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RESEARCH

Experimental data manipulations to assess 
performance of hyperspectral classification 
models of crop seeds and other objects
Christian Nansen1,4*  , Mohammad S. Imtiaz2, Mohsen B. Mesgaran3 and Hyoseok Lee1 

Abstract 

Background: Optical sensing solutions are being developed and adopted to classify a wide range of biological 
objects, including crop seeds. Performance assessment of optical classification models remains both a priority and a 
challenge.

Methods: As training data, we acquired hyperspectral imaging data from 3646 individual tomato seeds (germina-
tion yes/no) from two tomato varieties. We performed three experimental data manipulations: (1) Object assignment 
error: effect of individual object in the training data being assigned to the wrong class. (2) Spectral repeatability: effect 
of introducing known ranges (0–10%) of stochastic noise to individual reflectance values. (3) Size of training data set: 
effect of reducing numbers of observations in training data. Effects of each of these experimental data manipulations 
were characterized and quantified based on classifications with two functions [linear discriminant analysis (LDA) and 
support vector machine (SVM)].

Results: For both classification functions, accuracy decreased linearly in response to introduction of object assign-
ment error and to experimental reduction of spectral repeatability. We also demonstrated that experimental reduc-
tion of training data by 20% had negligible effect on classification accuracy. LDA and SVM classification algorithms 
were applied to independent validation seed samples. LDA-based classifications predicted seed germination with 
RMSE = 10.56 (variety 1) and 26.15 (variety 2), and SVM-based classifications predicted seed germination with 
RMSE = 10.44 (variety 1) and 12.58 (variety 2).

Conclusion: We believe this study represents the first, in which optical seed classification included both a thorough 
performance evaluation of two separate classification functions based on experimental data manipulations, and 
application of classification models to validation seed samples not included in training data. Proposed experimental 
data manipulations are discussed in broader contexts and general relevance, and they are suggested as methods for 
in-depth performance assessments of optical classification models.

Keywords: Classification performance, Machine vision, Proximal sensing, Classification models, Seed analysis, Optical 
sensing
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Background
Optical classification and sorting systems are being 
developed for a wide range of biological objects, includ-
ing food safety and food quality [1–5], and plant pheno-
typing and stress detection [6, 7]. Successful development 
and adoption of optical sensing solutions require com-
plex and highly inter-disciplinary research [8], which has 
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been eloquently described as an “image chain process” 
[9]. Moreover, each optical sensing solution involves spe-
cific research associated with: (1) type of sensor to use, 
(2) spatial scale at which to acquire optical sensing data, 
(3) relative uniqueness of object/feature characteristics 
and classes to divide them into, (4) approaches to data 
processing, calibration and classification, and (5) market 
development and economic potential. Despite inter-dis-
ciplinary diversity and complexity of optical sensing solu-
tions, there are important denominators with high degree 
of relevance to all solutions. One of these denominators 
for systems involving hyperspectral imaging involves 
methods to optimize image cube segmentation, image 
correction, and spatial-spectral dimensional denoising 
[10]. Another denominator with broad relevance to opti-
cal sensing systems is the model classification accuracy. 
In other words, it is the selection of classification func-
tion, selection of possible hyperparameters, develop-
ment and tuning of a classification algorithm, and finally 
assessment of its overall performance. The latter is the 
topic of this article. Throughout this article, we focus on 
optical classification of crop seeds, but we present meth-
ods to improve and discussion of performance assess-
ment of classification models with relevance to optical 
classification of virtually all biological and non-biological 
objects.

Regarding crop seeds, optical classification systems 
have been used to assess a number of important qual-
ity traits including: classification of near-isogenic crop 
genotypes and crop classes [11–14], protein content 
[15–17], moisture content [18–20], mycotoxin levels [21, 
22], pathogenic fungi [23, 24], internal defects [25–27], 
contaminants in seed samples [28], starch content [16], 
maturity [29, 30], seed weight [16], and viability [31–
39]. This range of optical classifications underscores the 
potential and promise, and there are strong arguments 
supporting claims that optical sensing systems will in 
many and important ways revolutionize seed industries 
in the near future. A recent review on use of hyperspec-
tral imaging in seed quality and safety inspection of seed 
samples provided comprehensive support for use of this 
technology to automate and improve grading, defect 
and disease detection, cleanness detection, composition, 
and viability/germination of seeds [8]. Facing this con-
siderable potential, it is of paramount importance that 
researchers developing optical systems to classify seeds 
and other objects use common/standardized research 
procedures, so that it is possible to directly compare per-
formance of systems and classification methods. Here, 
“performance” is considered a composite of two equally 
important aspects of a given classification model: (1) its 
“accuracy” (ability to accurately classify objects) and its 
“robustness” (measured as the classification algorithms 

inherent sensitivity to stochastic noise) [40]. In their 
description of model classifications based on neural net-
work functions, Belkin et  al. [41] provided an excellent 
description of classification model development and test-
ing of performance, which was referred to as “generaliza-
tion”. Classification performance may be asymmetric and 
therefore show varying degree of ability to classify objects 
in one or more classes. In cases involving asymmetric 
classification of objects in two classes, it is often relevant 
to refer to “sensitivity” (accurate prediction of true posi-
tives) and of “specificity” (accurate prediction of true 
negatives). As part of optimizing performance of classi-
fication algorithms, the concept of ‘bias-variance trade-
off’ (dilemma) describes the possible trade-off between 
under- and over-fitting of classification algorithms [41, 
42]. High bias (model under-fitting) occurs when clas-
sification models are overly simplistic and therefore do 
not provide an accurate fit to the training data. High 
variance (model over-fitting) occurs when classification 
models are overly sensitive and therefore provide model 
fits to the training data, which include strong effects of 
stochastic noise in training data. Ideally, a classification 
algorithm has both low bias and low variance, so that it 
is sensitive enough to detect subtle differences among 
similar objects in different classes/categories and ‘robust’ 
across data sets. As described in recently published arti-
cles, neural network functions may be less sensitive to 
this important trade-off than other classification func-
tions [41]. However, it is well-established that possible 
classification challenges linked to the bias-variance trade-
off are closely linked to the assumption of observations in 
training sets being random and from a similar probabil-
ity distribution as those used for model validation [41]. 
In other words, it is assumed that training and valida-
tion data sets follow the same or very similar probabil-
ity distributions. Data included in this study demonstrate 
how that assumption can easily be violated. For instance, 
it is well-known that the same plant genotype grown at 
different locations and/or under different weather and 
agronomic conditions can produce seeds or plants with 
markedly different phenotypic traits (i.e., size, shape, 
color) [8]. Phenotypic variability, both within and among 
seed varieties, can markedly decrease performance of 
optical classification and sorting solutions, as a classifica-
tion model developed based on a training data set from 
only one or few subsamples may under-perform when 
used to classify seeds from other subsamples. Moreover, 
failure to accurately classify observations from new (vali-
dation) samples is likely because the inherent assumption 
of equal/similar probability distributions was violated. 
It is therefore critically important to use comprehensive 
performance assessment procedures to characterize and 
quantify robustness of a given classification model.



Page 3 of 14Nansen et al. Plant Methods           (2022) 18:74  

Once developed (i.e., parameters have been tuned), 
performance assessment of classification accuracy is 
often based on one of the following validation meth-
ods: (1) Jack-knife cross-validation or leave-one-out, in 
which a single observation is removed from the training 
data set and used for validation. This method is repeated 
with all observations to calculate an average classifi-
cation accuracy. (2) The entire data set is divided into 
two portions (not necessarily of equal size), in which 
a data subset is used exclusively to develop a classifica-
tion model (referred to as training data) while another 
data subset is used for validation (referred to as valida-
tion data). K-fold cross validation is an extension of this 
method which involves partitioning the full data set 
into k random portions with k-1 of them being used as 
training data to generate the classification model, while 
using the remaining subset for validation. This process 
is repeated k times and the overall model performance 
is calculated based on the average of these k repeats. (3) 
When deep learning models are applied, entire data sets 
are commonly split into three parts: training, validation, 
and test data [43]. A combination of training and valida-
tion data is used to develop and optimize deep learning 
models, while a test subset is set aside and used to vali-
date the final classification model. (4) Validation consists 
of collecting independent validation data (from different 
locations, different species/variety, optical sensing data 
acquired on at different time points) to include stochastic 
noise incurred by both subtle noise/variation in imaging 
conditions and in preparation of objects being classified. 
However, limitations of data availability (especially when 
studies are conducted with animals or plants subjected to 
experimental treatments), is a common challenge. Thus, 
due to logistical feasibility constraints, a completely new 
and in-dependent data set may not be available for classi-
fication model validation. It is therefore critical to explore 
ways to perform thorough classification model perfor-
mance assessments without additional data.

In all abovementioned validation methods, acquired 
optical data are divided into training and validation data 
sets. An alternative or complementary method is to 
manipulate existing training data by introducing known 
values or ranges of stochastic noise and/or to alter the 
size of training data sets. In a recent study, Nansen et al. 
[44] introduced a method, which is similar to what is 
referred to as “sensitivity analysis” in population mod-
elling [45]. That is, a classification model is examined 
based on its sensitivity to each feature/parameter and to 
levels of stochastic noise associated with these features/
parameters in the training data set. We argue that such 
experimental sensitivity analyses of classification mod-
els should be considered more broadly, if the goal is to 
promote widespread adoption of optical classification 

models. The main reason being that challenges associ-
ated with repeatability [46–48] and/or robustness [11, 40] 
of classification models applied to optical data have been 
highlighted as representing some of the most important 
limitations when developing optical sensing systems. 
Furthermore, addition of known levels of experimental 
noise to observations in training data may be considered 
a way to obtain higher degree of similarity in frequency 
distributions (and therefore higher degree of classifica-
tion robustness) between observations in training and 
validation data sets.

In this study, we describe and discuss methods to 
examine and quantify performance of optical classifi-
cation models. As case study, we acquired hyperspec-
tral imaging data from individual tomato seeds, and we 
developed classification models to differentiate ger-
minating and non-germinating seeds. Performance of 
classification models was quantified based on ten-fold 
validation, and we performed three experimental manip-
ulations of training data as a way to thoroughly assess 
performance of classification models: object assignment 
error: effect of experimentally assigning 0–50% of tomato 
seeds to the wrong class. Spectral repeatability: effect of 
introducing known ranges (0–10%) of stochastic noise 
to individual reflectance values. Size of training data set: 
effect of reducing number of observations in the train-
ing data set by 0–50%. Accuracy of classification models 
was also quantified based on independent validation, in 
which classification algorithms were applied to individual 
seeds from samples not included in the training data. The 
main purpose of this study was not to optimize accuracy 
of the classification results per se but rather to describe 
and propose methods to minimize concerns about model 
under- and over-fitting and to propose a repeatable and 
quantitative approach to performance assessment of clas-
sification models.

Results
Figure 1a shows tomato seeds included in this study from 
two varieties and with each being represented by five sub-
samples (seed lots) representing different combinations 
of growing season and growing location. Although they 
are virtually indistinguishable by the human eye, aver-
age hyperspectral reflectance profiles reveal considerable 
effects of season and environment based on reflectance 
profiles (Fig. 1b, c). It is also seen that average reflectance 
profiles from subsamples of variety 2 were considerably 
more variable than those from variety 1. For both tomato 
varieties, similarity of average reflectance profiles from 
germinating and non-germinating seeds underscores the 
challenge and also highlights why visual classification by 
humans would be virtually impossible (Fig. 2a). Figure 2b 
shows the relative difference between germinating and 
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non-germinating seeds, as average reflectance of germi-
nating seeds was divided with average reflectance of non-
germinating seeds. It is seen that germinating seeds had 
higher average reflectance compared to non- germinat-
ing seeds, especially in spectral bands between 600 and 
700 nm. It is also seen that differences between germinat-
ing and non-germinating seeds were most pronounced 
for variety 2. Thus in several important ways, this data set 
represents what is frequently encountered as crucial clas-
sification challenges: a high degree of similarity between 
classes and considerable variation in main treatment 
effects (in this case, difference between germinating and 
non-germinating seeds) among subsamples within each 
class. These common challenges are further exacerbated 
by factors, such as: (1) error in training data sets (i.e., 
incorrect assignment of observations to specific classes), 
(2) spectral noise elicited by non-consistent imaging con-
ditions, and (3) size of training data sets, as it will likely 
require many observations to accurately separate highly 

similar classes. Each of these factors were examined as 
part of this study and are described in separate sections 
below.

Assignment error in training data
Without experimental mis-assignment of observations, 
both LDA and SVM classified germinating and non-
germinating seeds with about 70% accuracy (Fig.  3a). 
Based on experimental mis-assignments of 1, 2, 4, 6, 8, 
10, 15, 20, 30, 40, and 50% of individual tomato seeds in 
training data, we observed a negatively linear relation-
ship between level of intentional mis-assignment and 
classification accuracy (LDA: adjusted  R2-value = 0.96, 
slope = −  0.39, intercept = 68.17, SVM: adjusted 
 R2-value = 0.96, slope = −  0.46, intercept = 69.81), and 
the two classification models showed similar responses 
to mis-assignment of observations. In direct compari-
son (paired t-test) of LDA and SVM functions, we found 
no statistical difference in mean classification accuracies 

Fig. 1 Images and average reflectance profiles of tomato seeds included in this study. Photos of tomato seeds from two varieties, A and B, and five 
subsamples for each variety (a). Average reflectance profiles of five subsamples of tomato seed variety 1 (b) and 2 (c) included in this study
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(df = 11, t = 1.48, p-value = 0.17). Thus, the two classi-
fication functions appeared to have similar tolerance to 
assignment error.

Spectral repeatability
Based on experimental manipulation of spectral repeat-
ability (addition of spectral noise to reflectance values 
in individual spectral bands), we found that LDA and 
SVM classifications performed similarly with a marked 
decrease in classification accuracy in response to addi-
tion of ranges of spectral noise beyond 1% (Fig.  3b). It 
is easy to imagine environmental effects on seed and 
plant growth and/or variations in imaging conditions 
causing  > 1% change in frequency distribution of opti-
cal sensing data from individual objects, so this simple 
analysis highlights a crucial challenge associated with 
performance of classification models. In direct compari-
son (paired t-test) of LDA and SVM functions, we found 
no statistical difference in mean classification accura-
cies (df = 7, t = 1.93, p-value = 0.09). Thus, the two clas-
sification functions appeared to have similar tolerance to 
introduction of spectral noise. Importantly, experimental 
noise ranges added in this study were random and inde-
pendent among spectral bands, so noise levels could be 
both positive or negative. Under real-world conditions, 
it may be expected that spectral noise would show some 
degree of directionality and not be completely random. 
That is, difference among imaging events or change 
during an imaging event in ambient temperatures and 
humidity, may be expected to cause an overall increase or 
decrease in intensity of reflectance values. Consequently, 
it is possible to examine effects of negative and positive 
noise ranges separately. Also, spectral noise ranges could 
be added to only portions of spectral bands instead of 
to all of them, if one spectral region is considered to be 

more sensitive than others. Thus, there are numerous 
ways to introduce ranges of spectral noise and to exam-
ine their effects on classification accuracy.

Size of training data set
A major advantage of using seeds in this study was that 
we were able to obtain large training data sets (Table 1), 
and we examined effects on classification accuracy 
by reducing training data sets 5, 10, 20, 30, 40, 50, 60, 
75, and 90% for each of the two classes. We found that 
reducing size of training data sets by 10–20% caused neg-
ligible loss in classification accuracy with both LDA and 
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Fig. 3 Results from experimental performance assessments of classification models. Training data set from tomato variety 1 was manipulated in 
three different ways, and for each manipulation, we examined the effect on accuracy of linear discriminant (LDA) and support vector machine (SVM) 
classification models (based on ten-fold cross validation). Object assignment error: effect of individual seeds being assigned to the wrong class (a). 
Spectral repeatability: effect of introducing known levels of stochastic noise to individual reflectance values (b). Size of training data set: effect of 
randomly reducing the number of observations in the training data set (c)

Table 1 Germination data and numbers of tomato seeds 
included in this study

Tomato seeds from five subsamples of each of two varieties (1 and 2) were 
included in this study (10 samples, see also Fig. 1a). Two subsamples for each 
variety (variety 1: 1a and e, variety 2: 2f and j) were used as training data, and 
these are highlighted in bold. For all 10 tomato seed subsamples, we obtained 
germination results (%) from the seed company, and we performed four 
replicated germination tests of subsamples used as training data. Hyperspectral 
images of individual tomato seeds in training and validation data sets were 
acquired on different days, and two sets of validation data were acquired on 
separate days

Variety 
and 
sample

Germination results (%) Number of seeds

Company Our results Training Validation

1a 97 97.0, 97.9, 95.8, 92.7 496 96, 96

1e 56 56.0, 65.3, 68.8, 58.9 1751 96, 96

1b 83 96, 96

1c 82 96, 96

1d 66 96, 96

2f 97 97.0, 94.4, 96.9, 91.7 513 96, 96

2j 95 73.0, 74.0, 79.2, 82.7 886 96, 96

2g 91 96, 96

2h 86 96, 96

2i 73 96, 96
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SVM models (Fig.  3c). Regarding SVM-based classifica-
tion, there was a slight increase in classification accuracy 
between 40 and 50% reductions of training data. We 
attribute this slight increase in classification accuracy to 
random data reductions, which may have led to com-
paratively more noisy data being excluded. However with 
both classification algorithms, we observed the expected 
trend of a negative correlation between training data 
reduction and classification accuracy. Overall, it is seen 
that SVM-based classification appeared to be less sensi-
tive to size of training data set than LDA-based classifi-
cation. An important reason for performing this analysis 
as part of a performance assessment of a classification 
model is to determine if obtaining additional training 
data would improve the accuracy of the model. In this 

case, we obtained highly consistent classification accu-
racies with  < 10% data reduction, so it seems reasonable 
to argue that the potential benefits of adding observa-
tions to the training data set would likely be negligible. 
In direct comparison (paired t-test), we found that the 
LDA function was significantly more sensitive to reduc-
tion of training data compared to SVM (df = 9, t = − 3.18, 
p-value = 0.01).

Validation of classification models
Figure  4 shows results from validations of classifica-
tion models, and we present seed germination percent-
ages obtained from the seed company (used as “actual” 
or “known” germination and presented as colored cir-
cles) as well as predictions based on LDA and SVM 
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Fig. 4 Correlations between observed and predicted seed germination (%) based on linear discriminant (LDA) and support vector machine (SVM) 
classification models. Validation data (see Table 1) were used to predict tomato seed germination (%) in five seed subsamples from two varieties. We 
performed validations of both linear discriminant (LDA) and support vector machine (SVM) classification models. Seed germination percentages 
obtained from the seed company are presented as colored circles and considered “known germination”. Blue circles represent germination 
percentages of samples, which were used as training data. Red colored circles represent germination percentages of validation samples (not 
included in training data). Colored squares represent predicted germination percentages of training (blue squares) and validation (red squares) 
samples. Each colored symbol represents germination percentage based on 96 individual seeds
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classification models (presented as colored squares). It is 
seen that both LDA- (Fig. 4a) and SVM- (Fig. 4b) based 
predictions of germination of variety 1 tomato seeds 
were close to germination percentages provided by the 
company (LDA-RMSE = 10.56 and SVM-RMSE = 10.44, 
Table  1). Regarding variety 2, LDA-based predictions 
markedly under-predicted seed germination of subsam-
ples 2j and 2g (Fig. 4c), so the corresponding RMSE was 
considerably higher than in classifications of variety 1 
(LDA-RMSE = 26.15, Table  2). However, SVM-based 
classifications of germination percentage of variety 2 sub-
samples were close to germination percentages provided 
by the company and similar to those obtained in classifi-
cations of variety 1 (SVM-RMSE = 12.58, Table 2). Thus, 
of the two classification functions, SVM-based classi-
fication provided the best predictions of germination 
percentage.

An important side note is illustrated by the four rep-
licated germination percentages in Table  1. That is, we 
calculated germination percentages from 4 × 96 tomato 
seeds, and it is seen that results from groups of 96 tomato 
seeds varied 5–10% points between highest and low-
est. This germination range also applies to germination 
percentages for each seed sample provided by the seed 
company. As an example, the seed company’s germina-
tion percentage for sample 1a = 97.0%, while our repli-
cated tested yielded 97.0, 97.9, 95.8, and 92.7. Thus, any 
subsample of seeds from 1a might yield a germination 
result somewhere between 92 and 98%. We mention this, 
because it seems reasonable to assume that we, at least 
partially, over-estimated RMSE values (Table 2) as these 
calculations were based on germination percentages pro-
vided by the company (no actual germination percent-
age data were available for the 20 validation samples of 
seeds).

Discussion
Numerous studies describe use of optical classification 
systems to quantify viability and germination of seeds 
[31–39]. However, we believe this study represents the 
first toinclude both a thorough performance evaluation 
of two separate classification functions based on experi-
mental data manipulations and application of classifica-
tion models to validation seed samples not included in 

training data. LDA-based classifications predicted seed 
germination with RMSE = 10.56 (variety 1) and 26.15 
(variety 2), and SVM-based classifications predicted seed 
germination with RMSE = 10.44 (variety 1) and 12.58 
(variety 2). However, the main purpose of this study 
was not to classify tomato seeds into germinating and 
non-germinating classes per se but to thoroughly ana-
lyze performance of classification algorithms based on 
three experimental data manipulations. That is, we pro-
pose that performance assessments should be adopted, 
in which training data are experimentally manipulated 
to specifically assess the classification’s sensitivity to: (1) 
error in assignment of individual objects to classes, (2) 
error due to spectral noise (low spectral repeatability), 
and (3) size of training data set. In the following, we use 
two published studies to describe the broader relevance 
of these three data manipulations. That is, we use these 
two published studies to broaden the discussion about 
assignment error of observations beyond its relevance to 
studies of seed classifications.

Assignment error—the broader relevance
A recently published study described use of a handheld 
hyperspectral spectrometer to acquire reflectance val-
ues in 2039 spectral bands from leaves of potato plants 
in each of four treatment classes: non-infected control 
plants, plants experimentally infected with late blight 
(Phytophthora infestans), plants experimentally infected 
with early blight (Alternaria solani), and plants experi-
mentally infected with both late and early blight [49]. 
Leaf reflectance data were collected over time, and visual 
inspection was performed to divide potato plants into 
four etiological classes Although the etiological stages 
used to score/rate the severity of each blight disease were 
both logic and sound, it is clear that they are at least par-
tially subjective and therefore somewhat ambiguous. In 
experimental studies, plants assigned to a given treat-
ment are occasionally either cross-contaminated and/or 
appear not to have been treated successfully. Thus, the 
authors in this study of blight detection stated the follow-
ing: “Inoculated samples that did not achieve a disease 
rating of 4 for their respective diseases or greater by the 
end of the study period were not included”. It is always a 
partially subjective decision for researchers to deter-
mine whether or not to exclude observations, and if a 
considerable number of observations are excluded then 
the training data may become unbalanced. For instance, 
in studies with experimental arthropod infestations of 
plants, non-infested control plants may become infested, 
so control plants are discarded and disproportionally 
more so than plants under other treatment regimes. Fur-
thermore, stress symptoms may occur in one portion of 
a given potato plant, while leaf reflectance data may be 

Table 2 Root mean square error (RMSE) of validation results

Observed and predicted results from classifications with linear discriminant 
analysis (LDA) and support vector machine (SVM) functions of validation 
samples (Fig. 4) from tomato seed varieties 1 and 2

Function Variety 1 Variety 2

LDA 10.56 26.15

SVM 10.44 12.58
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acquired from a different portion of the plant canopy. In 
case of blight and other plant pathogens, there are ample 
evidence of disease symptoms and pathogens not being 
uniformly prevalent within individual plants [50, 51]. 
Thus, in studies involving plants subjected to experi-
mental treatments, it is possible that optical sensing data 
acquired from leaves were assigned to an incorrect class.

Risk of assignment error exists when optical sensing 
solutions are being developed on all spatial scales, includ-
ing airborne hyperspectral imaging. Here, we briefly 
describe a study on airborne detection and diagnosis of 
kauri dieback disease [Phytophthora agathidicida (PA)] 
in kauri trees (Agathis australis) [52]. A classification 
of trees was based on vegetation indices, and the train-
ing data set consisted of optical data from 1258 reference 
crowns (tree canopies), which had been divided into five 
crown classes. Optical classification revealed that ran-
dom forest classification of reflectance values in six spec-
tral bands showed a 0.93 correlation (mean error = 0.27, 
RMSE = 0.43) with kauri trees assigned to the numeric 
dieback scale values from 1 to 5. Thus, this aerial remote 
sensing study produced a highly accurate classification of 
objects (trees), but it is highlighted as an example of how 
assignment of observations/objects may pose challenges 
and therefore be associated with some degree of error.

The intended take-home message from description of 
these two studies is that training data sets may include 
observations assigned to an incorrect class, and likeli-
hood of this object assignment error hinges on number 
of classes in the training data set,, relative level of distinc-
tion (uniqueness) of classes, and expertise and consist-
ency of people performing visual classifications. Through 
experimental manipulation of a given training data set, 
individual observations/samples can be assigned to an 
incorrect class. If the classification algorithm is perform-
ing as intended (classifying according to the given trait), 
then a negative and linear correlation between classifi-
cation accuracy and number of observations/samples 
assigned to an incorrect class should be expected. We 
believe this simple data manipulation method can be 
readily adopted and used to both assess risk of model 
over-fitting and to compare performance of different 
classification models.

Spectral repeatability—the broader relevance
Reducing variance associated with average reflectance 
values is a major challenge in optical sensing, and it is 
achieved through a wide range of data processing steps, 
which fall under the general category of spectral calibra-
tion [9, 53] to maximize spectral repeatability. Although 
described in slightly different terminology, a compre-
hensive review article on use of hyperspectral imaging 
for seed quality and safety highlighted development and 

maintenance of calibration models as a major challenge 
[8]. The main outcome derived from effective calibra-
tion models is enhanced spectral repeatability, so calibra-
tion models and spectral repeatability are chain-steps in 
the same process. Concern about spectra repeatability 
was recently addressed in a study of reflectance profiles 
acquired from individual beet leafhoppers, in which 
classification accuracies were compared after adding 
known ranges of spectral noise to the training data [44]. 
There at least two general sources of error contributing 
to low spectral repeatability: (1) inconsistency over time 
and space of optical features acquired from individual 
objects, and (2) environmental effects on optical sensing 
data. Each of these sources is briefly described below.

Inconsistency over time and space of optical features: 
as an example, we return to the previously described 
study of dieback disease detection in kauri tree crowns 
[52]. Importantly, the authors highlighted a number of 
challenges which could contribute to possible assign-
ment error but especially to lack of spectral repeatabil-
ity: (1) kauri foliage possess color variations from darker 
yellow-green to lighter blue-green, which means that 
some degree of spectral noise is associated with optical 
data acquired from tree canopies, (2) weakened/stressed 
kauri trees are more likely to become covered by climb-
ers and epiphytes, which may affect optical data acquired 
from tree canopies, and (3) adverse growing conditions 
(i.e., drought, shallow and less fertile soil, and exposure to 
strong and salty winds from the sea) are known to cause 
dieback symptoms similar to those induced by kauri die-
back disease. As a second example, average reflectance 
profiles from subsamples of variety 2 were considerably 
more variable than those from variety 1.

Environmental effects on optical sensing data: even 
under experimental lab conditions, it is virtually impos-
sible to completely control and maintain truly constant 
physical conditions. Abiotic conditions affecting con-
sistency of optical data include ambient temperature, 
humidity, lighting spectrum and intensity, projection 
angle and distance between lens and target objects. Out-
door, factors including sun angle, cloud cover, shade, 
scattering from nearby structures/features, atmospheric 
composition, and wind may also adversely affect repeat-
ability of optical sensing data. In the abovementioned 
study on detection and diagnosis of late and early blight 
in potato leaves, the authors stated the following as a 
way to reduce spectral noise/error: “Bad measurements, 
such as those with low reflectance or abnormalities due to 
measurement error, were removed prior to data analysis 
[54–57]”. A decision about “good” and “bad” measure-
ments is of course somewhat subjective and arbitrary, 
unless it is based on radiometric filtering. That is, it is rel-
atively common to deploy radiometric filters (reflectance 



Page 9 of 14Nansen et al. Plant Methods           (2022) 18:74  

thresholds in one or several spectral bands) to automate 
exclusion of background and “bad” measurements in 
optical sensing data set acquired with ground [15, 58] 
or airborne [59] optical studies. Spectral calibration of 
outdoor optical sensing data may be performed based 
on deployment of stationary reference objects (empiri-
cal line method, ELM) [60] or based on solar and atmos-
pheric modeling (atmospheric radiative transfer models, 
ARTMs) [53]. Several studies, based on airborne [46] 
and on ground-based [47, 61, 62] optical sensing data 
have highlighted spectral noise/error as one of the major 
challenges when developing accurate and robust clas-
sification algorithms. That is spectral repeatability or 
robustness of optical data are terms used to describe the 
same challenge—that accurate classification of objects 
based on optical data relies on reflectance signals vary-
ing significantly less among objects within classes than 
among objects from different classes. Challenges linked 
to low and inconsistent spectral repeatability, are directly 
linked to partial violation of the assumption of training 
and validation data having same or similar frequency 
distributions. To the best of our knowledge, optimiza-
tion of spectral repeatability is one of the most important 
research frontiers for successful and widespread develop-
ment and adoption of optical sensing systems to classify 
biological and non-biological objects.

Size of training data set—the broader relevance
Regarding optical sensing studies of individual plants or 
animals subjected to different treatments or in differ-
ent classes, it is often logistically challenging (practically 
impossible) to obtain data from hundreds of individual 
objects. Small sizes of training data sets, constitute a 
major obstacle in hyperspectral machine vis ion studies, 
because it can readily lead to model over-fitting when the 
number of spectral bands (explanatory variables) exceeds 
the number of observations [63]. “Hughes phenomenon” 
[64, 65] and the principle of parsimony [63] are terms 
referring to the same major statistical challenge, which is 
the risk of model over-fitting [66, 67]. As a general rule 
and a way to minimize risks of model over-fitting, the fol-
lowing equation has been proposed as a way to calculate 
the maximum number of explanatory variables (spectral 
bands) to use [67]:

In which, “Objects” is the number of objects/observa-
tions and “classes” is the number of treatment classes. 
As an example, we may have acquired imaging data 
from 400 seeds in four classes. If so, concerns about 
possible model over-fitting could be made if > 132 
[(400–4)/3 = 132] spectral bands were to be used in the 
classification of seeds. This issue represents an important 

(1)Spectral bands =
(

Objects− classes
)

/3

(but often ignored) dilemma: that high spectral resolu-
tion is perceived as an advantage, as it likely increases 
to the likelihood of high classification accuracy. How-
ever, it also increases risks of model over-fitting and/or 
increases the need for larger training data sets in order 
to produce robust classification algorithms. From Eq. 1, 
it is seen that the number of classes has limited effect on 
risk of moel over-fitting, provided the number of objects 
far exceeds number of classes. Otherwise, in studies with 
few replicated objects and multiple classes, this equation 
shows that risks of model over-fitting may be eminent. 
However, Eq.  1 can only be considered a “general rule”, 
as risks of model over-fitting ultimately depends on the 
ratio between between-class and within-class variation. 
Moreover, if objects within each class possess little varia-
tion in terms of surface reflectance, and there is high and 
consistent between-class variation, then concerns about 
model over-fitting can often be ignored.

There are several ways to address concerns about the 
ratio between spectral bands and observations. It may be 
possible to add more observations or to subdivide obser-
vations into a higher number, but in most cases reduction 
of number of spectral bands is the focus and the most 
feasible method. There are at least four ways to reduce 
numbers of spectral bands to be included in classification 
models [9]: (1) exclude spectral bands in specific regions 
of the radiometric spectrum, if they are considered of 
low value and/or associated with high degree of spectral 
noise (low spectral repeatability), (2) through multivari-
ate analyses, such as principal component analyses, con-
vert large numbers of spectral bands into a few axes of 
variance (principal components), (3) deploy stepwise 
or feature selection procedures to select spectral bands 
with high contribution to separation of classes, and (4) 
through the process of “spectral binning” (averaging 
spectral bands). Research into feature selection proce-
dures is one of the main frontiers in optical data classi-
fication and a wealth of methods have been described 
and compared [68–71]. As examples of spectral binning, 
optical sensing data acquired in 240 spectral bands can 
be averaged × 3 (into 80 spectral bands), × 4 (into 60 
spectral bands), or × 5 (into 48 spectral bands). Spectral 
binning reduces the spectral resolution, which may lead 
to loss of classification accuracy as discriminatory reflec-
tance responses may be masked. However, there are also 
examples of how spectral binning increased classification 
accuracy, as it may reduce error caused by spectral noise 
[26, 62].

Conclusions
We believe this study represents the first, in which optical 
seed classification included independent validation and 
acquisition of seed imaging data on multiple days and of 
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seed subsamples from multiple combinations of grow-
ing seasons and growing locations. However, the main 
purpose of this study was to propose three experimen-
tal data manipulations and showcase how they can be 
used in performance assessments of classification func-
tions: (1) Object assignment error: effect of individual 
object in the training data being assigned to the wrong 
class. (2) Spectral repeatability: effect of introducing 
known ranges (0–10%) of stochastic noise to individual 
reflectance values. (3) Size of training data set: effect of 
reducing numbers of observations in training data. Based 
on these experimental data manipulations, it was con-
cluded that SVM-based provided the best predictions of 
germination percentage. Additionally, we demonstrated 
that LDA-based seed classification was significantly 
more sensitive to reduction of training data compared 
to SVM, but the two classification functions show simi-
lar sensitivity to addition of experimental spectral noise 
and to mis-assignment of observations. In broader con-
text and general relevance, the proposed experimental 
data manipulations may be used in the following manner: 
if experimental manipulations show, as in the present 
study, that classification accuracy decreases linearly in 
response to introduction of object assignment error and 
that experimental reduction of the training data set by, 
say < 20%, has only negligible effect on classification accu-
racy, then we argue that the following important conclu-
sions can be drawn: (1) the given classification model 
is not classifying noise but is able to detect reflectance 
features that are associated with optical features directly 
linked to between-class differences, and (2) the training 
data set was sufficiently large to ignore important con-
cerns about model over-fitting [62, 63, 66, 67].

Methods
Tomato seed samples and germination testing
Ten samples of commercial tomato (Solanum lycoper-
sicum L.) seeds were obtained from a seed company, in 
which five samples were “variety 1” grown at five differ-
ent locations (referred to as: “1a”–“1e”), and five samples 
were “variety 2” also grown at five different locations 
(referred to as: “2f”–“2j”) (Table  1). Due to proprietary 
nature of these seed samples we are unable to disclose 
information about the seed samples other than their level 
of germination (information provided by the seed com-
pany): “1a” = 58%, “1b” = 70%, “1c” = 85%, “1d” = 85%, 
“1e” = 97%, “2f” = 97%, “2g” = 95%, “2  h” = 91%, 
“2i” = 86%, and “2j” = 73%. Regarding tomato seed sam-
ples, “1a”, “1e”, “2f”, and “2j”, we conducted germination 
assays on individual tomato seeds immediately after 
they had been subjected to hyperspectral imaging. Indi-
vidual seeds were placed in wells (volume 250  μL) of 
96-well polystyrene assay plates (Thermo Scientific™) 

filled with 1% agarose (Neta Scientific, Inc.) solution. 
Plates were sealed with  Parafilm® and maintained in a 
growth chamber  (Conviron® GEN1000) at 25  °C. Seed 
germination, protrusion of radicle > 2  mm, was counted 
daily for 14  days. Based on linear regression, there was 
a highly significant correlation between seed germination 
data obtained from the seed company and those from 
our own germination tests (adjusted  R2-value = 0.921, 
slope = 0.828, intercept = 16.008, F-value = 176.92, 
P-value < 0.001) (Table  1). Thus, it was considered rea-
sonable to assume that training models based on our ger-
mination results from individual seeds could be validated 
with germination data provided by the seed company.

Tomato seeds from samples “1a” and “1e” constituted 
training data for classification of germination/non-germi-
nation in variety 1 (2247 individual seeds), and “2f”, and 
“2j” training data for classification of germination/non-
germination in variety 2 (1399 individual seeds) (Table 1). 
Uneven numbers of seeds among training samples were 
included to maximize the data balance, as samples varied 
in ratios of germinating: non-germinating seeds. Train-
ing data were collected on one day, while validation data 
were collected on different days. Hyperspectral imaging 
data acquired from seed samples 1b–d and 2g, h were 
used as independent validation data (192 individual seeds 
from each sample, with 96 seed images acquired on two 
separate days and on days different from those training 
data were acquired).

Hyperspectral imaging data acquisition
During acquisition of hyperspectral imaging data from 
individual tomato seeds, relative humidity was between 
30 and 40% and ambient temperature was 19–22  °C. 
We used a push-broom hyperspectral camera (PIKA 
XC, Resonon Inc., Bozeman, MT, USA) mounted 20 cm 
above a moving conveyor belt (2 cm per sec), and hyper-
spectral images were acquired with a spatial resolution of 
about 1,500 pixels per seed (frame rate = 150 frames per 
second). Main specifications of the hyperspectral camera 
were: digital output (12 bit), and angular field of view of 
7 degrees, and objective lens had a 17  mm focal length 
(maximum aperture of F1.4). Artificial lighting consisted 
of four 15  W 12  V halogen light bulbs (model = BHD-
12V15W, www. amsco pe. com) on either side of the lens 
(eight light bulbs) projecting light into an aluminum 
hemisphere which had been coated on the inside with 
titanium dioxide. A piece of white Teflon (K-Mac Plas-
tics, MI, USA) was used for white calibration, and the 
light saturation level was adjusted to the white Teflon, 
so that radiometric signals were converted into relative 
reflectance. Hyperspectral imaging data comprise 231 
spectral bands from 408 to 1025  nm (spectral resolu-
tion = 2.1 nm), but we only analyzed reflectance values in 

http://www.amscope.com
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221 spectral bands from 432 to 1025 nm due to concerns 
about low signal to noise ratio in the first nine spectral 
bands.

Data analyses
Throughout this study, assessment of classification accu-
racies is based on average result from ten-fold validations. 
A customized software package was used to acquire indi-
vidual hyperspectral image cubes from tomato seeds, as 
they were being imaged on a moving conveyor belt. Data 
processing and classification were performed in MAT-
LAB (R2020a, Natick, Massachusetts: The MathWorks 
Inc.) and R v3.6.1 (The R Foundation for Statistical Com-
puting, Vienna, Austria), and all analyses were based on 
average reflectance profiles from individual seeds. Data 
from each of the two tomato varieties were analyzed 
separately. Initial data processing consisted of generating 
average reflectance profiles from each seed, and associ-
ating each seed with its response variable value obtained 
from germination testing (response variable = “germina-
tion”: non-germination = 0 and germination = 1). The 
R packages, “MASS” and “caret”, were used to perform 
linear discriminant analyses, LDA [72]. We also used 
“e1071” R package to perform support vector machine, 
SVM with linear kernel [73]. No specific hyperparame-
ters were used in any of the classifications (i.e., no alpha0 
for LDA and no cost or gamma for SVM). Both LDA and 
SVM classifications are highly suited methods for binary 
classifications (such as, germination yes/no), and they 
have been widely used to classify hyperspectral imaging 
data acquired from seeds [8]. LDA and SVM classifica-
tions of training data from variety 1 were used to address 
the following three questions:

• Object assignment error: to what extent is classifica-
tion accuracy affected by potential error in assign-
ment of individual seeds into one of the two response 
variable classes (germination yes/no)? That is, a 
common challenge with machine vision classifica-
tions is that training data sets rely on some level of 
supervised classification and error can occur in the 
assignment of individual objects. As an example, ger-
mination was in this study defined as protrusion of 
radicle > 2 mm, but it is certainly possible that some 
seeds had a radicle protrusion of slightly below or 
above 2  mm and therefore were placed in incorrect 
class. To quantify possible effect of error, we intro-
duced known levels of error/mis-classification into 
the training data: 0 (no error), 1, 2, 4, 6, 8, 10, 15, 
20, 30, 40, and 50%. As a theoretical example: con-
sider a training data set with 2,000 average reflec-
tance profiles of which 1000 were from germinating 
seeds and 1000 were from non-germinating seeds. 

Assignment error of, for instance, 6% implies that 
60 average reflectance profiles in each of the two 
classes are selected by random and experimentally 
assigned to the incorrect class (i.e., non-germinating 
seeds assigned to germinating seeds and vice versa). 
The known level of error was assigned randomly to 
average reflectance profiles, and to ensure balance in 
the error assignment, it was assigned separately and 
equally to both germinating and non-germinating 
seeds.

• Spectral repeatability: to what extent is classification 
accuracy affected by introduction of known levels of 
stochastic noise reflectance values in individual spec-
tral bands? That is, spectral repeatability is known as 
one of the key challenges in applied use of machine 
vision classifications [11, 40, 46–48], so it is impor-
tant to characterize how sensitive a given classifica-
tion model is to stochastic variation in reflectance 
values in individual spectral bands. Consequently, we 
manipulated the training data set with 496,145 val-
ues (2245 average reflectance profiles × reflectance 
values in 221 individual spectral bands) and added 
the following eight ranges of random noise to indi-
vidual reflectance values (in %): 0 (no spectral noise
), ± 0–0.5, ± 0–1.0, ± 0–2.0, ± 0–4.0, ± 0–6.0, ± 0–8
.0, and ± 0–10.0. For example, if the average reflec-
tance value in a spectral band for one tomato = 1000 
and we experimentally add ± 0–2.0% noise, then the 
manipulated average reflectance value was a random 
number between 980 and 1020. Stochastic noise 
added to one spectral band was independent of that 
to other spectral bands and also varied randomly 
among all tomato seeds. Separate model analyses 
were performed for all combinations of spectral noise 
range and classification model (LDA and SVM).

• Size of training data set: to what extent is classifica-
tion accuracy affected by the number of observations 
(in this case average reflectance profiles from indi-
vidual tomato seeds) in the training data set? In this 
study, we analyzed data in 221 spectral bands, and we 
have tomato seeds in two classes. Surprisingly often, 
published machine vision studies present results, in 
which the number of observations was similar or 
lower than the number of spectral bands i.e. more 
predictors than observations. Several studies have 
addressed this performance aspect of classifica-
tion models [58, 62, 66, 74]. Consequently, to main-
tain balance between the two classes, we randomly 
removed: 0% (no removal), 5, 10, 20, 30, 40, 50, 60, 
75, and 90% of observations in each of the two classes 
in the training data. As an example, we may consider 
a training data set with 2000 observations (1000 for 
each of two classes). The size of the training data set 
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can be reduced by randomly omitting, for instance, 
100 (10%) or 200 (20%) of observations in each of the 
two classes, and effects of classification performance 
and be assessed.

Regarding object assignment error and spectral repeat-
ability manipulations, we predicted one of two possible 
outcomes: (a) association between error and classifica-
tion accuracy is negative. This outcome would be an indi-
cation of the classification model capturing true feature 
trends in the training data, because it would show evi-
dence of loss of classification accuracy in direct (and pos-
sibly linear) response to addition of error. (b) Levels of 
error and classification accuracy are non-correlated. This 
outcome would be a strong indication of model over-fit-
ting. Regarding size of training data set, we predicted one 
of two possible outcomes: (a) association between data 
reduction and classification accuracy is negative. This 
outcome would be an indication of the training data set 
being too small or near the minimum size. (b) Levels of 
data reduction and classification accuracy are non-corre-
lated. This outcome would be a strong indication of the 
training data set being sufficiently large. For each of the 
three data manipulations, we performed paired t-tests 
(library ggplot2) to compare results with LDA and SVM 
functions.

The final analysis in this study consisted of applying 
each of the two classification models to data from 20 
validation subsamples of 96 seeds each and with 10 sub-
samples for each variety (Table 1). For each variety, four 
validation samples were seeds from the same subsam-
ples used to generate training data, while the remaining 
six subsamples were from completely independent seed 
samples. Predicted germination percentages were com-
pared with germination percentages provided by the seed 
company and used as “known” or “actual” to calculate 
RMSE-values (library Metrics) for each combination of 
tomato variety and classification function.
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