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Abstract 
 

Modes of Deliberation in Machine Ethics 
 

by 
 

Thomas J Gilbert 
 

Doctor of Philosophy in Machine Ethics and Epistemology 
 

University of California, Berkeley 
 

Professor David Bates, Chair 
 
This dissertation is about the purpose of artificial intelligence (AI) research. New learning 
algorithms, scales of computation, and modes of sensory input make it possible to better predict 
or simulate decision-making than ever before. But this does not tell us whether or how AI systems 
should be built. In fact there is much anxiety about how to build AI applications in ways that 
respect or enact the decision criteria of existing human institutions. But instead of how to better 
predict or protect how we decide things, my research question is: how can AI tools be used to 
reorganize the choices we make about how we want to live together? Answering this question 
requires investigating the conditions under which deliberation is possible about the systems being 
built—their models, their real-world performance, and their effects on human domains. These 
three modes of deliberation are philosophically outlined in the introduction and named as 
sociotechnical specification, normative cybernetics, and machine politics. 
 
The first chapter pursues sociotechnical specification in the context of routing algorithms for 
autonomous vehicle (AV) fleets. It asks what it would mean to relate this emerging transportation 
model to the other legacy systems adjacent to the travel domain. It sketches proxies in terms of 
“known unknown” features of the driving environment. These would need to be monitored and 
serve as targets for optimization in order for the performance of the AV fleet to be considered to 
be robustly good. The second chapter pursues a normative cybernetics of AVs in terms of a 
sustained internal critique of reinforcement learning (RL). This introduces new policy questions, 
whose answers would correspond to types of feedback between the behavior of AV firms and civil 
society or state organizations. The third chapter outlines the elements of machine politics in terms 
of concepts borrowed from contemporary analytic philosophy. Ruth Chang’s notion of parity is 
mobilized to demonstrate the possibility of domain deliberation at different stages of AI 
development. This comprises a critique of existing schools of thought, represented here in terms 
of epistemicism (the notion that the structure of human activities can be passively learned and 
observed) and ontic incomparabilism (the notion that human activities cannot be organically 
modeled or developed by means of AI). The three types of feedback that are produced through 
active developmental inquiry are presented in terms of featurization, optimization, and integration, 
all of which comprise the structural choices at stake in machine politics.
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1. INTRODUCTION 
 
My goal in this introduction is to construct a philosophical grammar for deliberation about the use 
of AI in various human domains, in particular the development of self-driving cars. Even if the 
present structure of a domain is determinate, any technical intervention on it breaks that structure 
and requires it to be reconstituted. This entails articulating new abstractions and frames within 
which to think about specific domains, in other words to deliberate about what they are and what 
their purpose is. Just as the concept of jaywalkers came into being after cars “broke” roads a 
hundred years ago, self-driving cars will change how roads work and generate new activities that 
cannot be fully anticipated. Consequently, the conceptual problem is how to deliberate about roads 
so that the activities that emerge do so in a fair and safe manner, not to formalize fairness or safety 
in advance of technical intervention. I will return to the ideas in this paragraph again and again in 
the course of this introduction. 
 
I first present feedback as a lurking problem for advanced AI systems deployed in human domains, 
before reinterpreting the concept of deliberation itself. Next, I examine other features of domains 
(in particular their indeterminacy and structure) that future AI systems will enframe and compel 
us to coherently organize on new ground. I then outline three modes of deliberation (which I name 
as sociotechnical specification, normative cybernetics, and machine politics) that are needed to 
reflect on these features and incorporate them into how AI systems are designed, trained, and 
deployed in human contexts. After summarizing how each of my dissertation chapters concentrates 
on these respective modes, I conclude by suggesting a new kind of institutional space--the AI 
clinic--that would nurture and distinguish these modes in the context of building real-world 
systems. 
 
1.1 The Problem of Feedback 
 
All cities have problems, and making them smarter changes the problems they face. The prospect 
of smart cities amounts to the integration of streets, buildings, power lines, smart phones, and other 
components to support a dataflow that both optimizes and structurally reorders urban life. This 
techno-utopian vision of cities as a proxy for human organization promises to improve quality of 
life using AI applications, including self-driving cars. However, it has been attacked as sacrificing 
commitments to democracy and equity in the name of technological progress. In particular, Ben 
Green has instead called for the “smart enough city”: the use of new technologies in support of 
livable, just, and responsibly-innovated cityscapes (Green 2019). 
 
At stake in this debate is the implicit criteria for the success or failure of a given smart city 
technology. For example, new tools for pothole prediction and smart streetlights promise to 
prevent road wear and optimize electricity use, but these projects often fail due to emergent 
problems with technical implementation, inequity of service, or faulty integration with legacy 
systems. Meanwhile, critics have advocated for transparency, accountability, and documentation 
of harms to prevent tools’ misuse and counter privacy concerns (Whittaker et al. 2018). But these 
efforts have struggled to articulate what terms like transparency, accountability, and harm amount 
to in the context of unprecedented data analytics and service provision. At present, the notion of a 
city becoming smart “enough” remains indeterminate. 
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These rival approaches share the Platonic assumption of an underlying definition of the good or of 
value that can be encoded within tools. It would follow that “AI ethics” (or fairness, or safety) is 
the project of technically realizing that definition. I claim that this assumption is wrong, and that 
accepting its wrongness is crucial to the successful development of AI systems. Whether or not 
such a function exists, no one is in a position to discover, measure, or defend it without reordering 
human experience to reflect its form. While new tools may augment our insight into human 
domains, they also suggest alternative means of organizing them, and in so doing question their 
integrity.  
 
This is not a new problem. In fact, Aristotle used the same word, ὅρος (hereafter horos), to refer 
to both the limited horizon of human insight and the standard by which basic organizational 
decisions are made. In doing so, Aristotle suggested a profound relationship between the ways 
humans are naturally (or artificially) limited and the ways humans delimit their activities. These 
limits are reciprocal; a change in one reflects some change in the other. A basic expansion or 
contraction of human agency will reshape the ways we organize our activities in relation to each 
other, including how or whether we retain them, or forge new ones. This perspective constitutes a 
major break with the orthodox definition of AI as a system or rational agent that takes actions in 
some environment in pursuit of maximizing the likelihood of achieving some goal (Russell and 
Norvig 2002). Instead, following Aristotle, I argue AI is a tool to be used to reorganize the horoi 
that structure social order. It follows that any particular technical enactment of AI (e.g. deep 
learning, supervised machine learning, symbolic reasoning, etc.) is less important than the political 
enactment of horoi made possible by what new tools permit us to do and reason about. 
 
It follows that new forms of data sharing and service provision will remain brittle if AI applications 
merely try to optimize domains that already exist. Instead, the relations between domains must be 
rewired so that they are ordered to work well together, in search of respective integrities that would 
also comprise an integrated harmony. This entails a problem of unprecedented feedback between 
systems that have not yet learned to speak to each other in terms of themselves. By feedback I 
broadly refer to the evolutionary effect generated by a system’s recent states and actions on its 
future dynamics (Wiener 2019), raising questions of stability and emergent behavior whose 
answers require normative reflection about the domain itself. 
 
In this dissertation, I argue that present discussions of machine ethics neglect the modes of 
deliberation needed to adequately tackle these questions. Without these modes, the problem of 
feedback—and related problems of domain structure and indeterminacy—cannot be framed in 
ways that are technically resilient or normatively integral. The purpose of this introduction is to 
present and justify these modes in relation to existing work in AI safety and governance. I conclude 
by presenting my dissertation chapters as respectively demonstrating how to deliberate about 
models, systems, and domains as they are remade by AI applications. Although not a primary focus 
of this introduction, it follows from my presentation that these modes align with the choices to be 
faced by particular agents (respectively AI designers, transportation planners, and public utilities 
commissions). We shall see that Aristotle provides the philosophical tools to understand what this 
inquiry substantively entails. 
 
Human capabilities are not something that can be augmented, subverted, or even compared with 
AI applications. Rather, it is how we incorporate technologies—meaning both how we instantiate 
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them and make them work for us, and in so doing redefine the terms of how we live together—
that reconstitutes human capabilities in the first place. The fact that we bear responsibility for this 
as a basic feature of our condition is what makes us human. As a result, any adequate discussion 
of human capabilities must begin with an investigation of machine capabilities, a sustained 
encounter with what Yuk Hui calls the inhuman (Hui 2019). 
 
Drawing from recent work in the philosophy of technology (Noë 2015), I define machine ethics as 
the organization of how we use AI to illuminate human domains. This is a necessarily recursive 
definition, and I will account for its elements step by step: what are domains, what it means to 
illuminate them, and what it means to organize the way the illumination is conducted. At present, 
the problem space of machine ethics remains deeply confused about these elements, and fails to 
distinguish them or fully grasp the logic of how they are related to each other. 
 
A domain is a specified sphere of human activity that fulfills a particular need. Activities sediment 
habits and rituals that make the domain available for us to lose ourselves in every day. Illuminating 
the domain means that something about the terms of that sedimentation, previously hidden, is now 
offered up for inspection and appraisal. Finally, to organize this illumination is to actively attend 
to how those terms are offered up for appraisal—to whom, under what conditions, by what 
channels—and establish structured protocols for maintaining that active attention. It follows that 
deliberation about how to build AI systems well comprises a problem of feedback. 
 
To make this concrete: how should we update stop signs and road signage so that self-driving cars 
can reliably recognize them? What are the affordances we need to design for these agents, in order 
for them to be demonstrably safe, fair, and performant? How do we want self-driving car fleets to 
coordinate the other systems (economic activity, traffic dynamics, planetary climate, etc.) that are 
brought into a new relationship through their deployment? For what range of damages should 
service providers be found liable, and on what grounds? Answering these questions means 
specifying the types of sensory, discursive, and legal feedback needed for automated systems to 
maintain stability with respect to other systems. 

 

 
A stylized view of the systems a smart city will integrate (with types of feedback implied). 

 
My definition of machine ethics is close to the realm of politics. Following Aristotle, I take politics 
to be an activity that organizes the relationship between domains in order to direct them toward 
human flourishing. Concretely, my thesis is that the technical development of self-driving cars is 
much closer to the activity of politics than the activity of driving itself, and that automating the 
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latter analytically entails reorganizing it as part of the former. The modes of deliberation I present 
later in this introduction are intended to clarify these points by illustrating what it means to 
organize how we use AI to illuminate particular domains. 
 
The pertinent normative question is how an AI application can be developed to safeguard and 
perhaps augment the integrity of all the other activities brought into some relationship through its 
operation. But this is not the way most engineering work on self-driving cars proceeds. At present 
there is much work on route planning, or on computer vision, or on some other module, under the 
assumption that stacking these modules on top of each other will approximate what it means to 
drive a car. The problem with this assumption is not only that its validation remains technically 
uncertain, but that it circumvents the foundations of what this “stacking” organizationally entails 
(which is, in fact, what is at stake in basic AI research). As such, there is a need for active inquiry 
into the paradigms through which AI research is conducted. I thus focus on articulating and 
defending the principles needed to guide how AI systems are developed and deployed, not on some 
discrete set of values or features to be encoded in order for systems to work well. 
 
1.2 On Deliberation: Surpassing vs. Organizing Capabilities 
 
The thought experiment of a “trolley problem” has been an influential model for the ethics of 
automated vehicles (AVs). But the question of giving self-driving cars an ethics is not well-framed, 
because it is incidental to driving as a human activity. Overwhelmingly, driving’s purpose is to 
connect us to other activities (working, shopping, socializing) that have their own structure and 
purposes. Even the appeal of the “open road” is relational, serving as a momentary escape from 
our obligations to others (Crawford 2020). Certainly we talk about “good” or “bad” driving, but 
we mean this in terms of proficiency, not as a statement about driving as a way we define our 
relationships and commitments to other people (which is what ethics is about). Making life-or-
death decisions from the driver’s seat assumes that it is impossible to safely coordinate the 
activities of pedestrians and cars. We drive because we are trying to get somewhere else, and 
asking who we would rather kill implies we have failed to achieve that goal. 
 
The problem of designing a transportation system, however, is different. It is like the seam in a 
garment: sewing it well implies that one has chosen an appropriate type and color of thread, and 
requires knowledge about how the pieces of fabric are meant to fit together, which itself requires 
knowledge about the article of clothing, how it is meant to be worn and in what contexts. There is 
no “ethics” of sewing (other than, perhaps, the banality of not harming anyone with the needle) 
but there is one for tailoring, in the sense that one is concerned with fitting a customer to make the 
clothing work in support of their own ends. It is a human enterprise. 
 
To clarify this contrast, it is worth introducing working definitions of recursivity and contingency. 
A recursion is a type of program or rule that refers to itself. Meanwhile, a contingency denotes an 
event or circumstance that merely happens to occur and could not be predicted with certainty. Most 
AI models today are developed by performing a recursion or set of recursions on various observed 
contingencies—most notably, statistical associations between labeled or unlabeled data. The 
trolley problem, as a design principle for AVs, confusingly elevates a contingent feature of human 
driving—the freedom to kill bystanders—to a proposed recursive principle of transportation as a 
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whole. But this is nothing like the actual regulations and limits used to organize how roads stitch 
our activities together. 

 

 
An example of a “moral machine” survey conducted by the MIT Media Lab. 

 
This leads me to an important aspect of deliberation that is widely misunderstood in the AI 
literature. Stuart Russell, for example, has characterized the classical model of successful 
reasoning as “methods of logical deduction that would lead to true conclusions given true 
premises” (Russell 2019, pp. 17-18). Parsing the famous discussion of reasoning in Book III of 
Aristotle’s Nicomachean Ethics, Russell concludes that “the ‘end’—what the person wants—is 
fixed and given; and [Aristotle] says that the rational action is one that, according to logical 
deduction across a sequence of actions, ‘easily and best’ produces the end” (Ibid. p. 18). Two 
conclusions follow from this. One is that the major stumbling block to building successful AI 
agents is for them to know or figure out what actions would most likely lead to the specified goal 
state, based on the optimal calculation of utility trade-offs. The second is that generalizing 
Aristotle’s account of deliberation would amount to the study of rational gambling under 
conditions of uncertainty. 
 
But this is not all of what the term means. Deliberation (also known as practical reasoning) is an 
organic calculation, not a strictly mechanical one. It denotes a relation between the elements of 
something such that they are made to fit together as constitutive parts of a whole. In other words 
it is structured, integrated, coordinated, and ordered. The part must be made to stand in relation to 
the whole in a way that is meaningful. A deliberate decision is one that has been fully (that is, 
organically) considered, not one that has been made in the most efficient manner possible. It is not 
just reasoning within some frame, but a reappraisal of the frame itself, which changes the 
relationship between the agent and the object of reasoning. Put differently, deliberation requires a 
sense of which ends are retroactively justifiable given a proportionate amount and form of 
reflection, as well as what means would in fact achieve a given end. 
 
The point is not that only biologically-ordered agents like Homo sapiens are capable of 
deliberation. It is that deliberation requires a capacity to organize calculation into a capability, and 
in so doing reorganize (that is, reconstitute) the being of the thing that undertakes the computation 
as worth doing. Doctors do not deliberate whether they shall heal, but they do deliberate on treating 
patients in light of available actions. Their view of that activity depends on the tools at their 
disposal; a new set of tools may alter their sense of what is possible, and therefore what line of 
treatment would be prudent (Cammack 2013).  
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Insofar as they are tools, AI systems do not have capabilities; they are capabilities. A good example 
is AlphaGo’s defeat of Lee Sedol in 2016. AlphaGo is extraordinarily proficient at playing Go, but 
it has no grasp of Go as a human activity. Its moves are the result of a strictly mechanical 
computation aimed to achieve a pre-specified goal, not a sense of what the game is for or its 
relationship with the opponent. In ancient China, Go comprised one of the four arts that denoted 
the status of a distinct social group. Playing Go was interpreted as a way of simulating one’s place 
in the universe. The goal was not necessarily to win, but to generate tesujis, i.e. moves that caused 
one to “marvel” at the game’s beauty. AlphaGo’s technical mastery of the game is such that it has 
changed our sense of what counts as tesuji, literally by expanding the horizon of play. Expert 
human players have also learned to imitate and incorporate AlphaGo’s distinctive strategies into 
their own playstyles. While AlphaGo cannot play Go as humans do, it has significantly changed 
how expert human players deliberate when choosing moves. 
 
It is likewise for other AI applications. The use of computer vision models to match photos to 
police records does not mean that AI can recognize faces, but that the activities of policing are 
being reorganized. The use of language models to generate text for web applications does not mean 
AI can interpret speech or even use it, but that our definition of online communication is up for 
grabs. The use of reinforcement learning to optimize electrical grids or help drones navigate 
airspace does more to change our sense of how to manage those environments than to automate 
that management itself. At stake in all these examples is the scale on which deliberation occurs. 
AI models reconstitute the scale, and in so doing how choices connect with the purpose of the 
domain. They make it possible to come to a decision and organize choices in relation to ends; they 
appropriate neither that organization nor the ends that guide it. 
 
My definitions of recursivity and contingency enrich these claims in two ways. First, deliberation 
is rooted in a concern for how the recursion encounters contingencies. An AI model is a structured 
regime of anticipation that has learned to predict things based on past observations. Deliberation 
entails a capacity to coordinate this structure in a meaningful fashion, that is, to organize 
anticipation in terms of a flow. Second, deliberation incorporates recursion as a basis for organic 
calculation. Sewing requires calculation, but sewing well assumes a tailor who knows what he or 
she is doing. These lead to a more precise definition: deliberation is a calculation that organizes 
the flow generated by encounters between recursivity and contingency (Stiegler 1998). 
 
Let’s reconsider the deliberation at stake in AV development. China and Germany, for example, 
are building entire highways and urban grids from scratch to support AVs by default. Trolley 
problem-like situations in which AVs would problematically encounter other modes of transport 
are thereby rendered structurally impossible, and unnecessary to morally “solve”. This case reveals 
several interesting points of contact between recursivity and contingency. First, these nations have 
the organizational wherewithal to do this in ways that seem unlikely in an American context. 
Second, the way that China will do this is clearly different from how Germany plans to pursue it, 
based on its pre-existing vision of how cities are supposed to work. Third, Chinese citizens 
comparatively associate AVs with socioeconomic mobility, rather than with loss of individual 
control or privacy as in Germany, partly because physical transportation is more directly tied to 
mobility in the Chinese context. This is all to say that new forms of technical automation interact 
with the terms of social organization, not by remaking them from scratch but by displacing them 
in ways that call for their deliberative reconstitution. Smart cities built near Beijing and Berlin will 
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still be recognizably Chinese and German in their respective features, but in ways that are not 
predetermined, based on how their technical components are actively organized in relation with 
human factors. 
 
This suggests that one cannot train an AV model well without a grasp on what a good road is, or 
good traffic flow, or a good neighborhood, or indeed any other activity that is brought into a 
determinate relationship through the model’s operation. That model or computation stack’s ability 
to recognize stop signs or navigate an intersection or merge into traffic is secondary to this basic 
organizational, deliberative question. The model must be incorporated as part of a system that 
works to support desired capabilities. 
 
The technical surpassing of human capabilities does not mean that AI has been achieved, but that 
those capabilities have become passive. By passive I mean that they have become divorced from 
human activities, the specific kinds of things humans do, and instead rendered as a tool. Computer 
vision models, for example, have surpassed the limits of human eyesight and mental representation 
and are now deployed in a range of recognition systems. But these systems can only “see” things 
they have been told to look at. What we see when we use them is a combination of the limits of 
their computation and the features we interpret as meaningful. 
 
Aristotle called this faculty nous: the active discernment of a horizon of possibilities in relation to 
some limit. These models are changing what it means to represent ourselves and our activities by 
enframing them against a backdrop of new features, but they cannot discern features of their 
environment that they were not told to attend to. In other words, they can only be put to use. In 
putting them to use, our passive intellectual capacities are expanded, and nous is reconstituted. Our 
own agency is reconstituted. Once nous has directed passive forms of intelligence to discern 
features, deliberation organizes possible actions. The organization at stake—of some particular 
task, the wider activity, or an entire domain—depends on what changes the agent in question is 
able to effect. It follows that AI models, as abstract capabilities, will entail different forms of 
deliberation depending on the agency at stake in their specification within actual systems. 
 
To be clear, AI models’ lack of agency does not mean that they are guaranteed to be safe. For 
example, there is a creeping awareness of the risk in developing tools without reflecting on the 
purpose that guides their use. At present, we are like a child who, having mastered the basic rules 
of arithmetic, has just realized the ability to manipulate numbers of arbitrary size. The child is now 
in a position to deterministically simulate and manipulate computation to his or her satisfaction. 
This is indeed a scary thought. 
 
This problem is resolved through the child growing into a mathematician, someone who knows 
what the uses of mathematics are and what calculations are worth pursuing. Calculations not worth 
pursuing are not undertaken. All this means is that a mathematician is someone who has an organic 
relationship with the ability to perform mathematical operations, not someone who is arbitrarily 
good at doing math. Much of our anxiety about AI models rests on our growing awareness that we 
are pursuing calculations—or allowing others to pursue them—whose terms we do not understand 
or trust and yet whose results are reshaping the contours of our own lives. 
 
 



8 

1.3 Indeterminacy and Abstraction in AI Development 
 
This anxiety may be further illustrated through examples of prominent technical research 
paradigms in the long- and short-term AI ethics landscape. AI Safety is a technical subfield that 
treats design predominantly as a long-term problem of controlling what artificial agents are able 
to learn and do, and is dedicated to the creation of “provably beneficial” systems. Fairness in 
Machine Learning (Fair ML) is a subfield that focuses on the short-term creation of algorithmic 
models that are fair, accountable, and transparent (Dean et al. 2021). At present, these fields 
struggle to technically specify their own normative aims. For example, many AI Safety researchers 
focus on a theorization of “artificial general intelligence” and attempt to forecast its likely arrival, 
but have yet to agree on a consistent definition of the term. What set of capabilities, skills, and 
proficiencies does it cover? Fair ML, meanwhile, is still digesting the uncomfortable notion that 
there is no single definition of fairness to work from: one can favor equality across selected groups, 
or equal odds of being selected within groups, or some other selection criteria, but it is a free 
parameter that our models cannot provide to us (Corbett-Davies and Goel 2018). 
 
These long- and short-term considerations face the same problem: perfectly deterministic 
conceptions of fairness and safety do not exist outside mathematical formalism. Building systems 
to incorporate those models requires agreement on what features of fairness and safety in fact 
matter, requiring calculation that is organic and deliberative rather than strictly optimal. As such, 
the goal of these communities is to break down the abstractions they have chosen for themselves 
into indeterminacies that are technically tractable. By indeterminacies I mean the merely possible 
relationships that proposed models may have with actual existing systems (economic, behavioral, 
cognitive, environmental, juridical), which the formalism does not specify. 
 
The method of crafting manipulable indeterminacies is best exemplified by the paper “Cooperative 
Inverse Reinforcement Learning” (CIRL). This paper asks the question of what it would mean to 
teach the structure of human preferences to a robot in the context of a specified task (Hadfield-
Menell et al. 2016). How, for example, do I teach a robot not that coffee is valuable but that it is 
valuable to me in a particular way, so that it could learn how to make it in terms of the value I 
assign to it? The paper formalizes this question in terms of a game that is played between a human 
(whose “reward function” or goal is at stake) who demonstrates the task and a robot that observes 
the demonstrations, and thereby tries to learn what the human is trying to do. To illustrate this 
through a possible CIRL configuration: the human demonstrates, the robot mimics, the human 
demonstrates again in response to the robot’s prior action, the robot mimics that, and so on. 
Because the robot is initially uncertain about the human’s preference structure, this style of 
pedagogical interaction may continue as long as needed for the task to be satisfactorily learned. 
 

 
A stylized view of the CIRL game in the context of making a meal. 
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The thesis of the CIRL paper is that the value alignment problem—the problem of getting 
machines to learn human values as we intend them to be learned—is best tackled not by specifying 
tasks in a way that can be passively observed, but by specifying roles for the human and robot to 
play in order to isolate what it would mean for the task to be learnable. In order for value alignment 
to work, the human has to become something that can pedagogically demonstrate the value of its 
own actions by framing them into a task that can be taught to an agent that does not (and need not) 
share or understand them. Value alignment, the problem of getting AI to learn the structure of 
human values, is thereby treated as a maieutic activity in its own right, based on the agent’s 
compliance with the human’s demonstrated behavior. 
 
CIRL offers a possible route to structurally decoupling the content of what humans value—their 
place and shape in the context of human activities—from the learnability of actions that stand for 
them. The designer can, in effect, reason about actions outside the context of the domain in which 
the activity occurs. This makes the CIRL game a deliberative activity in the sense described earlier. 
It instantiates, in terms of an abstracted game, a structured set of encounters between a recursion 
(the robot) and a source of contingency (the human) that must be organized in order for values to 
be learned in a way that does justice to them. 
 
In CIRL’s terms, the path to AI Safety is not to build better sewing machines but for humans to 
become the tailors of their own learnability. Like a Platonic dialogue, it models a robot as Socrates 
and a human as someone who tries to provide a good definition of what he or she is doing. It is not 
an actual conversation between a human and a robot, but a model of a conversation that could in 
theory be optimized. And it positions the designer, who in this sense is “reading” the dialogue, as 
the hub of normative deliberation. Like a student of philosophy, the designer must ponder as deeply 
as possible what set of demonstrations would satisfy the robot, regardless of whether such a 
definition has ever been written down or even exists as a fact of the matter. The goal of the activity 
has now shifted to include how a determinate conception of the game itself could be articulated, 
to reincorporate the activity in terms of its learnability. 
 
This entails a reinterpretation of the human. The human is modeled as something that has access 
to information about its own reward function (i.e. what it wants) and is able to rationally 
demonstrate states that minimize the robot’s uncertainty about that reward function. The game 
itself is structured as a Partially Observable Markov Decision Process (POMDP), a decision 
procedure in which the relationship between successive states determined by chosen actions cannot 
be directly observed. Instead, a probability distribution over prior observations must be computed 
to minimize these uncertain conditions and thereby interpret demonstrated actions as 
representative of the activity. 
 
This is a subtle but crucial point. The human is not assumed to have an optimal, expert-like grasp 
of its own behavior or reasons for doing things. If that were the case, no game would be needed—
the robot could just passively observe the human’s activity. Rather the human is interpreted as 
something that is able to play a CIRL game and respond to the robot’s efforts in a meaningful way 
by selecting between the states that matter and those that don’t with respect to task completion. It 
is not that the robot is trying to interpret the human, but that the human is trying to reinterpret itself 
in terms of the robot’s performance. CIRL redefines the value of coffee as the state of play in 
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which the human stops demonstrating to the robot how to make coffee for it. And if the human for 
some reason fails to rationally demonstrate states, this could be resolved by altering the terms of 
the game (e.g. further subdividing the task, learning from the physical environment directly). In a 
meta-pedagogical sense, the designer could reinterpret the activity in the name of surmounting the 
limitations of the human’s demonstrations. 
 
CIRL renders concrete the core mystery of AI Safety: what must humans become in order for their 
values to be exhaustively learned by an artificial agent? The question isn’t whether the CIRL game 
could be realistically played in a cognitive or institutional sense, or how various activities are or 
aren’t in fact like the POMDP through which the game operates. It’s how we would have to 
reorganize ourselves as sociotechnical beings such that the CIRL game actually could be played. 
The accomplishment of CIRL is that it concretizes these indeterminacies. It makes it possible to 
reimagine and enact human normativity in terms of the limits of the game. 
 
In this way, the technical contributions of AI Safety and Fair ML are indeterminate abstractions: 
propositions that propose the existence of substances or entities whose content is implied but 
deferred pending further elaboration or examination. I draw inspiration here from Charles Sanders 
Peirce’s closely-related concept of hypostatic abstraction. The point is not that what the abstraction 
implies (i.e. a pedagogic human or a deliberative designer) is assumed to be real. It is that treating 
it as possible allows one to perform a kind of controlled thought experiment that clarifies what it 
would take to confirm its existence. 
 
This is not a critique of what technical communities are in fact doing, which is giving voice to 
basic human problems in the context of AI development. We want models that are fair. We want 
models that are safe. In sum, we want to implant our sense of what is good and true into the actual 
systems that will help organize our lives. But purpose is not something we put into tools. It is 
something we articulate to ourselves, and organically achieve, in the process of putting our tools 
to work. Deliberating on what it means to use them well is how we distinguish the means of 
achieving what we want from what we actually want, in ways that make what we want more clear. 
What makes CIRL profound is its conception of deliberation as a coordination problem between a 
human teacher and robot pupil who work to complete a shared task, entailing the “design [of] 
machines that provably converge to the right purpose as they go along” (Hadfield-Menell et al. 
2016). That is the paper’s pertinent contribution: to technically model indeterminate features of 
human activity, drawing our attention to them in ways that not only entail further inquiry but that 
could be actively structured to inquire in an organic way. 
 
1.4 The Interpretation of “Structure” 
 
CIRL sharpens the question from “how do we build a model we know would be safe?” to “how 
can we determine human activities as learnable through active demonstration under conditions of 
partial observability?” This new question stylizes, via the need to structure the game, both the 
designer as an interpreter of human activities and the agent as an interpreter of human actions. It 
makes it possible to ask: how should these interpretations be organized? 
 
As a thought experiment, let’s imagine a CIRL game being played between a human driver and 
his personally-owned AV. The driver demonstrates to the AV how he wishes it to cruise down a 
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highway, or pass through a four-way stop, or merge into traffic, or navigate around cyclists. 
Suppose these games are played successfully, in a way that remains physically safe to all 
participants. In theory, this would mean that the AV has successfully learned the precise value of 
driving tasks for the person whose utility is at stake. But to do this, roads themselves would have 
to be remade in a way that mirrored the terms of the game, generating externalities whose stakes 
would be impossible to take into account. 
 
There are two features of roads, in terms of their structure, that illustrate this point. By “structure” 
I mean the organizing attributes or features of roads, rather than those known or used by agents at 
any particular moment (Zwetsloot and Dafoe 2019). One is that roads enact a city’s geometry. A 
city’s population density and transportation hubs reflect how life in that city has been ordered to 
support daily commutes, commercial activities, leisure, recreation, and residential areas (Walker 
2012). Even local aspects of roads like sidewalks and street corners support this geometry: the 
width of sidewalks and gradient of street curbs reflect their frequency of use by particular kinds of 
agents, enacted in a set of ratios between the different parts of the road, how they have been 
patterned to support particular kinds of access. In fact, one hundred years ago, a major political 
dispute surrounding automobiles was the incentive they created to make sidewalks narrower in 
order to improve the efficiency of traffic lanes for vehicle throughput (Norton 2011). 
 

 
 

The geometric design of roads at different abstraction layers, left to right: highway interchange, 
road slope (to shed rainwater), and sidewalk-curb contraction joints (to minimize cracking). 

 
The second feature is that roads are public infrastructure. This means that roads are intended to be 
widely-shared, accessible, equitable, affordable, and capable of supporting diverse means of use 
(vehicles, pedestrians, cyclists, etc.). In other words, roads are a form of public space or 
“commons” whose value is not a function of individual utilities but of the fact that they are 
collectively owned and used. One example of this is that as roads are worn down through forms 
of unintended damage like potholes, everyone bears the cost of their repair through taxes, rather 
than just those people who are known to frequent the specific roads where potholes manifest. In 
other words, the externalities are publicly managed and paid for. 
 
Insofar as they are geometrical and public, roads already have recursivity and contingency baked 
into them. That is, roads are a city’s way of referring to its own demography, and they are 
understood as public as a fact of the matter by the people who use them. Drawing from our earlier 
discussion, deliberation about roads is a calculation about how to organize the traffic generated by 
the interaction between their geometry and status as a public good. Regular jams are perceived to 
be a problem not just because they inconvenience the drivers who happen to be stuck in them, but 
because they violate the integrity of particular thoroughfares. Frequent cases of vehicular collision 
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or manslaughter are perceived as failures of road design as well as inattentive drivers, resulting in 
calls for different signage or lighting conditions.  
 
These problems are interpreted in ways that are structurally distinct from the thought experiment 
described earlier. Let’s return to the two abstractions at stake in CIRL: 
 
1. Human reward functions have learnability. 
2. The human’s demonstrations have partial observability. 
 
Learnability means that the human has been positioned in such a way that its demonstrations 
provide information about the structure of the activity in question. Partial observability means that 
there is some determining ratio between the perceptible substance of the game (i.e. every action 
taken) and its purpose as enacted by the human, in terms of what the human wants to demonstrate. 
In other words, the activity has been discretized in order for it to be deterministically learned, and 
there is a distinction between the “signal” and the “noise” that can be discerned through 
observation. These abstractions respectively suggest that the activity itself has been restructured 
to make it possible for the game to be played, and for the game itself to be a meaningful 
coordination or orchestration of the activity. Again, the beauty of the paper is that it frames these 
indeterminacies as tractable while remaining agnostic about how to resolve them. 
 
For CIRL games to be playable in the driving environment, existing roads and highways would 
require a vast new telecommunication infrastructure between AVs, roads, and perhaps even other 
cars and road users. Without sophisticated sensors providing real-time data and integrated analytics 
about the environment, the driver behaviors would not even be partially observable. Furthermore, 
for demonstrated behaviors to be learnable, the game would have to introduce new protocols for 
role-playing and discretized driving tasks whose specification would have an unclear relationship 
with existing social norms about the rules of the road. As an example of the latter, different road 
users will pay extra attention when navigating intersections that are damaged or compromised, 
because we understand what roads are for and how they are supposed to work. That is, our 
transportation behaviors are organic with respect to roads’ intended structural features rather than 
optimal with respect to locally observable ones. 
 
Consequently, the game-theoretic assumptions at stake in the criteria of the CIRL game constitute 
a separate axis of deliberation from the kind that organizes how traffic works. A problem will arise 
once CIRL games begin to intervene on the structural criteria of roads themselves. Which should 
take priority? Learnability introduces an algorithmic geometry to traffic activities that is 
incommensurate with the one already physically baked into roads, while observability assumes 
proprietary metrics for demonstration that are incommensurate with roads as a commons. The 
CIRL criteria would therefore require new standards for measuring and certifying the conditions 
under which personalized AV behaviors are enacted, apart from legacy forms of traffic 
management. 
 
To counter these concerns, we could try to integrate the CIRL game at higher levels of abstraction 
than demonstrations from individual drivers. For example, AV planners could provide 
demonstrations for an entire fleet to learn from, streamlining how a company like Waymo offers 
its services to a particular city or region. Companies that sold vehicles to individuals could pursue 
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“CIRL certifications” in order for personal demonstrations to be indexed or bound in a way that 
municipal or federal bodies could oversee. In such cases, CIRL demonstrations could be optimally 
customizable without being undertaken in a normative vacuum. 
 
Even so, these strategies would redefine roads in terms of their utility and resource scarcity rather 
than their structural integrity. They would defer the basic question of what roads are supposed to 
be (vs. what they happen to appear to be) in the context of a specified task. Because roads are 
public, there is always more that can occur on them or near them than designers will know how to 
optimize. And because they are geometrical, they reflect a shared normative sense of the cityscape 
that citizens, not AV designers, are positioned to affirm or reject. What if the city of Houston wants 
to minimize vehicle access to downtown for sake of greater livability, or Chicagoland wants to use 
AV services to connect wealthy suburbs with the south side? Aristotle’s term for this problem 
space is politeia, the constitutional form that denotes how a city-state or polity is meant to be 
ordered, in terms of how it governs itself (Winner 2010). Deliberation about roads assumes 
politeia, our sense of what activities are proper on them and of what domains they are meant to 
connect once enacted. 
 
What CIRL does is augment that deliberation by expanding the interpretive possibilities of the 
domain via new forms of task specification. In theory, it enables us to specify new tasks (and 
corresponding activities) at the same time we pursue proprietary efficiency and safety. We are 
called to ask by what standard CIRL games should be conceived, authorized, and played, so that 
designers’ deliberation about how to structure them does not overwhelm our sense of what roads 
are for in the first place. This question will have to be answered through new performance metrics 
and certification standards so that CIRL games in fact “count off” the units of activity whose 
relations we affirm as constitutive of roads’ public geometry (Klein 1968). CIRL’s deeper, 
philosophical value is thus to model how we might restructure domains in terms of how we want 
them to work, not to guarantee utility to individual humans. 
 
1.5 From Artificial Intelligence to Sociotechnical Specification 
 
Until now our discussion of models has revolved around two questions: 
 
● What features of human activity can be automated using AI? 
● How should AI be used to represent the structure of a domain? 

 
These questions bear on each other. Automated feature detection for faces, game-playing, and text 
generation demands a restructured sense of what those domains amount to and what they mean to 
us. Meanwhile, our willingness to pursue the creation of AV fleets raises new questions about 
which features of road activity like traffic are essential and which are incidental. These are 
epistemic and normative dimensions of the same problem: the need to organize how AI can be 
used to illuminate human activities. 
 
This is a wholly different problem than the one faced by Hubert Dreyfus, whose highly influential 
critique of logic-based or “symbolic” AI continues to shape public and scholarly debate (Dreyfus 
1992, 2014). According to Dreyfus, the question that symbolic AI failed to answer is: how does 
man exhibit intelligent behavior? His own answer, developed over decades of philosophical 
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inquiry, was skillful coping. That is, humans learn to make sense of their own embodiment and 
situatedness, which organize their place in the world and what it means to engage in a given 
activity. On this interpretation, performing given tasks like driving, cooking, and exercising in an 
everyday, naturalized sense is the most complete expression of what it means to be intelligent. 
 
But the question raised by CIRL is: against what spatio-temporal horizon is a given activity 
conducted? The answer, which I claim must be developed to meet AI’s future design challenges, 
is what I call sociotechnical specification. That is, humans organize themselves with the aid of 
tools, which enframe possible relationships between activities that in turn must be defined. For 
some activity to be able to be undertaken in an everyday sense, there must be a set of coordinates 
to mark its relative scale and significance. Tools make those coordinates possible, without telling 
us how to specify them. In the technical language of reinforcement learning (and CIRL), this 
horizon comprises a tuple including a transition function and state-action space, against which 
rewards can be observed and predicted by some agent. Accordingly, sociotechnical specification 
marks the essential features of related activities within a domain’s functional whole. 
 
The difference between these two positions mirrors larger shifts in the technical development of 
AI. Dreyfus gave an early philosophical voice to the problem of human intelligence by asking how 
humans become proficient and what it would take to mechanistically simulate this through 
reference to performance thresholds. In many ways we are still living in this paradigm, as 
optimization problems define what it means to automate skillful performance of a given activity 
across technical subfields. Public discussions remain fixated on when AI will meet or surpass 
human capabilities, how neural nets draw inspiration from the human brain, whether or in what 
ways AVs will be safer than human drivers, and which sorts of human jobs are likely to be 
automated next. In all these cases there is an assumed 1-1 correspondence between the models we 
are building and proficient human behaviors.  
 
But today that paradigm is breaking due to growing problems of specification, the pressing need 
to define the interface between AI models and social reality. We are now able to inquire into our 
own behaviors on scales of abstraction and computation whose terms are no longer clear. For 
example, the activity of driving is composed of certain features like turning, accelerating, braking, 
signaling, honking, stopping, and parking. But driving itself is a feature of roads, which also 
include walking, cycling, jogging, transiting, taxiing, or just riding. And roads themselves are a 
feature of cities, along with homes, neighborhoods, businesses, downtowns, parks, and suburbs. 
Specifying driving means that its parts are being arranged to stand within a structured whole. A 
model of driving whose implementation would violate that whole reconstitutes the domain, and 
hence would compel other activities in that domain to conform to its specification. Driving, road 
use, and urban living are activities at different scales whose relationship is made technically 
tractable and manipulable through automation. In this way, sociotechnical specification poses a 
problem of modeling these activities’ structure such that designers know that those relations will 
remain functional as they are technically integrated. 
 
A related term in Aristotle’s philosophy, horos, will help us make sense of this problem. A horos 
is a boundary, something that is discerned by nous as a limit to the horizon of a given activity and 
enacted by politeia as a delimiting factor in how activities are organized in relation to each other. 
We encountered these terms in our previous investigations of the limits of algorithmic computation 
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(Section 1.2) and the structural integrity of roads (Section 1.4). Aristotle uses horos both to refer 
to the ratio between matter and form discerned by nous and the standard by which politeia 
structures how people live together: “[T]he standard of aristocracy is merit, of oligarchy wealth” 
(1998). In this shared sense, horoi are definitions that comprise the terms and conditions of how 
organic human beings mark the structure of activities in relation to each other. By placing 
boundaries on the way an AI model is able to signify some activity, choices must be made about 
how to modulate and defer meaning within the emergent sociotechnical setting enacted through 
the system’s operation. 
 

 
Agora boundary stones, found east of the Tholos (left) and in its original position in Athens 

(right). Rough translation: “I am the boundary of the Agora”. 
 
Technical work in AI Safety, including CIRL itself, is an exercise in nous: active inquiry into what 
first principles are needed for the development of AI models to be demonstrably aligned with 
human values. But this suspends and defers politeia, the whole institutional order of social and 
political relationships, in ways that require further definition. Sociotechnical specification, as the 
mature expression of nous, discerns horoi that indicate how a given activity is structured in relation 
to other activities. The horoi are how we reconcile the discernment of features and the enactment 
of optimization techniques, in terms of what it means to live well together. 
 
Famously, Dreyfus argued that AI was nowhere near matching the practical skill displayed in 
everyday activities because it did not inhabit the world in the way that humans do. But the CIRL 
formalism shows that the goal of AI research is no longer to mimic our worldly coping directly, 
but to interpret it as something that could be modeled as teachable to a machine. Learned models 
alter how we discern particular activities as parts in relation to a possible whole. The question is 
not just how to optimize the performance of individual activities but how their automation compels 
us to redefine their essential features. Answering this requires a grasp of that activity in relation to 
other activities, and how to structure that relation well. 
 
1.6 Normative Cybernetics: Models vs. Systems 
 
So what does all this have to do with AVs? 
 
So far I have been referring to AI almost exclusively in terms of models. Models are stylized 
conceptions of reality whose purpose is to clarify the terms of that reality. Our discussion of 
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sociotechnical specification leads to further deep questions: what phenomena should AI models 
represent? And how can we develop those models in an appropriate way if it is those very models 
that are the entrypoint for deliberation itself? 
 
While designers must represent the domain in terms of their AI model, they do not do so on terms 
of their own choosing. The models being built for self-driving cars to route through cities reflect 
some business model of how the AV company represents its own market position. That business 
model exists in some relationship with how the law represents private business activities. 
Consumers, in turn, are shown advertisements that represent vehicle services as worthwhile or not, 
based on what they want. All of these representations help define how the transportation system is 
able to function in relation to other systems. The designer is only in a position to design how their 
system operates with respect to the physical, cognitive, legal, or managerial substrates on which 
the computation must operate. They have to work within them or in relation to them, often without 
having a clear or expert understanding of what they are or how they function. By contrast, the most 
basic choices a transportation planner faces are not of what domain features matter most, nor of 
how well those features can be modeled, but of how what is being modeled will affect the relations 
between other systems; that is, to balance or vary the forms of feedback between them in ways that 
are organically desirable. 
 
In my experience, many AI designers approach these other systems as having nothing to do with 
their model. They interpret them like weather patterns: natural or incidental features of the world 
that define the boundary conditions of the AI model and which it does not have to take into account 
in order for it to perform optimally. It is easy to forget that things like stop signs are not natural 
features of the environment, but artificially constructed entities that are meant to help other systems 
talk to each other. They are patterned to provide feedback in ways that structure the domain to 
work well. In other words, they are cybernetic entities that have been intentionally implemented 
by planners to help keep roads public. This implies the need for what I call normative cybernetics: 
structuring feedback between activities to guarantee the integrity of the domain. Normative 
cybernetics begins with an investigation of the types of feedback needed to monitor how an AI 
system might interact with a domain, before evaluating effective performance. Absent this 
investigation within a concrete sociotechnical context, the notion of “optimal performance” will 
lack significance and fail to be given proper meaning. 
 
Let’s review what a stop sign is, in terms of its features. First, what stands out about a stop sign is 
its redness. This makes it easily noticeable to the human eye from a distance, and (invariantly 
across national contexts) denotes a state of alertness and readiness as well as danger. The redness 
of the stop sign means: pay attention. Second, a stop sign is an octagon. From a certain distance, 
this makes it distinctly unlike all other forms of signage, which take the shape of other geometric 
objects. The octagon-ness of the stop sign means: this is not a YIELD, NO TURN, or DO NOT 
ENTER intersection. Finally, a stop sign literally says STOP. That makes it an indicator for what 
specific kinds of road users (namely drivers) are supposed to do at the intersection as well as the 
resulting consequences, both to them and to all other road users. The STOP-ness of the stop sign 
means: vehicles must completely halt before the white line. 
 
It is true but misleading to say that novice human drivers learn to recognize stop signs. What they 
actually do is learn how to recognize them in a patterned way that structures their activity as drivers 
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to work in support of desired features of roads. All this is encoded in the sign in terms of its color, 
shape, and protocol. In other words, the mode, pattern, structure, and equity of road access are 
cybernetically encoded in the object in order to help make the domain work well for different types 
of activity. 
 
What really is a stop sign? It is a horos, a mark of social order. The primary purpose of a stop sign 
is not to help structure four-way stops so that cars can navigate them in a safe and efficient manner. 
In other words, it is not merely a means to traffic optimization. Rather, a stop sign is what 
constitutes particular types of road intersection as stops (four-way or otherwise). It reflects a 
pattern of decision-making, made by planners at a higher level of abstraction, about what kind of 
road this is and how vehicle activity needs to be structured to be permissible in relation to it. The 
purpose of a stop sign is to provide feedback about what vehicles can or cannot do with respect to 
other activities. In other words, it is a form of road specification. It helps make cars safe for roads 
rather than roads safe for cars. Safety originates as an emergent property of how roads structure 
traffic to be stable, not as a design parameter for individual elements of traffic.  

 

 
Horoi in action: patterned forms of feedback that structure activities to support equal road 

access. 
 
AV fleets are not like a mass of individual human drivers who happen to have been automated. 
They are more like an independent mechanism for traffic itself, and are going to change the way 
traffic works once fully deployed. They are going to change how roads work, will require new 
types of feedback to monitor their real-time performance, and will restructure traffic by changing 
the behavioral incentives of other road users. They will redefine what it means for roads to be safe. 
In brief, AV fleets will be much more like stop signs than like individual drivers, and the real 
cybernetic question is figuring out what that means. 
 
To understand this, let us return to the key features of human vision and action (color, geometry, 
protocol) that stop signs help organize and that AV fleets will explode. First, AVs navigate their 
environment through the use of computer vision algorithms that classify objects based on inputs 
provided through LiDAR sensors. LiDAR sensors are comparable to human vision in their 
sensitivity to particular types of light and ability to evaluate distance from objects, yet also 
incommensurable in their acuity and modularity. AVs often have several LiDAR sensors placed 
all around the vehicle, of different types of sensitivity, looking backward and forward and 
sideways at once. AVs leverage sensory affordances from the environment that overlap with but 
also surpass what it means (in human terms) to perceive and experience colors. 
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Second, AVs navigate their environment through the use of routing algorithms that make travel 
plans based on coordinates that have been geofenced. A geofence is a virtual or simulated 
perimeter that is comparable to the real-world geographic areas navigated by individual human 
drivers, yet also incommensurable in who is responsible for bounding it. Instead of individual road 
users, these bounds are determined by standing agreements with municipal planners, businesses, 
government agencies, and anyone else with whom the AV service provider chooses to partner. 
AVs leverage geometric affordances from the environment that overlap with but also truncate and 
artificially delimit what it means to navigate street traffic. 
 
Third, AVs orchestrate their environment through the use of application program interfaces that 
establish forms of data sharing based on information protocols. These protocols conform to the 
“smart” infrastructural capacities and business model of the AV fleet in question, comparable to 
the services provided by taxis and human-driven ride sharing fleets (e.g. Uber, Lyft), yet also 
incommensurable in their scale of traffic optimization. Simulated results already show that AVs 
would be able to control highway bottlenecks once they reach 10% of all vehicle traffic, acting as 
moving road obstacles that would restructure the behavior patterns of other road users (Vinitsky 
2018). AVs leverage informational affordances from the environment that both interact with and 
reconstitute the flow of traffic on any particular stretch of road. 
 
AVs’ perception, routing, and coordination modules appropriate and explode the features of stop 
signs without re-patterning them to reflect how we want roads (and cities) to work. The problem 
is that unlike stop signs, AVs at present do not meaningfully restructure the roads they drive on to 
remain equal and equitable. A single human driver, no matter how experienced, is not in a position 
to decide how traffic works, let alone what traffic means with respect to other systems. But AVs 
introduce new mechanisms for object detection, route navigation, and traffic flow, in ways that are 
nothing like someone learning to drive or indeed someone who has been driving for decades. In 
all these ways, the kinds of affordances stop signs provide are reconstituted by AVs. And 
companies like Waymo and Tesla are preparing themselves to fill that position. In fact, it would 
be more accurate to say that these companies are building privatized roads than automated 
vehicles. That is, they are optimizing the way roads work according to legacy standards without 
any proportionate deliberation by planners for what roads are meant to be. 
 

 
A network of AVs acting as a traffic management system via feedback. 

 
AVs, along with many other AI systems, displace horoi and in so doing reconstitute the 
relationship between nous and politeia. Politeia, the constitutional social order, is becoming 
conditioned on nous and deferred to a degree that is new and in ways that are new. The existential 
problem faced by tomorrow’s traffic planner is not how to ensure AVs can recognize stop signs, 
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but to ask: what are roads supposed to do and not do? And the series of choices that are faced are 
about how to condition the ways that roads can be modeled on what roads are supposed to be. 
 
What I am describing is an institutional, rather than strictly computational, basis for the encounter 
between recursivity and contingency. Designers cannot control the structural (vs. computable) 
contingencies with which their systems interact. But city planners can articulate new rules or 
standards or types of feedback that structure how that interaction happens. They could, for 
example, support financial incentives at the federal level for AV startups and research labs to 
compete on achieving desired performance metrics for safety and routing efficiency, rather than 
what happens to pass legal muster. Or cities could certify particular AV companies or firms as 
worthy of acting in the public interest and form special relationships with them about where they 
are allowed to test fleets and provide privileged terms of service. Or state-level Departments of 
Motor Vehicles could structure periods of public comment on proposed performance metrics if it 
is unclear which should be prioritized. Any of these is preferable to surveying individuals about 
how they would solve trolley problems, because what really matters is how we redesign roads as 
a whole, not ethically resolving corner cases pertaining to crash scenarios. Do we want to live in 
cities where pedestrians can cross the street without looking? Or in which AVs become so 
accessible that the concept of “pedestrian” is abandoned as outdated? This is the problem space of 
political economy: structuring the encounter between recursivity and contingency at distinct 
institutional levels, of actual systems rather than toy models. 
 
1.7 Machine Politics: Systems vs. Domains 
 
In the process of sociotechnical specification, there is a need to track the ways we reinterpret 
corresponding activities. This tracking is cybernetically orchestrated through feedback. But there 
is also a need to resolve how we want the domain to work, once its indeterminacies have been 
framed by the model and made actionable by the system’s operation. The case of prioritizing or 
wholly abandoning “pedestrians” discussed above is one example of this indeterminacy. 
 
Let’s appraise the challenge faced by AV designers and traffic planners. Road models can be 
structured through reference to the behavior of other drivers, pedestrians, animals, weather effects, 
and other features of the environment. Meaning can be assigned to these by discretizing the 
environment into states, actions, and rewards for the AV model to learn. And we can scale both of 
these with forms of geofencing and data protocols in order to build actual AV systems. But it is 
actually really hard to do all of this at once, let alone when public infrastructure is at stake. Help 
is needed. To sociotechnically re-specify and reconstitute an entire transit domain, we need to 
ensure that AVs learn to navigate these environments according to the terms that we want. This 
includes new forms of public comment that are proportionate to the choices designers and planners 
are faced with. At least some of the criteria for object detection, route navigation, and traffic flow 
will need to be provided by a public utilities commission. 
 
Consider the example of an AV fleet that has demonstrated reliable and safe transportation within 
a suburb for several years. The firm that operates the fleet proposes to expand service and provide 
rapid, reliable access to downtown, including luxury shopping venues. Various business interests 
quickly hop on board and endorse the proposal. However, some municipal planners voice concern 
that the expansion may interfere with busing options whose routes already operate along parts of 
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the proposed route. Those services are relied on by low-income commuters who have few other 
means for accessing jobs and essential shopping like groceries, and risk sliding into poverty if 
service is disrupted. The firm counters by proposing a more ambitious, integrated AV service that 
incorporates legacy bus transit routes alongside simultaneous access to downtown for suburban 
residents. However, questions about the proposal’s relative affordability, logistical feasibility, and 
political viability remain unclear. 
 
What should be done in this situation? The proposal promises to incorporate aspects of the city’s 
transit geometry which previously were impossible to technically enact, introducing a new means 
of organizing city traffic. However, there are emergent trade offs related to service coverage and 
the economics of ridership whose criteria have never been exhaustively specified yet must be taken 
into account somehow. Deliberation about the encounter between AV fleet routing (as recursivity) 
and legacy forms of public transit (as a contingent feature of the domain) is needed. For example, 
should planners propose rebuilding highways with specialized AV lanes to help guarantee traffic 
flow? Or restructure the AV service with direct municipal oversight? Or something else? These 
are not academic questions when salient communities may be undone as a result of poor choices. 
But they also cannot be answered without affirming the rights and needs of those communities on 
new ground. Maintaining an active sense of normative proportion between what we now are and 
what we might become as AI systems are developed is a central deliberative component of machine 
ethics. 
 
I name this mode of deliberation machine politics (Hui 2017). By this term I intend to capture 
both the range of technical choices about how to reorganize the domain, and the organized human 
constituencies that enact a particular choice based on desired political ends. This mode is activated 
in situations in which at least some requisite criteria for system development are absent, requiring 
basic reflection and decisions about the domain’s purpose and functioning. Machine politics entails 
evaluating the encounters between the domain and the AI system as the latter is built, in order to 
track the changes to the domain its operation may instantiate. Planners must ask: 1) What new 
transit geometries would the widened AV service make possible? 2) How would these geometries 
compel distinct reorganizations of service and land use already present in the transit domain? 3) 
What modes of public engagement and iterative transit planning could highlight the features to be 
affirmed or rejected as the domain is reorganized? 
 
It is worth clarifying that AVs do not constitute an entirely new mode of social organization. We 
already have highways, and signage, and residential streets, and human drivers, and downtowns, 
and pedestrians, and neighborhoods, among many other well-defined features. AV fleets will 
coordinate these elements in ways that may be centralized (via some global utility function) or 
decentralized (via smaller fleets that only communicate locally) based on how residents wish to 
reorganize them. But either way, we know how to measure resulting effects and could reasonably 
ask what it would mean to control for them, enforce them, and manage them. We can do this 
because the social activities at stake are already adequately framed so that we know how to go 
about inquiring into the effects on them of the system we are implementing. We don’t know what 
a fully-smart city that has integrated self-driving car fleets would look or feel like precisely, but 
we at least know what it would mean to investigate it. And that means we know where we would 
need to look for the criteria upon which our models would need to rest. 
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AV developers must frame specification options such that the utilities commission is able to 
examine and supply the criteria needed to choose between them. Technical proposals for vehicle 
performance, service range, geofencing, and infrastructure costs must be narrated in light of 
possible orderings of the city that citizens (or their representatives) can affirm or reject. Unlike the 
modeling of features or monitoring of feedback, this is an explicitly political problem space, which 
AI designers must steward without commandeering. New modes of public inquiry are needed to 
acquire a sense of proportion between the prior structure of the domain and how that structure 
should be reconstituted to support human flourishing. Only in this way could planners distinguish 
the desired system performances and behaviors from those not desired. 
 

 
Two visions of Las Vegas transit: underground tunnels (left) vs. Medical District access (right). 

 
We must learn to see self-driving cars not as novice dancers that need to be taught how to move, 
but as a choreography for the way cities work whose notation and sequencing are to some extent 
unprecedented. It is a problem of leveraging AVs as a basis from which to interpret what cities 
could be made to be in relation to what they now are, more than it is a problem of model fitting 
within a predetermined structure. Structuring public inquiry into a given system’s effects is about 
reforming how we mark the world in terms of how we want to live based on the limits of what we 
can discern. Machine politics is about trying to do this well.  
 
Machine politics is fallibilist by nature. Designers cannot fully anticipate how AI systems will 
change a given domain, because they will reconstitute that horizon of anticipation to begin with. 
And planners need to acquire a sense of what proposed system effects it is within their agency to 
completely account for and relay to stakeholders. Moreover, the structure of many domains is 
considerably uneven and non-deterministic to begin with. For these reasons, those whose needs 
are met by the domain must be invited to inform and structure the regulation of how a given AI 
service is provided. This amounts to developing AI systems in ways reflective of what it would 
mean to deliberate about them, to structure the findings of nous to work in support of politeia. 
 
With AVs, the situation is not hopeless. Intuitively, most people understand that the purpose of 
stop signs is to keep them safe in public, not to optimize traffic. That means that most people are 
in a position to reason about what stop signs are for, and hence what changes we could make to 
the way transit works to restructure roadway activities so that the optimization of traffic does not 
come at the expense of public needs. Most people may not be in a position to help make AVs work 
in a mechanical sense, but the bottleneck is that neither designers nor planners know how to 
organically integrate them within traffic. At present, due more to lack of political will and 
commitment than technical know-how, we have not specified the problem of AVs to accommodate 
organic and deliberative modes of public inquiry. Given that reality, the call is to invite those who 
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are in a position to deliberate to actually do so. Machine politics requires us to directly and actively 
engage each other as political beings, rather than to passively observe each other so that our 
behaviors are easier to model. 
 
1.8 The Structure of the Dissertation 
 
For any AI system there are three requisite modes of deliberation. 
 
1. About the model: what are the key features to be represented at different abstraction layers? 
2. About the system: what types of feedback are needed to protect the domain’s integrity? 
3. About the domain: how must we inquire in order to regulate service over time? 
 
The first question has been addressed in Section 1.5 through reference to sociotechnical 
specification, the identification of significant features at interrelated scales of a structured domain. 
The second question, addressed in Section 1.6, is the problem space of normative cybernetics, 
comprising how we guarantee the domain’s integrity in the face of system operation. The third 
question, which Section 1.7 named machine politics, denotes the process of reevaluating the 
domain itself in the context of AI development and regulation, based on a substantive grasp of 
what capabilities we want a given system to enact for us. 
 

Normative problem Pertaining to Aristotelian term Mode of deliberation Deliberative agent 

Structure Model Nous Sociotechnical specification AV designer 

Feedback System Horos Normative cybernetics Transportation planner 

Indeterminacy Domain Politeia Machine politics Public utilities commission 

 
Dimensions of deliberation in the context of autonomous vehicles. 

 
This introduction has provided a partial grammar for this project by addressing confusions present 
in the current technical and philosophical literature. I first presented feedback as a problem 
neglected by two types of AI ethicists, namely transhumanists (who wish to transcend the limits 
of human agency using AI) and critics (who wish to protect human agency from AI’s 
encroachment). Next, I portrayed technology as a kind of external organ that reconstitutes human 
agency, and deliberation as the structured use of that agency. Third, I diagnosed various 
indeterminacies present in current debates on safety and fairness, before showing how good 
technical work frames them in terms of relationships that can be manipulated by the designer. 
Fourth, I noted pre-existing forms of structure that the designer can neither ignore nor remake, 
pointing to the need for criteria that are external to the designer’s interpretation of the formalism. 
Fifth, in contrast to Dreyfus’s critique of symbolic AI, I argued that sociotechnical specification 
is how AI designers must deliberate to distinguish the core features of related activities. Sixth, I 
defined normative cybernetics as the problem of structuring feedback to preserve a given 
domain’s normative integrity. Seventh, I outlined machine politics as a distinct mode of 
deliberation, rooted in codifying regulatory procedures that would help distinguish desirable and 
undesirable AI systems, based on how we may want domains to work. 
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2. PROXY METRICS FOR THE BROADER IMPACTS OF AUTONOMOUS VEHICLES 

In their ability to optimize the local safety and efficiency of individual vehicles, AVs promise to 
make individual transportation more predictable and reliable. Trips that people find too tedious to 
make could be made into trips worth taking, and as this change is reflected through the broader 
population it has the potential to fundamentally change the relationship consumers have with 
transportation (Fagnant and Kockelman 2015; Millard-Ball 2018; Stocker and Shaheen 2018). 
AVs also make it possible to centralize and coordinate the routing of vehicles. At the most local 
level we can see coordinated routing through the large body of work in platooning (Bergenhem et 
al. 2012; Wu et al. 2017c). Prior work has extended this to a larger scale showing how these new 
affordances can be used to control for larger scale effects in the transit system, alleviating traffic 
congestion by dampening the propagation of shock waves (Wu et al. 2017a). Such works represent 
only the beginnings of what could be possible. Centralized route planning could allow load-
balancing between routes on the scale of cities (Tiba et al. 2020; Jiang et al. 2016), the predictive 
placement of vehicles for the purposes of ride-sharing (Miller and How 2017), special routing 
considerations for emergency vehi- cles (Konrardy et al. 2018), and the management of interac- 
tions between these considerations.  

These new possible interventions pose a problem of sociotechnical specification: the need for 
designers to articulate the essential features of driving and other transit activities at particular scales 
of abstraction. This problem is sociotechnical to the extent that the interface between abstract 
model features and social reality cannot be assumed in advance. Rather, choices about which 
features are modeled and against what horizon(s) AV routes may be planned will reorganize the 
transit system itself. This includes the incentives and resultant behaviors of other road users, types 
and extent of repairs needed for public roads, emergent economic and environmental dynamics, 
among many other effects. In order for AV fleets to be safe as well as robustly beneficial, designers 
will need to control for these effects and deliberate about which types and scales of intervention 
are prudent with respect to the desires and needs of actual communities.  

Many understudied opportunities exist to model externalities and optimize for those which result 
in desirable macroscopic outcomes. These effects extend far beyond the local effects to safety and 
efficiency, and could lead to large-scale changes to physical and economic mobility (Greenblatt 
and Shaheen 2015), pedestrian safety (Wang et al. 2019; Millard- Ball 2018), congestion (Simoni 
et al. 2019), pollution (Morrow et al. 2014), CO2 emissions (Greenblatt and Saxena 2015), and 
many more (Elefteriadou et al. 2012) as well as affecting how these externalities are distributed 
across society (Branda ̃o et al. 2020; Fleetwood 2017). While these externalities have been studied 
by social scientists (Bonnefon, Shariff, and Rahwan 2016; Hancock, Nourbakhsh, and Stewart 
2019), civil engineers (Sousa et al. 2018), and environmental scientists (Miller and Heard 2016), 
there is little technical research which can account for and mitigate these effects as part of AV 
design. 

This gap between interdisciplinary insights and technical tools is analogous to the situation faced 
by development economists decades ago (Sen 1983, 1988; Ul Haq 1995). In that case, there was a 
concrete need for practical metrics to quantify the impact of a particular strategy, new models to 
implement those strategies, and ways to compare the viability of strategies in particular national 
contexts. This need led to new tools like the Human Development Index, which incorporated 
metrics for life expectancy, education, and standard of living (Anand and Sen 1994). While 
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imperfect, these tools are widely understood to have reoriented the field away from a narrow focus 
on GDP towards “people-centered development”, improving the lives of millions around the world 
(Haq and Ponzio 2008; Snchez 2000). 

AV developers now find themselves at a similar crossroads. While many needed metrics remain 
informal, imprecise, or opaque, multiple disciplines have made headway on identifying proxies 
that are suitable for modeling. Our goal is to provide impetus to an “AV Development Index” that 
would include these and other proxy metrics to serve as ongoing targets for optimization. I consider 
six distinct types of externalities (physical and economic mobility, environmental effects, local 
community needs, infrastructure, commercial activities, traffic laws), present coarse-grained 
models to control for them, and motivate additional proxy metrics that would refine these models. 
I also highlight other known impacts of AVs that require further scrutiny before they can be framed 
in terms of well-defined externalities. I do not intend any of these metrics to be final, but invite the 
research community to refine and build upon them through ongoing deliberation about scales of 
measurement and evaluation, in order to sociotechnically specify features in appropriate ways. It 
is my hope that the collaborative development and optimization of these proxy metrics between 
domain experts and AV researchers can better position us to take full advantage of the opportunity 
AVs provide. In Section 2 I give a broad overview of the problem space. In Section 3 I identify 
how some known externalities of AVs can be modeled to produce well-specified technical 
problems. 

2.1 The Space of Externalities    

Most work ensuring beneficial impacts of AVs has focused on the safety of the people in and 
around the vehicle (Kalra and Paddock 2016; Koopman and Wagner 2017; McAllister et al. 2017), 
which has the potential to save tens of thousands of lives annually. However, AVs will also reshape 
the wider transportation system, and in turn, have ripple effects to other dynamics beyond local 
interactions. There has been limited technical work in modeling these large scale effects. Technical 
and policy work on the effects of local behavior of self-driving cars on traffic patterns has revealed 
that default approaches to routing will cause large-scale congestion (Vinitsky et al. 2018; Litman 
2017; Metz 2018; Van den Berg and Verhoef 2016). Once identified, technical solutions were 
designed to mitigate these effects, which allow for local routing solutions with good aggregate 
behavior according to specified performance tradeoffs (Wu et al. 2017c,b; Lin and Ho 2019; Lee 
et al. 2020; Rossi et al. 2018; Levin 2017). To mitigate the externality of large scale traffic 
congestion, the first step was to identify it as an externality, model the effects, and construct some 
control for those effects. Systems have caused measurable and preventable harm in cases where 
effects were not identified via appropriate metrics, modeled successfully, or controlled. 

Of course, the relationship between vehicle automation and transportation externalities is deeply 
reciprocal. Few of the externalities at stake–traffic, carbon pollution, road wear–are specific to 
autonomous vehicles, and instead are longstanding features of transportation systems. In such 
cases, it is important to leverage AV behavior policies as an opportunity to deliberate about the 
underlying structural dynamics of traffic, rather than optimize AVs to operate in a dysfunctional 
traffic environment. This conceptual gap between desired policies and present or anticipated 
structural features is the problem space of sociotechnical specification. For example in (Wu et al. 
2017c), the goal was to coordinate AVs to mitigate an existing negative externality (traffic 
congestion) present in the shared public good of road-ways, rather than to prevent an externality 
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generated by AVs themselves. Yet these same connected AVs could cause negative effects of their 
own: commuters living farther away from work (increasing urban sprawl), or traffic congestion 
induced by new youth and senior users of the road network (whereas they previously were unable 
to drive). 
 
Similar complexities have been examined in the tradition of adaptive cruise control (Shladover, 
Su, and Lu 2012; Ioannou and Stefanovic 2005), the economic and environmental impacts of 
platooning (Alam et al. 2015; Besselink et al. 2016), and work on control system architectures for 
automated highway systems (Hedrick, Tomizuka, and Varaiya 1994; Chang et al. 1993). A 
common theme in this work is attention to the multiple scales (environmental, economic, 
infrastructural) on which vehicle performance must be measured and evaluated, and the need to 
coordinate metrics reflecting the fundamentally distinct stakes involved in defining good 
performance. Drawing inspiration from this, our distinctive contribution is to frame the dynamic 
relationship between AVs and the wider transportation system as in scope for AV development, 
moving beyond local interventions and leveraging new metrics to both better understand the 
systems that already exist and control for the effects that AVs have on them. To this end, we hope 
to differentiate the scales at which different sorts of externalities (either canonical to the 
transportation system, or original to AVs) manifest, reflected in distinct metrics for routing 
performance. 
 

  
Considerations about the transit system.   

Previous technical work on AVs has focused on one-to-one vehicle interactions within the 
transportation system, which we refer to as the local effects described by the left column of Figure 
1. These include how vehicles interact with each other and the surrounding material infrastructure, 
as well as the evaluation of AV performance on those metrics. Instead, we focus on the effects 
including and in some cases beyond the entire transportation system, which we refer to broadly as 
global effects. These are effects that changes to transportation have on the parts of systems 
(geographic, economic, social, environmental) of concern to transportation planners and 
researchers. In local interactions there will be dramatic effects on how individuals experience 
roadways – how pedestrians signal to cross the street, how drivers signal to change lanes, who is 
blamed when a crash occurs, and the general norms of how people use the roads. Considerations 
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about how assertive or passive cars are today could have long-run effects on the sorts of driving 
strategies that are successful for the remaining human drivers. 

We represent local and global effects in a continuous spectrum of technical problems, which may 
share relevant metrics if they fall on similar parts of this continuum. Still, there is less work on 
mitigating distinctively global effects, or articulating benchmarks to distinguish local and global 
scales of vehicle interaction. AVs’ ability to coordinate on large scales will likely have significant 
effects on road conditions and will actively intervene on physical mobility, safety, and comfort of 
different communities. These effects are wide ranging but have been a focus of study in other 
fields, including environmental studies and the social sciences (Miller and Heard 2016; Levy 
2015). As a result many models have been made of these effects, and working to mitigate them is 
a tractable research problem with the tools available today. 
     

 
Systems with which the transit system interacts. 

 
We should expect effects like these to arise from how widespread AV adoption interacts with the 
existing structure of the transit domain. Figure 2 outlines a rough sociotechnical specification of 
the distinct categories of these effects, representing the various subsystems involved in transit and 
imagining how decision-making could change if these were automated. For example, since 
transportation is central to many other social systems (recreation, work, residential life, economic 
mobility), interventions would have ripple effects on distinct aspects of society. Moreover, Figure 
2 helps to distinguish short term effects, in which AVs affect surrounding systems by treating them 
as static, and long term ones, in which surrounding systems adapt to AVs in a dynamic fashion. 
This is illustrated via distinct causal arrows between transit and other systems. The next section 
follows this pattern by presenting short and long term effects of each externality respectively in 
terms of the static and dynamic relationship between AV transit and surrounding systems.  

Introducing AVs is not as simple as making all of the trips that we currently take more efficient 
and safe. It will affect traffic patterns, which will in turn change the relative ease of getting to 
different locations and how comfortable and safe the traffic is around us when we get there, which 
will affect the behavior of individuals and businesses, which may inspire government oversight or 
intervention, which in turn will affect traffic patterns. This has the potential to reshape many facets 
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of systems that interface with transportation. Though we cannot fully anticipate the resulting 
dynamics, multiple disciplines have been modeling what the effects may be and making the tools 
necessary to get started. While many of these will be beneficial (easier and cheaper access for 
many to reliable and safe transportation), others are not as clearly good, pending deliberation about 
the metrics needed to match essential features with desired performance at particular intervention 
scales. What matters is that these interventions are designers’ to make, as many externalities can 
be anticipated and managed over time through choices about the transit model.    

2.2 A Sampling of Practical Proxy Metrics  

Here I sketch the general space of AV externalities, as well as practical metrics for evaluating AV 
behaviors in relation to them. As this space is quite large, we focus on six high-level categories 
and give examples of proxy metrics in each: one short-term effect, and one long-term effect. 
Interestingly, short term impacts are more often about AVs adapting themselves to society as it is, 
and long term impacts tend to account for how society will adapt in response to AVs. These proxy 
metrics are only roughly representative of the true impact of AVs on the externality, and more 
work will be necessary to refine them. However, it is important to have some explicit metric as a 
starting point; we propose metrics grounded in practical concerns, suitable for informing useful 
changes to current systems. We argue that it is better to consider a simplistic proxy of an externality 
than for the externality to be ignored entirely. Each section concludes with a selection of other 
impacts in that category which could serve as directions for future work. Most of these impacts 
are referenced from (Elefteriadou et al. 2012) and reinterpreted within the AV context unless 
otherwise noted.    

Physical and Economic Mobility    

Short Term: AVs will affect access to resources for individual well-being such as food, jobs, 
schools, and entertainment. As AV routing algorithms unevenly shape how easy it is to get from 
one location to another, they have the ability to connect—or further isolate—individuals from the 
resources they need to live a healthy and fulfilling life. 

As a concrete example, we can take the problem of food deserts (Beaulac, Kristjansson, and 
Cummins 2009). Suppose we have some population living in housing in a distributed manner. 
There are good food options and bad food options likewise distributed. For an algorithm A we will 
say that time to go from the housing position h to the food option f will be tA(h, f ). We can then 
use a simple model for consumer choice in which the consumer will visit a high quality food 
option. That is, the consumer will choose the high-quality food option if the added cost over the 
easiest low-quality option is less than some constant. We define FA(h) to be 1 if a consumer at 
position h would choose the high-quality food option, under the algorithm A and 0 otherwise. This 
yields a proxy metric for consumer nutritional health as follows:  
 

 
     
Note that this is a clearly simplified model for consumer choice, as well as the differential impact 
of different foods on consumer health. Moreover, implementations of this system would likely 
raise both political and ethical challenges, as a system could try to maximize this objective by 
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making it very difficult to get to unhealthy food options. This might be viewed as paternalistic and 
as undermining consumer freedom. However, these reasons are insufficient to abandon the 
possible transformative impacts of such an intervention. Instead, they could help ensure we build 
such a technology in a way that can adapt to the needs and ethical considerations important to the 
relevant stakeholders. 

Long Term: The previous example took where people live as given, but in the long run, people 
will relocate or change address. Where they decide to move depends largely on how easy they 
believe it will be to get to where they need to go, such as ease of commute or proximity to grocery 
stores. Much as cars facilitated urban sprawl (Norton 2011), AVs could have effects of their own, 
but these effects will depend on their routing algorithms, as these algorithms will determine how 
easy it is to get from place to place and will modify the value of time of being in transit. 

Using the techniques similar to the previous proxy metric, we could generate proxy metrics for 
commute time, and commute time for educational opportunities. If we have a model for personal 
preference in which person p from population P ̃ cares about a weighted sum of these 
considerations with specified weights, then we can model the individual choice of a person over 
time as choosing the house for sale which maximizes the weighted sum of these features. We will 
define the House Choice of a person p over a set of housing options H to be under algorithm A to 
be: 

 

Of course this represents a single housing choice, and to understand how the larger distribution of 
people would change over time, this process would be iterated. Each time a person moves it would 
open up a new vacancy, and another person would move in. Looking at the resulting long-run 
distribution of housing, we could measure many interesting properties. For example, we could pay 
attention to the concentration of people with a particular prioritization. Suppose this process 
reaches stable distribution of housing S ̃, then we can measure the average amount that a person p 
agrees with their neighbor pn on the importance of education, or educational agreement: 

     

This may seem like an overly simplistic model, but it can be seen as a more complex version of 
Schelling’s seminal work on segregation in the housing market through selfselection (Schelling 
1969). This work shows that even simple models can lend themselves to important insights. As 
such, designers should take model uncertainty into account, rather than treat it as a blocker to 
progress in this direction.  

We should expect even longer term consequences beyond this model, as the urban sprawl we see 
now is not only a result of people moving to suburbs, but the housing supply adapting to that 
demand. In essence, the routing algorithms for AVs have the potential to reshape the geometry of 
cities through how they shape the demand for housing and how the supply for housing responds 
to that demand. 
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Other Impacts: Various design strategies could accommodate the issues raised above. One is to 
scale AV infrastructure with equity-focused initiatives so that deployment does not accidentally 
cause gentrification or urban decay in regions where service offerings are mismatched with local 
mobility needs (O’Donnell, Corey, and Podowski 2017). Because use of public transit, bicycles, 
and pedestrian mobility increase sharply in dense environments, AVs will require routing 
capacities that scale with various environmental and infrastructural measures of density. These 
include transit-oriented employment and residential density, development scale, density gradient, 
population and employment centrality, population density gradient, density at median distance, 
density of development, percent of houses within one mile of an elementary school, percentage 
increase in residential density, gross and/or net residential density, building coverage ratio, average 
school size, and non-residential intensity. 

Another strategy is to integrate AV usage with first- and last-mile mobility considerations, both to 
improve service in low-density areas (Ohnemus and Perl 2016) and augment public transit 
connections so that the cost of switching between transportation modes is reduced for multi-modal 
road users (Shaheen and Chan 2016). Important metrics here would include: average trip length 
per traveler, delay per traveler, door to door travel time, HCM-based bicycle LOS, and proportion 
of total person miles traveled (PMT) for non-single occupancy vehicles (SOVs). 

Legacy metrics pertaining to destination accessibility should also prove useful. These can be 
subdivided into area-based measures that help optimize land use to minimize travel, and network-
based measures that make it possible to compare the viability of different transportation modes 
along a particular route. The former includes: residence proximity, employment proximity, work 
accessibility, number of key destinations accessible via a connected pedestrian system, 
industrial/warehouse proximity, transit convenience/stop accessibility, geographic service 
coverage, population service coverage, percent in proximity, and transit accessibility. The latter 
includes: bike/pedestrian accessibility, destination accessibility, residential accessibility, average 
walking distance between land use pairs, spacing between village centers, and multiple route 
choices. 

A barrier to effective models in this domain is the need to coordinate individual decisions and day-
to-day priorities with macro-structural traffic effects that unfold gradually. Fortunately, there are 
many canonical metrics for road network usage that are also easy to communicate to the public, 
meaning that new models can be updated in response to stakeholder feedback. These metrics 
include: vehicle occupancy by land use, district-wide Level of Service (LOS)/Quality of Service 
(QOS), local traffic diversion, percent of system heavily congested, v/C ratio, vehicle density, 
demand/capacity ratio, Maximum Service Volume, Peak Hour LOS, and Percent of Capacity 
Consumed.  

In a broader sense, translating local community priorities into perception and routing modules can 
draw from canonical measures of diversity in infrastructure and environment. These include the 
Smart Growth Index, significant land uses, land use ratios, land use balance, variation of 
agriculture of green fields, land consumption, core land use, land use separation, the 
Transportation-Efficient Land Use Mapping Index (TELUMI) model, minimum thresholds of land 
use intensity, nearby neighborhood assets, distinct indexes for sprawl (Ewing, Schieber, and 
Zegeer 2003; Galster et al. 2001), land use within village center, land use within transit supportive 
area, and jobs/housing balance. 
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While useful, these measures must be understood as proxies for deeper structural problems at the 
intersection of physical and economic mobility. Access to the city center remains a central concern 
of urban planning and transportation infrastructure (Shen 1998), serving as a proxy for access to 
labor markets and low-income mobility (Montgomery et al. 2018). Recent measurements of food 
deserts (Beaulac, Kristjansson, and Cummins 2009), commuter health exposure (Knibbs, Cole-
Hunter, and Morawska 2011), and subjective appraisals of daily travel routes (Gatersleben and 
Uzzell 2007) indicate the difficulties of tracking unanticipated externalities of common travel 
patterns. 

Environmental Effects 

Short Term: Many vehicles release various forms of pollution which are harmful to the residents 
of high traffic areas. There has been a large body of research in quantifying both the amount and 
the health effects of pollution on local residents (Fisher et al. 2002; Krzyzanowski, Kuna-Dibbert, 
and Schneider 2005; Lipfert et al. 2006; Zhang and Batterman 2013; West 2004). The effects of 
this pollution will depend on the type of vehicle, the density of the traffic and/or the neighborhood, 
weather conditions, physical proximity of road users at particular times, and many other 
complexities. As a simple model to control for these effects, we can estimate the number of people 
present and say that there is a small penalty per second for every person inversely proportional to 
the square of the distance of that person from the vehicle. Or more formally, if P ̃ is a pollution of 
people and c is the location of the exhaust pipe the vehicle, then we define the cost of pollution to 
be Pol(P )̃. 

   

An AV that is trying to minimize this cost would be more likely to route around local communities 
towards less occupied areas, distributing pollution where it has less adverse effects. Additionally, 
even along a fixed route, AV designers could take advantage of the fine-grained control available 
to AVs, to optimize for pollution effects based on the characteristics of the population, the vehicle 
engine, and traffic conditions. While this model could be improved by better models of diffusion 
or quantification of health effects, its ability to induce a change in AV routing behavior shows the 
efficacy of even poor proxy-metrics to help reduce externalities. 

Long Term: In the longer term we have the externality of CO2 emissions. At a high level we could 
model these impacts much like pollution above, while ignoring many of the same considerations 
such as vehicle type and traffic density. However, it is also important to consider the effects of 
induced demand (Lee Jr, Klein, and Camus 1999). Induced demand occurs when the transit system 
makes it so much easier to get from place to place that people decide to take more trips, as rides 
that were previously not worth the effort become worth it. To model induced demand we have 
some population of possible rides R ̃, each of which have utility to the consumer u(r). Suppose we 
fulfill rides using an algorithm A which fulfills ride r with a route that takes time tA(r), and charge 
a fee fA(r). If we assume that the value of the customer’s time is αt then we can define R(A) = {r ∈ 
R ̃|u(r) ≥ tA(r)αt + fA(r)} to be the set of rides which are executed under algorithm A. If we further 
assume that CO2 emissions are proportional to the length of the trip, l(r), at rate RCO2, we can define 
a proxy metric for CO2 emissions under induced demand as follows: 
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This simplifies the true externalities, and does not incorporate differences in road conditions, 
models of vehicle, fluctuations in demand, traffic conditions, interactions between routing 
vehicles, and many other factors. Still, this basic model may serve to substantiate carbon-pricing 
or surge pricing policies, given the expected drop in αt with the adoption of AVs. Extending this 
to incorporate more of the vast work on quantifying CO2 emissions (West 2004; Sgouridis, 
Bonnefoy, and Hansman 2011; Noland and Quddus 2006) and induced demand (Hymel 2019; 
Omstedt, Bringfelt, and Johansson 2005) are clear directions for future work. 

Other Impacts: There are many metrics for vehicle pollution beyond individual car exhaust and 
aggregate CO2 emissions. These range from noise pollution (Campello-Vicente et al. 2017) to the 
wider ecological, fiscal, and social factors associated with AVs’ environmental sustainability. 
Ecological metrics have been well documented in the literature: attainment of ambient air quality 
standards, daily CO2 emissions, daily NOx/CO/Volative organic compound (VOC) emissions, 
noise pollution, impact on wildlife habitat, and water runoff. Changes to these in turn will likely 
generate effects on fiscal metrics related to activity level: additional fuel tax, transportation utility 
fee (TUF), vehicle miles traveled (VMT)-based impact fee, consumption-based mobility fee, 
improvements-based mobility fee, cost recovery from alternate sources, variable fees based on 
LOS, benefit cost ratio, parking pricing, and capita funding for bike/pedestrians. These, in turn, 
may have community-level social impacts whose measurement is vital but somewhat more 
speculative for activity level and modal share: distribution of benefit by income group, 
transportation affordability, equitable distribution of accessibility, commute cost, transit values, 
fee charged for employee parking spaces, travel demand management (TDM) effectiveness based 
on TRIMMS model, travel costs by income group and/or race, VMT by income group and/or race, 
mode share by income group and/or race, and walk to transit by income group and/or race.  

Incorporating these proxy metrics would have several modeling benefits. It would provide strong 
estimates for demand that would help align emissions control with wider societal aims for 
equitable road access. It would also help integrate AV policy development with ongoing research 
on updates to pavement materials and construction practices of tollways (Al-Qadi et al. 2015), 
leading to possible new improvements in sustainability. And it could leverage vehicle-level data 
collection to control for the granular spatial and temporal features of air pollution that have recently 
been measured at unprecedented micro scales (Apte et al. 2017; Caubel et al. 2019), ensuring the 
benefits of emissions reduction are both locally and globally equitable. The deployment of AVs at 
distinct scales of road infrastructure (urban core, commuter routes, interstate highways) could also 
aid in the evaluation of alternative measurement approaches that trade-off precision against 
efficiency, an open research question in environmental engineering (Messier et al. 2018). 

Local Community Needs 

Short Term: The presence of traffic and the behavior of that traffic, has the potential to stifle or 
facilitate the interaction and congregation of members of the community. Roadways are not fully 
isolated from the rest of society and often intersect open air markets, public squares, and public 
parks. The behavior of these vehicles, the amount of traffic and their deference to local pedestrians 
impacts the ease with which these communities can conduct themselves. 
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As a simple model for this effect, you could model pedestrians walking, P  ̃ through an open-air 
market, going from shop to shop. The behavior of the pedestrians could be modeled through taking 
the shortest path to their next destination and pausing along that path if it would result in getting 
too close to a moving vehicle. Evaluating a routing algorithm A in simulation would result in each 
pedestrian p visiting some number of shops sA(p). A simple metric for the interference of the AVs 
on the market would be the average number of shops visited by the pedestrian SA defined as: 

 

There are many clear directions to extend this work, through modeling parks or city squares, 
adding more accurate models of pedestrians, and through accounting for the stress or noise 
disturbances of the vehicles. However, even this simple model would be enough to incentivize the 
AV to stay away from open-market areas if there are comparable alternatives, and to try to 
minimize the disruptions to the pedestrians walking through the market.  

Long Term: On the longer term, the decision for people to visit the open market would be informed 
by their past experience, and if these markets were always crowded with AVs and difficult to 
navigate, it could disincentives people from visiting and eventually cause these open markets to 
disappear. To model these effects we can again move to a rational choice model on the part of the 
pedestrians. Let M  ̃be the distribution of members of the population, and let C(m) be the personal 
cost for a particular member of the population visiting the market over their outside alternative 
option. If the amount of enjoyment a pedestrian gets from visiting the open air market is directly 
proportional to the number of shops they visit, then the subset of the members that find it worth it 
to visit the open-air market under algorithm A will be P ̃A = {m ∈ M ̃ |C(m) ≤ SA}. Thus we can 
compute the effect of the algorithm for controlling the AVs on the number of visitors to the market 
by the VA defined as: 

   

That is, just the size of the set of members of the population which find it worth visiting the market. 
In addition to the extensions to the shopping model, this model could be extended through 
heterogeneous population models, trade-off considerations between other locations the members 
may be choosing to visit, and the incorporation of this metric with other metrics we consider. 

Other Impacts: Community stakeholders and neighborhood representatives will need to affirm AV 
operations as legitimate and trustworthy, rather than merely safe. This means that the AVs must 
operate differently depending on the human factors considerations of the communities they route 
through, including emergency preparedness (Sullivan and Ha ̈kkinen 2011), behaviors of road 
users during evacuations (Wong, Shaheen, and Walker 2018), and navigation wayfinding 
(Montello and Sas 2006). Geofencing, in which a virtual perimeter is mapped onto a specific 
geographic setting to determine who can access the platform, is already a common strategy for 
providing AV services and could be readily used to incorporate these considerations. 

Just as widescale AV deployment is likely to highlight mobility features across communities that 
have never before been “priced in” to vehicle services, it may also generate disaffected consumers 
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who are forced into suboptimal mobility patterns because their needs do not conform to AV routing 
considerations. As a result, designers will need to inquire into and agree on new service tiers that 
effectively map various AV routing specifications to local concerns. 

There is a risk of managing trade-offs poorly if well-defined metrics for relevant features are not 
consulted. A clear limit to the congestion pricing paradigm is the ready availability of parking and 
total parking supply, which directly affects a given community’s preferred mode of transport and 
the perceived need for alternatives (Elefteriadou et al. 2012). Other relevant measures include: 
bicycle network density, parking spaces per 1000 workers, age of transit vehicle/fleet, bus shelter 
locations, bicycle parking requirements, bicycle parking spaces at schools, inter-modal 
connections, transit service quality index (de On ̃a, de On ̃a, and Calvo 2012), transit network 
coverage, transit service to site, walking distance to transit, project adjacency to transit, and 
connectivity to inter-modal facilities.  

With respect to individual behaviors, another path forward is reliability measures, which are able 
to estimate upper and lower ranges of travel time but require higher rates of data collection 
(Elefteriadou et al. 2012). These include percent of trips ‘on time’, 90th or 95th percentile travel 
time, the Buffer index (used to prioritize freeway corridors according to travel time reliability) 
(Lyman and Bertini 2008), and planning time index (PTI). With respect to entire traffic networks 
or AV fleets, it is instead possible to consult transit-oriented metrics that capture the desirability 
of the service itself, relative to alternatives. These have been divided into measures of occupancy 
(the number of riders using the system), including load factor, passengers per transit vehicle mile, 
ridership, transit peak hour occupancy, and percent person-minutes served; measures of service 
availability (the provision of service to riders), including average frequency, average headways, 
hours of service, off-peak transit availability, transit service density, transit type availability, fixed 
route missed trips, on time performance, demand-response transit (DRT) trips not served, and 
response time for DRT; and measures of operation (addressing the speed, efficiency, and 
productivity of the system), including number of fare media sales outlets, transit productivity, 
number of transfers, transfer time, transfer time between modes, transit priority delay reductions, 
transit reliability (quantitative), fleet spare ratio, road calls, average life of vehicle components, 
and average age of vehicle components. 

Infrastructure 

Short Term: In the short term, AVs interact with the existing infrastructure, including the existing 
signage, lane markings and road damage. Depending on the current conditions certain roads will 
be better or worse and facilitating comfortable, safe, and efficient trips in AVs. If we have some 
metric for the comfort of the average trip down a particular segment s of roadway C(s), which 
could be a measure of the number of potholes hit, the probability of the driver needing to take 
control, or the probability of near-collision. We call these costs collectively navigation costs and 
it would be sensible for our routing algorithms to take this into account and minimize this cost. As 
a first-pass we could say that for a distribution of trips T  ̃routed by algorithm A, let SegA(t) be the 
navigation cost for a road segment t, from a set of road segments visited on trip t ∈ T .̃ Then the 
total expected navigation costs of A under the trip distribution and road conditions would be NA(T ̃) 
defined as: 
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These costs could be refined by better models for navigation costs, or considerations for how these 
navigation costs are effected by local congestion or construction. 

Long Term: Like other parts of our society, the infrastructure itself will change in response to AVs. 
Not only could regulations and standards change signage and lane markings, but the patterns of 
AV activity could impact the deterioration of roadways. Through the centralized control of AV 
routing, when and where this deterioration is distributed would be under the control of the routing 
algorithm. 

Let S be the set of road segments that make up the road network. Each segment will have a current 
quality q(s) which grades the quality of the road conditions on that segment. We will say that the 
navigation costs are directly proportional to the current quality of the segment, so C(s) = αq(s). In 
addition, we will say that the road quality is reduced by some proportion ε whenever it is traversed. 
If the quality of the segment reaches 0 it can no longer be traversed and must be repaired. 

In this model, if we try to minimize the costs NA(T ̃) greedily on a trip-by-trip basis we will find 
that we always take the highest quality roads. This will have the effect of the distributing the effects 
evenly, as the highest quality roads are used until they are worn down at which point another route 
is more appealing. Thought this is equitable it has a practical concern, that all of the routes will 
need to be repaired at the same time, likely causing long delays. We can model this effect as well 
by supposing that it will take one week to repair a road segment. Given this and a routing algorithm 
A, we could run a long-run simulation of routing activity, including the road ware and repair 
models, to get a distribution of trips in the long-run T ̃A. Thus we can measure the long-run 
navigational costs by LRNA defined to be: 

 

Better models of road damage, which are backed by real-world data and weather data could be 
used to improve this metric, along with more accurate models of construction. Moreover, if roads 
degenerate at different rates, it could be reasonable to minimize construction costs by staying on 
more robust roadways. Finally, since AVs allow for large scale monitoring of road conditions it 
becomes possible to coordinate more closely with cities to plan when construction will take place 
and route accordingly. 

Other Impacts: As AVs become widely deployed, their effects and impact on public infrastructure 
(roads, bridges, highways, electrical grids) may be felt unequally. For example, while AVs must 
avoid potholes successfully and consistently, there is a tension between modeling potholes in terms 
of perception (identify them as they appear) or route planning (avoid roads that are more likely to 
have them). The consequence is that a failure to specify proper perception and routing constraints 
will harm regional mobility in ways that cannot be readily mitigated. As feature detection of road 
damage remains a stumbling block, the latter seems more likely for the foreseeable future–and this 
is likely to generate effects on congestion, highway flow, and other macro-traffic dynamics. AVs 
can compensate for this by measuring and minimizing loss in fuel efficiency or average time to 
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destination from avoiding potholes, aiming to preserve the road without disrupting traffic. This is 
analogous to other settings where AV software compensates for hardware limitations, except here 
the road itself is also modeled as “hard-ware” rather than relegated to the external environment. 
This is quantified through reference to existing models for high-way maintenance (Theberge 
1987), priority damage assessment (Snaith and Burrow 1984), and smart pavement evaluations 
(Asbahan, McCracken, and Vandenbossche 2008). This work could aid constraint satisfaction by 
including factors that corroborate existing public standards for road maintenance, rather than 
modeling vehicle motion in isolation.  

Changes to signage and lane markings could be made into controls on the large-scale effects of 
AVs. A natural implication of this would incorporate measures that reflect different design scales 
for multi-modal concerns (Elefteriadou et al. 2012), which also map onto our spectrum of local vs. 
global effects. On the former end of the scale, updating perception to conform to various point 
design measures will help AVs modify their speed and behavior in real time to conform to 
stakeholder expectations and priorities. These include: wayfinding information, sidewalk 
quality/width/shade, tree- lined/shaded streets, walkable streets, systematic pedestrian and cycling 
environmental scan instrument, commercial on-site amenities to support alternative modes, 
availability of on-site bicycle amenities, pedestrian scaled lighting, ratio of street width to building 
height, parking screening, bus pass program utilization, and parking shading. 

Sensitivity to network-level effects should also be reflected in metrics for connectivity and route 
directness at the neighborhood level. These include: square feet of pathways/sidewalks, crosswalk 
spacing, number of safe crossings per mile, bicycle parking at stops and stations, parking footprint, 
block length, parking location, bicycle path condition, pedestrian/bicycle route directness, land use 
buffers, walking environment, bicycle maintenance stations, bicycle/pedestrian connectivity, 
connectivity indexes (Mishra, Welch, and Jha 2012), project adjacency to existing network, 
connected and open community, connected sidewalks/paths, connected streets, and cross access. 

For example, residential neighborhoods in the United States often accommodate special needs 
groups through distinct signage: warning signs about pet dogs and cats, “children at play”, and 
protection for the disabled (e.g. audible walk signs). Beyond vehicle features such as wheelchair 
access, AVs will need to incorporate routing adjustments so that time spent in these zoned areas is 
minimized. Meanwhile, some communities require unique forms of road mobility, such as 
retirement facilities and golf courses that have their own specialized modes of transport. Some 
communities have adopted special guidelines for golf carts interacting with normal traffic vehicles 
(Head, Shladover, and Wilkey 2012). Each of these considerations, and other details of local 
customs which we have yet to consider, need to be incorporated into the local control procedure 
so that they can be customized to be contextually appropriate. 

Regional design measures, tailored to capture the completeness of regional transportation systems 
(Elefteriadou et al. 2012), are also well-suited to this problem. Relevant metrics include on-vehicle 
bicycle-carrying facilities, park-and-rides with express service, parking spaces designated for 
carpools or vanpools, transit passes, traffic cells, percent miles bicycle and/or pedestrian 
accommodations, miles of express fixed-transit route/dedicated bus lanes, road density, lane miles 
per capita, percent of network that is “effective”, and roadway network balance. 
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Private Economic Activities 

Short Term: AVs will often be the most convenient way for customers to get to local business, and 
thus changes in the way AVs are controlled, could dramatically affect the accessibility and thus 
the profitability of local businesses. 

To model this, suppose we have some population P  ̃ and some set of business locations B ̃. For 
each member of the population p and each business location p there is some time cost that member 
would be willing to incur to visit that location c(p, b). Under algorithm A, the time it takes for p to 
visit b will be tA(p, b). Thus the total set of visits that occur are VA ={(p,b)∈P ̃×B ̃|tA(p,b)≤c(p,b)}. 
A reasonable metric for the amount of business activity for business location b under algorithm A 
is BAA(b) defined as: 

 

This model does not account for the quality of business products, nor population heterogeneity, 
nor changes in demand. Yet this model is sufficient to notice that there are trade-offs between how 
much activity is attracted to different local businesses. This raises clear questions of fairness, ac- 
countability, and governance as to how this trade-off should be determined. However, note that 
the presence of serious concerns about explicit control of these measures should not be taken as a 
reason not to explore these directions. The alternative to collectively deciding on how to handle 
this trade-off is for the trade-off to be arbitrary or privately decided, both of which raise their own 
serious concerns. 

Long Term: As a result of changes to consumer activity in different locations AVs could cause 
some businesses to struggle and others to flourish. As new businesses are founded and others fail, 
AVs could shape where new business dielectrics are located by determining the locations which 
will have the most business activity. 

In the Section on the Long-Term effect on personal physical mobility we discussed a similar effect 
with housing choice over time, and we could model businesses moving over time in the same way. 
Instead we will present another approach, which tries to predict the long-run concentration of 
businesses in an area directly from the business activity. 

So building on the previous metric we can model the number of profitable business in an area to 
be proportional to the amount of business activity in that area mediated by some constant α. Thus 
we can define the long-run business con- centration at a particular location by BCA(b) defined by: 

 

There are many considerations missing here, many which are mentioned in other sections, though 
even in this model one can start to see the impacts of the AV algorithm on the local economy. If 
the algorithm systematically neglects the local business districts it could have the effect of 
squashing local business and harming local quality of life. On the other hand, local businesses 
which are currently difficult to access could be revitalized through access to new customers. In 
this way AVs offer a powerful and dynamic way of promoting economic activity in a community.  
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Other Impacts: The advent of platooning will make it possible to coordinate stakeholder commutes 
on unprecedented scales, likely leading both to new market configurations and problems with 
traffic coordination. There is a risk of managing trade-offs poorly if well-defined metrics for 
relevant features, such as community measures, are not consulted. For example, as mentioned 
earlier, a limit to the congestion pricing paradigm is the availability of parking, which directly 
affects a community’s transport preferences and needs.     

It should also be possible to incorporate multimodal considerations as a constraint: if a 
neighborhood is far from a public transit line or other means of access to the urban core, its AVs 
could be given preferred access during heavy congestion times or priced differently than 
comparable neighborhoods. This would address a longstanding policy question of whether it is 
simply easier to compensate road users for consistently taking a suboptimal mode of (public) 
transportation rather than trying to implement congestion pricing at scale (DeCorla-Souza 1994). 
It would also help make dynamic pricing friendly to public policy standards by its application to 
particular highway segments matching low-income community needs with toll discounts–a major 
constraint on prior implementations (DeCorla-Souza 2007). Moreover, it leads to a wide 
assortment of natural technical problems: designing routing procedures to maximize welfare, 
minimize congestion, ensure equitable access to mobility across communities, or balance the 
performance of shared and individually owned AVs. These have the potential to trade-off against 
other considerations, such as zoning rules, local efficiency, and safety. Considered as a whole, this 
points to a vast unexplored space of well-defined technical problems whose solutions would help 
ensure that the benefits of AVs are distributed fairly and effectively.  

Meanwhile, one means of confronting structural economic effects is to incorporate freight-oriented 
metrics. As automation develops in congested urban areas to aid passenger travel, AV delivery via 
trucks could support the movement of goods and augment commercial access through regions that 
might otherwise be left behind. Relevant metrics include: truck miles traveled, truck throughput 
efficiency, freight delay, number of violation of weight restrictions, and overweight permits. Other 
measures provide innovative ways to approach total corridor capacity through parameters for 
demand, such as auto/demand response transit (DRT) travel time ratio, auto/transit travel time 
ratio, multimodal LOS, and seat capacity/person capacity. While measurement of and distinction 
between induced and latent demand on a network scale is notoriously difficult (Lee Jr, Klein, and 
Camus 1999), important factors have been identified for trip generation (average vehicle 
occupancy, bicycle and pedestrian activity, community capture, internal capture, internal capture, 
mean daily trips per household, person miles traveled (PMT), person trips, trip length by mode, 
vehicle miles of travel (VMT) by mode, VMT per capita) and mode share (bicycle and pedestrian 
mode share, mode choice availability, mode split, safe routes to school program (SRTS) 
effectiveness, SOV mode split). 

As the sophistication of localized routing increases, legacy metrics for safety and security may 
become relevant to make sure that new approaches to optimization do not compromise system 
behavior. Helpful historical metrics include: bike/pedestrian injuries/fatalities, traffic fatalities, 
transit accident rate, transit vandalism incidents, transit related crime rate, vehicle accident rate, 
crash statistics/locations, annual severe crashes. Risk management metrics include: percent of 
lane-miles under traffic management center (TMC) surveillance, average clearance times for major 
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incidents, speed suitability, percent of vehicles with safety devices, and ratio of police officers to 
transit vehicles. 

Finally, a major stumbling-block for the use of traffic efficiency models is the need for more 
sophisticated travel time metrics for highly-localized neighborhoods, urban sub-regions, and 
particular corridors. One path forward is to incorporate Highway Capacity Software in support of 
the highway capacity manual (Manual 2000). This will help permit a choice of advanced modeling 
tools in the context of stakeholder interests and targeted focus groups (Flannery, Anderson, and 
Martin 2004). It also makes possible particular auto-oriented metrics of demand and system 
utilization: average speed, average speed weighted by person miles of travel (PMT), congestion 
duration, control delay, highway reliability, percent work trips within specific travel time, total 
segment delay, travel delay, travel time, travel time index, vehicle hours traveled (VHT), average 
commute time, time by trip purpose, vehicle hours of delay (VHD), vehicle speed/VHD by mode, 
and travel distance index.  

Traffic Laws 

Traffic laws are distinct from the other categories, as the co-adaptation between AV optimization 
and public policy cannot be strictly grouped into short and long-term effects. Because AV 
designers are immediately concerned with optimizing AV performance rather than deciding what 
“good” performance necessarily means, we attend to traffic laws more as a means toward the 
former. As a result, it would be reasonable for methods to consider possible changes or updates to 
existing traffic laws as an approach to control the impacts of AVs. For instance, new regulations 
could support the addition of traffic lanes, pick-up/drop-off points, and zones where pedestrians 
have different rights. Each of these interventions would allow for coordination between people 
and AVs, and thus it serves as an important lever of control, alongside local control, routing, and 
controlling stop lights. 

There will also be a need for entirely new traffic regulations, as the maturation of AV optimization 
interacts with legacy forms of traffic control. Designers will therefore need tools and methods to 
accommodate this likelihood. A good source of inspiration is the work on standards, metrics, and 
simulation parameters by the International Bridge, Tunnel and Turnpike Association (IBTTA). 
IBTTA has supported and made possible studies of the impacts of innovative technologies on 
highway operators (Azmat et al. 2018), as well as the impact of public-private partnerships on 
financing road infrastructure in developing economies (Queiroz, Vajdic, and Mladenovic 2013). 
IBTTA has also developed specialized tools for modeling various tolling environments. For 
example, the IBTTA Tollminer is a visualization tool that includes maps of toll facilities, a list of 
managed lane projects in operation nationwide, an optimizable user interface, and annual data on 
public and private toll revenues, among other features. While it is geared towards modeling and 
comparing the relative effects of high-occupancy vehicle lanes and toll lanes (Poole 2020), this 
work could be readily translated to test new simulation parameters for AVs that incorporate 
speculative regulations for equitable mobility access.  

Another source of inspiration is analytical tools from the Highway Safety Manual (Part 2010) 
(HSM), which could be applied to a wider range of urban simulation settings beyond highways. 
While focused on mitigating crash frequency, the Highway Safety Manual aims to coordinate 
safety and economic concerns in a way that well-approximates the human factors interpretation of 
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safety as a problem of limited attention and human capabilities (Banihashemi 2011). The HSM 
could help update current AV simulation work to prepare it for future traffic laws in two ways. 
First, it embeds system planning within engineering, construction, and maintenance as part of an 
integrated development process. This perspective would prepare AV designers for federal and state 
regulatory environments once they have moved past proprietary standards for simulation and 
control. Second, it pinpoints three neglected sources of data (site characteristics data, traffic 
volume data, crash data) and incorporates them as part of HSM safety prediction. This would help 
AV designers move beyond “cookbook engineering” when setting up simulation parameters, and 
instead incorporate the basic concepts of systems engineering–functions, requirements, and 
context–that will ensure simulations accommodate the multiple interfaces necessary for fair and 
inclusive urban AV navigation. Attention to these interfaces is likely going to be a key nexus of 
regulatory attention in the coming decades. 

Other Impacts of AVs 

Here we give a small survey of externalities that do not fit into the other categories. While 
important, they currently lack a single model or definitive list of proxy metrics. Ongoing attention 
to relevant disciplines, highlighted below, will be necessary in order to transform these concerns 
into workable measures that could serve as targets for optimization. 

Human factors researchers recognize a basic distinction between correcting for error-laden driver 
behaviors and accommodating the limits of human perception. Whereas most computational 
simulations for AV safety and reliability try to minimize known errors, human factors assumes 
that people make mistakes, and that we should responsibly design for this as a feature of roads by 
identifying the contexts in which this feature is safety-critical. One concrete implication of this 
perspective is the imperative both to assess user perceptions of AV-relevant infrastructure 
continuously and compare these against distinct non-human metrics of surrounding physical 
infrastructure (Elefteriadou et al. 2012). Only through this comparison is it possible to evaluate 
and repair the disjuncture between the phenomenological and material features of the driver / road 
environment. 

Accordingly, AV design will have to distinguish between optimizing for bad driver behaviors and 
modeling context-specific limits to human perception and decision-making. This includes creating 
models according to situations and protocols that work from the human standpoint rather than 
purely to minimize likelihood of crashes. For particular problems in urban traffic control, designers 
must identify an appropriate human factors metric for the situation in order for mobility concerns 
to be addressed or resolved without excluding certain participants. Fortunately, the existing 
literature has already identified relevant performance metrics that could eventually be incorporated 
for simulation studies. These have been sorted into the categories: infrastructure and environment, 
system utilization, user perception, safety, and stability (Elefteriadou et al. 2012). Together, these 
categories can be evaluated and translated over time into model features or simulation 
environments to capture human factors issues pertaining to pedestrians, cyclists, and other non- 
vehicle road users. This would effectively permit AVs to serve as an interface between primary-
mode passenger mobility and the wider infrastructural context of urban design. 

A clear example of the above is user perception surveys, designed to capture human needs and 
priorities beyond system optimization. These surveys will become all the more relevant as AV-
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generated changes due to congestion begin to affect mode choice and entail costs of congestion 
mitigation. Only by measuring community attitudes and user perceptions can multi-modal projects 
be designed in a responsible and sustainable manner. Relevant measures for present and future 
user surveys include: bicycle LOS (FDOT), pedestrian LOS (FDOT), LOS-based on traveler 
perception, perception of transit safety, transit comfort, transit condition of vehicles and facilities, 
transit ease of using the system, transit reliability/performance (perceived), transit complaint rate, 
transit customer loyalty, and pedestrian friendliness. 

2.3 Conclusion 

In this work I have surveyed a broad range of impacts AVs are likely to have on our society, both 
through direct impacts on the transit system and through the rest of society adapting to those 
changes. Though many of these impacts are already externalities of existing vehicles, the 
combination of centralization and automation provides a unique opportunity to control for these 
impacts on a much broader scale. To take advantage of this opportunity it is important for de- 
signers as well as stakeholders to identify the core features that AI models will represent or remake 
through implementation. I have provided a sample of several metrics that could be incorporated 
into the design of systems today, as well as references to many more which I have not made explicit 
and formal but are prime candidates for formalizing in future work.  

I am aware of the rich methodological debates between competing approaches to measuring quality 
of life in the developmental economics literature. In particular, the “index number problem” 
describing how a given measurement index relates to a particular normative standard of living 
looms large in the tension between utilities-based vs. capability-based approaches. As described 
by (Reddy 2003): “The choice of metric for the evaluation of the standard of living must ultimately 
be motivated by normative reasoning concerning the appropriate manner in which to evaluate the 
life circumstances of individuals. There is no escape from this dependence of the concept of the 
standard of living on the normative judgments of the evaluator. Even the decision to defer to 
information concerning individuals’ subjective preference satisfactions represents a particular 
such evaluative judgment”. In this work I have relied on the normative evaluations and legacy 
standards present in adjacent literatures, including human factors, environmental engineering, and 
transportation planning. While this is sufficient for sociotechnically specifying possible modeling 
choices, this reliance defers the problem of reconsidering legacy standards, including the 
normative valuation of transit itself, to domain experts as AV fleet capabilities mature. 

More broadly, I see my contribution as a call for new technical work. I hope that this work can 
serve as a catalyst for AV researchers to refine the sociotechnical specification of particular fleet 
deployment scales, and support ongoing deliberation connecting technical modeling choices to the 
needs of stakeholders. Though the challenges we present are broad and interdisciplinary, the next 
steps on improving each individual externality in isolation are immediately actionable: making a 
proxy metric based on existing literature that can be optimized. By working together as a 
community, we can create better metrics and methods to take full advantage of this new 
opportunity to coordinate existing stakeholder commitments.  
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3. MAPPING THE POLITICAL ECONOMY OF REINFORCEMENT LEARNING SYSTEMS 

Conversations about AI ethics often revolve around the elimination of statistical bias. If a given 
machine learning system makes many mistakes, a common approach is to provide the system with 
more or better-structured data so that the resulting representation is more accurate and perhaps 
suitable for practical implementation. A clear example is the various optimization problems 
entailed in the long-term development of autonomous vehicles. If a car is not good at taking left 
turns or merging onto the highway, designers can just simulate more “left turn” scenarios for an 
agent to learn from, and then take the resulting learned policy as a guide for desired real-world 
performance. 

Yet the “more data” band-aid has failed to address many challenges with real systems designed 
for facial recognition, recommendation systems, and others (Barocas and Selbst 2016, O’Neil 
2016, Pasquale 2015, Benjamin 2020, Noble 2018, Eubanks 2018, Zuboff 2019, Bolukbasi et al. 
2016). This is partly because designers rely on piecemeal fixes that make a system perform better 
according to some narrowly defined metric, without deeper reflection on what “better” means in 
context. Reinforcement learning (RL), which models how agents might act in some environment 
in order to learn and acquire some approximation of intelligent behavior, may push this paradigm 
to its breaking point. Its three key ingredients are states (composing the environment at stake), 
actions (the options available to the agent at every time step), and rewards (the “return” given to 
the agent when it takes a particular action). It is often distinguished from supervised and 
unsupervised learning, in which the system can either reference only what is already known via 
labeled data or explore the data structure with minimal constraints. By contrast, the heart of RL is 
to interpret intelligence itself, whether human or artificial, as a set of learned behaviors that 
effectively balances what is known with what isn’t — a kind of computational prudence.  

For the RL designer, the problem lies in making reasonable assumptions about the environment 
that can be well translated into states, actions, and rewards. But uncertainties often seep into the 
model at each of these, making “better” or “worse” outcomes increasingly difficult to identify as 
the task becomes more complex. Consider the simple case of making coffee in a motel room: At 
what point is it not worth scrounging for filters or grounds vs. using the bag of Earl Grey next to 
the bed? Am I up for schlepping down to the lobby to use the unreliable cappuccino dispenser, or 
do I not want to get out of my jammies? How is a well-brewed cup of coffee “better” than a sour 
or bitter one, as long as I’m caffeinated enough to catch my flight? As the task must be defined 
independently from any particular learned technique, it is unreasonable to foist all these quandaries 
on the agent, let alone a groggy one! Instead, the designer somehow has to set up a Markovian 
environment (one in which the values of states and actions do not depend on past information) for 
the agent to observe, and then help the agent learn to navigate it. The agent’s behavior has to be 
interpretable as good, i.e., as well aimed rather than merely clever, based on our perception of the 
task itself.  

The above example remains relatively simple and could in principle support a clear specification 
of the task. But as we transition from modeled environments to actual systems—say, an automated 
lobby coffee station used by both British tea-lovers and American coffee-fiends who learn to trust 
or distrust its operation in the face of uncertain hotel conferences and flight delays—it is necessary 
to prioritize stable performance dynamics over any particular optimal solution. This is because the 
system is not operating in a single-agent Markovian environment, and the dynamics can no longer 
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be taken for granted. I argue that this problem transcends task specification and is instead about 
normative cybernetics: Who is the system for? What is its purpose? How will it maintain the 
stability of the domain in which it will operate? Or in the context of autonomous vehicles: How 
can we preserve the integrity of all the different “environments” at stake in citywide traffic 
mobility? What information channels are needed to monitor and control for autonomous vehicle 
performance in the streets and intersections that matter most? Under what circumstances might it 
be unacceptable to optimize a single algorithm for object detection, traffic navigation, and 
congestion management?  

Finding complete answers to these questions will require decades of research as autonomous 
vehicles are further developed. But before that happens, designers of RL systems must understand 
that these social domains’ normativity (the pattern of local behaviors we feel entitled to expect 
from others and ourselves) is unevenly and richly structured. While some of those structures are 
sufficiently defined to support optimization techniques, the definitions of others are not 
forthcoming. Normative cybernetics challenges current AI development practices in three ways: 
1) reaching consensus on the normative structure of the domain is a deliberative process that 
cannot be achieved by data aggregation or computation alone; 2) normative structure is enacted 
and reformed through distinct types of feedback—in particular, within markets (which pursue 
optimization) and politics (which pursue collective definitions of the good); 3) developers need to 
construct interfaces with these types so that the model specification (defining states, actions, and 
rewards) is responsibly indexed and updated to incorporate the concerns of stakeholders over time.  

The meta-question of which problems are “ready” for RL and which will require further definition 
shares much with themes of political economy. Rather than decontextualized principles of ethics, 
political economy asks the essential question at the heart of any RL system — what is the nature 
of value? — in the context of particular normative domains. Because these domains vary in scale 
and complexity, the same reward structure cannot be applied automatically to them, and designers 
need good sense about the levels of abstraction where norms operate so that the system works on 
the levels we want and not the ones we don’t. There are scales at which the corresponding 
optimization is known, scales where the optimization is uncertain, and other scales whose features 
are unclear. In fact, the fields of engineering, economics, and governance roughly correspond to 
these and serve as distinct inquiries into how assumptions can be operationalized, competitively 
pursued, or re-evaluated. We need a distinct mode of deliberation—normative cybernetics—to 
coordinate this inquiry by asking how to guarantee stability in a manner that is proportionate to 
the structural integrity of the domain. 

A systematic exposition of political economy is beyond the scope of this chapter. Instead, my goal 
is to briefly describe the distinct forms of social risk entailed by the optimization of advanced RL 
systems, how these forms might be interpreted according to existing legal standards, and what 
sorts of limits to optimization should be implemented to protect and reform infrastructure 
responsibly. Although these claims are meant to apply to any RL system of sufficient scope and 
complexity, continuous reference is made to the pertinent case study of autonomous vehicles 
(AVs) for the purpose of clarity and simplicity. Throughout, I consider the surrounding 
institutional contexts (social, behavioral, managerial) in which AV systems are made and deployed 
and which often absorb hidden costs related to suboptimal performance. 
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3.1 The limits of intelligent behavior 

The themes of political economy help reveal how the structuring of an RL agent’s learning 
environment can both make optimal learning possible and generate social harm if designers do not 
adequately reflect on how rewards have been specified. This can be illustrated through the reward 
hypothesis, the idea that “ends” or “purposes” are the maximization of the expected value of the 
cumulative sum of a received scalar signal (Silver et al. 2021). This is a fancy way of saying that 
for any particular job, there is some computable answer to the question of what it means to do that 
job well — that the definition of a good job is somehow baked into the activity and can be learned 
exclusively by referencing the relative success of one’s own actions. Mowing the lawn means you 
are cutting blades of grass; doing the dishes means you are scrubbing away spots of dirt; beating 
Super Mario Bros. means you are collecting coins, beating levels, or finally freeing Princess Peach. 

REWARD HYPOTHESIS: that all of what is meant by intelligent behavior is the maximization 
of the expected value of the cumulative sum of a scalar signal within some environment. 

It follows that skill is best acquired by interacting with the environment directly rather than by 
imitating how someone else has done it. According to this hypothesis, optimizing for the 
underlying reward function rather than learning to mimic some observed behavior pattern is the 
most “succinct, robust and transferable definition of a task” (Ng and Russell 2000). This reward 
function is often not even unique, as it is common for different objective functions to be 
simultaneously optimized when there are overlapping interpretations of the observed behavior (am 
I pouring a glass of water because I am thirsty or because I want to rinse the glass out?). Moreover, 
the AI designer does not have to specify the mechanism for achieving a goal, as the RL agent can 
design its own strategy for achieving it.  

Philosophically, the reward hypothesis is a claim about how the complexity of intelligent behavior 
can, in principle, be encapsulated by the simplicity of scalar reward. In other words, different 
actions and strategies can be definitively compared as better or worse than each other with 
reference to the ultimate goal. If a reward function seems hard for the agent to learn, the hypothesis 
entertains the idea that further optimization (expanding the action space, adjusting the signal) will 
solve the problem, at least to the extent that there is a solution to be found. To clarify this point, 
the hypothesis does not claim that all human activities amount to utility maximization, but that all 
“well-specified” activities effectively do, at least in terms of the signals received and particular 
learning environment at stake.  

But at the end of the day we are building systems that interface with the real world, not just models. 
Leveraging the reward hypothesis when designing AI systems such as AVs entails a problem of 
feedback — the need to structure and monitor the dynamic relationship between agent and world 
so that the nature of its activity is normatively appropriate. RL system developers must decide how 
to manage the gap between model representation and resulting real-world behavior (Sendak et al. 
2020). How should they do this? The limits of the reward hypothesis show how good 
representations of activity cannot be blindly pursued in lieu of normative deliberation by tackling 
the problem of feedback.     

For example, consider an AV perception algorithm that has trouble recognizing street debris, 
compromising the AV’s ability to drive safely through areas with significant homeless populations 
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or unreliable street flow. The AV does not get into accidents and generally makes it to its goal on 
time, but occasionally runs over bits of plastic and glass in a way that does damage to the vehicle 
and possibly the road. Is this AV’s behavior suboptimal (could it be doing a better job)? Or is the 
environment misspecified (doing the wrong job)? Or neither?  

We can readily imagine a host of ways — some of which are technical, others less so — to solve 
this problem, depending on how we choose to interpret it. Our example AV could be rerouted to 
go through different streets that are typically cleaner, even though this would add to the travel 
time. We could more extensively validate the vision architecture to better avoid street debris. Or 
we could rebuild the AV so that the chassis is less prone to damage. These strategies propose 
alternative translations between expected utility (avoid debris) and desired outcomes (drive on all 
streets, drive only on streets that are safe, protect the vehicle, preserve the integrity of the road 
network). 

Let’s not lose perspective. Humans do not drive cars in order to avoid debris, but to get somewhere! 
The question of what it would mean to weigh hitting debris against the goal of getting to our 
destination on time or in one piece is far from the minds of most human drivers. Yet the reward 
hypothesis makes it possible to imagine a single utility function that encompasses all these features 
— a single environment where scalar reward is sufficient, rather than multiple worlds with 
incommensurate normative criteria.  

That the reward hypothesis must have limits cannot be seriously questioned, unless we believe that 
there is a single ready-made perspective from which all goals can be computationally simulated 
and optimized. In that case, artificial specification would not be necessary — all humans ever do 
is aggregate rewards that have already been baked into our environment. Nor is it possible to 
dismiss the hypothesis entirely, as many tasks can be meaningfully simulated and humans do 
pursue well-defined objectives all the time. The fact is that somehow, humans can specify tasks 
by writing down what it means to perform them. This implies that to interpret the world by 
meaningfully carving it up into navigable chunks requires a different kind of agency than 
intelligently navigating it in the first place.  

The reward hypothesis forces the RL designer to make explicit and weigh—or invent from whole 
cloth—various norms that are collectively followed but have never before been robustly specified 
or even determined. Even if a single utility function for driving does in fact exist, it has never been 
written down before (and is thus not ready-made for modeling purposes), it would require 
evaluating driving behaviors at enormously varied scales, and it may well encounter basic 
disagreements among those scales about what “optimal driving” actually means. The problem is 
that optimal and right may well turn out to be different in ways we cannot understand prior to 
sustained reflection about how the activity is supposed to work or not work. Unprecedented 
empirical research and political will are necessary to overcome these hurdles and encode features 
appropriately rather than the behaviors we assume to be optimal. This is why we need, beyond 
specification, normative cybernetics.  

We might consider another approach. Instead of painstakingly crafting an AV specification that 
meaningfully includes the features we want, designers could remake those environmental features 
to conform to the AV specification they have. Andrew Ng endorsed this in the context of 
incentivizing pedestrian behaviors to accommodate the limitations of AVs: “Rather than building 
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AI to solve the pogo stick problem [i.e., rare human actions], we should partner with the 
government to ask people to be lawful and considerate. ... Safety isn’t just about the quality of the 
AI technology” (Brooks 2018). To extend the example above, in practice this would mean that AV 
companies could partner with local communities to fight homelessness, have debris removed from 
the road so that their vehicles did not have to observe it, or discourage people experiencing 
homelessness from congregating near profitable streets. We can even think of this as a mechanism 
design problem: define the objective(s) we want and then reverse engineer incentives for the agents 
(human or otherwise) that would guarantee those objectives are met.  

To be clear, this approach assumes such a definition is ready-made, and avoids substantive political 
questions about tradeoffs between safety and efficiency within either the learned model or the 
incentives given to people to conform with it. I will defer this problem of whether reducing 
homelessness or cleaning up roads may in fact be something we all want to include within the AV 
task specification, beyond cars that merely drive well, and whether criteria for resolving this 
already exist for AV companies to use. In fact, I believe we should create independent institutional 
spaces functioning as “AI clinics” that would richly deliberate about how to build systems in the 
context of problems like this, though that is not the focus of this chapter. Instead, the crux of my 
discussion here is that this basic indeterminacy — whether it is designers’ responsibility to make 
AVs ready for the world as it is, or help remake the world itself so that AVs can navigate it, or 
other options made possible by unprecedented scales of technical intervention— is not something 
the reward hypothesis can answer for us.  

We can define the political economy of RL as the science of determining the limits of the reward 
hypothesis for a given domain: framing it, comparing it with alternative specifications, and 
evaluating it. This is both a technical and a normative problem, because specifying rewards under 
uncertainty depends on the scale of the domain in which we are operating. A local government 
designing a road vs. a group of states designing an interstate may fall at different scales of the 
complexity hierarchy and could not be treated as similar. In other words, evaluating which reward 
structures could be institutionally affirmed and cybernetically supported through feedback requires 
asking what it would mean to govern RL systems, not just optimize them.  

3.2 Computational governance 

The problem space of RL governance is revealed by the resonances between the reward hypothesis 
and two foundational assumptions of the Chicago school of economics, in particular the ideas of 
Ronald Coase. One is that firms are better than markets at handling transaction costs pertaining to 
information flow (Coase 1995). This suggests that provision of AV service via a single in-house 
operational design domain (the specific set of constraints within which an automated system has 
been designed to operate) is more efficient than a mix of independent contractors comprising AV 
fleet owners, operators, manufacturers, and regulators. The reward hypothesis extends this 
intuition by allowing designers to imagine tasks as optimizable in-house as part of a single 
computation stack rather than specified or evaluated in a more distributed manner — that it is 
easier to maximize utility within the firm than under the guidance of third parties. This would 
provide a computational (rather than economic) basis for justifying the power of firms to aggregate 
social value. 
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The second is that courts and other political entities should intervene on social contracts only to 
ensure the rights of affected parties are allocated optimally (Coase 1960). The technical criterion 
here is Pareto efficiency: given finite resources, goods are to be distributed in the best possible 
way, with no party’s benefit coming at another’s expense. For example, only if AV fleets were 
found to generate measurable economic costs (commuter times, air quality, road damage) for 
specific neighborhoods could courts then charge the firm to make up those costs. The reward 
hypothesis extends this by explicitly internalizing known costs as part of the reward function 
before they can even register as economic externalities: rates of congestion, pollution, and road 
wear can simply be added as environment features and be updated in response to fluctuations in 
demand. While adding features does not preclude finding an optimal RL policy, it does make it 
harder for regulators and designers to understand it, which places constraints on system 
interpretability and how responsibility is allocated in case of harm. The basic problem at stake — 
deliberating about what a good neighborhood is and whether or how it can be sustained if the AV 
fleet is deployed — is sidelined, as it lies outside the boundaries of Pareto efficiency.  

Together with the reward hypothesis, these assumptions would permit the designers of RL systems 
to “simulate” political economy by either adding features or maximizing expected utility at 
arbitrary computation scales. Such designers would, in theory, be in a better position to define and 
measure value than either the market or political institutions. Rather than allowing normative 
concerns to be expressed “suboptimally” by boycotting a service or making new zoning laws, it 
would simply be more efficient to let AV designers “figure out” what the reward function for 
driving is in San Francisco or New York or Cincinnati through a mix of routing adjustments and 
dynamic pricing. If this form of computational governance were seriously pursued, it would eclipse 
a core function of politics: articulating underspecified normative criteria that distinguish between 
utility losses and the definition of good social outcomes. This is where questions of RL 
optimization meet the themes of political economy. 

We can make these abstract considerations tangible by illustrating the risks they entail. The reward 
hypothesis implies alternative strategies that reflect different approaches to risk, in particular either 
redefining the service that AVs are providing or optimizing service performance. The former is 
made possible by reward shaping — i.e., restructuring the agent’s environment in order to 
facilitate learning the optimal policy. While reward shaping is specifically not meant to redefine 
optimal behavior itself, it does assume such a definition exists. This becomes a problem if an AV 
firm has selected a definition that does not responsibly account for different interpretations of 
“good” driving (e.g., don’t hit objects, maximize fuel efficiency, minimize travel time). Using 
reward shaping to computationally reconcile such interpretations means that environment rewards 
have been evaluated in terms of expected utility and comparatively ranked according to some 
priority ordering. Actions that human drivers perceive negatively (driving into potholes, cutting 
someone off) are given scalar value and may be ranked differently according to some model 
specification, even absent a guiding legal standard. Complex normative approaches to these 
distinctions (potholes are bad but publicly managed, road rage is rude but tolerated, manslaughter 
is illegal) may be obfuscated or reinvented as their incommensurable stakes are reduced to an 
optimization problem. 

To better evaluate this commitment, we can mobilize the tools and insights of the recent literature 
on antitrust (Steinbaum and Stucke 2018). In road environments whose norms are indeterminate, 
informal, or lack a clear form of domain expertise, the use of reward shaping amounts to a 
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proprietary claim on public infrastructure, also known as monopoly power, by whoever controls 
the system specification. In other words, a single firm would effectively act as the exclusive 
supplier of vehicle services and would have the ability to define what “good” and “bad” driving 
means within its operational design domain. As long as reward shaping is limited to environments 
whose dynamics are well understood, this might be acceptable. But as the AVs’ domain expands 
from a single neighborhood to an entire city, the AV provider is essentially deciding what types 
and magnitudes of underspecified costs are acceptable for the public to bear as the system 
optimizes the firm’s chosen definition of driving. Potholes are perhaps the best example of this, as 
the vehicle fleet will structurally generate them in specific places as certain highways are 
discovered to be safer or more efficient for routing purposes.  

Historically, antitrust has interpreted problems like this through the common carriage standard. 
Beyond some geofencing threshold, an AV company should be interpreted as a common carrier 
that is responsible for ensuring fair and equal access to its platform. At certain infrastructural 
scales, the platform generates externalities that cannot be reliably tracked or managed through 
reference to goals that have been only partially specified by law, like avoiding crashes, maximizing 
fuel economy, or minimizing route time. This trend is likely to worsen as Uber and Lyft increase 
capital investment in automated rideshare, Tesla grows the market for personally owned AVs, and 
Waymo scales up the size and service area of its platform. Instead, parameters for these 
externalities must be set by a third party, requiring some sort of public commission whose job is 
to specify what social welfare means, rather than let it be optimized in a normative vacuum. 
Outside these parameters, the common carrier (in this case, the AV service provider) can be held 
directly liable for damages its platform does both to public infrastructure (roads, signage, etc.) and 
to regular road users, whether AV passengers or not. 

The other approach to risk is referred to as information shaping (Griffith et al. 2013). This approach 
structures the environment so that the reward signal, however it has been defined, can be observed 
by the agent only under precise conditions. This may allow the agent to learn more reliably or 
efficiently but also restricts the number of sensory inputs. Possible forms of feedback are thereby 
neglected, because they would make optimizing performance harder according to the chosen 
specification. As a concrete example, AVs at a four-way stop may consider only physical distance 
from other vehicles as a signal, even if other information (pedestrians’ gaze, other drivers’ hand 
gestures, horns honking, people yelling, common knowledge about surrounding signage) is salient 
for human drivers. The fact that humans are able to coordinate via different sources of information 
is important, as road mobility is defined by multimodality: the coexistence of multiple literacies 
(pedestrians, cars, cyclists) and mediums for feedback in a single domain. In effect, information 
shaping may exclude or marginalize expected behaviors that are common in the real world, 
potentially neglecting the underspecified but integral modes of communication relied on by 
stakeholders.  

A diverse network of regulators at the local, state, and federal levels is responsible for designing 
and evaluating forms of signage that support common road access. But left to its own devices, 
information shaping will gradually transform the suite of sensors used by the AV into the interface 
for the roadway itself. This would co-opt the authority of independent agencies and burden them 
with the responsibility of redesigning roadways to make them safe for AVs, a phenomenon that 
economists refer to as regulatory capture (Dal Bo 2006). Because of this, information shaping 
constitutes a claim on monopsony power, formally defined as the exclusive “buyer” of some good 
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or service in a particular market. The service in this case is the distributed labor force (regulators, 
manufacturers, and municipal bodies) compelled to support the AV firms’ chosen specifications 
and sensory inputs. As long as the optimization is restricted to single-mode environments like 
highways, this may not threaten the public interest. But as its urban integration becomes more 
intensive, the AV interface will tend to exclude certain roadway literacies and delimit the range of 
mobility participants to whom AV-specified roadways can provide common services. Jaywalking 
is the clear historical parallel here, as pedestrians learned to see themselves as a problem for cars 
to avoid and largely ceded public control of streets to them by the 1930s (Norton 2011). 

Returning again to antitrust, such problems are interpreted using the standard of structuralist 
regulation: some kind of firewall or public interface must be created across the organizations that 
produce the AV specification to ensure that it remains inclusive of road users. More importantly, 
this regulation would need to support a space for deliberation about the specification, treating it 
not as an “everlasting solution” but as a provisional means of dealing with the problem of feedback. 
This would prevent the fusion of private service provision with roadway access via restricted 
information channels, while permitting external regulators to investigate sensory inputs and 
confirm they do not exclude mobility participants. Structuralist regulation will become more 
important as we transition to 5G roadway infrastructure that will make AV platooning and citywide 
traffic optimization viable, as signal constraints for perception, localization, planning, routing, and 
controls must remain publicly coordinated and not merely optimal. At a minimum, these 
information dynamics must be able to be observed and interpreted by third parties, requiring the 
ability to evaluate the platform through external documentation or audits. 

3.3 Policy challenges 

The reward hypothesis cannot answer which forms of shaping are normatively appropriate for a 
particular AI service. This leads to open cybernetic questions of concern to RL system developers: 

-What limits are there to what can be modeled? 

-What types of feedback are available to bind system effects? 

-Whom do we entrust with the power to set the bounds within which the reward hypothesis can be 
framed and comparatively evaluated? 

It is difficult to answer these questions, as the conceptual landscape and context of AI ethics are 
rapidly shifting. Entirely new standards for antitrust are now being proposed that transcend narrow 
economic protections. Governments in the European Union and United States are discovering they 
have the stomach for confronting and regulating Big Tech platforms through a mix of fines, data 
protections, and ongoing lawsuits. In the aftermath of the Federal Trade Commission’s allegations 
that Facebook has acted as an illegal monopoly, we must continuously evaluate whether aligning 
systems with social ends also requires examining the structure of the organizations that build them. 
These developments reflect difficult political questions (Fukuyama 2021): Must we wrest power 
away from private monopolies and place it in the hands of public officials? Or hold such power 
accountable regardless of where it lies? 

Let us take a step back and consider the core values at stake when pursuing the reward hypothesis 
in more and more social domains. I propose there are two: integrity and interoperability. Integrity 
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means the normative structure of the domain, to the extent that it has been specified by law or 
custom, must be protected by whatever AI company acts as its steward. In principle, this means 
that there is some clean translation between existing social norms and the RL specification of 
states, actions, and rewards, although there may be uncertainty about how to achieve this 
technically. Interoperability means that if the normative structure of the domain requires further 
specification, the various interfaces at stake in a given system at least remain coherent, 
interpretable, and subject to evaluation by a third party. In this case, the RL specification must be 
subject to external oversight, and particular approaches to optimization must be backed up by 
public documentation. 

Together, these values serve to protect the norms we have from encroachment by AI systems and 
defer the choice of underspecified norms until stakeholders are given the chance to articulate and 
affirm them. A truly deliberative approach must include both and be reflected in the institutional 
relationships among engineers, corporate managers, and external regulators. This approach is 
necessary to avoid conceiving of specification in a “solutionist” manner, as the problem of how to 
structure feedback is governmental rather than technical in nature. Below, I briefly present what 
this might look like in the context of AV development.  

As AV fleets impinge upon more and more streets, they stand to inherit the responsibilities and 
commitments that cities have already made to infrastructure, safety, and road equity. In this case, 
municipal bodies could require companies to bear some of the cost for infrastructure repairs and 
any future megaprojects resulting from the provision of AV ride services. Companies could also 
be required to share data so that public commissions could better determine needed repairs. For 
inspiration on possible standards, we can look to recent work on contextual integrity (Nissenbaum 
2009). Contextual Integrity (CI) interprets normative social domains in terms of their ends (the 
goals of participating agents) and information flow (the medium through which facts or data are 
permitted to move, with some degree of asymmetry, between agents). This helps specify limits for 
evaluating reward and information shaping, serving as a potential optimization standard that 
regulators could apply to companies.  

In-house engineers would then have to define states, actions, and rewards to meet the standard 
specified by CI. For example, an AV that couldn’t recognize road debris could still be deployed to 
those streets and be “street legal” as long as collisions remained infrequent or caused minimal 
damage according to thresholds specified by a third party. However, if that AV were found to 
generate unanticipated externalities in the form of traffic congestion, it could be violating 
commitments to public safety and equitable mobility and be found liable for harm. In this way, CI 
helps to distinguish the toleration of suboptimal behaviors from the evaluation of direct harms: 
while some states and actions demand strict enforcement and prevention, technical standards for 
object detection and accident avoidance have not yet been exhaustively specified. 

Meanwhile, we must ensure that alternative forms of mobility are not excluded as roadways are 
brought online through new forms of “smart” infrastructure. One path forward is open application 
programming interfaces (APIs), a possible standard for AV companies to follow. Consider a given 
city in which a single AV fleet is dominant, effectively serving as a gatekeeper for public mobility 
itself. In this case, an open API could support public-private data sharing and structured 
competition with smaller services. This would prevent the fleet from leveraging its market 
dominance into redefining road access and would set limits on the vertical integration of service 
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provision. The firm’s own definition of states, actions, and rewards would be less important than 
transparency about those definitions between engineering teams, as well as public-private 
coordination between corporate managers and municipal bodies. In this way, multimodal 
transportation concerns could be continuously addressed while preventing unilateral control over 
mobility partnerships. 

Beyond regulatory oversight, open APIs also make it possible to set up markets for fair service 
provision. This could be achieved through a mix of service auctions (e.g., for neighborhood access) 
and administrative licensing, ensuring that pedestrians, smaller mobility services, and other 
stakeholders maintain road access. Following the path of telecommunications (Illing and Klüh 
2003), AV companies could compete for access to protocols for interoperability as they pertain to 
particular roadways, within parameters that are acceptable to current road users. These parameters 
in turn would remain subject to revision as emergent traffic dynamics were observed and 
interpreted. Crucially, such tools would incentivize companies to care about and monitor the 
reward function their AVs are optimizing, helping to ensure that service provision is respectful of 
social welfare as well as technically optimal.  

3.4 Conclusion 

Both aspects of roads — their legacy status as a public good and their continued ability to 
accommodate structurally diverse means of use — are necessary conditions for the responsible 
development and deployment of AVs. Yet the computational governance problems discussed 
above are general and will be relevant for any RL system whose development entails reward or 
information shaping in domains of unprecedented scale and normative complexity. Ongoing 
technical and policy work pertaining to integrity and interoperability will help light a path for 
investigating the limits of the reward hypothesis in particular contexts, and by extension the 
emerging political economy of RL systems. The position of normative cybernetics I have outlined 
here is that the structural integrity of a given domain is in scope for AI development, that its 
preservation amounts to how feedback is structured between the system and the domain, and that 
at least some criteria for this may be found in how that domain has been managed by economic 
and political activity. This adapts an insight that scholars of political economy have long 
appreciated (Fligstein and Vogel): rather than starting from a stylized view of how the world ought 
to work and then leveraging data to minimize model bias, we ought to first look at how different 
institutions (individuals, firms, markets, governments) have approached the sort of problem we 
face, respecify it accordingly, and maintain interfaces with those institutions so that stakeholder 
concerns can be effectively addressed. 
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4. HARD CHOICES IN ARTIFICIAL INTELLIGENCE 
 
The rapid adoption of AI systems is reshaping many public, professional, and personal domains, 
providing opportunities for innovation while also generating new forms of harm. These harms are 
diverse, ranging from physical dangers related to new robotic systems (e.g. autonomous vehicles), 
to economic losses related to welfare systems, to forms of racism and discrimination in systems 
that engage with biometrical data in public spaces or with personal data on social media platforms. 
These cases reveal emerging gaps between the promised beneficial outcomes of AI applications 
and the actual consequences of deployed systems. Like any technology, ongoing risks and harms 
due to AI are thus a product of the sociotechnical gap, “the great divide between what we know 
we must support socially and what we can support technically” (Ackerman 2000). 
 
In response, a broad spectrum of civil society initiatives have emerged to safeguard human 
domains from the effects of AI systems. Debates about the sociotechnical gap have taken two 
forms. One is the proposal of normative principles to determine how the gap should be filled or 
who should do it. This has led to a plethora of reports and statements about how AI should be 
governed to respect fundamental rights, alongside a growing need to operationalize these 
principles (Schiff et al. 2021, Andersen 2018, Mittelstadt 2019). For example, the OECD 
Principles on Artificial Intelligence “promote artificial intelligence (AI) that is innovative and 
trustworthy and that respects human rights and democratic values,” and are signed by 
governments. The European Commission recently proposed a regulatory framework to translate 
higher-level principles into concrete technical and legal solutions through “harmonized standards”. 
However, it is unclear how these standards could reconcile the diverse needs of users in the context 
of particular systems and domains. Second is the proposal of technical tools to better fill the gap. 
While these efforts have generated many technical approaches related to mathematical criteria for 
“safety” or “fairness”, their systematic organization and prioritization remains unclear and 
contested (Gebru et al. 2018, Mitchell et al. 2019, Raji and Buolamwini 2019, Green and Viljoen 
2020). 
 
Missing from both debates is a sustained interrogation of what it means to identify, diagnose, and 
ultimately fill the distinctive sociotechnical gaps generated by AI systems. This entails asking 
deeper questions about how a given system may restructure human values and social practices, 
whether technical and governance criteria may be reconciled in design choices, and when or where 
gaps emerge across the system’s development lifecycle. Put differently, we lack a presentation of 
AI development in terms of what we call machine politics: interrogating how the choices that 
structure a system’s design and implementation bear on the wholesale reorganization of human 
domains and communities. In this sense, AI development can be conceived as a deliberative 
practice comprising how human constituencies make political choices based on their sense of the 
good life. 
 
Concretely, every AI system requires a consensus definition of what it would mean for it to be 
safe. But present proposals for the technical safety and governance of AI systems tend to focus on 
safety either as a criterion of technical design, operational conditions, or the experience of end 
users. This means safety criteria are marred by an underlying vagueness, the absence of unifying 
categories to establish whether a system’s capabilities are safe or not. 
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This chapter makes two key claims. First, AI development must be reconceived in terms of the 
multiple points of encounter between system capabilities and sociotechnical gaps. This requires a 
new vocabulary and framework to make sense of salient gaps in the context of technical design 
decisions, constituting a reciprocal relationship between system development and governance. 
Second, developers must take on new roles that are sensitive to feedback about how to manage 
these gaps. This requires communicative channels so that stakeholders are empowered to help 
shape the criteria for design decisions. 
 
My contributions flow from these two claims. In Section 4.1 I supply a lexicon of terms for the 
problems at stake in sociotechnical gaps. In Section 4.2 I analyze the present landscape of proposed 
technical and normative solutions to particular gaps in terms of piecemeal responses to vagueness. 
In Section 4.3 I present Hard Choices in Artificial Intelligence (HCAI) as a systematic framework 
that maps possible gaps to particular feedback channels for designers and stakeholders to use. In 
Section 4.4 I present this framework’s implications for designers and advocates when evaluating 
the technical performance and governance standards of actual systems. Section 4.5 concludes. 
 
I emphasize that my concerns, while responding to more recent iterations of AI and computer 
systems, are not new. The research agenda of situated design (Greenbaum 1992) and Agre’s call 
for a “critical technical practice” (Agre 1997) comprise classic phenomenological critiques of 
“good old-fashioned” symbolic and expert systems, in particular the need to become critical about 
certain formal assumptions behind intelligence and to reassess problematic metaphors for 
perception and action (Dreyfus 2014). Yet much technical research today has moved beyond these 
critiques. Reinforcement learning (RL), for example, satisfactorily incorporates Dreyfus’ 
exposition of intelligence as a learned, situated, dynamic activity developed from coping with 
one’s surrounding environment and embodying different strategies for action. The question is no 
longer what computers can or cannot do, but how to structure computation in ways that support 
human values and concerns. To support this aim, I propose AI practitioners will need new 
cybernetic practices that guide how feedback may be solicited from existing and emerging political 
orders.  
 
I thus apply an insight to AI development that scholars in Science and Technology Studies (STS) 
have appreciated for over four decades: any and every technological system is political, requiring 
collective agency and a corresponding form of deliberation to ensure its safety for everyone 
affected by it (Winner 1980). 
 
4.1 Towards a Sociotechnical Lexicon for AI 
 
At present, AI research lacks a robust sociotechnical lexicon. This would include the emerging 
problem space of AI Safety as well as newly-relevant questions of cybernetics in the context of 
present and future AI governance topics. In this section I present a preliminary lexicon to reveal 
areas of overlap and divergence between these domains, enabling comparison between 
contemporary assumptions of AI development and possible alternative paradigms. 
 
As was stated in the original Dartmouth summer project proposal, research on artificial intelligence 
is meant to pursue “the conjecture that every aspect of learning or any other feature of intelligence 
can in principle be so precisely described that a machine can be made to simulate it” (McCarthy 
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2006). Beneath specific efforts to simulate language, brain models, and intellectual creativity, AI 
theorists were most interested in precision: adequately specifying the mechanisms underpinning 
intelligence such that they would be possible to replicate via computation and symbolic reasoning. 
This quest for exactness has continued to underpin many technical and conceptual interventions 
on how to model the intelligent behavior of agents within some environment, including the 
problem of specification in reinforcement learning (Milli 2017, Hadfield-Menell 2017). 
 
● agency--the capacity of some agent (human or artificial) to act in order to achieve a 

particular outcome or result. 
● intelligent agent (IA)--an autonomous entity which acts, directing its activity towards 

achieving goals. 
● environment--a domain in which an IA can perceive through sensors and act using 

actuators, in pursuit of a goal. 
● AI model--a mathematical representation of the environment, constructed through either 

simple rules, a model, or a combination thereof, the parameters of which may be learned 
from and updated with observed data. 

● objective function--a mathematical representation capturing the goals of the IA. 
● specification--the definitions of the environment, the IA’s sensors and actuators, and the 

internal model and objective function necessary to operate and (learn to) perform a 
particular task. 

● artificial intelligence--the study of how to design IAs that simulate, approximate, or surpass 
the precise capabilities of human intelligence. 

 
In recent years, the rapid advent of AI functionality across societal domains has motivated the 
formulation of principles and definitions that consider such artifacts in their system setting. Here 
we include definitions adopted by the OECD in 2019 (OECD 2021). 
 
● AI system--a machine-based system that can, for a given set of human-defined objectives, 

make predictions, recommendations, or decisions influencing real or virtual environments. 
AI systems are designed to operate with varying levels of autonomy. 

● AI system lifecycle--involves: i) ‘design, data and models’; which is a context-dependent 
sequence encompassing planning and design, data collection and processing, as well as 
model building; ii) ‘verification and validation’; iii) ‘deployment’; and iv) ‘operation and 
monitoring’. These phases often take place in an iterative manner and are not necessarily 
sequential. The decision to retire an AI system from operation may occur at any point 
during the operation and monitoring phase. 

● AI knowledge--the skills and resources, such as data, code, algorithms, models, research, 
know-how, training programs, governance, processes and best practices, required to 
understand and participate in the AI system lifecycle. 

● AI actors--those who play an active role in the AI system lifecycle, including organizations 
and individuals that deploy or operate AI. 

● stakeholders--all organizations and individuals involved in, or affected by, AI systems, 
directly or indirectly. AI actors are a subset of stakeholders. 

● stakeholder--a person or entity with a vested interest in the AI system’s performance and 
operation. 
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Today, this system lens to AI is largely inspired by the field of “AI Safety” and the associated 
technical project of “value alignment”, which aims to build “provably beneficial” systems that 
learn the precise preference structures of humans (Russell 2017). Value alignment assumes that 
such a deterministic description already exists or is discoverable by artificial agents, and if we 
create precise mechanisms for learning it, then it could be modeled under mathematical conditions 
of uncertainty. 
 
● AI Safety--the interdisciplinary study of how to build systems that are aligned with the 

structure of human values, in particular those of stakeholders whom the system is meant to 
serve. 

● value alignment--the creation of systems whose specification is sufficient to learn the 
structure of human values. 

 
In practice, AI research is as much about redefining philosophical concepts in the context of AI as 
it is about solving particular engineering and computer science challenges. But there is a 
fundamental gap between the idea of value alignment and managing the actual consequences of 
deployed systems. Decades of research in systems engineering for safety-critical systems has 
shown that values, such as safety or fairness, are an emergent property that “arise from the 
interactions among the system components” (Leveson 2012). Here, the system boundary and its 
components entail both technical elements or intelligent agents, as well as human agents, processes 
and supporting infrastructure. 
 

The emergent properties are controlled by imposing constraints on the behavior of 
and interactions among the components. Safety then becomes a control problem 
where the goal of the control is to enforce the safety constraints. Accidents result 
from inadequate control or enforcement of safety-related constraints on the 
development, design, and operation of the system. (Leveson 2012). 
 

The emergent and dynamic nature of values, and the inability to “discover” or formalize these in 
the technical logics of a system, is corroborated by a long tradition of research in computer-
supported cooperative work (Greenbaum 1992), human-computer interaction (Shilton 2018), and 
participatory design. As Halloran et al. conclude, “values emerge, whether you look for them or 
not” (Halloran et al. 2009). This problem resonates with the classic problem space of cybernetics: 
continuously interrogating and elaborating the relationship between actions and goals through 
forms of feedback rather than a deterministic problem formulation or static representation of value 
(Wiener 1988, Von Foerster 2007). In cybernetics, performance thresholds are determined through 
the concrete outcomes of actions taken, rather than precisely-defined capacities of the agent that 
reflect some stylized view of intelligence. This entails looking at the level of systems, composed 
of integrated components, and how values such as safety are instantiated and maintained through 
conditions of stability. 
 
● feedback--information about the results of an agent’s or system’s actions which can then 

be taken as inputs for future actions, serving as a basis for improvement or stability. 
● cybernetics--the interdisciplinary study of how systems behave in response to feedback. 
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As pragmatist philosophers and sociotechnical scholars have long emphasized, bridging the gap 
between design principles and real-world system performance requires specifying the normativity 
of the problem domain in terms of acceptable behaviors and outcomes (Pask 1976, Dewey 1896). 
On this interpretation, cybernetic feedback is needed to bridge the gap between problem 
formulation and defining the system’s interface with reality. The question is: are norms something 
that can be passively learned by an agent, or something enacted through new forms of feedback? 
The former implies uncertainty about norms that in principle could be modeled by e.g. learning a 
reward function that represents human preferences. The latter however suggests indeterminacy 
that cannot be resolved without a broader system lens to instantiate design or governance norms. 
 
Recent work in AI Governance suggests the latter. As argued by Wallach and Marchant, the most 
pressing regulatory questions will require new institutional entities tasked with articulating 
metrics, standards, or new forms of domain expertise to determine acceptable performance 
thresholds for particular AI systems (Wallach 2019). This may include governance coordination 
committees (Cihon 2019), an International Artificial Intelligence Organization (Erdelyi 2018), the 
Facebook Oversight Board (Klonick 2019), judicial oversight in the spirit of the EU General Data 
Protection Regulation (Voigt 2017), issues studied by the National Institute of Standards and 
Technology (Smuha 2021), “arms race” scenario modeling (Zwetsloot 2018), and many others. 
This emerging literature seeks to resolve situations of indeterminate system performance at various 
levels of normative abstraction, ranging from individual privacy to global security concerns. 
 
● sociotechnics--the relationship between a system and real-world conditions, whose 

specification requires active engagement with the concerns of stakeholders. 
● normativity--the reciprocal expectations of agents to conform to particular agreed-upon 

standards of behavior in a given domain. 
● normative uncertainty--the unknown features of an environment that the agent must learn 

in order to behave optimally. 
● normative indeterminacy--the lack of prior standards or forms of consensus for the 

sociotechnical context of a given system, rendering the specification problematic or 
incomplete. 

 
Contemporary sociotechnical concerns about the development of AI systems share a common 
theme: data accumulation, increasing computational capacity, and new algorithmic learning 
procedures are reconstituting the normative systems in which humans live (Yeung 2017, Seaver 
2019, Gillespie 2014). In this sense, the problem space of AI Safety is rediscovering cybernetics 
on new ground. There is an emerging need for sociotechnical specifications that are able to 
diagnose and resolve undesirable system performance, semantic equivocations, and political 
conflicts. This requires a principled elaboration through which an AI system’s technical 
specifications (i.e. its model, objective function, sensors, actuators) are interpreted in light of 
salient normative considerations and real-world performance thresholds that stem from the social 
and situated context in which the system operates. Without clarifying this landscape, it will not be 
possible to evaluate whether particular governance mechanisms at different institutional scales are 
more or less appropriate for addressing the indeterminacies at stake. 
 
● featurization--the system’s capacity to represent features of the environment in order to 

achieve a specified goal. 
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● optimization--the designer’s capacity to articulate how to more efficiently (e.g. cost 
minimization) or appropriately complete a task. 

● integration--the capacity of users, managers, regulators and stakeholders to oversee and 
incorporate the system’s real-world performance. 

● sociotechnical specification--the proposed normativity of an AI system in terms of its 
featurization, optimization, and integration, defining who it is meant to serve, its purpose, 
and how it is to be evaluated and held accountable. 

 
As Erdelyi and Goldsmith note, “the choice between harder and softer types of legalization [of AI 
systems] involves a context-dependent tradeoff, which actors should carefully consider on a case-
by-case basis” (Erdelyi 2018). To weigh such tradeoffs, it must first be possible to index values 
and norms in terms of technical decisions about the system specification. This means that 
normative concerns of comparable significance and scope must be rendered commensurable in 
order for a responsible tradeoff to be struck and translated to a system’s specification. Ruth Chang 
has highlighted the related philosophical notion of parity (Chang 1997, 2002), which holds that 
humans are able to articulate evaluative differences to make comparisons between 
incommensurable values or options (Chang 2017). This permits deliberation regarding an agent’s 
overarching goals. Parity is constitutive of what Chang calls hard choices: when different 
alternatives are on a par, “it may matter very much which you choose, but one alternative isn’t 
better than the other [...] alternatives are in the same neighborhood of value [in terms of how much 
we care] while at the same time being very different in kind of value”. Note that while Chang 
developed the notion of parity and hard choices for an individual agent or authority weighing 
different options or values, we reinterpret these concepts in a setting comprising different 
stakeholders, denoting a distinct form of agency. This renders the weighing of options or values, 
and thereby notions of parity and hard choices, as inherently political as different stakeholders will 
have different interests, varying political power and potentially diverging ideas about evaluating 
different problem formulations, solution directions and associated values or principles (de Haan 
and de Heer 2015). We acknowledge recent empirical insights from Van der Voort et al., who 
debunk the rational view typically assumed for decision-making. They show how algorithms and 
big data analytics encounter political and managerial institutions in practice, leading to a spectrum 
of possible outcomes or theses for how the technology is specified and used (van der Voort 2019). 
 
● comparability--the evaluation of an AI system’s technical capacities (e.g. learnable 

features) as similar to each other in their magnitude, relevance, or problem stakes. 
● incommensurability--the evaluation of an AI system’s normative capacities (e.g. 

relationship with users or designers) as not able to be measured by the same standard. 
● parity--A relation between values that are comparable in significance but unable to be 

directly measured as better, worse, or equal to each other. 
● hard choices--Situations of value parity in AI system development, which require 

deliberation in order to make the options technically commensurable. 
● machine politics--a mode of deliberation associated with the stakes involved in hard 

choices, in particular between or among parties that have power over their resolution. 
 
The possibility of hard choices when designing AI systems suggests the need for a principled 
diagnostic approach, folded into development practices. This approach would specify 
commitments that match appropriate modalities of algorithmic governance with the potential 
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harms faced by stakeholders. The goal would not be for developers to make choices on 
stakeholders’ behalf, but for developers to adopt diagnostic practices so that choices can be 
proactively anticipated and resolved through feedback. As argued by Elizabeth Anderson 
(Anderson 2006), the form of feedback particular to modern democracies is dissent, indicating that 
the current specification (e.g. of a law) is problematic and must be amended or rejected. 
Accommodating dissent as a type of feedback particular to machine politics is thus a path to 
enacting appropriate features as well as proportional mechanisms for democratic governance, 
denoting a possible alternative form of design practice. 
 
● commitment--a pledge made by developers to stakeholders about the sociotechnical 

specification of an AI system, in terms of how it is intended to operate. 
● dissent--purposive feedback that lies outside the distribution of previous inputs, serving to 

challenge the grounds for consensus on system specification. 
● cybernetic practice--active attention to the types of feedback needed to address normative 

indeterminacies and refine the sociotechnical specification of a particular AI system. 
 
Revealingly, the field of cybernetics also applied feedback to cybernetic practices themselves, 
which culminated in so-called “second-order cybernetics” (Glanville 2004). We embrace the spirit 
of this tradition, as well as later work proposing such reflective inquiry on technical practices in 
AI (Agre 1997).  
 
From this lexicon, we conclude that recent work in AI governance and AI Safety reveals a need 
for: 
 

1. a sociotechnical reframing of classic problem domains in AI (agency, models, 
representation, learning), in terms of how human behaviors and institutions will be 
indeterminately reshaped by designed systems. 

2. a shared language to diagnose different kinds of normative indeterminacy, both between 
intended vs. actual system behavior and across communities of stakeholders. 

3. the specification of requisite feedback modalities, in order for the system to achieve 
appropriate stability in the face of operational indeterminacies. 

 
4.2 The Problem of Vagueness 
 
As AI systems are applied to more sensitive contexts and safety-critical infrastructure, normative 
indeterminacies are becoming more visible. Identifying the missing feedback in a given 
specification requires interrogating the functions of an AI system in a principled manner. This 
includes examining what task the AI system is trying to complete and how the system is meant to 
work in support of human contexts, as well as which normative standards would be appropriate to 
fulfill these needs. 
 
Here I compare prominent technical and policy standards that have been proposed, revealing each 
as a partial response to the underlying problem of vagueness. The vagueness of a system 
specification is the ultimate source of the normative indeterminacies at stake. Vagueness is a 
central topic in metaphysics and the philosophy of logic and language that has important 
application in system engineering and artificial intelligence (Agre 1997). It is about the 
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fundamental lack of clarity in our relationship with the world, either in terms of the ways we are 
able to perceive it, the language we use to describe it, or in the world itself. It is addressed through 
the drawing of boundaries--forms of classification, demonstration, analogy, and other rhetorical 
strategies that sort phenomena into particular qualities and quantities or draw distinctions of form 
and content (Williamson 2002). A classic example is the Sorites paradox: which grain of sand 
removed from a heap turns the heap into a non-heap? Such situations may yield existential 
uncertainty, which, if not resolvable through agreed upon standards, may lead to arbitrary 
tradeoffs, compromise, or restrictions. We thus propose vagueness as a general descriptor for 
situations in which developers’ attempts to model some domain via technical uncertainty fall short 
and give way to specific forms of indeterminacy. 
 
For each approach to indeterminacy present in the current AI policy and governance literature, we 
first organize and present the corresponding classical interpretation of vagueness, namely either 
epistemicism, ontic incomparabilism, or semantic indeterminacy (Chang 2002). We then isolate 
the respective standards that have been unreflectively derived from these schools of thought, 
namely metanormativism, value pluralism, and fuzziness. Finally, we identify the stylized form of 
feedback that each school of thought prioritizes over others to enact these standards, namely 
preference learning, refusal, and equitable outcomes. I concisely summarize these relationships in 
Table 1. This exercise motivates the need for sustained engagement with the actual context of 
system development. 
 
Epistemicism - resolving vagueness through model uncertainty 
 
Epistemicism claims bivalence as a basic condition for an object’s existence (Schiffer 1999). This 
is to say that for any given property of an object, there is in principle some sharp boundary by 
which the object either does or does not have that property. Illustrated through the Sorites paradox, 
epistemicists believe that there is an objective fact of the matter about the precise number of sand 
grains necessary to constitute a heap vs. non-heap, even though we may be ignorant of that cutoff 
point. The position thus holds that every object property or attribute must terminate at some 
boundary, no matter how inappreciable this boundary may be at present. 
 
This implies that acquiring more information may help reveal where the boundary actually is or 
could be drawn. Pure epistemicism is counterintuitive and is philosophically controversial in 
comparison with the claim that boundaries are semantic constructions (Gomez 1997). But the 
essence of the position is simply that if distinct communities (or even the same person) claim the 
same property applies to the same object in different ways, then they are either ignorant about the 
property’s actual boundary or are describing distinct objects. 
 
Epistemicism has a powerful affinity with metanormativism, the notion that the criteria for rational 
decision-making are not fully known or confidently expressed because sufficient information 
about the environment, other agents, or oneself is absent. Because epistemicists believe that no 
comparable options are fundamentally “apples and oranges”, as there must be some degree to 
which one is preferable over the other, metanormativism asserts the existence of a clear, positive 
value relation between available ethical actions: one must be unambiguously better, worse, or 
equal to the other for a given choice to be demonstrably rational. For example, William MacAskill 
has sought to articulate “second-order norms” that guide how one should act when multiple 
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appealing moral doctrines are available (MacAskill 2019). MacAskill, whose work has been cited 
in support of technical work on AI value alignment and value learning (Soares 2014, 2015), has 
also proposed a “choice worthiness function” that would generate reward functions in an 
“appropriate” manner, where appropriateness is defined as “the degree to which the decision-
maker ought to choose that option, in the sense of ‘ought’ that is relevant to decision-making under 
normative uncertainty” (MacAskill 2016). As such, metanormativism is a natural ally of expected 
utility theory and in particular the first axiom of the Von Neumann-Morgenstern utility theorem, 
specifying the completeness of an agent’s well-defined preferences (von Neumann and 
Morgenstern 2007). 
 
Distinct approaches to AI Safety have emerged to define the uncertain scale at which AI systems 
may cause social harm. At one end of this continuum is existential risk (hereafter referred to as x-
risk), i.e. the effort to mathematically formalize control strategies that help avoid the creation of 
systems whose deployment would result in irreparable harm to human civilization. The x-risk 
literature has focused on the “value alignment problem” in order to ensure that learned reward 
functions in fact correspond with the values of relevant stakeholders (such as designers, users, or 
others affected by the agent’s actions) (Soares 2015). Here the reward function serves as a 
representation of stakeholder preferences rather than the AI agent’s own objective function, an 
assumption common in inverse reinforcement learning (Hadfield-Menell 2016). This position is 
also practically adopted by software engineers and tech enthusiasts for whom the uncertain 
specification of human preferences comprise an investment opportunity for new AI systems. The 
following quote from Mark Zuckerberg is illustrative: “I’m also curious about whether there is a 
fundamental mathematical law underlying human social relationships that governs the balance of 
who and what we all care about [...] I bet there is” (Hildebrandt 2019). 
 
The promise of such a function continues to provide guidance for designers and AI researchers 
about what decision procedures are acceptable or unacceptable for the system to follow, 
specifically when the goal state and risk scale are difficult to define (Hadfield-Menell 2019, Irving 
2019). This research agenda prioritizes preference learning, the systematic observation of user 
behavior and choices to learn an underlying reward function, as the most salient form of design 
feedback for filling the gaps in system specification (Hadfield-Menell 2016). As stated by Stuart 
Russell (Russell 2019): 
 
● The machine’s only objective is to maximize the realization of human preferences. 
● The machine is initially uncertain about what those preferences are. 
● The ultimate source of information about human preferences is human behavior. 

 
However, this vision is inadequate for design situations in which human behavior is difficult to 
observe. Reasons for this could be empirical (sparse behavioral signals) or normative (concerns 
about surveillance or behavioral manipulation). 
 
Ontic incomparabilism - respecting value pluralism 
 
Meanwhile, ontic incomparabilism holds that there are fundamental limits to what our predicates 
or semantics can make of the world because there is no objective basis to prefer one definition of 
a concept to another (Barnes 2011). More concretely, even if we knew everything about the 
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universe, there would still be no way to argue that a pile of sand “should be considered a heap” 
after exactly n+1 grains as opposed to after n grains. Ontic incomparabilism therefore claims that 
we cannot ever fully model the world by discovering additional criteria or accumulating sufficient 
information about it as its dynamics may be fundamentally unsuited to model specification. Note 
that this position is distinct from views that the world is impossible for human minds to 
comprehend completely (as has been argued for specific physical phenomena, e.g. quantum 
mechanics) or that the world is impossible to describe accurately. Instead, the claim is that any 
finite number of descriptions or representations cannot exhaust the world’s richness because its 
basic features are not readily discernible, and that there are in principle as many different ways of 
representing the world as there are agents capable of realizing their agency in that world. This 
means that modeling the world robustly would require securing the world’s total cooperation with 
the boundaries being drawn over it. 
 
Ontic incomparabilism has found expression in terms of value pluralism, i.e. that there cannot or 
will never be an ultimate scheme for delineating human values because humans exist in the world 
in a way that cannot be exhaustively represented. This transcends sociological fact (i.e. that people 
hold different beliefs about values, and value beliefs differently) to make an axiological, anti-
monist claim: values are indeterminately varied and incommensurable, and no ethical scheme 
could ever account for the range of values or concerns held by all humans for all time (MacAskill 
2013). Value pluralism is widely adopted by queer theorists who highlight how formal value 
specifications typically exclude certain subpopulations in favor of others (Keyes 2019). For 
example, Kate Crawford has endorsed Mouffe’s (1999) concept of “agonistic pluralism” (Mouffe 
1999) as a design ideal for engineers (Crawford 2016), while Hoffmann argues that abstract 
metrics of system fairness fail to address the hierarchical logic that produces advantaged and 
disadvantaged subjects and thereby disproportionately put safety harms on already vulnerable 
populations (Hoffmann 2019). Mireille Hildebrandt has taken these perspectives to their logical 
extreme and advocates for “agonistic machine learning”, suggesting that the human self should be 
treated as fundamentally incomputible (Hildebrandt 2019). 
 
These conclusions have found support in the field of Computer Supported Cooperative Work 
(CSCW). Presenting them as a central challenge, Ackerman has described the inevitability of the 
“social-technical gap” of computer systems; the inherent divide between what we know we must 
support socially and what we can support technically (Ackerman 2000). This frames the central 
danger in terms of software engineers who neglect certain value hierarchies, either by failing to 
interrogate the context of historical data or external cost biases through design choices that 
moralize existing structural inequalities (Eubanks 2018). The call to value pluralism, as such, is 
not opposed to pragmatism in the form of external mechanisms that regulate how our diverse 
commitments may be reconciled (James 1896), nor to the creation of systems that make use of 
necessarily limited models in pursuit of stable behavior. Rather, as designers compromise the 
public interest through incomplete model specifications that create external costs for society, they 
have merely reframed the central problems of modern political theory (Dewey 1954) and inherited 
the hallmarks of structural inequality. The history of social technology, from the modern census 
to the invention of writing, is saturated with ways in which forms of human identity were 
problematically obfuscated or delimited rather than protected or left undetermined (Benjamin 
2019). This phenomenon underpins foundational concepts of twentieth century social theory 
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(Krais 1993) and deconstructionist critiques of Western philosophy as a “metaphysics of presence” 
(Heidegger 1962). 
 
On this view, any model design requires fundamental political choices about how values of 
relevant stakeholders, including those indirectly affected by the system, result in some value 
hierarchy that may have undesirable consequences for how the benefits and harms of system 
behavior are distributed across society. Correspondingly, the type of feedback most readily 
endorsed by ontic incomparabilists has been refusal, i.e. the explicit rejection of a model 
specification as unsuitable. This has been expressed recently through comparisons of facial 
recognition systems with plutonium (Stark 2019), algorithmic classification with a new form of 
“Jim Code” (Benjamin 2020), and refusal itself with the notion of feminist data practice (Garcia 
2020). However, a major open question is how or whether refusal itself can lead to the articulation 
of a more just and equitable society in the absence of alternative forms of feedback. 
 
Semantic indeterminism - declaring things fuzzy by nature 
 
Finally, semantic indeterminism asserts that the extent to which we can determine the definition 
of a concept is the extent to which the members of a given community agree on that definition. 
Commonly associated with Wittgenstein (Wittgestein 1953), this position emphasizes the rules of 
language-games as defining how we refer to the world and the specific boundaries of a given 
community’s concerns, social tastes, and modes of valuation. To again illustrate this via the Sorites 
paradox: Persians, Romans, and even distinct Greek city-states may use alternative definitions of 
“heap” and thus confidently draw different cutoff points without ontological disagreement. 
Semantic indeterminism does not argue for a radical version of social constructivism according to 
which any claim to describe reality is arbitrary or fictional, e.g. the notion that claims about the 
objective world are impossible. Rather, such claims simply cannot be interpreted outside the rules 
that particular language communities have adopted and refined over time. 
 
Semantic indeterminism can be further illustrated through the formal assumptions of fuzziness, 
which hold that our ways of talking about “the world” admit non-binary variations (e.g. the 
variable age including the values “somewhat young”, “nearly middle-aged”, “centenarian”, or 
“newborn”) that are regulated and modified within distinct language communities or modes of 
expertise. Fuzziness deals with the contingencies at stake in conventional approaches to set 
membership and truth-value. As a mode of reasoning that addresses uncertainty and vagueness, it 
can refer either to the membership of an event in a vaguely defined set--the purview of fuzzy logic 
(Gerla 2016)--or to the indeterminate features of the world itself, to which linguistic terms make 
limited (although meaningful) reference. In other words, fuzziness captures how the imprecision 
of language can be due either to a given community’s epistemic limitations (which result in a form 
of uncertainty and partial knowledge intractable through other forms of logic), or how any 
semantics is a (necessarily) limited picture of the inherently complex and continuous nature of 
reality. 
 
For my purposes, fuzziness makes semantic indeterminism institutionally tractable and amenable 
to elaboration by stakeholders. For example, Lessig’s famous modalities of regulation (laws vs. 
norms vs. markets vs. architecture) show how fuzziness can be distinctively enacted or revisited 
by human forms of infrastructure and decision-making (Lessig 2009). In the context of AI Safety, 
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an exemplary discourse has formed within the Fairness, Accountability and Transparency in 
Computing Systems (FAccT) literature. FAccT research has harvested a multitude of definitions 
and tools aiming to address safety risks by diagnosing and reducing biases across various 
subgroups defined along lines of race, gender or social class (Narayanan 2018). 
 
While scholars have pointed out the critical and mathematical shortcomings of abstract definitions 
for bias mitigation, these are still instrumented in practice as means to resolve fuzziness in 
particular application domains. For example, industry efforts have embraced bias tools to generate 
feedback for equitable outcomes as a means to engender trust in a given system, while global 
efforts aim to codify algorithmic bias considerations into certifiable standards “to address and 
eliminate issues of negative bias in the creation of [...] algorithms” (IEEE 2021). 
 
Still, the tension between eliminating bias and winning social trust reveals the inconsistent 
determinations of what safety means throughout the entire lifecycle, including which norms should 
guide design and use decisions. As some argue, “it is important to acknowledge the semantic 
differences that ‘fairness’ has inside and outside of ML communities, and the ways in which those 
differences have been used to abstract from and oversimplify social and historical contexts” (Rea 
2020). Scholars have also emphasized important semantic differences and connections between 
“individual” and “social” fairness that could help clarify and procedurally reshape the way formal 
fairness criteria are reconciled with policy objectives (Corbett-Davies and Goel 2018, Binns 2018). 
However, incorporating these semantic differences would mean accommodating additional types 
of feedback, such as preference learning to represent what people actually seem to want as well 
as refusal to serve as a check on the system’s tendency to occlude or suppress neglected values. 
Thus, semantic indeterminism does not resolve the normative indeterminacies raised by 
epistemicism and ontic incomparabilism. Instead, fuzziness interprets the limits of language as 
conditioned either on the complexity of the world or our epistemic limitations. Consequently, 
ambiguities of language must be deferred for designers and stakeholders to deal with, rather than 
decided in advance of inquiry. This is clearly exemplified in the EU’s recent proposal for 
regulating AI systems in high-stakes domains, in which the need for “harmonised standards” is 
advocated, stating that “[t]he precise technical solutions to achieve compliance with those 
requirements may be provided by standards or by other technical specifications or otherwise be 
developed in accordance with general engineering or scientific knowledge at the discretion of the 
provider of the AI system.” 
 
Instead, I propose fuzziness as a sociotechnical commitment to AI development as an unavoidably 
iterative, interactive, and above all deliberative process of inquiry. This captures the reality that 
systems’ “core interface consists of the relations between a nonhuman system and a human 
system” (Trist 1981), with various dimensions (e.g. users, citizens, operators, regulators), whose 
construction is hindered by limited knowledge, subject to error, of how key technical innovations 
bear on human contexts. Even carefully-designed formalisms that are sensitive to the implicit 
concerns of human agents are not guaranteed to learn the right preference structures in the right 
way without new forms of surveillance, control, and assigned roles for both humans and the 
systems themselves (Eckersley 2018, Agre 1994). Such system setups are limited in three ways: 
(1) they can never formalize everything, and require subsequent developers to organize around 
them; (2) they attempt to resolve (and thereby confuse) content and procedure from the get-go, 
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rather than treat the sociotechnical development of AI systems as a dynamic problem; and (3) they 
are limited in addressing wider spectra of values across distinct peoples and cultures. 
 

 
Relationship between types of vagueness, the corresponding normative standard, and the types of 

feedback each prioritizes. 
 
4.3 A Framework of Commitments for AI Development 
 
As outlined in the previous section, matching safety principles with technical development 
procedures is fraught with hard choices. There are inherent sources of vagueness about what safety 
means, how it is formalized, and how it is enacted in an AI system. As a result, indeterminacies 
are encountered through possible design interventions that are technically comparable but 
normatively incommensurable. If left unaddressed or underconsidered, these may lead to harms, 
reinforcement of structural inequalities, or unresolved conflict across different stakeholders. The 
section on vagueness thus analyzed a broad spectrum of technical, governance and critical 
scholarship efforts to address the safety of AI systems, and how these fall in three canonical 
approaches to vagueness. For each lens, I determined the affordances and limitations of their 
associated cybernetic feedback modalities and the interventions that can be done with these to 
safeguard an AI system or improve the practices that design or govern it. 
 
In this section I integrate these lessons, arguing that designers should address hard choices by 
incorporating appropriate types of stakeholder feedback into the development and governance of 
the system. I also build on those lessons by explicating the role of democratic dissent as a critical 
additional form of cybernetic feedback in AI system development and governance, as motivated 
in the section presenting a sociotechnical lexicon for AI. Together, the facilitation of cybernetic 
feedback channels constitutes substantive commitments to the governance of the domain in which 
the system will operate. I thus delineate a set of commitments that would frame technical 
development as deliberative about the system’s normativity. This recasts the traditionally linear 
“AI development pipeline” process as dynamic and reflexive, comprising cybernetic design 
principles for AI governance. 
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The cyclical practices in AI system development. Orange circles denote the occurrence of “hard 
choices”, moments where normative indeterminacy arises and which provide opportunities for 

deliberation in the form of machine politics. This may include revisiting and altering 
sociotechnical specification. 

 
The resulting Hard Choices in AI (HCAI) Framework, presented in Figure 1, contains four 
cybernetic practices: sociotechnical specification, featurization, optimization, and integration. 
These activities and corresponding commitments will be introduced and discussed in the following 
subsections. I stress that this framework is a conceptual depiction of how to deliberate critically 
and constructively about normative indeterminacy. The framework may however help to identify 
concrete design approaches that can put commitments in action. In many instances, regulatory 
measures may form either an existing source of constraints and requirements in the development 
process, or be informed by it. I do not advocate for particular law or policy interpretations, as these 
are just as contextual as design approaches, but see such translation work as a natural extension of 
this chapter. My framework naturally connects with and further concretizes the ‘AI system 
lifecycle’ as introduced in the OECD AI Principles (OECD 2021). 
 
Sociotechnical Commitments 
 
Developers must diagnose situations of normative indeterminacy while remaining attentive to the 
fundamental limitations of technical logics to resolve them. This necessitates an “alertness” to all 
the factors responsible for the situation, including social, affective, corporeal, and political 
components (Amrute 2019). AI systems are not merely situated in some pre-existing 
sociotechnical environment. Rather, the development of the system itself creates novel situations 
that intervene on social life, reflected in the distinction between pre-existing, technical, and 
emergent bias (Friedman 1996). These require their own formal treatment (Dobbe 2018). 
 
Furthermore, major stages of AI system development require feedback channels for stakeholders 
to assign appropriate meaning to possible specifications. In particular, we emphasize the need for 
dissent mechanisms to help surface parity of different design options and their related value 
hierarchies. This permits indeterminacies to be diagnosed and resolved via machine politics rather 
than the whims of designers, systems engineers, or some other narrowly technical constituency. 
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As Anderson emphasizes, in contexts where a policy is set by a majority or powerful player, 
“[s]uch dissent is needed not simply to keep the majority in check, but to ensure that decision-
making is deliberative—undertaken in an experimental spirit—rather than simply imposed” 
(Anderson 2006). These channels make AI development an opportunity for communities to 
reimagine their own moral boundaries. 
  
Developers must also acquire practical reasoning to navigate across sociotechnical approaches to 
a problem and determine specifications accordingly. A specification that might make sense in one 
context may not make sense for another, either in terms of feature detection (e.g. facial vs. 
handwriting) or integration scale (municipal oversight vs. nationwide surveillance). Developers 
must recognize the differences between these and internalize standards that guide the 
indeterminate application of abstract principles to the concrete needs and demands of the situation, 
in a manner responsive to stakeholder feedback. These comprise distinct forms of judgment: 
formulating the problem, evaluating system criteria, and articulating the performance thresholds 
that the system must meet in order to be safe. We agree with Philip Agre that this engagement 
requires “reflexive inquiry [that] places all of its concepts and methods at risk [...] not as a threat 
to rationality but as a promise of a better way of doing things” (Agre 1997). 
 
At distinct moments of formal specification, we ask: (1) at what development stages and associated 
cybernetic practice might indeterminacies manifest and what forms may parity take? (2) in what 
concrete ways are feedback mechanisms/interventions needed to address these issues? (3) what 
form does the associated canonical dilemma take? (4) what forms of judgment are needed to 
interpret stakeholder feedback and effectively manage the indeterminacies and dilemmas that the 
system generates? These points are presented in Table 2. 
 

 
Relationship between cybernetic practices, normative interventions, hard choice moments 
requiring feedback, and forms of sociotechnical judgment needed to interpret feedback. 

 
Sociotechnical Specification (engaging the “stakes” and forms of agency) 
 
The HCAI Framework does not define a determinate start of AI development, but it does require 
the initial determination of how the problem is to be formulated and tackled, mechanisms for 
improving this determination through feedback and dissent, and what stakeholders are already 
implicated or should be involved in problem formulation. Moreover, not all normative dimensions 
can be foreseen upfront, as hard choices may surface in subsequent development considerations. 
Aware of these historical, critical, and empirical complexities, we center the need for 
sociotechnical specification, i.e. the process of facilitating the different interests relevant in 
understanding a situation that may benefit from a technological intervention. Developers must 
clarify what the system is actually for--whose agency it is intended to serve, who will administer 
it, and what mechanisms are necessary to ensure its operational integrity. The sociotechnical 
specification facilitates integral interventions to determine and resolve what safety means 
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(semantic), how it is formalized (epistemic), and how it is enacted in a system (ontic). This 
facilitation cannot fall exclusively on the plate of designers or developers. 
 
To appropriately surface parity throughout sociotechnical specification, the following challenges 
must be taken up: (1) negotiate a program of requirements and conditions on both process and 
outcomes; (2) determine roles and responsibilities across stakeholders; (3) agree on ethics and 
modes of inquiry, deliberation, and decision-making. In sociotechnical specification, one needs to 
understand the context of integration. This includes the positions of different stakeholders with 
their reasoning and how these relate to each other. It requires an understanding or anticipation of 
the impacts on social behavior, broader societal implications, and how different solutions would 
sit within existing legal frameworks. This yields the following dilemma: 
 
Inclusion: What stakeholders are directly involved or indirectly affected by issues and solution 
directions considered? How is power and agency assigned along the process of development and 
integration? How are the boundaries of the AI system and its implications determined?  
 
Resolution: What deliverables or outcomes are expected or envisioned for the project? What 
variables and criteria are needed to measure these outcomes? What ethical principles and decision-
making process is needed to achieve resolution across different stakeholders? What conditions will 
allow both supportive and dissenting groups to express their concerns and contribute meaningfully 
to the development and integration of a resulting system? 
 
The key hard choice for a successful AI system is to include sufficient perspectives and distribute 
decision-making power broadly enough in development to cultivate trust and reach a legitimate 
consensus, while resolving the situation in a set of requirements and a process with roles and 
responsibilities that are feasible. While we propose these diagnostic and procedural questions for 
AI system applications broadly (and prospectively for more computationally intensive systems in 
the future), here we focus our attention on contexts that are safety-critical by nature or play an 
important public infrastructural role. This includes systems that integrate on a global scale, 
interacting with a wide spectrum of local and cultural contexts. 
 
Solidarity is necessary to resolve this hard choice by specifying warranted interventions for the 
system’s subsequent development. The criterion for these interventions as warranted is twofold. 
First, indeterminacies that would necessarily prevent the system’s successful operation must be 
resolved in advance. Second, indeterminacies that do not threaten successful operation must be 
deferred for stakeholders to evaluate and interpret according to their own involvement and 
concerns. In this way, interventions will align abstract development commitments with specific 
possible design decisions, given the particularities of the situation and the most urgent needs of 
relevant stakeholders. Indeed, the three subspecies of hard choices described below do not 
comprise a linear, abstract checklist so much as forms of situational alertness to the possibility of 
parity throughout the iterative development process. Ideally, the initial problematization stage 
identifies all the strategies and modes of inquiry necessary to track and resolve indeterminacies. 
This includes an appropriate assignment of roles and responsibilities across all stakeholders. 
 
Solidarity should not be understood as conflating the interests of designers and stakeholders. 
Rather it motivates the former to create channels for stakeholders to actively determine, rather than 
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passively accept, the system specification (Unger 1983). Here we endorse Irani et al’s vision for 
postcolonial computing, which “acknowledge[s] stakeholders as active participants and partners 
rather than passive repositories of ‘lore’ to be mined” (Irani 2010). 
 
Featurization (epistemic uncertainty) 
 
AI systems generally represent a predictive, causal or rule-based model, or a combination thereof, 
that is then optimized and integrated in the decision making capabilities of some human agent or 
automated control system. As such, it has to answer the question ‘what information it needs to 
“know” to make adequate decisions or predictions about its subjects and notions of safety?’. As 
the model represents an abstraction of the phenomenon about which it makes predictions, the 
chosen model parameterization and the data used to determine parameter values delimit the 
possible features and value hierarchies that may be encoded. If not anticipated and accounted for, 
this may deny stakeholders the opportunity to evaluate design alternatives and force potentially 
harmful and unsafe hard choices. In this way, featurization is an epistemic intervention on the 
indeterminacies that may be present or latent in the context that precedes or follows system 
operation. 
 
To surface the parity at stake in featurization, the following challenges must be taken up: (1) make 
explicit and negotiate what can and cannot be modeled and inferred, crystallized in the 
underfeaturized/misfeaturized hard choice; (2) engage stakeholders to challenge and inspire 
modeling assumptions to ensure application aligns with contextual expectations; (3) validate the 
design with stakeholders to anticipate possible value conflicts that can arise due to the gap between 
model and world and plurality of values during deployment, preparing to revisit the modeling tools 
and methodology. Featurization specifies the computational powers of the system: how the limits 
of what it can model determine its assumptions about people and the broader environment, and 
what kinds of objects or classes are recognizable to it. At a minimum, stakeholders must resolve 
the following dilemma:  
 
Underfeaturized: What possible input variables or model parameterizations do we choose not to 
include? What features will the model not be able to learn that may in fact be open to deliberative 
re-evaluation? 
 
Misfeaturized: What environmental features or actions do we choose to parameterize, and with 
what complexity? What forms of dissent will be foreclosed by elements of computation, and for 
whom would this matter? 
 
The danger lies in failing to adopt model parameters that are both computationally tractable and 
normatively defensible. Given finite time and material resources as well as the vested interests of 
specific stakeholders, this may err towards under- or mis-specification in ways that developers 
cannot perfectly anticipate. The spirit of the hard choice is crystallized differently in distinct 
algorithmic learning procedures. For example, the division between model-based and model-free 
reinforcement learning essentially bears on what kind of control system is being designed and, 
respectively, whether this specification establishes a permissible space in which a given problem 
can be formulated and represented causally or merely defines permissible predictive signals (e.g. 
rewards, elements, qualities) within the environment. At least some corresponding domain features 



68 

may be made computationally tractable and suited to optimization despite being experienced by 
stakeholders as incommensurable. Or some features may be technically obfuscated despite their 
mutual comparability and integrity in lived experience. An often returning example of this 
dilemma is the need to interpret or explain the decision-logic of an AI model. While deep learning 
models may offer a higher performance, this need may lead to opting for a lower complexity model 
that has more potential for forms of accountability. 
 
The model must be capacious enough to represent the nature of the environment in a way that 
safeguards stakeholders’ interests. But its training must also be constrained enough to be tractable, 
guarantee performance (Achiam 2017), and preserve privacy boundaries. Imposing modeling 
constraints necessarily creates technical bias, which may take away space for stakeholders to 
express or protect their own specific values in terms of the phenomena permitted or excluded by 
the model’s system boundaries (Dobbe 2018). There is already some technical work 
acknowledging this as a formal dilemma with no optimal solution in the context of reinforcement 
learning (Choudhury 2019, Yu 2019). But the deeper sociotechnical point is that the criterion for 
these constraints, which entail a choice of the moment at which a model must remain technically 
ignorant or intentionally suboptimal, must be specified in terms of a commitment to the self-
determination of stakeholders. 
 
Featurization requires context discernment, the disqualification of specific features and modeling 
choices that, while technically proficient, are judged to be sociotechnically inappropriate within 
the problem space at hand. Here we draw from (Dreyfus 2011): “The task of the craftsman is not 
to generate the meaning, but rather to cultivate in himself the skill for discerning the meanings 
that are already there.” Featurization is about anticipating how the model would interact with the 
context of deployment, how else it could be (mis)used, what bias issues may arise during training, 
how to protect vulnerable affected groups, and how learned objective functions may generate 
externalities. In the event no consensus is reached and dissent persists, the option of not designing 
the system should be preserved (Baumer 2011). 
 
Optimization (semantic indeterminacy) 
 
The parameters of the system’s internal model must be further determined by performing some 
form of optimization. This determines the input-output behavior of the model and how it will 
interact with human agents and other systems. Optimization extends across the design stage (e.g. 
training an algorithm) and implementation (e.g. finetuning parameters) and answers the question 
‘what criteria and specifications are considered to measure and determine whether a system is safe 
to integrate?’. Depending on the chosen representation, such optimization can either be performed 
mathematically, done manually through the use of heuristics and tuning, or some combination 
thereof. For mathematical optimization, the recruitment of historical and experimental data is 
needed to either (a) infer causal model parameters (e.g. for system identification, an inference 
practice common in control engineering (Guo 2018), (b) infer parameters of noncausal 
representations, or (c) iteratively adjust parameters based on feedback (as in reinforcement 
learning). The objectives and constraints and the choice of parameters constitute a semantic 
intervention on how the identification of specific objects relates to the forms of meaning inherited 
by and active in the behavior of stakeholders themselves. 
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Therefore the following challenges must be taken up: (1) assess the extent and limitations with 
which the optimization criteria and procedure can translate and respect specifications, crystallized 
in the validation/verification tradeoff; (2) codify a validation procedure for empirical criteria that 
conforms to stakeholders’ specific concerns, addressing specifications not covered through 
mathematical optimization; (3) adjudicate and modify verification and validation strategies over 
time as indeterminacies of featurization and integration continue to be highlighted. To declare a 
system safe it must go through a process of verifying and validating its functionality, both of itself 
as an artifact as well as integrated in the context of deployment. This is done with the help of 
engineers and domain experts who interface between the problem the system is meant to solve and 
the workings of the system itself. Here, the minimum requirements for safe outcomes are impartial 
assessments of the following questions/dilemma: 
  
Verification: Does the system meet its specifications (was the right system built)? Are the needs 
of prospective users being met? Is the system able to predict or determine what it was meant to? 
  
Validation: How does the system perform in its empirical context (was the system built right)? 
Does the system behave safely and reliably in interaction with other systems, human operators and 
other human agents? Is there risk of strategic behavior, manipulation, or unwarranted surveillance? 
Are there emergent biases, overlooked specifications, or other externalities? 
 
This hard choice poses several concrete challenges for development. First, systems that are mostly 
optimized in a design or laboratory environment fall inherently short as their data cannot fully 
capture the context of integration. In the development of safety-critical systems, this design issue 
is acknowledged by the need to minimize any remaining errors in practice (through feedback 
control (Aastrom 2010) and putting in place failsafe procedures and organizational measures as 
well as promoting a safety culture. Second, accounting for interactions with other systems and 
human agents is not to be taken lightly and is heavily undervalued in current AI literature 
(Parasuraman 1997). For example, the overspecification of environments through simulation (as 
is now popular in the development of autonomous vehicles) may backfire if the optimization 
scheme overfits the model for features or elements that are not reflective of the context of 
integration. Third, a lack of validation and safeguarding systems in practice can result in disparate 
impacts (Barocas 2016) and failures. This is especially pertinent for underrepresented (and 
undersampled) groups that are often not properly represented on AI design teams (West 2019). For 
systems that are “optimized in the wild” with reinforcement and online learning techniques, these 
considerations are even more acute, although recent efforts have proposed hybrid methods that can 
switch from learning to safety-control to prevent disasters (Fisac 2018). This technical point, which 
mirrors the well known bias-variance tradeoff, becomes sociotechnical at the moment when the 
choice of optimization procedure is interpreted from the standpoint of jurisprudence applicable to 
the domain. 
 
The cultivation of stewardship is needed to reconcile the technical problematics of value alignment 
with optimization procedures capable of providing qualitative assurances to the particular 
sociotechnical stakes of the domain, whether physical, psychological, social, or environmental. 
System engineers must internalize an understanding of how the finitude of their teams’ tools and 
procedures bears on the urgency felt by stakeholders towards objects of sociotechnical concern, 
compelling attention to how sparse team resources should be allocated and complemented, rather 
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than to abstract notions of accuracy or efficiency. Only in this way can under- or mis-featurization 
risks be managed and mitigated without perverting intended stakeholders’ semantic and moral 
commitments. The team must decide: what internal verification strategies might we need in order 
to safeguard the validations already endorsed by legal inquiry? Here “quality management” must 
be elevated to the contestation and adjudication of how (possibly pluralist) values are 
operationalized without compromising parity. 
 
Integration (ontic incomparabilism) 
 
Finally, as AI systems are rapidly introduced into new contexts, new forms of harm emerge that 
do not always meet standard definitions. In addition, the diversity of stakeholder expectations, as 
well as of environmental contexts, may challenge specifying safety for systems that are deployed 
across different jurisdictions. At a minimum, those developing and/or managing the system must 
specify mechanisms to identify, contest, and mitigate safety risks across all affected communities, 
as well as who is responsible for mitigating harms in the event of accidents. This can be done via 
general rules and use cases of safety hazards that identify terms of consent, ensure interpretive 
understanding without coercion, and outline failsafe mechanisms and responsibilities. Hence, such 
conditions should spell out both the technical mechanisms as well as the processes, organizational 
measures, responsibilities, and cultural norms required to prevent failures and minimize damage 
and harm in the event of accidents. Here we appropriate tradeoffs already identified by social 
theorists regarding the moral authority and political powers of social institutions (Flew 2009). This 
dimension serves as a decisive ontic intervention of what kind(s) of agency stakeholders possess 
as far as the system is concerned. 
  
To safeguard parity at integration, the following challenges have to be taken up: (1) assess what 
kind(s) of agency all affected stakeholders have if the system fails, crystallized in the exit/voice 
hard choice; (2) establish open feedback channels by which stakeholders express their values and 
concerns on their terms; (3) justify these channels as trustworthy through regular public 
communication and updates to the design and/or governance of the system. Resolving these 
challenges requires representative input and mitigation of issues for the following dilemma: 
  
Exit: Are stakeholders able to withdraw fully from using or participating in the system? Is there 
any risk in doing so? Are there competing products, platforms or systems they can use? Have 
assurances been given about user data, optimization, and certification after someone withdraws? 
  
Voice: Can stakeholders articulate proposals in a way that makes certain concerns a matter of 
public interest? Are clear proposal channels provided for stakeholders, and are they given the 
opportunity to contribute regularly? Are the proposals highlighted frequently considered and 
tested, e.g. through system safety? Are stakeholders kept informed and regularly updated? 
 
To the extent that proposed value hierarchies remain indeterminate beyond featurization and 
optimization, sociotechnical integration challenges systems to handle the multiple objectives, 
values, and priorities of diverse stakeholders. At stake here are the unexpressed moral relationships 
of subpopulations not originally considered part of the potential user base, who must bear the “cost 
function” of specification, as well as other forms of agency (animal, environmental, cybernetic) 
alien to yet implicated in system specification and creation. At a minimum, system administrators 
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must acknowledge that users will interpret the system agreement both as economic (acting as a 
consumer) as well as political (acting as a citizen). The developments on social media in recent 
years have taught us that these roles cannot be seen as mutually exclusive. The increasing 
dependence of the public on these platforms and their AI systems strengthens the need for voice 
(as exit options have become increasingly difficult or unlikely). 
 
Administrators must cultivate public accountability to deal with these challenges, ensuring both 
Voice and Exit remain possible for stakeholders such that some criterion of trustworthiness is 
maintained. That is, anyone can leave the service contract if they want, but enough people choose 
to remain because they believe in their ability to express concerns as needed. Trustworthiness lies 
in supporting stakeholders’ belief in their ability to exert different kinds of agency as they see fit, 
either within the system (by dissenting to its current mode of operation) or outside it (by choosing 
it through active use). This sociotechnical balance must hold regardless of the specific commitment 
being made. For example, service providers may specify some channel by which vulnerable groups 
can opt out of a publicly-operated facial recognition system (preserving Exit), or supply private 
contractors with a default user agreement that must be relayed to anyone whose data will be used 
by the system (preserving Voice). Either way, administrators must ensure they treat people both 
as respected consumers (a customer, client, or operator treated more or less as a black box) as well 
as citizens (a subject with guaranteed rights, among them the right to dissent to relevant forms of 
political power) in the context of the terms for system integration. Failure to have meaningful exit 
or voice can motivate collective action to reshape power relationships (Hirschman 1970), a 
phenomenon that has recently manifested when pushing back against harmful AI systems 
(Crawford 2019). 
 
4.4 Implications and Discussion 
 
HCAI serves as a systematic depiction of the normative risks and sociotechnical gaps at stake in 
any AI system. But how should developers respond when examining particular proposed or 
existing systems? Here I present the normative implications of HCAI in terms of practical 
recommendations that go beyond existing governance and performance standards. I identify 
opportunities for policymakers, AI designers, and STS scholars to learn from each others’ insights 
and adopt a cohesive approach to development decisions. 
 
Expand the boundary of analysis to include relevant sociotechnics - systems, organizations and 
institutions 
 
Engineering and computer science disciplines have long tradition of working with “control 
volumes”, which are mathematical abstractions employed to render problems and their solutions 
in terms of technical terms (Li 2007). In doing so, they allow a designer to decontextualize, 
depoliticize and ignore the history of a problem (Kadir 2021). 
 
While often done in a more controlled context, the sociotechnical complexity and normative stakes 
of AI systems engaging in sensitive social and safety-critical domains requires a more 
comprehensive lens. An algorithm or AI system alone cannot engage with its inherent normativity. 
In contrast, studies in systems safety have shown that safety is inherently an emergent property 
that “arises from the interactions among the system components” (Leveson 2012). This requires a 
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system perspective that includes the human agents interacting with a technology (Green 2019), as 
well as how it is situated with respect to organizational processes (von Krogh 2018) and cultural 
and institutional norms (Gasser and Schmitt 2020). Such a systems lens also provides a more 
comprehensive starting point for controlling for safety, which is done by “imposing constraints on 
the behavior of and interactions among the components” of a system (Leveson 2012). This lens 
also explains how vulnerabilities of AI systems originate from across these components and system 
interactions, which corroborates insights from computer security that systems cannot be secured 
by addressing technical/mathematical vulnerabilities alone (Crawford et al. 2019, Carlini et al.). 
Lastly, a broader systems lens will be vital in understanding to what extent intended standards for 
AI systems can lean on general principles versus contextual needs and stakes specific to the domain 
of application. AI developers can lean on a long history in systems engineering of analyzing, 
modeling and designing sociotechnical systems, which should go hand-in-hand with a multi-actor 
approach (de Bruijn and Herder 2009). 
 
Confront the choices and assumptions behind the AI system 
 
Rather than addressing the limitations of a formalization itself, an honest encounter with normative 
indeterminacy deserves an account of the normative assumptions behind it and their implications. 
Recently, various scholars have advocated about the dangers of abstraction in AI systems (Selbst 
2019), and pointed to the dangers of how imposing such abstractions can reify inequities resulting 
from institutional racism (Benjamin 2019) and harm marginalized communities (Bender 2021). 
Put bluntly, the choice of capturing everything in terms of an AI model and objective function is 
political. Cybernetic practices should make explicit where the boundary for acceptable 
formalization lies and what forms of feedback and evaluation are needed to safeguard their 
integration. Apart from their role in formalizing, modeling choices come with their own 
externalities. An inverse reinforcement learning procedure inherently requires the observation of 
detailed human behavior which might violate privacy norms (Raji and Dobbe 2020). And deep 
learning architectures are synonymous with extensive data gathering, which challenges privacy as 
well as environmental norms (Dobbe et al. 2019). 
 
Orient development and governance towards a multi-actor approach with “problem and solution 
spaces” 
 
As De Bruijn and Herder argue, in addition to a more techno-rational systems lens, one needs to 
take into account the effects of different intentions of actors involved in or affected by a system 
(De Bruijn and Herder 2009). As we saw in our vagueness analysis, actors may have different 
lived realities, languages or epistemic perspectives and, as a result, conflicting interests or 
incommensurable demands. Generally speaking, the actor perspective acknowledges and 
conceptualizes the dependencies between actors, sometimes captured in an “issue network” 
(Borzel 1998), and develops the “rules of the game” or governance mechanisms needed to satisfy 
all actors and manage the system adequately. While it is obvious that the system and actor 
perspective should at least happen in parallel and be in conversation, opinions vary on how 
integrated they should be, which in itself is a matter of normative indeterminacy. In this paper we 
argue that diagnosing and grappling with normative indeterminacy (or providing design space for 
parity) requires cybernetic feedback, which we specify both at the system (dynamical feedback) 
and at the actor level (feedback to renegotiate what abstractions and procedures are necessary to 
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safeguard a system). The iterative nature of dealing with emergent hard choices in AI system 
development, requires an iterative approach that also revisits the stakes and consensus reached 
among actors. As such, AI safety can only emerge through a reciprocal relationship between 
system development and governance. 
 
Complex multi-actor problems are often called wicked problems, especially when they are subject 
to normative indeterminacy: “Wicked problems have incomplete, contradictory, and changing 
requirements, and solutions to them are often difficult to recognize as such because of complex 
dependencies” (De Bruijn 2009). Put differently, “they rely upon elusive political judgment for 
resolution. (Not “solution.” Social problems are never solved. At best they are only re-solved--
over and over again.) [..] The formulation of a wicked problem is the problem!” (Rittel 1973). At 
a minimum, a safety-critical context requires an honest account of the problem and solution 
spaces, which elaborate the different perspectives on the problem and its solution by various 
actors, as a basis for trying to reach broad consensus (De Haan 2015). 
 
Acknowledge the connections between specification and political interests 
 
Because the value hierarchy specified for and designed into a system will determine the space of 
actions available to it (as well as those that the system forecloses), it is crucial to acknowledge and 
account for the power and elevated status of design work (Irani 2016). This means recognizing 
developers’ tendencies to prioritize certain actors and networks over others. Haraway (Haraway 
1988), Harding (1986), and other critical scholars would argue that we cannot escape having some 
agenda: researchers are themselves situated in the social world they study. As such, technology 
development is inherently political and requires forms of accountability (Wagner 2020). Pioneers 
in participatory design argue that conflicts should be expected and that “[i]t’s not the IT designer’s 
job to cover up or try to solve political conflicts that surface [...] it is their job to develop different 
design visions and assess their consequences for the affected parties” (Bodker 2009). However, 
there are recent concerns that design methods using participation as a form of accountability are 
increasingly co-opted and stripped of their essence (Bodker 2018, Bannon 2018). 
 
However, reducing political reflection to the role of the “developer” is too narrow to adequately 
capture the implications for specification. Just like other actors, developers are embedded in a 
network and subject to power differentials themselves. Understanding how broader hierarchies of 
power both promote and constrain certain problem formulations is necessary to determine viable 
strategies for promoting system safeguards. Today, much AI research and development, system 
implementation and management, as well as computational and software infrastructure is in the 
hands of a small number of technology companies. As Gürses and Van Hoboken argue, the move 
of tech companies to offer software engineering tools and data provision in service libraries and 
APIs has made the development of “values by design” an elusive task, and enabled new economic 
feedback loops that, when implemented at scale, drive new forms of inequality across social groups 
(Gürses and Van Hoboken 2017, Kostova 2020). We believe that real success in safeguarding 
high-stakes systems will require forms of oversight and dissent that support machine politics and 
respond to emergent safety hazards through citizen deliberation, especially for AI systems 
developed and deployed by the private sector and state actors. 
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4.5 Conclusion 
 
My framework is strongly influenced by the classic work of Philip Agre, which aimed to have AI 
practitioners and designers build better AI systems by requiring “a split identity - one foot planted 
in the craft work of design and the other foot planted in the reflexive work of critique”. While I 
embrace the spirit of Agre’s work, I also believe that the critical applications of today’s AI systems 
require a new lens that can see beyond technical practices, and reframes the inherently 
interdisciplinary practice of AI development as critical in its own right. Apart from reflexivity, 
such a critical practice includes the forms of feedback that the domain of application asks for. The 
technical work done by AI practitioners plays a necessary but not sufficient part in development. 
It must be compensated by efforts to facilitate stakeholders’ ability to be “full and active 
participants,” while “the tools and techniques for doing this are dependent on the situations within 
the workplace...steer[ing] toward understanding different, pluralistic perspectives of how we think 
and act” (Greenbaum 1992). As such, I prioritize and label the centering of stakeholder safety 
concerns and hard choices to guide and inform AI development as cybernetic practices. I view this 
paper as a preliminary for what forms these practices might take in particular development 
domains, and will pursue this effort in future work. 
 
My lodestar in this project is the intuition that clarifying the sociotechnical foundations of safety 
requirements will lay the groundwork for developers to take part in distinct dissent channels 
proactively, before the risks posed by AI systems become technically or politically 
insurmountable. In this way, incorporating dissent within development pipelines will provide 
opportunities for machine politics, i.e. deliberation about how citizens and public tribunals may 
want to reform the domain itself, rather than merely guarantee the AI system conforms to pre-
existing normative criteria. I anticipate that cybernetic practices will need to be included within 
the training of engineers, data scientists, and designers as qualifications for the operation and 
management of advanced AI systems in the wild. Ultimately, the public itself must be educated 
about the assumptions, abilities, and limitations of these systems so that informed dissent will be 
made desirable and attainable as systems are being deployed. Deliberation is thus the goal of AI 
Safety, not just the procedure by which it is ensured. I endorse this approach due to the 
computationally underdetermined, semantically indeterminate, and politically obfuscated value 
hierarchies that will continue to define diverse social orders both now and in the future. Democratic 
dissent is necessary for such systems to safeguard the possibility of parity throughout their 
development and permit deliberation about the contours of our own values. To paraphrase 
Reinhold Niebuhr (Niebuhr 1986), AI’s capacity for alignment makes machine politics possible, 
but its inclination to misalignment makes machine politics necessary. 
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5. CONCLUSION: THE (RE)BIRTH OF THE CLINIC?    

It is one thing to justify and analytically present distinct modes of deliberation about how AI 
systems could be designed, built, and used to reorganize social domains. It is another to ask: how 
could these modes’ maturation be facilitated, nurtured, and distinguished from each other in 
practice? In what kind of institutional space could designers, planners, commissioners, and citizens 
work together to reflect on and decide what AVs should be able to do and not do? While these 
questions are not tackled in the preceding chapters empirically or theoretically, I briefly address 
them here as a natural extension that outlines a direction I foresee for my work post-PhD. 

 

The problem space of machine ethics. 

At present, the spaces in which AI systems are intellectually theorized, mathematically modeled, 
technically developed, and publicly evaluated are either scattered or neglected. While activists 
have achieved limited success highlighting urgent risks present in deployed systems, we lack a 
systematic means of appraising future systems as well as the resources to imagine them differently. 
This status quo leaves designers without the disciplinary tools to change them, those familiar with 
the proper tools without access to the affected systems, activists without the support to take full 
advantage of either, and regulators without the criteria to oversee decisions. 

Other fields like law and medicine have grappled with defining good outcomes in the context of 
domain expertise, and struggled to resolve them in institutional practice. Historically, this practice 
took the form of a clinic: a dedicated social space in which students learned to interface directly 
with the stakes and impacts of real-world problems. We might contrast this with a “best practices” 
approach that tries to make a system conform to unquestioned metrics, rather than deliberating to 
define and fine-tune metrics that make sense in context. An AI clinic would offer a shared 
institutional space where those who know the systems, the tools, and the domain stakes could come 
together. Through this new social space, the practitioners, the researchers, the representatives, the 
tools, and the systems would be given the resources to deliberate as needed. 

Tech clinics would also serve a second goal of cross-pollinating agendas at the frontier of technical 
AI Safety and fairness research. At present, these subfields remain autonomous specializations for 
graduate students, despite their goal of building systems that reflect common human values like 
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autonomy, self-determination, and a shared sense of dignity. Moreover, their grasp of 
sociotechnical issues remains a work-in-progress, resting on problematic metaphors for agency 
and social order. By serving a translational role, the clinic could bridge the messiness of actual 
social domains with cutting-edge research, in the process professionalizing the next generation of 
practitioners into deliberating about actual (rather than toy) problems. 

Different fields arrived at the “clinic” model for their own reasons. They learned distinct lessons 
about what kind(s) of social spaces are necessary for resolving certain kinds of problems in 
practice. They also had to translate between different forms of knowledge to diagnose these 
problems in the first place (Bonner 2000). Above all, the interface between technical tools and 
social problems cannot be assumed: it must be questioned, examined, and evaluated with both 
expert oversight and practical sense. But across fields, the role of the clinic is to: 1) make sense of 
and come to a decision about a particular social problem in practice; 2) translate between distinct 
knowledge representations and actual problems, in order to better articulate their stakes. 

At present, what a dedicated clinic space for AI treatment might look like remains unclear. While 
there is a growing tech ethics curricula drawing on real-world datasets (Skirpan et al. 2018), most 
computer science graduate students gain practical experience through competitive internships at 
for-profit companies. This talent pipeline is nurtured by companies in pursuit of meritocratic 
solutions and short-term gains rather than extended reflection or societal investment. As a result, 
the requisite deliberation on domains or prospective types of feedback that design work would 
need to function well is hindered. AI clinics would need to interface between graduate students, 
non-profits, regulators, tech activists, and startups to specify the problem statement of a given AI 
system—its purpose, who it is for, and the risks entailed in its optimization. Through simultaneous 
support in a dedicated social space, these distinct positions could jointly confront misspecification 
problems and index technical choices within the wider context of development. This would include 
relevant business models, legal standards, and graduate certifications in fair, safe, or accountable 
system design.    

What would it mean to include clinical engagement and some form of residency as an option for 
graduate students interested to specialize in applied machine learning or industry work after their 
PhD? How is the public interest involved? How might clinics change, subvert, or augment the 
mission of AI research as a whole? These are the questions raised by my dissertation research, and 
which I intend to investigate with collaborators in the coming years. 
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