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Abstract

Essays on Network Games with Incomplete Information,

with Applications in Finance

by

Christian Matthew Leister

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Shachar Kariv, Chair

This dissertations includes three (3) chapters, each adding to the growing network games litera-

ture that incorporates incomplete information. Financial over-the-counter markets give motivating

applications. (1) Trading Networks and Equilibrium Intermediation studies the efficiency of trade in

networks. A network of intermediaries facilitates exchange between buyers and a seller. Intermedi-

ary traders face a private trading cost, a network characterizes the set of feasible transactions, and

an auction mechanism sets prices. Stable networks, which are robust to agents’ collusive actions,

exist when cost uncertainty is acute and multiple, independent trading relationships are valuable.

A free-entry process governs the formation of equilibrium networks. Such networks feature too

few intermediaries relative to the optimal market organization and they exhibit an asymmetric

structure amplifying the shocks experienced by key intermediaries. (2) Interdealer Trade: Risk,

Liquidity, and the role of Market Inventory further studies traders facing private shocks, placed in

a dynamic setting. Trades between ex ante symmetric, inventory carrying intermediaries (“deal-

ers”) are motivated by divergent liquidity needs of the counter parties. Market prices and asset

flows are pinned by dealers’ indifference between providing intermediation services and retaining

liquidity to be utilized in subsequent interdealer markets. More active interdealer markets simul-

taneously increase the value to intermediation and the option-value to providing these services.

Under infrequent shocks, interdealer trade boosts the availability of liquidity in the broader mar-

ket. This boost decays with market inventory, which serves as a constraint on interdealer activity.

Through this market mechanism, prices vary inversely with both search frictions between deal-

ers and on their total current holdings. (3) Information Acquisition and Response in Peer-effects

Networks endogenizes the quality of information that market participants carry in a general peer

effects model. When pairwise peer effects are symmetric, asymmetries in acquired information are

inefficiently low relative to the utilitarian benchmark. And with information privately acquired, all

players face strictly positive gains to overstating their informativeness as to strategically influence

the beliefs and behaviors of neighbors. If strategic substitutes in actions are present and signifi-

cant, low centrality players move against their signals in anticipation of their neighbors’ actions.

A blueprint for optimal policy design is developed. Applications to market efficiency in financial

crises and two-sided markets are discussed.
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1 General Introduction

The following three chapters study network games of different forms, each under some version
of incomplete information. Throughout all of these works, theory is persistently applied
toward better understanding the dynamics of over-the-counter exchange, both financial and
in more general settings (though with emphasis on the first). The ways in which the network
exists as a friction in the economy vary across the chapters. The first two chapters, focusing
on intermediation, have the network capturing the set of feasible trades in the market.
The final chapter abstracts at a higher level, allowing the network to capture the set of
“peer effects”, or preference dependencies in the economy. The interaction of incomplete
information with the constraints of the given network’s structure, and how these frictions
interplay to influence equilibrium behavior and market efficiency, establish an encompassing
theme maintained throughout the dissertation.

Financial intermediaries, or synonymously inventory carrying “dealers” and “market
makers”, have been extensively studied by the financial economics literature. Dealers’
equilibrium bid-ask spread establishes one important unit of analysis, quantifying market
inefficiencies including dealers’ captured rents while establishing an important component
of round-trip transaction costs faced by investors. A classic market microstructure litera-
ture starting with Garman (1976) [7] and shortly thereafter with Amihud and Mendelson
(1980) [1] focuses on markets in which all trades are processed through a monopolistic market
maker that optimally influences bid-ask spread.1 Glosten and Milgrom (1985) [8] later show
how asymmetric information amongst investors implies equilibrium bid-ask spread under the
presence of a risk neutral, zero-profit market maker. Departing from the assumption of a
single market maker facilitating all transactions, Grossman and Miller (1988) [9] reinvented
the literature by allowing for investors to trade directly, while showing that discounting, ran-
dom investor arrival, and the immediate accessibility of a dealer’s liquidity can rationalize
dealers’ bid-ask spread.2

While these seminal works made crucial contributions to our understanding of financial
intermediation, the financial networks literature takes an important departure from these
models. In many over-the-counter financial markets, including corporate and municipal
bonds, “dark pools”, and markets for rare assets, the market’s architecture can imply a
number of trades prior to an asset finding an efficient home.3 Heterogeneity in the structure
of the market, in the form of an incomplete set of persistent trading relationships, can be
captured using a network. In such settings, market participants that are directly connected in
the network are free to trade with each other, while those distant in the network are excluded
from transacting with each other. Gale and Kariv (2007,2009) [5, 6] provide early work

1Amihud and Mendelson (1986) [2] extended their setting to a competitive dealer market with cross-
sectional heterogeneity in asset trading costs, which drives market equilibrium bid-ask spread.

2Thus, dealers create value by their presence in the market. For contributions in similar spirit incorpo-
rating search, see Rubinstein and Wolinsky (1987) [18] and Duffie, Gârleanu and Pedersen (2005) [4] for a
more contemporary contribution.

3For municipal bonds, for example, Li and Schürhoff (2012) [16] see roughly 20% of all transactions
involving two or more dealers, with extensive transaction chains involving up to seven dealers.
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establishing the efficiency of trade in these general networked markets. Given the absence of
trading costs, moderate discounting and sufficient access to dealer liquidity, they establish
efficiency in both the final allocation of assets and in their pricing, with intermediaries
demanding zero bid-ask spread in equilibrium. Gale and Kariv (2007) [5] end by suggesting
future work studying the interplay of other market frictions with the market’s structural
incompleteness. With incomplete and asymmetric information a fundamental friction in real
financial exchange, the following chapters advance this agenda, incorporating incomplete
(and in the fourth chapter, endogenous) information into network markets.

As the first chapter, “Trading Networks and Equilibrium Intermediation” [13]
with Maciej Kotowski, is the first paper known to the authors that explores the role of
private trading costs on the efficiency of trade in networks. The paper assesses the resilience
of equilibrium intermediary networks in facilitating trade in the presence of these dealer-level
shocks. The paper separately explores two dimensions of network resilience in the presence
of cost shocks. The first dimension addresses network stability, defining an unstable network
by the presence of a partnership of adjacent traders that optimally behave as a single trader.4

The second dimension addresses the extent of competitive intermediation by allowing entry
into the market. Traders entering a particular row of the network both compete with others
in the row and provide valuable intermediation services to upstream and downstream traders.
A generic under entry is established5, with thin and unbalanced network structures forming in
equilibrium.6 The paper finishes by addressing how these dimensions interplay, showing that
stability is most obtainable in thin equilibrium network structures when multiple equilibria
persist.

“Interdealer Trade: Risk, Liquidity, and the role of Market Inventory” [14]
further studies the role of complementarities between dealers facing private random shocks.
In a dynamic setting, ex ante identical dealers intermediate an upstream supply and down-
stream demand. High valuing consumers arrive via a Poisson process, while dealers hold
inventories in order to time their arrival. In the event that a dealer is unable to sell to
a high valuing consumer prior to realizing a liquidity shock, an interdealer market allows
her to transfer her asset to a dealer carrying available liquidity. In each period’s market
equilibrium, dealers choose either to intermediate asset flows or retain their liquidity to be
used in future dealer markets. Interdealer trading frictions are captured by a process that
generates the market’s network structure. In this setting, a basic complementarity between
dealers taking on these two distinct market roles is established. With dealers observing mar-
ket flows and aggregate inventories, a novel link between market inventory and the asset’s
price is established working solely through the dynamics of interdealer trade. The paper
shows that the need for interdealer trade heightens as all dealers face more frequent shocks.
Without interdealer trade, dealers’ private risks would be fully priced in upstream markets.

4The paper shows that formation of partnerships only reduces aggregate welfare –in this setting, given
by the likelihood that the network successfully transfers the asset to a consumer.

5This under entry in intermediation markets contrasts with the classic over entry in competitive produc-
tion markets, as illustrated by Mankiw and Whinston (1986) [17].

6Further, multiple equilibrium structures may arise, with significantly thin networks being dominated by
a maximal –yet still inefficiently thin– equilibrium.
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Thus, active interdealer trade boosts the asset’s price in the broader market, with market
inventory the essential state variable used toward assessing both the aggregate need and
accessibility of dealer-provided liquidity.

Finally, “Information Acquisition and Response in Peer-effects Networks”
[15] takes a higher-level approach in capturing network effects, and endogenizes the quality
of information that market participants carry. A set of “players” simultaneously act in a
second stage under a network of signed, weighted, and directed peer effects. Prior to this
stage, each player invests in payoff relevant information. With correlation in players’ payoffs
introduced, signals take on a dual role: they inform both of the state of the world and of what
other players observe. In this setting, the essential network property driving the direction
of equilibrium inefficiencies is the extent of symmetry in pairwise peer effects. In highly
symmetric economies, such as industrial organizations or social networks where pairs either
both compete or both coordinate with each other, information investments are “bunched”:
the equilibrium gap between the most informed and least informed players is inefficiently
small. In economies in which anti-symmetric relationships are prominent, such as in financial
crises as discussed below, the directions of inefficiencies in information acquisition reverse.
The paper further shows that with information privately acquired, players face strategic use
to acquiring information not internalized in equilibrium.7 When pairwise peer effects are
symmetric, these strategic forces take on a clear positive direction: players throughout the
network face the incentive to exaggerate their informativeness. The size of the strategic
value to acquiring information is driven by each player’s connectedness in the network: by
their “influence” on the network.8

The paper finishes with an application to financial markets in liquidity crises. When
traders are unconstrained in their asset positions, strategic substitutes in competitive mar-
ket equilibrium implies strategic substitutes in information acquisition. Traders therefore
over acquire information. In crises, some subset of distressed traders face severe funding con-
straints. In the spirit of the liquidity spirals studied in Brunnermeier and Pedersen (2009) [3],
these liquidity constrained traders are assumed to exhibit upward sloping demands for assets,
as they retain their inventories when short-term prices are high. A paradigm shift is realized
as the proportion of constrained traders grows large. Traders throughout the market now
under acquire information. Constrained traders impose positive externalities on each other
as they aim to coordinate on assets in high states of the world. Unconstrained traders fail
to internalize the value that their information investments provide to constrained traders.
The application then applies the paper’s policy analysis: identification of constrained traders
(e.g. via stress tests) coupled with certification of their information investments influences
these traders to strategical acquire additional information. This encourages the constrained
side of the market to collectively acquire more information, increasing aggregate welfare.

The dissertation is organized respecting the above order, both because this gives the
chronology of the development of the papers and because this provides a logical order in their

7Put differently, if players could publicly invest in information, they would adjust their acquisition choices
as to directly influence others’ beliefs regarding how informed they are.

8Under anti-symmetric relationships these implications again reverse: all players face negative strategic
value to information, with the incentive to understate informativeness.
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theoretical contributions. The first two [13], [14] extend the trade-on-networks literature to
incorporate incomplete information in the form of trading costs and demand uncertainty,
the third [15] studies inefficiencies in heterogeneous settings when information is rationally
acquired. The three works logically build on each other, each informing the next with
relevant insights. The chapters together offer a dialogue, informing of the role of incomplete
and asymmetric information in over-the-counter exchange, while more broadly adding to a
rich and growing literature on information in network games.
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Trading Networks and Equilibrium Intermediation

Maciej H. Kotowski∗ C. Matthew Leister†

Abstract

We consider a network of intermediaries facilitating exchange between buyers and a
seller. Intermediary traders face a private trading cost, a network characterizes the set
of feasible transactions, and an auction mechanism sets prices. We examine stable and
equilibrium networks. Stable networks, which are robust to agents’ collusive actions,
exist when cost uncertainty is acute and multiple, independent trading relationships are
valuable. A free-entry process governs the formation of equilibrium networks. Such
networks feature too few intermediaries relative to the optimal market organization
and they exhibit an asymmetric structure amplifying the shocks experienced by key
intermediaries. Welfare and empirical implications of stable and equilibrium networks
are investigated.
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[Figure 1]

Intermediation in markets is commonplace. Consider the situation depicted in Figure 1.
Sam is a farmer growing watermelons in California while Beth is a consumer of watermelons
in New England. There are gains from trade between Sam and Beth; however, rarely will
Sam and Beth trade directly. They likely do not even know each other. Instead, trade be-
tween them is mediated by a network of intermediary agents {x1, x2, x3, y1, y2, y3, z1}. These
intermediaries—such as wholesalers, transporters, distributors, or retailers—have invested
in market-specific technologies and have developed a web of trading relationships through
which Sam and Beth are linked. There are many paths in the economy through which Sam’s
produce can arrive on Beth’s picnic table.

Intermediary networks like those in Figure 1 embody two cross-cutting features. First,
there is competition among intermediaries with similar links and relationships. Intermediaries
with overlapping relationships—like x3 and y3 in Figure 1—can perform similar tasks in the
market and will compete to offer their services. Intuitively, overlapping relationships enhance
a market’s robustness. A shock experienced by a particular agent is unlikely to harm the
market as a whole. Other agents, with similar relationships, can act as close substitutes
ensuring goods continue to flow. Second, there is complementarity among intermediaries
with dissimilar links and relationships. An intermediary who is close to a final consumer,
like x3, relies on intermediaries near a producer (x1, y1, or z1) to kick-off the intermediation
chain. Similarly, an intermediary who is close to a producer relies on those with direct links
to final consumers to channel demand.

In light of the competitive and complementary forces embedded in a networked economy,
two questions naturally arise.

1. What economic incentives sustain the arms-length nature of trading relationships in
a network despite the presence of both complementarities and competition? Agents’
desires to capitalize on complementarities and to constrain competition creates incen-
tives for collusion or mergers. If this happens, the trading network is altered; therefore,
its initial configuration lacked persistence and was unstable.

2. Are intermediary networks predisposed to adopt a form that reinforces market robust-
ness or a form that begets market fragility? The push and pull of competition and
complementarity suggests that either outcome is plausible a priori.

To answer these questions we propose a model of intermediated trade in a networked market.
Our model is lean to maximize interpretive flexibility and it melds four classic ideas beyond
the underlying network structure: (1) intermediaries have private trading costs, (2) an auc-
tion mechanism sets prices, (3) a core-like notion defines network persistence and stability,
and (4) a free-entry/zero-profit condition drives network formation.

In our model, one good (“the asset”) is traded and final consumers (“buyers”) are sep-
arated from the good’s producer (“the seller”) by several tiers of intermediaries. In each
tier, traders compete to provide intermediation services. Each intermediary bids to acquire
the tradable asset with the aim of reselling it at a profit to neighbors, who in turn do the
same until the asset is consumed by a final buyer. Though the network structure is common

7



knowledge, each trader’s private trading cost introduces residual uncertainty regarding inter-
mediaries’ demand into the environment. When a trader experiences a negative cost shock,
the market’s operation is shaken. However, if the web of relationships among intermediaries
is sufficiently dense, such shocks minimally impact the market as a whole. If the trading
network is locally sparse, a shock’s impact is exaggerated and market breakdown may ensue.

Paralleling questions 1 and 2, we distinguish between stable and equilibrium trading
networks. In our analysis, “stability” refers to a network’s persistence and is distinct from the
network formation process discussed above. Stable networks are immune to the contractive
incentives implicit in networked markets and preserve traders’ arms-length interactions. In a
stable market, existing traders must not be able to profitably merge together in an attempt
to exploit complementarities or to curtail competition. Our stability notion captures this
intuition and allows us to isolate the distinct, and sometimes subtle, channels through which
the incentives to destabilize an existing network operate. Our model suggests that the gain
from curtailing competition (collusion among similar traders) is often greater than the gain
from enhanced scope (collusion among dissimilar or complementary traders). While direct
competitors unambiguously hurt a trader’s profits, maintaining relationships with multiple
independent complementary agents adds a valuable layer of robustness, which challenges the
benefits otherwise associated with scope economies. Accordingly, we show that a network
is stable when agents are subject to sufficiently frequent shocks, as then the benefits of
multiple independent trading partners outweigh the net benefits of collusion. By stabilizing
the network, idiosyncratic risk acts as a countervailing force to collusion. Thus, it helps
preserve a relatively more efficient (competitive) market organization.

Equilibrium networks are the result of a network formation process, which we assume
is governed by the free entry of intermediaries into distinct, specialized roles. Our model
shows that this process results in networks featuring too few intermediaries relative to a
socially-optimal network organization. Moreover, these few intermediaries additionally as-
sume a configuration that exaggerates the negative shocks experienced by some traders.
These conclusions spring from a fundamental wedge between the private incentives of an
intermediary to operate in a market and the social benefit generated by that intermediary’s
activity. By adding a new path for the flow of goods, an intermediary competes with some
traders but complements others. The unappropriated benefits from complementarity are
sufficiently strong to result in an under-provision of intermediary services.

Though we offer reinterpretations of our model with an eye toward production and fi-
nancial intermediation (see section 2), our model has a simple interpretation as describing a
supply chain, like in the vignette above. In this case, equilibrium networks accord-well with
many common empirical features of supply chains. For example, we show that in equilibrium
there are more intermediaries near consumers (“retailers”) than there are intermediaries near
producers (“wholesalers”).1 This result is driven by asymmetries in the degree of comple-
mentarity among traders and in the uncertainty experienced by traders in different parts of
the economy. It arises despite the absence of scale economies. Similarly, well-known em-
pirical features of supply-chain networks, such as the “bull-whip effect” [21, 22], are easily

1In other words, our model suggests many retailers will carry similar items and these will be sourced from
a smaller pool of wholesalers. Large multi-product retailers do not arise as there is only one good in our
economy.
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discernible in the equilibrium networks of our model.
We develop our argument progressively. Section 2 introduces our model. Throughout,

we take the presence of intermediaries as given and we focus on the interactions among
them.2 In section 3 we examine price-formation and exchange taking the network structure
as given. Section 4 considers network stability and we propose our model of network for-
mation in section 5. Section 6 investigates the relationships between stable and equilibrium
networks. We note parallels between our analysis and other studies as they arise and we link
our conclusions to the wider literature on networked markets before concluding in section 7.
In that section we also outline extensions and variations of our basic model. For example,
throughout we assume that traders face uncertain demand from intermediaries for the as-
set. A “reversal” of our model accommodates supply uncertainty with parallel conclusions.
Appendix A collects proofs. Appendices B and C are available in an online supplement.

2 Model

An economy is characterized by three elements. First, agents are organized in a network
defining trading possibilities. Second, each trader has a private trading cost determining the
prudence of exchange. Finally, a trading protocol sets prices. After introducing our model,
we comment on our assumptions and we offer interpretations in relation to the exchange of
goods, to production with intermediate inputs, and to financial intermediation.

Trading Possibilities Trading possibilities are summarized by a network. Agents are
nodes while edges denote trading links. Our network topology generalizes the trading net-
works analyzed by Gale and Kariv (2009)[12]. Figure 2 presents a typical example. Agents
are arranged in rows 0, 1, . . . , R+ 1, and trading possibilities conform to the following prin-
ciple:

An agent in row r can trade with any agent in rows r + 1, r, and r − 1 and
vice-versa. Other trades for an agent in row r are not feasible.

This principle implies a lattice-like network as illustrated by Figure 2 for the case of R = 2.3

There are three types of agents in our economy. Row R+1 is inhabited only by the seller.
The seller is the originator of a tradable asset that he is willing to sell at a price normalized
to zero. Row 0 is inhabited by n0 ≥ 2 buyers. (Without loss of generality, we adopt the
convention that there are two buyers in all figures.) Each buyer is willing to pay v > 0 for
the seller’s asset. There exist gains from transferring the asset from the seller to a buyer;
however, we assume that they cannot trade directly. Instead, there is a set of intermediary
traders in rows 1, . . . , R who may buy and (re)sell the asset. Traders do not value the asset

2We do not model the underlying reason a particular market features intermediaries, though such arrange-
ments are undoubtably common. Spulber(1996)[32] argues that intermediation, broadly interpreted, accounts
for a quarter of U.S. economic output. Intermediaries play important roles in markets with asymmetric infor-
mation or search frictions. Moreover, legal constraints or natural barriers ensure that intermediaries become
active market participants.

3Our numbering convention is opposite to the convention followed by Gale and Kariv (2009)[12]. Choi et
al. (2014)[4] examine a related class of networks, which they call “multipartite networks.”
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per se; rather, they want to earn trading profits by executing network-conforming trades.
Though we do not impose any ex ante restrictions on the direction(s) of trade, for ease of
discussion we say row r is downstream (upstream) of row r′ if r < r′ (r > r′).

Although our model features three types of agents, our main focus is on traders.4 We
let nr be the number of traders in row r and we call n = (n1, . . . , nR) the configuration of
intermediary traders.5 For example, in Figure 2 n = (3, 2). n captures two important char-
acteristics of intermediary networks. Its length (R) measures the degree of intermediation
in the economy. It might measure physical distance or it might summarize discrete steps in
a supply chain. The number of traders in each row (nr) measures the degree of competition
among intermediaries. Agents in the same row are socially similar since their relationships
with others overlap.

[Figure 2]

Trading Costs Each trader has a private trading cost θi ∈ {0, t}, 0 < v < t. A trader
incurs the cost θi only upon acquiring the asset from another agent, even if he resells it. In-
tuitively, trading costs behave like an inventory cost but their interpretation can be broader.
For example, θi might capture marketing costs associated with resale. While trading costs
are private, their distribution is common knowledge. Costs are distributed independently
such that Pr[θi = 0] = p for all i. We interpret p as describing the trading technology. If p
is low, traders are often exposed to adverse cost shocks and trade is difficult. Although the
economy’s network structure is known, private trading costs imply that agents hold residual
uncertainty concerning the liquidity of the (acquired) asset. Neighbors may or may not be
willing to trade. By assumption, buyers and the seller have a trading cost of zero.6

Trading Protocol We assume that trade occurs via sequential second-price, sealed-bid
auctions according to the following timeline.

0. Each agent learns his private trading costs.

1. When an agent holds the asset, he organizes an auction to sell it. Each of his neighbors
in the network submits a bid from the set B = {ℓ} ∪ R+.

(a) The bid ℓ < 0 is a non-competitive bid equivalent to not participating in the
auction. If all auction participants bid ℓ, the asset is not sold and it expires. In
this case, trade “breaks down.”7

4The “seller” and “buyers” can also be metaphors for larger (not-modeled) upstream and downstream
markets.

5When needed, we use standard shorthand: n−r = (n1, . . . , nr−1, nr+1, . . . , nR) and n = (nr,n−r).
6Allowing the seller and the buyers to incur trading costs does not substantively alter our results but

complicates exposition.
7Though “breakdown” has an admittedly extreme connotation, we intend for the term to describe any

event that interrupts the flow of goods in a manner adversely affecting their value. For example, it may
correspond to a delay in the good’s delivery. A buyer’s valuation for a delayed product may be but a
fraction of its original value. Similarly, in a production network it may correspond to the unavailability of
an intermediate input good.
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(b) All bids b 6= ℓ are competitive bids. The agent submitting the highest competitive
bid wins the auction. A uniform lottery resolves ties.

2. The agent winning the auction takes ownership of the asset and incurs his private
trading cost. He makes a payment equal to the second-highest competitive bid (or
zero if all others bid ℓ) to the auction’s organizer.

3. Steps 1 and 2 repeat until trade breaks down or the asset reaches a buyer, who consumes
it.

Traders are risk-neutral and wish to maximize trading profits (payments from others minus
payments to others) net of trading costs. A buyer receives a payoff of v minus his payment.

2.1 Discussion and Interpretation

Elements of our model deserve comment and elaboration. Crucial to our analysis is the
incomplete, yet regularized, network structure. It aims to capture the two fundamental di-
mensions of intermediary markets. First, trading networks imply complementaries among
intermediaries. Traders in different rows rely on each other to supply trading opportuni-
ties. If trade breaks down prematurely, downstream traders suffer. If expected downstream
terms-of-trade deteriorate, upstream traders’ expected profits fall as their expected resale
values are impacted. Second, traders with similar relationships, i.e. those in the same row,
are substitutes and competition drives their interaction. Our networks provide sufficient
flexibility to examine both effects, which are also present in less-regularized markets.

To minimize confounds, we assume that all traders are ex ante identical, except for their
position in the network. We can introduce some asymmetries—such as (small) row-dependent
variation in p—without qualitatively changing our main conclusions. Similarly, if trading
costs were continuously distributed the qualitative behavior of the model will be unchanged.
Such a modification entails some quantitative amendments that render the exposition more
involved.

Like Kranton and Minehart (2001)[19] or Patil (2011)[29], we rely on a second-price
(equivalently, an ascending) auction to structure exchange. Beyond capturing the flavor of
a competitive bidding process, this format allows us to bracket price-setting and to move
quickly into a discussion of equilibrium and stable networks. Our analysis is robust to
alternative pricing protocols provided revenue equivalence with the second-price auction
obtains.8 We leave to future research the explicit modeling of other trading or pricing
schemes such as consignment [30], bargaining [7, 23, 9, 6, 31], or posted prices [4].9 Manea
(2014)[24] develops a model with a similar motivation to our environment. He relies on a
bargaining game to set prices, assumes a directed graph to describe trading possibilities, and
assumes that traders do not have a private trading cost.

8In an early draft (January 2012) we developed the model herein with first-price, sealed-bid auctions as
the price-setting mechanism. Revenue equivalence obtains and our results continue to apply. In that model,
traders place bids according to a mixed strategy in equilibrium, complicating exposition.

9Though we employ an auction mechanism to set prices, we do not optimize this mechanism. Therefore,
incorporating an optimal auction (see Myerson (1982)[26]) with resale (see Zheng (2002) [35]) is a possible
generalization.
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In the introduction, we sketched our model’s interpretation concerning the exchange of
goods. In such an application, a network of intermediaries acts as a geographic and temporal
bridge between producers and consumers. Another interpretation considers production with
intermediate inputs. A consumer wishes to purchase one unit of a final good at a price of v.
Only firms in row 1 can produce this good. The good’s production function combines one
unit of labor (for example), at cost θi, with one unit of an intermediate good produced by
firms in row 2; and so on. Interpreted in this way, our model emphasizes complementaries
in production—a theme explored extensively in the literature on economic development (see
Kremer (1993)[20])—and competition among intermediate goods producers.10

Our model can also be viewed as a financial market. An investor (the seller) has one
unit of capital available. A safe asset offers a return normalized to zero. Each firm seeking
financing (a buyer) offers an expected net return of v > 0 for the funds. Intermediary
financial institutions—banks, brokers, insurance companies, mutual funds, etc.—link the
investor and the firms. The investor initially allocates his funds with a nearby, trusted
intermediary promising the highest return. The intermediary does the same, and so on until
the funds reach a firm. Intermediaries skim small fractions of the expected return promised
by the firm as a payment for their intermediation services. Gofman (2011)[15] proposes
a model of an economic network to study financial transactions. Echoing elements of our
model, he too assumes a single asset is traded and agents’ valuations are private information.
In contrast to our analysis, however, he employs a bargaining model to specify the trading
mechanism and price formation.

As clear from the model, we take the need for intermediaries as a fundamental feature of
the market under study. Thus, we do not explore the reasons for intermediation, which may
include legal restrictions, technological specialization, or information imperfections. Rather,
like Gale and Kariv (2009)[12], Manea (2014)[24], Wright and Wong (2014)[34], or Choi
et al.(2014)[4]—to note but a few recent examples—we examine the operation of a market
taking intermediation as given. By not specifying the underlying reason for intermediation,
our model can be applied to any situation where successive intermediaries link buyers and
sellers.

10Nagurney and Qiang (2009)[27] employ networks with similar structures to ours to describe production
inside a firm.
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3 Exchange in a Fixed Network

We begin by studying trade in a fixed network. As our model embeds multiple second-
price auctions, it necessarily admits multiple equilibria. Following tradition, we focus on an
equilibrium where agents “bid their value” for the asset and it moves systematically towards
buyers in row zero.

Theorem 1. There exists a perfect Bayesian equilibrium of the trading game where each
agent i (in row r) adopts the following strategy, denoted σ∗

i :

1. If the agent’s costs are low and the asset is being sold by an agent in row r + 1, the
agent places a bid equal to the asset’s expected resale value conditional on all available
information and on σ∗

−i. (Buyers in row 0 bid their value, v, for the asset.)

2. Otherwise, the agent bids ℓ.

Via inductive reasoning, using the buyers’ bids as the anchor, the strategy profile proposed
in Theorem 1 specifies a bid in all contingencies for every agent. Specifically, equilibrium-
path expected resale values (bids) are defined inductively given the anticipated behavior of
downstream traders. If

δ(n) ≡ 1− (1− p)n − np(1− p)n−1, (1)

then the asset’s equilibrium-path expected resale value to a row-r trader is νr = δ(nr−1)νr−1 =∏r−1
k=1 δ(nk)v. δ(n) is the probability that at least 2 out of n agents have a low trading cost.

Only when there are 2 low-cost traders does the asset trade at a non-zero price.

Example 1. Suppose n = (3, 2), as in Figure 2. Let p = 1/2 and v = 1. On the equilibrium
path, low-cost row-1 traders bid 1. Low-cost row-2 traders bid δ(3) · 1 = 1/2.

We focus on the equilibrium in Theorem 1 due to its intuitive appeal and its reassuring
characteristics. First, the asset does not “backtrack” nor does it pause and restart.11 Trade
has a natural direction toward the buyers. Second, expected prices and bids are nondecreas-
ing as the asset approaches the buyers. Finally, (1) is increasing in p and n. Hence, average
prices increase as low-cost traders become more common (p ↑) and as trader competition
intensifies (nr ↑).

Although intuitive, the “bid your expected resale value” strategy demands a high degree
of trader sophistication. It is not a dominant strategy as it depends on others’ anticipated
behavior feeding into expected resale values. Traders must anticipate others’ equilibrium bids
and an error in the requisite inductive reasoning can compromise the outcome. Laboratory
experiments studying a similar trading environments by Gale and Kariv (2009)[12] and Gale
et al. (2015)[13] suggest that equilibrium predictions are in accord with observed outcomes.
Whereas those studies do not investigate our exact trading game, we view their results as
supporting our analysis.

Much added insight can be drawn by computing the ex ante equilibrium profit of a typical
trader (see Corollary A.1). If we define µ(n) ≡ 1− (1− p)n, then the ex ante expected profit

11A simple modification of Theorem 1 allows us to construct equilibria with such features. Thus, such
equilibria exist but are, arguably, of limited analytic interest.
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of a row-r trader is

πr(n) =
R∏

k=r+1

µ(nk)

︸ ︷︷ ︸
[1]

· p︸︷︷︸
[2]

· (1− p)nr−1

︸ ︷︷ ︸
[3]

·
r−1∏

k=1

δ(nk)v

︸ ︷︷ ︸
[4]

. (2)

Expression (2) succinctly captures the complementary and competitive effects we mentioned
above earlier. Complementaries flow from two sources.

• Term [1] captures the positive externality experienced by a row-r trader from an in-
crease in the number of traders at upstream positions in the network. A trader earns
profits only if the asset reaches his row and he is fortunate enough to buy and resell
it. With increased upstream competition, this event becomes more likely as the risk of
premature market breakdown recedes. µ(n) is the probability that at least one trader
out of n has low trading costs. One low-cost trader is sufficient to ensure that trade
does not break down at a particular row.

• Term [4] captures the positive externality experienced by a row-r trader from an in-
crease in the number of traders at downstream positions in the network. It equals the
asset’s expected resale value. Thus, it summarizes the benefit from increased down-
stream competition, which inflates expected resale prices.

Terms [1] and [4], and therefore πr(nr,n−r), are increasing in n−r.
The direct competition that a trader experiences from others in the same row is captured

by term [3]. It equals the probability with which a trader will be able to purchase the asset
and resell it at a strictly positive profit. Term [3], and therefore πr(nr,n−r), is decreasing in
nr. Term [2] is simply the probably that a trader has low trading costs.

Remark 1. In (2), πr(n) ∝ v. Thus, we henceforth normalize v = 1. (The normalization
also applies to (3), defined below.)

4 Mergers and Stability

Whenever trade occurs through a network of intermediaries, two complementary questions
arise. (1) Why does the network of intermediaries persist? And, (2) how did it arise? In this
section, we focus on first of these questions. In section 5 we consider network formation.

In a stable network, existing market participants are willing to maintain the prevailing
web of arms-length trading relationships. In practice, however, competition and complemen-
tarity may encourage agents to fold-in previously independent operations under a common
umbrella. Firms often merge to constrain competition or to capitalize on complementary as-
pects of their operations. The former boosts market power while the latter expands scope. If
arms-length economic relationships are to persist, integrative impulses must be kept at bay.
Our definition of stability, proposed below, focuses precisely on such cases. We will call a
network stable if collections of neighboring traders cannot profitably merge while performing
the same intermediary task(s). Though intuitively simple, we work toward this definition by
first outlining our model of mergers, which we call partnership formation.
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A partnership is any connected subset of traders who merge and function as a single
economic entity. Agents can form a partnership before private trading costs are realized but
with knowledge of n. We denote a partnership by a vector m = (m1, . . . ,mR) summarizing
its composition. mr is the number of traders from row r in the partnership m.12 As notation,
we let m̄ = max{r : mr ≥ 1} and m = min{r : mr ≥ 1} refer to the extreme rows occupied by
members of m. Traders not in a partnership are independent traders. Independent traders
in rows m, . . . , m̄ are said to be adjacent to the partnership m.

The formation of a partnership changes the economy’s structure. We assume that a
partnership maintains all constituents’ links to the wider economy, but it functions as a
single actor thereby spanning multiple steps in the intermediation process. For example,
Figure 3 shows the creation of a partnership m = (0, 2, 1, 0) in the network n = (4, 4, 3, 2).
The partnership combines two row-2 traders with one row-3 trader. It has links to traders
in rows 1 through 4.

[Figure 3]

Once established, a partnership can trade like a typical trader. It can buy and resell
the asset via the prevailing protocol. It too incurs a trading cost, θm ∈ {0, t}. Generally,
pm = Pr[θm = 0] will be a function of the partnership’s composition, m. To focus our
analysis, however, we assume that

pm =
m̄∏

k=m

µ(mk) (A-1)

for all m. The motivation behind (A-1) is simple. If each trader’s individual cost is low
with probability p, then

∏m̄
k=m µ(mk) is the probability that there is at least one low-cost

trader in the partnership m from each row spanned by the partnership. An application for
this specification could be a supply chain network where a sequence of distinct tasks must
be performed and agents from different rows are specialized in those tasks.

As apparent from Figure 5, a partnership alters a network’s structure. Though not
immediate, the equilibrium of Theorem 1 has a natural generalization to the case a network
with an active partnership. On the equilibrium path, traders and the partnership bid their
expected resale values and the asset moves toward the buyers. Due to length, we formalize
this equilibrium in Appendix B. Below we highlight its key novelties through an example.
A partnership has both direct and indirect implications for the market’s operation.

Example 2. Consider the two networks in Figure 3 and suppose p = 1/2. Theorem 1 de-
scribes bidding in Network A. High-cost traders always bid ℓ. Low-cost traders’ equilibrium-
path bids are defined inductively and are summarized in Table 1.13

Now consider Network B. Again, high-cost agents always bid ℓ. To characterize bidding
by low-cost agents, we work up the rows of the network.

12All agents in a particular row have the same neighbors. Therefore, this representation is without loss of
generality given that we consider economies where there is at most one active partnership.

13All values in this example are rounded to three decimal places.
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Table 1: Initial equilibrium-path bids of low-cost agents in the networks of Figure 3.

Row Network A Network B
Independent Traders Partnership

4 0.236 0.075 -
3 0.473 0.172

0.686
2 0.686 0.686* / ℓ**
1 1 1 -

* When the asset is being sold by a row-3 trader.
** When the asset is being sold by the partnership.

Row 1 On the equilibrium path, the problem faced by traders in row 1 is essentially
the same as in Network A. Such traders bid 1.

Row 2 The optimal bid of a row-2 trader depends on the asset’s seller.

1. Suppose the partnership is selling the asset. The asset’s (unconditional) expected resale
value to a row-2 independent trader is 0.686, as in Network A. However, a moment of
reflection suggests this is an unwise bid for a row-2 trader. Given that row-1 agents are
also neighbors of the partnership and are also bidding in the same auction, the asset’s
expected resale value to a row-2 trader conditional on winning this auction with a bid
of 0.686 is zero. Given equilibrium play, a row-2 trader can acquire the asset from
the partnership with a bid (strictly) less than 1 only when all traders in row 1 bid ℓ.
However, this implies all traders in row 1 have high trading cost and a row-2 trader
would not be able to profitably resell the asset. Hence, ℓ is an optimal bid.

2. Suppose a row-3 independent trader is selling the asset. If this event occurs on the
equilibrium path, row-1 traders have not placed any bids and no value-relevant in-
formation is revealed during this sale. Hence, a row-2 trader can confidently bid his
expected resale value, 0.686, in this contingency.

The Partnership The partnership’s first opportunity to acquire the asset occurs when
it is sold by a row-4 trader. In this case, a low-cost partnership can bid 0.686 as it can resell
the asset at that expected price to a row-1 trader. It can be shown that a partnership cannot
gain by instead waiting to purchase the asset from a trader in row 3 or row 2. Any possible
benefits a delay may bring are already folded into the price it would pay conditional on
acquiring the asset from a row-4 trader. (This price depends on the bids of row 3 traders,
and so on.)

Row 3 The winner’s curse intuition suggested in the case of a row-2 trader applies
again to traders in row 3. Though a row-3 trader bids directly against the partnership when
the asset is sold by a row-4 trader, an agent in row 4 must anticipate reselling the asset for
an expected price less than 0.686. His neighbors will not bid more than 0.686 and there is
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a chance some have high costs precluding resale altogether. If this trader acquires the asset
with a bid less than 0.686, in equilibrium he ought to infer that the partnership has a high
trading cost. Thus, he should adjust his bid accordingly to avoid a winner’s curse. The asset
becomes comparatively less valuable as this event signals reduced downstream competition.
In equilibrium, he anticipates reselling it only to a low-cost row-2 trader. Thus, the asset’s
resale value to a row-3 trader is only 0.25× 0.686 = 0.172.

Row 4 A row-4 trader may sell the asset to either an independent trader or to the
partnership. With probability 0.281, the partnership has low costs and there is at least one
low-cost independent trader. With probability 0.156 the partnership has high costs but both
independent traders have low costs. In each case the sale price is 0.172. Hence, the asset’s
expected resale value is (0.281 + 0.156)× 0.172 ≈ 0.075, which defines an optimal bid.

Theorem 1’s generalization to the case of a partnership builds on the preceding example’s
intuition. The key modification concerns the adjustment of independent traders’ expected
resale values to account for the “bad news” revealed when a multi-row partnership fails to
acquire the asset upon its first chance. Such inferences are important as the same agent
may participate in multiple auctions on the equilibrium path thereby revealing information
about their trading costs. We can gleam further insight into this effect by decomposing the
partnership’s ex ante equilibrium profit. As shown in Appendix B,

πm(n) =
R∏

k=m̄+1

µ(nk)

︸ ︷︷ ︸
[1]

·
m̄∏

k=m

µ(mk)

︸ ︷︷ ︸
[2]

·
(
1−

[3a]︷ ︸︸ ︷
µ(nm̄ −mm̄)

[3b]︷ ︸︸ ︷
m̄−1∏

k=m

δ(nk −mk)

︸ ︷︷ ︸
[3]

)
·
m−1∏

k=1

δ(nk)

︸ ︷︷ ︸
[4]

. (3)

The labeling of (3) parallels that of (2) for the baseline model.14 Term [1] captures the
benefit from increased upstream competition while term [4] is the asset’s expected resale
value given the normalization v = 1. Term [2] is the probability with which the partnership
has low trading costs given (A-1). This term is increasing in mk but decreasing in (m̄−m)
and it summarizes the partnership’s trading technology. An increase in m̄−m corresponds to
an expansion of the partnership’s scope as it moves into additional intermediary tasks. Term
[3] accounts for the partnership’s market power in the network. It has two key elements.
Term [3a] captures the direct decline in competition due to the partnership’s presence. The
partnership bids against fewer competitors and thus it can secure more favorable terms
more often. Term [3b] captures an indirect market power enhancement flowing from the
partnership’s informational advantage. Due to its scope, a partnership has better knowledge
concerning the intensity of downstream competition in comparison to independent traders.
Specifically, the partnership knows whether it is a potential purchaser of the asset from
downstream traders. In response to this informational advantage, independent traders must
temper their bids to avoid the winner’s curse effect noted above and illustrated in Example
2. The reduction of independent traders’ resale values propagates through the network and

14If a partnership has one member, (3) collapses to (2) given the convention
∏r−1

k=r
δ(nk −mk) = 1.
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Table 2: Benefits and Costs of Exclusively Vertical and Exclusively Horizontal Mergers

Terms in (3) Horizontal Mergers Vertical Mergers
Trading Technology [2] + -
Direct Market Power [3a] +
Indirect Market Power [3b] +
Distance Premium [1], [4] +

deflates the bids of independent traders in row m̄, further reducing the partnership’s expected
payment conditional on acquiring the asset.

As suggested by the above discussion, merging along vertical and horizontal dimensions
can have different implications. These are summarized in Table 2. A purely horizontal
merger improves the partnership’s trading technology and gives the partnership direct market
power. Unambiguously, these enhance profits. Vertical integration implies an expanded
scope as the partnership spans multiple steps in the intermediation chain. The need to
accomplish multiple intermediation tasks weakens the group’s technology given (A-1). On the
other hand, a vertical partnership enjoys some indirect market power and a direct distance
premium. This final effect is purely mechanical. The partnership buys at a low price from
an agent in row m̄+ 1 and sells at a premium to an agent in row m− 1. Partnerships that
combine vertical and horizontal links, like in Figure 3, experience some mixture of these
benefits and costs.

Though we have already identified an indirect cost of merging, we have yet to consider
the direct costs that mergers entail in practice. For example, it is often costly to integrate
the operations and cultures of two previously separate firms. Legal constraints, such as anti-
trust laws, can make collusive arrangements or mergers difficult. To capture direct costs we
further assume that when a partnership m forms, it incurs a cost of ζ(m). Though mindful
of more general specifications, for simplicity we assume that

ζ(m) = ch

m̄∑

r=m

(mr − 1)

︸ ︷︷ ︸
[1]

+ cv · (m̄−m)︸ ︷︷ ︸
[2]

(A-2)

where ch, cv ≥ 0 are constants. (A-2) distinguishes between two kinds of merging actions.15

Term [1] captures the cost of fusing horizontal links in the network. Term [2] captures the
costs of fusing vertical links in the network.

15(A-2) may be viewed as a first-order approximation to a more general—for example, convex—cost
function.
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4.1 Network Stability

We call a network stable if no partnership can provide its members a greater payoff relative
to a benchmark where all agents act independently.

Definition 1. A trading network n is stable if for all feasible partnerships
m = (m1, . . . ,mR) ≤ n,

∑
r mrπr(n) ≥ πm(n)− ζ(m).

Our definition of stability draws inspiration from classic solution concepts, such as the core,
in a transferable-utility setting. By focusing on the fusing of nodes it contrasts with other
common definitions of stability in network economies. For example, Jackson and Wolinsky
(1996)[17] propose a stability notion whereby a fixed set of agents can form and drop links.
Ostrovsky (2008)[28] models supply-chain networks and proposes a generalization of “sta-
bility,” in the sense of Gale Shapley (1962)[10], to that class of problems. Manea (2014)[24]
examines horizontal and vertical integration of traders in a network like we do, but focuses
on comparative static welfare implications rather than network stability.

Whether a trading network is stable is closely related to the underlying trading technology
and the magnitude of merger costs.

Theorem 2. If ch > 0 and cv ≥ 0, then there exists a p̂ > 0 such that for all p < p̂, the
trading network is stable.

Theorem 2 shows that a stable network exists when p is sufficiently small. In this case,
traders frequently experience costs shocks. The insulation provided by a web of independent
trading partners is particularly valuable in this case and acts as a natural disincentive to
integrative actions. Curiously, the drawbacks of vertical partnership formation (see Table
2) may be sufficiently strong so that stability can be assured even if direct, vertical merger
costs are zero.16 In contrast, if ch = 0, then instability is virtually assured.

Theorem 3. If n1 ≥ 2 and ch = 0, then the trading network is not stable.

Theorem 3 highlights the differential impact of horizontal and vertical merger costs.
Notably, a network can be stable even if vertical merger costs are zero. This is the outcome,
for example when vertical mergers are associated with a pronounced deterioration in trading
technology and enhanced scope is not profit enhancing. Purely horizontal mergers enhance
traders’ market power and improve their trading technology. Therefore, some direct costs
must counteract these benefits to ensure stability.

16This observation accommodates Ostrovsky’s (2008)[28] argument that in a trading network it may be
easier to organize a “vertical” coalition than a horizontal one. A purely vertical partnership shares a structure
with the “chain block” proposed by Ostrovsky (2008)[28].
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4.2 Instability and Welfare

While all trading networks are stable if direct merger costs are sufficiently large, instability
may ensue if such costs are small. If a network is not stable, what might happen? Perhaps the
simplest consequence is that the economy operates with a partnership in its midst, at least
in the short-run. Although this arrangement may not persist in the longterm, it provides an
obvious benchmark to gauge the welfare implications of this alternative market structure.
Intuitively, one may interpret a market with an active, multi-row partnership as a market
that is in the initial phases of “disintermediation.” The minimal economic distance between
the buyers and the seller is shorter than it was initially.

To measure welfare in our economy, we first define

χ(n) =
R∏

r=1

µ(nr)

as the market’s capacity. It is the probability that the asset reaches a buyer given the
configuration n. Therefore, it accords naturally with the market’s throughput. Of course,
χ(n) also equals the expected surplus generated in the economy. Therefore, it provides a
meaningful, utilitarian welfare measure.

Theorem 4. A network’s capacity, χ(n), equals the sum of the intermediary traders’ expected
profits, the expected profit of the seller, and the expected payoff of the buyers.

If there is an active partnership m, the market’s capacity becomes

χm(n) =
R∏

r=m̄+1

µ(nr)

[
m̄∏

r=m

µ(mr) +

(
1−

m̄∏

r=m

µ(mr)

)
m̄∏

r=m

µ(nr −mr)

]
m−1∏

r=1

µ(nr).

By inspection, two conclusions are immediate.17 First, if a partnership is confined entirely
to a single row, its presence does not impact aggregate welfare: χm(n) = χ(n). Though
the partnership has enhanced market power, it only introduces distributional consequences
with no impact on the market’s efficiency. Second, and contrasting the first observation, if
m spans multiple rows, then χm(n) < χ(n). That is, the partnership’s presence not only
alters the distribution of benefits among traders, but it also reduces aggregate welfare—a
deadweight loss not unlike in the case of a classic monopoly.

The preceding discussion complements Theorems 2 and 3 and links their conclusions with
aggregate welfare. Notably it suggests that idiosyncratic risk, here modeled as cost shocks,
serves to reinforce a relatively more efficient market organization. Even if direct merger costs
are small, the relatively more efficient market configuration can be maintained as multi-row
partnerships are financially unrewarding.

17Echoing Theorem 4, χm(n) can be shown to equal a sum of expected profits.
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5 Entry and Equilibrium Networks

While stability concerns the persistence of an existing network of trading relationships, it
does not address the process governing network formation. We assume that the network
formation process is characterized by the free entry of intermediaries given a fixed entry
cost. Though distinct from most models of network formation,18 our model shares numerous
features with many classic models in industrial organization or international trade theory.

Fix R and suppose there is a large group of potential traders who may enter the market at
any of the R levels while forming links to agents in adjacent positions. To enter the market,
a trader must incur an entry cost of κ > 0. We interpret κ as an irreversible investment
in market-specific skills or technology. For example, it may be the cost of forming relevant
relationships to be a part of the trading community. Once all traders have made their entry
and location decisions, the network configuration becomes known, traders learn their costs,
and exchange unfolds as before. Agents not entering the market receive a payoff of zero.
Entry occurs until no further profitable entry is possible.

Definition 2. The network configuration n∗ = (n∗
1, . . . , n

∗
R) is an equilibrium configuration

if for all r, πr(n
∗)− κ ≥ 0 and πr(n

∗
1, . . . , n

∗
r−1, n

∗
r + 1, n∗

r+1, . . . , n
∗
R)− κ < 0.

Definition 2 translates the standard intuition associated with free entry, i.e. profits
being driven to zero, to our setting. Our definition is closely related to the “equilibrium
configurations” analyzed by Gary-Bobo (1990)[14] in a class of asymmetric entry models.
Our study is outside that paper’s purview since traders’ payoffs in our model do not satisfy
his monotonicity condition.

5.1 The Set of Equilibrium Networks

All markets feature an equilibrium configuration. This conclusion is immediate when R = 1.
When R ≥ 2 there exists a trivial equilibrium with no traders.19 Although an important
case—speculatively, many unobserved markets do not exist because of “coordination” on
the no trade equilibrium—this equilibrium is of limited analytic interest. More interestingly,
however, nontrivial equilibria exist under mild conditions.

Theorem 5. Let n̄ ≡
⌈
1 + log(κ)−log(p)

log(1−p)

⌉
and define n̄ = (n̄, . . . , n̄).

1. If n∗ is an equilibrium, then n∗ ≤ n̄.20

2. There exists a nontrivial equilibrium if and only if there exists some n ≤ n̄ such that
πr(n)− κ ≥ 0 for all r.

The proof of Theorem 5 defines a tâtonnement process that monotonically converges
to an equilibrium. The process begins from an initial configuration where agents in each

18See Jackson (2008)[16] for a survey of network formation.
19Conditional on an empty network, entry by a single agent is always unprofitable. Either the agent cannot

acquire the asset or he has no one to sell it to.
20We employ the usual coordinate-wise partial ordering of vectors.
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row earn positive expected profits. The number of traders in each row is then increased
successively until the profits of a typical trader satisfy the conditions of Definition 2.

Though equilibria exist, the presence of complementarities implies that they are often
not unique. Surprisingly, however, the set of equilibria has a particularly tractable structure
allowing for meaningful comparisons and welfare analysis. It is a directed set and one
equilibrium—the maximal equilibrium—dominates others in terms of the intensity of trader
competition. First, we illustrate these conclusions with an example. Thereafter we formalize
them in Theorem 6.

Example 3. Suppose R = 6, p = 0.5, and κ = 0.01. Given these parameters, there exist
two equilibrium networks: n = (4, 4, 3, 3, 2, 1) and n′ = (6, 6, 6, 6, 5, 5). See figures 4 and 5.
(Like in all diagrams to follow, we omit within-row links for clarity.) Clearly, network n′ is
the maximal equilibrium given this parameterization.

Theorem 6. Let n and n′ be equilibria. There exists an equilibrium x such that x ≥ n and
x ≥ n′.

To prove Theorem 6 we rely on the same tâtonnement process as in the proof of Theorem
5; however, n ∨ n′ = (max{n1, n

′
1}, . . . ,max{nR, n

′
R}) serves as the initial condition. As all

equilibrium networks are bounded above by n̄, successive applications of Theorem 6 lead to
the following corollary.

Corollary 1. There exists an equilibrium q∗ such that q∗ ≥ n∗ for every other equilibrium
n∗. We call q∗ the maximal equilibrium.

Among all equilibria, the maximal equilibrium features the most intensive competition
among traders. In every row the maximal equilibrium has the most traders. As we explain
below, this fact has important welfare and market-robustness implications.

[Figure 4]

[Figure 5]
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5.2 Equilibrium Configurations and the “Bullwhip Effect”

Like the equilibrium set, individual equilibria also have a predictable and tractable structure.
Consider again Example 3. Though more visible in n than in n′, both networks share a
pyramid-like form. There are more intermediary traders near the buyers than the seller.
This is a characteristic of all equilibrium markets.

Theorem 7. If n∗ = (n∗
1, . . . , n

∗
R) is an equilibrium network, then n∗

r ≥ n∗
r+1.

The logic behind Theorem 7 is easily illustrated with a thought experiment. Suppose a
market has an equal number of traders in each row; that is, the market is balanced in its
distribution of traders. Given this market configuration, however, there is an imbalance in
the profits of traders in different rows. Since µ(nr) > δ(nr), the expected profits of a row-1
trader are greater than the expected profits of row-R trader when n1 = nR. If entry costs are
sufficiently low, additional traders would be attracted to positions near the buyer thereby
generating the skewed distribution of intermediaries.

To add economic rationale to the preceding explanation, it is helpful to focus on the
different types of uncertainty encountered by different traders. µ(nr) equals the probability
that there is at least one low-cost trader in row r. Thus, it is the probability that the asset
successfully transits a level of the network. δ(nr), on the other hand, is the expected fraction
of the resale value that an agent can appropriate from a sale. A trader earns profits if there
are at least two low-cost agents who are potential buyers. Thus, δ(nr) captures additional
uncertainty concerning the terms of trade governing subsequent transactions. With respect
to upstream transactions, a trader only cares that they occur. With regards to downstream
transactions, a trader also cares about the prices at which they occur. By moving closer to
the buyer, aggregate price uncertainty diminishes as there are few downstream transactions.
Furthermore, ever-enhancing competition additionally reduces price variability.

The Bullwhip Effect As noted above, one possible interpretation of our model is that
of a supply chain. A stylized fact observed in many supply chains is the “bullwhip effect”
Lee et al. (1997)[21, 22].21 Roughly, this effect corresponds to an increase in the variability
of demand at higher levels in a supply chain. Though distinct from the four explanations
proposed by Lee et al. (1997)[22], our model is nevertheless consistent with this stylized fact
when we consider equilibrium network configurations. For example, if we focus on the sale
of the asset by an agent in row r + 1 to an agent in row r, we can define the coefficient of
variation in demand, CV Dr(n), as

CV Dr(n) =
Standard Deviation of Demand

Expected Demand
=

√
1

µ(nr)
− 1.

Similarly, we can define the coefficient to variation in sales price, CV Pr(n), as

CV Pr(n) =
Standard Deviation of Price

Expected Price
=

√
1

δ(nr)
− 1.

21We are grateful to Vasco Carvalho for bringing this phenomenon to our attention.
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r 1 2 3 4 5 6
CV Dr(n) 0.258 0.258 0.378 0.378 0.577 1
CV Dr(n

′) 0.126 0.126 0.126 0.126 0.180 0.180
CV Pr(n) 0.674 0.674 1 1 − −
CV Pr(n

′) 0.350 0.350 0.350 0.350 0.480 0.480

Table 3: Coefficient of variation in demand and price in Example 3.

We detail the derivation of these terms in Appendix C.
Since µ(nr) and δ(nr) are increasing in nr, CV Dr(n) and CV Pr(n) are decreasing in nr.

In an equilibrium network, n∗
r ≥ n∗

r+1; thus, relative variation in demand and prices increases
as one moves away from consumers. Moreover, CV Pr(n) ≥ CV Dr(n), which implies greater
relative variation in prices than in demand. Table 3 provides a sense of the magnitudes of
these values in the equilibrium networks of Example 3.

5.3 Equilibrium and Welfare

Above we defined a market’s capacity, χ(n), as the probability the asset traverses the net-
work. Theorem 4 showed that χ(n) equals the sum of agents’ expected profits. By inspection,
we can conclude it is increasing in n. Therefore, it is clear that maximal equilibria enjoy
a welfare advantage under this metric. For instance, in Example 3 the sparse equilibrium
network n has a capacity of approximately 0.25. The maximal equilibrium network’s ca-
pacity is 0.88. The sparse network’s capacity is particularly impacted by its characteristic
bottleneck around row 6. When a cost shock hits a trader in row 6, or even in row 5, its
effect is amplified as few other agents can function as effective substitutes for traders in those
positions. The result is that welfare is compromised.

While capacity may be an appropriate welfare metric for an existing network, from an
ex ante point of view it may be inadequate as it ignores incurred entry costs. Pursuing this
vein, we define

Ω(n) = χ(n)− κ

R∑

r=1

nr (4)

as the (ex ante) aggregate welfare generated by a network. The welfare-dominance of the
maximal equilibrium under this metric is no longer obvious from inspection. The network’s
capacity increases in n, but does aggregate entry cost. Rewriting (4) as the sum of buyers’,
traders’, and the seller’s payoffs yields a helpful decomposition:

Ω(n) = n0π0(n)︸ ︷︷ ︸
Buyers’ Payoffs

+
R∑

r=1

nr(πr(n)− κ)

︸ ︷︷ ︸
Traders’ Payoffs

+ πR+1(n)︸ ︷︷ ︸
Seller’s Payoff

.

If n∗ is an equilibrium configuration, then π0(n
∗) = 0. Moreover, πr(n

∗) − κ ≈ 0 for all
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1 ≤ r ≤ R due to free entry.22 Thus, in an equilibrium configuration

Ω(n∗) ≈ πR+1(n
∗) =

R∏

r=1

δ(n∗
r),

which is increasing in n∗. Therefore, aggregate welfare increases with the number of equilib-
rium traders and the maximal equilibrium remains favored.

While the maximal equilibrium configuration offers compelling welfare advantages, it falls
short of the welfare-maximizing configuration. When a trader enters the market, he imparts
a positive externality on traders located at other levels of the network, boosting their profits.
Since traders do not internalize this benefit, under-entry relative to a first-best benchmark
is a possible outcome. A countervailing force exists, however, as a trader’s entry imparts a
negative externality on his direct competitors who co-locate at the same level. The pursuit
of profit, analogous to “business stealing,” may encourage an over-entry of intermediaries.
The following theorem confirms that the former effect dominates.

Theorem 8. Let n̂ be the ex ante welfare maximizing network configuration. That is, n̂
solves

max
n

Ω(n). (OPT)

For all r and r′, n̂r = n̂r′. Moreover, if n∗ is an equilibrium configuration, then n̂ ≥ n∗.23

The first part of Theorem 8 concludes that a welfare-maximizing network equalizes the
number of intermediaries across rows. It is a consequence of Ω(n)’s symmetry, which is clear
from (4). The second part follows from the presence of externalities. The wedge between
the private profits motivating entry and the social benefits associated with a dense set of
intermediaries leads to intermediary under-entry in equilibrium.

To reinforce ideas, we provide two examples highlighting the relationship between equi-
librium networks and welfare.

Example 4. SupposeR = 5 and p = 1/2. By varying κ we can trace out a family of equilibria
with differing welfare properties. The results of this experiment are summarized by Table 4.
For each value of κ, the table presents all equilibrium configurations, n∗ = (n∗

1, . . . , n
∗
5), along

with the corresponding values for aggregate welfare, Ω(n∗), and capacity, χ(n∗). Analogous
values for the welfare-maximizing network, n̂ = (n̂, . . . , n̂), are also provided. When κ =
0.005, n∗ coincides with n̂. As κ increases, we observe both equilibrium multiplicity and
a divergence between Ω(n∗) and Ω(n̂). As expected, more imbalanced equilibria imply a
greater welfare loss. When κ is sufficiently large the market fails to operate even though a
socially-optimal configuration could generate a positive aggregate surplus.

Example 5. Suppose p = 1/3 and consider network lengths of R ∈ {4, 5, 6}. For each
network, Figure 6 presents the aggregate welfare, Ω(n∗), associated with all equilibria as
a function of κ. The dashed curves indicate the corresponding first-best welfare levels.
When κ is low, “thick” equilibria prevail and the planner’s solution aligns closely with the

22The integer constraint prevents exact equality.
23In the non-generic case where (OPT) has multiple solutions, we assume n̂ is the greatest solution.
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Table 4: Equilibrium and welfare-maximizing (OPT) networks in Example 4.

Equilibrium OPT
κ n∗

1 n∗
2 n∗

3 n∗
4 n∗

5 Ω(n∗) χ(n∗) n̂ Ω(n̂) χ(n̂)
0.005 7 7 7 7 7 0.79 0.96 7 0.79 0.96
0.010 6 6 6 6 5 0.62 0.91 6 0.62 0.92

0.015
5 5 5 5 4 0.47 0.83

5 0.48 0.85
4 3 3 2 1 0.07 0.27

0.020
5 4 4 4 3 0.30 0.70

5 0.35 0.85
4 4 3 3 2 0.18 0.50

0.022 4 4 3 3 2 0.15 0.50 5 0.33 0.85
0.025 0 0 0 0 0 0 0 5 0.23 0.85
0.030 0 0 0 0 0 0 0 4 0.12 0.72

unique equilibrium. The welfare gap between first-best and equilibrium networks widens as
κ increases. Small changes in κ often shift the economy between equilibria.

[Figure 6]

The above discussion provides at best a mixed conclusion concerning the welfare prop-
erties of equilibrium networks. The under-entry of intermediaries into the market begets a
direct welfare loss relative to the first-best benchmark. Compounding that loss, however,
is the specific configuration assumed by traders who do enter the market. A network can
simultaneously function both as an absorber and as an amplifier of idiosyncratic risks.24

The “pyramid” network structure exaggerates the latter. The market is disproportionately
sensitive to the shocks experienced by the few traders located near the seller. Such agents
have few close substitutes and provide important complementarity to downstream agents.
This conclusion is in line with that of Acemoglu et al. (2012)[1] who show that small sectoral
shocks can have a disproportionately-large impact in a macroeconomic context due to an
economy’s network structure.

Several policy tools are available to address the inefficiencies that we have identified.
First, policies that remove entry barriers (i.e. decrease κ) are a safe bet in moving the
economy toward a more efficient organization. This claim is hardly novel, but it is reinforces
classic insights. Likewise, the presence of externalities admits the possibility of Pigouvian
subsidies as a corrective policy. Notably, the seller, who is the main beneficiary of a more
dense network, could subsidize the entry of intermediaries. Finally, a more subtle policy
change may modify the institutions or protocols governing exchange, perhaps on a location-
by-location basis. For instance, if traders in row R could impose a small reserve price, their

24We thank Richard Zeckhauser for suggesting to us the amplifier/absorber metaphor.
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profits would be enhanced. This may justify further entry into that location.25 Institutional
changes may not be costly to implement in a direct sense, but may be indirectly costly due
to inertia in market culture or practice.

6 Equilibrium and Stability

In our terminology, equilibrium network configurations (consistent with free-entry) and stable
network configurations (immunity to mergers) are independent concepts. However, they
naturally work together. For example, one might ask which equilibrium configurations (if
there are many) are more inclined to be stable?

For illustration, consider an economy where R = 2 and let n∗ ≤ n∗∗ be equilibrium
networks. Although many partnerships may serve to destabilize this network, for brevity
consider a partnership m that includes traders only from row r ∈ {1, 2}. This partnership’s
expected profit can be written as

πm(n) = πr(n)
1− p

p

(
1

(1− p)mr

− 1

)

where

πr(n) =

{
µ(n2)p(1− p)n1−1 if r = 1

p(1− p)n2−1δ(n1) if r = 2

is the expected profit of a typical row-r trader when R = 2.
As in our discussion of welfare, economic comparisons of equilibrium networks are simpli-

fied due to the free-entry of intermediaries. When the economy is in equilibrium, expected
trader profits are pinned-down by entry costs (with an allowance to account for the integer
constraint). Thus, πr(n

∗) ≈ πr(n
∗∗) ≈ κ and so πm(n∗) ≈ πm(n∗∗).

For instance, suppose that when mr ≤ n∗
r,

πm(n∗∗)− ζ(m) ≤ mrπr(n
∗∗). (5)

That is, the large equilibrium network cannot be destabilized by a relatively small partner-
ship, which could also form in the smaller network. In this case, the same inequality should
also obtain when the underlying network is n∗. On the other hand, there might exist a
feasible partnership m′ ≤ n∗∗ that may compromise the large market’s stability but which
is infeasible in the small market (i.e. m′

r > n∗
r). Since πm′(n∗∗) is increasing in m′

r, for m
′
r

sufficiently large the inequality in (5) can reverse: πm′(n∗∗)− ζ(m′) > m′
rπr(n

∗∗). Thus, the
critical-mass of active traders in the large market, though beneficial from a welfare perspec-
tive, can be a risk factor pulling toward market instability. As illustrated by the following
example, similar conclusions also appear in more complex economies.

25Crucially, however, the trading mechanism cannot be tilted too strongly to traders in row R. Else,
they may extract too much surplus from traders in row R− 1 rendering entry in that location unattractive.
Striking the right balance in terms of bargaining power would be crucial.

27



Example 6. Suppose R = 5 and p = 1/2. When κ = 0.015, there are two equilibrium
configurations: n∗ = (4, 3, 3, 2, 1) and n∗∗ = (5, 5, 5, 5, 4).26 If merger costs conform to (A-2),
both networks are stable when ch and cv are large. Stability is compromised when ch and
cv are low. Specifically, Figure 7 identifies the stable network(s) for each pair of parameters
(ch, cv). The network n∗∗ is less robust than n∗ as it is stable only when direct merger costs
are greater.

[Figure 7]

While we have already emphasized the welfare benefits of maximal equilibrium config-
urations, the above discussion suggests ensuring those benefits may be difficult. First, to
arrive upon a maximal equilibrium, agents’ entry decisions must be coordinated to leverage
the benefits of complementarities in distant regions of the network. As is well-known, coor-
dination on the “good equilibrium” is never assured. Second, even if entry challenges can be
overcome, ensuring market stability may prove more challenging than had a non-maximal
equilibrium configuration prevailed. If a partnership forms, for example, the expected welfare
gains of a maximal equilibrium do not materialize fully. When stability is an important con-
sideration or constraint, a non-maximal equilibrium configuration may be the best feasible
outcome.

7 Context, Extensions, and Conclusions

We have developed a model of network formation highlighting the competition and com-
plementarity among intermediaries. These forces shape both network formation and affect
the persistence or stability of existing networks. Our model shows that markets may not
naturally assume the most capable market organization. The bipartite buyer-seller networks
traditionally explored in the literature do not always identify these effects as the comple-
mentarities among agents are tempered by the assumed network structure.

Demand vs. Supply Uncertainty A key ingredient fueling many of our results is that
intermediaries face demand uncertainty. Traders hold residual uncertainty regarding the
asset’s liquidity as their neighbors are exposed to private cost shocks, which may preclude
exchange. Asymmetries in the nature of uncertainty lent equilibrium networks their char-
acteristic, pyramid-like structure with more traders congregating near the buyers than the
seller.

While demand uncertainty is present in many markets with active intermediaries, some
markets—such as those for some commodities—feature supply uncertainty. Playing our
model “in reverse” provides a framework for analyzing markets operating within this paradigm.
Briefly, such a market could function as follows. A single buyer (in row 0) wishes to acquire
an asset, which is supplied by multiple sellers (in row R + 1). To purchase this asset, the
buyer contacts his neighboring intermediaries (in row 1). The buyer holds a procurement

26This case was examined in Example 5 as well.
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auction and the intermediary offering the lowest price is contracted to supply the asset.
This auction could be implemented as a descending clock auction, mirroring the ascending
auction that could be used in our original model.27 Intermediaries with low trading costs
submit competitive bids while those with high trading costs bid ℓ. If all intermediaries bid ℓ,
they cannot supply the asset and the transaction breaks down. If an intermediary wins the
procurement auction, he must now secure supply of the asset. To do so, the intermediary (in
row 1) himself organizes a procurement auction, which now draws neighboring intermediaries
in row 2. The process repeats until an intermediary secures supply of the asset from a seller
in row R+1. If the process does not break down, a chain of low-cost intermediaries will link
the buyer to a seller thereby allowing for exchange.

It is clear that competition and complementarity operate in the “reversed” market in
much the same way as they did in our original economy. Parallel conclusions follow. In-
termediary under-entry relative to a socially-optimal benchmark and a regularized network
structure—in this case a “funnel” instead of pyramid—continue to feature in equilibrium
configurations. The definition of market stability translates verbatim to this setting as well.
Therefore, our basic framework can be adapted to accommodate many alternative trading
structures, with under-entry remaining the underlining theme.

Related Literature In studying intermediation, our study builds on earlier analyses in
several literatures. Networks provide a natural forum for studying exchange and the relation-
ships among economic agents. In particular, our equilibrium stresses the complementaries
among agents in the presence of network externalities Economides (1996)[8].28 Intuitively,
traders who perform similar tasks in the intermediation process (i.e. those who have the
same “friends”) function as substitutes. In contrast, traders who are in distant regions of
the economy complement each other. Downstream traders enhance competition and thus bid
up resale prices. Upstream traders enhance the frequency of exchange; idiosyncratic shocks
are less likely to compromise the market’s operation.

Like Bala and Goyal (2000)[3], Kranton and Minehart (2001)[19], or more recently Con-
dorelli and Galeotti (2012a)[5], we study network formation. Our network-formation process
builds around free entry and contrasts with their focus on strategic link formation. Addition-
ally, our analysis moves away from bipartite buyer-seller networks by incorporating layers of
intermediaries or middlemen. In this regard, our study follows most closely recent work by
GaleKariv (2007,2009)[11, 12] who also study intermediation with a network of successive
intermediaries.29 Unlike these papers we endow traders in our model with private informa-
tion about trading costs. Recognizing the importance of market “middlemen,” Rubinstein
and Wolinsky (1987)[30] offer a lucid analysis based on the random matching of buyers and
sellers with intermediaries. They do not explicitly model a network but their model accom-
modates alternative institutional arrangements, such as consignment sales, which we do not
consider.

Our analysis stresses the competitive and complementary pressures seen by markets with
intermediaries. The zero-profit assumption is ubiquitous when analyzing competitive market

27Alternatively, intermediaries may engage in Bertrand competition iteratively lowering their offer prices
lower and lower.

28Jackson (2008)[16] provides a comprehensive survey of the literature on economic networks.
29Wright and Wong (2014)[34] also examine chains of intermediation, though in a search-theoretic context.
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organizations and, like here, has been noted to imply cross-cutting implications for efficiency
Mankiw and Whinston (1986)[25]. Whereas Mankiw and Whinston (1986)[25] identify a
tendency for over-entry into production markets, we stress under entry. Our framework
introduces upstream and downstream complementarities that are typical of many produc-
tion (or supply-chain) networks. These important complementarities lead to our distinct
conclusions. An inefficiency in the market’s organization persists, though it is of a different
character.

Choi et al. (2014)[4] stress the importance of “critical traders” in network markets. Our
analysis complements their conclusion. Equilibrium networks exaggerate the importance
of some traders thereby bestowing an abnormal criticality to traders closer to the seller
or producer. Likewise, one can interpret the formation of a partnership or other merging
behavior as an attempt by traders to bolster their (collective) criticality within the economy
as a whole. Such large traders are not only important in an absolute sense, but they also
generate indirect market externalities affecting others’ profitability. Our model isolates these
more subtle channels. Among others, Kranton and Minehart (2000)[18] and Arrow (1975)[2]
also examine integration among market participants.

Our model can be extended along many dimensions and incorporated into broader studies
of trade with intermediaries. A particularly promising direction concerns developing a more
comprehensive understanding of the stability and robustness of networked markets. This is
especially salient if traders can form more elaborate network configurations than what we
have considered. Similarly, we have focused on a specific market institution, an auction, as
mediating exchange. Allowing for alternative or endogenous institutional arrangements—
such as consignment contracts, bargaining, or optimal trading mechanisms—among buyers,
sellers, and intermediaries, is but one exciting avenue for further analysis.
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A Appendix: Proofs

Lemmas A.1 and A.2 are preliminary results that we use below.

Lemma A.1. Take an arbitrary trading history and consider trader i in row r.

1. Given σ∗
−i, trader i cannot earn a positive trading profit in any continuation of the

trading game if the asset is held by another trader in row r − 1 or r.

2. Given σ∗
−i, the expected resale value of the asset to trader i is ν̃r = δ̃r−1b̃r−1 where δ̃r−1

is the probability assigned by i to the event that there are at least two low-cost agents
in row r − 1 and b̃r−1 is the expected bid of a low-cost trader in row r − 1.

Proof. We adopt the convention that buyers are “low-cost agents” in row 0 who bid v. The
proof is by induction on r.

Base Case Let r = 1. (1) Suppose that the asset is held by an agent in row zero. It is not
available for trade and i cannot earn further trading profits. If the asset is sold by another
trader in row 1, all agents in row 0 bid v. If i purchases the asset, he must pay at least
v. Given σ∗

−i, he will be able to resell it only to a buyer at price v. On net, this buy-sell
transaction yields zero trading profit. (2) As the trader receives payment only if a buyer in
row 0 acquires the asset and further trading profit is not possible, the expected resale value
is ν̃1 = δ̃0 · b̃0 = 1 · v = v.

Induction Hypothesis A trader in row k cannot earn a positive trading profit in any
continuation of the trading game if the asset is held by another trader in rows k − 1 or k.
Moreover, the expected resale value of the asset to a trader in row k is ν̃k = δ̃k−1b̃k−1.

Inductive Step The base case (k = 1) satisfies the induction hypothesis. Therefore,
suppose the hypothesis is true for k = r − 1. We will verify that it is true for k = r.

(1) Suppose the asset is being sold by a trader in row r − 1 or row r. If i is to earn a
positive trading profit, he must be able to earn a positive trading profit in at least one of
the transactions sketched in Figure 8.30

[Figure 8]

(A) Agent i buys the asset from j in row r− 1 and resells it to k in row r− 1. Let b be the
payment made by i. It equals the highest bid submitted by an agent in row r−2. (If all
traders in row r − 2 bid ℓ, b = 0.) Suppose i resells the asset. In that auction, bidders
in rows r+1 and r bid ℓ. By σ∗

r−1 and the induction hypothesis, low-cost agents in row

r − 1 bid b̃r−1 = ν̃r−1 = δ̃r−2b̃r−2 ≤ b.31 Thus, i is unable to resell the asset at a price
that yields a strict profit.

30Given σ∗
−i
, the asset will never reach to a row r′′ ≥ r + 1. Once the asset reaches row r′′ ≤ r − 2, i will

not have the opportunity to purchase it.
31No new information regarding the resale value of the asset to agents in row r − 2 was revealed in the

interim; therefore, their bids are unchanged.
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(B) Agent i buys the asset from j in row r and resells it to k in row r − 1. Let b equal the
payment made by i. It equals the highest bid submitted by an agent in row r − 1. (If
all traders in row r − 1 bid ℓ, b = 0.) When i resells the asset, the maximal submitted
bid by row r − 1 agents is again b. Therefore, the resale price is bounded above by b
and i cannot earn a strict profit.

(2) Since bidder i is unable to earn additional trading profit once the asset reaches row r−1,
his expected resale value is determined by the bid of row r − 1 low-cost traders. Payment
is received only if there are at least two low-cost traders in row r−1. Thus, ν̃r = δ̃r−1b̃r−1.

Remark A.1 (Expected Resale Values). Given σ∗
−i, we can compute via induction the ex-

pected resale value of agent i in row r to be ν̃r =
∏r−1

k=1 δ̃kv.

Remark A.2 (Beliefs). We will argue that the strategy profile outlined in Theorem 1 is
supported as an equilibrium by the following belief system. On the equilibrium path, beliefs
evolve according to Bayes’ rule conditional on the defined strategy profile. In off-equilibrium
path situations we specify beliefs as follows:

1. If an agent has not bid in any auction, others maintain their prior beliefs concerning
the agent’s type.

2. If an agent bids ℓ in the first auction in which he participates, in all continuation
histories of the trading game others believe this agent has high trading cost.

3. If an agent places a competitive bid (i.e. a bid other than ℓ) in the first auction in
which he participates, in all continuation histories of the trading game others believe
this agent has low trading cost.

Lemma A.2. Let µ(n) = 1− (1− p)n and δ(n) = 1− (1− p)n − np(1− p)n−1.

1. µ(0) = 0 and µ(n)/p ≥ 1 for n ≥ 1.

2. limp→0
µ(nk)

p
= nk.

3. For n ≥ 1 and p ∈ (0, 1), µ(n− 1) ≥ δ(n) ≥ pµ(n− 1).

Proof. (1) µ(0) = 1 − (1 − p)0 = 1 − 1 = 0. Furthermore, since µ(n) is increasing in n,
µ(n) = 1 − (1 − p)n ≥ 1 − (1 − p)1 = p =⇒ µ(n)/p ≥ 1. (2) Applying l’Hôpital’s Rule,

limp→0
µ(n)
p

= limp→0
1−(1−p)n

p
= limp→0

n(1−p)n−1

1
= n. (3) A direct calculation shows that

µ(n− 1)− δ(n) = (n− 1)p(1− p)n−1 ≥ 0 for n ≥ 1. Similarly,

δ(n)− pµ(n− 1) = 1− p− (1− p)n−1(1 + (n− 2)p).

Thus, δ(1)− pµ(0) = 0 and δ(2)− pµ(1) = 0. On the other hand, if n ≥ 2 we see that

d

dn
[δ(n)− pµ(n− 1)] = −(1− p)n−1(p+ (1 + (n− 2)p) log(1− p)) ≥ 0.

Thus, δ(n)− pµ(n− 1) ≥ 0 as required.
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Proof. Theorem 1 Consider trader i in row r. There are two cases depending on the asset’s
trading history. First, suppose the asset is sold by a trader in row r−1 or row r. By Lemma
A.1 the expected additional trading profit of agent i is zero. Therefore, the bid ℓ is optimal.
Suppose instead that the asset is sold by a trader in row r+1. If agent i successfully acquires
the asset, given σ∗

−i the asset’s expected resale value is ν̃r ≤ v. Thus, if i has high trading
cost, ℓ is the optimal bid. If i has low trading costs, an argument parallel to that confirming
that “bidding one’s valuation” is optimal in a second-price auction Vickrey (1961)[33] con-
firms that ν̃r is an optimal bid.

Remark A.3. If n is the network’s configuration, equilibrium-path expected resale values are
νr = Πr−1

k=1δ(nk) · v. Equilibrium-path bids of low-cost traders are br = νr.

Corollary A.1. Consider the equilibrium defined by Theorem 1. The ex ante expected profits
of a trader in row r is πr(n) =

∏r−1
k=1 δ(nk)×

∏R
k=r+1 µ(nk)× p× (1− p)nr−1v.

Proof. For the asset to reach row r + 1, at least one trader in each row k ≥ r + 1 must
have low trading costs. This event occurs with probability

∏R
k=r+1 µ(nk). With probability

p agent i in row r will have low trading cost and will bid νr in equilibrium. With probability
(1− p)nr−1 all other traders in row r have a high trading cost and i acquires the asset for a
price of zero. With probability 1 − (1 − p)nr−1, at least one other trader in row r also has
a low trading cost and similarly bids νr. Hence, i either does not acquire the asset or must
pay νr. Thus, the expected surplus to i is (1 − p)nr−1(νr − 0). Since νr =

∏r−1
k=1 δ(nk) · v,

combining the preceding observations yields the conclusion.

Proof. Theorem 2 Without loss of generality we can assume cv = 0. First, consider a
partnership m where mr ≥ 2 for some r. Since limp→0 δ(n) = 0 and limp→0 µ(n) = 0,
limp→0 πm = 0. Therefore, there exists a p sufficiently small such that πm(n) − ζ(m) ≤
πm(n)− ch < 0 ≤∑r mrπr(n). Hence, the network is stable.

Henceforth, we need only consider partnerships where mr ≤ 1 for all r. Thus, ζ(m) = 0
since cv = 0. Furthermore, we can assume that m < m̄. There are several cases depending
on the underlying network structure.

1. If nr = 1 for some r ≤ m − 1, then
∏m−1

k=1 δ(nk) = 0. Therefore, πm(n) = 0. Thus, a
partnership is not profitable.

2. Suppose nr ≥ 2 for all r ≤ m− 1 and nm = 1. In this case,

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m+1

µ(nk) · p

and

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m̄+1

µ(nk) ·
m̄∏

k=m

µ(mk).
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Therefore, since µ(mm) = p and µ(nk) ≥ µ(mk),

πm(n)

πm(n)
=

p
∏m̄

k=m+1 µ(nk)

p
∏m̄

k=m+1 µ(mk)
≥ 1.

Thus, πm(n) ≤ πm(n) ≤
∑

r mrπr(n). Thus, the partnership is not sufficiently prof-
itable.

3. Suppose nk ≥ 2 for all k ≤ m but nm+1 = 1. (This implies nm+1 = mm+1 = 1.) In this
case,

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m+2

µ(nk) ·
[
µ(nm+1) · p · (1− p)nm−1

]

and

πm+1(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m+2

µ(nk) ·
[
δ(nm) · p · (1− p)nm+1−1

]
.

Since nm+1 = mm+1 = 1,

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m̄+1

µ(nk) ·
m̄∏

k=m+2

µ(mk) ·
m+1∏

k=m

µ(mk).

Therefore,

πm(n) + πm+1(n)

πm(n)
=




m̄∏

k=m+2

µ(nk)

p


 ·
[
p2(1− p)nm−1 + δ(nm)p

p · p

]

=




m̄∏

k=m+2

µ(nk)

p


 ·
[
(1− p)nm−1 +

δ(nm)

p

]

From Lemma A.2, µ(nk)
p

≥ 1. Moreover, also from Lemma A.2

δ(nm) ≥ pµ(nm − 1) =⇒ δ(nm) ≥ p− p(1− p)nm−1

=⇒ (1− p)nm−1 +
δ(nm)

p
≥ 1.

Hence,
πm(n)+πm+1(n)

πm(n)
≥ 1 and thus πm(n) ≤ πm(n) + πm+1(n) ≤

∑
r mrπr(n).

4. Suppose nk ≥ 2 for all k ≤ m+ 1. In this case,

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m+1

µ(nk) · p · (1− p)nm−1
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and

πm(n) =

m−1∏

k=1

δ(nk) ·
R∏

k=m̄+1

µ(nk) · pm̄−m+1 ·


1− µ(nm̄ − 1)

m̄−1∏

k=m

δ(nk − 1)


 .

Thus,

πm(n)

πm(n)
=




m̄∏

k=m+1

µ(nk)

p


 · p

p
·
[

(1− p)nm−1

1− µ(nm̄ − 1)
∏m̄−1

k=m δ(nk − 1)

]

︸ ︷︷ ︸
[1]

.

As p → 0, term [1] converges to 1 and by Lemma

A.2, limp→0

∏m̄
k=m+1

µ(nk)
p

=
∏m̄

k=m+1 nk ≥ 2. Therefore, limp→0
πm(n)

πm(n)
> 1 and for p

sufficiently small, πm(n) ≤ πm(n) ≤
∑

r mrπr(n).

For every feasible partnership, the above argument has confirmed that there exists a p > 0
sufficiently small such that

∑
r mrπr(n) ≥ πn(n) − ζ(m). Since there is a finite number of

possible partnerships, there exists a p̂ > 0 sufficiently small such that the underlying network
n is stable.

Proof. Theorem 3 In a network without a partnership, the expected profit of a row-1 trader
is

π1(n) =
m̄∏

k=2

µ(nk) · p · (1− p)n1−1.

If two row-1 traders merge, i.e. m = (2, 0, . . .), the partnership’s expected profit is

πm(n) =
m̄∏

k=2

µ(nk) · (1− (1− p)2) · (1− p)n1−2

Then,

πm(n) > 2π1(n) ⇐⇒ (1− (1− p)2)(1− p)n1−2 > 2p(1− p)n1−1

⇐⇒ (1− p)2+n1p2 > 0,

which holds for all p ∈ (0, 1). Hence, the proposed merger is profitable when ch = 0.

Proof. Theorem 4 Let n be a network configuration such that nr ≥ 1 for all r. Noting that
nrp(1− p)nr−1 = µ(nr)− δ(nr) and that µ(nr) 6= 0, we can compute the sum of intermediary
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traders’ expected profits to be

R∑

r=1

nrπr(n) =
R∑

r=1

nr

[
r−1∏

k=1

δ(nk)

]
[
p (1− p)nr−1]

[
R∏

k=r+1

µ(nk)

]

=
R∑

r=1

[
r−1∏

k=1

δ(nk)

]
[µ (nr)− δ (nr)]

[
R∏

k=r+1

µ(nk)

]

=

[
R∏

k=1

µ(nk)

]
R∑

r=1

(
r−1∏

k=1

δ (nk)

µ(nk)
−

r∏

k=1

δ(nk)

µ(nk)

)

=

[
R∏

k=1

µ(nk)

](
1−

R∏

k=1

δ(nk)

µ (nk)

)

=
R∏

k=1

µ(nk)−
R∏

k=1

δ(nk)

The expected profits of the seller are πR+1(n) =
∏R

k=1 δ(nk). Buyers’ expected welfare is

zero. Hence,
∑R

r=1 nrπr(n) + πR+1(n) =
∏R

k=1 µ(nk).

Proof. Theorem 5 (1) From (2), πr(n
∗) ≤ p(1− p)nr−1; therefore,

πr(n
∗)− κ ≥ 0 =⇒ p(1− p)n

∗
r−1 − κ ≥ 0 =⇒ n∗

r ≤ n̄ =

⌈
1 +

log(κ)− log(p)

log(1− p)

⌉
.

(2) Necessity follows from the definition of equilibrium and part (1). To show sufficiency,
we define a tâtonnement-style mapping that converges to an equilibrium. First, choose n0

such that πr(n
0)−κ ≥ 0 for all r. Define Qr(n) = {ñr ∈ N : πr(ñr,n−r)−κ ≥ 0, nr ≤ ñr ≤ n̄}

and let n̂r = maxQr(n). Next, define Ar(·) as

Ar(n) =

{
(n̂r,n−r) if Qr(n) 6= ∅
n0 if Qr(n) = ∅

Thus, given n, Ar(·) increases nr until adding another agent to row r (holding n−r fixed)
yields negative profits. Composing these mappings together gives

A(n) = (A1 ◦ · · · ◦ AR)(n). (A.1)

We argue that A has a fixed point, A(n∗) = n∗, and that n∗ is an equilibrium.
To show that A has a fixed point we first establish that if πr(n) − κ ≥ 0 for all r, then

A(n) ≥ n. Suppose πR(n) − κ ≥ 0. Then QR(n) 6= ∅. So, AR(n) ≥ n since nR may have
increased. Now consider any r and let ñ = (n1, . . . , nr, ñr+1, . . . , ñR) where the first r terms
are unchanged relative to n and (ñr+1, . . . , ñR) ≥ (nr+1, . . . , nR). Then πr(nr, ñ−r) − κ ≥
πr(nr,n−r)− κ ≥ 0. Therefore, Ar(ñ) ≥ ñ. This implies A(n) ≥ n. Note also that for all r,
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πr(A(n))− κ ≥ 0. Indeed, if we let ñ = A(n), we see that

πr(ñ)− κ ≥ πr(n1, . . . , nr−1, ñr, . . . , ñR)− κ ≥ 0.

Finally, consider the sequence nt+1 = A(nt) starting at n0. nt is a non-decreasing se-
quence and for each t, πr(n

t)− κ ≥ 0. Since nt is bounded by (n̄, . . . , n̄), the sequence {nt}
converges to a limit n∗. Thus, there exists a configuration such that n∗ = A(n∗).

Take n∗ = A(n∗) and suppose that n∗ is not an equilibrium. Therefore, there exists some
row r̂ such that either (1) πr̂(n

∗) − κ < 0 or (2) πr̂(n
∗
r̂ + 1,n∗

−r̂) − κ ≥ 0. We address both
cases.

1. Suppose that πr̂(n
∗) − κ < 0. Then, Ar̂(n

∗) = n0 since Qr̂(n
∗) = ∅. Therefore

n∗ = (n∗
1, . . . , n

∗
r̂−1, n

0
r̂, . . . , n

0
R). Thus, recalling that πr(nr,n−r) is increasing in n−r

and n∗ ≥ n0,

πr̂(n
∗)− κ = πr̂(n

∗
1, . . . , n

∗
r̂−1, n

0
r̂, . . . , n

0
R)− κ ≥ πr̂(n

0)− κ ≥ 0,

which is a contradiction.

2. Suppose instead that πr̂(n
∗
r̂ + 1,n∗

−r̂) − κ ≥ 0. But then, from the definition of Qr̂,
n∗
r̂ + 1 ∈ Qr(n

∗). This implies n∗
r̂ ≥ n∗

r̂ + 1, which is a contradiction.

Therefore n∗ = A(n∗) is an equilibrium configuration.

Proof. Theorem 6 Let n and n′ be equilibria. Choose r and without loss of generality sup-
pose nr ≥ n′

r. Then, πr(n∨n′)− κ = πr(nr,n−r ∨n′
−r)− κ ≥ πr(nr,n−r)− κ ≥ 0. Applying

the mapping A(·) as in the proof of Theorem 5 but with n∨n′ as the initial condition allows
us to construct a sequence of configurations converging to an equilibrium, say x. Since the
sequence is increasing, x ≥ n ∨ n′.

Proof. Corollary 1 By Theorem 6, the set of equilibria are a directed set. This set is finite.
The conclusion follows.

Proof. Theorem 7 We argue by contradiction. Suppose n∗ is an equilibrium such that for
some 1 ≤ r ≤ R− 1, n∗

r < n∗
r+1. Since n∗ is an equilibrium, the following inequalities hold:

r−1∏

k=1

δ(n∗
k)
[
p(1− p)n

∗
r−1µ(n∗

r+1)
] R∏

k=r+2

µ(n∗
k) ≥ κ >

r−1∏

k=1

δ(n∗
k)
[
p(1− p)n

∗
rµ(n∗

r+1)
] R∏

k=r+2

µ(n∗
k)

r−1∏

k=1

δ(n∗
k)
[
δ(n∗

r)p(1− p)n
∗
r+1

−1
] R∏

k=r+2

µ(n∗
k) ≥ κ >

r−1∏

k=1

δ(n∗
k)
[
δ(n∗

r)p(1− p)n
∗
r+1

] R∏

k=r+2

µ(n∗
k)
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To simplify, let κ̃ ≡ κ/(
∏r−1

k=1 δ(n
∗
k)×

∏R
k=r+2 µ(n

∗
k)), then the above inequalities become

p(1− p)n
∗
r−1µ(n∗

r+1) ≥ κ̃ > p(1− p)n
∗
rµ(n∗

r+1)

δ(n∗
r)p(1− p)n

∗
r+1

−1 ≥ κ̃ > δ(n∗
r)p(1− p)n

∗
r+1

From these inequalities, we see that δ(n∗
r)(1 − p)n

∗
r+1

−1 > (1 − p)n
∗
rµ(n∗

r+1). However, since
n∗
r+1 ≥ n∗

r + 1, (1− p)n
∗
r+1

−1 ≤ (1− p)n
∗
r . Similarly, δ(n∗

r) ≤ δ(n∗
r + 1) ≤ δ(n∗

r+1) < µ(n∗
r+1).

As the preceding terms are all non-negative, δ(n∗
r)(1− p)n

∗
r+1

−1 < (1− p)n
∗
rµ(n∗

r+1), which is
a contradiction.

Proof. Theorem 8 Suppose that a solution to (OPT) is such that n̂r > n̂r′ ≥ 1 for some r
and r′. Hence,

R∏

k=1

µ(n̂k)− κ
R∑

k=1

n̂k ≥
∏

k 6=r

µ(n̂k) · µ(n̂r − 1)− κ
∑

k 6=r

n̂k − κ(n̂r − 1). (A.2)

Since µ(n) is concave and nondecreasing, µ(n̂r) − µ(n̂r − 1) ≤ µ(n̂r′ + 1) − µ(n̂r′). Thus,
rearranging terms in (A.2) and substituting gives

(A.2) =⇒
∏

k 6=r,r′

µ(n̂k) · µ(n̂r′)
[
µ(n̂r)− µ(n̂r − 1)

]
≥ κ

=⇒
∏

k 6=r,r′

µ(n̂k) · µ(n̂r′)
[
µ(n̂r′ + 1)− µ(n̂r′)

]
≥ κ

=⇒
∏

k 6=r,r′

µ(n̂k) · µ(n̂r)
[
µ(n̂r′ + 1)− µ(n̂r′)

]
> κ

=⇒
∏

k 6=r′

µ(n̂k) · µ(n̂r′ + 1)− κ >
R∏

k=1

µ(n̂k)

=⇒
∏

k 6=r′

µ(n̂k) · µ(n̂r′ + 1)− κ− κ

R∑

k=1

n̂k >

R∏

k=1

µ(n̂k)− κ

R∑

k=1

n̂k.

The final expression contradicts n̂ being a solution to (OPT).
To show the theorem’s second part, let n̂ = (n̂, . . . , n̂) solve (OPT) and let n∗ be an

equilibrium configuration. To work toward a contradiction, suppose n∗
1 > n̂. Let r̄ =

max{r : n∗
r = n∗

1}. Since n∗ is an equilibrium,

πr̄(n
∗) ≥ κ =⇒

∏

k>r̄

µ(n∗
k) ·
∏

k<r̄

δ(n∗
k) · p(1− p)n

∗
r̄−1 ≥ κ

=⇒
∏

k>r̄

µ(n∗
1 − 1) ·

∏

k<r̄

µ(n∗
1 − 1) · p(1− p)n

∗
1
−1 ≥ κ

=⇒ µ(n∗
1 − 1)R−1 (µ(n∗

1)− µ(n∗
1 − 1)) ≥ κ (A.3)
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The first implication is from the definition of πr(n
∗). The second implication follows since

n∗
1 − 1 ≥ n∗

k for all k > r̄, n∗
k = n∗

1 for all k ≤ r̄, and µ(n − 1) ≥ δ(n) for all n ≥ 1 by
Lemma A.2. The final implication follows from a regrouping of terms and the substitution
p(1− p)n

∗
1
−1 = µ(n∗

1)− µ(n∗
1 − 1).

Consider the following difference written as a telescoping sum:

µ(n∗
1)

R − µ(n∗
1 − 1)R =

R−1∑

k=0

[
µ(n∗

1 − 1)R−1−kµ(n∗
1)

k+1 − µ(n∗
1 − 1)R−kµ(n∗

1)
k
]
.

Examining each term in the sum shows

µ(n∗
1 − 1)R−1−kµ(n∗

1)
k+1 − µ(n∗

1 − 1)R−kµ(n∗
1)

k = µ(n∗
1 − 1)R−1−kµ(n∗

1)
k(µ(n∗

1)− µ(n∗
1 − 1))

≥ µ(n∗
1 − 1)R−1 (µ(n∗

1)− µ(n∗
1 − 1))

≥ κ.

The final inequality follows from (A.3). Hence,

µ(n∗
1)

R − µ(n∗
1 − 1)R ≥ Rκ. (A.4)

Recall the welfare-maximizing configuration n̂. Since n̂r = n̂ for all r, n̂ must also solve
maxn∈Z+

µ(n)R − Rnκ. This objective function is single-peaked and its greatest solution
must satisfy the following “discretized first-order condition”: µ(n̂)R − µ(n̂ − 1)R ≥ Rκ >
µ(n̂ + 1)R − µ(n̂)R. Since n 7→ µ(n + 1)R − µ(n)R is a decreasing function and n∗

1 > n̂, the
preceding inequality implies that Rκ > µ(n̂+1)R−µ(n̂)R ≥ µ(n∗

1)
R−µ(n∗

1− 1)R. But these
inequalities contradict (A.4). Thus, n∗

1 ≤ n̂. Since n∗
r ≤ n∗

1 for all r, n∗ ≤ n̂.
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B Exchange in the Presence of a Partnership

Theorem 1 in the main text characterizes exchange in a fixed network. In this supplement
we extend Theorem 1 to accommodate a partnership.

Let n = (n1, . . . , nR) represent a trading network where there are nr ≥ 1 agents in row r.
Let m = (m1, . . . ,mR) be a partnership with mr members in row r. Agents not belonging to
the partnership are independent traders. Let m = min{r : mr ≥ 1} and m̄ = max{r : mr ≥
1}. For example, consider Figure 9, which reproduces Figure 3 from the main text. Network
A is the trading network n = (4, 4, 3, 2). Network B modifies Network A by introducing the
partnership m = (0, 2, 1, 0). Thus, m = 2 and m̄ = 3.

[Figure 9]

Remark B.1. If m̄ = m, then Theorem 1 applies with minimal modifications. The single-row
partnership is like a single trader in row m̄. It has a low trading cost with probability pm.
We henceforth assume that m < m̄.

B.1 Notation and Terminology

We rely on some specific notation.

• σ∗ — the strategy profile defined in Theorem B.1 below. σ∗
r denotes the strategy of an

independent trader in row r while σ∗
m

denotes the partnership’s strategy. σ∗
i denotes

the strategy of a particular independent trader i. (Due to context, confusion between
σ∗
r , σ

∗
i , and σ∗

m
should not result.) σ∗

−m
and σ∗

−i have their usual meanings as a strategy
profile removing σ∗

m
or σ∗

i , respectively.

• b̃r — the expected bid of a low-cost, independent trader in row r given σ∗
r .

• ν̃r (ν̃m) — the expected resale value of the asset to an independent trader in row r
(the partnership).

• µ̃r — the probability assigned by agents in row r′ 6= r (or by the partnership) to the
event that there is at least one low-cost, independent trader in row r.

When an agent holds his prior belief concerning this value, µ̃r = µ(nr − mr) where
µ(n) = 1− (1− p)n.

• δ̃r — the probability assigned by agents in row r′ 6= r (or by the partnership) to the
event that there are at least two low-cost independent traders in row r.

When an agent holds his prior belief concerning this value, δ̃r = δ(nr − mr) where
δ(n) = 1− (1− p)n − np(1− p)n−1.

Unless noted otherwise, expectations are conditional on the strategy adopted by other agents,
on the trading history, and given the specification of on- and off-equilibrium path beliefs (see
Section B.3). We call bids b 6= ℓ competitive bids.
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B.2 Main Theorem

The following theorem describes an equilibrium of the trading game in the presence of a
partnership. Beliefs supporting the defined strategy profile as a perfect Bayesian equilibrium
are specified in Section B.3. This theorem generalizes Theorem 1 from the main text.

Theorem B.1. Fix a trading network with configuration n. Let m be a partnership such
that m < m̄. There exists a perfect Bayesian equilibrium of the trading game such that:

1. Independent trader i in row r ≤ m− 1 adopts the following strategy:

(a) If trading costs are low and the asset is being sold by an independent trader in row
r + 1, place a bid equal to the asset’s expected resale value to agent i conditional
on all available information and on σ∗

−i. (Buyers in row 0 bid v.)

(b) Otherwise, bid ℓ.

2. The partnership adopts the following strategy:

(a) If trading costs are low and the asset is being sold by an independent trader in
row r ∈ {m+ 1, . . . , m̄+ 1}, place a bid equal to the asset’s expected resale value
to the partnership conditional on all available information and on σ∗

−m
.

(b) If the asset is being sold by an agent in rows m or m−1 or trading costs are high,
bid ℓ.

3. Independent trader i in row m ≤ r ≤ m̄− 1 adopts the following strategy:

(a) If trading costs are low and the asset is being sold by an independent trader in row
r + 1, place a bid equal to the asset’s expected resale value to agent i conditional
on all available information and on σ∗

−i.

(b) Otherwise, bid ℓ.

4. Independent trader i in row r = m̄ adopts the following strategy:

(a) If trading costs are low and the asset is being sold by an independent trader in
row r + 1:

i. If the partnership has not yet bid for the asset, place a bid equal to the as-
set’s expected resale value conditional on all available information, σ∗

−i, and
conditional on the partnership having high trading cost with probability 1.

ii. If the partnership has bid for the asset, place a bid equal to the asset’s expected
resale value conditional on all available information and σ∗

−i.

(b) Otherwise, bid ℓ.

5. Independent trader i in row r ≥ m̄+ 1 adopts the following

(a) If trading costs are low and the asset is being sold by an independent trader in row
r + 1, place a bid equal to the asset’s expected resale value to agent i conditional
on all available information and on σ∗

−i.
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(b) Otherwise, bid ℓ.

Like Theorem 1, Theorem B.1 specifies via induction a bid for every agent for every
trading history. Of course, the expected resale value of the asset depends on agents’ beliefs
conceding the trading costs of other agents in the market. Below we specify how beliefs
evolve.

B.3 Beliefs

We argue that the strategy profile outlined above is supported as an equilibrium by the
following beliefs. As usual, on the equilibrium path beliefs evolve according to Bayes’ rule
conditional on σ∗. In off-equilibrium path situations beliefs are defined as follows:

1. If an agent (an independent trader or the partnership) has not bid in any auction,
others maintain their prior beliefs concerning that agent’s type.

2. If an independent trader in row r /∈ {m, . . . , m̄− 1} bids ℓ in the first auction in which
he bids, then in all continuations of the trading history others believe this trader has a
high trading cost. If instead this trader places a competitive bid in that auction, then
others believe this agent has a low trading cost.

3. If an independent trader in row r ∈ {m, . . . , m̄− 1} bids ℓ in the first auction in which
he bids and that auction is not organized by the partnership, then in all continuations
of the trading history others believe this trader has a high trading cost. If instead this
trader places a competitive bid in that auction, then others believe this agent has a
low trading cost.

4. If an independent trader in row r ∈ {m, . . . , m̄−1} ever places a competitive bid in an
auction organized by the partnership, then in all continuations of the trading history
others believe this trader has a low trading cost. Otherwise, if the trader has only bid
ℓ in such auctions, others do not update their beliefs concerning this agent’s type.

5. If the partnership bids ℓ in the first auction in which it bids, then in all continuations
of the trading history others believe the partnership has a high cost. If the partnership
places a competitive bid in that auction, then others believe the partnership has a low
trading costs.
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B.4 Preliminary Remarks and Lemmas

Remark B.2. Lemma A1 from the main text applies essentially verbatim to all independent
traders in rows r ≤ m and r ≥ m̄ + 1. It also applies to the partnership when the asset is
held by an independent trader in row m− 1 or m.

Lemma B.1. Take an arbitrary trading history and suppose all independent traders follow
σ∗
−m

. The asset’s expected resale value to the partnership is ν̃m = δ̃m−1b̃m−1.

Proof. When the partnership sells the asset, all neighboring independent traders in rows
r ∈ {m, . . . , m̄+ 1} bid ℓ. High-cost traders in row m− 1 bid ℓ and low-cost traders in that
row bid b̃m−1. Therefore, the expected sale price is δ̃m−1b̃m−1. Given Remark B.2, further

trading profits are not possible once the asset reaches row m−1. Therefore, ν̃m = δ̃m−1b̃m−1.

Lemma B.2. Take an arbitrary trading history where it is a commonly held belief among
independent traders that the partnership has high trading costs with probability 1. Given σ∗

−i,

the asset’s expected resale value to independent trader i in row r ≥ m is ν̃r = δ̃r−1b̃r−1 =∏r
k=m δ̃k−1b̃m−1.

Proof. The proof is by induction on r.

Base Case When i in row r = m sells the asset, all neighboring independent traders in
rows m and m+1 bid ℓ. Likewise, the partnership bids ℓ. Thus, the expected selling price is
δ̃m−1b̃m−1. By Remark B.2, further trading profits are not anticipated once the asset reaches

row m− 1. Therefore, ν̃m = δ̃m−1b̃m−1.

Induction Hypothesis (⋆) The asset’s expected resale value to an independent trader in

row r′ is ν̃r′ =
∏r′

k=m δ̃k−1b̃m−1.

Inductive Step The induction hypothesis is true for r′ = m. Suppose that it is true for
r′ = r − 1. We will verify that it is true for r′ = r. When agent i in row r sells the asset,
neighboring independent traders in rows r and r+1 bid ℓ and the partnership bids ℓ. Given
σ∗
r−1, low-cost independent traders in row r − 1 are expected to bid b̃r−1 = ν̃r−1. Thus, the

expected selling price is δ̃r−1b̃r−1. By an argument parallel to that establishing Lemma A1
(but assuming the partnership bids ℓ when it has a chance to bid), we conclude that once
the asset reaches row r − 1, further trading profits are not expected by agent i. Therefore,
the asset’s expected resale value is ν̃r = δ̃r−1b̃r−1. By (⋆), b̃r−1 = ν̃r−1 =

∏r−1
k=m δ̃k−1b̃m−1.

Thus, ν̃r =
∏r

k=m δ̃k−1b̃m−1.

Lemma B.3. Take an arbitrary trading history where it is a commonly held belief among
independent traders that the partnership has low trading costs with probability 1. Given σ∗

−i,
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the asset’s expected resale value to independent trader i in row r ≥ m is

ν̃r =





δ̃m−1b̃m−1 r = m∏r
k=m+1 µ̃k−1 · δ̃m−1b̃m−1 m+ 1 ≤ r ≤ m̄+ 1∏r
k=m̄+2 δ̃k−1 ·

∏m̄
k=m µ̃k · δ̃m−1b̃m−1 r ≥ m̄+ 2

. (B.1)

Proof. The proof is by induction on r.

Base Case When i in row r = m sells the asset, all neighboring independent traders in
rows m and m + 1 bid ℓ. Likewise, the partnership bids ℓ. Thus, the expected selling price
is δ̃m−1b̃m−1. By Remark B.2, further trading profits are not expected once the asset reaches

row m− 1. Therefore, ν̃m = δ̃m−1b̃m−1.

Induction Hypothesis (⋆) The asset’s expected resale value to an independent trader in
row r′ is ν̃r′ as defined in (B.1).

Inductive Step The induction hypothesis is true for r′ = m. Suppose that it is true for
r′ = r − 1. We will verify that it is true for r′ = r. When agent i in row r sells the asset,
neighboring independent traders in rows r and r + 1 bid ℓ. Given σ∗

r−1 and (⋆), low-cost
traders in row r − 1 bid ν̃r−1. There are two sub-cases:

1. Suppose m+ 1 ≤ r ≤ m̄+ 1. Then b̃m = ν̃m. Since ν̃m ≥ ν̃r−1, the expected sale price
is µ̃r−1ν̃r−1 =

∏r
k=m+1 µ̃k−1 · δ̃m−1b̃m−1. Next we confirm that after selling the asset

(for price ν̃r−1) trader i cannot earn further trading profits. Two types of continuation
histories are relevant.

(a) Suppose the partnership acquires the asset. When it sells it, all independent
traders, except perhaps i, in rows r′ ≥ m bid ℓ given σ∗

−i. Low-cost traders in

row m − 1 bid b̃m−1. If a trader in row m − 1 acquires the asset, i will not have
a further chance to purchase it. Suppose instead that i purchases the asset from
the partnership by placing a competitive bid. The price paid by i can be one of
two values. If the price is zero, then µ̃′

m−1b̃m−1 = 0 =⇒ δ̃′m−1b̃m−1 = 0 where

µ̃′
m−1 and δ̃′m−1 correspond to updated beliefs (if applicable). Thus, when agent i

sells the asset, all neighbors who submit a competitive bid will bid at most zero,
precluding any further trading profits. If, however, the price is b̃m−1, then there
is at least one low-cost trader in row m − 1. Despite this fact, when i sells the
asset, all neighbors will bid at most b̃m−1 given σ∗

−i. Again, this implies profitable
resale is not possible.

(b) Suppose an independent trader in row r−1 acquires the asset. If the asset reaches
row m−1 before being available to agent i again for purchase, he will not be able
to profit further given the specified strategy. Similarly, if the asset reaches the
partnership, then by the previous part, trader i will also not be able to profit
further. Thus, suppose i purchases the asset directly from an independent trader
in row r − 1. If r = m + 1, then the reasoning of Lemma A1 applies thereby
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precluding further trading profits for agent i. Suppose instead that r ≥ m + 2.
Since ν̃m ≥ ν̃r−2, agent i must pay ν̃m for the asset. ν̃m is also an upper bound
on all bids submitted when i sells the asset. Thus, trader i is unable to earn a
positive profit by purchasing the asset from an independent trader in row r − 1.

As additional trading profits are not possible, the agent’s expected resale value equals
the expected price from the original sale, ν̃r =

∏r
k=m+1 µ̃k−1 · δ̃m−1b̃m−1.

2. If r ≥ m̄+2, then the partnership is not directly relevant. Thus, the conclusion follows
from Lemma A2 via induction and b̃m̄+1 = ν̃m̄+1.

Lemma B.4. Take an arbitrary trading history in which agents in row m̄ and the partnership
have not yet placed any bids. Suppose a trader in row m̄+ 1 sells the asset. Given σ∗,

1. The expected bid of an independent, low-cost trader in row m̄ is

b̃m̄ =
m̄∏

k=m

δ(nk−1 −mk−1)b̃m−1. (B.2)

2. The expected bid of a low-cost partnership is b̃m = δ(nm−1)b̃m−1.

Thus, b̃m̄ < b̃m.

Proof. Given the asset’s trading history, agents hold their prior beliefs concerning the types
of independent traders in row r < m̄. Thus, δ̃r = δ(nr − mr). Applying Lemmas B.2 and
B.3 gives the conclusion.

B.5 Proof of Theorem B.1

We divide the proof of Theorem B.1 into cases corresponding to the defined strategy profile.

Case 1: Independent Trader i in Row r ≤ m− 1

The bidding problem faced by an independent trader in row r ≤ m − 1 is identical to that
of a trader in a trading network without a partnership and Theorem 1 applies. From the
proof of Theorem 1, we note that b̃m−1 ≤ v, which we employ below.

Case 2: The Partnership

Consider an arbitrary trading history and suppose that the asset is being sold by an inde-
pendent trader in row m − 1 or m. Given σ∗

−m
and Remark B.2, the maximal additional

trading profit that the partnership can earn is zero. Therefore, the bid ℓ is optimal.
Suppose instead that the asset is sold by an independent trader in row r ∈ {m+1, . . . , m̄+

1}. To verify the optimality of σ∗
m
, we proceed by induction on r.
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Base Case Suppose that the asset is currently held by independent trader i in row m+1.
The asset’s expected resale value to the partnership is ν̃m = δ̃m−1b̃m−1 (Lemma B.1). Since

b̃m−1 ≤ v, it follows that ν̃m ≤ v. Thus, ℓ is an optimal bid for a high-cost partnership.
Next we confirm that ν̃m is an optimal bid for the partnership if it has low trading cost.

Given the asset’s trading history, an independent trader in row m believes that either the
partnership has high trading costs or low trading costs. Lemmas B.2 and B.3 imply that
this trader’s expected resale value is ν̃m = δ̃m−1b̃m−1. Given σ∗

−m
, b̃m = ν̃m = ν̃m.

• If the partnership bids ν̃m (or more), the partnership realizes a trading profit only if all
independent traders in row m bid ℓ. Thus, its expected trading profits are (1− µ̃m)ν̃m.

• If the partnership places a competitive bid strictly less than ν̃m, its expected trading
profits are also (1− µ̃m)ν̃m (it wins only if all others bid ℓ given the prescribed behavior
of independent traders).

• If the partnership bids ℓ, either trade breaks down or the asset is transferred to a
low-cost, independent trader in row m. By Remark B.2, the partnership cannot earn
further trading profits given σ∗

m
. Thus, the partnership’s trading profit is zero.

Hence, the partnership cannot improve upon its payoff from the bid ν̃m.

Induction Hypothesis (⋆) Whenever the asset is sold by an independent trader in row
r′ ∈ {m+ 1, . . . , k}, it is optimal for a low-cost partnership to bid ν̃m = δ̃m−1b̃m−1 and for a
high-cost partnership to bid ℓ.

Inductive Step The base case (k = m+1) satisfies the induction hypothesis. Assume (⋆)
is true for k = r − 1. We will show that it is true for k = r.

Take an arbitrary trading history and suppose that the asset is being sold by independent
trader i in row r. There are three cases depending on the trading history.

1. Suppose the partnership bid ℓ in the first auction in which it bid. Thus, independent
traders believe that the partnership has a high trading cost with probability 1. Given
σ∗
−m

and Lemma B.2, b̃r−1 =
∏r−1

k=m δ̃k−1b̃m−1 and b̃r = b̃r+1 = ℓ. Note that ν̃m ≥ b̃r−1.

• If the partnership bids more than b̃r−1, it may earn a profit under two circum-
stances. With probability 1− ν̃r−1 all independent traders bid ℓ and the partner-
ship pays zero. With probability ν̃r−1, at least one independent trader bids b̃r−1

which becomes the price paid by the partnership. Hence, its expected trading
profit is

(1− µ̃r−1)ν̃m + µ̃r−1(ν̃m − b̃r−1) = ν̃m − µ̃r−1b̃r−1

= ν̃m − µ̃r−1δ̃r−2

r−2∏

k=m

δ̃k−1b̃m−1.
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• If the partnership places a competitive bid less that b̃r−1, its expected trading
profit is

(1− µ̃r−1) ν̃m︸︷︷︸
(A)

+µ̃r−1


(1− µ̃r−2)ν̃m + µ̃r−2(ν̃m − b̃r−2)︸ ︷︷ ︸

(B)


 . (B.3)

(B.3) has two components. (A) With probability (1 − µ̃r−1) all independent
traders in row r − 1 have high trading costs (and bid ℓ) and the partnership
acquires the asset at zero cost. (B) With probability µ̃r−1 there is at least one
low-cost independent trader in row r− 1 who acquires the asset. In this case, the
partnership has the opportunity to purchase the asset again when that agent sells
it. By (⋆), it is optimal for the partnership to bid ν̃m in that contingency. The
bracketed term is the partnership’s resulting expected profit. Collecting terms in
(B.3) gives

ν̃m − µ̃r−1µ̃r−2b̃r−2 = ν̃m − µ̃r−1µ̃r−2

r−2∏

k=m

δ̃k−1b̃m−1.

• If the partnership bids ℓ, its expected trading profit is

µ̃r−1ν̃m − µ̃r−1µ̃r−2b̃r−2 = µ̃r−1ν̃m − µ̃r−1µ̃r−2

r−2∏

k=m

δ̃k−1b̃m−1. (B.4)

The derivation of (B.4) mirrors the reasoning of the preceding case.

Since δ̃r−2 ≤ µ̃r−2, ν̃m is an optimal bid for a low-cost partnership. If it has high cost,
ℓ is an optimal bid as all competitive bids yield an expected profit less than v.

2. Suppose the partnership placed a competitive bid in the first auction in which it bid.
Thus, independent traders believe it has low trading costs with probability 1. Given
σ∗
−m

and Lemma B.3,

b̃r−1 =
r−1∏

k=m+1

µ̃k−1δ̃m−1b̃m−1

and b̃r = b̃r+1 = ℓ. Note that ν̃m ≥ b̃r−1.

• If the partnership bids more than b̃r−1, its expected trading profit is

(1− µ̃r−1)ν̃m + µ̃r−1(ν̃m − b̃r−1)

= ν̃m − µ̃r−1b̃r−1

= ν̃m − µ̃r−1

r−1∏

k=m+1

µ̃k−1δ̃m−1b̃m−1.

• If the partnership places a competitive bid less than b̃r−1, its expected trading
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profit is

(1− µ̃r−1)ν̃m + µ̃r−1

(
(1− µ̃r−2)ν̃m + µ̃r−2(ν̃m − b̃r−2)

)

= ν̃m − µ̃r−1µ̃r−2b̃r−2

= ν̃m − µ̃r−1µ̃r−2

r−2∏

k=m+1

µ̃k−1δ̃m−1b̃m−1

The derivation of the preceding expressions mirrors that of the analogous situation
in case 1 above.

• If the partnership bids ℓ, its expected trading profit is

µ̃r−1ν̃m − µ̃r−1µ̃r−2

r−2∏

k=m+1

µ̃k−1δ̃m−1b̃m−1.

Comparing the above expressions, by inspection we can conclude that ν̃m is an optimal
bid for the partnership if it has low trading cost. The bid ℓ is optimal if it has high
trading costs.

3. Suppose the partnership has not placed any bids. Therefore, r = m̄+ 1 and all agents
in rows k ≤ m̄ have not yet bid. Thus, µ̃k = µ(nk −mk) and δ̃k = δ(nk −mk) for all
k ≤ m̄. From Lemma B.4, b̃m̄ =

∏m̄−1
k=m δ(nk −mk) · δ(nm−1)b̃m−1. Clearly, ν̃m > b̃m̄.

• If the partnership bids b̃m̄ (or more), its expected payoff is

ν̃m − µ̃m̄b̃m̄ = ν̃m − µ̃m̄

m̄−1∏

k=m

δ̃k · δ̃m−1b̃m−1. (B.5)

• If the partnership places a competitive bid less than b̃m̄, then its expected trading
profit is

(1− µ̃m̄)ν̃m + µ̃m̄

(
(1− µ̃m̄−1)ν̃m + µ̃m̄−1(ν̃m − b̃′m̄−1)

)

where, given σ∗
−m

and the assumed evolution of agents’ beliefs,

b̃′m̄−1 =
m̄−1∏

k=m+1

µ̃k−1 · δ̃m−1b̃m−1.

Substituting b̃′m̄−1 into the above expression gives an expected profit of

ν̃m − µ̃m̄µ̃m̄−1

m̄−1∏

k=m+1

µ̃k−1 · δ̃m−1b̃m−1. (B.6)
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• If the partnership bids ℓ, then its expected trading profit is

µ̃m̄

(
(1− µ̃m̄−1)ν̃m + µ̃m̄−1(ν̃m − b̃′′m̄−1)

)

where, given σ∗
−m

and the assumed evolution of traders’ beliefs,

b̃′′m̄−1 =
∏m̄−1

k=m+1 δ̃k−1 · δ̃m−1b̃m−1. Substituting b̃′′m̄−1 into the above expression
gives an expected profit of

µ̃m̄ν̃m − µ̃m̄µ̃m̄−1

m̄−1∏

k=m+1

δ̃k−1 · δ̃m−1b̃m−1. (B.7)

Since δ̃k ≤ µ̃k, comparing (B.5) to (B.6) and (B.7) shows that ν̃m is an optimal bid
if the partnership has low trading cost. Else, since the above expressions are all less
than v, ℓ is the optimal bid if the partnership has high trading costs.

The three cases considered above exhaust all possibilities, thereby verifying the claim for
k = r.

Case 3: Independent Trader i in Row m ≤ r ≤ m̄− 1

There are two cases depending on the asset’s trading history. Either the partnership bid ℓ in
the first auction in which it bid or it placed a competitive bid. The asset’s expected resale
values in these cases are ν̃r =

∏r
k=m δ̃k−1b̃m−1 and ν̃r =

∏r
k=m+1 µ̃k−1 · δ̃m−1b̃m−1, respectively.

The difference stems from the different anticipated behavior of the partnership in future
auctions.

1. Suppose the asset is sold by another independent trader in row r−1 or r. By the same
reasoning used to establish Lemma A1, i cannot earn further trading profits conditional
on the asset’s location. Thus, ℓ is an optimal bid.

2. Suppose the asset is sold by the partnership. If at least one row−(m − 1) trader
bids b̃m−1, then agent i must pay at least b̃m−1. However, the expected resale value

is bounded above by b̃m−1; therefore, a profit cannot be earned. On the other hand,
if all row−(m − 1) traders bids ℓ, the asset’s expected resale value is zero thereafter;
therefore, a profit cannot be earned. Consequently, ℓ is an optimal bid for i.

3. Suppose the asset is sold by an independent trader in row r+1. Given the specification
of beliefs and σ∗

−i, an argument that is parallel to that confirming that “bidding one’s
valuation” is optimal in a second price auction Vickrey (1961)[33] shows that ν̃r is an
optimal bid.

Case 4: Independent Trader in Row r = m̄

If the partnership has already placed a bid in the asset’s trading history, the analysis of case
3, above, applies.
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Suppose the partnership has not placed any bids and the asset is held by a trader in row
r = m̄+ 1. From Lemma B.4, the bid of a low-cost independent trader in row m̄ is

b̃m̄ =
m̄∏

k=m+1

δ(nk−1 −mk−1) · δ(nm−1)b̃m−1.

With this bid, i can win the auction only if the partnership bids ℓ. In this contingency, the
expected resale value of the asset is ν̃m̄ =

∏m̄
k=m δ̃k−1b̃m−1 where δ̃k = δ(nk − mk). Thus,

trader i’s expected profit is nonnegative.
To verify that b̃m̄ is an optimal bid we consider the three possible alternatives:

1. If trader i bids strictly less than ν̃m, his expected trading profit is the same as from
the bid b̃m̄ given σ∗

−i.

2. If trader i bids ℓ, his expected profit is zero. Conditional on the asset being purchased
by the partnership or by another trader in row m̄, further trading profits are not
possible for trader i by the reasoning in the proofs of Lemmas B.2 and B.3.

3. If trader i bids ν̃m or more, one of three events may occur. If the partnership bids
ℓ, then i’s expected payoff is the same as if he had bid b̃m̄. If the partnership bids
ν̃m and i receives the asset, then ν̃m is i’s payment. His expected resale value is∏m̄−1

k=m µ̃kδ̃m−1b̃m−1 < ν̃m. Thus, he earns negative profits in this contingency. Finally,
if i fails to acquire the asset, his immediate payoff is zero and further trading profits
are not possible. Thus, a bid of ν̃m or more is not more profitable for trader i than b̃m̄.

Noting the above cases, we see that it is optimal for a low-cost trader to bid b̃m̄. If the trader
has high cost, ℓ is optimal as the expected resale value is bounded above by v.

Case 5: Independent Trader in Row r ≥ m̄+ 1

The bidding problem faced by an independent trader in row r ≥ m+1 is identical to that of
a trader in a trading network without a partnership and the argument of Theorem 1 applies.
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C Variation Measures and the Bullwhip Effect

This section complements our discussion of the bullwhip effect, which is a stylized fact
observed in many supply chain networks concerning the variability of demand Lee et al.
(1997a)[21].

Demand Variation When an agent in row r + 1 sells the asset, either there is demand
for the asset or there is no demand, i.e. it is binary. The expected demand is thus µ(nr),
which equals the probability that at least one agent in row r places a competitive bid in
equilibrium. Thus, the standard deviation of demand is

√
(1− µ(nr))µ(nr). Dividing the

standard deviation by the expected value gives the term of interest:

CV Dr(n) =
Standard Deviation of Demand

Expected Demand
=

√
(1− µ(nr))µ(nr)

µ(nr)
=

√
1

µ(nr)
− 1.

Price Variation When an agent in row r + 1 sells the asset to an agent in row r, the
expected sales price is νr+1 =

∏r
k=1 δ(nk). A simple calculation shows that the standard

deviation of that sales price equals

√√√√
r∏

k=1

δ(nk) ·
r−1∏

k=1

δ(nk) · (1− δ(nr)).

Dividing the standard deviation by the expected value gives the term of interest:

CV Pr(n) =
Standard Deviation of Price

Expected Price
=

√
1

δ(nr)
− 1.
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This paper studies interdealer trade as an underlining market mechanism
linking market inventories to asset prices and liquidity. Trades between ex
ante symmetric intermediaries (“dealers”) are motivated by divergent liq-
uidity needs of the transacting parties. These trades provide a hedge against
inter-temporal inventory risks. Market prices and asset flows are pinned by
dealers’ indifference between providing intermediation services and retaining
liquidity to be utilized in subsequent interdealer markets. Thus, more active
interdealer markets simultaneously increase the value to intermediation and
the option-value to providing these services. Given moderate private risks,
interdealer trade boosts the availability of liquidity in the broader market.
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9 Introduction

Trades between financial intermediaries (“interdealer trade”) comprise a quarter or more of
total volume in both centralized markets1 and over-the-counter markets2. Yet, the theoretical
motivation for these transactions has only been partially studied.3 The ultimate impact of
interdealer activity on asset prices in a dynamic market setting remains an open question.
This paper contributes with a dynamic framework of interdealer trade, which is derived as
a value-creating market equilibrium response to dealers’ private risks.

The efficiency in the market’s allocation of assets and liquidity depend on the abilities of
financial intermediaries to seamlessly transfer inventory flows from suppliers to the highest
valuing investors. If these dealers realize their own liquidity needs through this process
–as this paper captures– then the need for interdealer trade naturally arises. And with
dealers actively trading assets amongst each other, augmenting both supply and demand
from investors, the prices that market participants face intimately depend on the collective
trading behaviors of dealers.

Toward capturing this dynamic, the following market equilibrium model incorporates
interdealer trades, playing an essential role in the intermediation process. These transactions
are motivated as rational responses to the asymmetric liquidity needs of the dealers. Search
frictions limiting the extent that dealers can find and transact with each other further shape
expectations. Under this broad setting, interdealer markets are cast as funding sources
boosting the availability of liquidity in the broader market.

There can be a number of sources to asymmetries across dealers’ liquidity needs. For
example, portfolio hedging alone can derive heterogeneity, with dealers responding to market
conditions asymmetrically as a function of their private investment strategies. Dealers may
also face constraints past on from the funding needs of their managing firms. In the presence
of these risks, carried inventories can face compulsory liquidations. And when investors are
unable to provide dealers with liquidity in a timely manner, other dealers can ‘fill the void’
by purchasing assets at higher prices. Thus, time varying heterogeneity in dealers’ needs for
liquidity introduces a common use for an active interdealer market, insulating dealers from
a convolution of idiosyncratic risks and uncertainty in demand.

The model design is intended to capture gains to interdealer trade at a general level,
while abstracting away from other market intricacies. Toward the latter, dealers are cast
as risk-neutral profit maximizers, who physically connect an ‘upstream’ supply market to a
‘downstream’ demand market. Earnings are derived from trading profits.4 Discounting (i.e.
costs of capital) introduces immediacy, with expectations over future trade pinning contin-
uation values. As dealers time the arrival of high valuing demand, equilibrium inventories
and prices in both the upstream and interdealer markets are obtained. Each period, dealers
can trade between each other in an ‘interdealer market’ when the arrival of downstream de-
mand falls short of the liquidity collectively required by the dealers. Interdealer markets are
modeled with a search process followed by an assignment game. This environment is flexi-
ble enough to capture the various constraints that dealers may face as they search for each

1e.g. the London Stock Exchange; see Reiss and Werner (1998) [24]
2e.g. the U.S. corporate bond market; see Herndershott and Madhavan (2013) [17]
3See Section 9.1 for a discussion of important contributions
4This abstracts away from collected cash flows (coupons, dividends).
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other, and broad enough to allow for multiple interdealer prices as they realize heterogeneous
bargaining positions in the market.

After constructing the market environment, the paper characterizes the market’s steady
state. First, the familiar notion of pairwise stability is employed, which constrains the set of
interdealer transactions and prices. Using classic results from the two-sided matching litera-
ture, a generic monotonic dependence of expected interdealer gains on market inventories is
established. With a cooperative game theoretic flavor, this approach shifts the focus toward
the transfer of value and away from the many complications embodied in the equilibrium
strategies driving interdealer activity. A basic relationship between intermediation and the
provision of liquidity by dealers manifests itself through interdealer trade. These two mar-
ket roles are seen to function as mutually exclusive strategic compliments. Precisely, the
equilibrium extent of total market inventory inflates the value captured by dealers providing
liquidity. Conversely, as the provision of liquidity deteriorates (e.g. as market inventory
increases) so too do the incentives to retain and carry inventories.

The paper then formally establishes links from market inventories to the asset’s upstream
price. The expected provision of liquidity from dealers increases with the frequency of private
shocks. This is because dealers place greater likelihood in the need for interdealer trade,
thus increasing the option value to retaining liquidity. Further, the sensitivity of the asset’s
upstream price to market inventory increases with the frequency of private shocks. This is
precisely because greater market inventory implies an expected degradation in interdealer
markets effectively insulating risk. This dependence between prices and market inventories
originate from the dynamics of interdealer trade.

The paper concludes by offering various extensions, and assesses the robustness of the
model’s results upon loosening its assumptions. Extensions in both the inventory space and
the model’s binary form of liquidity risk preserve the effects summarized above. Finally, the
discussion offers potential avenues for future work, as well as potential empirical implications.

The following sections are organized as follows. Below, related models are reviewed.
Sections two and three present the setup, formal model and develop the paper’s treatment of
interdealer trade. Section four characterizes equilibrium dealer behavior. Section five gives
discussion and concludes. A list of model variables is provided after the conclusion. Formal
proofs to results and details for the numerical solutions are collected in two Appendixes.

9.1 Related Literature

As the following model captures, the market’s response to dealers’ private liquidity risks
is to pass on these costs to investors in the form of bid-ask spread. A deep literature has
extensively modeled many of the costs faced by constrained monopolist intermediaries (e.g.
Glosten and Milgrom (1985) [12] and Amihud and Mendelson (1980) [2]). This paper, on the
other hand, extends a complimentary literature analyzing dealer costs in a broader market
setting. In particular, the model captures a dependence of trading costs on frictions that
constrain interdealer activity.

More related theoretical contributions include Ho and Stoll (1983) [18] who explain in-
terdealer trade as portfolio rebalancing and inventory risk sharing.5 While their analysis

5As such, risk aversion plays an essential role in deriving value to interdealer transactions. In this paper’s
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does not derive market equilibrium inventories, the following setting’s more stylized setup
allows for an endogenous derivation of inventory flows. A comparable risk sharing story is
derived, but with risk neutral dealers trading in response to time varying liquidity needs.
By deriving inventories in market equilibrium, the causal link between prices and inventory
works in both directions.

The models of Grossman and Miller (1988) [13] and Duffie, Garleanu, and Peterson
(2005) [8] motivate intermediation as market-makers supply immediacy, absorbing asset
flows from customers arriving to the market with asynchronous timing. The following,
rather, abstracts away from mechanisms motivating the need for intermediation, leaving
dealers to physically connect upstream and downstream markets that would otherwise be
left disconnected. In this setting, dealers facing private risks effectively provide immediacy
to each other.

While Duffie, Garleanu, and Peterson (2005) [8] take important steps toward deriving
steady state inventory flows into and out of the dealer market, their model remains silent on
the role of interdealer trade, allowing dealers to transfer assets between each other without
friction. The authors show that steady state trading costs vanish as the dealer market
becomes increasingly competitive. Without friction in the interdealer market, their unique
interdealer price is pinned by the short side of the market. The following model, on the other
hand, focuses in on the dealer market by introducing heterogeneity in the form of private
liquidity risk in presence of interdealer search frictions. Thus, the inventory effects that are
captured here motivate future work quantifying the efficiency implications in markets where
investors can directly search for each other.

This paper also relates to the literature on trading networks. The work of Kranton
and Minehart (2001) [22] introduces matching into a broader buyer-seller setting. In their
private values setup, the authors establish a basic efficiency result that extends classical
assignment game results called on below (Section 11.2). The model of Kotowksi and Leister
(2014) [21] is also closely related. The authors establish a generic under entry as a result of
complementarities between vertically oriented intermediaries. Though the following analysis
does not study entry, it does establish a parallel complementarity between dealers carrying
assets and those providing liquidity. Thus, complementarity between intermediaries taking
on different but supporting roles is seen to extend outside of a fixed-network setting.

Finally, this paper owes much credit to the work of Rubinstein and Wolinksy (1987) [26]
who study steady state measures of buyers, sellers, and middlemen in a market with a
continuum of agents. Particularly relevant, Rubinstein and Wolinksy include the option
value to vacant intermediaries into continuation values of asset holders, and vice versa. The
following model establishes this codependency as an essential ingredient to deriving the
market’s equilibrium provision of liquidity. With this step, interdealer activity comes as a
market equilibrium response to dealer level risks.

setting, on the other hand, dealers’ time preferences take on this role.
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10 The Model

N risk neutral dealers physically connect an ‘upstream’ supply market to a ‘downstream’ de-
mand market. Direct trades between the upstream and downstream markets are excluded.
Upstream supply can be interpreted to include net-of direct trades between ‘end-users’.
Dealers’ payoffs are derived solely from current and discounted future trading profits. The
analysis will maintain that dealers be competitive in the upstream market. These assump-
tions abstract away from cash flows and dealer markups, and will reduce dealer payoffs in a
tractable way.

Time is discrete, with t taking values in the set of integers: t ∈ Z. r ∈ (0, 1) gives
a constant per-period cost of inventory (i.e. cost of capital). For notational simplicity,
denote the constant discount factor δ := 1

1+r
. In each period, some subset of the dealers

may purchase assets from the upstream supply. Through subsequent periods, dealers can
potentially trade assets amongst each other in an interdealer market as their idiosyncratic
liquidity needs are realized. Such trades are made with the ultimate goal of selling the assets
downstream to buyers willing to purchase them at price v. The arrival of this demand is
independent across periods, occurring with some probability p for each asset holder. The
value of p may depend on the total number of assets held by dealers at any given time (more
on this below). Asset holders can always sell downstream at price v < δv. Thus, asset
holders face enough risk over future demand as to motivate the need to hold inventories in
anticipation of the subsequent arrival of high valuing demand.

Each dealer may be hit with a one period capacity shock with probability q, in which
case the dealer can neither bid for nor carry an asset as inventory and must sell off any asset
held. Absent of a capacity shock, dealers remain constrained to hold at most one asset at a
time, with a = 1 (a ∈ {0, 1}) denoting the state of holding an asset. N t

1 ≤ N denotes the
current market inventory at time t, equal to the total number of dealers holding assets. This
leaves N t

0 := N −N t
1 dealers without assets. V t

a,Nt
1
denotes the equilibrium value to being in

state a at time t given market inventory N t
1, prior to any resolution of uncertainty in that

period (i.e. capacity shocks, the arrival of high demand downstream, or the resolution of
uncertainty regarding the interdealer market; see below). Again, dealers holding an asset
are termed asset holders while those not in possession of an asset are vacants.

[Figure ]

The model time line is depicted in Figure 1. At time t dealers holding assets derive
some value above remaining vacant, denoted Gt(N t

1) := V t
1,Nt

1
−V t

0,Nt
1−1

. V t
0,Nt

1−1
captures the

option value to retaining liquidity for future use. Then, asset holders observe demand along
with the arrival or non-arrival of a liquidity shock. In the event of a liquidity shock, asset
holders unable to sell for price v are forced to move to the interdealer market to attempt to
collect gains above liquidation value v. That is, dealers potentially gain from entering the
interdealer market if they either do not have an asset but harbor the capacity to absorb an
asset (i.e. did not receive a liquidity shock themselves), or do have an asset but can neither
sell it downstream for price v nor hold the asset due to a liquidity shock. If shocked asset
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holder are unable to sell in the interdealer market, they then liquidate and collect v. Once
all asset holders have either sold their assets downstream, retained them as inventory, or
discarded them in the interdealer market, the market moves to period t+ 1. Intermediaries
that acquired an asset in the interdealer market in period t or held on to a previously obtained
asset remain asset holders in period t+ 1.

For completeness, we can summarize the dealers’ contingent action sets with the following
table:

event action set

asset holders
period t

∅
vacants {B,L}

demand arrival {Sv, Sv,SD, H}
asset holders demand shock only {Sv,SD, H}

demand and liquidity shock {Sv,SD}
vacants

no liquidity shock {BD, L}
liquidity shock ∅

B denotes the action of buying an asset from an upstream supplier, L of retaining liquidity,
H of holding an asset between periods as carried inventory, and Sv [Sv] of selling downstream
for v [v]. SD and BD abbreviate the action sets to asset holders and vacants in the interdealer
market, respectively.

Though these formal non-cooperative primitives formalize the set of feasible histories,
the model will proceed to analyze the cooperative implications of the setup. As such, the
particular actions of dealers will remain suppressed, as they come ancillary in interest to the
values created through intermediation and transferred through interdealer trade.

10.1 Market equilibrium

In what follows, the condition that upstream price equals the value gap is derived in equi-
librium. That is, with dealers demanding assets in the upstream market, the model en-
dogenously determines the number of asset in circulation, requiring only that the upstream
market clears in each period. Thus, N t

1 will capture the degree of intermediation supplied
by the dealer market at any period t. As such, N t

1 constitutes the basic state variable of the
model.

At each time t, N t
1 is determined leaving N t

0 := N−N t
1 vacant dealers available to bid for

these assets in the interdealer market. N t
1 will assumed to be common knowledge in period

t. Each asset holder is able to sell in period t for price v with probability p > 0. I only
assume that p is weakly decreasing as a function of market inventory N t

1. That is, asset
holders may crowd each other out as market inventory increases. Decay in p will factor into
values and asset inventory in equilibrium, but will not drive the model’s key results. With
p(N t

1) taken exogenously, the analysis instead focuses on the role of the interdealer market.
Market inventory will play a crucial role pinning the value that asset holders derive from the
interdealer market as a hedge against liquidity risk. As more dealers carry assets and market
inventory grows, p will drop along with this hedge value, together decreasing the value that
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dealers derive from intermediating assets. Accordingly, period t inventories N t
1 adjust. As

opposed to requiring stationarity in market inventory, the model solves for stationary beliefs
over the process determining market inventories. That is, N t

1 will adjust from period to
period, while the process determining future market inventories will be a function of t only
through current inventory N t

1.
Though all results will be obtained under this basic setup, I offer two examples extending

demand to allow for multiple assets. First, one could specify the following correlation over
the asset holders’ demand realizations by requiring the entire pool of asset holders to face the
downstream demand together. An integer number D̃ of high demanders arrive in period t,
denoting F (·;N t

1) and f(·;N t
1) the cumulative and density functions of D̃.6 We parameterize

these functions by N t
1 as the demand process may depend on the total number of assets held

by investors, which will equal total issuance minus N t
1.

7 Then, the prior probability of each
asset holder selling her asset at price v will be given by

p
(
N t

1

)
= 1− F

(
N t

1 − 1;N t
1

)
+

Nt
1−1∑

D̃=0

D̃

N t
1

f
(
D̃;N t

1

)
. (1)

This gives the probability that all N t
1 assets are purchased (1 − F (N t

1 − 1;N t
1)) plus the

likelihood that her asset is purchased in cases where not all assets are purchased. Naturally,
this probability is decreasing in N t

1. I’ll refer to this setup as the co-demand setup.
Second, when asset holders face private demand realizations, market inventory will no

longer apply downward pressure on p: p remains constant as N t
1 varies. I establish this

segmented demand setup as an alternative benchmark. Formally, in this case D̃ follows a
binomial distribution conditioning on total market inventory N t

1:

F
(
D̃;N t

1

)
=

(
D̃

N t
1

)
pD̃ (1− p)N

t
1−D̃ . (2)

However, that each asset holder faces a constant (and equal) likelihood p of selling down-
stream at price v is all that will be needed for the application of this setup.

These two setups can be viewed to give two extremes. If downward demand uncertainty
exhibits intermediate correlation with market inventory, one could expect that market be-
havior falls somewhere between these two cases. As I will show below, our basic results
only requiring p be weakly decreasing with N t

1. Hence, the particular setup of downstream
demand plays an ancillary role in what follows. What remains crucial is that dealers face
demand uncertainty (at times) motivating the need to carry inventories. A formal treatment
of beliefs over future carried inventories– which will intricately depend on expectations over
interdealer trade– is left to the following section. For now, let N̂ t−1

1 denote the total number
of assets that are carried as inventory into period t.

In period t, if an asset holder is unable to sell downstream then her net present value

becomes the greater of v+ δEt

[
V t+1

0,Nt+1
1

]
and δEt

[
V t+1

1,Nt+1
1

]
, from either liquidating the asset

in the current period for value v or carrying the asset over to the subsequent period as

6I use tildes throughout to denote random variables that are realized between periods t and t+ 1.
7For N t

1 small relative to total issuance, this dependence should (approximately) drop out.
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inventory. This assumes that any future upstream purchases are made at price Gt+1(N t+1
1 ).

Again, this step is derived below in upstream market equilibrium. The Bellman equations
for this setup are:

V t
0,Nt

1
= (1− q)Vns

0,Nt
1
+ qδEt

[
V t+1

0,Nt+1
1

]
, (3a)

V t
1,Nt

1
=




(1− p)

(
(1− q)max

{
v + δEt

[
V t+1

0,Nt+1
1

]
, δEt

[
V t+1

1,Nt+1
1

]}

+qVs
1,Nt

1

)

+p
(
v + δEt

[
V t+1

0,Nt+1
1

])


 . (3b)

where Vns
0,Nt

1
denotes the expected value to a vacant intermediary entering the interdealer

market (upon realizing no liquidity shock), and Vs
1 the expected value to an asset holder

entering the interdealer market (upon realizing both liquidity and demand shocks). Vns
0,Nt

1

and Vs
1,Nt

1
depend on the respective likelihoods of buying and selling in the interdealer market,

as well as each intermediary’s reserve utility conditioning on not buying and selling. As such,

Vns
0,Nt

1
and Vs

1,Nt
1
are both functions of Et

[
V t+1

0,Nt+1
1

]
, and Et

[
V t+1

1,Nt+1
1

]
(more later).

When δEt

[
V t+1

1,Nt+1
1

]
< v + δEt

[
V t+1

0,Nt+1
1

]
, asset holders optimally liquidate over carrying

inventories, in which case Vns
0,N1

= δEt

[
V t+1

0,Nt+1
1

]
and Vs

1,N1
= v+δEt

[
V t+1

0,Nt+1
1

]
. Without gains

from trade in the interdealer market this leaves the respective agents with values:

V t
0,Nt

1
= δEt

[
V t+1

0,Nt+1
1

]
, (4a)

V t
1,Nt

1
= pv + (1− p) v + δEt

[
V t+1

0,Nt+1
1

]
. (4b)

Vacants in the market are left with their continuation payoffs. I will refer to this behavior

as asset funneling. Most of our analysis will be focused on the case with δEt

[
V t+1

1,Nt+1
1

]
≥

v + δEt

[
V t+1

0,Nt+1
1

]
. Though, the complete equilibrium characterization will incorporate asset

funneling (Proposition 4, below).
At the beginning of each period t, vacants purchase assets from the upstream supply.

Upstream suppliers will be able to extract only the value gap Gt(N t
1) from any demanding

intermediary. N t
1 will vary from period to period depending on the arrival of demand and

realized liquidity needs. That is, in each period the number of assets sold downstream will
likely not coincide with the ensuing volume demanded from the upstream supply. Variability
over D̃ as well as variability in the interdealer market will drive variability in N t

1.
To pin the process for N t

1 and close the model, upstream asset supply is modeled with
an arbitrary upward sloping inverse supply function Φ(N t

1; N̂
t−1
1 ), which yields the price of

assets N t
1 − N̂ t−1

1 flowing into the dealer market. We condition on N̂ t−1
1 , as the effect of an

increase in the current carried market inventory N̂ t−1
1 will impose the following counteracting

effects on prices. First, for each N t
1, asset flow N t

1 − N̂ t−1
1 drops with N̂ t−1

1 : the period t
market price of assets purchased upstream decreases as fewer demanding vacants inhabit the
market. On the other hand, If N̂ t−1

1 and N t
1 are large relative to the total issuance of the
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assets then an increase in the level of carried assets may impose upward pressure on prices by
depleting the stock of assets that investors hold.8 In such cases, Φ can potentially decrease
with N̂ t−1

1 for each N t
1. By limiting the size of the dealer market relative to total issuance,

Φ will decrease with N̂ t−1
1 .

Assumption 1. Φ
(
N t

1; N̂
t−1
1

)
is non-increasing in N̂ t−1

1 for each N t
1.

Beyond an inverse dependence of Φ on N̂ t−1
1 , Φ will need to remain stationary for a

steady state to obtain. Requiring that Φ be stationary stresses the role of downstream
demand risk. With real broker-dealers facing both future supply and demand uncertainty, an
extension of the model could allow for stochastic Φt with dealers strategically ‘buying low’.9

Here, however, downstream demand uncertainty drives interdealer transactions. THis comes
naturally, as the stochastic arrival of demand necessitates inventories in order to anticipate
the arrival of high demand. Coupled with liquidity risk, this introduces the potential for
gains to interdealer trade.

To obtain the asset’s period t market price, the ensuing market inventory N t
1 is pinned

by the upstream market clearing condition:

Φ
(
N t

1; N̂
t−1
1

)
≤ Gt(N t

1), with (5a)

Φ
(
N t

1 + 1; N̂ t−1
1

)
> Gt(N t

1 + 1). (5b)

That is, at the beginning of each period t vacant intermediaries from the previous period
demand assets until the value gap Gt(N t

1) is driven down to marginal costs to suppliers. To
obtain this formally, Section 12 establishes that Gt(N t

1) is decreasing in N t
1, constituting a

generic law of demand. Then, setting upstream inverse supply Φ to the value gap pins the
inflow of assets N t

1−N̂ t−1
1 ≥ 0. Thus, the process generatng N t

1 is determined by the number
of assets carried over from the previous period (N̂ t−1

1 ) as well as the willingness of investors to
supply additional assets. In what follows, I use N t

1(N̂
t−1
1 ) to denote the endogenous function

yielding N t
1 from N̂ t−1

1 as implied by (5a)-(5b).
Through the interim, after asset holders have realized the arrival (or non arrival) of

high demand, entrants into the interdealer market evaluate the prospects of leaving with
or without an asset. The expected values to holding and not holding an asset depend on
the beliefs over period t + 1 market inventory, N t+1

1 . That is, N t+1
1 influences both the

likelihood of selling assets tomorrow as well as expectations over future inventories and
values in subsequent periods. As seen below in Section 11, expected continuation values

Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
to entering period t+1 with and without an asset, respectively,

will play crucial roles in pinning gains to trade in the interdealer market.

8To better see this, at the extreme of N̂ t−1
1 equaling total issuance (ie. dealers hold all assets) supply

must fall to zero for all prices. On the other hand, in the corporate bond market seasoned bonds will likely
be primarily held by investors with a small portion of total issuance carried by dealers. In this case we
should expect Φ(N t

1; N̂
t−1
1 ) ≈ Φ(N t

1 − N̂ t−1
1 ) so that the effect of an increase in carried inventories reduces

to a horizontal shift in supply.
9Allowing Φt to vary will not change the upstream market clearing condition (5a)-(5b), but will complicate

expected continuation values Et

[
V t+1

0,Nt+1

1

]
and Et

[
V t+1

1,Nt+1

1

]
(see below).
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10.2 Interpretation

The precise structure and timing offered in Figure 1 should be taken only to formalize the
discrete time setup of the model. We can better interpret the setting by placing it into a
continuous time analogue, as follows. At any time, dealers can choose to hold assets (take
on inventory), purchasing them from upstream supply at competitive market prices. Then,
having optimally determined inventories, asset holders face demand and liquidity risk over
the following horizon. The probability that high demand arrives before a liquidity shock
is given by p. With probability (1 − p) this event does not occur in which case one of two
sub-events are realized: (i) a liquidity shock does not arrive (with probability (1−p)q), or (ii)
a shock arrives before the arrival (or non-arrival) of demand (with probability (1−p)(1−q)).
Thus, the measures defined with p and q can be easily interpreted to capture cumulative
likelihoods for this partition of outcomes.

The model caries an important interpretation by requiring that the upstream price be
set to the value gap Gt(N t

1) in equilibrium. As will be seen below, endogenizing market
inventories via the market clearing condition (5a)-(5b) offers an equilibrium definition to
‘market liquidity’. Precisely, the value to serving as a vacant and supplying liquidity to asset
holders derives from the prospect of purchasing an asset from another dealer at a bargain
(relative to the upstream market price). This option value to vacants bares the incentives
to providing future liquidity in the interdealer market. Thus, the model derives the extent
of dealer provided liquidity as a market equilibrium property.

The endogenous variable that will determine equilibrium costs of trading will be the
value gap Gt(N t

1). That is, any ensured round trip trade through the dealer market entails
selling to a dealer at ask price Gt(N t

1) and buying at high price v (demanding price v does
not guarantee an intermediary will sell). As such, v − Gt(N t

1) proxies for the equilibrium
compensation that intermediaries demand for the risks that they face. As holding the asset
becomes more risky to dealers, Gt(N t

1) will decrease and the necessary compensation required
for intermediation will increase in equilibrium. Thus, Gt internalizes the degree of uncertainty
that intermediaries face as they transfer assets and complete the market. With alternative
sources of uncertainty such as informed trading or return and inventory risk abstracted away,
the behavior of the value gap v−Gt(N t

1) captures the response of trading costs to the various
dimensions of the model.
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11 The Interdealer Market

The values Vns
0,N1

and Vs
1,N1

will define the expected value captured through interdealer trade,
and play key roles in equilibrium values and prices. Before formally characterizing Vns

0,N1
and

Vs
1,N1

, we can first bound these values by removing the interdealer market in all periods,
and prevent interdealer transactions as in the second benchmark above (allowing q > 0).

Again, Vns
0,N1

falls to δEt

[
V t+1

0,Nt+1
1

]
= 0 as the use of vacants’ liquidity becomes excluded.

Correspondingly, Vs
1,N1

falls to v as shocked asset holders are left with no option but to
liquidate at price v. Thus, 0 and v constitute extreme lower bounds to Vns

0,N1
and Vs

1,N1
,

respectively. The distance these values lie above their bounds will depend on how much
gains from trade dealers in each respective state can expect to capture in the interdealer
market. This will depend on both the likelihood of transacting with a counter-party in the
interdealer market and the expected price and corresponding welfare split from any such
transaction. Before revisiting this natural decomposition to interdealer gains, the following
pursues a more formal treatment of the interdealer market.

A realization of D̃ leaves Ñ1 := max{0, N t
1 − D̃} intermediaries holding assets that are

susceptible to capacity shocks, in which case shocked asset holders will search for other dealers
willing to buy their asset in the interdealer market. If none are found, the asset is sold off for
value v. Denote Ñ s

1 ∈ {1, . . . , Ñ1} the number of such shocked asset holders. As many as N t
0

dealers will be potentially available– upon not realizing capacity shocks themselves– to pick
up these assets in the interdealer market.10 Correspondingly, denote Ñns

0 ≤ N t
0 the number

of unshocked vacants. Together, the random variables Ñ s
1 and Ñns

0 determine the size of the

interdealer market in each period. Under the above market structure, distributions over Ñ s
1

and Ñns
0 will live in a family of binomial distributions. The corresponding expressions for the

co-demand and segmented demand setups are provided in the Appendix. In what follows,
however, I use g1 (· |N t

1 ) to denote the distribution of Ñ s
1 and h0 (· |N t

1 ) for the distribution

of Ñns
0 . I will also use gS1 (· |N t

1 ) to denote beliefs over Ñ s
1 for asset holders entering the

interdealer market (S for seller) and hB
0 (· |N t

1 ) for the beliefs over Ñns
0 of entering vacants.

These beliefs will rationally be formed taking g1 (· |N t
1 ) and h0 (· |N t

1 ), respectively, and
condition on the given agent entering the interdealer market.11

All of these distributions will condition on market inventory N t
1, which will play a key role

throughout the model. The following conditions on g1 (· |N t
1 ) and h0 (· |N t

1 ) will naturally
hold for the co-demand and segmented demand setups. I will assume them to generally hold,
taking them as regularity conditions for dealers’ expectations over the size of the interdealer
market.

Assumption 2. Upon an increase in either N t
1 or q :

1. g1

(
Ñ s

1 |N t
1

)
exhibits a first order stochastic shift up, and,

10Again, this assumes that selling intermediaries are unavailable to demand assets in the interdealer market
until, at earliest, the following period; see footnote 4.

11Defining the updated beliefs is done for the sake of concreteness, though with large N we should expect
conditional distributions to approximate the unconditional primitives. Note I do not update beliefs over
the other side of the interdealer market, as independence between Ñs

1 and Ñns
0 upon conditioning on N t

1 is
presumed.
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2. h0

(
Ñns

0 |N t
1

)
exhibits a first order stochastic shift down.

3. For q = 0:

g1
(
0
∣∣N t

1

)
= gS1

(
1
∣∣N t

1

)
= h0

(
N t

0

∣∣N t
1

)
= hB

0

(
N t

0

∣∣N t
1

)
= 1. (6)

Assumption 2.1 implies that expectations over the number of dealers in need of liquidity
increase with market inventory and with the likelihood of liquidity shocks (holding all else
equal). 2.2, on the other hand, implies that expectations over the available liquidity offered
from vacants decreases with N t

1 and q. 2.3 gives rational conditions on beliefs upon removing
liquidity risk from the market.12

With beliefs over the size of the interdealer market defined, I can now describe the model’s
structural treatment of interdealer search frictions. Take the interdealer market with Ñns

0

buyers and Ñ s
1 sellers that can potentially meet to trade. With an abuse of notation, I denote

the set of buyers and sellers Ñns
0 and Ñ s

1 , respectively. An exogenous search technology

connects sellers to potential buyers by collecting buyer sets B̃i ⊆ Ñns
0 for each seller i ∈ Ñ s

1 .

The set of transactions between sellers and buyers will be limited to pairs (i, j) with j ∈ B̃i.
I also require that sellers and buyers only transact with at most one other agent. The set of
realized buyer sets is denoted B̃, with b(·|Ñns

0 , Ñ s
1 ) : 2

Ñns
0 Ñs

1 → [0, 1] denoting the stationary

density over B̃ conditional on the interdealer market size (Ñns
0 , Ñ s

1 ). For simplicity, I require
that this density be anonymous over agents’ identities.

Assumption 3. ( anonymity) The probability of any B̃ forming equals the probability of B̃′

obtained from B̃ by permuting the sellers’ and/or the buyers’ indices.

To interpret this search technology, one can imagine sellers in Ñ s
1 corralling buyers into

the sets B̃. Which buyers, as well as the total number of buyers that each seller can gather,
is determined as an outcome of the search process, b(·|Ñns

0 , Ñ s
1 ). Assumption 3 requires that

each seller face the same abilities and limitations to finding sellers in the market.
An equivalent interpretation of the realized sets B̃ is to take them as a bipartite network

connecting buyers and sellers. Each link of the realized network represents a potential
trade. The set of neighbors of each seller i is given with B̃i. Importantly, buyers may reside
in more than one buyer set. Further, the given network may or may not be ‘connected’,
with separate components describing distinct interdealer markets separated by (short) time
intervals or other contemporaneous constraints. With these interpretations in hand, I will
refer to realized buyer sets B̃ as a “network”.

Upon realization of B, the ensuing interdealer trade can be described as follows. If a buyer
and seller meet alone the agents may bargain via some well-defined bargaining protocol. If
instead a seller is given a group of buyers exclusively, the seller can auction off the asset
under some auction protocol. Or, if some buyers are shared by two or more sellers, some
well defined trading protocol will determine which (if any) buyers purchase assets and from
whom. As further explained in Section 11.2, I will only require that the resulting set of
transactions and prices be stable, in the sense that no two connected dealers can deviate in

12The likelihood gS1 (1 |N t
1 ) = 1 conditions on the asset holder entering the secondary market, a probability

zero event when q = 0.
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a mutually beneficial way. Leaving further discussion for the sequel, I will apply pairwise
stability as the most liberal requirement that can be placed on the resulting allocation of
assets.

Prior to each transaction, buyers and sellers are assigned reserve utilities δEt

[
V t+1

0,Nt+1
1

]

and δEt

[
V t+1

0,Nt+1
1

]
+ v, respectively. In the event of a trade, these agents will collectively

realize value:
δEt

[
V t+1

1,Nt+1
1

]
− δEt

[
V t+1

0,Nt+1
1

]
− v ≥ 0. (7)

As such, each interdealer transaction in the interdealer market following period t is taken as
some split of the value set13 given with Figure 2. I will denote this subset of [0, v]2 by ∆.

[Figure 2]

From a technical perspective, gains to interdealer trade are scaled in this way for sim-
plicity and notational ease. Still, extensions of the model could require interim beliefs over
market inventories to update on information gathered prior to each trade. For example,
traders could condition on some coarsening of the information contained with B̃, or on
the set of transactions since period t. However, as discussed in Section 10.2, the process
b(·|Ñns

0 , Ñ s
1 ) and our discrete-time setup is meant as an approximation to a more detailed

continuous-time interdealer market. Thus, scaling expectations over interdealer gains by
period t expected-discounted continuation values comes as a natural simplification.

With gains to interdealer trade equally scaled, this setting yields a well-defined assignment
game in the classic matching literature (see Shapley and Scarf 1973, or Roth and Sotomayor
1990), but where the given structure to the interdealer market constrains the game. Formally,
upon normalizing disagreement values to zero, asset holders and vacants in the interdealer
market that are not matched under B̃ create zero worth when assigned to each other. All
other asset holder-vacant pairs create value given by (7). When referring to the assignment
game below, I will assume this value to be positive and normalize these gains to 1, which is
without loss of generality. This step also lends to the interpretation of transfers as welfare-
shares. I will also refer to asset holders as sellers and vacants as buyers, in the spirit of the
matching literature. I return to the assignment game below, but first proceed to establish a
unique steady state of the model.

13Also referred to as a “bargaining set”, though I refrain from this terminology as transactions may be
the result of multilateral bargaining or auctions.
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11.1 Steady State Existence and Uniqueness

In this subsection I formally restrict exchange in the following crucial ways to yield a unique
steady state set of values. However, these assumptions will later be motivated in Section
11.2. The first assumption restricts the set of transactions to be determined by the realized
sets B̃:

Assumption 4. For any arrangement of buyer sets resulting from the search process, the set

of transactions (and set of disagreements) is independent of Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
.

At first glance, this assumption may seem strong. For all transactions that do not
occur due to the relevant buyer and seller link being excluded in B̃, this independence
comes trivially. For unexecuted transactions, the assumption gives more bite. Importantly,
intermediaries of each type (buyers/sellers) are symmetric in their reservation values and
potential gains to each transaction. Thus, each value set for all transactions move “in-

step” with Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
. One should then find it natural to expect any

bargaining advantages, or more generally, trading advantages from one potential transaction
over another to be captured solely through the trading network B̃.

In this light, Assumption 4 comes a practical assumption on the realized set of trans-

actions. It implies that as the conditional values Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
change, the

period t allocation of gains resulting from interdealer trade do not. Precisely, alternative
transactions with other potential buyers should not be prefered to any seller as the agree-
ment set shifts. Similarly, for buyers in multiple buyer sets, alternative transactions with
alternative potential sellers should remain weakly not preferred. As the values at stake
change continuously for all agents on each side of the market, the set of mutually beneficial
transactions remains fixed.

I next impose a technical restriction on the set of transfers resulting from interdealer
transactions. Denoting the set of interdealer transactions X̃ resulting from buyer sets B̃,
let Λx,B̃ : R2 → ∆ map continuation values to the agreement point in ∆, for each x ∈ X̃.

Assumption 5. For any vectors (y, z) and (y′, z′) in R
2, the function Λx,B̃ satisfies:

∥∥∥Λx,B̃ (y, z)− Λx,B̃ (y
′, z′)

∥∥∥
∞

≤ ‖(y, z)− (y′, z′)‖∞ .14 (8)

Assumption 5 maintains that Λx,B̃ is non-expansionary. The restrictiveness of this as-
sumption may at first be unclear. However, given the model’s natural restrictions to linear
value sets, this property is easily obtained under solutions to common social welfare prob-
lems. In particular, when set share s is given to the seller and share 1 − s to the buyer,
Λx,B̃ will be non-expansionary under any norm, as shown in the Appendix C. Then, it is
easy to show that the Nash and Rawlsian welfare problems both yield a constant share split
for linear value sets, as we have here. Thus in this light, Assumption 5 can be viewed as a
weakest restriction on interdealer transfers needed to establish a unique stationary solution.

14‖·‖∞ gives the sup-norm: ‖f‖∞ = supX {|f | : x ∈ X} , for any real valued function f defined on X ⊆ R.
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At the beginning of each period, expected values for both states a ∈ {0, 1} are derived
taking expectations over competition and future demand in upstream, downstream, and in-
terdealer markets. Values out of the interdealer market will also depend on expectations over
future networks B̃. DenoteṼns

0,Nt
1
(·) for Vns

0,Nt
1
(·|Ñns

0 , Ñ s
1 , B̃) and Ṽs

1,Nt
1
(·) for Vs

1,Nt
1
(·|Ñns

0 , Ñ s
1 , B̃),

the corresponding expected values conditional on the size of the interdealer market and on
the realized network B̃.15 As described above, stationarity and anonymity in the distribu-
tion b(·|Ñns

0 , Ñ s
1 ) is maintained throughout. Under only Assumptions 4 and 5 and without

explicitly solving for the continuation values Ṽns
0,Nt

1
and Ṽs

1,Nt
1
we can establish existence of a

unique steady state solution to (3).

Proposition 1. There exist unique steady state values V0,N1 and V1,N1 in [0, δv] and [v, v]
(respectively) for each N1 ∈ {0, . . . , N}.

PROOF: By contraction mapping; see Appendix C.

Proposition 1 shows that under the above general setting with moderate structure im-
posed on the interdealer market, we can expect unique steady state values for V0,Nt

1
and

V1,Nt
1
, for each market inventory N t

1 ∈ {0, . . . , N}. Thus, given market inventory N t
1, Propo-

sition 1 ensures unique (jointly determined) values to both holding an asset in the market
and to providing liquidity as a vacant. These values will be time dependent solely through
the inventory state N t

1. Correspondingly, I will hence forth drop the superscripts on values,
writing V0,Nt

1
and V 1,Nt

1
.

11.2 Interdealer Trade: stability and monotonicity

This section applies classic results in the assignment game literature to gain the traction
needed for the paper’s main descriptive results; see Roth and Sotomayor (1992) [25]. Take

the assignment game (Ñ s
1 , Ñ

ns
0 , αij) under the following restrictions from B̃: if j ∈ B̃i for

i ∈ Ñ s
1 , then αij = 1, with αij = 0 otherwise. Define a stable assignment as (i) a set of

transactions (pairings) X̃ ⊆ Ñ s
1 × Ñns

0 between buyers and sellers with each agent in at most

one pair and with j ∈ B̃i for each (i, j) ∈ X̃, and (ii) a set of values (xi, yj) such that the
following holds:

1. xi, yj ≥ 0 for each i ∈ Ñ s
1 , j ∈ Ñns

0 , (9a)

2. xi + yj ≥ 1 for each (i, j) with j ∈ B̃i. (9b)

1. gives agent rationality, as each agent can demand her disagreement value 0. 2. gives
pairwise stability, insuring that no buyer-seller pair unmatched in the assignment can form
to create value for themselves. Existence of a stable assignment are easily established using
standard linear algebra results.16.

15Formally, the only random variable that these values will be left with to take expectations over will be
the particular stable assignment of the ensuing assignment game, when more than one stable assignment
exists.

16See Theorem 8.6 in Roth and Sotomayor (1992) [25]
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[Figure 3]

An example of an assignment problem restricted in the above manner is depicted in
Figure 3, with dashed lines indicating that the buyer is in the connected seller’s buyer set,
and solid lines indicating a transaction. In this realization of the interdealer market sellers
constitute the long side of the market with Ñ s

1 = 6 and Ñns
0 = 4. One example of a stable

assignment is also given with the solid lines. A necessary condition for the given shares to
be stable is s ≥ s′, so that i and j′ do not form a blocking pair.

Had the network been complete (all buyers connected to all sellers), each buyer would be
assigned to a seller and would capture all gains in any stable assignment. However, due to
the restrictions that the network B̃ imposes, the set of stable assignments can give a seller
some non-zero gain (seller i, for example). This is an example of a seller “lucking out” under
the realized buyer network: she is connected to a buyer not connected to any alternative
seller. However, we can expect that such realizations become fleetingly rare as the size of
the pool of buyers becomes small relative to the number of sellers.

Lemma 1. Under the assignment problem
(
Ñ s

1 , Ñ
ns
0 , αij

)
, if k ∈ Ñ s

1 [k ∈ Ñns
0 ] with distinct

k′, k′′ ∈ B̃k [k′, k′′ ∈
{
i : k ∈ B̃i

}
] such that k′ and k′′ are not in B̃i for all other i ∈ Ñ s

1 [B̃k′

and B̃k′′ are empty], then all stable assignments give k value 1.

PROOF: Assume k realizes value ϕ less than 1 in some stable assignment. k′ and k′′ at
best obtain value 1−ϕ. Without loss of generality assume this to be k′. Then, {k, k′′} form
blocking pair in which k obtains value ϕ+ 1−ϕ

2
> ϕ and k′′ obtains value 1−ϕ

2
, contradicting

stability. �

Lemma 1 gives an intuitive condition on B̃ that suffices for all stable assignments to
allocate all gains to some trader k. If an agent k on either side of the network is connected
to two individuals– each not connected to any other agent– then k captures all welfare
in all stable assignments. Accordingly, one should expect that the likelihood of realizing a
network in which the conditions of Lemma 1 hold increases as the interdealer market becomes
more lopsided. Thus, we take Lemma 1 along with this intuition to motivate the following
assumption17:

Assumption 6. For each N t
1,
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽns
0,Nt

1
takes the following limit conditions:

1. approaches δEt

[
V0,Nt+1

1

]
(the buyer reservation value) as Ñ s

1 → N t
1 and Ñns

0 → 0

(jointly),

2. approaches δEt

[
V1,Nt+1

1

]
− v as Ñ s

1 → 0 and Ñns
0 → N t

0 (jointly).

Accordingly, for each N t
1,
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽs
1,Nt

1
takes the following limit conditions:

17This assumption subsumes the assumption on the process b(·|Ñns
0 , Ñs

1 ) that the conditions of Lemma
1 are satisfied with probability close to one as the relative sizes of the interdealer market depart from each
other.
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1. approaches δEt

[
V1,Nt+1

1

]
as Ñ s

1 → N t
1 and Ñns

0 → 0 (jointly),

2. approaches δEt

[
V0,Nt+1

1

]
+ v (the seller reservation value) as Ñ s

1 → 0 and Ñns
0 → N t

0

(jointly).

Formally, these properties will not hold for arbitrary b(B̃|Ñns
0 , Ñ s

1 ).
18 None the less, I main-

tain the above conditions viewing them as practical assumptions on the extremes of the
interdealer market.

Towards characterizing the general properties of the market’s steady state values and
prices, establishing monotonic gains to interdealer trade over the space of (Ñ s

1 , Ñ
ns
0 ) remains

a crucial step. Towards this goal, I call on the following entry results from the assigment
game literature. To first prime the reader, classic results establish the set of stable assign-
ments as a complete lattice, including buyer optimal and seller optimal solutions. Precisely,
given assignment problem (Ñ s

1 , Ñ
ns
0 , αij) we can establish value vectors (x, y) and (x, y) in

[0, 1]|Ñ
s
1 | × [0, 1]|Ñ

ns
0 | that define the seller and buyer optimal payoff profiles, respectively,

from the set of all stable assignments. For any other payoff profile (x, y) resulting from some

stable assignment of (Ñ s
1 , Ñ

ns
0 , αij), it must then be that xi ≥ xi [xi ≤ xi] for each seller

i ∈ Ñ s
1 , and yj ≤ yj [yj ≥ y

j
] for each buyer j ∈ Ñns

0 .

With these definitions in hand, take the following entrant games :

Definition 1. Given assignment problem
(
Ñ s

1 , Ñ
ns
0 , αij

)
, then:

1. A seller entrant game is given by
(
Ñ s

1 ∪ {i′} , Ñns
0 , α′

ij

)
if αij = α′

ij when i 6= i′.

2. A buyer entrant game is given by
(
Ñ s

1 , Ñ
ns
0 ∪ {j′} , α′

ij

)
if αij = α′

ij when j 6= j′.

Simply put, the values created between non-entrants are independent of the values created
with the entrant. In the context of network B̃, the inclusion of the entrant does not add
or remove non-entrant buyers from any non-entrant seller’s buyer set. Further, the entrant
does not affect continuation values holding N t

1 fixed. With these tools in hand, I provide the
following lemma:

Lemma 2. Given any bipartite network B̃ connecting each seller i ∈ Ñ s
1 to potential buyers

B̃i ⊆ Ñns
0 , let

(
x, y
)
[(x, y)] be the seller [buyer] optimal stable assignment of the problem(

Ñ s
1 , Ñ

ns
0 , αij

)
. We have:

1. for
(
x′, y′

)
[(x′, y′)], the seller [buyer] optimal stable assignment of any seller entrant

game(
Ñ s

1 ∪ {i′} , Ñns
0 , α′

ij

)
:

(a) x′
i ≤ xi [x

′
i ≤ xi] for each i ∈ Ñ s

1 , and

(b) y′j ≥ yj [y′
j
≥ y

j
] for each j ∈ Ñns

0 ;

18One can always construct a process b(·|Ñns
0 , Ñs

1 ) that leaves agents on the long side of the market

capturing gains with positive probability, for any Ñns
0 , Ñs

1 > 0.
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2. for
(
x′, y′

)
[(x′, y′)], the seller [buyer] optimal stable assignment of any buyer entrant

game(
Ñ s

1 , Ñ
ns
0 ∪ {j′} , α′

ij

)
,

(a) x′
i ≥ xi [x

′
i ≥ xi] for each i ∈ Ñ s

1 , and

(b) y′j ≤ yj [y′
j
≤ y

j
] for each j ∈ Ñns

0 .

PROOF: (Proposition 8.17 in Roth and Sotomayor (1992) [25])

In words, Lemma 2 shows that adding an agent on one side of the market– holding the
network over all other agents fixed– will at most benefit agents on the adjacent side of the
market and hurt agents on the entrant side.

Finally, before leveraging on Lemma 2 and establishing the desired monotonicity, I define
the following notion of independent entry. Taking any (Ñns

0 , Ñ s
1 ), any B̃ over (Ñns

0 , Ñ s
1 ), and

some seller entrant i′, let α(B̃, i′) denote the set of networks B̃′ on (Ñns
0 , Ñ s

1 ∪{i′}) that take
B̃ and add only links from buyers to i′:

α
(
B̃, i′

)
:=
{
B̃′| (i, j) ∈ B̃ ⇔ (i, j) ∈ B̃′, ∀i ∈ Ñ s

1

}
. (10)

Similarly, denote the set of networks B̃′ on (Ñns
0 ∪ {j′}, Ñ s

1 ) that take B̃ and add only links
from sellers to j′:

β
(
B̃, j′

)
:=
{
B̃′| (i, j) ∈ B̃ ⇔ (i, j) ∈ B̃′, ∀j ∈ Ñns

0

}
. (11)

Assumption 7. ( independent entry) For any
(
Ñns

0 , Ñ s
1

)
and B̃ over

(
Ñns

0 , Ñ s
1

)
:

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
=

∑

B̃′∈α(B̃,i′)

b
(
B̃′
∣∣∣Ñns

0 ∪ {i′} , Ñ s
1

)

=
∑

B̃′∈β(B̃,j′)

b
(
B̃′
∣∣∣Ñns

0 , Ñ s
1 ∪ {j′}

)
, (12)

for any seller entrant i′ or buyer entrant j′.

That is, the marginal distribution of networks B̃ over nodes (Ñns
0 , Ñ s

1 ) is unchanged upon
entry. Assumption 7 implies that entry does not affect the distribution of links over submar-
ket (Ñns

0 , Ñ s
1 ). The property will maintain the possibility of link correlation, and allow for

particular structures to form more frequently than others.
To better understand the flexibility of Assumption 7, one could consider the following

stronger notion:

Definition 2. b
(
·
∣∣∣Ñns

0 , Ñ s
1

)
satisfies independent link formation if for any distinct
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(
Ñns

0 , Ñ s
1

)
and

(
Ñns′

0 , Ñ s′
1

)
and any (i, j) with i ∈ Ñ s

1 ∩ Ñ s′
1 and j ∈ Ñns

0 ∩ Ñns′
0 :

b
(
B̃ ∪ (i, j)

∣∣∣Ñns
0 , Ñ s

1

)

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

) =
b
(
B̃′ ∪ (i, j)

∣∣∣Ñns′
0 , Ñ s′

1

)

b
(
B̃′

∣∣∣Ñns′
0 , Ñ s′

1

) , (13)

where j /∈ B̃i ∪ B̃′
i.

Independent link formation requires that information about the presence of other buyers
or sellers in the interdealer market, or information regarding other links, does not affect the
likelihood that a particular link between a seller i and buyer j forms. Now, consider an
example in which each seller i links to at most ⌊1

3
Ñns

0 ⌋ buyers. Here, independent entry
may be satisfied if entrants do not affect the distribution of preexisting links. However,
link independence is violated (with or without the entrant), as link inclusions are negatively
correlated. Even more, Assumption 2 coupled with Assumption 3 (anonymity) implies the
special case of a Poisson random network (excluding links between asset holders and between
vacants). Thus, I employ Assumption 7, taking it as a desirably weak condition required to
establish the following monotonicity:

Proposition 2. For each N t
1, under independent entry and assuming either only buyer-

optimal or seller-optimal stable assignments from the interdealer market, we have that:

1.
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽns
0,Nt

1
is increasing in Ñ s

1 and decreasing in Ñns
0 , and

2.
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽs
1,Nt

1
is increasing in Ñns

0 and decreasing in Ñ s
1 .

PROOF: First, fixing N t
1 fixes Et

[
V0,Nt+1

1

]
and Et

[
V1,Nt+1

1

]
by Proposition 1, and thus pins

the value set ∆. Upon including an additional seller i′ to Ñ s
1 (obtaining seller set i′∪Ñ s

1 ), the

likelihood of subgraph B (i.e. by excluding all links to i′) occurring must equal b(B|Ñns
0 , Ñ s

1 )
by independent entry. Further, given any realized set Bi′ and conditioning on supgraph B,
the value to each i ∈ Ñ s

1 can only go down and the value to each j ∈ Ñns
0 can only go

up by Lemma 2. Thus, taking the average value over all realizations B must then give a
lower conditional average value (conditioning on subgraph B) to each i ∈ Ñ s

1 and a higher

conditional average value to each j ∈ Ñns
0 . Then, averaging over all Bi′ and subgraphs

B gives the result: expectations
∑

B̃ b(B|Ñns
0 , Ñ s

1 )Ṽns
0,Nt

1
and

∑
B̃ b(B|Ñns

0 , Ñ s
1 )Ṽs

1,Nt
1
can only

increase and decrease, respectively, as we enlarge Ñ s
1 . To show that these expectations are

decreasing and increasing in Ñns
0 , respectively, use a similar argument adding some j′ to

Ñns
0 . �

Establishing that monotonicity holds given the buyer-optimal or seller-optimal assign-
ments from the interdealer market means that any violation of monotonicity must be the
result of some arbitrary change in some degree of freedom in the set of stable assignments,
as a result enlarging or contracting Ñ s

1 or Ñns
0 . Taking Figure 3 for example, this would

entail a change in s′ after the inclusion of an entrant that is neither connected to i′ nor to
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j′. Such arbitrary changes could only be consequences of forces outside of the model. For
simplicity, the following assumes such forces away.

The only random variable that Ṽns
0,Nt

1
and Ṽs

1,Nt
1
are now left to take expectations over is

the particular stable assignment, if the set of stable assignments in not a singleton. With
Proposition 2 in hand, we should feel comfortable assuming that any such selection pro-
cess preserves monotonicity in expectation, barring the types of above mentioned forces.
Regardless, in proceeding to explore the implication of this monotonicity, Proposition 2 at
least assures that all results hold assuming either only buyer-optimal or seller-optimal stable
assignments in the interdealer market.

Next I show how this monotonicity in Ṽns
0,Nt

1
and Ṽs

1,Nt
1
carries through to Vns

0,Nt
1
and Vs

1,Nt
1
.

With Assumption 2, monotonicity in Vns
0,Nt

1
and Vs

1,Nt
1
is nearly obtained except for the fact

that the value set ∆ depends on the continuation values Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
. We

can transform these values appropriately so that the joint values in ∆ are normalized to one:

Definition 3.

λ : =
Vs
0,Nt

1
− δEt

[
V0,Nt+1

1

]

δEt

[
G(N t+1

1 )
]
− v

(14a)

µ : =
Vns
1,Nt

1
− δEt

[
V0,Nt+1

1

]
− v

δEt

[
G(N t+1

1 )
]
− v

. (14b)

Proposition 3. λ is increasing in N t
1 and q , and µ is decreasing in N t

1 and q.

PROOF: With the values in Ṽns
0,Nt

1
normalized, this leaves

∑
B̃ b(B̃|Ñns

0 , Ñ s
1 )Ṽns

0,Nt
1
indepen-

dent of Et

[
V t+1

0,Nt+1
1

]
and Et

[
V t+1

1,Nt+1
1

]
. Thus, writing:

Vns
0,Nt

1
=

Nt
1∑

Ñs
1≥0

N−Nt
1∑

Ñns
0 ≥1

g1

(
Ñ s

1

∣∣N t
1

)
hB
0

(
Ñns

0

∣∣N t
1

)∑

B̃

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽns
0,Nt

1
(15a)

Vs
1,Nt

1
=

Nt
1∑

Ñs
1≥1

N−Nt
1∑

Ñns
0 ≥0

gS1

(
Ñ s

1

∣∣N t
1

)
h0

(
Ñns

0

∣∣N t
1

)∑

B̃

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽs
1,Nt

1
, (15b)

Vns
0,Nt

1
and Vs

1,Nt
1
are left dependent on N t

1 only through the distributions of Ñns
0 and Ñ s

1 . The

result then follows immediately using Assumption 2 and Proposition 2, as expectations over
increasing [decreasing] functions weakly increase with first order stochastic shifts up [down].

�

At this stage, we can rewrite the definitions of λ and µ as follows:

Vns
0,Nt

1
= λ

(
δEt

[
V1,Nt+1

1

]
− v
)
+ (1− λ) δEt

[
V0,Nt+1

1

]
(16a)

Vs
1,Nt

1
= µδEt

[
V1,Nt+1

1

]
+ (1− µ)

(
δEt

[
V0,Nt+1

1

]
+ v
)
. (16b)
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λ and µ will lie in [0, 1] as weakly monotonic increasing and decreasing functions of q and
N t

1, respectively. These functions will also depend on the parameters of the model p, δ, N ,

as well as b(·|Ñns
0 , Ñ s

1 ). And with each period t value functions (Vns
0,Nt

1
,Vs

1,Nt
1
) rationally living

in ∆, we can reinterpret λ and µ as the weighting that buyers and sellers place on capturing
gains in the interdealer market.

The essential properties of these functions are summarized as follows:

1. λ = 0 for N t
1 = 0 and µ ≃ 1 for N t

1 = 1 (17a)

2. µ = 0 for N t
1 = N, (17b)

3.

{
λ is weakly increasing, and
µ is weakly decreasing

in N t
1

(
for each N t

1

)
(17c)

4. λ = 0 at q = 0
(
for each N t

1

)
(17d)

5.
∂

∂q
λ ≥ 0, and

∂

∂q
µ ≤ 0

(
for each N t

1

)
(17e)

6.
∂

∂q

(
λ(N t

1 + 1)− λ(N t
1)
)
≥ 0 for q ≃ 0 (for each N t

1 < N). (17f)

Properties 3 and 5 simply restates Proposition 3, with properties 1 and 2 following from
Assumption 6. Properties 4 and 6 are more formally shown for our two demand setups in
Appendix C. Property 6 will be of technical use in Proposition 5 of the following section.

[Figure 4]

Figure 4 provides estimates of the functions λ and µ, assuming each link connecting any
asset holders/vacants pair forms with probability m > 0.19 The arrows show the directions
that these functions move as q is increased. Here, we see asset holders losing expectation
over captured gains as N t

1 increases, while vacants enjoy increasingly more expected gains.
Similarly, asset holders lose expected gains as q rises (for each N t

1), while vacants collect
additional expected rents from supplying liquidity. We should expect these functions to take
on similar form for a general set of demand and buyer network processes, always preserving
their monotonic dependence on q and N t

1. For any shocked asset holder entering the inter-

dealer market, beliefs over the number of available unshocked vacants Ñns
0 will decrease (shift

left) as q or N t
1 increases. Similarly, beliefs over the number of competing asset holders Ñ s

1

in the interdealer market will increase (shift right) as q or N t
1 increase. Both of these forces

work in conjunction to give the dependence depicted in Figure 4, as entering asset holders
place smaller likelihoods on capturing the majority of gains in any interdealer transaction.

19Estimates are for the segmented demand setup; dotted lines give q = .1, dashed lines q = .2, and solid
lines q = .3. The corresponding figure for the Co-demand setup takes on similar characteristics. Estimates
were bootstrapped setting m = .25 and drawing random buyer networks for each (Ñns

0 , Ñs
1 ) pair. Stable

assignments were solved for using the basic linear programing techniques. p is set to .25 to yield a likelihood
for each asset holder entering the market, (1 − p)q, of roughly .2 or less. This is seen as a conservative
range for the likelihood (placing limited emphasis on the role of interdealer trade), with roughly 20% of
transactions observed between dealers in the data.
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On the other side of the market, these forces work to benefit entering vacants. Unshocked
vacants entering the interdealer market benefit from low Ñns

0 (competing vacants) and high

Ñ s
1 (liquidating asset holders). Thus, their expectations over capturing high gains in the

interdealer market only increase with q and N t
1. Exactly how high λ reaches as market

inventories N t
1 reaches its maximum capacity N depend on the sizes of q and N as well as

the process b(·|Ñns
0 , Ñ s

1 ).
With λ and µ defined, we can reduce (3) as follows:

V0,Nt
1
=




(1− q)


 λmax

{
δEt

[
V0,Nt+1

1

]
, δEt

[
V1,Nt+1

1

]
− v
}

+(1− λ) δEt

[
V0,Nt+1

1

]



+qδEt

[
V0,Nt+1

1

]


 (18a)

V1,Nt
1
=




(1− p)




(1− q)max
{
v + δEt

[
V0,Nt+1

1

]
, δEt

[
V1,Nt+1

1

]}

+q


 µmax

{
v + δEt

[
V0,Nt+1

1

]
, δEt

[
V1,Nt+1

1

]}

+(1− µ)
(
v + δEt

[
V0,Nt+1

1

])






+p
(
v + δEt

[
V0,Nt+1

1

])




. (18b)

Equations (18a) and (18b) embed the essential information needed towards characterizing
steady state gains from equilibrium intermediation, which is addressed on the next section.
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12 Equilibrium Market Behavior

In deriving the results in this section, I approximate the value gap by Gt(N t
1) ≈ V t

1,Nt
1
−V t

0,Nt
1
,

and correspondingly redefine the market clearing condition (5a)-(5b). For N large this comes
as a minor adjustment to the model20, while yielding the useful recursive form to the value
gap:

G
(
N t

1

)
=




pv + (1− p) v

+max
{
0, δEt

[
G
(
N t+1

1

)]
− v
}( (1− p) (1− q)

+ (1− p) qµ− (1− q)λ

)

 . (19)

This section’s first result characterizes how the choice to carry inventories depends on
continuation values and market inventory. The analysis then moves to describe the role of
the interdealer market in shaping the dependence of prices on aggregate inventory. The
main descriptive results of the paper are summarized with two corollaries. Finally, the role
of interdealer prices in driving these forces is characterized in Section 12.2.

12.1 Market Inventory and Asset Prices

Though we’ve established unique steady state values with Proposition 1, uniqueness of mar-
ket equilibrium prices and inventories requires that the value gap, given with (18), be mono-
tonically decreasing in N t

1. This constitutes a law of demand for the market. Proposition 5
below establish sufficient conditions for a law of demand for moderate to low liquidity risk.
Before doing so, I first move to more completely characterize equilibrium market behavior,
taking as given a downward sloping value gap. This step will later be crucial when formally
establishing the link between market inventory and prices.

The value to holding an asset will naturally increase with the arrival likelihood p. Even
more, we have G(N t

1)→ V1,Nt
1
= v as p approaches its upper bound of one. For a given

upstream price P < v and with p sufficiently close to 1, we should generally expect all
dealers to demand and hold assets (N t

1 = N) as long as possible until either high demand
arrives or they are first hit by a capacity shock, in which case they are forced to sell and
collect v. At the other extreme, for p sufficiently below one, we should expect N t

1 to drop
below N . However, if expectations over the arrival of future demand are particularly bleak,
dealers may lose the incentive to hold inventories, opting instead to instantaneously convey
assets to whichever downstream demand arrives (i.e. funnel assets). Which of these cases
are obtained depends on the various parameters of the model. The following proposition
formally distinguished between these equilibrium behaviors.

Proposition 4. Each of the following (exhaustive) cases describe a symmetric Nash equi-
librium strategy of asset holders21:

20The descriptive results obtained below have been verified using numerical solutions (e.g. see Figures
7(a) and 7(b)) that do not employ this approximation.

21When gains to interdealer trade become zero, shocked assets holders are left indifferent between trading
with vacant and funneling. In the proof of Proposition 4, I maintain these trades for continuity. Given this
assumption, this obtains the unique symmetric Nash strategy by the monotonicity given with Proposition 3
part 1, below.
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1. There exists some integer N1 ≤ N such that v = δEt

[
G(N t+1

1 )
]
for each N t

1 > N1 and

v ≤ δEt

[
G(N t+1

1 )
]
for each N t

1 ≤ N1. For each N t
1 < N1, assets holders never funnel.

For each N t
1 ≥ N1, unconstrained asset holders unable to sell in period t for price v mix

on funneling (liquidating for v) with some probability θ (N t
1) < 1 and carrying inventory

into period t+1 with probability 1− θ (N t
1). Further, θ (N

t
1) is weakly increasing in N t

1.

2. v > δEt

[
G(N t+1

1 )
]
for all N t

1 ∈ {0, . . . , N}. Then, asset holders never funnel assets.

PROOF: Appendix D.

In case 1, when N t
1 > N1 asset holders unable to sell for v are left indifferent between

liquidating for v and carrying inventory to period t + 1, in which case asset funneling will
be observed in equilibrium. In this case I term the market as being saturated. The intu-
ition is natural: as asset holders crowd the market (as N t

1 increases) and the hedge that
interdealer trade provides against liquidity risk degrades, the choice not to carry inventories
becomes increasingly attractive. Then, when market inventory surpasses the threshold N1,
residual asset holders must start shaving assets (liquidating for value v) at a given rate so
as to collectively maintain their indifference between liquidating (funneling) and carrying
inventories.

It is important to recognize that this mixed strategy equilibrium will be the unique Nash
equilibrium symmetric across asset holders. This is because when all shocked asset holders
are expected to funnel, the unique optimal action to asset holders unable to sell downstream
or in the interdealer market is to carry the asset as inventory, as expectations over future
inventories will be low (and thus continuation values will be high). If instead all shocked
asset holders are expected to carry inventories, then it remains optimal to funnel in these
cases. Only when these asset holders collectively mix on funneling with probability θ(N t

1)
can they simultaneously choose to funnel. That θ(N t

1) is increasing in N t
1 bares a natural

economic interpretation: as greater market inventories are realized the incentive to carry
assets across periods decays.

In case 2 asset funneling is never rational, leaving gains to interdealer trade strictly
positive. In such markets dealers never entirely crowd each other out. Instead, the prospects
of future high valued sales remain attractive enough that dealers remain willing to carry
inventories, even when N t

1 = N and interdealer trade is excluded. Accordingly, we can set
N1 > N in these cases.

In total, Proposition 4 gives conditions under which the market fails to exhibit beneficial
interdealer trade. In case 1 when N t

1 > N1, dealers crowd each other out and rationally
funnel assets rather than actively trading them between each other22. If instead N t

1 rises to
N in case 2, all dealers hold assets and wait for high demand to arrive as long as possible.
In both cases, the interdealer market is contemporaneously closed, leaving any vacants with

their expected continuation payoff V0,Nt
1
= δEt

[
V0,Nt+1

1

]
.

[Figure 5]

22Again, I maintain interdealer trade in these scenarios only for analytical ease. What is essential is that
gains to interdealer trade in these cases fall to zero.
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Cases 1 and 2 are each depicted with Figure 5. in Figure 5(a) the market becomes
saturated for N t

1 ≥ N1 where asset holders can simultaneously be observed funnelling assets
and carrying inventories in equilibrium. Figure 5(b) gives case 2 without saturation.

Next, as promised, the following proposition more formally establishes our law of demand
for small q, as maintained above. Equally as important, part 2 will establish the role of
the interdealer market in shaping equilibrium intermediation. In this and the following
corollaries, I assume the following weak conidtion on the market. This first condition requires
that the interdealer market becomes ‘active’ at some point. The second is more technical,
and will be satisfied provided the dealer market is not too large relative to the asset’s total
issuance.

Assumption 8.

1. Either:

(i)
∣∣µ(N t

1 + 1)− µ(N t
1)
∣∣ > 0, or (20a)

(ii)

∣∣∣∣
∂

∂q
(λ(N t

1 + 1)− λ(N t
1))

∣∣∣∣ > 0, (20b)

and,

2.
N t

1

(
N̂ t−1

1 + 1
)
≤ N t

1

(
N̂ t−1

1

)
+ 1. (20c)

for each N t
1 ∈ {0, . . . , N − 1} .23

Proposition 5. There exist q1 ≥ q2 > 0 and some bound dp
1
> 0 such that:

1. for each q ∈ [0, q1], G (N1) is weakly decreasing in N1.

2. for each q ∈ [0, q2], If |p (N1 + 1)− p (N1)| < dp
1
for each N1 ∈ {0, . . . , N − 1} then:

(i)
∂

∂q
[G (N1 + 1)−G (N1)] < 0, and (21a)

(ii)
∂

∂q
G (N1) < 0, (21b)

for each N1 ∈ {0, . . . , N − 1} .

PROOF: Appendix D.

The monotonicity in part 1 is driven by the monotonicity derived from Proposition 3: as
the number of assets in total inventory rises, asset holders crowd each other out and suppress
the value to holding an asset, V1,Nt

1
, while inflating the option value to serving as a vacant in

the market, V0,Nt
1
. As shown in the Appendix, Proposition 5 part 1 does not require p to be

a strictly decreasing function of N t
1. Instead, part 1 is derived solely through forces derived

23Condition 2 requires that an increase residual assets N̂ t−1
1 increases the subsequent period’s market

inventory by at most one. A sufficient condition for this is for Φ
(
N t

1; N̂
t−1
1

)
to be stationary.
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from the interdealer market, with the value gap decreasing in N t
1, as conditions increasingly

favor vacants entering the interdealer market.
Part 2 (i) shows that when the influence of N t

1 on demand uncertainty is bounded,
the dependence of the value gap (and thus of the equilibrium bid-ask spread) on market
inventory increases with liquidity risk. The necessary conditions (a) and (b) ensure that the
interdealer market takes center stage in driving the dependence of prices on market demand.
If the decay in p is too significant, then the effects of increasing q on equilibrium inventory
in upstream primary markets may dominate the effect on demand. Determining in which
direction the gap decay moves in response to increasing q away from zero will depend on
the particulars of the market (e.g. the function p and process generating B̃ ). But with p
near constant and the interdealer market driving the dependence of the value gap on N t

1,
the positive dependence between market inventory and bid-ask spread only strengthens as
the interdealer market takes on a more important role hedging the market against liquidity
risk.

[Figure 6]

As implied by Proposition 5’s part 1, Figure 6 depicts a downward sloping value gap.
The fast decay in expected interdealer prices is addressed below in Section 12.2. If the decay
in the value is primarily driven by the interdealer market, then an increase in q magnifies
this link. Also shown in the proof of Proposition 5, the size of ∂

∂q
G(N t

1) will increase with

N t
1. Here we see the interdealer market at work, effectively hedging the market against

added risk. When N t
1 is small and conditions in the interdealer market are most benevolent

for entering asset holders, an increase q yields only a limited effect on the value gap. If
instead N t

1 is large and conditions in the interdealer market move toward favoring vacants,
the functionality of the interdealer market as a hedge against liquidity risk deteriorates. As
such, the effect of this increase in q on the inventory-price link becomes more pronounced.

We can recast part 2 to characterize the role of the interdealer market in pinning each
period t’s equilibrium market inventory.

Corollary 1. ( equilibrium liquidity provision) For each q ∈ [0, q2) and s > 0, if

|p (N1 + 1)− p (N1)| < dp
1
for each N1 ∈ {0, . . . , N − 1} then an increase in q gives a

first order stochastic shift down in the distribution of N t+s
1 , given N t

1 in period t, and

PROOF: Appendix D.

Here, we see that liquidity risk applies upward pressure on the equilibrium provision of
liquidity from dealers in a persistent way. As we increase q and depart from the efficient
benchmark, expectations over the number of future vacants increases. Liquidity risk and
interdealer trade play an increasingly important role. Asset intermediation (measured with
N t

1) is persistently substituted for market liquidity (measued with N t
0) as an endogenous

response to the added liquidity risk.
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12.2 The role of Interdealer Prices and Search Frictions

With prices providing the basic empirical unit of analysis, this section recasts the above
forces in terms of expected interdealer prices. This will also distinguish the role of prices
from that of interdealer search frictions. First, decompose λ and µ as follows:

λ = (1− Et [s]) Pr (χB) , (22a)

µ = Et [s] Pr (χS) . (22b)

where Et [s] gives the expected seller share in the interdealer market:

Et [s] := Et

[∑
sx

X̃

]
. (23)

Again, {sx} gives the set of seller shares in transactions X̃ given by Λx,B̃. Expectations

are taken over Ñns
0 , Ñ s

1 , and B̃ (and the particular stable assignment, if needed), while
conditioning on N t

1. Correspondingly, Pr (χB) :=λ/ (1− Et [s]) and Pr (χS) := µ/Et [s] . We
can interpret these values as the likelihoods that buyers and sellers place on transacting in
the interdealer market.

In conjunction with (17a)-(17f), the following properties (also shown in the Appendix C)
will hold:

1. Et [s] ≈ 1 for N t
1 near 0, (24a)

2. Et [s] ≈ 0 for N t
1 near N, (24b)

3. Et [s] is weakly decreasing in N t
1

(
for each N t

1

)
. (24c)

These properties highlight the roles that asset holders and vacants fill at both extremes of
the market. For N t

1 near 0 with few assets in circulation, shocked asset holders entering
the secondary market effectively serve as monopolists, capturing the majority of gains from
interdealer transactions. At the other extreme for N t

1 near N , vacants entering the inter-
dealer market serve as monopsonists, assigning high probability to the event of capturing the
majority value. These market forces work in conjunction, together pushing in the direction
of (17a)-(17f).

Next, denote the set of interdealer prices by:

P̃D :=
{
sxδEt

[
G(N t+1

1 )
]
+ (1− sx) v|x ∈ X̃

}
.

Writing the expectation over these prices Et

[
P̃D
]
, we have:
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Et

[
P̃D
]

: = Et



∑

x∈X̃

(
sxδEt

[
G(N t+1

1 )
]
+ (1− sx) v

)
∣∣∣X̃
∣∣∣




= Et


(δEt

[
G(N t+1

1 )
]
− v
) ∑

x∈X̃ (sx)∣∣∣X̃
∣∣∣

+ v




=
(
δEt

[
G(N t+1

1 )
]
− v
)
Et [s] + v, (25)

As shown in the Appendix in the proof of Proposition 5, δEt

[
G(N t+1

1 )
]
is decreasing with

N t
1 for q ∈ [0, q1]. And with Et [s] decreasing in N t

1 by condition (17c), expected interdealer

price Et

[
P̃D
]
will exhibit a quick decay with N t

1. That is, interdealer shares transition from

being primarily captured by sellers to being captured by buyers as N t
1 is increased. This

transition can be observed in Figures 5 through 7(b).

Using (22a) and (22b), the following expressions relating Et

[
P̃D
]
to λ and µ also hold:

(
δEt

[
G(N t+1

1 )
]
− v
)
λ =

(
δEt

[
G(N t+1

1 )
]
− Et

[
PD
])

Pr (χB) (26a)(
δEt

[
G(N t+1

1 )
]
− v
)
µ =

(
Et

[
PD
]
− v
)
Pr (χS) . (26b)

Substituting for λ and µ, this yields the revealing formulation for the value gap:

G
(
N t

1

)
=




(v − v) p+ v + (1− p) (1− q)
(
δEt

[
G(N t+1

1 )
]
− v
)

+(1− p) q
(
Et

[
PD
]
− v
)
Pr (χS)

− (1− q)
(
δEt [G

t+1]− Et

[
PD
])

Pr (χB)


 . (27)

To interpret (27), we can compare it with the analogous expression that excludes the
interdealer market:

V t
1,Nt

1
= (v − v) p+ v + (1− p) (1− q)

(
δEt

[
V t+1

1,Nt+1
1

]
− v
)
. (28)

The top term of the right hand side of (27) gives the same term had the interdealer market

been shutdown (where δEt

[
G(N t+1

1 )
]
= δEt

[
V t+1

1,Nt+1
1

]
). Without an interdealer market,

the bottom term becomes zero, as shocked asset holders are forced to collect value v and
vacants are unable to gain from interdealer trade. Introducing the interdealer market effects
the value gap in two opposing directions. If asset holders face favorable conditions in the
interdealer market with high expected price and transaction likelihood, this added value
works to expand the value gap. If instead prices are low with vacants expecting to transact
with high likelihood, the effect on the option value to supplying liquidity to the market works
to suppress the gap. Therefore, we observe a switch in the net-effect of interdealer trade on
the upstream market price G(N t

1), as expectations over interdealer prices move from favoring
sellers to favoring buyers.

If we again bound the dependence of p on market inventory, it is easy to show that the
bottom term in (27) is monotonically decreasing in N t

1. Even more, this dependence will
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increase with q. As the expected interdealer price decays from its upper bound δEt

[
G(N t+1

1 )
]

when N t
1 is near 0 to its lower bound v when N t

1 is near N , interdealer trade works to magnify
the inverse dependence of the value gap on N t

1. Liquidity risk and active interdealer trade
work inseparably to create this link from market inventory to upstream price.

This inventory-price link is simultaneously derived on two margins. First, the likelihood
of finding a vacant dealer depends on the total number of assets in circulation in the dealer
market. As N t

1 increases and more dealers hold inventories, the frequency of interdealer
transactions will rise and then fall non-monotonically. However, upon conditioning on being
a seller in the market, this probability– given with Pr(χS)– strictly decreases with N t

1. The
probability of transacting after conditioning on being a buyer, Pr(χB), strictly rises. These
divergent conditional likelihoods unambiguously push in the direction of the link. On the
second margin, the prospect to any shocked asset holder of finding herself able to trade on
favorable terms– as captured with Et [s]– unambiguously degrades with N t

1. That is, expec-
tations over the bargaining positions of dealers move toward favoring buyers as the market
becomes more congested with assets. Together, these two margins work simultaneously to
influence upstream prices.

Together, expectations over interdealer prices and the likelihood of transacting in the
interdealer market work to establish the link from market inventories to asset prices. Such
dependence on market inventory, net of external influences through p(N t

1) or Φ(N
t
1; N̂

t−1
1 ) but

working solely through interdealer markets, establishes the market’s equilibrium response to
the setting’s basic frictions to asset intermediation.

13 Conclusion: discussion and extensions

With the above model market inventory is shown to proxy for the effectiveness of the in-
terdealer market as a hedge on dealers’ private risks. Interdealer trade effectively boosts
prices in the upstream supply market. As interdealer activity is constrained trading costs
expand and the ability of the dealer market to allocate assets to the most valuing demanders
degrades. Interdealer prices and search frictions work together to drive these forces. The
potency of these forces intimately depends on the equilibrium provision of liquidity from
dealers, and in turn, on contemporaneous market inventory.

The reader may be concerned with the robustness of the above descriptive results upon
loosening some of the various assumptions in the model. In turn, I consider both the sim-
plifying assumptions of a binary inventory space and of the given binary structure of the
setting’s demand and liquidity risk.

Though the above discussion interprets each dealer to be a separate entity, there is little
preventing us from allowing a subset of nodes to constitute a ‘firm’. In such an extension
to the model, the set of N nodes is partitioned into an integer number F of firms24, and
to include an integer number I := N/F of possible inventories for each firm. An additional

assumption on b(·|Ñns
0 , Ñ s

1 ) would be needed to remove frictions within each firm, and ‘en-
trants’ would be taken I at a time. Then, each dealer i’s demand in period t would depend
on current private inventory Ii ∈ {1, . . . , I} as well as on inventories held by other dealers.

24This partitioned should come as a division if to maintain ex-ante symmetry across firms
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The choice to liquidate or trade some portion of Ii in the interdealer market would then de-
pend on the joint realizations of demand and liquidity shocks through the following period.
While such an extension would allow for a richer treatment of the interdealer market, the
basic link from market inventories to prices will continue to hold.

One can also consider a straight forward extension allowing for a richer form of liquidity
risk in which dealers realize variable costs to carrying inventories. Interdealer trade would
then create value as a function of the transacting dealers’ relative inventory costs. The uni-
verse of assignment games is certainly rich enough to apply to such a setting with analogous
entry results holding. Such a model would entail a considerable enrichment of an already
high dimensional Bellman system. As such, the above model should be taken as a parsimo-
nious attempt to characterize the role of market inventory and interdealer trade, without
indulging in enriched forms of liquidity risk.

Allowing for variable liquidity risk does promise an exciting avenue for future work.
Endogenizing the search and matching process to account for assortative matching as a
function of the relative liquidity needs of the traders– movng beyond the above model’s
simple binary setup– could yield a more descriptive characterization of trading behavior
in these markets (e.g. see Shimer and Smith (2000) [28])25. Negative assortative matching
should naturally obtain under regular conditions, as trades between dealers with increasingly
divergent liquidity needs create greater value. Concurrent variability over interdealer prices
would be driven by heterogeneity in inventory costs as opposed to (or potentially, in addition
to) the asymmetric bargain positions that dealers hold in the above setting.

Other natural extensions to the model could discriminate between dealers in the formation
of links and allow persistence in dealer relationships. Future work could study games that
endogenize link formation, with dealers investing in and maintaining links for future use (e.g.
see Elliott (2013) [9]). However, allowing for persistence in the interdealer network departs
from this paper’s assumption of ex-ante symmetry over dealers. Such complications, along
with the many rich topics addressed by the growing financial networks literature, are left
outside the scope of this paper.

Finally, this work motivates an agenda for future empirical work. First, the extent to
which market inventory can explain asset prices beyond alternative factors, such as asym-
metric information, processing costs, and inventory risk sharing is left as an open empirical
question. The answer will likely depend on market structure. Incorporating market inven-
tories into price impact regressions offers a straight forward approach (e.g. see Foucault et.
al. (2013) [11]). Though, more sophisticated approaches could include controls for market
segmentation and correlation in demand. Finally, a suitable proxy for q, or more generally
for the degree of heterogeneity in dealers’ trading constraints, would be ideal. Only with
such a tool can the role of interdealer trade in driving the above market inventory link be
aptly assessed.

25I accredit Bill Zame for this suggestion.
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List of Variables

1. Va,Nt
1
∈ R+: net present (expected discounted) value to dealer holding a ∈ {0, 1} assets.

a = 0 termed vacant. a = 1 termed asset holder.

2. N t
1 ∈ {0, N}: market inventory, equal to total number of asset holders.

3. N t
0 = N −N t

1: number of vacants (liquidity suppliers).

4. N̂ t−1
1 ∈ {0, N t

1}: market inventory carried between periods t− 1 and t.

5. Vns
0 ∈ R+: expected gains to unshocked vacant entering interdealer market.

6. Vs
1 ∈ R+: expected gains to shocked asset holder entering interdealer market.

7. D̃ ∈ Z+: number of high valuing demanders willing to purchase asset at price v.

8. Φ
(
N t

1; N̂
t−1
1

)
: single period inverse asset supply.

9. Ñ1 = max
{
0, N t

1 − D̃
}
: number of asset holders unable to sell for v.

10. Ñ s
1 ∈

{
0, . . . , Ñ1

}
: number of shocked asset holders unable to sell for v.

11. Ñns
0 ≤ {0, . . . , N t

0}: number of unshocked vacants.

12. B̃ ∈ 2Ñ
s
1 Ñ

ns
0 : interdealer market (bipartite network).

13. X̃ ∈
{
0, . . . ,min

{
Ñ s

1 , Ñ
ns
0

}}
: number of interdealer transactions.

14. λ ∈ R
N+1
+ : likelihood asset holder captures gains to trade in interdealer market, for

each market inventory N t
1.

15. µ ∈ R
N+1
+ : likelihood vacant captures gains to trade in interdealer market, for each

market inventory N t
1.

16. G (N t
1) = V1,Nt

1
− V0,Nt

1
: value gap.
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Appendixes

C Appendix: Existence and Uniqueness, and Inter-

dealer Market Properties

C.1 Preliminary results

Proposition 6. If for each transaction x resulting from each network B̃, Λx,B̃ (V0, V1) gives
share sx ∈ [0, 1] of the gains from trade from ∆ to the seller, then Λx,B̃ (V0, V1) is non-
expansionary (for any metric ‖·‖).
PROOF: Let δV1−δV0−v give the length and height of the value set. Writing vectors (y, z)

is column form
(
y
z

)
, then

∥∥∥Λx,B̃ (V0, V1)− Λx,B̃ (V
′
0 , V

′
1)
∥∥∥ is given by:

∥∥∥∥
(
(1− sx) (δV1 − δV0 − v) + δV0

sx (δV1 − δV0 − v) + δV0 + v

)
−
(
(1− sx) (δV

′
1 − δV ′

0 − v) + δV ′
0

sx (δV ′
1 − δV ′

0 − v) + δV ′
0 + v

)∥∥∥∥

=

∥∥∥∥
(
sx (δV0 − δV ′

0) + (1− sx) (δV1 − δV ′
1)

sx (δV1 − δV ′
1) + (1− sx) (δV0 − δV ′

0)

)∥∥∥∥

=

∥∥∥∥sx
(
δV0 − δV ′

0

δV1 − δV ′
1

)
+ (1− sx)

(
δV1 − δV ′

1

δV0 − δV ′
0

)∥∥∥∥

≤ sx

∥∥∥∥
(
δV0 − δV ′

0

δV1 − δV ′
1

)∥∥∥∥+ (1− sx)

∥∥∥∥
(
δV1 − δV ′

1

δV0 − δV ′
0

)∥∥∥∥

=

∥∥∥∥
(
δV0 − δV ′

0

δV1 − δV ′
1

)∥∥∥∥ ,

the inequality holding as a triangle inequality. �

Lemma 3. For any vectors
(
V0,N1
V1,N1

)
N1

and
(V ′

0,N1

V ′
1,N1

)
N1

in [0, δv]N+1× [v, v]N+1, take the function

−→V : [0, δv]N+1 × [v, v]N+1 7−→ ∆ defined by:

−→V
((

V0,N1

V1,N1

)

N1

)
=

(Ṽns
0,Nt

1

((
V0,N1
V1,N1

)
N1

)

Ṽs
1,Nt

1

((
V0,N1
V1,N1

)
N1

)
)
,

where each Ṽns
a,Nt

1

((
V0,N1
V1,N1

))
(a = 0, 1) gives values in ∆ taking Et

[
V t+1

a,Nt+1
1

]
as convex combi-

nations of
(
V0,N1
V1,N1

)
with weights Pr [N1|N t

1]
26. Then,

−→V
((

V0,N1
V1,N1

)
N1

)
satisfies:

∥∥∥∥∥
−→V
((

V0,N1

V1,N1

)

N1

)
−−→V

((
V ′
0,N1

V ′
1,N1

)

N1

)∥∥∥∥∥
∞

≤
∥∥∥∥∥

(
V0,N1

V1,N1

)

N1

−
(
V ′
0,N1

V ′
1,N1

)

N1

∥∥∥∥∥
∞

. (29)

26That is, the probability that N t+1
1 = N1 conditioning on period t market inventory N t

1.
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PROOF: Ṽns
0,N1

and Ṽs
1,N1

are each convex combination of (ie. expectation over) the respective

intermediary’s disagreement value (i.e. δEt

[
V t+1

0,Nt+1
1

]
for vacants and δEt

[
V t+1

1,Nt+1
1

]
+ v for

asset holders) and the respective value shares as determined by points in ∆ (from transaction

outcomes). By Assumption 4, the set of transactions is indepedent of δEt

[
V t+1

0,Nt+1
1

]
and

δEt

[
V t+1

1,Nt+1
1

]
and thus the values from disagreements (multiplied by the likelihood of those

outcomes) cancel. By Assumption 5 the value shares from transactions are non-expansionary,

and thus

∥∥∥∥
−→V
((

V0,N1
V1,N1

))
−−→V

((V ′
0,N1

V ′
1,N1

))∥∥∥∥
∞

is no greater than
∥∥∥
(
V0

V1

)
−
(
V ′
0

V ′
1

)∥∥∥
∞
multiplied by the

likelihood of a transaction occurring. �

Note that (29) will continue to hold upon setting either Ṽns
0,Nt

1

((
V0,N1
V1,N1

)
N1

)
or

Ṽs
1,Nt

1

((
V0,N1
V1,N1

)
N1

)
in the function

−→V
((

V0,N1
V1,N1

)
N1

)
to the vector of zeros. This fact is used

in the following proof.

C.2 Proof of Proposition 1

First, (3) can be expanded to:

V t
0,Nt

1
=

[
(1 − q)

[∑
Ñs

1
≥0,Ñns

0
≥1

g1

(
Ñs

1

∣∣∣Nt
1

)
hB
0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)
Ṽns

0,Nt
1

]

+qδEt

[
V

t+1

0,N
t+1
1

]

]

V t
1,Nt

1
=




(1 − p)




(1 − q)max

{
v + δEt

[
V

t+1

0,N
t+1
1

]
, δEt

[
V

t+1

1,N
t+1
1

]}

+q

[∑
Ñs

1
≥1,Ñns

0
≥0

gS1

(
Ñs

1

∣∣∣Nt
1

)
h0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)
Ṽs

1,Nt
1

]




+p

(
v + δEt

[
V

t+1

0,N
t+1
1

])


, (30)

where the first sums are taken over Ñ s
1 ≤ N t

1 and Ñns
0 ≤ N −N t

1, and the second sums are

over all networks B̃. I prove that the function [0, δv]N+1× [v, v]N+1 7−→ [0, δv]N+1× [v, v]N+1

given with the set of 2 (N + 1) functions (two for each N t
1 = 0, . . . , N) from the right hand

side of (30) gives a contraction mapping in the metric space
(
R

2(N+1)
+ , ‖·‖∞

)
. Again, we

take Et

[
V t+1

a,Nt+1
1

]
(a = 1, 2) as a convex combination of

(
V0,N1
V1,N1

)
N1

with weights Pr [N1|N t
1].

Take
(
V0,N1
V1,N1

)
N1

and
(V ′

0,N1

V ′
1,N1

)
N1

in [0, δv]N+1× [v, v]N+1 . We suppress the arguments of Ṽns
0,Nt

1

and Ṽs
1,Nt

1
and prime these functions when evaluated at

(V ′
0,N1

V ′
1,N1

)
N1

:

Ṽs′
a,Nt

1
:= Ṽs

a,Nt
1

((
V ′
0,N1

V ′
1,N1

)

N1

)
.

We also use
∥∥∥−→V −−→

V ′
∥∥∥
∞

to denote

∥∥∥∥
(
V0,N1
V1,N1

)
N1

−
(V ′

0,N1

V ′
1,N1

)
N1

∥∥∥∥
∞

.
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Expanding, differencing, and taking the sup-norm of the right hand side of (30) gives:

∥∥∥∥∥∥∥∥∥∥∥







(1 − q)

[∑
Ñs

1
≥0,Ñns

0
≥1

gB1

(
Ñs

1

∣∣∣Nt
1

)
hB
0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)(
Ṽns

0,Nt
1

− Ṽns′

0,Nt
1

)]

+qδ

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])







(1 − p)




(1 − q)

(
max

{
v + δEt

[
V

t+1

0,N
t+1
1

]
, δEt

[
V

t+1

1,N
t+1
1

]}
− max

{
v + δEt

[
V

t+1′

0,N
t+1
1

]
, δEt

[
V

t+1′

1,N
t+1
1

]})

+q

[∑
Ñs

1
≥1,Ñns

0
≥0

gS1

(
Ñs

1

∣∣∣Nt
1

)
hS
0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)(
Ṽs

1,Nt
1

− Ṽs′

1,Nt
1

)]




+pδ

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])







∥∥∥∥∥∥∥∥∥∥∥
∞

.

Take the two cases seperately:

(1) max
{
v + δEt

[
V t+1

0,Nt+1
1

]
, δEt

[
V t+1

1,Nt+1
1

]}
= v + δEt

[
V t+1

0,Nt+1
1

]
, and

(2) max
{
v + δEt

[
V t+1

0,Nt+1
1

]
, δEt

[
V t+1

1,Nt+1
1

]}
= δEt

[
V t+1

1,Nt+1
1

]
.

Then, arbitrarily choosing a term from the second (i.e. subtracted) maximand will at most in-
crease the bottom term of the above expression. Thus, we can set

max
{
v + δEt

[
V t+1′
0,Nt+1

1

]
, δEt

[
V t+1′
1,Nt+1

1

]}
to v + δEt

[
V t+1′
0,Nt+1

1

]
in case (1) and to δEt

[
V t+1′
1,Nt+1

1

]

in case (2), establishing the following upper bound:

≤

∥∥∥∥∥∥∥∥∥∥∥







(1 − q)

[∑
Ñs

1
≥0,Ñns

0
≥1

gB1

(
Ñs

1

∣∣∣Nt
1

)
hB
0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)
δ

(
Ṽns

0,Nt
1

− Ṽns′

0,Nt
1

)]

+qδ

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])







(1 − p)




(1 − q) δ

(
max

{
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

]
, Et

[
V

t+1

1,N
t+1
1

]
− Et

[
V

t+1′

1,N
t+1
1

]})

+q

[∑
Ñs

1
≥1,Ñns

0
≥0

gS1

(
Ñs

1

∣∣∣Nt
1

)
hS
0

(
Ñns

0

∣∣∣Nt
1

)∑
B̃

b
(
B̃
∣∣∣Ñns

0 , Ñs
1

)
δ

(
Ṽs

1,Nt
1

− Ṽs′

1,Nt
1

)]




+pδ

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])







∥∥∥∥∥∥∥∥∥∥∥
∞

≤ δ

∥∥∥∥∥∥∥∥∥




(1 − q)

(
Ṽns

0,Nt
1

− Ṽns′

0,Nt
1

)
+ q

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])




(1 − p)




(1 − q)max

{
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

]
, Et

[
V

t+1

1,N
t+1
1

]
− Et

[
V

t+1′

1,N
t+1
1

]}

+q

(
Ṽs

1,Nt
1

− Ṽs′

1,Nt
1

)




+p

(
Et

[
V

t+1

0,N
t+1
1

]
− Et

[
V

t+1′

0,N
t+1
1

])







∥∥∥∥∥∥∥∥∥
∞

= δ
∥∥∥−→V −−→

V ′
∥∥∥
∞

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




(1 − q)

Ṽns

0,Nt
1

−Ṽns′
0,Nt

1∥∥∥−→V −
−→
V ′
∥∥∥
∞

+ q

Et


V t+1

0,N
t+1
1

−V
t+1′

0,N
t+1
1




∥∥∥−→V −
−→
V ′
∥∥∥
∞



(1 − p)




(1 − q)

max



Et


V t+1

0,N
t+1
1


−Et


V t+1′

0,N
t+1
1


,Et


V t+1

1,N
t+1
1


−Et


V t+1′

1,N
t+1
1







∥∥∥−→V −
−→
V ′
∥∥∥
∞

+q

Ṽs

1,Nt
1

−Ṽs′
1,Nt

1∥∥∥−→V −
−→
V ′
∥∥∥
∞




+p

Et


V t+1

0,N
t+1
1

−V
t+1′

0,N
t+1
1




∥∥∥−→V −
−→
V ′
∥∥∥
∞







∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ δ
∥∥∥−→V −−→

V ′
∥∥∥
∞

∥∥∥∥
(

((1− q) + q)1Nt
1

((1− p) ((1− q) + q) + p)1Nt
1

)∥∥∥∥
∞

= δ
∥∥∥−→V −−→

V ′
∥∥∥
∞
,

where 1Nt
1
gives the vector of ones in RN+1

+ . The final inequality follows from Lemma 3.
With δ < 1 we have a contraction mapping, and by Banach’s fixed point theorem (30) must
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yield a unique fixed-point. �

C.3 Conditions (17d) and (17f):

I expand λ and µ as follows:

λ =
Vns
0,Nt

1
− δEt

[
V0,Nt+1

1

]

δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

=



(∑Nt

1

Ñs
1≥0

∑N−Nt
1

Ñns
0 ≥1

gB1

(
Ñ s

1 |N t
1

)
hB
0

(
Ñns

0 |N t
1

)∑
B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽns
0,Nt

1

)

−δEt

[
V0,Nt+1

1

]



δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

, (31)

µ =
Vs
1,Nt

1
− δEt

[
V0,Nt+1

1

]
− v

δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

=



(∑Nt

1

Ñs
1≥0

∑N−Nt
1

Ñns
0 ≥1

gS1

(
Ñ s

1 |N t
1

)
hS
0

(
Ñns

0 |N t
1

)∑
B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽs
1,Nt

1

)

−δEt

[
V0,Nt+1

1

]
− v




δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

, (32)

(17d).: With Assumption 2.3:

gB1
(
0
∣∣N t

1

)
= hB

0

(
N t

0

∣∣N t
1

)
= 1 when q = 0. (33)

Evaluating (31), one obtains for q = 0:

λ =

∑
B̃ b
(
B̃ |N t

0, 0
)
Ṽns
0,N1

− δEt

[
V0,Nt+1

1

]

δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

=

(
δEt

[
V0,Nt+1

1

])
− δEt

[
V0,Nt+1

1

]

δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v

= 0,

for each N t
1.

(17f).: By the above, at q = 0 we must have:

∇Nt
1
λ = 0.

Then, by Proposition 3, ∇Nt
1
λ ≥ 0, and by continuity in q, ∂

∂q
∇Nt

1
λ ≥ 0 in some neighborhood
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of q = 0. �

C.4 Conditions (24c).3

I first derive an analogous property to Proposition 2:

Lemma 4.
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

) ∑
x s

|X̃| is decreasing in Ñ s
1 and increasing in Ñns

0 .

PROOF: The proof mirrors that of Proposition 2. Upon including an additional seller i′

to Ñ s
1 (obtaining seller set i′ ∪ Ñ s

1 ), the likelihood of subgraph B (i.e. by excluding all links

to i′) occuring after averaging over all Bi′ realizations must equal b
(
B
∣∣∣Ñns

0 , Ñ s
1

)
by link

independence. Further, given any realized Bi′ , the value to each i ∈ Ñ s
1 can only go down

and the value to each j ∈ Ñns
0 can only go up upon entry of i′ (conditioning on supgraph

B) by Lemma 2. The second fact implies that the number of trasactions
∣∣∣X̃
∣∣∣ can only go

up, so that any additional transaction x′ must give sx′ = 0. This in turn implies
∑

x s

|X̃| can

only go down, and that the expectation
∑

B̃ b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

) ∑
x s

|X̃| is weakly decreasing with

Ñ s
1 . To show that

∑
B̃ b
(
B
∣∣∣Ñns

0 , Ñ s
1

) ∑
x s

|X̃| is increasing in Ñns
0 , use a similar argument by

adding some j′ to Ñns
0 . �

Now to show Condition (24c).3, expand Et [s]:

Et [s] =

Nt
1∑

Ñs
1≥0

N−Nt
1∑

Ñns
0 ≥0

g1

(
Ñ s

1

∣∣N t
1

)
h0

(
Ñns

0

∣∣N t
1

)∑

B̃

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

) ∑
x s∣∣∣X̃
∣∣∣

the result follows from the fact that expectations over monotonically decreasing functions
decrease [increase] upon first order shifts up [down] in the underlining distribution. �
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D Appendix: Equilibrium Market Behavior

To ease notation, I define the following operator:

Definition 4. For each N t
1 ∈ {0, . . . , N − 1}, the difference operator ∇Nt

1
is defined by

∇Nt
1
F (N t

1) := F (N t
1 + 1)− F (N t

1) for any function F : {0, . . . , N} → R.

For any two function of market inventory FNt
1
and HNt

1
, we can derive the following

product rule as follows:

∇Nt
1

(
F tH t

)
: = FNt+1

1
HNt+1

1
− FNt

1
HNt

1

≈ HNt
1

(
FNt+1

1
− FNt

1

)
+ FNt

1

(
HNt+1

1
−HNt

1

)
. (34)

In what follows, we will assume that cross difference terms (FNt+1
1

− FNt
1
)(HNt+1

1
−HNt

1
)

will be negligible, entailing an approximate product rule for ∇Nt
1
. This approximation will

become increasingly negligable for large values of N .

D.1 Expectations over the Interdealer Market

Under the co-demand setup, the interim probability mass function27 of Ñ s
1 - for buyers and

for sellers entering the interdealer market, respectively- is given by the following conditional
binomial distributions:

gB1

(
Ñ s

1

∣∣N t
1

)
: =

Nt
1∑

Ñ1≥Ñs
1

(
fÑ1;Nt

1

(
Ñ1;N

t
1

)(Ñ1

Ñ s
1

)
qÑ

s
1 (1− q)Ñ1−Ñs

1

)
, and (35)

gS1

(
Ñ s

1

∣∣N t
1

)
: =

Nt
1∑

Ñ1≥Ñs
1



fÑ1;Nt

1

(
Ñ1;N

t
1

) (Ñ1−1

Ñs
1−1

)
qÑ

s
1−1 (1− q)Ñ1−Ñs

1

∑Nt
1

Ñ ′
1≥1

fÑ1;Nt
1

(
Ñ ′

1;N
t
1

)


 , (36)

where fÑ1;Nt
1
gives the probability mass density function of Ñ1 = N t

1 −min{D̃,N t
1}, derived

from f as:

fÑ1;Nt
1

(
Ñ1;N

t
1

)
=





f
(
N t

1 − Ñ1

)
if Ñ1 > 0

∑∞
D̃≥Nt

1
f
(
D̃
)

if Ñ1 = 0
. (37)

Each term of (35) and (36) give the likelihood that exactly Ñ1 asset holders are unable

to sell to high demanders, conditioning on Ñ s
1 asset holders having entered the interdealer

market. The expression for gS1 in particular allows for sellers to update their priors over Ñ s
1

by conditioning on their own inability to sell downstream. Under the segmented demand

27For sellers, this means conditioning on realizing a demand and capacity shock but prior to learning Ñns
0

and Ñs
1 > 1. For buyers, this means not realizing a capacity shock but prior to learning Ñns

0 > 1 and Ñs
1 .
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model, these distributions will reduce to simple binary distributions:

gB1

(
Ñ s

1

∣∣N t
1

)
: =

(
N t

1

Ñ s
1

)
(q (1− p))Ñ

s
1 (1− q (1− p))N

t
1−Ñs

1 , and (38)

gS1

(
Ñ s

1

∣∣N t
1

)
: =

(
N t

1 − 1

Ñ s
1 − 1

)
(q (1− p))Ñ

s
1−1 (1− q (1− p))N

t
1−Ñs

1 . (39)

And Ñns
0 , under both demand models, follows:

hS
0

(
Ñns

0

∣∣N t
1

)
: =

(
N t

0

Ñns
0

)
(1− q)Ñ

ns
0 qN

t
0−Ñns

0 , and (40)

hB
0

(
Ñns

0

∣∣N t
1

)
: =

(
N t

0 − 1

Ñns
0 − 1

)
(1− q)Ñ

ns
0 −1 qN

t
0−Ñns

0 (41)

D.2 Proof of Proposition 4

First, given any strategy θ an identical argument given in the proof of Proposition 1 estab-
lishes a unique set of stationary values (V0,Nt

1
, V1,Nt

1
). Thus, it remains to derive a symmetric

Nash equilibrium strategy θ given values (V0,Nt
1
, V1,Nt

1
), which take θ as given.

We assume a downwards sloping value gap, or that q ∈ [0, q1] from Proposition 5 (derived
below). From the proof of Proposition 5 this implies that an increase in N t

1 (to N
t
1+1) implies

a first order shift up (right) in the distribution of residual asset holders N̂ t
1, denoted below

Ň t
1.

28

For case 1, when N t
1 > N1 shocked asset holders are indifferent between liquidating and

trading at price v in the interdealer market if they can. We assume they trade with found
vacants to maintain consistency in the distribution over residual assets Ň t

1. Again, denote
the number of asset holders able to carry inventories Ň t

1. Ň
t
1 also gives the number of assets

holders are left to mix on funneling and on holding their assets as carried inventory. Note,
when N t

1 ≤ N1, we have Ň t
1 = N̂ t

1. Then, use N̂ t
1 to denote the number of assets left after

asset funneling that are carried into period t+1: market clearing condition 5a-5b for period
t+ 1 gives subsequent market inventory N t+1

1 . Then, the distribution of N̂ t
1 conditioning on

(1) residual assets (prior to funneling) Ň t
1, (2) the original period t market inventory N t

1,
and (3) the strategy of residual asset holders θ is given by:

Pr
(
N̂ t

1

∣∣Ň t
1, N

t
1, θ
)
=

(
N̂ t

1

Ň t
1

)(
1− θ

(
N t

1

))N̂t
1 θ
(
N t

1

)Ňt
1−N̂t

1 . (42)

Using the distribution of Ň t
1 conditioning on N t

1 given by Pr(N̂ t
1|N t

1) = Pr(N̂ t
1|Ň t

1, N
t
1, 0) (no

funneling), we can derive an updated distribution for carried inventory N̂ t
1:

Pr
(
N̂ t

1

∣∣N t
1, θ
)
=
∑

Ňt
1

Pr
(
N̂ t

1

∣∣Ň t
1, N

t
1, θ
)
Pr
(
Ň t

1

∣∣N t
1

)
. (43)

28We take this relabeling to leave N̂ t
1 to denote the post-funneling number of residual asset holders. This

avoids a restatement of upstream market clearing condition (5a)-(5b).
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Pr(N̂ t
1|N t

1, θ) will exhibit first order shifts left with greater θ(N t
1) (for each N t

1): the indepen-
dent probability of each asset holder in Ň t

1 liquidating as opposed to carrying inventory is
given by θ(N t

1). Then, with G(N t
1) a weakly decreasing function of N t

1 we set θ(N
t
1) to solve:

v = δ
(
Et

[
G
(
N t+1

1

)
|θ
])

= δ
∑

N̂t
1

Pr
(
N̂ t

1

∣∣N t
1, θ
)
G
(
N t+1

1

(
N̂ t

1

))
(44)

so that the discounted gap when N t
1 is above N1 is always equal to v, maintaining indifference

over funneling and carrying inventory. Thus, we’ve established the given strategy to be
optimal.

To construct G and show that such a strategy θ can be found, first take G(0)(N t
1) to

give the value gap when mixing on funneling is restricted for all N t
1 (θ(N t

1) = 0). Define

N
(0)

1 to give the market inventory so that v ≤ δEt

[
G(0)(N t+1

1 )
]
for each N t

1 ≤ N
(0)

1 while

v > δEt

[
G(0)(N t+1

1 )
]
for each N t

1 > N
(0)

1 . If there is no such N
(0)

1 then we are in case 2. Also

assume that at least one value for the value gap lies above v, else N t
1 > N

(0)

1 with probability

one for all t giving a case in which interdealer trade is never rational. For each N t
1 > N

(0)

1

define θ(0)(N t
1) to give the probability that residual asset holders Ň t

1 mix on funneling. The
induced distribution Pr(N̂ t

1|N t
1, θ

(0)) will exhibit a first order shift left as θ(0)(N t
1) is increased,

yielding a continuously decreasing expectation δEt

[
G(0)(N t+1

1 )
]
by continuity of (42) with

respect to θ(N t
1).

We have δEt

[
G(0)(N t+1

1 )
]
< v for θ(0)(N t

1) = 0 by assumption. Ans for θ(0)(N t
1) = 1,

δEt

[
G(0)(N t+1

1 )
]
= δEt

[
G(N t+1

1 )
∣∣∣N̂ t

1 = 0
]
> v (with all asset holders funneling, leaving

N̂ t
1 = 0). By the Intermediate-value Theorem there is some θ(0) (N t

1) that gives
δEt

[
G(0)(N t+1

1 )
]
= v.

Now take G(1)(N t
1) given with (19) where the discounted value gap is given by the

function max
{
0, δEt

[
G(0)(N t+1

1 )
]}
. By assumption q ∈ [0, q1] so that

((1− p) (1− q) + ((1− p) qµ− (1− q)λ)) ≥ 0 (45)

and (19) is increasing in the discounted expected value gap, and thus G(1)(N t
1) ≥ G(0)(N t

1)
for each N t

1. Similarly by monotonicity of max{0, δEt

[
G(0)(N t+1

1 )
]
}, G(1)(N t

1) is also mono-

tonic (ie. decreasing in N t
1). Accordingly, if the funneling strategy is given by θ(0) then

δEt

[
G(1)(N t+1

1 )
]
≥ 0 for each N t

1 with the discounted value gap strictly above zero for some

N t
1 > N

(0)

1 . We construct θ(1) from θ(0) by decreasing each θ(0)(N t
1) for N

t
1 > N

(0)

1 until either
θ(1)(N t

1) = 0 or δEt

[
G(1)(N t+1

1 )
]
= 0 (whichever comes first). Formally,

θ(1)(N t
1) = max

{
0,
{
θ
∣∣δEt

[
G(1)(N t+1

1 )
]
= 0

}}
. (46)

By monotonicity of G(1)(N1) and again because the induced distribution Pr(N̂ t
1|N t

1, θ
(1))

exhibits a first order shift left with θ(1)(N t
1), if θ

(1)(N t
1) = 0 then θ(1)(N t′

1 ) = 0 for each
N t′

1 > N t
1.
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Finally, define N
(1)

1 to give the market inventory so that v ≤ δEt

[
G(1)(N t+1

1 )
]
for each

N t
1 ≤ N

(1)

1 while v > δEt

[
G(1)(N t+1

1 )
]
for each N t

1 > N
(1)

1 , and given that mixing on

funneling is given by θ(1). In total, G(1)(N t
1) ≥ G(0)(N t

1) for each N t
1, N

(1)

1 ≥ N
(0)

1 , and

θ(1)(N t
1) ≤ θ(0)(N t

1) for each N t
1 > N

(1)

1 by construction.

Recursively construct G(n) from G(n−1), θ(n) from θ(n−1) , and N
(n)

1 from N
(n−1)

1 in a
similar fashion. We obtain a weakly increasing sequence G(n)(N t

1) that is weakly increasing
for each N t

1 and bounded above by v. Similarly, we obtain monotone sequences θ(n) and

N
(n)

1 bounded by 0 (below) and N (above), respectively. By the monotone convergence

theorem, G(n) → G and θ(n) → θ (pointwise) with N
(n)

1 → N1, with θ(N t
1) optimal for each

N t
1 ∈ {0, . . . , N} given G.
Finally, θ(N t

1) (as well as each θ(n)) is increasing in N t
1 by the fact that G and

δEt

[
G(N t+1

1 )
]
are decreasing functions of N t

1 and Pr(Ň t
1|N t

1) exhibits a first order stochastic
shift up (right) withN t

1: a greater mixing on funneling is required to obtain Et

[
G(N t+1

1 )
]
= v

at larger N t
1.

For case 2, the gains to carrying assets as inventory between periods is maintained for
all N t

1 ∈ {0, . . . , N}, and thus asset funneling is never rational. �

100



D.3 Proof of Proposition 5

With the market clearing condition (5a)-(5b) pinning N t
1(N̂

t−1
1 ), (20c) is implied by the

following restriction on Φ relative to V t
1,Nt

1
− V t

0,Nt
1
:

Φ
(
N t

1

(
N̂ t−1

1

)
+ n; N̂ t−1

1

)
> Gt

(
N t

1

(
N̂ t−1

1

)
+ n
)
. (47)

for each integer n ≥ 2. That is, the inverse supply lies strictly above the value gap moving
beyond two assets greater than the original market clearing inventory N t

1(N̂
t−1
1 ). We see

then that the condition (20c) can be recast as a lower bound on the increase (slope) in
Φ(N t

1; N̂
t−1
1 ) as N t

1 increases. With the value gap given in equilibrium, such conditions can
only be verified case-by-case. None the less, we will maintain this as a weak assumption on
supply.29

Taking condition (20c), the proof proceeds as follows. For the case of asset funneling,
the value gap reduces to

G
(
N t

1

)
= v + p (v − v) (48)

so that:

∇Nt
1
G
(
N t

1

)
= (v − v)∇Nt

1
p ≤ 0, (49)

with ∇Nt
1
p ≤ 0 by assumption. And that ∇Nt

1
(V1,Nt

1
−V0,Nt

1
) ≤ 0 around N t

1 = N1 will follow
from continuity and monotonicity of the max function.

Now assume that carrying inventories is optimal (δEt

[
V1,Nt+1

1

]
− δEt

[
V0,Nt+1

1

]
− v ≥ 0).

The proof heavily utilizes the following form for the value gap:

G
(
N t

1

)
=




v + (v − v) p
+(1− p) (1− q)

(
δEt

[
G(N t+1

1 )
]
− v
)

+((1− p) qµ− (1− q)λ)
(
δEt

[
G(N t+1

1 )
]
− v
)


 . (50)

Using (50) we can apply ∇Nt
1
and define the following:

1.
∇Nt

1
G
(
N t

1

)
:= G

(
N t

1 + 1
)
−G

(
N t

1

)
, and (51)

2. writing:

Et

[
G
(
N t+1

1

)]
=
∑

N̂t
1

(
G
(
N t+1

1

(
N̂ t

1

)))
Pr
(
N̂ t

1

∣∣N t
1

)
, (52)

also define:

∇Nt
1

(
Et

[
G
(
N t+1

1

)])
:=




∑
N̂t

1
G
(
N t+1

1

(
N̂ t

1

))
Pr
(
N̂ t

1 |N t
1

)

−∑N̂t
1
G
(
N t+1

1

(
N̂ t

1

))
Pr
(
N̂ t

1 |N t
1 + 1

)

 . (53)

29Note that the upward pressure on Φ(N t
1; N̂

t−1
1 ) imposed by residual inventory N̂ t−1

1 (motivating As-
sumption 1) works in the direction of this condition. Still, with full generality maintained in p(N t

1), we must
rule out more extreme demand processes violating condition (20c).
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The proof proceeds by first establishing the following necessary property and subsequent
lemmas.

Definition 5. Pr
(
N̂ t

1 |N t
1

)
exhibits Marginal First Order Stochastic Dominance (MFOSD)

in N t
1 if increasing N t

1 by one gives a first order stochastic dominance shift up in the dis-

tribution of N̂ t
1, in such a way that there are φ

(
N̂ t

1

)
≤ Pr

(
N̂ t

1 |N t
1

)
giving the probability

shifted from Pr
(
N̂ t

1 |N t
1

)
to Pr

(
N̂ t

1 + 1 |N t
1 + 1

)
for each N̂ t

1 ∈ {1, . . . , N − 1}.

When Pr(N̂ t
1|N t

1) satisfies MFOSD in N t
1, we can write:

Pr
(
N̂ t

1

∣∣N t
1 + 1

)
= Pr

(
N̂ t

1

∣∣N t
1

)
− φ

(
N̂ t

1

)
+ φ

(
N̂ t

1 − 1
)
. (54)

The above property is stronger than first order stochastic dominance, in that each φ(N̂ t
1)

is required to be bounded above by Pr(N̂ t
1|N t

1). This requires that the shift in the process

Pr(N̂ t
1|N t

1) be sufficiently subtle. This property may be violated with a highly active inter-
dealer market, particularly when q and N t

1 are high. This is true because extreme market
inventories begin to deprive the interdealer market of the liquidity needed to absorb assets
from shocked asset holders, and effectively suppress expectations over N̂ t

1. However, if q is
below the following bound, Lemma 5 below shows that the MFOSD property is satisfied.

Definition 6.

q1 := min
{
q|Pr (χB) = 1− p,N t

1 = 0, . . . , N
}
. (55)

where Pr(χB), the probability of an unshocked vacant buying in the interdealer market, is
evaluated at the given q in the above definition. Note that this definition will give q1 that
solves Pr(χB) = 1− p(N) by property 3 in (17a)-(17f).

Lemma 5. When q ∈ [0, q1] and waiting is optimal, Pr
(
N̂ t

1 |N t
1

)
satisfies the MFOSD

property.

PROOF: As the precise form of Pr(N̂ t
1|N t

1) depends on the particular demand process
yielding p(N t

1), which the model avoids for the sake of generality, I provide a proof outline
suitable to apply to any given demand process. First, the following inductive approximation
will hold:

Pr
(
N̂ t

1

∣∣N t
1 + 1

)
≈


 Pr

(
N̂ t

1 − 1 |N t
1, N − 1

)
(1− p) ((1− q) + q Pr (χS))

+Pr
(
N̂ t

1 |N t
1, N − 1

)
(p+ (1− p) q (1− Pr (χS)))


 (56)

where the probabilities on the right condition on N t
1 and N − 1−N t

1 vacants. That is, the

likelihood that carried market inventory N̂ t
1 is realized is approximately equal to the sum of

probabilities of all events in a market of size N − 1 such that inclusion of an additional asset
holder yields carried inventory N̂ t

1. This expression is only approximate precisely because it
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does not correct for correlation between the demand uncertainty of the additional asset holder
(given by p) and in the random variables N̂ t

1 − 1 and N̂ t
1. Similarly, we can approximate:

Pr
(
N̂ t

1

∣∣N t
1

)
≈


 Pr

(
N̂ t

1 − 1 |N t
1, N − 1

)
(1− q) Pr (χB)

+Pr
(
N̂ t

1 |N t
1, N − 1

)
(q + (1− q) (1− Pr (χB)))


 , (57)

where the additional dealer enters as a vacant. This yields:

Pr
(
N̂ t

1

∣∣N t
1 + 1

)
− Pr

(
N̂ t

1

∣∣N t
1

)
≈




Pr
(
N̂ t

1 − 1 |N t
1, N − 1

)( (1− q) ((1− p)− Pr (χB))
+q (1− p) Pr (χS)

)

−Pr
(
N̂ t

1 |N t
1, N − 1

)( (1− q) ((1− p)− Pr (χB))
+q (1− p) Pr (χS)

)


 . (58)

Then, with q small, Pr(N̂ t
1−1|N t

1, N−1) and Pr(N̂ t
1|N t

1, N−1) will approximate to Pr(N̂ t
1−

1|N t
1, N) and Pr(N̂ t

1|N t
1, N), respectively. That is, the inclusion of an additional vacant will

shift up the distribution of carried inventories only slightly.30 The above together with the
fact that Pr(χB) ≤ (1− p) by our choice of q, yield the approximate expression:

φ
(
N̂ t

1

)
≈ Pr

(
N̂ t

1

∣∣N t
1

)( (1− q) ((1− p)− Pr (χB))
+q (1− p) Pr (χS)

)
< Pr

(
N̂ t

1

∣∣N t
1

)
. (59)

�

Lemma 6. If the process on N̂ t
1 given by Pr

(
N̂ t

1 |N t
1

)
satisfies the MFOSD property, then:

∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
≤ max

N1

∇N1G (N1) . (60)

.

PROOF: Assume that increasing N t
1 by one gives a first order stochastic dominance shift

up in the distribution of N̂ t
1, and let φ(N̂ t

1) ≤ Pr(N̂ t
1|N t

1) give the probability shifted from

Pr(N̂ t
1|N t

1) to Pr(N̂ t
1 + 1|N t

1 + 1) for each N̂ t
1 ∈ {1, . . . , N − 1}, so that

Pr
(
N̂ t

1

∣∣N t
1 + 1

)
= Pr

(
N̂ t

1

∣∣N t
1

)
− φ

(
N̂ t

1

)
+ φ

(
N̂ t

1 − 1
)
, (61)

and where ∆p(0) = ∆p(N) = 0. We then have:

∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=



∑

N̂t
1
G
(
N t+1

1

(
N̂ t

1

))
Pr
(
N̂ t

1 |N t
1 + 1

)

−∑N̂t
1
G
(
N t+1

1

(
N̂ t

1

))
Pr
(
N̂ t

1 |N t
1

)



30With N sufficiently large, we should expect that any error in this approximation will be small enough
that we can adjust our expression for φ(N̂ t

1) (below) appropriately.
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=



∑

N̂t
1
G
(
N t+1

1

(
N̂ t

1

))(
Pr
(
N̂ t

1 |N t
1

)
− φ

(
N̂ t

1

)
+ φ

(
N̂ t

1 − 1
))

−∑N̂t
1
G
(
N t+1

1

(
N̂ t

1

))
Pr
(
N̂ t

1 |N t
1

)



=
∑

N̂t
1

(
−φ
(
N̂ t

1

)
+ φ

(
N̂ t

1 − 1
))

G
(
N t+1

1

(
N̂ t

1

))

=
∑

N̂t
1<N

φ
(
N̂ t

1

)(
G
(
N t+1

1

(
N̂ t

1 + 1
))

−G
(
N t+1

1

(
N̂ t

1

)))

=
∑

N̂t
1<N

χ
(
N̂ t

1

)
φ
(
N̂ t

1

)(
G
(
N t+1

1

(
N̂ t

1

)
+ 1
)
−G

(
N t+1

1

(
N̂ t

1

)))

=
∑

N̂t
1<N

χ
(
N̂ t

1

)
φ
(
N̂ t

1

)
∇Nt

1(N̂t
1)

(
V1,Nt

1(N̂t
1)
− V0,Nt

1(N̂t
1)

)
, (62)

where:

χ
(
N̂ t

1

)
=




1 if N t+1

1

(
N̂ t

1 + 1
)
= N t+1

1

(
N̂ t

1

)
+ 1

0 if N t+1
1

(
N̂ t

1 + 1
)
= N t+1

1

(
N̂ t

1

) (63)

for each N̂ t
1 < N (which is well defined on {0, . . . , N − 1} by condition (20c)). Then with

χ
(
N̂ t

1

)
φ
(
N̂ t

1

)
∈ [0, 1] (by the MFOSD) we have that ∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
is a convex

combination of
∇Nt

1

(
V1,Nt

1
− V0,Nt

1

)
, giving the result. �

With the above bound established, the proof of part 1 proceeds as follows. First, derive
the difference function of the value gap:

∇Nt
1

(
V t
1,Nt

1
− V t

0,Nt
1

)
=




δ∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
((1− p) (1− q) + (1− p) qµ− (1− q)λ)

+

( (
∇Nt

1
p
) (

v − v −
(
δEt

[
G(N t+1

1 )
]
− v
)
((1− q) + qµ)

)

+
(
q (1− p)∇Nt

1
µ− (1− q)∇Nt

1
λ
) (

δEt

[
G(N t+1

1 )
]
− v
)
)


 . (64)

With δEt

[
G(N t+1

1 )
]
− v ≥ 0, ∇Nt

1
µ ≤ 0 ≤ ∇Nt

1
λ, and ∇Nt

1
p ≤ 0 the bottom term is

non-positive. Then, with λ ≤ Pr(χB) by expression (22a), and our choice of q ∈ [0, q1], we
have:

((1− p) (1− q) + (1− p) qµ− (1− q)λ) ≥ 0. (65)

so the right hand side of (64) is increasing in ∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
. By Lemmas 5 and

6:
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
≤ max

N1

∇N1 (V1,N1 − V0,N1) . (66)

Let N∗
1 give any solution the the right hand problem. We can now establish an upper bound

to ∇Nt
1
(V t

1,Nt
1
− V t

0,Nt
1
) by forcing the process generating N t+1

1 from N t
1 = N∗

1 (defined by
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Pr(N̂ t
1 N

t
1)) to place probability one on N∗

1 (ie. assume N∗
1 is a sink). This is precisely

because the right hand side of (64) is increasing in ∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
for q ∈ [0, q1].

This gives:

∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]∣∣∣
Nt

1=N∗
1

≤ ∇Nt
1

(
V1,N∗

1
− V0,N∗

1

)
, (67)

giving:
∇Nt

1

(
V1,N∗

1
− V0,N∗

1

)
≤

( (
∇Nt

1
p
) (

v − v −
(
δEt

[
G(N t+1

1 )
]
− v
)
((1− q) + qµ)

)

+
(
q (1− p)∇Nt

1
µ− (1− q)∇Nt

1
λ
) (

δEt

[
G(N t+1

1 )
]
− v
)
)

1− δ ((1− p) (1− q) + (1− p) qµ− (1− q)λ)

< 0. (68)

establishing part 1.
For part 2., I derive:

∂

∂q
∇Nt

1

(
V1,Nt

1
− V0,Nt

1

)
=




δ ∂
∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
((1− p) (1− q) + (1− p) qµ− (1− q)λ)

+∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]( (1− p) (µ− 1) + λ
+(1− p) q ∂

∂q
µ− (1− q) ∂

∂q
λ

)

+




∇Nt
1
p


 −δ ∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
((1− q) + qµ)

−
(
δEt

[
G(N t+1

1 )
]
− v
) (

(µ− 1) + q ∂
∂q
µ
)



+δ ∂
∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

] (
q (1− p)∇Nt

1
µ− (1− q)∇Nt

1
λ
)

+

(
(1− p)∇Nt

1
µ+∇Nt

1
λ

+
(
q (1− p) ∂

∂q
∇Nt

1
µ− (1− q) ∂

∂q
∇Nt

1
λ
)
)
(
δEt

[
G(N t+1

1 )
]
− v
)







. (69)

At q = 0, we have λ = ∇Nt
1
λ = 0, so that this expression reduces to:

∂

∂q
∇Nt

1

(
V1,Nt

1
− V0,Nt

1

)
=




δ (1− p) ∂
∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]

+




∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

] (
(1− p) (µ− 1)− ∂

∂q
λ
)

−
(
∇Nt

1
p
) (

δ ∂
∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
+
(
δEt

[
G(N t+1

1 )
]
− v
)
(µ− 1)

)

−
(
δEt

[
G(N t+1

1 )
]
− v
) (

− (1− p)∇Nt
1
µ+ ∂

∂q
∇Nt

1
λ
)







(70)

Now, when q ∈ [0, q0] and an increase in N t
1 gives a first order stochastic shift up in the

distribution of N̂ t
1 (ie. the MFOSD property is satisfied), ∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
< 0

because V1,Nt+1
1

− V0,Nt+1
1

is weakly decreasing by part 1. And with δEt

[
G(N t+1

1 )
]
− v > 0,
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∇Nt
1
µ ≤ 0, and ∂

∂q
λ ≥ ∂

∂q
∇Nt

1
λ ≥ 0 by 5 and 6 of the conditions in (17a)-(17f), the second

term of the bottom triplet in (70) will be non-negative and the third term will be non-
positive. The relative sizes of these terms will depend on the functions p, µ and λ, and
in particular their dependence on N t

1 and sensitivity to q. In what follows, I’ll denote the
bottom triplet:

Γ :=




∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

] (
(1− p) (µ− 1)− ∂

∂q
λ
)

−
(
∇Nt

1
p
) (

δ ∂
∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
+
(
δEt

[
G(N t+1

1 )
]
− v
)
(µ− 1)

)

−
(
δEt

[
G(N t+1

1 )
]
− v
) (

− (1− p)∇Nt
1
µ+ ∂

∂q
∇Nt

1
λ
)


 . (71)

I next expand ∂
∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
using the product rule:

∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=

∂

∂q

∑

N̂t
1

(
V1,Nt+1

1
− V0,Nt+1

1

)
Pr
(
N̂ t

1

∣∣N t
1

)

=




∑
N̂t

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
∂
∂q

Pr
(
N̂ t

1 |N t
1

)

+
∑

N̂t
1

∂
∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)
Pr
(
N̂ t

1 |N t
1

)



=



∑

N̂t
1

(
V1,Nt+1

1
− V0,Nt+1

1

)
∂
∂q

Pr
(
N̂ t

1 |N t
1

)

Et

[
∂
∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)]

 , (72)

and I derive:
∂

∂q

(
V1,Nt

1
− V0,Nt

1

)
=




(
((1− p) (1− q) + (1− p) qµ− (1− q)λ) ∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

])

+

(
(1− p) (µ− 1) + λ

(1− p) q ∂
∂q
µ− (1− q) ∂

∂q
λ

)(
δEt

[
G(N t+1

1 )
]
− v
)


 , (73)

which reduces at q = 0 to:

∂

∂q

(
V1,Nt

1
− V0,Nt

1

)
=


 δ (1− p) ∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]

+
(
(1− p) (µ− 1)− ∂

∂q
λ
) (

δEt

[
G(N t+1

1 )
]
− v
)


 . (74)

With 0 ≤ ∂
∂q
λ and µ ≤ 1 the bottom term is non-positive. The following evaluates the sign

of ∂
∂q
(V1,Nt

1
− V0,Nt

1
) and ∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
for each case.

For part 2, I take to case ∇Nt
1
p = 0 for each N t

1 (the segmented market setup gives a

special case of this), causing the second term of Γ to drop out. And with q = 0, the gap
V1,N1 − V0,N1 is independent of market inventory N1 at each time, causing the first term of
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Γ to drop out. This yields:

Γ = −
(
δEt

[
G(N t+1

1 )
]
− v
)(

− (1− p)∇Nt
1
µ+

∂

∂q
∇Nt

1
λ

)
≤ 0. (75)

With V1,Nt+1
1

−V0,Nt+1
1

in the top term of (72) a constant for each N̂ t
1 (because ∇Nt

1
p = 0),

and because
∑

N̂t
1
Pr(N̂ t

1|N t
1) = 1, it must be that

∑
N̂t

1

∂
∂q

Pr(N̂ t
1|N t)

1 equals zero, so that the

top term of (72) drops out31. This then yields an updated (74):

∂

∂q

(
V1,Nt

1
− V0,Nt

1

)
=


 δ (1− p)Et

[
∂
∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)]

+
(
(1− p) (µ− 1)− ∂

∂q
λ
) (

δEt

[
G(N t+1

1 )
]
− v
)


 , (76)

yielding an upper bound:

∂

∂q

(
V1,Nt

1
− V0,Nt

1

)
≤

(
(1− p) (µ− 1)− ∂

∂q
λ
) (

δEt

[
G(N t+1

1 )
]
− v
)

1− δ (1− p)
, (77)

which is unambiguously negative. Taking expectations over N t
1 will preserve this negativity:

Et

[
∂

∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)]
=

∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
< 0, (78)

with the equality holding again at q = 0. Thus, we’ve shown ∂
∂q

(
V1,Nt

1
− V0,Nt

1

)
≤ 0 with

Ω ≤ 0 for ∇Nt
1
p = 0. With µ < 1 and ∇Nt

1
µ < 0 (by Assumption 8) the above inequalities

bounding ∂
∂q

(
V1,Nt

1
− V0,Nt

1

)
and Ω become strict. And by continuity of all relevant terms

in q ∈ [0, 1] and ∇Nt
1
p ∈ [0, 1]N , this will also hold for some neighborhood of

(
q,∇Nt

1
p
)
=

(0, 0) ∈ [0, 1] × [0, 1]N . Take q′ = B′ to be the diameter of largest ball included in this
neighborhood.

I next show that given (70) the sign of ∂
∂q
∇Nt

1
(V1,Nt

1
− V0,Nt

1
) is determined by the sign of

Γ when ∇Nt
1
p is near the origin. We can write

∂

∂q
∇Nt

1

(
V1,Nt

1
− V0,Nt

1

)
= ∇Nt

1

∂

dq

(
V1,Nt

1
− V0,Nt

1

)
, (79)

∂

∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
= ∇Nt

1

∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
, (80)

31This step is crucial because an increase in q causes a stochastic shift down in the distribution of N̂ t
1; with

a strictly downward sloping value gap this force would work against ∂
∂q
(V1,Nt

1
−V0,Nt

1
) < 0. When this effect

is small (for small
∣∣∣∇Nt

1
p
∣∣∣ and q), this force is dominated by those derived from the interdealer marker, as

shown above.

107



with ∇Nt
1
constituting a linear operator. Plugging in (72) into the bottom equation gives:

∂

∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=

∇Nt
1



∑

N̂t
1

(
V1,Nt+1

1
− V0,Nt+1

1

)
∂
∂q

Pr
(
N̂ t

1 |N t
1

)

+Et

[
d
dq

(
V1,Nt+1

1
− V0,Nt+1

1

)]



=


 ∇Nt

1

∑
N̂t

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
∂
∂q

Pr
(
N̂ t

1 |N t
1

)

+∇Nt
1
Et

[
d
dq

(
V1,Nt+1

1
− V0,Nt+1

1

)]

 . (81)

As argued above, when ∇Nt
1
p = 0 the term

∑
N̂t

1
(V1,Nt+1

1
− V0,Nt+1

1
) ∂
∂q

Pr(N̂ t
1|N t

1) will equal

zero32, leaving:

∇Nt
1

∂

∂q
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
= ∇Nt

1
Et

[
∂

∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)]
, (82)

and updating (70) to:

∇Nt
1

∂

∂q

(
V1,Nt

1
− V0,Nt

1

)
=

(
δ (1− p)∇Nt

1
Et

[
∂

∂q

(
V1,Nt+1

1
− V0,Nt+1

1

)]
+ Γ

)
. (83)

With an increase inN t
1 toN

t+1
1 yielding a first order shift up in Pr(N̂ t

1|N t
1) when q ∈ [0, q1],

and because (i) ∇Nt
1
(V1,Nt+1

1
− V0,Nt+1

1
) ≤ 0 by part 1 and

(ii) ∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
≤∑N̂t

1
∇Nt

1
(V1,Nt+1

1
− V0,Nt+1

1
)φ(N̂ t

1) by the proof of Lemma 6,

we can write:

∇Nt
1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=
∑

N̂t
1

∇Nt
1

(
V1,Nt+1

1
− V0,Nt+1

1

)
ϕ
(
N̂ t

1 |q
)

(84)

for some set of probabilities {ϕ(N̂ t
1|q)}N̂t

1
, with

∑
N̂t

1
ϕ(N̂ t

1|q) ∈ [0, 1]. Then,

∂

∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=

∑

N̂t
1




∂
∂q
∇Nt

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
ϕ
(
N̂ t

1 |q
)

+∇Nt
1

(
V1,Nt+1

1
− V0,Nt+1

1

)
∂
∂q
ϕ
(
N̂ t

1 |q
)

 . (85)

32One can show that for small ∇Nt
1
p > 0 this term is negative, working in the direction

of our result. This is also precisely why we can not formally state the analogous property
d
dq

[(V1,N1+1 − V0,N1+1)− (V1,N1
− V0,N1

)] > 0 for part 3, with this term taking the opposite sign to Γ.
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Again, with ∇Nt
1
p = 0, ∇Nt

1
(V1,Nt+1

1
− V0,Nt+1

1
) = 0 leaving:

∂

∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
=
∑

N̂t
1

∂

∂q
∇Nt

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
ϕ
(
N̂ t

1 |q
)
. (86)

Thus,
∂

∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
≤ max

N̂t
1

∂

∂q
∇Nt

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
. (87)

With the right hand side of (83) increasing in ∂
∂q
∇Nt

1
Et

[
V1,Nt+1

1
− V0,Nt+1

1

]
, this implies the

following upper bound on ∂
∂q
∇Nt

1
(V1,Nt+1

1
− V0,Nt+1

1
) :

∂

∂q
∇Nt

1

(
V1,Nt+1

1
− V0,Nt+1

1

)
≤ Γ

1− δ (1− p)
< 0, (88)

with the second inequality becoming strict when either ∇Nt
1
µ < 0 or ∂

∂q
∇Nt

1
λ > 0. Finally,

by continuity of all relevant terms in q and ∇Nt
1
p, this will also hold for some neighborhood of

(q,∇Nt
1
p) = (0, 0) ∈ [0, 1]× [0, 1]N . Take q′′ = B′′ to be the diameter of largest ball included

in this neighborhood, and define q2 := min(q′, q′′) and B := min(B′, B′′). This concludes the
proof of Proposition 5. �

D.4 Proof of Corollary 1

With ∂
∂q

(
V1,Nt

1
− V0,Nt

1

)
negative for each q ∈ [0, q2), integrating V1,Nt

1
− V0,Nt

1
over [0, q) ⊆

[0, q2) yields a value gap V1,Nt
1
− V0,Nt

1
decreasing in q for each N t

1. Then, given N t
1, the

distribution of carried inventories N̂ t
1 shifts left with q, as the frequency of asset holders

forced to liquidate (having experienced a liquidity shock and unable to sell for a price above
v) increases. And in addition, residual asset holders may begin to funnel if N1 drops below

N t
1. Thus, with the distribution of N̂ t

1 shifted left and each V1,Nt
1
− V0,Nt

1
shifting down, the

distribution of N t+1
1 (conditioning on N t

1) unambiguously shifts left. This will also hold at
any t+ s given N t+s

1 for s > 0, by stationarity. Thus, as a convolution of distributions– each
having experienced a stochastic shift left– the distribution of N t+s

1 conditional on N t
1 must

shift left as q increases.
�
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E Appendix: Numerical Solutions

Examples (a) and (b) use InterdealerSegD.m for the segmented demand setup with geomet-

rically distributed D̃, InterdealerCoD.m for the co-demand setup, with both using VTIL.m
to estimate expectated shares in the interdealer market for a Poisson random network (with
links between dealer and between vacants excluded). All other subfunctions are included.
For each state dependent value YNt

1
we use Y ∈ R

N+1
+ to denote the column vector of values.

For Geometric Co-demand setup:

p
(
N t

1

)
= 1− F

(
N t

1 − 1;N t
1

)
+

Nt
1−1∑

D̃=0

D̃

N t
1

f
(
D̃;N t

1

)

= 1−
(
1− (1− s)N

t
1

)
+

1

N t
1

Nt
1−1∑

D̃=0

D̃ (1− s)D̃ s

= (1− s)N
t
1 +

s (1− s)

N t
1

1−N t
1 (1− s)N

t
1−1 + (N t

1 − 1) (1− s)N
t
1

s2

=
1− s

s

1

N t
1

(
1− (1− s)N

t
1

)
.

Step 1: Bootstrap values for Poisson random network

Ṽns
0,Nt

1
and Ṽs

1,Nt
1
, probability mass function of X̃, fX̃;(Ñs

1 ,Ñ
ns
0 ), and expected seller shares

E [s1], given each interdealer market dimension
(
Ñ s

1 , Ñ
ns
0

)
are bootstrapped using the func-

tion VTIL.m. VTIL.m takes values (N,m), where m ∈ (0, 1) gives the probability of any

buyer and seller being matched. For each bipartite network B̃, VTIL.m solves for a stable
assignment:

min
(s,t)∈RÑs

1×R
Ñns
0

∑

i∈Ñs
1

si +
∑

j∈Ñns
0

tj

s.t si ≥ 0, tj ≥ 0

s.t si + tj ≥ αij .
33

33See Roth and Sotomayor (2001), page 200.
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Step 2: Derive expectations over interdealer market: λ and µ.

Subfunctions Interdealer lammuSegD.m and Interdealer lammuCoD.m calculate λ and µ as
functions of N t

1 using:

λ =

Nt
1∑

Ñs
1≥0

N−Nt
1∑

Ñns
0 ≥1

g1

(
Ñ s

1

∣∣N t
1

)
hB
0

(
Ñns

0

∣∣N t
1

)∑

B̃

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽns
0,Nt

1

µ =

Nt
1∑

Ñs
1≥1

N−Nt
1∑

Ñns
0 ≥0

gS1

(
Ñ s

1

∣∣N t
1

)
h0

(
Ñns

0

∣∣N t
1

)∑

B̃

b
(
B̃
∣∣∣Ñns

0 , Ñ s
1

)
Ṽs
1,Nt

1
,

using Ṽns
0,Nt

1
and Ṽs

1,Nt
1
from step 1.

Step 3: Derive process generating carried inventories: Pr
(
N̂ t

1;N
t
1

)
.

Step 3.1:
This takes on seperate forms for the co-demand and segmented demand setups. For the

co-demand setup, we have Ñ1 = max
{
0, N t

1 − D̃
}
. Thus,

fÑ1;Nt
1
(x) =

{
0 if x /∈ {0, . . . , N t

1}
f (N t

1 − x) if x ∈ {0, . . . , N t
1}

FÑ1;Nt
1
(x) =

{
0 if x < 0

1− F (N t
1 − x− 1;N t

1) if x ≥ 0
.

Applying f (x) = (1− s)x s for the geometric distribution with parameter s, we derive:

fÑ1;Nt
1
(x) = (1− s)N

t
1−x s.

And for the segmented demand setup fÑ1
is given by:

fÑ1;Nt
1
(x) =

(
N t

1

x

)
pN

t
1−x (1− p)x ,

with support x ∈ {0, . . . , N t
1}.

Step 3.2: Given Ñ1 (and N t
1):

fÑs
1 ;Ñ1,Nt

1
(x) =

(
Ñ1

x

)
qx (1− q)Ñ1−x

fÑns
0 ;Nt

1
(x) =

(
N −N t

1

x

)
qN−Nt

1−x (1− q)x

Step 3.3: Ñ1 − Ñ s
1 gives the number of asset holders unable to sell at high price but
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able to carry inventories. Taking fX̃;(Ñs
1 ,Ñ

ns
0 ) from the interdealer market, we have N̂ t

1 =
(
Ñ1 − Ñ s

1

)
+ X̃, so that:

fN̂t
1;(Ñs

1 ,Ñ
ns
0 )(x) = fX̃;(Ñs

1 ,Ñ
ns
0 )

(
x−

(
Ñ1 − Ñ s

1

))
.

Then, for each N̂ t
1 ∈

{
0, . . . , Ñ1

}
:

fN̂t
1;(Ñ1,Nt

1)
(x) =

∑

Ñs
1∈{0,...,Ñ1},

Ñns
0 ∈{N̂t

1−(Ñ1−Ñs
1),...,N−Nt

1}

(
fÑs

1 ;Ñ1
(Ñ s

1 )fÑns
0 ;Nt

1
(Ñns

0 )×
fX̃;(Ñs

1 ,Ñ
ns
0 )

(
x−

(
Ñ1 − Ñ s

1

))
)
.

Step 3.4: Finally, we have:

Pr
(
N̂ t

1;N
t
1

)
:= fN̂t

1;N
t
1
(x) =

∑

Ñ1∈{N̂t
1,...,N

t
1}

fÑ1;Nt
1
(Ñ1)fN̂t

1;(Ñ1,Nt
1)
(x).

Step 4: derive stationary value gap

We construct fixed point processes to converge on value vector V0, V1, and

G
(
N t

1

)
:=

{
V1,Nt

1
− V0,Nt

1−1 if N t
1 > 0

V1,Nt
1
− δEt

[
V0,Nt+1

1

]
if N t

1 = 0
.

Start with initial values V
(0)
0 = [0]Nt

1
and V

(0)
1 = [pv + (1− p) v]Nt

1
. I assume supply can be

written Φ
(
N t

1 − N̂ t−1
1

)
; that N be sufficiently small relative to total issuance. The following

process
(
Pr(n), V

(n)
0 , V

(n)
0

)
will converge to the state process function Pr

(
N t

1;N
t−1
1

)
and

upwards to the stationary values V0 and V1as n → ∞:

Step 4+n.1: derive Pr(n)
(
N t

1;N
t−1
1

)
from Pr

(
N̂ t

1;N
t−1
1

)
and

G(n−1)
(
N t

1

)
:=





V
(n−1)

1,Nt
1

− V
(n−1)

0,Nt
1−1

if N t
1 > 0

V
(n−1)

1,Nt
1

− δEt

[
V

(n−1)

0,Nt+1
1

]
if N t

1 = 0

using

Φ
(
N t

1 − N̂ t−1
1

)
≤ G(n−1)

(
N t

1

)
, with (89)

Φ
(
N t

1 + 1− N̂ t−1
1

)
> G(n−1)

(
N t

1 + 1
)
.
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Precisely, for each N t
1 ∈ {0, . . . , N} take N̂ (n−1)

1,Nt
1

⊆ {0, . . . , N t
1} to be the set of N̂ t−1

1 that

solves (89), then:

Pr(n)
(
N t

1;N
t−1
1

)
=

∑

N̂t−1
1 ∈N̂

(n−1)

1,Nt
1

Pr
(
N̂ t−1

1 ;N t−1
1

)
.

Then, construct Ω(n) :=
[
Pr(n)

(
N t

1;N
t−1
1

)]
Nt−1

1 ,Nt
1

.

Step 4+n.2:

Given values
(
V

(n−1)
0 , V

(n−1)
0

)
and Pr(n) from step 4+n.1, take

V
(n)

0,Nt
1

=




(1− q)




 λ

(
δEt

[
V1,Nt+1

1

]
− v
)

+(1− λ) δEt

[
V0,Nt+1

1

]





+qδEt

[
V0,Nt+1

1

]




V
(n)

1,Nt
1

=




(1− p)




(1− q) δEt

[
V1,Nt+1

1

]

+q


 µδEt

[
V1,Nt+1

1

]

+(1− µ)
(
v + δEt

[
V0,Nt+1

1

])






+p
(
v + δEt

[
V0,Nt+1

1

])




where Et

[
V0,Nt+1

1

]
and Et

[
V1,Nt+1

1

]
are given by the expectation V

(n)

0,Nt
1
and V

(n)

1,Nt
1
(respectively)

given probability mass function Pr(n)
(
N t

1;N
t−1
1

)
derived in Step 4+n.1:

[
Et

[
V0,Nt+1

1

]]
Nt

1

= Ω(n)V
(n)
0 ,

[
Et

[
V1,Nt+1

1

]]
Nt

1

= Ω(n)V
(n)
1 .

Outputs

Expected interdealer price given N t
1 is calculated as:

Et

[
P̃D
]
=
(
δEt

[
G(N t+1

1 )
]
− v
)
Et [s] + v,

using steady state δEt

[
G
(
N t+1

1

)]
from above and Et [s]. Value gaps, expected future value

gaps, and expected interdealer prices are plotted for N t
1 ∈ {1, . . . , N − 1}, as µ is not defined

at N t
1 = 0 and λ is not defined for N t

1 = N.
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14 Introduction

Many environments involve individuals acquiring and using information toward both learning
more about the world and inferring the information of others. This ubiquitous dual role of
information plays out in financial markets, labor markets, social networks and trends, as well
as in professional communities. Relevant to each of these examples, individuals commonly
face asymmetric incentives to invest in costly information depending on their identity, market
position, and social ties. And when information is used to infer the observations of influential
players, the strategic response to signals establishes a crucial component to the private value
of information. This paper studies the role of such peer effects in shaping the incentives
to acquire and strategically respond to information. It examines both the positive and
normative implications of the resulting disparities in acquired information qualities.

An example embodying this duality while in the presence of directed peer effects is
given with the following vignette. At some point in time, an independent research institute
develops and patents a novel drill technology. The new drill potentially means that a large,
previously untapped field of deep-sea oil deposits can now be safely resourced. The institute
advertises the promise of the drill, and is willing to lease out the rights to operate the
technology on a per-drill basis. A three-player market consists of two petroleum firms (firms
A and B) comprising a competitive duopoly and a lobbyist for the petroleum industry. The
three players pursue their own due diligence as to confirm or refute the drill’s value. We can
capture the resulting network of relationships with the following figure.

[Figure 6]

The sign and direction of links emanating from each individual capture the competitive and
supportive influences that others’ investment choices have on their private incentive to adopt
the drill.

Peer effects in technology adoption feed into the incentives to acquire and respond to
private information in the following ways. With both firms simultaneously researching the
technology,1 any acquired information regarding the drill’s value brings with it the knowledge
of greater competition. That is, a firm that learns the drill is effective also learns that they are
likely to face stiff competition when drilling. This is precisely because information regarding
the drill’s efficacy can also be used to infer the competition’s observations and subsequent
investment in the drill. The lobbyist, on the other hand, will decide whether to utilize her
resources promoting subsidies toward the employment of the drill technology or focus her
efforts elsewhere. Choosing the optimal agenda to pursue requires her own due diligence.
And as a function of the connections that she has with firms A and B, her incentives to
acquire information will depend on how informed she can expect the firms will be. This is
because upon learning of the drill’s value, the more she subsequently promotes the drill the
more she will need the firms to follow suit and utilize the technology. For the firms, the more
efficient the drill appears the more likely they can expect subsidization in the near future –
if the lobbyist is also expected to do her research.

1Hendricks and Porter (1996) [37] provide evidence of non-cooperative exploration in these industries.
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Crucially, the clarity in any individual’s inference of others’ observations depends on the
equilibrium extent of research undergone by the others in the market. Those who learn of
the technology’s value also learn that other highly informed individuals observe its value.
Put succinctly, the collective incentives of firms A, B and the lobbyist to acquire infor-
mation intricately depend on each individual’s expectation of the information acquisitions,
observations and subsequent actions of the others. The in-equilibrium incentives to invest
in information will ultimately depend on the strategic interdependencies that each player’s
market position entails. Those in highly competitive positions in the market (e.g. compet-
itive firms) will, ceteris paribus, face less value to information than those in supported or
complimented market roles (e.g. lobbyists and experts).

With weighted, directed, and signed peer effects pushing and pulling equilibrium incen-
tives, what are the welfare implications of equilibrium information acquisition? Precisely,
who over invests and who under invests in information relative to the utilitarian bench-
mark? And, do players carry incentives to distort other’s beliefs regarding their acquired
information qualities? While a rich literature studying coordination games with endogenous
information2 broadly focusing on symmetric beauty-contests has offered a number of re-
sults relevant to these questions,3 the following network setup offers a novel platform toward
assessing inefficiencies in more diverse economies.

First, the essential structural property that drives the direction of inefficiencies is the
extent of symmetry in pairwise relationships. Symmetric networks, in which pairwise peer
effects are identical, provide generalizations to many features obtained in the coordination
games with endogenous information literature. For example, in symmetric beauty contests
under/over acquisition of information in equilibrium has been shown to accompany strate-
gic complements/substitutes in the second stage. In symmetric networks, a more general
bunching in acquired information qualities obtains. For example, those facing a majority
of strategic complements acquire the most information in equilibrium but also under ac-
quire relative to the utilitarian benchmark. Those facing a majority of strategic substitutes
acquire the least but over acquire. Departing from these results, the direction of inefficien-
cies reverse upon introducing sufficient anti-symmetry in pairwise relationships. Precisely,
when pairwise peer effects exhibit opposing signs, acquired information exhibits inefficient
spreading in equilibrium.

A second novelty unique to network settings is the introduction of players strategically
moving against their signals. Under sufficient network irregularity and for players occupying
adverse positions in the network (i.e. facing significant strategic substitutes), the endogenous
choice to invest in costly information and strategically move against signal realizations arises.
Put crudely, players may short the network. Inefficiencies naturally arise with this behavior,
with the direction of these inefficiencies continuing to be driven by pairwise symmetry. In

2This literature is commonly referred to as “global games with endogenous information”.
3To list a few examples, Morris and Shin (2002) [47] and later Myatt and Wallace (2009) [49] illustrate

how strategic effects in actions can influence information choice. Vives (1988) [61], (2008) [62] and Hellwig
and Veldkamp (2009) [34] show how strategic complements (substitutes) can directly spill into complements
(substitutes) in information acquisition, and in turn derive inefficient under (over) acquisition in equilibrium.
And, Colombo et al. (2014) [19] provide an encompassing analysis of the inefficiencies that arise from the
strategic use of private and public information, casting equilibrium play against both the efficient acquisition
and efficient use of information. Section 18.3 further discusses relation to this literature.
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symmetric networks, the equilibrium extent to which these players acquire and move against
their signals is inefficiently low. Precisely, the rationality in this equilibrium behavior is
valued by the very neighbors that invoke it. And consistent with the preceding message,
this value reverses when peer effects are anti-symmetric. That is, those moving against their
signals impose a net cost on those they influence.

An important question arises when considering such environments comprised of a finite
number of strategically informed players. What would happen if players could influence
others’ beliefs? With signal qualities privately acquired, players face a marginal cost due to
their inability to directly influence others’ perceptions of their expertise. In reality, firms
in an array of industries are commonly observed marketing the qualities of their research
departments. Lobbyists are found promoting the extent of their expertise in their given
industry or interest. While such marketing may serve a number of goals, this paper taps
into a common impetus for this behavior, found within equilibrium information acquisition
and response. Once again, the strength and direction of this force ultimately depends on the
network’s extent of symmetry among pairwise relationships.

Elaborating on this, our three-player petroleum market is seen to display symmetry in
each pair’s peer effects. In this environment, the marginal value derived from the strategic use
of information takes on a uniformly-positive orientation, regardless of players’ positions in the
network. If firm A, for example, is able to influence firm B’s beliefs by acquiring additional
information, this discourages firm B’s strategic responsiveness. For the lobbyist, firms A’s
additional informativeness only encourages her corresponding behavior. Both of these effects
work in firm A’s favor. A similar story holds for firm B. For the lobbyist, her additional
informativeness encourages the actions of both firms. And if the firms consequently acquire
additional information, the value that the lobbyist obtains from her own research, which
allows her to infer the observations and subsequent actions of the firms, only increases.
In other words, everyone carries the incentive to exaggerate the quality of their acquired
information. As will be seen, the extent of connectedness to others in the network drives the
magnitude of the strategic incentives to information acquisition.

To study these heterogeneous environments in a reduced form while maintaining scope,
the following model employs a familiar quadratic-payoffs setup under the general linear peer-
effects pioneered by Ballester et al. (2006) [5]. Incorporating incomplete information, the
model captures players’ information investments in an initial stage. Signals are observed,
informing players of their marginal values to second-stage action. When correlation between
payoffs is introduced, signals begin to inform of the likely observations of neighbors. In line
with the above vignette, the clarity of this inference is a function of the signal’s quality as
well as the qualities that neighbors are expected to acquire. An information-response game is
derived and characterized, played on the same network of peer effects but transformed by the
equilibrium correlation in signals. Here, players choose the extent to which their strategies
respond to their information. The resulting equilibrium profile of strategic responses defines
players’ informational centralities in the game.

As a function of the unique linear equilibrium of the information-response game, the
incentives to acquire information across players are derived. Marginal values to information
are shown to scale with the square of each player’s responsiveness. The scaling of marginal
values with absolute informational centralities carries with it the potential for players moving
against their signals. As such, information acquisition takes on a U-shaped non-monotonicity
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in networks. Acquisition at the bottom decreases with centrality in the information-response
game, with the least central players investing in high levels of information as to move against
the anticipated actions of neighbors.

After characterizing equilibrium behaviors and addressing the welfare and strategic impli-
cations of information acquisition, we turn to optimal policy design. A hypothetical neutral
player is designated. Though an active member in the network, this player behaves as
though she is in isolation, without peer influences. Then given a symmetric network, players
that respond more so than the neutral player under-acquire information. Those responding
less so but positively to their signal realizations over acquire information. And those moving
against their signals under acquire information. With positive strategic values to information
throughout the network, allowing players to publicly observe the information investments
of the most central players as well as those moving against their signals increases aggre-
gate welfare. As these players internalize the strategic value to information acquisition, the
network collectively adjusts information investments efficiently. Importantly, this alignment
in strategic values and informational externalities for these two sets of players persists in
anti-symmetric networks. Thus together, the origin (i.e. no information acquisition) and the
extent of acquisition and response of the neutral player provide a normalized yardstick useful
for designing optimal transparency-based interventions, portable across network structures.

Applications of the model are then considered. The incorporation of both strategic
substitutes and complements into the analysis affords a high level of flexibility and scope.
Our three player network of firms A, B and our lobbyist provides one industrial organization
incorporating both strategic substitutes and complements. Supply chains may also embody
an array of both positive peer effects (e.g. between vertically positioned firms) and negative
peer effects (e.g. between horizontal competing firms).4 Section 18.1 further explores two
more applications: financial markets under liquidity crises and two-sided markets. Both of
these examples call on networks with both positive and negative links, with the former also
exhibiting anti-symmetric relationships.

The implications for markets in crises are as follows. In liquidity flush markets, with
traders unconstrained in their asset positions, strategic substitutes in asset demand implies
strategic substitutes in information acquisition. Market crowding between firms’ information
investments parallels the market’s informational inefficiency derived in rational expectations,
as in the seminal work of Grossman and Stiglitz (1980) [30]. From a welfare perspective, the
strategic use of costly information implies over investment of information in the market. The
application then move beyond competitive markets to explore the implications of firms facing
severe funding constraints during a liquidity crises. À la the type of liquidity spirals studied
in Brunnermeier and Pedersen (2009) [11], a subset of firms are assumed to exhibit upward
sloping demands, with high market prices allowing them to retain inventories and avoid
unwanted liquidations. As the proportion of constrained firms to unconstrained firms grows
large, firms throughout the market under acquire information. Constrained firms impose
positive externalities on each other as they collect information, and aim to coordinate on
high market liquidity outcomes. While unconstrained firms impose negative externalities
on each other, they fail to internalize the sizable value that their information investments

4Ostrovsky (2008) [54] and Kotowski and Leister (2014) [40] study the tension between vertical strategic
complements and horizontal strategic substitutes in competitive supply chains.
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provide to constrained firms.
Taking job-search networks as a tangible example of a two-sided market, industry insiders

and workers researching job opportunities compete with those within their group while com-
plimenting the investment choices in the counterpart group. With these networks exhibiting
extensive symmetry amongst pairwise relationships, the shorter, less competitive side of the
market (insiders, commonly) under invests in information. The longer, competitive side of
the market (workers) over acquires information. Here, insiders fail to internalize the value
that their expertise endows workers, while workers over exert themselves researching job
opportunities.

The organization of the paper is as follows. Section 15 provides the model’s setup and
discusses the optimal information acquisition and response problem of a single, isolated
player. Section 16 then defines and characterizes equilibria in general networks. It discusses
and derives the information-response game, and corresponding ex ante incentives to invest
in information. It then offers a number of revealing examples describing the potential for
equilibrium multiplicities and negative signal responses. Section 17 formalizes the welfare
and strategic considerations discussed above under moderately sized peer effects. Welfare and
strategic information acquisition for players moving against their signals are then addressed.
A more general analysis of optimal policy design is then developed. Finally, Section 18
discusses applications, covers basic extensions of the model, returns to related literature,
and concludes. A Supplemental Section 19 below more closely explores the relationship
between network structure and information costs.

15 Model Setup

Time is discrete with two periods t = 1, 2. Period t = 1 gives the information acquisition
game (first stage). Period t = 2 gives a Bayesian game in which N players simultaneously
act in response to their information (second stage). For the second stage we adopt the
bilinear payoffs studied by Ballester et al. (2006) [5]. We extend their setup to incorporate
incomplete information regarding the marginal benefits of action xi ∈ R for each player
i ∈ {1, . . . , N}.

The following notation is used. Each player i directly cares about state ω̃i := γω +√
1− γ2ωi, a mixture of a player-specific state ωi with a common (shared) state ω, each

drawn from Ω ⊂ R.5 The loading
√

1− γ2 on ωi merely normalizes the variance of ω̃i,
simplifying the following analysis. A more general treatment is addressed in Section 18.2
with minor modification to the following. The respective state pairs (ω, ωi) for each i and
(ωi, ωj) for each i and j 6= i are taken as jointly independent. Together, γ and ω scale the
public alignment in preference shocks. γω should be interpreted as a publicly-shared but
commonly-unknown component to the marginal value to adopting some technology in the
second stage.

√
1− γ2ωi gives the corresponding idiosyncratic component.

5While here ω will denote the vector of states (ω, (ωi)
N
i=1

), bold symbols will generally be used to denote
profiles (vectors) of respective parameters and variables, with components for each i ∈ {1, . . . , N}. We can
consider ω and ωi to follow standard normal distributions, though the more general properties in players’
expectations required in the analysis are given below with E1-E4.

123



All information is learned after the second stage, with each player i realizing her payoff:

ui (x|ω, ωi) = (ai + ω̃i) xi −
1

2
σiix

2
i +

∑

j 6=i

σijxixj.

ai scales i’s publicly-known average marginal gain to xi, or her expected predisposition for
second-stage action. It incorporates her average marginal value to action xi, leaving residual
uncertainty to be captured by the state ω̃i. σii gives a positive constant scaling the concavity
in her utility, capturing diminishing returns to xi. σij measures the influence that j’s action
xj has on i’s marginal gain to xi (j’s peer effect on i) and takes values in R. Positive σij will
correspond to strategic complements, negative values to strategic substitutes, with σij = 0
designating that j lies outside of i’s neighborhood. Σ will be used to denote the square
matrix [σij] with 0’s along the diagonal. The sizes of the elements ai and σij for each j 6= i
relative to σii determine the responsiveness of i’s ideal action to the second-stage actions of
her neighbors.

Each player i does not directly observe any component of ω. However, at t = 2 i
does receive information (θi, ei), giving signal realization θi ∈ Θ ⊂ R of quality ei ∈ [0, 1]
informing her of ω̃i. i does not observe (θj, ej) for each j 6= i. Thus, i is free to choose private
information-contingent second-stage strategy Xi (·|·) : Θ × [0, 1] → R mapping privately
observed signal θi to an action in R given her quality ei.

In the first stage each i privately invests in the signal quality ei. The cost of quality (i.e.
information acquisition effort) is given by the convex function κ ∈ C2 satisfying: κ (0) = 0
and κ′ (ei) , κ

′′ (ei) ≥ 0 for each ei ∈ [0, 1]. Beyond these standard conditions we assume the
following:

Assumption 1. κ ∈ C3 satisfies: κ′(0) = 0, κ′′′(ei) ≥ 0 for every ei ∈ [0, 1], and there exists
an unique e† ∈ (0, 1) solving e† = κ′

(
e†
)
.

κ′(0) = 0 implies that the marginal cost to the lowest quality information is negligible.
κ′′′(ei) ≥ 0 implies that the convexity in information qualities are non-decreasing, and
primary serves as a technical condition sufficing for existence of a first-stage equilibrium.
Uniqueness of a solution to e† = κ′

(
e†
)
will be seen to yield a unique interior solution to

any isolated player’s information acquisition problem.
Without significant loss of generality we normalize σii = 1 for each i and scale other

terms as needed.6 Again, Section 18.2 discusses extensions incorporating heterogeneous
σii, individual costs functions κi, as well as additional idiosyncrasies into ω̃i. All of these
extensions preserve the following analysis and results.

Together, the couple (ei, Xi) defines a pure strategy for each i in the two-stage game. As
players do not directly observe quality investments of others, µij : [0, 1] → R+ will denote
the t = 2 belief held by player i regarding j’s first-stage quality investment ej. Thus, the
initial period t = 2 expected payoff of player i as a function of the vector of other players’

6Setting σii = σjj for each i and j does carry the implication that all players face common total variation
in their payoffs. This allows the network of peer effects to drive all variation in equilibrium information
acquisition.
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strategies X−i, private information (θi, ei), and beliefs µi can be written:

ui (xi,X−i|θi, ei, µi) = (ai + Ei [ω̃i|θi, ei]) xi −
1

2
x2
i +

∑

j 6=i

σijxiEi [Xj (θj|ej) |θi, ei, µi, ] . (1)

This yields a second-stage linear best response:

BRi (X−i|θi, ei, µi) = ai + Ei [ω̃i|θi, ei] +
∑

j 6=i

σijEi [Xj (θj|ej) |θi, ei, µi] . (2)

That is, each i responds to her conditional expectation of ω̃i and to what her information
informs her of the observations and actions of neighbors.

States and signals may be taken to be joint-normally distributed. The following requires
only that priors be centered about the origin and posteriors be linear-in-qualities:

E1. Ei [ω] = Ei [ωi] = Ei [θi] = 0,

E2. Ei [ω̃i|θi, ei] = eiθi for each ei ∈ [0, 1],

E3. Ei [θ
2
i |ei] = 1 for each ei ∈ [0, 1], and

E4. Ei [θj|θi, ei, µi] =
∫
[0,1]

µij (ej) γ
2ejeiθidej.

As is common to model information investment as a number of costly draws of a normally
distributed signal of given precision, Appendix F.1 applies this particular structure to derive
properties E1-E4 directly. Information structures with two states also easily satisfy E1-E4.7

Together, these give the essential properties used through the following analysis.
Conditions E1 and E2 together imply θi = ω̃i at ei = 1. Condition E3 requires a

normalization obtained by the appropriate increasing affine transformation to signals. The
factor γ2ejei in condition E4 gives the correlation of the signals θi and θj.

8 Noting that any
strictly-monotonic transformation does not change the informational content of signals,9

conditions E1-E3 merely simplify the following analysis. Loss of generality does come with
the linear-multiplicative separability of condition E4. The following analysis and results
hinge only on multiplicative separability, however. All qualitative properties remain intact
under the more general (non-linear) extension Ei [θj|θi, µi,ei] =

∫
[0,1]

µij (ej) γ
2η(ej)η(ei)θidej

for any non-negative and strictly monotone η ∈ C1. Finally, as the following will consider pure
first-stage strategy profiles e ∈ [0, 1]N , sequential rationality in beliefs requires µ∗

ij (ej) = 1
for each i and j. Therefore, condition E4 reduces in equilibrium to Ei [θj|θi, ei, µ∗

i ] = γ2ejeiθi.
Though this paper’s focus is on the role of general peer effects in equilibrium information

acquisition, to help fix ideas the following example solves the information acquisition and
optimal response problems of a single, isolated player.

7Additional examples incorporating an arbitrary finite number of states can be constructed.
8With κ(·) a function of the quality of information that is used directly to infer ω̃i, we can interpret the

efforts of i to be focused toward information sources most relevant to her particular qualities or tastes. For
example, a firm’s inference of the value of a production technology requires acquiring information of the
technology’s particular attributes most consequential to the firm’s marginal product. The most important
attributes should depend on the firm’s specific qualities, preexisting input profile, and compatibility between
coexisting technologies. Thus, κ should be interpreted as a general cost to research.

9Precisely, such a transformation merely rescales the value of θi for each ω̃i.
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Example. [isolated player’s problem] Consider the information response problem of a
single player i having chosen quality ei in period t = 1, and now maximizing the following
period t = 2 objective:

ui (xi|θi, ei) = (ai + Ei [ω̃i|θi, ei]) xi −
1

2
x2
i = (ai + eiθi) xi −

1

2
x2
i .

The first order condition to her problem, conditioning on information (θi, ei), yields:

∂

∂x
ui (xi|θi, ei) = (ai + eiθi)− xi = 0,

which gives:
X∗ (θi|ei) = ai + eiθi.

That is, i responds to her realized signal by an amount equal to the qualities of the signal,
ei. This yields period t = 1 expected (indirect) utility:

Ei [ui (X
∗ (θi|ei) |θi, ei) |ei] = Ei

[
(ai + eiθi) (ai + eiθi)−

1

2
(ai + eiθi)

2 |ei
]
=

1

2

(
a2i + e2i

)
,

which uses condition E3: Eθ [θ
2
i |ei] = 1. Then, the period t = 1 first-order condition for any

interior e† ∈ (0, 1) is given with:
e† = κ′

(
e†
)
. (3)

Under Assumption 1, a unique e† ∈ (0, 1) solving (3) obtains. Further, as the above holds
for all values of ai, we see that without peer effects the isolated player (i) acquires a nonzero
amount of information and (ii) responds positively to her information ( ∂

∂θi
X∗ (θi|ei) ≥ 0).

As seen in the example, the value of information exhibits a natural convexity, even when
a player i acts in isolation at t = 2. This is because more precise information increases i’s
posterior belief that her response to her signal is in the optimal direction, while holding the
size of her response fixed. Then, additionally allowing her to optimally increase the size of
her response provides additional value. These two effects multiply each other, yielding an
increasing marginal value to signal quality.
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16 Equilibrium information acquisition and response

16.1 Equilibrium definitions

The following equilibrium notions are presented backward inductively.

Definition 1. [second-stage equilibrium] Given profile of qualities e and beliefs µ, an
information response equilibrium (IRE) is a profile of strategies X∗ := (X∗

1 , . . . , X
∗
N ) given

as a Bayesian Nash equilibrium of the second stage game:

X∗
i (θi|ei) ∈ argmax

x∈R
Ei

[
ui

(
x,
(
X∗

j (θj|ej)
)
j 6=i

|ω, ωi

)∣∣∣ θi, ei, µi

]
,

for each θi ∈ Θ and i ∈ N . Expectation Ei is taken over ω̃i, θ−i and e−i using beliefs µi,
taking other players’ strategies X∗

−i as given.

Given private information (θi, ei), each player i best responds to her signal by investing in
her action, taking the profile of all other players’ actions X−i as fixed. Her information is
relevant to learning about both ω̃i and what other players observe and do at t = 2.

The first-stage equilibrium for given second-stage equilibrium X∗ and beliefs µ is defined
as follows.

Definition 2. [first-stage equilibrium] Given IRE X∗ and beliefs µ, an information
acquisition equilibrium (IAE) is a profile of qualities e∗ := (e∗1, . . . , e

∗
n) given as a Nash

equilibrium of the first stage game:

e∗i ∈ argmax
e∈[0,1]

Ei

[
ui

(
X∗

i (θi|e) ,
(
X∗

j (θj|ej)
)
j 6=i

|ω, ωi

)∣∣∣ e, µi

]
− κ (e) ,

for each i, where expectation Ei is taken over ω̃i, θ and e−i using beliefs µi, taking strategies
X∗ as given.

That is, each player i optimally invests in the quality of her signal θi at cost κ(e
∗
i ), anticipating

second-stage play as given by X∗. Together, IAE e∗, IRE X∗ and sequentially rational beliefs
µ∗ define a weak perfect Bayesian equilibrium of the two-stage game.

The following begins by characterizing equilibrium information acquisition and response
under our general network setting. Section 16.3 then provides a number of examples exploring
the breadth of equilibrium behaviors.
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16.2 Equilibrium characterizations

Here, we characterize IRE and interior IAE of the two-stage game. As displayed below,
an ex ante expected equilibrium α∗ ∈ R

N can be obtained to yield average second-stage
actions by averaging over realized signals.10 A key innovation, however, is that in addition
to this expected game played on a network, players play an information-response game on
the same network. However, the network of peer effects is transformed by the correlation
in signals, which is induced by qualities acquired in the first stage. Information now tells
players not only about their marginal gain to action (i.e. the relevant state of the world
ω̃i) but also about what to expect neighbors will see and do at t = 2. Accordingly, the
relative responsiveness of each player i’s strategy to their signal θi will depend not only
on their quality of information ei, but also on each neighbor j’s equilibrium information
investment and corresponding strategic responsiveness to their own signal, θj. Crucially, the
resulting intricate interdependence of information responses is introduced precisely when
players’ payoffs are correlated through the common state ω: when γ > 0.

Formalizing the discussion, define the correlation adjusted adjacency matrix as:

Σc :=
[
γ2eiσijej

]
i,j;i 6=j

(4)

= γ2IeΣIe,

where Iφ denotes the diagonal matrix with entries given by (generic) vector φ.11 Then, when
(I−Σ) and (I−Σc) are invertible12 the following unique linear second-stage solution obtains.

Theorem 1. [linear IRE] For any e and sequentially rational µ∗ there exists a unique
linear IRE of the form:

X∗ = (I− Σ)−1 a+ Iθ (I− Σc)−1 e (5)

= [α∗
i + β∗

i θi] ,

denoting:

α∗ := (I− Σ)−1 a,

β∗ := (I− Σc)−1 e.

Note that α∗ is independent of e, while β∗ is a function of the vector of qualities chosen in
the first stage. As shown in Appendix F.2 with the theorem’s proof, IRE X∗ is the unique
equilibrium in a broad class of strategies that yield convergent higher-order expectations
across players in the network.

A valuable interpretation of Theorem 1 utilizes the notion of weighted Bonacich centrality
(Bonacich (1987) [7]). Formally, for given N ×N graph G := [gij ] of interaction terms (with
zero diagonal) and weighting vector φ ∈ R

n, the weighted Bonacich centrality measure is

10α∗ corresponds to the solution of Ballester et al. (2006) [5] but in expectation.
11
IeΣIe is referred to as a Hadamard product of [eiej ] with Σ, named after Jacques Salomon Hadamard

(1865 –1963).
12Assumption F1 in Appendix F.2 provides a weak sufficient condition for this to hold.
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defined as:

b (G,φ) := (I−G)−1
φ

=
∞∑

τ=0

Gτφ.

This measure is well defined provided (I−G) is invertible. Each i’th component of b (G,φ)
gives an aggregation of the total number of paths starting from player i, with sub-paths
emanating from each player j weighted by φj.

13 While the matrix G provides a bench-
mark network of bilateral relationships, the components of φ capture each player’s relative
prominence within the network.

Placing this centrality concept into the context of Theorem 1, we see that ex ante ex-
pected actions are proportional to players’ Bonacich centrality on Σ weighted by the vector
of constants a, b (Σ, a). The strategic response of each player’s strategy to her private infor-
mation also depends on her centrality. However, the centrality of interest is now (i) adjusted
for the correlation of players’ signals, and (ii) weighted by the vector of signal qualities e. For
the former, scaling down links by signal correlations adjusts for the inference of neighbors’
second-stage actions. For the latter, weighting the resulting Bonacich centrality measure by
e accounts for the value that information carries toward directly inferring the payoff-relevant
state, ω̃i. The resulting alternative measure of centrality, or informational centrality, res-
onates with the unweighted Bonacich centrality b (Σ,1) directly derived from the network
Σ. b (Σc, e) instead offers an adjusted measure of player position in the information-response
game.

In light of Theorem 1 and as a technical note, scaling γ is analytically equivalent to
uniformly scaling each term in Σ, via the product γ2eiσijej in (4). Much of the following
analysis will consider small or bounded values of γ. Thus, with γ directly scaling links in
Σc, this can be aptly interpreted as taking moderately sized peer effects in the information-
response game.

As seen with (5), the ways in which players respond to their information in the unique
linear IRE depends in an intricate way on the network of peer effects and on the acquired
signal qualities of neighbors.14 The following begins to characterize the collective incentives
to acquire information, providing a necessary condition for any interior first-stage strategy.

Theorem 2. [IAE and information response] Given signal quality profile e−i, player i’s
private marginal gain to signal quality ei is given by β2

i /ei, yielding the necessary condition
for any IAE e∗:

β∗2
i

e∗i
= κ′ (e∗i ) , (6)

for each i with e∗i ∈ (0, 1).15

With eiκ(ei) an increasing function in ei, e∗ is thus ordered with respect to the size of

13Other variations of this centrality measure are defined with weighted walks starting from neighbors (see
Jackson (2008) [39]), while this definition’s weighting begins at the originating node.

14Or more precisely, the sequentially rational beliefs regarding the signal qualities of others.
15The existence of an IAE is established with Proposition S.1 in Supplemental Section 19.
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players’ informational centrality, |β∗|. Intuitively, we should expect the responsiveness of
each player’s strategy to their signal to be proportional –in some way– to the quality of her
information, regardless of the presence of peer effects. Theorem 2 affirms this intuition.

Next, Corollary 1 ties player degree with their incentives to acquire information under
moderate peer effects. It describes the speeds and directions that players diverge from e† as
peer effects are introduced.

Corollary 1. Under Assumption 1, the following limit obtains:

lim
γ→+0

∂e∗i
∂(γ2)

=
e†2
∑

k 6=i σik

κ′(e†)− 1
. (7)

As γ departs from zero, or as peer effects are introduced, players with the highest degree
depart upward away from quality e† relatively faster than those with lower degree. The speed
at which players adjust their qualities decreases in the concavity of κ(e†), which measures
the sensitivity in marginal gains to information around e†. This speed increases in e†2, which
measures the initial marginal informational content that signals provide toward inferring
neighbors’ second-stage observations.

As will be observed in Sections 16.3, the degree-wise ordering in e∗ that is implied by
Corollary 1 may not persist as γ is further increased. That is, while degree describes players’
initial incentives to acquire quality, it does not fully determine these incentives when peer
effects are more pronounced. The ease and extent to which this ordering may be violated
will intimately depend on both the network’s structure and the shape of κ. Supplemental
Section 19 further explores this relationship, and develops network properties that allow
player degree to persistently order the equilibrium extent of information acquisition.

16.3 Examples

The following examples illustrate the breadth of equilibrium properties in this setting. The
first example illustrates the potential for multiple IAE, even under the unique IRE given
with Theorem 1. Multiplicity can arise under either strategic complements or strategic
substitutes.

Example 1. For this and subsequent examples we consider the following strictly convex
information cost function:

κ (e) = K
eη1

(1− e2)η2
,

where η1 ≥ 2 and η2 > 0. It can be shown that Assumption 1 is satisfied under these bounds,
yielding isolation quality e†. This functional form provides a standard family of convex
costs functions that asymptote as ei →− 1. It also allows for a broad range of convexities.
Crudely, increasing η1 increases convexity at higher values of ei while increasing η shifts
convexity toward lower values of ei.

First, consider any regular network in which each player i is connected to four other
players with symmetric peer effects σij = σji = p > 0 (for neighbor j). Normalize γ = 1,
and set η1 = 3, η2 = .5 and K = .312. Figure 2(a) provides the set of symmetric equilibria
of the information acquisition game as we increase the size of p above. In these examples,
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information responses are given by the increasing relationship β∗
i =

√
e∗iκ

′(e∗i ) from Theorem
2.

Under second stage strategic complements, first stage information acquisition reinforces
itself. The added convexity in the value of information introduces potential coordination
problems. For values of p above 5/22 the players can coordinate on low, medium, or high
levels of information. Higher levels of information further incentivize acquisition as the
players’ signals correlate with each other.

[Figure 2]

Next, consider the two player network of players 1 and 2, with symmetric negative peer
effect σ12 = σ21 = −p ≤ 0. Set η1 = 2, η2 = 1, with K = .03.16 Now, the propensity
for an asymmetric equilibrium arises, as seen in Figure 2(b). For values of p below .85 the
symmetric equilibrium of the information acquisition game gives the unique IAE (solid line).
Information responses are again given using β∗

i =
√
e∗iκ

′(e∗i ). Above p = .85 there also exists
an asymmetric equilibrium in which one player acquires a highly precise signal while the
other acquires an imprecise signal (dashed lines). It can be verified that in this equilibrium
the low-quality player rather prefers the symmetric equilibrium, while the high-quality player
strictly prefers her equilibrium informational advantage.

The next example exhibits the potential for players to move against their information
given substantial negative peer effects. Precisely, for players facing enough negative influ-
ence from others, the incentives to acquire information may increase with the size of these
influences, but with these players moving against their signals in anticipation of their neigh-
bors’ actions. Strikingly, this non-monotonicity can be quite significant, with the incentives
to acquire information quickly falling to zero and abruptly restoring itself at more extreme
influences.

Example 2. Again, normalize γ = 1. Take the wheel and spoke network with center player
1 and peripheral players i ∈ {2, 3, 4}, as depicted in Figure 3(left).

[Figure 3]

Each player imposes a symmetric negative externality on 1: σ1i = σi1 = −p ≤ 0 for each
i ∈ {2, 3, 4}. Finally, the peripheral players are symmetrically linked in a circle with weights
σij = 1/3 for each pair i, j ∈ {2, 3, 4}. Take the information cost function given in Example
1, setting η1 = 2 and η2 = 1 with K = .03.

Figure 3(right) plots qualities e∗i and responses β∗
i in the unique equilibrium of the

information-response game symmetric across the peripheral players 2-4 (‘per.’), over a range
of p values. As p departs from zero, information acquisition drops slightly for the center,

16K is adjusted down with the new values of η1 and η2 to obtain interior solutions, with the latter set so
that the qualitative properties of the equilibrium are well displayed.
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as the negative externalities between the peripheral clique and the center increase. For val-
ues of p between 0.111 and 0.183 the center acquires no information. Then, for values of
p above 0.183 the incentives to acquire information are quickly restored. However, now the
center moves against the network, with 1 acquiring information and moving opposite to her
signal (i.e. β∗

1 < 0) in anticipation of the actions of the periphery. As negative externalities
become more acute, further information is incentivized, with 1’s behavior further reinforcing
information acquisition throughout the network.

Example 2 highlights the potential for non-monotonicity in information acquisition. The
responsiveness of each player to her private information in an IRE X∗ remains unbounded
at the origin. Players with intermediate centrality in the information-response game face
moderate incentives to acquire information in period t = 1. And as illustrated in Figure 3,
such non-monotonicity need not be gradual, but rather the incentives to acquire information
can quickly vanish for players with particularly low centrality. Then, for ever lower levels
of centrality the incentives to acquire information may be restored to great extent, but now
with information used to infer and move against neighbors’ second-stage actions.

Both multiplicity and negative signal responses come as interesting equilibrium incar-
nations. None the less, the following establishes sufficient conditions for the exclusion of
these cases. Under moderate peer effects, a unique equilibrium in which players move in the
direction of their signals always obtains.

Proposition 1. Under Assumption 1:

1. there is some γu > 0 such that if γ ∈ [0, γu) a unique IAE exists, and

2. there is some γp > 0 such that if γ ∈ [0, γp) all players acquire qualities in (0, 1) and
respond positively to their signals (i.e. β∗

i > 0 for each i) in equilibrium.

17 Equilibrium welfare and the strategic value to in-

formation

The welfare analysis takes the following approach. First, we will see that when allowing
players’ to respond optimally to signal realizations, correlation in signals is necessary for
the presence of inefficiencies in information acquisition. That is, externalties and strategic
motives arise in the first stage only when players can use their information in the second
stage to infer the observations of neighbors. Departing from the case of zero correlation (i.e.
γ = 0), strong welfare statements are derived given moderately sized peer effects (i.e. small
γ). These results address the directions of both (i) the equilibrium profile of information
qualities when information investments are publicly observed and (ii) the utilitarian solution
relative to the equilibrium described in Theorem 2. We then turn to more significantly sized
peer effects, incorporating the welfare implications of players moving against their signals
and under the potential for multiple information acquisition equilibria.

In the following welfare benchmark, we take the second-stage information response equi-
librium X∗ –a function of qualities e– as given. Further, given quality profile e we impose
sequential rationality in beliefs throughout: µj∗

i (ej) = 1 for each i and j. That is, the planner
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is free to publicly announce the information qualities that she prescribes. This prevents inef-
ficiencies derived from inconsistent beliefs. Incorporating these elements into our benchmark
leaves first-stage behavior as the sole endogenous (potential) source of inefficiencies.

As a function of the realized quality profile e, and given IRE X∗ and sequentially rational
beliefs µ∗, players’ ex ante values reduce as follows:

ν (X∗|e) := [Ei[ui (X
∗|θi, ei, µ∗

i ) |ei, µ∗
i ]− κ (ei)]

=
1

2
(Iα∗α∗ + Iβ∗β∗)− κ (e) . (8)

This reduction to quadratic payoffs is easily shown in Appendix F.3. Then taking ν (X∗|e)
we can define the following Pareto problem:

max
e∈[0,1]N

∑

k

λkνk (X
∗|e) , (9)

for non-negative Pareto weights λ taken from the (N − 1)-simplex. First order conditions
yielding the planner’s solution epo (λ) are given for each i ∈ N by:

∑

k

λk
∂

∂ei
νk (X

∗|e) = 0. (10)

The following establishes correlation in the players’ payoffs as necessary for any equilibrium
inefficiencies that may arise.

Proposition 2. At γ = 0 we have e∗i = epoi (λ), and e∗i = e† under Assumption 1, for each
i.

Proof. With α∗ independent of e, (10) can be written:

∑

k

λk
∂

∂ei
νk (X

∗|e) = λi
∂

∂ei
νi (X

∗|e) +
∑

k 6=i

λk
∂

∂ei
νk (X

∗|e)

= λi

((
∂

∂ei
Ei[ui (X

∗|θi, ei, µ∗
i ) |ei, µ∗

i ]− κ′ (ei)

)
+ β∗

i

∑

k 6=i

γ2eiekσik
∂β∗

k

∂ei

)
+
∑

k 6=i

λkβ
∗
k

∂β∗
k

∂ei
,

where the first term in brackets takes β∗
−i fixed. The first order condition of i’s IAE problem

is given by setting this term to zero. Now, β∗ = b ([0] , e) = e when γ = 0, and thus
∂
∂ei

β∗
k = 0 for each k 6= i. Thus, when γ = 0 the Pareto optimal and IAE solutions align.

Finally, e∗i = e† for each i under Assumption 1 follows from β∗ = e at γ = 0 and Theorem
2.

Under our general treatment of peer effects, it does not come surprisingly that equilibria
are not generally Pareto efficient. We next begin to more completely describe the nature of
inefficiency in the model. The following measures for the strategic value to information and
informational externalities are required.

First, a loss in value to information is realized by each player i who, in equilibrium, is
unable to directly influence others’ beliefs regarding her information investment. Precisely,
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with qualities privately chosen at t = 1, incentive compatibility constrains each i when
weighing the costs and benefits of acquiring information quality. If instead i could publicly
invest in quality ei and directly influence others’ beliefs, she may derive additional value
from acquiring more or less quality than in equilibrium (holding e∗−i fixed). Informational
externalities, on the other hand, are directly imposed on i’s neighbors. Also derived from
the influences that ei has on neighbors’ responses, these externalities are instead measured
by the effect that ei has on neighbors’ welfare.

Formalizing this, consider the following utilitarian problem, given from (9) by setting
λ = 1

N
1:

max
e∈[0,1]N

∑

k

νk (X
∗|e) . (11)

The partial derivative of aggregate welfare with respect i’s quality is given by:

∂

∂ei

∑

k

νk (X
∗|e) = β∗

i

∂β∗
i

∂ei
+
∑

k 6=i

β∗
k

∂β∗
k

∂ei
− κ′ (ei)

=

(
β∗2
i

ei
− κ′ (ei)

)

︸ ︷︷ ︸
= 0 in IAE e

∗ f.o.c.

+β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k

︸ ︷︷ ︸
= 0 in public acquisition equilibrium e

pb f.o.c.

+
∑

k 6=i

β∗
k

∂

∂ei
β∗
k

︸ ︷︷ ︸
= 0 in planner’s solution e

pl f.o.c.

. (12)

In IAE e∗, where qualities are privately acquired, the first term in brackets is set to zero by
i in her optimization problem.17 That is, the term β∗2

i /ei is given by β∗
i multiplied by the

marginal influence of i’s quality on her own response ∂β∗
i /∂ei, while setting the marginal

influence of i’s information quality on others’ responses ∂β∗
k/∂ei to zero. This corresponds

with Theorem 2. The middle sum adjusts for the marginal effect that i’s information quality
imposes on each k’s response in IREX∗, when the acquisition of ei is directly observed by each
k 6= i. This term is excluded in IAE under i’s incentive compatibility constraint, again where
e∗i is chosen fixing µk and in turn β∗

k for each k 6= i. If instead i were free to publicly choose
her signal quality in the first stage she would internalize this influence. The term captures
i’s strategic incentive toward influencing her neighbors’ information responses. Setting these
terms in (12) to zero for each i yields the public information acquisition equilibrium epb.
Finally, in the planner’s problem the direct marginal influence that i’s quality carries for
others’ payoffs is also accounted for. That is, when total marginal gains to welfare from i’s
quality is set to zero, we obtain one of N first order conditions that determine the planner’s
solution epl := epo( 1

N
1).18 Together, the final two terms adjust for the effect that i’s quality

has on welfare that is not internalized by i in the first stage.

17Note that the private information acquisition benchmark is equivalent to a one-stage game in which
players simultaneously choose information qualities and information contingent strategies.

18This planner’s benchmark e
pl is commonly referred to as the “second-best team” solution, with the

“first-best team” or “team-efficient” solution determined when the planner can also control how players use
their information. See Burguet and Vives (2000) [12] or Vives (2008) [62] chapter 6 for discussions.
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Thus, we can define the following measures:

ξsti (e,X∗) := β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k , (13)

ξexi (e,X∗) :=
∑

k 6=i

β∗
k

∂

∂ei
β∗
k , (14)

ξi (e,X
∗) := ξsti (e,X∗) + ξexi (e,X∗) . (15)

We refer to ξsti (e,X∗) as i’s marginal strategic value to information at quality profile e. At
IAE e∗, it informs us in which direction i would deviate in the first stage if her quality
investment were publicly observed by t = 2. In addition, it tells us how much i would be
willing to pay (in utils) per unit of quality if she could directly influence her neighbors’ beliefs
of ei. We refer to ξexi (e,X∗) as i’s marginal informational externalities at quality profile e.
This marginal cost would not be internalized in the event that i could publicly choose her
information quality. Taking these marginal costs together, ξi (e,X

∗) gives the sum of i’s
marginal strategic value and informational externalities. We term this the marginal public
value from quality ei (at e). When evaluated at IAE e∗, the vector ξ (e∗,X∗) evaluates the
equilibrium gradient of

∑
k νk (X

∗|e), pointing in the direction of the social planner’s optimal
deviation from the equilibrium quality profile e∗.

Closed forms of these measures are derived in Appendix F.3. In accordance with Propo-
sition 2, all equate to zero at γ = 0, when private signals are uninformative of others’
second-stage observations and responses. When γ > 0 this no longer holds. For moderate
peer effects, ξsti (e,X∗) and ξexi (e,X∗) are proportional to the following network measures.

Lemma 1. [limiting marginal inefficiencies] The following limits obtain:

lim
γ→+0

∂ξsti (e∗,X∗)

∂(γ4)
= 2e†5

∑

k 6=i

σikσki, (16)

lim
γ→+0

∂ξexi (e∗,X∗)

∂(γ2)
= 2e†3

∑

k 6=i

σki. (17)

That is, the rate of increase of i’s marginal strategic value as γ4 departs from zero is pro-
portional to (e†)5 multiplied by the sum-of-products of i’s peer effects (i.e. the sum of
her out-links multiplied by their respective in-links). The rate-of-increase of i’s marginal
externalities as γ2 departs from zero is approximately (e†)3 multiplied by i’s in-degree.

The intuition behind these limits goes as follows. Each i’s marginal strategic value as
the network of peer effects is pronounced in the information-response game depends on both
i’s outward and inward directed links. Outward links measure the extent to which i cares
about each of her neighbor’s second-stage actions. Inward links measure the influence that
i’s quality has on each neighbors’ payoffs. Together, the neighbor-wise product of links scale
i’s marginal strategic value to her information. Marginal externalities, on the other hand,
depend only on the influence that i’s quality has on others. Precisely, marginal externalities
scale by the sum of influences imposed on the network. For moderately size peer effects, this
is propotional to i’s in-degree.

135



As in (7), the sizes of these limiting derivatives depend on the initial level of information
acquisition, e†. e† scales the initial strategic responsiveness of strategies, as well as the initial
extent to which players can infer others’ signal realizations from their own signals. With
strategic values involving the additional inference by neighbors of i’s signal realization, (16)
scales with an additional factor of e†2.

To explore the broader implications of Lemma 1, we next focus in on the set of symmetric
networks. This family of network architectures offers a broad and flexible class of familiar
environments.

17.1 Symmetric pairwise peer effects and welfare

Here we further describe the nature of inefficient information acquisition by focusing on
symmetric network structures. This is primarily done as symmetry is commonly observed
in many real-world peer-effects environments. Be them competitive or cooperative, most
relationships in society tend to be reflexive, in both direction and size. Competitors tend
to be competitors, while collaborators can find a sometimes delicate balance of cooperative
synergies. Symmetric peer-effects networks represent environments in which individual pairs
can be either competitive or cooperative, and at various extents. As will be shown, such
networks carry with them a natural tendency for strategic information acquisition.

First, we show that marginal strategic values borne by players interacting under sym-
metric and moderate peer effects are positive. This holds regardless of other network details.
When influences between player pairs balance with each other, revealing and even exag-
gerating one’s signal quality (if this were feasible) unambiguously increases private payoff.
Remarkably, both positive and negative links reinforce this effect.

Secondly, we show that in these environments, the equilibrium response to the network of
peer effects is weak relative to the utilitarian benchmark. This is manifested as an inefficient
dispersion in e∗. When both positive and negative links are present, this can imply that
the most informed players under acquire information while the least informed players over
acquire.

Formally, we consider the following family of network structures.

Assumption 2A. Σ is symmetric: σij = σji for each i 6= j.

Taking (16) under the symmetry of Assumption 2A, each i’s marginal strategic value posi-
tively scales with her sum-of-squared degree:

∑
k σ

2
ik. As such, ξ

st
i (e∗,X∗) is strictly positive

in symmetric, connected networks under moderate peer effects. Both positive and negative
links reinforce the size of i’s marginal strategic value to information. And with (17), each
i’s marginal externalities positively scale with her in-degree, which under Assumption 2A
equates with her out-degree. With these measures taking on clear directions under symmet-
ric, moderately-sized peer effects, the following can be shown.

Proposition 3A. [symmetric, moderate peer effects] For symmetric Σ, there exists
some γw with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl we
have19:

19For 1., we assume Σ to have no isolated players: σij 6= 0 for some j for every i.
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1. epb > e∗, with (ei
pb − ei

∗) > (ej
pb − ej

∗) > 0 for each i and j with
∑

k 6=i σ
2
ik >

∑
k 6=j σ

2
jk,

2. e∗i > e∗j and (ei
pl − ei

∗) > (ej
pl − ej

∗) for each i and j with
∑

k 6=i σik >
∑

k 6=j σjk.

From 1., players are disincentivized to acquire information as a result of incentive compat-
ibility constraints. If players’ could convincingly persuade others of their first-stage actions,
they would always exaggerate their informativeness. The relative strength of this incentive
scales with each player’s sum-of-squared degree. With 2., the planner’s optimal deviation
from IAE e∗ entails increases to signal qualities to higher degree players that are no less
than increases prescribed to players with lesser degree. With equilibrium qualities similarly
ordered according to player degree (for moderate peer effects), the asymmetry in acquired
information qualities are inefficiently low as a result of marginal externalities. That is,
the players’ equilibrium information qualities are “bunched”. And if all links in the net-
work of peer effects are non-negative (non-positive), then ξexi (e∗,X∗) will be non-negative
(non-positive) with the most informed players imposing the greatest externalities. When
both strategic complements and substitutes exist in the network, the ordering provided in
Proposition 3A.2 establishes the more general result.

The economic interpretation of parts 1. and 2. in Proposition 3A are more broadly de-
scribed as follows. For part 1., consider a player i with both positive and negative links with
other players. If i could publicly acquire additional quality, this would encourage the respon-
siveness of positively linked neighbors, and simultaneously discourage the responsiveness of
her negatively linked neighbors. Such directed influences are precisely due to the correlation
in signals: learning that ω is likely high also informs i’s neighbors that i likely observes
similar information and will respond accordingly. These directional influences strictly work
in i’s favor regardless of the sign of her link with j. The symmetry in each pair’s relationship
implies a clear direction in these incentives. Thus, a player’s connectedness in a symmetric
network determines the size of the marginal strategic value to her information.20

With part 2., the network of peer effects can more broadly be interpreted as simultane-
ously quantifying the sizes and directions of externalities in the economy (in-links), as well as
the sizes and signs of network effects imposed on each player (out-links). Externalities and
network effects balance in symmetric networks. Thus, those that respond most positively
to the network –through their information investments– are precisely those that endow the
most value upon others from acquiring their information. And those that respond most
negatively are precisely those that impose the most negative externalities upon others. Thus
with respect to the utilitarian benchmark, players collectively under respond to a symmetric
network of peer effects.

All of the above equilibrium properties are illustrated with the following example.

20Hauk and Hurkens (2001) [33] obtain a similar under acquisition in homogenous Cournot markets. In the
network setting, a player i’s connectedness –sum-of-squared degree– scales the size of her under acquisition
arising from the privacy of ei.
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[Figure 4]

[Figure 5]

Example 3. Take the network structure given in Figure 4, having three classes of players
comprised of the center triad (class “x”), outer triad (class “z”), and three players bridging
the two triads (class “y”). A general definition of player classes is provided in Supplemental
Section 19. Here, γ is set to 1.

Taking the cost function from Example 2 with η1 = 2, η2 = 1, and K = .1, we consider
the unique equilibria symmetric across players within each class. Equilibrium qualities e∗c,
differences (eplc − e∗c), and marginal strategic value ξstc (e∗,X∗) are provided in Figure 5 for
each class c ∈ {x, y, z} over a range of p values. At p = 0 peer effects include only comple-
ments. Accordingly, externalities remain positive for all classes over a range of small p. As
competition between classes y and z heightens, class z’s (eplz −e∗z) drops below zero. Marginal
strategic value, on the other hand, unambiguously rises for classes y and z as these players
place additional weight on each other.

With negative links representing inter-player competition, the incentives of low informa-
tional centrality players to distort the beliefs of more central neighbors –as to discourage their
information responses– only heighten with great inter-class competition. While marginal ex-
ternalities derive the majority of the marginal public value to ei, marginal strategic value
continues to capture and describe the incentives to distort beliefs. If strategic substitutes are
significant for some players, the miss-orientation between the planner’s and these players’
preferences magnifies with greater competition.
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17.2 Network asymmetries and welfare

Here we further explore the ramifications of network symmetry. We first consider analogues
of the above results in networks with anti-symmetric pairwise peer effects. These anti-
symmetric networks provide the opposite extreme to symmetric networks. As illustrated with
the application to financial markets in liquidity crises of Section 18.1, such anti-symmetry
in pairwise relationships may pervade a market when traders face asymmetric constraints in
the second stage.

Formally, consider the following condition on Σ:

Assumption 2B. Σ is anti-symmetric: σij = −σji for each i 6= j.

That is, for each peer effect the opposite-pointing effect gives the opposite-signed relationship.
We refer to these pairwise relationships as anti-symmetric. Here, the natural analogue to
Proposition 3A obtains.

Proposition 3B. [anti-symmetric, moderate peer effects] For anti-symmetric Σ, there
exists some γw with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl

we have:

1. epb < e∗, with (ei
pb − ei

∗) < (ej
pb − ej

∗) < 0 for each i and j with
∑

k 6=i σ
2
ik >

∑
k 6=j σ

2
jk,

2. e∗i > e∗j and (ei
pl − ei

∗) < (ej
pl − ej

∗) for each i and j with
∑

k 6=i σik >
∑

k 6=j σjk.

In this setting, players face opposite strategic incentives. They now face the incentives to
understate their informativeness: to “play dumb”. IAE now exhibit over-dispersion under
moderate peer effects. In these networks, the most informed players will tend to over acquires
while the least informed players will under acquire.

But, what if the network is neither purely symmetric nor anti-symmetric? With the
strategic use of information taking extremes under symmetric and anti-symmetric networks,
their manifestation in networks with both symmetric and anti-symmetric relationships may
be less pronounced. The following example explores this more general setting.

Example 4. First consider the two-player directed network where player 1 faces strategic
substitutes in 2’s action, σ12 = −p < 0, while player 2 faces strategic complements in 1’s
action of equal size, σ21 = p. Then, one can derive an exact expression for marginal strategic
values:

ξsti (e∗,X∗) = −γ42
β2∗
i

e∗i
p2e∗21 e∗22 ,

for i = 1, 2. That is, both players face the incentive to understate their information invest-
ment, in accordance with Proposition 3B.1. Precisely, player 1 has the incentive to understate
her quality as to encourage 2’s information investment. On the other hand, player 2 faces a
similar incentive, but rather in order to discourage player 1’s information investment.

Now consider the extended network in which player 2 is positively and symmetrically
influenced by a player 3: σ23 = σ32 = q > 0. The structure of peer effects is offered in Figure
6. One can similarly derive:

ξst1 (e∗,X∗) = −γ42β2∗
1 p2e∗1e

∗2
2 ,

ξst2 (e∗,X∗) = γ42β2∗
2 e∗2

(
q2e∗23 − p2e∗21

)
,

ξst3 (e∗,X∗) = γ42β2∗
3 q2e∗3e

∗2
2 .
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Thus, player 2 may no longer face significant marginal strategic value to her acquired infor-
mation if q2e∗23 ≈ p2e∗21 in IAE e∗.

[Figure 6]

We see that environments that couple symmetric and anti-symmetric relationships carry
ambiguous strategic motives. When positive strategic values induced by symmetric relation-
ships counterbalance negative strategic values induced by asymmetric relationships, players
may be left without a unidirectional motive to influence others’ beliefs. The private invest-
ment of information simultaneously imposes positive and negative strategic motives behind
information acquisition. The net result is left as a function of each particular player’s position
in the networks of directed peer effects.

Next we address welfare implications when peer effects are large, incorporating negative
information responses and multiple equilibria.

17.3 General peer effects and welfare

This section extends our welfare analysis to include more significant peer effects, and incor-
porates the potential for negative signal responses and multiple equilibria. As we will see,
the observed U-shaped non-monotonicity in the incentives to invest in information carries
over to externalities. As suggested throughout the preceding sections, the essential structural
property driving the direction of the utilitarian optimum will be the extent of symmetry or
anti-symmetry in pairwise relationships. We continue by taking Assumptions 2A and 2B as
extremal benchmarks to pairwise symmetry and anti-symmetry (resp.) through the network.
While clearly most real-world networks may not align exactly with one of these two cases,
the following welfare properties can be applied by considering the extent of symmetry at a
local level for sub-components of an observed peer-effects network.

To derive Lemma 1, Appendix F.3 takes the geometric expansions of the closed forms of
ξst and ξex, respectively. Then taking their leading terms –which dominate their respective
sums for small γ– the limits (16) and (17) are established. While affording formal proofs
of Propositions 3A and 3B under moderate peer effects, these leading terms remain useful
in assessing the directions of informational externalities and strategic values in the network.
As derived in Appendix F.3, the approximations to ξst and ξex for symmetric networks are
given as:

ξsti (e
∗,X∗) ≈ 2

β∗2
i

e∗i
γ4
∑

k 6=i

e∗2i σ2
ike

∗2
k , (18)

ξexi (e∗,X∗) ≈ 2
β∗
i

e∗i
(β∗

i − e∗i ) , (19)

for each i. And for anti-symmetric networks the negations of these corresponding approxi-
mations obtain.
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In symmetric networks, we see that (18) is strictly positive for β∗
i 6= 0, consistent with

Proposition 3A.1. We can assess (19), on the other hand, using Figure 7(a). In the top
panel e∗i is graphed against β∗

i . The exact form of this relationship is implicitly defined with
expression (6) of Theorem 2. For any given Σ and in any IAE e∗, the players will be spread
across the domain at various points, yielding each i’s e∗i . Below this, the approximation (19)
is plotted. With the exact form of marginal externalities scaling with signal response β∗

i /e
∗
i ,

these marginal costs always pass through the origin. When β∗
i = e∗i = e†, (19) again obtains

a value of zero.

[Figure 7]

Thus, we obtain a reversal in the sign of marginal externalities when players move against
their information. Non-monotonicity in the private value of information extends to the
public value of information. For β∗

i < 0, the second-stage optimality of i’s negative response
implies that the value she derives from strategically moving against her signal outweighs the
value from inferring and responding with her expectation of ω̃i. This is precisely because
in IRE X∗, the network imposes significant cost to i if she moves in the direction of her
information. In symmetric networks and when β∗

i < 0, this cost translates to value imparted
to i’s competitors: to each j with σji < 0 and β∗

j > 0. And with i failing to internalize this
positive externality, she under acquires information relative to the efficient benchmark.

This reversal in the direction of the utilitarian solution relative to e∗i can be illustrated
with Example 2. p again gives the size of the negative links connecting the center player 1
to the peripheral players {2, 3, 4}. For p values below 0.111 player 1 moves in the direction
of her signal realization, for values between 0.111 and 0.183 she acquires no information,
and for values above 0.183 she moves against her signal in anticipation of the periphery’s
second-stage actions.

[Figure 8]

Figure 8 provides the planner’s solution epl1 for the center (dashed line) along with IAE
e∗1. Below p = 0.111 player 1 over acquires information while facing positive marginal
strategic values, as consistent with Proposition 3A. Internalizing marginal externalities on
the periphery (as well as 1’s marginal strategic values), the planner sends i’s quality to
zero early. Then for p > .145, (epl1 − e∗1) becomes positive with the planner setting β∗

1 to
be negative. Thus, player 1 under acquires information, and moves against her signal late.
When player 1 finally starts moving against her signal (for p > 0.183) the gap between the
planner’s solution epl1 and e∗1 drops. Thus, the reversal in ξex1 as β∗

1 crosses the origin translates
to a leftward horizontal shift in epl1 . While the corresponding figures for the periphery are
omitted, (eplper. − e∗per.) and ξstper. remain strictly positive and vary only mildly over the range
of p values shown.

The economic message is noteworthy. When players acquire and move against their
information in symmetric networks, the direction of this strategic behavior is socially efficient
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from a utilitarian perspective. But, the equilibrium extent to which these players invest in
information is inefficiently low. The periphery now benefits from 1’s negative response, and
is only further encouraged to respond positively to their own private information. The value
that such players create for others by acquiring and moving against their information is,
once again, not internalized in equilibrium.

Returning to (18) and Figure 7(a), if ξexi ’s leading term plays a dominant role in its sum,
the exact form will shadow the depicted quadratic form. Inclusion of second order terms, or
of marginal strategic values giving ξi –both of which will be positive away from the origin–
give a more accurate approximation to the gradient of the utilitarian function. This higher-
order approximation will (i) continue to cross the origin, with higher-order terms also scaled
by β∗

i /ei, and (ii) cross the β∗
i -axis (again) at some point to the left of β∗

i = e†.
The exact point at which ξi crosses the β∗

i -axis to the right of the origin designates the
lower bound of the set of players that exhibit positive margin public values to e∗i , while
setting β∗

i > 0. This includes all i that set β∗
i > e†: region (III) in the figure. Players

setting β∗
i ∈ (0, e∗i ) in region (II) face negative marginal externalities up to some β∗

i left
of e†. Finally, for players moving against their information, for β∗

i < 0 giving region (I),
marginal externalities once again switch positive.21

For the hypothetical “knife-edge” player that sets β∗
i = e∗i = e†, such an i must satisfy

the equilibrium condition:
∑

k 6=i σike
∗
kβ

∗
k = 0. That is, the sum of i’s inferred network

effects –the weighted sum of expected neighbors’ responses– equals zero. Responding as an
informed player within the network, such an i continues to use her information to infer the
actions of neighbors. However, on net, i’s incentives to strategically respond by adjusting her
signal response upward or downward from e† perfectly balance. From the outside observer, i
behaves as though she acts in isolation. But in actuality, the net influence that the network
imposes on her behavior equates with zero. And given the symmetry of the network, so must
her total externality imposed on others. We term such an i the “neutral player”.

Figure 7(b) provides the corresponding functions under an anti-symmetric network (As-
sumption 2B). While the equilibrium relationship providing e∗i as a function of β∗

i remains
unaltered, the corresponding approximations to marginal externalities and marginal strategic
values invert. Now, players face negative marginal strategic values. The resulting influence
–either up or down– on others’ incentives to acquire information from understating their
informativeness always works in their favor. In region (IV) we now see players that signifi-
cantly move against their information imposing negative externality on the network. Their
strategic behavior only reduces the incentives of more central players to acquire information.
Players in region (V), moving in the direction of their signals but less so than the neutral
player, under acquire information. The very peer influences that induce them to respond
less to their information add value, on net, to the network. Those in regions (VI), to the
right of the neutral player, face additional incentive to acquire information, which translates
to negative marginal externalities.

21While marginal externalities and marginal strategic values are zero at β∗
i = 0, we see from Figure 8 that

the planner’s solution can depart from zero information. Though the gradient of the utilitarian function is
fixed at zero at the origin, this does not imply that the planner and IAE solutions align: β∗

i = 0 may give
an inflection point to the planner’s objective.

142



17.4 Policy design

A number of policies could be implemented that nudge the economy in the direction of an
efficient outcome. A tax and transfer policy gives an invasive but effective approach. If ξi
is negative for at least some i and positive for others, a revenue neutral plan taxing the
information investments of the former while subsidizing the latter could be at least partially
effective. When all links are non-positive or non-negative, subsidy-only and tax-only plans,
respectively, would be required.

A less invasive policy geared toward acquisition transparency provides an alternative
design. Public certification of the information investments of targeted individuals give one
example. Centralized verification and publication of research, or policies that physically
display the efforts of individuals within the network give others. All of these examples
involve targeting selected positions within the information-response game.

The preceding section suggests a more descriptive design for each of these policy types.
Let us focus on symmetric networks, leaving the natural analogue for anti-symmetric net-
works. For tax and transfer policies, players moving against their information or who set
β∗
i > e† should be incentivized (subsidized) to acquire additional information, while those

with β∗
i ∈ (0, e†) should be discouraged (taxed). If links are non-negative and the network

resides in region (III), then a natural policy multiplier is realized. Each dollar publicly offered
to encourage the acquisition activities of highly central players in the information-response
game feeds through to influence the acquisition activities of less central players. Upon intro-
ducing negative peer effects as well, such an incentive scheme continues to feed through to
others’ incentives. Less central players exhibiting ξi < 0 will be discouraged from acquiring
information: an aggregate welfare enhancing effect. And conversely, taxing the acquisition
activities of these low-centrality players will tend to encourage the acquisitions of the most
central players.

For policies enhancing first-stage transparency, players with β∗
i > e† or β∗

i < 0 should
be targeted. Under only positive links or when negative links are also present, such policies
again exhibit a natural multiplier. The incorporation of marginal strategic values into the
objectives of the targeted players further encourages others in regions (I) and (III), and
discourages those in region (II). In both Figures 7(a) and 7(b), we see a preservation of
the property that players to the left of the origin and right of the neutral player tend to
exhibit marginal strategic values that are aligned with their marginal externalities, while
for those just right of the origin these measures miss-align. Thus, increasing transparency
of players with responses outside of the interval (0, e†) remains a robust and simple rule-of-
thumb for these designs, regardless of the extent of symmetry or anti-symmetry in pairwise
peer effects.22

Certification-based policies will be most feasible in symmetric networks for the follow-
ing reason. Implementation for players facing positive marginal strategic values requires
only a one time certification of their information investments. For those facing negative
marginal strategic values (i.e. anti-symmetric peer effects), nothing prevents these players

22An even more precise design to the above proposals would target players with positive marginal public
values to their information, ξi > 0, which includes some players in region (II). However, with second-order
effects and marginal strategic values shifting the intercept to the left, targeting all i with β∗

i > e† can be
taken as a conservative design.
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from acquiring additional information subsequent to certification. With other players ratio-
nally anticipating this behavior, one-time certifications in anti-symmetric networks may be
unimplementable.23

A few empirical challenges must also be addressed in any of these designs. First, unless
data on information responses in the market can be obtained, retrieval of the peer effects
network Σ will be necessary in order to derive equilibrium β∗. Further, understanding of
the costs of information κ is needed to elicit the value of e†. Players may also face their
own idiosyncratic information costs in real-world peer-effects environments. Section 18.2
addresses extensions that incorporate heterogeneous information costs.

18 Discussion

In this section we explore applications to financial markets in crises and to two-sided mar-
kets. Then, basic extensions of the model incorporating further heterogeneity across players’
preferences are developed. The model’s broader relation to the literature is discussed before
concluding.

18.1 Applications

MARKET EFFICIENCY and CRISES. Here we apply the above setup to financial
markets and crises. The above welfare properties are cast against the Efficient Market
Hypothesis, and applied toward equilibrium information acquisition during financial crises.
For the latter, this will require a mixture of both symmetric and anti-symmetric pairwise
peer effects.

First consider the following stylized model of a competitive, liquidity-flush market. N
traders comprise nontrivial shares of a market for a risky asset. The market price in the
second stage is an increasing function of the total of their chosen holdings: φ(x̄) = A+Bx̄,
where xi gives i’s holding of the asset, x̄ :=

∑N
i=1 xi, and A,B > 0. Then, as a function of

the asset’s fundamental value ω, each i’s payoff is given by:

ui(x|ω) = (ω + piφ(x̄)) xi − x2
i

= (piA+ ω) xi + (piB − 1) x2
i + xipiB

∑

k 6=i

xk, (20)

where here we set pi < 0 capturing a downward sloping demand from each trader. Then,
the t = 2 expectation Ei[ω + piφ(x̄)|θi, ei] in i’s best response (2) captures her long-term
expected return to her investment, a decreasing function of the expected market price at
which assets are purchased. The quadratic term −x2

i captures decreasing returns to holding
inventory, derived from the opportunity costs of funds.

The market price φ(x̄), which here traders do not condition on when choosing second-
stage actions, is meant to capture the strategic value that players derive from private infor-
mation in the market. We can think of each trader i’s final holding xi to be realized by i
placing some market order (buy or sell) in the second stage, without complete knowledge

23When feasible, continuous monitoring of players below 0 and above e† could insure policy compliance.
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of the transaction price ultimately realized.24 As seen in (20), the sensitivity of the asset’s
price to others’ demands scales by B, which will depend on the total size of the N traders
in proportion to the broader market. The larger is B and pi (in size) the more i cares about
the short-term demands of the other N − 1 traders in the market. And the larger the size of
piB < 0, the more i will strategically avoid highly demanded assets. Thus in reduced form,
this stylized setup captures the strategic uses of private information in financial markets
under monopolistic competition.

The application can be placed against the Efficiency Market Hypothesis, as follows. As
first characterized by Grossman and Stiglitz (1980) [30], when prices are observed and used
to infer the private information acquired by others, the asset’s price can not both fully and
rationally reveal all information of the asset’s underlying value.25 Precisely, if costly private
information is fully transmitted through observation of the asset’s market-clearing price,
then the ex ante incentives to acquire the information are compromised. Here, through
the strategic use of information, the shear presence of competing traders similarly reduces
the incentives to acquire private information. This is now due to the inference of others’
observations and equilibrium actions: privately observing that the asset has high long-term
value also informs traders of high short-term market prices. The traders continue to crowd
each other as they compete for valuable assets.

The application elicits an important distinction between the informational efficiency ver-
sus the welfare efficiency of the market. While the incentives to acquire information display
strategic substitutes, the extent of crowding out that ensues is inefficient. With each peer
effect taking a negative value, each i will obtain ξi < 0 with e∗i > epl. In other words, the
market will reside in region (II) of Figure 7(a). The informational inefficiency of the market
is efficient from a utilitarian perspective, but to an inefficient extent. In other words, the
traders over exert themselves in competition as they research the asset’s long-term value.26

[Figure 9]

We can further apply the model to yield similar statements on inefficiencies during fi-
nancial crises. Consider some subset of the traders undergoing severe funding constraints.
Precisely, while these traders carry asset holdings prior to the second stage, their abilities to
retain their inventories will depend on the market price φ(x̄). If liquidity is sufficiently thin
amongst these traders, liquidity spirals may ensue.

24This is akin to Kyle (1984a) [41] and (1985) [42], where an insider’s market order is a function only of
the asset’s value and not the market-clearing price. In rational-expectations equilibrium, Kyle (1989) [43]
allows traders to submit demand schedules over market prices. The strategic use of information comes
in the form of inference of market depth: each informed trader i submits her demand schedule given her
information, inferring (i) the private observations of other informed traders, and thus (ii) their submitted
demand schedules and the extent of noise traders in the market, and ultimately (iii) the sensitivity of the
asset’s price to i’s demand.

25Hellwig and Veldkamp (2009) [34] also highlight a similar kinship with Grossman and Stiglitz (1980) [30].
26Sanford Grossman and Joseph Stiglitz [30] close with an open question of ‘whether it is socially optimal

to have ‘informationally efficient markets ’,”. The above model thus provides one answer, and that is “no”.
When price discovery is introduced, complementarity in information acquisition may also arise, pushing
in the opposite direction of over acquisition while reinforcing the under acquisition during crises by all N
traders, as described below.
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Brunnermeier and Pedersen (2009) [11] provide a theoretical framework of liquidity spirals
during crises. Their model captures the dynamic interdependence of market prices and
traders’ funding constraints. With an initial fall in the asset’s perceived fundamental value,
speculators’ funding constraints force liquidity-starved traders to sell off inventory. As the
market price drops, margin calls force these traders to further liquidate, causing a further
drop in the asset’s market price. This only further constrains the traders, and the spiral
worsens.27

In effect, these severely constrained traders’ demand functions exhibit an upward sloping
form.28 As a reduced representation, we capture this by setting pi > 0 for each of these
traders. How exactly would the market look? Figure 9 illustrates the network architecture
for the N traders. Liquidity constrained traders, facing positive and directed peer effects,
will be the most central players in the information-response game.29 With respect to Figure
7, unconstrained traders will lie to the left of the neutral player, while highly constrained
traders will lie to the right.

The stakes are high for constrained traders. If ω is high, this implies both that the traders
can expect a large returns on their holdings, but more importantly, that the current market
price will remain high. This is crucial, as the availability of market liquidity is necessary for
them to maintain their holdings without the burden of funding constraints.30

[Figure 10]

As illustrated in Figure 10 for a market of eight traders, equilibrium welfare exhibits a
paradigm shift as the extent of liquidity through the market declines. This shift is driven by
the orientation (i.e. symmetry or anti-symmetry) in the local peer effects that each market
participant faces. First, when most traders are unconstrained (i.e. “normal” times) the mar-
ket takes on one similar to the competitive market described above. For the few constrained
traders in the market, the majority of their relationships will be anti-symmetric. Residing in
region (VI) of Figure 7(b), these traders will over invest in equilibrium. Responding intensely
to the news of a high ω, their impact on the market price only crowds the market activi-
ties of unconstrained traders. Then, as the proportion of constrained traders grows, these
traders face more symmetric and positive peer effects while unconstrained traders face more
anti-symmetric relationships. When liquidity problems pervade the market, the constrained
traders enter region (III) in Figure 7(a), with unconstrained traders moving to region (V)

27Here, the strategic component of information to constrained firms is even more evident as private in-
formation may allow them to forecast market prices and infer the potential for constraints to bind over the
short term.

28See also Gennotte and Leland (1990) [26], Angeletos and Werning (2006) [2] and Gárleanu et al. (2014)
[25] for models with inverted equilibrium demand functions of constrained traders in crises.

29In the language of Supplemental Section 19, these firms’ weighting functions lie strictly above those of
unconstrained traders, and thus there will always exist an equilibrium in which they acquire more information.
While marginal values to information may be higher for these traders, so too may their marginal costs if
the opportunity costs of funds to these traders are large. This can be captured using idiosyncratic κi: see
Section 18.2.

30One can either model information as directly acquired by the traders’ funders, or by the banks but with
signal realizations verifiable to the funders.
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of Figure 7(b). When the number of constrained traders grows to three or more, all traders
under invest in information. Those under significant funding constraints face positive ex-
ternalities from the information investments of others. Their informativeness allows the
constrained traders to coordinate on asset retention in high market-liquidity outcomes (i.e.
high φ(x̄)), which tend to occur when the asset is “good” (i.e. high ω).

A striking set of equilibrium behaviors arise among the few unconstrained traders during
a crisis. Their acquisition activities impose positive externalities on constrained traders.
Moving with their information in region (V) in Figure 7(b), unconstrained traders’ informa-
tiveness further aids constrained traders to coordinate on high market-liquidity outcomes.
They thus under acquire in equilibrium. When six or seven constrained traders pervade the
market, the few unconstrained traders acquire zero information in the planner’s solution.
When the number of constrained traders rises to seven, however, the lone unconstrained
trader moves to region (IV) and finds additional value to acquiring information, inferring
and moving against the actions of others in the market.

Observation. As the extent of funding constraints across traders increases, the market
equilibrium shifts from being over informed to under informed from a welfare perspective.
Crucially, in severe liquidity crises as constrained traders attempt to coordinate on high
market-liquidity outcomes, both constrained and unconstrained traders do not internalize the
positive externalities their information imposes on the constrained side of the market. In
extreme crises, unconstrained firms acquiring and moving against the market do so at a cost
to aggregate welfare.

One can also introduce additional network irregularity by applying this framework to
over-the-counter markets. As in Babus and Kondor (2014), if a network designating feasible
trades constrains the market, and with each bilateral transaction assigned its own clearing
price, Figure 9 would take on a more incomplete network structure. Only trading pairs would
be linked in the corresponding peer-effects network, with the sign of out-links determined
by the extent of available liquidity to the corresponding trader. The above observation
extends. Precisely, highly connected traders that are liquidity deprived may significantly
over acquire information relative to the utilitarian benchmark if their neighbors are generally
unconstrained. Traders that are unconstrained but have many constrained neighbors will,
again, under acquire in equilibrium.

Finally, the above policy discussion applies to the application as follows. Competition
amongst firms in normal times suggests that certification-based policies may be unimple-
mentable. During crises, however, constrained banks face positive strategic values. Stress
tests, coupled with the certification of identified constrained firms, offers a simple and im-
plementable policy intervention. Constrained banks’ anticipation of being identified and
certified encourages them to internalize their strategic use to information. As they acquire
additional information, the market is pushed in the direction of the utilitarian solution.

With marginal strategic values to these firms scaling with their quality-weighted sum-
of-squared degree (see expression (18) above), one can verify that such transparency-based
policies will be most effective in incomplete network structures under large pairwise peer
effects (e.g. in over-the-counter markets). In these networks, marginal strategic values
can be sizable in proportion to marginal externalities.31 With a few constrained neighbors

31To formalize the statement in the context of Section 18.2, trader i will have large strategic values relative
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imposing large positive externalities on each trader, and vice versa, the effect of internalized
strategic values moves the market farther toward the utilitarian solution than in completely
but weakly connected network structures.

TWO-SIDED NETWORKS. As an example of a two sided network, consider a job-
search market with network structure depicted in Figure 11. Here, a pool of insiders, which
may include head hunters or industry professionals, link to workers searching for a job.
A particular firm to whom each insider has ties posts a number of open positions. The
quality of the firm as an employer (culture, benefits, job security and growth, etc.) are
captured by an unknown common state ω. At t = 2, each insider i exerts resources xi

toward filling the firm’s vacancies with workers they know. Each worker j invests time and
effort xj tailoring their resumes to align with the firm’s qualifications and formally applying
to relevant positions through their acquainted insiders. The optimal second-stage actions of
each player will depend on the expected quality of the firm as an employer, as well as the
anticipated actions of neighbors. The workers compete with each other to fill job vacancies,
while the insiders compete with each other to connect the workers with the firm and collect
value in the form of commission or gained social capital.

[Figure 11]

Abstracting away from variability in the size of counterpart links, the network will gen-
erally be symmetric with the welfare properties depicted in Figure 7(a) applying. If the
insiders out number workers, facing more positive links across the two groups than negative
links amongst other competing insiders, then they will generally reside in region (III). This
places the workers in region (II). In this case, insiders face greater incentive to research the
firm and will under acquire information in equilibrium. This is because they fail to internal-
ize the positive externalities that their expertise provide their clientele. The less informed
workers will over acquire information and over exert themselves researching .

Strategic substitutes within each side and complements across each side of the market
introduce clear network irregularities. However, additional heterogeneity may exist across
peer effects within either side of the market. As seen in Figure 11, insider i enjoys only
two links with workers, which pushes against her centrality in the information-response
game. However, i faces the luxury of being the only insider connected to worker j. On
the other hand, while the other two insiders enjoy high connectivity with workers, they face
stiff competition between each other as their clienteles highly overlap. More generally, the
insiders most central in the information-response game will be those that strike an ideal
balance between their connectedness (i.e. degree) and the centrality of the workers they
connect with (here, client exclusivity).32

While this example lends itself well to job-search networks, an array of two-sided markets
should adopt similar welfare properties. Entrepreneurs and venture capital investing in
new platforms or technologies, Hospitals and pharmaceutical sales firms investing in new
medicines or medical technologies, or any other two-sided market in which all players acquire
information regarding a fundamental common state will apply.

to externalities when γiσij is large relative to σii for each neighbor j.
32Supplemental Section 19 discusses this further.
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Observation. Two-sided markets in which the shorter side of competing insiders matches
competing workers with value-creating transactions exhibit under acquisition amongst experts
and over acquisition amongst workers. Experts fail to internalize the positive externalities
that their information impose on workers, and workers fail to internalize the negative exter-
nalities their information impose on other workers.

18.2 Basic Extensions

A number of generalizations to the basic model can be considered. As suggested by footnote
6, setting σii = σjj = 1 comes with loss in generality in the degree of variation in players’
payoffs. To account for idiosyncrasies in this variation, one can rather define ω̃i = γiω+ ιiωi

for γi, ιi ∈ R+, and take the ex post payoff structure:

ui (x|ω, ωi) = (ai + ω̃i) xi −
1

2
σiix

2
i + ρ

∑

j 6=i

σijxixj,

where ρ ∈ R+ directly scales the size of peer effects. The corresponding second-stage linear
best response is:

BRi (X−i|θi, ei, µi) =
ai + Ei [ω̃i|θi, ei]

σii

+ ρ
∑

j 6=i

σij

σii

Ei [Xj (θj|ej) |θi, ei, µi] .

Such a generalization comes with only two necessary modifications to the model’s prim-
itives, made to conditions E2 and E4 to give Ei [ω̃i|θi, ei] = vieiθi and Ei [θj|θi, µi,ei] =∫
[0,1]

µij (ej) γjejγieiθidej, respectively, where vi :=
√
γ2
i + ι2i gives the variance in i’s rele-

vant state ω̃i.
Inline with these generalizations, an updated correlation-adjusted adjacency matrix

Σc := [γieiσijγjej] can be defined. With vi scaling i’s interim expectation of ω̃i, infor-
mational centralities are now further weighted by the extent of variation in players’ relevant
states:

β∗ = (I− Σc)−1 Ive.

The analogue to network symmetry incorporates an adjustment to peer effects:

Assumption 2C. I−1
σ IγΣIγ where σ := [σii] is symmetric: γi

σii
σij =

γj
σjj

σji for each i 6= j.

This generalization of Assumption 2A comes with a natural interpretation. Players with low
σii possess relatively high propensities to choose high actions in the second stage, on aver-
age, as well as to acquire information and respond highly to their signal realizations, ceteris
paribus. These are exactly the players that have significant influence in the information-
response game. Thus, Assumption 2C requires that these influential players have propor-
tionally greater impact on the preferences of those with less influence.33 The weighting by

33Taking the inter-bank network as an example, The Bank of America’s expected extent of information
acquisition should carry proportionally greater influence on the preferences of smaller banks than do the
information investments of these banks on the incentives of The Bank of America.
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γi and γj adjusts for the loading that each player places on the shared state ω. That is, the
players’ impacts scale directly with the extent that their preferences correlate with others’
preferences. The corresponding assumption for anti-symmetric networks can also be defined
and applied in a similar way.

Finally, one is free to introduce further idiosyncrasies through the curvature of informa-
tion costs by providing κi(ei) for each i. With these extensions, all of the above results
are preserved. With all of these modifications, we obtain the identical expression to (6):
β∗2
i /e∗i = κ′

i (e
∗
i ) for any interior e∗i . Players that are most “central” in the information-

response game are now those with the right combination of being (i) central in the updated
network Σc, and (ii) having a natural propensity to acquire information, as determined by
the relative sizes of

√
γ2
i + ι2i and σii and the extent of convexity in κi.

Analogous limit results are easily obtained, with partials taken with respect to ρ rather
than γ2, and by sending ρ →+ 0. The corresponding expressions to (7), (16), and (17) are
respectively:

lim
ρ→+0

∂e∗i
∂ρ

=
γie

†
i

κ′
i(e

†
i )− 1

∑

k 6=i

γke
†
k

σik

σii

,

lim
ρ→+0

∂ξsti (e∗,X∗)

∂(ρ2)
= e†i (γie

†
i )

2
∑

k 6=i

(γke
†
k)

2σik

σii

σki

σkk

, and

lim
ρ→+0

∂ξexi (e∗,X∗)

∂ρ
= γie

†2
i

∑

k 6=i

γke
†
k

σki

σkk

.

As one may anticipate Proposition 3A maintains, but with
∑

k 6=i γke
†
k
σik

σii
defining each player

i’s effective degree for moderate peer effects:34

Proposition 3C. [symmetric, moderate peer effects] For symmetric Σ, there exists
some γw with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl we have:

1. epb > e∗, with (ei
pb − ei

∗) > (ej
pb − ej

∗) > 0 for each i and j with
∑

k 6=i

(
γke

†
k
σik

σii

)2
>

∑
k 6=j

(
γke

†
k
σjk

σjj

)2
,

2. e∗i > e∗j and (ei
pl−ei

∗) > (ej
pl−ej

∗) for each i and j with
∑

k 6=i γke
†
k
σik

σii
>
∑

k 6=j γke
†
k
σjk

σjj
.

And, the analogues to Assumption 2B and Proposition 3B that incorporate these extensions
can similarly be constructed.

Crucially, the basic message of Figure 7 will continue to hold. Approximations to ξsti
and ξexi are derived with γi and 1/σii scaling each peer effect σij . Thus, the corresponding
figures can be produced for each individual player. Under Assumption 1, exactly where each
i falls on their β∗

i -axis relative to the origin and their respective e†i continues to be driven
by the network of peer effects. In symmetric networks (now, Assumption 2C), those in their
corresponding region (III) choosing β∗

i above e†i underinvest, those to the right of the origin

34The results of Supplemental Section 19 also maintain, with our notions of degree centrality and weighting
function defined in terms of normalized peer effects γi

σii

σij for each i and j.
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falling in region (II) tend to overinvest, and players moving against their signals in region
(I) again underinvest. All players to the right of the origin moving in the direction of their
signal realizations continue to face positive marginal strategic values.

Thus, one can view the above model’s homogenous setup in the first-stage information-
acquisition game –outside of network effects– as simplifying the analysis, allowing the network
to “speak clearly”. None the less, the extent of symmetry in pairwise peer effects coupled
with players’ informational centralities continue to play crucial roles shaping equilibrium
inefficiencies in a much broader set of economies.

18.3 Related Literature

Here related papers are discussed, along with a number of potential avenues for future
research. The paper relates to a family of papers studying information games with com-
munication on networks. In Calvó-Armengol and de Mart́ı (2007) [13], (2009) [14], and
Calvó-Armengol et al. (2009) [15] the network is defined by the exogenous correlation ma-
trix between signals. In Calvó-Armengol et al. (2011) [16] this network is endogenized
through a communications device, and the authors study the relative extent of active and
passive communication in equilibrium (i.e. “speaking” and “listening”, resp.). Thus, each
player’s communication quality is endogenously directed to each of her neighbors. Beyond
the above setup’s treatment of acquired information as pertaining directly to fundamental
payoffs, these papers have a number of model elements that distinguish them from this one.
As a closest comparative, Calvó-Armengol et al. (2011) [16]’s first-stage signal qualities are
fully observed in the second stage. Thus, strategic values are fully internalized in their model.
And as only strategic complements are considered in their formal analysis, the characteri-
zation of negative signal responses and corresponding welfare implications discussed above
are not considered. The authors find underinvestment in communication, which relates with
the under acquisition above when σij ≥ 0 for each i and j. In the above, however, states are
global rather than local via common state ω, and thus inefficient acquisition under strategic
compliments is driven by the correlation in and strategic use of information in the second
stage. Further, players facing negative peer effects and with signal responses β∗

i in some
interior subset of (0, e†) over acquire in symmetric networks.

As discussed in the introduction, this paper is closely related to the coordination games
with costly information acquisition literature. The above case of symmetric networks pro-
vides a generalization to many related results found in the literature, while incorporating
strategic substitutes and complements simultaneously through the network. Hellwig and
Veldkamp (2009) [34] study costly acquisition of signals chosen from a subset of available
signals of various qualities and correlation profiles. The authors Proposition 1 offers a clos-
est analogue to the above Theorems 1 and 2, which establish the feed through of strategic
complementarity and substitutability (separately) into first-stage information values.35 Also
reminiscent of their findings, strategic complementarity can imply multiple symmetric equi-
libria. However, the type of multiplicity of equilibria illustrated above in Example 2 are
derived solely from strategic complements, rather than discreteness in the signal technology.

35Vives (1988) [61] together with Vives (2008)’s [62] exercise 8.15 similarly establish this feed through for
strategic substitutes and compliments, respectively.
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In contrast, equilibrium uniqueness under strategic complements and continuous signals is
derived in Hellwig and Veldkamp (2009) [34] as well as Myatt and Wallace (2009) [49].
In beauty contest games with a continuum of agents, the extents of complementarities are
implicitly bounded. In the above network setting, strategic complements can be more pro-
nounced while the set of convex cost functions considered are less constrained,36 thus yielding
the observed multiplicity under significant positive peer effects.

This literature also offers an exciting research agenda studying the effects of public infor-
mation on the equilibrium actions and welfare in a general network setting. Morris and Shin
(2002) [47] first highlighted the potential adverse effects of public information, showing that
players may coordinate on less precise public announcements. In an information acquisition
setting, Colombo et al. (2014) [19]37 show that public information crowds out private infor-
mation38, while acquired private information is inefficiently low if and only if the equilibrium
degree of coordination falls short of the efficient benchmark (see Colombo et al. (2014) [19]
Corollary 1 and Proposition 5 (ii), resp.). In a network setting under both strategic comple-
ments and substitutes, the efficiency of equilibrium coordination depends on each player’s
informational centrality (e.g. Proposition 3A, above). The effects of public information on
both the positive and normative properties of equilibrium information acquisition in these
settings are left as open questions.

The above coordination games literature assumes agents to reside on a continuum, and
thus the strategic values studied here are not realized. In a network setting, a continuum
of players is clearly inapplicable. With the exception of Hauk and Hurkens (2001) for a
competitive Cournot production market, the welfare implication of incentive compatibility
in information acquisition are novel. The extent of player connectedness in the network
as driving the size of her strategic values provides a network characterization. Further,
the symmetry in the coordination games with endogenous information that have thus far
been studied plays an important part in driving inefficiencies in information acquisition.
While symmetric networks offers analogous welfare results to many seen in these papers,
the fact that the direction of the utilitarian solution inverts under anti-symmetric networks
suggests caution when applying these welfare properties in settings that incorporate anti-
symmetric relationships. And as the above application of Section 18 suggests, anti-symmetric
relationships may be common in environments with a subset of constrained players.

A number of oligopoly models have studied information acquisition outside of a network
setting. Novshek and Sonnenschein (1982) [52] and Vives (1983) [60] study the effects of
private information when firms face an uncertain demand function. Taking the extent of
information acquisition exogenously, the authors’ consider comparative statics of equilibrium
production and welfare with respect to signal qualities. Their Lemma 1 establishes a direct

36To see this, here qualities are chosen from [0, 1] while in these and most of the coordination games
literature they are taken from [0,∞). Appendix F.1 provides a mapping from the accumulated i.i.d. normal
draws setup to information qualities. Note that a constant marginal cost to these draws excludes the
possibility of initial positive gains as players search for and locate the most efficient sources of informative
signals.

37They allow for both strategic complements and substitutes (though not simultaneously) in their setting.
Their welfare benchmark that corresponds to that taken here involves not allowing the planner to enforce
the efficient use of information.

38Myatt and Wallace (2009) [49] find a similar result, with the publicity of information endogenously
determined.
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dependence in the slope of equilibrium strategies to signal quality, as a function of the extent
of complementarity between firms’ goods. Similar equilibrium properties obtain under the
more general network treatment of Theorems 1 and 2 above, upon homogenizing the size
and direction of links. Beyond this close similarity at a positive level, the papers’ welfare
analyses depart from each other with the consumer side of the market excluded in network
games.

Related to transparency, a number of papers have addressed information transmission in a
network settings similar to that taken here, but without endogenizing information qualities.
Hagenbach and Koessler (2010) [31] and Galeotti et al. (2013) [24] study cheap talk in
networks, taking exogenous biases as common information amongst the players. Kondor and
Babus (2014) [3] study information diffusion and trade between traders connected through a
network.39 The authors define a “conditional guessing game”, which solves for transmission
of information in rational expectations, as a function of observed prices and the network
structure. And taking an extreme to transparent play, Hagenbach et al. (2014) [32] study
full disclosure under certifiable pre-play communication. In the above setting, these authors’
acyclicity condition is satisfied.40

The above model’s exclusion of information transmission provides a first benchmark to
information acquisition in a network setting, while maintaining reach in its applications.
Studying the incentives to acquire the information that agents carry when also faced with
particular transmission mechanisms offers an exciting avenue for research. Both the positive
and normative implications under full information disclosure offers a promising starting
point.

Finally, Bramoulle et al. (2014) [9] study the set of network games equivalent to potential
games. The authors characterize both the presence of multiple equilibria and of equilibria
that involve players taking zero action (i.e. a corner solution in their setup) using the size of
the lowest eigenvalue for the network’s adjacency matrix. In the above, corner solutions in
the information-response game play an important role when incorporating the possibility of
players moving against their signals, as illustrated with Example 2. Bramoulle et al. (2014)
[9]’s eigenvalue characterization of corner equilibria provides a valuable tool to designate the
presence of players moving against their information. Here, the second-stage game can be
characterized as a potential game if the network is symmetric.41

18.4 Conclusion

A flexible framework for studying information acquisition in linear peer-effects networks is
developed. An intuitive characterization of the equilibrium strategic responsiveness of players
to their private signals is derived. Using this characterization, marginal information values
are derived in equilibrium. Scaling with the square of this responsiveness, marginal values
to information take on a U-shaped dependence on network centrality in the information-
response game. Under significant strategic substitutes, the least central players find addi-
tional use from information through inferring and moving against the actions of neighbors.

39That is, their network captures the set of feasible trades that can occur.
40Precisely, where the worst type in finite set Si ⊆ Θ is given by the lowest element if β∗

i > 0, and the
highest element if β∗

i < 0.
41The information-response game is no longer equivalent to a potential games when Σ is not symmetric.
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Equilibrium welfare and the strategic motives behind information acquisition are ana-
lyzed. The extent of symmetry in pairwise relationships drives the direction of inefficiencies,
both when players move in the direction of or against their information. Under moderate
and symmetric relationships, players under respond to the network of peer effects. With
both strategic complements and substitutes present, the most informed players under ac-
quire information and the least informed players over acquire. Incorporating players moving
against their signals, the extend of information acquired by these players is inefficiently low.
Thus, the U-shaped non-monotonicity in the incentives to acquire information in networks
carries over to welfare.

All of these welfare properties reverse when the presence of anti-symmetric relation-
ships pervade the network structure. As our example of a market in crisis illustrates, anti-
symmetric relationships may play an important role when a nontrivial set of traders in the
market face liquidity constraints and thus value high market prices. When liquidity becomes
scarce through the market, the few unconstrained firms fail to internalize the externalities
they impose on the constrained side of the market. When these unconstrained firms move
in the direction of their signal realizations, they under acquire information. If they instead
move against their signals, their strategic acquisition of information quality exceeds that of
the social planner’s prescription. The flexibility in peer-effects networks is essential when
assessing the welfare implications in these heterogeneous settings, capturing an ray of equi-
librium behaviors.

Marginal strategic values take on unambiguous and opposing directions in symmetric
and anti-symmetric networks. Players face clear incentives to overstate and understate their
informativeness in these respective settings. The size of these incentives are proportional
to players’ sum-of-squared degrees. Thus, player connectedness characterizes the size of
marginal strategic values to information, while symmetry in pairwise relationships continues
to capture its direction. The analysis elicits a transparency based policy with a simplistic
implementation: certify the information acquired by the experts: the most central players
in the information response game. And when possible, certify the information investments
of those moving against their signals: the least central players in the information response
game.

In summary, the above network setting offers a flexible framework to both extend and as-
sess the robustness of many results offered by the coordination games with endogenous infor-
mation literature. While moderate, symmetric networks offer a natural extension to hetero-
geneous environments, anti-symmetry and the incorporation of players moving against their
information offer both positive and normative properties unattained in symmetric settings.
The role of observable prices determined in market clearing under rational expectations, as
well as to other forms of information transmission are left as important open questions for
future work.
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F Appendix

F.1 Linear-in-qualities expectations: examples

Two states. As the most basic example of an information structure embodying Condi-
tions E1-E4, consider the case of two aggregate states ω ∈ {−1, 1} with γ = 1 and priors
Pr (ω = 1) = Pr (ω = −1) = 1/2. Then, player i’s quality ei gives the probability of the
signal being correct, Pr (θi = ω) = ei+1

2
. The conditional expectation Ei [θj|θi, ei, µ∗

i ] = eiejθi
for each j 6= i can be derived as the correlation in the players i and j’s signals, eiej, mul-
tiplied by i’s signal realization θi. In this case, ω is naturally interpreted as giving ‘high’
(ω = 1) and ‘low’ (ω = −1) marginal gains to action xi, for each player i.

Multiple normal draws. Considering the more general definition of ω̃i provided Section
18.2, one can also consider a normally distributed states and signals setup with normal
errors. Assume ω ∼ N (0, 1), ωi ∼ N (0, 1), and thus ω̃i ∼ N (0, v0) where v0 := γ2

i + ι2i .
Now, consider player i who draws Si ∈ Z+ signals {ϑs

i}Si

s=1 taking values ϑs
i = ω̃i + εsi with

error εsi ∼ N (0, v1); that is, each ϑs
i has precision v−1

1 . Clearly E1 is satisfied. Player i can
then use her signals to infer ω̃i by the usual Bayesian updating rule:

Ei

[
ω̃i

∣∣∣{ϑs
i}Si

s=1

]
=

v−1
1

∑Si

s=1 ϑ
s
i

v−1
0 + Siv

−1
1

.

Define the aggregate signal and information quality:

θi :=
1√

v0 +
v1
Si

1

Si

Si∑

s=1

ϑs
i ,

ei :=
1√
v0

v−1
1

v−1
0 + Siv

−1
1

Si

√
v0 +

v1
Si

=

√
v0

v0 +
v1
Si

.

The average 1
Si

∑Si

s=1 ϑ
s
i will have precision Siv

−1
1 . It is then straight forward to show that

(the extended version of) E2 and E3 are satisfied:

Ei [ω̃i|θi, ei] =
√

γ2
i + ι2i eiθi,

Ei

[
θ2i |ei

]
= 1.

Now consider player j who draws Sj ∈ Z+ signals {ϑs
j}Si

s=1 taking values ϑs
j = ω̃j + εsj

with error εsj ∼ N (0, v1). Then Ei [θj|θi, ei, µ∗
i ] is derived from simple linear regression of θj
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on θi:

Ei [θj|θi, ei, µ∗
i ] =

Cov (θi, θj)

Sd (θj)
θi

=
γiγjv0√

v0 +
v1
Si

√
v0 +

v1
Sj

θi

= γiγjeiejθi,

establishing (the extended version of) condition E4 under sequentially rational µ∗
i .

F.2 Section 16 proofs: Equilibrium information acquisition and
response

Existence of a second-stage equilibrium is only ensured if the size of peer effects are suitably
constrained. This motivates the following assumption, maintained throughout.

Assumption F1. (I− [pijσij ])
−1 is well defined for every p ∈ [0, 1]N(N−1).

Assumption F1 is a strengthening of the condition p > λµi(G) in Bellester et al. (2006)
[5] Theorem 1 bounding the spectral radius of the relevant diagonally dominant matrix
under complete information. Assumption F1 implies that the relevant diagonally-dominant
matrix in the second stage’s information-response game remains invertible for all first-stage
outcomes. Primarily a technical condition, this suffices for existence and uniqueness of a
pure linear Bayesian equilibrium at period t = 2.

Proof of Theorem 1. For all purposes, I will denote the n× n identity matrix. Linearity
of the ex-post best responses allows us to take expectations of (2) and obtain i’s first order
condition of her information response problem. This gives optimal action:

Xi (θi, ei) = (ai + Ei [ω̃i|θi, ei]) +
∑

k 6=i

σikEi [Xk (θk, ek) |θi, ei, µ∗
i ] (21)

= (ai + eiθi) +
∑

k 6=i

σikEi [Xk (θk, ek) |θi, ei, µ∗
i ] .

Next, we are free to take expectations of (21) over realizations of player i’s signal θi. Denoting
the vector of expected stage two actions α∗, this gives:

α∗ = a+ Σα∗. (22)

This can easily be solved to give the following expectations equilibrium:

α∗ = [I− Σ]−1 a. (23)

Note that α∗ does not depend on e.42

42Expression (23) is analogous to expression (4) in Ballester et al. (2006) [5], but now in expectations.
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Next, we derive the information responses given in (5). Linearity of this expression is
derived by the linearity in best responses (2) and in expectations. Consider the following
profile of strategies:

X∗ (θ)=α∗ + Iθβ
∗,

with β∗
i ∈ R denoting each player i’s responsiveness to her signal. For each component i

taking β∗
−i as above we verify that i plays a linear strategy. Taking differences of (21) at θi

and θ′i < θi then gives43:

X∗
i (θi|ei)−X∗

i (θ
′
i|ei) =




Ei [ω̃i|θi, ei, µ∗
i ]− Ei [ω̃i|θ′i, ei, µ∗

i ]
+
∑

k 6=i σik (Ei [X
∗
k (θk|ek) |θi, ei, µ∗

i ]

−Ei [X
∗
k (θk|ek) |θ′i, ei, µ∗

i ]




=




eiθi − eiθ
′
i

+
∑

k 6=i σik (Ei [α
∗
k + θkβ

∗
k|θi, ei, µ∗

i ]

−Ei [α
∗
k + θkβ

∗
k|θ′i, ei, µ∗

i ]




= ei (θi − θ′i) +
∑

k 6=i

σik ((Ei [θk|θi, ei, µ∗
i ]− Ei [θk|θ′i, ei, µ∗

i ]) β
∗
k)

= ei (θi − θ′i) +
∑

k 6=i

σij

((
γ2eiekθi − γ2eiekθ

′
i

)
β∗
k

)

= (θi − θ′i)

(
ei +

∑

k 6=i

σikγ
2eiekβ

∗
k

)
.

With
X∗

i (θi|ei)−X∗
i (θ′i|ei)

θi−θ′i
independent of the choice of θi and θ′i, player i also plays a linear

strategy, with (optimal) responsiveness

β∗
i =

X∗
i (θi|ei)−X∗

i (θ
′
i|ei)

θi − θ′i
= ei +

∑

k 6=i

σikγ
2eiekβ

∗
k . (24)

We thus have:
β∗ = e+ γ2IeΣIeβ

∗. (25)

With (I− γ2IeΣIe)
−1

well defined by Assumption F1, solving for β∗ gives the unique linear
information response equilibrium:

β∗ =
(
I− γ2IeΣIe

)−1
e.

Finally, we can easily write:
X∗

i (θi|ei) = α∗
i + θiβ

∗
i ,

for each i, giving the t = 2 IRE strategy seen in (5).

To establish the stronger uniqueness claim succeeding Theorem 1, the following estab-
lishes a similar result to that shown in Dewan and Myatt (2008), adapted to our network

43One can always find such a signal pair, else signals are never informative.

161



setting. The second stage best response function of any i given first stage outcome e (and
correct beliefs µ∗

i regarding e−i) is again:

BRi (X−i|θi, ei, µ∗
i ) = ai + Ei [ω̃i|θi, ei, µ∗

i ] +
∑

k 6=i

σikEi [X
∗
k (θk|ek) |θi, ei, µ∗

i ] .

Suppressing the (ei, µ
∗
i ) conditionals, the composition of BRi (X−i|θi) with BRj (X−j|θj) for

each j 6= i gives:

BR2
i (·|θi) = ai + Ei [ω̃i|θi] +

∑

k 6=i

σikEi

[
ak + Ek [ω̃k|θk] +

∑

k′ 6=k

σkk′Ek [·|θk]
∣∣∣∣∣ θi
]

= ai + Ei [ω̃i|θi] +
∑

k 6=i

σik

(
ak + Ei [Ek [ω̃k|θk] |θi] +

∑

k′ 6=k

σkk′Ei [Ek [·|θk] |θi]
)

=

(
ai + Ei [ω̃i|θi] +

∑
k 6=i σikak +

∑
k 6=i σikEi [Ek [ω̃k|θk] |θi]

+
∑

k 6=i

∑
k′ 6=k σikσkk′Ei [Ek [·|θk] |θi]

)

= ai +
∑

k 6=i

σikaj + eiθi +
∑

k 6=i

σikγ
2e2keiθi +

∑

k 6=i

∑

k′ 6=j

σikσkk′Ei [Ek [·|θk] |θi] .

In vector form44:

BR2 (·|θ) =
(

a+ Σa+ Iθe+ Iθγ
2IeΣIee

+
[∑

k 6=i

∑
k′ 6=k σikσkk′Ei [Ek [·|θk] |θi]

]
)
.

We can iterate this to yield the τ ’th best-response dynamic BRτ (·|θ):

BRτ (·|θ) =
(

(I+
∑τ

t=1Σ
t−1) a+ Iθ

(
I+
∑τ

t=1 γ
2 (IeΣIe)

t−1) e
+
[∑

k 6=i · · ·
∑

h 6=j σik · · · σjhEi [· · ·Ej [·|θj] |θi]
]
)
.

When each |σij| < 1 the bottom term will converge to zero provided strategies are
bounded. More generally, we require the following property to hold.

Definition 3 (non-explosive expectations). For any sequence of players (i1, i2, . . .) with
it 6= it+1 and each it ∈ {1, . . . , N} and t ∈ N, the operator Eit [·] is defined inductively
as Eit [·] := σit−1itEit−1

[Eit [·]], with Ei1 [·] = Ei1 [·]. Then for any given (potentially non-
linear) IRE X∗ and quality profile e, expectations over the network are non-explosive if
limt→∞ Eit [Xit (θit |eit)] = 0.

44
Iφ gives the diagonal matrix with elements from generic vector φ.
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Given expectations are non-explosive, we then obtain:

lim
τ→∞

BRτ (·|θ) = lim
τ→∞

(
I+

k∑

τ=1

Στ

)
a+ Iθ

(
I+

k∑

τ=1

γ2 (IeΣIe)
τ

)
e

= (I−Σ)−1 a+ Iθ (I− IeΣIe)
−1 e

= α∗ + Iθβ
∗ =: X∗

which gives the unique linear information response equilibrium of Theorem 1. Thus, any
equilibrium in which expectations are non-explosive must be X∗.

Proof of Theorem 2. Writing each player k 6= i’s information response strategy as
X∗

k (θk|ek) = α∗
k + θkβ

∗
k :

ui

(
xi,X

∗
−i|θi, ei, µi

)
= (ai + Ei [ω̃i|θi, ei]) xi −

1

2
x2
i +

∑

k 6=i

σikxiEi [X
∗
k (θk|ek) |θi, ei, µi]

= (ai + eiθi) xi −
1

2
x2
i +

∑

k 6=i

σikxi (α
∗
k + β∗

kEi [θk|θi, ei, µi])

= (ai + eiθi) xi −
1

2
x2
i +

∑

k 6=i

σikxi

(
α∗
k + β∗

kγ
2eiekθi

)
.

By the optimality of X∗
i in stage two, we can apply the envelope theorem:

∂

∂β∗
i

Ei [ui (X
∗ (θ|e) |ω, ωi) |θi, ei, µi] = 0.

Further, as information acquisition is unobserved by others in t = 2, incentive compatibility
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of e∗i requires that the response of β
∗
j to shifting ei be set to zero: ∂

∂ei
β∗
j = 0. Thus we obtain:

∂

∂ei
Ei [ui (X

∗ (θ|e) |ω, ωi) |ei, µi]

=
∂

∂ei
Ei [Ei [ui (X

∗ (θ|e) |ω, ωi) |θi, ei, µi]]

=
∂

∂ei
Ei

[
(ai + eiθi) (α

∗
i + θiβ

∗
i )− 1

2
(α∗

i + θiβ
∗
i )

2

+
∑

k 6=i σik (α
∗
i + θiβ

∗
i ) (α

∗
k + β∗

kγ
2eiekθi)

]

=
∂

∂ei
Ei

[ (
β∗
i ei − 1

2
β∗2
i + γ2

∑
k 6=i σikeiekβ

∗
i β

∗
k

)
θ2i

+const0 + const1 · θi

]

= Ei

[
∂

∂ei

( (
β∗
i ei − 1

2
β∗2
i + γ2

∑
k 6=i σikeiekβ

∗
i β

∗
k

)
θ2i

+const0

)]

=


 β∗

i

(
1 + γ2

∑
k 6=i σikβ

∗
ke

∗
k

)
Eθi [θ

2
i |ei]

+
(
β∗
i ei − 1

2
β∗2
i + γ2

∑
k 6=i σikβ

∗
i β

∗
keiek

)
∂
∂ei

Eθi [θ
2
i |ei]




= β∗
i

(
1 + γ2

∑

k 6=i

σikekβ
∗
k

)
,

with Eθi [θ
2
i |ei] = 1 and ∂

∂ei
Eθi [θ

2
i |ei] = 0 by condition E3. This yields i’s period t = 1

marginal gains to information acquisition:

∂

∂ei
ui (X

∗
i |ei, e−i) = β∗

i

(
1 + γ2

∑

k 6=i

σikekβ
∗
k

)
(26)

Thus, the period t = 1 vector of marginal gains to quality is given by:

[
∂

∂ei
ui (X

∗
i |ei, e−i)

]
= γ2Iβ∗ΣIeβ

∗ + β∗. (27)

When γ = 0 then (25) reduces to β∗ (e) = e. Equating marginal gains to marginal costs of
quality in IAE gives e∗ = κ′ (e∗), which corresponds to expression (6), and yields e† from (3)
for each i so that each player chooses the quality that the isolated player chooses.

When γ > 0 then (25) can be rearranged as:

γ2ΣIeβ
∗ = I−1

e
(β∗ − e) . (28)

Substituting this into (27) gives the marginal gains to information:

[
∂

∂ei
ui (X

∗
i |ei, e−i)

]
= I−1

e
Iβ∗β∗.

Equating this with the marginal cost of information then gives the first-stage interior IAE
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condition (6):
Iβ∗β∗ = Ie∗κ

′ (e∗) . (29)

Proof of Corollary 1. Applying the implicit function theorem to expression (6)45:

∂e∗i
∂ (γ2)

= −
∂(β∗2

i /e∗i )
∂(γ2)

∂(β∗2
i /e∗i−κ′(e∗i ))

∂ei

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

= −
2β∗

i /e
∗
i

∂β∗
i

∂(γ2)

∂(β∗2
i /e∗i )
∂ei

− κ′′ (e∗i )
+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

=
2
β∗
i

e∗i

∂β∗
i

∂(γ2)

κ′′ (e∗i )−
(
e∗i 2β

∗
i

∂β∗
i

∂ei
−β∗2

i

)

e2i

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

=
2
β∗
i

e∗i

∑
k 6=i e

∗
iσike

∗
kβ

∗
k

κ′′ (e∗i )−
(
e∗i 2β

∗
i

∂β∗
i

∂ei
−β∗2

i

)

e2i

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)
.

Taking the limit γ →+ 0 of the expression, and noting that limγ→+0
∂β∗

i

∂ei
= 1 while

limγ→+0
∂e∗i
∂β∗

k

= 0 for each k 6= i, yields:

lim
γ→+0

∂e∗i
∂ (γ2)

=
2e†3

∑
k 6=i σik

κ′′ (e†)− 1
.

Note that κ′′
(
e†
)
− 1 > 0 by the optimality of e† at γ = 0 and Assumption 1.

Proof of Lemma 1. The existence of the bound γm follows from Assumption 1, by con-
tinuity in β∗ and e∗ for each i at γ = 0, and by the implicit function theorem. Precisely,
β∗ = e∗ :=

(
e†, . . . , e†

)
> 0 when γ = 0, and thus that marginal gains to quality β∗2

i /e∗i are
continuous at γ = 0. Assumption 1 implies a unique e† solving β∗2

i /e∗i = e† = κ′
(
e†
)
for

each i. Further,

det
(
De[β

∗2
i /e∗i − κ′ (e∗i )]

)∣∣
(e=(e†,...,e†),γ=0) = det

((
1− κ′

(
e†
))

I
)

=
(
1− κ′

(
e†
))N 6= 0,

and thus by the IFT there exists an open neighborhood U ⊆ [0, 1]N of
(
e†, . . . , e†

)
and

W ⊆ [0, 1] of γ = 0 such that for every γ ∈ W there is a unique IAE e∗,γ ∈ U .

45One could employ the multivariate implicit function theorem, noting that changes in e∗i will result as
second-stage β∗

k for each k 6= i adjust with γ2. We avoid the multivariate implicit function theorem by
employing the chain rule, and summing over partials of e∗i with respect to β∗

k for each k 6= i (last term).
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Now, the best response correspondence BR (e,β∗,µ∗; γ) (see proof of Proposition S.1)
is upper hemicontinuous in (e,γ) by continuity of β∗2

i /ei in e and γ and of κ (·) in ei at
e =

(
e†, . . . , e†

)
and γ = 0. There must then also exist some neighborhood V ⊆ [0, 1]N× [0, 1]

of (
(
e†, . . . , e†

)
, 0) such that BR (e,β∗,µ∗; γ) ⊆ U for any (e, γ) ∈ V . This then implies

that [0, 1]N\U does not contain any IAE for all γ ∈ W ∩ V ⊆ [0, 1], and thus that e∗,γ gives
the unique IAE for each γ ∈ [0, γm) ⊆ W ∩ V .

We construct the interval [0, γs) as follows, which incorporates the potential for multiplie
equilibria. β∗ is continuous in e with β∗ =

(
e†, . . . , e†

)
> 0 at γ = 0. Thus for each i, there

must exist some γs
i > 0 such that if γ < γs

i then β∗
i > 0 for any e ∈[0, 1]N .46 Then defining

γs := mini {γs
i } and by the existence of IAE given with the proof of Proposition S.1 below,

we must have that β∗ > 0 provided γ ∈ [0, γs) and any IAE e∗.

F.3 Section 17 proofs: Equilibrium welfare and the strategic value
to information

First we derive equilibrium welfare, expression (8) in the text. Restating player i’s expected
payoff:

ui (xi,X−i|θi, e) = (ai + eiθi) xi −
1

2
x2
i +

∑

k 6=i

σikxi

(
α∗
kj + β∗

kγ
2eiekθi

)
.

Subtracting information cost κ (ei) and taking expectations over signals θ gives her period
t = 1 value:

νi (X
∗
i |ei, e−i) = Ei

[(
(ai + eiθi) (α

∗
i + θiβ

∗
i )− 1

2
(α∗

i + θiβ
∗
i )

2

+
∑

k 6=i σik (α
∗
i + θiβ

∗
i ) (α

∗
k + β∗

kγ
2eiekθi)

)]
− κ (ei)

= aiα
∗
i + eiβ

∗
i −

1

2

(
α∗2
i + β∗2

i

)
+
∑

k 6=i

σik

(
α∗
iα

∗
k + β∗

i β
∗
kγ

2eiek
)
− κ (ei) .

Writing this in vector form gives:

ν (X∗|e) =
(
Iaα

∗ + Ieβ − 1

2

(
Iα∗X̄∗ + Iβ∗β∗

)
+ Iα∗Σα∗ + γ2Iβ∗IeΣIeβ

∗

)
− κ (e) . (30)

Next, left multiplying (22) by Iα∗ gives:

Iα∗α∗= Iaα
∗ + Iα∗Σα∗, (31)

while rearranging (25) gives:
1

γ2
(β∗ − e) = IeΣIeβ

∗. (32)

46This uses Assumption F1 to maintain that β∗ is well defined for each e ∈[0, 1]N .
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Substituting (31) and (32) into (30) then gives:

ν (X∗|e) =

(
IX̄∗α∗ + Ieβ

∗ − 1

2
(Iα∗α∗ + Iβ∗β∗) + Iβ∗ (β∗ − e)

)
− κ (e)

=
1

2
(Iα∗α∗ + Iβ∗β∗)− κ (e) ,

giving expression (8).

For the proofs of Lemma 1 and Proposition 3A we next derive expressions for partials
∂β∗

∂ei
. This yields expressions for ξsti (e,X∗) and ξexi (e,X∗) solely in terms of Σ and e
Using u and v for row and column dummies (respectively) the system of equations giving

IRE β∗ can be written as:

[u]: β∗
u − eu

(
1 + γ2

∑

k 6=u

σukekβ
∗
k

)
= 0,

for each u ∈ {1, . . . , N}. Partial differentiating each [u] by β∗
v gives:

[fuv]:
∂[u]

∂β∗
v

=

{
−γ2euσuvev if u 6= v

1 if u = v
,

for each u, v ∈ {1, . . . , N}. In matrix form this is exactly I− γ2IeΣIe. Partial differentiating
each [u] by ei gives:

[du]:
∑

v

fuv
∂β∗

v

∂ei
+ bu = 0,

for each du ∈ {d1, . . . , dN}, where

bu :=
∂[u]

∂ei
= −β∗

i

ei
·
{

γ2euσuiei if u 6= i
1 if u = i

.

In vector form b gives
β∗
i

ei
(I−γ2IeΣIe − 2I)1i, where 1u gives the vector of zeros with a one

in row u. Solving for ∂β∗
u

∂ei
in matrix form gives the comparative static of β∗ with respect to
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ei:
47

∂β∗

∂ei
= −F−1b

= −
(
I− γ2IeΣIe

)−1
(
β∗
i

ei

(
I− γ2IeΣIe − 2I

)
1i

)

= −β∗
i

ei

(
I− 2

(
I− γ2IeΣIe

)−1
)
1i

=
β∗
i

ei

(
2
(
I− γ2IeΣIe

)−1 − I
)
1i (33)

=
β∗
i

ei

(
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i. (34)

ξsti (e,X∗) and ξexi (e,X∗) can be expressed solely in terms of Σ and e by substituting
(33) into the following expressions:

ξsti (e,X∗) : = β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k

= β∗
i 1

′
iγ

2IeΣIe
∂β∗

∂ei

ξexi (e,X∗) : =
∑

k 6=i

β∗
k

∂

∂ei
β∗
k

=
(
β∗ − 1β∗

i

)′ ∂β∗

∂ei
.

47An equivalent setup of the above is provided in Takayama (1985) [57], pgs. 403-5.
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For ξsti (e,X∗) we have:

ξsti (e,X∗) = β∗
i 1

′
iγ

2IeΣIe
∂β∗

∂ei

=
β∗2
i

ei
1′
iγ

2IeΣIe
(
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i

=
β∗2
i

ei
1′
iγ

2IeΣIe
(
I+ γ2IeΣIe

)
(
∑

τ=0

(
γ2IeΣIe

)τ
)
1i

=
β∗2
i

ei
1′
iγ

2IeΣIe

(
I+ 2

(
∑

τ=1

(
γ2IeΣIe

)τ
))

1i

=
β∗2
i

ei
1′
i

(
γ2IeΣIe∗ + 2

(
∑

τ=2

(
γ2IeΣIe

)τ
))

1i

= 2
β∗2
i

ei
1′
i

(
∑

τ=2

(
γ2IeΣIe

)τ
)
1i

= 2
β∗2
i

ei
1′
iγ

2IeΣIe
(
I− γ2IeΣIe

)−1
γ2IeΣIe1i.

For ξexi (e,X∗) we have:

ξexi (e,X∗) =
β∗
i

ei

(
β∗ − 1β∗

i

)′ (
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′ (
I+ γ2IeΣIe

)
(
∑

τ=0

(
γ2IeΣIe

)τ
)
1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′
(
I+ 2

∑

τ=1

(
γ2IeΣIe

)τ
)
1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′
(
2
∑

τ=1

(
γ2IeΣIe

)τ
)
1i

= 2
β∗
i

ei

(
β∗ − 1β∗

i

)′
(
∑

τ=1

(
γ2IeΣIe

)τ
)
1i

= 2
β∗
i

ei

(
β∗ − 1β∗

i

)′
γ2IeΣIe

(
I− γ2IeΣIe

)−1
1i.

Together:

ξsti (e,X∗) = γ42
β∗2
i

e∗i
1′
iIeΣIe

(
I− γ2IeΣIe

)−1
IeΣIe1i,

ξexi (e,X∗) = γ22
β∗
i

e∗i
(β∗ − β∗

i 1i)
′ IeΣIe

(
I− γ2IeΣIe

)−1
1i.
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One can also use Theorem 1 to substitute in corresponding expressions for β∗ and β∗
i ,

respectively, that are solely in terms of Σ and e.

Lemma 1 is established using the leading term of the Taylor expansion:

(
I− γ2IeΣIe

)−1
=

∞∑

τ=0

(
γ2IeΣIe

)τ
,

which will dominate the sum for small γ. Formal proofs are as follows.

Proof of Lemma 1 and derivations of (18) and (19). We can rewrite the expression
for ξsti (X∗, e) by expanding (I− γ2IeΣIe)

−1
as follows:

ξsti (e,X∗) = γ42
β∗2
i

e∗i
1′
iIeΣIe

(
I− γ2IeΣIe

)−1
IeΣIe1i (35)

= 2
β∗2
i

ei
1′
i

(
∞∑

τ=2

(
γ2IeΣIe

)τ
)
1i (36)

= 2
β∗2
i

ei
1′
i

(
(
γ2IeΣIe

)2
+
(
γ2IeΣIe

)3 ∞∑

τ=0

(
γ2IeΣIe

)τ
)
1i (37)

= γ42
β∗2
i

ei
1′
i (IeΣIe)

2 1i + γ62
β∗2
i

ei
1′
i (Ie∗ΣIe)

3 (I− γ2IeΣIe
)−1

1i. (38)

For the second term:

∂

∂(γ4)

(
γ62

β∗2
i

ei
1′
i (IeΣIe)

3 (I− γ2IeΣIe
)−1

1i

)
→ 0,

for each i, as γ → 0. Thus focusing on the first term:

γ42
β∗2
i

ei
1′
i (IeΣIe)

2 1i = γ22
β∗
i

ei
1′
i

[
∑

k 6=i

eiσikekekσkjej

]
1i

= γ42
β∗2
i

ei

∑

k 6=i

eiσikekekσkiei. (39)

Taking a partial derivative of (38) with respect to γ2, and with e∗i → e† as γ → 0 for each i,
we obtain expression (16):

lim
γ→+0

∂ξsti (e∗,X∗)

∂(γ4)
= 2e†5

∑

k 6=i

σikσki.

For symmetric Σ (Assumption 2A) with σki = σik, we can rewrite (41) to give expres-
sion (18), as well as the corresponding (negated) expression under network anti-symmetry
(Assumption 2B).
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Next, we can rewrite the expression for ξexi (X∗, e), again expanding (I− γ2IeΣIe)
−1
:

ξexi (e,X∗) = γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′ IeΣIe

(
I− γ2IeΣIe

)−1
1i

= 2
β∗
i

ei
(β∗ − β∗

i 1i)
′

(
∞∑

τ=1

(
γ2IeΣIe

)τ
)
1i

= 2
β∗
i

ei
(β∗ − β∗

i 1i)
′

(
γ2IeΣIe +

(
γ2IeΣIe

)2 ∞∑

τ=0

γ2τ (IeΣIe)
τ

)
1i

= γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′
(
IeΣIe + γ2 (IeΣIe)

2 (I− γ2IeΣIe
)−1
)
1i. (40)

For the second term:

∂

∂(γ2)

(
γ42

β∗
i

ei
(β∗ − β∗

i 1i)
′
(
(IeΣIe)

2 (I− γ2IeΣIe
)−1
)
1i

)
→ 0,

for each i, as γ → 0. Focusing again on the first term:

γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′ IeΣIe1i = γ22

β∗
i

ei
β∗′IeΣIe1i

= γ22
β∗
i

ei



[
∑

k 6=i

ekσkjejβ
∗
k

]N

j=1




′

1i

= γ22
β∗
i

ei

∑

k 6=i

ekσkieiβ
∗
k . (41)

Then:

lim
γ→+0

∂ξexi (e∗,X∗)

∂(γ2)
= 2e†3

∑

k 6=i

σki,

for each i, yielding expression (17).
For symmetric Σ with σki = σik, we can rewrite (41) to give expression (18):

ξexi (e,X∗) ≈ γ22
β∗
i

ei

∑

k 6=i

ekσikeiβ
∗
k = γ22

β∗
i

ei
(β∗

i − ei) ,

with the second equality using Theorem 1. This also yields the corresponding (negated)
expression under network anti-symmetry (Assumption 2B).

Proof of Propositions 3A and 3B. For part 1 of Proposition 3A, apply the implicit func-
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tion theorem to the difference (epbi − e∗i ) to give48:

∂
(
epbi − e∗i

)

∂ (γ4)
= −

∂(β∗2
i /epbi +ξsti (epb,X∗))

∂(γ4)

∂(β∗2
i /epbi +ξsti (epb,X∗)−κ′(epbi ))

∂ei

+

∂(β∗2
i /e∗i )

∂(γ4)

∂(β∗2
i /e∗i−κ′(e∗i ))

∂ei

+
∑

k 6=i

(
∂epbi
∂β∗

k

− ∂e∗i
∂β∗

k

)
∂β∗

k

∂ (γ2)
.

Taking the limit γ →+ 0 of the expression, limγ→+0
∂ξsti (epb,X∗)

∂epbi
= 0, because ξexi

(
epb,X∗

)
= 0

at γ = 0, and ξexi
(
epb,X∗

)
is C1 in γ. Thus, the denominators of the first two terms

converge to κ′′
(
e†
)
− 1, as in the proof of Corollary 1. With e∗i → epbi as γ →+ 0 with

both e∗i and epbi C1 in γ,
∂(β∗2

i /epbi )
∂(γ2)

→ ∂(β∗2
i /e∗i )

∂(γ2)
. Again noting that limγ→+0

∂β∗
i

∂e∗i
= 1 while

limγ→+0
∂e∗i
∂β∗

k

= limγ→+0
∂epbi
∂β∗

k

= 0 for each k 6= i, implying that the second sum converges to

zero as γ →+ 0, this leaves:

lim
γ→+0

∂
(
epbi − e∗i

)

∂ (γ4)
=

∂ξsti (epb,X∗)
∂(γ4)

κ′′ (e†)− 1
=

e†5
∑

k 6=i σ
2
ik

κ′′ (e†)− 1
> 0.

The second equality following from Lemma 1. By continuity of all functions in γ, this
positivity must hold for some neighborhood of γ = 0.

A similar expression can be derived for j, giving:

lim
γ→+0

∂
(
epbi − e∗i

)

∂ (γ4)
− lim

γ→+0

∂
(
epbj − e∗j

)

∂ (γ4)
=

e†5
(∑

k 6=i σ
2
ik −

∑
k 6=j σ

2
jk

)

κ′′ (e†)− 1
> 0,

the final inequality following by assumption:
∑

k 6=i σ
2
ik >

∑
k 6=j σ

2
jk. Again, by continuity of

all functions in γ, this positivity must hold for some neighborhood of γ = 0.
For part 2 of Proposition 3A, again apply the implicit function theorem to the difference

(epli − e∗i ) to give:

∂
(
epli − e∗i

)

∂ (γ2)
=





−

∂(β∗2i /e
pl
i

+ξsti (epl,X∗)+ξexi (epl,X∗))
∂(γ2)

∂(β∗2i /e
pl
i

+ξst
i (epl,X∗)+ξex

i (epl,X∗)−κ′(epli ))
∂ei

+

∂(β∗2i /e∗i )
∂(γ2)

∂(β∗2i /e∗
i
+ξst

i (epb,X∗)−κ′(e∗i ))
∂ei




+
∑

k 6=i

(
∂epli
∂β∗

k

− ∂e∗i
∂β∗

k

)
∂β∗

k

∂(γ2)


 .

∂
(
epli − e∗i

)

∂ (γ2)
=





−

∂(β∗2i /e
pl
i

+ξsti (epl,X∗)+ξexi (epl,X∗))
∂(γ2)

∂(β∗2i /e
pl
i

+ξst
i (epl,X∗)+ξex

i (epl,X∗)−κ′(epli ))
∂ei

+

∂(β∗2i /e∗i +ξsti (epb,X∗))
∂(γ2)

∂(β∗2i /e∗
i
+ξst

i (epb,X∗)−κ′(e∗i ))
∂ei




+
∑

k 6=i

(
∂epli
∂β∗

k

− ∂epbi
∂β∗

k

)
∂β∗

k

∂(γ2)


 .

48One could employ the multivariate implicit function theorem, noting that changes in e
pb
i and e∗i will

result as second-stage β∗
k for each k 6= i adjust with γ2. We avoid the multivariate implicit function theorem

finding the total derivative, summing over partials of epbi and e∗i with respect to β∗
k for each k 6= i (last term).
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Taking the limit γ →+ 0 of the expression, limγ→+0
∂ξexi (epb,X∗)

∂epbi
= 0, limγ→+0

∂ξsti (epl,X∗)
∂(γ2)

=

0 from (38), while e∗i → epli , along with all of the limits above. This leaves:

lim
γ→+0

∂
(
epli − e∗i

)

∂ (γ2)
=

∂ξexi (epb,X∗)
∂(γ2)

κ′′ (e†)− 1
=

e†3
∑

k 6=i σik

κ′′ (e†)− 1
> 0.

A similar expression can be derived for j, giving:

lim
γ→+0

∂
(
epli − e∗i

)

∂ (γ2)
− lim

γ→+0

∂
(
eplj − e∗j

)

∂ (γ2)
=

e†3
(∑

k 6=i σik −
∑

k 6=j σjk

)

κ′′ (e†)− 1
> 0,

the final inequality following by assumption:
∑

k 6=i σik >
∑

k 6=j σjk. By continuity of all
functions in γ, this positivity must hold for some neighborhood of γ = 0.

By Corollary 1 and a similar argument, e∗i > e∗j in some neighborhood of γ = 0. Taking
the meet of these two neighborhoods, as well as for each pair i, j with

∑
k 6=i σik >

∑
k 6=j σjk,

gives the result.
The proof of Proposition 3B is analogous to the above.

firm A

firm B

lobbyist

−
−

+

+

+

+

Figure 1: An oil industry and political lobbyist network
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(a) strategic complements
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Figure 2: [Example 1] equilibrium multiplicity
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Figure 3: [Example 2] unique equilibrium with negative signal response
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Figure 4: [Example 3] a network with three classes of players. Solid nodes give class x, gray
nodes give class y, white nodes give class z.
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Figure 5: [Example 3] Left: equilibrium qualities. Middle: absolute welfare difference.
Right: marginal strategic value. All: solid lines give class x, gray lines give class y, dashed
lines give class z.
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Figure 6: [Example 4] an asymmetric network
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(a) symmetric networks
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Figure 7: [Directional inefficiencies] leading terms of marginal externalities.
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Figure 8: [Example 2] welfare inefficiency of player 1 equilibrium signal quality
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Figure 9: Market with liquidity-constrained traders
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Figure 10: [Efficiency and liquidity crises] Unique equilibrium information qualities versus
number of constrained traders (# cnst.) out of eight traders. All links are of size .1, η1 = 2,
η2 = 1, and K = .01 for the cost function in Example 1, giving e† = 0.927.
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Figure 11: A job-search network
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19 Supplemental Section: Who is more Informed?

Theorem 2 offers an important step toward describing information acquisition under general
peer effects. However, the fact that β∗ is endogenously determined as a function of e∗

limits this result from providing a full description of the incentives to acquire information
as a function of player-position in the network. Here we reveal a basic challenge in the
task of characterizing exactly who acquires more information than others. In light of this
fact, we then develop a class of network structures that robustly order the relative extent
of information acquisition across players, for all γ > 0 and over the set of convex κ.1 All of
the results of this Section will refrain from assumptions on the extent (or lack of) symmetry
in pairwise peer-effects. Further, we can modify Assumption 1 requiring only the conditions
κ′(0) = 0 and κ′′′ ≥ 0. As shown in the proof of Proposition S.1, these will suffice for IAE
existence for all γ ∈ [0, 1].

Toward better understanding the players’ underlining incentives to acquire information,
a useful thought experiment is to walk through the best-response dynamic of the period
t = 1 game. We allow players to simultaneously choose their preferred ei taking as given
their current sequentially rational belief µ∗

ij (ej) for each j 6= i. Start from the profile e(1) :=
(0, . . . , 0), and for this discussion assume Assumption 1 to hold. Here, signals are neither
informative of the state nor informative of the actions of neighboring players. However, each
player –mindful of the positive direct effect that the state has on their marginal gains to
period t = 2 action– will prefer to invest in (unique) quality e† that solves e† = κ′

(
e†
)
(see

Example 15). Then, given positive quality profile e(2) = (e†, . . . , e†) and updated beliefs
µ∗
ij

(
e†
)
, correlation between players’ signals is introduced. That is, players’ signals now

inform them of what others will see and do. Players with high degree will realize an extra
kick to their marginal benefit to information in the first stage, as additional quality further
informs them of their neighbors’ t = 2 actions. Players with particularly low degree will also
obtain information regarding what their neighbor’s will see and do. However, the optimal
response to “learning neighbors will likely choose high actions” moves against their private
response to learning that their marginal gains to action are likely high. Thus, the net
responsiveness of these players’ strategies to their signals decrease. By Theorem 2, this in
turn decays the incentives to acquire precise signals in the first stage.

The direction of the best-response dynamic
{
e(n)
}∞
n=1

from n = 3 and on will depend on
the structure of the network. Whether or not high degree players will continue to invest more
in information than low degree players depends on the relative informativeness of neighbors.
Thus, though information acquisition can be ordered with respect to informational centrality
b (Σc, e), whether the ordering in this measure ultimately aligns with players’ degrees in
equilibrium depends on both (i) more delicate properties of the network Σ, (ii) the shape
of κ, and (iii) the size of γ. The potential for such sensitivity in e∗ is illustrated with the
following example.

Example S.1. Take the six-player star network with center player 1 and periphery players
i ∈ {2, . . . , 6}. We assume center-periphery peer-effects to be undirected: σi1 = σ1i = p > 0
(while σij = 0 for each pair i, j ∈ {1, . . . , 6}). Here, the center player acquires the most
information in a unique equilibrium (see Proposition S.2 below).

1For the former, this is provided the second-stage system yields a finite solution.
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Now, as depicted in Figure 1, consider adding two more players (7 and 8) with links
to the center that are weaker than those of the original periphery players: links of size cp
with c ∈ [0, 1). However, these additional players enjoy an added positive link of size q > 0
between each other, reinforcing their behavior. Now, players 2 through 6 are highly influenced
by the most central player (player 1), while players 7 and 8 place less weight on the center
but together reinforce each other’s actions.

[Figure 1]

Taking p = 1/5 and c = 0, for example. For any q > 1/5 players {7, 8} have greater
degree than players {2, . . . , 6}. As such, players {7, 8} acquire more information when γ is
sufficiently small, by Corollary 1. The ordering in a unique e∗ when γ is large, however,
will also depend on the curvature of the cost function κ. Thus, take γ = 1 and q = 6.9 for
example, we borrow again the cost function from Example 2 setting ζ = 2 and range η from
.5 to 2, yielding the black and gray cost functions depicted in Figure 2(left).

When η = .5 (low convexity) the marginal cost of information varies mildly over a wide
range of small ei values. This results in high dispersion across equilibrium qualities. In this
scenario, having access (high influence) to the center player bears heavily on the incentives
to acquire a precise signal. As seen in Figure 2(right), players {2, . . . , 6} acquire more infor-
mation than {7, 8}. If instead η = 2 (high convexity) and the marginal cost of information
varies quickly over a narrow range of small ei, equilibrium dispersion is more slight: e∗1 lies
only slightly above the equilibrium qualities of the other players. In this scenario, degree
centrality again most encourages information acquisition. As under small gamma, {7, 8}
acquires more information than {2, . . . , 6}.

[Figure 2]

Example S.1 illustrates the tautology that the curvature of information costs and the
details of the network structure work in tandem to determine the relative extent of ac-
quired qualities across players. This makes the goal of robustly ordering e∗ over players
using some fully portable centrality measure, defined solely over the network structure Σ,
unreachable. With intercentrality (Ballester et al. (2006) [5]) and Bonacich centrality mea-
sures defined solely on Σ, a one-to-one representation of equilibrium information acquisition
and the network structure can not exist. This is true even when the network is undirected
and non-negative, as Example S.1 shows.

The following begins to constrain the problem of describing information acquisition in our
general network setting. We establish network properties that suffice to order equilibrium
qualities. This ordering will be independent over γ and hold over the set of convex κ, for
at least one IAE. The properties derived will exclude examples such as the star-with-clique
above, and align the essential network properties discussed in Example S.1: degree centrality
and neighbors’ informational centralities.

First, the following definition and equilibrium notion will help to simplify the task of
describing the role of network architecture.
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Definition S.1. For given network Σ consider a partition P = {Pc}Cc=1 of {1, . . . , N}, with
subsets (“ classes”) indexed by c = 1, . . . , C ≤ N , where C := |P|.2 Then, player i’s
weighting function wi : {1, . . . , C} → R with respect to P is defined by:

wi (c) =
∑

k 6=i:k∈Pc

σik.

P gives an equivalence relation if wi (·) = wj (·) for each i, j ∈ Pt and for every c.

Weighting functions aggregate the weights that a given player places on the individual mem-
bers of each class. We will use wc (·) to denote the common weighting function of players
in equivalence class Pc. Note that an equivalence relation always exists for any network:
namely, the discrete partition of individual players. One can also find a suitably coarse rela-
tion that groups all players of equivalent objectives.3 The goal of partitioning the players in
this manner is to discard details of Σ less essential to the problem of information acquisition,
while preserving the more germane network properties that drive equilibrium dispersion in
e∗. Conducive to this goal, for any equivalence relation P an equilibrium that is symmetric
within classes will always exist.

Proposition S.1. [class-symmetric IAE] For equivalence relation P and any κ ∈ C3 with
κ′(0) = 0 and κ′′, κ′′′ ≥ 0, there exists a class-symmetric equilibrium in which β∗

i = β∗
j and

e∗i = e∗j if i, j ∈ Pc for c ∈ {1, . . . , C}.

The second half of Example 1 provides an IAE that violates class symmetry. Precisely, the
asymmetric equilibrium violates class symmetry when both players are included within the
same class.

Reflecting again on Example S.1, we see that three classes are used to induce sensitivity
in the ordering of e∗ to the shape of κ. When players place non-negative aggregate weight
on those within their class, this extent of network irregularity (i.e. three classes) is necessary
to establish such sensitivity.

Proposition S.2. [two-class networks] For equivalence relation P = {r, s} with
wr(r), ws(s) ≥ 0 and wr (r) + wr (s) > ws (r) + ws (s), and any κ ∈ C3 with κ′(0) = 0
and κ′′, κ′′′ ≥ 0, there exists a class-symmetric equilibrium such that e∗r ≥ e∗s, and where if
e∗r, e

∗
s ∈ (0, 1) then e∗r > e∗s with β∗

r > β∗
s .

Note that given e∗r > e∗s, β
∗
r > β∗

s in the last statement of the theorem is equivalent to
β∗
r > 0 by Theorem 2. Thus, signal responses are ordered with the highest degree class

moving positively with their signal. Allowing for β∗
s < 0, Proposition S.2 captures a striking

equilibrium property. For a class s moving against their information, anticipating the actions
of players in Pr, each j ∈ Ps chooses a quality that is bounded above by e∗r. With each
j’s signal used merely to infer the the actions of those in Pr, and with e∗r intrinsically

2That is,
⋃P = N with Ps ∩ Ps′ = ∅ for distinct s, s′ ∈ {1, . . . , C}.

3Equivalent in the sense that players within a class set place equivalent weights on other classes. Note
that given partitions P1 and P2 one can construct coarser partition P by joining elements P 1 ∈ P1 and
P 2 ∈ P2 to give P 1 ∪P 2 = P ∈ P when P 1 ∩P 2 6= ∅. That is, a coarsesed set of partitions can be obtained,
most often being s single coarsesed set pooling interchangeable players.
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bounding the extent of this inference, e∗r provides a natural bound on j’s incentives to
acquire information.4 This natural bound can be clearly observed above in Figure 3(right).

Next, the following notions allow for any arbitrary number of classes, and establish
alternative conditions on the network structure that suffice for an ordering in e∗, again
robust to the relative convexity in κ. This family of class-ordered networks will offer a
generalization of core-periphery-like structures, incorporating signed, weighted, and directed
links. Note that the following ordering in P is defined solely using properties of the network
Σ.

Definition S.2. We say that class r dominates class s (denoted r % s) if the following two
conditions hold:

1. wr crosses ws at most once from below: wr (c) ≥ ws (c) if c ≥ x and wr (c) ≤ ws (c) if
c ≤ x for some x ∈ {1, . . . , C}, and

2. players in Pr have degree no smaller than players in Ps:

∑C

c=1
wr (c) ≥

∑C

c=1
ws (c) . (1)

r strictly dominates s (denoted r ≻ s) if the inequality in (1) is strict.

The cumulative ordering (1) with single crossing in condition 1 imply that more central
classes are more influenced by others (have higher degree), and that these classes tend to
place relatively more weight on the most central players.

[Figure 3]

From a technical vantage point, dominance gives an appealingly weak condition that
suffices for the relative weighting functions to aggregate any non-negative, non-decreasing
function f in similar order. That is, and as illustrated in Figure 3 (left), r % s implies that
wr (c

′) must lie weakly above ws (c
′) for the highest classes c′ which give the greatest values

f (c′). Formally, this gives the following lemma.

Lemma S.1. If r % s then:

∑C

c=1
f (c)wr (c) ≥

∑C

c=1
f (c)ws (c) , (2)

for any non-decreasing function f on {1, . . . , C}: f (c′) ≥ f (c) ≥ 0 for c′ ≥ c. If r ≻ s then
the inequality in (2) is strict.

The proof of this is simple to obtain and is provided in the appendix. The following class of
network structures can now be defined. Note that the ordering in index {1, . . . , C} has thus
far been immaterial. Here, however, the ordering in P plays a more central role.

4The qualification e∗r < 1 is needed to exclude equilibria in which the classes coordinate on simultaneously
acquiring perfectly precise signals in order to move against them.
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Definition S.3. The network Σ is class ordered if there is an equivalence relation P such
that for each r ∈ {2, . . . , C} we have r % r − 1. The network Σ is strictly class ordered if
r ≻ r − 1 for each r > 1.

The class orderedness of a network establish a definitive ordering amongst its classes. The
most connected nodes will place proportionally more of their weight on precisely those classes
that are most connected in the network. Above in Example 3, Definition S.3 is satisfied under
class ordering x % y % z (see Figure 4, above). Each class’s weighting function is plotted
in Figure 3 (right). wc exhibits dominance between adjacent classes: wy single crossing wz

from below for all p ≥ 0.5

Though examples of networks of two classes may come readily (e.g. star, circle-spoke),
the range of class-ordered networks may be less obvious to the reader. The following example
lends to the scope of class-ordered structures.

Example S.2. The binary networks given in Figure 4 where each link designates positive peer
effect σij = p > 0 are class ordered. The most central class (i.e. the “core”) are given with
solid nodes, with the subsequent ordering over classes designated for representative members.
Alternatively, all of these examples are also class ordered for p < 0 with the ordering over
classes reversed.

[Figure 4]

We see that class-ordered networks encompass a wide range of structures exhibiting a natural
ordering over its players. These networks can be viewed as a generalized family of core-
periphery like structures, allowing for weighted links that may be positive, negative, or
directed. Many hierarchical6 social settings will embody these properties. And in network
formation environments, many related models of investment with endogenous link formation
–both under strategic substitutes (Bala and Goyal (2000) [4]) and complements (Hiller (2013)
[33])– have been shown to yield core-periphery structures.7

We come to the main result of the section. When the network of peer effects takes on
the above ordering, the following class-ordered equilibria always exist.

Proposition S.3. [class-ordered equilibria] If Σ is class ordered, taking r, s ∈ {1, . . . , C}
with r % s and constrain γ ∈ [0, γs). Then, for any κ ∈ C3 with κ′(0) = 0, and κ′′, κ′′′ ≥ 0,
there exists a class-symmetric equilibrium such that e∗r ≥ e∗s.

Thus, provided players always move in the direction of their signals, player degree robustly
orders signal responsiveness independent of the convexity of κ.

The appealing property of class-ordered networks is that highly central players (here,
players with the highest degree) proportionally place more of their weight on players that are

5Note that here, x % z. Such transitivity need not hold for the network to be class ordered.
6I thank Anja Prummer for suggesting the natural application to social hierarchies.
7Refer to Calvó-Armengol et al. (2011) [13] Section 5.2 for class of “hierarchical” structures that yield

properties similar to class orderedness.
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also of high centrality. Definition S.3 provides an ordering underlining such nested weighting.
In class-ordered networks, this ordering captures both value to having high degree with the
value to being connected to the most informed players. In a class-ordered equilibria, it is
precisely the neighbors with greatest degree who are most informed.

Returning the two-sided market application, if highly connected insiders are also those
that enjoy exclusivity in their clientele, informational centrality will likely be ordered ac-
cording to degree, with the network adopting a class-ordered structure. If instead the more
connected insiders tend to compete with each other for workers, as in the case of Figure 11,
the ultimate informational centralities realized by each insider will more intimately depend
on the shape of κ. Akin to Example 3, when κ displays significant elasticity yielding moder-
ate dispersion in e∗, degree centrality will dominate. If instead κ displays moderate elasticity
yielding significant dispersion in e∗, exclusivity will drive information centrality. While all
insiders on the sufficiently short side of the market under acquire information relative to the
utilitarian benchmark, exactly who most acquires and simultaneously most under acquires
information will depend on the precise properties of Σ and κ.
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G Supplemental Appendix

G.1 Section 19 proofs: Class-ordered networks

Proof of Proposition S.1. Take the compact subspace of [0, 1]N comprising all class-
symmetric vectors e:

Es :=
{
e ∈[0, 1]N : ei = ej if i, j ∈ P ∈ P

}
.

Note that Es is a closed subset of a compact space, and is thus compact. Now, take the
incentive-compatible first-stage best response correspondence for player i:

BRi (ei|µ∗
i ,β

∗) = argmax
ei∈[0,1]

Ei [ui (X
∗|ω, ωi) |ei, µ∗

i ]− κ (ei) ,

= argmax
ei∈[0,1]

1

2
β∗2
i − κ (ei) , (3)

which holds β∗
−i and µ∗

i fixed but allows β∗
i to optimally adjust to ei. The second equality

uses expression (8) derived in Section F.3. First, by the compactness of [0, 1] and continuity
of β∗

i and of κ (ei) in ei,
8 BRi (ei|µ∗

i ,β
∗) is non-empty by the Weierstrass extreme-value

theorem.
By construction, the set:

[BRi (ei|µ∗
i ,β

∗)] ∩ Es

is non-empty, and thus the restriction:

BR (e,β∗,µ∗) := [BRi (ei|µ∗
i ,β

∗)] ∩ Es, (4)

is a well defined vector-valued mapping from Es → Es. By continuity of β∗ and κ in e ∈ [0, 1]
a compact set, and applying the Maximum theorem, BR (e,β∗,µ∗) is upper hemicontinuous.
Marginal gains to information are given by:

β∗2
i /ei = ei

(
1 +

∑

k 6=1

σikekβ
∗
k

)2

by Theorem 1, which is linear in ei by incentive compatability (µ∗
k and β∗

k are held fixed)
and obtains β∗2

i /ei = 0 at ei = 0. When κ′(0) = 0 and κ′′′ ≥ 0, each BRi (e,β
∗,µ∗) is

convex valued: if β∗2
i /ei > κ′(ei) for some ei then β∗2

i /e′i > κ′(e′i) for each e′i > ei, and if
β∗2
i /ei < κ′(ei) then β∗2

i /e′i < κ′(e′i) for each 0 < e′i < ei (excluding ei = 0 which gives a
minimum).9 BR (e,β∗,µ∗) then gives a convex polyhedron in [0, 1]N . Then, by Kakutani’s
fixed point theorem, BR (e,β∗,µ∗) yields a fixed point in Es. By construction of Es, the
properties of the fixed point satisfy those of the theorem.

8Continuity follows from Assumptions F1 and κ ∈ C.
9With κ′(0) = 0 and κ′′′ ≥ 0, each BRi (e,β

∗,µ∗) will either (i) give a unique value in [0, 1] if κ′′′ > 0 or
(i) give a corner or the entire unit interval if κ′′′ = 0 (quadratic κ).

185



Proof of Proposition S.2. Assuming quality profile er ≥ er we show that there exists a
first-stage best response for class r weakly above every best response for class s. Write the
system giving the IRE as a function of (er, es):

[1] β∗
r − (er + γ2er (wr (r) erβ

∗
r + wr (s) esβ

∗
s )) = 0

[2] β∗
s − (es + γ2es (ws (s) esβ

∗
s + ws (r) erβ

∗
r )) = 0

.

Together these imply:

β∗
r =

er (1 + γ2e2s (wr (s)− ws (s)))

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

, (5)

β∗
s =

es (1 + γ2e2r (ws (r)− wr (r)))

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

. (6)

Multiplying by er and es, respectively:

erβ
∗
r =

e2r (1 + γ2e2s (wr (s)− ws (s)))

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

,

esβ
∗
s =

e2s (1 + γ2e2r (ws (r)− wr (r)))

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

.

With er ≥ es, then erβ
∗
r ≥ esβ

∗
s is implied by:

wr (s)− ws (s) > ws (r)− wr (r)

⇔ wr (s) + wr (r) > ws (r) + ws (s) ,

which is assumed.
Now, rewriting the system as:

[1] β∗2
r = erβ

∗
r (1 + γ2 (wr (r) erβ

∗
r + wr (s) esβ

∗
s ))

[2] β∗2
s = esβ

∗
s (1 + γ2 (ws (s) esβ

∗
s + ws (r) erβ

∗
r ))

.
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β∗2
r − β∗2

s = erβ
∗
r − esβ

∗
s + γ2

(
erβ

∗
r (wr (r) erβ

∗
r + wr (s) esβ

∗
s )

−esβ
∗
s (ws (s) esβ

∗
s + ws (r) erβ

∗
r )

)

= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r




(
wr (r)

erβ∗
r

esβ∗
s

+ wr (s)
)

−
(
ws (s)

esβ∗
s

erβ∗
r

+ ws (r)
)



= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r

(
wr (r)

(
erβ∗

r

esβ∗
s

− 1
)
− ws (s)

(
esβ∗

s

erβ∗
r

− 1
)

+(wr (r) + wr (s))− (ws (s) + ws (r))

)

= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r

(
(erβ

∗
r − esβ

∗
s )
(

wr(r)
esβ∗

s

+ ws(s)
erβ∗

r

)

+(wr (r) + wr (s))− (ws (s) + ws (r))

)

=

(
(erβ

∗
r − esβ

∗
s ) (1 + γ2 (wr (r) erβ

∗
r + ws (s) esβ

∗
s ))

+γ2esβ
∗
serβ

∗
r (wr (r) + wr (s))− (ws (s) + ws (r))

)
.

If wr (r) and ws (s) are positive, then β∗2
r − β∗2

s ≥ 0 is implied by (wr (r) + wr (s)) −
(ws (s) + ws (r)) > 0 (with strict inequality when es, er > 0), which are all assumed. Take any
class-symmetric e and β that satisfy er ≥ es. Again denoteBR (e|µ∗,β∗) := [BRi (ei|µ∗

i ,β
∗)]

from the proof of Proposition S.1. For each j ∈ Ps and any ej ∈ BRj

(
ej|µ∗

j ,β
∗
)
, by The-

orem 2 we must have either ej = 1 with ejκ
′ (ej) < β∗2

j or ej < 1 with ejκ
′ (ej) = β∗2

j for ej
to be a best response. Thus, in either case by β∗2

r ≥ β∗2
s , the marginal gain β∗2

r /ej ≥ β∗2
s /ej

when ei is set to ej, implying that any i ∈ Pr would have a profitable deviation up away
from ej. This then implies existence of some ei ∈ BRi (e|µ∗

i ,β
∗) ≥ ej.

Now take the compact subspace of [0, 1]2 that includes all weakly increasing class- sym-
metric vectors e: E+ := {e ∈[0, 1]2 : ei ≥ ej, i ∈ Pr, j ∈ Ps}. Note that E+ is a closed subset
of a compact space, and is thus compact. By the above, BR (e|µ∗,β∗)∩Es∩E+ is non-empty,
and thus the restriction:

BR (e|µ∗,β∗) := BR (e|µ∗,β∗) ∩ Es ∩ E+,

where Es is given by (G.1), is a well defined mapping from Es∩E+ → Es∩E+. By continuity

of β∗ and κ in e ∈ [0, 1] a compact set, and applying the Maximum theorem, BR (e|µ∗,β∗)
is upper-hemicontinuous. κ′(0) = 0 and κ′′′ ≥ 0 again suffice for BR (e,β∗,µ∗) to be convex

valued (see proof of Theorem S.1). By Kakutani’s fixed point theorem, BR (e|µ∗,β∗) yields
a fixed point in Es ∩ E+.

Finally, we show that e∗r > e∗s and β∗
r > 0 when e∗r, e

∗
s ∈ (0, 1). Rewriting (5) and (6)

evaluated at IAE with e∗r ≥ e∗s:

β∗
r

e∗r
=

(1 + γ2e∗2s (wr (s)− ws (s)))

(1− γ2wr (r) e∗r) (1− γ2ws (s) e∗s)− γ4wr (s)ws (r) e∗2r e∗2s
,

β∗
s

e∗s
=

(1 + γ2e∗2r (ws (r)− wr (r)))

(1− γ2wr (r) e∗r) (1− γ2ws (s) e∗s)− γ4wr (s)ws (r) e∗2r e∗2s
.

If β∗
r < 0, this implies that γ2e∗2s (wr (s)− ws (s)) < 1, which implies also that

γ2e∗2r (ws (r)− wr (r)) < 1 and γ2e∗2r (ws (r)− wr (r)) < γ2e∗2s (wr (s)− ws (s)) by
(ws (r)− wr (r)) < (wr (s)− ws (s)) and e∗2r ≥ e∗2s . Thus, β∗

s/e
∗
s < β∗

r/e
∗
r, implying that
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β2∗
s /e∗s > β∗2

r /e∗r, and thus by Theorem 2 that e∗s > e∗r as e∗r < 1, yielding a contradiction.
Thus β∗

r > 0 with β∗2
r > β∗2

s by the above, implying that e∗r > e∗s.

Proof of Lemma S.1. Let x be defined as in Definition S.2. Rearranging the second part
of Definition S.2 gives:

∑
c≥x

(wr (c)− ws (c)) ≥
∑

c<x
(ws (c)− wr (c)) . (7)

Then, rearranging the result:

C∑

c=1

f (c)wr (c)−
C∑

c=1

f (c)ws (c) =

( ∑
c≥x f (c) (wr (c)− ws (c))

−∑c<x f (c) (ws (c)− wr (c))

)

≥
( ∑

c≥x f (x) (wr (c)− ws (c))
−∑c<x f (x) (ws (c)− wr (c))

)

= f (x)

( ∑
c≥x (wr (c)− ws (c))

−∑c<x (ws (c)− wr (c))

)

≥ 0.

The first inequality follows from f (·) non-decreasing, while the second inequality follows
from (7) and f (x) ≥ 0. The final inequality is strict if f (c) > 0 for each c and r ≻ s.

Proof of Proposition S.3. We use class indices for all strategies and weighting functions,
when convenient. First, we will need the following definitions and Lemma. Take i ∈ Pr ∈ P
and j ∈ Ps ∈ P\ {Pr}. Take any class- symmetric e that satisfies the conditions of the
theorem. The set of class-ordered profiles:

E+ :=
{
e ∈[0, 1]N : ei ≥ ej or each i ∈ Pr, j ∈ Ps with r ≥ s

}

is a closed, compact subset of R2N . By i’s first order condition of the IRE:

β∗
i = β∗

r = er

(
1 + γ2

∑

c

wr (c) ecβc

)
. (8)

Denote as a function of e and β:

Λr :=
∑

c

wr (c) ecβc.

Λr captures the size of the aggregate peer effect on i in β∗. Analogous expressions can be
derived for class s. By our choice of (e,β) and with γ ∈ [0, γs), ecβc is non-negative and
non-decreasing across classes. By the class orderedness of Σ and Lemma S.1, the factor
(1 + γ2

∑
cwr (c) ecβc) must also be increasing across classes, and by our choice of e the
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vector of optimal responses β∗ must also respect the ordering β∗
r ≥ β∗

s if and only if r ≥ s.
We can now establish the following Lemma.

Lemma S.B.1. If γ ≤ γs, Σ is class ordered and e is class ordered (i.e. weakly increasing
across classes), then for i ∈ Pr, j ∈ Pr−1, and for every ej ∈ BRj

(
ej|µ∗

j ,β
∗
)
, there exists

ei ∈ BRi (ei|µ∗
i ,β

∗) with ei ≥ ej.

Proof of Lemma S.B.1. Again use BRi (ei|µ∗
i ,β

∗) to denote i’s first-stage incentive- com-
patible best response. If β∗

s ≥ 0 then β∗2
r ≥ β∗2

s . For any ej ∈ BRj

(
ej|µ∗

j ,β
∗
)
, by Theorem

2 we must have either ej = 1 with ejκ
′ (ej) < β∗2

j or ej < 1 with ejκ
′ (ej) = β∗2

j for ej to be
a best response. Thus, in either case by β∗2

r ≥ β∗2
s , the marginal gain β∗2

r /ej ≥ β∗2
s /ej when

ei is set to ej, implying that any i ∈ Pr would have a (weak) profitable deviation up away
from ej. This then implies existence of some ei ∈ BRi (e|µ∗

i ,β
∗) ≥ ej.

The proof proceeds analogous to that of Proposition S.1. Take BRi (ei|µ∗
i ,β

∗) the
incentive-compatible best-response correspondence for i in her first-stage problem, holding
µ∗

−i and β∗
−i fixed. The set:

[BRi (ei|µ∗
i ,β

∗)] ∩ Es ∩ E+

is non-empty by construction,10 and thus the restriction:

BR (e,β∗,µ∗) := [BRi (ei|µ∗
i ,β

∗)] ∩ Es ∩ E+

is a well defined vector-valued mapping from Es ∩ E+ → Es ∩ E+. By continuity of β∗ and

κ in e ∈ [0, 1] a compact set, and applying the Maximum theorem, BR (e,β∗,µ∗) is upper-
hemicontinuous. κ′(0) = 0 and κ′′′ ≥ 0 again suffice for BR (e,β∗,µ∗) to be convex valued

(see proof of Theorem S.1). By Kakutani’s fixed point theorem, BR (e,β∗,µ∗) yields a fixed
point in Es ∩ E+. By construction of Es and E+, the properties of the fixed point satisfy
those of the theorem.

10To include r > s+ 1, Lemma S.B.1 is used here r − s times.
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Figure 1: [Example S.1] star with clique
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Figure 2: [Example S.1] Sensitivity in e∗ ordering to κ.
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Figure 3: Left Dominance orders weighting functions to aggregate any non-negative, non-
decreasing f in similar order. Right The network in Example 3 (Figure 4) is class ordered
for all p > 0.
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Figure 4: [Example S.2] class-ordered networks
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