
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Multi-Modal Planning for Humanlike Motion Synthesis using Motion Capture

Permalink
https://escholarship.org/uc/item/6n27t9h1

Author
Mahmudi, Mentar

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6n27t9h1
https://escholarship.org
http://www.cdlib.org/

University of California, Merced

Multi-Modal Planning for Humanlike Motion
Synthesis using Motion Capture

A dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

in

Electrical Engineering & Computer Science

by

Mentar Mahmudi

Committee in charge:

Professor Marcelo Kallmann, Committee Chair
Professor Stefano Carpin
Professor David Noelle

2013

c© Copyright by
Mentar Mahmudi

2013

Abstract of the Dissertation

Multi-Modal Planning for Humanlike Motion
Synthesis using Motion Capture

by

Mentar Mahmudi
Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2013
Professor Marcelo Kallmann, Chair

Planning the motions of a virtual character with high quality and control is

a difficult challenge. Striking a balance between these two competing properties

makes the problem particularly complex. While data-driven approaches produce

high quality results due to the inherent realism of human motion capture data,

planning algorithms are able to solve general continuous problems with a high

degree of control. This dissertation addresses this overall problem with new tech-

niques that combine the two approaches.

Three main contributions are proposed. First, a simple and efficient motion

capture segmentation mechanism is proposed based on geometric features that

introduces semantic information for organizing a motion capture database into

a motion graph. The obtained feature-based motion graph has less nodes and

increased connectivity, which leads to improved searches in speed and coverage

when compared to the standard approach. In addition, feature-based motion

graphs enable a novel inverse branch kinematic deformation technique to be exe-

cuted efficiently, allowing solution branches to be deformed towards precise goals

without degrading the quality of the results.

Second, in order to address speed of computation, precomputed motion maps

are introduced for the interactive search and synthesis of locomotion sequences

from unstructured feature-based motion graphs. Unstructured graphs can be suc-

ii

cessfully handled by relying on multiple maps and a search mechanism with back-

tracking information, which eliminates the need of manually creating fully con-

nected move graphs. Precomputed motion maps can simultaneously search and

execute motions in environments with many obstacles at interactive rates.

Finally, a multi-modal data-driven framework is proposed for task-oriented

human-like motion planning, which combines data-driven methods with parame-

terized motion skills in order to achieve human motions that are realistic and that

have a high degree of controllability. The multi-modal planner relies on feature-

based motion graphs for achieving a high-quality locomotion skill and integrates

generic, task-specific data-based or algorithmic motion primitive skills for precise

upper-body manipulation and action planning. The approach includes a multi-

modal search method where primitive motion skills compete for contributing to

the final solution.

As a result, the overall proposed framework provides a high degree of control

and, at the same time, retains the realism and human-likeness of motion capture

data. Several examples are presented for synthesizing complex motions such as

walking through doors, relocating books on shelves, etc.

iii

The dissertation of Mentar Mahmudi is approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

Professor David Noelle

Professor Stefano Carpin

Professor Marcelo Kallmann, Committee Chair

University of California, Merced

2013

iv

To my parents,
Nevin and Mahmudnedim

v

Table of Contents

1 Introduction . 3

1.1 Our Approach . 6

1.2 Definitions . 7

1.3 Quality of Motions . 8

1.4 Problem Statement . 9

1.5 Dissertation Overview . 10

1.5.1 Feature-Based Motion Graphs 10

1.5.2 Precomputed Motion Maps 13

1.5.3 Multi-Modal Skill Planner 14

2 Literature Review . 17

2.1 Sampling-Based Planning . 17

2.2 Physics-Based Planning . 20

2.3 Data-Driven Planning . 21

2.3.1 Blending . 21

2.3.2 Motion Graphs . 22

2.3.3 Precomputation . 24

2.3.4 Planning . 25

2.3.5 Deformation . 26

2.4 Multi-Modal Planning . 27

3 Feature-Based Motion Graphs . 29

3.1 Introduction . 29

3.2 Related Work . 31

3.3 Standard Motion Graphs . 32

3.4 Feature-Based Motion Graphs . 34

3.5 Analyzing Feature-Based Graphs 38

3.6 Locomotion Synthesis . 41

3.7 Triangulation-Based Search . 44

3.8 Inverse Branch Kinematics . 54

3.9 Discussion . 61

3.10 Conclusion . 64

vi

4 Precomputed Motion Maps . 65

4.1 Introduction . 65

4.2 Related Work . 67

4.3 Finding Paths with Clearance . 69

4.4 Precomputation of Motion Maps 69

4.5 Path Following . 75

4.6 Concurrent Motion Synthesis . 82

4.7 Results and Discussion . 85

4.8 Conclusion . 91

5 Multi-Modal Data-Driven Motion Planning 92

5.1 Introduction . 92

5.2 Related Work . 94

5.3 Multi-Modal Planner . 96

5.4 Locomotion and Manipulation Skills 98

5.4.1 Locomotion Skill . 98

5.4.2 Reach and Release Skills 98

5.4.3 Transfer Skill . 99

5.4.4 Action Skill . 99

5.5 Multi-Modal Search . 99

5.5.1 Deformation . 101

5.5.2 Collision Avoidance . 104

5.5.3 Coordination . 104

5.6 Results . 104

5.6.1 Door Opening . 105

5.6.2 Book Picking . 111

5.6.3 Water Pouring . 114

5.7 Conclusion . 118

6 Conclusion . 121

6.1 Limitations . 123

6.2 Future Work . 124

References . 126

vii

List of Figures

1.1 The skeleton on the left and its geometry on the right. 8

1.2 A human character inside a virtual environment where everyday
tasks are executed. 9

1.3 A sequence of basketball postures applied to a skeleton. 10

2.1 7 DOF arm motion generated by an RRT planner by Kuffner et
al. [KL00c]. Copyright 2000 IEEE. 18

2.2 Physics based controller for a kip move by Faloutsos et al. [FPT01].
Copyright 2001 ACM. 20

2.3 Motions generated from a motion graph [KGP02]. Copyright 2002
ACM. 22

2.4 Manipulation motion among obstacles by a randomized planner [YKH04].
Copyright 2004 ACM. 25

2.5 A stepping motion using a sampling-based multi-modal planner [HBH06].
Copyright 2006 Springer. 27

3.1 A motion capture database containing walking motions. 32

3.2 Feature segmentation robustly segments walking motions into walk
cycles. The images here show the correct segmentation obtained for
a normal walking motion, sad walking motion and happy walking
motion. Alternating colors indicate segmentation points. 36

3.3 Feature segmentation is robust for different types of motions. The
top image shows the segmentation of a lateral stepping motion,
the middle image shows the segmentation of a basketball motion
and the bottom image shows the segmentation for a ballet motion.
For clarity, the character posture is shown only at every second
segmentation for the lateral and basketball motions. 37

3.4 2D error image between the frames of 3 walking motion cycles con-
taining 693 frames sampled at 60 Hz. The red regions represent
highest error and the blue regions represent lowest error. The red
points marked are the local minima and the black crosses are tran-
sitions detected by the feature segmentation. There are 57 black
transitions and 42 red transitions. The bars at the top and left of
the image indicate the frames that were selected during the fea-
ture segmentation phase. Black transitions are always located at
intersections of segmented frames. 39

viii

3.5 Construction time spent for SMG (top/red line) and FMG (blue/bottom
line) as a function of the number of frames. The vertical axis rep-
resent time on a logarithmic scale (base 10). See also Table 3.1. . 41

3.6 Number of nodes in the standard motion graph (SMG, in red/top)
and in feature-based motion graph (FMG, in blue/bottom) as a
function of the transition threshold. 42

3.7 Average branching factor in SMG (red/bottom) and in FMG (blue/top)
as a function of the transition threshold. 42

3.8 Example of paths with clearance. The sequence of images illustrate
that the floor triangulation can be updated very efficiently if ob-
stacles move (under a millisecond in an average computer when up
to about 100 vertices are involved). 47

3.9 Channel pruning does not impose any requirements on the environ-
ment to be static and no other computation prior to a search query
is needed. 48

3.10 Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom). 49

3.11 Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom). 50

3.12 Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom). 51

3.13 Color-coded error comparisons when searching for locomotion se-
quences. The first column shows the used environments. The sec-
ond and third columns show the errors obtained with the SMG
and FMG respectively. The error e = l/p is the ratio between the
length l of the obtained motion from each method and the length p
of the Euclidean shortest path on the floor plane (including a path
clearance). A blue color means a solution length very similar to
the shortest path, a red color means maximum error, which here is
set to 2 times the length (2p) of the shortest path. The character
starts by facing the up direction and needs to first rotate down in
order to reach the lower targets, which explains the large red areas
in the images. 52

ix

3.14 Color-coded error comparisons when searching for locomotion se-
quences with the precomputed channel pruning enabled. The color
coding for the comparisons here is the same as in Figure 3.13,
with the exception that in the right-most column a cell is set to
red (maximum error) when FMG successfully finds a solution but
SMG fails. Another difference in respect to Figure 3.13 is that,
instead of always starting oriented upwards, here the character’s
starting orientation is set to face the channel prior to the search,
what makes the character to always start with a forward walking
motion. The presented comparisons show that FMGs have lower
errors and higher success rates than SMGs in most of the cells. . . 53

3.15 Top image: the channel search procedure on a feature-based graph
successfully computed a motion following the entire path. Bottom
image: the same search failed in the standard motion graph. The
same motion capture database and transition threshold were used
in both cases. 55

3.16 Computing rotational joint limits for the IBK search procedure.
The blue segment represents a transition from ith to the jth frame
of the motion capture database. 56

3.17 A graph branch represented as a kinematic chain. Motion tran-
sitions are represented as rotational joints and the red segments
represent the joint limits which are identical to the corresponding
rotation limits stored in the transitions. 57

3.18 The top image shows a typical problematic motion graph solution
where an overly long motion is returned as solution to a given
target. The bottom image shows the correct solution obtained by
coupling the search with the IBK solver, which is able to deform
nearby motions to the exact target without degrading the quality
of the solution. 58

4.1 The image shows four motion maps used in a path following query.
Motion maps are search tree expansions efficiently precomputed
and stored; and then employed in run-time queries. 66

4.2 Different paths obtained to connect the same initial and goal points,
as they adapt to a few changes in the obstacles. The clearance of the
paths is always maintained, and the LCT representation is updated
only with local operations for each time an obstacle moves. 70

4.3 Four typical motion maps precomputed for a Feature-Based Motion
Graph (FMG). The used expansion depth is 12. Note the high
density achieved in the regions covered by the motion maps. . . . 72

x

4.4 The four equivalent motion maps to the ones shown in Figure 4.3,
when precomputed for a standard Motion Graph (SMG). These
maps were precomputed with depth 22 in order to achieve a size
(number of nodes) equivalent to the FMG motion maps. 73

4.5 Two different motion maps while generating the happy walking
motion showed in Figure 4.6. 76

4.6 The resulting happy walking motions from the search done in Fig-
ure 4.5. 77

4.7 Two different motion maps while generating the ballet motion de-
picted in Figure 4.8. 78

4.8 The resulting ballet motions from the search performed in Figure 4.7. 79

4.9 Sample points from the input path used during the path following
search. 80

4.10 Main stages of the path following search procedure. 81

4.11 Comparison of search techniques. The top image shows the used
environment and its blue path is the input path as returned by the
LCT planner. The bottom image depicts the search tree expansion
of A* and our proposed method based on motion maps. The search
took 186s to complete. 86

4.12 Similar searches as in Figure 4.11. Top image uses the A*-Ch chan-
nel pruning technique which took 9.4s to complete. Bottom image
depicts the search with motion maps. The search in bottom image
took 0.760s. 89

5.1 Various tasks as performed by the character. Left : The character
is picking up a book from a shelf. Right : The character is opening
a door. 93

5.2 An example of a multi-modal search tree. Red segments represent
unmodified examples from the motion capture database and blue
segments represent the motions modified by the motion primitive
skills. 100

5.3 Motion deformation at various angles. The green projection is the
original motion, and the blue and red deformations show the range
of the motion when deformed between -1 and 1 degrees. 103

5.4 Left: Heel joint position projection for three stepping motions. Red
points represent the original motion, the green points represent a
deformed motion with α = 0.5◦ and blue represents a deformed
motion with α = 1.0◦. Right: Same comparison as in the left
image, however, in this instance for the toe joint. 103

xi

5.5 An example of door opening. Top image shows the character while
still within locomotion skill. The bottom image shows the character
in the last frame of the reach skill while holding the handle of the
door. 106

5.6 Continuation of the door opening example from Figure 5.5. The
top image shows the character within the door skill trying to open
the door as fully as possible. The bottom image shows the char-
acter going back to the locomotion skill while collision avoidance
deformation (left arm) activated in this image. 107

5.7 Similar door opening example as in Figure 5.5 but with obstacles
in front of the door. 109

5.8 Continuation of the example on Figure 5.7. 110

5.9 A book relocation example: the character begins by walking to a
shelf (top) while using the locomotion skill, and then moving into
the reaching skill to reach a book in order to pick it up from the
shelf (bottom). 112

5.10 Continuation of the book example from Figure 5.9. The character
is displacing the picked book (top) using the manipulation skill to
a new location on the shelf and releasing his hand so that it can go
back to locomotion mode (bottom). 113

5.11 A book relocation example: the character begins by walking to a
shelf (top) while holding a book using the locomotion skill, and
then moves into the reaching skill to place the book on the shelf
(bottom). 115

5.12 Continuation of the book example from Figure 5.11. The character
is still within the reaching skill and continues to place the book on
the shelf (top). The book is placed on the shelf and a switch to
a manipulation skill is made to move the book to a new location
(bottom). 116

5.13 Continuation of the book example from Figure 5.12. The character
is now replacing the book by carefully planning a motion such that
it does not collide with other objects (top), the character safely
puts the book on a new position on the shelf (bottom). 117

5.14 Water pouring example: Top: A frame from the locomotion skill
bringing the character to an appropriate location to perform the
action. Bottom: Character switches to the action mode and begins
to pour the water. See Figure 5.15 for more examples. 119

5.15 Continuing water pouring example from Figure 5.14. Top: The
action skill ensures that the action motion does not collide with
other objects. Bottom: The character pours water to inside the
teapot on the table. 120

xii

List of Tables

3.1 Numerical comparison between standard motion graphs (SMG) and
feature-based motion graphs (FMG). Column “BF” illustrates the
connectivity of each graph with its average branching factor, which
is computed as the number of edges divided by the number of nodes. 38

3.2 Statistics when searching for locomotion sequences in different envi-
ronments. The same transition threshold was used in both graphs.
“Total” is the total number of attempted queries. “Mut” is the
number of mutually successful queries. “Perc” is the percentage ra-
tio between “Mut” and “Total”. “‘Time” is the average time spent
searching for each solution in seconds, “Len” is the average arc-
length of the solution motions measured along the character’s root
trajectory projected on the floor, and “Exp” is the average number
of node expansions during each search. The last six columns show
the mean and standard deviation of improvements (in percentage
ratios) of FMGs over SMGs. 45

3.3 Improvements gained when deploying IBK during search. Compar-
isons for both SMGs and FMGs with and without channel pruning
for four different environments are shown. All values are repre-
sented as percentages. Each value is calculated as follows: if v is
the value measured without deploying IBK and vibk is the value
with IBK deployed then the reported percentage p is calculated a
p = −(vibk − v)/v. 59

3.4 Improvements gained against SMGs for four different environments
as the proposed techniques are deployed. All values are represented
as percentages as explained in Table 3.3. “Techn” stands for tech-
nique and “Len” for length. Technique “F” uses only FMGs, tech-
nique “FC” uses FMGs and channel pruning, and technique “FCI”
uses FMGs, channel pruning and IBK. 60

4.1 Motion maps with various depths in a SMG: preprocessing time,
average number of occupied cells, and average size. 83

4.2 Motion maps with various depths in a FMG: preprocessing time,
average number of occupied cells, and average size. 84

4.3 The effect of the size (in MB) of motion maps on the success rate
and performance of the path following search for FMGs. The right-
most four columns show the success rate of the search, the average
time taken to search for the solutions, the average length of the
solutions, and the average length of the input paths. 88

xiii

4.4 The effect of the size (in MB) of motion maps on the success
rate and performance of the path following search for SMGs. The
columns are the same as in Table 4.3. 88

4.5 Search performance comparisons for A*, A*-Ch and motion maps
in 1000 random trials using FMG. The columns show the over-
all success rate, the average computation time taken, the average
length of the obtained solutions, and the relative speed improve-
ment obtained with motion maps. 90

4.6 Search performance comparisons as described in Table 4.5, but here
based on SMG. 90

xiv

Acknowledgments

I would like to first thank my advisor Professor Marcelo Kallmann, for his
never-ending support and guidance over many years. I would have never been
able to finish this undertaking, if it weren’t for his continuous motivation and
encouragements. His supervision has greatly expanded my intellectual diapason
and has made me a more competent man.

I would like to thank Professor Stefano Carpin, for teaching me how to pro-
gram, for his continuing support, and for inviting me to join Jacobs’s USAR team.
I thank Professor David Noelle, for the teaching experience I have gained as TA for
his AI courses. They have been most help for my academic development. I would
like to thank my math mentor Mr. Agim Bukla who taught me everything about
mathematics and prepared me for math olympiads. Also many thanks are due to
my elementary teacher Mrs. Drita Ferati, who instilled in me the much needed
discipline. She helped me appreciate the fruits of hard work and encouraged me
to pursue mathematics. I’m also thankful to my boarding school for teaching me
how to never quit.

During my years at Merced, I have been fortunate to meet many great friends.
In particular, I want to distinguish Oktar Ozgen for his great personality and his
boisterous camaraderie. I could have not asked for a better friend and colleague.
I would also like to thank Siyu Wu, for his Oriental influence and his immaculate
determination and positivism. In addition, I would like to thank my friends and
colleagues: Görkem Erinç, Carlo Camporesi, Benjamin Balaguer, Yazhou Huang,
Robert Backman, and Nicola Basilico, for all the many activities we have enjoyed
together. Without you, Merced would have been just a small peaceful town with
a vast and beautiful countryside.

I would like to thank my family for their boundless love and incalculable sup-
port. My father, Mahmudnedim, for passing me the desire to appreciate intellec-
tualism and for making sure that I join the company of exemplary people. My
mother, Nevin, for her immense love, kind and gracious personality, for telling me
to always do the right thing no matter the cost and for showing me the important
things in life. My sister, Elmedina, for setting up high standards in our family
and for making me do this doctorate. Thank you for your cheerful outlook and
your never-ending support. My brother, Abdyl Vahid, who is anatomically, psy-
chologically, socially and genetically the closest person that I will ever meet in my
life. Thank you for looking after our parents while I was away and thank you for
being a brave young man who did everything that I couldn’t do myself.

I thank my late grandfather, Mesut Dukagjini, who was the most important
person in my life and who has influenced me immensely. He was a person whom
I admired the most, and whose life wisdom and philosophy I wish to carry on.

xv

Vita

2006-2013 Ph.D. (Electrical Engineering and Computer Science), Univer-
sity of California (UC Merced), Merced, CA.

2006–2013 Teaching Assistant, 9 semesters: Introduction to Artificial In-
telligence, Introduction to Graphics, Introduction to Computer
Architecture and Design, Discrete Mathematics, Introduction
to Java Programming, School of Engineering, UC Merced.

2006–2012 Research Assistant, 5 semesters (under NSF and CITRIS sup-
port), Summer Graduate Fellowship, School of Engineering, UC
Merced.

Nov 2011 Best Paper Award, Conference on Motion in Games (MIG),
Edinburgh, UK.

Jun 2006 2nd Prize RoboCup Virtual Rescue League (IUB-Team), Bre-
men, Germany.

2003–2006 B.Sc. (Electrical Engineering and Computer Science), Jacobs
University, Bremen, Germany.

Summer 2005 Intern, Urban Search and Rescue Development, University
Pittsburgh, Pittsburgh, PA.

Summer 2004 Intern, Max Planck Institute for Microbiology, Bremen, Ger-
many.

xvi

Publications and Presentations Related to this Work

In Preparation

M. Mahmudi and M. Kallmann, “Multi-Modal Data-Driven Motion Planning
and Synthesis”, (in preparation).

Publications

M. Mahmudi and M. Kallmann, “Analyzing Locomotion Synthesis with Feature-
Based Motion Graphs”, IEEE Transactions in Visualization and Computer Graph-
ics (TVCG), May, 2013.

M. Mahmudi and M. Kallmann, “Precomputed Motion Maps for Unstructured
Motion Capture”, Eurographics/ACM SIGGRAPH Symposium on Computer An-
imation (SCA), Lausanne, Switzerland, 2012.

M. Mahmudi and M. Kallmann, “Feature-Based Locomotion with Inverse
Branch Kinematics”, International Conference on Motion In Games (MIG), Ed-
inburgh, UK, 2011, Best Paper Award.

Y. Huang, M. Mahmudi and M. Kallmann, “Planning Humanlike Actions in
Blending Spaces”, International Conference on Intelligent Robots and System
(IROS), San Francisco, 2011.

M. Mahmudi and M. Kallmann, “Fast Path Following using Motion Graphs”,
Symposium on Interactive 3D Graphics and Games (I3D), Poster Paper, Redwood
City, 2008.

Presentations

M. Kallmann, Y. Huang and M. Mahmudi, “Humanlike Motion Planning”,
IROS Workshop on Progress and Open Problems in Motion Planning, Poster
Presentation, San Francisco, 2011.

Other Publications

C. Goulart, M. Mahmudi, S. D. Jacobs, K. Crona, M. Kallmann, B. G. Hall, D.
Greene, M. Barlow, “Designing antibiotic cycling strategies by determining and
understanding local adaptive landscapes”, PLOS ONE, Vol. 2, Issue 8, February,
2013.

K. Crona, D. Patterson, K. Stack, D. Greene, C. Goulart, M. Mahmudi, S.D.
Jacobs, M. Kallmann, M. Barlow, “Antibiotic resistance landscapes: a quantifica-
tion of theory-data incompatibility for fitness landscapes”, ArXiv preprint, March
2013.

1

M. Mahmudi, S. Markov, Y. Nevatia, R. Rathnam, T. Stoyanov and S. Carpin,
“VirtualIUB - development of a team of autonomous agents for the Virtual Robots
Competition”, SRMED, Bremen, Germany, 2006.

2

CHAPTER 1

Introduction

Motion planning for an articulated virtual human character is a difficult problem.
The difficulty of the problem arises from two main aspects: first, the articulated
character has many degrees of freedom and, as such, it is considered a high di-
mensional problem. These class of problems are considered problematic, because
they are computationally difficult to solve. Second, human motion is intrinsically
difficult to reproduce realistically. This is primarily due to different ways humans
move. Each human has its own unique walking style and rhythm, and its own
set of gestures and gimmicks. All of these are naturally influenced by one’s cul-
tural, societal and personal surrounding. Furthermore, human motion may be
restricted by social norms. Constrains of these nature are typically very difficult
to encode algorithmically and thus leave a programmer or animator with the al-
ternative of key-framing the motion manually—a very laborious and expensive
undertaking—or using motion capture.

With the advent of motion capture technologies, a new venue was made pos-
sible for animating virtual characters. A subject can be directly observed and all
his or her motions recorded. This significantly improves the time spent on the
key-framing process, because the animator does not need to create the motion
but only edit it. However, this process has its own shortcomings. The captured
motion data is not easily amendable to different situations and, unless the ani-
mator is very skilled at reproducing the subject’s motions, the subject has to be
recaptured in order to obtain these new motions. Therefore, to avoid any possible
recapturing, the director scripts all the desired motions and tries to capture them
from the subjects in as few takes as possible.

Thanks to the motion capture technology, we are able to produce highly re-
alistic representations of human motion. Some examples of such representations
may be easily seen in animated movies: exemplified by the productions of Pixar,
Dreamworks, Walt Disney; film productions, as one could see from the numerous
realistic visual effects, industrial simulators for various purposes such as testing,
training, demonstration and validation, and, last by not least, computer games
where the realism of the human characters is of high importance to the gaming
experience of a computer gamer.

On the other hand, generation of humanoid motion (human-like or not) has
also been extensively studied in the fields of robotics. The primary goal in robotics
is, in many cases, to find a trajectory for the robot such that it does not collide

3

with obstacles and fully satisfies the constraints of a given problem. Usually the
generated results may be human-like if the robot is a humanoid, but would hardly
look realistic or natural. However, since the problem is already difficult to solve,
realism is always never the main concern in robotics. Also, since robots are not
as versatile and dexterous as humans, they are not capable of achieving realistic
motions, even if the generated motions are optimal.

One difference between the fields of computer animation and robotics is that
the robotics problem usually involves planning, where as the computer animation
approach often does not. For example, while designing a computer game, the
designer takes the motion capture database and manually builds transitions within
the database such that these transitions are as smooth as possible. This structure
is traditionally called a move tree [MJC01]. When the user plays the game, all the
possible range of motions are bounded by the motions within the move tree. Not
only are the set of motions fixed, but also the various transitions. For example,
if the character is flying, it may not be able to start dancing, even if that might
be the wish of the user. If the game is about a first person shooter, we may not
command the virtual character to suddenly start skiing or dancing. The main
reason for this is that computer games, as interactive as they are, do not involve
any elaborate planning.

In robotics, however, the robot is capable of achieving any posture which
respects equilibrium constraints, and therefore any motion, within the allowable
range of joint limits. Theoretically, we may have a robot that hunts, dances, cooks,
hunts some more, and then skis. There is no reason why a virtual character should
not achieve all of these motions. An animator could, after all, key-frame all of
the desired motions and make possible for a wide range of motions. However, we
would like to solve this problem in a generic fashion, such that if the user asks for
any motion, the system would be able to solve it. Traditionally, computer games
do not allow for such variability, however, because the expectations from the user
are well defined. It is not difficult, to imagine a situation where the motions that
need to be generated are not known in advance and may be needed to be planned
as the user controls the virtual human character.

Being able to solve motion planning at this level is an active field of research
both in computer animation and in robotics. Many people share the dream of
intelligent machines where robots are capable of cleaning our dishes and folding
our laundry. Many others find attractive the idea of being immersed into a virtual
physics classroom where a virtual Gödel is the class instructor. In such a virtual
classroom, one would be able to ask the virtual Gödel a question about the In-
completeness Theorem and he would be able to reach for the chalk and write the
formulas on the board, or even open a book and show which chapters talk about
the Incompleteness Theorem. The questions asked by the students may not be
known to the virtual Gödel, so it would have to plan its motions as the questions
are being asked. Depending on the questions, the level of understanding, sub-
sequent questions and other inputs from the students, such an ultimate virtual

4

Gödel would have to determine the trajectory of the chalk in order to explain
the subjects that answer students’ questions. This level of independence and con-
trollability is yet not possible in computer games or real robots, and the general
problem is an active field of continuing research.

Current methods have tried to solve different aspects of this problem by fur-
ther advancing the field towards these goals. As mentioned earlier, the motion
capture technology has significantly helped in achieving realism. On the other
hand, motion planning algorithms have been developed to find solution trajecto-
ries among obstacles. A complete algorithm that analytically solves the problem
of motion planning was found by John Canny [Can88]. However, the implemen-
tation of these algorithms is difficult. Moreover, the computational complexity of
Canny’s algorithm is exponential on the number of degrees of freedom (DOF) of
the robot. A configuration space of 10-15 DOFs is already considered high dimen-
sional. A human character can easily have more than 100 DOFs and therefore
Canny’s approach is not suitable for high dimensional planning such as that of
virtual characters. In order to mitigate these difficulties, later algorithms intro-
duced sampling-based approaches which greatly reduced the computational time
it took to solve these problems.

Unlike Canny’s approach, sampling-based algorithms do not try to analytically
decompose the free section of the configuration space. Instead, they sample the
free configuration space and check whether the sampled configuration is collision-
free or not. By continuously sampling, these methods build a roadmap of direct
line paths such that when the robot moves along this line, no collision occurs with
the environment or with the robot itself (self-collisions). A solution between the
start and goal configuration is then reduced to a graph search. Although sampling-
based methods are randomized, they are still typically resolution-complete, mean-
ing the probability of deciding on a problem asymptotically reaches one. Moreover,
the convergence rate could roughly guide the user in terms of how many samples
would be needed to solve an instance of a given problem. However, establishing
the convergence rate is often difficult.

While sampling based approaches made higher dimensional problems become
more tractable, they have their downsides. First of all, they are still considered
slow for high dimensionality associated with human characters. Second, these al-
gorithms do not have any added information about the nature of human motion.
It is easy to generate configurations that do not violate the joint limits of a char-
acter, however, in order to encode the nature of walking, one would need a very
elaborate list of constraints. For example, a human uses stepping motions in order
to walk and does not slide with the feet. Such a constraint is difficult to define
within the scope of the sampling-based algorithms. Lastly, it is challenging to
personify gestures in various styles and rhythms. These aspects are most pressing
problems with motion planning algorithms for synthesizing realistic motions.

In computer animation, these problems were handled by extensively using mo-

5

tion capture. While motion capture easily handles the above-mentioned problems
faced by sampling-based algorithms, the recorded motions can not be easily modi-
fied to different scenarios, but can only be replayed. A great body of research work
has concentrated on solving this problem. An early solution was to use move trees.
As mentioned earlier, move trees were built manually by an animator and could
easily control the character transitions from one behaviour to another by carefully
choosing transition points between these behaviours. At this stage no planning
was involved. With the introduction of motion graphs [KGP02, LCR02, AF02] at
SIGGRAPH 2002 an automatic method to construct move trees was made possi-
ble. By using motion graphs it is possible to automatically generate transitions
within the motion capture database and as such it is possible to deploy a large
set of motions. The large number of motions that can be encapsulated within
a motion graph, coupled with the fact that it can be constructed automatically,
made motion graphs a popular technique for character animation. The algorithm
requires a mechanism to extract motions out of the motion graph and this is done
by satisfying the constraints of the query using a search or an optimization proce-
dure. With methods based on motion graphs, an animator is able to automatically
generate an indefinite amount of new high fidelity motions by combining motions
that are directly recorded from human subjects.

1.1 Our Approach

Although many past methods combined motion capture and planning algorithms
in an effort towards synthesizing high quality motions, preparing the data, so that
they may be processed by planning algorithms has remained a time consuming
task. Motion graphs helped in reducing this pre-processing step by automatically
building a graph of connected motions. However, even with motion graphs, three
problems remained challenging:

• The motion capture data is usually unstructured and as such, the planner
can not exploit any extra information about the semantic meaning of the
motion.

• Extracting and synthesizing motions from data-driven approaches involves
extensive planning and does not scale well with the size of the motion capture
database. Faster and smarter searches by better understanding the motion
capture database are desirable.

• Independent control per degree of freedom is needed for solving problems
with precise goal reaching and complex motion generation among obstacles.
In complex situations, the planning can not fully rely on motion capture to
generate desired solutions. Hybrid methods where motion capture examples
are complemented by algorithmic motion primitive skills are needed.

6

This dissertation presents methods which solve these three main challenges.
The feature-based motion graphs presented here provide a way to automatically in-
troduce semantic information from the motion capture database and thus speed up
and improve the planning part of the challenge. Feature-based motion graphs may
be seen as a new ’language’ upon which a new ’calculus’ is used to solve the other
two problems. The novel precomputed motion maps guided by a triangulation-
based path planning mechanism made it possible, for the first time, to synthesize
motions in real-time from an unstructured motion graph. And finally, a new
multi-modal planning framework is shown to control and solve motions respecting
configuration level constraints by using a hybrid approach, where different motion
primitive skills, implementing different planners, can compete to solve a complex
multi-modal problem such as that of the human motion.

Next, we present the definitions frequently used here in order to introduce the
contributions of the dissertation.

1.2 Definitions

A virtual character is defined by a hierarchical acyclic set of joints which describe
the character’s skeleton. Each joint has only one parent joint, an offset and
its joint limits. A geometry may be attached to a joint to give form to the
virtual human character, as shown in Figure 1.1. The attached geometries define
the space in the environment occupied by the character. A collision occurs if
there is an intersection between the character’s geometry and the obstacles in the
environment or if there is an intersection between the character’s own geometries.

A vector f = (p, q1, q2, ..., qn) represents a posture or a configuration of the
character, where p ∈ R3 is the position of the root of the skeleton and qi ∈ SO(3) is
ith joint’s local rotation in respect to the parent joint. All rotations are represented
as quaternions.

In order to calculate the global joint positions of the skeleton one needs a
skeleton and a posture. The skeleton remains fixed at all times and does not
change. In other words, bone (or offset) lengths of the skeleton remain fixed
during the entire motion. The posture is drawn from a configuration space C
and, by applying it to a skeleton, fully defines the geometry of the skeleton and
its relation in regards to the world W ∈ R3 (see Figure 1.2). By applying a
motion frame to a skeleton, one can create a posture of the virtual character. A
few examples are shown on Figure 1.3. A posture is considered a valid posture if
it respects the joint limits of the skeleton and does not collide with itself or the
environment.

A function M(t), called a motion function, is a time-parametrized function
which returns a sequence of valid frames. By applying frame fi = M(ti) at time
ti to the skeleton, one can generate a valid motion for the virtual character, as

7

Figure 1.1: The skeleton on the left and its geometry on the right.

can be seen in Figure 1.3.

1.3 Quality of Motions

It is important to explain what we mean by realistic and human-like. A motion
is considered human-like if it is similar in nature to those that one would usually
observe in humans. For instance, if a character walks down the corridor, we would
expect it to follow a smooth path, without turning in place, making a step to the
left and then back to the right, and then continue walking. Such motions might
be what the user requested, however, if no such explicit request is made, motions
such as the one explained above are not considered human-like. Another example
of non-human-like motion would be a scenario where the character opens and
closes the door numerous times before it decides to finally open the door and walk
through it. These examples are not desirable and if not accounted for may be
generated by planners who are not aware of the nature of the problem that needs
to be solved. Multi-modal planning handles these problems by carefully defining
the modes the character must go through while solving the problem.

By realistic, we mean how realistic does the motion itself look without any
regards to the nature of the motion. A realistic motion would be smooth and there
would be no feet sliding or any ’robotic’-like movements. Motion capture data is
considered state of the art in terms of realism. Any solution that simply replays
a previously captured motion is considered fully realistic. Because motion graphs

8

Figure 1.2: A human character inside a virtual environment where everyday tasks
are executed.

create artificial transitions between parts of the motion capture database which
are most similar, the realism begins to slowly deteriorate. This small degradation
is controlled through the threshold error associated with the created transitions
during the motion graph construction phase. Since these transitions occur at low
error points and are determined by the animator, they are usually considered to
be of high fidelity and therefore the results obtained by these methods are also
considered realistic.

1.4 Problem Statement

Given a world W, a skeleton and a high level task, such as move a book on
the shelf from position p0 to a new position p1, efficiently generate valid motion
function M(t) that accomplishes the task and looks realistic and human-like.

In order to solve the problem stated here, and the challenges mentioned ear-
lier in this chapter, we present a multi-modal data-driven motion planner and
synthesizer that utilizes featured motion graphs, precomputed motion maps and
a motion primitive skill planner that generates high quality motions efficiently
with precise target reaching capabilities by handling complex motion generation
problem among obstacles.

9

Figure 1.3: A sequence of basketball postures applied to a skeleton.

1.5 Dissertation Overview

This dissertation addresses the given problem by proposing three main approaches:
feature-based motion graphs, precomputed motion maps and multi-modal data-
driven planner using motion primitive skills. The following sections discuss these
approaches in detail.

1.5.1 Feature-Based Motion Graphs

Locomotion is the most essential part of human motion. It provides a means of
natural transportation for humans and a basis for the human to perform other
motions in different locations. Therefore, locomotion is the most important mo-
tion that we deal with in this dissertation. In regards to the multi-modal planner,
the locomotion of the virtual character is generated by the locomotion skill which
is a data-driven motion primitive skill.

The locomotion skill is based on the same techniques presented in the Mo-
tion Graphs by Kovar, Lee and Arikan and their respective colleagues [KGP02,
LCR02, AF02]. However, the locomotion skill extends these techniques and ad-
dresses some of its disadvantages. As mentioned earlier, data-driven planners,
including methods based on motion graphs, suffer from the unstructured nature
of the motion they deploy and as a consequence they do not have any semanti-
cal meaning associated with them. Therefore it is difficult to differentiate these
motions and know whether they contain walking, standing, punching or other
motions. We present a method in Chapter 3 that uses the idea of motion segmen-
tation to segment the motion at certain geometric features. This segmentation

10

has many advantages as it helps in solving some major problems with motion
graphs: reducing the size of the motion graphs, improving the graph construction
phase by two orders of magnitude, automatically correcting feet sliding without
any degradation of the quality of the results. Geometrical features were designed
to extract logically related motions scattered within some motion capture dataset
[MRC05]. These features have proven to be quite powerful, because they incorpo-
rate spatial relationships between joints and try to find logically similar motion
segments instead of numerically similar segments.

With traditional motion graphs usually the transitions are found first and then
the motion is segmented. With feature-based motion graphs the construction pro-
cess is done in reverse. Instead of segmenting the motions where the local minima
occur in the error image, we use geometric features to first segment the motion into
semantically similar clips and then sample the error image—instead of fully com-
puting it—for suitable transitions. Not only do we avoid a major bottleneck, but
by a using feature-based motion graph, we know that our planner contains clips
which have a certain structure. This becomes essential for creating motion maps
and also when using a multi-modal planning framework. For example, because
we know the general nature of the segmented walking clips, we can potentially
allow many motion primitives to be activated at the same mode. With traditional
motion graphs this would not be possible as the length and the nature of motion
clips would not be known in advance before beginning the planning step.

In addition to these advantages, feature-based motion graphs also provides
two novel techniques: triangulation-based search procedure and inverse branch
kinematics. Extracting motions from a motion graph usually involves a discrete
search where the graph is unrolled into the environment. The graph itself does not
include any positional information. That is, we may have a motion graph with
only two nodes: a left step and right step, and with these two nodes alone we
may generate straight walking motions indefinitely. Unrolling takes the motion
graph, augments it with positional information and creates a search tree, where
each branch represents a possible solution whose motion takes the character from
the starting position to the end of the motion as defined by the last node (a leaf)
of the said search tree branch. The unrolling, which controls how the search tree
progresses, is directly dependent on the topology of the motions within the motion
graph. For example, if A*-like search method is used, the search tree will try to
progress towards the goal; however, if the motion graph only contains left turning
motions, the search tree will be following a round of left turns until the goal is
reached, if at all.

By using the triangulation-based search procedure [Kal10], we can improve
the search mechanism, because we do not blindly unroll towards the goal without
any consideration for the environment. Instead, we first triangulate the free-empty
space, find an 2D viable channel between the start and goal and then search within
this channel. This has two major implications: first, the channel is a global planner
and thus guides the unrolling process and avoids local minima where search might

11

get stuckl and second, because the channel has clearance, the search need not
run the collision checking module. This speeds up the search significantly, as the
collision checking is the most computationally consuming step.

Triangulating a 3D environment is already a complicated tasks. In our method
we project all the vertices of the objects that consist the environment to the floor
and compute their convex hull. Once this is achieved, we insert these convex
hulls as constrained polygons in a 2D Delaunay triangulation. Some obstacles are
labeled with special information in order to maintain the desired triangulation.
Objects which are higher then the some maximum height (usually the character’s
high) do not get projected and therefore do not introduce additional constraints
in the triangulation. This is the case with the wall were the door is attached. Ver-
tices which are right above the door do not get projected into the floor such that
the triangulation allows the character to pass through the door, otherwise, the
planner would not be able to distinguish between the door and a plain wall. For
more elaborate environments, more dedicated methods may be used for this pur-
pose. Navigational graphs for multi-layered and uneven terrains exists [PLT05].
A triangulated extensions with clearance guarantees of this work may be used
for our locomotion planner for more complicated environments involving multiple
layers. Moreover, clearance guarantees need not always remain constant. Some
narrow passages may have variable clearance and this may be important to the
planner during the search process. Usually, the small the channel is the faster are
the searchers. However, the added information may help in using specific types
of motions or improve the search by avoiding running out of leaves in narrow
passages. One such 2D path planning methods is developed by Gerarts [Ger10].
Our planner may also use this type of triangulation for the purpose of guiding our
feature-based motion graph.

The other disadvantage of traditional motion graphs is that each node pro-
gresses in a discrete fashion—a clip at a time. Since the transitions are fixed and
not subject to change, we cannot bend the search tree branch to reach the goal
precisely, which is an important aspect of multi-modal planning. Hence, we pro-
pose an inverse branch kinematics mechanism which deforms the search branch
tree and thus precisely reaches the goal.

In the definition given in Equation 3.2, the rotation, which defines the trans-
formation for the automatically generated transitions, remains fixed, even if there
could be room to further rotate the transition and still remain below the threshold.
We suggest a method to exploit this fact, by first finding the optimal transforma-
tion, and then further rotating the transition (clockwise and counter-clockwise)
and reevaluating the transition up until the error threshold is reached. In this
manner, for each transition we have a range of acceptable limits, which later
could be used by the search mechanism to bend the search tree within the allow-
able range. The branch can be seen as a kinematic chain with joint limits such
that, when it is within a close distance to the goal, it could stop the unrolling
process and run an optimization step (cyclic coordinate descent) until the goal is

12

precisely reached. If the optimization does not bring the search branch closer to
the goal, we stop the deformation and go back to the searching procedure. This
makes it possible for the search process to build a continuous search tree which ei-
ther reaches the goal precisely or speeds up the search by bending a search branch
which might have missed the goal.

The above-mentioned novel methods greatly improve the motion generation
process for data-driven methods. At the same time, these methods allow for a
better data-structure for real-time motion generation from unstructured motion
capture (motion maps) and independent joint-level control by using a multi-modal
planning framework.

1.5.2 Precomputed Motion Maps

The triangulation-based search procedure helps to significantly speed up the search-
ing and planning. However the problem still suffers from local minima within the
channel. If the goal is behind a wall and the channel had to go around the wall,
the node expansion would still occur on the nodes, which are close to the goal,
thereby slowing down the expansion within the channel. What is needed is a
fast path following mechanism where the search would prioritize nodes which are
close to the path and not close to the goal. This is difficult, however, because
we would have to switch to uniform cost search to achieve this. A better alter-
native is to use pre-computation. This technique was first used to speed up the
manually built behaviour finite state machine of human motions [LK05, LK06].
There were two problems, however. First, for the pre-computation to cover good
parts of the environment, the finite state machine of behaviours had to be crafted
by hand, because there is no guarantee that a motion graph built automatically
from unstructured data will populate the environment evenly and provide a good
precomputed search tree. The second problem is that only one precomputed tree
is built and used for planning, the downside of which is we have to ensure that
leaves of the search tree connect with the root node. This could not be achieved
unless the graph is built manually.

Precomputed motion maps solve all these problems and, furthermore, speed
up the search, such that the planner can generate motions in real-time within
obstacles and, most importantly, from an automatically-built motion graph from
unstructured motion capture data.

The pre-computation procedure involves expanding a node of a graph up to a
certain depth and storing the partial branches of the search tree into a hashmap
called motion map, such that they can be later queried by the planner. The pre-
computation essentially performs the same procedures involved within a graph
search, however, instead of expanding single nodes, it expands entire branches.
This makes it possible to search much faster at the expense of optimality and
memory usage. The optimality is only slightly impacted, because our planner

13

uses a global 2D path planner, which then later guides the graph search and its
associated precomputed motion maps.

The other important contribution is to build motion maps from unstructured
data, because our feature-based motion graphs introduce structure. Because of
the even topology of feature-based motion graphs, the motion maps are explor-
ing the environment much more evenly and, as a result, they can be used with
any automatically built motion graphs. Moreover, unlike previous works, we are
building motion maps for all the nodes of the motion graph and, as such, do not
need to carefully prepare the motion capture—further making motion maps the
only suitable method for automatically built motion graphs.

The planner begins by first finding a 2D path in the triangulated environment.
Then an initial motion map is superimposed on the environment at the beginning
of the 2D path. The procedure starts by sampling the 2D path and querying
partial solutions from the motion map for suitable partial candidates. All valid
candidates are evaluated using the arc-area metric as in the uniform-cost case,
and the best candidate is chosen to define the partial solution. Then the process
is repeated with the motion maps of the last solution. Occasionally, no candidate
is available to follow the path closely; in that case the search procedure rolls back
to the previous iteration and chooses the second best candidate and repeats the
search down this new candidate. This continues until the goal is reached or all
the alternatives are exhausted.

Another advantage of our method is that it can play and search at the same
time. Because the duration of the motion is much smaller in comparison to the
time it takes to search for a motion, we begin playing the partial solutions while
the search deliberates and finds the residual solutions. This makes it possible for
a real-time interactive planner in an environment with many examples. Thanks to
feature-based motion graphs and motion maps, we were able to solve the problem
of real time motion synthesis from an automatically-built motion graph for the
first time, a problem which was considered difficult to solve [GSK03].

1.5.3 Multi-Modal Skill Planner

Although feature-based motion graphs and precomputed maps allow for efficient
reuse of data-driven examples, they do not easily allow for more controllability
of the human character. As mentioned earlier, we could transform the motion
by translating it on the floor and rotating it about the Y axis, however we could
not lift the arm of human character, if that was not already in the motion. As
such, these previous two methods are good at allowing the use of similar motions,
but do not scale well for complex tasks. More complex tasks require planning at
independent joint-level control and, therefore, can not be easily handled by these
methods.

We could solve this problem by capturing more motions, however, as the mo-

14

tion capture database increases so does the motion graph. Since the search is
exponential on the number of the motion graph nodes, it is not efficient to cap-
ture many variations of complex tasks and hope that some of them might be picked
by our planner. Moreover, even if we capture more examples, subtle changes in
the environment could easily make the problem difficult to solve.

Instead of brute forcing the problem by adding more data, a better approach
proposed in this dissertation is to have primitive motion skills which solve small
subtasks that are dedicated solely to the task they solve. Our multi-modal plan-
ner takes this approach by searching among parametrized motion primitive skills
within separate modes. This allows many instances to compete for the best solu-
tion, while guaranteeing that they solve the partial tasks within their respective
modes. Since different motion skills may be implemented using different local
planners, the multi-modal search allows skills to compete for the best solution
independent of their implementation.

Because locomotion is the most important part of human motion, the proposed
multi-modal planner uses a data-driven motion primitive skill for locomotion.
There are two main reasons for this: motion graphs are good and efficient (with
precomputation) at generating locomotion, and, most importantly, locomotion
defines most of the human motion and therefore it is important that its solutions
are of high quality.

The locomotion skill is implemented using feature-based motion graphs and
its goal is to find a motion that displaces the character in the environment and
prepares it to achieve other desired motions. The user begins by specifying a start
position and the multi-modal planner, then expands the search by picking new
nodes from the locomotion motion primitive, while at the same, time expanding
other motion primitive skills that might be activated at given modes. Depending
on the skill which gets activated, many skills may define the final motion of the hu-
man character. For example, the locomotion skill might define the entire posture
of the character as captured by one node of the graph, but then the reaching mo-
tion primitive may change the arm motion instead of the locomotion skill, in order
to reach a specified target location for the hand. In this way, we can see many
motion skills contributing to the final result simultaneously. Because the multi-
modal planner activates motion primitive skills by their parameter list, there are
many motion instances which try to reach the final goal and produce the desired
motion. Moreover, since skills may implement different local planners, we might
have, for example, a reaching skill implemented using a sampling based approach
but also a data-driven approach by blending examples of reaching actions. Both
these implementations have their advantages and disadvantages and depending
on the situation, the multi-modal planner may prefer one over the other.

Another advantage of the multi-modal approach is that human motion is, by
itself, multi-modal. For example, humans do not plan for locomotion while they
are seated in a chair. In that situation, the only concern would be to plan the

15

motion of the arms and the torso. Alternatively, when walking down the corridor,
only the walking trajectory needs to be maintained. Also, even when performing
seemingly related tasks such as opening a door our proposed approach separates
the tasks into modes where the character walks, tries to reach the door, opens the
door, releases the door, and walks through it. These decompositions allow the
planner to plan for motions at fewer dimensions than that of the entire character,
which is done by associating a mode with a part of the human character or a
special state of the character, depending on the tasks that needs to be solved.

This dissertation proposes that human-like motion planning for virtual human
characters can be well addressed by a multi-modal data-driven framework. This
approach employs a set of parametrized motion primitive skills that successfully
plan and synthesize human motion for complex tasks in environments with many
obstacles.

16

CHAPTER 2

Literature Review

In this chapter we discuss prior works which are related to the methods proposed
in this dissertation. We begin by reviewing the approaches used in robotics and
then we discuss approaches used in computer graphics. Although these two fields
have attempted to solve the general problem, the algorithms proposed within
these fields have solved different aspects of the motion planning problem. The
algorithms from robotics often search on continuous configurations and try to
solve generalized instances, whereas the algorithms from computer graphics are
concerned with quality of the generated solutions and are particularly designed for
articulated characters. The latter approaches are, therefore, usually data-driven
due to the high fidelity of the results.

In more recent years, there has been an effort to combine different aspects of
these solutions to efficiently solve more generalized problems for human character
and obtain high quality results. Hence, data-driven algorithms have moved from
discrete search spaces to more parametrized spaces whilst continuous motion plan-
ning has evolved into multi-modal spaces in order to better address the problems
related to humanoid motion planning.

We review prior work in this order:

• Sampling-Based Planning

• Physics-Based Planning

• Data-Driven Planning

2.1 Sampling-Based Planning

The problem of motion planning was proved to be an instance of the class of
PSPACE-compete problems [Rei79]. An analytical solution for this problem was
found by Canny [Can88] by cell decomposition of the free configuration space. The
computational complexity of this analytical solution is exponential in the number
of degrees of freedom (DOF) of the robot and, therefore, it is considered a difficult
problem, especially in high dimensional instances. To mitigate this computational
requirement, approximate methods where introduced which could find solutions
for environments with simple obstacles [Lat90].

17

Figure 2.1: 7 DOF arm motion generated by an RRT planner by Kuffner et
al. [KL00c]. Copyright 2000 IEEE.

One major breakthrough was achieved by the use of sampling-based meth-
ods [LaV06]. One such major algorithm was developed by Kavraki et al. [KSL96].
This method did not need to know the exact definition of the occupied configu-
ration space; it only required a function which could evaluate whether a sampled
configuration is valid or not. As the configuration space is sampled, a roadmap of
connected samples is built. Two configurations are connected if the interpolated
intermediate samples also lie within a collision free path. For every query a graph
search is run on the Probabilistic Road Map (PRM) to find a collision-free path
between the initial and goal configurations.

Later methods were developed to improve PRMs. Lazy PRM [BK00] and
Fuzzy PRM [NK00] used a similar sampling approach by using a different search-
ing method which delayed collision checking as much as possible. Because collision
checking is a time-consuming procedure, these methods improved the time com-
plexity of the PRM method.

Another important sampling-based method was developed by LaValle [Lav98]
using a new data-structure called Rapidly Exploring Random Trees (RRT). This
method was similar to that of the PRM method, however instead of building a
graph, RRTs expanded a tree and connected configuration samples which usu-
ally were in close vicinity to the tree. A more elaborate algorithm using RRT
trees called RRT-Connect was introduced by Kuffner and LaValle [KL00c] (see
Figure 2.1 for an example). The method maintained two RRT trees: one at the
start configuration and one at the goal configuration, which were expanded until
the tree could be successfully connected. A PRM-like approach, which employed
bidirectional trees similar to RRT with lazy collision checking, was devised by
Sanchez et al. [SL01].

RRT became a popular method for robots that have constraints to their motion
model, such as non-holonomic vehicles because these constraints were easier to
encode within RRTs. Other problems which accounted for the dynamics of the
robots, such as velocity and acceleration also widely used RRT based methods to
solve instances of kinodynamic problems. [LK01, PKV07]. More recently, learning
methods were developed by Li and Kostas [LB11] to learn better metrics for

18

dynamics systems. Sampling based methods were further improved by employing
some form of computer parallelism. Carpin et al. [CP02] introduced a parallelized
version of RRT, whereas Plaku [PBC05] assigned an RRT tree to each computer
node for the purpose of solving high dimensional problems. Other improvements
were made to account for dynamic obstacles, such as the methods by Kallmann et
al. [KM04], Berg et al [BFK06] and Leven et al. [LH02]. More recently, Karaman
et al. developed RRT* which introduced optimality guarantees to the generated
solutions and showed that their algorithm is provably asymptotically optimal while
maintaining a computational complexity which is within a constant factor of that
of the RRT counterpart.

The third group of sampling-based algorithms were developed by Hsu et al.
called Expansive Configuration Spaces (ECS) [HLM99]. These works were the first
papers to introduce the notion of expansiveness and give guarantees on the cover-
age of the configuration space. Similar works used entropy-based sampling based
methods [BB05] to improve the sampling heuristic. The work by Geraerts [GO07]
evaluated different sampling techniques for different environments.

Although these methods are capable of solving general robot motion planning
algorithms, they are not suited for humanoid motion planning for the following
reasons: humanoid motion planning is a high dimensional problem, human motion
requires an elaborate list of constraints to be specified in order to obtain human-
like motions and finally the results are not realistic and look robotic.

More dedicated methods were employed to suit the problem of humanoid mo-
tion planning. Due to the high dimensionality of the problem, Kuffner, Chestnutt
and their colleagues [KL00a, KNK03, CK04] used a discrete stepping planner to
find motions for a biped humanoid. Various stepping motions where manually
crafted and then combined to form a sequence of walking motions. These method
are most similar to the methods used in computer graphics but are built with hu-
manoid robots in mind. Kanoun et al. [KLY11] cast the foot placement problem
as an optimization and used an IK-like approach to solve for a correct sequence
of placements.

Foot step planning often gets stuck in local minima if the goal is strategi-
cally located behind obstacles. In order to better understand the free space of
an environment and avoid such local minima, some form of decomposition was
used. One such example is a triangulation-based method developed by Kall-
mann [Kal10]. Other methods include a Voronoi-based decomposition method
by Geraerts [Ger10] and a prismatic-spacial subdivision-based method by Lama-
rache [Lam09]. Additionally, these methods return paths with guaranteed clear-
ance to the obstacles which is beneficial to the foot step planning stage of the
humanoid robot. Other works have improved the searching mechanism to speed
up the search by using intermediate subgoals [SB02] and other works have eval-
uated human subjects to investigate the trajectories of human walks for a given
start and goal position and orientation [ALH08]. This paper showed that humans

19

Figure 2.2: Physics based controller for a kip move by Faloutsos et al. [FPT01].
Copyright 2001 ACM.

minimize the time-derivative of the curvature the locomotion, and that they maybe
be best modeled by a Cornu spiral whose curvature grows with the distance from
the origin.

Our locomotion motion primitive skill deploys a triangulation-based search
mechanism to obtain a global path with clearance between a start and goal po-
sition. In addition, our method is data-driven and does not require manually
crafting stepping motions. Moreover, since our method is data-driven, our results
are high quality and look human-like.

Upper body action planning for humanoid planning, such as grasping and ma-
nipulating, has also been extensively researched. Recent methods can automat-
ically deduce the shape of the manipulated object and efficiently grasp, regrasp,
and perform other complex manipulation tasks [BDN07, BC12] and interact with
the environment. These interactions could also be taken into consideration during
planning, such as, in the work of Stilmann et al. [SK04] where the humanoid robot
moves obstacles (couches and chairs) in order to reach the desired goal.

2.2 Physics-Based Planning

Another approach to simulate the movement of objects is based on physics. Given
a set of physics laws for that define the forces that act on a body and an initial
configuration, the entire motion of a given body could be calculated. The work by
Witkin and Kaas [WK88] used space-time optimization based on physical particle-
motion definition. They specified a few intermediate frames as constraints to
the optimization and generated the entire motion of the now-famous Luxo lamp.
There has been a lot of work devoted to physics-based methods for generating
human character motions [HWB95, FPT01, LP02, Liu08, WJM06]. All of these
methods require an elaborate formulation of the human character, including mass
distribution, torques and joint specifications. Moreover, each type of motion is
determined by a physics controller, which requires an elaborate list of constraints
to fully specify and also is time-consuming to animate. The results of these
algorithms are not fully realistic and have some awkward motions. Furthermore,
it is difficult to specify personal traits and gestures for human characters. For an
elaborate review on physics-based character animation, please refer to Liu [Liu05].
See Figure 2.2 for an example of motion generated using a physics controller.

20

2.3 Data-Driven Planning

Traditionally, human motion was depicted by an animator who would draw the
motion of a human character in a sequence of 2D images. With the advent of
computer graphics, algorithms were developed to achieve the same animation
techniques for 3D characters [Las87]. These animations were laboriously hand-
animated using the method of key-framing. The animator would draw important
keyframes and the method would generate in-between postures by interpolating
these key frames. A great body of work was developed to algorithmically generate
human motion. These included methods from pre-encoded procedural motions to
methods which involved signal processing. For a review on key-framing, please
refer to [WBE10].

2.3.1 Blending

Synthesis of high quality whole-body human-like motions was achieved with the
help of motion capture. Due to its high fidelity results, methods based on motion
capture became very popular. Initially, the recorded examples would only be used
to replay the motions, however later, various techniques were used to modify the
motion. An early technique to change the motion capture data was based on in-
terpolation. Given a set of data, any motion could be generated by interpolating
these input motions [WH97, RBC98]. By using this technique, an animator could
increase the variety of the motion capture database. A locomotion blender was
developed by Park et al. [PSS02] based on Rose’s Verbs and Adverbs [RBC98].
The downside of this method was that the animator would have to carefully make
sure that the interpolated motions are similar in space-time. To aid the animator,
Witkin and Popović developed motion warping [WP95] and Kovar et al. intro-
duced registration curves [KG03]. Later, work by Kovar et al. also automatically
queried similar motions from a database and blended them in order to generate
variety of motions such as kicking and punching, etc. [KG04]. Extracting and
finding similar motions from a motion capture database was needed for correct
blending of examples. Barbic et al. [BSP04] used a PCA-based method to seg-
ment motion capture data into distinct behaviours. Muller et al. [MRC05, MR06]
devised spatio-temporal geometric features to segment similar motions without
being effected by numerical differences.

While interpolation and blending created in-between motions by using multi-
ple motion examples, other algorithms were developed to modify a single motion
capture stream. Pullen et al. [PB02] used a texturing mechanism to fit a mo-
tion capture motion to a list of key frames. Li et al. [LWS02] learned statistical
textons from motion capture and then combined these to modify the examples.
Usually it is necessary to create transitions between different parts of the mo-
tions. The papers by Wang et al. [WB03, WB04] ran empirical experiments to
evaluate the realism of the generated transitions. Ikemoto et al. [IAF07] used a

21

Figure 2.3: Motions generated from a motion graph [KGP02]. Copyright 2002
ACM.

multi-way cached blending technique to create more realistic transitions. Inter-
polation and blending often creates artifacts such as feet sliding. Because these
artifacts can be easily detected, a few methods were developed to automatically
correct feet sliding artifacts while blending motions. An IK-based approach which
also involved skeleton bone modifications was developed by Kovar et al. [KSG02].
Other motion modifications involve stylistic changes to the human character. The
work by Neff et al. [NK09] looked at posture correlations to extract parameters
that control stylistic aspects of the motion. Various other algorithms were made
available for constructing long pieces of motion by using motion patches [LCL06]
as building blocks for more complicated motion generation. Similarly, Krüger et
al. [KTW10] built a kd-tree of similar poses and proposed fast and local pose
queries for motion synthesis. Another method to modify motion capture data
involved splicing the upper and lower body parts and combining them together
to achieve different combined motions [HKG06, LKN09, BE11]. These methods
propose algorithms and coordination models which analyze what lower and upper
body motions may be combined together while still retaining the human motion
realism. Gleicher used a retargetting method to fit the motion of one skeleton to
another with similar bone lengths [GSK03].

2.3.2 Motion Graphs

Although modifying motion capture increased the range of the motions, more au-
tomatic motions were needed to handle large amounts of motion capture data. A
major step toward this goal was made by the motion graph data-structure [KGP02,
LCR02, AF02], which was similar to that of move trees [MJC01] but built au-
tomatically. These methods capture frame similarities in large motion capture
datasets and build automatic transitions between similar frames. By creating
these transitions, a graph representing the connectivity of the motion capture
database could be built and, hence, any graph walk on this structure would result
in a different motion but still retain the quality of the initial motions. See some
example in Figure 2.3.

The graph is constructed by first detecting frames that are very similar to
each other by doing a pairwise checking of all the frames in the motion capture

22

dataset. This creates a 2-D error image representing the cost of transitioning
from one frame to another. All the transitions which are situated at local minima
in the error image and pass a certain user-defined threshold are joined together
by an artificial smooth transition, which interpolates between these two different
parts of the motion dataset. The motion generation is then casted as an opti-
mization problem, which tries to find the most suitable graph walk that satisfies
user constraints.

Arikan et al. [AF02], had a very similar idea of constructing a motion graph
but instead of having one single motion graph at a fine level, they maintain a hier-
archy of graphs that represent the motion graph at different granularity in terms
of motion quality. Their search algorithm is an anytime algorithm that starts
the search with a rough solution that satisfies only hard constrains, and as time
permits, the search mechanism starts searching for better motions that satisfy
the soft constrains as fully as possible. A later algorithm developed by Arikan et
al. [AFO03] uses motion clips such as: jump, run, etc. and generates combinations
of these clips by using dynamic programming to satisfy the positional constraints
set by the animator. Semi-automatic motion graphs were built for interactive
control by finding hub frames that contain many transition connections. [GSK03].
Manually built motion graphs that represent distinct behaviour were also used by
Lau et al. [LK05]. These behaviour finite-state machines were used to generate
motions around obstacles by first running a global optimal path around the ob-
stacles and then running an A*-like search on the finite state machine to search
for an appropriate motion.

As motion graphs became more popular, methods that evaluated the con-
nectivity, reachability and interactivity of motion graphs were developed [RP07].
These algorithms unrolled the motion graphs into an environment with obstacles
and evaluated motion graphs by measuring how well the graphs reached different
parts of the environment.

To increase the range of motions produced by motion graphs, blending and
data-driven methods were combined. Fat graphs were used [SO06] which aug-
mented a single motion graph node with many parametrized motion clips. Heck
et al. [HG07] used parametric motion graphs and developed a method to transition
from different sets of parametrized motions within a motion graph. Safanova et
al. [SH08] interpolated k motion paths within a motion graph in order to produce
a wider range of motions.

As methods were developed to increase the expressiveness of the motion graphs,
the search procedure got negatively effected by the increase in the size of the graph.
Algorithms were developed to construct more compact motion graphs [BCP08,
ZS08, LS09]. These methods automatically reduce the size of the graph, increase
its connectivity and reduce the size of the motion capture database by finding
methods to compress the data. Motion graphs were also combined with continuous
optimization which improves the transitions of the graph and still retain its ex-

23

pressiveness [RZS10]. Motion graphs were also used for crowd simulation [SKG05],
music motion generation [FXG12] and motion modeling [KS05]. They involve un-
derstanding the underling human motion and build a model which later extracts
appropriate motions from a motion graph.

More recently, feature-based motion graphs were developed by Mahmudi et
al. [MK11, MK13] which used geometric features to create transitions among
the motion graph and introduce semantical information within the motion graph
with an non-degrading deformation model. Similarly, Min et al. [MC12] use a
deformable motion graph that is capable of generating infinite style variations of
the actions inside a motion graph.

2.3.3 Precomputation

Extracting a desired motion from a motion graph requires some form of searching
and planning. This procedure is often very time consuming and usually exponen-
tial in the number of nodes in the motion graph. Because the same motion graph
is expanded for each query, pre-computation was used to expand many nodes at
the same time. This idea was first used to precompute policies for two charac-
ters who are trying to kick each other [LL04]. Later, a precomputed tree was
used by Lau et al. [LK06] to precompute their finite state machine of behaviours
and follow a globally optimum path in the environment. Later, this work was
expanded to find randomized techniques to build a precomputed tree with more
even coverage density [LK10]. Usually one search tree will be precomputed for the
entire motion graph. This required that all the leaves of tree connect to the root
node. Srinivasan et al. [SMM05] relaxed this requirement by precomputing maps
for all the nodes of the graph, but employed a simple path following algorithm
with reactive obstacle avoidance. Mahmudi et al. [MK12] precomputed motion
maps for all the nodes in a feature-based motion graph and developed a search
algorithm that was capable of generating motions interactively among a complex
environment with many obstacles.

Reinforcement learning could be used to learn control policies for human mo-
tion generation. This method usually involved a set of manually-crafted motion
clips. A learning objective is set and learned through reinforcement learning. This
way a character can be controlled by continuously specifying the walking direc-
tion, speed, obstacle positions, etc. [TLP07]. Similarly, reinforcement learning is
used over a set of parametrized controllers to plan the motion of human character.
Lee et al. [LWB10] construct motion fields which are learnt through reinforcement
learning to set the current motion direction of the character. A later version by
Lee et al. [LP10] uses inverse reinforcement learning to learn various behaviour
styles.

Similarly, active learning was also used by Cooper et al. [CHP07] to learn
controllers for tasks such as catching a ball. Wu et al. [WP10] used a biped lo-

24

Figure 2.4: Manipulation motion among obstacles by a randomized plan-
ner [YKH04]. Copyright 2004 ACM.

comotion controller to adapt to uneven terrains. Their approach uses a footstep
end-effector planner and a per-timestep generalized-force solver. The parameters
of the planner for different tasks are solved by using an offline optimization pro-
cedure. A method proposed by Zong et al. [ZLX12] uses Q-learning and plans
manipulation tasks for a human character by using domain-specific knowledge
that governs characters behaviour.

2.3.4 Planning

One of the first papers to use motion planning for animation was introduced by
Koga et al. [KKK94]. Their method used a randomized path planning algorithm
to synthesize the manipulation of the arms of a character that could pick up his
eyeglasses and put them on. Similarly, Kuffner and LaValle [KL00b] used a com-
bination of RRT and IK to plan the arm of the human character (see Figure 2.1).
The character could play chess and remove tools from a box while avoiding the
obstacles in the scene. Yamane et al. [YKH04] uses an RRT planner to find the
path for a manipulation task, and then uses IK to fill the posture of a character
such that it can follow these trajectories (see Figure 2.4). The method uses the
null space of the IK solution in order to find more natural-looking poses. It also
has a coordination model, such as velocity profiling and gaze modeling to make
the model look more realistic. A method developed by Kallmann et al. [KAA03]
uses a PRM-based planner for manipulation and grasping tasks taking into ac-
count the whole-body of the character which includes automatic column control
and leg flexion. IK methods used in these methods are based on the algorithms
proposed by Tolani et al. [TGB00] and Baerlocher et al. [BB04].

On the other hand, Choi et al. [CLS02] developed a locomotion motion gen-
erator based on motion capture and a PRM planner. A PRM planner would
generate a list of footsteps, and the motion synthesizer would try to generate
motions that could best follow the footsteps. Sung et al. [SKG05] used a similar
approach, but instead of planning on foot steps, they used a PRM planner to first
find a 2D path in the environment and then used a bidirectional motion graph
search to find a motion which could follow this path. Esteves et al. [EAP06]
proposed a motion planner for a human character that could handle open and
closed kinematic chains without colliding with the environment and other collab-

25

orators. The method used a triangulation-based data-driven locomotion planner
for the lower part of the character, and a PRM-based planner to handle heavy
objects and collaborate with other characters on these tasks. A method devel-
oped by Pan et al. [PZL10] decomposes the human character into a hierarchy of
joints sets and uses RRT to plan various parts of the motion planning problem,
then combines them together to achieve a whole body motion for a character that
could avoid cluttered obstacles and perform complex tasks. An algorithm devel-
oped by Shapiro [SKF07] modifies a sequence of motion capture by utilizing an
RRT planner that could modify the offending part of the motion, such that the
obstacles are avoided. The planner runs on the arms of the character, and it is
time-parametrized, allowing the character to plan for a motion while moving.

A method which combines locomotion and manipulation motions was devel-
oped by Huang et al. [HMK11]. The character would walk and find a suitable
position to achieve a manipulation task, such as pointing, pouring water, etc. The
manipulation task was achieved by blending many motion examples, whose blend-
ing weights were computed by using an RRT planner on the blend space. This
allowed the manipulation task to avoid obstacles. Basten et al. [BEG11] reviews
different combinations of path planning algorithms with use motion graphs for mo-
tion generation with a strong emphasis on the naturalness of the generated results.
A later method uses path abstraction to modify the pelvis of the human character
to increase the naturalness of the motions [BE09]. More effort was put into ana-
lyzing human subjects and identifying parameters that quantify the naturalness of
the human motion. Egges et al. looked at human subjects to build a coordination
motion for human walking and manipulation tasks [Egg08a] and other motions,
such as door opening tasks [Egg08b]. These works help in constraining the search
procedure of motion graphs in order to help generate more natural motions and
avoid motions which would not be performed by human subjects.

2.3.5 Deformation

Planner which combine locomotion with manipulation tasks require precise place-
ment for the character to achieve the manipulation without colliding with ob-
stacles. More recently, this has lead to the development of deformation models
for the synthesized motions. Mahmudi et al. [MK13] proposed a continuous mo-
tion deformation based on CCD method [WC91], which deformed the motions at
the transition points without exceeding the transition error threshold. Kim et
al. [KHK09] and Choi et al. [CKH11] used a Laplacian deformation model, which
deformed the motion and still preserved the contacts and other constraints within
the environment. Similarly, Min et al. [MCC09] used a motion deformation model
based on a maximum a posteriori (MAP) framework.

26

Figure 2.5: A stepping motion using a sampling-based multi-modal plan-
ner [HBH06]. Copyright 2006 Springer.

2.4 Multi-Modal Planning

Because of the complexity of human motion, a significant body of work has been
dedicated to understanding how humans move. Studies from neuroscience and
human biology have indicated that humans use what is called motion primitives
to perform their movements. These motion primitives may be seen as atomic
motion blocks and are believed to be “hardwired” in the human brain. Through
repeated random trials through one’s life, these motion primitives are calibrated
and adapted by extensive learning via repeated experience [PKM06, ICD05, TS00].

A new approach in robotics has increasingly used a multi-modal approach to
address the problem of motion planning for high dimensional instances. A mode
is generally associated with a subset of the configuration space, although in this
dissertation, our multi-modal framework uses a mode to solve a subtask of a larger
problem. From traditional motion planning point of view, by searching within
different modes, the effective dimensionality of the configuration space is reduced.
Although in robotics, the same planner is used to solve the partial trajectory
within a mode, in our framework more specialized sets of motion primitives may
be employed while at the same time competing with each other to be a part of the
final solution. The multi-modal is an efficient approach in solving complex tasks
due to the observation that subset of configuration spaces are often independent
of each other in terms of the final solution. This is also observed in human motion.
For example, when we eat, we do not use our legs as we would do while walking;
hence we wouldn’t need to solve a problem using the entire configuration space,
only a part of it. At some times, we might only be interested in walking motions
and not in manipulation tasks, and at other times in both, depending on the task.
Multi-modal planning helps in decoupling the problem into subtasks and solving
the problem with efficient local planners.

Hauser et al. [HBH06, HNG07] first used multi-modal planning for humanoid
robot motion planning. Later, work used to include manipulation tasks [HN11].

27

An example is shown in Figure 2.5. Kallmann et al. used a list of parametrized
skills to control a simple biped robot. [KBM04]. Later a more elaborate algorithm
was developed to plan the motion of a humanoid robot by a multi-modal skill plan-
ner [KHB10]. In computer animation, methods were proposed to use parametrized
controllers, which may be seen as a multi-modal approach of searching motions
for a human character [LLK11, BSL12].

In this dissertation, we present a new approach which combines multi-modal
planning with data-driven methods, based on motion capture and continuous
randomized planners in accordance with coordination models, to maintain the
realism of the synthesized motions.

28

CHAPTER 3

Feature-Based Motion Graphs

In this chapter we present feature-based motion graphs for realistic locomotion
synthesis among obstacles. Among several advantages, feature-based motion
graphs achieve improved results in search queries, eliminate the need of post-
processing for foot skating removal, and reduce the computational requirements in
comparison to traditional motion graphs. Our contributions are threefold. First,
we show that choosing transitions based on relevant features significantly reduces
graph construction time and leads to improved search performances. Second, we
employ a fast channel search method that confines the motion graph search to a
free channel with guaranteed clearance among obstacles, achieving faster and im-
proved results that avoid expensive collision checking. Lastly, we present a motion
deformation model based on Inverse Kinematics applied over the transitions of a
solution branch. Each transition is assigned a continuous deformation range that
does not exceed the original transition cost threshold specified by the user for the
graph construction. The obtained deformation improves the reachability of the
feature-based motion graph and in turn also reduces the time spent during search.
The results obtained by the proposed methods are evaluated and quantified, and
they demonstrate significant improvements in comparison to traditional motion
graph techniques.

3.1 Introduction

Realistic animation of virtual characters remains a challenging problem in com-
puter animation. Successful approaches are mostly data-driven, using motion
capture data, and often involving motion blending and search. While blending
operations over motion segments adequately grouped are suitable to real-time
performances, search techniques based on motion graphs provide minimum dis-
tortion of the captured sequences, and naturally allow the exploration of solutions
in complex environments.

Given the achieved simplicity and quality of produced motions, motion graphs
remain a popular method for motion synthesis. The fact that motion graph ap-
plications often require the use of search algorithms makes real-time performance
to be difficult to achieve, in particular when searching for long motions. The fo-
cus of this work is to improve the performance of motion graphs for synthesis of
locomotion among obstacles.

29

We propose a feature-based approach for constructing motion graphs. Feature-
based motion graphs can be constructed significantly faster than traditional mo-
tion graphs by avoiding the pairwise comparison between all frames in the database.
Instead, only suitable pairs of frames are chosen for transition evaluation. The
chosen pairs are the output of feature detectors encoding relationships of interest
among key joint positions of the character’s skeleton. Once these suitable frames
are detected, transitions are evaluated with the usual threshold-based compari-
son metric, thus maintaining the same quality of results when blending the two
motion segments defined by one transition.

Depending on the application, different feature detectors can be employed.
A wide range of applicable feature detectors have been proposed by Müller et
al. [MRC05]. These feature detectors can be quickly evaluated and are based
on spatial relationships between the joints of the character at any given frame.
We have noticed that, for the purpose of locomotion synthesis, a very small set of
feature detectors is sufficient to successfully segment various walking motions. For
example, the forward walk detector checks for a crossing event at the ankle joints,
leading to motion segments with one foot always planted on the floor. This is a
desirable property as it eliminates the need for post-processing due foot skating
artifacts. Similar strategies were demonstrated by previous authors [TLP07], but
employing manually crafted clips.

We also present a search pruning technique based on planar channels with
guaranteed clearance from obstacles. This is achieved by projecting all obstacles
on the floor plane and maintaining a local clearance triangulation of the environ-
ment [Kal10]. For any given start and goal positions, the triangulation returns
a collision-free channel that is used to prune the branches that lie outside the
channel during the unrolling of a motion graph search. This results in improved
search times, especially in environments with many obstacles.

One inherent problem of discrete search methods is the difficulty of reaching
precise targets. In order to address this problem we introduce a simple and efficient
Inverse Kinematics (IK) deformation technique. Each branch of the search is
treated as a kinematic chain of motion segments with joint limits representing the
allowed rotational deformation at transitions. This technique produces motions
precisely reaching given targets, and at the same time leads to an earlier successful
search termination in several cases. These benefits do not sacrifice the quality of
the motions as the quality of the deformed transitions will not exceed the same
predefined threshold error used to construct the graph.

Lastly, we present extensive experiments with our methods solving locomotion
synthesis among obstacles, and our results demonstrate significant improvements
in time of computation, in finding solutions, and in the quality of the results.

30

3.2 Related Work

A large body of work has been devoted to animating characters using human mo-
tion capture data [KGP02, AF02, AFO03, LCR02, PB02, LWS02, PSS02, KS05,
RBC98]. Motion graphs [KGP02, AF02, LCR02, GSK03] represent a popular ap-
proach that is based on the simple idea of connecting similar frames in a database
of motion capture examples. Once a motion graph is available, graph search is
performed in order to extract motions with desired properties.

Kovar et al. [KGP02] cast the search as an optimization problem and use a
branch and bound algorithm to find motions that follow a user specified path.
Arikan and Forsyth [AF02] build a hierarchy of graphs and use a randomized
search to satisfy user constraints. Arikan et al. [AFO03] use dynamic program-
ming to search for motions satisfying user annotations. Lee et al. [LCR02] con-
struct a cluster forest of similar frames in order to improve the motion search
efficiency. All these methods require quadratic construction time for comparing
the similarity between all pairs of frames in the database. Our method improves
on this operation by considering connections only between selected pairs of frames.

Many improvements to motion graphs have already been proposed. Ikemoto
et al. [IAF07] use multi-way blends to create quick and enhanced transitions. Ren
et al. [RZS10] combine motion graphs with constrained optimization. Shin and
Oh [SO06] combine groups of parametrized edges into a fat edge for interactive
control. Wang and Bodenheimer [WB03] evaluate cost functions for selecting
transitions. Beaudoin et al. [BCP08] use a string-based model to organize large
quantities of motion capture data in a compact manner. Our contributions focus
on optimizing the motion graph construction, representation, and search, and can
be used to improve any previous method relying on a motion graph structure.

Motion capture data has also been extensively used for locomotion planning
among obstacles [EAP06, PZL10, KL00a, LK06, BEG11, SKG05]. In particular,
Lau and Kuffner [LK05] manually build a behaviour-based finite state machine
of motions, which in later work is precomputed [LK06] to speed up the search
for solutions. Choi et al. [CLS02] combine motion segments with probabilistic
roadmaps. These methods however require the user to manually organize motion
examples in suitable ways.

The approach of interpolated motion graphs [SH07, ZS08, LS09] is based on an
interpolation of two time-scaled paths through the motion graph. Although the
method increases the solution space, this comes with the expense of increasing
the time spent to build and search the graph structure.

In respect to our proposed IK motion deformation technique, a related ap-
proach has been explored before by Kanoun et al. [KLY11] for the problem of
footstep planning for humanoid robots. The work describes an IK formulation
that deforms a kinematic chain connecting footstep locations under specific con-
straints ensuring motion generation. Our method, however, is designed to solve

31

Figure 3.1: A motion capture database containing walking motions.

a quite different problem, that of deforming motion transitions under a global
motion transition threshold, and without generating foot skating artifacts.

In general, the main drawback of traditional motion graph structures is the
prohibitively large amount of data that may be needed in order to address practi-
cal applications involving obstacles and precise placements [RP07]. This chapter
presents new techniques for addressing these problems and together they signifi-
cantly improve the performance of motion synthesis from motion graphs.

3.3 Standard Motion Graphs

Before introducing feature-based motion graphs, we first explain how traditional
motions are constructed. The procedure typically involves few steps: first, a sub-
ject is brought to a motion capture facility where one’s motion may be recorded.
Usually, the facility is a large room with with many cameras recording the char-
acter, if an optimal system is used. Then once the motions are recorded, they
need to be post-processed, in order to make sure that they are of the highest
quality. The end process is a list of motion files, which typically contains one type
of motion. An example of a database, can be seen in Figure 3.1. It contains six
files: straight walking motion, gentle left walking, gentle right walking, sharp left
walking, sharp right walking and a ’u-turn’ walking.

The next step is to combine all these files into one combined motion capture
database. The goal is to find sweet points where artificial transitions may be

32

created. Achieving this is not as trivial as it might appear first. The frames of
the motion might have different global positions and orientations. Should the
distance be calculated between the global joint positions or between the cloud
points created by the down sampling of character’s geometry? Which joints should
be weighted more and which ones less? One could weight the root orientation more
than the wrist joint but this depends on the current posture of the character. For
instance, if the character is doing an acrobatic motion and it is holding itself
on one of its hands, the wrist orientation might be more important then the
root orientation. These considerations were discussed in the works of Kovar et
al. [KGP02] and very convincing methods have been developed to address this
problems. The distance metric introduced next has been used extensively and has
proven to capture very well the similarity between two frames. We have deployed
this metric for our own works.

The distance between two frames Ai and frame Bj is calculated by considering
the point clouds formed over two windows of frames of user-defined length k, one
bordered at the beginning by Ai and the other bordered at the end by Bj. The
use of a window frames incorporates derivative information into the metric hence
preserving the speed and acceleration. In our test cases the length of the windows
were set to 30, corresponding to a half of a second.

A motion is defined only up to a rigid 2D coordinate transformation. That
is, the motion is fundamentally unchanged if we translate it along the floor plane
or rotate it about the vertical axis. Thus, comparing two point clouds requires
identifying compatible coordinate systems. With other words, we need to find a
linear transformation Tθ,x0,z0 that minimizes the following function:∑

i

wi||pi − Tθ,x0,z0p′i||2 (3.1)

where pi and p′i are two corresponding points from different point clouds. When
the partial derivatives of the sum above are taken in regards to x, z and θ we obtain
the following close-form solution:

θ = arctan(

∑
iwi(xiz

′
i − x′izi)−

1∑
iwi

(x̄z̄′ − x̄′z̄)∑
iwi(xix

′
i + ziz′i)−

1∑
iwi

(x̄x̄′ + z̄z̄′)
)

x0 =
1∑
iwi

(x̄− x̄′cos(θ)− z̄′sin(θ))

z0 =
1∑
iwi

(z̄ − x̄′sin(θ)− z̄′cos(θ)) (3.2)

where x̄ =
∑

iwixi and the other barred terms are defined similarly.

33

Given the distance metric, the next step involves checking whether there is a
smooth transition between any two motion frames. If the distance is less then a
threshold, then a link is created between these two frames. Figure 3.4 shows a
typically error image for a motion capture database. The red dots are the local
minima where the transitions are created. At this point a traditional motion graph
may be built. The entire motion capture database is segmented at points whether
the low error local minima occur. The nodes of the graph are the segmented
motion clips and the automatically created transitions and the edges of the graph
are decision points were more then one motion clip is available. The last step
is to prune dead ends. Without the pruning mechanism there is no guarantee
that motion graphs can generate continuous motions. Dead ends are nodes of the
graph where there are no outgoing transitions and sinks are nodes that restrict the
motion generation into a small part of the graph. To handle this issue, a maximum
strongly connected subgraph (SCC) of the motion graph is computed. A graph is
strongly connected if for every node u and v there is a path connecting u and v.
The maximum SCC is computed with the help of the Tarjan’s algorithm [Tar72]
which is linear on the number of nodes and edges. All the nodes and edges that
are not part of the maximum SCC are removed from the graph, leaving the rest
of the nodes and edges fully defining a motion graph.

3.4 Feature-Based Motion Graphs

We build our feature-based motion capture database by concatenating multiple
motions together. Each motion M is composed of a sequence of frames. A frame
F = (pr, q0, q1, ..., qk) defines the pose of the character where pr is the root position
and qi the orientation of the i-th joint. A motion is defined in respect to a skeleton
S, which defines the joint hierarchy and contains the joint offsets. When a frame
Fi of a motion M is applied to its skeleton S, the global joint positions of the
skeleton can then be calculated.

We start by segmenting the motions into semantically similar clips using fea-
ture detectors. A feature detector φ(Fi)→ {0, 1} is a binary function that evalu-
ates whether a frame satisfies a feature property as defined by the feature detector.
A motion is segmented at a frame Fi if φ(Fi) 6= φ(Fi+1). In this manner, for each
motion type of interest, a feature detector is assigned to it.

In this chapter, our focus is locomotion and for this purpose we have noticed
that the following two feature detectors suffice for an elaborate locomotion plan-
ner. We use these feature detectors:

• Walking Feature Detector

• Lateral Feature Detector

For walking motions (straight and turning) we wish to segment the motions

34

such that a clip contains one walk cycle. In order to achieve this, we use the
walking feature detector devised by Müller et al. [MRC05]. This feature was
originally used to extracts relatively similar motions from a huge motion capture
database by providing an example motions. However, in our case we use for
the purpose of efficient motion segmentation. The walking feature works in the
following way: each frame is tested against a foot crossing binary test which looks
whether the right ankle of the character is behind or in front of the plane created
by the left hip, right hip and the left ankle joint positions. This rule leads to a
robust segmentation procedure as shown in Figures 3.2 and 3.3.

Because our motion capture database also contains lateral stepping motions,
we devised a new lateral stepping feature detector. This novel feature was not
among the feature detectors developed by Müller et al. [MRC05]. For these type of
motions, we needed the segmentation points to occur at frames were the character
exerted forced to the floor, similarly to the walking feature detectors. This was
best achieved, by a feature detector that segments the motion when the velocity
of both the left and right ankle joints is close to zero. See Figure 3.3 (top) for an
example.

The segmented clips start and end with frames that are very similar to the
equivalent ones in the other segmented motion clips. This segmentation procedure
is, therefore, suitable for a motion graph construction. Additional feature detec-
tors can be designed in order to segment motions of different nature. Adding new
feature detectors is straightforward and simple rules can achieve robust segmen-
tation. For the purpose of locomotion synthesis, the two described segmentation
criteria suffice to ensure that useful clips are obtained. These clips are semantically
similar in form and length and could potentially be categorized, parametrized or
dropped if sufficient amount of motion segments have already been segmented.

Another advantage of feature-based segmentation is the automatic avoidance
of foot-skating artifacts. Since blending operations are performed only at the
extremities of each segmented clip, where there are only frames with one foot in
contact with the floor, the skeleton can be re-parented at the contact foot before
the transition blending operations, ensuring that the contact foot is not altered
from its original position. This is done during transition generation avoiding any
IK-based post-processing step for foot-skating correction. Motions extracted from
a feature-based motion graph contain no foot skating.

Our motion graph is then formed by performing a pairwise test between the
initial and final frames of each pair of segmented clips. A transition is created
whenever the frame comparison metric returns a value under the transition thresh-
old pre-specified by the user. We use the same distance metric and alignment
transformation as in the original motion graph work [KGP02].

We also compute during construction time the allowed rotational range at
each transition, as required by our IK-based deformation method (described in
Section 3.8). We start with the initial transformation as returned by the metric

35

Figure 3.2: Feature segmentation robustly segments walking motions into walk
cycles. The images here show the correct segmentation obtained for a normal
walking motion, sad walking motion and happy walking motion. Alternating
colors indicate segmentation points.

36

Figure 3.3: Feature segmentation is robust for different types of motions. The
top image shows the segmentation of a lateral stepping motion, the middle image
shows the segmentation of a basketball motion and the bottom image shows the
segmentation for a ballet motion. For clarity, the character posture is shown only
at every second segmentation for the lateral and basketball motions.

37

SMG FMG
Frames Time (s) Nodes Edges BF Time (s) Nodes Edges BF

693 208.1 42 16 1.27 1.5 51 80 1.61
1009 467.2 69 28 1.28 5.9 22 11 1.33
1539 1107.4 137 67 1.32 7.0 33 137 1.81
1660 1297.7 135 59 1.30 6.3 35 125 1.78
2329 2577.5 188 81 1.30 6.5 22 46 1.68
3347 4853.5 310 211 1.40 6.6 19 47 1.71
6887 22272.5 1245 933 1.42 27.0 100 403 1.80

Table 3.1: Numerical comparison between standard motion graphs (SMG) and
feature-based motion graphs (FMG). Column “BF” illustrates the connectivity of
each graph with its average branching factor, which is computed as the number
of edges divided by the number of nodes.

and change the rotational component about the vertical axis in incremental steps,
in both clockwise and counterclockwise directions, until before the transitional cost
exceeds the pre-defined threshold. The achieved range is stored at each transition
and defines the allowed rotational range during IK motion deformation.

As a final step, the largest strongly connected subgraph of the graph is selected.
The obtained subgraph represents the final feature-based motion graph.

It is important to observe the significance of devising good feature detectors
capable of picking appropriate transition points for the types of motions to be
used in the motion graph. If the presented feature detectors are not adequate
for a given type of motion, the resulting graph may have poor connectivity and
achieve poor performances in search queries. The presented methods were devised
to work well with locomotion sequences and an extensive analysis of the obtained
results are presented in the next sections.

3.5 Analyzing Feature-Based Graphs

Figure 3.4 compares the transition locations selected with the standard motion
graph procedure against the proposed feature segmentation. These transitions
are superimposed on the 2D error image of the entire motion database. The same
frame comparison threshold is used for both methods. Note that the computation
of the 2D error image is required by the standard motion graph but not by the
feature-based motion graph. The transitions in the standard motion graph are
selected by detecting local minima in the 2D error image; whereas for feature-
based graphs, candidate transitions are determined by the feature segmentation
directly and are independent of the 2D error image.

Figure 3.4 shows that the feature-based transitions often occur in similar loca-
tions as the local minima ones. Since the possible transition frames are segmented

38

Figure 3.4: 2D error image between the frames of 3 walking motion cycles contain-
ing 693 frames sampled at 60 Hz. The red regions represent highest error and the
blue regions represent lowest error. The red points marked are the local minima
and the black crosses are transitions detected by the feature segmentation. There
are 57 black transitions and 42 red transitions. The bars at the top and left of
the image indicate the frames that were selected during the feature segmentation
phase. Black transitions are always located at intersections of segmented frames.

39

by the same feature detectors, they satisfy the same geometrical constraints and
thus have high chances of forming transitions. The motion capture database is
also segmented at less points; moreover, our experiments show that the feature
segmentation criterion will result on transition points that have higher connectiv-
ity with other transition points.

In order to evaluate our approach, we have computed both a standard motion
graph (SMG) and a feature-based motion graph (FMG) from 6 different motion
capture databases containing an increasing number of frames. Table 3.1 shows nu-
merical comparisons between the structures, using the same transition threshold.
It is possible to notice that FMGs have less nodes and more edges in most of the
cases. The “BF” column in the table shows the average branching factor obtained
in each case. This column clearly indicates that FMGs exhibit higher connectivity
compared to SMGs in all cases. This property makes FMGs particularly suitable
for our IK deformation method since more connections (and at suitable frames in
the walk cycle) are considered for deformation.

FMGs are also computed much faster. The time spent for constructing a
feature-based motion graph is often improved from several minutes to just a few
seconds. Figure 3.5 depicts this comparison in logarithmic scale (with a base of
10) and shows that FMGs can be constructed 2 to 3 orders of magnitude faster
than SMGs. For instance, it took 27s to create a feature-based graph from 6887
motion frames while the standard motion-graph took about 6h.

We have also analyzed the obtained size and connectivity in respect to the
selected transition threshold. Figure 3.6 shows the number of nodes and average
branching factor as a function of the transition threshold. The average branching
factor is computed as the average number of edges per node. It can be observed
that FMGs are more compact and better connected than SMGs. The higher
branching factor for the FMGs is a direct consequence of checking transitions at
selected suitable frames, allowing more than one transition to occur in a same
lowest error connected component of the error image.

It is useful to observe why FMGs are more compact than SMGs with an
example. In SMGs transitions can happen at any point p = (i, j), where i and j
are frame numbers. In FMGs transitions are only allowed at points generated by
the feature segmentation. Suppose a motion M with 20 frames (enumerated from
0 to 19) is given as input and the transitions from the local minima segmentation
are: Tm = {(5, 7), (8, 14), (15, 10)}. In this case M will be segmented in clips Cm =
{0−5, 5−7, 7−8, 8−10, 10−14, 14−15, 15−19}, resulting in a graph with 7 nodes.
FMGs will first generate a set S of feature-based segmentation points, for example
S = {5, 7, 10, 14}. Then, all transitions {(5, 5), (5, 7), (5, 10), ..., (14, 10), (14, 14)}
will be candidates but only those below the similarity threshold will be kept. Given
that M is the same in both cases, it is highly probably that the transition set will
be Tf = {(5, 7), (7, 14), (14, 10)}. Note that (8, 14) ∈ Tm is close to (7, 14) ∈ Tf
and (15, 10) ∈ Tm is close to (14, 10) ∈ Tf . Given transitions Tf , motion M will be

40

Figure 3.5: Construction time spent for SMG (top/red line) and FMG
(blue/bottom line) as a function of the number of frames. The vertical axis
represent time on a logarithmic scale (base 10). See also Table 3.1.

segmented in clips Cf = {0−5, 5−7, 7−10, 10−14, 14−19}; resulting in a graph
of 5 nodes instead of 7. This example illustrates how the structured segmentation
of FMGs often lead to graphs with fewer nodes, but also well representing the
same motion capture database.

3.6 Locomotion Synthesis

After building the motion graph, the next step involves extracting the desired
motions. Every node is a piece of motion and generating a motion is a matter
of putting these pieces together in the correct position and orientation. That
is, every node has to be transformed by an appropriate transformation to align
the nodes correctly. This is achieved by applying the transformation which has
already been computed to all of the frames in the outgoing node.

Searching for a motion that satisfies the user constrain could then be seen as
an optimization problem that tries to minimize a given function [KGP02]. The
cost of a graph walk can be seen as:

f(w) = f([e1, e2, ..., en]) =
n∑
i

g(w, ei) (3.3)

41

Figure 3.6: Number of nodes in the standard motion graph (SMG, in red/top)
and in feature-based motion graph (FMG, in blue/bottom) as a function of the
transition threshold.

Figure 3.7: Average branching factor in SMG (red/bottom) and in FMG
(blue/top) as a function of the transition threshold.

42

where function g(w, ei) represents the cost of appending an edge ei to the path
w.

One typical example is to search for a path that will plan the motion of the
virtual character moving it from a location p0 to a location p1. For this case, a
graph search would suffice. However, a graph search alone is not an appropriate
search because it tries to reach the goal position p1 without worrying about how it
reaches there. We would rather want the character to follow a path given by the
user. In order to achieve this, the g(w, e) function is defined as the area between
the requested path and the path currently being searched:

g(w, e) =
n∑
i=1

||P ′(s(ei))− P (s(ei))||2 (3.4)

where function s(ei) returns the arc-length of the path at frame ei and the
functions P (l) and P ′(l) return a point at an arc-length of l from the searched
path and requested path respectively. The arc-length is computed from the start
of the path w therefore the function g(w, e) takes the traveled path as an input.

Although this formulation minimizes the differences between the path and the
solution motion, it has one major disadvantages—there does not exist a suitable
heuristic that could estimate the residual cost of g(w, e). Therefore, the search
is reduced from an A* search to a uniform-cost search, which is much slower.
Feature-based motion graph solved this problem by running an A* search within
a channel. The search was still expanding nodes in A* search fashion, but nodes
that were outside the channel were pruned. Hence, indirectly the search was
following the path because the channel was defined by the path that needed to be
followed.

As showed in Table 3.1, FMGs contain less nodes and higher connectivity be-
tween nodes. The higher connectivity is key for improving the solutions generated
from search queries. In order to quantify and evaluate the solution space of the
graphs, we now present several experiments measuring and comparing the quality
of our solutions in different environments with obstacles.

Figure 3.13 illustrates the solution space of both graphs using color-coded error
comparisons similar to the comparison methods by Reitsma et al. [RP07]. Each
error image spans an environment with dimensions of 10 m by 10 m, and with cells
of dimensions of 10 cm by 10 cm. For these comparisons we have not employed the
triangulation-based pruning technique (Section 3.7) and the IK-based deformation
(Section 3.8) as we are only interested in measuring the difference between FMGs
and SMGs without any optimizations. The right-most column shows the error
ratio E = esmg/efmg between both methods. A cell with black color means either
an obstacle or that SMG is better, i.e. E < 1. For 1 < E < 2, when FMG is
better, the color scale is used ranging from blue, meaning slightly better, to red,
meaning 2 times better. It is possible to notice that the errors obtained with the

43

FMG are almost always lower.

Table 3.2 summarizes the obtained statistics from 4 different environments
with increasing number of obstacles. Both SMG and FMG were constructed using
the same transition threshold. SMG had 318 nodes with an average branching
factor of 1.31, whereas FMG had 79 nodes with an average branching factor of
1.59. Three metrics were used to compare the performance of the graphs: average
optimal solution length, average expansion count and average search time (in
seconds) spent during the graph search. A maximum expansion count of 100,000
was chosen for all the queries. If the maximum expansion count was reached and
a solution was not found, a failure was reported. For sake of fairness, we only
compared queries when both SMGs and FMGs were successful. The comparisons
for SMGs and FMGs are presented in percentages and they range between −100%
and 100%.

For the length comparisons we have defined the length error as follows: let P
be the length of the 2D path that needs to be followed and let L be the length of
the projection of the root joint trajectory of the solution motion that follows P .
The length error is defined as E = L/P . Since the same set of trials were used
for the comparison experiments, the value of P is the same, and therefore we only
use L as a metric for comparing the length quality of the generated trials.

As Table 3.2 shows, in average, FMGs expand less nodes, spend less time
searching and produce smaller errors in all of the cases. In average, FMGs show
an improvement between 1-3% in length error and between 40-60% in search time
in comparison to SMGs thanks to the increased solution space achieved with the
higher connectivity. Our results show that choosing transitions at local minima
does not always yield better results. Instead, transitions at key points detected
by the feature segmentation generate better results and lead to faster searches.

3.7 Triangulation-Based Search

The search procedure used in the previous section represents the standard search
solution for extracting locomotion sequences from a given motion graph. We
now describe our improved search for faster motion extraction, which is based
on constraining the search to pre-computed channels. While the idea of pruning
the search has been explored before [SH07, CK04], our approach employs a new
technique based on fast geometrically-computed channels.

We first compute a free 2D path on the floor plane between the current position
of the character and the target position using an available triangulation-based
path planning technique [Kal10]. The computed paths are obtained well under a
millisecond in the presented environments. The path is computed with guaranteed
clearance, therefore guaranteeing that sufficient clearance for the character to
reach the goal is available (see Figure 3.8 and 3.9).

44

S
ea

rc
h
es

S
M

G
F

M
G

M
ea

n
(%

)
S
td

.
D

ev
.

(%
)

T
ot

al
M

u
t.

P
er

c.
T

im
e

L
en

.
E

x
p
.

T
im

e
L

en
.

E
x
p
.

T
im

e
L

en
.

E
x
p
.

T
im

e
L

en
.

E
x
p
.

79
20

73
86

93
.2

6
0.

41
60

2.
51

36
23

0.
32

58
2.

88
18

05
45

.4
3

3.
13

66
.9

9
40

.0
8

6.
69

35
.3

2
64

35
59

30
92

.1
5

2.
18

77
7.

84
17

46
3

1.
85

75
2.

11
94

98
39

.4
8

3.
85

59
.7

6
39

.7
2

5.
41

36
.4

5
50

92
44

23
86

.8
6

2.
81

89
0.

79
22

25
9

0.
94

87
9.

28
44

29
60

.8
4

1.
31

76
.0

7
16

.6
5

2.
13

13
.4

8
42

86
34

51
80

.5
2

2.
91

86
2.

18
23

12
8

0.
96

85
0.

87
45

65
59

.3
1

1.
33

75
.2

0
18

.7
0

2.
40

15
.1

2

T
ab

le
3.

2:
S
ta

ti
st

ic
s

w
h
en

se
ar

ch
in

g
fo

r
lo

co
m

ot
io

n
se

q
u
en

ce
s

in
d
iff

er
en

t
en

v
ir

on
m

en
ts

.
T

h
e

sa
m

e
tr

an
si

ti
on

th
re

sh
ol

d
w

as
u
se

d
in

b
ot

h
gr

ap
h
s.

“T
ot

al
”

is
th

e
to

ta
l

n
u
m

b
er

of
at

te
m

p
te

d
q
u
er

ie
s.

“M
u
t”

is
th

e
n
u
m

b
er

of
m

u
tu

al
ly

su
cc

es
sf

u
l

q
u
er

ie
s.

“P
er

c”
is

th
e

p
er

ce
n
ta

ge
ra

ti
o

b
et

w
ee

n
“M

u
t”

an
d

“T
ot

al
”.

“‘
T

im
e”

is
th

e
av

er
ag

e
ti

m
e

sp
en

t
se

ar
ch

in
g

fo
r

ea
ch

so
lu

ti
on

in
se

co
n
d
s,

“L
en

”
is

th
e

av
er

ag
e

ar
c-

le
n
gt

h
of

th
e

so
lu

ti
on

m
ot

io
n
s

m
ea

su
re

d
al

on
g

th
e

ch
ar

ac
te

r’
s

ro
ot

tr
a
je

ct
or

y
p
ro

je
ct

ed
on

th
e

fl
o
or

,
an

d
“E

x
p
”

is
th

e
av

er
ag

e
n
u
m

b
er

of
n
o
d
e

ex
p
an

si
on

s
d
u
ri

n
g

ea
ch

se
ar

ch
.

T
h
e

la
st

si
x

co
lu

m
n
s

sh
ow

th
e

m
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

on
of

im
p
ro

ve
m

en
ts

(i
n

p
er

ce
n
ta

ge
ra

ti
os

)
of

F
M

G
s

ov
er

S
M

G
s.

45

Once a 2D path is available, we perform a graph search by unrolling the mo-
tion graph in the environment and expanding only the nodes that remain close
enough to the path. Since the path is guaranteed to be free of obstacles within
its channel (i.e. within a distance r to the path), only nodes generating motion
clips completely inside the free channel are expanded, and collision tests with the
environment are not needed. As a result, faster searches are achieved by avoid-
ing expensive collision checks, which represent a major computational bottleneck
when employed.

We test if a motion clip remains inside the free channel by projecting the
position of key extreme joints of the character (like the hand and feet joints) to
the floor, and measuring if their distances to the path are smaller than r. The
projected positions are taken from the final frame and few intermediate frames
of each motion clip. Collision tests are, therefore, reduced to point-path distance
computations.

The overall search procedure starts from the node in the motion graph contain-
ing the initial character pose. This node is expanded, and every valid expansion
remaining inside the free channel is inserted in a priority queue Q storing the
expansion front of the search. The priority queue is sorted according to an A*
heuristic function f(node) = g(node) + h(node), where g(node) is the cost-to-
come value and h(node) is the distance to the goal. The search stops when a node
is within a distance d to the goal or when the expansion count exceeds a certain
limit, in which case failure is reported. In our experiments d is set to 10cm and the
expansion count limit is set to 1 million. The expansion count limit is necessary
because otherwise the unrolling process could continue indefinitely.

Another advantage of finding a path in the environment before starting the
unrolling process is to avoid local minima. In general, the A* search will expand
nodes blindly towards the goal without any consideration on the placement of the
obstacles in the environment. As such, the search spends a lot of time expanding
nodes towards one local minimum which might not be a part of the final solution.
Such cases occur, for example, when the goal is right behind an obstacle. With
channel pruning, a collision free path is already known in the triangulated free
space of the environment. Therefore, the path returned by the triangulation serves
as a guide to the A* search by confining the search within the free channel.

Figures 3.10, 3.11, 3.12 clearly depict the advantage of confining the search
within the computed channel. For the four environments showed in Figure 3.14,
the improvements in search times were up to 40%. For a more complicated envi-
ronment, such as the example in Figure 3.12, the pruning technique was able to
find a solution 10 times faster.

Failure in the described search procedure can happen if the motion graph does
not have suitable connectivity. In other words, failure will occur if the search
frontier runs out of leaves due to the obstacles or channel pruning. Feature-based
motion graphs present themselves as a better choice for preventing the search to

46

Figure 3.8: Example of paths with clearance. The sequence of images illustrate
that the floor triangulation can be updated very efficiently if obstacles move (under
a millisecond in an average computer when up to about 100 vertices are involved).

47

Figure 3.9: Channel pruning does not impose any requirements on the environ-
ment to be static and no other computation prior to a search query is needed.

48

Figure 3.10: Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom).

49

Figure 3.11: Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom).

50

Figure 3.12: Unrolled branches in two different environments by a motion graph
search with channel pruning disabled (top) and enabled (bottom).

51

Figure 3.13: Color-coded error comparisons when searching for locomotion se-
quences. The first column shows the used environments. The second and third
columns show the errors obtained with the SMG and FMG respectively. The error
e = l/p is the ratio between the length l of the obtained motion from each method
and the length p of the Euclidean shortest path on the floor plane (including a
path clearance). A blue color means a solution length very similar to the shortest
path, a red color means maximum error, which here is set to 2 times the length
(2p) of the shortest path. The character starts by facing the up direction and
needs to first rotate down in order to reach the lower targets, which explains the
large red areas in the images.

52

Figure 3.14: Color-coded error comparisons when searching for locomotion se-
quences with the precomputed channel pruning enabled. The color coding for the
comparisons here is the same as in Figure 3.13, with the exception that in the
right-most column a cell is set to red (maximum error) when FMG successfully
finds a solution but SMG fails. Another difference in respect to Figure 3.13 is
that, instead of always starting oriented upwards, here the character’s starting
orientation is set to face the channel prior to the search, what makes the charac-
ter to always start with a forward walking motion. The presented comparisons
show that FMGs have lower errors and higher success rates than SMGs in most
of the cells.

53

stop before reaching the goal location of the path. For example, Figure 3.15 illus-
trates a typical situation where FMGs are able to produce a locomotion sequence
successfully following the entire path, while the SMG structure makes the search
to run out of connections before reaching the goal. Figure 3.14 shows several com-
parison results obtained with the channel-based search procedure. It is possible
to notice that, due the higher connectivity obtained, FMGs practically always
produce better results.

3.8 Inverse Branch Kinematics

Combined with our FMG and triangulation based pruning technique, a new In-
verse Branch Kinematics (IBK) procedure is proposed for improving the obtained
solutions.

As previously mentioned in Section 3.5, we compute a lower and upper limit for
the rotational component of each created transition during the graph construction
step. A transition Tr(i, j) is generated between the ith and jth frame of the
motion capture database by using a transformation Tm that minimizes the distance
between the interpolated motions as defined by the employed frame similarity
metric. The limits are computed by measuring the error associated to rotational
increments. For each new angle increment, the new transformation is calculated
in the following manner:

T (θ) = P−1i Rθ Pi Tm, (3.5)

where Tm is the transformation as returned by the original metric introduced
by Kovar et al. [KGP02], Rθ is the rotational transformation of angle θ about
the Y axis and Pi is the global position of the root joint of the ith frame of the
motion database (see Figure 3.16). This procedure is repeated for both the upper
and lower rotational limits while the transition cost does not exceed the global
transition error threshold.

Later, for each motion search query, the search procedure is performed as
previously described, stopping when a branch becomes close enough to the target
in respect to a user-specified distance do. Then, the IBK solver is employed to
iteratively optimize the solution towards the exact target location, up to a given
tolerance di. Therefore, when h(node) < do and g(node) > dist(start, goal),
di < do, the IBK procedure is invoked.

In other words, when the distance between the node being expanded and the
goal is under do and the length of the current path is longer than the Euclidean
distance between the start and goal positions (meaning that there is room for a
branch deformation), the search is then paused and the branch is deformed as a
2D kinematic chain with joint limits taken from the transition limits stored in the
transitions. See Figure 3.17 for an example. In our experiments, we have set di to

54

Figure 3.15: Top image: the channel search procedure on a feature-based graph
successfully computed a motion following the entire path. Bottom image: the
same search failed in the standard motion graph. The same motion capture
database and transition threshold were used in both cases.

55

Figure 3.16: Computing rotational joint limits for the IBK search procedure. The
blue segment represents a transition from ith to the jth frame of the motion
capture database.

have the same value as parameter d used in Section 3.7 (10cm), and we have set
do to 50cm. Parameters d and di are kept the same in order to achieve meaningful
results in our performance evaluations.

We have determined the values of d, di and do empirically after experimenting
with the method in a few motion queries. These values have worked well in all
our examples and we have not observed the need to modify them according to
each query. One important factor that influences the choice for these values is
the average length of the motions being computed. If improvements are needed,
one possible extension is to fine-tune the pre-defined value of do as a function
of the length of each obtained branch. In this way it is possible to have longer
deformable branches being able to reach larger areas.

Depending on the nature of the transitions, the chain might have different joint
limits. In Figure 3.17, the transition between the third and fourth node of the
branch is not flexible; thus, this joint of the chain remains fixed. Also, the lower
and upper joint limits do not have to be symmetric. For example, the second link
has only room to move in respect to the upper limit. Once a candidate solution
chain with its joints limits is obtained, the IBK solver can then evaluate rotational
values at the joints in order to reach the target with the end-node of the search
path.

Several experiments were performed and our solver achieved best results with
a Cyclic Coordinate Descent (CCD) solver [WC91]. We have in particular ex-
perimented with a Jacobian-based pseudo-inverse solver, however, in our highly
constrained 2D kinematic chains, the much simpler CCD solver was faster.

Each CCD iteration increments rotations at each joint, starting from the base
joint towards the end-effector joint. At each joint two vectors vend and vgoal are
calculated. Vector vend is from the current joint to the end-effector and vgoal is
the vector from the current joint to the goal. These two vectors are shown in

56

Figure 3.17: A graph branch represented as a kinematic chain. Motion transitions
are represented as rotational joints and the red segments represent the joint limits
which are identical to the corresponding rotation limits stored in the transitions.

Figure 3.17 for the fifth link of the chain. The angle between the two vectors is
incremented to the current joint and the result clipped against the joint limits.
The last step of the CCD iteration consists of calculating the improvement from
the previous iteration, which is given by how much closer the end-effector is to
the target.

The CCD iterations stop when no improvements are detected after a number
of iterations. At this point, if the distance between the end-effector and the
goal is less then di then the solution with its new rotation values is evaluated
for collisions. If no collisions occur, success is reported otherwise the optimization
search continues until another candidate branch is obtained. Figure 3.18 illustrates
that in several cases the IK deformation is able to achieve a solution that otherwise
the alternative solution without deformation would not be acceptable.

Table 3.3 shows the effect of employing the IBK solver for SMGs and FMGs
with both the channel pruning enabled and disabled. As it can be seen from the
table, IBK improves the generated solutions and reduces the search time in all
the cases. The average improvement in the length of the motions when channel
pruning is enabled is about 17% and 5% when pruning is disabled. The improve-
ment on average on the search time is 31% when channel pruning is enabled and
21% when channel search is disabled. The reduced search time is a direct conse-
quence of being able to terminate the search process early. This is possible because
branches that are close to the goal can be deformed to meet the goal precisely.

The IBK optimization does not impose noticeable performance degradation
since only a few iterations are performed in each search query and iterations only

57

Figure 3.18: The top image shows a typical problematic motion graph solution
where an overly long motion is returned as solution to a given target. The bot-
tom image shows the correct solution obtained by coupling the search with the
IBK solver, which is able to deform nearby motions to the exact target without
degrading the quality of the solution.

58

S
M

G
F

M
G

C
h
an

n
el

P
ru

n
in

g
W

it
h
ou

t
C

h
an

n
el

C
h
an

n
el

P
ru

n
in

g
W

it
h
ou

t
C

h
an

n
el

E
n
v
.

L
en

gt
h

E
x
p
.

T
im

e
L

en
gt

h
E

x
p
.

T
im

e
L

en
gt

h
E

x
p
.

T
im

e
L

en
gt

h
E

x
p
.

T
im

e
1

17
.9

73
.3

36
.8

1.
5

55
.0

29
.2

18
.0

80
.0

57
.2

5.
0

49
.1

30
.8

2
17

.6
67

.4
29

.9
2.

5
53

.3
21

.8
16

.6
75

.6
43

.9
4.

5
49

.3
13

.5
3

17
.6

62
.7

23
.4

5.
6

58
.1

23
.9

13
.7

67
.1

19
.9

4.
2

56
.5

19
.0

4
17

.6
67

.3
29

.9
5.

6
48

.1
15

.1
12

.9
55

.2
6.

2
4.

4
47

.4
14

.6

T
ab

le
3.

3:
Im

p
ro

ve
m

en
ts

ga
in

ed
w

h
en

d
ep

lo
y
in

g
IB

K
d
u
ri

n
g

se
ar

ch
.

C
om

p
ar

is
on

s
fo

r
b

ot
h

S
M

G
s

an
d

F
M

G
s

w
it

h
an

d
w

it
h
ou

t
ch

an
n
el

p
ru

n
in

g
fo

r
fo

u
r

d
iff

er
en

t
en

v
ir

on
m

en
ts

ar
e

sh
ow

n
.

A
ll

va
lu

es
ar

e
re

p
re

se
n
te

d
as

p
er

ce
n
ta

ge
s.

E
ac

h
va

lu
e

is
ca

lc
u
la

te
d

as
fo

ll
ow

s:
if
v

is
th

e
va

lu
e

m
ea

su
re

d
w

it
h
ou

t
d
ep

lo
y
in

g
IB

K
an

d
v i
bk

is
th

e
va

lu
e

w
it

h
IB

K
d
ep

lo
ye

d
th

en
th

e
re

p
or

te
d

p
er

ce
n
ta

ge
p

is
ca

lc
u
la

te
d

a
p

=
−

(v
ib
k
−
v
)/
v
.

59

N
on

e
S
m

al
l

M
ed

iu
m

L
ar

ge
T

ec
h
n
.

L
en

.
E

x
p
.

T
im

e
L

en
.

E
x
p
.

T
im

e
L

en
.

E
x
p
.

T
im

e
L

en
.

E
x
p
.

T
im

e
F

8.
7

60
.1

31
.0

10
.3

61
.9

33
.4

13
.4

60
.8

27
.2

14
.7

68
.5

42
.9

F
C

12
.9

79
.0

49
.2

13
.8

78
.8

37
.1

15
.1

74
.3

15
.3

16
.7

78
.2

27
.1

F
C

I
10

.4
91

.8
67

.3
11

.2
87

.0
42

.6
11

.4
14

.2
19

.9
14

.6
85

.3
34

.7

T
ab

le
3.

4:
Im

p
ro

ve
m

en
ts

ga
in

ed
ag

ai
n
st

S
M

G
s

fo
r

fo
u
r

d
iff

er
en

t
en

v
ir

on
m

en
ts

as
th

e
p
ro

p
os

ed
te

ch
n
iq

u
es

ar
e

d
ep

lo
ye

d
.

A
ll

va
lu

es
ar

e
re

p
re

se
n
te

d
as

p
er

ce
n
ta

ge
s

as
ex

p
la

in
ed

in
T

ab
le

3.
3.

“T
ec

h
n
”

st
an

d
s

fo
r

te
ch

n
iq

u
e

an
d

“L
en

”
fo

r
le

n
gt

h
.

T
ec

h
n
iq

u
e

“F
”

u
se

s
on

ly
F

M
G

s,
te

ch
n
iq

u
e

“F
C

”
u
se

s
F

M
G

s
an

d
ch

an
n
el

p
ru

n
in

g,
an

d
te

ch
n
iq

u
e

“F
C

I”
u
se

s
F

M
G

s,
ch

an
n
el

p
ru

n
in

g
an

d
IB

K
.

60

require extremely simple 2D operations.

The IBK deformation procedure not only improves search time and conver-
gence to the goal point, but it is also formulated in a way to not introduce any
undesirable artifacts such as foot skating. IK rotations are only allowed at transi-
tion points, which are always blended with the re-parenting strategy to the support
foot in order to not generate foot skating. As a result, although IBK may intro-
duce additional rotations to transitions, the resulting motion will automatically
remain without foot skating artifacts.

3.9 Discussion

We now present several evaluations demonstrating the advantages of the proposed
feature segmentation, channel pruning and IBK deformation. A video illustrating
the presented results is available from the website of the authors 1.

The first obvious advantage of the proposed FMG is that the construction time
is dramatically improved in comparison to the standard motion graph procedure
as our method does not need to compute a full 2D error image of the motion
capture database (see Table 3.1). The fact that we do not search for transitions
in the quadratic space of possibilities does not impose any drawbacks. On the
contrary, we have shown that feature-based graphs have more connectivity and
most often lead to improved results when applying search methods for locomotion
synthesis around obstacles, which is always a challenging problem for discrete
search structures to address. For instance, Table 3.2 shows up to 60% improvement
on the time spent searching in all four environments.

In addition to the significant improvement in construction time, feature-based
segmentation also introduces semantics. For example, when specific feature de-
tectors for forward and lateral steps are employed, each created motion segment
in the graph can carry the label of its generating detector. This ability allows
the user, for instance, to control the number of motion segments per feature type
and to achieve compact graphs from large motion capture databases, or to specify
search queries with only given types of motion segments in the solution. The
employed feature detectors have also shown to robustly segment walking motions
in several different styles.

Feature-based segmentation can furthermore help the user in determining the
frame similarity threshold. For example, in the forward walk segmentation, all
motion clips start and end with only one foot planted on the floor, with alter-
nated support foot at the start and end frames. Naturally, there should not be
a transition from the end to the beginning of a same motion clip, i.e. a reflexive
transition. Lowering the threshold until there are no reflexive transitions in the
graph is a good way to determine an initial suitable transition threshold. The

1http://graphics.ucmerced.edu/publications.html

61

segmentation also naturally prevents foot sliding effects during transition blend-
ing because all transition points are suitable for re-parenting the skeleton to the
support foot.

We have also showed comparisons demonstrating the several improvements
obtained by the channel pruning and the IK-based deformation technique (see
Table 3.3). In all scenarios, these methods were able to improve both the quality
of the synthesized solutions and the time taken during the search process. The
channel pruning technique was able to significantly speed up the search without
affecting the optimality of the solutions. The procedure eliminates the need for
collision checking and guides the A* search by confining the search to the collision-
free channel and, thus, avoiding getting stuck in local minima.

Figures 3.10, 3.11, 3.12 and Figure 3.14 show that FMGs present themselves
as a better option for motion synthesis in comparison to SMGs since they are
less likely to run out of leaves and terminate the search prematurely. This is
due to the fact that FMGs create suitable transitions. While SMGs minimize
the transition cost, FMGs consider transitions from pair of frames detected by
meaningful feature detectors (without exceeding the same error threshold as used
in SMGs). Selecting transitions in this manner also enables the A* search to
further benefit from channel pruning.

The IK-based procedure represents a novel, simple, and effective way to op-
timize motions composed of concatenations of motion capture segments. If more
deformation capability is needed, the IK deformation can be extended to consider
every frame of a motion as a joint and to also include translational deformations.
However, feet slide cleaning operations would be required after deformation in or-
der to maintain the original quality of the motions. By only considering rotational
deformation at transitions, a simple, clean and reasonably effective deformation
method is achieved.

Overall, the presented evaluations demonstrate that our methods significantly
improve the usability of motion graphs. The simplicity and motion quality ob-
tained by motion graphs are excellent and difficult to surpass with other methods.
Motion graphs do not require manual preparation of motions and can be built
automatically from a single parameter defining the allowed error in transitions.
Motion deformation is only needed to form transitions (with blending), and thus
the overall distortion is minimum. This is also the case when using the proposed
IK-based deformation since it was designed to always respect the overall allowed
error threshold.

Limitations and Avenues for Future Work

The main drawback of the proposed method is that relying on feature segmenta-
tion requires good feature detectors. If a feature detector is not adequate for a
given set of motions, sufficient transitions may not be found. For example, the

62

described walking feature detector will probably not be applicable to cartwheel
motions, and if applied, it will probably lead to a motion graph with poor con-
nectivity and, thus, not able to efficiently synthesize new motions. However, it is
our experience that effective feature detectors can be developed with little effort,
by determining where the most logical transition point should be. For instance,
we have also used the presented walking feature detector to successfully segment
different styles of walking and even ballet motions (see Figures 3.2 and 3.3).

An extensive collection of relevant feature detectors has been developed for
the problem of motion comparison and retrieval [MRC05], and they could be well
applicable to segment a variety of motions. We have not analyzed how additional
feature detectors would impact the construction of a motion graph from generic
motions. However, it is also possible to devise a hybrid approach where the
presented robust locomotion features are responsible for segmenting locomotion
clips, and the standard local minima metric is used to find generic segmentation
points in areas not covered by the feature segmentation. The investigation of such
a hybrid strategy is, however, left as future work.

Another point to observe is that FMGs lead to less nodes in the motion graph
and this could lead to an increased response time for interactive character con-
trol, since less transition points are available for switching to a new motion when
required. We have taken this possible implication into consideration when choos-
ing our locomotion features. For motions involving locomotion, the character will
most often face a choice only when one foot is planted on the floor, therefore, the
feature segmentation should not affect interactivity. Similar observations were
made by previous methods using manually crafted motion clips [TLP07].

More generally, FMGs are more compact because transitions are packed into
“hub frames” that avoid over segmentation of nodes at many locations. The real
aspect influencing interactivity would be the distance (in time) between nodes
and not the number of nodes. Having poor interactivity performance would also
imply poor search performance since less transition nodes would be available for
finding solutions. FMGs have lower number of nodes but higher branching fac-
tors, the involved trade-offs were thoroughly examined in this chapter and the
results demonstrate only benefits. This indicates that our method, at least for
locomotion, should not loose interactivity.

In terms of performance, the computation time taken during search can still be
significantly improved, possibly getting close to real-time performances, with the
pre-computation of limited-horizon search trees, a method that has been already
explored for manually-built move graphs [LK06]. In the next chapter we show
that more structured segmentation of FMGs is well suited for achieving precom-
puted trees that can connect to each other even when built from an unstructured
database.

63

3.10 Conclusion

We have presented new segmentation, search and deformation techniques for im-
proving motion graphs. Our techniques significantly reduce the time spent for
constructing the graph and at the same time lead to better solutions from search
queries. We have demonstrated these benefits with several experiments in environ-
ments with obstacles, using both standard search procedures and the proposed
channel pruning and IK-based motion deformation techniques. The proposed
methods have showed to produce significantly improved results in all cases. The
major result demonstrated in this chapter is that choosing transitions at local
minima will not lead to optimal reachability or optimal search performance in the
resulting graph. Instead, well-designed feature detectors will lead to improved mo-
tion graphs in several aspects, in particular with superior performances in search
queries.

64

CHAPTER 4

Precomputed Motion Maps

In this chapter we present a solution for extracting high-quality motions from
unstructured motion capture databases at interactive rates. The proposed solution
is based on automatically-built motion graphs, and offers two key contributions.
First, we show how precomputed expansion trees (or motion maps) coupled with
new heuristics and backtracking techniques are able to significantly decrease the
time taken to search for motions satisfying user constraints. Second, we show
that when feature-based transitions are employed for constructing the underlying
motion graph, the connectivity of motion maps is greatly increased, allowing the
overall method to perform search and synthesis at interactive frame rates. We
demonstrate the effectiveness of our approach with the problem of extracting path-
following motions around obstacles from a motion graph structure at interactive
performances.

4.1 Introduction

High quality motion search and synthesis from unstructured motion capture exam-
ples among obstacles has proven to be a challenging problem. Successful methods
are often based on motion graph structures [KGP02, AF02, LCR02], which rep-
resent a popular approach for the purpose of character animation. Motion graphs
have several good properties: they can be built automatically, they can be built
to represent any kind of motion, and most importantly, they are able to produce
realistic high fidelity results.

However, one of the main drawbacks of motion graphs is that they can easily
become too large, preventing search algorithms from quickly finding motions that
satisfy user constraints. Not only is the size of the graph a limiting factor, but also
its connectivity since graphs with many transitions will have a higher branching
factor eventually slowing down the underlying search algorithms. As such, motion
graphs are mostly unable to support search and synthesis at interactive rates. For
applications where interactivity is essential, the practical alternative often involves
relying on a small hand-crafted set of motions with guaranteed transitions between
themselves.

We present a solution for allowing motions to be extracted from a motion graph
structure at interactive rates. We achieve this with the use of precomputed motion
maps (see Figure 4.1) coupled with new heuristic and backtracking techniques

65

Figure 4.1: The image shows four motion maps used in a path following query.
Motion maps are search tree expansions efficiently precomputed and stored; and
then employed in run-time queries.

that significantly improve motion search performance. To eliminate the need of
manually-crafted motion representations with full connectivity, we also show that
a feature-based segmentation of the motion capture database [MK11] is able to
produce motion maps with enough density and connectivity for the overall method
to successfully search and synthesize motions at interactive frame rates.

In this chapter we focus on applying motion maps for solving the problem of
navigation around obstacles. The obtained motions are realistic and are computed
at interactive rates. Furthermore, due to the employed precomputed motion maps,
motion search is often reduced to processing only the next best motion map,
allowing search and synthesis to be performed in parallel.

Our overall method is divided in three main phases: motion map precompu-
tation, path finding and path following. The precomputation phase is an off-line
phase where the motion capture database is transformed into a feature-based mo-
tion graph (FMG) according to a locomotion feature segmentation [MK11], and
motion maps are then computed for each node of the FMG. Given a query in
run-time, the path finding phase will employ an efficient triangulation-based path
planning method [Kal10] able to quickly return paths with guaranteed clearance
from any given set of polygonal obstacles. The returned paths, therefore, provide
channels with enough clearance for the character to move, minimizing collision
checking queries after this point. In the path following phase, an optimized mo-

66

tion search algorithm is employed taking into account the precomputed motion
maps, which are transformed and superimposed on the path during the search
process. See Figure 4.1 for an example.

As a result, precomputed motion maps can be applied to efficiently solve path
following queries from unstructured motion databases. Path following is one basic
behavior important to several animation areas such as in simulation of populated
environments and computer games. Our proposed solutions are automatic and
applicable to generic locomotion data, and can therefore impact several of these
applications.

4.2 Related Work

Motion graphs are built by connecting the frames of high similarity in a database
of motion capture examples [KGP02, AF02, LCR02, PB02, LWS02]. Once the
motion graph is available, a graph search is performed in order to extract motions
with desired properties.

Many methods based on motion graphs have then been proposed. Kovar et
al. [KGP02] used branch and bound to find motions that follow a user specified
path by considering the motion synthesis problem as an optimization problem.
Arikan and Forsyth [AF02] used a randomized method to extract motions from
a hierarchy of motion graphs. Lee et al. [LCR02] constructed a cluster forest of
similar frames in order to improve the motion search efficiency. Dynamic pro-
gramming was used by Arikan et al. [AFO03] to search for motions satisfying user
annotations (such as first run and then jump).

The approach of Safonova and Hodgins [SH07] and Zhao and Safonova [ZS08]
is based on an interpolated motion graph with anytime A* used to search for solu-
tions. The resulting motion is an interpolation of two time-scaled paths through
the motion graph. Although it represents an improvement in respect to satisfying
constraints, this approach requires additional search time for finding solutions.
The difficulty to run at interactive frame rates is a common limitation of motion
graph approaches.

Many other planning methods have been proposed for synthesizing full-body
motions among obstacles [EAP06, PZL10, KL00a]. In particular, Choi et al. [CLS02]
combine motion capture data with probabilistic roadmaps [KSL96] to generate
motions for a given start and goal positions. Although such methods improve the
planning capabilities for addressing constraints, the quality of the results are not
improved in respect to motion graph approaches. Sung et al. [SKG05] make use of
probabilistic roadmaps to guide a bidirectional search, achieving realistic results
but relying on unrolling a manually-crafted motion graph structure.

Structures based on motion graphs still carry the benefit of minimally deform-
ing the original database of collected motions, therefore achieving high quality

67

results. In general, the main drawback of motion graphs is that a prohibitively
large structure would be needed in order to produce motions satisfying many
constraints, such as around obstacles and addressing precise goal locations. The
problem of increasing the motion database is that, as the size of the graph grows,
the underlying search methods will require additional computation time for finding
solutions.

This inherent difficulty of motion graph structures is well-known and methods
based on simplifying the database have also been proposed. In particular, Gleicher
et al. [GSK03] note that one main difficulty of motion graphs is its unstructured
nature, and they propose a method to simplify the graph to a small structured
graph suitable to interactive control. In the same direction, fat graphs [SO06]
and parametric graphs [HG07] have been proposed as attempts to improve the
structure of the motion capture data so that interactive controllers can be devised.

The approach taken in this chapter seeks to fully handle the entire given mo-
tion capture database, and to use precomputed search trees in order to achieve
interactive performances. Precomputation of search expansions has been already
employed for the problem of motion synthesis using motion capture data. For
instance, the work of Lau and Kuffner [LK06, LK10] efficiently employs precom-
puted search trees for synthesizing goal-driven interactive motions. However, in
order to achieve efficiency, their approach is designed around a manually-built
finite state machine of motions [LK05] that is fully connected. In contrast, the
specific techniques we propose enable precomputation to be applied to unstruc-
tured motion graphs.

Srinivasan et al. [SMM05] apply precomputed trees for all nodes of a motion
graph, and report difficulties handling tight spaces around obstacles due the stan-
dard search expansion technique employed. The related approach of precomputed
avatar behavior policies has also been proposed by Lee at al. [LL04].

Our approach is most similar to these works, however, we focus on handling
unstructured motions around obstacles at interactive rates. Our method intro-
duces several benefits: 1) it works with generic automatically built Feature-based
Motion Graphs (FMGs) [MK11] and hence does not require manually-built finite
state machines of motions; 2) it precomputes expansion trees for all nodes in the
FMG and does not require full connectivity, i.e. it does not require all leaves
of a precomputed search tree to link to the root of the tree for seamless tran-
sitions; 3) it employs a fast triangulation-based path computation [Kal10] that
computes paths within a collision free corridor with given clearance, allowing the
search to be pruned to the corridor and minimizing collision detection queries
during the search; and 4) it employs a search strategy that considers backtrack-
ing for well handling difficult situations involving tight spaces, turns and precise
arrivals; achieving excellent overall performance due the improved search and the
well-formed FMGs.

The proposed method therefore well handles unstructured motions around

68

obstacles and is able to produce long paths efficiently even in complicated envi-
ronments with many obstacles. The method is suitable to interactive applications
and the results are always of high quality.

4.3 Finding Paths with Clearance

Given an initial point pinit, a goal point pgoal, and a clearance distance r, the
collision-free path P (pinit, pgoal, r) = (p0, p1, . . . , pn) is described as a polygonal
line with vertices pi, i ∈ {1, . . . , n} describing the solution path. As the path
turns around obstacles with distance r from the obstacles, every corner of the path
is a circle arc which is approximated by points, making sure that the polygonal
approximation remains of r clearance from the obstacles.

Any path planning method with clearance can potentially be used to compute
P (pinit, pgoal, r). Due its efficiency, we employ the Local Clearance Triangulation
(LCT) method [Kal10], which leverages 2D meshing algorithms for maintaining a
suitable triangulation of the free space for path planning with clearance. We are
using an extended version of the method that includes dynamic obstacle updates
only requiring local updates each time an obstacle changes position [Kal10]. We
can therefore handle dynamic environments very easily, with updates and path
queries in relatively complex environments being computed in the order of millisec-
onds. Figure 4.2 shows examples of collision-free paths with clearance obtained
by the method.

Given that path determination takes obstacle clearance into account while
solving at the path finding level, we almost entirely eliminate the need of using
costly collision checking queries during the FMG search and synthesis.

In our path following application the obtained 2D path is used for guiding
and pruning the FMG search and a fine polygonal approximation of the curved
sections of the path is not needed. We therefore approximate the curved sections
very coarsely with only a few points.

4.4 Precomputation of Motion Maps

We start by constructing a motion graph similarly to Mahmudi et al. [MK11].
Although, standard motion graphs might very well be used with our path following
methods, our results indicate that FMGs have higher success rates because they
are better at generating denser and more evenly distributed motion maps (see
Figures 4.3 and 4.4). As later shown in Section 4.5, good density and distribution
in motion maps are important requirements for the path following procedure to
run successfully.

The next step is to precompute motion maps for all the nodes of the FMG.
The rationale behind the precomputation is to be able to follow the input 2D path

69

Figure 4.2: Different paths obtained to connect the same initial and goal points, as
they adapt to a few changes in the obstacles. The clearance of the paths is always
maintained, and the LCT representation is updated only with local operations for
each time an obstacle moves.

70

by repeatedly making efficient queries to motion maps for partial solutions that
can follow the path closely. This process is repeated until the goal is found or all
the possible candidates are exhausted. Unlike previous methods that precompute
only one expansion tree, we precompute motion maps for all the nodes of the
motion graph. The benefit of precomputing all the nodes is that we do not have
to rely on manually crafted motion graphs with full connectivity but can instead
use any automatically-built motion graph.

Let n represent a node of the FMG, which in our representation contains one
segmented motion clip. A motion map Tn of a node n represents a tree Tn of
motions that can be generated starting from the node n. The motion maps span
a three dimensional space X defined as:

X = {(x, z, θ) ∈ R× R× (−π, π]} . (4.1)

The x and z parameters determine the position of the character on the floor
and the θ specifies the orientation about the Y vertical axis of the root joint of the
skeleton; the positive Y axis points up on the XZ plane. For efficient storage, we
discretize the motion maps into cells of 10 cm by 10 cm for the x and z parameters
and into 12 groups of 30 degrees for the θ orientation. Furthermore, we represent
motion maps as hashed maps instead of 3D grids. There are two reasons for this:
first, by using hashed maps we avoid setting spatial limits on how far our motion
maps can be unrolled; second, motion maps populate X sparsely and unevenly
and, as such, a significant number of cells in our discretization remain empty.
Hash maps will only store occupied cells and, therefore, no space will be allocated
for unoccupied cells.

Algorithm 1 illustrates the overall precomputation process. We start by un-
rolling each node n of the FMG. The procedure starts by placing the first frame
of the node n at the origin, with the character facing the positive Z axis, and
building a motion map Tn with its root set to the node n (lines 1-3). Then, we
run a Dijkstra search starting on the node n and expand nodes that minimize the
arc-distance traveled by the expanded motions (lines 15-17). At every expansion,
the motion map Tn is augmented with the position (xi, zi) and orientation θi of
the character and the corresponding cell Tn(xi, zi, θi) is annotated with the path
Pi that leads the character from the initial node n to the current state (xi, zi, θi)
(line 14).

Note that since the same cell might be reached by different paths we store all
possible paths at each stage. This increases the number of available candidates
during the path following search phase. The unrolling stops when the Dijkstra
search reaches a user-defined depth (line 6). Examples of typical precomputed
motion maps obtained for FMGs are shown in Figure 4.3. As comparison, Fig-
ure 4.4 shows the obtained motion maps for a standard motion graph built from
the same motion capture database. It is possible to note that the well-defined seg-
mentation rule of FMGs lead to much denser motion maps, an essential property

71

Figure 4.3: Four typical motion maps precomputed for a Feature-Based Motion
Graph (FMG). The used expansion depth is 12. Note the high density achieved
in the regions covered by the motion maps.

72

Figure 4.4: The four equivalent motion maps to the ones shown in Figure 4.3, when
precomputed for a standard Motion Graph (SMG). These maps were precomputed
with depth 22 in order to achieve a size (number of nodes) equivalent to the FMG
motion maps.

73

Algorithm 1 Precompute(n,max depth)

1: F.init();
2: Q.init(n);
3: T.init(n);
4: while (Q not empty) do
5: node ← Q.pop();
6: if (node.depth ≥ max depth) then
7: continue;
8: end if
9: if (F(node) is not occupied) then
10: F.occupy(node);
11: else
12: continue;
13: end if
14: T.insert(node, path(node));
15: node.expand();
16: for all (child ∈ children(node)) do
17: Q.push(child, child.length);
18: end for
19: end while
20: return T;

to guarantee that solutions are mostly always found. Additional comparisons are
discussed in Section 4.7.

Each motion map Tn also stores the transformation Φ that aligns the map to
the origin with the positive Z axis direction and the average length of a motion
map, which is defined as:

A(Tn) =
1

m

m∑
i=1

L(T in), (4.2)

L(m) =
n−1∑
i=0

||mi −mi+1||, (4.3)

where T in is the i-th path of Tn and L(P) returns the length of the 2D path
P . The average length of Tn will determine the sampling frequency of the path P
during the path following phase (Section 4.5).

Moreover, to speed up the precomputation, we also maintain a 4D frontier
F = {(x, z, θ, nid) ∈ X × N}, which prevents expanding duplicate branches (lines
9-10). If the same node nid is about to revisit a cell c ∈ X then the we can safely
cull this branch as expanding nid at c would not lead to any new paths. Once the

74

motion map is built, the frontier F is no more needed and it is discarded. Another
significant speed up is to cache cells that were already queried. This facilitates
the search during the path following phase since many queries are made to cells
that were already used in prior queries.

The computational complexity of the precomputation procedure is O(nbd),
where n is the number of nodes, b is the average branching factor of the motion
graph and d is the chosen horizon depth of the motion map. Depth d is a significant
factor influencing the precomputation time, however, we have noticed that after
a certain depth is reached, increasing the horizon depth does not translate into
further improvements to our path following procedure.

4.5 Path Following

As described in Section 4.3, the input path P is a collision-free path with clearance
r, with starting point p0 and goal point pgoal = pn. The start and goal orientations
are also defined by the input path. The start orientation is determined by the
vector p1−p0 and the goal orientation is determined by the vector pn−pn−1, where
pi ∈ P (p0, pn, r) are points from the polygonal path as returned by the LCT path
planner.

The path following procedure assumes that all the nodes of the FMG are
precomputed up to a depth d and all their paths are stored in their corresponding
motion maps. After the precomputation is finished, the goal of the path following
procedure is to search for a sequence of nodes that generates a smooth motion
closely following the collision-free input path P (p0, pn, r).

The search procedure is presented in Algorithm 2, and all line references that
follow are in respect to this algorithm. The search starts by selecting an initial
node i from the FMG as the starting node of the search, and aligning its precom-
puted motion map Ti with the input path P . The alignment is determined by the
transformation Φi associated with the motion map Ti and a transformation Ψj as
determined by the last position and orientation of the partial solution up to the
current point. Initially, Ψ0 is set to the start position and orientation of the path
P . Subsequent alignments are performed in a similar manner by concatenating
the accumulated transformation Θ with the product of Φi and Ψj, as defined by
the partial solution of the j-th iteration of the algorithm:

Θj = Θj−1ΦiΨj. (4.4)

The next step is to sample path P to obtain query points q ∈ X which are a
subset of the space X (line 3). The query points are equally spaced between the
beginning of the residual input path up to the point with length along the path
equal to the average length of Ti, as defined in Equation 4.2. In our experiments
most points were about 10 cm apart, see Figure 4.9 for an example. Note that

75

Figure 4.5: Two different motion maps while generating the happy walking motion
showed in Figure 4.6.

76

Figure 4.6: The resulting happy walking motions from the search done in Fig-
ure 4.5.

77

Figure 4.7: Two different motion maps while generating the ballet motion depicted
in Figure 4.8.

78

Figure 4.8: The resulting ballet motions from the search performed in Figure 4.7.

79

Figure 4.9: Sample points from the input path used during the path following
search.

the sampled points are in world coordinates and before querying the motion maps
they have to be transformed to the motion map’s local frame. This is done by
transforming the query points qi ∈ Q by the Θ−1j transformation.

At every iteration of the path following procedure, we first query for the goal
pn and then all the query points Θ−1pi against Ti to check for possibles partial
paths (line 4). If none of the queried cells in the motion map are occupied, the
algorithm backtracks to consider different candidates from its previous iteration. If
during backtracking the root node is reached and all its alternatives are exhausted
then the algorithm stops and reports failure (lines 5-9). When the goal query is
successful then the final partial path is appended to the solution and success is
reported (lines 20-21), otherwise, all the queried candidate paths are retrieved and
sorted for their suitability (line 12).

The sorting function that picks the best partial path among the available
candidates could be tuned to suit a particular application. Since our goal is to
follow the path as closely as possible, we have defined our sorting function to
compute the area formed between the candidate partial path m and the input
path P . However, since longer paths will lead to a larger area, we divide the cost
by the square of the length of the candidate path to avoid favoring shorter paths.

The sorting function f(m,M,P), is shown in Equation 4.5. It takes three

80

Figure 4.10: Main stages of the path following search procedure.

parameters: a candidate path m, the current partial solution M and the input
path P . The L(m) function computes the length of a path m (if an index of a
frame is indicated then it computes the length up to that frame). Function P(P, l)
returns a point p ∈ P at distance l along the input path P . These functions read
as follows:

f(m,M,P) =

∑n
i=0 ||mi, P(P, L(M) + L(mi)))||

L(m)2
, (4.5)

P(P, l) =
{

(x, z) ∈ R2 | 0 ≤ l ≤ L(P)
}
. (4.6)

Once all the candidate paths are sorted, we iterate through the sorted candi-
date paths and pick the best path mbest (line 13). Once the best candidate path
mbest is chosen, we run collision checking on mbest to determine if it is collision-
free; otherwise, we consider the next best candidate. Once such candidate path
is found, it gets appended to the current partial solution M (line 17) and the last
node of the best path mbest determines which motion map gets used in the next
iteration of the path following procedure (line 19). At this stage, the partial solu-
tion path M is a motion that follows the input path P up to the point pbest, with
an orientation facing the residual input path P . In case all the sorted candidates
are unsuitable, the procedure backtracks and resumes considering other alterna-
tives from the previous iteration (lines 14-15). The path following search iterates
through this procedure until either the goal is reached (lines 20-21) or the lengths
of the partial solutions M exceed the length of the input path P . Figure 4.10
overviews the main stages of the overall algorithm.

As the path following advances towards the goal, a stack of sorted candidates
are stored at different stages. When backtracking needs to occur, the failed stage
is popped from the stack and the next best candidates left from the previous

81

Algorithm 2 FollowPath(T, P, i)

1: ilast ← ∅
2: while L(M) ≤ L(P) do
3: Q← sample path(P);
4: C ← query map(Ti, Q);
5: if C is empty then
6: if ilast == ∅ then
7: return FAIL;
8: else
9: i← ilast;
10: end if
11: else
12: S ← sort paths(C);
13: m← best path(S);
14: if m == NONE then
15: i← ilast;
16: else
17: M .append(m);
18: ilast ← i;
19: i← m.last();
20: if M .goal reached() then
21: return M ;
22: end if
23: end if
24: end if
25: end while

stages are reconsidered without having to re-query the motions maps associated
with the previous stage. Storing partial paths in stages offers a significant speed
up and allows for efficient reuse of prior partial path. In this manner, as a whole,
our motion search algorithm can be seen as an efficient cached A* search with very
effective pruning by the 2D channel computed from the triangulation planner.

4.6 Concurrent Motion Synthesis

Since the time spent on searching is significantly lower than the duration of the
synthesized motions, we can search and play motions concurrently. When a query
is made to the path following procedure, the first node to be used is either specified
by the user or automatically chosen by the procedure. Since this first node is
known in advance, and is not subject to change for a particular query, our method
can immediately start the path following search procedure while the first node
is being played. While the first node is finished playing, the path following is

82

D
ep

th
13

14
15

16
17

18
19

20
21

22
T

im
e

8.
14

s
11

.5
8s

16
.3

6s
22

.9
3s

31
.9

2s
44

.2
3s

1m
0s

1m
23

s
1m

55
s

2m
38

s
C

el
ls

12
14

1
15

36
1

19
35

1
24

36
7

30
52

1
38

39
1

48
19

3
60

35
6

75
50

6
93

99
2

S
iz

e
42

M
B

59
M

B
83

M
B

11
6M

B
16

2M
22

5M
31

1M
B

42
8M

B
58

8M
B

80
5M

B

T
ab

le
4.

1:
M

ot
io

n
m

ap
s

w
it

h
va

ri
ou

s
d
ep

th
s

in
a

S
M

G
:

p
re

p
ro

ce
ss

in
g

ti
m

e,
av

er
ag

e
n
u
m

b
er

of
o
cc

u
p
ie

d
ce

ll
s,

an
d

av
er

ag
e

si
ze

.

83

D
ep

th
3

4
5

6
7

8
9

10
11

12
T

im
e

0.
09

s
0.

19
s

0.
57

s
1.

21
s

3.
26

s
6.

76
s

17
.3

9s
35

.3
8s

1m
28

s
3m

4s
C

el
ls

36
0

66
7

13
96

24
58

49
56

83
12

16
17

3
25

55
2

47
41

3
70

11
7

S
iz

e
0.

39
M

B
0.

9M
B

3M
B

7M
B

17
M

35
M

B
88

M
17

9M
44

4M
B

88
9M

B

T
ab

le
4.

2:
M

ot
io

n
m

ap
s

w
it

h
va

ri
ou

s
d
ep

th
s

in
a

F
M

G
:

p
re

p
ro

ce
ss

in
g

ti
m

e,
av

er
ag

e
n
u
m

b
er

of
o
cc

u
p
ie

d
ce

ll
s,

an
d

av
er

ag
e

si
ze

.

84

already way ahead of the nodes that need to be played next. Usually the entire
path following search concludes before the first few nodes are played.

In order to achieve concurrent playing and search we have two separate threads:
the search thread and the rendering thread. The search thread is assigned the task
of carrying the path following search procedure and the rendering thread renders
the obtained partial solutions. The rendering thread initially awaits a signal
from the search thread notifying the completion of the first partial path. This
is usually done almost instantaneously. Then, after finishing rendering the first
partial path, the rendering thread continuously polls the search thread for new
partial paths until the goal is reached. The rendering threads tries to achieve a
fixed frame rate of 30 frames per second. After the visualization buffer is updated
the rendering thread is blocked and the path following searched is resumed until
the next rendering cycle. The parallelization has shown to scale well and we have
successfully run about 10 characters searching and playing motions at 30 frames
per second in a quad-core CPU.

Due to the backtracking possibility of our path following search procedure, the
rendering thread might start rendering a partial path that has been backtracked
in the search thread. In that event, the rendering thread stops playing the motion
and reports a failure. This does not happen very often as the path following search
is very efficient, however, it may happen if the motion database lacks motions
suitable for navigating in all areas of the environment. The user might always
decide to improve the database, or to disable simultaneous search and animation
in order to maximize the use of the backtracking mechanism.

4.7 Results and Discussion

For our experimental setup we have built three FMGs from different types of
motions: regular walking database, happy walking database and one ballet motion
database. Each of these motion capture databases contained 1 straight motion,
1 left sharp turning motion, 1 left gentle turning, 1 right sharp turning motion
and 1 right gentle turning. Our method showed to work well with this relatively
small number of turn variations. Additional variations would improve the already
high success rate of the algorithm, and the only drawback would be additional
storage space for the precomputed motion maps. The motions were sampled at
60Hz using 18 Vicon cameras in an environment of 5.5 m by 4 m. The total
number of frames in the motion capture databases ranged from 1079 to 3181,
corresponding to 20-60s of motions. The motions were captured and processed
into the FMGs without any manual editing involved. All the measurements took
place on a 2.7 GHz Intel i7 computer with 4GB of memory.

We built the FMGs as described in [MK11], and for comparison we also built a
standard Motion Graph (SMG) as described in [KGP02]. For achieving adequate
comparisons we have used the same error threshold for deciding transitions in both

85

Figure 4.11: Comparison of search techniques. The top image shows the used
environment and its blue path is the input path as returned by the LCT planner.
The bottom image depicts the search tree expansion of A* and our proposed
method based on motion maps. The search took 186s to complete.

86

graphs. In our trials, for the regular walking database, we have set the maximum
error threshold to 6 cm, obtaining a FMG with 72 nodes and average branching
factor of 1.56, and a SMG with 277 nodes and an average branching factor of 1.30.
Similar graphs were obtained for the happy walking and ballet motions.

We then precomputed motion maps for all the nodes of both FMG and SMG,
and at various depths. As mentioned earlier, motion maps were discretized into
cells of 10 cm by 10 cm for the (x, z) positional parameters and into 12 cells of
30 degrees for the orientation parameter. Table 4.1 (SMG) and Table 4.2 (FMG)
show the time taken to generate all the motion maps. Also reported is the total
number of occupied cells and the combined size of all the motion maps.

As it can be seen from the Tables 4.1 and 4.2, SMGs require higher depths, in
comparison to FMGs, to occupy motion maps with the same amount of entries.
The reason for this is the fact that the average length of a node in SMG is shorter
than the average length of a node in FMG. In Figures 4.3 and 4.4 we show motion
maps precomputed from a FMG (of depth 12) and from a SMG (of depth 22) and
notice that FMGs are significantly better at evenly spanning the covered space
of X and thus they present themselves as a better choice for the path following
algorithm. They offer a wider range of different candidate motions and ensure
global connectivity (and concatenation success) during the path following search.
This FMG property is essential for successful execution of the path following
method.

We also measured the importance of the motion map depth and size in respect
to the effectiveness of the path following algorithm by running 1000 trials on the
environment shown on Figure 4.12. Each trial consisted of: randomly selection
of start and goal locations on the environment, query to the LCT planner for a
path P with clearance of 50 cm, and full execution of the path following search
procedure in respect to the input path P . The same trials were conducted for
both the FMG and SMG, and the results are shown in Tables 4.3 and 4.4.

Table 4.3 reports the results for FMG. We can notice that the size of motion
maps initially had a strong influence on the success rate and search time of the
path following method, however, once a certain horizon was reached larger motions
maps did not improve the path following method as effectively. We also notice that
the lengths of the solution motions returned by the path following method were
very close to the length of the input path, showing that our method is capable of
generating solutions that are very close to optimal solutions. This is as expected
since we sample the input path and only admit candidates that follow the path
closely.

The same trials for SMG are shown on Table 4.4. Here, however, we see that
SMG did not scale as well as FMGs. For maps of relatively same sizes, SMGs
failed to achieve acceptable success rates and ran slower than FMGs. As noted
earlier, the main drawback of SMGs were that they failed to provide a variety
of candidates for the path following method to consider and thus failed to find

87

Size Depth Success Time (ms) Len. (m) Inp. (m)

33 8 63% 412.6 10.15 10.12

86 9 71% 356.7 10.96 10.94

174 10 87% 188.7 12.13 12.10

433 11 90% 148.3 12.75 12.66

867 12 93% 145.8 12.36 12.27

Table 4.3: The effect of the size (in MB) of motion maps on the success rate
and performance of the path following search for FMGs. The right-most four
columns show the success rate of the search, the average time taken to search for
the solutions, the average length of the solutions, and the average length of the
input paths.

Size Depth Success Time (ms) Len. (m) Inp. (m)

28 12 17% 175.6 6.39 6.19

81 15 32% 120.0 8.24 8.03

158 17 45% 335.6 7.82 7.66

417 20 55% 352.1 9.40 9.10

767 22 70% 556.9 10.13 9.86

Table 4.4: The effect of the size (in MB) of motion maps on the success rate and
performance of the path following search for SMGs. The columns are the same as
in Table 4.3.

solutions following the input that.

We then compared our path following method against two different search
methods: A* search and A* search with channel pruning (A*-Ch) as described
in [MK11]. The A* search represents a popular technique to generate optimal
solutions when unrolling the graphs. A*-Ch runs the A* search only inside a
channel around the input path by pruning all branches that go outside the path
channel. It represents a simple way to improve the A* search, however loosing
optimality. A comparison of the methods illustrating their speed of computation is
shown on Figure 4.12 and Figure 4.11. The A* search took 186s (Figure 4.12, A*-
Ch took 9.4s and the search with motion maps took only 760ms (Figure 4.11). In
this example our method gave an improvement of 245 and 12.3 folds respectively.

We have also performed numerical comparisons between the three search meth-
ods, with 1000 random trials on the environment shown in Figure 4.12. We used
motion maps of depth 11 for the FMG and of depth 20 for the SMG. We have
only compared trials where all the three methods were able to successfully return
a solution. The results are shown in Tables 4.5 and 4.6.

Table 4.5 shows the results for the FMG. The average length of the input path
was 14.34m. As it can be seen from the table, motion maps were significantly

88

Figure 4.12: Similar searches as in Figure 4.11. Top image uses the A*-Ch channel
pruning technique which took 9.4s to complete. Bottom image depicts the search
with motion maps. The search in bottom image took 0.760s.

89

Method Success Time (ms) Length (m) Speed up
A* 100% 23527.8 13.95 157.6x

A*-Ch 98% 1742.1 13.95 11.7x
M. Maps 93% 149.3 14.51 1.0x

Table 4.5: Search performance comparisons for A*, A*-Ch and motion maps in
1000 random trials using FMG. The columns show the overall success rate, the
average computation time taken, the average length of the obtained solutions, and
the relative speed improvement obtained with motion maps.

Method Success Time (ms) Length (m) Speed up
A* 100% 44184.0 12.48 50.6x

A*-Ch 96% 3192.4 12.58 3.6x
M. Maps 58% 872.4 13.30 1.0x

Table 4.6: Search performance comparisons as described in Table 4.5, but here
based on SMG.

faster than the other methods, and the length of the solutions were also very
close to the original path length. Motion maps did show a reduced success rate
of 93%. However, this rate is still excellent for a method based on precomputed
search trees, and it is higher than reported results in previous related works.
Furthermore, this rate can be improved to 100% by making sure that the motions
in the database include all needed variations for a given environment. For instance
in our paths around obstacles, more motions of different turning angles would be
needed.

Table 4.6 shows the results obtained from running the same experiments with
a SMG. The average length of the input paths was 12.87m. We notice that,
although motion maps are always faster than the other methods, when SMGs are
used, the success rate is decreased to 58%. FMGs are essential for motion maps to
be effective, however, it is important to note that using SMGs with more elaborate
precomputation techniques, such as the method by Lau et al. [LK10], could make
SMGs more suitable for our path following method. However, we have not run
any experiments to verify this.

The presented experiments clearly demonstrate the performance of the pre-
computed motion maps. The success rate of the overall method is highly related
to the motion capture database used to build the underlying FMG. In our pre-
sented examples no special care was taken when selecting motion clips for building
the used FMGs, and still the success rate achieved was of 93%. The presented
experiments can also serve as a way to evaluate the suitability of the motion
capture database, and additional methods can also be employed for measuring
coverage [RP07].

Another important observation is that the granularity of the precomputed

90

motion maps does not influence how well precomputed maps can store the motions.
The reason for this is that we do not disregard paths that might lead to a cell
that has been already occupied, and thus we never fail to capture all the available
paths from the root of a precomputed motion map. Changing the resolution
of the motion map might redistribute the paths into neighbouring cells or pack
neighbouring cells into a larger cell but the number of entries in the motion map
will not be altered.

However, the granularity of the motion maps does have a slight influence on the
odds of finding a candidate path while sampling the motion map. If the resolution
is very coarse, the sampling should be adjusted accordingly so that neighbouring
cells are not queried, otherwise overly long motions might be considered. On the
other hand, if the resolution of the motion maps is overly fine then a finer sampling
should be employed in order to void missing possible candidates. Across all our
experiments we kept the resolution of the precomputed motion maps constant and
equal to the resolution of the sampling routine. One limitation of our method is
that the storage space may become high for large databases.

4.8 Conclusion

We have presented new preprocessing and search techniques enabling unstruc-
tured motion graph structure to be efficiently employed for locomotion synthesis
around obstacles in complicated environments. Several experiments were pre-
sented demonstrating the benefits of the proposed methods. The results are al-
ways of highly quality and are computed at interactive rates.

91

CHAPTER 5

Multi-Modal Data-Driven Motion Planning

In this chapter we present a new approach for whole-body motion synthesis that
is able to generate high quality motions for challenging mobile-manipulation sce-
narios. Our approach decouples the problem in specialized locomotion and ma-
nipulation skills and proposes a planning algorithm that explores in an integrated
way the search space of each skill and the transition points between skills. The
locomotion skill is data-driven and ensures positioning coverage with quality guar-
antees. Manipulation skills can be algorithmic or data-driven according to data
availability and the complexity of the environment. A coordination model evalu-
ates possible transition points between locomotion and manipulation. Our overall
method is able to automatically generate complex motions with precise manip-
ulation targets among obstacles and at the same time achieve the same realism
level of fully data-driven methods. We present example solutions for opening
doors, relocating items in shelves, pouring water, etc. The produced examples
were achieved with a small set of motion data and the generated motions remain
realistic and human-like.

5.1 Introduction

High quality human-like character animation has attracted a great body of re-
search in the past decades. Although many methods have successfully generated
motions for a variety of problems, more work is needed to improve the fidelity and
the level of control that these methods provide. Improving both of these aspects is
particularly challenging because improving one comes at the cost of deteriorating
the other. Therefore, methods whose solutions are particularly sensitive to this
balance are currently most desired.

Previous methods have rightfully put a strong emphasize on realism. High
fidelity, realistic and human-like motions can be best produced by the employment
of data-driven methods which reuse and combine motion capture data and achieve
high quality results. These methods can automatically provide a wide range of
possibly infinite motions that may be generated from a finite set of previously
captured motion capture data. Their main advantage is that they are generic and
work with different styles and types of motions.

Although these data-driven methods can easily synthesize highly realistic mo-
tions that can follow paths and avoid obstacles, more complex tasks require not

92

Figure 5.1: Various tasks as performed by the character. Left : The character is
picking up a book from a shelf. Right : The character is opening a door.

only a wider range of input motions but also more dedicated algorithmic solutions
in order to find valid solutions. For example, imagine a situation where a character
needs to walk to a door, open the door and walk through the door. Rearranging
many such examples will not easily account for doors of various sizes. Moreover,
finding valid solutions as the user changes the position of the door handle relative
to the door, makes the problem increasingly more difficult for a purely data-driven
approach. Better approaches would utilize some inherent information about these
tasks and try to solve the problem by exploiting this added information. For in-
stance, for the task of door opening, it makes sense to decompose the problem in
four different subtasks and solve them separately: first walk to the door, open the
door, then walk though the door and finally go back to walking. In this exam-
ples, we see that the character goes through three different modes: walking, door
opening and passing through the door.

Given the fact that data-driven approaches do not scale well with the size of
their motion capture database, adding many examples of such complex tasks does
not seem to be a feasible direction for an efficient planner. In light of this, we
propose an approach that tries to fill this gap. Our method is a hybrid approach
and produces high quality results while at the same time plans and solves exam-
ples of complex situations. This is achieved by dynamically combining motion
capture examples with motion primitive skills based on localized planners. If the
motion capture database well represents the solution space of the task, then the
solution might solely be generated from motion capture examples; however, if the
motion capture database does not contain all the desired motions, then the mo-
tion primitive skills will dynamically compete with motion capture examples in
trying to find a valid solution, paving the way for an efficient motion synthesizer
that utilizes motion capture data with parametrized and algorithmic approaches
and thus efficiently solve complex problems and generate high quality results.

In this manner our planner may be seen as a global planner where numerous

93

parametrized motions skills are activated depending on the various defined modes
and compete to solve a particular problem. This approach greatly improves the
reachability and the solution space of the motion graph and thus provides for a
efficient method to solve complex tasks which involve obstacles and interactive
with the environment.

5.2 Related Work

There have been three major group of approaches that have tried solve the problem
of realistic human-like motion generation for virtual characters: key-framing, data-
driven, and physics-based. While key-framing is still used for many purposes,
with the advent of the motion capture technology, data-driven approaches have
become increasingly more successful and popular; on the other hand, physics-
based methods, although not as realistic as data-driven methods, are the only
approach to account for external forces emerging from other characters or the
environment.

Motion Graphs: First methods to automatically exploit the frame sim-
ilarity within a motion capture database and extract new motions by means
of optimization and search were introduced a decade ago by three similar pa-
pers [KGP02, LCR02, AF02, AFO03]. These works introduced the motion graph
data structure which automatically created transitions between similar frames of
the motion capture database. Using a search or optimization process, they were
able to generate motions which were numerically similar but semantically different
from the ones in the original motion database.

Continuous Motion Graphs: Many variants of motion graphs were devel-
oped to improve different aspects of the method: parametrized motions clips and
techniques to transition between blended clips [SO06, HG07] made possible for
fast motion synthesis, however, did not easily allow for planning motions in en-
vironments with many obstacles. Time interpolation of motion paths in order to
improve the solution space of motion graphs [SH07] provides for wider range of
possible solutions but this is achieved at the expense of increasing the size of the
motion graph which further slows down the search procedure. Furthermore, com-
plex tasks will require interpolation of more than two motion path which make the
method time-consuming for solving various examples of the same task. Further
efforts were made [RP07, ZS08, LS09] to construct motion graphs that are more
compact and have better connectivity.

Precomputation: Other papers in the literature, such as the works of Lau
and Kuffner [LK06], precomputed a finite state machine of behaviours in order
to obtain a search tree which was queried during the motion extraction process.
Similarly, motion maps [MK12] were precomputed for all the nodes of a motion
graph in order to have real-time motion synthesis from an unstructured motion
capture database. All these works use either manually crafted motion capture

94

database or features to improve the structure of the motion graphs, or use pre-
computation to speed up the search; however they can not plan at the level of the
configuration space of the character when needed as do the motion primitives in
this chapter.

While these methods were the first to generate high quality motions in a generic
fashion, solving complex tasks with motion graphs is not a suitable approach, as
discrete rearrangement of motion examples might not solve problems where con-
tinuous joint-level control is needed to reach precise targets in complex environ-
ments.

Blending: Blending motion examples in order to generate in-between exam-
ples were effectively used for object manipulation problems. Kovar et al. [KG04]
automatically extracted similar motions from large databases and built a space of
motions. Huang et al. [HMK11] constructed blend spaces and used randomized
algorithms to find action motions which successfully avoided obstacles. Basten
et al. [BE11] built a coordination model which realistically combined spliced mo-
tions. Blending generates a variety of motions, however, usually the example data
has to be carefully prepared to synthesize realistic results.

Reinforcement Learning: Treuille et al. [TLP07] used methods based on
reinforcement learning by learning a set of continuous basis functions to control
a character real-time. Levine et al. [LLK11] similarly uses reinforcement learning
to control a character by the half of a set of parametrized motions. Although,
reinforcement learning is a promising direction to generating human like motions,
it is often very time consuming to learn control policies which do not easily work
with complex environment where there are many obstacles.

Physics: Bai et al. [BSL12] introduced a physics-based method for concurrent
object manipulation generation using a manipulation graph. Min et al. [MC12]
enhanced the concept of motion graphs by building a compact model for structural
and style variations.

Planning: Choi et al. [CLS02] combined PRMs and motion capture to solve
the problem of biped locomotion in an environment with obstacles. Yamame
et al. [YKH04], used traditional motion planning algorithms to solve for vari-
ous object manipulation tasks involving interaction with the environment. Pan
et al. [PZL10] combine a hierarchical model decomposition with sampling based
algorithms to generate character motions in constrained environments.

Multi-Modal Planning: Multi-modal planning was first used by Hauser
et al. [HNG07] to generate motions for humanoid robots within different modes
which simplified the high dimensional motion planning problem. Kallmann et
al. [KHB10] introduced parametrized motion skills and used them to generate
motions for a character in complex environments while avoiding obstacles.

95

5.3 Multi-Modal Planner

In this section we explain our data-driven approach which simultaneously allows
configuration level control. This is made possible by the employment of a set of
motion primitive skills whose tasks is to control the character at a particular mode.
A motion primitive skill is defined as specific local planner that generates partial
solutions for the subtask which it is assigned to. Each motion skill usually controls
a subset of the character’s configuration but may also solve for the entire posture
of the character. A skill gets activated depending on the mode of the character.
Generally, there is a motion primitive skill for each mode. For instance, an example
of a motion primitive skill is the locomotion skill which generates walking motions.
This skill implements a motion graph and makes it possible for the character to
move around in order to perform various tasks.

While the locomotion skill controls the entire posture of the character, other
skills are usually responsible for a subset of the character’s posture. As mentioned
earlier, the door opening task is subdivided into three modes. One of the modes
is to transition from walking to reaching motion. This motion places the hand to
the character to the door handle in order to open the door. The reaching skill
controls only the hand of the character and its root orientation. The rest of the
posture comes from the locomotion skill. The local planner that synthesizes the
reaching motion is based on a time-parameterized RRT planner [LaV06]. This
motion is superimposed to the walking motion such that the character walks and
reaches the handle at the same time. Because the reaching skill is parametrized
by the position of the door handle, this skill can generate wider range of possible
reaching motions.

The next mode generates the door opening motion. This mode has a door skill
and the goal of the skill is to open the door incrementally by checking whether
the arm of the character will can maintain contact with the handle while avoiding
colliding with the door. The door opening skill does not involve any locomotion,
so the locomotion skill is not active during this mode. The door does not have to
be opened fully. The door opening skill will try to open the door as much as it
possibly can and will add this newly generated clip into the frontier of the search
queue and continue exploring other motion primitive skills until one finally reaches
the goal. With other words, motion skills generate new parametrized search tree
leaves and as such increase the possible solution space. After each motion skill
expansion, the generated clips are inserted into the fringe of the motion graph
search tree and the best candidate is popped from the search to resume exploring
various other combinations.

Next, we explain our general search planner Π. Our planner operates over a
set Σ of parametrized motion skills. We indicate a motion skill as σi ∈ Σ. Each
invocation of a motion skill σi generates a motion mi. The global solution is
produced by appending the generated partial motions mi. The generated motions

96

mi are a function of the motion skills σi and the parameters πi specified to the
motion skill by the global planner Π.

σi(π) = mi ∈ Rl×c (5.1)

where l is the number of frames in the motion m and c is the size of the
dimensionality of the configuration space C = (p, qi) of a standard hierarchical
character. The planner Π also maintains a list of modes θ ∈ Θ, a function τ
which specifies mode transitions and a set of rules λ ∈ Λ which determine what
motion skills σi may be activated in given mode θ:

λ : Θ→ Σ (5.2)

τ : Θ→ Θ (5.3)

The set Θ and Λ are provided by the user depending on what tasks the planner
is required to solve. Given these four parameters, the global planner Π(Σ,Θ, λ, τ)
begins the search by expanding motion skills until a solution is found. During the
search procedure a search tree is formed which is akin to the unrolled search tree
formed by a motion graph search. The planner maintains a frontier of motion skills
which are prioritized depending on an A*-like objective function. The planner
decides which skills can be active at a given mode and which other modes could
be expanded from the current mode. The planner is responsible for maintaining
the correctness of the modes transitions depending on the provided rules.

The modes are likely to depend on the problems that the planner is expected
to solve. Similarly, the parameters specified by the planner to the motion skills
are depended on the nature of the skills. They maybe be discrete and finite,
or continuous with pre-determined expected range. The planner then randomly
chooses parameters and expands all the skills that could be active on that mode.
This makes it possible for motion skills with their local planners to compete with
each other in order to provided the most efficient solution. Such a design makes it
possible to increase the range of possible motions and at the same time efficiently
satisfy the constrained of the problem. This approach makes our planner able to
solve complex problems that can not easily be handled with current methods.

For many daily activities, the tasks that needs to be solved can be decomposed
to modes which could be best partially solved with a dedicated motion skill. For
instance, for a door opening task there are three modes: walking, door opening
and walking through a door. The walking mode is solved by a locomotion skill,
as is the walking through a door mode. The door opening, on the other hand, it
is solved by the door skill. In the next section we describe a list of motion skills
and a set of rules which efficiently solve a wide range of everyday tasks.

97

5.4 Locomotion and Manipulation Skills

5.4.1 Locomotion Skill

The locomotion skill σloc is the most important motion skill as it moves the charac-
ter around and prepares the character for other mode transitions. The locomotion
skill is based on a motion graph and operates on the entire configuration of the
character. We build the locomotion skill by creating a feature-based motion graph
from our motion capture database which mainly contains locomotion and does not
include motions such as opening doors or picking up objects. After the motion
graph is built we use the connectivity of the graph to determine the parameter
list of the skill and also which modes may be invoked in from the locomotion
mode. The locomotion parameter πloc = (ni, j) takes two parameters, the current
node of the motion graph n and number of j children nodes of n. For example,
σ((ni, j)π)→ nj which returns the motion mj of the jth child of node ni.

A locomotion skill can transition to another skill if a transitional constrained
is satisfied. One such constrain is the transfer skill which is always invoked within
the locomotion skill. The transfer skill tests at each step whether an object of
interest such as a door or a shelf is within the close vicinity of the character. If
that is the case, the transfer skill will follow by trying to invoke the reaching skill.
The reaching skill then will determine whether the character can reach the handle
of the door or the book on the shelf.

5.4.2 Reach and Release Skills

The reaching σreach and releasing skill σrelease are based on a time-parametrized
RRT planner. These skills control only the arm of the character. The rest of
the characters posture is planned by the locomotion skill. They are activated
on top of the previous locomotion skill. With other words, these skills takes the
motion generated by the locomotion skill, makes a copy of it and modifies the
motion corresponding the arm and reinserts its result into the frontier for further
consideration. The initial locomotion still remains unchanged in the frontier and
it will be considered by other motions skills. The manipulation skills take two
parameters πmanip = (p, p′) which are the character postures. The first parameter
p comes directly from the first posture of the character from the initial locomotion.
The second parameter p′ is the posture we wish the character to assume at the end
of the motion generated by this skill. This usually is a posture where the character
is holding the door handle or a book on the shelf. Given the parameter πmanip,
the manipulation skill σmanip = σreach, σrelease generate a motion which reuses the
locomotion motion and plans the motion of the arm such that character starts in
posture p and ends with the posture p′.

The manipulation skills are time parametrized in order to simultaneously walk
and reach for the target. This is made possible by advancing the locomotion by

98

the given time parameter of the arm motion. This allows for a realistic RRT
motion when compared to a sequential solution when the character first has to
walk and only then reach for the goal. Also, these skills are based on sampling
based algorithm and thus are not based on examples motions. This makes the
skill particularly important because it can solve for a wide range of arm positions.

5.4.3 Transfer Skill

The IK-based skill σtr is the simplest motion skill, yet it is the most frequently
used one. This skill has two primary tasks: the first is to establish whether mode
transitions are possible. That is, the transfer skill determines if a mode change is
possible. Such examples include mode changes from locomotion to the reaching
mode. This skill implements an analytical IK for the arm of the character. Given
a target position p and orientation q and the last frame of the previous locomotion
f , the transfer skill solves for the arm such that the arm of the character reaches
precisely the desired target location t = (p, q). Thus, the parameter list of the
transfer skill σtr is πtr = (f, t). The result of the skill is a frame f ′ which is
contains all the configuration of f with the arms configuration subset determined
by σtr. The resulting frame f ′ is also used as the target posture p′ for the reaching
skill σreach. The transfer skill is special in a sense that it does not generate a result
motion mtr unlike other motion skills in Σ.

5.4.4 Action Skill

The action skill σac is a data-driven motion skill. This skill is based on an example
of motions that perform a certain action. Examples of action motions include
motions such as pointing, pouring, kicking, etc. This skill is implemented similarly
to work of Huang et al. [HMK11]. The skill requires a set of blendable examples
which can be blended together in order to generate any new in-between motion.
Similarly to the transfer skill σik, the action skill σac accepts a parameter list
πac = (f, t) where the frame f is the last frame of the previous locomotion and t
is the target position and orientation where the action needs to be performed. It
returns a motion which is a weighted blend of the set of examples motions within
the action skill σac.

5.5 Multi-Modal Search

We now explain our multi-modal search. As mentioned earlier, our global planner
takes a list of skills, a mode transition function and the constraints that need to be
satisfied. The planner maintains a priorities frontier akin to that of graph search.
Although the search uses motion primitives to generate motions, our planner
generates a search tree of motion clips where motion primitives add or modify

99

Figure 5.2: An example of a multi-modal search tree. Red segments represent un-
modified examples from the motion capture database and blue segments represent
the motions modified by the motion primitive skills.

the given motions. The user generally specifies the start and goal location for the
character. The search usually starts in the locomotion mode, although it could
start from any mode. The locomotion search expands nodes in similar fashion as
in Chapter 1 and Chapter 2 and tries to expand towards the goal. During each
expansion, depending on the constraints of the problem, such as the position of the
handle of the door or position of the book on the shelf, the locomotion skill actives
the transfer skill and checks whether a transition may occur to any other mode.
In the door opening example, the character would switch from the locomotion
mode to the manipulation mode. The transfer skill is a fast operation, which
quickly evaluated whether a mode switch could occur. If the character is close to
the constraint, and the transfer skill is successful, then the mode is switched and
the character is within the next mode as defined by the mode transition function.
This mode switch only occurs for the branches of the search tree which stem from
the current motion node where the mode switched occurred. Other branches may
be in different modes. In the door example, there will be other motion nodes still
expanding within the locomotion and generating other motions that place the
character in different locations for another mode switch. Once a switch is made,
usually a manipulation skill takes over and given the parameters it needs to solve
tries to solve the subtask.

For example, for the door opening case, this is the reaching skill. This skill
is continuous and randomized and takes parameters: the current posture of the
character prior to switching to the manipulation skill and the position of the han-

100

dle. Since the reaching skill is a manipulation motion primitive, it is a continuous
planner and therefore can solve a wide range of possible motions which is essen-
tial for the successful execution of our multi-modal planner. The resulting motion
of the reaching skill is an arm reaching motion which is superimposed on top of
the locomotion, leading to a reaching motion while the character is still moving
towards the goal. If the mode is successful, it switches to the next mode and ac-
tivates all the skills of the next mode. In the door opening example, there is only
one mode following the reaching mode and that is the door opening mode. By
using a strict function that defines mode transitions and a list of skills that may
be generated within a mode, the multi-modal planner ensures that it never gen-
erates motions which violate the mode transition function. Therefore we do not
see motions where the character walks, reaches for the door handle and resumes
walking without trying to open the door. The correct mode switches make sure
that allowed sequence of motion primitive get activated. The planner then pro-
ceeds to the next mode and activates all the motion primitives within that mode.
In the door opening case, after the manipulation task, there is only one mode and
that is the door mode where the character opens the door as fully as possible.
The next modes include release the handle and going back to the locomotion until
the goal is successfully reached.

It is important to mention that the planner is building a search tree of dif-
ferent possible candidates each attempting to solve the general problem. All of
the candidates are sorted in A*-like manner. Occasionally, some of the branches
of the search tree will fail or collide with the environment; however, the plan-
ner will continuously generate new instances of skill activations until a suitable
sequence successfully solves the problem. Thus, the planner will activate many
parametrized variations by by the guidance of the mode transition function and
the list of motion primitive skills that are designed to specifically solve the subtask
within the mode.

In addition, some modes will use collision avoidance deformations which will
further help the planner in achieving the goal. For instance, the door opening skill
rotates the torso of the character as it attempts to open the door. This not only
gives the character a change to open the door fully but it also helps in generating
a more human-like motion. Moreover, the locomotion skill may use other forms of
collision avoidance deformations such as moving their arms to avoid colliding with
the door. These deformations help to increase the solution space of the generated
results.

5.5.1 Deformation

In addition to the motion primitives which control the character at configura-
tion level, we also deform the motion examples of the motion graphs in order to
precisely meet the constrains of the problem. The deformation explained in this
section provides for a simple deformation model which can be easily quantifiable

101

and also provides an easy way for increasing the solution space of the possible
solutions.

Given a motion m which is associated with a node n of the motion graph,
the deformation procedure deforms m is this manner: first, the user specifies the
amount of the desired deformations. This is done by providing a list of αi ∈ A in
angle degrees. For each αi a new node nd is generated which is associated with
the deformed motion md and then the node nd is inserted back into the motion
graph. For a motion m and an angle degree α, each frame

fi(pi, oi, vi) ∈ m (5.4)

where, pi and oi is the root position and orientation of the frame fi, and v is
a vector such that vi = pi+1− pi or with other words vi is a positional differential
between frame fi+1 and f , we create a quaternion q(p, α), which represents a
rotation about the positive Y axis of α degrees centered at p. Then for each frame
fi we apply the following deformation:

o′i = q(p, α) · oi (5.5)

v′i = q(p, α) · vi (5.6)

The deformation is applied iteratively. In this first iteration all the frames of
m are deformed. In the next iteration, only frames between the second and last
frame are deformed. Generally, at the ith iteration, only frames between mi and
mn are deformed. See Figure 5.3 for an example.

In order to control the desired deformation we provide a method to quantify
the deformation. The most undesirable artifact of deformation is the feet sliding.
Therefore, we observe the toe and heel joints of the skeleton and measure the
deformation as the averaged squared distance of the toe and heal joint position
between the original motion and the deformed motion. The quantification is done
as follows: first we detect all frames where the heel or toe joint is fixed on the
floor. Then we group these frames into distinct sets such that all frames of the set
belong to the same stepping motion. Then, we translate and rotate all the joint
positions in the set by the root position and orientation of the first frame of the set.
This creates a reference frame where we can measure how much have the heel and
toe joints differed from the original position. Figure 5.4 shows an example. We
see that for the original motion (red points) the heel or toe joint is fixed. As the
deformation becomes more aggressive (green and blue) we see that the heel and toe
joint start drifting further away from their desired fixed position. The deformation
is then defined as weighted sum of square distance averages. All deformation
above a certain predefined threshold are not considered. In our experimentation,
we deformed each node of the motion graph by α = {−0.4,−0.2, 0.2, 0.4}. At

102

Figure 5.3: Motion deformation at various angles. The green projection is the
original motion, and the blue and red deformations show the range of the motion
when deformed between -1 and 1 degrees.

Figure 5.4: Left: Heel joint position projection for three stepping motions. Red
points represent the original motion, the green points represent a deformed motion
with α = 0.5◦ and blue represents a deformed motion with α = 1.0◦. Right: Same
comparison as in the left image, however, in this instance for the toe joint.

103

these levels of deformation, the feet joints did not appear sliding.

5.5.2 Collision Avoidance

Beside the deformation described in Section 5.5.1, our method uses another type
of deformation for the purpose of collision avoidance. These forms of deformation
are usually applied only on a single joint to the motion of a single motion graph.
For example, during the door opening mode while the character is opening the
door using the door skill, the collision avoidance is rotating the root joint by 1◦

at each attempt to further open the door. This not only looks more natural but
at the same time makes it possible for the character to more easily open the door.

Another collision avoidance deformation is deployed during the door walk
through mode, where the left arm is moved gradually towards the torso in or-
der to avoid colliding with the wall. The deformation is spread out gradually
along the motion and follows a Gaussian curve such that the arm has human-like
velocity profile.

5.5.3 Coordination

In order to maintain the naturalness of the generated motion, a coordination model
is employed. As the local planners try to generate various motions the coordina-
tion models assures that other joint are coordinated with the joints which are being
changed. The parameters of the coordinations model are tuned from experiments
run by human subjects. The coordination model maintains a gaze model so that
the head of the character always stares at the object that is being manipulated.
The coordination model always takes into an account the coordination between
the upper body and lower body motions so that they look coordinated. In addi-
tion to maintain the joint positions within the character the coordination model
also determines some constrained concerning the task that is being considered.
For example, for the door opening task and book picking task, the coordination
model specifies the approach angle to the door or book shelf. This is implemented
by culling the branches of the search tree that do not satisfy these constraints. For
extensive searches this discrimination speeds up the search and does not expand
nodes which are known to know yield results.

5.6 Results

To show the effectiveness of our algorithm, in this section we present three various
scenarios where our framework makes use of the inherent information within the
problem task and solves it efficiently.

104

5.6.1 Door Opening

As mentioned in Section 5.1 the problem of door opening is a particularly challeng-
ing problem for data-driven methods, primarily because data-driven approaches
such as motion graphs can not easily account for slight variations in the problem
definition. For example, if we character needs to reach for the handle to open the
door, the motion graphs needs many such examples to account for a wide range
of possibilities. A wide range of motion does not easily scale with motion graphs
as the computational requirements during the search procedure are exponential
to the number of frames in the motion capture database. Therefore, multi-modal
approaches are more efficient in this regards as they do not fully rely on a dis-
crete rearrangement of motion examples but use localized planner that solve the
subtasks as the character moves within modes.

The problem of door opening is separated in four different modes: locomotion
mode, door reaching mode, door opening mode, door release mode and back to
the locomotion mode. The user specifies the starting and goal position for the
character and also inputs the environment. The search begins in the locomotion
mode and must not necessarily pass through these nodes in order to reach the goal.
With other words, if there is another way of reaching the goal, without opening a
door then that alternative will be competing as well in the general search.

The skill set Σ for the door opening problem contains the following parametrized
motion skills:

Σ = {σloc, σtr, σdoor, σreach, σrelease} (5.7)

the σloc locomotion motion skill is based on a motion graphs and is the main
skill which move the character around. The parameter list πloc = (s, g) for σloc
takes the start location s and a goal location g and expands a motion graph search
tree starting from s and leading towards g by expanding nodes akin to an A*-like
search mechanism.

The transfer skill σtr takes two parameters πtr = (c, p) such that c ∈ C and
p ∈ R3, where parameter c is the last character posture as defined by the motion
graph node from which the transition to this mode was made. The parameter p
is the location of the door handle. As the door is opened the handle position is
updated accordingly. This motion skill primitive implements an analytical Inverse
Kinematics (IK) for a 7 DOF arm. If a solution exists, the posture c is updated
such that when applied the character would be holding the door handle at p.

The door opening motion skill σdoor applies the σtr repeatedly until the door
can not be further opened due to a failure of σtr or due to a collision between
the character and the environment, particularly the door. The parameter list
πdoor = (p, q, path) takes into consideration the position p and orientation q of
the door and also the path which when parametrized defines the parameter list
for the subsequent σtr invocations. With other words, the path parameter defines

105

Figure 5.5: An example of door opening. Top image shows the character while
still within locomotion skill. The bottom image shows the character in the last
frame of the reach skill while holding the handle of the door.

106

Figure 5.6: Continuation of the door opening example from Figure 5.5. The top
image shows the character within the door skill trying to open the door as fully
as possible. The bottom image shows the character going back to the locomotion
skill while collision avoidance deformation (left arm) activated in this image.

107

the path that the character hand must follow in order to open the door. In our
implementations we used circle and meridian arcs (based on an ellipsoid) with
the later yielding better results due the way humans open doors. This motion
skill primitive does terminate when the door is fully opened. The goal of the skill
is to open the door as much as possible without colliding with the environment.
Whether the character can successfully walk through the door is determined by the
rest of the search with many different alternatives racing to search for a solution
with the door opened at different angles.

The door motion primitive also deploys collision avoidance deformation by
rotating the root position of the character and the door opening skill is trying to
open the door. At each step, the character’s root joint is rotated in order to give
the character a better opportunity to further open the door. In order to assure
that feet sliding does not occur, the door opening skill also re-parents the feet by
using a simple IK module for the feet.

The reach motion skill σreach and the release motion skill σrelease are similar in
nature but operate in different modes. The σreach skill which allows the character
to simultaneously play the motion by σloc and at the same time plan the motion
of the arm of the character. The parameter list πreach = (c, c′) takes the initial
configuration of the character c which is the first frame taken from the result of
σloc and c′ is the result of applying σtr at the last frame of the results of σloc. The
result of σreach is a motion that takes the character from c to c′. With other words,
this skill will produce a motion which would transition the character from walking
to a posture where the character can reach the handle of the door, preparing it to
open the door.

The release motion primitive skill σrelease similarly to σreach solves for the
arm of the character; however, in the release mode the goal is to move the arm
from a posture where it is holding the handle of an open door back to the last
frame of the result generated by the last invocation of σloc. This brings back the
character to the locomotion mode where it could attempt to pass through the
door. The parameter list πrelease = (cd, c) of the motion skill σrelease takes the
two above-mentioned postures and solves for the arm by using the manipulation
skills. Unlike σreach, this motion primitive skill does is not time-parametrized and
as such the character’s other body parts remains unchanged.

Next, we specify the modes of the door opening problem. For this task we
have the following modes:

Θ = {θloc, θmanip, θtr, θdoor} (5.8)

and the following rules indicate which motion primitive skills may be invoked
in these modes:

108

Figure 5.7: Similar door opening example as in Figure 5.5 but with obstacles in
front of the door.

109

Figure 5.8: Continuation of the example on Figure 5.7.

110

λ(θloc) = {σloc, σtr}
λ(θtr) = {σtr}

λ(θmanip) = {σreach, σrelease}
λ(θdoor) = {σdoor} (5.9)

and function τ specifies the mode transitions:

τ(θloc) = {θloc, θtr}
τ(θtr) = {θmanip}

τ(θmanip) = {θdoor, θloc}
τ(θdoor) = {θmanip} (5.10)

Given the functions τ and λ, the set of modes Θ and a set of motion primitives
Σ the door opening may be used within the framework of multi-modal planning to
search for a solution. Each invocation of a skill creates a new node in the search
tree and gets inserted to the sorted frontier associated with a cost for this new
motion. In this view, the multi-modal planning may be seen as an extension of
motion graphs where motion primitive skills may take an motion from one of the
motion graph node, modify the motion to solve a particular subtasks and reinsert
this new motion back into the search tree as if this modification was already within
the motion capture database.

5.6.2 Book Picking

In this section we show another example of multi-modal data-driven planning. In
this scenario the character walks to a book shelf and tries to pick up a book and
replaces it to another place on the shelf. The motion skill used in this examples
are similar the ones explained for the door opening motion which shows that
motion primitives skill may be used for various different tasks. Unlike the previous
example, we will not be utilizing the door opening skill σdoor because we do not
have to open a door in this particular case. However, we will define a new motion
primitive skill σdisplace which is based on an manipulation skill whose tasks is to
displace the book from its initial position to new position on the shelf. The motion
of the character include that of the book has to follow a collision free trajectory
without colliding with the character or other objects on the shelves.

The skill set Σ for the book picking example contains the following motion
primitive skills:

111

Figure 5.9: A book relocation example: the character begins by walking to a shelf
(top) while using the locomotion skill, and then moving into the reaching skill to
reach a book in order to pick it up from the shelf (bottom).

112

Figure 5.10: Continuation of the book example from Figure 5.9. The character
is displacing the picked book (top) using the manipulation skill to a new location
on the shelf and releasing his hand so that it can go back to locomotion mode
(bottom).

113

Σ = {σloc, σtr, σdisplace, σreach, σrelease} (5.11)

As in the door opening example the task of the character is to first approach
the book shelf to a distance where it could reach a book, then pick a book from
the shelf, move it to a new place on the shelf while avoiding other books and
items on the shelf and finally, put the hand down similar to the release motion
primitive. The character then may continue going back to the locomotion and
perform different tasks.

The modes of this examples are the following:

Θ = {θloc, θmanip, θtr} (5.12)

Please note that the door mode θdoor is not in this list, and that the σdisplace is
within the manipulation mode θmanip. Next we list which motion primitive skills
can be activated in the above mentioned modes.

λ(θloc) = {σloc, σtr}
λ(θtr) = {σtr}

λ(θmanip) = {σreach, σrelease, σdisplace} (5.13)

and the function τ to define the mode transitions:

τ(θloc) = {θloc, θtr}
τ(θtr) = {θmanip}

τ(θmanip) = {θmanip, θloc} (5.14)

With this configuration we could solve any book picking scenarios for various
book locations or other obstacles that may be on the way of the character. Two
examples are shown on Figure 5.10 and Figure 5.11.

5.6.3 Water Pouring

As we noticed in this first two scenarios, motion skills are very versatile and
may be reused to solve different tasks. In this section we introduction the action
skills which generate a new motion by blending a set of similar parametrized
motions. This is particularly useful, for example where the character has to pour
some liquid, point toward a target, dial a phone, kicking a ball or punch another
character.

The action skill is a generic motion primitive skill which contains a database

114

Figure 5.11: A book relocation example: the character begins by walking to a
shelf (top) while holding a book using the locomotion skill, and then moves into
the reaching skill to place the book on the shelf (bottom).

115

Figure 5.12: Continuation of the book example from Figure 5.11. The character
is still within the reaching skill and continues to place the book on the shelf (top).
The book is placed on the shelf and a switch to a manipulation skill is made to
move the book to a new location (bottom).

116

Figure 5.13: Continuation of the book example from Figure 5.12. The character is
now replacing the book by carefully planning a motion such that it does not collide
with other objects (top), the character safely puts the book on a new position on
the shelf (bottom).

117

of similar actions. Given, this example set and a goal target position and orienta-
tion, this motion skill generates a motion which performs the given action where
the characters end effector ends up at the given target constraints. The general
planner may request motion which may be outside the expected cover space of
the action skill, and in those events, the action skill reports a failure and does not
generate a solution. In such a case, the planner would continue expanding various
other locomotion skills until the action skill is well position to perform the given
action.

We will not list the list of modes and motion skills and their corresponding
functions as they are almost identical to the case of the book picking, where the
σdisplace motion primitive skill is replaced with the σwater which is an action motion
primitive skill and contains a list of pouring examples. This skill implements and
inverse blending mechanism, similar to that of [KG04] and [HMK11] in order to
synthesize a desired motion which falls within the boundaries set by the examples.
The action skill σwater controls the entire posture of the character and generates
motions for the feet as well, however, the locomotion generated by the action skill,
although parametrized, by design does not have a lot of variation.

Examples of this problem have the character walk with water glass approaching
a table and pour some water to an empty cup on the table. After pouring the
water, the character would release his hand and go back to a resting posture where
it could go back to a locomotion motion primitives. The table may contain objects
and the action skill makes sure that the generated motion does not collide with
other objects. An example can be seen on Figure 5.14 and Figure 5.15.

5.7 Conclusion

We presented a multi-modal planner which combines parametrized motion prim-
itives skill to achieve high quality motions in environments with many obstacles.
The multi-modal planner used a locomotion skill based on our feature-based mo-
tion graph as its main locomotion skill. In addition, manipulation and action
skills were used. These skills implemented randomized continuous algorithms or
methods based on blending example motions. We showed that the by defining
modes and assigning localized planners, we can search for complex motions which
interact with the environment. Examples included opening and walking through
doors, relocating a book on a shelf, and pouring water to a teapot on a table. The
generated examples showed that allowing instances of motion primitives compete
within a global multi-modal framework, well addresses the problem of generating
high quality motions for human characters in complex environments.

118

Figure 5.14: Water pouring example: Top: A frame from the locomotion skill
bringing the character to an appropriate location to perform the action. Bot-
tom: Character switches to the action mode and begins to pour the water. See
Figure 5.15 for more examples.

119

Figure 5.15: Continuing water pouring example from Figure 5.14. Top: The
action skill ensures that the action motion does not collide with other objects.
Bottom: The character pours water to inside the teapot on the table.

120

CHAPTER 6

Conclusion

Planning the motions of a virtual character with high fidelity and control is a diffi-
cult challenge. Striking a balance between these two competing properties makes
the problem particularly complex to solve efficiently. Data-driven approaches have
produced high quality results because of the inherent realism of human motion
capture data, whereas planning algorithms have successfully solved general contin-
uous problems with high degree of control. A great deal of research work has been
dedicated to combining these approaches to increase the independent joint-level
control and retain the realism and human-likeness of the motion capture data.

In this dissertation, we proposed a multi-modal planner, which takes a data-
driven approach and combines it with local primitive skill planners to generate
high quality motions for a virtual character. Our framework was designed to
allow several parametrized motion primitive skills to compete with each other
in contributing to the final solution. The local planners use inherent knowledge
about the modes of the character and use methods suited to solve the task in these
modes. This decoupling of the problem effectively reduces the dimensionality of
the human character motion planning and allows synthesizing of complex motions
in an environment with obstacles. Our framework generates motions for example
scenarios such as: opening doors, relocating books in shelves and pouring water.

The proposed framework is dependent on the locomotion skill, which syn-
thesized the most important part of human motion. This was done by using a
feature-based motion graph which uses geometric features to automatically in-
troduce structure into the motion graph. Such semantical structure not only
improves the search procedure, but also reduces the time spent on the motion
graph construction phase and avoids the feet sliding corrections. The locomotion
skill uses a geometric feature which segments a walking motion into small walk-
ing cycles. This feature was shown to be quite versatile at segmenting different
styles and variations of locomotion. The same walking feature segments both a
straight or turning motions, as well as other motion types such as basketball or
ballet. Features work with different moods as well; examples of happy, sad and
tired motions were segmented successfully.

Besides automatically building a feature-based motion graph with semanti-
cal structure, we employed a triangulation-based search procedure for guiding our
path following technique within the environment, making sure that the search does
not get stuck in local minima. This was achieved by first triangulating the envi-

121

ronment and finding a 2D path with clearance to the obstacles. This allowed for
disabling of collision checking, which is usually a very time consuming component.
Moreover our feature-based motion graph used a IK-based deformation model to
continuously adjust the transitions of a search branch in order to precisely reach
target goals. This proved essential for performing manipulation tasks.

Precomputation was also used with feature-based motion graphs. Due to the
added structure of these graphs, precomputation of nodes of the graph allowed
for real-time motion generation for human characters in an environment with
many obstacles. We achieved this by precomputing motion maps for each nodes
of the graph and employing a novel search algorithm, which used our motion
maps to rapidly find a solution. The motion maps needed be only precomputed
once, may be used for all subsequent queries, and could be shared by all human
characters in the environment. Prior works used precomputation to improve the
speed of manually-built motion graphs, primarily because unstructured motion
graphs were not able to evenly cover the environment. In this dissertation, we
showed that precomputing motion maps for feature-based motion graphs did not
suffer from this problem. Our path following method made use of this fact and
deployed motion maps to solve partial paths until the goal was reached. We
showed that our method can search for a solution much faster than the state of
the art methods and did not require any manual graph construction. Further,
time complexity improvements where shown by the use of a parallelized version
of our method that was able to play and search simultaneously. This made it
possible for real-time motion generation of many human characters in a complex
environment.

Our multi-modal data-driven planner made use of a locomotion skill, manip-
ulation skill and action skill to generate human realistic and human-like motion.
These skills implemented different local planners. The locomotion skill was based
on a feature-based motion graph, whilst the manipulation and action skills used
a randomized planner or a data-driven example-based planner. The skills were
parametrized to achieve a wide range of motions; using our multi-modal planner,
we were able to solve complex motions which involved interaction with the en-
vironment. Usually solving such examples requires a lot of motion preparation,
however, with our method we were able to open doors and relocate books using
a small set of motion capture data which only contained locomotion and a set of
manipulation tasks. We showed that the parametrized nature of our framework al-
lowed for many varieties of possible solutions, which was essential to solving tasks
in an environment with obstacles. The locomotion skill was based on a feature-
based motion graph. In this way, we were able to provide a wide range of possible
placement options for the character. This was important for tasks such as open-
ing doors or other manipulation tasks, because very often the availability of many
placements for the character to perform manipulation is decisive in determining
whether a problem may be solved. Moreover, we showed that by decoupling the
problems into different modes, we introduce domain-specific knowledge about the

122

problem. This constrains the sequence mode in which planners gets activated in
order to synthesize the final solution. We showed that this is not only important
to speed up the search, but it also allows for realistic motion synthesis. Our frame-
work allowed different planning implementations for motion primitives within a
mode, because different local planners might succeed in different situations. The
mode decoupling was showed to help generate realistic and human-like results and
effectively reduce the dimensionality of human motion planning.

The one important contribution of this dissertation was to show that multi-
modal motion planning could be used with data-driven methods to synthesize high
quality results confirming that multi-modal planning is an effective way of solving
complex motions for human characters. In addition, we showed that feature-
based motion graphs and pre-computation were important for a successful multi-
modal planning based on parametrized motion skills. The work presented in this
dissertation therefore indicates the benefits of decomposing a complex problem
into subtasks that are individually solved by local planners. Most notably, this
is a first framework which automatically generates motions from an unstructured
database of human motion capture in real time among obstacles. Our results
provide compelling evidence that a multi-modal approach can further advance
the research on human motion planning for realistic and human-like characters.
However, some limitations are worth noting, and we review some of our limitations
in the next section.

6.1 Limitations

Although our feature-based motion graph was capable of automatically introduc-
ing semantical information about the motion database, synthesizing good results
remain sensitive to the choice of the features used. If the wrong features are used,
the motion might not be segmented properly, and the resulting graph might have
poor connectivity. Additionally, the combined effect of large numbers of geometric
features was not studied. A feature-based motion graph was used for the purpose
of building a locomotion planner, and therefore experimentations with many geo-
metric features were not done, because few features were sufficient to segment the
motion for an efficient locomotion planner.

The main limitation of our precomputation method is the size of the mo-
tion maps. Because we computed motions maps for all the nodes of the motion
graph, memory space usage was of a limiting factor. Although we showed that
precomputation does not improve beyond a certain horizon, having a very large
scale feature-based motion graph might prohibit the precomputation of all motion
maps. In regards to the multi-modal planner, the main drawback involves coming
up with good set of modes which lead to a good logical subdivision of the task.
In addition, each mode needs a suitable local parametrized planner. If a problem
does not have well-defined modes and a list of well represented parametrized local

123

planners, a solution might become difficult to find. However modes transitions
need only be defined once per set of problems. Animators can easily build libraries
of such modes and their transitions and then use these to form motion primitive
skills at higher levels.

6.2 Future Work

In this dissertation, we did elaborate analysis of locomotion with geometric fea-
tures to see the effect of choosing transitions at points segmented by features. A
future avenue in improving feature-based motion graph could involve learning and
automatically devising geometric features which improve the coverage, connectiv-
ity and interactivity of the feature-based motion graph. This could be achieved
by an optimization procedure where a set of features are optimized to yield the
best feature-based graphs in terms of multi-modal data-driven motion planning
for human characters in environments with many obstacles.

Precomputation, as presented in this dissertation, is only done within a sin-
gle motion primitive skill. Future avenues may include precomputation within
multiple modes involving many motion primitive skills. This would further speed
up the planning and may also give rise to different motion primitives specific to
exploiting this level of precomputation. Moreover precomputation could be im-
proved by more research on coverage analysis of the motion capture database.
Evaluating the coverage of the motion capture within the environment would be
highly useful in the context of multi-modal data-driven planning. This would be
similar to establishing the convergence rate of a sampling-based planning method.
It would be highly beneficial to an animator to be given bounds on the probabil-
ity of a problem being solved, given a set of motion capture examples and set of
motion primitive skills. Such guarantees may help in deciding what set of motions
and motion skills could be considered sufficient to solve a given problem. Other
improvements might be achieved by finding a compression mechanism for motion
maps since they are limited by the size of the available computer memory.

In this dissertation, we solved door-opening, book-relocation tasks by subdiv-
ing these problems into simpler tasks. It should be possible for a multi-modal
planner, however, to use motion primitive skills at lower levels in order to solve
tasks at higher levels. Examples of these include: walking down the corridor,
entering a room by opening a door, picking up a book from the shelf, exiting the
room, walking down the corridor, entering another room, and leaving the book
on a table. At such a level, opening a door and picking up a book might be used
as one single atomic parametrized motions skill. In this manner, a hierarchical
multi-modal planner with finer motion primitives might be more similar to how
humans solve real-life everyday tasks. This could be further advanced by using
learning to improve results from past examples. New motion primitives and modes
may be learned to better decompose a problem. Learning may also involve tuning

124

the motion primitive skill planners but, in addition, it may also be used as way of
returning motions which are already solved or are close enough that they might
be deformed to fit the required constraints.

125

References

[AF02] Okan Arikan and David A. Forsyth. “Synthesizing Constrained Mo-
tions from Examples.” Proceedings of SIGGRAPH, 21(3):483–490,
2002.

[AFO03] Okan Arikan, David A. Forsyth, and James F. O’Brien. “Motion syn-
thesis from annotations.” Proceedings of SIGGRAPH, 22(3):402–408,
2003.

[ALH08] Gustavo Arechavaleta, Jean-Paul Laumond, H. Hicheur, and
A. Berthoz. “An Optimality Principle Governing Human Walking.”
IEEE Transactions on Robotics, 24(1):5–14, 2008.

[BB04] Paolo Baerlocher and Ronan Boulic. “An inverse kinematics architec-
ture enforcing an arbitrary number of strict priority levels.” Visual
Computer, 20(6):402–417, August 2004.

[BB05] B. Burns and O. Brock. “Single-Query Entropy-Guided Path Plan-
ning.” In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 2124–2129, 2005.

[BC12] Benjamin Balaguer and Stefano Carpin. “Bimanual regrasping from
unimanual machine learning.” In Proceedings of the International Con-
ference on Robotics and Automation (ICRA), pp. 3264–3270, 2012.

[BCP08] Philippe Beaudoin, Stelian Coros, Michiel van de Panne, and Pierre
Poulin. “Motion-Motif Graphs.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
117–126, 2008.

[BDN07] Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami,
and James Kuffner. “Grasp Planning in Complex Scenes.” In IEEE-
RAS International Conference on Humanoid Robots (Humanoids), De-
cember 2007.

[BE09] Ben J.H. van Basten and Arjan Egges. “Path Abstraction for Combined
Navigation and Animation.” In Motion in Games, pp. 182–193, 2009.

[BE11] Ben J.H. van Basten and Arjan Egges. “Flexible Splicing of Upper-
Body Motion Spaces on Locomotion.” Computer Graphics Forum,
30(7):1963–1971, 2011.

[BEG11] Ben J.H. van Basten, Arjan Egges, and Roland Geraerts. “Combinining
Path Planners and Motion Graphs.” Computer Animation and Virtual
Worlds, 21:1–22, 2011.

126

[BFK06] Jur van den Berg, Dave Ferguson, and James Kuffner. “Anytime path
planning and replanning in dynamic environments.” In Proceedings of
the International Conference on Robotics and Automation (ICRA), pp.
2366–2371, 2006.

[BK00] R. Bohlin and Lydia Kavraki. “Path planning using lazy PRM.” In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), volume 1, pp. 521–528, 2000.

[BSL12] Yunfei Bai, Kristin Siu, and Karen Liu. “Synthesis of concurrent object
manipulation tasks.” ACM Trans. Graph., 31(6):156:1–156:9, Novem-
ber 2012.

[BSP04] Jernej Barbič, Alla Safonova, Jia-Yu Pan, Christos Faloutsos, Jessica K.
Hodgins, and Nancy S. Pollard. “Segmenting motion capture data into
distinct behaviors.” In Proceedings of Graphics Interface (GI), pp. 185–
194, 2004.

[Can88] John F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, USA, 1988.

[CHP07] Seth Cooper, Aaron Hertzmann, and Zoran Popović. “Active learning
for real-time motion controllers.” In Proceedings of SIGGRAPH, 2007.

[CK04] Joel Chestnutt and James Kuffner. “A Tiered Planning Strategy for
Biped Navigation.” In Proceedings of the IEEE - RAS/RSJ Conference
on Humanoid Robots, November 2004.

[CKH11] Myung Geol Choi, Manmyung Kim, Kyunglyul Hyun, and Jehee Lee.
“Deformable Motion: Squeezing into Cluttered Environments.” Com-
put. Graph. Forum, 30(2):445–453, 2011.

[CLS02] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. “Planning Biped
Locomotion using Motion Capture Data and Probabilistic Roadmaps.”
Proceedings of SIGGRAPH, 22(2):182–203, 2002.

[CP02] Stefano Carpin and Enrico Pagello. “On Parallel RRTs for Multi-robot
Systems.” In Proceedings of the 8th Conference on Italian Association
for Artificial Intelligence, pp. 834–841, 2002.

[EAP06] Claudia Esteves, Gustavo Arechavaleta, Julien Pettré, and Jean-Paul
Laumond. “Animation Planning for Virtual Characters Cooperation.”
ACM Transaction on Graphics, 25(2):319–339, 2006.

[Egg08a] Arjan Egges. “Analysis of Human Navigation and Manipulation Mo-
tions.” In Proceedings of Measuring Behavior, August 2008.

127

[Egg08b] Arjan Egges. “Opening Doors in Motion Analysis Research.” In Motion
in Games, pp. 188–199, 2008.

[FPT01] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos.
“Composable controllers for physics-based character animation.” In
Proceedings of SIGGRAPH, pp. 251–260, 2001.

[FXG12] Rukun Fan, Songhua Xu, and Weidong Geng. “Example-Based Au-
tomatic Music-Driven Conventional Dance Motion Synthesis.” IEEE
Transactions on Visualization and Computer Graphics, 18(3):501–515,
March 2012.

[Ger10] Roland Geraerts. “Planning short paths with clearance using explicit
corridors.” In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 1997–2004, 2010.

[GO07] Roland Geraerts and Mark Overmars. “Reachability-based analysis for
Probabilistic Roadmap Planners.” Robotics and Autonomous Systems,
55(11):824–836, November 2007.

[GSK03] Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew Jepsen.
“Snap-together motion: assembling run-time animations.” In Proceed-
ings of the Symposium on Interactive 3D graphics and Games (I3D),
pp. 181–188, 2003.

[HBH06] Kris Hauser, T. Bretl, K. Harada, and Jean-Claude Latombe. “Us-
ing Motion Primitives in Probabilistic Sample-Based Planning for Hu-
manoid Robots.” In Workshop on Algorithmic Foundations of Robotics
(WAFR), pp. 2641– 2648, July 2006.

[HG07] Rachel Heck and Michael Gleicher. “Parametric Motion Graphs.” In
Proceedings of the Symposium on Interactive 3D Graphics and Games
(I3D), pp. 129–136, 2007.

[HKG06] Rachel Heck, Lucas Kovar, and Michael Gleicher. “Splicing Upper-
Body Actions with Locomotion.” In Proceedings of Eurographics,
September 2006.

[HLM99] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. “Path Plan-
ning in Expansive Configuration Spaces.” International Journal of
Computational Geometry and Applications, 9(4/5):495–512, 1999.

[HMK11] Yazhou Huang, Mentar Mahmudi, and Marcelo Kallmann. “Planning
Humanlike Actions in Blending Spaces.” In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2653–2659, 2011.

128

[HN11] Kris Hauser and Victor Ng-Thow-Hing. “Randomized Multi-Modal
Motion Planning for a Humanoid Robot Manipulation Task.” Interna-
tional Journal on Robotic Research, 30(6):678–698, 2011.

[HNG07] Kris Hauser, Victor Ng-Thow-Hing, and Héctor H. González-Baños.
“Multi-modal Motion Planning for a Humanoid Robot Manipulation
Task.” In International Symposium on Robotics Research, pp. 307–317,
2007.

[HWB95] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F.
O’Brien. “Animating Human Athletics.” In Proceedings of SIG-
GRAPH, pp. 71–78, 1995.

[IAF07] Leslie Ikemoto, Okan Arikan, and David Forsyth. “Quick transitions
with cached multi-way blends.” In Proceedings of the Symposium on
Interactive 3D Graphics and Games (I3D), pp. 145–151, 2007.

[ICD05] Y.P. Ivanenko, G. Cappellini, N. Dominici, R.E. Poppele, and F. Lac-
quaniti. “Coordination of locomotion with voluntary movements in
humans.” Journal of Neuroscience, 25(31):7238–7253, 2005.

[KAA03] Marcelo Kallmann, Amaury Aubel, Tolga Abaci, and Daniel Thalmann.
“Planning Collision-Free Reaching Motions for Interactive Object Ma-
nipulation and Grasping.” In Proceedings of Eurographics, volume 22,
pp. 313–322, 2003.

[Kal10] Marcelo Kallmann. “Shortest Paths with Arbitrary Clearance
from Navigation Meshes.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA),
2010.

[KBM04] Marcelo Kallmann, Robert Bargmann, and Maja J. Matarić. “Plan-
ning the Sequencing of Movement Primitives.” In Proceedings of the
International Conference on Simulation of Adaptive Behavior (SAAB),
pp. 193–200, July 2004.

[KG03] Lucas Kovar and Michael Gleicher. “Flexible automatic motion blend-
ing with registration curves.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
214–224, 2003.

[KG04] Lucas Kovar and Michael Gleicher. “Automated Extraction and Pa-
rameterization of Motions in Large Datasets.” Proceedings of SIG-
GRAPH, 23(3):559–568, 2004.

[KGP02] Lucas Kovar, Michael Gleicher, and Frederic H. Pighin. “Motion
Graphs.” Proceedings of SIGGRAPH, 21(3):473–482, 2002.

129

[KHB10] Marcelo Kallmann, Yazhou Huang, and Robert Backman. “A Skill-
Based Motion Planning Framework for Humanoids.” In Proceedings
of the International Conference on Robotics and Automation (ICRA),
2010.

[KHK09] Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee.
“Synchronized multi-character motion editing.” ACM Transactions on
Graphics, 28(3):1–9, 2009.

[KKK94] Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean-Claude
Latombe. “Planning Motions with Intentions.” In Proceedings of SIG-
GRAPH, pp. 395–408, 1994.

[KL00a] James Kuffner and Jean-Claude Latombe. “Interactive manipulation
planning for animated characters.” In Proceedings of Pacific Graphics,
October 2000. poster paper.

[KL00b] James Kuffner and Jean-Claude Latombe. “Interactive manipulation
planning for animated characters.” In Proceedings of the Eighth Pacific
Conference on Computer Graphics and Applications, pp. 417–418, 2000.

[KL00c] James Kuffner and Steven M. LaValle. “RRT-Connect: An Efficient
Approach to Single-Query Path Planning.” In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), April
2000.

[KLY11] Oussama Kanoun, Jean-Paul Laumond, and Eiichi Yoshida. “Planning
foot placements for a humanoid robot: A problem of inverse kinemat-
ics.” International Journal on Robotic Research, 30(4):476–485, 2011.

[KM04] Marcelo Kallmann and Maja Matarić. “Motion Planning Using Dy-
namic Roadmaps.” In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4399–4404, April 2004.

[KNK03] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba,
and Hirochika Inoue. “Motion Planning for Humanoid Robots.” In
Proceedings of the 11th International Symposium of Robotics Research
(ISRR), November 2003.

[KS05] Taesoo Kwon and Sung Yong Shin. “Motion modeling for on-
line locomotion synthesis.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
29–38, 2005.

[KSG02] Lucas Kovar, John Schreiner, and Michael Gleicher. “Footskate
Cleanup for Motion Capture Editing.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
97–104, 2002.

130

[KSL96] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark Over-
mars. “Probabilistic Roadmaps for Fast Path Planning in High-
Dimensional Configuration Spaces.” IEEE Transactions on Robotics
and Automation, 12:566–580, 1996.

[KTW10] Björn Krüger, Jochen Tautges, Andreas Weber, and Arno Zinke.
“Fast Local and Global Similarity Searches in Large Motion Capture
Databases.” In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pp. 1–10, July 2010.

[Lam09] Fabrice Lamarche. “TopoPlan: a topological path planner for real
time human navigation under floor and ceiling constraints.” Computer
Graphics Forum, 28(2), March 2009.

[Las87] John Lasseter. “Principles of Traditional Animation applied to 3D
computer animation.” In Proceedings of SIGGRAPH, pp. 35–44, 1987.

[Lat90] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Pub-
lisher, December 1990.

[Lav98] Steven M. Lavalle. “Rapidly-Exploring Random Trees: A New Tool
for Path Planning.” Technical Report 98-11, Iowa State University,
October 1998.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[LB11] Y. Li and Kostas Bekris. “Learning Approximate Cost-to-Go Metrics
To Improve Sampling-based Motion Planning.” In Proceedings of Inter-
national Conference on Robotics and Automation (ICRA), May 2011.

[LCL06] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. “Motion patches:
building blocks for virtual environments annotated with motion data.”
ACM Transactions on Graphics, 25(3):898–906, 2006.

[LCR02] Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica K. Hodgins, and
Nancy S. Pollard. “Interactive Control of Avatars Animated with Hu-
man Motion Data.” Proceedings of SIGGRAPH, 21(3):491–500, July
2002.

[LH02] Peter Leven and Seth Hutchinson. “A Framework for Real-time Path
Planning in Changing Environments.” The International Journal of
Robotics Research, 21(12):999–1030, 2002.

[Liu05] Karen Liu. Towards a Generative Model of Natural Motion. PhD thesis,
University of Washington, 2005.

131

[Liu08] Karen Liu. “Synthesis of Interactive Hand Animation.” In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), July 2008.

[LK01] Steven M. LaValle and James Kuffner. “Randomized Kinodynamic
Planning.” International Journal of Robotic Research, 20(5):378–400,
2001.

[LK05] Manfred Lau and James Kuffner. “Behavior Planning for Character
Animation.” In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pp. 271–280, August 2005.

[LK06] Manfred Lau and James Kuffner. “Precomputed search trees: planning
for interactive goal-driven animation.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
299–308, 2006.

[LK10] Manfred Lau and James Kuffner. “Scalable Precomputed Search
Trees.” In Motion in Games, volume 6459, pp. 70–81, 2010.

[LKN09] Pengcheng Luo, Michael Kipp, and Michael Neff. “Augmenting Gesture
Animation with Motion Capture Data to Provide Full-Body Engage-
ment.” In Intelligent Virtual Agents (IVA), pp. 405–417, 2009.

[LL04] Jehee Lee and Kang Hoon Lee. “Precomputing avatar behav-
ior from human motion data.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
79–87, 2004.

[LLK11] Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović.
“Space-time planning with parameterized locomotion controllers.”
ACM Transactions on Graphics (TOG), 30(3), May 2011.

[LP02] Karen Liu and Zoran Popović. “Synthesis of complex dynamic char-
acter motion from simple animations.” In Proceedings of SIGGRAPH,
pp. 408–416, 2002.

[LP10] Seong Jae Lee and Zoran Popović. “Learning behavior styles with
inverse reinforcement learning.” ACM Transactions on Graphics,
29(4):122:1–122:7, July 2010.

[LS09] Sanjeev Khanna Liming Zhao, Aline Normoyle and Alla Safonova. “Au-
tomatic Construction of a Minimum Size Motion Graph.” In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), 2009.

132

[LWB10] Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and
Zoran Popović. “Motion fields for interactive character locomotion.”
ACM Transactions on Graphics, 29(6):138:1–138:8, December 2010.

[LWS02] Yan Li, Tian-Shu Wang, and Heung-Yeung Shum. “Motion texture: a
two-level statistical model for character motion synthesis.” Proceedings
of SIGGRAPH, 21(3):465–472, 2002.

[MC12] Jianyuan Min and Jinxiang Chai. “Motion graphs++: a compact gen-
erative model for semantic motion analysis and synthesis.” ACM Trans.
Graph., 31(6):153:1–153:12, November 2012.

[MCC09] Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. “Interactive Gener-
ation of Human Animation with Deformable Motion Models.” ACM
Transactions on Graphics, 29(1):9:1–9:12, December 2009.

[MJC01] M. Mizuguchi, Buchanan J., and T. Calvert. “Data driven motion
transitions for interactive games.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA),
2001.

[MK11] Mentar Mahmudi and Marcelo Kallmann. “Feature-Based locomotion
with Inverse Branch Kinematics.” In Proceedings of the 4th interna-
tional conference on Motion in Games (MIG), pp. 39–50, November
2011.

[MK12] Mentar Mahmudi and Marcelo Kallmann. “Precomputed Motion Maps
for Unstructured Motion Capture.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
127–136, July 2012.

[MK13] Mentar Mahmudi and Marcelo Kallmann. “Analyzing Locomotion Syn-
thesis with Feature-Based Motion Graphs.” IEEE Transcations on Vi-
sualization and Computer Graphics, 19(5):774–786, May 2013.

[MR06] Meinard Müller and Tido Röder. “Motion templates for automatic clas-
sification and retrieval of motion capture data.” In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), pp. 137–146, 2006.

[MRC05] Meinard Müller, Tido Röder, and Michael Clausen. “Efficient content-
based retrieval of motion capture data.” In Proceedings of SIGGRAPH,
pp. 677–685, 2005.

[NK00] C.L. Nielsen and Lydia Kavraki. “A two level fuzzy PRM for manipula-
tion planning.” In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), volume 3, pp. 1716–1721,
2000.

133

[NK09] Michael Neff and Yejin Kim. “Interactive editing of motion style
using drives and correlations.” In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pp.
103–112, 2009.

[PB02] Katherine Pullen and Christoph Bregler. “Motion Capture Assisted
Animation: Texturing and Synthesis.” Proceedings of SIGGRAPH, pp.
501–508, 2002.

[PBC05] Erion Plaku, Kostas Bekris, B.Y. Chen, A.M. Ladd, and Lydia Kavraki.
“Sampling-Based Roadmap of Trees for Parallel Motion Planning.”
IEEE Transactions on Robotics, 21(4):597–608, 2005.

[PKM06] Jefferson Provost, Benjamin J. Kuipers, and Risto Miikkulainen. “De-
veloping navigation behavior through self-organizing distinctive-state
abstraction.” Connection Science, 18(2):159–172, 2006.

[PKV07] Erion Plaku, Lydia Kavraki, and M. Vardi. “Discrete Search Lead-
ing Continuous Exploration for Kinodynamic Motion Planning.” In
Proceedings of Robotics: Science and Systems, June 2007.

[PLT05] Julien Pettre, Jean-Paul Laumond, and Daniel Thalmann. “A Nav-
igation Graph for Real-Time Crowd Animation on Multilayered and
Uneven Terrain.” In Proceedings of the First International Workshop
on Crowd Simulation (V-CROWDS), 2005.

[PSS02] Sang Il Park, Hyun Joon Shin, and Sung Yong Shin. “On-line loco-
motion generation based on motion blending.” In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), pp. 105–111, 2002.

[PZL10] Jia Pan, Liangjun Zhang, Ming Lin, and Dinesh Manocha. “A Hy-
brid Approach for Synthesizing Human Motion in Constrained Envi-
ronments.” In Conference on Computer Animation and Social Agents
(CASA), 2010.

[RBC98] Charles Rose, Bobby Bodenheimer, and Michael F. Cohen. “Verbs and
Adverbs: Multidimensional Motion Interpolation.” IEEE Computer
Graphics and Applications, 18:32–40, 1998.

[Rei79] John H. Reif. “Complexity of the movers problem and generalizations.”
Proceedings of the 20th Annual IEEE Conference on Foundations of
Computer Science, pp. 421–427, 1979.

[RP07] Paul S. A. Reitsma and Nancy S. Pollard. “Evaluating motion graphs
for character animation.” ACM Trans. Graph., 26(4), October 2007.

134

[RZS10] Cheng Ren, Liming Zhao, and Alla Safonova. “Human Motion Syn-
thesis with Optimization-based Graphs.” Computer Graphics Forum,
29(2):545–554, 2010.

[SB02] Cyrill Stachniss and Wolfram Burgard. “An Integrated Approach to
Goal-directed Obstacle Avoidance under Dynamic Constraints for Dy-
namic Environments.” In Proceedings of the IEEE International Con-
ference on Intelligent Robots and Systems (IROS), pp. 508–513, 2002.

[SH07] Alla Safonova and Jessica K. Hodgins. “Construction and optimal
search of interpolated motion graphs.” Proceedings of SIGGRAPH,
26(3), August 2007.

[SH08] Alla Safonova and Jessica K. Hodgins. “Synthesizing Human Motion
from Intuitive Constraints.” In Artificial Intelligence Techniques for
Computer Graphics, pp. 15–39, 2008.

[SK04] Michael Stilman and James Kuffner. “Navigation Among Movable Ob-
stacles: Real-time Reasoning in Complex Environments.” In Proceed-
ings of the IEEE International Conference on Humanoid Robotics (Hu-
manoids), volume 1, pp. 322–341, December 2004.

[SKF07] Ari Shapiro, Marcelo Kallmann, and Petros Faloutsos. “Interactive
Motion Correction and Object Manipulation.” In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D), April 2007.

[SKG05] Makyu Sung, Lucas Kovar, and Michael Gleicher. “Fast and Accurate
Goal-directed Motion Synthesis for Crowds.” In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), July 2005.

[SL01] G. Sanchez and Jean-Claude Latombe. “A Single-Query Bi-Directional
Probabilistic Roadmap Planner with Lazy Collision Checking.” In In-
ternational Symposium on Robotics Research (ISRR), November 2001.

[SMM05] Madhusudhanan Srinivasan, Ronald A. Metoyer, and Eric N.
Mortensen. “Controllable real-time locomotion using mobility maps.”
In Proceedings of Graphics Interface 2005, pp. 51–59, 2005.

[SO06] Hyun Joon Shin and Hyun Seok Oh. “Fat graphs: constructing an
interactive character with continuous controls.” In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), pp. 291–298, 2006.

[Tar72] Robert Endre Tarjan. “Depth-First Search and Linear Graph Algo-
rithms.” Siam Journal on Computing, 1(2):146–160, 1972.

135

[TGB00] Deepak Tolani, Ambarish Goswami, and Norman I. Badler. “Real-
time inverse kinematics techniques for anthropomorphic limbs.” Graph.
Models Image Process., 62(5):353–388, September 2000.

[TLP07] A. Treuille, Y. Lee, and Z. Popović. “Near-optimal Character Anima-
tion with Continuous Control.” In Proceedings of SIGGRAPH, 2007.

[TS00] Kurt A. Thoroughman and Reza Shadmehr. “Learning of action
through adaptive combination of motor primitives.” Nature, 407:742–
747, 2000.

[WB03] Jing Wang and Bobby Bodenheimer. “An evaluation of a cost metric for
selecting transitions between motion segments.” In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), pp. 232–238, 2003.

[WB04] Jing Wang and Bobby Bodenheimer. “Computing the duration of mo-
tion transitions: an empirical approach.” In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA),
pp. 335–344, 2004.

[WBE10] H. van Welbergen, Ben J.H. van Basten, Arjan Egges, Zs. M. Rut-
tkay, and Mark Overmars. “Real Time Animation of Virtual Humans:
A Trade-off Between Naturalness and Control.” Computer Graphics
Forum, 29(8):2530–2554, 2010.

[WC91] L.-C.T. Wang and C.C. Chen. “A combined optimization method for
solving the inverse kinematics problem of mechanical manipulators.”
IEEE Transactions on Robotics and Automation, 7(4):489–499, 1991.

[WH97] D. J. Wiley and J. K. Hahn. “Interpolation Synthesis of Articulated
Figure Motion.” IEEE Computer Graphics and Applications, 17(6):39–
45, 1997.

[WJM06] Pawel Wrotek, Odest Chadwicke Jenkins, and Morgan McGuire.
“Dynamo: dynamic, data-driven character control with adjustable
balance.” In Proceedings of the ACM SIGGRAPH Symposium on
Videogames, pp. 61–70, 2006.

[WK88] Andrew Witkin and Michael Kass. “Spacetime Constraints.” In Pro-
ceedings of SIGGRAPH, pp. 159–168, 1988.

[WP95] Andrew Witkin and Zoran Popović. “Motion Warping.” In Proceedings
of SIGGRAPH, pp. 105–108, 1995.

[WP10] Jia-chi Wu and Zoran Popović. “Terrain-Adaptive Bipedal Locomotion
Control.” ACM Transactions on Graphics, 29(4):72:1–72:10, July 2010.

136

[YKH04] Katsu Yamane, James Kuffner, and Jessica K. Hodgins. “Synthesiz-
ing Animations of Human Manipulation Tasks.” Proceedings of SIG-
GRAPH, 23(3):532–539, 2004.

[ZLX12] Dan Zong, Chunpeng Li, Shihong Xia, and Zhaoqi Wang. “Planning
interactive task for intelligent characters.” Computer Animation and
Virtual Worlds, 23(6):547–557, 2012.

[ZS08] Liming Zhao and Alla Safonova. “Achieving Good Connectivity in
Motion Graphs.” In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pp. 127–136, July 2008.

137

