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Abstract

Nonlinear Stability Criteria for Elastic Rod Structures

by

Daniel Mart́ınez Peters

Doctor of Philosophy in Engineering − Mechanical Engineering

University of California, Berkeley

Professor Oliver M. O’Reilly, Chair

Branched elastic rod structures are abundant in engineering and nature, in ap-
plications ranging from MEMS devices to human spine models. While buckling is
well-understood for problems of this type, stability is often difficult to assess, espe-
cially when the model is derived from a nonlinear rod theory. The purpose of this
research is to establish criteria for determining nonlinear stability, based upon the
minimization of an energy functional. By utilizing variational principles, and Leg-
endre’s classical work in particular, a new necessary condition for stability featuring
the existence of bounded solutions to a set of Riccati differential equations is estab-
lished. For a single rod, building on classical results, this condition is also shown to
be sufficient for stability.

The stability criteria are demonstrated on a number of examples using a simple,
planar rod theory. These examples range from a classical strut under axial load to
a branched tree-like structure composed of several rods. In the branched model, the
stability analysis consists of finding bounded solutions to a set of Riccati equations,
which are coupled at branching points. The number of Riccati equations corresponds
to the number of rods in the structure. The resulting condition is only necessary for
stability of a branched structure, as a sufficient condition could not be established.
However, this is the first instance of a stability criterion for branched structures that
is based on the second variation of the total energy. The advantage is that this
method provides a systematic means of identifying unstable, and therefore physically
unrealizable, configurations of a branched structure. Finally, an extension of the
stability criteria to other rod theories is discussed.
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Chapter 1
Introduction

1.1 Branched Tree-Like Structures

Tree-like structures formed by long flexible branches are ubiquitous in nature and
the mechanics of these, and other plant structures, have been studied for centuries.
Of particular interest is the use of rod theories to provide the mechanical models.
These theories have been used by, among many others, Greenhill [20] to predict the
maximum height of a tree, by McMillen & Goriely [39] to understand the mechanics
of tendril perversion, and by Silk et al. [56] to model the evolution of a rice panicle.
Many recent works which use rod theories to model tree-like structures have been mo-
tivated by the need to develop realistic computer graphics-based images of trees and
forests. Incorporating biomechanical aspects of plant development, such as growth
and the formation of residual stresses, makes this work particularly challenging. De-
spite these difficulties, many of the resulting images of trees exhibit extraordinary
detail and realism (see the works of Prusinkiewicz and his coworkers [9, 14, 13, 24]).

One of the difficulties inherent in computing equilibrium configurations for tree-
like structures modeled using elastic rods is the algebraic complexity of solving the
coupled boundary-value problems. It is natural to wonder if multiple configurations
are possible, and recently O’Reilly & Tresierras [45] have shown that this is indeed
the case. For example, consider the three equilibrium configurations shown in figure
1.1. Here, two child branches are joined to a parent branch at a single point. All
three branches are subject to terminal loadings, deform under their self-weight, and,
for the parameter values selected to construct this example, three possible solutions
to the boundary-value problem coexist.
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Chapter 1. Introduction

A B C

ḡ

Figure 1.1 Three possible solutions to a boundary-value problem featur-
ing three heavy elastic rods connected at a branching point.
Solutions A and C satisfy the necessary condition L1 while B
does not.

1.2 Buckling and Stability

The existence of the three solutions in figure 1.1 is indicative of the buckling
phenomenon. It is worth recalling that buckling, as first elucidated by Euler in the
mid-18th century, is caused when a bifurcation occurs in the solution to the equilibrium
equations for a terminally loaded rod. As the load increases from zero, a critical value
is reached whereby any further load produces additional configurations of the rod.
Determining the trivial and buckled solutions of the rod is generally straightforward,
as the governing equations lead to a two-point boundary value problem. However,
establishing the nonlinear stability of the straight and buckled configurations is not
a trivial problem. In fact, to this date, no stability criteria for a branched tree-like
structure have been established, which is a problem this dissertation seeks to address.

1.3 Variational Approach

Our goal is to devise a methodology to formally analyze the nonlinear stability
of a general elastic rod structure. The most appropriate metric for stability is to
determine which configurations minimize the total energy of the rod. Therefore, the
rich history of the calculus of variations provides the most useful tools for analysis.
The main avenue can be traced back to Max Born’s seminal thesis on equilibrium
configurations of elastic rods in 1906 [5], and it involves using Jacobi’s analysis of
the second variation of the total energy to examine the possible existence of conju-
gate points. The non-existence of conjugate points can be considered as a necessary
condition for the second variation to be non-negative, and consequently a necessary
condition for stability. This has proven to be the most popular approach in mod-
ern analyses of elastic rod stability [23, 29, 32, 35, 37, 53]. Alternatively, there is a
treatment of the second variation due to Legendre in 1786 that proved to be more
fruitful in our work. This approach results in the necessary condition that a bounded
solution to a Riccati differential equation must exist over the interval of interest. As
discussed in two classic texts on calculus of variations [4, 15], the results from Leg-
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Chapter 1. Introduction

endre’s treatment are equivalent to the Jacobi treatment for certain sets of boundary
conditions. In addition, Legendre’s treatment features prominently in the optimal
control literature (see, e.g., [2, 6]), and therefore two different, but often equivalent,
variational formulations of stability are possible for elastic rod problems.

For a single terminally loaded branch deforming under its own weight, the stability
analysis consists of examining a scalar Riccati equation for bounded solutions. In our
earlier work, O’Reilly & Peters [43], we established and verified these stability criteria
for terminally loaded elastic struts. For this classical problem, the advantage is that
the conditions for stability are both necessary and sufficient. In a more recent paper
[42], we extend the stability criteria to tree-like structures composed of elastic rods.
The resulting necessary condition, which we denote by L1, for the minimization of
the second variation features a set of Riccati equations, one for each branch, which
are coupled at the branching points. If a solution to each individual Riccati equation
can be found, then L1 is satisfied. The condition includes the appealing result that a
necessary condition for a branched structure to be stable is that each branch in the
structure should be stable. Another set of new necessary conditions, which we denote
by B3, is also established. These conditions pertain to the case where the abscissa
of the branching point is variable. This variability is present in situations where the
branches are held together by an adhesive at a branching point. Sufficient conditions
for stability of branched tree-like structures remain to be found.

1.4 Outline of Dissertation

An outline of the dissertation is as follows: large portions of our papers ([42, 43])
concerning the necessary variational principles for single and branched structures are
presented in Chapter 2. To put the conditions for stability in the context of a specific
rod theory, the stability criteria are established for Euler’s theory of the elastica
in Chapter 3, along with some necessary kinematics. Chapter 4 contains several
applications of the stability criteria to the classical problem of a thin strut deforming
under terminal loading and self-weight, as well as an example of a human spine
model with intrinsic curvature buckling under terminal loading (see Peters [48] and
references therein for a detailed treatment). For a demonstration of the novel stability
criteria for a tree-like structure, an illustrative example is shown in Chapter 5. With
the intended goal of extending the stability criteria to more complex rod theories
which can accommodate nonplanar deformations, torsion, shear and extension of
the rod centerline, Chapters 6 & 7 present some background on the kinematics of
two prominent theories (due to Green & Naghdi and Kirchhoff) and explain how the
variational principles must be altered in order to establish second variation conditions
for each theory. Finally, a detailed presentation of the alternative optimal control
formulation of the stability criteria discussed in [43] is given in Appendix A.

3



Chapter 2
Variational Principles

2.1 Introduction

The calculus of variations has its origins in Johann Bernoulli’s proposed brachis-
tochrone problem (1696), and has since been richly developed by Euler, Lagrange,
Legendre, Jacobi, Weierstrass, and many others. The central goal is to seek functions
which extremize (i.e., maximize or minimize) a given functional. In mechanics, the
functional of interest is typically the total energy, thus giving the extremizing func-
tions a physical importance. When the total energy is minimized for a given solution,
stability of that solution is confirmed (the same concept is true for maxima and in-
stability). The extremals are found by examining the first variation of the functional
and establishing necessary conditions that must be satisfied. In order to distinguish
between a maximum and minimum of the functional, the second variation must be
analyzed, giving additional necessary (and possibly sufficient) conditions.

The variational principles used in this chapter establish necessary and sufficient
conditions for stability of a single rod structure in §2.2, and only necessary conditions
for stability of a tree-like structure of branched rods in §2.3. The theory for branched
structures also contains necessary conditions for the special case when the abscissa
of the branching point is allowed to vary. These results are derived using Legendre’s
treatment, but there is a brief discussion of their equivalence to results using Jacobi’s
treatment at the end of §2.3.
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Chapter 2. Variational Principles

y∗(x)

y∗(x) + εη(x)

x = xa x = xb

yb

ya

x

y

Figure 2.1 A schematic of the variation of a single extremal. In this
example, y(x = a) and y(x = b) are prescribed, corresponding
to fixed-fixed boundary conditions (see Chapter 4). There are
also cases where either one or both of the endpoints is not
prescribed.

2.2 Variational Principles for a Single Structure

According to the classical (indirect) method of the calculus of variations, we begin
by considering a piecewise smooth real-valued function:

f = f

(
x, y, y

′
=
dy

dx

)
. (2.1)

Regularity of the function f is assumed:

∂2f

∂y′∂y′ > 0. (2.2)

Here, we consider a functional of the form

I(y) =

∫ b

a

f
(
u, y(u), y

′
(u)
)
du. (2.3)

We seek an extremal y∗(x) of I which satisfies the boundary conditions at x = a and
x = b:

φ [y(a), y′(a)] = 0, ψ [y(b), y′(b)] = 0, (2.4)

5



Chapter 2. Variational Principles

where φ and ψ are smooth scalar-valued functions. It will become clear in Chapter 4
§4.2 why the boundary conditions are defined in this manner.

2.2.1 First Variation and Necessary Conditions for an Extremal

We now wish to consider changes to I which arise when the function y∗(x) is
varied (see figure 2.1):

y(x, ε) = y∗(x) + εη(x), (2.5)

where ε is an arbitrary constant independent of x and y, and η(x) is an arbitrary func-
tion of x which is independent of ε and satisfies the appropriate boundary conditions
(from (2.4)):

∂φ

∂y
η(a) +

∂φ

∂y′
η′(a)

∣∣∣∣
y=y∗(a)

= 0,
∂ψ

∂y
η(b) +

∂ψ

∂y′
η′(b)

∣∣∣∣
y=y∗(b)

= 0. (2.6)

To obtain the first variation we compute dI
dε

with the help of the Leibniz rule, take
the limit as ε → 0, and perform the standard integration by parts. As a result of
these manipulations, we find that

dI

dε

∣∣∣∣
ε=0

=

[
∂f

∂y′
η

]x=b

x=a

+

∫ b

a

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
ηdx. (2.7)

In order for y∗(x) to be an extremal, the right-hand side of (2.7) must vanish for all
η(x). Since η(x) is an arbitrary function, this condition leads to the Euler-Lagrange
equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (2.8)

For a structure where ya and yb are prescribed, the first term on the right-hand side of
(2.7) will vanish because η(x = a) = η(x = b) = 0. When ya or yb are not prescribed,
the vanishing of the first variation yields the natural boundary conditions

∂f

∂y′

∣∣∣∣
x=a

= 0 or
∂f

∂y′

∣∣∣∣
x=b

= 0. (2.9)

2.2.2 Second Variation and a Stability Criterion for an Extremal

To establish a stability criterion for y∗(x), we next examine the second variation
δ2I of I. We shall assume that non-negativity of δ2I is necessary for stability of
the extremal y∗(x), while positive definiteness is sufficient for stability. A typical
development of a criterion for positive-definiteness features the Jacobi condition and
the search for conjugate points. Although the condition has been used with some
success in models of elastic structures, we find it easier when dealing with branched
structures to utilize a treatment originally proposed by Legendre in 1786, which leads

6



Chapter 2. Variational Principles

to a Riccati differential equation. The existence of a bounded solution to this equation
is one of the sought-after necessary conditions for δ2I ≥ 0. In fact, we are able to
show that, for a single rod only, the existence of a bounded solution to the Riccati
equation is also a sufficient condition for stability.

Necessary Conditions

We consider the same variations as those used in Section 2.2.1. Starting with the
expression (2.7) for dI

dε
, we differentiate once more with respect to ε and set ε to zero:

δ2I =
d2I

dε2

∣∣∣∣
ε=0

=

∫ b

a

{
Pη2 + 2Qηη′ +Rη′2

}
du, (2.10)

where

P = P (x) =
∂2f

∂y∂y

(
x, y∗, y∗

′)
, Q = Q(x) =

∂2f

∂y∂y′

(
x, y∗, y∗

′)
,

R = R(x) =
∂2f

∂y′∂y′

(
x, y∗, y∗

′)
, (2.11)

We now seek conditions for the non-negativity of δ2I. Following Legendre, we add
the following identity to the right-hand side of (2.10):∫ b

a

d

du

(
η2w

)
du− [

η2w
]b
a

= 0. (2.12)

Thus, δ2I simplifies to

δ2I =

∫ b

a

{(
P + w

′
)
η2 + 2 (Q+ w) ηη′ +Rη′2

}
du− [

η2w
]b
a
, (2.13)

provided we can find a function w(x) which satisfies the following Riccati equation

w
′
+ P − 1

R
(Q+ w)2 = 0. (2.14)

The boundary condition on w(x) is chosen so that

η2(a)w(a) − η2(b)w(b) = 0. (2.15)

If a solution w(x) to (2.14) can be found, then the resulting simplified expression for
δ2I is non-negative:

δ2I =

∫ b

a

R

{
η

′
+

(
Q+ w

R

)
η

}2

du. (2.16)

7



Chapter 2. Variational Principles

We refer to the existence of w(x) as the necessary condition L1. Note that R > 0
(i.e., (2.23)) is used here to establish non-negativity. This necessary condition is also
known as the strengthened Legendre condition.

Sufficient Conditions

To show how these conditions are also sufficient for stability in this special case,
standard manipulations using integrations by parts can be used to establish several
representations for δ2I:

δ2I = A2 =

∫ L

0

R

{
η

′
+

(
Q+ w

R

)
η

}2

dx

= B2 =

∫ L

0

η

{
Pη +Qη

′ −
(
Qη +Rη

′
)′}

dx+
[
η
(
Qη +Rη

′
)]L

0

= C2 =

∫ L

0

{
η

′
Rη

′
+
(
P −Q

′
)
η2
}
dx+ [η (Qη)]L0 . (2.17)

The expression A2 follows from (2.16), the expression B2 features the Jacobi differen-

tial operator Pη+Qη
′−(Qη +Rη

′)′
, and the expression C2 emphasizes the quadratic

nature of δ2I. We assume that the boundary conditions are such that

η(0) = 0, ηQη|x=L = 0, ηRη
′
∣∣∣
x=L

= 0. (2.18)

Justifying the counterparts to these conditions for branched structures was a signifi-
cant impediment to establishing a sufficient condition for stability. We also take this
opportunity to note that the boundary condition η(0) = 0 excludes the problematic
free-free case η

′
(0) = η

′
(L) = 0 (see [35] for a discussion of this case).

To examine if δ2I is strictly positive, we first assume that a solution w(x) to the
Riccati equation associated with L1 exists ∀x ∈ [0, L]:

w
′
+ P − 1

R
(Q+ w)2 = 0,

[
η2w

]L
0

= 0. (2.19)

Now suppose A2 = 0 (cf. (2.17)1) for some function η(x). Hence, η extremizes δ2I
and consequently it must satisfy the Jacobi differential equation:

Pη +Qη
′ −

(
Qη +Rη

′
)′

= 0. (2.20)

However, as R > 0, we conclude by inspecting A2 that

η
′
+

(
Q+ w

R

)
η = 0. (2.21)

8



Chapter 2. Variational Principles

Now η(0) = 0, so (2.21) implies that η
′
(0) = 0. Invoking the existence and uniqueness

theorem for solutions η(x) to (2.20) with the initial conditions η(0) = 0 and η
′
(0) = 0,

we conclude that η(x) = 0 for all x ∈ [0, L]. Hence, δ2I is positive definite.
In conclusion, a sufficient condition, which we refer to as LS1, for δ2I to be positive

definite in the case where there is a single branch and (2.18) holds is the existence
of a solution w(x) for all x ∈ [0, L] to the Riccati equation (2.19). A closely related
proof is presented in Gelfand & Fomin [15].

2.3 Variational Principles for a Branched Tree-Like Structure

y∗(x)

y∗1 (x1)

y∗2 (x2) + εη2 (x2)

y∗1 (x1) + εη1 (x1)

y∗ (x) + εη (x)

y∗2 (x2)

x = x0 x1 = L1x2 = L2

y0

x

x1

x2

β β + εμ

Figure 2.2 An example of the variations of the extremals and the branch-
ing point for a branched system with N = 2. In this example,
y1 (x1 = L1) is prescribed while y2 (x2 = L2) is unspecified.

We now consider tree-like structures formed by the graphs of piecewise smooth
functions (see figure 2.2). It suffices to consider the case where one branching point
(or vertex) exists and to restrict attention to situations featuring the following set of
piecewise smooth real-valued functions for each branch:

f = f

(
x, y, y

′
=
dy

dx

)
,

fK = fK

(
xK , yK , y

′
K =

dyK

dxK

)
, (K = 1, ...., N) . (2.22)

9



Chapter 2. Variational Principles

Regularity of the functions f and fK is still assumed:

∂2f

∂y′∂y′ > 0,
∂2fK

∂y
′
K∂y

′
K

> 0, (K = 1, ...., N) . (2.23)

It is convenient to define complementary functions for f and fK :

g = g
(
x, y, y

′
)

= f − y
′ ∂f

∂y′ ,

gK = gK

(
xK , yK , y

′
K

)
= fK − y

′
K

∂fK

∂y
′
K

. (2.24)

Referring to figure 2.2, we choose the coordinates xK such that at a branching point
x = β and xK = β. Compatibility of y and yK is assumed:

y− = y+
K , (K = 1, ...., N) , (2.25)

where we have introduced the abbreviations

y− = y
(
β−) = lim

x↗β
y (x) , y+

K = yK

(
β+
)

= lim
xK↘β

yK (xK) . (2.26)

We now consider functionals of the form

I (y, y1, . . . , yN) =

∫ β

0

f
(
u, y(u), y

′
(u)
)
du+

N∑
J=1

∫ LJ

β

fJ

(
u, yJ(u), y

′
J(u)

)
du. (2.27)

We seek a set of extrema {y∗(x), y∗K (xK)} of I which satisfy the fixed boundary
condition at x = 0 and N compatibility conditions:

y(x = 0) = y0, y− = y+
K . (2.28)

We have elected to leave the N boundary conditions at xJ = LJ unspecified.
To compress several lengthy expressions, we define the following notation for a

pair of functions a(x) and aJ (xJ) evaluated at a branching point:

〈〈aJ , a〉〉 = a+
J − a−, (J = 1, . . . , N) . (2.29)

We also employ three distinct abbreviations for jumps in functions which will play

10



Chapter 2. Variational Principles

prominent roles in the sequel:

[[f ]]B = − lim
x↗β

f
(
x, y∗ (x) , y∗

′
(x)
)

+

N∑
J=1

lim
xJ↘β

fJ

(
xJ , y

∗
J (xJ) , y∗J

′
(xJ)

)
,

[[fy]]B = − lim
x↗β

∂f

∂y

(
x, y∗ (x) , y∗

′
(x)
)

+

N∑
J=1

lim
xJ↘β

∂fJ

∂yJ

(
xJ , y

∗
J (xJ) , y∗J

′
(xJ)

)
,

[[fr]]B = − lim
x↗β

∂f

∂y′

(
x, y∗ (x) , y∗

′
(x)
)

+
N∑

J=1

lim
xJ↘β

∂fJ

∂y
′
J

(
xJ , y

∗
J (xJ) , y∗J

′
(xJ)

)
.

(2.30)

2.3.1 Variations and Compatibility

As in the case of a single branch, we are now in a position to consider changes
to I which arise when the functions y∗(x) and y∗K (xK) are varied. However, we now
assume that the branching point β is also varied:

β → β + εμ,

y(x, ε) = y∗(x) + εη(x),

yK (xK , ε) = y∗K (xK) + εηK (xK) , (K = 1, . . . , N) , (2.31)

where
y(0, ε) = y0, y (β + εμ, ε) = yK (β + εμ, ε) . (2.32)

A set of 2N compatibility conditions are obtained by taking the first and second
derivatives of (2.32)2 with respect to ε and then setting ε→ 0:(

μy∗
′
+ η

)−
=
(
μy∗K

′
+ ηK

)+

,
(
μ2y∗

′′
+ 2μη

′
)−

=
(
μ2y∗K

′′
+ 2μη

′
K

)+

. (2.33)

Conditions of the form (2.33)1 feature in adhesion problems where N = 1 (see, e.g.,
Majidi & Adams [33] or Seifert [55]).

2.3.2 Necessary Conditions for an Extremal

Here we follow O’Reilly & Tresierras [45] and establish necessary conditions for an
extremal by examining the first variation of I. This is done by substituting (2.31) into
I and proceeding in a manner identical to the method in §2.2.1. At the conclusion of

11



Chapter 2. Variational Principles

these manipulations, we find that

dI

dε

∣∣∣∣
ε=0

= −μ [[f ]]B +

(
∂f

∂y′ η

)−
−

N∑
J=1

(
∂fJ

∂y
′
J

ηJ

)+

+

N∑
J=1

(
∂fJ

∂y
′
J

ηJ

)∣∣∣∣∣
xJ=LJ

+

∫ β

0

{
∂f

∂y
− d

du

(
∂f

∂y′

)}
ηdu+

N∑
J=1

∫ LJ

β

{
∂fJ

dyJ
− d

du

(
∂fJ

∂y
′
J

)}
ηJdu.

(2.34)

With the help of (2.33), we can simplify the right-hand side of (2.34) by substituting
for η+

J . Then, using (2.30)2, we can write (2.34) in another form:

dI

dε

∣∣∣∣
ε=0

= − [[fr]]B η
− − μ

(
[[f ]]B −

N∑
J=1

(
∂fJ

∂y
′
J

)+ 〈〈
y∗J

′
, y∗

′〉〉)

+

N∑
J=1

(
∂fJ

∂y
′
J

ηJ

)∣∣∣∣∣
xJ=LJ

+

∫ β

0

{
∂f

∂y
− d

du

(
∂f

∂y′

)}
ηdu

+

N∑
J=1

∫ LJ

β

{
∂fJ

∂yJ
− d

du

(
∂fJ

∂y
′
J

)}
ηJdu. (2.35)

It is illuminating to note that the first two terms on the right-hand side of this
equation are obtained by varying y(β) and β, respectively, of the branching point.
For those branches where yJ (xJ = LJ) are prescribed, the third term on the right
hand side of (2.35) will vanish because ηJ (xJ = LJ) = 0 for these branches.

In order for {y∗(x), y∗K (xK)} to be extremals, the right-hand side of (2.35) needs
to vanish for all μ, η−, η(x), and ηJ(xJ ). The arbitrariness of η(x) and ηJ(xJ) leads
to the respective Euler-Lagrange equations:

d

dx

(
∂f

∂y′

)
− ∂f

∂y
= 0,

d

dxK

(
∂fK

∂y
′
K

)
− ∂fK

∂yK
= 0, (K = 1, . . . , N) . (2.36)

For those branches where yJ (xJ = LJ) is unspecified, the vanishing of the right-hand
side of (2.35) also yields the natural boundary conditions

∂fJ

∂y
′
J

(
LJ , y

∗
J(LJ), y∗J

′
(LJ)

)
= 0. (2.37)

The peculiar feature of the branched system arises when we consider the first two
terms on the right-hand side of (2.35). We suppose that we can vary η− and μ in
an arbitrary manner. This leads to a pair of conditions, which we refer to as the

12



Chapter 2. Variational Principles

branching point conditions B1 and B2, respectively:

[[fr]]B = 0, [[g]]B = 0. (2.38)

These conditions are similar in form to the standard Erdmann-Weierstrass conditions
which hold at a corner point of an extremal. The condition [[fr]]B = 0 can also be
related to the junction conditions discussed in works on multistructures and continuity
of force and moments at a branching point (see Le Dret [27] and O’Reilly & Tresierras
[45]). Furthermore, the relationship between the condition [[g]]B = 0 and material (or
configurational) forces is discussed in Faruk Senan et al. [12] and O’Reilly & Tresierras
[45].

Regularity of the functions f, f1, . . . , fN implies that the Legendre necessary con-
dition for an extremal is identically satisfied. By fixing all but one of the functions
y, y1, . . . , yN , we can readily establish N +1 Weierstrass necessary conditions (featur-
ing his excess function) and 2N + 2 Erdmann-Weierstrass corner conditions. In the
applications considered in the sequel, these 3N +3 conditions are identically satisfied
and, in the interests of brevity, are not discussed further.

In summary, if {y∗(x), y∗K (xK)} constitute a set of extremals for the variational
problem, then (as expected) each element satisfies the appropriate Euler-Lagrange
necessary condition (cf. (2.36)). If one end of an extremal is not specified, then the
natural boundary condition (2.37) is assumed to hold there. The peculiar nature
of branched structures manifests at the branching point. There, we have the pair
of conditions (2.38). As emphasized in O’Reilly & Tresierras [45], apart from the
condition [[g]]B = 0, the developments in this section can be considered as special
cases of the results established by Ivanov & Tuzhilin [21].

2.3.3 Second Variation and a Stability Criterion for a Branched Structure

To establish a stability criterion for the set {y∗(x), y∗K (xK)}, we next examine the
second variation δ2I of I. We shall assume that non-negativity of δ2I is necessary
for stability of the set of extremals {y∗(x), y∗K (xK)}, while positive definiteness (i.e.,
δ2I > 0) is sufficient for stability of this set. A typical development of a criterion for
positive-definiteness features the Jacobi condition and the search for conjugate points.
Although some work on generalizing the condition to networked structures has been
presented in Pronin [49], it is not obvious how one can generalize the Jacobi condition
to the structures of interest in this paper. Instead, we find it far more productive
to extend a treatment originally proposed by Legendre in 1786 for a single extremal
to branched structures. This Legendre-inspired treatment leads to a series of N + 1
Riccati equations: one for each branch. The equations are coupled by a boundary
condition at the branching point (which is easily implemented). The existence of a
bounded solution to these equations is one of the sought-after necessary conditions
for δ2I ≥ 0. We were unable to establish a condition for δ2I > 0 for a branched
structure, as we were able to do for a single branch.

13



Chapter 2. Variational Principles

We consider the same variations as those used in §2.3.1. Starting with the ex-
pression (2.27) for I and substituting the variations (2.31), we compute the second
derivative of I with respect to ε and then set ε to zero:

d2I

dε2

∣∣∣∣
ε=0

= μ2

((
df

dx

)−
−

N∑
J=1

(
dfj

dxj

)+
)

+2μ

((
∂f

∂y
η

)−
−

N∑
J=1

(
∂fJ

∂yJ

ηJ

)+
)

+2μ

((
∂f

∂y′ η
′
)−

−
N∑

J=1

(
∂fJ

∂y
′
J

η
′
J

)+
)

+

∫ β

0

{
Pη2 + 2Qηη

′
+Rη

′
η

′
}
du

+

N∑
J=1

∫ LJ

β

{
PJη

2
J + 2QJηJη

′
J +RJη

′
Jη

′
J

}
du. (2.39)

In writing (2.39), we have used the standard abbreviations

P = P (x) =
∂2f

∂y∂y

(
x, y∗, y∗

′)
, Q = Q(x) =

∂2f

∂y∂y′

(
x, y∗, y∗

′)
,

R = R(x) =
∂2f

∂y′∂y′

(
x, y∗, y∗

′)
, (2.40)

and

PK = PK (xK) =
∂2fK

∂yK∂yK

(
xK , y

∗
K, y

∗
K

′)
,

QK = QK (xK) =
∂2fK

∂yK∂y
′
K

(
xK , y

∗
K , y

∗
K

′)
,

RK = RK (xK) =
∂2fK

∂y
′
K∂y

′
K

(
xK , y

∗
K , y

∗
K

′)
. (2.41)

Recalling the regularity assumptions (2.23), we conclude that the functionsR,R1, . . . , RN

are strictly positive.
With the help of the 2N compatibility conditions (2.33), we can simplify the right-

hand side of (2.39) by substituting for η+
J and

(
η

′
J

)+
. With some rearranging we find
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Chapter 2. Variational Principles

that(
∂f

∂y
η

)−
−

N∑
J=1

(
∂fJ

∂yJ

ηJ

)+

=

((
∂f

∂y

)−
−

N∑
J=1

(
∂fJ

∂yJ

)+
)
η−

+ μ
N∑

J=1

(
∂fJ

∂yJ

)+ 〈〈
y∗J

′
, y∗

′〉〉

= − [[fy]]B η
− + μ

N∑
J=1

(
∂fJ

∂yJ

)+ 〈〈
y∗J

′
, y∗

′〉〉
, (2.42)

and

μ

(
∂f

∂y′ η
′
)−

− μ

N∑
J=1

(
∂fJ

∂y
′
J

η
′
J

)+

= −μ [[fr]]B

(
η

′
)−

+
μ2

2

N∑
J=1

(
∂fJ

∂y
′
J

)+ 〈〈
y∗J

′′
, y∗

′′〉〉

=
μ2

2

N∑
J=1

(
∂fJ

∂y
′
J

)+ 〈〈
y∗J

′′
, y∗

′′〉〉
. (2.43)

We used condition B1, [[fr]]B = 0, to arrive at the final result in (2.43). With the help
of (2.38)1, we substitute (2.42) and (2.43) back into (2.39) to find that the second
variation can be decomposed into two terms:

d2I

dε2

∣∣∣∣
ε=0

= Iβ + I2. (2.44)

Here, Iβ is entirely associated with varying the branching point x = β and the com-
ponents of I2 have a familiar form:

Iβ = μ2e− 2μη− [[fy]]B ,

I2 =

∫ β

0

{
Pη2 + 2Qηη

′
+Rη

′
η

′
}
du

+
N∑

J=1

∫ LJ

β

{
PJη

2
J + 2QJηJη

′
J +RJη

′
Jη

′
J

}
du, (2.45)

where

e =

N∑
J=1

(
2

(
∂fJ

∂yJ

)+ 〈〈
y∗J

′
, y∗

′〉〉
+

(
∂fJ

∂y
′
J

)+ 〈〈
y∗J

′′
, y∗

′′〉〉)−
[[
df

dx

]]
B

. (2.46)
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We now turn to examining necessary conditions for the minimization of I.

Necessary Conditions

First, we examine the case where the branching point is fixed (i.e., μ = 0). Re-
ferring to (2.44), for a minimum it is necessary that I2 ≥ 0, since Iβ = 0 when the
branching point is fixed. Following Legendre, we add the following identity to the
right-hand side of (2.45)2:

0 =

∫ β

0

d

du

(
η2w

)
du+

N∑
J=1

∫ LJ

β

d

dxJ

(
η2

JwJ

)
dxJ −

[
η2w

]β
0
−

N∑
J=1

[
η2

JwJ

]LJ

β︸ ︷︷ ︸
. (2.47)

After performing the usual manipulations of I2, it becomes evident that we can dra-
matically simplify I2 provided solutions to the following N + 1 Riccati equations
exist:

w
′
+ P − 1

R
(Q+ w)2 = 0,

w
′
J + PJ − 1

RJ
(QJ + wJ)2 = 0, (J = 1, . . . , N) . (2.48)

These solutions are subject to the conditions1

η2(0)w(0) ≥ 0,

η2
J (LJ)wJ (LJ) ≤ 0, (J = 1, . . . , N) ,

η−η− [[w]]B ≥ 0, (2.49)

which were obtained by examining the underbraced terms on the right-hand side
of (2.47). We also note that for many applications, (2.49)3 reduces to the condi-
tion [[w]]B = 0. This condition couples the solutions of the Riccati equations at the
branching point and is surprisingly easy to accommodate.

If bounded solutions w,w1, . . . , wN to (2.48) and (2.49) can be found, then the
resulting expression for I2 = Î2 is non-negative:

Î2 =

∫ β

0

R

{
η

′
+

(
Q+ w

R

)
η

}2

dx+
N∑

J=1

∫ LJ

β

RJ

{
η

′
J +

(
QJ + wJ

RJ

)
ηJ

}2

dxJ ≥ 0.

(2.50)
This expression is an expected generalization of a part of the second variation for prob-
lems involving multiple functionals. Conversely, by examining each of the branches
separately, one can conclude using standard arguments from the calculus of variations

1In writing (2.49)3 we have also used the simplification that η− = η+
J at a branching point when

μ = 0 (cf. (2.33)1).
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that the existence of the bounded solutions w,w1, . . . , wN is also necessary for I2 ≥ 0.
We are now in a position to state

Condition L1: If the set of extremals {y∗(x), y∗J(xJ)} minimizes I then the solutions
{w(x), wJ (xJ )} to (2.48) which satisfy the boundary conditions (2.49) must remain
bounded.

We now turn our attention to the case when the branching point is allowed to vary.
We again proceed by adding (2.47) to (2.44). After some rearranging and repeated

use of the compatibility condition (2.33)1, η
+
J = η− − μ

〈〈
y∗J

′
, y∗

′
〉〉

, we find that

d2I

dε2

∣∣∣∣
ε=0

= η−η− [[w]]B + Î2 + η2(0)w(0) −
N∑

J=1

η2
J(LJ)wJ(LJ)

+ μ2

(
e+

N∑
J=1

(〈〈
y∗J

′
, y∗

′〉〉)2

w+
J

)

− 2μη−
(

[[fy]]B +

N∑
J=1

〈〈
y∗J

′
, y∗

′〉〉
w+

J

)
. (2.51)

Noting that the variations η− and μ are independent, we can conclude from (2.51)

that a necessary condition for d2I
dε2

∣∣∣
ε=0

≥ 0 is that the condition L1 is satisfied and, in

addition, the following matrix B is positive semi-definite:

B =

⎡
⎣ e+

∑N
J=1

(〈〈
y∗J

′
, y∗

′
〉〉)2

w+
J −

(
[[fy]]B +

∑N
J=1

〈〈
y∗J

′
, y∗

′
〉〉
w+

J

)
−
(
[[fy]]B +

∑N
J=1

〈〈
y∗J

′
, y∗

′
〉〉
w+

J

)
[[w]]B

⎤
⎦ ≥ 0.

(B3)
Clearly, it is necessary to first solve the Riccati equations (2.48) in order to compute
the boundary values w+

J featured in B3. We emphasize that the conditions B3 only
apply to the case when the branching point is variable2, while the condition L1 applies
in all cases. Finally, it is worth mentioning that, while L1 is intimately related to
the buckling stability of the individual branches, B3 pertain to the stability of the
adhesion mechanism at the branching point. These conditions are used to examine
the stability of a rod which is adhering to a rigid surface in [34].

2.3.4 A set of Jacobi transformations

The necessary condition L1 can also be expressed using an equivalent set of Jacobi
equations. As is well-known (see Bolza [4] or Gelfand & Fomin [15]), each of the

2An example of such a situation can be found in O’Reilly & Tresierras [45].
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Riccati equations in (2.48) can be transformed to a linear second-order ordinary
differential equation using a Jacobi transformation. Thus, the transformations

w = −Q−R
u

′

u
, wK = −QK −RK

u
′
K

uK
, (K = 1, . . . , N) , (2.52)

transform (2.48) to a set of N + 1 Jacobi differential equations:

Pu+Qu
′ −

(
Qu+Ru

′
)′

= 0,

PKuK +QKu
′
K −

(
QKuK +RKu

′
K

)′

= 0, (K = 1, . . . , N) . (2.53)

As stated in Theorem 2.1 in Reid [50], bounded solutions to the Riccati equation for
wK(xK) on a given interval exist if, and only if, a solution uK (xK) for the corre-
sponding Jacobi differential equation exists on the same interval, where

uK (xK) 	= 0 and wK = −QKuK +RKu
′
K

uK
. (2.54)

This theorem can be used to establish the well-known equivalence of conjugate points
for the solutions to (2.53) to blow up of the solutions to (2.48).

With the help of (2.52), we conclude that (2.53) could be investigated in place
of (2.48); however, the coupling condition is more difficult to implement because it
features u, u1, . . . , uN and their derivatives: [[w]]B =

[[
Q+Ru

′
/u
]]

B
.

2.3.5 Comments on L1

In the discussion of the condition L1, we noted that the existence of solutions
{w(x)∀x ∈ [0, β], wJ (xJ )∀xJ ∈ [β, LK ]} to the Riccati equations (2.48) was necessary
for I2 ≥ 0. The proof of this necessity can be achieved by appealing to Jacobi’s
necessary condition for a minimum.3

To elaborate, suppose that the Riccati equation on the branch y∗K (xK) for some
K ∈ (1, . . . , N) blows up for some xB

J ∈ [β, LK ]. We now consider the variation ηK

with all of the remaining N variations set to 0. It suffices to examine the accessory
variational problem for y∗K (xK) with η+

K = 0 and η
′
K (LK) = 0. With the help of

Theorem 2.1 in Reid [50], the blow up of wK at xB
J can be related to the existence

of a conjugate point xB
J to LK for uK (see (2.52) and (2.53)). Appealing to Jacobi’s

necessary condition for a minimum, we can conclude that I is not minimized.
If w(x) becomes unbounded, then we repeat the arguments in the previous para-

graph for the variation η(x) where η− = 0 and η (0) = 0.

3In particular, see Fundamental Theorem III and its corollary in §of Bolza [4] or Theorem 2.10
in Ewing [11].
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2.4 Closing Comments

We have established a set of conditions for the stability of a single branch or
tree-like structure of branches. Once put into the context of a mathematical theory
of elastic rods, the stability criteria will be verified for a series of classical problems
and then applied to a simple tree-like structure of elastic rods. Stability can only be
proven for the cases where sufficiency has been established; otherwise, we can only
be certain of instability when a solution to the Riccati equations (2.48) fails to be
found.
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Chapter 3
Variational Principles and Euler’s
Theory of the Elastica

3.1 Introduction

With the stability criteria established, we now wish to provide a framework in
which we can construct models of single or branched elastic rod structures. A suit-
able choice is Euler’s theory of the elastica, formulated in 1744 (see Love [30] for a
discussion of this theory). The elastica accounts for planar deformations of rods and
can accommodate intrinsic curvature and changes in cross-sectional area. The former
is used to model the “branch shape memory” exhibited by plant stems and also fea-
tures prominently in models of the human spine (see [12, 16, 24, 44] and references
therein for further details on the morphogenesis of branches).

3.2 Euler’s Theory of the Elastica

Referring to figure 3.1, the position vector r of a material point labelled ξ ∈ [0, L]
on the inextensible centerline of R has the representation r = XE1 +YE2. Similarly,
material points on the inextensible centerline of RK whereK = 1, . . . , N are identified
using a coordinate ξK ∈ [L,LK ] and their position vectors have the representation
rK = XKE1 + YKE2. The unit tangent vectors to the centerlines of R and RK have
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′
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O

ḡ

θ
r

Figure 3.1 Schematic of an elastica which is subject to a terminal force
p0 and terminal moment m0 at ξ = 0 and a terminal force p1

and terminal moment m1 at the end ξ = L. In addition, a
gravitational loading −ρ0ḡE1 acts on the rod.

the respective representations

r
′
=
∂r

∂ξ
= cos (θ)E1 + sin (θ)E2,

r
′
K =

∂rK

∂ξK
= cos (θK)E1 + sin (θK)E2. (3.1)

The curvature κ of the centerline of R is defined by the relation κ = ∂θ
∂ξ

. When this
centerline is unloaded it relaxes into a centerline with a curvature κg. The curvature
κg is known as the intrinsic curvature. Related remarks pertain to the two other rods.

In addition to a gravitational force −ḡE1, we assume that the tips of the rods
RK are subject to the respective terminal dead loadings −FK . These forces have the
representations

FK = FK1E1 + FK2E2, (K = 1, . . . , N) . (3.2)

We assume that the rod RK has a flexural stiffness EIK = EIK (ξK), a length LK−L,
an intrinsic curvature κgK

= κgK
(ξK), and a mass per unit length ρ0K

= ρ0K
(ξK),

where K = 1, . . . , N . The rods R1, . . . ,RN are connected at ξK = L to the rod R
which has a length L, flexural rigidity EI, and mass density per unit length ρ0 = ρ0(ξ).
The bending moment in each elastica is prescribed by a classic constitutive equation:

M = EI

(
∂θ

∂ξ
− κg

)
E3, MK = EIK

(
∂θK

∂ξK
− κgK

)
E3. (3.3)
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More general constitutive equations are possible, but (3.3) suffice to illustrate the
stability criterion.

The total energy of the rods consists of the sum of the strain energies, gravitational
potential energies, and the potential energy of the terminal loads:

V =

∫ ξ=L

ξ=0

EI

2

(
∂θ

∂ξ
− κg

)2

dξ +

N∑
K=1

∫ LK

L

EIK
2

(
∂θK

∂ξK
− κgK

)2

dξK

+

∫ L

0

ḡρ0X(ξ)dξ +

N∑
K=1

∫ LK

L

ḡρ0K
XK (ξK) dξK

+

N∑
K=1

FK · rK (LK) , (K = 1, . . . , N). (3.4)

This representation of the energy is not particularly useful. Thus, with the assistance
of (3.1), we proceed to express the components of r and rK in integral form. For
example,

X(ξ) =

∫ ξ

0

cos(θ(x))dx, XK(ξK) =

∫ L

0

cos(θ(x))dx+

∫ ξK

L

cos (θK(x)) dx. (3.5)

It is also convenient to define the masses

m(ξ) =

∫ L

ξ

ρ0(u)du, mK (ξK) =

∫ LK

ξK

ρ0K
(u)du. (3.6)

Note that m(0) and mK(L) are the total masses of the rods R and RK , respectively.
With the help of (3.5) and (3.6) and some additional manipulations, we arrive at

an equivalent expression for the total energy:

V =

∫ L

0

{
EI

2

(
∂θ

∂ξ
− κg

)2

+ (F + W +m(ξ)ḡE1) · r′
}
dξ

+
N∑

K=1

∫ LK

L

{
EIK

2

(
∂θK

∂ξK
− κgK

)2

+ (FK +mK (ξK) ḡE1) · r′
K

}
dξK ,

(3.7)

where F and W are the combined terminal force and weight, respectively, of the rods
R1 to RN :

F =
N∑

K=1

FK , W =
N∑

K=1

WK =
N∑

K=1

mK (L) ḡE1. (3.8)

We have expressed (3.7) in a form which allows it to be identified with the functional
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I: y = θ, yK = θK , x = ξ, xK = ξK , etc. The resulting expression also makes
it transparent that the rod R must support the weight and terminal loading of the
branches R1, . . . ,RN . It thus facilitates the extension of this work to situations
featuring an arbitrary number of heavy terminally loaded rods.

3.3 First Variation

The Euler-Lagrange equations (2.36) associated with the functional V are

∂

∂ξ

(
EI

(
∂θ∗

∂ξ
− κg

))
= (F + W +m(ξ)ḡE1) · (− sin (θ∗)E1 + cos (θ∗)E2) ,

∂

∂ξK

(
EIK

(
∂θ∗K
∂ξK

− κgK

))
= (FK +mK (ξK) ḡE1) · (− sin (θ∗K)E1 + cos (θ∗K)E2) .

(3.9)
The solutions θ∗ and θ∗K (i.e., the extremals) to these equations satisfy the boundary
conditions

θ∗(0) = θ0,
∂θ∗K
∂ξK

(ξK = LK) = κgK
(ξK = LK) , (K = 1, . . . , N). (3.10)

Finally, as the branching angles are prescribed, we have the auxiliary conditions

θ+ − θ−1 = χ1, θ+ − θ−2 = χ2, θ−2 − θ−1 = χ3. (3.11)

Because the branching angles are prescribed and the branch point is fixed, the branch
conditions B1 and B2 are not applicable to this problem. It is worth noting that
equations (3.9) can also be obtained by performing the familiar balances of linear and
angular momenta for Euler’s elastica.

3.4 Second Variation

Prior to examining the second variation of V , we recall the definitions (2.40) and
(2.41). For the branched rod structure of interest, it is straightforward to show that

P = − (F + W +m(ξ)ḡE1) · (cos (θ∗)E1 + sin (θ∗)E2) ,

PK = − (FK +mK (ξK) ḡE1) · (cos (θ∗K)E1 + sin (θ∗K)E2) , (3.12)

and
Q = 0, R = EI, QK = 0, RK = EIK . (3.13)
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The Riccati equations we need to solve can be inferred from (2.48):

∂w

∂ξ
+ P − w2

EI
= 0,

∂wK

∂ξK
+ PK − w2

K

EIK
= 0, (K = 1, . . . , N). (3.14)

The desired solutions to these equations need to satisfy the boundary conditions (from
(2.49))1

wK (LK) = 0, w− =

N∑
K=1

w+
K , (K = 1, . . . , N). (3.15)

To see if (3.14) has solutions, we integrate (3.14)2 backwards from xK = LK using
the conditions (3.15)1. At the branching point ξK = L+, we use (3.15)2 to deduce
the boundary condition for the remaining Riccati equation (3.14)1. If solutions to all
N +1 Riccati equations can be found in this manner, then we say that L1 is satisfied
and, thus, so too is a necessary condition for stability.

1The condition η2(0)w(0) = 0 is identically satisfied because η(0) = 0 due to the fixed boundary
condition at ξ = 0.
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Chapter 4
Application to a Single Rod

4.1 Introduction

There are many examples of problems utilizing a single elastic rod to which we
could apply our stability criteria. It is helpful to first choose a classical problem with
a well-known result in order to verify the efficacy of our approach. Such an example
is the terminally loaded strut, which has an exact closed-form solution. This example
is analyzed for three sets of boundary conditions, followed by a terminally loaded
strut also under gravitational loading. The final example presented is a simplified
planar model of the human spine with intrinsic curvature. Therefore, each application
contains a prominent feature of Euler’s elastica theory: planar deformations, self-
weight and intrinsic curvature.

4.2 Buckling of a Thin Strut Under Thrust

The first example is the classical problem of a terminally loaded thin strut (as
detailed in Love [30]), with differences in boundary conditions presenting three dis-
tinct buckling problems. The analysis is a portion of the work that was published in
O’Reilly & Peters [43].

The problems of interest feature the deformed planar shape of a long, slender,
uniform rod which has a flexural rigidity of EI and a fixed length � (cf. Figure 4.1).
The ends of the rod are defined by the material coordinates ξ = 0 and ξ = �, and, in
its fixed reference configuration, the centerline of the rod is parallel to the constant
unit vector E1: R = ξE1, where R is the position vector of a point on the centerline.
A constant force PE1 is applied at ξ = 0 and a force −PE1 is applied at ξ = �.
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PPP

PP P =
(

EI
�2

)
γ

E1

E2

s = 0

ξ = 0

s = 1

ξ = �

∂r
∂ξ

θ

(a) (b) (c)

Figure 4.1 Schematic of an elastic rod under dimensionless axial load
γ for three sets of boundary conditions: (a) fixed-fixed
(also known as Dirichlet-Dirichlet), (B) fixed-free (also known
as Dirichlet-Neumann), and (c) free-free (also known as
Neumann-Neumann).

The deformed configuration of the rod is defined by the vector-valued function
r (ξ) = XE1 + YE2. As before, the unit tangent vector to the deformed centerline
has the representations

∂r

∂ξ
=
∂X

∂ξ
E1 +

∂Y

∂ξ
E2 = cos(θ)E1 + sin(θ)E2. (4.1)

The bending moment m = ME3 in the rod is proportional to the curvature ∂θ
∂ξ

:

M = EI
∂θ

∂ξ
. (4.2)

For a terminally loaded rod, the equations governing the elastica reduce to

n = −PE1,
∂M

∂ξ
+ ((cos(θ)E1 + sin(θ)E2) × n) · E3 = 0, (4.3)
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where n is the contact force. This pair of equations can be reduced to a second-order
ordinary differential equation for θ(ξ):

EI
∂2θ

∂ξ2
+ P sin (θ) = 0. (4.4)

Thus, they need to be supplemented by boundary conditions on θ and ∂θ
∂ξ

. Analytical

expressions for θ(s), X(s), and Y (s) for all the solutions to (4.4) that are discussed
here can be found in Love [30, Section 263].

By summing the potential energies of the terminal loads and the strain energy of
the rod, the following expression for the total energy of the rod can be computed:

E =

∫ ξ=�

ξ=0

EI

2

(
∂θ

∂ξ

)2

+ P cos (θ) dξ. (4.5)

It is well known that (4.4) are the Euler-Lagrange differential equations associated
with seeking extremizers of E.

It is convenient to non-dimensionalize the governing equations (4.4) with the help
of the coordinate s and parameter γ:

s =
ξ

�
, γ =

P�2

EI
. (4.6)

The ends of the rod can now be denoted by s = s0 and s = sf where s0 = 0 and
sf = 1. Further, (4.4) simplifies to

θ′′ + γ sin (θ) = 0, (4.7)

where the prime denotes the partial derivative with respect to s.
The dimensionless form of the total energy functional (4.5) can also be determined:

I =

∫ 1

0

(
1

2
(θ′)2

+ γ cos(θ)

)
ds. (4.8)

With the help of (2.14), the Riccati equation for a thin strut is

w′ = w2 + γ cos (θ∗) . (4.9)

Referring to Figure 4.1, we are interested in three sets of boundary conditions in
the sequel. In the first case, the ends of the rod are clamped. This case is called
the fixed-fixed case or the Dirichlet-Dirichlet (DD) case. For the second case, which
is called the fixed-free case or the Dirichlet-Neumann (DN) case, the end s = 0 is
clamped while the end at s = 1 is free of applied moments. Finally, in the third case,
which we refer to as the free-free case or the Neumann-Neumann (NN) case, both
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ends of the rod are free of applied moments. In summary,

DD : θ (s = 0) = 0, and θ (s = 1) = 0,

DN : θ (s = 0) = 0, and θ′ (s = 1) = 0,

NN : θ′ (s = 0) = 0, and θ′ (s = 1) = 0. (4.10)

As defined in (2.4), we consider the solution to (4.7) subject to boundary conditions
of the form

φ [θ (s0) , θ
′ (s0)] = 0, ψ [θ (sf) , θ

′ (sf )] = 0, (4.11)

where φ and ψ are smooth scalar-valued functions. Clearly (4.11) encompass the
three sets of conditions listed in (4.10).

4.2.1 The Fixed-Fixed Strut

For the case where Dirichlet boundary conditions are applied at both ends of the
rod (see (4.10)1), the boundary conditions for equations (4.7) are determined from
the boundary conditions

φ = θ(s0), ψ = θ(sf ), (4.12)

with the help of (4.11).
A bifurcation diagram showing the behavior of all possible equilibria (i.e., solutions

to (4.7) subject to (4.12)) is presented in Figure 4.2. In the bifurcation diagram, the
dimensionless energy Ē is given by (4.8). The displacement y is the signed maximum
lateral distance that the rod is displaced when it deforms to either postbuckled state
and is defined by

ym = sgn(Y) (max |Y/�|) , (4.13)

where Y is the Cartesian coordinate defined by (Y/�)′ = sin(θ).
For the Dirichlet-Dirichlet case, the boundary conditions on the variations are

determined with the help of (2.6):

η (s0) = 0, η (sf) = 0. (4.14)

Therefore, the boundary conditions (2.15) are trivially satisfied and w(s) can take on
any value at the endpoints s0 and sf . It remains to find a solution to the Riccati
equation (4.9) where w(s) is finite. Restricting attention to the straight strut (i.e.,
cos (θ∗) = 1), we find that a solution

w(s) =
√
γ tan (

√
γ (s− 0.5)) (4.15)

exists provided γ < π2. When γ ≥ π2, the bounded solution for all s ∈ [0, 1] does not
exist. Consequently, the sufficient condition recovers the classical result that a strut
with fixed-fixed boundary conditions is stable provided γ < π2. These results agree
with those obtained using Jacobi’s necessary condition, as shown by Born [5], among
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Figure 4.2 Bifurcation diagram showing the behavior of all equilibrium
solutions for the Dirichlet-Dirichlet case over the region γ =
[0, 60].

others (see, e.g., [35]).
For the buckled configurations (i.e., solutions along the branch containing points A

and C in Figure 4.2), the Riccati equation (4.9) must be solved numerically. A variety
of buckled configurations, along with their respective Riccati solutions, are graphically
represented in Figure 4.3. The key feature in Figure 4.3(b) is that each solution w(s)
is finite. Hence, by invoking condition LS1, we conclude that every buckled solution
featured in Figure 4.3(a) is stable. For the straight strut and all subsequent branches
beyond point B in Figure 4.2, no solutions to the Riccati equation can be computed,
and so these configurations are unstable.

4.2.2 The Fixed-Free Strut

For the case where there is a Dirichlet boundary condition at the beginning of the
rod and a Neumann boundary condition at the end (i.e., fixed-free), we have

φ = θ(s0), ψ = θ′(sf ). (4.16)

As in the previous case, we obtain solutions to (4.7) subject to (4.16) and plot the
resulting bifurcation diagram in Figure 4.4.

29



Chapter 4. Application to a Single Rod

0

0

1

1

(a) (b)

20

0.6
−0.6−1

−20

X
/�

Y/�

w
(s

)

inc. γ

inc. γ

s

Figure 4.3 (a) Buckled solutions to the state equations, which reside on
branch A-C in Figure 4.2; (b) Solutions to the Riccati equation
(4.9) for each buckled configuration. In both (a) and (b),
γ = 10, 12, 15, 20, and 40.

For the Dirichlet-Neumann case, the boundary conditions on the variations are

η (s0) = 0, η′ (sf) = 0. (4.17)

Consequently, the conditions (2.15) simplify to

η2(sf)w(sf) = 0. (4.18)

Therefore, we find that this condition is satisfied if we can find a solution to the
Riccati equation where w(sf) = 0 and w(s) is finite. Restricting attention to the
straight strut, we find that a solution

w(s) =
√
γ tan (

√
γ (s− 1)) (4.19)

exists provided γ < π2

4
. When γ ≥ π2

4
, the bounded solution for all s ∈ [0, 1] does not

exist. Consequently, the L1 condition recovers the classical result that a strut with
fixed-free boundary conditions is stable provided γ < π2

4
. This result can be found

Born [5, Sect. 9], who used Jacobi’s necessary condition to establish the bound on γ.
Just as in the fixed-fixed case, solutions to the Riccati equation (4.9) are graphi-

cally represented in Figure 4.5 for the branch of solutions labeled A and C in Figure
4.4. As before, the solutions in Figure 4.5(b) are finite. Therefore, since condition LS1
is satisfied, the configurations in Figure 4.5(a) are stable for the fixed-free case. Sim-
ilarly, no Riccati solutions could be computed for the straight strut and subsequent
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Figure 4.4 Bifurcation diagram showing solution behavior for the
Dirichlet-Neumann case over the region γ = [0, 60].

branches beyond point B in Figure 4.4, so these rod configurations are unstable.

4.2.3 The Free-Free Strut

The final case of interest arises when both boundary conditions are Neumann
(free):

φ = θ′(s0), ψ = θ′(sf). (4.20)

The resulting bifurcation diagram is shown in Figure 4.6 and bears a striking similarity
to the fixed-fixed case (Fig. 4.2).

For the Neumann-Neumann strut, the boundary conditions on the variations are

η′ (s0) = 0, η′ (sf ) = 0. (4.21)

As in the previous two cases, the conditions (2.15) simplify considerably:

w(s0) = 0, w(sf) = 0. (4.22)

These boundary conditions imply that we require w(s) = 0. However, even for the
trivial case where the rod is straight and cos(θ) = 1, w(s) = 0 does not satisfy
(4.9). Consequently, the necessary condition L1 cannot be applied to the free-free
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Figure 4.5 (a) Buckled solutions to the state equations, which reside on
branches A & C in Figure 4.4; (b) Solutions to the Riccati
equation (4.9) for each buckled configuration. In both (a) and
(b), γ = 2.5, 3, 5, 10, and 20.

beam. As shown by Manning [35], application of Jacobi’s necessary condition to
the free-free strut is not valid. However, the Riccati equation illustrates this in a
transparent manner. An alternate examination of this result using optimal control
theory is discussed in Appendix A.

4.3 Buckling of a Heavy Strut Under Terminal Load

The uniform strut has a mass density per unit length of ρ0, a flexural rigidity EI,
and a length L. As can be seen in figure 4.7(a), the rod is clamped at ξ = 0 and
is subject to a vertical force −FE1 at the free end ξ = L. The Euler-Lagrange and
Riccati equations for this problem can be deduced from (3.9)1 and (3.14)1:

EI
∂2θ∗

∂ξ2
= − (F + ρ0ḡ (L− ξ)) sin (θ∗) ,

∂w

∂ξ
− w2

EI
= (F + ρ0ḡ (L− ξ)) cos (θ∗) . (4.23)

The solutions to these equations are subject to the boundary conditions

θ∗ (ξ = 0) = 0,
∂θ∗

∂ξ
(ξ = L) = 0, w (ξ = L) = 0. (4.24)
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In the sequel, we shall fix the dimensionless weight parameter α = ρ0ḡL3

EI
and vary the

terminal load parameter γ = FL2

EI
.

Examining the solution to the Euler-Lagrange equation (4.23)1, we observe that
the straight strut θ∗ = 0 is a solution for all F and ρ0ḡ. Assuming that α is sufficiently
small, we find that the Riccati equation for the straight strut,

∂w

∂ξ
− w2

EI
= (F + ρ0ḡ (L− ξ)) , (4.25)

has a bounded solution provided γ is smaller than a critical value γcrit.
1 A repre-

sentative sample of w for varying γ is shown in figure 4.7(b). When γ ≥ γcrit, then
(4.25) does not have a solution. We thus conclude that the straight strut is stable for
γ < γcrit.

For γ > γcrit, the Euler-Lagrange equation (4.23)1 admits two non-trivial solutions
(or buckled states) which are mirror images of each other. The evolution of these
solutions as F is increased is shown in figure 4.7(a). We note that, as γ is increased, it
shows considerable deflection from the vertical. It suffices to examine a single Riccati
equation (4.23)2 to determine the stability of both buckled solutions. Referring to
figure 4.7(c), we find that (4.23)2 possess bounded solutions for each of the pair of
buckled states and conclude that the buckled states are stable.

1An analytic expression, featuring Airy functions, for w(ξ) can be established, but we do not
pursue this here.
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Figure 4.7 (a) Schematic of the straight and buckled states of a heavy
terminally loaded strut elastica which is subject to a terminal
load −FE1. (b) The solution of (4.25) for the straight strut
for γ increasing from 0 to γcrit. (c) The solution of (4.23)2 for
the buckled strut for γ increasing from γcrit. For the examples
shown, α = 1.0, γcrit ≈ 2.16, and the values of γ used in (a)
and (c) are 2.2, 2.5, 3, 5, 10, 20, and 50.

4.4 Buckling of the Human Spine

One of the more fascinating applications of elastic rod theory is the modeling
of the human spine. The seminal work by Lucas & Bresler [31] in 1961 laid the
foundations for the use of Euler buckling theory in the analysis of spinal stability.
Their result was that the isolated spine has a buckling load of 21 N, which is far lower
than what the trunk is capable of supporting in vivo. This implies an impressive
stabilizing mechanism by the surrounding back muscles, ligaments, and tissues. Many
researchers have subsequently used the Euler buckling approach to advance the body
of knowledge regarding spinal stability [3, 10, 40, 46, 54].

With this literature in mind, we wish to consider a continuous elastic rod model
of the spine using the elastica (see Chapter 3). The model will be restricted to
the sagittal plane, where the spine has a known intrinsic curvature κg = κg(ξ). In
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addition to a gravitational force −ḡE1, we assume that the tip of the spine is subject
to a terminal dead loading −F = FE1. A fixed-free set of boundary conditions will
be imposed, such that the base of the spine is fixed and the tip is free (see §4.2.2 for
more details on these boundary conditions). Therefore, from (3.9) and (3.14), the
Euler-Lagrange and Riccati equations for the spine model are

∂

∂ξ

(
EI

(
∂θ∗

∂ξ
− κg

))
= (F +m(ξ)ḡE1) · (− sin (θ∗)E1 + cos (θ∗)E2) , (4.26)

∂w

∂ξ
+ P − w2

EI
= 0, (4.27)

where m(ξ) =
∫ L

ξ
ρ0(u)du, as defined in (3.6), and

P = − (F +m(ξ)ḡE1) · (cos (θ∗)E1 + sin (θ∗)E2) . (4.28)

The desired solutions to these equations need to satisfy the boundary conditions (from
(3.10) and (3.15))

θ∗(0) = θ0,
∂θ∗

∂ξ
(ξ = L) = κg (ξ = L) , w (L) = 0. (4.29)

0
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w
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)
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γ inc. to γcritγ inc. to γcrit

Figure 4.8 Schematic of an unbuckled terminally loaded spine (left) and
the corresponding solutions to the Riccati equation (right).
For the examples shown, α = 0, γcrit ≈ 2.53, and γ values
used are 1, 2, 2.25, 2.4 and 2.5.

The intrinsic curvature κg must be prescribed in a way that accurately represents
the lordotic and kyphotic curvatures of the lumbar and thoracic regions of the spine.
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Figure 4.9 Schematic of three configurations for a buckled spine (left) and
the Riccati solutions for the two stable configurations, i and
iii (right). For the example shown, α = 0 and γ = 2.75.

Using a polynomial curve fitted to radiographic measurements of the spine provided
by Yang et al. [59], we obtain a general prescription of intrinsic curvature. In order
to get this prescription into a more tractable form, a transformation of variables is
required so that κg can be written as a function of ξ (see Peters [48] for a detailed
description of this procedure).

With the gravity dependence suppressed, we can solve the Euler-Lagrange equa-
tion (4.26) subject to an increasing terminal force F (as in §4.3 we use the dimen-
sionless load parameter γ). As figure 4.8 shows, the unbuckled rod configurations no
longer remain undeformed as in the case where the intrinsic curvature is absent. Due
to this change in the nature of buckling, it becomes especially important to examine
solutions of the Riccati equation (4.27) to identify the configurations that are un-
stable. When γ is increased up to a critical value γcrit, all of the solutions to (4.27)
are bounded, as the right side of figure 4.8 shows. Therefore, despite the deforma-
tions that occur in the pre-buckled configurations, they are all stable and no other
configurations are possible.

For γ > γcrit, the Euler-Lagrange equation (4.26) admits two additional solutions,
which are no longer symmetrical about the vertical axis. Since there is no trivial so-
lution, as in the classical case (§4.2), solving the Riccati equation becomes imperative
for identifying the unstable configuration because it is not obvious a priori which of
the three solutions to (4.26) fails to minimize the total energy. This is illustrated in
figure 4.9 for a specific example where γ > γcrit. Here, we find that configurations i
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and iii possess bounded solutions to (4.27), while configuration ii does not; hence,
we conclude, with the help of L1, that configuration ii is unstable, and with the help
of LS1, that configurations i and iii are stable.
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Chapter 5
Application to Branched Rods
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Figure 5.1 The configuration of a tree-like structure composed of three
rods with a branching angle ζ. The rods R1 and R2 model
child branches while R models the parent branch.

5.1 Introduction

As we showed in O’Reilly & Peters [42], we wish to verify the stability criteria
established in §2.3 for a simple illustrative example. This is the first use of a second
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Chapter 5. Application to Branched Rods

variation analysis to examine the nonlinear stability of a branched tree-like struc-
ture. The example shown is the simplest case of a three-branch structure, but it is
straightforward to extend the stability analysis to more complex structures.

5.2 Buckling and Stability for a Tree-Like Structure

We now consider the tree-like structure shown in figure 5.1, consisting of three
rods which are connected at a branching point. We assume that the base of the parent
branch R is clamped while the tips of the child branches, R1 and R2, are free from
external loading. To explore the wealth of solutions possible for a branched structure
of this type we vary the angle θb at the base of R and see how the resulting strain κb

at the base changes as a function of θb:

θb = lim
ξ↘0

θ(ξ), κb = lim
ξ↘0

∂θ

∂ξ
(ξ). (5.1)

As emphasized in O’Reilly & Tresierras [45] the resulting function κb (θb) clearly
indicates the presence of multiple solutions.1

The parameter values for the example discussed in the present section are

R : L = 1.0, EI = 5, ρ0 = 7, ξ ∈ [0, L) ;

R1 : L1 = 1.5, EI1 = 1.0, ρ01 = 4.5, ξ1 ∈ [L,L+ L1) ;

R2 : L2 = 1.15, EI2 = 5, ρ02 = 7, ξ2 ∈ [L,L+ L2) . (5.2)

The branching angles (see (3.11)) for the example are

χ1 = 0, χ2 = 0, χ3 = 0. (5.3)

The strain κb as a function of θb is shown in figure 5.2. Observe that for θb ∈
(−30.37◦, 30.37◦), three distinct solutions to the Euler-Lagrange equations (3.9) are
possible.

To characterize the stability of the solutions to the boundary-value problem, the
Riccati equations (3.14) are examined. An example of such a calculation is shown in
figure 5.3 for the case where θb = 20◦. As expected, two of the solutions (A and C)
satisfy the necessary condition L1, while a bounded solution to the Riccati equation
(3.14)1 for w is non-existent for B. Combining the results for all values of θb, we
conclude that the necessary condition L1 is satisfied except for the dashed portion
of the graph of κb (θb) in figure 5.2(a). For the portion of the graph of κb (θb) where
L1 is not satisfied, we can conclude that the tree-like structures for these cases are
unstable. In these unstable cases, the parent branch has buckled under the weight of
the child branches.

1In O’Reilly & Tresierras [45], a situation of a branched structure of three rods (similar to that
shown in figure 5.1) with 9 possible configurations is presented.
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Figure 5.2 (a) The strain κb at the base of the parent branch as a
function of the angle θb for a tree-like structure composed
of three rods. (b) Selected configurations of the three rods.
In this figure, the labels i − vii correspond to the base
angles −180◦,−90◦,−32◦,−30◦, 0◦, 30◦, 32◦, 90◦ respectively.
The points labeled A, B, and C correspond to θb = 20◦. Fur-
ther results for these three solutions are presented in figures
1.1 and 5.3.

5.3 A Tree of Riccati Equations

It is illuminating to apply the condition L1 to branched structures such as those
shown in figure 5.4. This structure consists of seven branches joined at three branching
points. The branches have respective lengths, arc length parameters, and flexural
rigidities of L,L1, . . . , L6, ξ, ξ1, . . . , ξ6, and EI,EI1, . . . , EI6. We assume that the
equilibrium configuration of the structure has been computed. Then, in order to
determine if the total energy of the structure satisfies the necessary condition for a
minimum, we need to find a bounded set of solutions w,w1, . . . , w6 to a set of Riccati
equations. The boundary conditions for w3, . . . , w6 and the jump conditions that are
used to prescribe w−

1 , w
−
2 and w− are easily inferred from our earlier developments (cf.
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Figure 5.3 Solutions w (ξ), w (ξ1), and w2 (ξ2) to the Riccati equations
(3.14) for the solutions to the boundary-value problem that
are shown in figure 1.1. For these solutions, θb = 20◦: (a)
configuration A, (b) configuration B, and (c) configuration C
shown in figure 5.2. For configuration B, a bounded solution
w(ξ) does not exist.

(2.49) and (3.15)). As a result, a set of seven Riccati equations can be established:

∂w

∂ξ
+ P − w2

EI
= 0,

∂wK

∂ξK
+ PK − w2

K

EIK
= 0, (K = 1, . . . , 6) . (5.4)

subject to the boundary conditions

wK (LK) = 0, (K = 3, 4, 5, 6) ,

w−
1 = w+

3 + w+
4 , w−

2 = w+
5 + w+

6 , w− = w+
1 + w+

2 . (5.5)

We refer to the set of Riccati equations (5.4) as a tree of Riccati equations. Alterna-
tively, using the transformations (2.52), a tree of Jacobi differential equations of the
form (2.53) could also be established. With the help of L1, either tree of equations
will be useful in distinguishing unstable solutions in computer-generated images of
trees which are based on rod models.
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Figure 5.4 Schematic of the solution procedure for the set of Riccati equa-
tions for a tree-like structure featuring seven branches and
three branching points.
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Chapter 6
Stability Criteria for Green and
Naghdi’s Rod Theory

6.1 Introduction

The rod theory discussed in this chapter originated in the work by Green and Laws
[17] and was later developed in a series of papers by Green, Naghdi and several of
their co-workers [18, 19, 51]. We can consider the theory discussed here as one which
subsumes the earlier theory of Euler’s elastica and Kirchhoff rod theory (see Chapter
7). In this theory, the material curve (centerline) is extensible, and the directors dα

can change their length and relative orientation. Thus, the unusual feature of their
theory is that the directors can deform in an arbitrary manner. We will show in this
chapter that this feature of the theory allows, in a fairly straightforward manner, for
the establishment of stability criteria based on variational principles.

6.2 Kinematics

In Green and Naghdi’s rod theory, there are two directors, denoted by d1 and d2,
which describe the behavior of the directed curve for the rod, and the tangent vector
is denoted by ∂r

∂ξ
= d3 (see figure 6.1). It is also important to note that the material

curve associated with the directed curve is assumed to be extensible: ∂r
∂ξ

= μet, where
μ is the stretch. We define a fixed reference configuration of the directed curve by
the vector fields R = R(ξ) and Dα = Dα(ξ). The referential vectors Dα are defined
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Figure 6.1 Schematic of a Green-Naghdi rod with position vector r(ξ)
and directors di. The rod is subject to a contact force n and
contact director force mα at both ends, ξ = ξ1 and ξ = ξ2.
The reference configuration is also shown in this figure.

by the linear transformation F0:

F0 = D1 ⊗ E1 + D2 ⊗ E2 + D3 ⊗E3. (6.1)

That is, Di = F0Ei. For many reference configurations, we can choose Di such that
F0 = I.

Under a motion of the directed curve, the vectors di can change their relative
orientation and magnitude. Consequently,

di = F1Di, (i = 1, 2, 3), (6.2)

where F1 = F1(ξ, t) is a linear transformation 1. It should be clear that

dα = F1F0Eα,
∂r

∂ξ
= F1

∂R

∂ξ
, (α = 1, 2). (6.3)

The total energy of a rod can be written as

I =

∫ ξ1

ξ0

(
ρ0ψ

(
r
′
,dα,d

′
α

)
+ U (r,dα)

)
dξ, (α = 1, 2), (6.4)

where ρ0ψ denotes the strain energy function, U denotes the potential function, and
the prime ′ denotes ∂

∂ξ
.

1In Green and Naghdi’s rod theory, the directors dα are allowed to deform in an arbitrary
manner. If F1 and F0 are restricted to be orthogonal tensors, then the model is reduced to simpler
rod theories, such as Kirchhoff’s rod theory (see Chapter 7).
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Green and Naghdi’s rod theory also has 12 strains, which are defined as follows:

γik = di · dk − Di · Dk,

καk =
∂dα

∂ξ
· dk − ∂Dα

∂ξ
· Dk. (6.5)

The directed curve in this theory resists bending, extension, lateral contractions and
expansions, and torsion. Its strain energy function per unit mass is a function of the
strains γik and καk:

ψ = ψ̃ (γik, καk) . (6.6)

We see from equations (6.5) that the strain energy also depends on the Cartesian
components of the directors xi, dαj. Therefore, by combining (6.6) with a potential
energy function, we can write the total energy as

I =

∫ ξ1

ξ0

(
ρ0ψ

(
x

′
i, dαi, d

′
αi

)
+ U (xi, dαi)

)
dξ, (6.7)

where
xi = r · Ei, dαi = dα ·Ei, (α = 1, 2), (i = 1, 2, 3). (6.8)

It will become clear in the following sections why this form of the total energy is
advantageous.

6.3 First Variation and Necessary Conditions for an Extremal

To extend the stability criteria established in Chapter 2 to Green and Naghdi’s
theory of rods, it is helpful to consider a functional of the form

I (y1, y2, . . . , yN) =

∫ b

a

f
(
u, y1(u), . . . , yN(u), y

′
1(u), . . . , y

′
N(u)

)
du, (6.9)

where y1(x), . . . , yN(x) are scalar functions of the independent variable x.
We seek extremals y∗1(x), . . . , y

∗
N(x) of I which satisfy the boundary conditions at

x = a and x = b:

y1(a) = y1a, . . . , yN(a) = yNa, y1(b) = y1b, . . . , yN(b) = yNb. (6.10)

We now wish to consider changes to I which arise when the functions y∗1(x), . . . , y
∗
N(x)

are varied:

y1(x, ε) = y∗1(x) + εη1(x), . . . , yN(x, ε) = y∗N(x) + εηN (x), (6.11)

where ε and η1(x), . . . , ηN(x) are defined as in §2.2.1 of Chapter 2.
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Following a similar analysis, the first variation becomes

dI

dε

∣∣∣∣
ε=0

=

∫ b

a

{
∂f

∂y1

η1 +
∂f

∂y
′
1

η
′
1 + . . .+

∂f

∂yN

ηN +
∂f

∂y
′
N

η
′
N

}
du. (6.12)

In order for y∗1(x), . . . , y
∗
N(x) to be extremals, the right-hand side of (6.12) must vanish

for all η1(x), . . . , ηN(x). If we assume that η1(x) is arbitrary, then η2(x) = . . . =
ηN(x) = 0 are valid choices for the remaining variations. Therefore, substituting
these variations into (6.12) and integrating by parts yields the first Euler-Lagrange
equation:

∂f

∂y1

− d

dx

(
∂f

∂y
′
1

)
= 0,

[
∂f

∂y
′
1

η1

]b

a

= 0. (6.13)

Repeating this process for all N variations yields the remaining N−1 Euler-Lagrange
equations:

∂f

∂y2
− d

dx

(
∂f

∂y
′
2

)
= 0, . . . ,

∂f

∂yN
− d

dx

(
∂f

∂y
′
N

)
= 0, (6.14)

subject to the boundary conditions[
∂f

∂y
′
2

η2

]b

a

= 0, . . . ,

[
∂f

∂y
′
N

ηN

]b

a

= 0. (6.15)

6.3.1 First Variation Conditions for a Green-Naghdi Rod

We now consider a total energy functional for a Green-Naghdi rod as given by
(6.4). The variations for the directors and their derivatives are defined as follows:

r = r∗ + εv3, r
′

= r∗
′
+ εv

′
3, (6.16)

dα = d∗
α + εvα, d

′
α = d∗

α

′
+ εv

′
α, (α = 1, 2) (6.17)

Substituting in these variations and computing the first variation, we obtain the
Euler-Lagrange equations

d

dξ

(
ρ0
∂ψ

∂r′

)
− ∂U

∂r
= 0,

d

dξ

(
ρ0
∂ψ

∂d′
α

)
− ρ0

∂ψ

∂dα
− ∂U

∂dα
= 0. (6.18)

We can write the Euler-Lagrange equations in a more concise form by using the
following constitutive relations:

n = ρ0
∂ψ

∂r′ , kα = ρ0
∂ψ

∂dα
, mα = ρ0

∂ψ

∂d′
α

,

ρ0f = −∂U
∂r

, ρ0l
α = − ∂U

∂dα
. (6.19)
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Therefore, the final form of the Euler-Lagrange equations are as follows:

dn

dξ
+ ρ0f = 0,

dmα

dξ
− kα + ρ0l

α = 0, (α = 1, 2). (6.20)

These are the familiar balances of linear and director momenta for the Green-Naghdi
rod theory.

6.4 Second Variation and Stability Criteria for Extremals

For conciseness we now wish to express functionals of the form (6.9) as

I =

∫ b

a

f(y, y
′
)du, (6.21)

where y = [y1(x), . . . , yN(x)]T and y
′
=
[
y

′
1(x), . . . , y

′
N(x)

]T
.

Following a similar analysis to the one featured in Chapter 2 §2.2.2 yields the
second variation:

δ2I =
d2I

dε2

∣∣∣∣
ε=0

=

∫ b

a

{
η · Pη + 2η · Qη

′
+ η

′ · Rη
′
}
du, (6.22)

where

P = P(x) =
∂2f

∂y∂y

(
x, y∗, y∗

′)
, Q = Q(x) =

∂2f

∂y∂y′

(
x, y∗, y∗

′)
,

R = R(x) =
∂2f

∂y′∂y′

(
x, y∗, y∗

′)
. (6.23)

We now add the following Legendre identity to the right-hand side of (6.22):∫ b

a

(η · Sη)
′
du− [η · Sη]ba = 0, (6.24)

where S(x) = ST (x) is a symmetric N-dimensional matrix-valued function of x.
Thus, δ2I simplifies to

δ2I =

∫ b

a

{(
P + S

′
)

η · η + 2 (Q + S)η · η′
+ η

′ · Rη
′
}
du. (6.25)

We now choose S(x) to satisfy the following matrix Riccati equation:

S
′
+ P − (Q + S)T R−1 (Q + S) = 0, (6.26)
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subject to the boundary conditions on S,

η(b) · S(b)η(b) − η(a) · S(a)η(a) ≤ 0. (6.27)

If a solution S(x) to (6.26) can be found, then the resulting simplified expression for
δ2I is non-negative:

δ2I =

∫ b

a

∥∥∥Rη
′
+ (Q + S)η

∥∥∥2

R−1
du, (6.28)

where
‖a‖2

R−1 = a · R−1a.

It should be clear that the following condition is implied:

R−1 > 0. (6.29)

This is the matrix analogue to the classical Legendre necessary condition for stability
of extremals (R > 0).

6.4.1 Second Variation Conditions for a Green-Naghdi Rod

In order to compute the second variation and obtain the same form as (6.22), the
total energy must be written as (6.7). If we let the director components xi, dαj fill
out a 9−dimensional vector d with variations v, such that

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11

...

d13

d21

...

d23

x1

...

x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d
′
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
′
11
...

d
′
13

d
′
21
...

d
′
23

x
′
1
...

x
′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 · E1

...

v1 · E3

v2 · E1

...

v2 · E3

v3 · E1

...

v3 · E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.30)

then the second variation can be expressed as (6.22), where

P = P(ξ) =
∂2f

∂d∂d

(
ξ, d∗, d∗′

)
, Q = Q(ξ) =

∂2f

∂d∂d′

(
ξ, d∗, d∗′

)
,

R = R(ξ) =
∂2f

∂d′∂d′

(
ξ, d∗, d∗′

)
. (6.31)
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Note that the functional for Green and Naghdi’s theory is f = ρ0ψ + U .

6.4.2 Stability Criteria

Consider a Green-Naghdi rod and solve the boundary value problem for an equi-
librium solution. Then, if a solution S(ξ) to (6.26) and subject to the boundary
conditions

v(ξ1) · S(ξ1)v(ξ1) − v(ξ0) · S(ξ0)v(ξ0) ≤ 0. (6.32)

can be found, the solution to the boundary value problem satisfies a necessary con-
dition for stability.

It is also clear that, if we wish to extend these results to a tree-like structure of
branched Green-Naghdi rods, equation (6.32) easily allows for the establishment of a
branching condition similar to (2.49)3:

[[S]]B = 0. (6.33)
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Chapter 7
Stability Criteria for Kirchhoff’s
Rod Theory

7.1 Introduction

The theory discussed in this chapter originated with the theory first presented
by Kirchhoff in 1859 [26] that was capable of modeling bending and torsion. In the
early 20th century, the Cosserat brothers re-formulated Kirchhoff’s rod theory while
introducing the concept of directors [7, 8]. Modern treatments of the theory can be
found in works by Antman [1] and Rubin [51]. The use of directors is similar to
that of Green and Naghdi’s theory, except that the centerline in Kirchhoff’s theory is
inextensible and the cross sections remain plane and normal to the centerline. That
is, the directors are constrained to deform rigidly and retain their orientation relative
to the tangent vector et to the material curve. As a result of these constraints, some
modifications are necessary in order to extend the previous stability criteria to this
rod theory.

Kirchhoff’s rod theory is the most popular among modern researchers for appli-
cation to 3-dimensional problems modeled using elastic rods. With the advent of
numerical methods, and applications to DNA modeling in particular, the number
of papers on this rod theory has soared. Stability criteria for Kirchhoff’s theory do
exist, as shown by Born [5], Maddocks [32] and Manning et al. [36], but no attempt
has yet been made to extend the resulting stability conditions to branched tree-like
structures.
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Figure 7.1 Schematic of a Kirchhoff rod with position vector r(ξ) and
directors di. The rod is subject to a contact force n and
contact moment m at both ends, ξ = ξ1 and ξ = ξ2. The
reference configuration is also shown in this figure.

7.2 Kinematics

In Kirchhoff’s rod theory, we have the two directors d1 and d2, and the tangent
vector denoted by ∂r

∂ξ
(see figure 7.1). Since the centerline is assumed to be inextensible

for this theory, ∂r
∂ξ

= et. To ensure that the cross-sections remain plane and retain
their orientation relative to the centerline, we assume that D1,D2 and D3 define a
right-handed orthonormal basis at each ξ:

[D1,D2,D3] = 1. (7.1)

If {E1,E2,E3} is a fixed right-handed basis, then we can define a rotation tensor P0:

P0 = D1 ⊗ E1 + D2 ⊗ E2 + D3 ⊗E3. (7.2)

That is, Di = P0Ei. For many reference configurations, we can choose Di such that
P0 = I; some exceptions are for rods with intrinsic curvature.

Under a motion of the directed curve, the vectors di retain their relative orienta-
tion and magnitude. These restrictions are equivalent to

di · dj = δij, di · dj × dk = eijk, (7.3)

where δij is the Kronecker delta and eijk is the permutation symbol. Consequently,

di = PDi, (i = 1, 2, 3), (7.4)

where P is a rotation tensor. Rotation tensors are by definition proper-orthogonal
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tensors and therefore have the properties that PPT = I and det(P) = 1. This is a
reduction of the more general case seen in Chapter 6. It also should be clear that

dα = PP0Eα,
∂r

∂ξ
= P

∂R

∂ξ
, (α = 1, 2). (7.5)

These two equations define the constraints on the rod and are often known as “Kirch-
hoff’s constraints.” The most popular method to parameterize P in rod theory is to
use Euler angles.

The constraints (7.5) imply that

d
′
i = κ × di. (7.6)

Here, κ = κidi is the axial vector of the skew-symmetric tensor:

κ =
1

2
ε[Ω], Ω = Ωijdi ⊗ dj, Ωij = di · d′

j . (7.7)

The strains in Kirchhoff’s rod theory are defined as

κ = κ1d1 + κ2d2 + κ3d3, (7.8)

where κi are the same as the Cartesian components of the strain, κi = κ · Ei. We
can write the strain energy as a function of the strains: ψ = ψ(κ1, κ2, κ3). Since the
strains are determined by the vectors di and d

′
i, the total energy can be written in

the form

I =

∫ ξ1

ξ0

(
ρ0Ψ

(
di,d

′
i

)
+ U (r,di)

)
dξ, (i = 1, 2, 3). (7.9)

We note that Ψ is invariant under superimposed rigid body motions of the rod (i.e.,
Ψ is properly invariant).

7.3 First Variation and Necessary Conditions for an Extremal

Following the developments in Chapter 6, we consider a functional of the form

I (y1, y2, . . . , yN) =

∫ b

a

f
(
u, y1(u), . . . , yN(u), y

′
1(u), . . . , y

′
N(u)

)
du, (7.10)

where y1(x), . . . , yN(x) are scalar functions of the independent variable x.
We seek extremals y∗1(x), . . . , y

∗
N(x) of I which achieve prescribed values at x = a

and x = b and which satisfy the k given equations:

Gj

(
y1, . . . , yN , y

′
1, . . . , y

′
N , x

)
= 0, (j = 1, 2, . . . , k < N). (7.11)
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We consider the same variations to y∗1(x), . . . , y
∗
N(x) as in Chapter 6:

y1(x, ε) = y∗1(x) + εη1(x), . . . , yN(x, ε) = y∗N(x) + εηN (x). (7.12)

Substituting in these variations and evaluating I
′
(0), we get

dI

dε

∣∣∣∣
ε=0

=

∫ b

a

{
∂f

∂y1
η1 +

∂f

∂y
′
1

η
′
1 + . . .+

∂f

∂yN
ηN +

∂f

∂y
′
N

η
′
N

}
du. (7.13)

We can also differentiate the k equations (7.11) with respect to ε (and set ε → 0) as
follows:

∂Gj

∂y1
η1 +

∂Gj

∂y
′
1

η
′
1 + . . .+

∂Gj

∂yN
ηN +

∂Gj

∂y
′
N

η
′
N = 0, (j = 1, 2, . . . , k). (7.14)

These are the linearized constraints.
Now, following a treatment given in Weinstock [58], we multiply the jth equation

of the system (7.14) by the unspecified function μj(x) (i.e., Lagrange multiplier), for
all j = 1, 2, . . . , k, and we add these terms to (7.13) to obtain

δI =

∫ b

a

{[
∂f

∂y1
+

k∑
j=1

μj
∂Gj

∂y1

]
η1 +

[
∂f

∂y
′
1

+

k∑
j=1

μj
∂Gj

∂y
′
1

]
η

′
1 + . . .

+

[
∂f

∂yN
+

k∑
j=1

μj
∂Gj

∂yN

]
ηN +

[
∂f

∂y
′
N

+

k∑
j=1

μj
∂Gj

∂y
′
N

]
η

′
N

}
du

=

∫ b

a

{
∂F

∂y1
η1 +

∂F

∂y
′
1

η
′
1 + . . .+

∂F

∂yN
ηN +

∂F

∂y
′
N

η
′
N

}
du = 0, (7.15)

where we define

F = f +

k∑
j=1

μj(x)Gj . (7.16)

Integrating by parts the second, fourth, . . ., 2Nth terms of (7.15), we get

δI =

∫ b

a

{[
∂F

∂y1
− d

du

(
∂F

∂y
′
1

)]
η

′
1 + . . .+

[
∂F

∂yN
− d

du

(
∂F

∂y
′
N

)]
η

′
N

}
du

+

[
∂F

∂y
′
1

η1

]b

a

+ . . .+

[
∂F

∂y
′
N

ηN

]b

a

= 0. (7.17)

Due to the set of k constraints (7.11), the variations η1, η2, . . . , ηN cannot be arbi-
trarily chosen, as they could in Chapter 6. To mitigate this, we assign the unspeci-
fied functions μj(x) to be any set of k functions which make vanish the coefficients
of η1, η2, . . . , ηN in (7.17). That is, if u1, u2, . . . , uk denote the first k functions of
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y1, y2, . . . , yN , then the functions μj(x) are chosen so that the following equations are
satisfied:

∂F

∂ui
− d

dx

(
∂F

∂u
′
i

)
= 0, (i = 1, 2, . . . , k). (7.18)

With the functions μj(x) fixed in this manner, the first variation (7.17) becomes

δI =

∫ b

a

{[
∂F

∂uk+1

− d

du

(
∂F

∂u
′
k+1

)]
ηk+1 + . . .+

[
∂F

∂uN

− d

du

(
∂F

∂u
′
N

)]
ηN

}
du = 0,

(7.19)
where uk+1, . . . , uN = yN denote the final (N − k) functions of y1, y2, . . . , yN . Since
the variations ηk+1, ηk+2, . . . , ηN are arbitrary, we may follow the same approach as
in §6.3. Therefore, we have

∂F

∂ui
− d

dx

(
∂F

∂u
′
i

)
= 0, (i = k + 1, k + 2, . . . , N). (7.20)

Thus, by combining (7.18) and (7.20), we see that all N functions yj(x) are accounted
for, and we obtain the N Euler-Lagrange equations

∂F

∂y1
− d

dx

(
∂F

∂y
′
1

)
= 0,

∂F

∂y2
− d

dx

(
∂F

∂y
′
2

)
= 0, . . . ,

∂F

∂yN
− d

dx

(
∂F

∂y
′
N

)
= 0.

(7.21)

7.3.1 First Variation Conditions for a Kirchhoff Rod

For Kirchhoff’s rod theory, we present a formulation of the necessary conditions
for stability as given by Steigmann & Faulkner [57]. First we consider a total energy
functional of the form

I(r,di) =

∫ ξ=L

ξ=0

ρ0Ψ
(
di,d

′
i

)
dξ − U(r,di)

=

∫ L

0

[
ρ0Ψ

(
di,d

′
i

)
− b · r

]
dξ − f · r(L), (7.22)

where U is a potential energy function, f is a terminal force applied at ξ = L, and b
is a distributed force per unit length of the rod.

The variations for the directors and their derivatives are defined as follows:

r = r∗ + εu, r
′

= r∗
′
+ εu

′
, (7.23)

di = d∗
i + εvi, d

′
i = d∗

i

′
+ εv

′
i, (i = 1, 2, 3) (7.24)

We admit only the functions di that comply with the constraints (7.3). This results
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in the restriction
di · vj + dj · vi = 0 (7.25)

on admissible variations vi. This implies that there is an axial vector of a skew-
symmetric tensor α = αijdi ⊗ dj such that

vi = a × di. (7.26)

Moreover, this result can be used with (7.23) to find that

u
′
= a × et. (7.27)

In addition, we add the vector of Lagrange multipliers L(ξ) to the functional (7.22),
yielding

Î(r,di) = I(r,di) +

∫ L

0

L ·
(
r
′ − et

)
dξ. (7.28)

Substituting in the variations and evaluating Î
′
(0) = 0, we get

dÎ

dε

∣∣∣∣∣
ε=0

=
3∑

i=1

∫ L

0

{
vi · ρ0

∂Ψ

∂di
+ v

′
i · ρ0

∂Ψ

∂d
′
i

− b · u + L ·
(
u

′ − a× et

)
− f · u′

}
dξ.

(7.29)
After integrating by parts, invoking (7.26) and using the constitutive relation for the
contact moment

M(ξ) =
3∑

i=1

di × ρ0
∂Ψ

∂d
′
i

, (7.30)

the first variation becomes

dÎ

dε

∣∣∣∣∣
ε=0

= [a ·M]L0 + [u · (L − f)]L0

+
3∑

i=1

∫ L

0

a ·
{

di × ∂Ψ

∂di

− di ×
(
∂Ψ

∂d
′
i

)′

+ L× et

}
dξ

−
∫ L

0

u ·
(
L

′
+ b

)
dξ. (7.31)

Therefore, we obtain the Euler-Lagrange equations

L× et =
3∑

i=1

di ×
(
∂Ψ

∂d
′
i

)′

−
3∑

i=1

di × ∂Ψ

∂di

,

L
′
+ b = 0, (7.32)
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and the natural boundary conditions

[a · M]L0 = 0, [u · (L − f)]L0 = 0. (7.33)

Note that L = n, so the contact force is completely prescribed by the Lagrange
multipliers. For strain energy functions which are invariant under superimposed rigid
body motions, (7.32)1 becomes1

L × et = M
′
. (7.34)

It should not come as a surprise that equations (7.32)2 and (7.34) are the familiar
balances of linear and director momenta for Kirchhoff’s rod theory. While in vector
form, equations (7.32)2 and (7.34) also happen to be equivalent to the scalar form of
the Euler-Lagrange equations (7.21).

7.4 Parametrization of the Rotation by Euler Angles

We now consider a method wherein the strains are parameterized using a set of
Euler angles ψ, θ, φ. As is customary in the theory of motion for a rigid body, we
can envision the origin of the director frame moving along the centerline of the rod
with unit velocity. Therefore, the strains κ1, κ2, κ3 are the components of the angular
velocity resolved along the directions of the directors di (see Love [30, Section 253]).
The advantage in this context is that the use of Euler angles will eliminate the need
to consider the constraints on the director components in the variational formulation.

7.4.1 3-2-1 Euler Angles

There are many suitable choices for a combination of Euler angles. A popular
choice, especially in aerospace and automotive applications, is the 3-2-1 set, which
we will use here2. Thus, all possible deformations can easily be accounted for, where
κ1 and κ2 are the flexural strains of the rod, and κ3 is the torsion.

The Euler angles can be viewed as three successive rotations about a different
axis. The overall rotation can be expressed (using Euler’s representation) as

P = H(φ, t1)H(θ, t
′
2)H(ψ,E3), (7.35)

where each H = H(χ,h) defines a rotation χ about the unit vector h, and t, t
′
and

1Equation (7.32)1 can be written as L× et = M
′ −∑3

i=1

(
di × ∂Ψ/∂di + d

′
i × ∂Ψ/∂d

′
i

)
, where

the term in parentheses is identically zero (see Steigmann & Faulkner [57] for a derivation of this
result).

2The 3-2-3 set of Euler angles is used in Love [30], but the difference is only a matter of personal
preference.
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t
′
2

E2

t
′
1

E1

t
′′
1

t
′
1

t
′′
3

t
′
3

t3

t
′′
3

t2

t
′′
2

ψ

ψ

θ

θ

φ

φ

Figure 7.2 The transformations of various basis vectors for each individ-
ual rotation in a set of 3-2-1 Euler angles.

t
′′

define separate sets of basis vectors (see figure 7.2). Here,

ti = H(φ, t1)t
′′
i , t

′′
i = H(θ, t

′′
2 = t

′
2)t

′
i, t

′
i = H(ψ, t

′
3 = E3)Ei. (7.36)

This formulation is restricted to the case where the rod has no intrinsic curvature.
Therefore, the reference directors Di = Ei; in other words, the tensor P0 described
by (7.2) is equal to the identity tensor I.

As shown in O’Reilly [41], the basis vectors can be expressed as linear combinations
of each other: ⎡

⎢⎣t
′
1

t
′
2

t
′
3

⎤
⎥⎦ =

⎡
⎢⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣E1

E2

E3

⎤
⎥⎦ ,

⎡
⎢⎣t

′′
1

t
′′
2

t
′′
3

⎤
⎥⎦ =

⎡
⎢⎣cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎤
⎥⎦
⎡
⎢⎣t

′
1

t
′
2

t
′
3

⎤
⎥⎦ ,

⎡
⎢⎣t1

t2

t3

⎤
⎥⎦ =

⎡
⎢⎣1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

⎤
⎥⎦
⎡
⎢⎣t

′′
1

t
′′
2

t
′′
3

⎤
⎥⎦ . (7.37)

The relationships (7.37) can be combined to express ti (i.e., the directors di) in terms
of the fixed Cartesian basis vectors Ei:⎡
⎢⎣d1

d2

d3

⎤
⎥⎦ =

⎡
⎢⎣ cos(ψ) cos(θ) sin(ψ) cos(θ)

− sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ) cos(ψ) cos(φ) + sin(ψ) sin(θ) sin(φ)

sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ) − cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(φ)

− sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

⎤
⎥⎦
⎡
⎢⎣E1

E2

E3

⎤
⎥⎦ . (7.38)
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A concise representation of the vectors {gi} about which the Euler angles rotate is
known as the Euler basis, and it can be expressed in terms of the Cartesian basis
vectors as⎡

⎢⎣g1

g2

g3

⎤
⎥⎦ =

⎡
⎢⎣E3

t
′
2

d1

⎤
⎥⎦ =

⎡
⎢⎣ 0 0 1

− sin(ψ) cos(ψ) 0

cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

⎤
⎥⎦
⎡
⎢⎣E1

E2

E3

⎤
⎥⎦ . (7.39)

Singularities

A problem inherent in using Euler angles is the singularity which occurs for some
values of the second angle, θ. For the 3-2-1 set, this singularity occurs when θ = ±π

2
.

One of the easiest ways to show this fact is to look at how the Euler basis is affected
at these values of θ. When θ = ±π

2
, g1 = E3 = ±g3, and the Euler basis fails to span

E
3. To avoid this singularity, it is necessary to restrict the second Euler angle such

that θ ∈ (−π
2
, π

2

)
. The other two angles, ψ and φ, are free to range from 0 to 2π.

7.4.2 Definition of Strains

From equation (7.8) and the angular velocity vector associated with the 3-2-1
Euler angles, the strains have several representations:

κ = κ1d1 + κ2d2 + κ3d3

= ψ
′
E3 + θ

′
t
′
2 + φ

′
d1

=
(
−ψ′

sin(θ) + φ
′
)

d1 +
(
ψ

′
sin(φ) cos(θ) + θ

′
cos(φ)

)
d2

+
(
ψ

′
cos(φ) cos(θ) − θ

′
sin(φ)

)
d3. (7.40)

Therefore, the strains can be described entirely in terms of the Euler angles ψ, θ
and φ. The Euler angles can vary arbitrarily, thereby automatically satisfying the
constraints on the director components and mitigating any difficulty in formulating
the second variation of the energy functional in component form. Alternatively, the
strain components can be obtained from (7.7)1 and the derivative of the constraints
on the directors (7.3)1:

κ1 = d
′
2 · d3, κ2 = d

′
3 · d1, κ3 = d

′
1 · d2. (7.41)

7.5 Second Variation and Stability Criteria for Extremals

An analysis of the second variation for a functional of the form (7.10) exactly
parallels the analysis described in §6.4, and so for conciseness we only reproduce the
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main results here. If a solution S(x) to the matrix Riccati equation

S
′
+ P − (Q + S)T R−1 (Q + S) = 0, (7.42)

subject to the boundary conditions on S

η(b) · S(b)η(b) − η(a) · S(a)η(a) ≤ 0 (7.43)

can be found, then the resulting simplified expression for δ2I is non-negative:

δ2I =

∫ b

a

∥∥∥Rη
′
+ (Q + S)η

∥∥∥2

R−1
du, (7.44)

where
‖a‖2

R−1 = a · R−1a and R−1 > 0.

7.5.1 Second Variation Conditions for a Kirchhoff Rod

To use the results given in §6.4 and 7.5, the strain energy for a Kirchhoff rod must
be written in the form Ψ = Ψ(κ1, κ2, κ3, ξ). As shown in section 7.4 the strains can
be expressed in terms of the Euler angles and their derivatives. For the functionals
considered here, the potential energy must also be restricted to functions which de-
pend solely on the Euler angles and their derivatives3. Therefore, the total energy is
assumed to have the form

I =

∫ L

0

[
ρ0Ψ

(
ψ, θ, φ, ψ

′
, θ

′
, φ

′
, ξ
)

+ U
(
ψ, θ, φ, ψ

′
, θ

′
, φ

′
, ξ
)]
dξ. (7.45)

If we let the Euler angles ψ, θ, φ fill out a vector d, there would be 3 total independent
components. Therefore, we define d with variations v such that4

d =

⎡
⎢⎣ψθ
φ

⎤
⎥⎦ , d

′
=

⎡
⎢⎣ψ

′

θ
′

φ
′

⎤
⎥⎦ , v =

⎡
⎢⎣η1

η2

η3

⎤
⎥⎦ (7.46)

and the second variation can be expressed as (6.22), where

P = P(ξ) =
∂2f

∂d∂d

(
ξ, d∗, d∗′

)
, Q = Q(ξ) =

∂2f

∂d∂d′

(
ξ, d∗, d∗′

)
,

R = R(ξ) =
∂2f

∂d′∂d′

(
ξ, d∗, d∗′

)
. (7.47)

3This is clearly a restriction on the potential applications of this theory. However, we have found
it difficult to relax these assumptions and obtain a stability criterion.

4The variations of the Euler angles ψ, θ, φ are prescribed by η1, η2, η3, respectively.
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Note that the functional for Kirchhoff’s theory is f = ρ0Ψ+U . Therefore, if the 3×3
matrix S(ξ) satisfying (7.42) and subject to the boundary conditions

v(ξ1) · S(ξ1)v(ξ1) − v(ξ0) · S(ξ0)v(ξ0) ≤ 0. (7.48)

has a finite solution, then the equilibrium solutions satisfy a necessary condition for
stability.

7.6 Extension to Branched Rods

Parallelling the developments in Chapters 2 and 3, the second variation stability
conditions can easily be extended to accommodate tree-like structures of branched
Kirchhoff rods. It is clear that equation (7.48) allows for the establishment of a
branching condition similar to (2.49)3 and (6.33):

[[S]]B = 0. (7.49)

This concludes our presentation on Kirchhoff rods.
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Chapter 8
Closing Comments and Future
Work

The work presented in this dissertation provides a concise methodology for de-
termining when δ2I ≥ 0 for a functional I defined on a simple elastic rod structure.
Most importantly, this work provides the first such criteria for a branched tree-like
structure. One of these criteria is that a bounded set of Riccati solutions must exist
for a tree-like structure. The appealing feature is that none of the individual branches
can be unstable, otherwise the entire tree-like structure becomes unstable.

The final two chapters seek to address the problem of extending the stability
criteria to more complex rod theories accommodating deformations in all three di-
mensions. Further work remains on extending the stability criteria to accommodate
tree-like structures using Kirchhoff’s rod theory, in particular. One notable applica-
tion would be to use these conditions in conjunction with the algorithms developed
by Prusinkiewicz and his coworkers [9, 14, 13, 24] to compute the equilibrium config-
urations of branched tree-like structures. With a suitable stability criterion in place,
physically unrealizable configurations of the tree models can be systematically elimi-
nated. Other applications include problems involving the adhesion of elastic rods to
surfaces and contributing to evolving mechanical theories of plant growth.

Finally, an important component of the stability criteria that is lacking are condi-
tions proving sufficiency for stability in the case of branched structures. This problem
will need to be addressed for models using the elastica, Green-Naghdi and Kirchhoff
theories.
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Appendix A
An Optimal Control Formulation

A.1 Introduction

An alternative variational formulation for the equilibrium configurations of the
elastic strut can be found when the problem of determining these configurations is
formulated as an optimal control problem. In contrast to the related control-based
formulation of Bryson and Ho [6, page 191] and Sachkov [52, 53], the resulting formu-
lation results in a singular control problem. However, with the significant assistance
of works by Bell and Jacobson [2], we are able to show the equivalence of this for-
mulation to the one presented in Chapter 2 §2.2.2. Specifically, this formulation
corresponds to the example of a thin strut under terminal load presented in Chapter
4 §4.2. Furthermore, one of the necessary conditions for optimality is identical to the
Riccati equation (4.9) associated with the condition L1 discussed in Chapter 2.

A.2 Singular Optimal Control Theory

Proceeding with the formulation, we seek to compute the control u which extrem-
izes the cost functional

J = F [x(s0)] +G[x(sf)] +

∫ sf

s0

L(x, u, s)ds (A.1)

subject to the following conditions:

x′ = f(x, u, s), φ[x(s0)] = 0, ψ[x(sf)] = 0. (A.2)

67



Appendix A. An Optimal Control Formulation

The state vector x is n-dimensional, u is a scalar control variable, φ and ψ are smooth
scalar functions of the initial and final states x(s0) and x(sf), respectively, and F
and G are scalar-valued functions representing the initial and final costs. The ini-
tial constraint φ is not typical in optimal control formulations but is necessary in
the problems of interest here because the components of x(s0) are generally not all
specified.

We can adjoin equations (A.2) to the cost functional with Lagrange multipliers
λ(s), ν0, and νf . This yields the augmented cost functional J̄ :

J̄ = F [x(s0)] + ν0φ[x(s0)] +G[x(sf)] + νfψ[x(sf)] +

∫ sf

s0

[H(x, u, λ, s)− λ(s) · x′] ds,
(A.3)

where the Hamiltonian
H = L+ λ · f. (A.4)

In the elastic strut problem, the two state variables are θ and θ′:

x1 = θ, x2 = θ′. (A.5)

The dimensionless arc-length s becomes the independent variable such that s0 = 0
and sf = 1. Therefore, the problem is to minimize

J =

∫ 1

0

(
1

2
x2

2 + β cos (x1)

)
ds, (A.6)

subject to
x′1 = x2, x′2 = u, (A.7)

and appropriate boundary conditions (4.11) on x(s). Note that the terminal costs F
and G are generally identically zero for the elastica problems of interest here. The
Hamiltonian for the problem is defined as

H(x, u, λ, s) =
1

2
x2

2 + β cos (x1) + λ1x2 + λ2u. (A.8)

Comparing (4.7) to (A.7), it is important to note that we have chosen to specify the

vector field f as f =
[
x2 u

]T

rather than f =
[
x2 −β sin (x1)

]T

. It will shortly

become apparent that the control variable u corresponds to the (dimensionless) mo-
ment of the applied force P .

A.3 First Variation

We now follow a standard procedure (see, e.g., [6]) and consider the first variation
δJ̄ of J̄ with changes in the control u for fixed endpoints s0 and sf . The change in u
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causes changes in x and consequently

δJ̄ = [(Fx + ν0φx + λ) δx]s=s0
+ [(Gx + νfψx − λ) δx]s=sf

+

∫ sf

s0

[(Hx + λ′) δx +Huδu] ds. (A.9)

The subscript x and u on a function denote partial derivatives of the function with
respect to these variables. By requiring that δJ̄ vanish for arbitrary δu, we obtain
necessary conditions for optimality:

λ′ = −Hx, Hu = 0,

λ(s0) = − (Fx + ν0φx)s=s0
, λ(sf) = (Gx + νfψx)s=sf

. (A.10)

These equations are supplemented by the state equations and boundary conditions
(A.2):

x′ = Hλ, φ[x(s0)] = 0, ψ[x(sf)] = 0. (A.11)

The identity Hu = 0 generally serves to define the optimal control u∗, while the
differential equations x′ = Hλ and λ′ = −Hx are used to compute the optimal solutions
λ∗(s) and x∗(s). In the sequel, we avoid ornamenting the optimal solution with an
asterix unless it is necessary to avoid confusion. The boundary conditions on λ(s)
and the boundary conditions on x(s) (which are presented in (A.10)3,4 and (A.11)2,3)
total 2n in number and are intended to make the differential equations λ′ = −Hx and
x′ = Hλ well-posed.1

It is important to note that the Hamiltonian defined in equation (A.8) is linear in
the control u. This implies that the optimal control problem is singular, meaning that
the standard optimal control formulation where Pontryagin’s Minimum Principle is
invoked to determine the optimal control u∗ is of no assistance in finding the optimal
control u∗. For this reason, starting in the 1960s new necessary conditions for singular
optimal control problems were established by a number of researchers (see [2, 6, 22, 38]
and references therein).

The first of the aforementioned necessary conditions is known as the generalized
Legendre-Clebsch condition and is defined as

(−1)q ∂

∂u

[(
d2q

ds2q

)
Hu

]
≥ 0, (A.12)

where 2q is the lowest-order derivative ofHu in which u appears explicitly. The second

1For further details on the role of the transversality conditions in prescribing boundary conditions,
the reader is referred to [2, 28, 47].
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necessary condition is known as the Jacobson condition [22], and it requires that

fu · [Fxx + (ν0φx)x] +Hux|(x=x∗(s0),u=u∗(s0))
= 0,

fu · [Gxx + (νfψx)x] +Hux|(x=x∗(sf),u=u∗(sf)) = 0. (A.13)

Finally, to determine the optimal control in singular problems, a series of partial
derivatives of H are computed until u∗ can be prescribed:2

Hu = 0, H ′
u = 0, H ′′

u = 0, . . . (A.14)

A.3.1 Application to the Elastica

Applying the necessary conditions (A.10) to the elastic strut problem, we obtain
the state equations (A.7) as well as

λ′1 = −∂H
∂x1

= β sin (x1) , λ′2 = −∂H
∂x2

= −x2 − λ1. (A.15)

The state and costate equations, (A.7) and (A.15), require four boundary conditions
in order to obtain a solution to the optimal control problem. There are two boundary
conditions given on the states, which must be supplemented by two transversality
conditions on the costates.

For our elastic strut problem, q = 1 and upon examining the Legendre-Clebsch
condition we find that

Hu = λ2, H ′
u = λ′2 = −x2 − λ1, H ′′

u = −x′2 − λ′1 = −u− β sin (x1) ,

∂

∂u
(H ′′

u) =
∂

∂u
(−β sin (x1) − u) = −1. (A.16)

Hence, the condition is satisfied for all solutions, regardless of the boundary conditions
used. Secondly, as Fxx = Gxx = (ν0φx)x = (νfψx)x = Hux = 0, the Jacobson condition
is trivially satisfied. Finally, we can determine that the optimal control u = u∗ from
(A.14) with the help of the intermediate results (A.16)1,2,3:

u∗ = −β sin (x1) . (A.17)

This prescription for the optimal control is valid regardless of the boundary conditions
imposed on the strut.

In summary, the necessary conditions for an extremal (x∗, λ∗, u∗ = −β sin (x1)) of
J are the satisfaction of

λ′1 = β sin (x1) , λ′2 = −x2 − λ1, x′1 = x2, x′2 = −β sin (x1) , (A.18)

2For other examples featuring these conditions, the interested reader is referred to [6, 25].
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subject to the boundary and transversality conditions

φ [x1 (s0) , x2 (s0)] = 0, ψ [x1 (sf ) , x2 (sf )] = 0, (A.19)

and
λ (s0) = ν0 φx|x=x∗(s0)

, λ (sf ) = νf ψx|x=x∗(sf) , (A.20)

respectively. Note that (A.19) and (A.20) constitute six equations. Two of these
equations are used to determine ν0 and νf and the other four provide boundary
conditions for (A.18).

A.4 The Second Variation

Prior to computing the second variation, it is convenient to define notations for
the first derivatives of f and second derivatives of L evaluated on the extremal:

A = fx (x∗, u∗) , B = fu (x∗, u∗) , (A.21)

Q = Lxx (x∗, u∗) , CT = Lux (x∗, u∗) , R = Luu (x∗, u∗) = 0. (A.22)

In addition, the derivatives of the initial and terminal costs and the transversality
conditions will play a key role in the sequel:

Q0 = (F + ν0φ)xx|(x=x∗(s0),u=u∗(s0)) ,

Qf = (G+ νfψ)xx

∣∣
(x=x∗(sf),u=u∗(sf))

. (A.23)

The second variation of the amended functional J̄ can be expressed as

δ2J̄ =
1

2

∫ sf

s0

δx · (Qδx) + 2δu · (Cδx) ds

+
1

2
δx (s0) · (Q0δx (s0)) +

1

2
δx (sf) · (Qfδx (sf )) , (A.24)

where the variations δx, δu, and δλ satisfy the differential equations and boundary
conditions

δx′ = Aδx + Bδu,

δλ′ = −Qδx − CT δu+ AT δλ,

φxδx (s0)|(x=x∗(s0),u=u∗(s0))
= 0,

ψxδx (sf )|(x=x∗(sf),u=u∗(sf)) = 0. (A.25)

71



Appendix A. An Optimal Control Formulation

As a final preliminary, we define the linearized Hamiltonian h:

h =
1

2
δx · (Qδx) + δu · (Cδx) + δλ · (Aδx + Bδu) . (A.26)

Following the classical treatment by Legendre [4], it is standard procedure to add
an identity to δ2J̄ :

0 =
1

2

∫ sf

s0

d

ds
(δx · (S(s)δx)) ds+

1

2
δx (s0) · (S (s0) δx (s0))

−1

2
δx (sf) · (S (sf ) δx (sf )) . (A.27)

The matrix S = ST is assumed to be a differentiable function of s. Evaluating δx′

using (A.25)1,2, and combining terms, we find that δ2J̄ transforms to

δ2J̄ =
1

2

∫ sf

s0

δx · ((S′ + Q + SA + AT S
)
δx
)

+ 2δu · ((C + BT S
)
δx
)
ds

+
1

2
δx (s0) · ((Q0 + S (s0)) δx (s0))

+
1

2
δx (sf) · ((Qf − S (sf)) δx (sf)) . (A.28)

It follows that a sufficient condition for positive semi-definiteness (or non-negativity)
of δ2J̄ is3

S′ + Q + SA + AT S ≥ 0,

C + BTS = 0,

δx (s0) · ((Q0 + S (s0)) δx (s0)) + δx (sf ) · ((Qf − S (sf )) δx (sf )) ≥ 0. (A.29)

We note that the variations δx (s0,f ) in (A.29)3 also need to satisfy the linearized
transversality conditions (A.25)3,4. This significantly reduces the number of restric-
tions on the matrices Q0 + S (s0) and Qf − S (sf).

It has been shown by Bell and Jacobson [2] that a matrix S which satisfies (A.29)1

solves the Riccati differential equation4

S′ + Q + SA + AT S + MT

(
∂h′′u
∂u

)−1

M = 0, (A.30)

3We use the standard notation to show that a matrix P is positive semi-definite by the expression
P ≥ 0.

4An alternative prescription for a Riccati equation of this type was presented in McDanell and
Powers [38]. For the elastica problem of interest in the present paper, the Riccati equations proposed
in [2] and [38] are identical.
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where

∂h′′u
∂δu

=
∂

∂δu

(
∂3h

∂s∂s∂δu

)
= CAB + BTAT CT + C′B − (B′)T

CT − BT QB,

M = (AB − B′)T
S + BT Q − CA − C′. (A.31)

The boundary conditions on S in the Riccati differential equation (A.30) are obtained
by examining (A.29)2,3. To this end, we first note that Bell and Jacobson [2] also
showed that for (A.29)2 to be satisfied, it is necessary and sufficient that

C (sf) + BT (sf) S (sf ) = 0. (A.32)

We will use (A.29)3 and (A.32) to determine the boundary conditions for solutions
to (A.30).

A.4.1 Application to the Elastica

For the problem of interest, many of the matrices featuring in the second variation
are simple:

A =

[
0 1

0 0

]
, B =

[
0

1

]
, C = 0, Q =

[
−β cos (x1) 0

0 1

]
. (A.33)

In addition,
∂h′′u
∂δu

= −BT QB = −1, M =
[
S11 S12 + 1

]
. (A.34)

For all the problems of interest, (A.32) implies that

S12 (sf) = 0, S22 (sf) = 0. (A.35)

The remaining boundary value is obtained from the condition (A.29)3. These condi-
tions depend on the boundary conditions for the elastic strut, and we defer imposing
them until later.

With the help of (A.33) and (A.34), the Riccati differential equations can be
computed from (A.30):

S ′
11 = S2

11 + β cos(x1), S ′
12 = S11S12, S ′

22 = S2
12, (A.36)

Subject to (A.35), these equations have the solution

S11(s) = r(s, c, β), S12(s) = 0, S22(s) = 0, (A.37)

where c is a constant. Remarkably then, the issue of the minimization of the second
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variation boils down to a single Riccati equation (A.36)1, which is identical to (4.9)
that we found earlier in Chapter 4 §4.2 using a different variational principle. Thus,
if we can find a bounded solution S11(s) to (A.36)1, then we will have established
sufficient conditions for the energy I (which is equivalent to E) to be minimized and
necessary conditions for J to be minimized.

In the special case where cos(x1) = 0, the function r(s, c, β) can be easily com-
puted:

r(τ, c, β) =
√
β tan

(√
β (τ − c)

)
. (A.38)

This solution is shown in Figure A.1 for two cases. Of particular importance in the
results shown in this figure are the unboundedness of r when β has certain critical
values:

lim
x→±0.5

r
(
x, 0.5, β = π2

)
= ±∞, lim

x→0
r

(
x, 1.0, β =

π2

4

)
= −∞. (A.39)

The solutions shown in Figure A.1(a) feature in the stability analysis of the straight
fixed-fixed strut, while those shown in Figure A.1(b) feature in the stability analysis
of the straight fixed-free strut.

(a) (b)

r(
τ,

0.
5,
β
)

r(
τ,

1.
,β

)

→
−∞

→
−∞

→
∞

inc. β

inc. β

inc. β

τ

τ 0.5

20

−20

0 1.0

−10

0

Figure A.1 Solutions (A.38) to the Riccati equation (A.37) when
cos(x1) = 1.0 for (a) the case where c = 0.5 and τ ∈
[−0.5, 0.5], and (b) c = 1.0 and τ ∈ [0, 1.0]. In (a), β = 4, 6, 8,
and π2. In (b), β = 1, 2, 2.2, 2.3, and π2
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