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The first part of the dissertation focusses on spatial and temporal modeling of point processes

on linear networks. Point processes on/near linear networks can simply be defined as point

events occurring on or near line segment network structures embedded in a certain space.

A separable modeling framework is presented that fits a formation and a dissolution model

of point processes on linear networks over time. Two major applications of the separable

temporal model are spider web building activity in brick mortar lines and wildfire ignition

origins near road networks.

The second part of the dissertation focusses on analyses of large energy databases, specif-

ically the Energy Atlas database. The main motivation of this part is to explore and under-

stand the issues of balancing necessary data resolution while maintaining consumer privacy.

The issue of data resolution and its importance are explored by first tackling a specific

policy objective. This is achieved by applying a longitudinal quantile regression model to

parcel-level monthly energy consumption in the Westwood neighborhood; the model results

aid in fulfilling e�ciency goals outlined in the California Senate Bill 350. Then the issue

of record privacy is explored through a review of current privacy methods, implementation,

data ownership, and concluded with avenues of future research.
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Part I

Linear Networks
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CHAPTER 1

Introduction

The main objective of Part 1 of the dissertation is to develop statistical methodology to

analyze point events occurring on or near linear networks. While the methodology is being

developed on a dataset of spider web positions on mortar lines (see Figure 1.1), another

objective is to apply and assess the methodology and its transferability to other areas. Two

such areas that could gain from such analysis are street crimes and human related wildfires.

Part 1 of the dissertation will demonstrate this methodology and outline the process of

applying it to human related wildfires. The ultimate goal is to establish strong statistical

methodology that can tackle new issues arising at the common crux of point process and

network theories.

1.1 Background

While point process theory is well established, spatial analysis of events along networks

is not extensive. A large portion of this analysis has been spearheaded by Okabe and

collaborators, with applications to boutique openings along Tokyo streets and Acacia tree

populations along road networks. The only textbook that addresses this area titled “Spatial

Analysis along Networks: Statistical and Computational Method” by Okabe and Sugihara

(2012), introduces multiple examples and expands on computational methods appropriate

to network processes.

Baddeley’s work extends the point process theory to network processes with applications

to street crimes in Chicago and spine formation on dendrite networks of neurons. Ang et al.

(2012) expand on the (empirical) ‘network K function’ introduced by Okabe and Yamada,
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to incorporate network generality resulting in a more interpretable network K function. The

geometrically corrected empirical K function weights the shortest path distance between a

pair of points (xi, xj), with the reciprocal of the number of points on the network situated

at the same distance from xi as xj is. The corrected network K function is

K̂L(r) =
|L|

n(n� 1)

nX

i=1

X

j 6=i

1{dL(xi, xj)  r}
m(xi, dL(xi, xj))

(1.1)

where n is the total number of points in the process, |L| is the total length of the network,

dL(xi, xj) denotes the shortest path distance and m(xi, dL(xi, xj)) is the number of points

on L lying at the exact distance dL(xi, xj) away from point xi. This reciprocal weighting is

similar to Ripley’s (1977) isotropic edge correction as it considers the number of neighbors

on the ball of radius dL(xi, xj) centered on xi. These results are further extended to an ‘inho-

mogeneous’ network K function and the pair correlation function. The corrected network K

function and the inhomogeneous versions are fitted to a single quadrant of spider data; both

reveal only insignificant clustering at larger scales, attributable to spatial inhomogeneity.

The authors of Ang et al. (2012) conclude that the spider data does not show evidence of

clustering and are consistent with complete spatial randomness. Note that the spider data

used for this paper did not include covariate information on the spiderwebs, possibly losing

some information. More details about the spider data and covariates are provided in Section

1.3.

Ang et al. (2012) also apply the methods to street crime data from an area close to

the University of Chicago. There are 116 points on a linear network of length 9.5km; the

covariates on the crime were ignored for this application. The inhomogeneous network K

function showed no evidence of clustering; however, the authors believe there is confounding

of inhomogeneity and clustering at short distances and suggest further study.

Baddeley et al. (2014a) apply the corrected network K function to spines on dendrite

networks of neurons resulting in an extension to multitype points. The data used in the paper

is of an observed spine pattern on dendrite network of a rat neuron. At a specific resolution,

the spines can be categorized into 3 types based on their size. It is necessary to study the

spatial distribution of spines to understand normal function and disease processes; and since

3



the spines occur only on a dendrite network, event analysis along linear networks is a natural

choice. Fitting the inhomogeneous network K function did not reveal significant clustering

but the authors present numerous caveats to interpreting these results in a biological context.

The in vivo dendrite network occurs in a 3D space but the observed data was a response

of a designed experiment; the in vitro neurons are almost flat and the third dimension was

ignored in this case. The authors also express a need for more explicit models that can

handle such data structures.

1.2 Motivation

Thus far, the existing literature presents computational and descriptive methods comple-

mentary to point process literature adapted to linear networks. There has been little work

that consciously integrates network structures into spatial point pattern analysis. Given

the advent of this new data structure, the methodology presented in the dissertation under

Chapter 2 is an e↵ort to adapt and integrate spatial analysis and network theory, and pro-

duce a compounded modeling framework. The motivation is to harness insights from spatial

geometry imposed by network structures to better understand and predict event occurrence.

The spiderweb data provides the locations of webs made by the small Oecobius navus in

the crevices of mortar lines on brick walls. The indented mortar lines provide the perfect

structural support for web building, while the overall network of lines delineate and guide

web formation over the whole wall. Initially pursued as a curious application, the spiderweb

data has been used as a guide to build a spatial and temporal model of point processes on

linear networks (Chapter 2). One can see that this example is analogous to many structural

processes observed in multiple fields; examples include events along stream networks, events

along Interstate high-tension wires, water and gas pipeline networks, etc.

The two applications that have caught attention that can largely benefit from such mod-

eling, with extensions to prediction, are street crimes and human related wildfires originating

on/near road and trail networks. Mapping and predicting ‘hot spots’ for street crimes and

human related wildfire origins could greatly aid police and firefighter e↵orts on ground.

4



Crimes in cities follow a categorical, spatial pattern depending on the type of target and

crime; the distribution of residential and commercial areas naturally influence crime occur-

rence and spatial temporal modeling of crimes over city road networks is the logical next

step (Hering and Bair (2014)).

In case of wildfires, it has been recorded that more than 95% of California wildfires have

human related origins; as most wildfire origins are in non-urban settings, we want to map

and understand their interaction with the extensive road and trail network that exists in

most park and forest areas of California. With the right and su�cient covariate information,

mapping wildfire origins with respect to road and trial networks could reveal high intensity

regions that require greater fire management. The methodology presented below is a step

towards achieving greater insight into such areas that require a rigorous amalgamation of

both point process and spatial network theories. The model application to wildfire origins

is presented in Chapter 3.

1.3 Spider Data

This data was identified by entomologist Sasha Voss of University of Western Australia and

manually digitized by Mark Handcock. The dataset records the Oecobius navus spider web

positions in the mortar lines of brick walls. The dataset consists of weekly recordings from

two di↵erent sites (D & F ), each with two fixed quadrants (Q1 & Q2), observed over a six

week period fromMay to July 1999. The quadrants were defined to be 1125mm2 in size. Each

weekly recording captured the position of the webs (all containing spiders, indicated by WA

or WJ) and the position of individual spiders (indicated by A or J) to the closest millimeter.

The covariate information on the spider was whether it is an Adult (A) or a Juvenile (J)

individual (see Figure 1.1). Site D houses a few extra quadrants titled R1, R2, R3 and R4,

recorded over 5 days, that only provide locations with no covariate data; it is likely that

these locations are of both webs and individual spiders.
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Figure 1.1: Site D, Quadrant Q2 on 10th June 1999.

1.3.1 Background on Oecobius navus

While the Oecobius navus is not extensively studied, the available behavioral traits could aid

model specification. This cosmopolitan dweller grows up to 4mm in diameter (see Figure 1.2)

and prefers to build webs on heat retaining substrates. These spiders are not known to live

communally with each web generally housing only a single spider. Each web also generally

contains one or more egg sacs. A disturbance of the web causes the spider to escape in a

straight line fashion, often encroaching and displacing another spider from its web. As a

result, we cannot attribute webs and egg sacs to specific individuals.

1.3.2 Randomization Tests

Permutation tests that map the nearest neighbor covariate distributions were conducted

over all the quadrants. After identifying and noting the contingency table of covariates on

6



Figure 1.2: Scale of Oecobius navus shown on an American penny.

the first nearest neighbor from all points, the marks (covariates WJ, WA, J and A) on the

points are permuted n times, using a distribution proportional to the original marks. The

set of covariates on the first nearest neighbor for each of the n permuted point processes are

recorded and plotted to be compared with the original contingency table of nearest neighbor

covariates. Overall, the tests do not reveal any significant results with respect to the nearest

neighbor covariates. However, there are a few quadrants that revealed significantly higher

values of juvenile webs neighboring other juvenile webs. This might be attributable to the

fact that there is almost always an egg sac in every web.

Ang et al. (2012)’s inhomogeneous corrected network K function mentioned above was

also fit on the spider quadrants using the spatstat package in R. As we can see in Figure 1.3,

the K function reveals varying levels of clustering, dispersion and even complete randomness

with respect to a poisson distribution depending on the quadrant. Figure 1.3 presents four

such quadrants and their inhomogeneous network K functions.

1.4 Point Processes on Linear Networks

A point process is a set of unordered points x = x1, . . . , xi, . . . , xn, such that n � 0 and

xi 2 W where W is a spatial window in d-dimensional space Rd, d � 1. The window W is

assumed to have finite positive volume |W |.
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Figure 1.3: Inhomogeneous network K function on 4 unique quadrants

A line segment in a plane with endpoints u and v is written as [u,v ] = {tu + (1 � t)v :

0  t  1}. A linear network L is defined as a union L =
S

n

i=1 `i of a finite collection of line

segments `1, . . . , `n in the plane. The total length of all the line segments in L is denoted by

|L|. Another way to represent a linear network L is by a set of vertices v1, . . . , vn and edges

eij = [vi, vj], such that the intersection of two di↵erent edges occurs at only one point.

A point process on a linear network is a point process that occurs on or near a linear

network, generally in a 2-dimensional space. The occurrence of the point process on/near

the linear network could be due to the structural limitations of the point generating process

such as road accidents on a street network, or due to a contextual relationship between

the point process and the environment it occurs in. For instance, the occurrence of human
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settlements near and around river networks demonstrates the synergic interaction between

a point process and a pre-existing linear network structure. While the majority of the

examples illustrated in this dissertation are physical and social events occurring on a plane,

the occurrence of such data structures is not limited to these fields. The occurrence of spines

on a neuron dendrite network is one such case.

1.4.1 Inhomogeneous Intensity function

The first established step in understanding a point process (on a linear network or otherwise)

is by estimating an intensity function (first moment measure) for the points. The intensity

function �(u) provides the probability of a point occurring at infinitesimal space; otherwise it

is the expected infinitesimal rate of the point in the observed window W . Given the covariate

information on the spider and web positions, the ideal case is to estimate an inhomogeneous

intensity function �✓(u) that depends on the covariates to capture the ‘spatial trend’. Ideally,

this can be done through formulating a likelihood function and estimating the parameters

through maximum likelihood. However, formulating and evaluating a likelihood function

comprising of individual intensities of the points P (X|⇥), where X = (x1, . . . , xn) is highly

intractable. A convenient approximation to this is the pseudolikelihood function that is a

product of conditional intensities of each point. The conditional intensity assumes point

independence given all other points in the process.

The first step in formulating the pseudolikehood function is to estimate the (Papangelou)

conditional intensity at every location u 2 W as:

�(u;x) =
f(x [ {u})
f(x \ {u}) (1.2)

Using the covariate information on web locations, we can use a log-linear model to estimate

this conditional intensity as:

�✓(u;x) = exp (✓TS(u;x)) (1.3)

where S(u;x) is a matrix of spatial and network covariates defined at each point u in W ,

while ✓ 2 ⇥ is the vector of parameters to be estimated. The natural covariates appropriate
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for the spider data include euclidean and geodesic distance to the nearest neighbor, covariates

on the nearest neighbor, the mortar line network etc.

1.4.2 Inference

Given the conditional intensity (1.2), the pseudolikelihood of a point process as defined by

Besag (1977) is given by:

PL(⇥;x) = (
Y

xi2W

�✓(xi;x)) exp (�
Z

W

�✓(u;x)du) (1.4)

Substituting our log-linear conditional intensity (1.3) into (1.4) gives us the following pseu-

dolikelihood:

PL(⇥;x) = (
Y

xi2W

exp (✓TS(xi;x)) exp (�
Z

W

exp (✓TS(u;x))du) (1.5)

The numerical solution to the above expression needs iterative algorithms. The estima-

tion method used by Baddeley and Turner (2000) in R’s spatstat package is an adaptation

of a technique introduced by Berman and Turner (1992). The estimation method, with the

help of a quadrature rule, discretizes the integral calculation to a weighted poisson likelihood.

We can approximate the integral in (1.4) using any quadrature rule,

Z

W

�✓(u;x)du ⇡
mX

j=1

�✓(uj;x)wj (1.6)

where uj, j = 1, . . . ,m, are points in W and wj > 0 are quadrature weights summing to

|W |. This produces an approximation to the log-pseudolikelihood of (1.4) as:

logPL(⇥;x) ⇡
nX

i=1

log �✓(xi;x)�
mX

j=1

�✓(uj;x)wj (1.7)

An observation by Berman and Turner (1992) notes that if the list of points {uj, j =

1, . . . ,m} includes all the data points {xi, i = 1, . . . , n}, then (1.7) can be rewritten as

logPL(⇥;x) ⇡
mX

j=1

(yj log �j � �j)wj, (1.8)
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where �j = �✓(uj) and yj = zj/wj, and

zj =

8
><

>:

1 if uj is a data point, uj 2 x

0 if uj is a dummy point, uj /2 x
(1.9)

The right side of (1.8) for a fixed x is formally the log-likelihood of independent Poisson

variables Yk with mean �k, with weights wk. As a result, a GLM software capable of han-

dling weighted likelihoods where the weights do not add up to one, and accepts non-integer

response values can be used to estimate the pseudolikehood. However, as the GLM setup

assumes independent poisson variables, which is not the case here, the standard errors pro-

duced by the software are invalid. As an alternative, Moving block bootstrap standard errors

are presented.

1.4.3 Moving Block Bootstrap for Spatial Data

As the Papangelou conditional intensity of spider occurrence is spatially dependent, one

cannot draw random samples from the spider dataset to produce bootstrap samples. As

an alternative, the Moving Block Bootstrap (MBB), introduced independently by Kunsch

(1989) and Liu and Singh (1992), is employed here to produce bootstrapped standard errors.

The idea of applying moving block bootstrap to spatial data was also introduced by Hall

(1985).

Assume that X1, X2, . . . is a sequence of stationary random variables, and let Xn =

(X1, . . . , Xn) denote the observations. In the spider case, Xn represents the complete set

of data and dummy points from the wall quadrant. Given the data, blocks of size l are

defined as Bj = (Xj, . . . , Xj+l�1), j = 1, . . . , N where N = n� l+ 1 denotes all the possible

overlapping blocks in Xn. The bootstrap blocks are obtained by selecting a random sample

of b blocks from the full set of overlapping blocks {B1, . . . , BN}.

For the standard errors in Table 1.1, the moving block bootstrap method was implemented

with block size of about 13,000 data points. The entire set of data and dummy points over a

single quadrant is around 14,000 data pints. This results in a set of about 1001 overlapping

blocks. Given that the data and dummy points are spatially ordered, 1000 samples of blocks
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were drawn, and modeled through the GLM software to obtain the empirical distribution of

each of the model coe�cients. The sample standard deviation of this empirical distribution

provides the moving block bootstrap standard errors of the model coe�cients. The 2.5%

and 97.5% quantile values of the empirical distributions provides the MBB 95% confidence

interval, as seen in Table 1.1.

1.5 Application to Spider Data

An example of this log-linear conditional intensity function for quadrant Q2 in site D, is

shown in Table 1.1. The intensity is estimated on the locations of both the spiders and the

webs. This was a deliberate choice to understand how the occurrence of spiders a↵ects place-

ment of webs around the quadrant. In general, the presence of juvenile spiders (compared

to adult spiders) increases the intensity of spider and web presence. The same increase is

seen with adult and juvenile occupied webs compared to just adult spider presence. This

lends to the idea that juvenile spiders, and webs are relatively more common and stable than

the adult spiders; this supports the already known fact that the Oecobius Navus spiders are

highly mobile. The intensity of webs and juvenile spiders is higher compared to adult spiders

over all the three models (Table 1.1); however, beside the first model (with both Euclidean

and Geodesic distances), the estimates in the last two models are right on the edge of the

MBB 95% confidence interval. This could indicate the absence of strong regressors in these

models.

The distance measures (Euclidean and Geodesic) provide a slightly di↵erent story. Table

1.1 provides three di↵erent intensity estimates with, and without the geodesic, and euclidean

distance measures. While both the euclidean and geodesic distances to the closest point

negatively a↵ect spider and web occurrence, the geodesic distance e↵ect is much larger.

Given the construction of the mortar linear network, web and spider occurrence is heavily

dependent on the shortest path distance to the next closest spider or web. Higher the geodesic

distance to the next closest point on the quadrant, lower the conditional intensity of a web

or spider occurrence. This indicates a certain degree of grouping or radius of activity for the
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spiders and web occurrence; a radius of activity that occurs along the mortar line network.

The geodesic distance estimate in the second model is outside the MBB 95% confidence

interval, but all the other distance estimates (euclidean and geodesic) in the other models

are not significant or on the edge of the 95% CI. This could indicate that while the geodesic

distance measure is a↵ecting web and spider occurrence more than the euclidean distance

measure, the models might be missing other stronger regressors that capture web and spider

intensity. Other regressors could include brick substrate temperature, presence of predators

and prey, time of the day, etc. Either way, all three models present a much higher geodesic

estimate than an euclidean estimate. This indicates that the Oecobius Navus spider species’

activity is motivated by the mortar line network; conceptually, the indented mortar lines

not only provide structure for web building and protection from the elements, but also seem

to motivate the location of web building in relation with neighboring webs.

The plotted conditional intensities of the second and third models of Table 1.1 are shown

in Figure 1.4. The top 20% of the estimated log intensities is plotted in yellow while the lower

80% of the estimated log intensities is plotted in purple. The model with the geodesic distance

measure has produced much more spatially concentrated intensities while the model with

the euclidean distance measure has high intensity spread out around the region of spider and

web presence. The spatial plot for the model with both the euclidean and geodesic distance

measures looks very similar to the model plot with just the geodesic distance measure.

The high intensity concentration in the geodesic model plot was explored further by

attempting a few alternative ideas. These included categorizing the geodesic distance into

levels and log transforming the right skewed geodesic distances. However, both options once

again produced highly concentrated intensity estimates over the linear network. While there

is evidence that geodesic distance does a↵ect web presence, range of geodesic spider activity

should be further explored through localized network related statistics. This could shed light

on the concentrated, localized intensities.
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Intensity of D.Q2.10.6 with Euclidean & Geodesic distances

Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -5.015 4.789 (-27.3, -4.9)

Euclidean dist -0.032 0.057 (-0.128, 1.22e-14)

Geodesic dist -6.782 1.498 (-6.813, 5.34e-15)

Juvenile 2.202 1.314 (-8.37e-13, 2.101)

Web Adult 2.251 1.475 (-8.37e-13, 2.251)

Web Juvenile 2.298 1.330 (-8.37e-13, 2.299)

Intensity of D.Q2.10.6 with Geodesic distance

Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -5.164 5.049 (-27.3, -5.8)

Geodesic dist -6.757 1.599 (-6.55, 2.49e-15)

Juvenile 2.201 1.713 (-8.79e-13, 2.276)

Web Adult 2.251 1.826 (-8.79e-13, 2.537)

Web Juvenile 2.298 1.662 (-8.79e-13, 2.377)

Intensity of D.Q2.10.6 with Euclidean distance

Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -4.604 4.707 (-27.3, -4.92)

Euclidean dist -0.352 0.092 (-0.4, 4.91e-15)

Juvenile 2.201 2.344 (-9.14e-13, 2.317)

Web Adult 2.249 2.437 (-9.14e-13, 2.642)

Web Juvenile 2.304 2.052 (-9.14e-14, 2.50)

Table 1.1: Intensity function summaries of D.Q2.10.6 quadrant where MBB stands for Mov-

ing Block Bootstrap

1.6 Conclusion

The intensity of both the spider and web locations is a simple, first step in setting up point

process theory on linear networks. It has revealed that despite the spiders’ free movement

over the brick wall, web construction and activity are delineated to the linear network and

their occurrence is dependent on path distances to the nearest neighbors. This sort of

structured data that combines point patterns and linear networks is abundant but barely

explored. The next couple Chapters extend the current theory to a temporal setting and
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Figure 1.4: Intensity function estimates over the D.Q2.10.6 quadrant with Geodesic and

Euclidean distance measures. The Yellow regions indicate the top 20% of the estimated

log intensities while the purple indicates the lower 80% of the estimated intensities. The

Intensity function with both the Geodesic and Euclidean distance measures is very similar

to the one with just the Geodesic distance measure.
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apply it to wildfire ignition locations near road networks.
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CHAPTER 2

Separable Temporal Model on Linear Networks

The spider data presented in Chapter 1 was collected as weekly snapshots, over six weeks.

This allows for a natural extension to temporal modeling. The goal of this Chapter is to

capture the dynamic action of new and existing points entering and exiting the process.

The spider data is apt for such modeling as new webs are built while existing webs persist

and disintegrate over time. The primary concept is to estimate separable formation and

dissolution intensity functions that capture the change in the point process over a single

time step. Conditioned on time step t, the product of the formation and dissolution models

estimates the point process at time step t+1. The model can be extended to be conditioned

on all the previous time steps, allowing for generalized formation and dissolution models

that could be used for prediction.

The impetus for this separable temporal model was gained from the Separable Temporal

Exponential Random Graph model (STERGM) framework for dynamic networks developed

by Krivitsky and Handcock (2014). They present separable formation and dissolution models

that estimate tie formation and breakage between nodes over time.

2.1 Motivation for the Separable Model

The addition of a linear network to a point process space is a crucial aspect of the Separable

Temporal Linear Point Process (STLPPM) model presented in this Chapter. While this

model is only relevant for point patterns that occur on or near linear networks, the network’s

delineation of events is important in supplying new information to understand the point

pattern. For example, wildfires that have human-related causes can be modeled with respect
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to existing road networks to understand how human movement and activity lead to wildfire

ignitions. The density of roads and building structures could determine areas with higher

intensity of human-caused wildfire ignitions.

The motivation for a separable modeling framework for point processes is to understand

how the underlying social or geological factors propel a point process. Simultaneously, the

separable model captures the factors’ e↵ects on the point’s persistence and dissolution over

time. In social/geological processes, some factors might a↵ect event formation more than

others and similarly with event dissolution. While the formation and dissolution processes

might interact over the long run, for computational and interpretive advantages, we assume

formation and dissolution separability over a time step, conditioned on the previous time

step. Given the state of the process in the previous time step, the formation and dissolution

processes are conditionally independent allowing us to model them with a di↵erent set of

su�cient statistics.

For example, given the state of the spider webs in the previous step, the probability

of a new web forming is independent of the web dissolution process taking place on the

same plane. The formation probability is also conditionally independent of all events(webs)

around it in the current time step.

2.2 Model Specification

Given an observed point process on a linear network xt at time step t, the formation point

process X+ includes the new points along with the existing points at t and the dissolution

point process X� includes only the points that persisted on from time t. The realized

counterparts of these processes are x+ and x�. Given x+, x� and xt, the point process xt+1

can be evaluated as follows:

xt+1 = x� [ (x+\xt) (2.1)
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where x+ = xt [ xt+1 and x� = xt \ xt+1. If X+ is conditionally independent of X� given

Xt then

P (Xt+1 = xt+1|Xt = xt;✓) = P (X+ = x+|Xt = xt;✓)P (X� = x�|Xt = xt;✓) (2.2)

Here separability is defined as X+ being conditionally independent of X� given Xt, such

that the parameter space ✓ is a product of the individual parameter spaces ✓+ and ✓�.

This indicates that the point formation process is (conditionally) independent of the point

dissolution process given the point process at the previous time step; the formation and the

dissolution processes do not interact, once the point process at the beginning of the time

step is observed.

Individually, the web formation model is:

P (x+|xt) =
Y

u2W

�(u;x+) =
Y

u2W

exp {(✓+)TS+(u;x+,xt)} (2.3)

and the web dissolution model is:

P (x�|xt) =
Y

u2W

�(u;x�) =
Y

u2W

exp {(✓�)TS�(u;x�,xt)} (2.4)

where u indicates every point on the whole window W on which the linear point process was

observed. The conditional intensities of the formation and dissolution processes are esti-

mated using log-linear models(as seen in section 1.4.2), with S+(u;x+,xt) and S�(u;x�,xt)

representing the su�cient statistics, based on Xt = xt, which attempt to capture the tenacity

and degradation of webs over time.
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2.3 Pseudolikelihood Inference

Using equations (2.3) and (2.4), the conditional intensity for the separable model (2.2) can

be written as follows:

�✓(x
t+1|xt) =

Y

u2W

�(u;x+)
Y

u2W

�(u;x�) (2.5)

=
Y

u2W

exp {(✓+)TS+(u;x+,xt)}
Y

u2W

exp {(✓�)TS�(u;x�,xt)}

= exp{
X

u2W

((✓+)TS+(u;x+,xt))} exp{
X

u2W

((✓�)TS�(u;x�,xt))}

= exp{
X

u2W

((✓+)TS+(u;x+,xt)) +
X

u2W

((✓�)TS�(u;x�,xt))} (2.6)

Given this model specification, the pseudolikelihood function of the separable temporal

linear point process model (using Besag’s pseudolikelihood definition) is

PL(⇥;xt+1) =

✓ Y

xi2W

�✓(x
t+1|xt)

◆
exp

✓
�
Z

W

�✓(x
t+1|xt)du

◆
(2.7)

logPL(⇥;xt+1) =
nX

i=1

log �✓(x
t+1
i

|xt)�
Z

W

�✓(x
t+1|xt) (2.8)

The integral in (2.8) can be approximated using a finite sum quadrature rule, as shown

in section 1.4.2:

Z

W

�✓(u|xt,✓)du ⇡
mX

j=1

�✓(uj|xt,✓)wj (2.9)

where uj, j = 1, . . . ,m, are points in W and wj > 0 are quadrature weights summing to

|W |. This produces an approximation to the log-pseudolikelihood in (2.8) as:

logPL(⇥;xt+1) ⇡
nX

i=1

log �✓(x
t+1
i

|xt)�
mX

j=1

�✓(uj|xt,✓)wj (2.10)

Consider a list of points {uj, j = 1, . . . ,m} that include all the data points {xi, i =

1, . . . , n}, then (2.10) can be rewritten as:

logPL(⇥;xt+1) ⇡
mX

j=1

(yj log �j � �j)wj, (2.11)
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where �j = �✓(uj) and yj = zj/wj, and

zj =

8
><

>:

1 if uj is a data point, uj 2 x

0 if uj is a dummy point, uj /2 x
(2.12)

The expression in (2.11) is similar to the log-likelihood of independent poisson variables

Yk with means �k taken with weights wk. Once again, similar to what was implemneted

in Chapter 1, a GLM framework software that is capable of handling weighted likelihoods

and non-integer variable was used to fit the STLPPM framework. Separate, non-parametric

moving block standard errors are estimated for each of the covariates. Given (six weeks of)

data and dummy points of size 100000, and a block size of around 93000, there are about 7000

possible overlapping blocks to sample from. Keeping the data and dummy points spatially

and then, temporally consecutive, 1000 samples were drawn and the separable model was

rerun on the 1000 blocks. The standard errors, the 2.5%, and 95.5% quantile values of

the coe�cient empirical distributions are presented in Table 2.1. More details and some

alternatives are considered in Section 3.4.2.

2.4 Separable Temporal Modeling of the Spider Data

This section presents estimates of the formation and dissolution models on the second quad-

rant of site D, referred to as D.Q2 from here onwards. Quadrant D.Q2 was observed over six

weeks from 27th May 1999 to 2nd July 1999. As mentioned before, each web is occupied by

either an adult or juvenile spider and free standing adult and juvenile spider locations were

also recorded. However, since these cosmopolitan spiders are extremely mobile, the model

below is estimated on just the web locations.

For both the formation and dissolution models, first the x+ and x� processes were

compiled. The formation process is a union of all the points that occurred in time steps t

and t+ 1. The dissolution process is the intersection of all the points that occurred in time

steps t and t + 1. This way, given the six weeks of data on quadrant D.Q2, five formation

and dissolution processes were compiled.
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Aside from the geodesic distance (closest path distance to the next nearest web) as one of

the covariates, a persistence covariate was introduced in the dissolution model of quadrant

D.Q2. As the Oecobius Navus spider webs survive for periods longer than a week, the weekly

quadrant records captured the same web over multiple weeks. However, the web occupants

(Adult or Juvenile spiders) changed over the weeks. As a result, the persistence covariate

captures if a web is new, or has existed from the previous time step as is, or if the web’s

occupant switched over the time step. These levels are labeled as new, exist and switch in

Table 2.1.

Since not much is known about web building by theOecobius Navus spiders, the formation

model was kept simple with just the geodesic path distance and web’s spider factor as the

two covariates.

Formation model Intensity of D.Q2 quadrant

Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -4.145 2.684 (-27.302, -27.302)

Web Juvenile 0.054 0.425 (-2.52e-12, 2.71e-12)

Geodesic Distance -5.212 0.574 (-1.34e-14, 1.28e-14)

Dissolution model Intensity of D.Q2 quadrant

Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -3.029 2.094 (-27.302, -27.302)

Web Adult.switch -18.198 1.559 (-5.89e-12, 5.95e-12)

Web Adult.new -18.191 1.558 (-5.89e-12, 5.69e-12)

Web Juvenile.exist 0.041 0.035 (-5.59e-12, 6.04e-12)

Web Juvenile.switch -18.191 1.558 (-5.89e-12, 5.89e-12)

Web Juvenile.new -18.206 1.560 (-5.89e-12, 5.80e-12)

Geodesic Distance -5.104 0.427 (-1.08e-14, 9.19e-15)

Table 2.1: Formation and Dissolution intensities of D.Q2 quadrant where MBB stands for

Moving Block Bootstrap
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2.5 Interpretation

The separable temporal model was set up to understand the formation and dissolution

processes of a point pattern separately. The idea is to gain insight into factors that allow a

new point event to occur or an existing point event to persist over time.

2.5.1 Formation Model

The idea of the formation model is to estimate the intensity of a new event occurring at a

point on a window given certain covariates. The formation model intensity on quadrant D.Q2

provides the conditional intensity of a new web forming given the shortest path distance to

the next closest web and the spider covariate of a web at that point from the previous time

step.

The formation model estimates, seen in Table 2.1 indicate that the geodesic distance

negatively e↵ects new web formation over time. The larger the geodesic path distance to

the next closest web, the lower the conditional intensity of a new web forming at that point.

This grouping behavior was also seen in the simple conditional intensity function estimated

over a single quadrant in Chapter 1. This indicates that new web formation occurs within

a certain radius of existing webs, and the formation activity is along the network lines; this

could be due to juvenile spiders from existing webs moving out to build new webs nearby.

Another factor a↵ecting new web formation is whether the specific point was previously

occupied by an adult or juvenile spider. The conditional intensity of a new web forming

is slightly higher for a juvenile spider than an adult spider. It is known that almost every

web contains an egg sac (Cobb (1994)), and this could lead to higher number of juvenile

spiders moving out to build new webs. The formation model could reveal more with an

entomologist’s insight; better field knowledge could also aid in choosing more appropriate

formation model covariates such as presence of predators and prey etc.

Both the covariate estimates are well outside the Moving block bootstrap 95% confidence

intervals, as seen in Table 2.1. However, the current formation model could possibly be

23



improved upon by adding stronger regressors.

2.5.2 Dissolution Model

The idea of the dissolution model is to understand the process of point event persistence

rather than estimate the exact time of point event dissolution. Another interpretation of the

dissolution model is that it estimates factors that a↵ect the length and lifetime of a point

event rather than estimate the lifetime of the point event itself. The conditional intensity of

the dissolution model estimates the likelihood of a point event surviving until the next time

step.

The coe�cient estimates, seen in Table 2.1, reveal that geodesic path distance to the

next closest web is still negatively a↵ecting the probability of a web surviving beyond the

observed time. This indicates that the farther an existing web is to a nearest web, the lower

its likelihood of surviving to the next time step. This reiterates that there is an active radius

of web building close to pre-existing webs.

The more revealing covariate is the persistence factor with Adult-occupied existing web

as the reference level. The likelihood of an adult-occupied web persisting is much higher than

for an adult-occupied web that used to be a juvenile-occupied web. Similarly, an existing

adult-occupied web has a higher persistence probability than a newly formed web with an

adult. This could speak to the fact that similar spider species are known to encroach on

fellow spider webs and occupy them (Cobb (1994)).

For the juvenile-occupied webs, the likelihood of persistence for an existing juvenile-

occupied web is barely larger than it is for an existing adult-occupied web. Once again,

juvenile-occupied webs that switched from adult occupancy have a very low probability of

surviving onto the next time step. The same goes for newly formed juvenile-occupied webs,

when compared to existing adult-occupied webs.

Generally, the dissolution model indicates that the pre-existing webs are highly likely to

persist, with juvenile-occupied webs lasting slightly longer than adult-occupied webs. Webs

that experience spider switching have much lower life spans. Finally, majority of the webs
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seem to last for the larger part of the six-week span of data collection, indicating a need to

expand the time span, and also the length of the time step. Alternative model covariates

(such as weather and predators) might also improve insight into what allows a web to persist

for longer periods.

Once again, all the covariate estimates are well outside the MBB 95% Confidence inter-

vals, indicating that web occupation and occupant switching are higly indicative of web life

span in these spider species.

2.6 Conclusion

The separable temporal point process model on linear networks was set up to understand

the progression and dissolution of point patterns distinctly occurring on linear networks.

While the spider web location data on mortar lines is an interesting application, the model

could gain from stronger, more prescient applications. Wildfire ignition locations near road

networks is one such application. The model setup of conditional independence between the

formation and dissolution processes is an easy first step but depending on further applica-

tions, this assumption could be changed.

Moreover, since the separable model is estimated using maximum pseudolikehood, it

is lacking in model assessment methods. Some possible options for model assessment are

explored in Chapter 3.
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CHAPTER 3

Applications to Wildfire Origins

3.1 Motivation

One of the most pressing, large-scale disasters a↵ecting the state of California and other

parts of the country are wildfires. California is specifically prone to high-intensity fires due

to its dry summers and vegetation. Southern California also faces high speed winds called the

Santa Ana winds, that originate inland and bring hot, dry air with them, which further create

critical fire weather conditions. The California Wildland Fire Coordinating Group reports

that “approximately 95% of all wildfires in California have human-related origins”. A paper

by Balch et al. (2017), analyzing 1.5 million government records of wildfires between 1992

to 2012, reports that about 84% of all US wildfires have human-related origins and humans

are also extending the length of fire seasons. Human-related origins of wildfires include

equipment use, vehicular fire, campfire, debris burning, smoking, children and arson.

Where ever a human-related wildfire originates, an individual needed to have access to

the area, most likely through a network of roads, paths and trails. Moreover, there has been

a rapid expansion of wildland-urban interface (WUI) in the country, increasing the chances

of harmful human activity near fuel rich areas (fuel rich indicates low moisture vegetation).

Given the high frequency of human-related ignitions and growing wildland-urban interface

(WUI) in the country, it is useful to understand how human density and movement a↵ect

the spatial and temporal distributions of wildfire ignitions. The STLPPM model framework

introduced above and tested on spider webs is appropriate to model wildfire ignitions with

respect to road and trail networks. It would be immensely useful if we could identity wildfire

ignition hot spots highly correlated with human foot and vehicular tra�c.
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3.2 Current Literature

To forecast and monitor wildfire ignition hazard, the United States National Fire Danger

System (NFDRS), established in 1972, produces several indices based on fuel type, weather,

topography and other fire rise conditions. The Fire Spread Component (how fast the fire

spreads), the Energy Release Component (the energy produced by the fire), and Ignition

Component are three components that contribute to the more commonly used Burning

Index (di�culty of control). The components themselves are based on meteorological and

environmental factors. The Burning Index is used to predict wildfire hazard on a day to day

basis and is extensively used by fire managers to make decisions about resource allocation,

preparedness, and warnings. Schoenberg et al. (2007) show that the weather variables,

that the Burning Index is composed of, are better predictors of short-term wildfire hazard

and activity than the Burning Index itself. These weather variables include wind speed,

relative humidity, precipitation and temperature. The analysis in Schoenberg et al. (2007)

was conducted on the origin times and centroid locations of 592 wildfires in the Los Angeles

county recorded between January 1976 and December 2000. The area burnt is added as a

mark on each fire. The paper uses daily weather data collected by the 16 RAWS(Remote

Automated Weather Stations) located across the Los Angeles county. The RAWS were set

up by the United States Forest Service in 1976 and each station collects various weather

data and sends daily summaries to a central data center for archival.

The first model in Schoenberg et al. (2007) is a simple spatial, temporal conditional

intensity function fit using the daily Burning Index, a spatial background rate estimated by

kernel smoothing the 1950-1975 fires and a distribution of wildfire areas of the 1976-2000 fires.

This model is compared to a series of alternative models that use the RAWS variables–relative

humidity, precipitation, temperature and wind speed–directly in estimating the conditional

intensity function. The comparison shows that the simple point process models perform

better in predicting wildfires than the Burning Index itself. The paper concludes that while

the weather variables are strong indicators of wildfire occurrence, many other variables such

as fuel age, fuel moisture, vegetation, land use and other human interaction variables could
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improve model performance.

The Xu and Schoenberg (2011) paper is an extension of the above paper, where the

authors refine the point process models and include new variables such as burn area, fuel

age and wind direction. The wildfire data analyzed here is the same as the one described

above. Once again, it is important to note that the papers model the centroid locations

of the polygon burn area, and not the ignition locations of the wildfires. Before model

fitting, the daily meteorological variables, from the 16 RAWS stations across the Los Angeles

county, are smoothed using kernel methods. Kernel regression was used to temporally and

spatially smooth the relative humidity, precipitation, wind speed and temperature variables

and directional kernel regression (Xu et al. (2011)) was used to smooth wind direction.

The baseline model that the authors begin with depends only on the season associated

with time t, and the background rate m(x, y) of wildfires for the location in question. This

simple reference model is

�(t, x, y) = �m(x, y) + ↵S(t), (3.1)

where � and ↵ are parameters to be estimated in model fitting. The background rate

m(x, y) was estimated using the 1950-1975 wildfires instead of the 1976-2000 wildfires to

avoid overfitting. Similarly, the seasonal rate S(t) is estimated using the times of wildfires

during the previous years. Standard kernel density estimators are used to estimate both the

trends.

m(x, y) =
1

n0�m

n0X

j=1

K

✓
(||(x, y)� (xj, yj)||

�m

◆
(3.2)

S(t) =
1

n0�t

n0X

j=1

K

✓
T ⇤(t)� T ⇤(tj)

�t

◆
(3.3)

K is the kernel function, �m and �t are the bandwidths estimated during model fitting,

(xj, yj) and tj indicate the jth wildfire coordinate and time between 1950-1975, and n0 is

the number of observed wildfires. ||(x, y) � (xj, yj)|| is the Euclidian distance and T ⇤(t)

represents the number of days since the beginning of the year to time t. For S(t), K is
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a wrapped kernel function allowing January 1 and December 31 to be treated as one day

apart.

The subsequent models presented in Xu and Schoenberg (2011) are extensions to the

baseline model presented in equation (3.1) above. Model 1(shown in equation 3.4) adds the

interpolated Burning Index (available only at RAWS locations) as a term to the intensity

function. Model 2(shown in equation 3.5) adds spatial interpolation of temperature, relative

humidity, wind speed, and precipitation at time t to the intensity function. The smoothing

kernels in Model 2 are also weighted by the wildfire burn area to allow for nonlinear depen-

dence of burn area on weather variables. Model 3 extends Model 2 by adding a directional

kernel term for wind direction. Finally, Model 4 incorporates fuel age as a final term. Fuel

age is the time since the location’s last recorded burn, has an nonlinear relationship with

burn area.

�1(t, x, y) = �m(x, y) + ↵S(t) + µBIB(t, x, y) (3.4)

�2(t, x, y) = �m(x, y) + ↵S(t) + F (t, x, y) (3.5)

where B(t, x, y) is a kernel smoothed Burning Index and F (t, x, y) represents the distance-

weighted kernel smoothing of temperature, ralative humidity, directed wind speed and pre-

cipitation.

The authors conclude that while the model with the Burning Index fits better than the

baseline model, all other models using weather variables directly fit better than the Burning

Index model. While the major goal of the paper was to assess the Burning Index and

its short term, forecasting e↵ectiveness of wildfire hazard, authors acknowledge that the

models could be improved further by incorporating factors such as vegetation, land use and

public policy. Moreover, long-term temporal trends could be incorporated by allowing yearly

seasonal components to change.

The final paper summarized here is one by Syphard and Keeley (2015), and explores

wildfire ignition causes. So far, the two papers by Schoenberg et al. (2007) and Xu and

Schoenberg (2011) only analyze the centroid locations of wildfires’ burn areas and no mention

of the wildires’ origin or ignition locations is made. However, from Balch et al. (2017) and
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California Wildland Fire Coordinating Group(CWCG), we know that approximately 95% of

all wildfires in California are caused by humans. Syphard and Keeley (2015) is a paper that

explores the issues of wildfire ignition causes, and how they a↵ect the spatial and temporal

distribution of wildfires.

The paper begins with the goal of identifying whether di↵erent ignition sources cause

distinct spatial or intra-annual temporal patterns of wildfires. The idea is to aid adoption

of specific ignition prevention programmes optimized to target high frequency and potent

ignition causes. Syphard and Keeley (2015) focus on wildfires in two sub-regions including

the Santa Monica Mountains in Ventura and Los Angeles county, and the western portion of

San Diego county that falls within the South Coast Ecoregion in southern California. These

regions are not only topographically and biologically diverse, but 95% of all ignitions here

are caused by humans.

The analysis is on wildfire ignitions from 2006 to 2010, and variables included are el-

evation, slope gradient, Calveg vegetation data and fuel age. Moreover, as human-caused

ignitions occur frequently near transportation corridors, the authors included interpolated

maps of distance to roads and residential structures to capture human and housing density.

The housing density is an important factor because with the expansion of Wildland-Urban

Interface(WUI), the number and areal extent of human ignitions has escalated over the

years. Wildland-urban Interface is defined as the area where structures and other human

development meet and intermingle with undeveloped wildland (Radelo↵ et al. (2005)).

For the statistical analysis, Syphard and Keeley (2015) use a Maximum Entropy model

to estimate probability of ignition given the wildfire ignition locations and various meteoro-

logical and human variables. The authors fit a separate model for each ignition type and

conclude that while equipment fires were the most frequent, arson and power line ignitions

caused the most area burned in the Santa Monica Mountains region. It is also stated that

distance to roads and structures predominantly a↵ect ignition, especially ignition causes such

as arson, equipment use, playing with fire, smoking and vehicular fire. As the modeling was

ignition cause specific, 30% of the ignitions labeled unknown or miscellaneous were deleted.
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Maximum Entropy is a presence-only, statistical algorithm that iteratively minimizes the

relative entropy between probability densities of explanatory variables at ignition locations

vs. locations randomly distributed across the sub-region. To estimate the probability of

wildfire ignition, given the environmental factors, the MaxEnt framework uses the Bayes’

rule and the ratio of presence and background rate:

Pr(y = 1|z) = f1(z)Pr(y = 1)

f(z)
, (3.6)

where Pr(y = 1) is the marginal probability of wildfire ignition, f1(z) is the marginal distri-

bution of presence only (ignition location) environmental factors and f(z) is the distribution

of environmental factors over the entire region. Syphard and Keeley (2015) do not adopt a

specific value for Pr(y = 1) and only model the log of the density ratio as:

log
f1(z)

f(z)
= ⌘(z)

f1(z) = f(z)e⌘(z), (3.7)

where ⌘(z) = ↵ + �h(z). Here, f(z), the background variation of all the environmental

factors, is estimated through a random sample of 10,000 points, and separate MaxEnt models

are fit for each ignition type. The paper presents variable importance, as a function of

information gain, as the final results.

The Maximum Entropy model framework is contentious among Statisticians due to its

assumption of identifiability of prevalence. It is also a bit adhoc and does not provide a

framework to directly model wildfire ignition probabilities, unlike logistic regression models.

In addition, the authors make an erroneous assumption that non-ignition points are not true

absence points, treating ignition locations as presence-only data. This results in a model that

only provides ordinal values of variable importance and does not explain ignition likelihood

directly. The model assumptions and results are further discussed in relation to the separable

model results presented in Section 3.5.
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3.3 Data Overview

3.3.1 Road network

To aid comparison with Syphard and Keeley (2015), the Santa Monica Mountains region is

chosen to model the wildfire origins with respect to the existing road and trail network. The

road and trail network was extracted using OpenStreetMap (https://www.openstreetmap.

org), an open source website providing downloadable map data from all over the world. The

raws vector map object of the Santa Monica Mountains region, within a specified bound-

ing box, is downloaded from OpenStreetMap and preprocessed to a R compatible spatial

object through the R package ‘osmar ’. The bounding box of the extracted network is

[�119.079888,�118.44189] for longitude and [33.99637, 34.17661] for latitude. The linear

network that will be used from here on to analyze wildfire origin point processes is shown

below:

Figure 3.1: Linear Network in the Santa Monica Mountains Region

The OpenStreetMap(osm) object also provides a road tag for each of the ways, and
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some of the 22 roadtags include footway, bridleway, motorway, service road etc. As the

road categorizations are too specific, they have been consolidated into 5 broad categories

depending on their tra�c and foot activity, and whether they are commercial or residential.

The 5 road categories are in Table 3.1 and the map is in Figure 3.2. And finally, the

percentage of the linear network comprised by each road type is shown in Table 3.2, with

paths and then residential road types making up most of the linear network at 45% and 30%

respectively.

Road Category OSM Road tag

Residential living street + residential

Path cycleway + footway + path + bridleway + steps + track + pedestrian

Road1 motorway + motorway link + trunk + trunk link + primary + primary link

Road2 secondary + secondary link + tertiary + tertiary link + service

Unknown road + unclassified

Table 3.1: Road categorization

Figure 3.2: Road type in the Santa Monica Mountains Region

3.3.2 Wildfire ignition data

The wildfire data analyzed in this dissertation is from the database, ‘Spatial wildfire oc-

currence data for the United States, 1992-2013’ (Short (2015)), compiled and cleaned by

Karen C. Short of the United States Forest Service. The data publication contains data on
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Road Category Percentage of Network

Residential 29.5

Path 45.9

Road1 1.9

Road2 19.7

Unknown 2.8

Table 3.2: Road type breakdown in the Santa Monica Mountains Region

all wildfires that occurred in the United States from 1992 to 2013. Newer editions of the

database extend it to year 2015. The wildfire records were acquired from reporting systems

of federal, state, and local fire organizations. The main variables include discovery data, final

fire size, ignition cause and a point location at least as precise as the Public Land Survey

System (PLSS) section (1-square mile grid). The resulting database includes 1.73 million

geo-referenced wildfire records, representing a total of 126 million acres burned during the

22-year period (Short (2014)).

The wildfire dataset was subsetted to just the Santa Monica Mountains region, resulting

in 229 wildfires between 1992 and 2013. Due to meteorological data limitations, all following

analyses will be on wildfires between year 2000 and 2013. This resulted in 175 wildfires in

the Santa Monica Mountains region. The ignition cause breakdown for these 175 fires is

shown in Table 3.3. While 69 out of the 175 fires were labelled unidentified, human-related

causes like equipment use, and campfire contribute their fair share in terms of acres burned.

Despite the availability, the ignition cause variable is not used in model fitting as the main

goal of the linear networks methodology is to account for human activity, and the model’s

performance is best judged without the cause variable.

The 175 wildfires are projected on the linear road network introduced in Section 3.3.1

and the spatial map is shown in Figure 3.4. As the formation model needs the point process

to fall on the linear network, the wildfire origin locations are projected to the nearest linear

network path and the projected wildfires are shown in Figure 3.5. Aside from two wildfires

with origin locations in the water, o↵ the coast, the rest of the wildfire locations are not
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obviously odd. The projected distance of the 175 wildfire locations to the nearest path on

the linear network range anywhere from 1173 meters to 0.05 meters. The two aberrant

wildfires in the water have the farthest projections at 1173 and 660 meters each and these

two wildfires have been removed from the dataset for the rest of the analysis. The mean

projected distance for the 175 wildfires is 66 meters and 150 (85%) of the 175 wildfires are

within 100 meters to the nearest path on the linear network. Once again, the original wildfire

origin locations are at least as precise as 1-square mile grid (1609.34 meter-square grid). All

projection lengths for the 175 wildfires are under a mile in length and a histogram of the

distances can be seen in Figure 3.3.

Ignition Cause # of Fires between 2000 and 2013 Acres burned

Arson 10 26.51

Campfire 4 4916.2

Children 4 42.21

Debris Burning 4 13.3

Equipment Use 36 109.66

Fireworks 3 3.1

Lightning 1 0

Miscellaneous 23 134.91

Missing/Undefined 69 4732.33

Powerline 12 904.9

Smoking 8 1.81

Structure 1 2

Table 3.3: Wildfire Ignition Cause breakdown in Santa Monica Mountains Region

3.3.3 RAWS meteorological data

This subsection outlines the elevation and meteorological data used in the analyses of Santa

Monica Mountains’ wildfires on the road network. As elevation is an important factor in

determining ignition probability, and spread of wildfires, it is added as one of the spatial
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Figure 3.3: Projection Distance in meters of the 2000-2013 wildfire origins to the nearest

road

Figure 3.4: Original Wildfire origins in the Santa Monica Mountains Region between 2000

and 2013

covariates in estimating the wildfire ignition formation intensity. The elevation data for

the Santa Monica Mountains region was sourced from the National Map website (https:

//nationalmap.gov) of the United States Geological Survey. The elevation data sourced is

at 1/3 arc-second resolution, which is the highest resolution of elevation data avaiable for the
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Figure 3.5: Projected Wildfire origins in the Santa Monica Mountains Region between 2000

and 2013

U.S. The resolution or ground spacing is approximately 10 meters north/south, but variable

east/west due to convergence of longitudes with latitude. The elevation map over the Santa

Monica Mountains region is shown in Figure 3.6.

Figure 3.6: Elevation in feet of the Santa Monica Mountains Region

Finally, the meteorological data on daily average temperature, precipitation, humidity,

wind speed, and wind direction are sourced from the RAWS (Remote Automated Weather

Station) archival website hosted by Desert Research Institute at https://raws.dri.edu.

There are only 4 RAWS that fall within the Santa Monica Mountains region and their
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locations can be seen in Figure 3.7.

Figure 3.7: Location of RAWS nearest to the Santa Monica Mountains Region

3.3.4 Smoothing of RAWS data

As the meteorological data is only available from the four RAWS locations shown in Fig-

ure 3.7, spatial and temporal smoothing was performed to be able to include the data as

covariates into the linear point process model. The two methods explored to smooth the me-

teorological data were thin plate spline regression models and generalized additive models.

Each of them are summarized below.

3.3.4.1 Thin Plate Spline Regression Models

Thin plate spline regression models (Nychka (2000)) are fitted on each of the daily meteoro-

logical variables with longitude, latitude and year of the day variables as predictors. Multiple

fits of the thin plate spline models (with quadratic and cubic spatial trends) were explored.

The R package ‘fields ’ was used to fit the thin plate spline regression models on each of

the four meteorological variables (total precipitation, average temperature, average speed,

average humidity). A separate spline model was fitted for each of the 13 years. The thin

plate spline model minimizes the residual sum of squared errors subject to a constraint that

the function has a certain level of smoothness (or roughness penalty). The assumed model
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is additive and the smoothing parameter is chosen by cross-validation.

Y = �0 + f(X) + �, (3.8)

where �0 is a constant, f(X) is a 3-dimensional surface comprised of sum of flexible functions

for longitude, latitude and year of the day and � is the error term that also provides a built-

in smoothing function based on a penalized least squares method. This is equivalent to

minimizing the penalized sum of squares

E�(f) =
1

n

nX

i=1

Wi(yi � f(xi))
2 + �Jm(f) (3.9)

where Jm(f) is the roughness penalty function and � represents the smoothness constraints

(Nychka (2000)). When � > 0 and two dimensions, the roughness penalty function is

J2(f) =

ZZ

R2

(f 2
xx

+ 2f 2
xy

+ f 2
yy
)dxdy (3.10)

� = 0 represents zero smoothness constraints and � = 1 corresponds to fitting the polyno-

mial base model by ordinary least squares.

However, due to the limited number of RAW stations, resulting in just four unique

longitude and latitude pairs, multiple fitting issues (collinearity) were faced; especially for

quadratic and cubic splines models. The linear thin plate spline models, while too simplistic,

also heavily a↵ected the linear model predictions, as explored in section 3.5.3. As a result,

Generalized Additive models were pursued as an alternative.

3.3.4.2 Generalized Additive Models

A generalized additive model (Hastie and Tibshirani (1990)) is a nonparametric case of a

generalized linear model where the predictors are related to the dependent variable via indi-

vidual functional forms and additivity is assumed between these predictor smooth functions.

A simple example is:

g(E(yi)) = ↵ + f1(x1i) + f2(x2i) (3.11)

where yi is the response variable, f1 and f2 are smooth functions of covariates x1 and x2,

and g is the link function. The smooth functions need to adhere to constraints for the model
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to be identifiable. In the case of the meteorological variables, two smooth functions were

used; one was a function of longitude and latitude while the other was a cyclical function on

the day of the year. The R package, ‘mgcv ’ (Wood (2011)) was used to fit the generalized

additive models on the meteorological variables. Once again, a separate GAM was fit on

each of the 13 formation years and the GAM estimates were compared to those from the

thin plate spline models. The GAM estimates were comparatively smoother, and after close

inspection, GAM yearly estimates were used as the yearly meteorological covariates.

The daily wind direction variable was smoothed using directional kernel regression through

the R package ‘directional ’. Once again, longitude, latitude and the day of the year were

used as predictor variables to smooth out the daily wind direction, and a separate directional

model is estimated for each of the 13 years. The estimated angle value is then categorized

into eight directions: North, North-East, East, South-East, South, South-West, West, and

North-West.

Due to extensive missing data before year 2000, the RAWS data used here are only from

years 2000 to 2013; as a result, the wildfires analyzed are also from years 2000 to 2013. Year

2002 has the largest amount of missing RAWS data at 20%; the rest of the years have 12%

or less missing values.

3.4 Formation Model on Wildfire origins along Road Networks

Given the model specification outlined in Section 2.2, the current section presents the forma-

tion model that estimates the conditional intensity of wildfire ignition occurrence in the Santa

Monica Mountains region. To recap, the separable temporal model presented in Chapter 2

outlines the ideas of formation and dissolution processes that are conditionally independent,

but come together to capture the process evolution. The conditionally independent processes

individually explain what factors a↵ect the formation and persistence of a point event on a

linear network over time. In applying this framework to wildfire origin locations, a formation

process model capturing ignition occurrence intensity over time is estimated; a dissolution

model is skipped as extinguished wildfires are not point events and involve concerted human
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e↵ort.

To fit the formation model, the yearly wildfire origin locations are first consolidated into

the formation point processes (xt), where x+ = xt [ xt+1. Each wildfire formation point

process is a union of the wildfires that occurred in 2 consecutive years. For example, the

formation point process between the years 2000 and 2001 is:

x+
2000�01 = x2000 [ x2001 (3.12)

The 14 years of wildfire origin locations between 2000 and 2013 result in 13 formation

point processes that form the basis of the formation model. Each formation point process is

assigned with dummy points that are placed equidistantly on the linear network and weighted

accordingly. The data points (wildfire origin locations) are also assigned weights based on

the length of the network segment they lie on. Through the Berman-Turner device (Berman

and Turner (1992)) introduced in Sections 1.2.3 and 2.3, the weighted data and dummy

points along with their corresponding spatial covariate values (meteorological and network)

produce the following estimate to the wildfire ignition formation model (conditional intensity

of ignition occurrence), seen in Table 3.4.

An important note to mention about the results in Table 3.4 is that the maximum

pseudolikehood coe�cient estimates are presented with bootstrap standard errors. While

the Berman-Turner method and the GLM software serve as convenient computational tools

to estimate the Papangelou conditional intensity (through a log-linear model), the GLM

software incorrectly assumes identical and independently distributed Poisson observations,

which is not the case here. As a result, non parametric methods are adopted for model

inference; the bootstrap method for dependent data used here is outlined in Section 3.5.2

and model assessment is covered in Section 3.6.

3.4.1 Model Interpretation

Looking at the estimate values in Table 3.4, all of the roadtypes–in comparison to residential

roads–contribute positively to the conditional intensity of wildfire ignition. Paths, Road1,

and Road2 categories are all likely to increase wildfire ignition intensity by at least a factor
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of 1.5 when compared to residential roads. Road1, representing the highways and primary

roads, increases ignition intensity by a factor of 7.7. This is possibly due to the high speed

vehicular tra�c, equipment use, and power lines along Road1 category roads. The Unknown

road type, despite its small representation of the full network at just 2.8%, also has a rel-

atively high e↵ect on ignition intensity. These roadtype coe�cients clearly indicate that

human and vehicular activity are leading factors in determining ignition frequency of wild-

fires. The road network acts as a perfect proxy for human and vehicular activity and find

that it plays an important role in understanding the spatial distribution of wildfire ignitions

over the years.

The e↵ect of months varies depending on the month, with August(month 8) as the

reference factor level; August is a relatively dry month that also receives the dry, high speed

Santa Ana winds from the East, making it a high fire hazard month. Compared to August,

almost every other month has a lower intensity of ignition at varying degrees (see Figure 3.8).

February has the lowest rate of ignition intensity while July has the highest rate of ignition

intensity compared to August. June and September display only slightly lower intensities

than August; overall the Summer and early Fall months (time of Santa Ana winds) indicate

higher ignition intensities than the Winter and Spring months. The monthly seasonal e↵ects

on ignition intensity can be seen in Figure 3.8. Despite the monthly e↵ect, there has been

a sustained expansion in the length of fire seasons due to increase in human-related causes

(Balch et al. (2017)). While this expansion in the fire season is not captured due to the

time inhomogeneity of the model, the inclusion of the road network as a human proxy does

account for the human involvement in wildfire ignition intensity over the 14 year time period.

Two meteorological variables, total daily precipitation and average daily humidity, slightly

decrease ignition intensity for every unit increase in value. The daily average temperature

and daily average windspeed variables slightly increase ignition intensity for every unit in-

crease in value. Compared to these meteorological variables, all the wind direction categories,

compared to winds blowing from the West, positively e↵ect ignition intensity. Specifically,

winds blowing from the North-East and the South-East have some of the highest positive

e↵ects on ignition intensities in comparison to winds blowing from the West. Note that the
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Figure 3.8: Monthly Estimated Conditional Intensity of Wildfire Ignition.

dry, high speed Santa Ana winds blow towards the coastline from the East and North-East

directions. While wind itself does not ignite fires, strong winds carry hot embers and de-

bris causing ignitions of dry vegetation elsewhere. Moreover, burning fires are fanned and

spread rapidly in the presence of strong winds. The directional e↵ect of wind categories on

wildfire ignition intensity is illustrated in Figure 3.9. Once again, due to adopting smoothed

meteorological data, year specific, extreme wind events are not accounted for in this model,

making the current wind estimates an approximate of the long-term wind e↵ects.

Average daily temperature, Elevation and Slope (change in elevation) also have small

positive e↵ects on ignition intensities. It is known that wildfires spread faster uphill but

not much is known about elevation’s a↵ect on ignition rates. The range of elevation in the

Santa Monica Mountains region is from 0 to 2700 feet; while this is not high enough to cause

snowtops, there are multiple trails leading to hill tops across the region, as seen in Figure 3.5.

While human foot tra�c might get sparse with increasing elevation, the road network acts

as a proxy for building structures and vehicular tra�c that cause structural and vehicular
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Figure 3.9: E↵ect of Wind Direction on Wildfire Ignition.

wildfires.

While the results in Table 3.4 provide indications on how certain covariates a↵ect igni-

tion occurrence intensity, the spatial distribution of ignition intensity is not apparent. The

spatially plotted, predicted conditional intensities for the 13 formation years are shown in

Figures 3.10, 3.11, and 3.12 with the legend in Figure 3.13. The predicted intensities are

categorized into 5 quantile intervals with the lowest quantile represented in dark blue and

the top 20th quantile represented in yellow.
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Parameter Coe�cient Estimate MBB SE MBB 95% CI

(Intercept) -1.577 2.855 (-6.753, 1.644)

Elevation 0.004 0.001 (0.0005, 0.006)

roadtype-Paths 0.419 0.273 (0.271, 0.970)

roadtype-Road1 2.044 0.097 (2.028, 2.299)

roadtype-Road2 0.898 0.265 (0.702, 1.468)

roadtype-Unknown 1.407 0.253 (1.000, 1.866)

January -0.548 0.852 (-1.863, 1.055)

February -1.302 0.739 (-2.841, -0.107)

March -0.634 0.787 (-2.319, 0.082)

April -0.898 0.638 (-1.996, 0.149)

May -0.301 0.527 (-1.308, 0.509)

June 0.015 0.467 (-0.961, 0.509)

July 0.304 0.124 (-0.087, 0.371)

September -0.145 0.287 (-0.903, 0.179)

October -0.283 0.383 (-1.099, 0.093)

November -0.319 0.679 (-1.295, 1.008)

December -1.420 0.668 (-1.974, 0.475)

TotPrecipitation -0.209 0.106 (-0.475, -0.125)

AveTemperature 0.022 0.091 (-0.100, 0.183)

AveHumidity -0.006 0.007 (-0.007, 0.021)

AveWindSpeed 0.009 0.209 (-0.344, 0.371)

WindDir-S 0.780 0.397 (0.173, 1.517)

WindDir-E 0.886 0.942 (-0.341, 2.632)

WindDir-N 0.617 0.443 (-0.324, 1.115)

WindDir-NE 1.307 0.933 (-0.274, 2.766)

WindDir-NW 0.050 0.540 (-1.426, 0.311)

WindDir-SE 1.686 0.799 (-0.510, 2.050)

WindDir-SW 0.745 0.432 (0.185, 1.629)

Slope 0.008 0.004 (-0.003, 0.010)

Table 3.4: Formation model of Wildfire ignitions in the Santa Monica Mountains Region

between 2000 and 2013. This Table presents the time-invariant, log linear model of the

Papangelou conditional intensity of wildfire ignition occurrence. A unit change in the coe�-

cients represents a log e↵ect on the expected conditional intensity. The factor reference levels

for the roadtype, month, and wind direction coe�cients are Residential, Month 8(August)

and West respectively. The standard errors and confidence intervals are produced using the

Moving Block Bootstrap method.
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At first glance, Figures 3.10, 3.11, and 3.12 provide a general view of how the formation

model’s ignition intensities spatially change over the 13 formation years. Some years like

2000-01 and 2001-02 have clear spatial demarcations that indicate stark intensity changes,

while other years are less so with a wide range of intensities over small regions. The model

generally estimates lower ignition intensities in regions with high residential roads such as the

South-East corner of Santa Monica city, the North-East region of Woodland Hills. However,

this trend is reversed for a few years in between before reverting back to low intensity rates

at the end of the 13 years. The large central track of the Santa Monica Mountains region

experiences a range of low to high ignition intensities over the 13 years. The western track

of the window, representing part of Point Mugu State Park and Malibu Springs, experiences

generally low ignition intensities (except for 2 years); this region is generally remote, with

not many areas categorized as Wildland-Urban Interface and Intermix regions in it. The

regions with regular, yearly changes in ignition intensities over the 13 years are generally

regions that are categorized as Wildland-Urban Interface and Intermix regions (See Figure

3.22 for WUI regions). These regions include the Tuna Canyon Park, Will Rogers State

Park, Brentwood, Tarzana, Hidden Hills and Agoura Hills on the outer edges of the road

network, and Topanga, Monte Nido and Cornell in the central regions of the road network.

For a closer look at how the intensity estimates are changing based on the road type, year

2012-13’s estimates are plotted by road category in Figure 3.14. The formation year 2012-13

was chosen for this breakdown as it is one of the years displaying a wide range of intensity

estimates over small regions, resulting in an overlay of multiple colors on the full network as

shown in Figure 3.12. The residential roads have the highest degree of intensity range, with

the highly dense regions of Brentwood and Pacific Palisades displaying a mosaic of colors.

The same could be said of dense residential regions of north and north-east regions for the

network. The residential roads on the western regions display the lowest ignition intensities;

the western regions are also the most remote regions, with most of it belonging to the Point

Mugu State Park.

The intensities on the Road1 category roads are relatively stable, with the Pacific Coast

Highway (PCH) displaying higher ignition intensity than the 101 freeway. However, the
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Malibu Canyon road and the Kanan Dume road show varying degress of intensities all

along their length. While the 101 freeway is mostly surrounded by high building density

areas, the Canyon roads connecting the PCH and the 101 freeway are heavily flanked by

Wildland-Urban Intermix regions. This presence of high vegetation, lower building density

and high tra�c roads is a possible reason for the wide range of ignition intensities along these

roads. The roads under Road2 category follow a slightly similar pattern where possible

structural density subdues the ignition intensity range, and large regions of WUI regions

indicate higher intensities. Finally, all roads categorized as Paths show relatively high rates

of ignition intensities. The western region, in Point Mugu State Park, which is relatively

remote display the lowest intensities of ignition. Overall, it is evident that the model is able

to measure the regions of high Wildland-Urban Intermix and Interface, and roads flanking

these regions have the largest change in ignition intensities spatially and temporally.

The results in Table 3.4 represent the formation conditional intensity, resulting from

modeling the combined set of formation processes, over the 13 years. This requires close

consideration while interpreting the model results. Table 3.4 represents the conditional

intensity of a new ignition occurring at a specific point, given all the ignitions that occurred

around it in the network region and the year before. This spatial and temporal conditional

intensity is a measure of ignition likelihood at an infinitesimal point, given the state of its

spatial surroundings and one year history. Given this setup, the model in general indicates

that the regions with the most volatile ignition intensities are those with low structural

density, but with considerable human and vehicular tra�c. The model, with the aid of

the road network, has essentially mapped out regions of high Wildland-Urban Intermix and

Interface.

While the ignition causes (shown in Table 3.3) were not used as covariates in this model,

Syphard and Keeley (2015) model each ignition cause separately to understand the a↵ect

of covariates. Their major conclusion is that distance to road, distance to structure, and

structure density are the most influential factors in a↵ecting ignitions with human-related

causes. These human-related causes include arson, vehicular fire, equipment fire, campfire,

powerline, and playing with fire. While their approach was in understanding how factors
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a↵ect each ignition cause, the separable temporal linear point process (STLPP) model aims to

model the spatial and temporal change in ignition locations with respect to human activity,

for which the linear road network is a perfect proxy. The medium term view of how the

spatial and temporal distributions of ignition locations changed should provide insights into

developing alternative fire management programs. Note that only ignition locations, and

not the spread and extent of the wildfire, were studied to focus primarily on understanding

the distribution of origin locations with respect to human movement and density.
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3.4.2 Moving Block Bootstrap Standard Errors

Due to the implicit spatial dependency in the Papangelou conditional intensity, the standard

errors of the log-linear model produced by the GLM software are incorrect. As a result,

nonparametric bootstrap methods for dependent data are used to produce the standard errors

shown in Table 3.4. The Moving Block Bootstrap, independently introduced by Kunsch

(1989) and Liu and Singh (1992), is used to estimate the standard errors. Instead of randomly

drawing a sample, the Moving Block Bootstrap resamples blocks of consecutive observations

to retain the temporal or spatial dependency.

Assume that X1, X2, . . . is a sequence of stationary random variables, and let Xn =

(X1, . . . , Xn) denote the observations. In the wildfire case, Xn represents the complete set

of data and dummy points from the 13 formation years. Given the data, blocks of size l are

defined as Bj = (Xj, . . . , Xj+l�1), j = 1, . . . , N where N = n� l+ 1 denotes all the possible

overlapping blocks in Xn. The bootstrap blocks are obtained by selecting a random sample

of b blocks from the full set of overlapping blocks {B1, . . . , BN}.

For the standard errors in Table 3.4, the moving block bootstrap method was implemented

with block size of 1.3 million data points. The entire set of data and dummy points over

the 13 years is 2.3 million data points. This resulted in a set of about 1 million overlapping

blocks. A thousand samples were drawn and modeled through the GLM software to obtain

the empirical distribution of each of the model coe�cients. The sample standard deviation of

this empirical distribution provides the moving block bootstrap standard errors of the model

coe�cients. Note that this method is appropriate for the separable temporal model as it

assumes time inhomogeneity, and the data and dummy points are ordered to be spatially

consecutive to retain spatial dependency.

A few other methods such as the Non-overlapping block bootstrap and Block-Jackknife

methods for dependent data were considered. While non-overlapping block bootstrap should

result in similar standard errors, the block-jackknife method is computationally intensive for

the wildfire dataset. Hall (1985) introduced a moving tile block bootstrap method that is also

appropriate for spatially dependent data. However, the moving tile method did not work for
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the wildfire data as the moving spatial tile restricted year-long temporal sampling, resulting

in zero estimates for some of the months. However, this is not an issue with the moving

block bootstrap method, used above, since the data is ordered to be spatially contiguous,

and the sampled blocks Bj are akin to moving tiles which also retain the temporal coverage

of a year span.

3.5 Model Assessment

This section outlines a few model assessment methods for spatio-temporal point process

models on linear networks. While not all of them are implemented, they are evaluated for

their appropriateness for linear network models.

3.5.1 Monte Carlo Tests on Model Deviance

For an overall assessment of how the model is performing, one suggested option is the Pseu-

dolikelihood ratio test conducted through Monte Carlo tests. It is a reasonable substitute

for the likelihood ratio test and is based on the the log pseudolikehood ratio. Consider a null

hypothesis H0 and an alternative hypothesis H1, where H0 is nested in H1. The estimates

of the canonical parameters (by maximum pseudolikehood) are ✓̂0 = ✓̂0(x) under H0 and

✓̂1 = ✓̂1(x) under H1. The test statistic will be twice the log pseudolikehood ratio

� = �(x) = 2

✓
logPL(✓̂1(x);x)� logPL(✓̂0(x);x)

◆
(3.13)

and is analogous to the deviance in likelihood theory (Baddeley and Turner (2006)).

Since there is no statistical theory available to support inferential interpretations of �,

the alternative is to use it as a test statistic in a Monte Carlo test. First, if H0 is simple

enough, m independent realizations of point processes x(1), . . . ,x(m) are generated. Then the

corresponding test statistics, �i = �(x(i)) for i = 1, . . . ,m are computed and ranked along

with the � in equation 3.12. Under H0, the rank R (of the �is)is uniformly distributed on

{1, 2, . . . ,m + 1} assuming no ties. The Monte Carlo test rejects H0 when R  k has size
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↵ = k/(m+ 1) exactly. The associated p-value is

p =
R

m+ 1
(3.14)

This method of testing the log pseudolikehood ratio was not implemented due to a couple

of reasons. The null hypothesis H0 necessary to estimate the test statistic is required to be

nested or contained in the alternative hypothesis H1. While it is easy to choose a smaller,

nested H0, it is not apparent as to what constitutes the best null hypothesis in the case of

wildfire ignition location modeling with respect to road networks. One option is to assume

a constant baseline trend on the entire road network, despite the di↵erent categories. Even

then, the null hypothesis parameters ✓̂0(x) are unknown and need to be estimated using

the observed data x. This major caveat makes the Monte Carlo test possibly approximate

and strictly conservative. This violates the essential requirement of Monte Carlo testing,

that the observed and stimulated point patterns should be statistically equivalent if the null

hypothesis is true. Under the procedure described above, the simulated point patterns have

been generated from the null model with parameter value ✓̂, while (if the null hypothesis is

true), the observed data came from a null model with unknown parameter value ✓. Since

✓̂ is not exactly equal to ✓, either due to choice of H0 or adopted estimators, the simulated

and observed point pattern do not come from the same random process, making the Monte

Carlo test only approximate. (Baddeley et al. (2014b)).

3.5.2 Residual Analysis for Spatial Point Patterns

An alternative method of assessing model fit is to study the residuals. For spatial point

process models, the idea of residuals is not immediately intuitive as there is no natural

ordering of spatial point events without a temporal variable. Baddeley et al. (2005) generalize

the idea of residuals, common in regression and survival analysis setting, to the spatial setting

by employing the Papangelou conditional intensity.

In the current case of wildfire ignition modeling, as the formation model is framed as a

time inhomogeneous, Papangelou conditional intensity, the residuals introduced in Baddeley

et al. (2005) are implemented and presented below. Consider a parametric model for a
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spatial point process X with density f✓ (assuming it satisfies the positivity condition), the

innovation process of the model is defined as

I✓(B) = n(X \ B)�
Z

B

�✓(u,X)du (3.15)

for any set B ✓ W , where n(X \ B) denotes the number of randome points falling in B

and �✓(u,X) is the Papangelou conditional intensity at point u. This definition is closely

analogous to the residuals in time and space-time, except for the use of the Papangelou

conditional intensity. The innovations I✓ constitute a random signed measure, with a mass

+1 at each point xi of the spatial point process and a negative density ��(u,X) at all other

spatial locations u. They satisfy

E✓[I✓(B)] = 0 (3.16)

when the weight function is set to h(u,x) = 1{u 2 B} in the Georgii-Nguyen-Zessin (GNZ)

formula (Baddeley et al. (2005)). Given the data x and the parameter estimate ✓̂ = ˆ✓(x),

the raw residuals are defined as

R
✓̂
(B) = n(X \B)�

Z

B

�̂(u,X)du (3.17)

Baddeley et al. (2005) introduce a few di↵erent weight functions h(u,x) to scale residuals

at every point u a certain way. The di↵erent weight functions result in the Inverse-Lambda

residuals, Pearson residuals and Pseudo-score residuals. The raw residuals are a result of

the weight function h(u,x) = 1{u 2 B} and their value at every quadrature point uj is

rj = zj � wj�j (3.18)

where zj is the indicator equal to 1 if uj is a data point and 0 if uj is a dummy point; wj

is the quadrature weight attached to uj and �j = �̂(uj,x) is the conditional intensity of the

fitted point at uj. The raw residuals of the separable temporal model over the Santa Monica

Mountains region are shown in Figures 3.15, 3.16, 3.17, and 3.18.

The idea behind this assessment is to check whether the raw residuals (estimating the

Innovation measure) have an expectation that is approximately zero, indicating a good model

fit.

E✓[R(B, ĥ, ✓̂)] ⇡ 0 (3.19)
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The raw residuals presented in Figures 3.15, 3.16, and 3.17 range between -0.072 and 0.999.

More than 90% of the residuals fall in the narrow range of (-0.000474, -0.00000657] that is

very close to zero. This indicates that for most of the points on the linear network, the

separable temporal model overestimated the conditional intensity of ignition, but only by a

very narrow margin. The greatest overestimation by the model, the lower 5% of the residuals,

are represented in navy blue in the plots. Over the years, this overestimation is consistently

around the dense network of Pacific Palisades and the 101 Freeway. These areas have high

structural density, making them relatively urbanized regions with low swaths of vegetation

around them. One way to improve model performance on these regions would be to add a

covariate identifying WUI, urban and wildland regions on the network. Visually, there are

very few pockets of under estimation, with residuals greater than 0, as noticed by the yellow

regions in the plots; these represent the few positions that possibly had wildfires but the

model estimated less than expected ignition intensity during that year.

In general, as there are far more dummy points than data points, and the model estimates

a non-zero ignition intensity at most points, most residuals are negative but very close to

zero. Aside from the regions that display overestimation (which can possibly be remedied

by including a model variable on structural density or WUI), the residual plots are not very

indicative of directions for model improvement. As a result, prediction performance of the

separable temporal model is considered and presented in the following subsection.
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3.5.3 Residual Analysis on Predicted Conditional Intensities

For prediction, the separable temporal model was first estimated on a smaller set of formation

point patterns between 2000 and 2008; then the model was used to predict conditional

intensities on years 2009 to 2013. Note that while the model is estimated on formation point

processes, the prediction is performed on just the yearly point patterns, using that year’s

smoothed RAWS covariates. The predicted conditional ignition intensities can be seen in

Figure 3.19 and the raw residuals on the predicted intensities in Figure 3.20.

The predicted conditional intensities look somewhat similar to the estimated conditional

intensities shown in Figures 3.11 and 3.12. The most promising feature is that the predicted

intensities are consistently on the lower end for regions of high structural density (urban

areas). This includes the Pacific Palisades, Malibu Riviera, Hidden hills and Tarzara regions.

This was not the case under the estimated intensities where the model estimated high ignition

intensities over the highly dense regions of Pacific Palisades and Brentwood over multiple

years.

The other most noticeable feature of the predicted intensities is the stark spatial demar-

cation due to a linear shift in the predicted values. This is most likely an artifact of the

smoothed meteorological variables using GAM models. The main reason for exploring vari-

ous GAM and TPS models was to achieve smooth, non linear coverage of the meteorological

covariates over the network window. However, due to collinearity issues, as mentioned in

Section 3.3.4, this was not fully achieved and hence visible through the spatial distribution

of the predicted intensities. However, the predicted intensity demarcations were much worse

on TPS model smoothed data.

The raw residuals are, once again, not very indicative as most of the values are very close

to zero. There is consistent overestimation on some of the larger roads over the 5 years; the

residuals over the high structurally dense areas are very close to zero, indicating a relatively

good predicted value. There are some pockets of underestimation on the North-central

regions of road network.

Overall, the residuals on the separable temporal model are not very informative. Future
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ways of improving model assessment could include thinning the Papangelou conditional

intensity to a poisson process and test for model goodness-of-fit; however, this option requires

close consideration in terms of thinning the process along the linear network or in an envelope

of space along the linear network. Another option could include model fitting on perturbed

ignition locations to test the distance to network measure.
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3.5.4 Super-Thinning

Another method that allows one to assess point process models is super-thinning, a com-

bination of thinning and superposition introduced in Clements et al. (2012). The idea is

to transform the point process N (which might not be a poisson Process) into a residual

poisson process with rate k, where inf{�̂(xi, ti)}  k  sup{�̂(xi, ti)}. The first step is

to thin N , keeping each point (xi, ti) independently with probability min{k/�̂(xi, ti), 1} to

obtain the thinned residual process Z1. The second step is to simulate a Cox process Z2

directed by max{k � �̂(xi, ti, 0}. This is equivalent to simulating a homogeneous poisson

process with rate k and independently keeping each simulated point (x̃j, t̃j) with proba-

bility max{(k � �̂(x̃j, t̃j))/k, 0}. The points of the residual point process Z = Z1 + Z2,

obtained from superposing the thinned residual process and the simulated process, form the

super-thinned residual points.

As Z is a homogeneous poisson process with rate k if and only if �̂ = � almost everywhere,

the super-thinned residuals can be examined for homogeneity to assess the goodness of fit of

�̂. The choice of the tuning parameter k, that controls the rate of thinning and superposition,

is still open to further research. Clements et al. (2012) suggests choosing k that is either the

mean or median of �̂ as they minimize the absolute and squared deviations of the estimated

conditional intensity from k.

The mean of the estimated conditional intensity from the formation model is around 0.65.

For the first attempt of super-thinning, the tuning parameter k = 1 was chosen. Figure 3.21

shows the original wildfires and the super-thinned residuals over the Santa Monica Mountains

region.

In general, there are more super-thinned residuals than there are original wildfires. To

assess the goodness-of-fit of the formation model, the super-thinned residual wildfires should

be similar to a homogeneous poisson process with rate k = 1. It is important to note that

super-thinning was limited to the linear network over the Santa Monica Mountains region and

the uniformity of the super-thinned process should be assessed with respect to the network

density. As a result, the super-thinned residual fires are much more common in high-density
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network regions of Malibu, Santa Monica and along the 101 Freeway in the north. Visually,

the super-thinned residuals seem to be fairly uniform given the linear network density around

them; that is, high network density regions have more fires than low network density regions;

this is in keeping with a homogeneous poisson process on a linear network. This indicates

that in general, the estimated formation model has captured the wildfire origin intensity

decently well.

A more thorough way of assessing homogeneity is to fit the network K function, estimated

on the temporal spider data (Ang et al. (2012)), on the super-thinned residual fires. However

due to computational limitations with regard to memory(Santa Monica Mountains linear

network is 18MB), this was not possible.

Figure 3.21: The original and super-thinned residual wildfires over the Santa Monica Moun-

tains region with tuning parameter k = 1.
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3.6 Conclusion

The first part of this dissertation presents a new approach to modeling point process data

combined with linear networks. And one of the most critical and current applications to

the approach has been modeling wildfire origin locations on road networks. As more than

95% of California wildfires have human-related origins, it was intuitive to model ignition

locations on road networks, which form a perfect proxy for human tra�c. Aside from the

novelty of using linear network data, most of the current wildfire research models wildfire

burn area centroids rather than origin locations. The presented seperable temporal model

not only models origin locations but also models their relationship to road networks. This

provides a more nuanced look at how human movement and activity a↵ect wildfire ignitions

in Southern California. The temporal aspect of the model also provides a medium to long

term spatial view of where most of the ignitions have occurred, allowing greater insight into

handling and running fire management programs. The model, combined with burning and

fire hazard indices, can aid and direct park rangers and fire fighters to better implement

programs such as park closures, fuel management etc.

The model’s strongest suit is in providing a spatial distribution of conditional intensities

dependent on the density and type of roads. This feature has also brought to light the

importance of Wildland-Urban Interface & Intermix (WUI) areas and their high proclivity

to fire ignitions (due to high fuel abundance and volatile human activity). There is research

indicating the increasing scales of human encroachment into wildland areas, resulting in

more ignition prone regions(see Mann et al. (2014)). As mentioned before, the presented

model does not include WUI as a spatial covariate and would benefit heavily from doing so.

This added spatial covariate might also remedy the overestimation of conditional intensities

in the relatively urban areas as seen in the residual plots. The WUI areas over the Santa

Monica Mountains region can be seen in Figure 3.22.

In terms of methodological improvements, the meteorological variables smoothed using

TPS and GAM models can use a closer look. It is known that weather variables have a non-

linear a↵ect on wildfire spread. Moreover, the availability of burn fuel also a↵ects ignition

67



rates. As a result, including fuel age variable and exploring better kernel methods to capture

the true a↵ect of weather could improve model prediction. Another option is to consider

regions with more RAW stations that can provide a better spatial cover of weather variables.

Another important option is to consider other forms of conditional intensities aside from the

log-linear model. While the log-linear model allows for easy computation, other forms of

intensity functions could provide better prediction. The separable model also assumes time

inhomogeneity and this might not be the best option, especially with changing landscapes

of burn fuel and human encroachment. The model also does not capture one-o↵, extreme

weather events over the years. It is also important to test how the (ignition) distance to

road variable changed over the long term.

Despite the inclusion of all relevant meteorological variables in the model, burn fuel

(vegetation) cover changes depending on previous years’ wildfires and seasonal precipitation;

this naturally a↵ects the spatial distribution of wildfire ignitions over the years. The current

formation model for wildfire ignition does not allow for year to year inhomogeneity and as a

result might not fully capture the yearly spatial distribution of ignition locations. For future

research, fuel age (time from last wildfire), the covariate used in one of the models in Xu

and Schoenberg (2011), could help capture the yearly inhomogeneity on wildfire ignition.

Finally, all the coe�cient estimates fall in the MBB 95% confidence interval, with a few

of them on the lower or upper edge of the interval. Aside from getting a sense for coe�cient

variability, since only one model was employed, there is no reference model to compare this

model’s performance with. This can easily be remedied by comparing this model to simpler

null models without weather and elevation covariates.
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3.6.1 Formation Model without Wind direction

As a quick remedy to the visibly stark gradients produced by the estimated intensity plots

in Figures 3.10, 3.11 and 3.12, the formation model was re-fitted by excluding the weather

variables one by one. It is clear that the directionally smoothed wind direction category

variable is causing the stark gradients, and excluding it has resulted in a model with similar

coe�cient values as Table 3.4 and smoother spatial distributions as can be seen in Figures

3.23, 3.24 and 3.25.

The immediate take aways from the new spatial distribution are that the year to year

di↵erences have predominantly subsided and the model has consistently estimated lower

ignition intensities in high network density areas such as the Pacific Palisades, parts of Malibu

and the northern regions flanking the 101 Freeway. However, a closer look reveals that the

estimates are di↵erent from year to year at the granular level, but the overall sections of

networks with high ignition intensities have remained the same. These high ignition intensity

roads are represented in yellow, and seem to mostly align with the Wildland-Urban Interface

and Intermix regions. This version of the model has clearly revealed certain sections of the

road network to have consistently higher ignition intensities over the 13 years, and possibly

denote the regions that require higher policing.

Once again, adding burn fuel and WUI variables might provide a clearer year to year

evolution in the spatial distribution of high ignition intensity regions.
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Part II

Data Su�ciency and Privacy
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CHAPTER 4

Introduction: Energy Atlas Database

The Energy Atlas project, set up and managed by the UCLA California Center for Sustain-

able Communities (CCSC), provides an exploratory framework access to the entire energy

consumption of LA county (with the exception of a few cities) over a span of five years1

This interactive framework is based on a core database that comprises of around 500 mil-

lion records with individual service addresses and monthly energy consumption at parcel

level. Along with the address-level energy consumption data ranging from 2006 to 2010, the

database is augmented by the following variables:

• Levels of geocoding

1. parcel

2. street centerline

3. ZIP code

4. Utility provided locations

• Building type

• Building age

• Income characteristics using American Communities Survey (ACS) 2006-10 at block

group level

• Demographic characteristics using ACS 2006-10 at block group level

1The database has now been expanded to cover 10 years, and also includes water usage data.
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The public interface (Energy Atlas website: http://energyatlas.ucla.edu) of this

project allows data downloads disaggregated by area levels, building types and consumption

types, over the entire LA county. This complex undertaking provides the public access to the

largest, disaggregated energy data in the nation. Moreover, the process of assembling this

core database was the result of a multi-year negotiation between the CCSC, the LADWP

and the California Public Utilities Commission (CPUC). It is crucial to note that, so far,

most of the data collected by LADWP and other utility companies has not been shared

with researchers, let alone the public. As a result, the Energy Atlas project sets a precedent

in not only providing public access to high resolution databases but also expanding laws

concerning data transparency. As statisticians, we understand the need for data to make

the right decisions and researchers having access to such energy databases is paramount to

making the right public policy decisions on energy sustainability.

4.1 Background and Motivations

The Energy Atlas database allows us the unique opportunity to not only study energy con-

sumption patterns on a large scale, but also investigate the e�ciency of such large databases

with regard to scientific research. The core database comprises of multiple, sensitive co-

variates such as geographic location, square footage area and building usetype. As a result,

the pressing issue the Energy Atlas project continually grapples with is how to make such a

database accessible to be public, while balancing proper levels of data resolution and subject

confidentiality. This chapter and the next extend this question a step further and ask if, and

what an e�cient level of resolution for large energy databases would be. This brings us to

the issues of data su�ciency and privacy in the context of data transparency.

We can broadly define data su�ciency in this context as providing su�cient data reso-

lution for scientific research while protecting individual confidentiality of the data subjects.

In simpler terms, how much data is enough to gather for thorough scientific study while also

maintaining proper subject anonymization? Another important question is regarding the

su�cient level of transparency (data resolution) large database holders like energy utility
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companies need to adhere to, which raises the issue of public information property. The

US Census Bureau, one of the largest holders of public data, adheres to the “72 year rule”

that permits them to release personally identifiable information only 72 years after it was

collected for the decennial census. While this is to safeguard the privacy of the census sub-

jects, such delayed releases of high resolution energy databases will not just be ine�cient

but futile in making immediate public policy decisions on energy use. This underscores the

need to balance both data su�ciency and transparency with data privacy. Currently, the

US Census is beginning to implement di↵erential privacy methods on its websites (Dajani

et al. (2017)) and this will be discussed further in Chapter 5.

Computer scientist at University of Warwick, Graham Cormode (Cormode (2015)) claims

that “Guaranteeing privacy and being able to share useful data stand in fundamental oppo-

sition”. However, it is important to explore and understand if complete data resolution is

absolutely necessary for all scientific study or if certain omnibus statistics could fulfill data

minimization requirements for specific scientific questions while maintaining proper privacy.

Another important issue this brings forth is the need for data confidentiality mechanisms

allowing scientific access while maintaining subject privacy ; as maintained by the US Federal

Statistical Data Research Centers for the US census data. These issues, along with ideas of

di↵erential privacy are explored further in Chapter 5.

4.1.1 Senate Bill 350: Contextual outliers

While the issues of data privacy, privacy preserving measures and data su�ciency are re-

viewed under Chapter 5, the rest of this Chapter aims to fulfill more immediate goals only

possible through access to high resolution data. This is done by posing a series of narrower,

specific questions that employ high resolution data; fulfilling these smaller goals could lend

insight to the general data su�ciency problem.

A current policy goal that benefits from the Energy Atlas database is outlined in the

California Senate Bill 350 titled Clean Energy and Pollution Reduction Act of 2015footnote-

Was signed into law on October 7,2015. (de León (2015)). The two, overarching goals of
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this bill are to increase Renewable Portfolio Standard of utility companies to 33% by 2020

and to 50% by 2030, and double statewide energy e�ciency savings in electricity and natural

gas end uses by 2030. The proposed steps to achieve the second goal include updating the

Assembly Bill 758: Existing Building Energy E�ciency Action Plan, implementing the right

energy e�ciency retrofit programs etc.

One way to improve the proposed energy e�ciency retrofit targeting is to fit a longitudi-

nal quantile regression model, to the Energy Atlas database, which will provide contextual

distribution of energy consumptions for a specific combination of covariates. In other words,

a longitudinal quantile regression model can reveal how di↵erent covariates a↵ect energy

consumption at various quantiles. This can improve retrofit targeting towards buildings and

units that disproportionately contribute to higher quantile energy consumption. The follow-

ing sections summarize quantile regression methods, the Energy Atlas data on the Westwood

neighborhood and the results of longitudinal quantile regression on Westwood data.

4.2 Quantile Regression

Simple quantile regression is outlined in Section 4.2.1 and longitudinal quantile regression

through a Fixed-E↵ects model is outlined in Section 4.2.2

4.2.1 Review of Simple Quantile Regression

The quantile function of a scalar random variable Y is the inverse distribution function. The

conditional quantile function of Y given X is the inverse of the corresponding conditional

distribution function, i.e.,

QY (⌧ |X) = F�1
Y

(⌧ |X) = inf{y : FY (y|X) � ⌧} (4.1)

where FY (y|X) = P (Y  y|X). The conditional quantile function of Y given X captures the

relationship between Y and X. Quantile regression provides one way to study this relationship

between X and Y. Given the following classical linear model

Yt = ✓0Xt + ut, t = 1, . . . , n, (4.2)
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where Xt are vectors of regressors including a constant, and ut are i.i.d. mean zero errors

and are idependent of Xt, a regression of the above model can be conducted based on the

following optimization problem:

✓̂ = min
✓

nX

t=1

⇢(Yt � ✓0Xt), (4.3)

where ⇢(·) is a criterion (loss) function. If the routine quadratic loss function ⇢(u) = u2

is employed, the ordinary Least Squares estimator ✓̂OLS is obtained from solving equation

(4.3). However, for a conditional quantile estimate, Koenkar and Basset (1978) introduced

an asymmetric loss function,

⇢(u) = ⇢t(u) = u(⌧ � 1(u < 0))

= (1� ⌧)1[u < 0] |u|+ ⌧1[u > 0] |u| (4.4)

where ⌧ 2 (0, 1), and 1(·) is the indicator function. It is easy to see that when this loss

function (4.4) is applied to equation (4.3), it minimizes the sum of asymmetrically weighted

absolute errors. When ⌧ = 0.5, it is equivalent to minimizing (4.3) with ⇢(u) = |u|, the

Least Absolute Deviation criterion and this produces the Median of Y given X, or in other

words, the conditional 50%th quantile regression solution.

Once ✓̂(⌧) = min✓

P
t
⇢⌧ (Yt�✓0Xt) is solved using the asymmetrical loss function of (4.4),

the ⌧th conditional quantile function of (Yt|X) can be estimated by

Q̂Yt(⌧ |Xt) = X>
t
✓̂(⌧) (4.5)

Quantile regression is solved using the simplex method, a popular algorithm in linear

programming.

4.2.2 Quantile Regression for Longitudinal data

Using the frameworks of classical linear fixed and random e↵ects models, Koenker (2004)

introduced quantile regression for longitudinal data. As the Energy Atlas database provides

monthly energy usage at parcel level, the following model framework is presented in the

context of monthly energy usage by individual megaparcels. Megaparcels are groups of
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parcels that have the same GPS location, e.g. an apartment complex; more details about

megaparcels are available under the Westwood data Section 4.3.

Within the context of monthly energy usage by a megaparcel, the conditional quantile

function for the response yij is,

Qyij(⌧ |xij) = ↵i + x>
ij
�(⌧) + uij, (4.6)

where i = 1, . . . ,m megaparcels, j = 1, . . . , ni months, yij is the energy usage of the ith

megaparcel in the j th month, xij are the vectors of covariates on the megaparcels, and can

be constants, ↵i is the unobservable individual e↵ects introduced by the m megaparcels and

uij are the month specific errors. Estimating the above model (4.6), for several quantiles

involves solving the following objective function:

min
(↵,�)

qX

k=1

niX

j=1

mX

i=1

wk⇢⌧k(yij � ↵i � x>
ij
�(⌧)) (4.7)

where ⇢⌧ (u) is the piecewise linear quantile loss function, as introduced in (4.4). The weights

wk control the relative influence of the q quantiles {⌧1, . . . , ⌧q}, on the estimation of the ↵i

parameters (Koenker (2004)).

In this fixed e↵ects model, the unobservable, megaparcel e↵ects ↵i’s represent a megaparcel-

level heterogeneity that is not captured by the rest of the covariates xij, and are also corre-

lated with them in an unspecified way. One example is to consider how certain megaparcel

management and ownership styles could cause its consumption to correlate with their cor-

responding independent variables xij’s like building age, function and square footage.

In this formulation, the megaparcel specific e↵ects provide a pure location shift on the

conditional quantiles of energy usage. The e↵ects of the covariates xij are allowed to depend

on the quantile of interest ⌧ , while the ↵i’s do not. It is possible to estimate quantile specific

estimates of ↵i(⌧)’s, but care should be taken to make sure there are enough observations

under each individual.

Koenker (2004) also introduces a penalized quantile regression with fixed e↵ects, particu-

larly when m is much larger than the panel count of ni. The main advantage of introducing
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the l1 penalty is to control the variability introduced by estimating a large number of ↵

parameters. This penalized version of (4.7) is

min
(↵,�)

qX

k=1

niX

j=1

mX

i=1

wk⇢⌧k(yij � ↵i � x>
ij
�(⌧)) + �

mX

i=1

|↵i| . (4.8)

When � ! 0 we obtain the fixed e↵ects estimator described under (4.7), and when

� ! 1, the ↵̂i ! 0 for all i = 1, . . . ,m and we obtain an estimate of a model without any

fixed e↵ects. This penalized fixed-e↵ects, quantile regression model is fitted on the Westwood

energy consumption data using the Koenker co-authored R package ‘rqpd ’ available on R-

Forge.

4.3 Westwood Energy Consumption Data

This sections provides an overview of the energy consumption data from the Westwood

neighborhood from January 2006 to December 2010. Only the Westwood neighborhood is

considered for now as it is a familiar area and allows for easier identification of data anomalies.

The Energy Atlas team obtained monthly electric and gas consumption data at parcel level

from all utilities that serve the entire Los Angeles county. A parcel, loosely defined, refers to

a piece of land or lot owned or meant to be owned by an owner/individual. This can include

individual apartment units, condominiums and floors in multi-floor buildings. This indicates

that parcel level energy consumption data is the lowest resolution of energy consumption

data that can be obtained from a utility company; it is the account level data that an

individual or an owner might retain with an energy utility company.

The Westwood neighborhood, served by the Los Angeles Department of Water and

Power (LADWP), consists of about 118,000 parcels. The Energy Atlas team augmented

the parcel level data with information from the Los Angeles County O�ce of the Assessor

(https://assessor.lacounty.gov/), and included variables on coordinate and street lo-

cation, building usetype, age and area in square footage. Aside from single family houses,

as most buildings contain more than one parcel, the Energy Atlas team introduced a new

parcel unit called megaparcel. A megaparcel is comprised of multiple parcels with the same
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coordinate and street location. As a result, the megaparcel’s monthly energy consumption is

the sum of monthly energy consumptions of all the parcels it contains. The megaparcel’s area

and usetype are cumulated similarly. The 118,000 parcels are contained in 4458 megaparcels

with each megaparcel containing anywhere from 1 to 250 parcels.

Here onwards, energy consumption is only referred to and modeled at the megarparcel

level. Out of the 4458 megaparcels in Westwood, 200 of them have been removed as they have

more than 50% of missing data over the 60 months from January 2006 to December 2010.

The rest of 4258 megaparcels have building usetype, building age and area as covariates.

It is helpful to note that the Energy Atlas database is also augmented with demographic

and income characteristics through the American Communities Survey (ACS) 2006-10 at the

block group level, but the analysis done here is at a higher resolution of megaparcel level.

While it is generally preferable to have more descriptive covariates at the unit level of the

model, the model presented below does not make use of the block group level demographic

features; this decision is discussed further under model results and discussion in Section 4.5.

The breakdown of building usetype of the Westwood megaparcels are shown in Table 4.1

below. The Table reflects the 4258 megaparcels left after removing missing data observations.

The map in Figure 4.1 provides the spatial breakdown of building usetype in Westwood.

Majority of the megaparcels are of the residential kind, including single family, condominium

and multi family units. However, the area of the commercial, institutional and mixed use

megaparcels are the largest. The breakdown of square footage of Westwood megaparcels can

been seen in Figure 4.2. The UCLA campus and a few other megaparcels have missing data,

but the Wilshire corridor of buildings have some of the largest square footage along with the

Los Angeles Country Club at more than 50K sq. feet. The Wilshire corridor of buildings

are a mix of commercial, mixed use and multi floor residential buildings. Finally, majority

of the Westwood building structures were built before 1950 (See Figure 4.3). The Wilshire

corridor buildings were build after 1978 and Westwood is peppered with a few buildings built

after 1990. We are missing buiding age and square footage from UCLA owned megaparcels

and a few other megaparcels of usetype ”other”; these miscellaneous megaparcels include a

few schools, a cemetary and a park.
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Usetype Number of megaparcels

Mixed use 8

Institutional 23

Residential other 39

Other 41

Condo 210

Commercial 243

Multi family 718

Single family 2976

Table 4.1: Breakdown of Westwood megaparcel usetypes

Figure 4.1: Usetype of Westwood Megaparcels
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Figure 4.2: Square Footage of Westwood Megaparcels

4.4 Fixed E↵ects Quantile regression on Westwood data

A fixed e↵ects, quantile regression model was fitted over the Westwood megaparcel data

using the “rqpd” (Regression quantiles for panel data) package available on R-Forge. The

model presented below is the penalized version of the fixed e↵ects, quantile regression model

outlined in Section 4.2.2. For each specified quantile ⌧ , the model minimizes

min
(↵,�)

qX

k=1

niX

j=1

mX

i=1

wk⇢⌧k(yij � ↵i � x>
ij
�(⌧)) + �

mX

i=1

|↵i| . (4.9)

Equal weights(wk) of 0.2 were chosen for the five specified quantiles(⌧) of (0.1, 0.25, 0.5, 0.75, 0.9).

The L1(lasso) penalty term(�) that shrinks the fixed e↵ects coe�cients to zero is left at it’s

default value of 1. The results of the fixed e↵ects quantile regression model are shown in

Table 4.2.
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Figure 4.3: Building Age of Westwood Megaparcels
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4.4.1 Discussion

As seen in Table 4.2, only the megaparcel level covariates were used to fit the fixed-e↵ects

quantile regression model. The usetype category has 8 factor levels with Commercial mega-

parcels as the reference level. Majority of the megaparcels in the Westwood neighborhood

are either Single family or Multi family.

At the 10% quantile, the area of the megaparcel (sq. footage) has a slight positive e↵ect

on the monthly energy consumption. The Year built has a negative e↵ect on the monthly

energy consumption, indicating that newer buildings are consuming less than older buildings

at the 10% quantile. Compared to commercial megaparcels, almost all other usetypes express

lower monthly consumption. The ‘Institutional’ and ‘Other’ megaparcels have the lowest

levels of monthly consumption, while the ‘Residential-Other’ megaparcels have the highest

level of monthly consumption among all usetypes. This indicates that at the 10% quantile,

‘Residential-Other’ megaparcels are the largest monthly consumers followed by ‘Commercial’

megaparcels. As can be seen in Figure 4.1, most of the ‘Residential-Other’ megaparcels are

fraternity and sorority houses flanking the UCLA campus on Gayley and Hilgard Avenues.

As expected, the number of parcels has a large positive e↵ect on a megaparcel’s monthly

energy consumption. In Westwood, the number of parcels in all the ‘Residential-Other’ and

‘Commercial’ buildings is only 1. As a result, at the 10% quantile, controling for all other

covariates, a ‘Residential-Other’ building’s monthly energy consumption is about 230 units

higher than a Commercial building’s monthly consumption in the Westwood neighborhood.

At the 25% quantile, square footage of a megaparcel has a slight positive e↵ect on the

monthly energy consumption. The year built has an increased negative e↵ect on con-

sumption, indicating newer buildings are consuming less than the older buildings. Under

megaparcel usetype, condos are the smallest energy consumers compared to commercial

buildings, while usetype-Other are the largest consumers, at 740 units per month over com-

mercial buildings. The major Westwood megaparcels categorized as usetype-Other include

the Los Angeles Country Club, Holmby Park, an Elementary school, a Middle school, West-

wood Park/Recreation Center and the UCLA owned housing/other buildings along Weyburn
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Place. Due to tax categorization, most of the megaparcels categorized as ‘Other’ do not have

square footage information on them, but most of them are considered single parcels with

the Los Angeles Country Club having an area of over 50K square footage (Figure 4.2). This

indicates that at the 25% quantile, the largest consumers are the megaparcels with rela-

tively larger square footage and have miscellaneous and/or public functions to them. No. of

parcels still maintains a positive e↵ect on energy consumption but lower than it did at the

10% quantile.

At the 50% quantile, the area of the megaparcel has less than unit positive e↵ect on energy

consumption and the year built of the megaparcel has an increasingly negative e↵ect on the

energy consumption. Newer megaparcels have more energy savings than older megaparcels.

With regard to usetype, at the 50% quantile, the commercial megaparcels are the largest

consumers while the condominium megaparcels are the smallest consumers for a given parcel.

The no. of parcels in the megaparcel has a positive e↵ect on the energy consumption. As

the no. of parcels in condominium megaparcels range from 1 to 250, the monthly energy

consumption of a single parcel, commercial unit is the same as a 48 parcel, condominium

building, for the same footage area at 50% quantile.

At both 75% and 90% quantiles, the area of the megaparcel has more than a unit pos-

itive e↵ect on energy consumption for every square foot increase and the year built has a

large negative e↵ect on the energy consumption. As megaparcel consumption is growing,

newer buildings are having increasingly more energy savings than the older buildings. At

the 75% quantile, commercial megaparcels continue to be the largest monthly consumers for

a single parcel, while the condominiums are the lowest consumers. At the 90% quantile,

usetype-Other megaparcels are the largest monthly consumers for a single parcel, while con-

dominiums are the lowest consumers. However, interestingly, the e↵ect of no. of parcels on

monthly consumption is negative for the 75% and 90% quantile consumers. At these higher

percentiles, an increase in the no. of parcels is leading to a decrease in monthly consump-

tion, possibly due to increased building e�ciency. However, as all commercial megaparcels

in Westwood only have a single parcel, they do not accrue these increasing benefits that

multi-parcel usetypes accrue.
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While each of the 5 quantile models present e↵ects of covariates at that quantile level,

the change of covariate e↵ect across the quantiles is insightful in narrowing down specific

users that could benefit from energy consumption management programs. The change in

covariate values across the quantiles is presented in Figure 4.4 and 4.5 and the bands on the

estimated covariate represent the bootstrap confidence interval. Each of the covariates and

its trend over the quantiles is discussed in detail below.

Square Footage: As expected, area in square footage has an overall positive e↵ect on

monthly energy consumption. However, the e↵ect is relatively small on the lower quantiles

and as we reach 75% and 90% quantiles, the e↵ect is more than unit increase. This indi-

cates that the higher quantile consumers increase their energy consumption more than lower

quantile consumers for every square footage.

Year Built: The Year built indicates the age of the megaparcel, and the variable ranges

from 1843 to 2013. For every unit increase in the year built, the megaparcels experience

decreasing energy consumption across the quantiles. This gain in energy savings is highest

at the 90% quantile. This is most likely due to improved building e�ciency rules laid on

newer buildings. The model could be improved by using a categorical variable that represents

ranges of years that implemented progressive building e�ciency rules.

Usetypes–Condominium, Institutional, Mixed Use, Multi Family and Res-

idential Other: These five usetypes have expressed a steep decreasing trend of energy

consumption, compared to commercial parcels of the same size, over the range of quantiles.

The increased energy savings at the 70% and 90% quantiles are most likely a result of the

large area of the buildings under these usetypes. While the megaparcels under these usetypes

have a range of parcels in them(institutional, multi family and Residential Other have only 1

parcel), the mean square footage of these buildings is greater than 20K. Aside from Institu-

tional buildings, the rest of the usetypes are various kinds of residential buildings. The trend

of lower energy consumption over the quantiles indicates that these usetype megaparcels are

much more energy e�cient than their commercial counterparts of the same size and age.

Usetype-Other: As mentioned above, the usetype-Other megaparcels are a combina-
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tion of miscellaneous buildings that include parks, schools, churches, a country club and some

institutional buildings. This is the only usetype that has shown an increase in consumption

over the range of quantiles. Compared to commercial megaparcels, the usetype-Other build-

ings show a small spike at the 25% quantile and a larger spike at the 90% quantile. The large

spike at the 90% quantile is likely due to the large area megaparcels under this category.

Single Family: The single family megaparcels have constantly consumed less energy

than their commercial counterparts at all the quantile levels. However, their consumption

takes a greater nose dive after the 50% quantile. Approximately 70% of the megaparcels

in the Westwood neighborhood are single family units made up of a single parcel. Despite

being comprised of a single parcel, the single family houses have a very wide range of area

in square footage. The median area is 2700 sq. feet and about 16% of the single family

homes have an area greater than 4000 sq. feet. In spite this, the single family units show

large energy savings at the 75% and 90% quantile levels in comparison to their commercial

counterparts with similar sq. footage.

No. of Parcels: This usetype, besides usetype-Other, starts o↵ with a positive e↵ect on

energy consumption and takes a nose dive after 50% quantile, resulting in a large negative

e↵ect on energy consumption at 75% and 90% quantiles. It is important to note that due

to taxation rules, most commercial, institutional, multi family and residential other usetype

are considered single parcel units; single family are also single parcel units. As a result, only

condominiums, mixed use and usetype-other megaparcels are made up of more than 1 parcel.

This indicates that these multi-parcel buildings accrue energy savings extra savings for every

parcel. These same buildings have higher energy consumption at the quantiles below 50%,

when compared to their single-parcel commercial counterparts.

4.4.2 Actionable Results

The following outline some immediately useful results that can be used to target energy

e�ciency and other energy management programs for improved savings.

• At the 10% quantile, the largest consumers compared to commercial buildings are
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the usetype Residential Other. Residential Other buildings are all single-parcel units

mostly built in the 1950s and are spatially identified as the fraternity and sorority

houses on Gayley and Hilgard Avenues flanking the UCLA campus. Controlling for

area and year built, these fraternity and sorority houses are consuming more than any

other usetype in Westwood at the 10% quantile. They would probably make good

targets for energy e�cient retrofits and other building standard updates.

• The commercial megaparcels (all single-parcel) have shown consistently higher energy

consumptions at all quantile levels; a few exceptions include Residential Other and

Other usetypes. At the higher quantiles, condominiums accrue savings due to having

a large number of parcels but commercial buildings do not as they are all single-

parcel units. Similarly, across the quantiles, even as sq. footage e↵ect grows, large

area institutional buildings are much more e�cienct than their large area commercial

counterparts. As a result, a closer look at all the commercial megaparcels is necessary

to understand how building function and management di↵er from institutional and

condominium buildings to cause the observed energy consumption disparity.

• Finally, the usetype-Other also requires a closer look as it exhibits a small spike at

the 25% quantile and a larger spike at the 90% quantile, causing it to be a greater

consumer than commercial units for a unit sq. foot. Most of usetype-Other units are

single parcel but have missing area on most, possibly due to their tax categorization.

From the map in Figures 4.1 and 4.2, we know that the largest building by area under

usetype-Other is the Los Angeles Country Club and is possibly the largest consumer

at the 90% quantile.

4.5 Conclusion

This chapter was begun by introducing the first of its kind, Energy Atlas database and the

many questions of data privacy and su�ciency it brought with it. The intended approach was

to fulfill smaller policy objectives through modeling high resolution data, while maintaining
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an outlook on how data resolution and auxiliary databases a↵ect modeling and its usefulness

for policy goals. Fixed e↵ects quantile regression was chosen to understand the factors

leading to high quantile consumption. While there are a myriad of ways to analyze the

Energy Atlas database, quantile regression was chosen specifically to underscore the need for

high resolution data to understand usage patterns a small neighborhoods like Westwood.

While the model itself has revealed some interesting and useful results, as outlined in

the previous section, this was not without extra aid from Google Maps and the LA County

O�ce of the Assessor website that provided parcel area, age and usetype. Google Maps

was specifically used to correct parcel mis-categorizations and identify the high consuming

Residential-Other units as the Fraternity and Sorority houses in Westwood. This high degree

of resolution is immediately useful in knowing where to utilize energy e�ciency programs

within Westwood, and also aid in future causal analysis of energy retrofit programs. Overall,

the majority of the analyses performed in this Chapter is not possible without the high

resolution, parcel level data on Westwood and the mentioned public data.

This brings us to the question of data privacy and su�ciency. While high resolution

data is key to producing detailed results to fulfill policy objectives, the issues of Consumer

Energy Use Data (CEUD) ownership and protection are still up for debate under most

jurisdiction in the country. However, privacy preserving and disclosure limitation methods

can be employed to protect consumer privacy while exploring sensitive data. These questions

of data ownership, protection and privacy preserving methods in the context of Consumer

Energy Use Data are explored in detail in the following chapter.
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Figure 4.4: Quantile Regression coe�cient trends
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Figure 4.5: Quantile Regression coe�cient trends
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CHAPTER 5

Data Privacy and Confidentiality

5.1 Introduction

The motivation for this chapter has risen out of the compilation and existence of the Energy

Atlas database and project. The Energy Atlas database, that supports the Energy Atlas

website, is the largest set of disaggregated energy use data in the nation. The database

consists of monthly, address-level (parcel-level), electricity and gas consumption from the

entire Los Angeles County (and expanding) from 2006 to 2010. By order of the California

Public Utilities Commission (CPUC), all utilities serving the Los Angeles County were re-

quired to share address-level energy use data with UCLA’s California Center for Sustainable

Communities, and the Energy Atlas project under a Nondisclosure Agreement.

The Energy Atlas Project is a unique undertaking as it not only compiles high resolution

energy use data over a large area but also provides the public access to download aggregated

data through the Energy Atlas website (https::/energyatlas.ucla.edu). This data is

unique as it has never been analyzed either to understand long term consumption distribu-

tions or the e↵ect of multiple energy e�ciency programs implemented.

The opportunity for scientists and policy makers is immense as the high resolution data

can be leveraged to understand, manage, and implement energy conservation and e�ciency

programs to fulfil policy objectives like those outlined in the Senate Bill 350. However,

multiple unresolved questions of data ownership, consumer privacy and protection impose

obstacles that make data access and usage complicated. Two of these main issue are outlined

below.
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5.1.1 Data Ownership

As utilities supply energy to consumers and collect usage data for billing, the utilities are

considered to be the owners of the consumer energy use data. However, with the rise of

Community Choice Aggregators (CCA), the issue of data ownership is murkier. Commu-

nity choice energy is an alternative to traditional investor-owned utility supply, where local

entities aggregate individual consumers’ buying power to seek alternative, generally green

energy supply contracts. Sometimes, the individual consumers that are part of a CCA also

contribute to the supply grid through green sources like solar power. In such cases, the

utility distributes energy and collects usage data for billing on behalf of the CCA. Here, the

rightful data owner is undefined or at least legally unclear.

Data ownership has important implications on consumer privacy and protection, as the

onus of securing consumer privacy is generally on the data owner. However, as mentioned,

the boundaries of data ownership, in the energy sector, are still undefined, complicating

the role of utilities, consumers and regulatory bodies with regard to safeguarding consumer

privacy.

5.1.2 Data Resolution

One of the unique features of the Energy Atlas database is that it is parcel-level monthly

energy consumption data. This is an unprecedented level of data resolution (spatially and

temporally) in energy data ever made available for scientific study. Given the privacy con-

cerns of handling address level data, it is only available for study in a secure location on

the UCLA campus. However, privacy concerns of parcel-level data resolution seem trivial

when compared to those arising from smart meter technologies. Smart metering technolo-

gies, increasingly employed by utilities around the country, are capable of collecting and

transmitting minute by minute energy consumption data that also breaks down to the exact

appliance used in the household. This raises serious concerns of data privacy as individual

household and parcel patterns can be discerned at a daily scale. Mind that the utilities col-

lecting this data can be Investor-owned (IOU) or Publicly-owned (POU) utilities resulting in
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di↵erences in business allegiances. With out regulation and oversight, utilities could employ

exploitative pricing schemes or even sell this high-resolution data to third parties. On the

other hand, access to high-resolution data is imperative to making guided policy decisions,

and scientists and policy makers need access to such data.

While the uncertainty surrounding data ownership involves legal policy, the issues of

data privacy, disclosure limitation and related methods are already being explored by statis-

ticians and computer scientists. The U.S. Census Bureau has long been known to employ

statistical disclosure limitation methods on its released microdata to safeguard individual

privacy, and increasingly, newer theoretical definitions of privacy have paved way to broader

privacy methodologies. The rest of this chapter provides a basic overview of these statistical

disclosure limitation and privacy methods, and more importantly, contextualizes their role

in the current arena of data privacy, applicability and usability.

5.2 Literature Review

5.2.1 Statistical Disclosure Control

Dalenius (1977) in “Towards a methodology for Statistical Disclosure control” begins to

formalize the idea of disclosure in the context of data release. He emphasizes the importance

of achieving a “reasoned balance between the right to privacy and the need to know”, and by

working through a framework, defines the concept of D-disclosure. Consider a specific object

OK in a set of identifiable objects (total population), denoted by {O}T . Given a characteristic

D, which may be one of many survey statistics X, Y, . . . , Z, DK is the characteristic value

of object OK . Here, D-disclosure has taken place if the release of the statistics S makes it

possible to determine the value of DK more accurately than is possible without access to S.

Dalenius (1977) continues to explore facets of the definition and extends its scope by

considering external data, internal and external disclosure sources. Finally, he proposes the

criteria of

• operational feasibility and
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• maximizing benefit of statistics release while maintaining some accepted level of dis-

closure

for developing methodologies for Statistical Disclosure Control. Dalenius is honest about

the di�culty of constructing balanced measures of disclosure levels, and the arena of data

collection, release and ownership has changed by bounds since then. Dalenius’ criteria are

revisited and contextualized for the present times in the following sections, after a general

overview of existing disclosure limitation and privacy methods.

5.2.2 Statistical Disclosure Limitation Methods

This section covers long-standing statistical methods used over the years to safeguard in-

dividual privacy while releasing microdata. The first step in anonymizing microdata is to

remove obviously sensitive fields that are also knows as personal identifiable information

(PII), which include name and date of birth. The subsequent methods used by many data

releasing agencies (including the U.S. Census) include the following. See Matthews and Harel

(2011) for more detail.

1. Limitation of detail: This technique includes reducing detail in a variable by binning

or categorizing it into intervals. The U.S. Census does not release geographic identifiers

that would leave a sub-population with less than 100,000 observations vulnerable.

2. Top/Bottom coding: This technique helps reduce disclosure risk of extreme values

by categorizing them as ‘greater than’ or ‘less than’ a value rather than report the

extreme value itself.

3. Suppression: In a contingency table, cells with too few observations are not released

to the public as it is easy to infer the identity of the persons in that cell. Suppres-

sion of cells is used when some variable values are too unique that it allows easy

de-identification.

4. Rounding: This is a technique that involves setting a rounding base and rounding

the value of the cell to the base probabilistically. This technique safeguards sensitive
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values by rounding them to the nearest base, but reduces the information retained in

the microdata.

5. Addition of noise: This technique is extensively used and involves adding a random

noise to the sensitive variable before being released. The perturbed data can be cor-

rectly modeled by accounting for the added noise. Noise can be added to discrete data

by a technique called Post Randomization Method.

6. Sampling: Release of a sample rather than the whole population data has been used

extensively for a long time. It is known to protect against linkage attacks where

the attacker has auxiliary data about the population from external sources. The U.S.

Census has long released Public Use-Microdata Sample (PUMS) data for quicker access.

7. Matrix Masking: Proposed by Cox, matrix masking is a method of adding ambient

noise to a matrix. Given an n by p data matrix X, one would release Y = AXB + C,

where A,B, and C, are appropriate conformable matrices. Special cases of matrix

masking include noice addition, sampling, cell suppression and adding simulated data.

The drawback with matrix masking is that it makes it di�cult to analyze the data,

requiring the analyzer to know the masking procedure to reverse it.

8. Randomized response: This technique is a way to protect survey respondents’ con-

fidentiality when they respond to sensitive questions. The response to the sensitive

question is a result of a probabilistic outcome, where the respondent answers truth-

fully with some probability p or answers untruthfully with probability 1 � p. While

this protects respondent privacy, the data analyzer must have knowledge about the

randomization mechanism to analyze the data correctly. This technique could also be

applied to microdata post collection, before the data release.

9. Data swapping and shu✏ing: This technique involves swapping or permuting the

values of a sensitive variable within a dataset. This removes the relationship between

the record and the respondent. While this is very simple to apply, the major drawback

is that the multivariate relationships in the dataset are no longer retained, possibly
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making the dataset less useful for specific analyses. Another drawback of this method

is that it is di�cult to maintain variable relationships if some variables are weighted.

10. Synthetic data: This technique, as the title indicates, is a way to release simulated

data produced from a model fit on the original data. The initial idea, proposed by Ru-

bin(1993), treats the sensitive data as missing values and replaces them using multiple

imputation techniques. The sensitive variable values are replaced by random draws

from an appropriate posterior distribution. The advantage of this technique is that if

the right model is used, the synthetic data can easily be analyzed producing the same

results as the original data.

11. Micro-aggregates: This technique involves releasing new records that are averaged

or aggregated from at least three original records.

12. Spatial data techniques: Some of the techniques used to secure spatial data include

spatial cloaking, noice addition and rounding to the nearest grid point. Spatial cloaking

involves masking all locations within a certain radius of the record’s location. The

center of the circle is chosen randomly near the origin location. Rounding to the

nearest grid point allows to reduce location resolution and grid size can be based on

the required level of privacy.

While the above listed methods provide a general overview of statistical techniques used

to mask and secure microdata, it is by no means a comprehensive review of all methods

that exist and are employed. The above summaries are mostly sourced from Matthews and

Harel (2011) and for a thorough review of statistical confidentiality, disclosure limitation and

disclosure risks, see Duncan et al. (2011).

Th methods outlined so far are relatively easy to implement, with some exceptions such

as synthetic data and swapping methods; this fulfills Dalenius’ first criterion of operational

feasibility of disclosure control methods. It is also important to note that most of these

methods were developed over the past five decades, where the main goal was to secure

privacy of records in specific microdata. While there is research that probes the quality of
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these methods, and their defense against external data linkage attacks and other disclosure

risks, the current arena of data collection and release has immensely changed over the last few

decades. This makes their fulfillment of Dalenius’ second criterion of maximizing benefit of

statistics release while maintaining an accepted level of disclosure, a little unclear. While well

modeled synthetic data is as good as the original data with respect to analysis, some methods

like randomized response, sampling and matrix masking specifically require knowledge of the

randomization or masking method to correctly analyze the data. This is somewhat at odds

with Dalenius’ criterion of maximizing data release benefit, as the question of who accrues

the benefit from data release is an important and somewhat undefined one. The benefitting

parties could include researchers, policy makers, private companies, etc.

Given the growing ability of technologies to collect and save data, and the myriad of easily

available online public data sources, the range of risks is increasing without a clear sense of

data release benefits and the parties accruing the benefits. The line between ‘right to privacy’

and ‘need to know’ is getting murkier, not just as a result of technological advancements that

can easily track and collect data (like smart meters) but also due to lack of exploration and

understanding of data privacy boundaries. One way is to pursue Dalenius’ second criterion as

an overall lighthouse objective while slowly chipping away at more specific questions such as

defining the confines of data release benefit, accepted levels of privacy, etc. Similar facets of

privacy and data collection are acknowledged in varying degrees by the Institutional Review

Board that oversees human-subject research.

One such goal already has burgeoning research from computer scientists and statisticians,

and is aimed as specific definitions of privacy and developing methodologies fulfilling them.

Three such privacy models are overviewed in the section below.

5.2.3 Privacy Methods

The approach to privacy and disclosure limitation has increasingly moved towards developing

methodologies that fulfill certain formulations of privacy. While this is a necessary shift,

given the expanding formats of available data, it is important to understand the contextual
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positions of these new methodologies in the current field of privacy and disclosure limitation.

Methodologies fulfill a wide range of goals and their usefulness needs to be understood in

the context of applications, operational feasibility and privacy protection provided. This

section briefly outlines 3 definitions of privacy and the following sections will discuss their

feasibility and applicability to large databases like the Energy Atlas database. The privacy

methodologies discussed below are sourced from Fung et al. (2010), which also o↵ers a more

comprehensive view of all the existing privacy methods. For a thorough overview of privacy

methodology, see Chen et al. (2009).

k-Anonymity: Aside from Personally Identifiable Information (PII), which explicitly

identifies individuals, quasi-identifiers (QID) are information or attributes that could poten-

tially identify record owners, especially given auxiliary data. k -Anonymity is a method that

aims to prevent record linkage through quasi-identifiers: if one record in the dataset has

some value of QID, at least k-1 other records in the dataset should have the same value of

QID. A dataset satisfying this requirement is called k-anonymous.

While a k-anonymous table not only safeguards the identity of a record owner by masking

them in a group of similar records, it also possibly thwarts record linkage in other datasets as

QID in the k-anonymous table are not unique. However, this method assumes knowledge of

QID in the data table. While PII are obvious, QID attributes are not always straightforward

to select, especially when the data publisher has to anticipate the various kinds of linkage

attacks. Sometimes, multiple QIDs are used and this increases data security but results in

information loss as more uniformity is introduced into the dataset.

k -anonymity has been extended to counteract some of the drawbacks giving rise to (X,Y)-

anonymity, MultiR k -anonymity etc. (Fung et al. (2010)), but if a certain table is small and

most of the records have the same QID, record linkage is inevitable. Returning to Delanius’

criteria for disclosure limitation methodology, k -anonymity is operationally feasible if the

data table is not too large, but there is a large degree of information loss depending on

the number of QIDs anonymized in the table, a↵ecting the usefulness of the table. For

instance, in the Energy Atlas database, masking the street location (PII) and anonymizing

on QIDs such as building type, square footage, number of parcels is possible but reduces the
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usefulness of the data, especially for specific modeling goals like those pursued in Chapter 4.

This once again raises the question of who accrues the benefit of released data. While privacy

is meant to secure the identity of the individuals in the data, data release and transparency

has multiple possible benefactors. This issue needs closer consideration depending on the

data owner and type.

l-Diversity: This method aims to reduce attribute linkage by diminishing the correlation

between QID attributes and sensitive attributes. It requires that every QID group contains

at least l well represented sensitive values. While there are many interpretations of what

well represented means, l -diversity automatically fulfills k -anonymity (if k=l), as each QID

value has at least l records under it. The drawback is that a probabilistic attack is still

possible as sensitive attributes in datasets are not always uniformly distributed.

Continuing with the Energy Atlas database example, every value under QIDs building

type, square footage and number of parcels should contain at least l unique values of sensi-

tive attributes like street or block address. While this is possible for housing and residential

building types as they are a large sample, it is not simple to achieve for very specific build-

ing types such as institutional or mixed-use types that are smaller in number. Moreover,

if the wrong QID like building age is incorporated, the size of specific subsets of buildings

dwindle quickly, making the application of l -anonymity trickier. Depending on the cho-

sen l, l -anonymity is reasonably feasible to apply but does face issues of skewed attribute

distributions.

✏-Di↵erential Privacy: This privacy methodology provides theoretical guarantees about

privacy by making sure that the risk to the record owner’s privacy does not change whether

the record is included in the database or not. The concept introduced by Dwork (2006) is

also referred to as ✏-Di↵erential privacy where the addition or removal of a single record does

not change the outcome of any analysis. More formally, a randomized function F ensures

✏-di↵erential privacy if for all datasets D1 and D2 di↵ering on at most one record,

| ln P (F (D1) = S)

P (F (D2) = S)
|  ✏ (5.1)

for all S 2 Range(F), where Range(F) is the set of possible outputs of the randomized
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function F . This method does not protect against record and attribute linkage attacks

but it does guarantee that the information known about an individual participant does not

change much should they choose to be part of the database. Di↵erential privacy allows the

randomized output to be such that the addition or removal of a specific record does not

change the output drastically.

The methodology is defined as an interactive query model where the dataset is accessible

only through data queries submitted to the data publisher; it is supposed to be adaptive to

multiple queries but it is unclear how detailed the data queries can be and if the number

of queries reach a limit to secure privacy. The methodology has also been shown to fail for

network data where tuples a↵ect data attributes, requiring the data to be independent for

the methodology to work (Kifer and Machanavajjhala (2011)).

Despite the challenges, one the of most practical applications of a probabilistic version

of di↵erential privacy was employed on the U.S. Census Bureau’s Longitudinal Employer-

Household Dynamics Program (LEHD) in Machanavajjhala et al. (2008) and the online

public interface that handles the queries is at https://onthemap.ces.census.gov/. The

LEHD database is a commute pattern table representing every U.S. worker’s employment

and household location with complementary attributes on employment type and industry.

While the employment or destination block is already public data, the household or origin

block of the worker is treated as the sensitive attribute and masked through a probabilistic

di↵erential privacy algorithm. The authors are honest about having to tweak the current

di↵erential privacy method to the specific problem at hand to produce an appropriate privacy

method for the commuter data.

5.3 Discussion

The above sections on Statistical Disclosure Limitation and Privacy methods are by no means

comprehensive and there are numerous other methodologies that explore and provide varying

degrees of privacy protection. However, since the arena of data collection and storage has

changed immensely over the last two decades, the goals and operational feasibility of existing
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methods in the present context are either undefined or unclear. This is mainly a result of

changing methodologies over the years, without a deliberate assessment of applicability and

feasibility of the methods in the field.

One of the biggest open issues is that the applicability of a disclosure limitation or privacy

method needs to be addressed in the context of data release benefactors. The spectrum of

data utility is wide and privacy methods provide various degrees of data utility. Researchers

can work on specifying this spectrum of data utility and categorize existing methods based on

utility they retain. While the legality of data ownership is out of the purview of statisticians,

the spectrum of fulfilling privacy while retaining data utility is an interesting statistical

problem. One way to explore this is to apply existing methods to databases like the Energy

Atlas and specify the utility retained by each method. This also requires for a specific

definition of statistical utility.

It is apparent that while there are no ‘one size fits all’ solution or method to secure

privacy, researchers should actively seek to demonstrate where their methodology falls in

the data utility spectrum while being honest about the privacy guarantees. As research

expands, it is necessary to contextualize the methodology and understand its limitations of

use. Once again, Delanius’ criteria of operational feasibility and maximizing data utility

against an accepted level of privacy are appropriate goals that all privacy methodologies

need to address directly.

5.3.1 Future Research

In the case of the Energy Atlas database, future work could involve modeling and simulating

synthetic data at parcel or block-group level to make available for public release. At the same

time, the synthetic data could be analyzed at various resolutions to test for data utility, and

specifically compare results with those in Chapter 4. This provides an interesting contrast to

study the idea of securing privacy while retaining data utility and resolution that can fulfil

useful policy goals.
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