green’ only
5The International Energy Conservation Code (IECC) is published by the International Code Council,

which publishes national model building codes for the construction industry. Starting with IECC 2001 and
ASRHAE 1999, both IECC and ASHRAE have coordinated the design of their energy codes so that they
would bring about equivalent energy savings.

6States that have followed this approach include Illinois, Iowa, Louisiana, Massachusetts, Michigan, New
Mexico and New York.
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after adequately demonstrating criteria for energy and environmental performance above a

predetermined threshold. For existing buildings, third-party building energy performance

monitoring is typically required for periods up to 1 year (USGBC (2009b)). A labeled

building must be re-certified every one to five years in order to retain its labeled status

(USGBC (2012), EPA (2012)).

To construct a building in compliance with an energy standard, building architects must

design the structure to satisfy code requirements before they can obtain a building permit by

the local jurisdiction. Once a building permit is obtained, the local building department may

perform a random spot-check during construction, though only a subset of buildings undergo

a site inspection (Department of Energy (2010), Department of Energy (2010b)). In contrast

to green-labeled buildings, constructing a building in accordance with an energy standard

does not require monitoring of the building’s energy characteristics after building comple-

tion, and market participants do not observe an explicit signal of energy performance.7 In

this respect, communicating the efficiency characteristics of a building constructed under an

energy standard faces similar challenges as a building in which the owner or developer has

independently made the decision to incorporate energy efficient features. These characteris-

tics of energy standards contribute to the perception that informational market failures lead

to the under-pricing of energy efficiency in real estate markets (EPA (2003)).8

1.1.3 Sources of asymmetric information

The potential effect of asymmetric information between landlords and tenants on en-

ergy use decisions in buildings was first noted by Blumstein et al. (1980), whose study

included four interviews of commercial real estate market participants in California’s Bay

Area. Several interviewees noted the difficulty of recouping efficiency investments as mitigat-

ing their interest in energy conservation, while one property developer specifically mentioned

that tenants were not willing to pay higher rents for more efficient buildings.9 Recent evi-
7For example, it’s not possible to observe, from past building permits in jurisdictional records, which

standard a specific building has been constructed under.
8See p.9.
9On page 362: “His experience has been that if a building is fairly energy-conservative but the rent is

marginally higher due to the increased construction costs, the building is much harder to rent."
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dence suggests this belief persists among real estate equity investors, lenders and developers

(Galuppo and Tu (2010)).10

The impact of imperfect information between landlords and tenants on energy invest-

ments is frequently conceptualized by defining two parties, one party that is informed re-

garding the energy use characteristics of a building (typically the owner or operator), and

an uninformed party that does not have the same information set as the informed party (the

prospective buyer or tenant). As a result, the onus is on the informed party to convince the

uninformed party of the building’s energy use characteristics. In buildings where tenants

pay directly for utilities, this means owners will only obtain a positive return from energy

efficiency investments if tenants are willing to pay a rent premium to locate in a more energy

efficient building. This may contribute to the problem of net beneficial energy conservation

investments being foregone if building owners cannot successfully convince tenants of their

buildings’ efficiency characteristics (IEA (2007), Cortese et al. (2010)); one recent study sug-

gests between 40-90% of commercial space may be subject to landlord-tenant market failures

(Prindle et al. (2006)).

Part of the difficulty of credibly signaling a building’s efficiency characteristics to prospec-

tive tenants entails the resources needed to correctly evaluate a building’s energy perfor-

mance. Assessing a building’s energy performance requires some combination of observing

insulation levels, lighting power densities and HVAC equipment efficiencies, and/or tracking

its energy use over time and comparing it to other similar buildings that have undergone

the same process (Matson and Piette (2005)). If this information is lacking at the time a

tenant [buyer] is making a location [purchasing] decision, it may be difficult to determine

whether energy use differences between similar buildings are due to efficiency characteristics

or occupant behavior. This has recently prompted several federal, state and local policies

to improve the ability of commercial real estate participants to compare buildings’ energy

performance (Federal Register (2011), CEC (2012), NYC (2011)).

On the other hand, the rising popularity of ‘green leases’, in which tenancy contracts
10The study also found that mortgage lenders and real estate participants with no experience in energy

efficiency projects held the most pessimistic views regarding the likelihood of obtaining value premiums
greater than the incremental cost of energy efficiency investments.
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explicitly set out how to allocate energy cost savings between owners and tenants (Oberle

and Sloboda (2010)), suggests there is a channel through which building owners may benefit

from lower utility costs in energy efficient buildings. Reed et al. (2004) conclude that agency

issues between landlords and tenants are unlikely to be a major problem affecting energy

use. This conclusion was made on the basis of information regarding the prevalence of

owner-occupied commercial buildings and the general structure of leasing contracts, though

no formal empirical analysis was presented.11

The Department of Energy estimates close to 50% of office and retail buildings are multi-

tenanted (EIA (2003a)), and this statistic is likely to underrepresent the true value since

the survey on which it is based counts space which is only partially owner-occupied as

being completely owner-occupied.12 Given that landlord-tenant informational asymmetries

have the potential to affect a large proportion of office buildings, the preceding discussion

suggests a notable gap in our understanding of the empirical importance of the landlord-

tenant problem thus far is the dearth of reliable empirical studies on the commercial sector.

1.2 Empirical Strategy

The outcome of interest is the sample average treatment effect on the treated (SATT),

the average impact of energy codes on rents and selling values in buildings constructed under

an energy code regime.

Buildings are assigned to one of two states: unlabeled energy efficient buildings con-

structed under a newly implemented energy code, or unlabeled buildings with lower energy

efficiency attributes (i.e. higher estimated energy use), identified by having been constructed

before the energy code was implemented. Using the potential outcomes framework, let Di=1

denote a treated observation if building i has been constructed under a new code, and Di=0
11In addition, Reed et al. (2004) note that their data sources are disproportionately from the largest firms:

as has been pointed out by Kok et al. (2011), the largest firms and buildings are precisely those that are
most likely to adapt to new information. Therefore, it is not clear to what extent the study is representative
of the building sector.

12See questions C3 and C5 in EIA (2003b). My data, which only categorize a building as owner-occupied
if it is solely occupied by the owner, suggest that out of approximately 91,000 observations with information
on whether a building is owner-occupied or multi-tenanted, about 70% of the buildings are multi-tenanted.
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denote a control observation if building i has been constructed under a less stringent code

version.13 Potential outcome Yi(1) denotes building values (rents or prices) in building i con-

tingent on having been constructed under a more stringent energy code regime, and potential

outcome Yi(0) denotes building values in building i, contingent on having been constructed

under a less stringent code. The SATT can be expressed as

αTT = E [Yi(1)− Yi(0)|Di = 1] . (1)

Rents or prices in buildings constructed after the implementation of a new energy code

can be used to identify E [Yi(1)|Di = 1]. However, the counterfactual, average building values

in buildings constructed under a newly implemented code had they been constructed under

a less stringent code, E [Yi(0)|Di = 1], is unobserved. My identification strategy generates

a credible estimate of counterfactual building values by exploiting the data’s geographic

precision to find control observations located within two miles of a treated observation,

thereby holding unobservable small-scale locational characteristics constant.14

Many states in my sample have adopted multiple, increasingly stringent versions of an

energy code (see Figure 1). Table 1 presents the six treated categories and matched untreated

controls that I observe in the data, along with the percent share of the rent and sales samples

in each category. Therefore, the estimated average treatment effect pools across building

matches with different estimated energy savings. As explained in Section 1.3.2, while the

estimated savings from a given treated-control match vary between 5-11%, the weighted

average estimated energy saving from each match in my sample is about 10% in both the

rental and sales datasets.

1.2.1 Testable hypotheses

The literature summarized in Section 1.1.3 provides arguments for and against the

null hypothesis that building energy standards will have no effect on value premiums in
13Where a ‘less stringent code’ includes no energy code.
14The reasons for selecting a 2-mile radius are discussed in Section 1.2.2. Results obtained from steadily

decreasing the radius are presented in the Appendix.
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commercial real estate markets. Three testable implications follow from this more general

hypothesis.

Hypothesis 1: Energy efficient buildings are not associated with rent premiums. Assess-

ing a building’s efficiency level is costly and typically requires some combination of observing

insulation levels, lighting power densities and HVAC equipment efficiencies, and/or request-

ing and analyzing utility bills. While prospective tenants or their representatives may be

willing to pay a premium to locate in an energy efficient building, either to benefit from

lower utility bills or insure against the impact of energy price increases, they may find it

difficult to evaluate a building’s efficiency level or may not be convinced by owner/operator

claims about a building’s energy conservation characteristics.

Hypothesis 2: Rental premiums are the same regardless of who pays for utilities. Rental

contracts differ in terms of which party is responsible for utility bill payments. In buildings

constructed under an energy code where utilities are paid directly by tenants (which is the

case in almost half of my sample), tenants will face lower utility payments and may therefore

be willing to pay a premium to locate in these buildings. However, this will not be observed

if tenants or their representatives are unconvinced of a building’s efficiency characteristics.

Hypothesis 3: Energy efficient buildings are not associated with sale price premiums.

Owners of buildings constructed under an energy code may benefit from higher net incomes

since they may obtain either higher rents, if tenants pay for utilities, or benefit from lower

utilities directly, if owners pay for utilities. However, if current owners are unable to convince

prospective buyers of the building’s energy conservation characteristics, or if prospective

buyers believe they will not be able to convince prospective tenants to pay a rent premium,

energy efficient buildings will not sell at a premium.

1.2.2 Spatial semi-parametric matching

I implement a spatial matching estimator combined with regression-based bias adjust-

ment (Abadie and Imbens (2006) and Abadie and Imbens (2011)). The average treatment

effect on the treated is estimated by:
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τsm =
1

N1

∑
j∈I1

[
Yj −

∑
k∈I0

1

mjk

(Yk + µ̂0(Xj)− µ̂0(Xk))

]
, (2)

where N1 is the number of treated buildings, I1 is the set of treated buildings, I0 is the

set of control buildings, and j and k index treated and control buildings, respectively. Yj

and Yk denote building values (log rent or log selling price) in the treated and control

buildings; Xj and Xk denote covariate vectors for the treated and control units. The term

(µ̂0(Xj) − µ̂0(Xk)) implements a bias adjustment that modifies the control outcome Yk for

the difference in covariate values between the treated and control units, Xj and Xk. Since

the outcome of interest is the SATT, the estimate for µ̂(·) is obtained by regressing the

control outcomes on their covariates.

Each treated building j is matched with all k control buildings located within a 2-mile

radius, constructed no more than three years earlier, such that mjk is the number of matches

for observation j.15 A 2-mile radius was chosen to balance two competing factors: the de-

sirability of minimizing the distance between treated and control observations versus the

impact on the sample size. The importance of controlling for unobservable locational char-

acteristics at a fine geographic scale is well-established in the real estate literature (Bollinger

et al. (1998)), and from an econometric standpoint avoiding ‘geographic mismatch’ is im-

portant in order to achieve balance among the unobservables in the treated and control

samples (Heckman et al. (1997), Duranton and Overman (2005)).16 However, the pattern of

increasing decentralization and decreasing density in new office space construction implies

that the average distance between buildings is greater in newer buildings (Brueckner (2000),

Lang (2000)), which constrains how small a radius between buildings can be used in order
15Matched buildings must also be located in the same city. This rules out buildings located within two

miles of each other located on either side of a city boundary.
16An alternative to matching buildings on the basis of geographic distance is Mahalanobis matching. The

Mahalanobis metric defines two buildings as near each other if they have similar covariates. Interestingly,
matching buildings in my sample using Mahalanobis distance and all observable covariates results in very
similar overlap in the covariate distributions between treatment statuses compared to matching solely on
the basis of distance. However, since Mahalanobis matching results in considerably larger distances between
treated and control buildings, geographic matching is likely preferable in this case so as to avoid locational
mismatch.
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to maintain a reasonable sample size.17

Bias-adjustment covariates included in the regression include building size, number of

stories, building age, an indicator for class A buildings and an indicator for building-level

amenities.18 Buildings with active rental listings at the time I obtained the data also include

information on whether utilities are included in rent or if tenants pay directly for their own

utilities. Rental contracts are separated into three categories: Gross contracts, net contracts,

and plus utilities contracts. Gross contracts quote rental rates inclusive of all services for

the first year of the contract. Subsequent years are subject to ‘escalation’ clauses based on

increases in expenses (including the impact of energy prices). Plus utilities contracts do not

include any utilities in rent, in which case tenants pay for rent plus a separate utilities bill.

In net contracts, all services are paid separately, including utilities and other operating costs

such as cleaning, insurance and security. Hereafter I will refer to a ‘utilities’ contract as a

contract where tenants pay for utilities - either a plus utilities contract or a net contract.19

The sales sample also includes the year of sale, and the change in employment in the

building’s metropolitan statistical area the year prior to sale (to control for changes in the

regional demand for office space) among the bias-adjustment covariates. Since energy prices

affect the cost of utilities, and therefore building-level operating costs, prevailing energy

prices at the time a building sold may introduce heterogeneity in the willingness to pay

for energy efficiency. To control for this effect I also include the price of the average 1-12

month regional wholesale forward electricity and natural gas contract six months before the

building sold. The electricity price data were constructed using auction data from the major

electricity trading hubs in the U.S., and the natural gas price data are from Henry Hub
17The sales results are robust to trimming the sample to treated and control buildings no more than

approximately 1.0 miles apart, and the rent results are robust to trimming the sample to treated and control
buildings no more than approximately 0.8 miles apart. See Appendix Section A.2 for these results.

18Amenities include: property manager on site, concierge, corner lot, courtyard or atrium, waterfront
location, or the availability of nearby public transit, restaurants, day care, retail shops, or a fitness center.

19Given that advertised rental listings are observed at the same time for all buildings, I assume that the
other operating costs applying to net contracts are the same across buildings in the treatment and control
samples. If the selection on observables and overlap identifying assumptions described in Section 1.2.4
hold, as suggested by Tables 2 and 3 and the falsification test presented in Section 1.4.3, this is a plausible
assumption.
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auction data.20

1.2.3 Regression on the matched sample

In equation (2) above, the primary interest has been on estimating the average effect of

energy codes on office building values. However, absent adverse selection between landlords

and tenants, the premiums accruing to energy efficient buildings are predicted to vary de-

pending on whether tenants or owners pay directly for utilities. In this Section I turn to a

regression framework on the matched sample to test for evidence of this heterogeneity in the

returns to energy efficiency. The estimating equation is:

Yi = αDi + β′Xi + θUtiliDi + δj + µi, (3)

where Di is a treatment indicator, Xi denotes the covariate vector, and interaction term

θUtiliDi assesses whether the premium to buildings constructed under a code is heteroge-

neous in buildings where tenants pay directly for utilities.21 δj denotes a locational fixed

effect for group j, i.e. building j and the control buildings located within 2 miles of j; the

error term is denoted by µi and is assumed independent of Xi and Di.

1.2.4 Identifying assumptions

The crucial identifying assumption is unconfoundedness: controlling for observable co-

variates, the distribution of control outcomes must be the same in buildings with and without

energy codes. Second, there must be a sufficiently dense overlap between the covariate dis-

tributions of treated and control observations, such that outcomes are observed for each

treatment status at all values of the joint covariate distribution. Finally, identification also

relies on the assumption of no general equilibrium effects, also referred to as stable unit treat-

ment value (SUTVA): each buildings’ potential outcomes are not affected by the treatment

status of other buildings. These three assumptions define sufficient conditions to interpret
20Wholesale prices were used as they reflect the true resource cost of energy, and are incorporated into

retail prices charged by utility companies over time (see Jaffee et al. (2012)). The results do not change
significantly if I use retail energy prices instead of wholesale prices in the analysis.

21Util is a dummy variable equal to one in buildings where tenants pay for utilities.
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the estimated difference in outcomes as the causal effect of energy codes (Barnow et al.

(1980), Rosenbaum and Rubin (1983), Rubin (1986)).

As detailed in Section 1.1.1, the decision to adopt a more stringent energy standard

typically stems from a finding of positive net benefits from the standard, based on simu-

lated energy standard impacts on the aggregate commercial building stock in a given state.

A positive net benefit finding is not dependent on individual building characteristics, and

code adoptions apply to all buildings constructed after the implementation date. This fea-

ture of the adoption decision bolsters the identification strategy. However, since buildings

constructed under an energy code are one to three years newer than their matched control

observation, and newer buildings may rent and sell at a premium, the regression-adjustment

might not fully account for this effect in regions where there is poor overlap in the year

built distribution. In addition, an implication of the unconfoundedness assumption is that

the covariates are predetermined, or unaffected by treatment status. A covariate which may

conceivably not be predetermined is the type of rental contract, particularly as it defines who

is responsible for paying utilities. In Section 1.4.3 I present robustness checks to evaluate

whether these factors might affect the results. While SUTVA is not testable in principle,

in Appendix Section A.4 I provide an indirect test of whether it is a plausible maintained

assumption.22

1.3 Data

This Section presents an overview of the steps involved in creating the dataset, followed by

an estimate of the average building-level energy and operating cost savings.

1.3.1 Dataset creation

Cross-sectional data on office building hedonic characteristics, advertised rental rates

(in $/sq.ft.) and last sale price were obtained from the CoStar Group, which maintains a

building-level database and multiple listing service that has been tracking the commercial
22An alternative identification strategy that may seem advantageous is a regression discontinuity design.

However, the highly discrete nature of the running variable, year of construction, is not suitable for the
application of local linear regression methods.
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real estate industry since the early 1980s.23 Each building-level observation is also geocoded

with a precise latitude and longitude coordinate.

CoStar’s transaction notes were used to discard sales observations that were either made

under “distressed” conditions, deferred tax transactions (1031 exchanges), bulk or portfolio

transactions (which results in a sale price per square foot representing an average over several

disparate properties), or non-arm’s-length transactions. Data on the change in employment

the year prior to building sale are from the Bureau of Labor Statistics, and wholesale elec-

tricity and natural gas forward contract prices are from Platts, the energy data vendor.24

Observations from the rent sample that listed the rental rate as ‘negotiable’ were discarded.

Panel I in Figure 2 presents a map of the full population of CoStar office buildings (424,183

observations).25 Observations that include either sales or rent data (133,068 observations)

are shown in Panel II. Panels III and IV illustrate the sales (80,919 observations) and rent

(76,285 observations) data, respectively. As can be seen in panels III and IV, though the

sales and rent observations are a subset of the CoStar building population, the geographic

distribution of both subsets retain a high degree of overlap with the full population.

Buildings were associated with a particular efficiency level by exploiting state-level and

year-of-adoption variation in the implementation of the ASHRAE building energy standard,

which has periodically prescribed more stringent energy efficiency characteristics in new

commercial buildings since the 1980s (Figure 1). Data sources and further details of the

dataset construction can be found in Section A.1 of the appendix. Identifying these state-

level adoption dates has enabled me to associate buildings in my dataset as being constructed

under a specific energy code regime. The code implementation dates identified in Figure 1

are the dates on which building permit applications were required to satisfy the new, more
23CoStar defines an office building as a structure in which the primary use is “to house employees of com-

panies that produce a product or service primarily for support services such as administration, accounting,
marketing, information processing and dissemination, consulting, human resources management, financial
and insurance services, educational and medical services, and other professional services." CoStar also keeps
information on retail buildings and ‘flex’ buildings that combine features of office and retail structures, but
they are not included in the analysis.

24I thank Nancy Wallace for providing me with the energy price data. See Jaffee et al. (2010) for a detailed
description of how the energy price dataset was created.

25This represents approximately half of the estimated population of office buildings in the U.S. (EIA
(2003a)).
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stringent energy code criteria in order to be approved by the local building department.

Since I don’t observe the date on which a building obtained its building permit, and since a

lag occurs between the time a building permit is obtained and the building’s construction,

the following decision rule was used. In a given state, if the effective date of a new energy

code implementation is in February or earlier, buildings constructed the year following the

code’s effective year are categorized as having been subject to the new energy code; buildings

constructed before the new energy code (inclusive of the effective year) are categorized as

controls. If the effective date of a new energy code implementation is in March or later,

buildings constructed two years following the code’s effective year are categorized as having

been subject to the new energy code; buildings constructed before the new energy code are

categorized as controls. This may lead to some degree of measurement error if a building is

mis-categorized, and therefore to attenuation of the estimated coefficients.26

Having identified ‘treated’ buildings as having been constructed under a specific energy

code regime, the geocode associated with each building was used to create the control sample,

composed of all buildings located within a 2-mile radius of a treated building that were

constructed before a given standard came into effect. The complete dataset is therefore

composed of all buildings that could be identified as being constructed under one of four

energy code regimes and all control buildings located within a 2-mile radius of a treated

building. A list of treated building categories (ASHRAE 1989, IECC 2000, ASHRAE 1999

or ASHRAE 2004) and their control matches (pre-ASHRAE 1989, ASHRAE 1989, IECC

2000, or ASHRAE 1999) is presented in Table 1.27

Figure 3 depicts an example of two matched buildings in Scottsdale, Arizona. They ex-

emplify the low-rise, tilt-up concrete construction practices used in new commercial building
26Estimates obtained by varying this decision rule by one month do not significantly change the results

reported below. I have also obtained estimates by discarding buildings constructed during the effective year,
and the results are qualitatively unchanged from those reported in the paper (the point estimates are slightly
larger and remain statistically significant).

27The pooled nature of the sample resulted in a small number of buildings appearing simultaneously as
both a treated and control observation; while including these buildings twice in the analysis does not change
the results, in the tables reported below I have dropped the repeat matches that appeared under both
treatments. For each observation appearing as both treated and control, it is only counted in the treatment
regime with the smallest distance to its treated/control match.
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structures that tend to be located outside central cities Lang (2003). Since each observation

is geocoded, it is possible to analyze the extent of spatial dependence of the year built distri-

bution. A large literature has documented the increasing decentralization of new residential

and commercial construction that has been occurring since at least mid-century (Anas et al.

(1998), Glaeser and Kahn (2004), Irwin and Bockstael (2007)), and the spatial dimension

of the data is consistent with this finding. As illustrated in Figure 4, where office building

observations are color-coded by the quantiles of the year built distribution in Maryland and

Southern California, newer commercial construction (represented by blue dots) has a ten-

dency to occur at the urban fringe. This phenomenon is prevalent in all the major urban

areas in the dataset.

The dataset obtained from the steps outlined above results in a high degree overlap

between the covariate distributions in the treated and control samples, with the notable

exception of the building age distribution: buildings constructed under a code are almost

30 years newer, on average, than buildings in the control sample. This is to be expected,

since most of the treated buildings are constructed under energy standards that began being

implemented by states in the latter half of the 1990s. To improve this discrepancy in the year

built distribution, I discard control observations constructed more than three years before

the treated observation it is matched with. Panels (a) and (c) of Figure 5 show histograms

of the year built distribution by treatment status before trimming out the older control

buildings, while panels (b) and (d) show the trimmed histograms. The overlap in the year

built distribution is much improved after trimming the sample.

Table 2 presents summary statistics for the treated and control buildings in the rent

data set after trimming the sample to improve overlap in the year built distribution. Table

3 presents summary statistics for the trimmed sales sample. The tables indicate that the

average building in the sample has two stories and measures about 30 thousand square feet,

a profile that closely resembles the average office building in the U.S. (EIA (2003a)).28

The normalized difference for each covariate presented in the last column of Tables 2

and 3 is a measure of overlap among the covariates in the treated and control samples. A
28In contrast, the average green-labeled building is 15 stories high and measures over 300,000 sq. ft.
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normalized difference less than 0.3 or so is typically considered good overlap (Imbens and

Wooldridge (2009)).29 Both tables indicate good overlap for most of the covariates. In both

trimmed samples the mean disparity in the year built distribution by treatment status is

2 years (and, as noted above, is restricted to be no more than 3 years for a given treated

building and its match). In the following Section, I present the results of a falsification test

to assess whether the modest lack of overlap in the year built distribution might affect the

results.

1.3.2 Estimated building-level energy and operating cost savings

Several engineering simulation studies have been conducted by the DOE to estimate ex-

ante average energy savings attributable to ASHRAE Standards 1989, 1999 and 2004 and

the IECC 2000 (Hadley and Halverson (1993), Department of Energy (2002), Department

of Energy (2008)). These studies estimate the average reduction in site energy use intensity

(EUI) per square foot attributable to upgrading to a more stringent ASHRAE code, assuming

that actual construction practice is conducted in accordance with code requirements.30

The estimated site EUI energy savings arising from the matches in Table 1, based on the

studies cited above, range from 5-11%. The simulated energy savings in these studies are

obtained from a weighted average of the savings from buildings located in 11 climate regions

in the U.S., with weights corresponding to the estimated share of new building construction

in each region.31 To obtain an estimate of the average EUI savings arising from the matches

in my sample, I calculate a weighted average of the Department of Energy’s simulated EUI

savings for each treated-control match I observe in the data (Table 1), in each of the 11

climate regions, with weights corresponding to: (1) the share of the in-sample buildings in

each climate region; and (2) the share of building matches (treated and controls) constructed
29The normalized difference reports the difference in average covariate values by treatment status, scaled

by the square root of the sum of a given covariate’s variance.
30Site EUI is defined as the annual BTU value of energy at the point it enters the building, normalized by

building area; its unit of measurement is thousands of BTUs per square foot per year (kBTU/sf/yr).
31The climate regions roughly correspond to U.S. census divisions, except that northern and southern

California each have their own climate region. It should be noted that the average savings range of 5-11%
masks a considerable amount of variation in the savings across climate zones in the U.S. For example, in the
southern Atlantic region the savings are typically higher by about 2-3%.
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under each standard version. Performing this weighted average for the rent and sales samples

separately results in similar estimated EUI savings of approximately 10% in each sample.

Assuming that reductions in site EUI lead to proportional reductions in utility costs, and

given that office building utilities in the 11 DOE climate regions averaged approximately

$3.36/sq.ft./yr. in 2009 (BOMA (2010)), a 10% reduction in annual building energy costs

will reduce utility costs by close to $0.34/sq.ft./yr., or approximately 1.7% of sample average

rent in my sample (which totals $19.40).32 Obtaining an estimate of the impact of a 10%

utility operating cost saving on selling prices is a bit more difficult as it requires an estimate

of net operating income (NOI), which I do not observe in the data.33 An estimate from the

Building Owners and Managers Association (BOMA (2010)) suggests average net operating

income in the U.S. was $18.90 per square foot in 2009; in that case, a saving of $0.34/sq.ft.

implies a 1.8% increase in NOI.34 Both of these percent savings estimates represent one year

of energy savings, and would therefore accrue to tenants over the length of a tenancy contract

and to owners over the length of ownership.

1.4 Results

1.4.1 Spatial semi-parametric matching

Table 4 shows the results of estimating equation (2) for the trimmed rental and sales

samples. Columns (1) and (2) present simple, or non-bias-adjusted, matching estimates, and

columns (3)-(6) present the bias-adjusted estimates, where all of the observable covariates

from Tables 2 and 3 are used in the bias-adjustment. These include the number of stories,

building size, building class, whether or not tenants pay directly for utilities, the occupancy

rate, and the availability of local or building amenities. For the sales sample the bias-
32The weighted average energy operating cost figure was obtained by using average energy operating costs

in each of the 11 climate regions, weighted by the share of the in-sample buildings located in each climate
region. The data are from the Building Owners and Managers Association’s Experience Exchange Report.
See BOMA (2010).

33The market price of commercial property can be expressed as P0 =
∑L
t=1

NOIt

(1+δt)t , where P0 is the price
at the purchase date, L is the expected length of ownership, NOIt is net operating income (operating income
- operating costs) in period t, and δt is the discount rate at t. Therefore, changes in operating income affect
the selling price.

34Similar percent saving estimates result if NOI figures from 2007, 2008 or 2010 are used.

19



adjustment also includes the year the building was sold. The effect of energy prices on the

sales price are incorporated in columns (5) and (6).

The first row of Table 4 presents the estimated impact of energy codes on the logarithm

of rents (log rent). The bias-adjusted estimates in columns (3) and (4) suggest buildings

constructed under an energy code are associated with approximately 2.7% higher rents. The

second row presents the sale price results, which also indicate a significant impact of energy

codes on selling prices: the bias-adjusted results in columns (3) and (4) imply that buildings

constructed under an energy standard are associated with a 10.3% selling price premium.

Columns (5) and (6) include the average regional wholesale forward electricity and natural gas

prices six months before the building sold, in the bias-adjustment regression. The estimate is

about 2% higher. The appendix presents results that indicate the robustness of these results

to decreasing the maximum allowable distance between buildings.35

Taken together, these results provide evidence to reject empirical hypotheses 1 and 3,

since more energy efficient buildings are associated with statistically significant rent and

selling price premiums. The falsification test results in Section 1.4.3 below also indicate that

this finding is not driven by the modest lack of overlap in the year built distribution.

1.4.2 Heterogeneity in the returns to energy efficiency

In Table 5 I assess whether the rent value premium differs on the basis of which party is

contractually responsible for utility payments. In columns (5) and (6), the ‘Utilities*Code’

interaction term identifies whether tenants are responsible for utility bill payments. The

estimate indicates that buildings constructed under a more stringent energy code in which

tenants pay for utilities are associated with a 5.7% rent premium compared to buildings

constructed just before a code came into effect. This estimate most clearly represents tenants’

valuation of their expected energy cost savings over the length of their tenancy contract:

since tenants benefit directly from lower utility bills in these buildings, they should also be
35For the sales samples I also estimated a specification that includes a variable capturing the amount of

time between the year of construction and the year of sale. For the rent sample I estimated a specification
that includes the amount of time between the year of construction and the year I observed the rent listings
(2010). Including these variables does not change the point estimates substantively.
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willing to pay higher rents to locate there. In this specification the estimated coefficient for

the ‘Code’ variable is interpreted as the rent premium in buildings constructed under a code

where owners pay for utilities for the first year of the contract. The coefficient value of -1.7%,

though statistically insignificant, suggests some owners may be willing to charge lower rents

relative to less energy efficient buildings, consistent with the possibility that some owners

benefit from lower utility bill payments and may therefore be willing to reduce rental prices

to attract tenants. In addition, the point estimate is economically significant in that it is in

line with my back of the envelope estimate that on average, more stringent versions of the

ASHRAE codes in my sample are associated with a 1.9% annual rent saving.

Since, as explained in Section 1.2.2, contracts in which building owners are responsible for

utility bill payments also typically include escalation clauses for any increases in operating

expenses, the estimated coefficient for such ‘gross’ contracts would be expected to reflect

owners’ valuations of annual energy savings exclusive of the expected effect of future energy

price increases.36

The observed heterogeneity between buildings where tenants pay directly for utilities

versus buildings where utilities are paid by the landlord provides statistically significant

evidence that hypothesis 2 can be rejected. In buildings where tenants pay directly for

utilities, rent premiums are higher in more energy efficient buildings.

1.4.3 Assessing unconfoundedness

To assess whether the rental contract is predetermined with respect to treatment status,

I test whether the treatment and control observations in the matched sample have a statis-

tically significant difference in the rate of rental contracts that stipulate tenants must pay

directly for their utility bill (‘utilities’ contracts).37 The third row of Table 4 presents these

results, which are not suggestive of a systematic relation between the type of rental con-

tract and treatment status, given the statistically insignificant difference in the prevalence
36Electricity prices were expected to increase across all geographic hubs as evidenced by positive differences

between near-term (1-12 months) and long-term (25-36 month) forward electricity contracts at the time the
rental rates were advertised (March 2010).

37Effectively, I estimate equation (2) but replace Y with an indicator variable for a utilities contract.
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of utilities contracts between the treated and control buildings.

Treated buildings in Tables 2 and 3 are two years newer than their matched control obser-

vations, on average, and the normalized difference in the means of the year built distribution

by treatment status suggests a modest imbalance in overlap. To assess whether this may

cause a residual positive bias, I create a new sample that assigns a false energy code status

to buildings, but retains the feature that newer buildings are matched to nearby buildings

constructed no more than three years earlier. The sample is constructed by subtracting four

years from the original coding file that assigns a treatment status to each building. While

the resulting data assignment exhibits a similar discrepancy in the year built distribution

as the original file (the false ‘treated’ buildings are two years newer on average), treatment

status is uncorrelated in the original and falsified samples.38 For example, fewer than 30%

of the same buildings appear in the original versus falsified samples; buildings that appear

in both samples have close to a 50/50 chance of having a different treatment status in the

falsified sample.39

Table 6 presents the results of this falsification test. For the log rent results in the top

row of Panel I, the simple matching estimates in columns (1) and (2) indicate a small positive

difference between the false energy code buildings compared to the false controls, but it is

statistically insignificant. The bias-adjusted log rent diffrentials in column (3) are negative

and statistically insignificant, whereas the sales results, without incorporating energy prices,

are centered at zero. Incorporating energy prices increases the point estimate but it remains

highly insignificant.40 Panel II of Table 6 also indicates that there is no statistical difference

in rents between buildings in which either tenants or owners pay the utility bills.

Additional robustness checks are presented in the Appendix, including results that reduce
38The average ‘treated’ building in the falsified sample was constructed in 2003, whereas the average

‘control’ building was constructed in 2001. The normalized difference for the year built distribution is
approximately 0.57. While the summary statistics in the falsified samples are not presented here, they are
available from the author upon request.

39In the rent sample, 21% of buildings in the falsified sample appear in the original sample. In the sales
sample, 27% of buildings in the falsified sample appear in the original sample.

40Clustering the standard error in the rent sample, in column (4) of Table 6, causes close to a 50% drop in
the standard error estimate, which suggests significant negative intracluster correlation.While this may be
indicative of misspecification of the chosen cluster size, clustering at smaller and larger levels of the sample
does not alleviate the problem. Therefore, the results without clustering may be the most reliable.
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the maximum allowable distance between buildings (Sections A.2 and A.3), test for the plau-

sibility of the stable unit value treatment assumption (Section A.4), and assess whether there

is evidence that building developers tried to ‘game’ energy code implementations (Section

A.5). The evidence suggests the results are unaffected by these checks.

1.5 Conclusion
The question of whether energy efficient yet unlabeled office buildings are associated with

premiums that reflect the value of energy savings has, thus far, remained undetermined.

This is an important question not only because it reflects how broadly real estate markets

internalize the returns to energy efficiency across heterogeneous segments of the building

stock, but because it can shed light on whether adverse selection between landlords and

tenants mitigates the returns to energy conservation investments in commercial buildings.

In turn, assessing the prevalence of adverse selection about the energy use characteristics of

commercial buildings is an important step in the determination of the optimal mix of policies

to address the climate change externality.

In this study I use quasi-experimental variation in state-level energy code adoptions over

the past twenty years, to find that on average, non-green-labeled buildings constructed un-

der a more stringent energy code are associated with statistically significant rent and selling

price premiums of approximately 2.7% and 10%, respectively. When tenants pay directly

for utilities, buildings constructed under an energy standard are associated with statisti-

cally significant rent premiums of 5.7% compared to buildings constructed just before a code

came into effect. These premiums suggest building owners obtain returns to energy conser-

vation investments even in buildings where it is more difficult to observe energy efficiency

characteristics, compared to buildings that have received a green label.

The results are also consistent with complete capitalization of the estimated energy sav-

ings in rents and prices. As noted previously, the estimated average energy operating cost

savings from constructing a building under a more stringent energy standard is approxi-

mately 10%. This represents 1.9% of average sample rent and 1.8% of average building-level

net operating income, and both of these percent savings estimates represent one year of
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energy savings, which would therefore accrue to tenants (that pay directly for utilities) over

the length of a tenancy contract, and to owners over the length of ownership.

As detailed further in Appendix Section A.6, given plausible assumptions for the growth

of utility costs, expected ownership or rental contract length, and the discount rate, rent and

selling price premiums of approximately 5% and 10% (respectively) correspond to complete

capitalization of the estimated energy savings. In other words, though the contract length,

real estate market participants’ subjective discount rate, and the assumed growth in utility

costs are unobserved, a 5% rent premium when tenants pay for utilities and a 10% selling

price premium represent complete capitalization for plausible values of these unobserved

variables.

These results cast doubt on the frequently cited suggestion that adverse selection between

landlords and tenants, pertaining to building energy use characteristics, merits policy inter-

vention by contributing to an energy efficiency gap. An advantage of focusing on estimated

premiums in unlabeled, energy efficient buildings is that they can generate a definitive an-

swer as to whether commercial real estate markets fully reflect the value of energy efficiency.

In this case, the evidence suggests that the answer is yes.
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2. Pre-Labeling Market Valuations and the Causal Effect
of Green Labels

Environmentally sustainable building practices, as sanctioned by green-labeling programs

developed by the Environmental Protection Agency and the United States Green Buildings

Council, have been growing at near-exponential levels in recent years (Kok et al. (2011)),

yet an unresolved question is whether value premiums accruing to green-labeled buildings

are a causal effect of receiving a label. Green-labeled buildings differ significantly from the

average office building on the basis of observable characteristics, and since participation in

these programs is voluntary, nonrandom selection into the stock of green buildings may result

in both observed and unobserved heterogeneity that may account for at least a portion of the

premium. For example, buildings whose owners seek to undergo the third-party monitoring

and verification required in the labeling process tend to be landmark structures with unique

architectural characteristics, which reinforces the likelihood that unobservable characteristics

differ among labeled and unlabeled buildings.

The Energy Star and LEED labeling programs have been credited with delivering both

significant energy savings and value premiums in green-labeled buildings (Turner and Frankel

(2008), EPA (2006)), Eichholtz et al. (2010), Eichholtz et al. (2013)). However, determining

to what extent green building premiums arise from selection bias affects the realized net

benefits of green labeling policies, and has broader implications for climate policy. Green

labels can be an economically efficient response to informational market failures that dampen

the returns to energy conservation investments (Jaffe and Stavins (1994)). They may im-

prove market outcomes in cases when adverse selection makes property managers unable to

persuasively communicate building characteristics to potential buyers and tenants (Milgrom

(2008)). If green labels cause energy efficient buildings to obtain market premiums that

they otherwise would not have received due to adverse selection, they can play a part in

the optimal mix of policy responses to the climate change externality, to the extent that

the benefits of green labels outweigh their costs. However, this latter point remains open to

question (Fuerst and McAllister (2011a), Newsham et al. (2009), Navarro (2009)).
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In this paper, I use repeat sales observations and detailed building hedonic characteristics

to estimate pre-labeling price premiums in buildings that subsequently received a green label,

compared to similar buildings that never received a label. Since the green building sample

is restricted to 206 buildings with data on sales transactions both before and after they

received a label, I proceed to estimate post-labeling value premiums in green buildings and

take the difference in the pre- and post-labeling price premiums, to obtain an estimate of

the gain to labeling. Finally, I combine the gain to labeling estimate with data on the costs

of obtaining a label, and calculate realized cost-benefit ratios for green labels.

The identification strategy uses the repeat sales data to difference out the effect of un-

observed characteristics on building value. By differencing out potential sources of bias that

remain constant before and after a building obtained a label, and incorporating the costs

of green labels to obtain an estimate of the net benefits of a label, the approach improves

upon previous work that has found large positive value premiums from green labels, such as

Eichholtz et al. (2010).

The results indicate that the stock of green-labeled buildings that sold before they re-

ceived a label did not sell at a premium compared to observationally similar control build-

ings. The estimated post-labeling premium is approximately 12%, which corresponds to a

premium of $20 per square foot. Combining these results with cost estimates of obtaining a

green label, which range from $0.05-$8.50 per square foot, suggests the net benefits of green

labels vary from $11.50-$19.95 per square foot. The estimated net benefits suggest building

owners obtain sizable returns from green labels, but they are smaller than previous esti-

mates that have ignored the costs of green labeling strategies, which have found premiums

of 13%-20%, corresponding to benefits in the range of $22-$42 per square foot (Eichholtz et

al. (2010), Fuerst and McAllister (2011b), Eichholtz et al. (2013)). The statistically insignif-

icant pre-labeling premiums suggest nonrandom selection is not a source of bias affecting the

estimated benefits of labels.

The paper is organized as follows. Section 2.1 presents background information on green

labels and reviews the existing evidence on their effectiveness. Section 2.2 describes the data

set creation, Section 2.3 presents the empirical strategy, and Section 2.4 discusses the results.
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Section 2.5 briefly concludes.

2.1 Background

Green labels are awarded to buildings that demonstrate superior energy and environmen-

tal performance. In the U.S. buildings sector, two organizations are responsible for assigning

the lion’s share of these labels, the U.S. Green Buildings Council (USGBC) and the Environ-

mental Protection Agency (EPA). The USGBC’s Leadership in Energy and Environmental

and Design (LEED) designation was introduced in 1993 to aid stakeholders involved in the

building construction and operation trades to improve the environmental sustainability of

the building stock (USGBC (2009a)). The EPA’s Energy Star label was established in 1992

as a voluntary labeling program to promote energy efficient products. The Energy Star pro-

gram was expanded to office buildings starting in 1999, and is awarded to buildings in the

top quartile of energy performance (EPA (2012), EPA (2013)).

While the growth of certified commercial building space was slow to take off in the early

years of these programs, the past five years have seen close to exponential growth in the

fraction of certified space, with close to 20,000 certified commercial buildings in the U.S. as

of the end of 2010 (Kok et al. (2011)). Several studies have been conducted on the market

premiums resulting from green-labeled buildings, which have found benefits in the range of

$27-$42 per square foot (Eichholtz et al. (2010), Fuerst and McAllister (2011b), Eichholtz

et al. (2013)).

The Energy Star and LEED labels are widely touted by policymakers as bringing about

improvements in the energy conservation characteristics of the building stock and increasing

building values (EPA (2011), USGBC (2013), McGraw Hill Construction (2010)). However,

though some studies have found that green-labeled buildings are associated with lower levels

of energy use compared to an average building (Turner and Frankel (2008), EPA (2006)), oth-

ers have found that ex-post evaluations of the energy performance of many labeled buildings

is poorer than expected (ACEEE (2008), Newsham et al. (2009)).

Another consideration in the evaluation of green-labeled building performance is that

participation in labeling programs is voluntary. The labeling procedure begins when a build-
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ing owner or operator registers with either LEED or Energy Star for the purpose of obtaining

a label. This is followed by third-party building energy performance monitoring, typically

for an 8-12 month period (USGBC (2009b)), and a building is certified as ‘green’ only after

adequately demonstrating criteria for energy and environmental performance above a prede-

termined threshold. It is the voluntary participation decision at the outset of the process that

creates a potential for selection bias in the estimation of the benefits of a label. Nonrandom

selection into the pool of certified buildings is evidenced by the observable characteristics

of green buildings in comparison to the average office building: the typical green building

is 15 stories high and measures over 300,000 square feet, in contrast with the average of-

fice building, which is about two stories high and measures about 20,000 square feet (EIA

(2003a)).

2.2 Data

Both of the major green labeling programs for the building sector, Energy Star and LEED,

publish the addresses of labeled buildings on their website. I matched the addresses of labeled

buildings to the CoStar Group’s repeat sales database, a building-level archive of commercial

building sales transactions with detailed hedonic characteristics on 2.4 million commercial

properties. Each building-level observation is geocoded with a precise latitude and longitude

coordinate. CoStar’s transaction notes were used to discard sales observations that were

made either under “distressed” conditions, deferred tax transactions (or 1031 exchanges),

bulk or portfolio transactions (which results in a sale price per square foot representing

an average over several disparate properties), or that were not arm’s-length transactions.

I also discarded building observations that underwent a renovation between the pre- and

post-labeling sale transactions, in order to rule out price effects that arise from a change in

building features that are not controlled for in both the pre- and post-labeling transactions.41

This matching process culminated in 206 labeled buildings with recorded sale transactions

both before and after a building was labeled.
41Therefore, the labeled sample includes office buildings with pre- and post-labeling sale prices that were

either renovated before both transactions occurred or with no recorded renovations.
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The hedonic building characteristics included in the analysis are building size, number

of stories, building age, year of sale, latitude, longitude, an indicator for high quality class

A buildings and an indicator for building-level amenities.42

Figure 6 presents a map of the labeled building geographic distribution. The sample

of green buildings spans eighteen states. At the state-level, California, Texas, Florida and

Colorado have the largest concentration of green buildings in the sample, a pattern consistent

with the population of green buildings in the U.S. (EPA (2011)).

A comparison group for the green buildings was created by matching each labeled building

with two unlabeled buildings located in the same “market” as defined by CoStar, which

approximately corresponds to the U.S. Census definition of a metropolitan statistical area.

The labeled buildings were matched to their comparison buildings using the Mahalanobis

metric, which selects matches by finding the smallest covariance-weighted Euclidean distance

between the vectors of hedonic characteristics for a given labeled building and the unlabeled

buildings in the same market. Since year of sale is one of the variables in the vector of hedonic

characteristics, the matching process resulted in two separate comparison samples, one for the

pre-labeling sales transactions and one for the post-labeling transactions. Figure 7 illustrates

sets of pre- and post- labeling matches for green buildings in Boston, Massachussetts and

Denver, Colorado.

Table 7 presents summary statistics for the pre-labeling sample, and Table 8 presents

summary statistics for the post-labeling sample. The normalized difference for each covari-

ate presented in the last column of each Table is a measure of overlap among the covariates

in the green buildings and their control samples. A normalized difference less than 0.3 or so

is typically considered good overlap (Imbens and Wooldridge (2009)).43 Though the green

buildings are slightly larger and taller than their controls on average, there is sufficient vari-

ability in these characteristics to maintain good overlap for all of the observable covariates.
42Amenities include: property manager on site, concierge, corner lot, courtyard or atrium, waterfront

location, or the availability of nearby public transit, restaurants, day care, retail shops, or a fitness center.
43The normalized difference reports the difference in average covariate values by treatment status, scaled

by the square root of the sum of a given covariate’s variance.
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2.3 Empirical Strategy

The outcome of interest is the sample average treatment effect on the treated (SATT), the

average impact of green labels on selling values in labeled buildings. In contrast to previous

work that has focused on estimating the SATT on building values exclusively in buildings

that have already received a label, I estimate the SATT in two samples: selling prices in

buildings that have received a green label and selling prices in the same set of buildings

before they received a label.

Buildings are assigned to one of two states: labeled and unlabeled buildings. Using the

potential outcomes framework, let Di=1 if building i is green-labeled, and Di=0 if building

i has never received a label. Potential outcome Yi(1) denotes building values in building i

contingent on having received a label (at the time of data collection), and potential outcome

Yi(0) denotes building values in building i, contingent on never having received a label. The

SATT can be expressed as
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αTT = E [Yi(1)|Di = 1]− E [Yi(0)|Di = 1] = E [Yi(1)− Yi(0)|Di = 1] . (4)

Observed prices in green-labeled buildings can be used to identify E [Yi(1)|Di = 1], av-

erage building values in labeled buildings. However, the counterfactual E [Yi(0)|Di = 1],

average building values in labeled buildings had they never received a label, is unobserved. If

the set of green-labeled buildings had been randomly selected to receive a label, it would be

the case that, on average, values in labeled buildings had they not received a label would be

the same as values in buildings that never obtained a label:

E [Yi(0)|Di = 1] = E [Yi(0)|Di = 0] , (5)

and the set of buildings that have never received a label could be used as a control group to

estimate the unobserved counterfactual. However, the voluntary nature of the green-labeling

decision creates nonrandom selection into treatment, such that

E [Yi(0)|Di = 1] = E [Yi(0)|Di = 0] + η, (6)

where η represents a systematic variation in the value of the set labeled of buildings, before

they receive a label, from the set of buildings that have never been labeled, which may

result from nonrandom selection. My identification strategy generates a credible estimand

of the causal effect of the label (denoted α∗TT ) by pointing out that if the unobservable

characteristics in green buildings that generate η remain constant before and after a building

receives a label, the following two SATT estimands can be used to identify α∗TT :

αprl = E [Yi,prl(1)|Di = 1]− E [Yi,prl(0)|Di = 0] + η, (7)

where αprl measures the average difference in green-labeled buildings and nearby control

buildings before they received a label (prl refers to this pre-labeled status), and
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αpol = E [Yi,pol(1)|Di = 1]− E [Yi,pol(0)|Di = 0] + η, (8)

where αpol measures the average difference in green-labeled buildings and nearby control

buildings after they received a label (pol refers to this post-labeled status).

α∗TT is generated by taking the difference between (5) and (4):

α∗TT = αpol − αprl

= E [Yi,pol(1)|Di = 1]− E [Yi,pol(0)|Di = 0] + η

− E [Yi,prl(1)|Di = 1]− E [Yi,prl(0)|Di = 0] + η

= E [Yi,pol(1)|Di = 1]− E [Yi,pol(0)|Di = 0]

− E [Yi,prl(1)|Di = 1]− E [Yi,prl(0)|Di = 0] .

(9)

Using repeat sales data on pre- and post-labeling green building valuations can be used

to difference out the η in the last two lines of equation (6). This generates the causal

effect of green labels on values under the assumption that the unobservable characteristics

determining selection into treatment remain constant before and after a building receives a

label.

2.3.1 Spatial semi-parametric matching

To estimate the α∗TT estimand defined above, I implement a spatial matching estimator

combined with regression-based bias adjustment (Abadie and Imbens (2006) and Abadie

and Imbens (2011)). The average treatment effect on the treated in the pre-labeling is

estimated by:

τprl =
1

N1

∑
j∈I1

[
Yj −

∑
k∈I0

1

mjk

(Yk + µ̂0(Xj)− µ̂0(Xk))

]
, (10)

where N1 is the number of green-labeled buildings (hereafter referred to as green buildings),

I1 is the set of green buildings, I0 is the set of control buildings, and j and k index green and
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control buildings, respectively. Yj and Yk denote building values (log selling price) in the

pre-labeled green buildings and the control buildings; Xj and Xk denote covariate vectors for

the green and control units. The term (µ̂0(Xj)− µ̂0(Xk)) implements a bias adjustment that

modifies the control outcome Yk for the difference in covariate values between the green and

control units, Xj and Xk. Since the outcome of interest is the SATT, the estimate for µ̂(·)

is obtained by regressing the control outcomes on their covariates (see Abadie and Imbens

(2011) for further details).

Each green building j is matched with the two ‘nearest’ control buildings located in

the same real estate market, where nearness is defined using the Mahalanobis distance, as

described in the Section 2.2. The control observations are indexed by k, and mjk is the

number of matches for observation j. In this case, mjk=2. The Mahalonobis metric used

for matching incorporates the following covariates: building size, number of stories, building

age, year of sale, latitude, longitude, an indicator for class A buildings and an indicator

for building-level amenities.44 The bias-adjustment covariates included in the regression to

obtain µ̂ includes the same covariates. The average distance between the buildings in this

approach is about 4 miles. The importance of controlling for locational characteristics at a

fine geographic scale is well-established in the real estate literature (Bollinger et al. (1998)),

and from an econometric standpoint avoiding ‘geographic mismatch’ is important in order

to achieve balance among the unobservables in the treated and control samples (Heckman

et al. (1997), Duranton and Overman (2005)). However, since green building tend to be

‘trophy’ or landmark buildings with unique characteristics (for example, they are taller and

larger than nearby buildings), few buildings with similar observable characteristics appear

in the immediate vicinity of a green building. For this reason, the matching region was set

to buildings in the same metropolitan area.

44Amenities include: property manager on site, concierge, corner lot, courtyard or atrium, waterfront
location, or the availability of nearby public transit, restaurants, day care, retail shops, or a fitness center.
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The matching estimator from equation (7) is also implemented to estimate post-labeling

valuations:

τpol =
1

N1

∑
j∈I1

[
Yj −

∑
l∈I0

1

mjl

(Yl + µ̂0(Xj)− µ̂0(Xl))

]
, (11)

where the same set of green buildings Yj is used, but since the year of sale differs from the

pre-labeling sample, the set of control buildings l is also different.45

2.3.2 Realized benefit-cost ratios

Having obtained estimates for both τ̂prl and τ̂pol, which are both asymptotically normally

distributed (Abadie and Imbens (2006)), the following test is applied to assess whether the

two estimates are statistically different:

diff =
τ̂pol − τ̂prl√

se(τ̂pol)2 + se(τ̂prl)2
. (12)

If diff is greater than the critical value for a two-tailed Z-test at the 5% significance level

(1.96), I will take this as evidence that we cannot reject the hypothesis that the pre- and

post-labeling premiums differ from each other. Either way, the term α̂∗ = τ̂pol − τ̂prl is an

estimate of the causal effect of a green label, and represents the average benefits a building

owner can expect from obtaining a label. It is also measures the market valuation of the

expected stream of benefits accruing from a green label.

From a policy evaluation perspective, a more relevant calculation is the benefit cost ratio

of a green-labeling policy, which requires considering the present value of the net benefits

(i.e. the benefits net of the costs) of a label. To calculate the average net benefit, I will

combine α̂∗ with information on the costs of obtaining a green label, discussed below in

Section 2.4.2.

45However, close to 50% of the control buildings appear in both samples.
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2.4 Results

2.4.1 Matching

The first row of Table 9 presents the results of estimating equation 10, and the second

row presents results for equation 11. For purposes of comparison, columns (1) and (2) show

results when only geographic distance is used as a criterion to match green buildings with the

two control nearest buildings. Columns (3) and (4) show results from using the Mahalanobis

metric and all observable covariates to match green buildings with the nearest two control

buildings located in the same real estate market. Columns (1) and (3) present results of

applying a simple matching estimator without applying the bias adjustment function µ̂0.

Columns (2) and (4) show the results of implementing the bias-adjustment.

Both the geographic matching and Mahalanobis matching estimates indicate a statis-

tically insignificant pre-labeling premium, as shown in the first row, columns (2) and (4).

In contrast, the post-labeling premium is statistically significantly positive using both geo-

graphic and Mahalanobis matching, shown in columns (2) and (4) of the second row. The

premium is approximately 9% using the bias-adjusted geographic matching estimator, in

column (2), and approximately 12% using the bias-adjusted Mahalanobis matching estima-

tor, in column (4). Plugging the bias-adjusted estimates from column (4) into equation 12

results in a test statistic value of 2.45, which provides evidence to reject the null hypothesis

that the pre- and post-labeling premiums are equal, at the 1% level.

To address concerns regarding whether premiums in the pool of buildings with sales

observations both before and after a building sold may differ from those in which only one

post-labeling transaction is observed, the third row of Table 9 presents results of applying

equation 11 to estimate post-labeling premiums in the set of buildings that sold after being

labeled. As shown, 206 buildings were observed to be sold both before and after they

were labeled, whereas 966 building sale transactions were observed in the full post-labeled

sample. The bias-adjusted Mahalanobis matching premium in the full post-labeled sample

is approximately 10%, which is not statistically different from the estimate of 12% in the

restricted sample. These results suggest that, on the basis of post-labeling premiums in the
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two samples, there is no evidence of selection into the pool of buildings that sold twice,

before and after they were labeled, compared to buildings that are only observed to have

sold after they were labeled.

2.4.2 Net benefits

Given that the pre-labeling premium is statistically zero, the estimated premium for a

green building, as discussed in the previous section, is approximately 12%. Since the average

building selling price prior to receiving a label is $171, the average premium is approximately

$20 per square foot. This figure reflects the market’s valuation of the net present value of

the benefits of owning and operating a green building.

Costs incurred in the green-labeling process include capital costs of building upgrades,

process modifications, labeling fees, as well as consulting and contractor fees. The number

of studies that have assessed the financial costs of green labels is smaller than the work that

focus solely on their benefits by an order of magnitude, and the former tend to be based

on small sample sizes. Studies that do assess the financial costs of green buildings suggest

the additional outlays, for buildings of approximately the same size and height as those in

the sample, range from about $0.35-$8.50 per square foot (Kats (2003a), Kats (2003b) and

Yudelson (2007)). The labeling fees alone come to about $0.05-$0.07 per square foot.

These benefit and cost values lead to a range of net benefit estimates. On the high end, a

building owner that purchases an unlabeled building that is already energy efficient, without

any need for capital upgrades or process changes, and does not pay a premium for the energy

efficiency characteristics (a likely outcome based on the pre-labeled building results in Table

9) can expect to pay only about $0.05 per square foot to obtain a label. This reduces the

benefit estimate of $20 per square foot by a negligible amount, to $19.95 per square foot. On

the lower end, a building owner who must first invest in building upgrades and all the other

associated costs before receiving a label can expect a net benefit between $11.50-$19.50 per

square foot.
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2.5 Conclusion

This paper has proposed a simple approach to identify the causal net benefits of green

labels. Most of the popular discussion on the benefits of green labels has both ignored the

potential bias that may arise from nonrandom selection and neglected to consider the costs

incurred in the labeling process. I have implemented a matching estimator that makes use

of green building sales transactions before they received a label to identify the causal value

premium of a green label, of approximately 12%, or $20 per square foot. This estimate

represents the real estate markets’s assessment of the net present value of the benefits of

owning and operating a green building. Combining these results with estimates of the costs

associated with obtaining a green label suggests the causal net benefits of obtaining a green

label range from $11.50-$19.95 per square foot.

These estimated net benefits suggest building owners obtain returns from green labels

that are smaller than previous estimates that have focused solely on the benefits, which have

found premiums of 13%-20%, corresponding to benefits in the range of $22-$42 per square

foot (Eichholtz et al. (2010), Fuerst and McAllister (2011b), Eichholtz et al. (2013)). This

implies that while the lower bound of previous estimates of the benefits of green labels are

quite similar to the estimated premiums in this study, incorporating the costs of green labels

can reduce the estimated net benefits by up to 50%.
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Figures and Tables

Figure 1: State Adoptions

State 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
AR 
AZ* 
CA ASHRAE 1989 
CO* IECC 2000 
CT ASHRAE 1999 
DC ASHRAE 2004 
DE ASHRAE 2007 
FL 
GA 
IA 
ID 
IL 
KY 
LA 
MA 
MD 
ME 
MI 
MN 
NC 
NE 
NJ 
NM 
NV 
NY 
OH 
OR 
PA 
RI 
SC 
TX 
UT 
VA 
WA 
WI 
WV 
* denotes home-rule states 

Notes: The figure identifies state-level implementation dates for increasingly stringent versions of a
mandatory energy efficiency standard. Details of the dataset creation are described in Section 1.3
and Appendix Section A.1.
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Figure 2: Buildings Data

Panel I Panel II 

Panel III Panel IV 

Notes: Buildings are represented by blue dots. Panel I depicts the full population of CoStar office buildings.
Panel II presents observations that include either rent or sales data. Panels III and IV depict the sales and
rent data, respectively.
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Figure 3: Building Match Example

Notes: Treated and control matches located in Scottsdale, AZ. The building on the left was constructed in
2006. The building on the right was constructed in 2003. ASHRAE 1999 came into effect in September
2003.

Figure 4: Quantiles of the Year Built Distribution

Lower tertiles 
(1799-1950) 

Middle quartiles 
(1951-1987) 

Upper tertiles 
(1988-2010) 

Maryland 

Lower tertiles 
(1799-1964) 

Middle quartiles 
(1965-1986) 

Upper tertiles 
(1987-2010) 

S. California 

Notes: Each dot represents a building. The lowest tertiles of the year built distribution (the oldest
buildings) are represented by yellow dots,t he middle quartiles are represented by red dots, and the
upper tertiles (newest buildings) are represented by blue dots.
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Figure 5: Year Built Distribution (Combined Rent and Sales Samples)
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(b) Trimmed sample (mean=2005)

0
.0

2
.0

4
.0

6

D
e

n
s

it
y

1900 1920 1940 1960 1980 2000

Year Built

Untreated

(c) Full sample (mean=1982)
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Notes: Panels (a) and (c) show histograms of the year built distribution by treatment status before trimming
out the older control buildings, while panels (b) and (d) show the trimmed histograms.

48



Figure 6: Sample Green Building Distribution
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Note: The number of green office building observations in each state is also listed above.
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Figure 7: Building Match Examples

(a) Green building, MA (b) Control, pre-label, MA (c) Control, post-label, MA

(d) Green building, CO (e) Control, pre-label, CO (f) Control, post-label, CO

Notes: Each row shows a green building and its associated pre- and post-labeling matches. The top row
buildings are located in Boston, Massachusetts. The bottom row buildings are located in Denver,
Colorado.
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Table 1: Treated and Control Categories

Treated Control

ASHRAE 1989 pre-ASHRAE 1989

IECC 2000 ASHRAE 1989

ASHRAE 1999 ASHRAE 1989

ASHRAE 1999 IECC 2000

ASHRAE 2004 IECC 2000

ASHRAE 2004 ASHRAE 1999

Notes: The data pool together building matches
from multiple treated and control categories,
listed above.
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Table 2: Energy Code Summary Statistics, Rentals

code no code norm. diff
mean sd min max mean sd min max

Stories 2.24 2.22 1 57 2.18 2.97 1 70 0.02

Size (000s) 35.23 38.91 2.00 315.60 36.21 66.64 1.20 1504 -0.02

Built 2005 2.52 1999 2009 2003 2.63 1996 2008 0.55

Class A (%) 19.78 39.85 0 1 18.36 38.73 0 1 0.02

Utilities (%) 51.93 49.98 0 1 47.75 49.97 0 1 0.06

Occupancy (%) 70.80 19.62 30 100 75.55 18.79 30 100 -0.17

Amenities (%) 28.84 45.32 0 1 34.59 47.59 0 1 -0.09

Observations: 861 1,289

Avg. Distance: 0.56 miles

Notes: The table presents summary statistics for the sample of green buildings and nearby controls located
within the same real estate market and matched using the Mahalanobis metric. The normalized difference
presented in the last column measures the degree of overlap for each covariate across the treated and
control samples. It is defined as (X̄1 − X̄0)/(

√
S2

1 + S2
0), where X̄i denotes the mean of a given covariate

for each treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference of

less than 0.3 is typically considered good overlap.

52



Table 3: Energy Code Summary Statistics, Sales

code no code norm. diff
mean sd min max mean sd min max

Stories 1.72 1.28 1 16 1.49 0.91 1 13 0.15

Size (000s) 24.09 40.15 0.89 350 19.65 34.35 1.28 402 0.08

Year Sold 2007 1.58 2002 2009 2006 1.79 2002 2009 0.42

Built 2006 2.15 1999 2009 2004 2.37 1996 2008 0.61

Class A (%) 10.69 30.91 0 100 6.37 24.74 0 100 0.11

Amenities (%) 20.11 40.10 0 100 35.42 47.85 0 100 -0.25

High Vacancy 0.005 0.067 0 1 0.005 0.074 0 1 -0.01

Employment ∆ 2.10 2.05 -7.70 6.35 2.25 2.23 -7.70 6.35 -0.12

Elec. Price ($/MWh) 69.90 14.79 29.09 130.6 67.02 17.33 25.97 123.5 0.13

Nat. Gas Price ($/MMBtu) 8.02 1.69 2.52 12.72 7.66 2.10 2.52 12.72 0.13

Observations: 393 1,104

Avg. Distance: 0.50 miles

Notes: The table presents summary statistics for the sample of green buildings and nearby controls located
within the same real estate market and matched using the Mahalanobis metric. The normalized difference
presented in the last column measures the degree of overlap for each covariate across the treated and
control samples. It is defined as (X̄1 − X̄0)/(

√
S2

1 + S2
0), where X̄i denotes the mean of a given covariate

for each treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference of

less than 0.3 is typically considered good overlap.
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Table 4: Matching and Bias-Adjusted Matching Results
(1) (2) (3) (4) (5) (6) Treated Control

Dependent Variable:

Log(rent) 0.047∗∗∗ 0.047∗∗∗ 0.027∗∗ 0.027∗∗ 861 1,289
(0.014) (0.012) (0.014) (0.012)

Log(price) 0.041 0.041 0.103∗∗∗ 0.103∗∗ 0.122∗∗∗ 0.122∗∗∗ 393 1,104
(0.028) (0.031) (0.028) (0.030) (0.028) (0.030)

Utilities 0.037∗ 0.037∗ 0.010 0.010 861 1,289
(0.021) (0.019) (0.021) (0.020)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.6 miles
Mean distance, sales: 0.5 miles

Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance at
5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table 5: Heterogeneity in the Returns to Energy Efficiency

(1) (2) (3) (4) (5) (6) (7)

Code 0.047∗∗∗ 0.047∗∗∗ 0.051∗∗∗ 0.051∗∗∗ 0.026∗ -0.017 -0.017
(0.010) (0.014) (0.010) (0.013) (0.015) (0.032) (0.043)

Utilities∗Code 0.055∗∗ 0.057∗∗ 0.057∗
(0.024) (0.024) (0.031)

Utilities -0.118∗∗∗ -0.120∗∗∗ -0.120∗∗∗
(0.021) (0.021) (0.026)

Size (000s) 0.037∗ 0.037 0.036∗ 0.032 0.032
(0.021) (0.023) (0.021) (0.021) (0.021)

Stories 0.010∗∗ 0.010∗∗ 0.009∗∗ 0.008∗∗ 0.008∗
(0.004) (0.004) (0.004) (0.004) (0.004)

Class A 0.098∗∗∗ 0.098∗∗∗ 0.088∗∗∗ 0.087∗∗∗ 0.087∗∗
(0.021) (0.027) (0.021) (0.021) (0.025)

Occupancy 0.092∗∗ 0.092 0.087 0.101∗ 0.101
(0.038) (0.047) (0.038) (0.039) (0.049)

Amenities 0.017 0.017 0.013 0.016 0.016
(0.018) (0.021) (0.017) (0.018) (0.022)

Constant 2.96∗∗∗ 2.96∗∗∗ 2.39∗∗∗ 2.39∗∗∗ 2.55∗∗∗ 2.73∗∗∗ 2.73∗∗∗
(0.184) (0.007) (0.328) (0.336) (0.323) (0.329) (0.331)

R2 0.70 0.70 0.72 0.72 0.73 0.73 0.73
adj. R2 0.50 0.50 0.53 0.53 0.54 0.54 0.54
Fixed effects yes yes yes yes yes yes yes
Robust s.e. yes no yes no yes yes no
Clustered s.e. no yes no yes no no yes
Year built dummies no no no no no yes yes

Observations: 2,150 2,150 2,150 2,150 2,150 2,150 2,150

Mean distance: 0.6 miles
Maximum distance: 2.0 miles
Notes: Standard errors are in parentheses. ∗ denotes significance at 10% level, ∗∗ denotes significance at
5% level, and ∗∗∗ denotes significance at 1% level. Clustered s.e. denotes clustering at the market level.
Each regression includes 850 clusters made up of a treated building and its nearby controls.
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Table 6: Falsification Test

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.018 0.018∗ -0.028∗ -0.028∗∗∗ 870 1,346
(0.014) (0.010) (0.014) (0.010)

Log(price) -0.177∗∗∗ -0.177∗ -0.007 -0.007 0.076 0.076 413 887
(0.053) (0.105) (0.053) (0.104) (0.053) (0.104)

Utilities 0.037∗ 0.037∗ 0.024 0.024 870 1,346
(0.021) (0.019) (0.021) (0.019)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.020∗ 0.022∗ 0.022 0.009 0.007 0.007
(0.012) (0.011) (0.013) (0.015) (0.031) (0.035)

Utilities∗Code 0.035 0.031 0.031
(0.025) (0.025) (0.028)

Utilities -0.151∗∗∗ -0.151∗∗∗ -0.151∗∗∗
(0.023) (0.022) (0.027)

R2 0.64 0.67 0.67 0.69 0.69 0.69
adj. R2 0.41 0.45 0.45 0.48 0.48 0.48
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 2,216 2,216 2,216 2,216 2,216 2,216
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table 7: Summary Statistics, Pre-Label Sample

green control norm. diff
mean sd min max mean sd min max

Stories 14.7 11.5 2 62 11.1 9.4 1 52 0.24

Size (000s) 322.2 270.1 11.4 2,002 226.2 262.3 1.03 2,550 0.25

Year Sold 2001 3.5 1991 2013 2002 4.1 1991 2009 -0.19

Built 1982 16.9 1912 2004 1979 19.6 1900 2006 0.12

Class A (%) 82.0 38.4 0 100 74.0 43.9 0 100 0.14

Amenities (%) 97.1 16.8 0 100 97.3 16.1 0 100 -0.01

Observations: 206 412

Notes: The table presents summary statistics for the sample of green buildings and nearby controls located
within the same real estate market and matched using the Mahalanobis metric. The normalized difference
presented in the last column measures the degree of overlap for each covariate across the treated and
control samples. It is defined as (X̄1 − X̄0)/(

√
S2

1 + S2
0), where X̄i denotes the mean of a given covariate

for each treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference of

less than 0.3 is typically considered good overlap.
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Table 8: Summary Statistics, Post-Label Sample

green control norm. diff
mean sd min max mean sd min max

Stories 14.7 11.5 2 62 11.1 9.1 1 49 0.25

Size (000s) 322.2 270.1 11.4 2,002 229.5 241.2 1.0 2,438 0.26

Year Sold 2007 2.2 2000 2013 2006 2.2 1997 2009 0.32

Built 1982 16.9 1912 2004 1980 20.2 1900 2009 0.08

Class A (%) 82.0 38.4 0 100 74.0 43.9 0 100 0.14

Amenities (%) 97.1 16.8 0 100 95.9 19.9 0 100 0.05

Observations: 206 412

Notes: The table presents summary statistics for the sample of green buildings and nearby controls located
within the same real estate market and matched using the Mahalanobis metric. The normalized difference
presented in the last column measures the degree of overlap for each covariate across the treated and
control samples. It is defined as (X̄1 − X̄0)/(

√
S2

1 + S2
0), where X̄i denotes the mean of a given covariate

for each treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference of

less than 0.3 is typically considered good overlap.
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Table 9: Matching and Bias-Adjusted Matching Results
Nearest two control neighbors located near a green building

(1) (2) (3) (4) Treated Control

Dependent Variable:

Log(price) -0.006 0.040 -0.104∗∗ -0.051 206 412
pre-label (0.040) (0.040) (0.047) (0.047)

Log(price) 0.507∗∗∗ 0.091∗∗ 0.141∗∗∗ 0.119∗∗ 206 412
post-label (0.039) (0.039) (0.050) (0.050)

Geographic Distance yes yes no no
Mahalanobis Distance no no yes yes
Bias-Adjusted no yes no yes

Mean distance, geo. match: 0.4 mi
Mean distance, maha. match: 4.2 mi

Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance at
5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Appendix

A.1 Further details of the dataset creation

In order to obtain code implementation information going back far enough in time to

track adoption dates for ASHRAE-1989, data from a variety of sources were utilized, in-

cluding an online database maintained by the Building Codes Assistance Project (hereafter

BCAP) (BCAP (2010)); archives of BCAP’s bi-monthly newsletters going back to 1997, ob-

tained by e-mail from BCAP staff; the Department of Energy’s online energy codes database

(Department of Energy (2010)); and one report from the Department of Housing and Urban

Development (HUD (1997)).46

Renovated buildings were dropped from the analysis: although certain types of building

renovations are subject to an energy code, and CoStar identifies buildings that have been

renovated, it is not possible to identify whether the renovation undertaken in a particular

building triggered energy code requirements.47

Arizona and Colorado are unique states with respect to energy code adoptions. Be-

cause these are ‘Home-Rule’ states, state-level energy standard legislation cannot be legally

enforced in individual municipalities and/or counties. However, many jurisdictions in these

states have independently adopted energy codes; I have tracked jurisdictional-level adoptions

in these states by going through municipal registers (many of which are available online at

www.municode.com) and emailing jurisdictional building officials.48

Some states have adopted their own codes, though in several of these cases the state-
46ASHRAE 1989 standard adoptions were more difficult to pinpoint, as in some cases different sources cited

inconsistent dates. More accurate record-keeping for states’ adoptions began improving in the mid-1990s.
As a result, I only include ASHRAE 1989 adoptions if all the data sources had matching implementation
dates. I was not able to find adoption dates for standards prior to ASHRAE 1989. However, as noted in
Section 1.1.1, many states only began adopting increasingly stringent energy standards in the mid-1990s as
a result of the 1992 EPAct.

47For example, the most recently adopted ASHRAE standard is applicable to renovations if more than
50% of the lighting fixtures are replaced, but not if the roof and floor are altered where no new cavities are
created, if storm windows are installed, or if existing windows are replaced over an area less than 25% of the
total fenestration area.

48One issue that may arise with respect to home rule states is the possibility that treatment status may
be correlated with changes in unobserved local regulations, which may bias the estimates. To address any
concerns from this possibility, I have also conducted estimation without buildings from home-rule states,
with no substantive change in the results.
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developed code has adopted one of the ASHRAE standards by reference and made only

minor modifications to the original standard. In these states I have relied on estimates of

the energy use intensity (in kBTU/s.f./yr.) of each code update and matched them to the

ASHRAE or IECC standard version with similar energy saving estimates.

A.2 Varying the Distance Between Buildings

Tables A1-A12 present summary statistics matching results where the maximum allowable

distance between buildings steadily decreases in 0.25 mile increments, starting with 1.75

miles and ending with 1.0 miles. Summary statistics tables for both the rent and sales

samples are also included that indicate the covariate balance is almost identical to the 2.0

mile samples. The results closely resemble those in the main paper, where the maximum

distance is 2 miles, though some attenuation in the estimates can be observed as the sample

size decreases.

A.3 Varying the Distance Between Buildings: Falsification Test

Tables A13-A16 show results for the falsification test where the maximum allowable distance

between buildings steadily decreases in 0.25 mile increments, starting with 1.75 miles and

ending with 1.0 miles. Covariate balance in the falsified samples is closely resemble the

original sample balance. The log rent results for each maximum distance-based sample

closely resemble the results in the main paper. The clustered standard errors, in column (4),

fall by almost 50% in the samples with a maximum distance of less than 1.75 miles. This

suggests that as the sample size falls there is significant negative intracluster correlation.49

The bias-adjusted sales results accounting for the impact of energy prices are similar to

the main results, though the point estimates vary from being statistically insignificant and

negative, to statistically insignificant and positive, depending on the sample.
49While this may be indicative of misspecification of the chosen cluster size, clustering at smaller and

larger levels of the sample does not alleviate the problem. This suggests the results without clustering may
be the most reliable.
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A.4 Assessing the Plausibility of SUTVA

My identification strategy assumes that constructing a building under an energy code does

not affect potential outcomes in other buildings (also known as the stable unit treatment

value, or SUTVA, assumption). One channel through which SUTVA violations could occur

is if building managers in control buildings undertake energy-saving behavioral responses as

a reaction to the construction of more energy efficient buildings.

While I cannot directly observe such behavioral responses in the control buildings in my

sample, in the rental data I observe the company responsible for building-level real estate

management services. In recent years, several of the largest (as measured by market capital-

ization) integrated property management and leasing companies have begun to incorporate

energy use management as a core area of expertise.50 If control building owners in my

sample have undertaken behavioral responses to the presence of energy efficient buildings

constructed under an energy code, it would be plausible to expect they may hire one of

these firms. Table A17 presents the results of applying the bias-adjusted matching estimator

where the dependent variable is whether or not a major real estate services firm is responsible

for property management. The results are highly insignificant, which is consistent with the

identifying assumptions.

A.5 Manipulating Year of Construction

One concern is that since adoption and effective dates for energy codes are publicly known,

building developers may try to “game" their building’s construction date by rushing to obtain

their building permits before the new energy code comes into effect, which would result in

a discontinuity in the year built distribution whereby fewer buildings may end up being

constructed in the year or two following a code effective date.

Figure A1 depicts the distribution of building construction dates in the full sample of

sales and rent observations, two years before and two years after a code came into effect.

Close to 25% of buildings were constructed in each of the four years, and there is less than a
50See, for example, http://www.cbre.us/services/sustainability/Pages/home.aspx.

62



one percent difference between the share of buildings constructed just before and just after

a code came into effect, which is not suggestive of strategic energy code avoidance behavior.

A.6 Present Value of the Energy Savings

As noted in Section ??, a 10% reduction in estimated building-level energy savings suggests

annual energy cost savings of approximately $0.34/sq.ft./yr in 2009. This represents about

1.9% of sample average rent and 1.8% of average building-level net operating income in the

U.S. These estimates of the annual percent savings accruing to the occupants and owners of

a building constructed under a more stringent energy code can be compared to the estimated

rent and price premiums (5.7% and 10.3%, respectively) to assess whether the energy sav-

ings are fully reflected in observed office market pricing decisions. Since the savings accrue

over the length of a tenancy contract or over the expected length of ownership, a simple

present value calculation, given plausible assumptions for the growth of utility costs, the dis-

count rate, and expected ownership or rental contract length, suggests that rent and selling

price premiums of approximately 5% and 10% correspond to complete capitalization of the

estimated energy savings.

Consider the following present value specification:

PV = S

[(
1 + g

1 + δ

)
+

(
1 + g

1 + δ

)2

+ ....+

(
1 + g

1 + δ

)L
]
, (1)

where S represents the value of energy cost savings (in this case, approximately $0.34/sq.ft./yr),

g represents the annualized growth of utility costs, δ is the discount rate (assumed constant),

and L is the contract length or length of ownership. The specification assumes the savings

to a more energy efficient building grow in line with the average rate of increase in the price

of energy.

In the rental market, the discount rate for energy savings can be approximated by the

capitalization rate for commercial buildings, since the volatility of rental income is highly

correlated with the volatility of energy prices.51 Capitalization rates in the U.S. were rising
51The capitalization rate is the ratio between net operating income and the market value of a building.
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throughout the 2008-2009 recession compared to previous years, to an average of approxi-

mately 7.5% by the end 2009 (Chervachidze and Wheaton (2010)). With a discount rate

of 7.5%, and assuming a three year tenancy contract and a 2% expected annual growth in

energy prices, the present value of the utility cost savings total approximately 5% of average

sample rent.52

The market for purchasing commercial property is increasingly composed of real-estate

investment trusts and mutual funds, which are known to have high annual portfolio turnover

rates (for example, Carhart (1997) finds annual turnover rates of 60-90%). Therefore, while

buildings are long-lived assets the ownership length of commercial building assets is likely to

be considerably lower, particularly for buildings sold in the time period under consideration,

2002-2009. The estimated sales price premium is consistent with complete capitalization

of the energy savings for both a relatively short expected ownership length of 7 years and

a discount rate corresponding to 7.5%, or a longer ownership length of 10 years with a

discount rate of 12%, corresponding to the average 10-year annualized return of the S&P

500 in 2006, both calculated assuming a 2% increase in energy costs. Of course, a number of

other plausible combinations of these variables can also produce savings estimates consistent

with complete capitalization.53

52Tenancy contracts typically span over multiple years. Historical commercial sector electricity retail prices
over the past 10 years (as compiled by the Energy Information Administration, www.eia.gov) have risen at
a rate of about 2% per year; 5-year forward market wholesale electricity prices at the time the rent listings
were observed suggested expected increases over the short-term of about 1-2% per year.

53The former calculation implies the present value of the savings represent just over 10.8% of average net
operating income; the latter calculation implies the present value of the savings represents approximately
10.5% of average net operating income.
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Figure A1: Buildings constructed pre- and post- code
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Table A1: Energy Code Summary Statistics, Rentals, 1.75 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 2.24 2.23 1 57 2.17 2.99 1 70 0.02

Size (000s) 35.28 38.93 2.00 315.60 36.39 67.49 1.20 1504 -0.05

Built 2005 2.53 1999 2009 2003 2.64 1996 2008 0.55

Class A (%) 19.81 39.87 0 100 18.37 38.74 0 100 0.03

Utilities (%) 51.04 50.01 0 100 48.24 49.99 0 100 0.04

Occupancy (%) 70.88 19.79 30 100 75.71 18.83 30 100 -0.18

Amenities (%) 29.39 45.57 0 100 35.06 47.74 0 100 -0.09

Observations: 830 1,252

Avg. Distance: 0.53 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A2: Energy Code Summary Statistics, Sales, 1.75 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 1.73 1.30 1 16 1.49 0.89 1 13 0.15

Size (000s) 24.35 40.78 0.89 350 19.27 33.75 1.28 402 0.10

Year Sold 2007 1.59 2002 2009 2006 1.78 2002 2009 0.42

Built 2006 2.17 1999 2009 2004 2.39 1996 2008 0.60

Class A (%) 10.24 30.34 0 100 5.73 23.26 0 100 0.12

Amenities (%) 19.92 39.96 0 100 34.49 47.56 0 100 -0.23

High Vacancy 0.005 0.068 0 1 0.006 0.075 0 1 -0.01

Employment ∆ 2.08 2.06 -7.70 6.35 2.45 2.22 -7.70 6.35 -0.12

Elec. Price ($/MWh) 69.90 14.95 29.09 130.6 66.92 17.25 25.97 123.5 0.13

Nat. Gas Price ($/MMBtu) 8.02 1.71 2.52 12.72 7.65 2.10 2.52 12.72 0.14

Observations: 373 1,064

Avg. Distance: 0.47 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A3: Matching and Heterogeneity by Utility Contract, 1.75 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.048∗∗∗ 0.048∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 830 1,252
(0.014) (0.012) (0.014) (0.012)

Log(price) 0.040 0.040 0.106∗∗∗ 0.106∗∗ 0.123∗∗∗ 0.123∗∗∗ 373 1,064
(0.028) (0.031) (0.028) (0.031) (0.025) (0.031)

Utilities 0.035 0.035∗ 0.006 0.006 830 1,252
(0.021) (0.020) (0.021) (0.020)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.048∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 0.026∗ -0.020 -0.020
(0.011) (0.010) (0.014) (0.015) (0.033) (0.043)

Utilities∗Code 0.056∗∗ 0.060∗∗ 0.060∗
(0.024) (0.025) (0.032)

Utilities -0.113∗∗∗ -0.116∗∗∗ -0.116∗∗∗
(0.021) (0.022) (0.026)

R2 0.70 0.72 0.72 0.73 0.73 0.73
adj. R2 0.50 0.53 0.53 0.54 0.54 0.54
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 2,082 2,082 2,082 2,082 2,082 2,082
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A4: Energy Code Summary Statistics, Rentals, 1.5 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 2.25 2.25 1 57 2.17 3.05 1 70 0.02

Size (000s) 35.67 38.76 2.29 315.60 36.64 68.66 1.20 1504 -0.01

Built 2005 2.52 1999 2009 2003 2.63 1996 2008 0.55

Class A (%) 20.15 40.13 0 100 18.40 38.77 0 100 0.03

Utilities (%) 50.87 50.01 0 100 47.96 49.98 0 100 0.04

Occupancy (%) 70.96 19.65 30 100 75.68 18.88 30 100 -0.17

Amenities (%) 28.98 45.38 0 100 35.80 47.96 0 100 -0.10

Observations: 792 1,201

Avg. Distance: 0.48 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A5: Energy Code Summary Statistics, Sales, 1.5 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 1.73 1.30 1 16 1.48 0.90 1 13 0.16

Size (000s) 24.13 40.57 0.89 350 18.98 32.54 1.28 402 0.10

Year Sold 2007 1.59 2002 2009 2006 1.78 2002 2009 0.42

Built 2006 2.16 1999 2009 2004 2.37 1996 2008 0.61

Class A (%) 10.02 30.04 0 100 5.73 23.24 0 100 0.11

Amenities (%) 19.85 39.90 0 100 34.64 47.60 0 100 -0.24

High Vacancy 0.005 0.069 0 1 0.006 0.075 0 1 -0.01

Employment ∆ 2.10 2.06 -7.70 6.35 2.47 2.21 -7.70 6.35 -0.12

Elec. Price ($/MWh) 69.97 14.89 29.09 130.6 66.98 17.23 25.97 123.5 0.13

Nat. Gas Price ($/MMBtu) 8.03 1.71 2.52 12.72 7.66 2.10 2.52 12.72 0.14

Observations: 363 1,048

Avg. Distance: 0.46 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A6: Matching and Heterogeneity by Utility Contract, 1.5 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.041∗∗∗ 0.041∗∗∗ 0.030∗∗ 0.030∗∗ 792 1,201
(0.014) (0.012) (0.014) (0.012)

Log(price) 0.031 0.031 0.109∗∗ 0.109∗∗ 0.130∗∗∗ 0.130∗∗∗ 363 1,048
(0.028) (0.033) (0.028) (0.033) (0.028) (0.033)

Utilities 0.040∗ 0.040∗ -0.016 -0.016 792 1,201
(0.022) (0.021) (0.022) (0.021)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.041∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.027∗ -0.003 -0.003
(0.011) (0.010) (0.014) (0.015) (0.033) (0.044)

Utilities∗Code 0.042∗ 0.045∗ 0.045
(0.024) (0.024) (0.031)

Utilities -0.113∗∗∗ -0.116∗∗∗ -0.116∗∗∗
(0.021) (0.022) (0.026)

R2 0.70 0.72 0.72 0.73 0.73 0.73
adj. R2 0.50 0.53 0.53 0.54 0.54 0.54
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 1,993 1,993 1,993 1,993 1,993 1,993
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A7: Energy Code Summary Statistics, Rentals, 1.25 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 2.26 2.30 1 57 2.17 3.10 1 70 0.02

Size (000s) 36.21 39.80 2.29 315.60 36.89 69.62 1.20 1504 -0.01

Built 2005 2.53 1999 2009 2003 2.64 1996 2008 0.55

Class A (%) 20.44 40.34 0 100 18.60 38.93 0 100 0.03

Utilities (%) 50.92 50.01 0 100 47.86 49.98 0 100 0.04

Occupancy (%) 71.02 19.62 30 100 75.51 18.97 30 100 -0.17

Amenities (%) 28.78 45.75 0 100 35.98 48.02 0 100 -0.11

Observations: 749 1,145

Avg. Distance: 0.43 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A8: Energy Code Summary Statistics, Sales, 1.25 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 1.74 1.32 1 16 1.49 0.90 1 13 0.16

Size (000s) 24.58 41.09 0.89 350 19.09 32.71 1.28 402 0.10

Year Sold 2007 1.60 2002 2009 2006 1.79 2002 2009 0.42

Built 2006 2.16 1999 2009 2004 2.37 1996 2008 0.60

Class A (%) 10.09 30.13 0 100 5.64 23.08 0 100 0.12

Amenities (%) 20.47 40.37 0 100 35.41 47.85 0 100 -0.24

High Vacancy 0.005 0.070 0 1 0.006 0.077 0 1 -0.01

Employment ∆ 2.11 2.08 -7.70 6.35 2.49 2.21 -7.70 6.35 -0.13

Elec. Price ($/MWh) 69.87 14.94 29.09 130.6 66.82 17.39 25.97 123.5 0.13

Nat. Gas Price ($/MMBtu) 8.02 1.72 2.52 12.72 7.64 2.12 2.52 12.72 0.14

Observations: 344 1,011

Avg. Distance: 0.44 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A9: Matching and Heterogeneity by Utility Contract, 1.25 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.038∗∗∗ 0.038∗∗∗ 0.026∗ 0.026∗∗ 749 1,145
(0.014) (0.012) (0.014) (0.012)

Log(price) 0.027 0.027 0.041 0.041 0.067∗∗ 0.067∗∗ 344 1,011
(0.027) (0.032) (0.027) (0.032) (0.027) (0.032)

Utilities 0.044∗∗ 0.044∗∗ 0.001 0.001 749 1,145
(0.022) (0.019) (0.022) (0.019)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.039∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.024∗ -0.019 -0.019
(0.011) (0.011) (0.014) (0.016) (0.033) (0.044)

Utilities∗Code 0.042∗ 0.043∗ 0.043
(0.024) (0.024) (0.032)

Utilities -0.089∗∗∗ -0.091∗∗∗ -0.091∗∗∗
(0.022) (0.023) (0.027)

R2 0.71 0.73 0.73 0.74 0.74 0.74
adj. R2 0.53 0.55 0.55 0.56 0.56 0.56
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 1,894 1,894 1,894 1,894 1,894 1,894
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A10: Energy Code Summary Statistics, Rentals, 1.0 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 2.28 2.37 1 57 2.20 3.22 1 70 0.02

Size (000s) 36.58 39.99 2.29 315.60 37.73 72.08 1.20 1504 -0.01

Built 2005 2.54 1999 2009 2003 2.65 1996 2008 0.55

Class A (%) 21.00 40.75 0 100 19.21 39.41 0 100 0.03

Utilities (%) 50.23 50.02 0 100 47.11 49.94 0 100 0.04

Occupancy (%) 71.08 19.61 30 100 75.48 18.93 30 100 -0.16

Amenities (%) 29.80 45.76 0 100 35.57 47.89 0 100 -0.09

Observations: 687 1,057

Avg. Distance: 0.37 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A11: Energy Code Summary Statistics, Sales, 1.0 miles

code no code norm. diff
mean sd min max mean sd min max

Stories 1.75 1.33 1 16 1.48 0.90 1 13 0.17

Size (000s) 24.67 41.46 0.89 350 18.87 32.72 1.28 402 0.11

Year Sold 2007 1.61 2002 2009 2006 1.79 2002 2009 0.42

Built 2006 2.15 1999 2009 2004 2.35 1996 2008 0.61

Class A (%) 10.13 30.19 0 100 5.27 22.35 0 100 0.13

Amenities (%) 20.47 40.37 0 100 34.95 47.71 0 100 -0.23

High Vacancy 0.005 0.071 0 1 0.004 0.064 0 1 -0.01

Employment ∆ 2.11 2.07 -7.70 6.35 2.49 2.21 -7.70 6.35 -0.13

Elec. Price ($/MWh) 69.96 14.96 29.09 130.6 66.94 17.39 25.97 123.5 0.13

Nat. Gas Price ($/MMBtu) 8.02 1.72 2.52 12.72 7.64 2.12 2.52 12.72 0.14

Observations: 329 987

Avg. Distance: 0.42 miles
Notes: The normalized difference measures the degree of overlap for each covariate across the treated and
control samples. It is defined as X̄1−X̄0√

S2
1+S2

0

, where X̄i denotes the mean of a given covariate for each

treatment status i = 0, 1, and S2
i denotes the sample variance of Xi. A normalized difference

of less than 0.3 is typically considered good overlap.
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Table A12: Matching and Heterogeneity by Utility Contract, 1.0 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.031∗∗∗ 0.031∗∗∗ 0.028∗∗ 0.028∗∗∗ 687 1,057
(0.014) (0.010) (0.014) (0.010)

Log(price) 0.020 0.020 0.033 0.033 0.061∗∗ 0.061∗ 329 987
(0.030) (0.036) (0.030) (0.036) (0.030) (0.036)

Utilities 0.043∗ 0.043∗∗ -0.009 -0.009 687 1,057
(0.023) (0.020) (0.023) (0.019)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.033∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.017 -0.057 -0.057
(0.010) (0.011) (0.014) (0.015) (0.031) (0.040)

Utilities∗Code 0.044∗ 0.046∗ 0.046
(0.024) (0.025) (0.032)

Utilities -0.093∗∗∗ -0.099∗∗∗ -0.099∗∗∗
(0.023) (0.023) (0.027)

R2 0.73 0.73 0.75 0.75 0.76 0.76
adj. R2 0.55 0.58 0.58 0.59 0.59 0.59
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 1,744 1,744 1,744 1,744 1,744 1,744
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A13: Falsification Test, 1.75 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.020 0.020∗∗ -0.029∗∗ -0.029∗∗∗ 833 1,292
(0.014) (0.009) (0.014) (0.009)

Log(price) -0.164∗∗∗ -0.164 -0.306∗∗∗ -0.306∗∗∗ -0.051 -0.051 401 873
(0.054) (0.101) (0.054) (0.097) (0.054) (0.010)

Utilities 0.035∗ 0.037∗ 0.013 0.013 833 1,292
(0.021) (0.020) (0.021) (0.020)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.023∗ 0.024∗∗ 0.024∗ 0.011 0.009 0.009
(0.012) (0.012) (0.014) (0.016) (0.032) (0.036)

Utilities∗Code 0.034 0.029 0.029
(0.026) (0.026) (0.029)

Utilities -0.149∗∗∗ -0.148∗∗∗ -0.148∗∗∗
(0.023) (0.023) (0.028)

R2 0.64 0.67 0.67 0.68 0.68 0.68
adj. R2 0.41 0.45 0.45 0.47 0.47 0.47
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 2,125 2,125 2,125 2,125 2,125 2,125
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A14: Falsification Test, 1.5 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.018 0.018∗∗∗ -0.033∗∗ -0.033∗∗∗ 794 1,244
(0.015) (0.007) (0.015) (0.007)

Log(price) -0.175∗∗∗ -0.175∗∗∗ 0.001 0.001 0.090∗ 0.090 401 873
(0.054) (0.075) (0.054) (0.075) (0.054) (0.072)

Utilities 0.040∗ 0.040∗ 0.024 0.024 794 1,244
(0.022) (0.020) (0.022) (0.020)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.5 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.021∗ 0.023∗ 0.023 0.011 0.018 0.018
(0.012) (0.012) (0.014) (0.016) (0.032) (0.036)

Utilities∗Code 0.034 0.029 0.029
(0.027) (0.026) (0.029)

Utilities -0.147∗∗∗ -0.146∗∗∗ -0.146∗∗∗
(0.024) (0.023) (0.029)

R2 0.64 0.67 0.67 0.68 0.69 0.69
adj. R2 0.42 0.46 0.46 0.48 0.48 0.48
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 2,038 2,038 2,038 2,038 2,038 2,038
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A15: Falsification Test, 1.25 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.019 0.019∗∗∗ -0.029∗ -0.029∗∗∗ 731 1,148
(0.016) (0.005) (0.016) (0.005)

Log(price) -0.096∗ -0.096 -0.253∗∗∗ -0.253∗∗∗ 0.026 0.026 335 733
(0.054) (0.083) (0.054) (0.080) (0.054) (0.079)

Utilities 0.047∗∗ 0.047∗ 0.029 0.029 731 1,148
(0.023) (0.022) (0.023) (0.022)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.4 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.022∗ 0.022∗ 0.022 0.012 0.026 0.026
(0.013) (0.013) (0.014) (0.016) (0.034) (0.037)

Utilities∗Code 0.033 0.028 0.028
(0.028) (0.028) (0.031)

Utilities -0.145∗∗∗ -0.143∗∗∗ -0.143∗∗∗
(0.025) (0.025) (0.030)

R2 0.64 0.67 0.67 0.68 0.68 0.68
adj. R2 0.41 0.45 0.45 0.47 0.47 0.47
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 1,879 1,879 1,879 1,879 1,879 1,879
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.

81



Table A16: Falsification Test, 1.0 miles

(1) (2) (3) (4) (5) (6) Treated Control

Panel I: Matching

Log(rent) 0.011 0.011 -0.050∗∗∗ -0.050∗∗∗ 667 1,053
(0.016) (0.008) (0.016) (0.008)

Log(price) -0.090 -0.090 -0.191∗∗∗ -0.191∗∗∗ 0.089 0.089 298 656
(0.058) (0.080) (0.058) (0.080) (0.058) (0.086)

Utilities 0.037 0.037 -0.015 -0.015 667 1,053
(0.024) (0.023) (0.024) (0.023)

Bias-Adjusted no no yes yes yes yes
Energy Prices no no no no yes yes
Robust s.e. yes no yes no yes no
Clustered s.e. no yes no yes no yes

Mean distance, rent: 0.3 miles
Mean distance, sales: 0.5 miles

(1) (2) (3) (4) (5) (6)

Panel II: Heterogeneity by Utility Contract

Code 0.014∗ 0.016∗ 0.016 0.004 0.004 0.004
(0.013) (0.013) (0.015) (0.017) (0.039) (0.042)

Utilities∗Code 0.033 0.029 0.029
(0.029) (0.029) (0.032)

Utilities -0.150∗∗∗ -0.148∗∗∗ -0.143∗∗∗
(0.026) (0.026) (0.031)

R2 0.64 0.66 0.66 0.68 0.68 0.68
adj. R2 0.42 0.45 0.45 0.47 0.47 0.47
Fixed effects yes yes yes yes yes yes
Covariates no yes yes yes yes yes
Year built dummies no no no no yes yes
Robust s.e. yes yes no yes yes no
Clustered s.e. no no yes no no yes

Observations: 1,720 1,720 1,720 1,720 1,720 1,720
Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates significance
at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market level.
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Table A17: An Indirect SUTVA Test

(1) (2) Treated Control

Management Company 0.004 0.004 850 1,269
(0.019) (0.022)

Bias-Adjusted yes yes
Clustered s.e. no yes
Robust s.e. yes no

Notes: Standard errors are in parentheses. ∗ indicates significance at 10% level, ∗∗ indicates
significance at 5% level, and ∗∗∗ indicates significance at 1% level. Clustering is at the market
level.
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