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EPIGRAPH

He makes me lie down in green pastures

He leads me beside waters of rest.

—PSALMS 23:2
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ABSTRACT OF THE THESIS

SAFE Framework for Guided Waves

by

Ranting Cui

Master of Science in Structural Engineering

University of California, San Diego, 2017

Professor Francesco Lanza di Scalea, Chair

There are many advantages for NDE (NonDestructive Evaluation) by using guided

ultrasonic waves for structural diagnostic. Guided waves are composed of longitudinal

waves and shear waves. From the data acquisition respect, guided waves provide higher

ranges compared to bulk wave testing. However, many challenges appear when guided

waves are used for detecting, such as many modes corresponding to one frequency,and

dispersion properties on the group velocity and phase velocity.

This thesis simulates guided-wave propagation by using the SAFE(Semi-Analytical

Finite Element) method. From this method, only the cross section needs to be discretized.The

wave propagation direction is approximated by analytical harmonic solutions. By building

x



many large complex stiffness matrices, material viscoelastic property is considered. The

solutions, such as group velocity dispersion curves(without material attenuation), phase

velocity dispersion curves, energy velocity dispersion curves(with material attenuation),

are generated from the SAFE codes. Moreover, SAFE codes can simulate forced solutions

more efficiently than full discretization methods of traditional finite element analysis.

Two applications of guided wave propagation are shown on this thesis,multilayered

anisotropic composites and railroad tracks.
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Chapter 1

Introduction

1.1 Motivation of this research

Non-Destructive Evaluation (NDE) and Structural Health Monitoring(SHM) are

widely applied tools for structural condition assessment. With a good sensitivity and a

long range inspection, guided waves are quite effective for defect detection and property

identification with some specific attenuation, multiple modes are excited, which makes

guided waves complex and complicated. In order to simulate this kind of scenario,

it is necessary to find a way to capture these characteristics of guided waves .The

Semi-Analytical Finite Element(SAFE) method[1, 2] is the main topic in this thesis,

which provides an effective way to simulate guided waves in the rigorous, yet efficient

manner[3]. The SAFE scheme in this thesis consists of two parts. Firsts, the cross

section is fully discretized by using Finite Element Method with triangle elements having

three degrees of freedom for each node. The mesh is generated by using MATLAB

pdetool and ABAQUS. Second, the wave propagation direction is considered by using

analytical harmonic exponential functions. Based on the fact that the SAFE only has

discretization in the cross-section with fewer elements than a 3D full discretization, it is

1
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faster and more efficient compared with a standard three dimensional fully discretized

finite element approaches such as calculation from ABAQUS. SAFE can also calculate

arbitrary cross-sectional geometries such as rail tracks showing as the second application.

Moreover,composite plates can be simulated by SAFE showed as the first application.

1.2 Outline of the thesis

This thesis is composed of 7 chapters. In Chapter 2, fundamentals of guided

waves are introduced. First, the critical equations of bulk waves in unbounded media are

demonstrated, which also describes wave motions of longitudinal waves and shear waves.

Then waves propagating in the damped media are illustrated, showing some simple cases

to describe the guided wave motion.

In Chapter 3, the mathematical steps of the SAFE method are presented. The

calculation of phase velocity and group velocity is shown in this chapter. For damped

media, the group velocity shows some infinite unstable results, which proves the necessity

to use energy velocity to express the same information instead of group velocity.

In Chapter 4, the first application of SAFE is to simulate guided waves propagating

in a variety of plates,including anisotropic composite laminates

In Chapter5, the second application of SAFE is railroad tracks, therefore a

waveguide with a complex cross section. In Chapter6, forced wave solutions are

presented[4, 5].

In Chapter7, the final conclusions are listed.



Chapter 2

Solid Mechanics of Ultrasonic Guided

Waves

2.1 Free propagation in unbounded medium

Without considering body force in Cartesian coordinate system, the equilibrium

of an unbounded medium can be expressed as follows[6]:

∂σx
∂x +

∂σxy
∂y + ∂σxz

∂z = ρ
∂2ux
∂t2

∂σxy
∂x +

∂σy
∂y +

∂σyz
∂z = ρ

∂2uy
∂t2

∂σxz
∂x +

∂σyz
∂y + ∂σz

∂z = ρ
∂2uz
∂t2

(2.1)

where ux, uy, uz are the displacements in x direction y direction and z direction,

which are represented by the vector u and ρ means density. In order to simplify

3
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the equations, the following notations are used:

∇σ = ρ
∂2u
∂t2 σi j, j = ρ

∂2ui
∂t2 i, j = 1,2,3 (2.2)

where∇ = x̂ ∂

∂x + ŷ ∂

∂y + ẑ ∂

∂z

σ =


σx σxy σxz

σxy σy σyz

σxz σyz σz

=


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (2.3)

Eq.2.3 is the expression of the stress tensor that is symmetric and 1, 2 ,3 are the three

directions in local coordinates.

σ = C : ε σi j =Ci jklεkl i, j,k, l = 1,2,3 (2.4)

Eq.2.4 is the strain and stress relation based on Hooke’s law, whole matrix expression is:



σx

σy

σz

σyz

σxz

σxy


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66





εx

εy

εz

εyz

εxz

εxy


(2.5)

The strain components related to the displacements can be expressed by:



5



εx

εy

εz

εyz

εxz

εxy


=



εx

εy

εz

εyz

εxz

εxy


=



∂ux
∂x
∂uy
∂y

∂uz
∂z

1
2

[
∂uy
∂z + ∂uz

∂y

]
1
2

[
∂ux
∂z + ∂uz

∂x

]
1
2

[
∂ux
∂y +

∂uy
∂x

]



εi j =
1
2

(
ui, j +u j,i

)
εεε = 1

2

[
∇u+(∇u)T

]

(2.6)

For isotropic materials the 36 elastic constants are reduced to 2 independent Lame

constants which are λ and µ respectively. And Hooke’s law is simplified to the following

form:



σx

σy

σz

σyz

σxz

σxy


=



λ+2µ λ λ 0 0 0

λ λ+2µ λ 0 0 0

λ λ λ+2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





εx

εy

εz

εyz

εxz

εxy



σi j = λi jδi jεi j +2µεi j

δi j =


1, if i = j

0, if i 6= j

(2.7)
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σσσ = λtr(ε)I+2µε

tr(ε) = εkk = ε11 + ε22 + ε33

(2.8)

Substituting Eq. 2.6 into Eq. 2.7 yields the following expression:

σσσ = λI∇•u+µ
[
∇u+(∇u)T ]

σi j = λδi juk,k +µ(ui, j +u j,i)

(2.9)

Without considering body force,the equation of motion in the unbounded isotropic

medium can be represented by:

µ∇2u+(λ+µ)∇∇•u = ρ
∂2u
∂t2

(λ+µ)u j, ji +µui, j j = ρ
∂2ui
∂t2

(2.10)

Then the displacement decomposition is shown as follow:

u = ∇ϕ+∇⊗ψψψ (2.11)

where u is the displacement vector, φ is the scalar potential, ψψψ is the vector potential that

is ψψψ = [ψx,ψy,ψz]
T

Using operations ∇•∇φ = ∇2φ, ∇2(∇φ) = ∇(∇2φ), and ∇2 •∇×φφφ and Eq.2.10 into Eq.

2.11. The equation of motion becomes:



7

∇

[
(λ+2µ)∇2

ϕ−ρ
∂2ϕ

∂t2

]
+∇⊗

[
µ∇

2−ρ
∂2ψ

∂t2

]
= 0 (2.12)

The following conditions apply:

∇
2
ϕ =

1
c2

L

∂2φ

∂t2 (2.13)

and

∇
2
ψψψ =

1
c2

T

∂2ψψψ

∂t2 (2.14)

c2
L = λ+2µ

ρ

c2
T = µ

ρ

(2.15)

Therefore the harmonic potential functions can be expressed as:

ϕ = Φei(kLx−ωt)

ψ = Ψei(kTx−ωt)

(2.16)

Eq.2.16 satisfies the Eq.2.11 as well.The imaginary exponential terms represents waves

propagating with harmonic ways both in space and time. The spatial distribution is

described by the wavenumber vector k. So the spatial frequency is λ = 2π/|k| and the

angular frequency is ω = 2π f . Substituting Eq.2.13 and Eq.2.14 into Eq. 2.16 :
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|kL|2 = ω2

c2
L

|kT |2 = ω2

c2
T

(2.17)

Therefore, based on Eq.2.17 there are two kinds of waves traveling in the material:

• cL is longitudinal wavespeed

• cT is transverse wavespeed

More details of wave propagation are shown in Figure2.1

Figure 2.1: Bulk wave propagation in an unbounded medium
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2.2 Lamb waves

The simplest bounded geometry is that of plates, which supports Lamb wave

propagation. There are multiple reflections between two boundaries. However, in the

final static state, the harmonic propagation is assumed to be the traveling way of all the

waves.Therefore, Lamb waves are standing waves in the thickness direction and traveling

waves in the plates longitudinal direction.

Eq.2.11 can be simplified as follows:

ux =
∂ϕ

∂x +
∂ψz
∂y −

ψy
∂z

uy =
∂ϕ

∂y +
∂ψz
∂x −

ψx
∂z

uz =
∂ϕ

∂z +
∂ψx
∂x −

ψx
∂y

(2.18)

The thickness is assumed to be 2h applying plane strain assumption in x-y plane, the

constraints are showing as follows:

uz = 0, ∂

∂z() = 0 (2.19)

Therefore, the displacements are represented by:

ux = u =
∂ϕ

∂x
+

∂ψz

∂y
(2.20a)

uy = v =
∂ϕ

∂y
+

∂ψz

∂z
(2.20b)

Based on the Eq. 2.20a and 2.14, the following equations are derived:
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∂2ϕ

∂x2 +
∂2ϕ

∂y2 =
1
c2

L

∂2ϕ

∂t2 (2.21a)

∂2ψz

∂x2 +
∂2ψz

∂y2 =
1
c2

T

∂2ψz

∂t2 (2.21b)

We can introduce the following assumptions:

ϕ = Φ(y)ei(kx−ωt) (2.22a)

ψz = Ψ(y)ei(kx−ωt) (2.22b)

Where Φ(y) and Ψ(y) are the position functions on the cross section along the

y direction and also showing the information about the standing waves. ei(kx−ωt) is the

harmonic behavior in the x direction, with the velocity c = ω/k

Substituting Eq.2.22a and Eq.2.22b into Eq. 2.20a and Eq.2.20b yields:

Φ(y) = A1sin(py)+A2cos(py)

Ψ(y) = B1sin(qy)+B2cos(qy)

(2.23)

where
p2 = w2

c2
L
− k2

q2 = w2

c2
T
− k2

(2.24)

and A1 B1 A2 B2 are amplitudes. Substituting Eq.2.22a and Eq.2.22b into Eq.
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2.20a and Eq.2.20b again, yields

ux = [(A2ikcos(py)+B1qsin(qy))+(A1iksin(py)−B2qsin(qy))]ei(kx−ωt)

uy = [−(A2sin(py)+B1iksin(qy))+(A1 pcos(py)−B2iksin(qy))]ei(kx−ωt)

(2.25)

There are two parts in the representation of ux and uy. The first part is a symmetric

motion with respect to the midplate of the plate, the second part is antisymmetric motion

with respect to the midplate of the plate. Another expression of these two parts showing

as follow:

Symmetric motion:

Φ(y) = A2cos(py)

Ψ(y) = B1sin(py)

τxy = µ
[
−2ikpA2sin(py)+(k2−q2)B1sin(qy)

]

σy =−λ(k2 + p2)A2cos(py)+

−2µ
[
p2A2cos(py)+ ikqB1cos(qy)

]

(2.26)

Antisymmetric motion:
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Φ(y) = A1sin(py)

Ψ(y) = B2cos(py)

τxy = µ
[
−2ikpA1cos(py)+(k2−q2)B2cos(qy)

]

σy =−λ(k2 + p2)A1sin(py)+

−2µ
[
p2A1cos(py)+ ikqB2cos(qy)

]

(2.27)

When the boundary conditions are applied, the amplitude parameter A1,A2,B1

and B2 can be found

τxz = σz = 0 (2.28)

If free boundary conditions are applied Eq.2.28, the two constants A2 and B1 are

found. A1 and B2 can be obtained similarly. Therefore both symmetric and antisymmetric

modes equation can be rewritten as follows:

(k2− p2)sin(qh)
2ikpsin(ph)

=− 2µikqcos(qh)
(λk2 +λp2 +2µp2)cos(ph)

(2.29)

−(k2− p2)cos(qh)
2ikpsin(ph)

=− 2µikqsin(qh)
(λk2 +λp2 +2µp2)sin(ph)

(2.30)
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The Eq.2.29 and the Eq.2.30 yield the Rayleigh-Lamb equation:

tan(ph)
tan(qh)

=−
[

4k2 pq
k2−q2

]±1

(2.31)

where symmetric motion is described by +1 and antisymmetric motion is described

by −1. An example of dispersion curves is shown in Figure2.2, for an aluminum plate

that is 2mm thickness. Wavenumber(1/m) is presented versus frequency (MHz).Linear

mono-dimensional triangular elements are used for this case and each node has three

degree of freedom. The properties of the aluminum plate are: longitudinal velocity (cL)

is 6370m/sec, transverse velocity (cT ) is 3160m/sec and density is 2770kg/m3. These

results are consistent with Ref.[7, 8]

Figure2.3 shows the corresponding phase velocity dispersion curves. This plate

shows the multimodal and dispersive behavior of Lamb waves. The figure2.4 shows the

group velocity curves, which indicates the speed of energy propagation and are generally

different from the phase velocity curves in dispersive cases, such as plates.

Figure 2.2: Wavenumber dispersion curves for an aluminum plate(2mm thickness)
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Figure 2.3: Phase velocity dispersion curves for an aluminum plate(2mm thickness)
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Figure 2.4: Group velocity dispersion curves for aluminum plate(2mm thickness)



Chapter 3

SAFE fundamentals

3.1 Viscoelastic materials model

The consideration of material attenuation is critical when there is a need for

comparison with experimental data. Viscoelasticity is assumed to be linear in this section

which appearS in the material stiffness matrix with imaginary parts. Hence

C̃ = C′− iC′′ (3.1)

where C′ represent the storage moduli and C′ represent the loss moduli. Therefore the

corresponding constitutive matrix is expressed as follow:

15
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C =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66



ηηη =



η11 η12 η13 η14 η15 η16

η21 η22 η23 η24 η25 η26

η31 η32 η33 η34 η35 η36

η41 η42 η43 η44 η45 η46

η51 η52 η53 η54 η55 η56

η61 η62 η63 η64 η65 η66



(3.2)

These coefficients usually can be measured for a given frequency. Based on

the Kelvin-Voigt model[6] , the loss moduli contains the imaginary part which can be

represented as C′′ = ωηηη.

And in the hysteretic model[1] the imaginary part is not dependent on the

frequency:

C̃ = C′− iη (3.3)

The following part will show the results calculated from these two models.
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3.2 General Mechanics Notation

First, guided waves propagating in the vacuum are considered as shown in

figure3.1. These formulas can be extended to arbitrary geometry cross sections. The

wave propagation direction is x in the global coordinate, the cross section is defined on

the y-z pane. Based on this assumption of displacements, stress and strain can be written

as follow:

u =

[
ux uy uz

]T

(3.4)

σ =

[
σx σy σz σyz σxz σxy

]T

(3.5)

ε =

[
εx εy εz γyz γxz γxy

]T

(3.6)

The constitutive matrix can be defined as σσσ = Ĉεεε, thus the relations between

strains and displacements can be rewritten as

ε =

[
Lx

∂

∂x
+Ly

∂

∂y
+Lz

∂

∂z

]
u (3.7)

where
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Lx =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


Ly =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


Lx =



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


(3.8)

Figure 3.1: SAFE model

As to the cross section, the equation of motion is generated by substituting

kinetic energy function and potential energy function into Hamilton’s Principle. If the

Hamilton’s Principal contains some nonconservative energy, the final results will include

the dissipation information. However in order to simplify the problem one assumption

accepted is energy conservation on the cross section. The imaginary parts in the final

results are used to estimated the dissipation energy in the cross section. This assumption

is discussed by [9, 10]

Hamilton’s Principle states:
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δH =
∫ t2

t1
δ(Φ−K)dt = 0 (3.9)

where Φ is strain energy and K is the kinetic energy. The strain energy is :

Φ =
1
2

∫
V

ε
T C̃εdV (3.10)

where V means volume, the real part of the results stands for elastic energy and

the imaginary part represents the dissipation energy. Eq.3.11 shows the kinetic energy:

K =
1
2

∫
V

u̇T
ρu̇dV (3.11)

Rewritting the Eq.3.9 after integration by parts:

∫ t2

t1

[∫
V

δ(εT )C̃εdV +
∫

V
δ(uT )ρu̇dV

]
dt = 0 (3.12)

Therefore, the displacements can be represented by assuming wave propagating

in the x direction as an analytic harmonic function:

u(x,y,z, t) =


ux(x,y,z, t)

uy(x,y,z, t)

uz(x,y,z, t)

=


ux = (y,z)

ux = (y,z)

ux = (y,z)

ei(ξx−ωt) (3.13)

where i is the imaginary units,namely i =
√
−1

The cross section is discretized by finite elements thus the notation ΩΩΩ should be

changed into ΩΩΩe to represent the discretization in the cross section. In this thesis the
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mesh is generated by two softwares, namely MATLAB[11] and ABAQUS

Substituting Nk(y,z) and nodal displacements[12] into equation3.13 yields :

u(e)(x,y,z, t) =



n
∑
j=1

N j(y,z)Ux j

n
∑
j=1

N j(y,z)Uy j

n
∑
j=1

N j(y,z)Uz j



(e)

ei(ξx−ωt) = N(y,z)q(e)ei(xix−ωt) (3.14)

where[13]

N3×3n =



N1 0 0 ... ... ... Nn 0 0

0 N1 0 ... ... ... 0 Nn 0

0 0 N1 ... ... ... 0 0 Nn


(3.15)

q(e) =

[
Ux1 Uy1 Uz1 ... ... ... Uxn Uyn Uzn

]T

(3.16)
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ε(e) =

[
Lx

∂

∂x +Ly
∂

∂y +Lz
∂

∂z

]
N(y,z)q(e)ei(kx−ωt)

= (B1 + ikB2)N(y,z)q(e)ei(kx−ωt)

B1 = LyN,y +LzN,z

B2 = LxN

(3.17)

Rewritting Hamilton’s Principles:

∫ t2

t1

{
nel⋃

e=1

[∫
Ve

δ(ε(e))dV +
∫

Ve

δ(u(e)T )ρeü(e)dVe

]}
(3.18)

Substituting Eq.3.17 into Eq.3.18 yields:

∫
Ve

δ(ε(e)T )C̃eε(e)dV(e) =

∫
Ωe

∫
x δ(q(e)(BT

1 − ikBT
2

[
ei(kx−ωt)

]T
)C̃e(B1 + ikB2)q(e)e(i(kx−ωt)dxdΩe

∫
Ve

δ

[
q(e)(BT

1 − ikBT
2

]
C̃e(B1 + ikB2)q(e)dΩe =

δq(e) ∫
Ωe

[
BT

1 C̃eB1− ikBT
2 C̃eB1 + ikBT

1 C̃eB2 + k2BT
2 C̃eB2

]

(3.19)

It should be noted that iT =−i and substituting 3.14 into 3.18 yields:
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∫
Ve

δ(u(e)T )ρeü(e)dVe =
∫

Ωe

∫
x δ(u(e)T )ρeü(e)dxdΩe

=−ω2δ(q)(e)T
∫

Ωe
NT ρeNdΩeq(e)

(3.20)

And

∫ t2

t1

{
nel⋃

e=1

δq(e)T
[
k(e)

1 + ikk(e)
2 + k2k(e)

3 −ω
2m(m)

]}
= 0 (3.21)

where

k(e)
1 =

∫
Ωe

[
BT

1 C̃eB1
]

dΩe

k(e)
2 =

∫
Ωe

[
−BT

2 C̃eB1 +BT
1 C̃eB2

]
dΩe

k(e)
3 =

∫
Ωe

[
BT

2 C̃eB2
]

dΩe

m(e) =
∫

Ωe

[
NT ρeNdΩe

]

(3.22)

After assembling

∫ t2

t1

{
δUT [K1 + ikK2 + k2K3−ω

2M
]

U
}

dt = 0 (3.23)

where

K1 =
nel⋃

e=1
ke

1 K2 =
nel⋃

e=1
ke

1

K3 =
nel⋃

e=1
ke

1 M =
nel⋃

e=1
Me

(3.24)

Finally the homogeneous wave equation without material attenuation is yielded:
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[
K1 + ikK2 + k2K3−ω

2M
]

M U = 0 (3.25)

In order to eliminate the imaginary unit in the all matrices, the following operations

can be done without changing the absolute values:

T =



i

1

1
. . .

i

1

1



(3.26)

The properties of the T is :

TT = T∗ TT T∗ = T∗TT = I (3.27)

Therefore

TT K1T = K1 TT K3T = K3 TT MT = M (3.28)

TT K2T =−K̂2 (3.29)

Thus the final eigenvalue problem is showing:
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[
K1 + kK̂2 + k2K3−ω

2M
]

M Û = 0 (3.30)

For materials with some attenuation both propagative and evanescent modes are

needed, for each given frequency ω the multiple wavenumbers will be obtained . However

each wavenumber has two parts. Real parts represent the velocity of the traveling waves.

The amplitudes of imaginary parts represent the decay information about the waves, so

the eigensystem can be rewritten as following:

[A− kB]2M Q = 0 (3.31)

where[14]

A =

 0 K1−ω2M

K1−ω2M K̂2

 (3.32)

B =

K1−ω2M 0

0 −K3

 Q =

 Û

kÛ

 (3.33)

Based the operations before, A and B are real symmetric matrices. In this case

for each given frequency ω, there are 2M wavenumbers k generated and corresponding

2M eigenvectors . The ”+” real parts of the eigenvalues indicate wave propagating in

the +x direction. On the contrary, the ”-”real parts of the eigenvalues indicates wave

propagating in the -x direction. Correspondingly, the”+” amplitude of the imaginary

parts mean evanescent waves decaying in the +x direction and the ”-” amplitude of the

imaginary parts means evanescent waves decaying in the -x direction. The phase velocity
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is calculated by cph = ω/kreal .

In the undamped case, the problem can be simplified as follows:

[
K1−ω

2M
]

M Û = 0 (3.34)

3.3 Calculation of group velocity and energy velocity

The definition of the group velocity must be done from two adjacent points from

the same mode, for example A and B:

cg =
∂ω

∂k
≈ ωA−ωB

kA− kB
(3.35)

It is therefore necessary to track the same mode at different frequencies. A direct

way to get group velocity without two adjacent points would be helpful. The procedure

is shown as follows[15, 5]:

∂

∂k(
[
K(k)−ω2M

]
ÛR) = 0

K(k) = K1 + kK̂+ k2K̂3

(3.36)

where ÛR is the right eigenvectors

ÛT
L

[
∂

∂k
K(k)−2ω

∂ω

∂k
M
]

ÛR = 0 (3.37)

It should be noted that ∂ω

∂k can be represented as follows[16, 17]:

cg =
∂ω

∂k
=

ÛT
L (K̂2 +2kK3)ÛR

2ωÛT
L MÛR

(3.38)

As for the damped case, the cg becomes complex so differentiation cannot be
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achieved. Group velocity will show some infinite values. In this situation the energy

velocity plays an important role to show the same information as the group velocity

without infinite values. The definition of the energy velocity[18, 19, 20] is:

Ve =
1
Ω

∫
Ω

Px̂dΩ

1
T
∫

T
1
Ω
(
∫

Ω
etotdΩ)dt

(3.39)

where x̂ is the unit vector of propagation direction, P means Poynting vector

,which is calculated as following:

P =−1
2

Re(σσσu̇∗) (3.40)

where u̇∗ means the complex conjugate of the particle velocity vector.

〈ek〉t =
ω2

4
ρuT u (3.41)

〈ek〉t =
1
4

εεε
T C′εεε (3.42)



Chapter 4

SAFE Modeling of Plates

4.1 Viscoelastic isotropic plate

In this section, a viscoelastic isotropic plate is simulated by SAFE. An important

characteristic of this material is high damping[21]. This case is also studied in Refs[19,

18] The material properties are density ρ = 953kg/m3, thickness h = 1mm longitudinal

bulk velocity cL = 2344m/s, shear bulk wave velocity cT = 953m/s, longitudinal bulk

wave attenuation kL = 0.055N p/wavelength, shear bulk wave attenuation kT = 0.286N p/wavelength.

The new shear and longitudinal bulk wave velocities with attenuation can be

written as:

c̃T = cT

[
1+ i kT

2π

]−1

c̃L = cL

[
1+ i kL

2π

]−1

(4.1)

And the corresponding Young’s modulus and Poisson’s ratio are as follows:

27
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Ẽ = ρc̃2
T

[
3c̃2

L−4c̃2
T

c̃2
L−c̃2

T

]

ν̃ = 1
2 c̃2

T

[
c̃2

L−2c̃2
T

c̃2
L−c̃2

T

] (4.2)

The corresponding Lame Constants are:

λ̃ = Ẽν̃

(1+ñu)(1−2ñu)

µ̃ = Ẽ
2(1+ñu)

(4.3)

The stiffness matrix becomes:

C̃ =



λ̃+2µ̃ λ̃ λ̃

λ̃ λ̃+2µ̃ λ̃

λ̃ λ̃ λ̃+2µ̃

µ̃

µ̃

µ̃


(4.4)

Figures 4.1 through 4.4 show the SAFE results for this plate, namely the phase

and energy velocity dispersion curves, and the attenuation dispersion curves(in two

different ranges). These results are consistent with what found in the other references

[1, 22] that studied the same plate. No missing modes exist, and the results are readily

obtained also at the high frequencies without loss of accuracy.
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Figure 4.1: Phase velocity of Lamb modes for 12.7mm viscoelastic plate

Figure 4.2: Energy velocity of Lamb modes for 12.7mm viscoelastic plate
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Figure 4.3: Attenuation of Lamb modes below 500Np/m for 12.7mm viscoelastic plate

Figure 4.4: Attenuation of Lamb modes below 3500Np/m for 12.7mm viscoelastic
plate
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4.2 Viscoelastic orthotropic plate

In this section, a viscoelastic orthotropic plate is considered and all material

properties[22] are shown on the Table4.1. The density is 1500g/m3.This case is also

studied Ref.[23]. Another important purpose of this section is to compare the two

viscoelatic models of hysteretic and Kelvin-Voigt. These two models are compared from

the aspects of phase velocity (Figure4.5 and Figure4.6), energy velocity (Figure4.7 and

Figure4.8), attenuation (Figure4.9 and Figure4.10).

Also the comparisons are applied to the SH waves from these three aspects as

shown in Figure4.11 to Figure4.16

Table 4.1: Elastic and viscous properties of the orthotropic plate(GPa)

C11 C12 C13 C22 C23 C33 C44 C55 C66
132 6.9 5.9 12.3 5.5 12.1 3.32 6.21 6.15
η11 η12 η13 η22 η23 η33 η44 η55 η66
0.4 0.001 0.016 0.037 0.021 0.043 0.009 0.015 0.02

Table 4.2: T300/914 material properties (GPa)

C11 C12 C13 C22 C23 C33 C44 C55 C66
143.8 6.2 6.2 13.3 6.5 13.3 3.6 5.7 5.7
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Figure 4.5: Phase velocity dispersion curves(Lamb Modes) by using the Hysteretic
model

Figure 4.6: Phase velocity dispersion curves (Lamb Modes) by using the Kelvin-Voigt
model
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Figure 4.7: Energy velocity dispersion curves (Lamb Modes) by using the Hysteretic
model

Figure 4.8: Energy velocity dispersion curves (Lamb Modes) by using the Kelvin-Voigt
model
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Figure 4.9: Attenuation dispersion curves (Lamb Modes) by using the Hysteretic model

Figure 4.10: Attenuation dispersion curves (Lamb Modes) by using the Kelvin-Voigt
model
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Figure 4.11: Phase velocity dispersion curves by using the Hysteretic model

Figure 4.12: Phase velocity dispersion curves (SH modes) by using the Kelvin-Voigt
model
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Figure 4.13: Energy velocity dispersion curves (SH modes) by using the Hysteretic
model

Figure 4.14: Energy velocity dispersion curves (SH modes) by using the Kelvin-Voigt
model
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Figure 4.15: Attenuation dispersion curves (SH modes) by using the Hysteretic model

Figure 4.16: Attenuation dispersion curves (SH modes) by using the Kelvin-Voigt
model
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4.3 Elastic composite lamina

In this section, a 1mm thick carbon-epoxy lamina is considered. There is no

material attenuation in this case.The material properties[24] are shown in Table 4.2. There

are different fiber directions so in the local coordinate 1 indicates the fiber direction, 2

is perpendicular to 1 but still in the plane and 3 means out of plane direction through

the thickness. Assuming transverse isotropiy 5 independent constants in the constitutive

matrix exist:

C44 = 0.5× (C33−C12) (4.5)

In order to simulate this problem, the properties are first decoupled from local coordinates

into global Cartesian Coordinates. Therefore a rotation matrix is needed to transform

every components from the local to the global coordinates as illustrated in Figure4.17 and

Figure4.18. And three rotational angles are studied between two fibers, shown on from

Figure4.19 to Figure4.24,whose angles are 0 degree 45 degree and 90 degree respectively.

Cθ = R1CR−1
2 (4.6)

z

y
x

2h

Figure 4.17: Global System Illustration
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Figure 4.18: Transformation matrix illustration

R1 =



m2 n2 2mn

n2 m2 −2mn

1

m −n

n m

−mn mn m2−n2


[6×6]

(4.7)
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R1 =



m2 n2 mn

n2 m2 −mn

1

m −n

n m

−2mn 2mn m2−n2


[6×6]

(4.8)

where

m = cosθ n = sinθ (4.9)

Figure 4.19: Phase velocity dispersion curves for 0 degree wave propagation



41

Figure 4.20: Group velocity dispersion curves for 0 degree wave propagation

Figure 4.21: Phase velocity dispersion curves for 45 degree wave propagation
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Figure 4.22: Group velocity dispersion curves for 45 degree wave propagation

Figure 4.23: Phase velocity dispersion curves for 90 degree wave propagation
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Figure 4.24: Group velocity dispersion curves for 90 degree wave propagation
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4.4 Multilayer Composite Laminate

In this section, a laminate composed of 18 plies (lamina) is studied. The first and

the last plies have different materials from the center part plies. The material properties

of the central material is shown in the Table 4.3. And the material properties on the

outer material are shown in the Table4.4. A schematic is shown in the Figure4.25. The

FE mesh in this section is generated from ABAQUS. In Figure4.26 and Figure4.27, the

effects of different material property changes are shown these results indicate a potential

to perform property identification from observation of dispersion properties of the guided

waves. This effect would involve an inverse optimazation process.

Table 4.3: Properties of center plies—-Cytec X840/Z60 12k Tape Lamina

E11 E22 E33 G12 G23 G13
168.2GPa 10.3GPa 10.3GPa 7GPa 3.7GPa 7GPa
ν12 ν23 ν13 Thickness Density Plies number
0.27 0.54 0.27 0.142mm 1.6g/m3 2-17

Table 4.4: Properties of outer plies—-Cytec X840/Z60 Plain 6k Weave Fabric Lamina

E11 E22 E33 G12 G23 G13
80GPa 80GPa 13.8GPa 6.5GPa 4.1GPa 5.1GPa
ν12 ν23 ν13 Thickness Density Plies number
0.06 0.37 0.5 0.208mm 1.6g/m3 1 , 18
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Figure 4.25: Illustration of Multiply laminate

Figure 4.26: Phase velocity of A0 mode with different properties for a multilayer
laminate

Figure 4.27: Phase velocity of S0 mode with different properties for a multilayer
laminate
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Figure 4.28: Cross sectional shape of S0 mode for multilayer laminate at 170kHz
cp = 6218s/m2

Figure 4.29: Cross sectional shape of A0 mode for multilayer laminate at 170kHz
cp = 1576m/s
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Figure 4.30: A0 3D mode shape in one time step at 170kHz cp = 1576m/s

Figure 4.31: A0 3D mode shape in next time step at 170kHz cp = 1576m/s
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Figure 4.32: S0 3D mode shape in one time step at 170kHz cp = 6218m/s

Figure 4.33: S0 3D mode shape in next time step at 170kHz cp = 6218m/s



Chapter 5

SAFE Application to Rail Tracks

5.1 Geometry Generation

In this section, the arbitrary cross section of a rail[25] is calculated by using

SAFE method[26, 27]. Both ABAQUS and MATLAB pdetool can generate the rail track

cross section. Figure 5.1 shows the mesh generated by ABAQUS. A hybrid way was

used for 3D mode shape calculations. First, plot the cross section in the ABAQUS and

the mesh ,which achieves more boundary nodes in the geometry. Second, put these nodes

into MATLAB pdetool and generate the mesh. Third, export the mesh with three matrices

’ p t e ’. Based on the MATLAB pdetool the ’p’ is coordinates matrix for each nodes and

’t’ is the element numbers versus nodes number array , which are also achievable from

ABAQUS. The ’e’ matrix shows information about the boundary nodes location ,which

is very important in generating the 3D mode shapes. Because the 3D model in MATLAB

is not a solid one but a combination of two end surface and one skin. The skin shows

the essential idea of SAFE ,namely wave in the propagation direction approximated by

analytical exponential function, which needs all the information of the cross section

nodes and MATLAB pdetool has an obvious advantage on this. The properties of rail

49
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track are shown in Table5.1.

Figure 5.1: 136-lb A.R.E.M.A Rail Track Mesh by ABAQUS

Table 5.1: Material Properties of 136-lb A.R.E.M.A Rail Track

ρ cL cT kL kT
7932kg/m3 5960m/s 3260m/s 0.003N p/wavelength 0.043N p/wavelength

5.2 Results

The dispersion curves for this rail are showing from Figure5.2 to Figure 5.4. In

order to avoid the infinite values , energy velocity dispersion curves are shown instead of

group velocity dispersion curve. Three different mode shapes are shown in both 2D and

3D from Figure5.6 to Figure5.11.

Corresponding 2D and 3D mode shape based on Figure5.5
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Figure 5.2: Energy velocity dispersion curves of 136-lb A.R.E.M.A Rail

Figure 5.3: Wavenumber dispersion curves for 136-lb A.R.E.M.A Rail
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Figure 5.4: Phase velocity dispersion curves of 136-lb A.R.E.M.A Rail

Figure 5.5: Phase velocity dispersion curves of 136-lb A.R.E.M.A Rail below 10kHz
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Figure 5.6: 2D Mode shape of 136-lb A.R.E.M.A Rail at 5kHz

Figure 5.7: 3D Mode shape of 136-lb A.R.E.M.A Rail Track mode1 at 5kHz
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Figure 5.8: 2D mode shape of 136-lb A.R.E.M.A Rail Track mode2 at 5kHz

Figure 5.9: 3D mode shape of 136-lb A.R.E.M.A Rail Track mode2 at 5kHz
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Figure 5.10: 2D mode shape of 136-lb A.R.E.M.A Rail Track mode3 at 5kHz

Figure 5.11: 3D mode shape of 136-lb A.R.E.M.A Rail Track mode3 at 5kHz



Chapter 6

Force responses with SAFE

6.1 Discretization in time and space domains

In this section, a five cycles with Hanning window force excitation is considered[28,

29]. This case is not free vibration any more. The boundary condition in the form of

forces are added to the system. However the eigenanalysis system is still used but

some approximation is applied to get particular solution caused by the excitation. The

governing equation becomes [30, 5]:

Ve =
∫

Ωe

δuT tdΩ (6.1)

where u is still displacement vector but with the excitation information in it. t is

the external force vector or traction vector. Variables are not only in the space domain

but also in the time domain.

t(e)(x,y,z, t) = N(y,z)T(e)e−iωt =

[∫ +∞

−∞

N ¯T(e)eikxdx
]

e−iωt (6.2)

where T̄(e) is the force traction vector but in frequency domain by using Fourier
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Transform. Substituting 6.2 into 6.1 yields the following equation:

V (e)
e =

nel⋃
n=1

∫
Ωe

δu(e)T t(e)dΩ

=
nel⋃
e=1

∫
Ωe

[
(ei(kx−ωt))T δq(e)T Nt(y,z)

][∫ +∞

−∞
N(y,z)T̄(e)ei(kx−ωt)dx

]
dydz

=
nel⋃
e=1

δq(e)T ∫
Ωe

N(T )(y,z)N(y,z)T̄(e)dxdy
∫ +∞

−∞
(ei(kx−ωt))T ei(kx−ωtdx

(6.3)

where N is still the shape function as before only containing variables in space

domain. Therefore representing the problem with matrix form yields the following

governing equation:

[
K1 + ikK2 + k2K3−ω

2M
]

M Û = f (6.4)

where f is the force vector tractions instead of body forces

f =
nel⋃
e=1

∫
Ωe

NT (y,z)T̂(e)dxdy (6.5)

The following expression can be written:

(A− kB)Q = p (6.6)

Where A and B are obtained as free boundary cases. And p is given as the

following:

p =

0

f

 (6.7)

In order to get the particular solution, an orthogonal eigenvector basis is used. It

should be noted that the generalized eigenvectors from MATLAB are not orthogonal.Therefore
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orthogonalization should be approached before the following eigen decomposition.

Q =
2M

∑
m=1

QmΦ
R
m (6.8)

(A− kB)
2M

∑
m=1

QmΦ
R
m = p (6.9)

Multiplying left eigenvector on both left hand sides yields:

Φ
L
l (A− kB)

R

∑
m=1

= Φ
L
l p (6.10)

Based on the orthogonality of eigenvectors condition:

ΦL
l AΦR

m =


0, if l 6= m.

ΦL
mAΦR

m = kΦL
mBΦR

m, if l = m.

ΦL
l (−kB)ΦR

m =


0, if l 6= m.

−kΦL
mBΦR

m, if l = m.

(6.11)

Yielding the following equation:

ΦL
m(A− kB)QmΦR

m = ΦL
mp

QmΦL
mAΦR

m− kQmΦL
mB = kmQmΦL

mBΦR
m− kQmΦL

mBΦR
m =

kmQmBm− kQmBm = (km− k)QmBm = ΦL
mp

(6.12)
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where the Qm is :

Qm =− ΦL
mP

(k− km)Bm
(6.13)

And the force vector can be expressed as :

Q =
2M

∑
m=1
− ΦL

mP
(k− km)Bm

Φ
R
m (6.14)

And the displacement vector is:

Û(k,ω) =
2M

∑
m=1
− ΦL

mP
(k− km)Bm

Φ
Rup
m (6.15)

A Delta Dirac excitation can be expressed as:

p =
∫ +∞

−∞

p̃δ(x− xs)e−ikxdx = p̃e−ikxs (6.16)

where p̃ represents the nodal force. So the final displacement vectors can be

expressed as follows:

U(x,ω) =
∫ +∞

−∞

ŪE ikxdk =
∫ +∞

−∞

2M

∑
m=1
− ΦL

m
(k− km)Bm

Φ
Rup
m

1
2π

p̃e−ikxdk (6.17)

By using the residue theorem, the displacement vector becomes:

U(k,ω) =
2M

∑
m=1
− ΦL

mP̃
(k− km)Bm

Φ
Rup
m eiξm(x−xs) (6.18)

when x > xs the displacement vector also can be rewritten as:

U(k,ω) =
M

∑
m=1

αmΦ
Rup
m eiξm(x−xs) (6.19)
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The coefficient α is a participation factor:

αm =−ΦL
mp̃

Bm
(6.20)

It should be noted that right now everything is still in the frequency domain,

so the final MATLAB function ifft is needed to convert back to the time domain. The

excitation form studied is shown in Figure6.1

For a generic excitations:

F(ω) =
∫

∞

−∞

F(t)e−iωtdt (6.21)

where F is transformed into frequency domain by using Fourier Transform and the

corresponding displacement vector generated in the frequency domain is:

V (x,ω) = F(ω)U(x,ω) = F(ω)
M

∑
m=1

αmΦ
Rup
m eiξm(x−xs) (6.22)

Finally applying Inverse Fourier Transform :

V (x, t) =
1

2π

∫ +∞

−∞

V(x,ω)eiωtdω (6.23)
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Figure 6.1: Excitation form

Figure 6.2: Impulse response of Laminate from SAFE at a distance of 22cm from the
excitation



Chapter 7

Conclusions

This thesis has discussed the Semi-Analytical Finite Element (SAFE) framework

for modeling guided wave dispersive problems in cases where theoretical solutions are

difficult to achieve because of either material complexity (e.g. damping or anisotropy) or

geometrical complexity (e.g. complicated cross-sections such as rail tracks). Ultrasonic

guided waves are a great tool for structural diagnostic (damage detection and property

identification) of a variety of structural components with waveguide geometry. Guided

waves, however, are multimode and dispersive and proper predictions of these behaviors

are necessary for a proper implementation of any guided wave testing procedure. The

SAFE framework allows to discretize only the cross-section of the waveguide, and

imposes analytical solutions in the wave propagation direction. As such, it allows to

handle complicated material or geometrical properties as long as the waveguide has a

uniform cross-section in the wave propagation direction.

This thesis present results for the following cases: a viscoelastic isotropic plate, a

viscoelastic orthotropic plate, an elastic transversely isotropic lamina, an elastic multilayer

anisotropic composite laminate, and a rail track. In all of these cases, theoretical guided

wave dispersion solutions are either difficult to obtain or not available. SAFE allows
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to extract the key dispersion behavior results with little limitation for the upper bound

frequency that is only limited by the cross-sectional FE discretization refinement. The

thesis also considers the case of forced solutions, where an arbitrary forcing function

can be modeled and the structures response is then calculated. The forced solution is

important because the majority of practical guided wave testing involves the measurement

of a response to an active excitation.
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