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ABSTRACT OF THE THESIS 

 

Sensor-Based Attitude Estimation of the Human Arm 

 

by 

 

Vikas Chinnappa Kannanda 

Master of Science in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego, 2017 

Mauricio de Oliveira,Co-Chair 

Robert Bitmead, Co-Chair 

 

Wearable technology has grown rapidly in popularity in recent years. The 

advances in accessible micro-controllers, affordable sensors, and high-level interface 

design suites has made this possible. At the same time, interfaces for gestural control 

have become more attainable. A concurrent trend in DIY electronic instruments and 

controllers has evolved for similar reasons. In combining these phenomena, and in 



 

x 
 

searching for greater control of live graphical interfaces, several people have developed 

wearable controllers in the form of exoskeletons and gloves. In general, the impetus 

behind wearable controllers, and more specifically optical tracking, is to impart the 

ability to control graphical interfaces through gestures.  

 Optimal state estimation theory is used in this thesis to build a linear model of the 

arm which by default has high degree of non-linearity. By using Kalman filtering, we can 

estimate the complex dynamics of a non-linear system with the simplicity of a linear 

system. First a model which contains the dynamics of the arm is introduced as the plant. 

After some definitions and derivations of filtering are established, the position is then 

estimated using an optimal filter. The use of a model that introduces the torques applied 

as a state variable instead of an input greatly improves the estimation. 

 The thesis is concluded with a design of a lightweight hardware architecture that 

can be used to implement the estimation. The estimation is found to deliver fast tracking 

of the highly non-linear system but breaks down at certain points due to the nature of 

Euler angles producing Gimbal lock. To overcome this the concept of quaternions 

algebra is studied and basic position calculation is done using quaternions. 
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Chapter 1 

Introduction 

The growth of wearable gadgets and accessories has been exponential in recent 

years. Among these wearable technologies are gestural controllers. The demand for such 

controllers has seen a steady rise in the recent past. Many commercially available 

controllers that use IMU’s to as the main sensor only employ gesture tracking and do not 

track the attitude of the entire arm. These kinds of controllers can only recognize certain 

gestures or movements, and cannot provide the exact location of the arm in virtual space. 

The Mi.Mu glove is probably most well-known or established of the gloves currently on 

the market. It was designed and is maintained and developed by a group of electronic 

musicians and researchers from the U.K. 

The other kind controllers rely on optical tracking to control live graphic 

interfaces. These systems are ones currently used by large scale VR providers such as 

HTC Vive and Oculus. They use an array of infrared lights and cameras to track the 

controllers held by a user. These controllers are expensive and there is a loss of dexterity 

in using hand-held controllers. They also suffer from loss of tracking due to occlusion or 

lack of dynamic range of the camera.  

This thesis discusses the development of the wearable tracking system that uses a 

set of IMU's mounted directly on the arm to estimate its attitude. Such a system mitigates 

the problems faced by traditional controllers. There is a higher degree of freedom 
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compared to traditional gloves, and also greater range of motion compared to the 

optically tracked controllers. 

The attitude of the human arm can be represented a set of pendulums that are 

connected end on end. These pendulums are driven at each joint by a torque produced by 

the muscles along the arm. The attitude of these links are represented using Euler angles 

which are easy to visualize, however have their own drawbacks. These angles are prone 

to gimbal lock; whenever the attitude is straight up or straight down, roll and heading 

become undefined. 

To estimate the position of the links the concepts of Optimal State Estimation can 

be used. In this thesis, a Kalman filter is used in the estimation. The Kalman filter in its 

various forms is clearly established as a fundamental tool for analyzing and solving a 

broad class of estimation problems.     
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Chapter 2 

Glove-based controller for Graphic 

Interfaces 

The motivation to develop a controller so that a user can use his/her own hands 

for controlling live graphic interfaces as compared to using physical controllers. This led 

to looking at every aspect of an existing glove based controller and looking to improve it. 

Inspiration was taken from the Mi.Mu glove developed by researchers in the UK. 

 

Figure 2.1 MiMu glove 
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 The Mi.Mu glove as shown in Fig 2.1 uses 8 off the shelf flex sensors on the back of the 

fingers to determine the approximate bend angles of the fingers. It also houses a single 

IMU on the wrist for gesture control. In the following sections, we will discuss the steps 

taken to improve on these two aspects of the glove. 

 

  



5 

 

 

 

2.1 Soft Strain Sensors 

The off the shelf flex sensors often used on glove based controllers have some 

limitations as they cannot change their length while bending. Due to this, the flex sensors 

need to have some degree of freedom to move around when placing it on the glove, and 

during continuous usage this will cause increased wear on the sensor.  

To mitigate some of the reliability and durability concerns, we shall explore the 

use of sensors made of soft materials such as silicone. The sensors developed at 

Bioinspired Robotics and Design Lab at UCSD were trialed on the glove. These sensors 

use a thin layer of conductive cPDMS (12% MWCNT in Sylgard 184 PDMS) 

sandwiched between layers of silicone. 

The basic design used on the glove is shown in Fig 2.3. The type of silicone used 

is PDMS. The first layer is spin-coated onto the base plate and left to cure partially. Next 

a masking tape is applied. The resistor is patterned on the masking tape using a laser 

cutter. The carbon grease is then spread evenly over the pattern and once finished the 

masking tape is removed. Finally, the top layer of PDMS is spin coated on the sensor. 

Once the Silicone is cured small cuts are made to the top layer to affix the leads. Once 

fabricated the sensors are glued onto the back of fingers of the glove using Silpoxy,a 

silicone based glue. 

These sensors produce a very high resistance compared to general off the shelf 

bend sensors, in the order of 300-500 MOhm during the unstrained position. Once the 
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sensor is strained or stretched, the resistor channels change shape and hence also changes 

its resistance. A small batch of these sensors were tested to check the performance.  

During initial testing using a Wheatstone’s bridge, the values are read using a 

Arduino. These sensors have a high hysteresis during operation and thus results in a slow 

change in the resistance. Such a sensor is not suitable for the glove as it requires a very 

fast sensor.  

At this stage, the soft sensors even though they are very light and durable are not 

suitable for this application. The design will require much more development to meet the 

demands of fast movement. Thus for the rest of the thesis we will concentrate on the 

Attitude Estimation of the arm using IMU’s.  

 

Figure 2.2 Soft Strain Sensors mounted on the glove 
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Figure 2.3 Soft Strain Sensor Schematic 
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Chapter 3 

Sensor Configuration for Attitude estimation 

3.1 IMU Postioning 

 In this setup, three quaternions are output form the IMU’s using the DMP on 

them. The DMP uses proprietary sensor fusion algorithms developed by Invesense Corp. 

to convert the raw data from the accelerometer and gyroscope into quaternions.  

 The setup consists of three IMU’s placed along the arm. The sensors are placed 

with the y-axis of the IMU pointing toward the next joint. Two are placed at the mid-

points of the upper-arm and forearm, and the last one is on the back of the hand. 

 

Figure 3.1 IMU Sensor positions 
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Figure 3.2 Mounting IMU using velcro 
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3.2 Hardware Architecture 

 A hardware used to implement the tracking consists of three IMU’s, specifically 

MPU-9250 which is a 9-axis sensor that contains an accelerometer, gyroscope and a 

magnetometer. The IMU’s are placed at the approximate midpoint of the links with the y-

axis of all the sensors pointing toward the ground when the arm is pointing toward the 

ground.  

 Each IMU has an inbuilt low memory signal processor which uses sensor fusion 

algorithm to output the quaternions. The data i.e. quaternions from each of the IMU is 

read by a micro-controller (Arduino Micro) using an I2C bus. Under normal operation the 

I2C bus can handle only two addresses. Since we are dealing with 3 IMU’s, an I2C 

multiplexer is incorporated to communicate will the IMU’s. 

 The quaternions are then processed on a computer running a Python script. The 

data is formatted and transferred to a PC using a Wi-Fi module (ESP-8266) over a local 

area network. The ESP-8266 module is programmed to communicate with the PC and the 

micro-controller. Special functions have been written to allow the user to remotely start 

and stop the micro-controller.  
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Figure 3.3 Hardware Architecture 

 

 

Figure 3.4 Data Transfer Electronics  
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3.3 Attitude tracking 

 Initial Attitude estimation is done using the quaternions read directly from the 

IMU’s. A brief introduction to quaternions is given in Section 3.4. 

 The co-ordinates of the shoulder are taken as (0,0,0). The co-ordinates of the 

elbow, wrist and orientation of the hand can be calculated using the quaternion from the 

respective IMU. The quaternions are first directly converted into rotation matrices using 

the relationships shown below: 

 

   

     

     

     

2 2

2 3 1 2 3 4 1 3 2 4

2 2

1 2 3 4 1 3 2 3 1 4

2 2

1 3 2 4 2 3 1 4 2 1

1 2 2 2

  2 1 2 2

2 2 1 2

q

q q q q q q q q q q

R q q q q q q q q q q

q q q q q q q q q q

    
 
     
 
    
 

 (3.1) 

 By multiplying this rotation matrix with the length of the upper arm, forearm and 

wrist, the co-ordinates for the joints Elbow(E), Wrist(W) and Knuckle(K) can be 

obtained. But since the lengths of the humerus, ulna, and metacarpals differ for each 

person, it must be changed accordingly. There is almost a linear correlation between the 

height of a person and the lengths of the arms. Using anthropometric data collected of US 

army personnel, an approximate measure of the lengths can be found. Using only sex and 

height of the user as the initial data the lengths can be interpolated. The lengths are 

denoted by Lh, Lu, Lm for each of the corresponding links. 



13 

 

 

 

Using the lengths and the rotation matrix the co-ordinates of the joints can be calculated, 

with the shoulder assumed to be (0,0,0). 

 h h
E L R   (3.2) 

  u uW E L R    (3.3) 

  m mK W L R    (3.4) 

 

 

Figure 3.5 Length of Humerus 

 

 

 

Figure 3.6 Length of Ulna 
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Figure 3.7 Length of Metacarpals 

 

 

Figure 3.8 IMU's on velcro straps with Arduino and wi-fi module 
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3.4 Quaternion Algebra 

 A quaternion is an extension of complex numbers. Just as a complex number has 

a real part and an imaginary part i, a quaternion has a real part and three imaginary parts: 

i, j, and k. Notations vary between texts; this thesis will follow the JPL proposed standard 

convention [7], using the first three values as the imaginary part and the last value as the 

real part. Quaternions will be notated as a letter with an overbar, i.e. q : 

  

1

2

3

4

 

 

 

q i

q j
q

q k

q

 
 
 
 
 
 

 (3.5) 

 Much like complex numbers, the square of any of the imaginary parts of a 

quaternion is equal to -1. Multiplying two different imaginary parts is noncommutative; 

reversing order changes the sign. The imaginary combinations are: 

  i2= -1 ij = -k ji = k 

  j2 = -1 jk = -i kj = i (3.6) 

  k2 = -1 ki = -j ik = j 

 

 Note that this definition differs from that which Hamilton used. As the 

multiplication of imaginary parts of a quaternion is noncommutative, quaternion 

multiplication is also noncommutative. The product of two quaternions can be derived by 

multiplying each element of two quaternions: 
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2

1 1 1 2 1 3 1 4

2

2 1 2 2 2 3 2 4

2

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

q p    q p    q p    q p

 q p    q p    q p    q p

 q p    q p    q p k    q p

 q p    q p    q p    q p

q p i ij ik i

ji j jk j

ki kj k

i j k

    

   

   

   

 (3.7) 

Substituting the definitions of individual complex products: 

  

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

 q p  q p  q p    q p

 q p  q p  q p    q p

 q p    q p  q p    q p

 q p    q p    q p    q p

q p k j i

k i j

j i k

i j k

     

   

   

   

 (3.8) 

Then grouping the individual complex components into a new quaternion: 

  

 

 

 

1 4 2 3 3 2 4 1

1 3 2 4 3 1 4 2

1 2 2 1 3 4 4 3

1 1 2 2 3 3 4 4

 q p  q p    q p    q p i

q p    q p  q p    q p j

 q p    q p    q p    q p k

 q p  q p  q p    q p

q p

     
 

     
    
 

    

 (3.9) 

The multiplication of the two quaternions is therefore equivalent to: 

 

4 3 2 1 1

3 4 1 2 2

2 1 4 3 3

1 2 3 4 4

q q q q p

q q q q p
q p

q q q q p

q q q q p

   
   

    
   
   
     

 (3.10) 
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Chapter 4 

Modelling the Arm 

Modelling the human arm is quite complex. To create a model of the human arm 

we can assume it to be series on connected pendulums that driven at each joint. 

Imagining the arm in such a way will help visualize and formulate a reasonable model. 

Using the pendulum model, we can simulate the torques acting at each joint or node. And 

create an optimal filter to estimate the angles at the joints. We can start first with a simple 

model of a planar double pendulum. 

 

Figure 4.1 Pendulum approximation of the arm  
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4.1 Planar Double Pendulum 

The first step in our problem will be to model the double pendulum. The first link will 

correspond to the upper arm and the second link to the forearm. The geometry of the 

planar double pendulum is as shown 

 

Figure 4.2 Double Pendulum Geometry 

 

The links have masses m, length L and moment of inertia J. The two links are assumed to 

be uniform cylinders, so the vectors to for the center of masses is given by 

  
1 1 1 1 2 1 2

1 1 1 1 2 1

1

2

2

1 1
L sin( ) L sin( )+ L sin( + )

2 2

1 1
L cos( ) L cos( )- L cos( + )

2 2

r r

   

   

   
   
   
    
     





  (4.1) 

The velocities of each link is given by 
dr

v
dt

  
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 

 

1 1 1 1 1 1 2 1 2 1 2

2

1 1 1

1

1 1 1 2 1 2 1 2

1 1
L cos( ) L cos( )+ L + cos( + )

2 2

1 1
L sin( ) L sin( )+ L + sin( )

2 2

v v

       

       

   
   

   
   
      

  (4.2) 

To calculate the Lagrangian L, first we need the Potential Vg and Kinetic T energies of 

the system. 

    
2

2

1 1 2 1 2 1 1 1 2 2 2

1
J +J + +m v .v +m v .v

2
T     (4.3) 

  

 

 

 

2
2 2 2 2 2 2 2

1 1 2 1 2 1 1 1 1 1 1 1

2

1 1 1 2 1 2 1 2

2 2

1 1 1 2 1 2 1 2

1 1
J +J + + m L sin ( )+ L cos ( )

4 4

1 1
L sin( )+ L + sin( + )

2 2
+m

1
+ L cos( )+ L + cos( + )

2

T

      

     

     

  
  
  

   
    
    
  

      
   

 (4.4) 

  1 1 2 2

0 0
m r m r

1 1
gV g g

   
    

   
 (4.5) 

  
2 1 1 2 1 2 1 1 1

1 1
m L cos( )- L cos( + ) L m cos( )

2 2
gV g g   

 
   

 
 (4.6) 

The Lagrangian is calculated using  

  
gL T V   (4.7) 

Now, to calculate the equations of motion 

  1 2

1

1 2

1

b +b = -+
d L L

dt  
   

  
 

  
 (4.8) 
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2 2

2 2+b =
d L L

dt 
 



  
 

  
  (4.9) 

The equations of motion can be written as Non-Linear state space system with states X   

and input u   

 

1 1

2 2 1

1 3 2

2 4

x

x
X u

x

x



 

 



   
   

             
   
   

 (4.10)

    


  
 

2

2 1 2 2 2 2 2 2 2 12 2

2 2 2 1 1 1 2

2

2 1 1 1 2 1 2 1 1 2 12 2

2 2 2 1 1 1

3

2

4

1
4J 2L L m cos(x ) L m L m sin(x ...

24 4 4 ...

1
2 4 J L m sin(x ) 8 J L m sin(x ) L L m ...

4J L m 4J L (m 4m ) .

1

..

g
J L m J L m

g

x

X

g

x

m

g

  
   


  

   

 
 
 
   
  

  
 
 
 
 

 

   (4.11) 

From this Non-Linear model, we can easily calculate a Linear model around a suitable 

equilibrium. The equilibrium points for this system are 

  
1

2

0 0
, ,

0

 

  

       
       
      

 

Linearizing about the point (0,0) we get 

  
X AX Bu

Y CX Du

 

 
 (4.12) 

Substituting values for all constants 
1 2 1 2 1 2 1, 9.81L L m m b b g         



21 

 

 

 

We get,   

0 0 1 0

0 0 0 1

-6.2210 0.9571 -0.4878 0.1951

4.7854 -5.2639     0.6829  1.0732

A

 
 
 
 
 
 

 

 

0 0

0 0 1 0 0 0

0.4878 1.1707 0 1 0 0

0.6829 2.4390

B C

 
 

        
 
 

 (4.13) 
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4.2 Spherical Pendulum 

The next step in our modelling problem is to move from a planar case to a 3-dimensional 

geometry. We can start by modelling a single spherical pendulum and discussing its 

dynamics. The geometry of the Spherical pendulum is as shown in Fig. 

 

Figure 4.3 Spherical Pendulum Geometry 

 

The same procedure is followed as earlier in calculating the Lagrangian and formulating 

the equations of motion. The vector of the center of mass is given by 
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1
sin( ) cos( )

2

1
cos( )

2

1
sin( )sin( )

2

L

r L

L

 



 

 
 
 
 
 
 
 
  

 (4.14) 

The kinetic energy of the system is given by 

  
21 1

.
2 2

T mv J   (4.15) 

 To simplify further calculations the inertial energy term is ignored due to the 

difficulty in determining the angular velocity   in the frame used. The Langrangian is 

given by  

   0 1 0gV mgr  (4.16) 

  
gL T V   (4.17) 

The equations of motion for the system is calculated by using the Lagrangian formula 

  
1b =+

d L L

dt  
 

  
 

  
 (4.18) 

  2+b =
d L L

dt  
 

  
 

  
  (4.19) 

The equations of motion are written in Non-Linear State space representation using the 

state X 
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1

2

3

4

x

x
X

x

x









  
  
   
  
  

   

 (4.20) 

  
 

   

2

2 1 4 1 1

2

2 2

1 4

4

1 2

3

2

2

8 x 4 sin(x ) x sin(2x ) 8

2

csc (x ) 4 sin 2 4

b Lm g L

L m

x b L

x

x

x x

X

L

m

m





 
 
 
   
 
 
 

 
  






 (4.21) 

 This Non-Linear model is linearized around a suitable equilibrium point. The 

equilibrium points of this system are  0,  . It is observed that there is no value of   

in the equilibrium condition. This is due to   not being defined when the pendulum is 

vertical, i.e. it is either pointing straight down or up. This phenomenon can be observed 

in the Non-Linear system shown in Eq(3.25) as the 
˙

4x  term is not defined at 

 1 0, .x     

 The linearization is done by substituting 0   in the equations of motion 

calculated in Eq(3.22) and Eq(3.23). At this equilibrium point x4 is unobservable and is 

thus removed from the state. The resulting linear model will consist of only three states, 

namely ( , , )X     with input 1 2( , )u    . 

The linearized model can be written as  

 
X AX Bu

Y CX

 


  (4.22) 
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Where  

 

2 2

0 1 0 0 0

2 4 4
0 0

1
0 0 0 0

1 0 0 0 0

0 0 1 0 0

g b

L L m L m
A B

C D b

 
 
 

 
 
  
  
  
 
 
 
 
 
 

 (4.23) 
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4.3 Spherical Double Pendulum 

 This final model is a combination of the two previous models, combining the 

double pendulum and the Spherical Pendulum. An additional degree of freedom is 

implemented in this model. The roll angle    about link 1 is also incorporated. The 

geometry is as shown below in Fig---- 

 

Figure 4.4 Spherical Double Pendulum Geometry 

 

 The procedure to find the equations of motion for the system is the same as the 

previous models. Fist consider the planar double pendulum system, where 
1 2   z and z  are 

the unit vectors to each link. 
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1 1

21 2

2

1 1

sin( ) sin( + )

cos( ) cos( + )

0 0

zz

  

  

   
   
   
      

  (4.24) 

A Rotation Matrix  R a  is defined that will rotate a vector by an angle   about vector 

 , , .a x y z  

2

2

2

cos( ) (1 cos( )) (1 cos( )) sin( ) (1 cos( )) sin( )

(1 cos( )) sin( ) cos( ) (1 cos( )) (1 cos( )) sin( )

(1 cos( )) sin( ) sin( ) (1 cos( )) cos( ) (1 cos( )

( )

)

x xy z xz y

xy z y yz x

xz y x yz z

R a

     

     

     

     

   

 
 

  
 


 

     

 

    (4.25) 

 To formulate the vectors for the Three-dimensional model we need to rotate the 

planar pendulum by angle   about the y-axis, and link 2 is rotated by and angle   about 

link 1. Using these two rotations the vectors for center of masses of the two links are 

given by 

  

 

   

1
1 1

2
2 1 1 1 2

  0,1,0 .
2

2 0,1,0 .   .
2

L
r R z

L
r r R z R z z



 



 

 (4.26) 

The Lagrangian is formulated as follows 

  
2 2

1 1 2 2

1 1

2 2
T m v m v   (4.27) 

     
' '

1 1 2 20 1 0 0 1 0 gV m gr m gr   (4.28) 

  
gL T V   (4.29) 
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The Equations of motion are calculated using the Lagrangian formula 

  
1

1 2

1

1b = cos( )+ 
d L L

dt  
   

  
 

  
 (4.30) 

  2

2 2

2b =+ 
d L L

dt
 

 

  
 

  
  (4.31) 

  3 2+ b = sin( )
d L L

dt  
   

  
 

  
  (4.32) 

 
4b =+ 

d L L

dt  
 

  
 

  
  (4.33) 

The equations of motion are written in Non-Linear State space representation using the 

state X 

  

1
1

2
2

˙

31

42

5

6

˙
7

8

x

x

x

x
X

x

x

x

x

















 
  
  
  
  
  
   
  
  
  
  
  
    

 (4.34) 

   1 2 3 4 5 6 7 8, , , , , , ,X g x x x x x x x x  (4.35) 

 It is very difficult to linearize this system about the equilibrium point 
1

2

0
 

0





   
   
  

 

due to the appearance of singularities in the equations. Like the previous system the terms 
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for   and   will not be defined at the equilibrium point. To overcome this the non-

linear system is rewritten as follows. 

  MZ f  (4.36) 

Where    1 2 1 2 1 2, , , ,  , , , , , , ,M f             and 

1

2
Z









 
 
 
 
 
 

 . 

 Like the previous problem the states of   and   become unobservable in the 

linearized system. So, we can eliminate these states from the formulation and the 

linearized system is given by new state X̂ . 

The linearized system is built as shown below, 

  
˙

ˆ ˆE X AX Bu   (4.37) 

Where    

  
11 12

1 2

1 2 21 22

0 0

0

I M M f f
E E E

E E M M  

      
       

     
 (4.38) 

1 2 3 4

1 2 1 2

0 0 1 0 0 0

0 0 0 0

0 0 0 1 0 0A B
f f f f

f f f f f f    

     

 
 

  
  
   
     

             
 
      

 (4.39) 
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Then we have the Linearized system as  

  
X AX Bu

Y CX

 


 (4.40) 

Where   
1Â E A ,

1B̂ E B , 

1
1

2
2

˙

3
1

4
2

5

6

ˆ

x

x

x
X

x

x

x













   
   
   
   
    
   
   
   
     

, 

1

2

3

4

u









 
 
 
 
 
 

 . (4.41) 
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Chapter 5 

Attitude Estimation 

5.1 Optimal State Estimation 

 The states of a system are those variables that provide a complete representation 

of the internal condition or status of the system at a given instant of time. State estimation 

is applicable to virtually all areas of engineering and science. Any discipline that is 

concerned with the mathematical modeling of its systems is a likely (perhaps inevitable) 

candidate for state estimation. 

Consider the LTI system 

  

     

     

   

w

y yw

z

x t Ax t B w t

y t C x t D w t

z t C x t

 

 

  (5.1) 

The problem here is to compute  ˆ,A F  such that the output of the state estimator 

  

     

   

ˆ ˆ

ˆˆ

ˆ

z

x t Ax t Fy t

z t C x t

 

   (5.2) 

stabilizes the state estimation error and minimizes the cost function 

           ˆ : ˆlim
T

t
J E z t z t z t z t



   
 

 (5.3) 
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The error function is defined as       : ˆe t x t x t   so that      ˆ
zz t z t C e t   

The dynamics of the estimation error can be written as 

  
         

         

ˆ ˆ

ˆ ˆ

w

y yw

e t Ax t Ax t Fy t B w t

A A FC x t Ae t B FD w t

   

     
 (5.4) 

It can be observed that if A is unstable then both x(t) and e(t) are unbounded with only 

one exception 

       ˆ  0ˆ
y yA A FC A A FC       

So, we get 

           y ywe t A FC e t B FD w t     (5.5) 

The dynamics of the error e(t) and the state x(t) have been decoupled. And this choice of 

Â  produces the state observer  

  

 ˆ ˆ

ˆ

ˆ

ˆ

ˆˆ

y

z

x Ax F y y

y C x

z C x

  





 (5.6) 

Now the problem has been simplified to find the stabilizing state estimation gain F to 

minimize the cost function  

     :  lim
T T

z z
t

J E e t C C e t


 
 

 (5.7) 

Where e(t) is the state of the LTI system 
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           y w ywe t A FC e t B FD w t     (5.8) 

The solution to this problem is to Find an F that minimizes the cost function 

     
T

w yw w ywJ trace X B FD W B FD   
  

 (5.9) 

Where X is the solution in the Lyapunov equation 

      0
T

T

y y z zA FC X X A FC C C      (5.10) 

 However, in this form F appears in both the cost function and the Lyapunov 

equation and cannot be solved simultaneously. The Duality property is used to solve this 

problem. 

Consider the cost function 

   TJ trace XBWB  (5.11) 

Where X is the solution to the Lyapunov Equation  

  0T TA X XA C C    (5.12) 

Substituting the gramian solution of X in the cost function 

 

 

0

t t

T

A T A T

J trace XBWB

trace e C Ce dt BWB





  
    

  

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0

0

t t

t t

A T A T

A T A T

trace e C Ce dt BWB

trace C e BWB e dt C





  
    

  

  
    

  





 (5.13) 

    ,TJ trace CYC   (5.14) 

Where Y is the solution to the Lyapunov equation 

  0T TAY YA BWB    (5.15) 

Using this new dual formulation in the LTI system, 

   T

z zJ trace C YC  (5.16) 

Where the Lyapunov equation is given by  

          0
T T

y y w yw w ywA FC Y Y A FC B FD W B FD        (5.17) 

If  0T

w ywB WD  , 0T

yw ywD WD   

The above Lyapunov equation becomes  

      0
T

T T T

y y w w yw ywA FC Y Y A FC B WB FD WD F       (5.18) 

By completing the squares to obtain the ARE 

   
1

0T T T T

y yw yw y w wAY YA YC D WD C Y B WB


     (5.19) 

And the associated optimal gain  
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   
1

T T

y yw ywF YC D WD


   (5.20) 
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5.2 Double Pendulum 

We have the linear state space system from Eq (4.12) 

  
X AX Bu

Y CX

 


 (5.21) 

The process noise variances and the measurement noise variances are structured in a 

Diagonal matrix Wa. 

  

1 1

2 2

3 3

4 4

0 0 0

0 0 0

0 0 0

0 0 0

a

w w

w w
w W

w w

w w

   
   
    
   
   
   

 (5.22) 

These variances are augmented to the Linear system in Eq (5.21), so we get the noise 

augmented system 

  
w

w w

X AX B w

Y C X D w

 

 
 (5.23) 

We can now calculate the optimal state feedback gain F   ,  u Fx  by minimizing the 

cost function  

  
0

T TJ x Qx u Ru



   (5.24) 

Where T

w a wQ B W B  and T

w a wR D W D .  (5.25) 

The new filtered system can now be formulated as  
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˙

ˆ ˆ

ˆ ˆ

f f

f f

X A X B w

Y C X D w

 

 

 (5.26) 

 

Where  

  

0

T

f w

T

f

f w

f

A A F C

B F

C C

D

 







 (5.27) 

The filtered linear system is now simulated on Simulink with varying input torques on the 

two links. Additional measurement noise is also added in the model. 

 

Figure 5.1 Double Pendulum Simulation 
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Figure 5.2 Theta 1 Estimation 

 

 

Figure 5.3 Theta 2 Estimation 

 

From the simulation result shown in Fig--- we can see that the estimated values of 

1  and 2  do not accurately track the values of the non-linear plant. This is due to the 

model having no information of the torque applied on the system.  

The next step would be to include the torques acting on the system as part of the 

state. But the problem here is that we have no way of predicting the dynamics of the 

torque applied on the links since it is a completely random function. The best way to look 
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at this problem would be to observe that the rate of change of torque is very slow 

compared to the other states namely the angle and velocity. Considering this the torques 

can be modelled as a constant torque acting on the links in the linear system. 

So the new linear system is given by 

  w

w w

X AX B w

Y C X D w

 

 
 (5.28) 

Where 
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22

31

42

51

62

x
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x
X

x

x

x













  
  
  
  

    
  
  
  

      

 (5.29) 

 

0 0 1 0 0 0

0 0 0 1 0 0

-6.2210 0.9571 -0.4878 0.1951 0.4878 -1.1707

4.7854 -5.2639     0.6829  1.0732 -0.6829  2.4390

0 0 0 0 0 0

0 0 0 0 0 0

A

 
 
 
 

  
 
 
 
 

 

 

0 0 0 0

0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0

0 1 0 0

w w wB C D

 
 
 
     

       
    

 
 
 

 (5.30) 
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Figure 5.4 Theta 1 Estimation with Torque model 

 

 

Figure 5.5 Theta 2 Estimation with Torque model 
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5.3 Spherical Pendulum 

We have the linear state space system from Eq (4.22) 

  
X AX Bu

Y CX

 


 (5.31) 

The noise variances and the measurement noise variances are structured in a Diagonal 

matrix Wa. 

  

1 1

2 2

3 3

4 4

0 0 0

0 0 0

0 0 0

0 0 0

a

w w

w w
w W

w w

w w

   
   
    
   
   
   

 (5.32) 

These variances are augmented to the Linear system in Eq (5.31), so we get the noise 

augmented system 

  
w

w w

X AX B w

Y C X D w

 

 
 (5.33) 

This linear model is used to estimate the state of the non-linear model. But first the 

torques must be augmented into the state. By including the torques in the state the states 

can be tracked for a non-zero mean torque input. So, the new system is given by  

   
w

w w

X AX B w

Y C X D w

 

 
  (5.34) 

Where  
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1

2

X











 
 
 
 
 
 
  

  (5.35) 

 Similar procedure as the previous section is followed to find an optimal gain F. 

The filtered system is formulated using the matrices , , ,f f f fA B C D . The system is then 

simulated on Simulink with varying input torques on the two directions. 

 

 

Figure 5.6 Spherical Pendulum Simulation 
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Figure 5.7 Theta Estimation 

 

 

 

 

Figure 5.8 Phi Estimation 
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5.4 Spherical Double Pendulum 

We have the linear state space system from Eq (4.40) 

  
X AX Bu

Y CX

 


 (5.36) 

The noise variances and the measurement noise variances are structured in a Diagonal 

matrix Wa. 

  

1 1

2 2

8 8

0 0 0

0 0 0

0 0 0

0 0 0

a

w w

w w
w W

w w

   
   
    
   
   
   

 (5.37) 

These variances are augmented to the Linear system in Eq (5.36), so we get the noise 

augmented system 

  
w

w w

X AX B w

Y C X D w

 

 
 (5.38) 

The performance of the system can be improved by augmenting the driving torques in the 

state of the system. So, the new system will have 10 states. To calculate the optimal filter 

the B̂  matrix is augmented by the noise variances w1 through w8. The new system is 

denoted as 

  

˙

w

w w

X AX B w

Y C X D w

 

 

 (5.39) 
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Where  

1

2

2

1

1

2

3

4

X





















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5.40) 

 Similar procedure as the previous section is followed to find an optimal gain F. 

The filtered system is formulated using the matrices , , ,f f f fA B C D . The system is then 

simulated on Simulink with input torques on the three directions. 

 

Figure 5.9 Spherical Double Pendulum Simulation 
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Figure 5.10 Theta 1 Estimation 

 

 

Figure 5.11 Theta 2 Estimation 
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Figure 5.12 Phi Estimation 

 

 

Figure 5.13 Alpha Estimation 
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Chapter 6  

Conclusion 

 The torques applied to move and rotate the arm as is moves cannot be measured. 

So by adding the torque as a state variable and modelling it as a constant with a small 

variance, the linearized model has some information of the torques. This approximation is 

good for a low frequency change in torque, and helps build an accurate estimator. 

The Kalman filter is a powerful tool in state estimation. The estimation of the 

attitude of the human arm using Euler angles is quite accurate for conditions of the arm 

that are away from the equilibrium positions. But due to the phenomenon of gimbal lock 

at equilibrium, it would be advantageous to use quaternions to define the vectors.  

 The hardware architecture developed provides a light weight and cheaper 

alternative to existing tracking systems. The programs written for the Arduino and ESP-

8266 allow for remote control of the hardware through a Python script running on a PC. 

The ability of this system to be usable in any environment without the setup of cameras  

makes it a very capable tool. The change to low energy Bluetooth can improve the power 

consumption of the system as compared to Wi-Fi. 
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