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Physical simulations have influenced the advancements in engineering, technology, and

science more rapidly than ever before. However, it remains challenging for effective and

efficient modeling of complex linear and nonlinear material systems based on phenomenological

approaches which require predefined functional forms. The goal of this dissertation is to

enhance the predictivity and efficiency of physical simulations by developing thermodynamically

consistent data-driven computing and reduced-order materials modeling methods based on

emerging machine learning techniques for manifold learning, dimensionality reduction, sequence

learning, and system identification.
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For reversible mechanical systems, we first develop a new data-driven material solver

built upon local convexity-preserving reconstruction to capture anisotropic material behaviors

and enable data-driven modeling of nonlinear anisotropic elastic solids. A material anisotropic

state characterizing the underlying material orientation is introduced for the manifold learning

projection in the material solver. To counteract the curse of dimensionality and enhance the

generalization ability of data-driven computing, we employ deep autoencoders to discover the

underlying low-dimensional manifold of material database and integrate a convexity-preserving

interpolation scheme into the novel autoencoder-based data-driven solver to further enhance

efficiency and robustness of data searching and reconstruction during online data-driven com-

putation. The proposed approach is shown to achieve enhanced efficiency and generalization

ability over a few commonly used data-driven schemes.

For irreversible mechanical systems, we develop a thermodynamically consistent machine

learned data-driven constitutive modeling approach for path-dependent materials based on

measurable material states, where the internal state variables essential to the material path-

dependency are inferred automatically from the hidden state of recurrent neural networks. The

proposed method is shown to successfully model soil behaviors under cyclic shear loading using

experimental stress-strain data.

Lastly, we develop a non-intrusive accurate and efficient reduced-order model based on

physics-informed adaptive greedy latent space dynamics identification (gLaSDI) for general high-

dimensional nonlinear dynamical systems. An autoencoder and dynamics identification models

are trained simultaneously to discover intrinsic latent space and learn expressive governing

equations of simple latent-space dynamics. To maximize and accelerate the exploration of

the parameter space for optimal model performance, an adaptive greedy sampling algorithm

integrated with a physics-informed residual-based error indicator and random-subset evaluation is

introduced to search for optimal training samples on the fly, which outperforms the conventional

predefined uniform sampling. Compared with the high-fidelity models of various nonlinear

dynamical problems, gLaSDI achieves 66 to 4,417× speed-up with 1 to 5% relative errors.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Physics-Constrained Data-Driven Computing and Nonlinear
Materials Modeling

As the fundamental laws of physics and natural sciences, the thermodynamics laws

underlie natural processes of reversible or irreversible mechanical systems. The thermodynamics

first law describes energy conservation of mechanical systems. The thermodynamics second law

deals with the directionality of thermodynamic processes. Despite the success and advancements

of physical simulations in various scientific fields, it remains challenging for accurate and efficient

modeling of nonlinear materials subjected to complex reversible or irreversible mechanical

processes.

Constitutive modeling of nonlinear materials subjected to reversible or irreversible pro-

cesses is traditionally based on constitutive or material laws to describe the explicit relationship

among strains, stresses, and state variables based on experimental observations, mechanistic

hypothesis, and mathematical simplifications. However, the phenomenological modeling pro-

cess inevitably introduces errors due to limited data and mathematical assumptions in model

parameter calibration. Moreover, constitutive laws rely on pre-defined functions and often

lack generality to capture full aspects of material behaviors, such as anisotropy, nonlinearity,

path- or rate-dependency, etc. For example, it remains challenging to formulate conventional
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phenomenological constitutive laws for musculoskeletal systems consisting of multiple highly

nonlinear and anisotropic biological materials [14, 18–20].

Conventional constitutive modeling of irreversible path-dependent material systems

typically applies models with evolving internal state variables (ISVs) in addition to the state

space of deformation [21, 22]. The ISV constitutive modeling framework has been effectively

applied to model various nonlinear solid material behaviors, e.g., elasto-plasticity [23, 24],

visco-plasticity [25], and material damage [26]. However, ISVs are often non-measurable, which

makes it challenging to define a complete and appropriate set of ISVs for highly nonlinear and

complicated materials, e.g., geomechanical materials. Further, the traditional ISV constitutive

modeling approach often results in excessive complexities with high computational cost, which

is undesirable in practical applications.

With advancements in computing power and significant progresses in data mining,

machine learning based data-driven approaches, e.g., deep neural networks (DNNs), have been

extensively applied to various fields owing to their strong ability of feature/pattern extraction

[27], including constitutive material modeling. However, pure black-box data-driven models

mapping inputs to outputs without considering the underlying physics suffer from unstable and

inaccurate generalization performance. Further, to model irreversible path-dependent materials,

the DNN-based constitutive models require fully descriptive material’s internal states, which

is difficult for materials with highly nonlinear and complicated path-dependent behaviors and

limits their applications in practice.

In recent years, a physics-constrained data-driven computational paradigm has been

proposed to bypass the constitutive modeling step by formulating the boundary value problems

as a new optimization problem to search for a solution that is closest to the material data set

subjected to equilibrium and compatibility constraints [2, 28]. Despite promising progress in

various application domains, these data-driven computing frameworks cannot effectively handle

anisotropic material systems with various anisotropic orientations, i.e., orientations of material

anisotropy, due to the fact that the data-driven solvers of these frameworks do not consider
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appropriate material frame of reference. Moreover, these data-driven approaches could encounter

difficulties in applications with high dimensional data when material data sampling involves

multidimensional and history-dependent state variables.

1.1.2 Physics-Informed Data-Driven Reduced-Order Modeling

Physical simulations have played an increasingly important role in the advancements of

engineering, science, and technology. Many physical processes are mathematically modeled by

time-dependent nonlinear partial differential equations (PDEs). As it is difficult or even impos-

sible to obtain analytical solutions for many highly complicated problems, various numerical

methods have been developed to approximate the analytical solutions. However, high-fidelity

forward physical simulations can be computationally intractable even with high performance

computing, prohibiting their applications to problems that require a large number of forward

simulations [29–33, 33, 34].

To achieve accurate and efficient physical simulations, various physics-constrained

data-driven model reduction techniques have been developed, such as the projection-based

reduced-order models (ROM), in which the state fields of the full-order model (FOM) are

projected on to a linear or nonlinear subspace to significantly reduce the dimension of the state

fields. Popular linear projection techniques include the proper orthogonal decomposition (POD)

[35], the reduced basis method [36], and the balanced truncation method [37]. Despite the

success of the classical linear-subspace ROM in many applications, it is limited to the assumption

that intrinsic solution space falls into a low-dimensional subspace, indicating that the solution

space has a small Kolmogorov n-width. In other words, they cannot be effectively applied to

advection-dominated problems with sharp gradients, moving shock fronts, and turbulence.

Most classical physics-constrained data-driven projection-based ROMs aforementioned

are intrusive, which require plugging the reduced-order solution representation into the dis-

cretized system of governing equations. Although the intrusive brings many benefits, such as

extrapolation robustness, requirement of less training data, and high accuracy, the implementation
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of the intrusive ROMs requires not only sufficient understanding of the numerical solver of the

high-fidelity simulation, but also access to the source code of the numerical solver.

1.2 Objectives

The objective of this work is to enhance the capability and efficiency of physical simula-

tions by developing thermodynamically consistent data-driven computing, materials modeling,

and reduced-order modeling methods based on emerging machine learning techniques for mani-

fold learning, dimensionality reduction, sequence learning, and system identification. The major

developments in this research are summarized as follows.

• For reversible mechanical systems:

o Development of a new data-driven material solver built upon the local convexity-

preserving reconstruction scheme [38] in order to model anisotropic nonlinear elastic

solids. To this end, a rotated material database is constructed offline and a two-level

data search is integrated into the material solver to capture directional dependent

material behaviors during online data-driven computing. The proposed data-driven

computing framework is verified by modeling the deflection of a cantilever beam

with layers containing different fiber directions and inflation of a cylinder where fiber

directions vary along the circumferential direction of the cylinder. The data-driven

solutions are compared with the constitutive model-based reference solutions to

examine the effectiveness and robustness of the proposed methods.

o Development of a novel data-driven computing approach to overcome the curse of

dimensionality and the lack of generalization in the classical model-free data-driven

computing approaches. To this end, we propose to introduce deep autoencoders

to achieve two major objectives: dimensionality reduction and generalization of

physically meaningful constitutive manifold. In this approach, the autoencoders are

first trained in an offline stage to extract a representative low-dimensional manifold
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(embedding) of the given material data. Autoencoders also provide effective noise

filtering through the data compression processes. The trained autoencoders are then

incorporated in the data-driven solver during the online computation with customized

local convexity-preserving reconstruction to ensure numerical stability and repre-

sentative constitutive manifold. Hence, all operations related to distance measure,

including the search of the closest material points in the dataset are performed in the

learned embedding space, circumventing the difficulties resulting from high dimen-

sionality and data noise. We present two different solvers to perform locally convex

reconstruction, and demonstrate the one directly providing interpolation approxima-

tion without using decoders outperforms the one that fully uses the encoder-decoder

network structure. Furthermore, it is shown that the proposed method is compu-

tationally tractable, since the additional autoencoder training is conducted offline

and the online data-driven computation mainly involve lower-dimensional variables

in the embedding space. The proposed method is applied to biological tissue mod-

eling to demonstrate the enhanced effectiveness and generalization capability of

Auto-embedding Data-Driven (AEDD) over the a few commonly used data-driven

schemes.

• For irreversible mechanical systems:

Development of a thermodynamically consistent machine-learned internal state vari-

able (ISV) approach for data-driven modeling of path-dependent materials, which

relies purely on measurable material states. The first thermodynamics principle is

integrated into the model architecture whereas the second thermodynamics principle

is enforced by a constraint on the network parameters. In the proposed model, a

recurrent neural network (RNN) is trained to infer intrinsic ISVs from its hidden

(or memory) state that captures essential history-dependent features of data through

a sequential input. The RNN describing the evolution of the data-driven machine-
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learned ISVs follows the thermodynamics second law. In addition, a deep neural

network (DNN) is trained simultaneously to predict the material energy potential

given strain, ISVs, and temperature (for non-isothermal processes). Further, model

robustness and accuracy is enhanced by introducing stochasticity to inputs for model

training to account for uncertainties of input conditions in testing. The effectiveness

and generalization capability of the proposed method are examined by modeling an

elasto-plastic material and undrained soil under cyclic shear loading. A parametric

study is conducted to investigate the effects of the number of RNN steps, the inter-

nal state dimension, the model complexity, and the strain increment on the model

performance.

• For general nonlinear dynamical systems:

Development of a physics-informed adaptive greedy latent space dynamics identi-

fication (gLaSDI) framework for non-intrusive accurate and efficient data-driven

reduced-order modeling. To maximize and accelerate the exploration of the parame-

ter space for optimal performance, an adaptive greedy sampling algorithm integrated

with a physics-informed residual-based error indicator and random-subset evaluation

is introduced to search for the optimal and minimal training samples on-the-fly. The

proposed gLaSDI framework contains an autoencoder for nonlinear projection to

discover intrinsic latent representations and a set of local dynamics identification

(DI) models to capture local latent-space dynamics, which is further exploited by an

efficient k-nearest neighbor (KNN) convex interpolation scheme. The autoencoder

training and dynamics identification in the gLaSDI take place interactively to achieve

an optimal identification of simple latent-space dynamics. The effectiveness and

capability of the proposed gLaSDI framework are examined by modeling various

nonlinear dynamical problems, including Burgers equations, nonlinear heat conduc-

tion, and radial advection. The effects of various factors on model performance are
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investigated, including the number of nearest neighbors for convex interpolation,

the latent-space dimension, the complexity of the DI models, and the size of the

parameter space. A performance comparison between uniform sampling and the

physics-informed greedy sampling is also presented.

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we present an

overview on machine learning, data-driven materials modeling, physics-constrained data-driven

computing, and data-driven reduced-order modeling. In Chapter 3, we review the basics of

thermodynamics. In Chapter 4, we introduce the mathematics and fundamentals of physics-

constrained data-driven computing frameworks, including the classical distance-minimizing

data-driven (DMDD) computing [2] and the recently developed local convexity data-driven

(LCDD) computing [38]. We then introduce the developments for reversible mechanical systems.

In Chapter 5, we propose a new data-driven material solver built upon the local convexity-

preserving reconstruction scheme [38] for modeling anisotropic nonlinear elastic solids. In

Chapter 6, we propose a novel auto-embedding data-driven (AEDD) computing approach to

overcome the issues related to the curse of dimensionality and the lack of generalization in

classical model-free data-driven computing approaches. Deep autoencoders are employed

for dimensionality reduction and enhanced generalization capability of physically meaningful

constitutive manifold. The development for irreversible mechanical systems is introduced in

Chapter 7, where a thermodynamically consistent machine-learned ISV approach is developed

for data-driven modeling of path-dependent materials, which relies purely on measurable material

states. The thermodynamics principles are integrated into the model architecture and training.

Intrinsic ISVs are automatically inferred by a recurrent neural network (RNN) from its hidden

state that captures essential history-dependent features of data through a sequential input. In

Chapter 8, an adaptive greedy latent space dynamics identification (gLaSDI) framework is

proposed for accurate, efficient, and robust physics-informed data-driven reduced-order modeling
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of general nonlinear dynamical systems. An adaptive greedy sampling algorithm integrated with

a physics-informed residual-based error indicator and random-subset evaluation is introduced

to search for the optimal and minimal training samples on the fly. Lastly, conclusions and

discussions for future research are given in Chapter 9.
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Chapter 2

Literature Review

In this chapter, we review important concepts and methods related to machine learning,

data-driven materials modeling, physics-constrained data-driven computing, and data-driven

reduced-order modeling.

2.1 Machine Learning: Feature Learning and Dimensional-
ity Reduction

Artificial intelligence (AI) has demonstrated successful applications in all science and

engineering domains, such as developing intelligent software or robotics to automate routine

labor, understanding speech or images, making diagnoses in medicine and supporting basic

scientific research [27]. AI systems acquire knowledge by extracting features and patterns from

raw data, known as machine learning (ML). Fig. 2.1 shows an overview of ML algorithms and

their applications. In this section, We briefly review the basic concept of supervised learning and

unsupervised learning and introduce the ML algorithms used in the research of this dissertation.

2.1.1 Supervised Learning

Supervised learning aims to map inputs to target outputs. There are two main tasks of

supervised learning, i.e., classification where the target outputs are qualitative, e.g., categories or

classes, and regression where the target outputs are quantitative.

Let us consider an input space, X ⊂ Rdin , and an underlying function f : X → Y that
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Figure 2.1. An overview of Machine Learning and its applications [1].
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maps an input element x ∈X to an element y in the output space, Y ⊂ Rdout . Given input data

points sampled from the input space, {x1, ...,xM} ∈X , and measured outputs, {y1, ...,yM} ∈Y ,

supervising learning algorithms aim to find a function f̂(θ) : X → Y to approximate the

unknown function f, which maps an element xi ∈ Rdin in the input space to an element yi ∈ Rdout

in the output space, where i = 1, ...,M and θ denotes parameters of f̂, by minimizing a loss (or

error) function, L : Y ×Y → R+, where R+ denotes a set of non-negative real numbers. For

regression tasks, a squared error is often used: L (ŷ,y) = ||ŷ−y||2L2
, where ŷ = f̂(x;θ). The

optimal parameters θ
∗ of f̂ can be obtained by the following minimization

θ
∗ = argmin

θ

1
M

M

∑
i=1

L (f̂(xi;θ),yi). (2.1)

Deep Neural Networks (DNNs)

Deep neural networks (DNNs), as the core of the deep learning [27], represent complex

models that relate data inputs, x ∈ Rdin , to data outputs, y ∈ Rdout . A typical DNN is composed

of an input layer, an output layer, and L hidden layers. Each hidden layer transforms the outputs

of the previous layer through an affine mapping followed by a nonlinear activation function a(·),

which can be written as:

x(l) = a(W(l)x(l−1)+b(l)), l = 1, ...,L, (2.2)

where the superscript (l) denotes the layer the quantities belong to, e.g., x(l) ∈ Rnl is the outputs

of layer l with nl neurons. W(l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the weight matrix for linear

mapping and the bias vector of layer l, respectively, where n0 = din is the input dimension.

They are trainable parameters to be optimized through training. For a fully-connected layer, the

number of trainable parameters is (nl−1 +1)nl .

Commonly used activation functions include the logistic sigmoid, the hyperbolic tangent

function, the rectified linear unit (ReLU), and the leaky ReLU [39]. Note that the choice of the

11



activation of the output layer depends on the type of ML tasks. For regression tasks, which is the

application of this study, a linear function is used in the output layer where the last hidden layer

information is mapped to the output vector ŷ, expressed as: ŷ = W(L+1)x(L)+b(L+1), where ŷ

denotes the DNN approximation of the data output y. Fig. 2.2 shows the computational graph of

a feed-forward DNN with three input neurons, two hidden layers, and two output neurons.

Figure 2.2. Computational graph of a feed-froward deep neural network (DNN) with three input
neurons, two hidden layers, and two output neurons.

We denote fDNN(θ) as a DNN mapping function, where θ is the collection of all trainable

weight and bias coefficients, θ = {W(l),b(l)}L+1
l=1 . The forward prediction of the DNN can be

expressed ŷ= fDNN(x;θ). The optimal parameters θ
∗ of the DNN can be obtained by minimizing

the following loss function:

θ
∗ = argmin

θ

1
M

M

∑
i=1
||fDNN(xi;θ)− ŷi||2L2

+β

L+1

∑
l=1
||W(l)||2F , (2.3)

where β is a regularization parameter, and || · ||F denotes the Frobenius norm. The L2-norm

based weight regularization term is used to prevent over-fitting issues [27, 40].

Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) designed for sequence learning have demonstrated

successful applications in various domains, such as machine translation and speech recognition,

due to their capability of learning history-dependent features that are essential for sequential
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prediction [41, 42]. Fig. 2.3 illustrates the computational graphs of a folded RNN and an

unfolded RNN, where h is a hidden state that captures essential history-dependent features from

past information, which makes RNNs particularly suitable for modeling path-dependent material

behaviors. Unfolding of the RNN computational graph results in parameter sharing across the

network structure, reducing the number of trainable parameters and thus leading to more efficient

training. The length of input/output sequences can be arbitrary, which allows generalization to

sequence lengths not appeared in the training set. Each step can be viewed as a state. Despite

the history sequence length, the trained RNN model always has the same input size, since it is

specified in terms of transition from one state to another rather than in terms of a variable-length

history of states [27]. The forward propagation of RNN begins with an initial hidden state and

the propagation equations at time step (state) n are defined as

hn = atanh
(
Whhhn−1 +Wxhxn +bh

)
, (2.4a)

ŷn = Whyhn +by, (2.4b)

where atanh is the hyperbolic tangent function; Wxh,Whh, and Why are trainable weight coeffi-

cients for input-to-hidden, hidden-to-hidden, and hidden-to-output transformations, respectively;

bh and by are trainable bias coefficients. These trainable parameters are shared across all RNN

steps. Eqs. (2.4a) transforms the previous hidden state hn−1 and the current input xn to the current

hidden state hn, while (2.4b) transforms the current hidden state hn to the current output ŷn.

The history information is captured by the hidden state of RNN by repeating the transformation

in Eq. (2.4a) for all RNN steps. The hidden state that carries the essential history-dependent

information is passed to the final step and informs the final prediction.

Depending on applications, RNNs can have flexible architectures of input and output,

such as one-to-one, one-to-many, many-to-one, and many-to-many [43]. For example, the

unfolded RNN shown in Fig. 7.2(a) is a many-to-many type of RNN, which can be applied to,

for example, name entity recognition. We denote fRNN(θ) as a RNN mapping function, where
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Figure 2.3. Computational graphs of a folded recurrent neural network (RNN) and an unfolded
RNN.

θ denotes the trainable parameters. The optimal parameters θ
∗ of RNN can be obtained by

minimizing the following loss function:

θ
∗ = argmin

θ

1
M

M

∑
i=1
||fRNN(x̂i;θ)− ŷi||2L2

. (2.5)

2.1.2 Unsupervised Learning

Unsupervised learning aims to extract hidden patterns or structures in data. The main

unsupervised learning tasks include clustering and dimensionality reduction. As the dimension

of data increases, the amount of training data required for satisfactory model performance

increases exponentially, known as the curse of dimensionality. We will introduce autoencoders

to counteract the curse of dimensionality in the following.

Autoencoders

Autoencoders [44, 45] are an unsupervised learning technique in which special architec-

tures of DNNs are leveraged for dimensionality reduction or representation learning. Specially,

an autoencoder aims to optimally copy its input to output with the most representative features

by introducing a low-dimensional embedding layer (or called a code). As shown in Fig. 2.4, an

autoencoder consists of two parts, an encoder function henc(·;θ enc) : Rd → Rp and a decoder
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function hdec(·;θ dec) : Rp→ Rd , such that the autoencoder is

x̃ = h(x;θ enc,θ dec) := (hdec ◦henc)(x) (2.6a)

:= hdec(henc(x;θ enc);θ dec), (2.6b)

where p < d is the embedding dimension, θ enc and θ dec are the DNN coefficients of encoder

and deconder parts, respectively, and x̃ is the output of the autoencoder, a reconstruction of the

original input x. With the latent dimension p much less than the input dimension d, the encoder

henc is trained to learn the compressed representation of x, denoted as the embedding x′ ∈ Rp,

whereas the decoder hdec reconstructs the input data by mapping the embedding representation

back to the high-dimensional space.

It is important to note that similar to any other dimensionality reduction techniques [46],

the employment of autoencoders is based on the manifold hypothesis, which presumes that

the given high-dimensional input data, e.g., the material dataset E, lies on a low-dimensional

manifold E ′ that is embedded in a higher-dimensional vector space, as shown by the schematic

figures at the bottom of Fig. 2.4.

Given the autoencoder architecture h(·;θ enc,θ dec) in Eq. (2.6), the optimal parameters

θ
∗
enc and θ

∗
dec can be obtained by minimizing the following loss function:

(θ ∗enc,θ
∗
dec) = argmin

θ enc,θ dec

1
M

M

∑
i=1
||h(xi;θ enc,θ dec)−xi||2L2

+β

L+1

∑
l=1
||W(l)||2F , (2.7)

where {W(l)}L+1
l=1 are trainable weight coefficients; β is a regularization parameter, and || · ||F

denotes the Frobenius norm. Here, the loss function consists of the reconstruction error over all

training data and a L2-norm based weight regularization term used to prevent over-fitting issues

[27, 40].
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Figure 2.4. Schematic of an autoencoder consisting of an encoder and a decoder, where the
dimension of the embedding layer is smaller than the input dimension. For a high-dimensional
input object, the encoder learns a compressed low-dimensional embedding, on which the decoder
optimally reconstructs the input object.
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2.2 Data-Driven Materials Modeling

Traditional constitutive modeling is based on constitutive or material laws to describe

the explicit relationship among the measurable material states, e.g., stresses and strains, and

internal state variables (ISVs) based on experimental observations, mechanistic hypothesis, and

mathematical simplifications. However, limited data and functional form assumptions inevitably

introduce errors to the model parameter calibration and model prediction. Moreover, with the

pre-defined functions, constitutive laws often lack generality to capture full aspects of material

behaviors [6, 47].

Path-dependent constitutive modeling typically applies models with evolving ISVs in

addition to the state space of deformation [21, 22]. The ISV constitutive modeling framework

has been effectively applied to model various nonlinear solid material behaviors, e.g., elasto-

plasticity [23, 24], visco-plasticity [25], and material damage [26]. However, ISVs are often

non-measurable, which makes it challenging to define a complete and appropriate set of ISVs

for highly nonlinear and complicated materials, e.g., geomechanical materials. Further, the

traditional ISV constitutive modeling approach often results in excessive complexities with high

computational cost, which is undesirable in practical applications.

With advancements in computing power and significant progresses in data mining [27],

machine learning (ML) based data-driven approaches have demonstrated successful applications

in various engineering problems, such as solving partial differential equations [48–51], system

or parameter identification [48, 51–56], reduced-order modeling [7, 9, 57–61], material design

[62, 63], structural design [64, 65], damage and fracture modeling [66], etc.

ML models, such as deep neural networks (DNNs), have emerged as a promising alterna-

tive for constitutive modeling due to their strong flexibility and capability in extracting complex

features and patterns from data [67]. DNNs have been applied to model a variety of materials,

including concrete materials [68], hyper-elastic materials [69], visco-plastic material of steel

[70], and homogenized properties of composite structures [71]. DNN-based constitutive models
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haven been integrated into finite element solvers to predict path- or rate-dependent materials be-

haviors [72–76]. Recently, physical constraints or principles have been integrated into DNNs for

data-driven constitutive modeling, including symmetric positive definiteness [77], material frame

invariance [78], and thermodynamics [79, 80]. However, to model path-dependent materials,

the DNN-based constitutive models require fully understood and prescribed material’s internal

states, which is difficult for materials with highly nonlinear and complicated path-dependent

behaviors and limits their applications in practice.

Recurrent neural networks (RNNs) designed for sequence learning have been successfully

applied in various domains, such as machine translation and speech recognition, due to their ca-

pability of learning history-dependent features that are essential for sequential prediction [41, 42].

The RNN and gated variants, e.g., the long short-term memory (LSTM) [81] cells and the gated

recurrent units (GRUs) [82, 83], have been applied to path-dependent materials modeling [84],

including plastic composites [85], visco-elasticity [86], and homogeneous anisotropic hardening

[87]. RNN-based constitutive models have also been applied to accelerate multi-scale simula-

tions with path-dependent characteristics [88–92]. Recently, Bonatti and Mohr [93] proposed a

self-consistent RNN for path-dependent materials such that the model predictions converge as

the loading increment is decreased. However, these RNN-based data-driven constitutive models

may not satisfy the underlying thermodynamics principles of path-dependent materials.

2.3 Physics-Constrained Model-Free Data Driven Comput-
ing

Another strategy in data-driven materials modeling is to bypass the constitutive modeling

step by formulating an optimization problem to search for the physically admissible state that

satisfies equilibrium and compatibility and minimizes the distance to a material dataset [2, 28, 94].

In this data-driven approach, the search of material data at each integration point from the material

dataset is determined via a distance-minimization function and is called the distance-minimizing
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data-driven (DMDD) computing. This data-driven computing paradigm has been extended to

dynamics [95], problems with geometrical nonlinearity [47, 96], inelasticity [97], anisotropy [5],

material identification and constitutive manifold construction [98–101]. A variational framework

for data-driven computing was proposed in [3, 102] to allow versatile in the employment of

special approximation functions and numerical methods.

To better handle noise induced by outliers and intrinsic randomness in the experimental

datasets, data-driven computing integrated with statistical models or machine learning techniques

were developed, including incorporating maximum entropy estimation with a cluster analysis

[103], regularization based on data sampling statistics [104], and locally convex reconstruction

inspired from manifold learning for nonlinear dimensionality reduction [3]. In the local convexity

data-driven (LCDD) computing proposed in [3], the convexity condition is imposed on the

reconstructed material graph to avoid convergence issues that usually arise in standard data

fitting approaches. The LCDD framework has been extended to model nonlinear elastic solids

and applied to model mechanical responses of biological heart valve tissues with experimental

data sets by [47]. Recently, [105] introduced a tensor voting machine learning technique into the

entropy based DMDD framework to construct locally linear tangent spaces in order to utilize

underlying data structures to achieve high-order convergence of data-driven solutions, referred

to as a second-order data-driven scheme. The aforementioned physics-constrained data-driven

computing frameworks have demonstrated promising performances in various scientific fields.

Despite these advances, these data-driven computing frameworks cannot handle anisotropic

material systems with various anisotropic orientations, i.e., orientations of material anisotropy,

effectively. This is due to the fact that the data-driven solvers of these frameworks do not

consider information of anisotropic orientations of materials, which prevents applications of

these data-driven computing frameworks to complex material systems with directional dependent

material behaviors, e.g., musculoskeletal systems with significant differences in the muscle fiber

direction leading to variations in anisotropy of muscle tissue.

The above mentioned (distance-minimizing) data-driven computing approaches are
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distinct from the DNN-based constitutive modeling approaches. The latter constructs the

surrogate models of constitutive laws independent to the solution procedure of boundary value

problems, whereas the former is model-free and it incorporates the material data search into

the solution procedure of boundary value problems. Thus, the former approach was also called

model-free data-driven computing [97, 103]. The model-free data-driven approach circumvents

the need of using material tangent during solution iteration processes, which offers another unique

feature in computational mechanics. From the perspective of machine learning algorithms, the

DNN approach is considered as supervised learning, and it requires pre-defined input-output

functions, e.g. strain-stress laws. It has been shown that selecting the response function by DNNs

within the constitutive framework is non-trivial [84, 88, 106]. On the other hand, the data-driven

computing approaches with unsupervised learning such as clustering and manifold learning

are capable of discovering the underlying data structure for the constitutive manifold [3, 28].

However, this type of data-driven approaches could encounter difficulties in high dimensional

applications when material data sampling involves multidimensional and history-dependent state

variables. As demonstrated in [2, 3, 94], higher data dimension results in lower convergence

rate with respect to data size, and thus demands effective dimensionality reduction for improved

effectiveness of data-driven computing. Further, the model-free data-driven schemes rely on

the direct search of nearest neighbors from the material dataset, leading to limited extrapolative

generalization when the distribution of data points becomes sparse.

2.4 Physics-Informed Data-Driven Reduced-Order Model-
ing

Physical simulations have played an increasingly significant role in developments of engi-

neering, science, and technology. The widespread applications of physical simulations in digital

twins systems [107, 108] is one recent example. Many physical processes are mathematically

modeled by time-dependent nonlinear partial differential equations (PDEs). As it is difficult or
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even impossible to obtain analytical solutions for many highly complicated problems, various

numerical methods have been developed to approximate the analytical solutions. However, due

to the complexity and the domain size of problems, high-fidelity forward physical simulations

can be computationally intractable even with high performance computing, which prohibits their

applications to problems that require a large number of forward simulations, such as design

optimization [29, 30], optimal control [31], uncertainty quantification [32, 33], and inverse

analysis [33, 34].

To achieve accurate and efficient physical simulations, data can play a key role. For

example, various physics-constrained data-driven model reduction techniques have been de-

veloped, such as the projection-based reduced-order model (ROM), in which the state fields

of the full-order model (FOM) are projected to a linear or nonlinear subspace so that the

dimension of the state fields is significantly reduced. Popular linear projection techniques

include the proper orthogonal decomposition (POD) [35], the reduced basis method [36], and

the balanced truncation method [37], while autoencoders [44, 45] are often applied for non-

linear projection [60, 109, 110]. The linear-subspace ROM (LS-ROM) has been successfully

applied to various problems, such as nonlinear heat conduction [111], Lagrangian hydrody-

namics [112–114], nonlinear diffusion equations [111, 115], Burgers equations [114, 116–118],

convection-diffusion equations [119, 120], Navier-Stokes equations [121, 122], Boltzmann trans-

port problems [123, 124], fracture mechanics [125, 126], molecular dynamics [127, 128], fatigue

analysis under cycling-induced plastic deformations [59], topology optimization [129, 130],

structural design optimization [131, 132], etc. Despite successes of the classical LS-ROM

in many applications, it is limited to the assumption that intrinsic solution space falls into a

low-dimensional subspace, which means the solution space has a small Kolmogorov n-width.

This assumption is not satisfied in advection-dominated systems with sharp gradients, moving

shock fronts, and turbulence, which prohibits the applications of the LS-ROM approaches for

these systems. On the other hand, it has been shown that nonlinear-subspace ROMs based on

autoencoders outperforms the LS-ROM on advection-dominated systems [9, 60].
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Several strategies have been developed to extend LS-ROM for addressing the challenge

posed by advection-dominated systems, which can be mainly categorized into Lagrangian-based

approaches and methods based on a transport-invariant coordinate frame. In the Lagrangian-

based approaches, Lagrangian coordinate grids are leveraged to build a ROM that propagates

both the wave physics and the coordinate grid in time [133–135]. Although these methods

work well, their applicability is limited by the requirement of full knowledge of the governing

equations for obtaining the Lagrangian grid. The second category of strategies are based on

transforming the system dynamics to a moving coordinate frame by adding a time-dependent

shift to the spatial coordinates such that the system dynamics are absent of advection. Many

methods have been proposed to numerically obtain the shift function for the moving frame,

including the shifted POD method [136] that detects the shift by either tracking solution peaks

or an expansive singular value decomposition algorithm (SVD), where different candidate shifts

are applied to the data before performing SVD, and the implicit feature tracking algorithm

[137] based on a minimal-residual ROM. Despite the effectiveness of these methods, the high

computational costs prohibits their applications in practice. Recently, Papacicco, et al. [138]

proposed a fully data-driven approach based on two separate neural networks (NNs), one to

detect nonlinear shift in the transport velocity and the other one to interpolate a shifted solution

back to the reference frame. However, this approach does not propose a predictive ROM to

integrate the shift detection with a projection framework. Other approaches that may not fit

precisely into these two categories include the work by [139] that updates the ROM basis online

and the work by [140] that applies a representation of transnational features via advection

modes and the subsequent residual (not purely advective features) via global modes to tackle the

advection-diffusion systems.

Most physics-constrained data-driven projection-based ROMs aforementioned are intru-

sive, which require plugging the reduced-order solution representation into the discretized system

of governing equations. Although the intrusive brings many benefits, such as extrapolation ro-

bustness, requirement of less training data, high accuracy, the implementation of the intrusive
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ROMs requires not only sufficient understanding of the numerical solver of the high-fidelity

simulation, but also access to the source code of the numerical solver.

In contrast, non-intrusive ROMs are purely data-driven. It requires neither access to

the source code nor the knowledge of the high-fidelity solver. Many non-intrusive ROMs are

constructed based on interpolation techniques that provide nonlinear mapping to relate inputs

to outputs. Among various interpolation techniques, such as Gaussian processes [141, 142],

radial basis functions [143, 144], Kriging [145, 146], NNs have been most popular due to their

strong flexibility and capability supported by the universal approximation theorem [67]. NN-

based surrogates have been applied to various physical simulations, such as fluid dynamics

[147], particle simulations [148], bioinformatics [149], deep Koopman dynamical models [150],

porous media flow [51, 61, 151, 152], etc. However, pure black-box NN-based surrogates lack

interpretability and suffer from unstable and inaccurate generalization performance, especially

when the training data is limited. For example, Swischuk, et al. [153] compared various ML

models, including NNs, multivariate polynomial regression, k-nearest neighbors (KNNs), and

decision trees, for learning nonlinear mapping between input parameters and low-dimensional

representations of solution fields obtained by POD projection. Given input parameters unseen

during training, the trained ML models are used to predict low-dimensional solution fields, which

are then projected back to the high-dimensional physical space by the POD basis. The numerical

examples of this study show that the flexible NN-based model performs worst, highlighting the

importance of choosing an appropriate ML strategy by considering the bias-variance trade off,

especially when the training data coverage of the input space is sparse.

In recent years, several ROM methods have been integrated with latent-space learning

algorithms. Kim, et al. [154] proposed a DeepFluids framework in which the autoencoder was

applied for nonlinear projection and a latent-space time integrator was used to approximate

the evolution of the solutions in the latent space. Xie, et al. [57] applied the POD for linear

projection and a multi-step NN to propagate the latent-space dynamical solutions. Hoang, et

al. [155] applied the POD to compress space-time solution space to obtain space-time reduced-

23



order basis and examined several surrogate models to map input parameters to space-time basis

coefficients, including multivariate polynomial regression, KNNs, random forest, and NNs.

Kadeethum, et al. [61] compared performance of the POD and autoencoder compression along

with various latent space interpolation techniques, such as radial basis function and artificial

neural networks. However, the latent-space dynamics models of these methods are complex and

lack interpretability.

To improve the interpretability and generalization capability, it is critical to identify the

underlying equations governing the latent-space dynamics. Many methods exist for identification

of interpretable governing laws from data, including symbolic regression that searches both

parameters and the governing equations simultaneously [156, 157] and parametric models that fit

parameters to equations of a given form, such as the sparse identification of nonlinear dynamics

(SINDy) [52] and operator inference [158–160]. Cranmer et al. [53] applied graph neural

networks to learn sparse latent representations and symbolic regression with a genetic algorithm

to discover explicit analytical relations of the learned latent representations, which enhances

efficiency of symbolic regression to high-dimensional data [161]. Instead of genetic algorithms,

other techniques have been applied to guide the equation search in symbolic regression, such as

gradient descent [162, 163] and Monte Carlo Tree Search with asymptotic constraints in NNs

[164].

Champion, et al. [165] applied an autoencoder for nonlinear projection and SINDy to

identify simple ordinary differential equations (ODEs) that govern the latent-space dynamics.

The autoencoder and the SINDy model were trained interactively to achieve simple latent-space

dynamics. However, the proposed SINDy-autoencoder method is not parameterized and general-

izable. Bai and Peng [58] proposed parametric non-intrusive ROMs that combine the POD-based

linear projection with regression surrogates to approximate dynamical systems of latent variables,

including support vector machines with kernel functions, tree-based methods, KNNs, vectorial

kernel orthogonal greedy algorithm (VKOGA), and SINDy. The ROMs integrated with VKOGA

and SINDy deliver superior cost versus error trade-off. Additionally, many non-intrusive ROMs
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have been developed based on POD-based linear projection with latent space dynamics captured

by polynomials through operator inference [158–160, 166–175]. For example, Qian, et al. [159]

introduced a lifting map to transform non-polynomial physical dynamics to quadratic polynomial

dynamics and then combined POD-based linear projection with operator inference to identify

quadratic reduced models for dynamical systems. Due to the limitation of the POD-based linear

projection, these non-intrusive ROMs have difficulties with advection-dominated problems. To

address this challenge, Issan and Kramer [176] recently proposed a non-intrusive ROM based on

shifted operator inference by transforming the original coordinate frame of dynamical systems to

a moving coordinate frame in which the dynamics are absent of translation and rotation. Fries, et

al. [9] proposed a parametric latent space dynamics identification (LaSDI) framework in which

an autoencoder was applied for nonlinear projection and a set of local dynamics identification

(DI) models were introduced to identify local latent-space dynamics, as illustrated in Fig. 2.5.

The LaSDI framework can be viewed as a generalization of aforementioned non-intrusive ROMs

built upon latent-space dynamics identification, since it allows linear or nonlinear projection and

enables latent-space dynamics to be captured by flexible DI models based on general nonlinear

functions. However, since a sequential training procedure was adopted for the autoencoder and

the DI models, the lack of interaction between the autoencoder and the DI models leads to strong

dependency of the complexity and quality of the latent-space dynamics on the autoencoder

architecture, which could pose challenges to the subsequent training of the DI models and thus

affect the model performances. Most importantly, all the above-mentioned approaches rely

on predefined training samples, such as uniform or Latin hypercube sampling that may not be

optimal in terms of the number of samples for achieving the best model performance in the

prescribed parameter space. As the generation of the simulation data can be computationally

expensive, it is important to minimize the number of samples.
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Figure 2.5. Schematics of data-driven reduced-order modeling by identification of latent-
space dynamics. The autoencoder performs nonlinear projection and discovers intrinsic latent
representations of high-fidelity solutions, while the dynamics identification (DI) model with
strong interpretability approximate the ordinary differential equations that govern the latent-space
dynamics.
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Chapter 3

Thermodynamics

As the fundamental laws of physics and natural sciences, thermodynamics laws underlie

natural processes of reversible or irreversible mechanical systems. The thermodynamics first law

describes conservation of energy of thermodynamic systems. The thermodynamics second law

deals with the directionality of thermodynamic processes. This Chapter reviews the basics of

thermodynamics.

3.1 First law of thermodynamics

The first law of thermodynamics states that the total energy of a thermodynamic system

and its surroundings is conserved. Mechanical and thermal energy transferred to the system (and

lost by the surrounding medium) is retained in the system as part of its total energy consisting of

kinetic energy associated with motion of the system’s particles and potential energy associated

with deformation. That means energy can change form, but its amount is conserved. The first

law of thermodynamics can be expressed as [177]

∆Etotal = ∆W ext +∆Q, with ∆Etotal = ∆K +∆E int , (3.1)

where ∆Etotal is the change of total energy; ∆K is the change of the total kinetic energy; ∆E int is

the change of the total internal energy; ∆W ext is the change of the total external work; ∆Q is the

change of total external thermal energy transferred to the system.
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3.2 Second law of thermodynamics

Although the first law of thermodynamics describes the conservation of energy during

thermodynamics processes, it does not provide any information about the direction of such

processes. The direction of physical processes can be expressed as a constraint on the way

entropy can change during any process, which is what the second law of thermodynamics is

about: The entropy (S) of an isolated system can only increase or stay the same in any process

[177],

∆S≥ 0. (3.2)

If an isolated system undergoes a process with increasing entropy, then the reverse

process can never occur and such a process is irreversible. However, if the system’s entropy

remains unchanged, then the reverse process is also possible and such process is reversible. If a

process is reversible, it must also be quasistatic.

3.3 Continuum thermodynamics

3.3.1 Local form of the first law

Let us consider a continuous medium with a domain Ω and a boundary Γ. The total

kinetic energy of the continuum is

K =
∫

Ω

1
2

ρ||v||2dΩ, (3.3)

where ρ and v denote the material density and the velocity of the infinitesimal volume element

dΩ, respectively. The total internal energy of the continuum is

E int =
∫

Ω

ρedΩ, (3.4)

where e is the specific internal energy, i.e., internal energy per unit mass.
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The first law of thermodynamics in Eq. 3.1 can be expressed in its rate form as

K̇ + Ė int = Ẇ ext + Q̇, (3.5)

where the rates of change of the total kinetic energy and the total internal energy are respectively

given by

K̇ =
D
Dt

∫
Ω

1
2

ρvividΩ =
∫

Ω

ρaividΩ, (3.6)

Ė int =
D
Dt

∫
Ω

ρedΩ =
∫

Ω

ρ ėdΩ, (3.7)

where the superposed “.” and D(·)
Dt denote the material time derivative; ai denotes the acceleration.

The rate of change of the total external work, Ẇ ext , can be expressed as

Ẇ ext =
∫

Ω

ρbividΩ+
∫

Γ

t̄ividΓ, (3.8)

where bi is the body force per unit mass and t̄i is the external traction acting on the surfaces

of the continuum body. Considering the Cauchy’s relation, ti = σi jn j, where σi j is the Cauchy

stress, and the divergence theorem, the second term in Eq. (3.8) can be rearranged as

∫
Γ

t̄ividΓ =
∫

Γ

(σi jn j)vidΓ =
∫

Ω

(σi jvi), jdΩ =
∫

Ω

σi j, jvi +σi jvi, jdΩ. (3.9)

Substituting Eq. (3.9) into Eq. (3.8) gives

Ẇ ext =
∫

Ω

(σi j, j +ρbi)vidΩ+
∫

Ω

σi jvi, jdΩ. (3.10)

Considering the balance of linear momentum, σi j, j +ρbi = ρai, Eq. (3.10) becomes

Ẇ ext =
∫

Ω

ρaividΩ+
∫

Ω

σi jvi, jdΩ = K̇ +
∫

Ω

σ : ε̇dΩ, (3.11)
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where ε̇ is the rate of the strain tensor and σ : ε̇ denotes the rate of the mechanical work.

Substituting Eq. (3.11) into the first law of thermodynamics in Eq. (3.5) gives

Ė int =
∫

Ω

σ : ε̇dΩ+ Q̇. (3.12)

The rate of heat transfer Q̇ can be divided into two parts:

Q̇ =
∫

Ω

ρhdΩ−
∫

Γ

q ·ndΓ, (3.13)

where h is the specific rate of heat supply and q is the heat flux. Applying the divergence theorem

to the second term on the right-hand side of Eq. (3.13) gives

Q̇ =
∫

Ω

ρhdΩ−
∫

Ω

div qdΩ, (3.14)

Substituting Eqs. (3.7) and(3.14) into Eq. (3.12) gives [177, 178]

∫
Ω

ρ ėdΩ =
∫

Ω

σ : ε̇dΩ+
∫

Ω

ρhdΩ−
∫

Ω

div qdΩ∫
Ω

ρ ė−σ : ε̇−ρh+div qdΩ = 0.
(3.15)

This can be rewritten for any arbitrary subbody Ωs ⊆Ω, so it must be satisfied pointwise, leading

to the local form of the first law of thermodynamics:

ρ ė = σ : ε̇−div q+ρh. (3.16)

3.3.2 Local form of the second law

The entropy of an arbitrary subbody Ωs is

S(Ωs) =
∫

Ωs

ρsdΩ, (3.17)
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where s is the specific entropy, i.e., the entropy per unit mass. The Clausius-Planck inequality in

its rate form is expressed as [177]

Ṡ≥ Ṡext =
Q̇

T RHS , (3.18)

where T RHS is the temperature of the reversible heat source (RHS) from which the heat is

quasistatically transferred to the body. In continuum thermodynamics theory, it is assumed

that the boundary points are always in thermal equilibrium with their reversible heat sources.

Accordingly, we can substitute Eq. (3.13) into Eq. (3.18) and take the factor of 1
T inside the

integrals where the temperature (T ) is treated as a function of position:

Ṡext(Ωs) =
∫

Ωs

ρh
T

dΩ−
∫

Γs

q ·n
T

dΓ, (3.19)

Substituting Eqs. (3.17) and (3.19) into Eq. (3.18) gives

D
Dt

∫
Ωs

ρsdΩ≥
∫

Ωs

ρh
T

dΩ−
∫

Γs

q ·n
T

dΓ. (3.20)

Applying the Reynolds transport theorem to the left-hand side and the divergence theorem to the

surface integral on the right-hand side gives

∫
Ωs

ρ ṡdΩ≥
∫

Ωs

ρh
T

dΩ−
∫

Ωs

div
(q

T

)
dΩ,∫

Ωs

ρ ṡ+div
(q

T

)
− ρh

T
dΩ≥ 0,

(3.21)

which must hold for any arbitrary subbody Ωs. We obtain the local form of the second law of

thermodynamics:

ρ ṡ+div
(q

T

)
− ρh

T
≥ 0, (3.22)

which is called the Clausius-Duhem inequality [177, 178].
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3.3.3 Thermodynamic relations

Combining the first and second thermodynamic principles (Eqs. (3.16) and (3.22)) yields

the dissipation inequality

σ : ε̇−ρ ė+T ρ ṡ−q · ∇T
T
≥ 0. (3.23)

The left-hand side of Eq. (3.23) represents the total dissipation rate that can be decomposed into

the non-negative mechanical dissipation rate D and the non-negative thermal dissipation rate Dth

[178, 179]:

D = σ : ε̇−ρ ė+T ρ ṡ≥ 0, (3.24a)

Dth =−q · ∇T
T
≥ 0. (3.24b)

The equality holds only for reversible processes.

Considering a constant material density and defining the specific internal energy per unit

volume as E = ρe and the specific entropy per unit volume as S = ρs, we have Ė = ρ ė and

Ṡ = ρ ṡ. Therefore, Eq. (3.24a) can be rewritten as

D = σ : ε̇− Ė +T Ṡ≥ 0. (3.25)

Denoting the specific Helmholtz free energy as F = E−T S [178] and taking the time

derivative gives

Ḟ = Ė− Ṫ S−T Ṡ. (3.26)

Combining Eq. (3.25) and Eq. (3.26) gives

Ḟ = σ : ε̇−D− Ṫ S. (3.27)
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For strain-rate independent materials, the Helmholtz free energy can be defined as [178]

F := F(T,ε,z), (3.28)

where z= (z1, ...,zN) is a collection of N internal state variables (ISVs) introduced to characterize

the state of path-dependent materials, which can also be interpreted as history variables [97].

However, ISVs are often non-measurable and the identification of the ISVs is often based on

empiricism, which is non-trivial for materials with highly complex and nonlinear path-dependent

behaviors. Here, a ML-enhanced data-driven approach is proposed to automatically infer the

essential ISVs that follow the thermodynamics principles, which will be discussed in Chapter 7.

Differentiation of Eq. (3.28) gives

Ḟ =
∂F
∂T

Ṫ +
∂F
∂ε

: ε̇ +
∂F
∂z
· ż. (3.29)

Equating Eq. (3.27) with Eq. (3.29) gives

(
∂F
∂T

+S
)

Ṫ +

(
∂F
∂ε
−σ

)
: ε̇ +

(
∂F
∂z
· ż+D

)
= 0. (3.30)

The arbitrariness of Ṫ , ε̇ , and ż leads to the following relations

S =−∂F
∂T

, (3.31a)

σ =
∂F
∂ε

, (3.31b)

D =−∂F
∂z
· ż. (3.31c)

These relations are derived based on the universal thermodynamics principals. In Chapter 7, we

will introduce a thermodynamically consistent machine-learned ISV approach for data-driven

modeling of path-dependent materials with the consideration of the thermodynamic relations

33



(Eq. (3.31)).

3.3.4 Isothermal processes

An isothermal process is a thermodynamic process occurring at a constant temperature.

For isothermal processes, Eq. (3.27) is reduced to

Ḟ = σ : ε̇−D. (3.32)

The Helmholtz free energy defined in Eq. (3.28) is modified as

F := F(ε,z). (3.33)

Differentiation of Eq. (3.33) gives

Ḟ =
∂F
∂ε

: ε̇ +
∂F
∂z
· ż. (3.34)

Equating Eq. (3.32) with Eq. (3.34) gives

(
∂F
∂ε
−σ

)
: ε̇ +

(
∂F
∂z
· ż+D

)
= 0. (3.35)

The arbitrariness of ε̇ and ż leads to the following thermodynamic relations

σ =
∂F
∂ε

, (3.36a)

D =−∂F
∂z
· ż. (3.36b)
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3.3.5 Nonlinear elasticity

A nonlinear elastic system undergoes reversible thermodynamic processes, which means

Dth = 0 and D = 0. Therefore, Eq. (3.32) is further reduced to

Ḟ = σ : ε̇. (3.37)

The Helmholtz free energy defined in Eq. (3.28) is modified as

F := F(ε). (3.38)

Differentiation of Eq. (3.38) gives

Ḟ =
∂F
∂ε

: ε̇. (3.39)

Equating Eq. (3.37) with Eq. (3.39) gives

(
∂F
∂ε
−σ

)
: ε̇ = 0. (3.40)

The arbitrariness of ε̇ leads to the following thermodynamic relation

σ =
∂F
∂ε

. (3.41)
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Chapter 4

Physics-Constrained Data-Driven Comput-
ing

This Chapter introduces basic equations of the physics-constrained data-driven computing

framework for nonlinear solids [3, 47, 96], followed by a review of two material data-driven

local solvers and the associated computational approaches.

4.1 Governing equations of nonlinear mechanics

The equations governing the deformation of a solid in a domain ΩX bounded by a

Neumann boundary ΓX
t and a Dirichlet boundary ΓX

u in the undeformed configuration are given

as 

DIV (F(u) ·S)+b = 0, in ΩX ,

E = E(u) = (FT F− I)/2, in ΩX ,

(F(u) ·S) ·N = t, on ΓX
t ,

u = g, on ΓX
u ,

(4.1)

where u is the displacement vector, E is the Green Lagrangian strain tensor, S is the second

Piola-Kirchhoff (2nd-PK) stress tensor, and DIV denotes the divergence operator. Without loss of

generality, the governing equations (4.1) are defined in the reference (undeformed) configuration

[180], which is denoted by the superscript ”X”. In Eq. (4.1), F is the deformation gradient related
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to u, defined as F(u) = ∂ (X+u)/∂X, where X is the material coordinate, and b, N, t, and g are

the body force, the surface normal on ΓX
t , the traction on ΓX

t , and the prescribed displacement on

ΓX
u , respectively.

The first equation in (4.1) is the equilibrium. The second equation in (4.1) is the

compatibility. The third and forth equations in (4.1) are the Neumann and Dirichlet boundary

conditions, respectively. To obtain the solutions to the boundary value problem in Eq. (4.1),

material laws that describe the relation between stress and strain are required, e.g.,

S = f(E), in Ω
X . (4.2)

The material law is typically constructed with a pre-defined function f based on experimental

observation, mechanics principles, and mathematical simplification with model parameters

calibrated from limited material data [68, 181] or by computational homogenization approaches

such as FE2 [182, 183], which inevitably introduce materials modeling empiricism and errors

[184]. Moreover, the consistent tangent stiffness associated with the material law is often required

in nonlinear computation [180].

For complex material systems, phenomenological material models are difficult to con-

struct. The physics-constrained data-driven computing framework [2, 3, 28] offers an alternative

to directly utilize material data and bypasses the need of phenomenological model construction.

4.2 Data-driven modeling of nonlinear elasticity

In this framework, the material behavior is described by means of strain and stress tensors

(Ê, Ŝ) given by the material genome database. A material database E = {(ÊI, ŜI)}M
I=1 ∈ E is

defined to store the material data, where M is the number of material data points, and the hat

symbol ”∧” is used to denote material data. Here, E denotes the admissible set of material

database, which will be further discussed in Section 4.3. To search for the most suitable (closest)

strain-stress pairs (Ê∗, Ŝ∗) for a given state (E,S), an energy-like distance function extended
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from [2] is defined:

F (E,S; Ê∗, Ŝ∗) = min
(Ê,Ŝ)∈E

∫
ΩX

(
d2

E(E, Ê)+d2
S(S, Ŝ)

)
dΩ, (4.3)

with

d2
E(E, Ê) =

1
2
(E− Ê) : Ĉ : (E− Ê), (4.4)

d2
S(S, Ŝ) =

1
2
(S− Ŝ) : Ĉ−1 : (S− Ŝ), (4.5)

where Ĉ is a predefined symmetric and positive-definite tensor used to properly regulate the

distances between (E,S) and (Ê, Ŝ). Usually, the selection of the coefficient matrix Ĉ depends

on the a priori knowledge of the given dataset. One widely adopted normalization scheme

in machine learning is based on the variance of the data, but the selection is not unique. For

example, the Mahalanobis distance of data is employed to compute the coefficient matrices [104].

Recently, He et al. [47] proposed to use the ratio of the standard deviations of the associated

components of the stress–strain data to construct a diagonal coefficient matrix. Henceforth, the

strain-stress pair (Ê, Ŝ) ∈ E extracted from the material database is called the material data

(state), whereas (E,S) is called the physical state if it satisfies the physically admissible set C

given by the equilibrium and compatibility equations in Eq. (4.1), denoted as (E,S) ∈ C .

As a result, the data-driven modeling problem can be formulated as:

min
(E,S)∈C

F (E,S; Ê∗, Ŝ∗) = min
(E,S)∈C

min
(Ê,Ŝ)∈E

∫
ΩX

(
d2

E(E, Ê)+d2
S(S, Ŝ)

)
dΩ. (4.6)

This data-driven problem is solved by fixed-point iterations, where the minimization of F with

respect to (E,S) and (Ê, Ŝ) are performed iteratively until the intersection of two sets, C and

E , is found within a prescribed tolerance. We denote the minimization corresponding to the

material data as the local step, i.e. Eq. (4.3), while the one associated with the physical state as
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the global step, which will be discussed as follows.

Given the optimal material data (Ê∗, Ŝ∗), the global step of the data-driven problem (4.6)

is expressed as the following constrained minimization problem [47]:

min
u,S

F (E(u),S; Ê∗, Ŝ∗) = min
u,S

∫
ΩX

(
d2

E(E(u), Ê
∗)+d2

S(S, Ŝ
∗)
)

dΩ

subject to: DIV (F(u) ·S)+b = 0 in Ω
X ,

(F(u) ·S) ·N = t on Γ
X
t .

(4.7)

With the Lagrange multipliers λ and η , Eq. (4.7) is transformed to the minimization of the

following functional:

F (E(u),S; Ê∗, Ŝ∗)+∫
ΩX

λ · [DIV (F(u) ·S)+b]dΩ+
∫

ΓX
t

η · [(F(u) ·S) ·N− t]dΓ.
(4.8)

The Euler-Lagrange equation of Eq. (4.8) indicates that η =−λ on ΓX
t and λ = 0 on ΓX

u [185].

Consequently, we have

F (E(u),S; Ê∗, Ŝ∗)+∫
ΩX

λ · [DIV (F(u) ·S)+b]dΩ−
∫

ΓX
t

λ · [(F(u) ·S) ·N− t]dΓ.
(4.9)

By means of integration by parts and the divergence theorem, Eq. (4.9) is reformulated as

F (E(u),S; Ê∗, Ŝ∗)−∫
ΩX

[∇λ : (F(u) ·S)−λ ·b]dΩ+
∫

ΓX
t

λ · tdΓ.
(4.10)
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The stationary conditions of Eq. (4.10) read:

δu :
∫

ΩX
δE(u) : Ĉ : (E(u)− Ê∗)dΩ =

∫
ΩX

δFT (u) ·∇λ : SdΩ, (4.11a)

δS :
∫

ΩX
δS : (Ĉ−1 : S−FT (u) ·∇λ )dΩ =

∫
ΩX

δS : Ĉ−1 : Ŝ∗dΩ, (4.11b)

δλ :
∫

ΩX
δ∇λ : (F(u) ·S)dΩ =

∫
ΩX

δλ ·bdΩ+
∫

ΓX
t

δλ · tdΓ. (4.11c)

As Eq. (4.11b) provides correction between the physical stress S and the material stress data S∗,

a collocation approach is considered in Eq. (4.11b) to yield:

S = Ĉ : (FT (u) ·∇λ )+ Ŝ∗, (4.12)

which represents the stress solution update. Substituting Eq. (4.12) into Eqs. (4.11a) and (4.11c)

yields:

∫
ΩX

[
δE(u) : Ĉ : (E(u)− Ê∗)−(δFT (u) ·∇λ ) : Ĉ : (FT (u) ·∇λ )

]
dΩ

=
∫

ΩX
(δFT (u) ·∇λ ) : Ŝ∗dΩ,

(4.13a)

∫
ΩX

(FT (u) ·δ∇λ ) : [Ĉ : (FT (u) ·∇λ )+ Ŝ∗]dΩ

=
∫

ΩX
δλ ·bdΩ+

∫
ΓX

t

δλ · tdΓ.
(4.13b)

The solutions u and λ are solved from Eqs. (4.13) by means of the Newton-Raphson method

[180], and the physical state stress S is subsequently obtained from (4.12). As such, Eqs. (4.12)-

(4.13) are the computational procedures to solve Eq. (4.7). Moreover, in this boundary value

problem, Eq. (4.13), the optimal material data (Ê∗, Ŝ∗) not only provides the underlying material

information learned from material database, but also serves as the material data-based connection

to relate the strain in compatibility and the stress in equilibrium equations in Eqs. (4.13a) and

(4.13b), respectively.
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In this study, the reproducing kernel particle method (RKPM) [186, 187] is employed to

discretize the unknown fields u and λ in Eqs. (4.13) due to its capabilities of nodal approximation

of state variables and enhanced smoothness that are particularly effective for data-driven comput-

ing. The formulation of the reproducing kernel approximation is given in Section 4.4. Moreover,

for effectiveness in data-driven computing, a stabilized nodal integration scheme (SCNI [188],

see Section 4.5) is used to integrate the weak formulations in Eq. (4.13) for reducing the number

of integration points where the stress and strain material data need to be searched [3].

Combining the ease of introducing arbitrary order of continuity in the RK approximation

as well as the employment of the SCNI scheme to integrate the weak equations in Eq. (4.13), it

allows the material data search and variable evaluation to be performed only at the nodal points,

avoiding the necessity of computing field and state variables separately at nodal points and Gauss

points, respectively, for enhanced efficiency and accuracy of data-driven computing. In addition,

under the SCNI framework, the nodal physical stress S is directly associated with the material

stress data without introducing additional interpolation errors, see [3, 47] for more details. The

Green Lagrangian strain tensor E is computed from the RK approximated displacement u and is

evaluated at the nodal points. Note that stress update equation in Eq. (4.12) is also carried out

nodally.

The physical state (E,S) evaluated at the integration points xα are denoted as

{(Eα ,Sα)}N
α=1, where N is the number of integration points. Note that due to the employment of

nodal integration [3, 188], the integration points share the same set of points as the nodal points.

For simplicity of notation, we denote zα = (Eα ,Sα) as the physics state and ẑα = (Êα , Ŝα) the

material data associated with the integration point α in the following discussions.

In data-driven computing, the local step (4.3) and the global step (4.7) are solved itera-

tively to search for the optimal material data from the admissible material set E that is closest

to the physical state satisfying the physical constraints given in Eq. (4.1). The convergence

properties of this fixed-point iteration solver have been investigated in [2, 94]. It should be noted

that the selection of the optimal material data by the material data-driven local solver is crucial
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to the effectiveness of data-driven computing [3, 103], and further discussion will be presented

in the following Sections 4.3 and 6.3.

4.3 Material data-driven local solver

4.3.1 Distance-minimizing data-driven (DMDD) local solver

The effectiveness of data-driven computational paradigm discussed in Section 4.2 relies

heavily on the search of optimal material data ẑ∗α = (Ê∗α , Ŝ∗α), α = 1, ...,N, from the material

dataset E. When adopting the distance-minimizing data-driven (DMDD) approach proposed in

[2], the local material solver in Eq. (4.3) used to find the optimal material data can be defined as

(Ê∗α , Ŝ
∗
α) = argmin

(Êα ,Ŝα )∈E
d2

E(Eα , Êα)+d2
S(Sα , Ŝα), α = 1, ...,N,

ẑ∗α = argmin
ẑα∈E

d2
z (zα , ẑα), α = 1, ...,N,

(4.14)

with

d2
z (z, ẑ) = d2

E(E, Ê)+d2
S(S, Ŝ), (4.15)

where the distance functions dE and dS are referred to Eqs. (4.4) and (4.5), α denotes the indices

of integration points, and N is the total number of integration points. The direct searching of the

closest material data can lead to inaccurate data-driven solutions when the material data contains

noise and outliers.

4.3.2 Local convexity-preserving data-driven (LCDD) local solver

For enhanced data-driven computing, especially with sparse noisy data, an alternative

approach called local convexity data-driven (LCDD) computing was proposed in [3] by introduc-

ing the underlying structure of material data via manifold learning. In this approach, the local
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(a) DMDD (b) LCDD

Figure 4.1. Geometric schematics of the (a) DMDD [2] and (b) LCDD [3] solvers. The data-
driven solution z∗ is given by the intersection of the admissible set of physical states C and the
material admissible set E .

solver is expressed as:

(Ê∗α , Ŝ
∗
α) = argmin

(Êα ,Ŝα )∈E l
α

d2
E(Eα , Êα)+d2

S(Sα , Ŝα), α = 1, ...,N,

ẑ∗α = argmin
ẑα∈E l

α

d2
z (zα , ẑα), α = 1, ...,N,

(4.16)

where E l
α := E l(zα) denotes a local convex subset formed by k material data points closest to the

given physical state zα = (Eα ,Sα), providing a smooth and bounded solution space for optimal

material data search, and preserving the convexity of the constructed local material manifold

for enhanced robustness and convergence stability. The material step defined in Eq. (4.16)

involves two substeps. First, given a physical state zα , k nearest neighbors (material data points),

{ẑi}i∈Nk(zα ) ⊂ E, are identified based on the distance measured by d2
z (zα , ẑ), where the indices

of the nearest neighbors of zα are stored in Nk(zα). Then, a local convex space is constructed

43



based on the collected nearest neighbors {ẑi}i∈Nk(zα ) of zα , defined as

E l(zα) = Conv
(
{ẑi}i∈Nk(zα )

)
=

{
∑

i∈Nk(zα )

wiẑi

∣∣∣∣ ∑
i∈Nk(zα )

wi = 1 and wi ≥ 0, ∀i ∈Nk(zα)

}
.

(4.17)

The optimal coefficients wα = {wi}i∈Nk(zα ) are obtained by solving the following minimization

problem:

w∗α = argmin
wα

d2
z

(
zα , ∑

i∈Nk(zα )

wiẑi

)
subject to: ∑

i∈Nk(zα )

wi = 1,

wi ≥ 0, ∀i ∈Nk(zα),

(4.18)

where w∗α = {w∗i }i∈Nk(zα ) denotes the optimal coefficients. Eq. (4.18) is solved by means of a

non-negative least-square algorithm with penalty relaxation, see details in [38]. The optimal

material data ẑ∗α can then be obtained by the following local convex construction:

ẑ∗α = ∑
i∈Nk(zα )

w∗i ẑi, (4.19)

which ensures that the optimal material data ẑ∗α always lie within the local convex space E l
α . The

LCDD computing process is depicted in Fig. 4.1(b), where the material solver finds the optimal

material data within the local convex space E l
α (denoted by enclosed black dash lines) formed by

the k selected data points closest to the given physical state, which expands the feasible solution

space for robustness in data-driven iterations against noise and outliers in the material data [38].

Fig. 4.1 shows the comparison of the DMDD and LCDD solvers, where (v) is the iteration

index and one iteration consists of solving one global (physical) step, i.e. Eqs. (4.12)–(4.13)

and one material data-driven local step, e.g. Eq. (4.14) or (4.16), as noted in Section 4.2. The

local step of the DMDD solver (4.14) searches for the material data closest to the given physical
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state directly from the material dataset E, see Fig. 4.1(a). It has been shown that this heuristic

solver suffers from noisy dataset and requires enormous data to guarantee satisfactory accuracy

[3, 103]. On the other hand, the LCDD solver (4.16) searches for the optimal material data based

on the locally constructed convex space E l
α informed by the neighboring data, as shown in Fig.

4.1(b). The key idea behind the construction of E l
α is to provide a smooth, bounded and lower

dimensional admissible space for optimal material data search in Eq. (4.16), and to preserve the

convexity of the constructed local material manifold for enhanced robustness and stability in

data-driven iterations.

While the material data-driven local solver in Eq. (4.16) locates the optimal data from

the defined feasible set (constructed by a set of local neighboring points), the final solution of

the associated data-driven modeling problem Eq. (4.6) is not guaranteed to be globally optimal.

This is consistent to other existing data-driven approaches [2, 3, 94] where the optimality

fundamentally depends on the characteristic of the material dataset. However, as demonstrated

in references [2, 3, 94], if the material dataset is well posed, the proposed data-driven solver can

converge optimally as the density of data points increases.

Remark. It should be noticed that in both Eqs. (4.14) and (4.16) the nearest points are sought

based on the metric functions dE and dS. Thus, it suffers from the notorious “dimensionality

curse” when data-driven modeling attempts to scale up to high-dimensional material data.

Although the innate manifold learning in LCDD allows noise and dimensionality reduction, the

proper definition of the metric functions in high-dimensional phase space remains challenging

[27]. Besides, as the nearest neighbors are searched locally from the existing data points of the

material dataset, it leads to limited extrapolative generalization to be demonstrated in Section

6.4.2. Furthermore, the data search and the locally convex reconstruction through a constrained

minimization solver at every local step during data-driven computation could result in high

computational cost especially for the large and high dimensional material dataset.
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4.4 Reproducing kernel approximation

The reproducing kernel (RK) approximations [186, 187] is adopted in the physical solver

of the data-driven computing framework due to its nodal approximation of state and field variables

that are particularly effective for data-driven computing. The RK approximation functions can

be constructed to possess desired completeness and continuity, which are determined by basis

functions and kernel functions, respectively. Fig. 4.2(a) shows a domain Ω discretized by a set

of nodes.

(a)
(b) (c)

Figure 4.2. (a) A domain Ω discretized by the a set of RK nodes; (b) a cubic B-spline function
widely used as a kernel function in RK approximation; (c) an example of RK approximation
function centered at X = 5 with a support size a = 1.5 × (nodal spacing)

The displacement field u(x) and the Lagrange multiplier λ (x) in weak-form equations

Eq. (4.13) are approximated by

uh(x) =
NP

∑
I=1

ΨI(x)dI, (4.20a)

λ
h(x) =

NP

∑
I=1

ΨI(x)ΛI, (4.20b)

where dI and ΛI are the nodal coefficients associated with the fields u(x) and λ (x), respectively,
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and ΨI(x) is the reproducing kernel (RK) approximation function expressed as

ΨI(x) = HT (x−xI)b(x)φa(x−xI), (4.21)

where HT (x−xI) = [1,x1− x1I,x2− x2I,x3− x3I, ...,(x3− x3I)
n] is a vector of monomial basis

functions up to the n-th order, and φa(x−xI) is a kernel function with a local support size ”a”,

controlling the smoothness of the RK approximation function, for example, the cubic B-spline

kernel function, see Fig. 4.2(b):

φa(y) =



2
3 −4y2 +4y3, 0≤ y < 1

2

4
3 −4y+4y2− 4

3y3, 1
2 ≤ y < 1

0, y≥ 1

with y =
||x−xI||

a
. (4.22)

In Eq. (4.21), b(x) is a parameter vector determined by imposing the n-th order reproducing

conditions [186, 187],

NP

∑
I=1

ΨI(x)xi
1Ix

j
2Ix

k
3I = xi

1x j
2xk

3, |i+ j+ k|= 0,1, ...,n. (4.23)

Substituting Eq. (4.21) into Eq. (4.23) yields b(x) = M−1(x)H(0), where M(x) is a moment

matrix given by

M(x) =
NP

∑
I=1

H(x−xI)HT (x−xI)φa(x−xI). (4.24)

The RK approximation function is then obtained as, see Fig. 4.2(c):

ΨI(x) = HT (0)M−1(x)H(x−xI)φa(x−xI). (4.25)
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4.5 Nodal integration scheme

The stabilized conforming nodal integration (SCNI) approach is employed for the domain

integration of the weak form (Eq. (4.13)) to achieve computational efficiency and accuracy when

using RK shape functions with nodal integration quadrature schemes.

The key idea behind SCNI is to satisfy the linear patch test (thus, ensure the linear

consistency) by leveraging a condition, i.e. the divergence constraint on the test function space

and numerical integration [188], expressed as:

∫̂
Ω

∇ΨIdΩ =
ˆ∫
∂Ω

ΨIndΓ, (4.26)

where ’ˆ’ over the integral symbol denotes numerical integration. In SCNI, an effective way

to achieve Eq. (4.26) is based on nodal integration with gradients smoothed over conforming

representative nodal domains, as shown in Fig. 4.3, converted to boundary integration using the

divergence theorem

∇̃ΨI(xL) =
1

VL

∫
ΩL

∇ΨIdΩ =
1

VL

∫
∂ΩL

∆ΨIndΓ, (4.27)

where VL =
∫

ΩL
dΩ is the volume of a conforming smoothing domain associated with the node

xL, and ∇̃ denotes the smoothed gradient operator. In this method, smoothed gradients are

employed for both test and trial functions, as the approximation in Eq. (4.27) enjoys first order

completeness and leads to a quadratic rate of convergence for solving linear solid problems by

meshfree Galerkin methods. As shown in Fig. 4.3, the continuum domain Ω is partitioned into

N conforming cells by Voronoi diagram, and both the nodal displacement vectors and the state

variables (e.g., stress, strain) are defined at the set of nodes {xL}N
L=1.

Therefore, if we consider two-dimensional elasticity problem under the SCNI framework,

48



the smoothed strain-displacement matrix B̃I(xL) used in (16) is expressed as:

B̃I(xL) =


b̃I1(xL) 0

0 b̃I2(xL)

b̃I2(xL) b̃I1(xL)

 , (4.28)

with

b̃Ii(xL) =
1

VL

∫
∂ΩL

ΨI(x)ni(x)dΓ. (4.29)

Since the employment of the smoothed gradient operator in Eq. (4.27) and Eq. (4.29) satisfies

the divergence constraint regardless of the numerical boundary integration, a trapezoidal rule for

each segment of ∂ΩL is used in this study.

Figure 4.3. Illustration of Voronoi diagram for SCNI.
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Chapter 5

Physics-constrained local convexity data-
driven modeling of anisotropic nonlinear
elastic solids

5.1 Introduction

In recent years, the physics-constrained data-driven computing framework introduced

in Chapter 4 has been extended to dynamics [95], nonlinear elasticity [47, 96], inelasticity [97],

constitutive manifold construction [189, 190], and multiscale modeling [191, 192]. Despite these

advances, the data-driven computing frameworks cannot handle anisotropic material systems

with various anisotropic orientations, i.e., orientations of material anisotropy, effectively. This is

due to the fact that the data-driven solvers of these frameworks do not consider information of

anisotropic orientations of materials, which prevents applications of these data-driven computing

frameworks to complex material systems with directional dependent material behaviors, e.g.,

musculoskeletal systems with significant differences in the muscle fiber direction leading to

variations in anisotropy of muscle tissue.

The objective of this study is to develop a new data-driven solver built upon the local

convexity-preserving reconstruction scheme [38] in order to model anisotropic nonlinear elastic

solids. The remainder of this chapter is organized as follows. Section 5.2 introduces a new

local convexity-preserving material solver designed for anisotropic solids. Particularly, a rotated
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material database is constructed offline and a two-level data search is integrated into the material

solver to capture directional dependent material behaviors during online data-driven computing.

In Section 5.3, the proposed data-driven computing framework is verified by modeling the

deflection of a cantilever beam with layers containing different fiber directions and inflation of

a cylinder where fiber directions vary along the circumferential direction of the cylinder. The

data-driven solutions are compared with the constitutive model-based reference solutions to

examine the effectiveness and robustness of the proposed methods. Concluding remarks and

discussions are given in Section 5.4.

5.2 Methodologies

The basic formulations of physics-constrained data-driven computing framework for

nonlinear elastic solids have been revisited in Chapter 4, where the distinction between the

data-driven local material solvers of the DMDD [2] and LCDD [38, 47] is discussed. To model

anisotropic solids, we propose to integrate a two-level data search scheme into the local convexity-

preserving material solver in LCDD in order to capture the anisotropic material properties with

anisotropic orientations (orientations of material anisotropy) information.

5.2.1 Local Convexity-Preserving Material Solver for Anisotropic Solids

To capture directional dependent material properties of anisotropic solids, a two-level

local data search scheme is introduced in the local convexity-preserving material solver. Let

us consider an anisotropic material with material behaviors characterized by a data set E =

{(Ê j, Ŝ j)}M
j=1 measured in a global reference frame, and every material point in a physical

system is associated with its anisotropic orientations (orientations of material anisotropy), which

can be represented by the vector of Euler angles θ i between the local fiber frame and the global

reference frame, where i = 1, ...,N is the index of material (integration) points. For simplicity,

the methodologies of the proposed material solver for anisotropic solids is illustrated by using

the examples with in-plane (two-dimensional) anisotropy, which can be easily extended to the
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three-dimensional problems.

Fig. 5.1(a) shows an in-plane anisotropic material sample under testing in a global

reference frame (eg
1,e

g
2), where the dash lines indicate the material anisotropic orientation in eg

1

direction. A bar under uniaxial stretching, as shown in Fig. 5.1(b), contains material points Xi

associated with certain angles (anisotropic orientations) θi between the local fiber frame (el
1,e

l
2)

of material point i and the reference frame. The corresponding rotation tensor is defined as

Ri =


cos(θi) −sin(θi) 0

sin(θi) cos(θi) 0

0 0 1

 . (5.1)

(a) (b)

Figure 5.1. (a) Material sample under testing in a reference frame where the dash lines indicate
the material anisotropic orientation; (b) uniaxial stretching of a bar. The material behaviors of
the material point marked in blue are characterized by the material data from the sample shown
in Fig. 5.1(a)

Applying the rotation Ri to the strain-stress data E = {(Ê j, Ŝ j)}M
j=1 yields the rotated

strain-stress data Eθ
i = {(Êθ

j , Ŝ
θ
j )}M

j=1 representing the material behaviors with the anisotropic

orientation θ i under the reference frame:

Êθ
j = Ri · Ê j ·RT

i , j = 1, ...,M (5.2a)

Ŝθ
j = Ri · Ŝ j ·RT

i , j = 1, ...,M. (5.2b)
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The rotated material data sets are normally obtained offline with various angles associated with

material points in the physical system. Rotated material data sets are then used to reconstruct the

optimal material data in the material solver during online data-driven computing.

However, it is impractical to prepare rotated material data sets when a system contains a

large number of varying anisotropic orientations associated with material points as a collection

of all possible rotated material data sets requires prohibitive memory. A typical example is

muscle tissues in musculoskeletal systems that involve randomly oriented fibers. To effectively

model anisotropic behaviors in complex material systems, we introduce a two-level local data

search scheme into the material solver. To this end, the anisotropic orientation θ is encoded

as an additional feature in material data and physical states of material points. Consequently,

the distance between the material data and physical state is not only measured by the distance

between their strain-stress values, called state distance, but also the distance between their

anisotropic orientations, called anisotropic distance, expressed as

d2
z f
(
(z,θ),(z, θ̂)

)
= d2

z (z, ẑ)+d2
f (θ , θ̂). (5.3)

The state distance dz(z, ẑ) is computed by Eqs. (4.4) and (4.5) and the anisotropic distance

d f (θ , θ̂) is defined as

d f (θ , θ̂) = ||θ − θ̂ ||, (5.4)

where θ̂ and θ denote the anisotropic orientations of material data and the material point,

respectively.

Level-1 Data Search

Let us consider a system constituted by an anisotropic material with various anisotropic

orientations, e.g., a musculoskeletal system consisting muscle fibers with various fiber orienta-

tions. The anisotropic material with various anisotropic orientations in the global reference frame

exhibits the same material behaviours under the local fiber frame. We first prepare a rotated
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material database that contains m̂ rotated material data sets obtained by rotating the original data

set with m̂ different angles (anisotropic orientations). Each rotated material data sets contains

strain-stress data ẑ and an anisotropic orientation θ̂ . The range of variations in anisotropic

orientations of the rotated material database is sufficiently large to cover all material points in

the system. Given a physical state of a material point, (zi,θ i), where the subscript i denotes

the index of a material (integration) point Xi, we first compute the anisotropic distance (Eq.

(5.4)) between the material point (θ i) and all rotated material data sets (θ̂ p, p = 1,2, ..., m̂). Two

rotated material data sets, Eθ
p and Eθ

q , will then be selected so that θ̂ p ≤ θ i ≤ θ̂ q, as illustrated by

the blue dash block in Fig. 5.2. The selected material data sets have the anisotropic orientations

closest to that of the material point and therefore are considered to best represent the anisotropic

material behaviors of the material point.

Figure 5.2. Illustration of two-level local data search in the proposed material solver

Level-2 Data Search

Given the two selected rotated material data sets by the Level-1 search scheme, we search

for k nearest neighbors (KNN) within each data set based on the state distance between the

physical state of the material point and the selected material data sets. The lists of k material

data points closest to the physical state of the material point from the first and second selected

material data set are denoted as KNN1 and KNN2, respectively, as shown in Fig. 5.2. To properly

consider the effect of the two KNN data sets, we propose to use a linear weighting scheme based
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on the anisotropic orientation information as follows:

ŵ2 =
d f (θ i, θ̂ p)

d f (θ̂ q, θ̂ p)
=
||θ i− θ̂ p||
||θ̂ q− θ̂ p||

, (5.5a)

ŵ1 = 1− ŵ2. (5.5b)

The final list of k nearest neighbors, which is formed by int(k · ŵ1) (rounded to the nearest integer)

nearest neighbors from KNN1 and int(k · ŵ2) nearest neighbors from KNN2, is used for local

convexity-preserving reconstruction of the optimal material data that is closest to the physical

state of the material point by

(ẑ∗i , θ̂
∗
i ) = argmin

(ẑi,θ̂ i)∈Ẽ (z∗i ,θ i)

d2
z (z
∗
i , ẑi)+d2

f (θ i, θ̂ i), i = 1, ...,N, (5.6)

where z∗i is the optimal strain-stress state obtained from the physical step (Eq. (4.7)) for the

material point Xi, θ i is the anisotropic orientation of the material point Xi, Ẽ (z∗i ,θ i) is a

local convex space formed by the selected k nearest neighbors {(ẑα , θ̂ α)}α∈Nk(z∗i ,θ i) of the

physical state (z∗i ,θ i) based on the distance measured by d2
z (z∗i , ẑ)+d2

f (θ i, θ̂). The anisotropic

oritentations θ i and θ̂ i are normalized by θ̂ q before the calculation of anisotropic distance.

Note that the construction of convexity-preserving local manifold takes the anisotropic

orientations of the selected nearest neighbors into account in forming the local convex space

Ẽ (z∗i ,θ i) so that the anisotropic orientations of nearest neighbors play an important role in

reconstructing the optimal material data (ẑ∗i , θ̂
∗
i ) closest to the physical state (z∗i ,θ i). Let a∗i and

âi denote (z∗i ,θ i) and (ẑi, θ̂ i), respectively. The total distance between a∗i and âi is denoted by

d2
z f (a

∗
i , âi). The local convex space Ẽ (a∗i ) is constructed based on the collected nearest neighbors
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{âα}α∈Nk(a∗i ), defined as

Ẽ (a∗i ) = Conv
(
{âα}α∈Nk(a∗i )

)
=

{
∑

α∈Nk(a∗i )
w̃α âα

∣∣∣∣ ∑
α∈Nk(a∗i )

w̃α = 1 and w̃α ≥ 0, ∀α ∈Nk(a∗i )

}
,

(5.7)

The optimal coefficients w̃i = {w̃α}α∈Nk(a∗i ) are obtained by solving the following minimization

problem:

w̃∗i = argmin
w̃i

d2
z f

(
a∗i , ∑

α∈Nk(a∗i )
w̃α âα

)
subject to: ∑

α∈Nk(a∗i )
w̃α = 1,

w̃α ≥ 0, ∀α ∈Nk(a∗i ),

(5.8)

where w̃∗i = {w̃∗α}α∈Nk(a∗i ) denote the optimal coefficients. Eq. (5.8) is solved by the non-

negative least-square algorithm with penalty relaxation used to solve for the optimal coefficients

of the local convex space in LCDD’s material solver (Eq. (4.18)), see more details in [38].

The optimal material data â∗i = (ẑ∗i , θ̂
∗
i ) can then be obtained by the following local convex

construction:

â∗i = ∑
α∈Nk(a∗i )

w̃∗α âα , (5.9)

The optimal material data sought from the material solver is considered to be “closest” to the

physical state in terms of both state distance and anisotropic distance and thus best represent

the anisotropic material properties of the material point. The optimal material data will then

be input to the physical step (Eq. ((4.12))-(4.13)) to solve for the closest physical state in the

next data-driven iteration. Note that anisotropic properties are embedded in material database,

which are independent of physical laws. Hence, the physical solver only requires the optimal

strain-stress material data, ẑ∗i , reconstructed from the material solver.
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Schematic Illustration

Fig. 5.3 shows schematic examples of the material step in a two-dimensional space,

where θ̂ p = 20◦, θ̂ q = 40◦, and k = 6 are considered. Three different anisotropic orientations

θ i of the material point i are considered, i.e., 36◦, 30◦ and 24◦. The linear weights for selecting

the nearest neighbors (KNN weights) from each material data set are computed based on the

anisotropic orientation information by Eq. (5.5). The number of nearest neighbors from each

material data set are computed by multiplying their KNN weights with the total number of

nearest neighbors k, as listed in Table 5.1, which are rounded to the nearest integer. This

approach follows the idea of instance-based learning [193] to learn the underlying relation from

the neighboring manifold of observation data, but additionally, it assigns different number of

votes to the selected data sets based on their anisotropic distance d f (Eq. (5.4)). For example, in

the case that the anisotropic orientation of the material point i is θ i = 36◦, which is closer to that

of data set 2 (θ̂ q = 40◦) and thus the computed KNN weight for data set 2 is ŵ2 = 0.8, larger

than ŵ1 = 0.2 of data set 1 (θ̂ p = 20◦). Hence, there are 1 and 5 nearest neighbors selected from

data set 1 and data set 2, respectively, which are used to form a local convex space capturing the

underlying anisotropic data structure, as shown in Fig. 5.3(a). The optimal material data (red

circle in 5.3(a)) is then reconstructed from the local convex space. As the anisotropic orientation

of the material point is closer to that of data set 2, more nearest neighbors are selected from data

set 2 for local convex reconstruction and therefore the optimal material data that is closest to the

given physical state will have anisotropic properties closer to that of data set 2. In the case that

the anisotropic orientation is θ i = 30◦, both data sets have the same KNN weights and contribute

the same number of nearest neighbors to the construction of local convex space, as shown in Fig.

5.3(b), indicating that they have the same effects on reconstructing the optimal material data.

Note that the relation between the anisotropic properties and anisotropic orientations is

nonlinear. More sophisticated anisotropic distance metrics and local data reconstruction schemes

are required in order to achieve higher accuracy in anisotropic material data reconstruction
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Figure 5.3. Schematic illustration of the proposed material solver for anisotropic solids. Data
set 1 has an anisotropic orientation of θ̂ p = 20◦. Data set 2 has an anisotropic orientation of
θ̂ q = 40◦. The total number of nearest neighbors k is 6. The material step of a material point
with different anisotropic orientations are compared: (a) θ i = 36◦; (b) θ i = 30◦; (c) θ i = 24◦

Table 5.1. The number of nearest neighbors from each data set in the examples shown in Fig. 5.3
with θ̂ p = 20◦, θ̂ q = 40◦, and k = 6. The weights are computed by Eq. (5.5). k · ŵ1 and k · ŵ2
are rounded to the nearest integer.

θ i ŵ1 ŵ2 k · ŵ1 k · ŵ2
36◦ 0.2 0.8 1 5
30◦ 0.5 0.5 3 3
24◦ 0.8 0.2 5 1

if the selected material data sets have a large anisotropic distance, which will be investigated

in our future study. In the cases that the anisotropic distance of the selected rotated material

data sets is small, the L2-based metric for anisotropic distance (Eq. (5.4)) and the linear local

convexity-preserving reconstruction scheme (Eq. (5.9)) adopted in this study can yield desirable

accuracy in the data-driven modeling of anisotropic materials, which will be demonstrated in the

numerical examples in the following sections.

5.2.2 Local Convexity-Preserving Data-Driven Solver for Anisotropic
Solids

Given an anisotropic material data set E and anisotropic orientations of material points

in the system, the proposed data-driven solver for modeling anisotropic solids is summarized as

followings.

Offline Stage:
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Step 1. Define a range for variations in anisotropic orientations for material data rotation

so that it covers that of the material points in the system. Depending on the distribution of the

anisotropic orientations in the system, anisotropic orientations for data rotation can be evenly

distributed in the defined range or follow certain statistical distributions in order to better capture

anisotropic properties of the system.

Step 2. Construct a rotated material database Eem = Eθ
1 × ...×Eθ

m by rotating the original

anisotropic material data set E with the anisotropic orientations defined in Step 1. The rotation

of strain and stress data is performed by Eq. (5.2).

Online Stage:

Step 1. Randomly initialize ẑ(0)i , i = 1, ...,N, where i denote the indices of material points

and N is the number of material points in the system, and set the data-driven iteration index

v = 0.

Step 2. Solve the physical step (Eq. (4.12)-(4.13)) for physical states of all material

points, z∗(v)i , i = 1, ...,N.

Step 3. For each physical state of a material point, (z∗(v)i ,θ i), perform two-level local

data search (material step):

3.1. Search for two rotated material data sets with anisotropic orientations

θ̂ p and θ̂ q so that θ̂ p ≤ θ i ≤ θ̂ q.

3.2. From each selected material data set, search for k material data points

that are closest to the physical state based on the state distance d2
z (z
∗(v)
i , ẑ) and obtain the final

KNN using the weights computed by Eq. (5.5).

3.3. Construct local convex space by solving Eq. (5.8) and obtain the

optimal material data ẑ∗(v)i within the local convex space by Eq. (5.9).

Step 4. Update v = v+1. If max
i=1,...,N

d2
z (ẑ
∗(v)
i , ẑ∗(v−1)

i )> tolerance, repeat Step 2 - 4.

Step 5. Data-driven solution: z∗i = ẑ∗(v)i , i = 1, ...,N.
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Remark: Modeling anisotropic materials by classical computational mechanics requires online

rotation of element stiffness matrices from local fiber frames to the global reference frame before

global assembly, which could lead to high computational cost especially for large systems. In

the proposed data-driven modeling of anisotropic materials, online rotation is replaced with an

offline rotation, where anisotropic material data sets are rotated by various anisotropic orienta-

tions under the global reference frame to form a rotated material database for efficient online

data-driven computing. In the general three-dimensional orthotropic case, each anisotropic

orientation is associated with three Euler angles and thus for every anisotropic orientation

considered, offline rotation operations associated with three Euler angles are required for every

stress-strain data, which could be CPU intensive but can be performed in parallel especially

when dealing with a large amount of data. Once the rotated material database is constructed

offline, it can be efficiently applied to different material points in data-driven modeling and to

different systems with the same anisotropic materials. Note that when the size of anisotropic

material data sets is large and the range of variations in anisotropic orientations of the system is

very broad, the offline rotated material database may require a large amount of memory.

If memory resources are not available, one can also adopt online rotation in the data-

driven computing for modeling anisotropic materials. In this case, at each data-driven iteration,

the physical step remains unchanged. In the material step, the physical states are first rotated

from the global reference frame to local fiber frames of material points and then the LCDD

material solver (Eqs. (4.16)-(4.19)) can be applied to find the optimal material data from the

unrotated anisotropic material data set. The optimal material data is then rotated back to the

global reference frame for the next data-driven iteration. Compared to the proposed data-driven

approach with offline rotation, this online rotation approach requires higher CPU but less

memory.
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5.3 Results and Discussion

5.3.1 Preparation of Material Data Sets

For the following numerical demonstration, the two-dimensional Saint Venant-Kirchhoff

phenomenological model with isotropic and orthotropic elastic tensors are respectively consid-

ered as the reference models and used to generate synthetic data for data-driven computing. The

plane-stress isotropic elastic stress-strain relation in the Voigt notation is expressed as


S11

S22

S12

=
E

(1+ν)(1−2ν)


1−ν ν 0

ν 1−ν 0

0 0 1−2ν

2




E11

E22

2E12

 , (5.10)

where E denotes the Young’s modulus and ν is the Poisson’s ratio. As another reference material

model, the plane-stress orthotropic elastic stress-strain relation in the Voigt notation is expressed

as 
S11

S22

S12

=
1

1−ν12ν21


E1 ν21E1 0

ν12E2 E2 0

0 0 G12(1−ν12ν21)




E11

E22

2E12

 , (5.11)

where E1 and E2 are Young’s moduli in the eg
1 and eg

2 directions of the reference frame, respec-

tively, see Fig. 5.1(a). ν12 and ν21 are Poisson’s radios. G12 is the shear modulus.

To demonstrate the robustness of the proposed data-driven computing framework against

noise presented in given material data sets, noisy material data sets are generated and the

procedure is described below. First, a noiseless material data set, E0 = {(Ê0
i , Ŝ

0
i )}M

i=1 with

M = 203, is generated, where each strain component is uniformly distributed within a certain

range, e.g., [-0.2,0.2], and the stress components are obtained by using the orthotropic material

model in Eq. (5.11). M = 203 strain and stress data points with E1 = 104,E2 = 2.5×103,ν21 =

0.1,ν12 = 0.4, and G12 = 4.8× 103 are shown in Fig. 5.4(a) and (c), respectively, serving as

a noiseless base data set without any noise and rotation. The anisotropic orientation of the
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noiseless base data set is along the horizontal direction of the reference frame, as shown in Fig.

5.1(a). Then, each component of the noiseless base data set is perturbed by Gaussian noise with a

scaling factor, 0.4z̄max/
3
√

M, where z̄max is a vector of the maximum values for each component

among the noiseless data set. Fig. 5.4(b) and (d) show the strain and stress of the noisy base data

set, E= {(Êi, Ŝi)}M
i=1 with M = 203, generated from the noiseless base data set E0 shown in Fig.

5.4(a) and (c), respectively.

(a) Noiseless Strain Data (b) Noisy Strain Data

(c) Noiseless Stress Data (d) Noisy Stress Data

Figure 5.4. Material data sets with 8000 data points, E1 = 104,E2 = 2.5×103,ν12 = 0.1,ν21 =
0.4, and G12 = 4.8×103: (a) noiseless strain data; (b) noisy strain data; (c) noiseless stress data;
(d) noisy stress data

Given anisotropic orientations of material points in a physical system, e.g., θi of the
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material point i in Fig. 5.1(b), the strain and stress data of the base data set can be rotated using

Eq. (5.2). Fig. 5.5 shows the strain and stress data rotated from the base data set by three

different angles 30◦, 60◦, and 90◦. In the following numerical examples, rotation of material

data sets is performed offline by various angles (anisotropic orientations) to cover the range of

variations in anisotropic orientations of systems. A collection of rotated material data sets form a

rotated material database, which is then used for online data-driven computing with the material

solver equipped with two-level data search designed for capturing directional dependent material

behaviors.

(a) Rotation: 30◦ (b) Rotation: 60◦ (c) Rotation: 90◦

(d) Rotation: 30◦ (e) Rotation: 60◦ (f) Rotation: 90◦

Figure 5.5. Rotated material data sets with 8000 data points, E1 = 104,E2 = 2.5×103,ν12 =
0.1,ν21 = 0.4, and G12 = 4.8×103: (a) strain data rotated by 30◦; (b) strain data rotated by 60◦;
(c) strain data rotated by 90◦; (d) stress data rotated by 30◦; (e) stress data rotated by 60◦; (f)
stress data rotated by 90◦
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5.3.2 Multi-layer Anisotropic Cantilever Beam Subjected to A Tip Shear
Load

We first investigate a multi-layer anisotropic cantilever beam benchmark problem to verify

the proposed data-driven modeling framework for anisotropic nonlinear solids, where three layers

of orthotropic materials are considered. Two cases are examined and compared. In Case 1, all

material points in the beam have an identical anisotropic orientation, which is along the horizontal

direction, as shown in Fig. 5.6(a). In Case 2, the beam is made of three layers of anisotropic

materials with different anisotropic orientations. The material points within each layer have the

same anisotropic orientation. Fig. 5.6(b) shows that the bottom, the middle, and the top layers of

the beam have anisotropic orientations of −45◦, 0◦, and 45◦, respectively. A synthetic noiseless

orthotropic material data set with 8000 strain-stress data points is first generated from the

phenomenological orthotropic elastic model with E1 = 104,E2 = 2.5×103,ν21 = 0.1,ν12 = 0.4,

G12 = 4.8×103, and a range of [-0.2,0.2] for each strain component, as shown in Fig. 5.4(a)

and (c). Then, a noisy orthotropic material data set is generated from the noiseless data set using

the procedure described in Section 3.1, as shown in Fig. 5.4(b) and (d).

For Case 1, no rotation of the material data set is required as the anisotropic orientations

of materials points in the beam are identical with that of the synthetic data set, which is along

the horizontal direction. For Case 2, a rotated material database is constructed by rotating the

generated synthetic noiseless/noisy data set from −60◦ to 60◦ with a 10◦ interval, i.e., −60◦,

−50◦, −40◦, −30◦, −20◦, −10◦, 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦. The rotated material

database is then used for online data-driven computing. The numerical studies of both cases

are performed with noiseless or noisy material data sets. A tip shear load P = 10E1I/L2 with

I = H3/12 is applied and the data-driven analysis is performed with 20 loading steps.

The normalized tip deflection-loading and stress distribution of data-driven solutions are

compared with those of the constitutive model-based reference solutions obtained from an in-

house Finite Element code, as shown in Figs. 5.7 and 5.8. The data-driven solutions of both cases
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(a) Case 1 (b) Case 2

Figure 5.6. Schematic of cantilever beam subjected to a tip shear load: (a) Case 1: material
points have only one anisotropic orientation 0◦; (b) Case 2: material points located in different
layers of the beam have different anisotropic orientations. The anisotropic orientations of the
bottom, the middle, and the top layers are −45◦, 0◦, and 45◦, respectively. P = 10E1I/L2, and
I = H3/12

show a satisfactory agreement with the model-based reference solutions, which demonstrates

the effectiveness of the proposed data-driven computing framework for modeling anisotropic

nonlinear elastic materials. The data-driven solutions obtained from using the noisy material data

sets agree well with the model-based reference solutions, showing the robustness of the proposed

framework against noise in the data sets, which is achieved by the local convexity-preserving

reconstruction in the material solver.

(a) Case 1 (b) Case 2

Figure 5.7. Comparison of data-driven solutions with constitutive model-based reference
solutions. Normalized tip deflection-loading, where I = H3/12: (a) Case 1; (b) Case 2
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(a) Case 1 - Reference
(b) Case 1 - LCDD (Noiseless
data) (c) Case 1 - LCDD (Noisy data)

(d) Case 2 - Reference
(e) Case 2 - LCDD (Noiseless
data)

(f) Case 2 - LCDD (Noisy data)

Figure 5.8. Comparison of data-driven solutions with constitutive model-based reference
solutions. Distribution of Sxx: (a) Case 1: reference solution; (b) Case 1: data-driven solution
with noiseless data; (c) Case 1: data-driven solution with noisy data; (d) Case 2: reference
solution; (e) Case 2: data-driven solution with noiseless data; (f) Case 2: data-driven solution
with noisy data
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5.3.3 Anisotropic Cylinder Subjected to Internal Pressure

To further evaluate the effectiveness of the proposed data-driven computing framework

in handling physical systems with a large variation in anisotropic orientations, an anisotropic

cylinder subjected to internal pressure is analyzed, as shown in Fig. 5.9(a), which is composed

of an orthotropic material with anisotropic orientations along the circumferential direction of the

cylinder. Considering axisymmetry of the geometry and the applied load, only a quarter model

shown in Fig. 5.9(b) is modeled. The inner and outer radius are 1 and 2, respectively. In Fig.

5.9(c), the anisotropic orientations of the 10×20 discretization points are denoted by red arrows

. Two cases are examined and compared.

In Case 1, an isotropic elastic material is applied, with Young’s modulus E = 9×103 and

Poisson’s ratio ν = 0.2. A noiseless synthetic isotropic material data set with 8000 strain-stress

data points is generated by the phenomenological isotropic elastic material model with a range

of [-0.4,0.4] for each strain component. In Case 2, an orthotropic elastic material is applied, with

E1 = 4×104,E2 = 9×103,ν21 = 0.045,ν12 = 0.2, G12 = 2×104, and anisotropic orientations

along the circumferential direction of the cylinder. A noiseless synthetic orthotropic material data

set with 8000 strain-stress data points is generated by the phenomenological orthotropic elastic

material model with a range of [-0.4,0.4] for each strain component. Considering the uniform

distribution of anisotropic orientations of material points in the cylinder, a rotated material

database is constructed by rotating the generated synthetic data set from 90◦ to 180◦ with a 5◦

interval. Noisy material data sets are generated from the noiseless material data sets by the

procedure described in Section 5.3.1. Internal pressure p = 1000 is applied and the data-driven

analysis is performed with 20 loading steps.

The cross-sectional (y = 0) radial displacement (Ur) as well as the radial and the cir-

cumferential stress distributions of the data-driven solutions are compared with those of the

constitutive model-based reference solutions, as shown in Figs. 5.10 - 5.12. The data-driven

solutions obtained from using noisy material data sets are very close to those of reference
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(a)

(b)

Figure 5.9. (a) Schematic of a cylinder subjected to internal pressure and a quarter model
to be simulated; (b) red arrows denote nodal anisotropic orientations of material points in a
discretization with 10×20 nodes

solutions, which again shows the robustness of the proposed data-driven framework to deal with

noisy data sets. The results of both cases show a good agreement with the reference solutions,

which demonstrates the effectiveness of the proposed data-driven framework in dealing with

systems with a large variation in anisotropic orientations.

(a) Case 1 (b) Case 2

Figure 5.10. Comparison of data-driven solutions with constitutive model-based reference
solutions. Cross-sectional radial displacement Ur: (a) Case 1; (b) Case 2
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(a) Case 1 - Reference Srr (b) Case 1 - LCDD (Noiseless) Srr (c) Case 1 - LCDD (Noisy) Srr

(d) Case 1 - Reference Sθθ

(e) Case 1 - LCDD (Noiseless)
Sθθ

(f) Case 1 - LCDD (Noisy) Sθθ

Figure 5.11. Comparison of data-driven solutions with constitutive model-based reference
solutions of Case 1. Distribution of Srr (stress in the radial direction) and Sθθ (stress in the
circumferential direction): (a) Case 1: reference Srr; (b) Case 1: data-driven solution with
noiseless data of Srr; (c) Case 1: data-driven solution with noisy data of Srr; (d) Case 1: reference
Sθθ ; (e) Case 1: data-driven solution with noiseless data of Sθθ ; (f) Case 1: data-driven solution
with noisy data of Sθθ
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(a) Case 2 - Reference Srr (b) Case 2 - LCDD (Noiseless) Srr (c) Case 2 - LCDD (Noisy) Srr

(d) Case 2 - Reference Sθθ

(e) Case 2 - LCDD (Noiseless)
Sθθ

(f) Case 2 - LCDD (Noisy) Sθθ

Figure 5.12. Comparison of data-driven solutions with constitutive model-based reference
solutions of Case 1. Distribution of Srr (stress in the radial direction) and Sθθ (stress in the
circumferential direction): (a) Case 2: reference Srr; (b) Case 2: data-driven solution with
noiseless data of Srr; (c) Case 2: data-driven solution with noisy data of Srr; (d) Case 2: reference
Sθθ ; (e) Case 2: data-driven solution with noiseless data of Sθθ ; (f) Case 2: data-driven solution
with noisy data of Sθθ
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5.4 Summary

In this study, we develop a new data-driven material solver built upon the local convexity-

preserving reconstruction scheme [38] to capture anisotropic material behaviors and enable

data-driven modeling of anisotropic nonlinear elastic solids. The proposed data-driven approach

assumes that the material data of anisotropic materials with a specific anisotropic orientation in

a reference frame is accessible. The information of anisotropic orientations, e.g., the rotation

angles between local fiber frames and the reference frame of the material data are utilized to

construct an offline material database, which contains rotated material data sets representing

anisotropic material properties with various anisotropic orientations. The offline rotated material

database can be efficiently constructed and applied to data-driven simulations of anisotropic

materials.

During online data-driven computing, a two-level local data search is integrated into the

local convexity-preserving material solver. In the level-1 data search, two rotated material data

sets with minimum anisotropic distance (Eq. (5.4)) to the material anisotropic orientation are

identified as the local data sets. The selected rotated material data sets are considered to contain

anisotropic material properties closest to that of the material point. In the level-2 data search, k

data points closest to the given physical state based on strain-stress state distance (Eq. (4.15)) are

obtained separately from the two rotated material data sets selected from the level-1 data search.

A linear weighting scheme based on anisotropic distance is adopted to determine the number

nearest data points from each of the selected material data sets. The final k nearest data points

that contain information of strain, stress, and anisotropic orientations are used to construct a

local convex space capturing the underlying anisotropic data structure, within which the optimal

material data is reconstructed by the material solver. The optimally reconstructed material data

is closest to the physical state of the material point in terms of both anisotropic distance and state

distance and thus is considered to best represent the anisotropic properties of the material point.

The performance of the proposed data-driven computing framework is examined by two
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numerical examples, including deflection of a multi-layer anisotropic cantilever beam made of

materials with different anisotropic orientations and inflation of an anisotropic cylinder where

anisotropic orientations are along the circumferential direction of the cylinder. Synthetic noiseless

and noisy material data are generated from the phenomenological material models and employed

for the data-driven analysis for accuracy assessment of the proposed method. The data-driven

solutions show a good agreement with the constitutive model-based reference solutions, which

demonstrates its effectiveness and robustness of the proposed data-driven framework against

noise present in the material data.

The proposed two-level data search can achieve high computational efficiency if the

rotated material database is constructed offline such that online computation does not involve

any frame transformation of states or data. For applications with a large amount of anisotropic

material data and strong variations in anisotropic orientations, constructing a rotated material

database with small anisotropic distance between rotated data sets requires a large amount of

memory. In this case, more sophisticated metrics for anisotropic distance and reconstruction

schemes will be investigated in order to achieve high accuracy in reconstructing anisotropic

material properties from given material data sets that have a large anisotropic distance. In future

studies, the proposed data-driven anisotropic modeling framework will be further examined with

real-world data on three-dimensional material systems with aniostropic material behaviors, e.g.,

musculoskeletal systems consisting of muscle fibers with varying anisotropic orientations.
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Chapter 6

Deep autoencoders for physics-constrained
data-driven nonlinear materials modeling

To counteract the curse of dimensionality, we propose to use autoencoders in the data-

driven local solver for deep manifold learning of material data, allowing effective discovering of

the underlying representation of stress-strain material data. To the best of the authors’ knowledge,

this is the first attempt to apply deep manifold learning in physics-constrained data-driven

computing. In the following exposition, we demonstrate how autoencoder based deep learning

enhances accuracy, robustness, and generalization ability of data-driven computing.

6.1 Introduction

In this work, we aim to develop a novel data-driven computing approach to overcome

the curse of dimensionality and the lack of generalization in classical model-free data-driven

computing approaches [2, 3, 28]. To this end, we propose to introduce a novel autoencoders based

deep neural network architecture [44, 45] under the LCDD framework [3] to achieve two major

objectives: dimensionality reduction and generalization of physically meaningful constitutive

manifold. It should be emphasized that there have been various nonlinear dimensionality

reduction (i.e. manifold learning) techniques developed for complex high-dimensional data

[194–198], but these methods remain challenging in out-of-sample extension (OOSE), that is to

project new unseen data onto the learned low-dimensional representation space, due to the lack
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of explicit mapping function. While nonparametric OOSE [198] is an option to construct the

mapping, the computational complexity increases substantially with the size of dataset. On the

other hand, owing to its deep learning architecture, an autoencoder is capable of naturally defining

the mapping functions between high- and low-dimensional representation and capturing highly

varying nonlinear manifold with good generalization capability [27, 198], as to be discussed in

Section 6.2.

By integrating autoencoders and the discovered low-dimensional embedding into the

data-driven solver, the proposed framework is referred to as auto-embedding data-driven (AEDD)

computing, which can also be considered as a hybrid of the NN-based constitutive modeling

and the classical model-free data-driven computing. In this approach, the autoencoders are first

trained in an offline stage to extract a representative low-dimensional manifold (embedding)

of the given material data. Autoencoders also provide effective noise filtering through the data

compression processes. The trained autoencoders are then incorporated in the data-driven solver

during the online computation with customized convexity-preserving reconstruction. Hence, all

operations related to distance measure, including the search of the closest material points in the

dataset are performed in the learned embedding space, circumventing the difficulties resulting

from high dimensionality and data noise. To ensure numerical stability and representative

constitutive manifold parameterized by the trained autoencoder networks, an efficient convexity-

preserving interpolation is proposed to locally approximate the optimal material data to a given

physically admissible state. Specifically, in this work, we present two different solvers to

perform locally convex reconstruction, and demonstrate the one directly providing interpolation

approximation without using decoders outperforms the one that fully uses the encoder-decoder

network structure. Furthermore, it is shown that the proposed method is computationally

tractable, since the additional autoencoder training is conducted offline and the online data-driven

computation mainly involve lower-dimensional variables in the embedding space.

The remainder of this chapter is organized as follows. In section 6.2, the employment of

autoencoders for deep material manifold learning is presented. Section 6.3 introduces the auto-
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embedding data-driven solvers and the efficient convexity-preserving interpolation for improved

performance. Finally, in Section 6.4, the effectiveness of the proposed AEDD framework

are examined, and a parametric study is conducted to investigate the effects of autoencoder

architecture, data noise, data size and sparsity, and neural network initialization on AEDD’s

performance. The proposed method is also applied to biological tissue modeling to demonstrate

the enhanced effectiveness and generalization capability of AEDD over the other data-driven

schemes. Concluding remarks and discussions are summarized in Section 6.5.

6.2 Autoencoders for low-dimensional manifold of material
data

The basic concepts of deep neural networks (DNNs) and autoencoders have been intro-

duced in Section 2.1.1 and Section 2.1.2, respectively. For effective data search in the local step,

Eq. (4.3) or Eqs. (4.14) and (4.16), we present the employment of autoencoders to construct

low-dimensional nonlinear representation (embedding) of material data. Thereafter, optimum

data search on the low-dimensional data manifold using a locally convex projection method is

presented in Section 6.3.

6.2.1 Nonlinear material embedding

In this study, autoencoders are used to discover the intrinsic low-dimensional material

embedding of the given material dataset E= {ẑI}M
I=1, where ẑI = (ÊI, ŜI) and M is the number

of material data points. Given the autoencoder architecture h(·;θ enc,θ dec) in Eq. (2.6), the

parameters θ
∗
enc and θ

∗
dec are computed by minimizing the loss function in Eq. (2.7).

The training procedures of autoencoders in terms of the loss function in Eq. (2.7) are

performed offline. Thus, training on a large material dataset does not result in additional overhead

on the online data-driven computation. The details of the training algorithms for autoencoders

are given in Section 6.2.2.

Remark. It is well known that for an autoencoder with a single hidden layer and linear activation
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function, the weights trained by the mean-squared-error cost function learn to span the same

principal subspace as principal components analysis (PCA) [199]. Autoencoders based on

neural networks with nonlinear transform functions can be thought of as a generalizaiton of

PCA, capable of learning nonlinear relationships.

Given the trained autoencoder h(·;θ
∗
enc,θ

∗
dec), we can define a low-dimensional embed-

ding space, E ′ = {z′ ∈ Rp | z′ = henc(z;θ
∗
enc),∀z ∈Z }, in which the material state is described

by a lower-dimensional coordinate system z′. Here, the prime symbol (·)′ is used to denote the

quantities defined in the embedding space, and Z denotes the high-dimensional phase space

where the material states ẑ and the physical states z are defined. For example, the embedding set

of the given material data is

E
′
= {ẑ′I}M

I=1 ⊂ E
′
, (6.1)

where ẑ′I = henc(ẑI;θ
∗
enc) for ẑI ∈ E.

Considering the data-driven application on learning the underlying structure of material

data, autoencoders provide the following advantages:

1) Deep neural network architecture enables autoencoders to capture highly complex non-

linear manifold with exponentially less data points than nonparametric methods based on

nearest neighbor graph [27, 198, 200].

2) Autoencoders provide explicit mapping functions, i.e. henc and hdec, between the high-

and low-dimensional representation so that the trained encoders allow efficient evaluation

of the embedding of new input data.

3) Through information compression by encoders, unwanted information of material data,

such as noise and outliers, can be filtered while preserving its essential low-dimensional

manifold structure [27].

Compared to data-driven methods based on conventional manifold learning techniques [3, 28,

201], the explicit nonlinear mapping functions learned by autoencoders are particularly attractive
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to data-driven computing because not only can they encode the essential global structure of

the given material data for enhanced generalization ability, they also greatly reduce online

computational cost by using the pretrained autoencoders. Furthermore, as we can see in next

section, due to the availability of low-dimensional embedding E ′, we can introduce a convexity-

preserving interpolation scheme to effectively search for the optimal material data associated

with the given physical state.

6.2.2 Autoencoder architectures and training algorithms

As the architectures of encoder and decoder in an autoencoder are symmetric, we only

use the encoder architecture to denote the autoencoder architecture. For example, the encoder

architecture in Fig. 2.4 is 4−6−4−3, where the first and last values denote the numbers of

artificial neurons in the input layer and embedding layer, respectively, and the other values denote

the neuron numbers of the hidden layers in sequence. As such, the decoder architecture in this

case is 3−4−6−4.

The offline training on the given material datasets is performed by using the open-source

Pytorch library [202], and the optimal parameters θ
∗
enc and θ

∗
dec of autoencoders are obtained

by minimizing the loss function (Eq. (2.7)). The regularization parameter β is set as 10−5. A

hyperbolic tangent function is adopted as the activation function for all layers of autoencoders,

except for the embedding layer and the output layer, where a linear function is employed instead.

To eliminate the need of manually tuning the learning rate for training, an adaptive gradient

algorithm, Adagrad [203], is employed, where the initial learning rate is set to be 0.1 and the

number of training epochs is set to be 2000. The training datasets are standardized such that

they have zero mean and unit variance to accelerate the training process. It should be noted

that the training of autoencoders could get trapped in local minima and this can be overcome

by pretraining the network using Restricted Boltzmann Machines or by denoising autoencoders

[198, 204, 205].
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6.3 Auto-embedding data-driven (AEDD) solver

We now develop the AEDD solver based on autoencoders to search for the optimal

material data in the solution process of the local step (e.g., Eqs. (4.14) or (4.16)). We begin with

introducing a simple interpolation scheme to preserve local convexity in the material data search,

which is essential in enhancing the local solver performance, followed by presenting two AEDD

solvers with the employment of convexity-preserving reconstruction.

6.3.1 Convexity-preserving interpolation

With deep manifold learning by autoencoders, we are able to extract the underlying low-

dimensional global manifold of material datasets, and to enhance the generalization capability

of the material local solver. During data-driven computing, material and physical states are

projected onto the constructed material embedding space E ′, and a convexity-preserving local

data reconstruction is introduced for enhanced stability and convergence in the local data search

on the embedding space.

In this approach, because the material embedding points in low-dimensional space are ex-

plicitly given by the offline trained autoencoders, interpolation schemes on the embedding space

is straightforward without suffering the high-dimensionality issues. A convexity-preserving,

partition-of-unity interpolation method is therefore introduced into the material data-driven

solver, using Shepard function [206] or inverse distance weighting. Shepard interpolation has

been widely used in data fitting and function approximation with positivity constraint [207–209].

Here, the Shepard functions are applied to reconstruct the material embedding of a given

physical state, z′ = henc(z;θ
∗
enc), by its material embedding neighbors, expressed as

z′recon = I
(
{ΨI(z′); ẑ′I}I∈Nk(z′)

)
= ∑

I∈Nk(z′)
ΨI(z′)ẑ′I, (6.2)

where z′recon is the reconstruction of z′, ẑ′I is the material data embedding in E′ defined in Eq.
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(6.1), Nk(z′) is the index set of the k nearest neighbor points of z′ selected from E′, and the

shape functions are

ΨI(z′) =
φ(z′− ẑ′I)

∑J=1 φ(z′− ẑ′J)
. (6.3)

In Eqs. (6.2) and (6.3), φ is a positive kernel function representing the weight on the data

set {ẑ′I}I∈Nk(z′), and I denotes the interpolation operator that constructs shape functions

with respect to z′ and its neighbors. Note that these functions form a partition of unity, i.e.,

∑I∈Nk(z′)ΨI(z′) = 1 for transformation objectivity. Furthermore, they are convexity-preserving

when the kernel function φ is a positive function. Here, an inverse distance function is used as

the kernel function

φ(z′− ẑ′I) =
1

||z′− ẑ′I||2
. (6.4)

It is worth noting that the interpolation functions defined in Eqs. (6.3) and (6.4) are equivalent to

the RK approximation function in (4.25) with zero-order basis.

Fig. 6.1 demonstrates the locally convex reconstruction by the proposed interpolation in

Eq. (6.2). For example, the given blue asterisk is mapped to the blue-square point by using the

Shepard interpolation. It can be seen that the three given points (inside (red), on-edge (pink),

and outside (blue)) are all mapped to locations within the convex hull, showing the desired

convexity-preserving capability. The interpolation is simple and efficient as the interpolation

functions in Eq. (6.3) can be constructed easily in a low-dimensional embedding space.

6.3.2 Auto-embedding data-driven (AEDD) solver in data-driven
computing

The physics-constrained data-driven computing described in Chapter 4 is conducted in

the high-dimensional phase space Z (or called data space), where the physical state zα ∈ C ,

the material data ẑα ∈ E and the material dataset E are defined in Z . We use the subscript ”α”

to denote the quantities at integration points with the employment of numerical discretization,

see Section 4.2. To enhance solution accuracy and generalization capability of data-driven
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Figure 6.1. Demonstration of the convexity-preserving reconstruction by Shepard interpolation
in Eq. (6.2), where the asterisk and square denote the given and the reconstructed points,
respectively, black dots represent the nearest neighbors of the given points, and the black dash
line depicts a locally convex hull formed by the nearest neighbors.

computing, deep manifold learning enabled by autoencoders is introduced into the material

data-driven local solver.

Recall that autoencoders introduced in Section 6.2.1 are trained offline and the trained

encoder henc and decoder hdec functions are employed directly in the online data-driven compu-

tation. As such, the encoder maps an arbitrary point from the data space to the embedding space,

i.e. z′α = henc(zα), whereas the decoder performs the reverse mapping, i.e. z̃α = hdec(z′α). With

the autoencoders and the proposed convexity-preserving data reconstruction in the embedding

space introduced in Section 6.3.1, we propose the following two AEDD approaches for the

material data-driven local solver. The objective is to find the optimal material data for a given

physical state zα computed in Section 4.2.

AEDD local solver: Solver I

Let zα be the physical state obtained from the global step with physical constraints,

Eq. (4.7), or the corresponding variational equations, Eqs. (4.12)–(4.13). We first introduce a
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local solver that uses decoders for reverse mapping from the embedding space to the data space,

denoted as Solver I. In this approach, the local problem defined in Eq. (4.3) is reformulated by

three steps, as described below:

Step 1 : z′α = henc(zα), (6.5a)

Step 2 : ẑ′∗α = I
(
{ΨI(z′α); ẑ′I}I∈Nk(z′α )

)
(6.5b)

Step 3 : ẑ∗α = hdec(ẑ′∗α ), (6.5c)

for α = 1, ...,N, where ẑ′I ∈ E′ (see Eq. (6.1)), and I is the convexity-preserving interpolation

operator defined in Eq. (6.2).

The schematic of data-driven computing with Solver I is illustrated in Fig. 6.2(a), where

the integration point index α is dropped for brevity. For example, at the v-th global-local iteration,

after the physical state z(v) (the blue-filled triangle) is obtained from the global physical step (Eq.

(4.7)), Step 1 of the local solver (Eq. (6.5a)) maps the sought physical state from the data space

to the embedding space by the encoder, z′(v) = henc(z(v)), depicted by the white-filled triangle

in Fig. 6.2(a). In Step 2, k nearest neighbors of z′(v) based on Euclidean distance are sought

in the embedding space and the optimal material embedding solution ẑ′∗(v) (the red square) is

reconstructed by using the proposed convexity-preserving interpolation (Eqs. (6.2)-(6.4)). Lastly,

in Step 3, the optimal material embedding state ẑ′∗(v) is transformed from the embedding space to

the data space by the decoder, ẑ∗(v) = hdec(ẑ′∗(v)) (the red star in Fig. 6.2(a)). Subsequently, this

resultant material data solution ẑ∗(v) from the local solver in Eq. (6.5) is used in the next physical

solution update z(v+1). These processes complete one global-local iteration. The iterations

proceed until the distance between the physical and material states is within a tolerance, yielding

the data-driven solution denoted by the green star in Fig. 6.2(a), which ideally is the intersection

between the physical manifold and material manifold in the data space.

Here, the nearest neighbors searching and locally convex reconstruction of the optimal

material state are processed in the filtered (noiseless) low-dimensional embedding space, resulting
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in the enhanced robustness against noise and accuracy of the local data-driven solution.

AEDD local solver: Solver II

Although autoencoders aim to transform the input material data to output data with

maximally preserving essential features, see Fig. 2.4, the decoder functions hdec do not exactly

reproduce the given material data in the data space due to the information compression and

errors inevitably introduced by training processes [27]. During Step 3 of Solver I (Eq. (6.5c)),

the material embedding solution ẑ′∗α in Eq. (6.5b) projecting back to the data space by decoders

could involve data reconstruction errors. That is, the performance of AEDD Solver I is subject to

the quality of the trained decoder functions.

To enhance the robustness and stability of data-driven computing, we propose the second

AEDD local solver (Solver II) that circumvents the use of decoders and, instead, uses the

interpolation scheme in Eq. (6.2) to perform locally convex reconstruction directly on material

dataset. The procedures of this solver are expressed as

Step 1 : z′α = henc(zα), (6.6a)

Step 2 : ẑ∗α = I
(
{ΨI(z′α); ẑI}I∈Nk(z′α )

)
, (6.6b)

for α = 1, ...,N, where ẑI ∈ E are the material data given in the original data space. The key

ingredient of this approach is that the modified locally convex reconstruction in Step 2 involves

interpolation functions constructed in embedding space but interpolating material data that are in

data space. It can be viewed as a blending interpolation approach compared to that in Solve I.

The effectiveness of Solver I and II will be compared and discussed in Section 6.4.2.

In both Solver I and II, the interpolation functions ΨI(z′α) are evaluated on the embedding

space related to the embedded physical state z′α and its k nearest neighbors in the material

embedding data {ẑ′I}I∈Nk(z′α ) ⊂ E′. In Solver II, however, these functions are weighted on the un-

projected material data {ẑI}I∈Nk(z′α ) ⊂ E corresponding to the k selected neighbors. Because the
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(a)

(b)

Figure 6.2. Geometric schematic of the proposed auto-embedding data-driven computational
framework: (a) Solver I; (b) Solver II, corresponding to two different ways to reconstruct the
optimal material data solution in high-dimensional data space. The material data points (the
gray-filled circles), ẑI , in the phase space are related to the material embedding points (the
white-filled circles) ẑ′I via the encoder function. The low-dimensional embedding manifold is
represented by the orange dash line.
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locally convex reconstruction in Eq. (6.6b) gives the optimal material data solution immediately

in the data space, the decoder is avoided in Solver II.

Fig. 6.2(b) shows a schematic of the proposed data-driven computing based on Solver

II. Taking the v-th global-local iteration as an example, the physical state z(v) obtained from the

global physical step (Eq. (4.7)) is mapped to the embedding space z′(v) by the encoder. In Step

2 of Solver II, the same k nearest neighbors search is performed on the embedding space E ′,

while their corresponding material data in the original dataset are used in the data reconstruction

via Eqs. (6.2)–(6.4). As shown in Fig. 6.2(b), the locally convex reconstruction of the material

embedding state z′(v) can be directly performed with the material data {ẑI}I∈Nk(z′α ) in the data

space by using data indices, yielding the optimal material solution ẑ∗(v).

It is worth emphasizing that in comparison with the LCDD approach [3], the key differ-

ence in the proposed solver is that the neighbor search and data reconstruction are performed on

the embedding space E ′, a lower-dimensional space constructed by the pre-trained encoder func-

tion. Thus, the proposed AEDD with Solver II can be considered as a enhanced generalization of

LCDD for high-dimensional material data. We use this approach as the default AEDD method,

unless stated otherwise.

6.4 Numerical results

In this section, the proposed AEDD approach is first tested on a cantilever beam using

synthetic material data generated by constitutive laws. In this example, the effects of several

factors on autoencdoers and the resulting AEDD data-driven solutions are investigated, including

the size, sparsity, and the noise level of material datasets, neural network initialization during

autoencoder training, and autoencoder architectures, aiming to validate the robustness and

reliability. In the second subsection, AEDD is applied to modeling biological tissues using

experimental data measured from heart valve tissues to demonstrate the enhanced generalization

capability.
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For simplicity, we consider homogeneous material in the following numerical examples,

and thus the same material dataset, e.g., E = {ẑI}M
I=1 = {(ÊI, ŜI)}M

I=1, with M data points, is

used for all integration points.

6.4.1 Cantilever beam: Verification of the AEDD method

To verify the proposed AEDD framework (with Solver II in Section 6.3.2 by default), a

cantilever beam subjected to a tip shear load is analyzed, as shown in Fig. 6.3. The Saint Venant-

Kirchhoff phenomenological model with Young’s modulus E = 4.8×103N/mm2 and Poisson’s

ratio ν = 0 is used to generate material datasets for training autoencoders. The problem domain

is discretized with 41×5 randomly distributed nodes. The data-driven analysis is performed

with 10 equal loading steps under a plane-strain condition. Following the same setting in [3],

the weight matrix Ĉ used in the distance metric (Eqs. (4.4)-(4.5)) and the physical solver (Eq.

(4.13)-(4.12)) is defined as

Ĉ=
E

1−ν2


1 0 0

0 1 0

0 0 (1−ν)/2

 (6.7)

Figure 6.3. Schematic of a cantilever beam model subjected to a tip shear load, where P =
10EI/L2, and I = H3/12.
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Preparation of material datasets

To assess the robustness and convergence property of AEDD against noise presented in

the given material datasets, four manufactured noisy material datasets approximating the Saint

Venant-Kirchhoff phenomenological model with different data sizes, i.e. M = 103, 203, 303, and

403, are considered. The generation procedure of these noisy datasets is described below. First,

an noiseless dataset, Ē= {z̄I}M
I=1 is generated, where each Green-Lagrangian strain component

is uniformly distributed within the range [−0.02,0.02] and the 2nd-PK stress components are

obtained by using the elastic tensor in Eq. (6.7) that relates strain to stress. The example with

M = 203 is shown in Fig. 6.4(a), where the strain and stress components are displayed separately

for visualization. Following [3, 103], Gaussian perturbations scaled by a factor dependent on the

size of datasets, 0.4z̄max/
3
√

M, are added to each component of the noiseless dataset Ē to obtain

the associated noisy datasets E = {ẑI}M
I=1, where z̄max is a vector of the maximum values for

each component among the noiseless dataset. The noisy dataset corresponding to M = 203 is

shown in Fig. 6.4(b). Fig. 6.5 shows the other three noisy material datasets.

Effects of autoencoder architecture and initialization

In order to assess the effects of initialization during training and network architectures

on autoencoders’ accuracy and robustness, five random initializations and four architectures of

autoencoders are considered. For the given noisy material datasets associated with this plane-

strain cantilever beam problem, it is observed that autoencoders with an embedding layer of the

dimension p = 1 or p = 2 could not capture a meaningful embedding representation. This is

consistent to the observation in [3] where the number of neighbor points to construct the locally

convex embedding is suggested to be larger than the number of intrinsic dimensionality, which

is 2 of the employed linear elastic database. Hence, it requires the embedding dimension to be

greater than 2. As described in Section 6.2.2, the encoder architecture is used to represent the

autoencoder architecture. Four encoder architectures, 6− 4− 3, 6− 5− 4, 6− 5− 4− 3, and

6−10−8−5, are considered in the following tests.
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(a) Noiseless (b) Noisy

Figure 6.4. Material dataset with a size of M = 203: (a) Noiseless; (b) Noisy; Top: strain
components; Bottom: stress components
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(a) (b) (c)

Figure 6.5. Noisy material datasets with: (a) M = 103; (b) M = 303; (c) M = 403; Top: strain
components; Bottom: stress components

The first row in Fig. 6.6 shows the error curves (mean with standard deviations shaded)

of the final training and testing losses against the size of training dataset for different autoencoder

architectures. Here, the noisy material datasets of different sizes, M = 103, 203, 303, and 403,

that defined in Section 6.4.1 are used for training the autoencoders, where autoencoders are

trained with five random initialization for each case. Besides, to fairly compare the testing errors

between the autoencoders trained with various sizes of training data, we use the same test dataset

consisting of 729 material data points that are generated from the same procedure in Section

6.4.1 but not included in the given material datasets.

As we can see, all the selected autoencoders converge well, yielding smaller training

and testing errors as the size of material dataset increases. Moreover, it is observed that the

autoencoder with a larger architecture could lead to greater variation due to training randomness,

indicated by the standard deviations. This is because the training algorithms used to minimize

the loss function in Eq. (2.7) do not guarantee global minimization, and a larger DNN with more
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trainable parameters may cause higher randomness. However, the trained results shown here are

satisfactory due to the employment of regularization. It also shows that the training and testing

losses decrease as the dimension of the embedding layer increases.

(a) Encoder: 6-4-3 (b) Encoder: 6-5-4 (c) Encoder: 6-5-4-3 (d) Encoder: 6-10-8-5

Figure 6.6. Error curves (mean with standard deviations shaded) of four different encoder
architectures: (a) 6−4−3; (b) 6−5−4; (c) 6−5−4−3; (d) 6−10−8−5 Top: final training
and testing losses of autoencoders; Bottom: NRMSD between AEDD and constitutive model-
based solutions

Data-driven modeling results

The data-driven solution is compared with the constitutive model-based reference solution

using Eq. (6.7). To better assess the accuracy of AEDD solutions, a normalized root-mean-square

deviation (NRMSD) is introduced

NRMSD =

√√√√Neval

∑
i

(w̄AEDD
i − w̄re f

i )2

Neval
/(PL2/EI), (6.8)

where Neval = 200 is the number of evaluation points, w̄AEDD
i and w̄re f

i are the normalized

tip deflection obtained by AEDD and model-based reference solutions, respectively. In this

cantilever beam case, the normalized tip deflection w̄i = wi/L is obtained at the maxiumn loading,
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i.e. PL2/EI = 10, where L and H are the length and the width of the beam, respectively, and

I = H3/12, see Fig. 6.3.

(a) (b)

Figure 6.7. Comparison of constitutive model-based, LCDD, and AEDD solutions: (a) normal-
ized tip deflection-loading; (b) initial and final nodal positions; The AEDD solution is obtained
from using autoencoders trained with a material dataset of size M = 403.

The trained autoencoders corresponding to different material datasets and architetures are

then applied to data-driven simulations, where the number of nearest neighbors used in locally

convex reconstruction of the data-driven solver is set as 6. NRMSD of data-driven solutions

with respect to the model-based reference solution is given in the bottom row of Fig. 6.6. For

all architectures, it can be observed that the AEDD solutions (both mean values and variation)

improve as the number of training data increases, which suggests a good convergence property.

Although using an embedding dimension of 5 (encoder: 6− 10− 8− 5) yields the highest

accuracy, the AEDD solutions obtained from using an embedding dimension of 3 and 4 are

satisfactory. It also shows that the overall patterns of error convergence in NRMSDs are similar

across different encoder architectures using the same size of training dataset, indicating that the

AEDD solutions are not sensitive to the width and depth of the encoder architecture as long

as autoencoders of a sufficiently large size are used. Considering that using a more complex

encoder architecture with a larger embedding dimension would increase computational cost in
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(a) (b)

Figure 6.8. Comparison of LCDD and AEDD: (a) Number of iterations against number of
training data; (b) normalized computational time against number of training data. The noisy
datasets and the encoder architecture of 6-4-3 are employed in this test.

data-driven computing, an encoder architecture 6−4−3 is used in the numerical examples.

Fig. 6.7 shows that the normalized tip deflection-loading curve predicted by the proposed

AEDD method agrees well with the model-based reference. The noisy data set of size M = 403 is

used in this case. The results obtained by LCDD are also provided for comparison in Fig. 6.7(a),

where a few loading steps yield divergent data-driven solutions when the noisy material data is

employed. On the other hand, the AEDD method stays robust even with noisy data employed. It

is also worth noting that when using Solver I (Eq. (6.5)) in AEDD, we also observe unconverged

solutions (which are not reported in the Figures). We attribute this to the information loss caused

by the decoder functions. On the other hand, Solver II with the convex interpolation functions

defined in the embedding space and the material data points in data space yields stable solutions.

The comparison of AEDD and LCDD with respect to the iteration number and the

computational cost are given in Fig. 6.8. In this case, the architecture of 6− 4− 3 is used.

While the number of iterations for convergence varies in AEDD due to the non-uniqueness of

autoencoder training, it generally requires less data-driven iterations than LCDD to achieve

converged solutions, as shown in Fig. 6.8(a). This is because a more generalized embedding
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space is used in AEDD for computing the local material solution. We also observe that with less

noisy material data, the required iteration number decreases regardless of the increase in data

size, an attractive property for data-driven computing. Moreover, because the data search and the

convexity-preserving interpolation in AEDD local solver are performed in the low-dimensional

embedding space instead of the high-dimensional data space, the computational cost of AEDD is

substantially reduced compared to LCDD, as shown in Fig. 6.8(b).

Data-driven modeling with sparse noisy datasets

To evaluate the performance of the proposed AEDD approach when datasets are sparse,

three noisy material datasets (Table 6.1) are generated in a similar manner as described in Section

6.4.1 but with fewer data points compared to Fig. 6.5. First, several loading paths are selected

with uniformly distributed Green-Lagrangian strains for each of the loading paths. The corre-

sponding 2nd PK stresses are generated using the elastic tensor given in Eq. (6.7). Consequently,

the sparse noisy material datasets are given in Fig. 6.9, where Gaussian perturbations scaled by

0.4z̄max/
3
√

M are added independently pointwise to both the strain and the stress data.

Table 6.1. Sparse material datasets

Sparse Number of Number of Data Points Total Number
Dataset Loading Paths per Loading Path of Data Points (M)

1 56 10 560
2 98 10 980
3 98 8 784

An autoencoder (6-4-3) is trained using the sparse noisy datasets and used in AEDD

modeling of the cantilever beam problem. The normalized tip deflection-loading responses

predicted by the proposed AEDD method are compared with the constitutive model-based

solutions, as shown in Fig. 6.10. The results demonstrate that the proposed AEDD method

remains robust and accurate when dealing with noisy material datasets at different levels of

sparsity and that the data-driven prediction accuracy improves as the data density increases.
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(a) (b) (c)

Figure 6.9. Sparse noisy material datasets: (a) sparse dataset 1; (b) sparse dataset 2; (c) sparse
dataset 3; Top: strain components; Bottom: stress components

(a) (b) (c)

Figure 6.10. Comparison of constitutive model-based and AEDD solutions: (a) sparse dataset 1;
(b) sparse dataset 2; (c) sparse dataset 3
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6.4.2 Biological tissue data-driven modeling

The effectiveness of the proposed AEDD computational framework is examined by using

the biological data from biaxial mechanical experiments of a porcine mitral valve posterior

leaflet (MVPL) [210]. Fig. 6.11(a) shows the schematic of a MVPL specimen with a dimension

7.5mm×7.5mm subjected to prescribed displacements, where the tissue’s circumferential and

radial directions are denoted as x and y axes, respectively, and the stretch ratios along these two

directions are defined as λCirc and λRad .

A total of eleven protocols (Table 6.2) includes nine biaxial tension protocols with

various tension ratios and two pure shear protocols, as illustrated in Fig. 6.11(b). The normal

components of the Green strain and the associated 2nd-PK stress tenors generated from the 11

biaxial mechanical testing are plotted in Fig. 6.11(d) and Fig. 6.11(e), respectively. It shows

that the measured data points are sparse in the stress-strain phase space. It is noted that in the

mechanical testing the direct measurements are the applied membrane tensions, TRad and TCirc,

and the displacements are estimated by digital image correlation techniques. Thus, the measured

Green strain and 2nd-PK stress data are based on homogeneous deformation assumption in

the test specimen. More details about the tissue strain and stress calculations as well as the

experimental setting can be found in [47, 210].

Five study cases are considered to evaluate the performance of the proposed AEDD

framework, which is compared with that of the LCDD method [3, 47]. In these tests (Case 1–5),

the experimental data (see Fig. 6.11(d-e)) associated with the selected biaxial testing protocols,

called training protocols, are used for constructing material dataset E, and different data-driven

modeling approaches with the constructed material dataset are tested on other protocols (called

testing protocols) to assess their performance against the experimental results. The training and

testing protocols of the Five study cases are described as below:

• Case 1: Training Protocols: 1, 3, 4, 7, and 8; Testing Protocols: 2 and 5, used to investigate

AEDD’s performance in interpolative and extrapolative predictions.
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Figure 6.11. (a) Schematic of a mitral valve posterior leaflet (MVPL) specimen mounted on a
biaxial testing system; (b) pure shear protocol 10 (x: tension, y: compression); (c) schematic
of the model of biaxial testing in data-driven computation; (d) Green strain of all protocols; (e)
2nd-PK stress of all protocols
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Table 6.2. Eleven biaxial mechanical testing protocols of a representative MVPL specimen and
the corresponding measured displacements used in data-driven computations

Protocol ID Protocol λCirc λRad uCirc (mm) uRad (mm)
1 Biaxial Tension TCirc : TRad=1:1 1.333 1.525 2.498 3.938
2 Biaxial Tension TCirc : TRad=1:0.8 1.342 1.499 2.564 3.744
3 Biaxial Tension TCirc : TRad=1:0.6 1.355 1.466 2.662 3.498
4 Biaxial Tension TCirc : TRad=1:0.4 1.369 1.415 2.770 3.110
5 Biaxial Tension TCirc : TRad=1:0.2 1.388 1.326 2.913 2.442
6 Biaxial Tension TCirc : TRad=0.8:1 1.313 1.541 2.344 4.055
7 Biaxial Tension TCirc : TRad=0.6:1 1.275 1.562 2.064 4.215
8 Biaxial Tension TCirc : TRad=0.4:1 1.213 1.588 1.596 4.409
9 Biaxial Tension TCirc : TRad=0.2:1 1.109 1.618 0.820 4.635

10 Pure Shear in x 1.387 0.721 2.903 -2.093
11 Pure Shear in y 0.620 1.612 -2.847 4.590

• Case 2: Training Protocols: 1, 3, 4, 7, 8, 10, and 11; Testing Protocols: 2 and 5, used to

investigate AEDD’s performance in interpolative and extrapolative predictions.

• Case 3: Training Protocols: 1, 2, 6, 10, and 11; Testing Protocols: 3 and 4, used to

investigate AEDD’s performance in extrapolative prediction.

• Case 4: Training Protocols: 2, 5, 7, and 8, which are asymmetrically distributed; Testing

Protocols: 1, 3 and 4, used to investigate AEDD’s performance in intrapolative prediction.

• Case 5: Training Protocols: 1 – 9; Testing Protocols: 10 and 11.

For the first three cases, the protocols used for training are symmetrically distributed, while the

training protocols are asymmetrically distributed for the last case.

For AEDD, autoencoders are first trained offline using the training protocols and then

employed in the local step of the data-driven solvers (Section 6.3.2) of AEDD during the online

computation. In the following study, Solver II (Section 6.3.2) is employed and the number

of nearest neighbors in locally convex reconstruction of the data-driven solver is set as 6. A

diagonal matrix is used as the weight matrix Ĉ with each diagonal component being the ratio of

the standard deviation of the associated component of the stress data to that of the strain data.
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This is similar to the normalization technique used in deep learning that applies the standard

deviation of each input unit to inversely scale the input data [27].

The prediction of data-driven methods on testing protocols that are not included in the

training dataset are compared with the corresponding experimental data. The NRMSD (Eq. (6.8))

normalized with respect to the maximum stress of the experimental data is employed to assess the

prediction performance of the methods. In the data-driven modeling, considering the symmetric

geometry of the tissue specimen and the symmetric loading conditions, the upper right quarter of

the sample is modelled with symmetric boundary conditions, as shown in Fig. 6.11(c), and the

prescribed displacements are applied to the top and the right boundaries.

Case 1

We first examine the data fitting capability whereby the data-driven methods are tested

on the training protocols 1, 3, 4, 7 and 8, as shown in Fig. 6.12(a) and Fig. 6.12(d). It shows that

both AEDD (NRMSDAEDD=0.008) and LCDD (NRMSDLCDD=0.022) provide satisfactory fitting

results, but AEDD yields a slightly higher accuracy. Since the strains and stresses of testing

protocols 2 and 5 lie inside and outside the domain covered by the data of the training protocols,

respectively, as shown in Fig. 6.11(d-e), the AEDD predictions on the testing protocols 2 and 5

are interpolative and extrapolative predictions, respectively. For the interpolative prediction test

on Protocol 2, the results of these two approaches also agree well with the experimental data, as

shown in Fig. 6.12(b) and (e). The NRMSD errors indicate that LCDD achieves a higher accuracy,

i.e. NRMSDLCDD = 0.009 < NRMSDAEDD = 0.021. However, its extrapolative prediction on

Protocol 5 is worse than that from AEDD (NRMSDLCDD = 0.158 > NRMSDAEDD = 0.059), see

Fig. 6.12(c) and (f). The results demonstrate better extrapolative generalization ability of AEDD.

It could be attributed to the underlying low-dimensional global material manifold learned by

the autoencoders. Specifically, AEDD performs local neighbor searching and locally convex

reconstruction of optimal material state based on geometric distance information in the low-

dimensional global embedding space, which contains the underlying manifold structure of the
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material data and contributes to a higher solution accuracy and better generalization performance.

In contrast, LCDD performs local neighbor searching and locally convex reconstruction purely

from the existing material data points without any generalization, leading to lower extrapolative

generalization ability.

Another proposed AEDD method with Solver I (Section 6.3.2) using the same training

protocols as material dataset are also investigated, as shown in Fig. 6.13. As expected, compared

to the results obtained by using Solver II, see Fig. 6.12(b) and (c), the prediction capability

by Solver I decreases on both testing protocols. Especially in the interpolative prediction test

Protocol 2, the NRMSD error increases to 0.04 from 0.021. We attribute the larger errors with

Solver I to the employment of decoders in constructing the optimal material state. Since we

have demonstrated that the AEDD approach with Solver II provides better data-driven prediction

results, we only consider this approach in the following study.

Case 2

In this case study, the objective is to verify how the incorporation of material data of

different deformation modes affects the interpolative and extrapolative predictability in the

proposed data-driven modeling. Two pure shear protocols are introduced in the training material

dataset in addition to the biaxial tension protocols used in Case 1. The two pure shear protocols

(10 and 11) in the training dataset exhibit different material behaviors from the remaining biaxial

tension protocols (1, 3, 4, 7, and 8). The AEDD predictions on the testing protocols 2 and 5 are

interpolative and extrapolative predictions, respectively.

As can be seen from Fig 6.14(a) and (d), both LCDD and AEDD maintain good fitting

performance for all the biaxial tension and pure shear training protocols. They also perform well

for the testing Protocol 2 (Fig. 6.14(b) and (e)) with almost the same accuracy in Case 1. This is

a desirable property in data-driven methods. AEDD again yields higher accuracy than LCDD

in the extrapolative test (Protocol 5), as evidenced by the smaller NRMSD value 0.071 in the

AEDD prediction over 0.159 in the LCDD prediction. This further demonstrates the enhanced
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(a) Protocols 1, 3, 4, 7, 8 (b) Protocol 2 (c) Protocol 5

(d) Protocols 1, 3, 4, 7, 8 (e) Protocol 2 (f) Protocol 5

Figure 6.12. Comparison of interpolative (Protocol 2) and extrapolative (Protocol 5) predictabil-
ity: (a) AEDD prediction on training Protocols 1, 3, 4, 7, 8; (b) AEDD prediction on Protocol 2;
(c) AEDD prediction on Protocol 5; (d) LCDD prediction on training Protocols 1, 3, 4, 7, 8; (e)
LCDD prediction on Protocol 2; (f) LCDD prediction on Protocol 5. Protocols 1, 3, 4, 7, and 8
are used to train the autoencoder applied in AEDD

(a) Protocol 2 (b) Protocol 5

Figure 6.13. Data-driven prediction by AEDD with Solver I on (a) Protocol 2 and (b) Protocol 5.
Protocols 1, 3, 4, 7, and 8 are used to train the autoencoder
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extrapolative generalization in the proposed autoencoder-based approach. Moreover, compared

with Case 1, Fig. 6.14(c) shows that AEDD with the material data from the pure shear protocols

improves the prediction for strain E < 0.35 but results in slightly more discrepancies in the high

strain range.

(a) Protocols 1, 3, 4, 7, 8, 10, 11 (b) Protocol 2 (c) Protocol 5

(d) Protocols 1, 3, 4, 7, 8, 10, 11 (e) Protocol 2 (f) Protocol 5

Figure 6.14. Comparison of interpolative (Protocol 2) and extrapolative (Protocol 5) predictabil-
ity: (a) AEDD prediction on training Protocols 1, 3, 4, 7, 8, 10, 11; (b) AEDD prediction on
Protocol 2; (c) AEDD prediction on Protocol 5; (d) LCDD prediction on training Protocols 1, 3,
4, 7, 8, 10, 11; (e) LCDD prediction on Protocol 2; (f) LCDD prediction on Protocol 5. Protocols
1, 3, 4, 7, 8, 10, and 11 are used to train the autoencoder applied in AEDD

Case 3

The extrapolative prediction performance of AEDD is further explored in this case study.

Here, three biaxial tension protocols (Protocols 1, 2, and 6) with similar loading patterns, as illus-

trated by the experimental data in Fig. 6.11(d) and (e), and two pure shear protocols (Protocols

10 and 11) are used for the material training dataset. The AEDD and LCDD approaches are tested

on two testing protocols (Protocols 3 and 4) subjected to larger loading ratio differences between
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tissue’s circumferential and radial directions. Again, Fig. 6.15 shows that AEDD outperforms

LCDD in both training and testing protocols. In the testing cases (Protocols 3 and 4), while the

LCDD results show clear discrepancies from the experimental data, AEDD provides a better

accuracy, as evidenced by reducing the NRMSD with more than 50% from the LCDD prediction.

This example further verifies better extrapolative generalization capability of AEDD.

(a) Protocols 1, 2, 6, 10, 11 (b) Protocol 3 (c) Protocol 4

(d) Protocols 1, 2, 6, 10, 11 (e) Protocol 3 (f) Protocol 4

Figure 6.15. Comparison of extrapolative predictability: (a) AEDD prediction on training
Protocols 1, 2, 6, 10, 11; (b) AEDD prediction on Protocol 3; (c) AEDD prediction on Protocol
4; (d) LCDD prediction on training Protocols 1, 2, 6, 10, 11; (e) LCDD prediction on Protocol 3;
(f) LCDD prediction on Protocol 4. Protocols 1, 2, 6, 10, and 11 are used to train the autoencoder
applied in AEDD

Case 4

As can be seen from Fig. 6.12 and 6.14, both LCDD and AEDD work well for interpola-

tive testing cases when using training protocols with symmetrical loading conditions. In Case 4,

we investigate how a material training dataset from asymmetrically distributed protocols (biaxial

tension Protocols 2, 5, 7, and 8) affects the interpolative prediction performance. Although the
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simulation results on the training protocols from both AEDD and LCDD agree well with experi-

mental data, as shown in Fig. 6.16(a) and (b), the accuracy of LCDD deteriorates substantially

on the testing protocols compared to AEDD, as shown in Fig. 6.16(g). The results demonstrate

that AEDD’s performance is more robust when dealing with irregular training datasets, which

could be attributed to the underlying material manifold learned by the autoencoders.

Case 5

The results in Cases 1–4 have demonstrated that AEDD yields improved interpolative

and extrapolative prediction compared to the LCDD approach by introducing autoencoders in

the material data-driven local solver. In this last case, we investigate the performance of the

AEDD method on the testing dataset that are fully unrelated to the training dataset. Specifically,

autoencoders were trained using the biaxial tension protocols 1–9 for AEDD predictions on the

pure shear protocols 10 and 11. As displayed in Fig. 6.17, AEDD predictions on the pure shear

protocols (10 and 11) show some deviations from the experimental data. It is because the training

protocols are all biaxial tension protocols that do not contain any information about the material

behaviors in the pure shear protocols. These results demonstrate that the predictive capability of

the machine learning techniques such as AEDD depends on the richness and quality of the given

training data.

6.5 Summary

In this study, we introduced the deep manifold learning approach via autoencoders to learn

the underlying material data structure and incorporated it into the data-driven solver to enhance

solution accuracy, generalization ability, efficiency, and robustness in data-driven computing.

The proposed approach is thus named auto-embedding data-driven (AEDD) computing. In this

approach, autoencoders are trained in an offline stage and thus consume little computational

overhead in solution procedures. The trained autoencoders are then applied in the proposed

data-driven solver during online computation. The trained encoders and decoders define the
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(a) Protocols 2, 5, 7, 8 (b) Protocols 2, 5, 7, 8

(c) Protocol 1 (d) Protocol 3 (e) Protocol 4

(f) Protocol 1 (g) Protocol 3 (h) Protocol 4

Figure 6.16. Comparison of interpolative predictability: (a) AEDD prediction on training
Protocols 2, 5, 7, 8; (b) LCDD prediction on training Protocols 2, 5, 7, 8; (c) AEDD prediction
on Protocol 1; (d) AEDD prediction on Protocol 3; (e) AEDD prediction on Protocol 4; (f)
LCDD prediction on Protocol 1; (g) LCDD prediction on Protocol 3; (h) LCDD prediction on
Protocol 4. Protocols 2, 5, 7, and 8 are used to train the autoencoder applied in AEDD
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(a) Protocol 10 (b) Protocol 11

Figure 6.17. Data-driven prediction by AEDD on (a) Protocol 10 and (b) Protocol 11. Protocols
1–9 are used to train the autoencoder

explicit transformation between low- and high-dimensional spaces of material data, enabling

efficient embedding extension to new data points. A simple Shepard convex interpolation

scheme is employed in the proposed data-driven solver to preserve convexity in the local data

reconstruction, enhancing the robustness of the data-driven solver.

A parametric study is conducted in the beam problem to investigate the effects of noise

in material datasets, the size and sparsity of datasets, neural networks initialization during

training, and autoencoder architectures on the performance of autoencdoers and data-driven

solutions. Autoencoders with four different architectures are trained with synthetic noisy material

datasets generated from a phenomenological model and different random initialization. The

parametric study shows the performance of the offline trained autoencoders improves as the

amount of training data increases regardless of the examined autoencoder architectures and neural

network initialization. AEDD predictions are accurate and robust when dealing with sparse

noisy datasets with the solutions converging to the constitutive model-based reference solutions

as the number of material data and data density increase. In addition, with the offline trained

autoencoders and efficient Shepard convex reconstruction for online computation, AEDD shows

enhanced computational efficiency compared to the LCDD approach [47]. The effectiveness of
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the proposed framework is further examined by modeling biological tissues using experimental

data. The proposed AEDD framework shows a good performance in modeling complex materials.

Through five study cases, the proposed approach show stronger generalization capability and

robustness than the LCDD approach [47]. This is attributed to the fact that the local neighbor

searching and locally convex reconstruction in the proposed data-driven solver is based on

geometric distance information in the filtered global embedding space learned by autoencoders,

which contains the underlying manifold structure of the material data. The results of the last

case also demonstrates the effects of richness and quality of the training data on the predictive

capability of the AEDD method.

Although using 6 nearest neighbors in the locally convex reconstruction of the data-driven

solver and an empirical weight matrix Ĉ based on statistical information of data is sufficient

for AEDD to produce accurate and robust solutions in the problems of this study, choosing the

optimal number of nearest neighbors and the optimal weight matrix requires further investigations.

The results of the proposed data-driven approach demonstrate the promising performance by

integrating the autoencoder enhanced deep manifold learning into data-driven computing of

systems with complex material behaviors.

6.6 Acknowledgement

This chapter, in part, is a reprint of the material as it appears in: “Xiaolong He, Qizhi

He, and Jiun-Shyan Chen. Deep autoencoders for physics-constrained data-driven nonlinear

materials modeling. Computer Methods in Applied Mechanics and Engineering, 385:114034,

2021”. The dissertation author is the primary investigator and author of this paper.

106



Chapter 7

Thermodynamically Consistent Machine-
Learned Internal State Variable Approach
for Data-Driven Modeling of Path Depen-
dent Materials

7.1 Introduction

Traditional constitutive modeling is based on constitutive or material laws to describe

the explicit relationship among the measurable material states, e.g., stresses and strains, and

internal state variables (ISVs) based on experimental observations, mechanistic hypothesis, and

mathematical simplifications. However, limited data and functional form assumptions inevitably

introduce errors to the model parameter calibration and model prediction. Moreover, with the

pre-defined functions, constitutive laws often lack generality to capture full aspects of material

behaviors [6, 47].

Path-dependent constitutive modeling typically applies models with evolving ISVs in

addition to the state space of deformation [21, 22]. The ISV constitutive modeling framework

has been effectively applied to model various nonlinear solid material behaviors, e.g., elasto-

plasticity [23, 24], visco-plasticity [25], and material damage [26]. However, ISVs are often

non-measurable, which makes it challenging to define a complete and appropriate set of ISVs

for highly nonlinear and complicated materials, e.g., geomechanical materials. Further, the
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traditional ISV constitutive modeling approach often results in excessive complexities with high

computational cost, which is undesirable in practical applications.

In this study, we propose a thermodynamically consistent machine-learned ISV approach

for data-driven modeling of path-dependent materials, which relies purely on measurable material

states. The first thermodynamics principle is integrated into the model architecture whereas the

second thermodynamics principle is enforced by a constraint on the network parameters. In the

proposed model, an RNN is trained to infer intrinsic ISVs from its hidden (or memory) state

that captures essential history-dependent features of data through a sequential input. The RNN

describing the evolution of the data-driven machine-learned ISVs follows the thermodynamics

second law. In addition, a DNN is trained simultaneously to predict the material energy potential

given strain, ISVs, and temperature (for non-isothermal processes). Further, model robustness

and accuracy is enhanced by introducing stochasticity to inputs for model training to account for

uncertainties of input conditions in testing.

The remainder of this chapter is organized as follows. In Section 7.2, the applications

DNNs and RNNs to path-dependent materials modeling are discussed. Section 7.3 introduces

the proposed thermodynamically consistent machine-learned ISV approach for data-driven

modeling of path-dependent materials, where two thermodynamically consistent recurrent neural

networks (TCRNNs) are discussed. Finally, in Section 7.4, the effectiveness and generalization

capability of the proposed TCRNN models are examined by modeling an elasto-plastic material

and undrained soil under cyclic shear loading. A parametric study is conducted to investigate

the effects of the number of RNN steps, the internal state dimension, the model complexity,

and the strain increment on the model performance. Concluding remarks and discussions are

summarized in Section 7.5.
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7.2 Black-Box Data-Driven Modeling of Path-Dependent
Materials

7.2.1 Deep Neural Networks (DNNs) Constitutive Models

Deep neural networks (DNNs), as the core of the deep learning [27], represent complex

models that relate data inputs, x ∈ Rdin , to data outputs, y ∈ Rdout . The basic concepts of

deep neural networks (DNNs) have been introduced in Section 2.1.1. Fig. 7.1(a) shows the

computational graph of a feed-forward DNN with three input neurons, two hidden layers, and

two output neurons.

Figure 7.1. Computational graphs of (a) a feed-froward deep neural network (DNN) with three
input neurons, two hidden layers, and two output neurons, (b) a DNN constitutive model that
takes one history step of stress-strain states and the current strain increment as input and predicts
the current stress increment, and (c) a DNN constitutive model that takes one history step of
stress-strain states and the current total strain as input and predicts the current total stress.

For path-dependent materials, the current stress response depends on the past stress-

strain history. Fig. 7.1(b) shows the computational graph of a DNN constitutive model for

path-dependent materials that takes one history step of stress-strain states and the current strain

increment as input and predicts the current stress increment. Alternatively, the current strain

increment can be replaced with the current total strain as input and the current total stress as the

output, as shown in Fig. 7.1(c). The effects of the input/output representation will be discussed
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in the next subsection. These DNN constitutive models can be extended to consider pre-defined

ISVs as input in addition to the measurable material states. An additional DNN can be used to

model the evolution of the ISVs [80]. However, the dependency on pre-defined ISVs limits its

applications, especially when only the measurable material states of path-dependent behaviors

are available, e.g., the soil example to be demonstrated in Section 7.4.2.

Note that for DNN constitutive models, the number of history input steps is fixed once

the model architecture is determined, which means the number of history input steps used for

testing must be the same as that used in training. Furthermore, it is difficult for DNNs with

recurrent connections from the output of step n to the input of step n+1 to capture the essential

information about the past history since the outputs are explicitly trained only to match the

training set targets not being informed of the past history [27]. These issues are addressed by

RNNs introduced in the next subsection.

7.2.2 Recurrent Neural Networks (RNNs) Constitutive Models

Recurrent neural networks (RNNs) designed for sequence learning have demonstrated

successful applications in various domains, such as machine translation and speech recognition,

due to their capability of learning history-dependent features that are essential for sequential

prediction [41, 42]. The basic concepts of RNNs have been introduced in Section 2.1.1. Fig.

7.2(a) illustrates the computational graphs of a folded RNN and an unfolded RNN, where h is

a hidden state that captures essential history-dependent features from past information, which

makes RNNs particularly suitable for modeling path-dependent material behaviors. Unfolding

of the RNN computational graph results in parameter sharing across the network structure,

reducing the number of trainable parameters and thus leading to more efficient training.

Depending on applications, RNNs can have flexible architectures of input and output,

such as one-to-one, one-to-many, many-to-one, and many-to-many [43]. For example, the

unfolded RNN shown in Fig. 7.2(a) is a many-to-many type of RNN, which can be applied

to, for example, name entity recognition. For path-dependent constitutive modeling, the many-
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Figure 7.2. Computational graphs of (a) a recurrent neural network (RNN), (b) a RNN constitu-
tive model that takes one history step of stress-strain states and the current strain increment as
input and predicts the current stress increment, and (c) an RNN constitutive model that takes one
history step of stress-strain states and the current total strain as input and predicts the current
total stress.

to-one type of RNN is more suitable. Fig. 7.2(b) illustrates the computational graph of an

RNN constitutive model that takes one history step of stress-strain states and the current strain

increment as input and predicts the current stress increment, defined as an incremental RNN,

whereas Fig. 7.2(c) show the computational graph of an RNN constitutive model that takes one

history step of stress-strain states and the current total strain as input and predicts the current

total stress, defined as a total-form RNN. Unlike the standard RNNs that has the same input size

for all time steps (states), the history-step input of the RNN constitutive models shown in Fig.

7.2(b)-(c) contains both strain and stress components whereas the current-step input contains

only strain components. Considering one history step, the forward propagation of a typical

total-form RNN is expressed as follows

hn−1 = atanh
(
Whhhn−2 +Wεhεn−1 +Wσhσn−1 +bh

)
, (7.1a)

hn = atanh
(
Whhhn−1 +Wεhεn +bh

)
, (7.1b)

σ̂n = Whσ̂ hn +by, (7.1c)

where Whh, Wεh, Wσh, and Whσ̂ are trainable weight coefficients for hidden-to-hidden, strain-

to-hidden, stress-to-hidden, and hidden-to-output transformations, respectively, and bh and by

are trainable bias coefficients.
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To capture complex history-dependent patterns, deep RNNs are more advantageous [27].

Similar to DNNs, stacking of fully-connected hidden layers can be added to affine input-to-

hidden, hidden-to-hidden, and hidden-to-output transformations.

Remark. Our studies show that the total-form RNN is less sensitive to the strain increment

than the incremental RNN, as a consequence of interpolation outperforming extrapolation.

For instance, considering a training dataset with one stress-strain path and a constant loading

(strain) increment, the final-step input (the strain increment) of the incremental RNN is constant,

whereas the final-step input (the total strain) of the total-form RNN is not constant and covers

the whole range of strain in the stress-strain path. During testing on the same stress-strain path

but with a different constant loading increment, larger or smaller than that of the training data,

the incremental RNN becomes inaccurate since the final-step input (the strain increment) of

the testing data is beyond the range of the training strain increment and the prediction is an

extrapolation. In contrast, the total-form RNN remains accurate because the final-step input

(the total strain) of the testing data is within the range of training total strain and the prediction

is an interpolation. Therefore, the proposed data-driven models in this study are built upon the

total form.

Gated Recurrent Units (GRUs)

Standard RNNs suffer from short-term memory due to vanishing and exploding gradient

issues that arise from recurrent connections [27, 211, 212]. More effective RNNs for learning

long-term dependencies have been developed, including the long short-term memory (LSTM)

[81] cells and gated recurrent units (GRUs) [82, 83]. A typical GRU consists of a reset gate

rn that removes irrelevant past information, an update gate un that controls the amount of past

information passing to the next step, and a candidate hidden state h̃n [83]. Compared to LSTM,

the GRU has fewer parameters as it lacks an output gate. Considering one history step, the
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forward propagation of a typical GRU is expressed as follows

rn = aσ

(
Whrhn−1 +Wxrxn +br

)
, (7.2a)

un = aσ

(
Whuhn−1 +Wxuxn +bu

)
, (7.2b)

h̃n = atanh
(
rn ∗Whh̃hn−1 +Wxh̃xn +bh̃

)
, (7.2c)

hn = un ∗hn−1 +(1−un)∗ h̃n +bh, (7.2d)

ŷn = Whyhn +by, (7.2e)

where ∗ denotes the Hadamard (element-wise) product; aσ is the sigmoid function; atanh is the

hyperbolic tangent function; Whr, Wxr, Whu, Wxu, Whh̃, Wxh̃, and Why are trainable weight

coefficients; br, bu, bh̃, bh, and by are trainable bias coefficients. Eq. (7.2d) calculates the

current hidden state hn by a linear interpolation between the previous hidden state hn−1 and the

candidate hidden state h̃n, based on the update gate un. The RNN-based constitutive models

proposed in this study are applicable to all types of RNNs for complicated path-dependent

material behaviors with long-term dependent features. In the following examples of this study,

the GRUs are employed in the proposed thermodynamically consistent RNN constitutive models.

Model Training

Since the forward propagation (Eq. (2.4) and Eq. (7.2)) is inherently sequential, i.e.,

each time step can only be computed after the previous one, the computation of the gradient of

the loss function with respect to the trainable parameters cannot be parallelized and it needs to

follow the reverse unfolded computational graph. The back-propagation through time algorithm

is applied to RNNs [27].

During training, the model receives the ground truth stress data of history steps, which is

a teacher forcing procedure emerging from the maximum likelihood criterion [27]. However, the

disadvantage of teacher forcing training arises when the trained model is applied in an open-loop

test mode with the network’s previous outputs fed back as input for future predictions. The
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computational graphs of the test mode are shown in Fig. 7.3 corresponding to the RNN models (in

the train mode) shown in Fig. 7.2(b)-(c). In this case, the inputs the trained model receives could

be quite different from those received during training, forcing the model to perform extrapolative

predictions and thus lead to large errors. Furthermore, such prediction errors could occur at

the very first prediction, accumulate and propagate quickly, and contaminate the subsequent

predictions. To mitigate the issue of error propagation due to the teacher forcing training and

enhance model accuracy and robustness, we introduce stochasticity to the training set by adding

random perturbations to the ground truth stress data. In this way, the network can also learn the

variability of the input conditions resembling those in the test mode.

Figure 7.3. Test mode of (a) a RNN constitutive model that takes one step history of stress-strain
states and the current strain increment as input and predicts the current stress increment, and (b)
an RNN constitutive model that takes one history step of stress-strain states and the current total
strain as input and predicts the current total stress. The stress prediction from previous step is
used as a part of the history input for the current-step prediction.

7.3 Thermodynamically Consistent Machine-Learned
Internal State Variable Approach for Path-Dependent
Materials

7.3.1 Thermodynamically Consistent Recurrent Neural Networks
(TCRNNs)

To ensure thermodynamical consistency in the data-driven path-dependent materials

modeling, thermodynamics principals introduced in Section 3.3.3 are embedded into RNNs

to extract the hidden ISVs. The proposed TCRNN consists of an RNN and a DNN. The
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computational graphs for non-isothermal or isothermal processes are illustrated in Fig. 7.4.

(a) (b)

Figure 7.4. Computational graphs of (a) a thermodynamically consistent recurrent neural
network (TCRNN) for non-isothermal processes and (b) a TCRNN for isothermal processes.
The rate of the machine-learned internal state variable, ˙̂zn, is computed and used for calculating
the dissipation rate.

Since the hidden state h of RNNs captures essential history-dependent features from

past material information, we propose to extract ISVs of materials from the hidden state of an

RNN, as shown in Fig. 7.4. Considering one history step, the RNN-inferred ISV is expressed as

follows

ẑn = fRNN
(
εn,Tn,εn−1,σn−1,Tn−1

)
. (7.3)

Hereafter, a hat symbol is used to denote the predicted quantities. Considering one single layer

for input-to-hidden, hidden-to-hidden, and hidden-to-output transformations in RNN, the RNN

function fRNN consists of the following

hn−1 = ah
(
Whhhn−2 +Wεhεn−1 +Wσhσn−1 +WT hTn−1 +bh

)
, (7.4a)

hn = ah
(
Whhhn−1 +Wεhεn +WT hTn +bh

)
, (7.4b)

ẑn = az
(
Whzhn +bz

)
, (7.4c)

where Whh, Wεh, Wσh, WT h, and Whz are trainable weight coefficients for hidden-to-hidden,

strain-to-hidden, stress-to-hidden, temperature-to-hidden, and hidden-to-ISV transformations,
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respectively; bh and bz are trainable bias coefficients; ah(·) and az(·) are activation functions.

Note that the trainable parameters are shared across all steps of the RNN, which enhances

training efficiency. ẑn is the machine-learned ISVs from the hidden state hn of the RNN and its

rate, ˙̂zn, can be computed by automatic differentiation [213], which will be discussed in the next

subsection. Eqs. (7.4a-b) transform the history and current measurable material states to the

current hidden state hn that carries the essential past information. For an RNN with more than

one history step, Eq. (7.4a) is repeated for all history steps. Eq. (7.4c) infers the current ISV ẑn

from the current hidden state hn.

A linear activation (az(·)) is used for the transformation from the hidden state to the ISV

in Eq. (7.4c). The selection of the activation ah(·) requires particular attention due to the issue of

second-order vanishing gradients [80]. For effective training via back-propagation, the gradient

of the output derivative with respect to the trainable parameters requires non-zero second-order

gradients of activation functions. As a result, the activation function SiLU(x) = x/(1+ e−x) is

selected for ah(·) due to its smoothness and non-zero second-order gradients, as shown in Fig.

7.5.

Figure 7.5. The SiLU activation function and its first-order and second-order gradients.

Following the extraction of the ISV, a DNN is then used to predict the Helmholtz free
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energy given the strain, the temperature and the machine-learned ISVs,

F̂n = fDNN
(
εn,Tn, ẑn

)
, (7.5)

where fDNN represents a DNN, as discussed in Section 7.2.1. The activation in the output layer is

linear. The output Helmholtz free energy is then used to compute the stress σ̂ , the dissipation rate

D̂, and the entropy Ŝ according to Eq. (3.31), which implicitly enforces the first thermodynamics

principle. The second thermodynamics principle, i.e., D̂ ≥ 0, is enforced in the loss function

by constraining the network parameters, which will be discussed in the next subsection. The

gradients of the output with respect to the inputs are obtained by automatic differentiation [213].

Since the output derivatives are involved in the loss function, SiLU is used for the activation of

the hidden layers to avoid the issue of second-order vanishing gradients as discussed above.

7.3.2 Secondary Outputs

To balance feature contributions to the loss function and accelerate the training process,

the training dataset is standardized to have zero mean and unit variance. For instance, a feature x

of the dataset is standardized by its mean µx and standard deviation stdx,

x̄ =
x−µx
stdx

. (7.6)

Hereafter, a bar symbol is used to denote standardized quantities. From Eq. (7.6), we have

dx̄ =
1

stdx
dx. (7.7)

Considering standardized variables, Eqs. (7.3) and (7.5) become

ẑn = fRNN
(
ε̄n, T̄n, ε̄n−1, σ̄n−1, T̄n−1

)
, (7.8)
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ˆ̄Fn = fDNN
(
ε̄n, T̄n, ẑn

)
. (7.9)

Therefore, the predicted stress is calculated by

σ̂n =
∂ F̂n

∂εn
=

∂ F̂n

∂ ˆ̄Fn

∂ ˆ̄Fn

∂ ε̄n
:

∂ ε̄n

∂εn
=

stdF

stdε

∂ ˆ̄Fn

∂ ε̄n
. (7.10)

with
∂ F̂n

∂ ˆ̄Fn
= stdF and

∂ ε̄n

∂εn
=

1
stdε

I, (7.11)

according to Eq. (7.7). I is the second-order identity tensor. ∂ ˆ̄Fn
∂ ε̄n

is the gradient of the output

with respect to the input in Eq. (7.9) and can be obtained by automatic differentiation [213].

Similarly, the predicted entropy is computed by

Ŝn =−
∂ F̂n

∂Tn
=−∂ F̂n

∂ ˆ̄Fn

∂ ˆ̄Fn

∂ T̄n

∂ T̄
∂Tn

=−stdF

stdT

∂ ˆ̄Fn

∂ T̄n
. (7.12)

The predicted dissipation rate is computed by

D̂n =−
∂ F̂n

∂ ẑn
· ˙̂zn =−

∂ F̂n

∂ ˆ̄Fn

∂ ˆ̄Fn

∂ ẑn
· ˙̂zn =−stdF

∂ ˆ̄Fn

∂ ẑn
· ˙̂zn, (7.13)

where ˙̂zn can be obtained by applying the chain rule to Eq. (7.8)

˙̂zn =
∂ ẑn

∂ ε̄n
: ˙̄εn +

∂ ẑn

∂ T̄n

˙̄Tn +
∂ ẑn

∂ ε̄n−1
: ˙̄εn−1 +

∂ ẑn

∂ σ̄n−1
: ˙̄σn−1 +

∂ ẑn−1

∂ T̄n

˙̄Tn−1, (7.14a)

=
∂ ẑn

∂ ε̄n
:

ε̇n

stdε

+
∂ ẑn

∂ T̄n

Ṫn

stdT
+

∂ ẑn

∂ ε̄n−1
:

ε̇n−1

stdε

+
∂ ẑn

∂ σ̄n−1
:

σ̇n−1

stdσ

+
∂ ẑn

∂ T̄n−1

Ṫn−1

stdT
, (7.14b)

which requires the rate of the input variables, including ε̇n, Ṫn, ε̇n−1, σ̇n−1, Ṫn−1, etc.

The direct calculation of ˙̂zn through Eq. (7.14) can be computationally intractable,

especially when the dataset size, the internal state dimension, and the number RNN input steps
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are large. Alternatively, the rate of the ISVs can be approximated by ˙̂zn ≈ ∆ẑn/∆t, where

∆ẑn = ẑn− ẑn−1 is the increment of the ISVs at the current step n. To obtain ∆zn, alternative

TCRNNs are proposed, as shown in Fig. 7.6, where the last two steps of the RNN infer the ISVs,

ẑn−1 and ẑn, respectively. These TCRNN models enhance training efficiency.

(a) (b)

Figure 7.6. Computational graphs of (a) a thermodynamically consistent recurrent neural
network (TCRNN) for non-isothermal processes and (b) a TCRNN for isothermal processes.
The increment of the machine-extracted internal state, ∆ẑn, is computed and used for calculating
the dissipation rate.

7.3.3 Model Training

The loss function is expressed as

Loss = ∑
n
||σ̄n− ˆ̄σn||2L1

+β1||F̄n− ˆ̄Fn||2L1
+β2||D̄n− ˆ̄Dn||2L1

+β3||S̄n− ˆ̄Sn||2L1
, (7.15)

where βi, i = 1, ..,3, are regularization parameters. || · ||L1 denotes the L1 norm, and β3 is set to

be zero if the data of the entropy is unavailable. The training consists of forward propagation

and backward propagation. During the forward propagation, the machine-learned ISVs are

implicitly embedded in the calculation of the predicted measurable quantities by following the

thermodynamics principles. During the backward propagation, the errors of the measurable

quantities are back-propagated to update the model’s trainable parameters and refine machine-

learned ISVs.
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In some cases where the data of the dissipation rate D is unavailable, the non-negativity

condition, i.e., D̂≥ 0, can be imposed instead, which is resulted from the thermodynamics second

law, Eq. (3.24a). To this end, the rectified linear unit (ReLU) can be utilized, i.e., ReLU(x) =

max(0,x)≥ 0, which is positive only if x is positive. Hence, ReLU(−D̂) is positive only if D̂

is negative, which corresponds to violation of the non-negativity condition D̂ ≥ 0. Including

ReLU(−D̂) to the loss function penalizes the violation of the non-negativity condition and

enforces D̂ ≥ 0 to be satisfied, which imposes a constraint on the network parameters during

training. The loss function becomes

Loss = ∑
n
||σ̄n− ˆ̄σn||2L1

+β1||F̄n− ˆ̄Fn||2L1
+β2ReLU(−D̂n). (7.16)

Similarly, if the data of the Helmholtz free energy F is unavailable, the non-negativity

condition, i.e., F̂ ≥ 0, can be imposed by adding ReLU(−F̂n) to the loss function,

Loss = ∑
n
||σ̄n− ˆ̄σn||2L1

+β1ReLU(−F̂n)+β2ReLU(−D̂n). (7.17)

In some cases where prior knowledge of certain ISVs are available, the TCRNN models

can be trained in a hybrid mode by leveraging the existing ISVs and simultaneously inferring

additional thermodynamically consistent ISVs that are essential to path-dependent behaviors.

Considering zp
n as the known ISVs and z̄p

n as the corresponding standardized quantity, the loss

function becomes

Loss = ∑
n
||σ̄n− ˆ̄σn||2L1

+β1ReLU(−F̂n)+β2ReLU(−D̂n)+β4||z̄p
n − ˆ̄zp

n ||2L1
, (7.18)

where the last term enables the TCRNN model to learn the existing ISVs. For the TCRNN model

to infer additional essential ISVs, the prescribed internal state dimension, |ẑ|, should be greater

than the dimension of the existing ISVs, |zp|. Note that both existing and machine-learned

ISVs are passed to the DNN to predict the Helmholtz free energy (Eq. 7.9) and the downstream
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calculations (Eqs. 7.13-7.14).

Apart from thermodynamics, the time (or self) consistency condition is critical for

convergence of numerical approximation when ∆t→ 0 [77].

lim
∆ε→0

∆σ̂ = 0. (7.19)

To achieve the time consistency condition, the training set can be augmented by additional

samples constituted by zero strain increment and zero stress increment at different material states

(time steps), which enables the machine-learned material model to learn the time consistency

condition from data. Alternatively, the self-consistency condition can be integrated into the RNN

architecture by definition [93].

The optimal parameters of TCRNN are obtained by minimizing the loss functions

(Eqs. (7.15)-(7.18)) using the open-source Pytorch library [214]. The trainable parameters are

initialized from a uniform distribution U (−
√

k,
√

k), where k is the reciprocal of the hidden

dimension, |h|. The Adam optimizer [215] is adopted for back-propagation training with an initial

learning rate as 10−3. To avoid over-fitting, a L2-norm regularization on trainable parameters

is imposed with a regularization parameter as 10−5. During training, the model is evaluated

by a validation set. When there is no improvement of the validation error after a prescribed

number of epochs (set to be 100 in this study) the training terminates and the optimal model

with a minimum validation error is retained, known as the early stopping procedure. Since the

training dataset is standardized to balance feature contributions to the loss function, the training

is less sensitive to the regularization parameters. Hence, the regularization parameters are set to

be 1 unless further tuning is required to achieve better training performances.

121



7.4 Numerical Results

7.4.1 Modeling Elasto-Plastic Materials

To demonstrate the accuracy, robustness, and generalization performances, the proposed

TCRNN is applied to model a material with synthetic data generated by the one-dimensional

elasto-plastic material with kinematic hardening. The Helmholtz free energy potential is ex-

pressed as

F(ε,ε p) =
E
2
(ε− ε

p)2 +
H
2
(ε p)2, (7.20)

where E = 100 GPa is the Young’s modulus; H = 100 GPa is the kinematic hardening parameter;

ε is the total strain; ε p is the plastic strain, which can be considered as a phenomenological

ISV. The yield stress is k = 100 MPa. The stress and the dissipation rate can be obtained by Eq.

(3.31b-c) as follows

σ =
∂F
∂ε

= E(ε− ε
p), (7.21a)

D =− ∂F
∂ε p ε̇

p = (σ −Hε
p)ε̇ p. (7.21b)

The dataset is generated by Eqs. (7.20)-(7.21), which contains five samples with the

same stress-strain path (two loading-unloading cycles), as show in Fig. 7.7. The only difference

in these samples is the strain increment, ranging from 3.75×10−5 to 7.5×10−5. The data of

the sample with a strain increment of 5.0×10−5 is used to train the TCRNN. The remaining

samples are in the testing set to evaluate the trained model.

To address the issue of error propagation in the test mode due to the teacher forcing

training, as discussed in Section 7.2.2, and enhance model accuracy and robustness, stochasticity

is introduced to the stress data so that the model learns the uncertainties of the input conditions

resembling those in the test mode. Random perturbations are generated from a normal (Gaussian)

distribution with a zero mean and a standard deviation of r×σmax, where σmax is the maximum
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stress in the data and r is a user-defined parameter to control the level of randomness. Fig. 7.7

shows the original stress-strain data in a black solid line and the randomly perturbed data in red

circles. During supervised training, the noiseless stress is the ground truth and the input stress

variable is no longer deterministic but rather stochastic, contributed by the random perturbations.

Figure 7.7. Training data with random perturbations to enhance prediction accuracy and
robustness of TCRNNs, where the black solid line denotes the original data and red circles
denote randomly perturbed data. r = 0.3 is employed to generate the random perturbations.

The TCRNN model based on the time rates of ISVs (˙̂z), as shown in Fig. 7.4(b), is

employed in this example. A GRU is used to infer the ISV ẑ and describe its evolution by

following the thermodynamics second law. The GRU consists of one hidden layer for all affine

transformations in Eq. (7.2) with the model complexity represented by the dimension of the

hidden state, |h|. The DNN trained to predict the Helmholtz free energy contains one hidden

layer with the number of neurons the same as |h|. Since the data of the free energy F and the

dissipation rate D can be obtained by Eq. (7.21) in this example, the loss function in Eq. (7.15) is

employed with β1 = β2 = 1 and β3 = 0. A relative error used to measure the prediction accuracy

is defined as follows

e =
||Σ− Σ̂||L2

||Σ||L2

, (7.22)

where Σ and Σ̂ contain the stress data and stress predictions at all time steps of a loading path,

respectively.

In the following subsections, the effects of the strain increments on model performance
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are first investigated. Since the machine-inferred ISVs are critical to the accuracy of path-

dependent materials modeling, various factors that can affect the quality of the machine-inferred

ISVs are investigated, including the number of RNN steps, the internal state dimension (|ẑ|), and

the model complexity (|h|). Further, the generalization capabilities of the TCRNN model are

examined.

Effects of Strain Increments

We first investigate how the strain increment affects the prediction accuracy of the

TCRNN model. The model has a scalar ISV and a hidden state dimension of 30 (|h| = 30).

Fig. 7.8 compares the predictions with data, where the case with a green color line is used for

training and those with blue color lines are used for testing. The trained model achieves 1.1%

relative error (Eq. (7.22)) on the stress prediction for the training case and 1.9% mean relative

error for the testing cases. The mean relative error is obtained by averaging the relative errors

(Eq. (7.22)) of all cases. The good agreement between predictions and data for all quantities,

including the stress, the Helmholtz free energy, and the dissipation rate demonstrates that the

model maintains high prediction accuracy and robustness as the strain increment varies. Fig.

7.9 shows that the machine-learned ISV is monotonically correlated with the phenomenological

ISV, which demonstrates the capability of the TCRNN model in extracting mechanistically and

thermodynamically consistent ISV essential to dissipative elasto-plastic material behaviors.

Effects of The Number of RNN Steps

In the second example, TCRNN models with a scalar ISV and various RNN steps

(including history and current steps) are examined. Note that the model complexity is independent

of the number of RNN steps due to parameter sharing across all RNN steps. For a relatively

compact model with |h|= 20, Fig. 7.10(a) shows that the relative errors of training and testing

samples decrease significantly when the number of RNN steps reaches 4, a critical number of

RNN steps, which is expected since increasing the number of RNN steps enables the model to
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(a) Testing: |∆ε|= 7.5×10−5

(b) Testing: |∆ε|= 6.0×10−5

(c) Training: |∆ε|= 5.0×10−5

(d) Testing: |∆ε|= 4.29×10−5

(e) Testing: |∆ε|= 3.75×10−5

Figure 7.8. Comparison of predictions of the TCRNN with data: (a) testing case with a strain
increment of |∆ε| = 7.5× 10−5; (b) testing case with a strain size of |∆ε| = 6.0× 10−5; (c)
training case with a strain size of |∆ε| = 7.5× 10−5; (d) testing case with a strain size of
|∆ε|= 4.29×10−5; (e) testing case with a strain size of |∆ε|= 3.75×10−5.
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Figure 7.9. Correlation between the machine-learned internal state variable and the phenomeno-
logical internal state variable.

extract more accurate path-dependent features from longer-term stress-strain history. As the

number RNN steps further increases, the relative errors of training and testing samples remain at

a plateau, with around 0.4% and 1.6% relative errors, respectively. The plateau indicates that

further increasing the number of RNN steps does not improve the quality of the machine-inferred

ISVs and thus the model accuracy, which could be potentially limited by |ẑ| or |h|. For a more

complex model with |h|= 50, Fig. 7.10(b) shows a similar convergence behavior but the critical

number of RNN steps increases to 5. This shows that the number of RNN steps play an important

role in model accuracy and performance. Unnecessarily increasing the model complexity may

lead to an increase in the number of RNN steps for achieving the same level of accuracy.

(a) (b)

Figure 7.10. Effects of the number of RNN steps on the accuracy of models with a scalar internal
state variable and: (a) a hidden state dimension |h|= 20; (b) a hidden state dimension |h|= 50.
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Effects of Internal State Dimension

The internal state dimension (|ẑ|) has a direct impact on the quality of the machine-

inferred ISVs and thus the model performance. If |ẑ| is too small, the TCRNN model cannot

capture all important thermodynamically consistent path-dependent features even if the number

of RNN steps and model complexity are sufficient. In this example, TCRNN models with 5 RNN

steps, |h|= 20 and various internal state dimensions are examined. Fig. 7.11(a) shows that as

the dimension of the ISV increases from 1 to 5, the relative errors of training and testing samples

remain at a plateau, with around 0.5% and 1.5% relative errors, respectively. It indicates that a

scalar ISV is sufficient for effectively capturing the path-dependent material behavior in this case.

The convergence of the model performance against the internal state dimension is particularly

important. In practice, the internal state dimension of path-dependent materials is often unknown

a priori. The convergence property shows that the TCRNN model remains accurate and robust

even if an excessive internal state dimension is prescribed. This convergence property also allows

one to identify the optimal |ẑ| given measurable material states of path-dependent materials.

(a) (b)

Figure 7.11. (a) Effects of the internal state dimension on the accuracy of models with 5 RNN
steps and a hidden state dimension |h|= 20. (b) Effects of the network complexity (hidden state
dimension) on the accuracy of models with a scalar internal state variable and 5 RNN steps.
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Effects of Model Complexity

The model complexity represented by the hidden state dimension is another important

factor influencing the quality of the machine-inferred ISVs and model performance since the

ISVs are inferred from the hidden states that directly capture the essential stress-strain path-

dependent features. If the hidden state dimension is too small, important stress-strain path-

dependent features could be lost, leading to inaccurate machine-inferred ISVs and poor model

performance. In this example, the effects the TCRNN model complexity (hidden state dimension)

are investigated. The TCRNN models examined have a scalar ISV, 5 RNN steps, various hidden

state dimensions ranging from 5 to 100. Fig. 7.11(b) shows that as the hidden state dimension

increases, the relative errors of training and testing samples decrease and then reach a plateau,

with around 0.5% and 1.5% relative errors, respectively. This shows that a compact network is

sufficient to achieve a satisfactory accuracy in this example and increasing the model complexity

does not improve the model accuracy.

Model Generalization

In the following examples, three variables are considered to evaluate the generalization

performances of the TCRNN model, including the loading strain per cycle, the unloading strain

per cycle, and the number of (loading-unloading) cycles. The TCRNN model with 15 RNN

steps, a scalar ISV, and |h|= 30 is employed.

In the first test, we consider a two-dimensional parameter space constituted by the loading

strain per cycle and the unloading strain per cycle. The dataset contains 16 cases with the same

number of loading-unloading cycles but with different loading and unloading strains per cycle.

Fig. 7.12 shows the comparison between the predicted stress and the data, where case 1, 4, 9,

and 16, located at the corners in the figure, are used for training with the data marked with the

green solid lines, and the remaining cases are used for testing with the data marked with the blue

solid lines. From top to bottom, the loading strain per cycle increases from 10−2 to 1.4×10−2.

From left to right, the unloading strain per cycle increases from 5×10−3 to 5.5×10−3. The
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mean relative errors of the training and testing cases are 3.1% and 2.8%, respectively. The good

agreement between the data and the predictions demonstrates that the trained TCRNN model

can successfully predict the testing cases within the prescribed parameter space.

In the second test, we consider a two-dimensional parameter space constituted by the

number of loading-unloading cycles and the loading strain per cycle. The dataset contains 16

cases with the same unloading strain per cycle, 5.5× 10−3. Fig. 7.13 shows the comparison

between the predicted stress and the data, where case 1, 4, 9, and 16, located at the corners in the

figure, are used for training with the data marked with the green solid lines, and the remaining

cases are used for testing with the data marked with the blue solid lines. From top to bottom, the

number of loading-unloading cycles increases from 1 to 4. From left to right, the loading strain

per cycle increases from 10−2 to 1.4×10−2. The mean relative errors of the training and testing

cases are 2.3% and 3.4%, respectively. The good agreement between the data and the predictions

further demonstrates the strong generalization ability of the TCRNN constitutive model.

7.4.2 Modeling Soil under Cyclic Shear Loading

The effectiveness of the proposed TCRNN constitutive model is further evaluated by

modeling undrained soil (sand) under cyclic shear loading [216, 217]. The experimental data

is collected from the undrained soil samples under initial triaxial confinement of 40kPa and

cyclic shear loading. A cyclic stress ratio (CSR) is defined as the ratio of the maximum shear

stress to the initial vertical stress. The experimental data contains the shear strain, the vertical

strain, the shear stress, and the vertical stress. Fig. 7.14 shows the experimental data with

a CSR of 0.15, 0.16, and 0.17, measured with a constant time step size as 8× 10−3. The

stress-strain relationships are highly nonlinear and path-dependent due to coupling effects of

changes in volume, matric suction, degree of saturation, effective stress, shear modulus, etc.

[218]. Modeling such path-dependent material behaviors by a phenomenological approach is

challenging and complicated, which often relies on certain phenomenological ISVs.

Given only the stress-strain data, data-driven models and phenomenological models that
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Figure 7.12. Comparison between the predicted stress of the TCRNN model and the data. The
parameter space is constituted by the loading strain per cycle and the unloading strain per cycle.
From top to bottom, the loading strain per cycle increases from 10−2 to 1.4×10−2. From left to
right, the unloading strain per cycle increases from 5×10−3 to 5.5×10−3. the The training data
are denoted by the green color lines whereas the testing cases are denoted by the blue color lines.
The predictions are denoted by the red dash lines.
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Figure 7.13. Comparison between the predicted stress of the TCRNN model and the data.
The parameter space is constituted by the loading strain per cycle and the number of loading-
unloading cycles. From top to bottom, the number of loading-unloading cycles increases from
1 to 4. From left to right, the loading strain per cycle increases from 10−2 to 1.4×10−2. The
training data are denoted by the green color lines whereas the testing cases are denoted by the
blue color lines. The predictions are denoted by the red dash lines.
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(a) CSR=0.15

(b) CSR=0.16

(c) CSR=0.17

Figure 7.14. Experimental data of undrained soil under cyclic simple shear loading with: (a)
CSR=0.15; (b) CSR=0.16; (c) CSR=0.17.
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require pre-defined ISVs cannot be applied. In contrast, the proposed TCRNN model can be

effectively applied since it only requires measurable material states, and the model is capable of

inferring essential ISVs from the measurable material states by following the thermodynamics

principles.

The TCRNN based on the increment of ISVs (∆ẑ), as shown in Fig. 7.6(b), is employed

in this example. A GRU is used to infer the ISV ẑ in Eq. (7.8) and describe its evolution by

following the thermodynamics second law in Eq. (3.22). Note that although the time step size

of the experimental data is constant in this example, it is not required by the TCRNN to infer

the incremental ISVs ∆ẑ. The GRU consists of one hidden layer for all affine transformations

in Eq. (7.2) with the model complexity represented by the hidden state dimension, |h|. The

DNN trained to predict the Helmholtz free energy contains one hidden layer with the number

of neurons the same as |h|. Since the training data contains only stresses and strains, the loss

function in Eq. (7.17) is employed with β1 = β2 = 1. The experimental data with a CSR of 0.15

and 0.17 are used for training, while the experimental data with a CSR of 0.16 is used for testing.

The effects of the number of RNN steps, the internal state dimension, and the model complexity

on the model performance are investigated.

Effects of The Number of RNN Steps

Given TCRNN models with an internal state dimension (|ẑ|) of 2 and a hidden state

dimension (|h|) of 30, the number of RNN steps is varied from 5 to 60 and its influences on the

model prediction accuracy are shown in Fig. 7.15(a) As the number of RNN steps increases,

the relative errors of training and testing samples decrease and eventually converge to a plateau,

with values around 3% and 11%, respectively. The plateau indicates that further increasing the

number of RNN steps does not improve the model accuracy.
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Effects of Internal State Dimension

The internal state dimension (|ẑ|) required to effectively model the path-dependent

material behaviors is unknown a priori, which depends on the complexity of the path-dependent

behaviors. Here, we investigate the effects of |ẑ| on model prediction accuracy, which is varied

from 1 to 10, while the number of RNN steps and |h| are fixed as 40 and 30, respectively.

Fig. 7.15(b) shows that the relative errors of training and testing samples are large when the

machine-inferred ISV is a scalar, indicating that a scalar ISV is insufficient to capture all essential

path-dependent features. As |ẑ| increases, the relative errors of training and testing samples

decrease and then reach a plateau, with values around 2.7% and 12%, respectively, which shows

that the TCRNN model remains accurate and robust even if an excessive |ẑ| is prescribed. The

convergence behavior also allows one to identify the optimal |ẑ|, around 2 in this example, given

the measurable material states of path-dependent materials.

Effects of Model Complexity

Lastly, |ẑ| and the number of RNN steps are fixed as 5 and 40, respectively, while |h| is

varied from 5 to 100 to investigate the effects of model complexity (|h|) on model performance.

Fig. 7.15(c) shows that the relative errors of training and testing samples decrease as |h| increases

and eventually reach a plateau, with values around 2.8% and 14%, respectively. The plateaus in

the convergence curves indicate that further increasing the model complexity does not improve

the model accuracy.

Model Generalization

Fig. 7.16 compares shear stress experimental data with the predictions of the trained

TCRNN model that employs 40 RNN steps, |ẑ|= 2, and |h|= 30. The relative errors of training

and testing samples are around 3.2% and 9.4%, respectively. It shows that the TCRNN model

is able to learn the path-dependent material behaviors from the measurable material states

under given loading conditions and effectively predicts the path-dependent responses under
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(a) (b)

(c)

Figure 7.15. Effects of various parameters on model accuracy: (a) the number of RNN steps
(with an internal state dimension |ẑ|= 2 and a hidden state dimension |h|= 30); (b) the internal
state dimension (with 40 RNN steps and a hidden state dimension |h| = 30); (c) the model
complexity (with an internal state dimension |ẑ|= 5 and 40 RNN steps).
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untrained loading conditions, further demonstrating the generalization ability and effectiveness

of the TCRNN model in practical applications. Further, the trained TCRNN material model

is thermodynamically consistent, which is verified by the non-negative predicted free energy

and the predicted dissipation rates that satisfy the thermodynamics second law, as shown in the

second and the third rows of Fig. 7.16, respectively. The histories of the machine-learned ISVs

are shown in the last row of Fig. 7.16, revealing interesting path-dependent patterns similar to

the behaviors of the predicted free energy and dissipation rate.

(a) Training: CSR=0.15 (b) Testing: CSR=0.16 (c) Training: CSR=0.17

Figure 7.16. Comparison of predictions of the TCRNN with data: (a) the training case with
a CSR=0.15; (b) the testing case with a CSR=0.16; (c) the training case with a CSR=0.17.
The first row compares shear stress-strain relationships. The second row shows the predicted
Helmholtz free energy. The third row shows the predicted dissipation rate. The last row shows
the machine-learned internal state variables. The TCRNN model employed has 40 RNN steps,
an internal state dimension |ẑ|= 2, and a hidden state dimension |h|= 30.
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7.5 Summary

In this study, we introduced a machine-learned internal state variable (ISV) approach

for data-driven modeling of path-dependent materials, which is thermodynamically consistent

and relies purely on the measurable material states. The proposed TCRNN constitutive models

consist of two main components: an RNN that infers ISVs (Eq. (7.8)) and describes their

evolution by following the thermodynamics second law (Eq. (3.22)), and a DNN that predicts

the Helmholtz free energy (Eq. (7.9)) given strain, ISVs, and temperature (for non-isothermal

processes). Two TCRNN constitutive models are developed, one based on the time rates of ISVs

(˙̂z), as shown in Fig. 7.4, and the other one based on the increments of ISVs (∆ẑ), as shown in

Fig. 7.6. The latter model shows an enhanced efficiency as it utilizes an approximation of ˙̂z for

the calculation of dissipation rate and avoids time-consuming differentiation of the RNN outputs

with respect to all RNN inputs. Model robustness and accuracy is enhanced by introducing

stochasticity to the training data to account for uncertainties of input conditions in the testing.

In the demonstration of modeling elasto-plastic materials, the parametric study shows

that the model accuracy converges as the number of RNN steps, the internal state dimension, and

the model complexity increase. All these factors play an important role in the model performance.

Given path-dependent material behaviors, there exists an optimal internal state dimension to

capture the essential path-dependent features by the TCRNN model. It has been shown that

the TCRNN model remains accurate and robust even if an excessive internal state dimension is

prescribed. The monotonic correlation between the machine-inferred and the phenomenological

ISV of the elasto-plastic material demonstrates that the TCRNN constitutive model can infer

mechanistically and thermodynamically consistent ISVs. The proposed TCRNN constitutive

model is shown to remain robust against various strain increments and have strong generalization

capabilities.

The effectiveness of the proposed TCRNN constitutive model is further demonstrated

by modeling undrained soil under cyclic shear loading using experimental data, where only
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measurable material states (stresses and strains) are available. A similar convergence behaviors

of the model accuracy are observed from a parametric study of the number of RNN steps,

the internal state dimension, and the model complexity. The generalization capability of the

TCRNN constitutive model is demonstrated by the effective prediction of the thermodynamically

consistent response of undrained soil under the loading conditions different from the ones used

in training, which reveals the promising potential of the proposed method to model complex

path-dependent materials behaviors in real applications.

The proposed TCRNN constitutive model is general and applicable to model a wide

range of path-dependent materials. It is efficient and can be applied to accelerate large-scale

multi-scale simulations with complex microstructures and path-dependent material systems. To

investigate reliability of model predictions, a future extension would be to integrate uncertainty

quantification [32] into the proposed TCRNN model.
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Chapter 8

gLaSDI: Parametric Physics-informed
Greedy Latent Space Dynamics Identifica-
tion

8.1 Introduction

Physical simulations have played an increasingly significant role in developments of engi-

neering, science, and technology. The widespread applications of physical simulations in digital

twins systems [107, 108] is one recent example. Many physical processes are mathematically

modeled by time-dependent nonlinear partial differential equations (PDEs). As it is difficult or

even impossible to obtain analytical solutions for many highly complicated problems, various

numerical methods have been developed to approximate the analytical solutions. However, due

to the complexity and the domain size of problems, high-fidelity forward physical simulations

can be computationally intractable even with high performance computing, which prohibits their

applications to problems that require a large number of forward simulations, such as design

optimization [29, 30], optimal control [31], uncertainty quantification [32, 33], and inverse

analysis [33, 34].

In recent years, several reduced-order model (ROM) methods have been integrated with

latent-space learning algorithms. Kim, et al. [154] proposed a DeepFluids framework in which

the autoencoder was applied for nonlinear projection and a latent-space time integrator was used
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to approximate the evolution of the solutions in the latent space. Xie, et al. [57] applied the

POD for linear projection and a multi-step NN to propagate the latent-space dynamical solutions.

Hoang, et al. [155] applied the POD to compress space-time solution space to obtain space-

time reduced-order basis and examined several surrogate models to map input parameters to

space-time basis coefficients, including multivariate polynomial regression, k-nearest neighbors

(KNNs), random forest, and NNs. Kadeethum, et al. [61] compared performance of the POD

and autoencoder compression along with various latent space interpolation techniques, such as

radial basis function and artificial neural networks. However, the latent-space dynamics models

of these methods are complex and lack interpretability.

To improve the interpretability and generalization capability, many non-intrusive ROMs

have been developed to explicitly identify interpretable governing laws of latent-space dynamics

by operator inference [158–160, 166–175] and parametric models, such as the sparse identifica-

tion of nonlinear dynamics (SINDy) [52, 58, 165]. For example, Qian, et al. [159] introduced a

lifting map to transform non-polynomial physical dynamics to quadratic polynomial dynamics

and then combined POD-based linear projection with operator inference to identify quadratic

reduced models for dynamical systems. Bai and Peng [58] proposed parametric non-intrusive

ROMs that combine the POD for linear projection with regression surrogates to approximate

dynamical systems of latent variables, including support vector machines with kernel functions,

tree-based methods, KNNs, vectorial kernel orthogonal greedy algorithm (VKOGA), and SINDy.

The ROMs integrated with VKOGA and SINDy deliver superior cost versus error trade-off. Due

to the limitation of the POD-based linear projection, these non-intrusive ROMs have difficulties

with advection-dominated problems. To address this challenge, Issan and Kramer [176] recently

proposed a non-intrusive ROM based on shifted operator inference by transforming the original

coordinate frame of dynamical systems to a moving coordinate frame in which the dynamics are

absent of translation and rotation. Fries, et al. [9] proposed a parametric latent space dynamics

identification (LaSDI) framework as a generalization of aforementioned non-intrusive ROMs

built upon latent-space dynamics identification, since it allows linear or nonlinear projection and
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enables latent-space dynamics to be captured by flexible dynamics identification (DI) models

based on general nonlinear functions. In this study [9], POD-based linear projection is compared

with autoencoder-based nonlinear projection and it is demonstrated that local latent-space dy-

namics can be leveraged to enhance predictivity of the ROM, especially when the dynamics is

highly complex and localized. However, a sequential training procedure was adopted for the

autoencoder and the DI models, the lack of interaction between the autoencoder and the DI

models leads to strong dependency of the complexity and quality of the latent-space dynamics

on the autoencoder architecture, which could pose challenges to the subsequent training of the

DI models and thus affect the model performances. Most importantly, all the above-mentioned

approaches rely on predefined training samples, such as uniform or Latin hypercube sampling

that may not be optimal in terms of the number of samples for achieving the best model per-

formance in the prescribed parameter space. As the generation of the simulation data can be

computationally expensive, it is important to minimize the number of samples.

In this study, we propose a parametric adaptive greedy latent space dynamics identi-

fication (gLaSDI) framework for accurate, efficient, and robust physics-informed data-driven

reduced-order modeling. To maximize and accelerate the exploration of the parameter space for

optimal performance, an adaptive greedy sampling algorithm integrated with a physics-informed

residual-based error indicator and random-subset evaluation is introduced to search for the

optimal and minimal training samples on the fly. The proposed gLaSDI framework contains

an autoencoder for nonlinear projection to discover intrinsic latent representations and a set of

local DI models to capture local latent-space dynamics, which is further exploited by an efficient

KNN convex interpolation scheme. The autoencoder training and dynamics identification in

the gLaSDI take place interactively to achieve an optimal identification of simple latent-space

dynamics.

The remainder of this chapter is organized as follows. The governing equations of

dynamical systems is introduced in Section 8.2. In Section 8.3, the ingredients of the proposed

gLaSDI framework, the mathematical formulations, the training and testing algorithms are
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introduced. In Section 8.4, the effectiveness and capability of the proposed gLaSDI framework

are examined by modeling various nonlinear dynamical problems, including Burgers equations,

nonlinear heat conduction, and radial advection. The effects of various factors on model

performance are investigated, including the number of nearest neighbors for convex interpolation,

the latent-space dimension, the complexity of the DI models, and the size of the parameter space.

A performance comparison between uniform sampling, i.e., LaSDI, and the physics-informed

greedy sampling, i.e., gLaSDI, is also presented. Concluding remarks and discussions are

summarized in Section 8.5.

8.2 Governing equations of dynamical systems

A parameterized dynamical system characterized by a system of ordinary differential

equations (ODEs) is considered

du(t; µ)

dt
= f(u, t; µ), t ∈ [0,T ], (8.1a)

u(0; µ) = u0(µ) (8.1b)

where T ∈ R+ is the final time; µ ∈ D ⊆ Rnµ is the parameter in a parameter domain D .

u(t; µ) : [0,T ]×D→RNu is the parameterized time-dependent solution to the dynamical system;

f : RNu× [0,T ]×D → RNu denotes the velocity of u; u0 is the initial state of u. Eq. (8.1) can be

considered as a semi-discretized equation of a system of partial differential equations (PDEs)

with a spatial domain Ω⊆ Rd,d ∈ N(3), and N(N) := {1, ...,N}. Spatial discretization can be

performed by numerical methods, such as the finite element method.

A uniform time discretization is considered in this study, with a time step size ∆t ∈ R+

and tn = tn−1+∆t for n∈N(Nt) where t0 = 0, Nt ∈N. Various explicit or implicit time integration

schemes can be applied to solve Eq. (8.1). For example, with the implicit backward Euler time

integrator, the solutions to Eq. (8.1) can be obtained by solving the following nonlinear system
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of equations

un = un−1 +∆tfn, (8.2)

where un := u(tn; µ), and fn := f(u(tn; µ), tn; µ). The residual function of Eq. (8.2) is expressed

as

r(un;un−1,µ) = un−un−1−∆tfn. (8.3)

Solving the dynamical system of equation (Eq. (8.1)) could be computationally expen-

sive, especially when the solution dimension (Nu) is large and the computational domain (Ω)

is geometrically complex. In this work, an efficient and accurate data-driven reduced-order

modeling framework based on physics-informed greedy latent space dynamics identification is

proposed, which will be discussed in details in the next section.

8.3 gLaSDI

The ingredients of the proposed physics-informed parametric adaptive greedy latent

space dynamics identification (gLaSDI) framework are introduced in this section, including

autoencoders, dynamics identification (DI) models, k-nearest neighbors (KNN) convex interpola-

tion, and an adaptive greedy sampling procedure with a physics-informed error indicator. An

autoencoder is trained to discover an intrinsic nonlinear latent representation of high-dimensional

data from dynamical PDEs, while training cases are sampled on the fly and associated local DI

models are trained simultaneously to capture localized latent-space dynamics. An interactive

training procedure is employed for the autoencoder and local DI models, which is referred to as

the interactive Auto-DI training, as shown in Fig. 8.1. The interaction between the autoencoder

and local DI models enables identification of simple and smooth latent-space dynamics and

therefore accurate and efficient data-driven reduced-order modeling.

The physics-informed adaptive greedy sampling can be performed on either a continuous

parameter space (D) or a discrete parameter space (Dh ⊆D). In the following demonstration,
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a discrete parameter space (Dh) is considered. D ⊆ Dh denotes a set of Nµ selected training

sample points.

Let us consider a training sample point µ(i) ∈ Dh, i ∈ N(Nµ) and u(i)
n ∈ RNu as the

solution at the n-th time step of the dynamical system in Eq. (8.1) with the training sample

point µ(i). The solutions at all time steps are arranged in a snapshot matrix denoted as U(i) =

[u(i)
0 , ...,u(i)

Nt
]∈RNu×(Nt+1). Concatenating snapshot matrices corresponding to all training sample

points gives a full snapshot matrix U ∈ RNu×(Nt+1)Nµ

U =
[
U(1), ...,U(Nµ )

]
. (8.4)

8.3.1 Autoencoders for nonlinear dimensionality reduction

An autoencoder [44, 45] is a special architecture of deep neural networks (DNNs)

designed for dimensionality reduction or representation learning. As shown in Fig. 2.5, an

autoencoder consists of an encoder function φ e(·;θ enc) : RNu → RNz and a decoder function

φ d(·;θ dec) : RNz → RNu , such that

z(i)n = φ e(u
(i)
n ;θ enc), (8.5a)

û(i)
n = φ d(z

(i)
n ;θ dec) (8.5b)

where u(i)
n ∈ RNu denotes the solution of a sampling point µ(i) ∈Dh, i ∈ N(Nµ), at the n-th time

step; Nz≪Nu is the latent dimension, θ enc and θ dec are trainable parameters of the encoder and

the deconder, respectively; û(i)
n ∈ RNu is the output of the autoencoder, a reconstruction of the

original input u(i)
n . With the latent dimension Nz much smaller than the input dimension Nu, the

encoder φ e is trained to compress the high-dimensional input u(i)
n and learn a low-dimensional

representation, denoted as a latent variable z(i)n ∈ RNz , whereas the decoder φ d reconstructs the

input data by mapping the latent variable back to the high-dimensional space, as illustrated in

Fig. 2.5.
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Let us denote Z(i) = [z(i)0 , ...,z(i)Nt
] ∈RNz×(Nt+1) as the matrix of latent variables at all time

steps of the sampling point µ(i) and Z=
[
Z(1), ...,Z(Nµ )

]
∈RNz×(Nt+1)Nµ as the full latent variable

matrix of all sampling points in the parameter space. The corresponding reconstructed full

snapshot matrix is denoted by Û=
[
Û(1), ..., Û(Nµ )

]
∈RNu×(Nt+1)Nµ , where Û(i) = [û(i)

0 , ..., û(i)
Nt
]∈

RNu×(Nt+1), i ∈ N(Nµ), obtained from Eq. (8.5). The optimal trainable parameters of the

autoencoder (θ enc and θ dec from Eq. (8.5)) are obtained by minimizing the loss function:

Lrecon := ||U− Û||2L2
. (8.6)

Due to symmetric architectures of the encoder and the decoder in the autoencoder, the

encoder architecture is used to denote the autoencoder architecture for simplicity. For example,

the encoder architecture 6-4-3 denotes that there are 6, 4, and 3 artificial neurons in the input

layer, the hidden layer, and the embedding layer that outputs the latent variables, respectively. As

such, the decoder architecture in this case is 3-4-6 and the corresponding autoencoder architecture

is 6-4-3-4-6.

8.3.2 Latent-space dynamics identification

Instead of learning complex physical dynamics of high-dimensional data, a dynamics

identification (DI) model is introduced to capture dynamics of the autoencoder-discovered low-

dimensional representation associated with the high-dimensional data. Therefore, the problem of

the high-dimensional dynamical system in Eq. (8.1) is reduced to

dz(t; µ)

dt
= ψDI(z, t; µ), t ∈ [0,T ], (8.7)

where z(t; µ) = φ e(u(t; µ))∈ RNz and φ e denotes the encoder function introduced in Section

8.3.1. The dynamics of u can be reconstructed by using the decoder function: û(t; µ) =

φ d(z(t; µ)).
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Given the discrete latent variable matrix Z(i) = [z(i)0 , ...,z(i)Nt
] ∈ RNz×(Nt+1) of a sampling

point µ(i), i ∈ N(Nµ), the governing dynamical function ψDI is approximated by a user-defined

library of candidate basis functions Θ(Z(i)T ), expressed as

Ż(i)T ≈ ˙̂Z(i)T = Θ(Z(i)T )Ξ(i), (8.8)

where Θ(Z(i)T ) = [b1(Z(i)T ),b2(Z(i)T ), ...,bNb(Z
(i)T )] ∈R(Nt+1)×Nl has Nb candidate basis func-

tions to capture the latent space dynamics, e.g., polynomial, trigonometric, and exponential

functions; Nl denotes the number of columns of the library matrix, determined by the choice of

the basis functions, see [9] for more details; Ξ
(i) = [ξ

(i)
1 ,ξ

(i)
2 , ...,ξ

(i)
Nz
] ∈ RNl×Nz is an associated

coefficient matrix.

In gLaSDI, the autoencoder and the DI model are trained simultaneously and interactively

to identify simple and smooth latent-space dynamics. Therefore, Ż(i)T = [ż(i)T0 , ..., ż(i)TNt
]T ∈

R(Nt+1)×Nz in Eq. (8.8) is obtained by applying the chain rule and automatic differentiation (AD)

[202] to the encoder network, i.e.,

ż(i)n =
(
∇uz(i)n

)
u̇(i)

n = ∇uφ e(u
(i)
n )u̇(i)

n , n = 0, ...,Nt . (8.9)

To ensure the consistency on the identified latent-dynamics, Ż and ˙̂Z, the following loss function

is constructed, which imposes a constraint on the trainable parameters of the encoder (θ enc via

Eq. (8.9)) and the DI models ({Ξ(i)}i∈N(Nµ ) via Eq. (8.8)),

Lż := ||Ż− ˙̂Z||2L2
, (8.10)
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with

Ż =
[
Ż(1), ..., Ż(Nµ )

]
∈ RNz×(Nt+1)Nµ (8.11a)

˙̂Z =
[ ˙̂Z(1), ..., ˙̂Z(Nµ )

]
∈ RNz×(Nt+1)Nµ . (8.11b)

The loss function in ż also enables identification of simple latent-dynamics when simple DI

model is prescribed, which will be demonstrated in Section 8.4.2-8.4.3. Note that the local DI

models are considered to be point-wise (see the detailed description about point-wise and region-

based DI models in [9]), which means each local DI model is associated with a distinct sampling

point in the parameter space. Hence, each sampling point has an associated DI coefficient matrix.

Figure 8.1. Schematic of the gLaSDI algorithm.

To further enhance the accuracy of the physical dynamics predicted by the decoder, a loss

function is constructed to ensure the consistency of between the predicted dynamics gradients
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and the gradients of the solution data, in addition to the reconstruction loss function in Eq. (8.6).

The enhancement is demonstrated in Section 8.4.1. The predicted dynamics gradients, ˙̂u, can be

calculated from u by following the path: u→ z→ ˙̂z→ ˙̂u, as illustrated in Fig. 8.1, and applying

the chain rule and AD to the decoder network,

˙̂u(i)
n =

∂ û(i)
n

∂z(i)n

· ∂z(i)n

∂ t
(8.12a)

= ∇zφ d
(
φ e(u

(i)
n )
)
·ψDI(z

(i)
n ) (8.12b)

= ∇zφ d
(
φ e(u

(i)
n )
)
·Θ(φ e(u

(i)
n )T )Ξ(i). n = 0, ...,Nt , (8.12c)

which involves all trainable parameters, including the encoder (θ enc), the decoder (θ dec), and the

DI models ({Ξ(i)}i∈N(Nµ )). The loss function in u̇ is defined as

Lu̇ := ||U̇− ˙̂U||2L2
. (8.13)

with

U̇ =
[
U̇(1), ..., U̇(Nµ )

]
∈ RNu×(Nt+1)Nµ (8.14a)

˙̂U =
[ ˙̂U(1), ..., ˙̂U(Nµ )

]
∈ RNu×(Nt+1)Nµ . (8.14b)

Therefore, the loss function of the interactive auto-DI training consists of three different

loss terms, i.e., the reconstruction loss of the autoencoder in Eq. (8.6), the DI loss in ż in Eq.

(8.10), and the DI loss in u̇ in Eq. (8.13). They are combined as a linear combination:

L = Lrecon +β1Lż +β2Lu̇, (8.15)

where β1 and β2 denote the regularization parameters to balance the scale and contributions from

the loss terms. A schematics of the interactive auto-DI training is shown in Fig. 8.1.
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Compared with a global DI model that captures global latent-space dynamics of all

sampling points in the parameter space Dh, each local DI model in the proposed framework

is associated with one sampling point and thus captures local latent-space dynamics more

accurately. Further, an efficient k-nearest neighbor (KNN) convex interpolation scheme, which

will be introduced in the next subsection, is employed to exploit the local latent-space dynamics

captured by the local DI models for an improved prediction accuracy, which will be demonstrated

in Section 8.4.1.

8.3.3 k-nearest neighbors convex interpolation

To exploit the local latent-space dynamics captured by the local DI models for enhanced

parameterization and efficiency, a KNN convexity-preserving partition-of-unity interpolation

scheme is employed. The interpolation scheme utilizes Shepard function [206] or inverse distance

weighting, which has been widely used in data fitting and function approximation with positivity

constraint [6, 207–209]. Compared with other interpolation techniques, such as the locally linear

embedding [38, 196] and the radial basis function interpolation [9], which require optimization

to obtain interpolation weights and thus more computational cost, the employed KNN Shepard

interpolation is more efficient while preserving convexity.

Given a testing parameter µ ∈D , the DI coefficient matrix Ξ is obtained by a convex in-

terpolation of coefficient matrices of its k-nearest neighbors (existing sampling points), expressed

as

Ξinterp = I
(
{Ψ(i)(µ);Ξ

(i)}i∈Nk(µ)

)
= ∑

i∈Nk(µ)

Ψ
(i)(µ)Ξ(i), (8.16)

where Ξinterp is the interpolated DI coefficient matrix of the testing parameter µ , Nk(µ) is the

index set of the k-nearest neighbor points of µ selected from D⊆Dh that contains the parameters

of the training samples, and Ξ
(i) is the coefficient matrix of the sampling point µ(i). The selection

of the k-nearest neighbors is based on the Euclidean distance between the testing parameter and

149



the training parameters, ||µ−µ(i)||L2 . The interpolation functions are defined as

Ψ
(i)(µ) =

φ(µ−µ(i))

∑
k
j=1 φ(µ−µ( j))

, (8.17)

where k is the number of nearest neighbors. In Eqs. (8.16) and (8.17), φ is a positive kernel

function representing the weight on the data set {Ξ(i)}i∈Nk(µ), and I denotes the interpolation

operator that constructs shape functions with respect to µ and its neighbors. It should be noted

that these functions satisfy a partition of unity, i.e., ∑i∈Nk(µ)Ψ(i)(µ) = 1 for transformation

objectivity. Furthermore, they are convexity-preserving when the kernel function φ is a positive

function. Here, an inverse distance function is used as the kernel function

φ(µ−µ
(i)) =

1
||µ−µ(i)||2L2

. (8.18)

If the testing parameter point overlaps with one of the nearest neighbor points, i.e., µ = µ( j),

j ∈Nk(µ), then Ψ( j)(µ) = 1 and Ψ(i)(µ) = 0, ∀i ∈Nk(µ) and i ̸= j, resulting in Ξinterp = Ξ
( j),

which is expected.

For a better visualization and a clear demonstration in a two-dimensional domain, we

consider convex interpolation of two components from the coefficient matrix, i.e., ξ1 and ξ2, as

shown in Fig. 8.2(b). Fig. 8.2(a) shows four testing parameter points denoted by asterisks and

their 6 nearest neighbor parameter points denoted by solid black dots. The testing parameter

points are at different locations relative to the convex hull (depicted by the black dash line)

formed by the nearest neighbor points. The interpolation functions are obtained using Eqs. (8.17-

8.18) based on the Euclidean distance between the testing points and the nearest neighbor points,

which are then used to interpolate the coefficients of the testing points from the coefficients of the

nearest neighbors by using Eq. (8.16), as shown in Fig. 8.2(b). It can be seen that the interpolated

coefficients are all located within the convex hull (depicted by the black dash line) formed by

the nearest neighbors’ coefficients, showing the desired convexity-preserving capability, which
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allows existing local DI models to be leveraged for prediction of latent-space dynamics of testing

parameters. When the testing parameter point (the green asterisk) overlaps with the nearest

neighbor point 5, the coefficient of the testing point is identical with that of the nearest neighbor

point 5. The convex interpolation is simple and efficient as the interpolation functions in Eq.

(8.17) can be constructed easily in the parameter space.

(a) (b)

Figure 8.2. Demonstration of the convexity-preserving interpolation in Eq. (8.16): (a) The
four asterisks denote the testing parameter points while the black solid dots denote the nearest
neighbor parameter points of the testing parameter points. The black dash line depicts a locally
convex hull formed by the nearest neighbor points. The interpolation functions are obtained using
Eqs. (8.17-8.18) based on the Euclidean distance between the testing points and nearest neighbor
points. (b) The black solid dots denote the coefficients associated with the nearest neighbor
parameter points in (a), which are used to interpolate the coefficients (squares) associated with
the testing points in (a) by using the convex interpolation scheme in Eq. (8.16). The black dash
line depicts a locally convex hull formed by the nearest neighbors’ coefficients.

8.3.4 Physics-informed adaptive greedy sampling

In the proposed algorithm, the training sample points are determined on the fly by a

physics-informed adaptive greedy sampling algorithm to maximize parameter space exploration

and achieve optimal model performance. To this end, a sampling procedure is integrated

with an error indicator is needed. The most accurate error indicator would be actual relative

error that is computed with high-fidelity solutions. However, requiring high-fidelity solution is
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computationally expensive, leading to undesirable training cost and time. Therefore, we adopt a

physics-informed residual-based error indicator, which does not require high-fidelity solutions.

The residual-based error indicator is defined in Eq. (8.21). The residual-based error indicator

has a positive correlation with the maximum relative error and can be efficiently computed

based only on predicted gLaSDI solutions. For example, see Figure 8.3. The physics-informed

residual-based error indicator is integrated into an adaptive greedy sampling algorithm with

a multi-level random-subset evaluation strategy. Various termination criteria for the adaptive

greedy sampling are discussed in the following subsection.

Adaptive greedy sampling procedure

To address the issues of parameter dependency of local latent-space dynamics efficiently

and effectively, an adaptive greedy sampling procedure is applied to construct a database

DB = {U(i)}Nµ

i=1 on the fly during offline training, which corresponds to a set of sampled

parameters D = {µ(i)}Nµ

i=1 from the discrete parameter space Dh, Nµ < ND = |Dh|; U(i) =

[u(i)
0 , ...,u(i)

Nt
] ∈ RNu×(Nt+1) is the high-fidelity solution of the parameter µ(i).

The database is first initialized with a small set of parameters located, e.g., at the corners

of the boundaries or at the center of the parameter space. To enhance sampling reliability and

quality, the model training is performed before greedy sampling, as illustrated in Fig. 8.1.

Therefore, the adaptive greedy sampling is performed after every Nup epochs of training, which

means a new training sample is added to the training database for every Nup epochs. At the

v-th sampling iteration, a set of candidate parameters are considered and the parameter that

maximizes an error indicator, e
(
U(µ), Û(µ)

)
, is selected. The definition of the error indicator is
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introduced in the next section. The greedy sampling procedure is summarized as

µ
∗ = argmax

µ∈D′
e
(
U(µ), Û(µ)

)
, (8.19a)

DBv = {DBv−1,U∗)}, (8.19b)

Dv = {Dv−1,µ
∗}, (8.19c)

where D′ ⊆ Dh denotes a set of N
′≤ ND candidate parameters and D′ ∩Dv−1 = /0; Dv−1 con-

tains the parameters associated with DBv−1; µ∗ denotes the selected parameter and U∗ is the

corresponding high-fidelity solution. The iterations of greedy sampling continue until a certain

criterion is reached, which will be discussed in the following subsection.

Physics-informed residual-based error indicator

Given an approximate gLaSDI solution, Û(µ) = [û0(µ), ..., ûNt (µ)], of the corresponding

high-fidelity true solution, U(µ) = [u0(µ), ...,uNt (µ)], the maximum relative error,

emax(U(µ), Û(µ)
)
, is defined as

emax(U(µ), Û(µ)
)
= max

n∈Nt

(
||un(µ)− ûn(µ)||L2

||un(µ)||L2

)
. (8.20)

The maximum relative error as an error indicator provides the most accurate guidance to the

greedy sampling procedure, However, the evaluation of emax(U(µ), Û(µ)
)

is computationally

inefficient because of the requirement of the high-fidelity true solution. To ensure effective and

efficient greedy sampling, the error indicator needs to satisfy the following criteria: (i) It must be

positively correlated with the maximum relative error measure, as demonstrated in Fig. 8.3; (ii)

The evaluation is computationally efficient, i.e., it must not involve any high-fidelity solution.

A computationally feasible error indicator based on the residual of the governing equation is
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employed in this study, defined as

eres(Û(µ)
)
=

1
Nts +1

Nts

∑
n=0
||r(ûn; ûn−1,µ)||L2 (8.21)

where the residual function r(ûn; ûn−1,µ) is defined in Eq. (8.3) and Nts < Nt . The residual error

indicator satisfies the aforementioned two conditions. For example, note that the evaluation of

the error indicator requires only the predicted gLaSDI solutions and the fact that we use Nts < Nt

further enhances computational efficiency of the error indicator. In this paper, Nts/Nt ≈ 0.1 is

used. Furthermore, the adopted error indicator is positively correlated with the maximum relative

error, which is demonstrated in Figure 8.3. Note also that it is physics-informed as it is based on

the residual of the discretized governing equations, which embeds physics (Eq. (8.3).

Figure 8.3. A demonstration to show positive correlation between the residual-based error
indicator eres and the maximum relative error emax. This indicates the computationally efficient
eres can replace the computationally expensive emax. Each black-filled circle represents one
evaluated sample.

Finally, the next parameter to be sampled is determined by

µ
∗ = argmax

µ∈D′
eres(Û(µ)

)
. (8.22)
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Termination criteria

The adaptive greedy sampling procedure is terminated until one of the following criteria

is reached: (i) a prescribed maximum number of sampling points (local DI models), (ii) the

maximum allowable training iterations, or (iii) a prescribed target tolerance of the maximum

relative error.

As the training cost increases with the number of sampling points and the number of

training iterations, criteria (i) and (ii) are considered if training efficiency is preferable. On the

other hand, if one expects the optimal model performance, criterion (iii) is more suitable as it

offers a guidance of the model accuracy in the parameter space.

Since the maximum relative error is estimated by the residual-based error indicator, as

described in Section 8.3.4, criterion (iii) only provides an estimated model performance. To

alleviate this issue, we exploit the ratio between the maximum relative error and the residual-

based error indicator to approximate the correct target relative error. For example, at v-th sampling

iteration, the model is evaluated to obtain the maximum relative errors and the residual-based

errors of all sampled parameters:

Emax
v = {emax(U(µ), Û(µ)

)
}µ∈Dv, (8.23a)

Eres
v = {eres(Û(µ)

)
}µ∈Dv, (8.23b)

where emax(U(µ), Û(µ)
)

and eres(Û(µ)
)

are calculated from Eq. (8.20) and Eq. (8.21), respec-

tively. Note that Emax
v can be obtained because the database DBv contains high-fidelity solutions

of all sampled parameters in Dv. Then, linear correlation coefficients (k∗,b∗) between Eres
v and

Emax
v are obtained by

(k∗,b∗) = argmin
k,b
||Emax

v −
(
k ·Eres

v +b
)
||2L2

. (8.24)
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Finally, the estimated maximum relative error is obtained by

emax
v = k∗ ·max(Eres

v )+b∗. (8.25)

As the correlation between Eres
v and Emax

v of all sampled parameters in Dv is used to

estimate the maximum relative error emax
v , it improves the termination guidance of the greedy

sampling procedure in order to achieve the target tol, leading to more reliable reduced-order

models. This provides some level of confidence in the accuracy of the trained gLaSDI.

Multi-level random-subset evaluation

To further accelerate the greedy sampling procedure, a two-level random-subset evalua-

tion strategy is adopted in this study. At the v-th sampling iteration of the first level, a subset, D′ ,

of parameters is randomly selected from the parameter space, i.e., D′ ⊆Dh and D′ ∩Dv−1 = /0.

A small subset size Nsubset = |D
′| is considered in the first-level random subset selection so that

the error evaluation of the parameters in the subset is efficient. When the tolerance of the error

indicator tol is reached the greedy sampling procedure moves to the second-level random subset

evaluation, where the subset size Nsubset doubles. The greedy sampling procedure continues until

the prescribed termination criterion is reached, see Algorithm 2 for more details.

8.3.5 gLaSDI off-line stage

The ingredients mentioned in earlier sections are integrated into the proposed greedy

latent-space dynamics identification model. The training procedure of the gLaSDI model is

summarized in Algorithm 1.

8.3.6 gLaSDI on-line stage

After the gLaSDI model is trained by Algorithm 1, the physics-informed greedy sample

parameter set D, the autoencoder parameters, and a set of local DI model parameters are obtained.

The trained gLaSDI model can then be applied to efficiently predict dynamical solutions given
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Algorithm 1. Training of the gLaSDI model
Input: An initial parameter set D0 ⊆Dh and the associated database DB0; an initial random
subset size Nsubset ; a greedy sampling frequency Nup; the number of nearest neighbors k for
KNN convex interpolation; and one of the three terminal criteria:

• a target tolerance of the maximum relative error tol

• the maximum number of sampling points Nmax
µ

• a maximum number of training epochs Nepoch

Note that Nepoch is often used together with the error tolerance to avoid excessive training
iterations in the case where the prescribed tolerance may not be achieved.
Output: gLaSDI sampled parameter set Dv and the associated database DBv; autoencoder
parameters; θ enc and θ dec; DI model coefficients {Ξ(i)}i∈NDv

, where NDv contains indices of
parameters in Dv

1: Set v = 1 ▷ iteration counter
2: Set w = 1 ▷ level counter for random-subset selection
3: Set epoch = 1 ▷ training epoch counter
4: while epoch ≤ Nepoch do ▷ gLaSDI training iterations
5: Update θ enc, θ dec, {Ξ(i)}i∈NDv−1

by minimizing the gLaSDI loss function in Eq. (8.15)
with DBv−1 and Dv−1

6: if epoch mod Nup = 0 then ▷ greedy sampling
7: Obtain Dv,DBv,emax

v ,Nsubset ,w ▷ algorithm 2
8: v← v+1
9: end if

10: if
(
emax

v ≤ tol and w = 2
)

or
(
|Dv|> Nmax

µ

)
then

11: break ▷ terminate gLaSDI training
12: end if
13: epoch← epoch + 1
14: end while
15: return Dv, DBv, θ enc, θ dec, {Ξ(i)}i∈NDv
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Algorithm 2. Greedy sampling with random-subset evaluation
Input: A parameter set Dv−1 ⊆Dh and the associated database DBv−1; a target tolerance of the
maximum relative error tol; a random-subset size Nsubset ; a random-subset level w; the number
of nearest neighbors k for KNN convex interpolation
Output: updated parameter set Dv; database DBv; estimated maximum relative error emax

v ;
random-subset size Nsubset ; random-subset level w

1: Select a random subset of parameters D′∈Dh with a size of Nsubset
2: for µ ∈ D′ do ▷ gLaSDI predictions
3: Obtain Û(µ) from model evaluation ▷ algorithm 3
4: end for
5: Compute eres(Û(µ)), ∀µ ∈ D′ by Eq. (8.21)
6: Obtain µ∗ by solving Eq. (8.22)
7: Obtain U(µ∗) by solving Eq. (8.1) numerically
8: DBv←{DBv−1,U(µ∗)} ▷ update database
9: Dv←{Dv−1,µ

∗} ▷ update the parameter set
10: Obtain {Û(µ)}µ∈Dv ▷ algorithm 3
11: Compute Emax

v by Eq. (8.23a)
12: Compute Eres

v by Eq. (8.23b)
13: Compute emax

v by Eqs. (8.24)-(8.25)
14: if emax

v ≤ tol and w < 2 then
15: Nsubset ← 2×Nsubset ▷ update the random subset size
16: w← w+1
17: end if
18: return Dv,DBv,emax

v ,Nsubset ,w
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a testing parameter by using Algorithm 3. The prediction accuracy can be evaluated by the

maximum relative error with respect to the corresponding true solutions using Eq. (8.20).

Algorithm 3. Evaluation of the gLaSDI model
Input: A testing parameter µ ∈Dh; the gLaSDI sampled parameter set D; the model coefficients
θ enc; θ dec; {Ξ(i)}i∈ND; and the number of nearest neighbors k for KNN convex interpolation
Output: gLaSDI prediction Û(µ)

1: Search for KNN parameters based on the L2 distance, Nk(µ)
2: Compute KNN convex interpolation functions by Eqs. (8.17-8.18)
3: Obtain Ξinterp for µ by convex interpolation in Eq. (8.16)
4: Compute initial latent variables z0 = φ e(u0;θ enc) in Eq. (8.5a)
5: Compute {ẑn}Nt

n=0 by Eq. (8.8)
6: Compute {ûn}Nt

n=0 by Eq. (8.5b)
7: Û(µ)← [û0, ..., ûNt ]
8: return Û(µ)

8.4 Numerical results

The performance of gLaSDI is demonstrated by solving four numerical problems: one-

dimensional (1D) Burgers’ equation, two-dimensional (2D) Burgers’ equation, nonlinear time-

dependent heat conduction, and radial advection. The effects of the number of nearest neighbors

k on the model performance are discussed. In each of the numerical examples, the gLaSDI’s

performance is compared with that of LaSDI, that is the one without adaptive greedy sampling.

Note that the physics-informed adaptive greedy sampling can be performed on either a continuous

parameter space (D) or a discrete parameter space (Dh ⊆ D). In the following examples, a

discrete parameter space (Dh) is considered. For presented numerical experiments, we always

start with the initial database DB0 and the associated parameter set D0 of four corner points of

the parameter space.

The training and testing are performed on a NVIDIA V100 (Volta) GPU of the Livermore

Computing Lassen system at the Lawrence Livermore National Laboratory, with 3,168 NVIDIA

CUDA Cores and 64 GB GDDR5 GPU Memory. The open-source TensorFlow library [219] and

the Adam optimizer [215] are employed for model training.
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8.4.1 1D Burgers equation

A 1D parameterized inviscid Burgers equation is considered

∂u
∂ t

+u
∂u
∂x

= 0, x ∈Ω = [−3,3], t ∈ [0,1], (8.26a)

u(3, t; µ) = u(−3, t; µ). (8.26b)

Eq. (8.26b) is a periodic boundary condition. The initial condition is parameterized by the

amplitude a and the width w, defined as

u(x,0; µ) = ae−
x2

2w2 , (8.27)

where µ = {a,w}. A uniform spatial discretization with 1,001 discrete points and nodal spacing

as dx =6/1,000 is applied. The first order spatial derivative is approximated by the backward

difference scheme. A semi-discertized system characterized by the ODE described in Eq.

(8.1) is obtained, which is solved by using the implicit backward Euler time integrator with

a uniform time step of ∆t =1/1,000 to obtain the full-order model solutions. The physical

dynamics of the parameter case (a = 0.7,w = 0.9) and the solution fields at the last time step of

4 different parameter cases, i.e., (a = 0.7,w = 0.9), (a = 0.7,w = 1.1), (a = 0.9,w = 0.9), and

(a = 0.9,w = 1.1) are shown in Fig. 8.4.

Case 1: Effects of the number of nearest neighbors k

In the first example, the effects of the number of nearest neighbors k on model perfor-

mance are investigated. The parameter space, Dh, considered in this example is constituted by

the parameters of the initial condition, including the width, w ∈ [0.9,1.1], and the amplitude,

a ∈ [0.7,0.9], each with 21 evenly distributed discrete points in the respective parameter range,

resulting in 441 parameter cases in total. The gLaSDI model is composed of an autoencoder

with an architecture of 1,001-100-5 and linear DI models. The greedy sampling is performed
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(a) a = 0.7,w = 0.9 (b) snapshots at the last time step

Figure 8.4. (a) Physical dynamics of the parameter case (a = 0.7,w = 0.9); (b) The solution
fields at the last time step of 4 different parameter cases: (a = 0.7,w = 0.9), (a = 0.7,w = 1.1),
(a = 0.9,w = 0.9), and (a = 0.9,w = 1.1).

until the estimated maximum relative error of sampled parameter points is smaller than the target

tolerance, tol = 5%. An initial random subset size Nsubset = 64 is used, around 20% of the size

of Dh. A two-level random-subset evaluation scheme is adopted, as described in Section 8.3.4.

The maximum number of training epoch Nepoch is set to be 50,000.

Adaptive greedy sampling with k = 1

The greedy sampling frequency Nup is set to be 2,000. The training is performed by

using Algorithm 1, where k = 1 is used for greedy sampling procedure (Algorithm 2), which

means the gLaSDI model utilizes the DI coefficient matrix of the existing parameter that is

closest to the randomly selected parameter to perform dynamics predictions. Fig. 8.5 shows

the history of the loss function in a red solid line and the maximum residual-based error of the

sampled parameter points in a blue solid line, demonstrating the convergence of the training. In

Fig. 8.5, the first blue point indicates the initial state of the model where four corner points of

the parameter space are sampled, while the last blue point indicates the final state of the model

that satisfies the prescribed termination criterion and no sampling is performed. The blue points
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in-between indicate the epoch where greedy sampling is performed. At the end of the training,

22 parameter points are sampled and stored, including the initial 4 parameter points located at

the four corners of the parameter space, which means 22 local DI models are constructed and

trained in the gLaSDI model.

Figure 8.5. The history of the loss function and the maximum residual-based error of the sampled
parameter points for the 1D Burgers problem. The KNN parameter, k = 1, is used for greedy
sampling procedure during training.

After training, the gLaSDI model is applied for predictions by Algorithm 3, where

different values of k are used for KNN convex interpolation of the DI coefficient matrix of

the testing parameter. Fig. 8.6 shows the maximum relative errors in the parameter space Dh

evaluated with different values of k. The number on each box denotes the maximum relative

error of the associated parameter case. The black square boxes indicate the locations of the

sampled parameter points. The distance between the sampled parameter points located in the

interior domain of Dh is relatively larger than that near the domain corners/boundaries. That

means the interior sampled parameter points tend to have a larger trust region within which the

model prediction accuracy is high. It can also be observed that model evaluation with k > 1

produces higher accuracy with the maximum relative error in Dh as around 2%, smaller than the

target tolerance tol = 5%, which is contributed by the KNN convex interpolation that exploits

trust region of local DI models. Compared with the high-fidelity simulation based on an in-house
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Python code, the gLaSDI model achieves 450× speed-up.

Adaptive greedy sampling with k = 4

Fig. 8.7 shows the history of the loss function and the maximum residual-based error of

the gLaSDI model trained with k = 4 for greedy sampling procedure. At the end of the training,

16 parameter points are sampled, including the initial four parameter points located at the 4

corners of the parameter space, which means 16 local DI models are constructed and trained

in the gLaSDI model. Compared to the gLaSDI model trained with k = 1 as in Fig. 8.5, the

training with k = 4 terminates faster with a sparser sampling to achieve the target tolerance of

the maximum relative error, tol = 5%, implying more efficient training. It is because a small

k for greedy sampling procedure leads to a more conservative gLaSDI model with more local

DIs, while a large k results in a more aggressive gLaSDI model with fewer local DIs as the trust

region of local DI models are exploited by the KNN convex interpolation during training.

Fig. 8.8 shows the maximum relative errors in the parameter space Dh evaluated with

different values of k. Similar to the results shown in Fig. 8.6, a larger k results in higher model

accuracy. It is noted that a few violations of the target tolerance tol = 5% exist even when

k > 1 is used for model evaluation. It shows that greedy sampling with k > 1 results in a more

aggressive gLaSDI model with fewer local DIs and higher training efficiency at the cost of model

accuracy. We also observed that the trained gLaSDI model achieved the best testing accuracy

with k = 4, which implies there exists a certain k > 1 for optimal model performance.

The comparison of these two tests shows that a small k for greedy sampling during

training results in a more accurate gLaSDI model at the cost of training efficiency, and that using

a k > 1 for model evaluation (testing) improves generalization performance of gLaSDI. In the

following numerical examples, k = 1 is used for greedy sampling procedure during training of

gLaSDI. The trained gLaSDI models are evaluated by different k > 1 and the the optimal testing
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(a) k = 1 evaluation (b) k = 3 evaluation

(c) k = 4 evaluation (d) k = 5 evaluation

Figure 8.6. Maximum relative errors in the parameter space Dh evaluated with different values
of k for KNN convex interpolation of the DI coefficient matrices of the testing parameters for 1D
Burgers problem: (a) k = 1, (b) k = 3, (c) k = 4, (d) k = 5. The number on each box denotes
the maximum relative error of the associated parameter case. The black square boxes indicate
the locations of the parameter points sampled from training. k = 1 is used for greedy sampling
procedure during training.
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Figure 8.7. The history of the loss function and the maximum residual-based error of the sampled
parameter for 1D Burgers problem. The KNN parameter k = 4 is used for greedy sampling
procedure during training.

results are presented.

Case 2: gLaSDI vs. LaSDI

In the second test, the autoencoder with an architecture of 1,001-100-5 and linear DI

models are considered. The same parameter space with 21× 21 parameter cases in total is

considered. The gLaSDI training with adaptive greedy sampling is performed until the total

number of sampled parameter points reaches 25. To investigate the effects of adaptive greedy

sampling on model performances, a LaSDI model with the same architecture of the autoencoder

and DI models is trained using 25 predefined training points uniformly distributed in a 5×5 grid

in the parameter space. The performance of gLaSDI and LaSDI are compared and discussed.

Fig. 8.9(a-b) show the latent-space dynamics predicted by the trained encoder and the DI

model from LaSDI and gLaSDI, respectively. The latent-space dynamics from gLaSDI is more

linear and simpler than that from LaSDI. gLaSDI also achieves a better agreement between the

encoder and the DI predictions, which is attributed by the interactive learning of gLaSDI. Note

that the sequential training of the autoencoder and the DI models of the LaSDI could lead to more

complicated and nonlinear latent-space dynamics because of the lack of interaction between the
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(a) k = 1 evaluation (b) k = 3 evaluation

(c) k = 4 evaluation (d) k = 5 evaluation

Figure 8.8. Maximum relative errors in the parameter space Dh evaluated with different values
of k for KNN convex interpolation of the DI coefficient matrices of the testing parameter for 1D
Burgers problem: (a) k = 1, (b) k = 3, (c) k = 4, (d) k = 5. The number on each box denotes
the maximum relative error of the associated parameter case. The black square boxes indicate
the locations of the parameter points sampled from training. k = 4 is used for greedy sampling
procedure during training.
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latent-space dynamics learned by the autoencoder and the DI models. As a consequence, it could

pose challenges for the subsequent training of DI models to capture the latent-space dynamics

learned by the autoencoder and cause higher prediction errors.

Fig. 8.9(c-d) show the maximum relative errors of LaSDI and gLaSDI predictions in the

prescribed parameter space, respectively, where the black square boxes indicate the locations of

the sampled parameter points. For LaSDI, the training parameter points are pre-selected and the

associated high-fidelity solutions are obtained before training starts, whereas for gLaSDI, the

training parameter points are sampled adaptively on-the-fly during the training, within which the

greedy sampling algorithm is combined with the physics-informed residual-based error indicator,

as introduced in Section 8.3.4, which allows the points with the maximum error to be selected.

Thus gLaSDI enhances the accuracy with less number of sampled parameter points than LaSDI.

It can be observed that gLaSDI tends to have denser sampling in the lower range of the parameter

space. Fig. 8.9(d) shows that gLaSDI achieves the maximum relative error of 1.9% in the whole

parameter space, which is much lower than 4.5% of LaSDI in Fig. 8.9(c).

Case 3: Effects of the loss terms

As mentioned in Sections 8.3.1 and 8.3.2, there are three distinct terms in the loss function

of the gLaSDI training. Each term includes a different set of trainable parameters. For example,

the reconstruction term Lrecon includes θ enc and θ dec; the latent-space dynamics identification

term Lż includes θ enc and {Ξ(i)}i∈N(Nµ ); and Lu̇ includes all the trainable parameters, i.e., θ enc,

θ dec, and {Ξ(i)}i∈N(Nµ ). Therefore, in this section, we demonstrate the effects of these loss terms.

Given the same settings of the gLaSDI model and the parameter space considered in

Section 8.4.1, the gLaSDI is trained by only one loss term, Lu̇ (Eq. (8.13)), that involves all

the trainable parameters. The predicted latent-space dynamics and maximum relative errors

in the parameter space are shown in Fig. 8.10(a) and (c), respectively. The large deviation

in the predicted latent-space dynamics between the encoder and the DI model leads to large

prediction errors in the physical dynamics. It is also observed that the identified latent-space

167



(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.9. Comparison between LaSDI and gLaSDI with the same architecture of autoencoder
(1,001-100-5) and dynamics identification models (linear) for 1D Burgers problem. The latent
dynamics predicted by the trained encoder and the trained dynamics identification model from
(a) LaSDI and (b) gLaSDI. The maximum relative errors in the parameter space Dh from (c)
LaSDI with k = 4 and (d) gLaSDI with k = 3 for KNN convex interpolation during evaluation.
The number on each box denotes the maximum relative error of the associated parameter case.
The black square boxes indicate the locations of the sampled training parameter points. The
KNN parameter k = 1 is used for greedy sampling procedure during training of gLaSDI.
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dynamics is more nonlinear, compared with that shown in Fig. 8.9(b). It implies that Lu̇ cannot

impose sufficient constraints on the trainable parameters to identify simple latent-space dynamics

although it includes all the trainable parameters.

In the second test, the gLaSDI is trained by L = Lrecon +β1Lż with different values

of the regularization parameter β1. The motivation is to see if we can achieve as good accuracy

with only first two loss terms as the one with all three loss terms. The maximum relative errors in

the parameter space corresponding to different values of β1 are summarized in Table 8.1. Using

β1 = 10−2 yields the best model. Compared with the latent-space dynamics of gLaSDI trained

with all three loss terms, as shown in Fig. 8.9(b), the gLaSDI trained without Lu̇ produces

relatively more nonlinear latent-space dynamics, as shown in Fig. 8.10(b). The comparison

also shows that the constraint imposed by Lu̇ on model training enhances the generalization

performance of gLaSDI, reducing the maximum relative error in the whole parameter space from

4.5% to 1.9%, as shown in Fig. 8.9(d) and 8.10(d).

Table 8.1. The maximum relative errors in the parameter space of the gLaSDI trained by
L = Lrecon +β1Lż with different values of β1.

β1 10−4 10−3 10−2 10−1 1 101 102 103

emax (%) 11.5 8.5 4.5 4.7 4.6 14.5 20.9 23.8

8.4.2 2D Burgers equation

A 2D parameterized inviscid Burgers equation is considered

∂u
∂ t

+u ·∇u =
1

Re
∆u, x ∈Ω = [−3,3]× [−3,3], t ∈ [0,1], (8.28a)

u(x, t; µ) = 0 on ∂Ω. (8.28b)
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(a) L = Lu̇

(b) L = Lrecon +β1Lż

(c) L = Lu̇ (d) L = Lrecon +β1Lż

Figure 8.10. Results of gLaSDI trained with different loss terms for 1D Burgers problem. An
autoencoder of (1,001-100-5) and linear dynamics identification models are used. The latent
dynamics predicted by the encoder and the dynamics identification model from the gLaSDI
trained by (a) L = Lu̇ and (b) L = Lrecon +β1Lż, with β1 = 10−2. The maximum relative
errors (evaluated with k = 4) in the parameter space Dh from the gLaSDI trained by (c) L =Lu̇
and (d) L = Lrecon +β1Lż, with β1 = 10−2. The number on each box denotes the maximum
relative error of the associated parameter case. The black square boxes indicate the locations of
the sampled training parameter points. The KNN parameter k = 1 is used for greedy sampling
procedure during training of gLaSDI.
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Eq. (8.28b) is an essential boundary condition. The initial condition is parameterized by the

amplitude a and the width w, defined as

u(x,0; µ) = ae−
||x||2

w2 , (8.29)

where µ = {a,w}. A uniform spatial discretization with 60×60 discrete points is applied. The

first order spatial derivative is approximated by the backward difference scheme, while the

diffusion term is approximated by the central difference scheme. The semi-discertized system

is solved by using the implicit backward Euler time integrator with a uniform time step of

∆t = 1/200 to obtain the full-order model solutions. The solution fields of the first velocity

component at different time steps for the parameter case (a = 0.7,w = 0.9) are shown in Fig.

8.11.

(a) t = 0.0 s (b) t = 0.3 s (c) t = 0.7 s (d) t = 1.0 s

Figure 8.11. The solution fields of the first velocity component at different time steps for the
parameter case (a = 0.7,w = 0.9): (a) t = 0.0 s, (b) t = 0.3 s, (c) t = 0.7 s, (d) t = 1.0 s for 2D
Burgers problem.

Case 1: Comparison between gLaSDI and LaSDI

In the first test, a discrete parameter space Dh is constituted by the parameters of the

initial condition, including the width, w ∈ [0.9,1.1], and the amplitude, a ∈ [0.7,0.9], each with

21 evenly distributed discrete points in the respective parameter range. The autoencoder with an

architecture of 7,200-100-5 and quadratic DI models are considered. The gLaSDI training is

performed until the total number of sampled parameter points reaches 36. A LaSDI model with
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the same architecture of the autoencoder and DI models is trained using 36 predefined training

points uniformly distributed in a 6×6 grid in the parameter space. The performance of gLaSDI

and LaSDI are compared and discussed.

Fig. 8.12(a-b) show the latent-space dynamics predicted by the trained encoder and the

DI model from LaSDI and gLaSDI, respectively. Again, the latent-space dynamics of gLaSDI is

simpler than that of LaSDI, with a better agreement between the encoder and the DI predictions,

which is attributed by the interactive learning of gLaSDI.

Fig. 8.12(c-d) show the maximum relative error of LaSDI and gLaSDI predictions in

the prescribed parameter space, respectively. The gLaSDI achieves the maximum relative error

of 5% in the whole parameter space, much lower than 255% of LaSDI. The poor accuracy of

LaSDI could be caused by the deviation between the DI predicted dynamics and the encoder

predicted dynamics. It is also observed that gLaSDI tends to have denser sampling in the lower

range of the parameter space. This demonstrates the importance of the physics-informed greedy

sampling procedure. Compared with the high-fidelity simulation based on an in-house Python

code, the gLaSDI model achieves 1,740× speed-up.

Case 2: Effects of the polynomial order in DI models and latent space dimension

In the second test, we want to see if simpler latent-space dynamics can be achieved by

gLaSDI and how it affects the reduced-order modeling accuracy. The same parameter space with

21×21 parameter cases in total is considered. The latent dimension is reduced from 5 to 3 and

the polynomial order of the DI models is reduced from quadratic to linear. The autoencoder

architecture becomes 7,200-100-3. The gLaSDI training is performed until the total number

of sampled parameter porints reaches 36. A LaSDI model with the same architecture of the

autoencoder and DI models is trained using 36 predefined training parameter points uniformly

distributed in a 6×6 grid in the parameter space.

Fig. 8.13(a-b) show the latent-space dynamics predicted by the trained encoder and

the DI model from LaSDI and gLaSDI, respectively. The latent-space dynamics of gLaSDI is
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.12. Comparison between LaSDI and gLaSDI with the same architecture of autoencoder
(7,200-100-5) and dynamics identification models (quadratic) for 2D Burgers problem. The
latent dynamics predicted by the trained encoder and the trained dynamics identification model
from (a) LaSDI and (b) gLaSDI. The maximum relative errors in the parameter space Dh from
(c) LaSDI with k = 4 and (d) gLaSDI with k = 3 for KNN convex interpolation during evaluation.
The number on each box denotes the maximum relative error of the associated parameter case.
The black square boxes indicate the location of the sampled training points. The KNN parameter
k = 1 is used for greedy sampling procedure for the training of gLaSDI.
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simpler than that of LaSDI, with a better agreement between the encoder and the DI predictions.

It also demonstrates that gLaSDI could learn simpler latent-space dynamics, which enhances

the reduced-order modeling efficiency.Compared with the high-fidelity simulation based on an

in-house Python code, the gLaSDI model achieves 4,417× speed-up, which is 2.54 times of

the speed-up achieved by the gLaSDI model that has a latent dimension of 5 and quadratic DI

models, as shown in Section 8.4.2.

Fig. 8.13(c-d) show the maximum relative error of LaSDI and gLaSDI predictions

on each parameter case in the prescribed parameter space, respectively. Compared with the

example with a latent dimension of five and quadratic DI models, as shown in the previous

subsection, both gLaSDI and LaSDI achieve lower maximum relative errors, reduced from 5.0%

to 4.6% and from 255% to 22%, respectively. It indicates that reducing the complexity of the

latent-space dynamics allows the DI models of LaSDI to capture the encoder predicted dynamics

more accurately although the error level of LaSDI is still larger than that of gLaSDI due to no

interactions between the autoencoder and DI models during training. Simplifying latent-space

dynamics results in higher reduced-order modeling accuracy of both LaSDI and gLaSDI for this

example. We speculate that the intrinsic latent space dimension for the 2D Burgers problem is

close to three.

8.4.3 Nonlinear time-dependent heat conduction

A 2D parameterized nonlinear time-dependent heat conduction problem is considered

∂u
∂ t

= ∇ · (κ +αu)∇u ∈Ω = [0,1]× [0,1], t ∈ [0,0.3], (8.30a)

∂u
∂n

= 0 on ∂Ω, (8.30b)

where n denotes the unit normal vector. Eq. (8.30b) is a natural insulating boundary condition.

The coefficients κ = 0.5 and α = 0.1 are adopted in the following examples. The initial condition
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.13. Comparison between LaSDI and gLaSDI with the same architecture of autoencoder
(7,200-100-3) and dynamics identification models (linear) for 2D Burgers problem. The latent
dynamics predicted by the trained encoder and the trained dynamics identification model from
(a) LaSDI and (b) gLaSDI. The maximum relative errors in the parameter space Dh from (c)
LaSDI with k = 3 and (d) gLaSDI with k = 3 for KNN convex interpolation during evaluation.
The number on each box denotes the maximum relative error of the associated parameter case.
The black square boxes indicate the location of the sampled training points. The KNN parameter
k = 1 is used for greedy sampling procedure during training of gLaSDI.
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is parameterized as

u(x,0; µ) = asin(w||x||L2)+a, (8.31)

where µ = {a,w} denotes the paraemeters of the initial condition. The spatial domain is

discretized by first-order square finite elements constructed on a uniform grid of 33×33 discrete

points. The implicit backward Euler time integrator with a uniform time step of ∆t = 0.005

is employed. The conductivity coefficient is computed by linearizing the problem with the

temperature field from the previous time step. The solution fields at different time steps for the

parameter case (w = 4,a = 1) are shown in Fig. 8.14.

(a) t = 0.0 s (b) t = 0.03 s (c) t = 0.07 s (d) t = 0.3 s

Figure 8.14. The solution fields at different time steps for the parameter case (w = 4,a = 1):
(a) t = 0.0 s, (b) t = 0.03 s, (c) t = 0.07 s, (d) t = 0.3 s for the nonlinear time-dependent heat
conduction problem.

Case 1: Comparison between gLaSDI and LaSDI

In the first test, a parameter space Dh is constituted by the parameters of the initial

condition, including the w ∈ [4.0,4.3] and a ∈ [1.0,1.4], each with 21 evenly distributed discrete

points in the respective parameter range. The autoencoder with an architecture of 1,089-100-3

and quadratic DI models are considered. The gLaSDI training is performed until the total number

of sampled parameter points reaches 25. A LaSDI model with the same architecture of the

autoencoder and DI models is trained using 25 predefined training parameter points uniformly

distributed in a 5×5 grid in the parameter space. The performances of gLaSDI and LaSDI are

compared and discussed.
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Fig. 8.15(a-b) show the latent-space dynamics predicted by the trained encoder and the

DI model from LaSDI and gLaSDI, respectively. Again, gLaSDI achieves a better agreement

between the encoder and the DI prediction than the ones for LaSDI.

Fig. 8.15(c-d) show the maximum relative error of LaSDI and gLaSDI predictions in the

prescribed parameter space, respectively. The gLaSDI achieves higher prediction accuracy than

the LaSDI with the maximum relative error of 3.1% in the whole parameter space, compared to

7.1% of LaSDI. Compared with the high-fidelity simulation based on MFEM [220], the gLaSDI

model achieves 66× speed-up.

Case 2: Effects of the polynomial order in DI models

In the second test, we want to see if simpler latent-space dynamics can be achieved

by gLaSDI and how it affects the reduced-order modeling accuracy. The same settings as the

previous example are considered, including the parameter space, the autoencoder architecture

(1,089-100-3), the number of training points (25), except that the polynomial order of the DI

models is reduced from quadratic to linear.

Fig. 8.16(a-b) show the latent-space dynamics predicted by the trained encoder and the DI

model from LaSDI and gLaSDI, respectively. Compared with the LaSDI’s latent-space dynamics

in the previous example, as shown in Fig. 8.15(a-b), the agreement between the encoder and the

DI predictions in this example improves, although not as good as that of gLaSDI. The dynamics

learned by gLaSDI is simpler than the previous example with quadratic DI models. Compared

with the high-fidelity simulation based on MFEM [220], the gLaSDI model achieves 205×

speed-up, which is 3.11 times of the speed-up achieved by the gLaSDI model that has quadratic

DI models, as shown in Section 8.4.3. It further demonstrates that gLaSDI allows learning

simpler latent-space dynamics, which could enhance the reduced-order modeling efficiency.

Fig. 8.16(c-d) show the maximum relative error of LaSDI and gLaSDI predictions in the

prescribed parameter space, respectively. Compared with the example with quadratic DI models,

as shown in the previous subsection, the maximum relative error achieved by gLaSDI is reduced
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.15. Comparison between LaSDI and gLaSDI with the same architecture of autoencoder
(1,089-100-3) and dynamics identification models (quadratic) for the nonlinear time dependent
heat conduction problem. The latent dynamics predicted by the trained encoder and the trained
dynamics identification model from (a) LaSDI and (b) gLaSDI. The maximum relative errors in
the parameter space Dh from (c) LaSDI with k = 4 and (d) gLaSDI with k = 3 for KNN convex
interpolation during evaluation. The number on each box denotes the maximum relative error
of the associated parameter case. The black square boxes indicate the locations of the sampled
training points. The KNN parameter k = 1 is used for greedy sampling procedure during training
of gLaSDI.
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from 3.1% to 1.4%, while that achieved by LaSDI is reduced from 7.1% to 5.7%. Simplifying

latent-space dynamics contributes to higher reduced-order modeling accuracy of both LaSDI and

gLaSDI in this example. This implies that the higher order in DI model does not always help

improving the accuracy.

8.4.4 Time-dependent Radial advection

A 2D parameterized time-dependent radial advection problem is considered

∂u
∂ t

+v ·∇u =∈Ω = [−1,1]× [−1,1], t ∈ [0,3], (8.32a)

u(x, t; µ) = 0 on ∂Ω, (8.32b)

where Eq. (8.32b) is a boundary condition and v denotes the fluid velocity, defined as

v =
π

2
d[x2,−x1]

T , (8.33)

with d = (1− x2
1)

2(1− x2
2)

2. The initial condition is defined as

u(x,0; µ) = sin(w1x1)sin(w2x2), (8.34)

where µ = {w1,w2} denotes the paraemeters of the initial condition. The spatial domain is

discretized by first-order periodic square finite elements constructed on a uniform grid of 96×96

discrete points. The fourth-order Runge-Kutta explicit time integrator with a uniform time step

of ∆t = 0.01 is employed. The solution fields at different time steps for the parameter case

(w1 = 1.5,w2 = 2.0) are shown in Fig. 8.17.

Case 1: Comparison between gLaSDI and LaSDI

In the first test, a parameter space Dh is constituted by the parameters of the initial

condition, including the w1 ∈ [1.5,1.8] and w2 ∈ [2.0,2.3], each with 21 evenly distributed
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.16. Comparison between LaSDI and gLaSDI with the same architecture of autoencoder
(1,089-100-3) and dynamics identification models (linear) for the nonlinear time dependent
heat conduction problem. The latent dynamics predicted by the trained encoder and the trained
dynamics identification model from (a) LaSDI and (b) gLaSDI. The maximum relative errors in
the parameter space Dh from (c) LaSDI with k = 4 and (d) gLaSDI with k = 4 for KNN convex
interpolation during evaluation. The number on each box denotes the maximum relative error
of the associated parameter case. The black square boxes indicate the locations of the sampled
training points. The KNN parameter, k = 1 is used for greedy sampling procedure during training
of gLaSDI.
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(a) t = 0.0 s (b) t = 0.7 s (c) t = 1.7 s (d) t = 3.0 s

Figure 8.17. The solution fields at different time steps for the parameter case (w1 = 1.5,w2 =
2.0): (a) t = 0.0 s, (b) t = 0.7 s, (c) t = 1.7 s, (d) t = 3.0 s.

discrete points in the respective parameter range. The autoencoder with an architecture of

9,216-100-3 and linear DI models are considered. The gLaSDI training is performed until the

total number of sampled parameter points reaches 25. A LaSDI model with the same architecture

of the autoencoder and DI models is trained using 25 predefined training points uniformly

distributed in a 5×5 grid in the parameter space. The performances of gLaSDI and LaSDI are

compared and discussed.

Fig. 8.18(a-b) show the latent-space dynamics predicted by the trained encoder and the

DI model from LaSDI and gLaSDI, respectively. The gLaSDI achieves simpler time derivative

latent-space dynamics than LaSDI, with a better agreement between the encoder and the DI

prediction.

Fig. 8.18(c-d) show the maximum relative error of LaSDI and gLaSDI predictions in the

prescribed parameter space, respectively. The gLaSDI achieves higher prediction accuracy than

the LaSDI with the maximum relative error of 2.0% in the whole parameter space, compared to

5.4% of LaSDI. It is observed that gLaSDI tends to have denser sampling in the regime with

higher parameter values, concentrating at the bottom-right corner of the parameter space, which

implies that more vibrant change in dynamics is present for higher parameter values, requiring

more local DI models there. Compared with the high-fidelity simulation based on MFEM [220],

the gLaSDI model achieves 200× speed-up.
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.18. Comparison between LaSDI and gLaSDI with the same architecture of autoen-
coder (9,216-100-3) and dynamics identification models (linear) for the time dependent radial
advection problem. The latent dynamics predicted by the trained encoder and the trained dynam-
ics identification model from (a) LaSDI and (b) gLaSDI. The maximum relative errors in the
parameter space Dh from (c) LaSDI with k = 4 and (d) gLaSDI with k = 4 for KNN convex
interpolation during evaluation. The number on each box denotes the maximum relative error
of the associated parameter case. The black square boxes indicate the locations of the sampled
training points. The KNN parameter k = 1 is used for greedy sampling procedure during training
of gLaSDI.
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Case 2: Effects of the size of parameter space

In the second test, we want to see how the size of parameter space affect the model

performances of LaSDI and gLaSDI. A larger parameter space Dh is considered and constituted

by the parameters of the initial condition, including the w1 ∈ [1.5,2.0] and w2 ∈ [2.0,2.5], each

with 21 evenly distributed discrete points in the respective parameter range. Other settings remain

the same as those used in the previous example, including the number of training points set 25.

Fig. 8.19(a-b) show the latent-space dynamics predicted by the trained encoder and the

DI model from LaSDI and gLaSDI, respectively. It again shows that gLaSDI learns smoother

latent-space dynamics than LaSDI, with a better agreement between the encoder and the DI

predictions than LaSDI.

Fig. 8.19(c-d) show the maximum relative error of LaSDI and gLaSDI predictions in the

prescribed parameter space, respectively. Compared with the example with a smaller parameter

space, as shown in the previous subsection, the maximum relative error achieved by gLaSDI in

the whole parameter space increases from 2.0% to 3.3%, while that achieved by LaSDI increases

from 5.4% to 24%. It shows that gLaSDI maintains high accuracy even when the parameter

space is enlarged, while LaSDI’s error increases significantly due to non-optimal sampling and

the mismatch between the encoder and DI predictions. It is interesting to note that changing the

parameter space affects the distribution of gLaSDI sampling.

8.5 Summary

In this study, we introduced a physics-informed greedy parametric latent-space dynamics

identification (gLaSDI) framework for accurate, efficient, and robust data-driven computing of

high-dimensional nonlinear dynamical systems. The proposed gLaSDI framework is composed

of an autoencoder that performs nonlinear compression of high-dimensional data and discovers

intrinsic latent representations as well as dynamics identification (DI) models that capture

local latent-space dynamics. The autoencoder and DI models are trained interactively and
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(a) LaSDI

(b) gLaSDI

(c) LaSDI (d) gLaSDI

Figure 8.19. Comparison between LaSDI and gLaSDI with the same architecture of autoen-
coder (9,216-100-3) and dynamics identification models (linear) for the time dependent radial
advection problem. The latent dynamics predicted by the trained encoder and the trained dynam-
ics identification model from (a) LaSDI and (b) gLaSDI. The maximum relative errors in the
parameter space Dh from (c) LaSDI with k = 4 and (d) gLaSDI with k = 4 for KNN convex
interpolation during evaluation. The number on each box denotes the maximum relative error
of the associated parameter case. The black square boxes indicate the locations of the sampled
training points. The KNN parameter k = 1 is used for greedy sampling procedure during training
of gLaSDI.
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simultaneously, enabling identification of simple latent-space dynamics for improved accuracy

and efficiency of data-driven computing. To maximize and accelerate the exploration of the

parameter space, we introduce an adaptive greedy sampling algorithm integrated with a physics-

informed residual-based error indicator and random-subset evaluation to search for the optimal

training samples on-the-fly. Moreover, an efficient k-nearest neighbor convex interpolation

scheme is employed for model evaluation to exploit local latent-space dynamics captured by the

local DI models.

To demonstrate the effectiveness of the proposed gLaSDI framework, it has been applied

to model various nonlinear dynamical problems, including 1D Burgers’ equations, 2D Burgers’

equations, nonlinear heat conduction, and time-dependent radial advection. It is observed that

greedy sampling with a small k for model evaluation results in a more conservative gLaSDI

model at the cost of training efficiency, and that the model testing with a large k enhances

generalization performance of gLaSDI. Compared with LaSDI that has predefined uniformly

distributed training parameters, gLaSDI with adaptive and sparse sampling can intelligently

identify the optimal training parameter points to achieve higher accuracy with less number of

training points than LaSDI. Owning to interactive and simultaneous training of the autoencoder

and DI models, gLaSDI is able to capture simpler and smoother latent-space dynamics than

LaSDI that has sequential and decoupled training of the autoencoder and DI models. In the radial

advection problem, it is also shown that gLaSDI remains highly accurate as the parameter space

increases, whereas LaSDI’s performances could be deteriorated tremendously. In the numerical

examples, compared with the high-fidelity models, gLaSDI achieves 66 to 4,417× speed-up,

with 1 to 5% maximum relative errors in the prescribed parameter space, which reveals the

promising potential of applying gLaSDI to large-scale physical simulations.

The proposed gLaSDI framework is general and not restricted by the use of autoencoders

and DI models. Depending on applications, various linear or nonlinear data compression tech-

niques other than autoencoders could be employed. Further, latent-space dynamics identification

could be performed by other system identification techniques or operator learning algorithms.
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The autoencoder architecture can be optimized to maximize generalization performance

by integrating automatic neural architecture search into the proposed framework. The parameter-

ization in this study only considers the parameters from the initial conditions of the problems.

The proposed framework can be easily extended to account for other parameterization types,

such as material properties, which will be useful for inverse problems.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, we aim to enhance predictivity and efficiency of physical simulations

by developing thermodynamically consistent data-driven computing, materials modeling, and

reduced-order modeling methods based on emerging machine learning techniques for manifold

learning, dimensionality reduction, sequence learning, and system identification.

For reversible mechanical systems, we first developed a new data-driven material solver

built upon the local convexity-preserving reconstruction scheme [38] to capture anisotropic

material behaviors and enable data-driven modeling of anisotropic nonlinear elastic solids.

The proposed data-driven approach assumes that the material data of anisotropic materials

with a specific anisotropic orientation in a reference frame is accessible. The information of

anisotropic orientations, e.g., the rotation angles between local fiber frames and the reference

frame of the material data are utilized to construct an offline material database, which contains

rotated material data sets representing anisotropic material properties with various anisotropic

orientations. The offline rotated material database can be efficiently constructed and applied

to data-driven simulations of anisotropic materials. The performance of the proposed data-

driven computing framework is demonstrated by effectively modeling deflection of a multi-layer

anisotropic cantilever beam made of materials with different anisotropic orientations and inflation

of an anisotropic cylinder where anisotropic orientations are along the circumferential direction
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of the cylinder.

To overcome the curse of dimensionality and the lack of generalization in classical

model-free data-driven computing approaches, we introduced a deep manifold learning approach

via autoencoders to learn the underlying material data structure and incorporated it into the

data-driven solver to enhance solution accuracy, generalization ability, efficiency, and robustness

in data-driven computing. In the proposed auto-embedding data-driven (AEDD) computing

approach, autoencoders are trained in an offline stage and thus consume little computational

overhead in solution procedures. The trained autoencoders are then applied in the proposed

data-driven solver during online computation. The trained encoders and decoders define the

explicit transformation between low- and high-dimensional spaces of material data, enabling

efficient embedding extension to new data points. A simple Shepard convex interpolation

scheme is employed in the proposed data-driven solver to preserve convexity in the local data

reconstruction, enhancing the robustness of the data-driven solver. The effectiveness of the

proposed AEDD framework is examined by modeling biological tissues using experimental data,

which shows stronger generalization capability and robustness than the LCDD approach [47].

For irreversible mechanical systems, we developed a thermodynamically consistent

machine-learned internal state variable (ISV) approach for data-driven modeling of irreversible

path-dependent materials, which relies purely on the measurable material states. The proposed

TCRNN constitutive models consist of two main components: an RNN that infers ISVs and

describes their evolution by following the thermodynamics second law, and a DNN that predicts

the Helmholtz free energy given strain, ISVs, and temperature (for non-isothermal processes).

Two TCRNN constitutive models are developed, one based on the time rates of ISVs and the

other one based on the increments of ISVs. The latter model shows an enhanced efficiency as it

utilizes an approximation of time rates of ISVs for the calculation of dissipation rate and avoids

time-consuming differentiation of the RNN outputs with respect to all RNN inputs. Model

robustness and accuracy is enhanced by introducing stochasticity to the training data to account

for uncertainties of input conditions in the testing. The effectiveness of the proposed TCRNN
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constitutive model is demonstrated by modeling undrained soil under cyclic shear loading using

experimental data, where only measurable material states (stresses and strains) are available.

The generalization capability of the TCRNN constitutive model is demonstrated by the effective

prediction of the thermodynamically consistent response of undrained soil under the loading

conditions different from the ones used in training, which reveals the promising potential of the

proposed method to model complex path-dependent materials behaviors in real applications.

Lastly, we developed a physics-informed greedy latent-space dynamics identification

(gLaSDI) framework for non-intrusive accurate and efficient data-driven reduced-order modeling

of general high-dimensional nonlinear dynamical systems. The proposed gLaSDI framework

is composed of an autoencoder that performs nonlinear compression of high-dimensional data

and discovers intrinsic latent representations as well as dynamics identification (DI) models that

capture local latent-space dynamics. The autoencoder and DI models are trained interactively and

simultaneously, enabling identification of simple latent-space dynamics for improved accuracy

and efficiency of data-driven computing. To maximize and accelerate the exploration of the

parameter space, we introduce an adaptive greedy sampling algorithm integrated with a physics-

informed residual-based error indicator and random-subset evaluation to search for the optimal

training samples on the fly. Moreover, an efficient k-nearest neighbor convex interpolation scheme

is employed for model evaluation to exploit local latent-space dynamics captured by the local DI

models. In the numerical examples, compared with the high-fidelity models, gLaSDI achieves

66 to 4,417× speed-up, with 1 to 5% maximum relative errors in the prescribed parameter space,

which reveals the promising potential of applying gLaSDI to large-scale physical simulations.

9.2 Future Work

The recommendations for future work are summarized as follows.

• Development of more sophisticated metrics for anisotropic distance function and recon-

struction schemes in order to achieve high accuracy in reconstructing anisotropic material
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properties from given material data sets that have a large anisotropic distance.

• Application of the proposed data-driven anisotropic modeling framework with real-world

data on three-dimensional material systems with aniostropic material behaviors, e.g.,

musculoskeletal systems consisting of muscle fibers with varying anisotropic orientations.

• Investigation of automatically determining the optimal number of nearest neighbors and

the weight matrix in the data-driven local solver to achieve accurate and robust data-driven

solutions.

• Integration of uncertainty quantification into the proposed TCRNN model to inform

reliability of model predictions.

• Investigation of more efficient training strategies to counteract errors caused by teacher

forcing training of the proposed TCRNN constitutive model.

• Application of the TCRNN constitutive model to accelerate large-scale multi-scale simula-

tions with complex microstructures and path-dependent material systems

• Optimizing the autoencoder architecture in the proposed gLaSDI framework to maximize

generalization performance by applying automatic neural architecture search.

• Extension of the proposed gLaSDI framework to account for other types of parameteriza-

tion, e.g., material properties and boundary conditions.
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