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Heterogeneous hardware is becoming increasingly available in modern hardware, while

research breakthroughs enforce the expectation that heterogeneity will keep increasing in the

future. Significant gains can be achieved via appropriate utilization of heterogeneity, in terms of

performance and power consumption, however, poor utilization can have a detrimental effect.

Intelligent scheduling and resource management is a crucial challenge we need to overcome in

order to harvest the full potential of heterogeneous hardware. As systems become larger and

include greater levels of hardware diversity, the importance of intelligent scheduling and resource

management is further accentuated.

This dissertation presents techniques that aid the process of scheduling and resource
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management in the presence of heterogeneous hardware, via accurately predicting upcoming

runtime events. With a proactive and accurate view of the near future, schedulers can utilize the

underlying hardware more efficiently, and fully take advantage of the available benefits.

By adapting a majority element heuristic, this dissertation significantly improves the

accuracy of predicting memory addresses about to be accessed, while reducing prediction-

related costs by a factor of ten thousand compared to previously proposed predictive approaches.

Coupled with novel microarchitectural modifications, accurate address predictions are shown to

improve the performance of heterogeneous memory architectures.

Machine learning-based performance predictors are further presented, capable of predict-

ing a program’s performance when executed on a given general-purpose core. Trained to model

the subtleties of the interaction between hardware and software, these predictors are capable of

generating highly accurate predictions even for cores with varied Instruction Set Architectures.

Utilizing these performance predictions for job scheduling, is shown to improve overall system

performance. The trained predictors are further examined and interpreted in order to visualize

the correlations between features picked up and amplified during training.

Finally, this dissertation demonstrates that scheduling algorithms cannot guarantee de-

riving an optimal schedule during realistic execution scenarios due to the underlying hardware

heterogeneity, the wide range of runtime requirements of software, as well as prediction er-

ror from performance predictors. In response, deep neural networks are trained to select one

scheduling approach from a list of options with varied overheads and correctness guarantees. The

scheduling approach chosen, is the one which will most likely return the highest-performance

schedule with the lowest overhead, given a particular instance of the job-to-core assignment

problem.
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Chapter 1

Introduction

Recent years have seen an increase in interest in heterogeneous hardware, both in industry

and in the research literature. The requirements of modern software have grown more diverse

and consequently, homogeneous general-purpose processors designed to perform well on the

average case, can prove over- or under-provisioned for executing one given program. In response

to the ever-growing computational needs of the modern world, hardware heterogeneity allows

for varied hardware to coexist in a same processor, providing a wide range of computing options.

Heterogeneous memory architectures for example, can accelerate software by serving data

from the memory with the highest bandwidth. Compute-bound programs which can utilize the

majority of available resources can be assigned on big high-performance cores. Memory-bound

software that spends most of its execution time idle waiting for data retrieval can run on slower,

power efficient cores.

Hardware heterogeneity creates the potential for significant benefits, such as increased

performance and reduced power consumption. Harvesting its full potential however, is challeng-

ing, as it requires effectively assigning diverse tasks with constantly changing resource needs,

to the best combination of hardware engines at any point in time. The larger the system and

the greater the level of diversity, the more difficult it is to find the best solution. Homogeneous

systems do not present this challenge, as all execution options are expected to result in roughly

equivalent performance and power consumption. In contrast, heterogeneous systems need careful
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scheduling, as the effects of poor assignment decisions can waste resources, or negatively impact

performance.

This dissertation focuses on designing high-quality schedulers and resource managers for

heterogeneous architectures and systems, by predicting near-future runtime events. Throughout

this document, a variety of predictive approaches are proposed, presented, and evaluated, ranging

from simple heuristics, to trained machine learning models, and deep neural networks. These

predictors are shown to improve three aspects of execution on heterogeneous hardware: First,

the performance of main memory improves by accurately predicting which memory addresses a

running program is about to access. This information allows a memory manager to transparently

migrate data between the available memory technologies that coexist in a system, maximizing

the amount of data served from the faster memory. Second, predictors are shown to be able to

learn, through training, the interaction between software and hardware and accurately predict

the runtime performance of a program-core pair. This information is later used by a scheduler

to generate a program-to-core assignment that maximizes overall system performance. Finally,

deep neural network models are trained to select the best scheduling algorithm to generate this

program-to-core assignment from a selection of schedulers that vary in their overhead and system

performance derived from the assignments they generate.

Heterogeneity in a general-purpose processor can take a number of forms:

Heterogeneous Memory Architectures [84, 90, 69, 72, 27]: These systems include two (or

more) different main memory technologies and organization schemes, such as non-volatile

memories (NVDRAM) [73, 91] like Phase-Changing Memory (PCM) [86], High-Bandwidth

Memory (HBM) [49, 50] and Hybrid Memory Cube (HMC) [85]. In systems with Heterogeneous

Memory Architectures, the address space can be managed as a contiguous range of addresses

that spans the capacity of all existing memories combined (flat address space) [72, 96, 27], or

with one memory used as a large, Last-Level Cache (LLC) [90, 28, 38, 77, 65, 48].

Heterogeneous Multicore Architectures [62, 63]: These architectures allow for the co-packaging

of heterogeneous general-purpose processing cores that differ in their micro-architectures. For
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example, one core can be high-performance, have a large instruction window and execute in-

structions out-of-order, while another core can be low-performance, with a simple in-order,

power-efficient pipeline. Processor manufacturers are already offering such heterogeneous mul-

ticore products [37, 3, 4, 42, 1, 2]. Heterogeneous multicore architectures can include diverse

cores, however, these cores must implement the same Instruction Set Architecture (ISA). The

ISA is the set of low-level instructions a processor understands (i.e. can execute). Two cores

with the same ISA can execute the same program without recompiling it.

Heterogeneous-ISA Multicore Architectures [32, 108, 106, 10, 105]: Heterogeneous-ISA

multicore architectures allow for the divergence of not only the micro-architecture of cores, but

also their ISAs. Due to the incompatibility between the cores’ ISAs, freely migrating an executing

program between cores becomes especially challenging. Prior work has developed a compilation

and runtime infrastructure to allow for such migrations to take place [32, 108]. Furthermore,

prior work has demonstrated that the coexisting ISAs can be derived from modifications on a

single ISA [106], partly alleviating some of the runtime complexity, but also alleviating concerns

about the market viability of such products, since otherwise it could only be done if major

competing manufacturers agree to collaborate and share their ISAs.

Accelerator-based heterogeneity: This type of heterogeneity utilizes highly optimized hard-

ware, that can only execute narrow sets of applications: Application Specific Integrated Circuits

(ASICs) [97] are designed to execute a single task with the utmost efficiency. Field Pro-

grammable Gate Arrays (FPGAs) [18] also accelerate specific tasks, and further provide the

ability to reprogram as needed for a different task. Graphics Processing Units (GPUs) can extract

massive performance gains from highly-parallelizable software [80]. As such they are used

in the majority of scientific High Performance Computing (HPC) applications [99, 40, 56, 95]

and populate the world’s fastest supercomputers alongside general-purpose processors [43].

Typically, a general-purpose core is required to drive these accelerators, by transmitting neces-

sary data, and coordinating execution. Due to the lack of generality of these accelerators, this

dissertation focuses on systems with all-general-purpose hardware (Heterogeneous Memory and
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heterogeneous(-ISA) multicore architectures)

1.1 Achieving Accurate Predictions

Successful and accurate predictions require an understanding of the underlying environ-

ment and the context under which the predictions occur. For example, predictive approaches for

heterogeneous memories do not necessarily adapt well to the context of heterogeneous multicores.

This section introduces the key concepts that contribute to high-quality predictions for each form

of heterogeneity.

1.1.1 Heterogeneous Memory Architectures

In the presence of different main memory technologies, the problem of resource allocation

reduces to that of data partitioning. In other words, a successful memory controller will ensure

that data is physically stored in the appropriate memory type, in such a way as to accelerate

program execution, reduce power consumption, or improve the reliability of data.

A simple example assumes the presence of two memories: a small and fast, and a slower

and larger. Ideally, all data touched by a program would be serviced from the fast memory, but its

limited capacity imposes a challenge. To overcome, a memory controller can attempt to predict

the data about to be accessed and transparently transfer it into the fast memory during times of

low memory activity.

The problem is similar to that of data prefetching for cache memories. Main memory

however, operates at larger granularity than caches, rendering many pre-fetching approaches

unsuccessful when deployed on main memories. A cache line is typically 64B, while a main

memory page is 2KB and contains multiple cache lines.

Chapter 2 of this dissertation presents “MemPod”; a proposal towards more efficient

Heterogeneous Memory Architectures. MemPod features a novel clustered architecture which

groups sets of memory channels of the two participating kinds of memories into independent

“Pods”. This divide-and-conquer approach simplifies bookkeeping overheads and allows for
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better scalability to larger memories with potentially more channels. Besides the novel microar-

chitectural proposal, MemPod also features a powerful and lightweight predictive unit which is

based on the “Majority Element Algorithm” (MEA) [55, 22].

The exploration presented in Chapter 2 reveals that in order to design an accurate

predictor, we must strike the right balance between spatial (accessing neighboring data; for

example iterating through an array of values), and temporal (re-accessing the same data soon

after it was accessed) locality. Programs exhibit a wide spectrum of runtime behavior in regards

to data access. Some are highly predictable and follow strict patterns, while others are more

chaotic and consequently less predictable. The MEA predictor successfully balances the two

kinds of locality: While it assigns significant weight to those memory pages that have been

accessed heavily, it strikes a balance by also assigning high weight to the few most recently

accessed pages. Compared to traditionally used prediction techniques, this predictor is shown to

be more flexible and as a result more accurate in a wider range of applications. Furthermore, by

adapting a lightweight bookkeeping scheme originally proposed for big data management, the

cost of main memory predictions reduces by more than ten thousand times compared to other

techniques.

This predictor and its accompanying proposed microarchitectural modifications, has been

published in the 23rd Symposium on High Performance Computer Architecture (HPCA 2017).

Furthermore, in collaboration with Advanced Micro Devices (AMD), part of this work has also

been patented on May, 2019 (Patent No: US 10,282,292 B2).

1.1.2 Heterogeneous(-ISA) Multicore Architectures

Heterogeneous and heterogeneous-ISA multicore architectures present a different prob-

lem than memories: Given a number of cores (let’s assume N cores) and an equal number of

workloads to be executed, we want to find a one-to-one mapping of jobs to cores, such that it

maximizes the system’s performance.

This dissertation proposes, evaluates and presents performance predictors, capable of
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predicting the runtime performance of arbitrary workload-core pairs. These predictors generate a

square, N×N matrix of predictions, which is then passed to the scheduler for the last step of

creating a job assignment.

The problem of performance prediction for heterogeneous-ISA architectures presents a

new set of challenges compared to memory address prediction: Software and hardware interacts

in ways that are not easily predictable. For example, if a change in hardware (say doubling the

L1 cache size) improves the performance of program A by 50%, we cannot expect the same

impact on program B. Depending on B’s runtime behavior, this particular change in hardware can

present no impact whatsoever, or affect it at a different degree. Software-hardware interaction

cannot be well fitted with a simple function, instead more capable predictive structures need to

be deployed.

Finally, allowing the ISA to differ between cores, raises the difficulty of this prediction

problem, since software no longer behaves the same way when (compiled for and) executed on

cores of different ISAs.

In Chapter 3, we investigate the capabilities of performance predictors in a heterogeneous-

ISA setting, as well as the predictors’ effects on scheduler quality. We follow an unbiased feature

selection methodology to identify the optimal set of features for this task, instead of pre-selecting

features before training. We propose metrics that bridge the gap between traditional prediction

accuracy metrics and a scheduler’s performance. We further present our evaluation methodology,

which was meticulously designed with this study in mind, and finally, we incorporate our

findings in ML-based schedulers and evaluate their sensitivity to the underlying system’s level of

heterogeneity.

This work has partly been published in the 10th International Workshop on Programming

Models and Applications for Multicores and Manycores (PMAM 2019, held in conjunction

with PPoPP 2019). Other aspects of the same project have been published in the proceedings of

the International Conference on Embedded Computer Systems: Architectures, MOdeling and

Simulation (SAMOS 2019).
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1.1.3 Scheduler Selection

Generating a performance prediction matrix as described earlier, is only the first step of

solving the scheduling problem for heterogeneous(-ISA) multicore architectures. Concluding

to a schedule is equivalent to the mathematical problem of finding a row permutation of this

prediction matrix, such that the sum on its diagonal is maximized. The diagonal of this matrix

corresponds to the one-to-one job allocation, since its rows correspond to workloads and its

columns to cores.

The “Hungarian” algorithm [51] solves this problem and guarantees finding (one of) the

optimal schedules (row permutations) in polynomial algorithmic complexity. Consequently, the

existence of such a scheduler is often assumed in proposals on performance prediction in the

literature. We find however, that this algorithm does not scale well to larger chips with higher

number of cores. Alternatively, many heuristics exist that exhibit lower algorithmic complexities,

but do not guarantee an optimal solution.

Chapter 4 presents “Agon”: a competitive scheduling approach, designed to scale to

large heterogeneous (and heterogeneous-ISA) multicore systems. We find that the input to the

scheduling problem (the particular selection of cores and workloads) can shift the scales in favor

of lower-overhead, lower-performance schedulers. Furthermore, performance prediction error

can render a scheduler incapable of finding a good schedule, regardless of its complexity and

level of detail. Finally, as the size of heterogeneous multicore systems increases, the highest

performing schedulers will not be a viable option due to their scalability issues, regardless of the

added performance they can potentially offer. In this chapter, we train an artificially intelligent,

competitive scheduler that selects a scheduling approach, depending on the current state of

the system. Choices range from the most accurate hungarian algorithm, all the way down to a

random scheduler. Agon is capable of choosing the optimal scheduler with accuracy up to 93%.

Consequently, the system’s performance improves compared to a system equipped with only

a hungarian scheduler (the best scheduler on average). Performance of systems equipped with
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Agon is within 1% of the performance of a system equipped with an oracular scheduler arbiter.

Joined with our work on high-quality performance predictions, our scheduler selector

completes our proposal on scheduling for heterogeneous-ISA multicore architectures. This work

is being prepared to be submitted for publication at the time of writing this dissertation.
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Chapter 2

MemPod: A Clustered Architecture for
Efficient and Scalable Migration in Flat
Address Space Multi-level Memories

This Chapter introduces MemPod, a dynamic memory manager for flat address space

memory configurations that is area efficient and high performance. It scales particularly well to

future technologies with higher memory technology performance differentials.

In the heart of MemPod lies the “Majority Element Algorithm” (MEA) [55, 22]: A low

overhead, high accuracy predictive algorithm, originally proposed for big data management

and other database related applications, adapted to the needs and challenges of memory activity

tracking and prediction. Studying this algorithm, reveals an interesting failure mode: Since

memory activity can in no way guarantee the assumptions of the algorithm, we know beforehand

that the algorithm would “fail”. In failing however, it favors temporal locality - those memory

accesses that happened most recently. This likely unintended feature, since it has no effect on

the originally planned uses of the proposed algorithm, is extremely beneficial in the context of

memory activity monitoring.

MemPod’s novel microarchitectural design, clusters existing memory controllers into

memory “Pods”. Each Pod operates independently and in parallel, allowing for better scalability

and integration to future systems with larger and faster memories and possibly a higher number

of channels.
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Throughout the course of this Chapter, we demonstrate how the lightweight and accurate

predictive MEA unit, combined with MemPod’s microarchitectural optimizations, leads to

significant performance improvement.

2.1 Background

Die-stacked memory will increasingly be part of future systems, attempting to alleviate

the memory wall [114]. Memory standards have been developed [47, 49, 84] and processor

manufacturers are already announcing products featuring 3D-stacked memory [46, 82, 14, 7]. At

the time of publication, this technology was limited to 8GB per stack [50] which does not fully

address the capacity demands of modern systems. Therefore, die-stacked memories are expected

to coexist with larger, slower off-chip memories, such as DDR4 or emerging byte addressable

NVRAM [73, 91, 86] technologies, in a configuration often referred to as “Two-Level Memory”

(TLM) [27, 72].

Stacked memory can be used as a large, high-bandwidth last level cache, or as part of main

memory in a “flat address space”. When used as a cache, recent research [27, 90] demonstrates the

need to re-evaluate traditional SRAM-based cache organizations. Tag placement and granularity

need to be re-evaluated, and we should avoid double memory accesses for tag check and data

retrieval. Managing stacked memory as a cache is transparent to the software and improves the

performance of latency-sensitive applications. However, capacity-sensitive applications do not

gain significant improvements as the stacked memory’s (typically significant) capacity is not

utilized for additional storage.

In a flat address space configuration, the capacity of stacked memory can be allocated

and used by applications. Dynamic memory managers proposed in the literature [96, 72, 27]

monitor and profile memory accesses and attempt to transparently migrate frequently accessed

pages to the fast portion of memory. While exposing more memory to the system, profiling

memory accesses and performing transparent migrations often come with power, performance,
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and space overheads.

Software migration schemes [72] have high performance overheads and operate at coarse

intervals, and thus are slow to adapt to changes in application phases. Recently proposed

hardware managed schemes [96, 27] operate at finer granularity than software by either using

simple, cache-like demand-driven migration or using a centralized management scheme. The

former does not consider “hotness” of data, whereas the latter will not scale to large memories

due to its centralized approach.

2.2 Related Work

A wide range of research proposals have sought to address the memory wall. Techniques

such as Bump[110], RMM[54] and Superpages[33] attempt to optimize page placement in

memory to expose higher parallelism. However, these scheduling mechanisms do not take

advantage of a faster memory in a hybrid configuration.

Stacking DRAM dies in the processor package has been shown to achieve significant per-

formance improvement. This technology cannot yet deliver large capacities [50]. Consequently,

configurations combining stacked and off-chip memories have been proposed [69, 90] and can

be found in the literature as “hybrid memories” or “two-level memories”. The systems have

proposed the use of the stacked memory either as a large high-bandwidth last level cache or as a

“flat address space”, where the capacity of the stacked memory is exposed to the software.

Organizing stacked memory as a cache has been explored in several studies [90, 28, 38,

77, 65, 48]. These approaches implement intelligent tag stores to allow cache-like operation

while mitigating the cost of reading tags in DRAM. It has been demonstrated that traditional

SRAM-tailored cache optimizations result in degraded performance when used in a DRAM cache

and as such we need to “de-optimize for performance” [90]. DRAM cache organizations have

been shown to improve performance significantly in latency-limited applications, while offering

only marginal improvement with capacity-limited applications. It’s been shown that exposing
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the extra capacity to the application instead of using it as a cache can benefit capacity-limited

applications. To this end, recent work [72, 96, 27] proposes mechanisms to manage stacked

memory as a flat address space.

HMA [72] is a HW/SW mechanism that attempts to predict frequently accessed pages

in memory and, at predefined intervals, migrate those pages to fast memory. HW support

is required for profiling memory accesses using counters for each memory page, while the

migration is handled by the OS. Due to the costly OS involvement, HMA’s intervals are kept

large. Additionally, the hardware cost of its profiling counters is high. However, HMA is capable

of managing migrations in a flat address space without the need of additional bookkeeping for

finding migrated pages as the OS can update page tables and TLBs to reflect migrations.

Sim, et al. proposed a technique for transparent hardware management of a hybrid

memory system [96], which we will refer to as “THM”. THM does not require OS intervention

while managing migrations. In order to keep bookkeeping costs manageable, THM allows

migrations only within sets of pages (called segments). Each segment includes one fast memory

page and a set of slow memory pages. The slow pages of each segment can only migrate to the

one fast page location, and any such migration results in the eviction of the currently-residing

page. THM monitors memory accesses with one “competing counter” per segment resulting in a

low cost profiling solution. Finally, THM supports caching part of its structures on chip while

the rest is stored in memory.

CAMEO [27] proposes a cache-like flat address space memory management scheme in

an attempt to close the gap between cache and flat memory organizations. CAMEO operates

similarly to THM, however it does so at the granularity of cache lines (64B). Migrations are

restricted within segments with one fast line location per segment. Its bookkeeping structures are

entirely stored in memory, while a “Line Location Predictor” attempts to save some bookkeeping-

related accesses by predicting the location of a line. CAMEO initiates a line migration upon

every access to slow memory.

Both THM and CAMEO sacrifice migration flexibility for area efficiency by restricting
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migrations in segments: if more than one hot page/line exists within the same segment only one

can reside in fast memory. If no hot pages exist in a segment, its fast page cannot be utilized by

another segment. Further, THM’s competing counters can lead to false positives, allowing a cold

page to migrate to fast memory, while CAMEO can incur high migration traffic as every access

could induce a migration.

Spatial locality of applications can affect performance negatively when THM or CAMEO

are used. Continuous pages or lines that lie within the same segment of each mechanism can be

accessed frequently. THM is less susceptible to such issues because of its coarser granularity

and the use of competing counters that will prevent a “ping-pong” effect. CAMEO, however is

significantly affected. This issue is further exacerbated when the ratio between slow and fast

memory capacities is increased. In such scenarios, under a configuration with 1:8 fast:slow

memory ratio, both mechanisms suffer from reduced migration flexibility, e.g. forcing 8 slow

pages to fight over a single fast page or line. In CAMEO’s case, since every access to a slow line

triggers a migration, a high slow-fast capacity ratio can result in the majority of accesses going

to slow lines, causing a migration in every case.

2.3 Predicting Hot Regions With MEA

Migration mechanisms predict future hot pages to migrate them into fast memory. Pre-

diction accuracy is critical to high performance, as each migration must be amortized by many

future accesses to justify the cost of migration. A commonly used practice is to identify the

hot regions within an interval and assume that those regions will be hot in the next interval.

To accurately identify the hottest regions some mechanisms use an access counter per region.

At the end of each interval the counters are sorted to identify the highest ranked (i.e., most

accessed) regions. However, application phase changes could render this approach unsuccessful.

Additionally, the number of necessary counters increases linearly as memory capacities grow.

To address the above limitations, we adopt a technique based on the Majority Element
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Algorithm 1: Majority Element Algorithm

Input: X: Set of N elements
Input: K: Number of elements to output
Data: T: Map structure with K entries
Result: Set of K majority elements

Initialization: T ← /0

foreach i ∈ X do
if i ∈ T then

T [i]← T [i]+1;
else if |T |< K−1 then

T [i] = 1;
else

forall j ∈ T do
T [ j]← T [ j]−1;
if T [ j] == 0 then T ← T \ j;

end
end

end

Algorithm (MEA). MEA was originally proposed by Karp et al. [55] and was studied in-depth by

Charikar et al. [22] for database management and big data analytics. This heuristic has formally

been proven to correctly identify the K most frequently occuring elements of a set, when each of

those elements appears more than N
K+1 (i.e. has majority), where N is the number of elements in

the input set.

MEA is presented in Algorithm 1 as applied to an array of integers X. A map structure T

maps K element IDs (in our integer array example, IDs are the integers’ values) to K counters.

Looping through the array, if the next integer exists in the map, its counter is incremented by

1. Otherwise, if there’s enough room in the map a new entry is added with a count of 1. If the

number does not exist in the map and all K counters are occupied, MEA subtracts 1 from every

counter, removes the entries with a counter value of 0 and proceeds to the next integer. Once the

entire array is processed, the map entries hold the majority elements.
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A hardware implementation of MEA requires a mapping from page IDs to counters, as

well as the area overhead of the counters themselves. On each access, the algorithm will perform

one of the following operations: (a) find and increase exactly one counter by one, (b) add a new

entry and set its counter value to 1 or (c) subtract one from all counters regardless of the page

ID field and identify all the entries with a counter value of zero. All possible operations are

simple and can complete within a single cycle if designed properly, using parallel subtractions

and comparisons for operation (c).

In our application of MEA to activity tracking, the sequence of page addresses accessed

correspond to the array of integers in the above example. However, we find that the sequence

of accessed pages typically does not meet the condition of MEA that guarantees it will find the

most-accessed pages; thus, it becomes an approximation. What makes MEA most useful, though,

is its failure mode – when it fails to find the most-accessed pages, it does so by favoring recency

over quantity. That is, a page accessed several times near the end of an interval can easily knock

out a page accessed many more times early in the interval. As a result, it combines both access

counting and temporal locality, at a fraction of the cost of access counting alone.

MEA’s area overhead grows slowly with the amount of memory per pod. The number of

counters can be kept constant, but the size of the ID or tag grows with the log of the memory

size. Its O(N) complexity works well for analyzing a stream of access requests in real time, and

eliminates the need for sorting the counters.

In this section, we seek to understand the effectiveness of MEA’s counting and prediction

accuracy, compared against a Full Counters (FC) scheme, independent of the MemPod architec-

ture. We use memory traces captured from multi-programmed 8-core workloads (the same traces

used and described in Section 2.6) and simulate MEA and FC side-by-side with an in-house

off-line simulator that provides oracle knowledge of future intervals.

The interval size for both MEA and FC was set at 5500 requests which is the average

number of requests serviced within a 50us window in our timing experiments. For this experiment

we use 128 MEA counters and FC requires 4.5M counters (assuming a 1+8GB memory capacity).
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Figure 2.1. MEA counting accuracy compared to Full Counters on the top three tiers (ranks
1-10, 11-20, 21-30). Average results for homogeneous(AVG HG), mixed (AVG MIX) and all
(AVG ALL) workloads shown.

We do two comparisons in this study. First, we examine the ability of MEA to identify the top

pages in the past interval, something the full counter scheme will do perfectly. Second, we

examine the ability of both schemes to predict the top pages in the next interval. In both studies,

we will examine the schemes’ ability to identify the 30 most-accessed pages, in bins of 10 each

(1-10, 11-20, and 21-30).

Figure 2.1 shows the counting accuracy of MEA for the past interval, which should be

compared with FC’s perfect accuracy. In some workloads, MEA identified up to 75% of the top

pages. However, on average MEA reports accuracy below 55% on the top tiers. Thus, it is a

surprisingly ineffective replacement for accurate counters, if accurate counting were our priority.

The bias toward recent accesses has a strong effect on the final value of the MEA counters.

When we instead examine the effectiveness in identifying future hot pages, we see a

different story. Figure 2.2 presents a comparison of MEA and FC in terms of prediction accuracy.

We compare each mechanism’s “predictions” against the top three page tiers of the following

interval based on oracular knowledge. Using 128 counters, MEA will return up to 128 predictions

based on the past interval, while FC will return an overall ranking of each page accessed. In
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order to be able to directly compare accuracy, we take the top N pages from the full counters

each interval, where N is the number of pages MEA returned.

Figure 2.2 plots the number of hits on predicted hot pages from the previous interval. We

also select interesting individual benchmarks and show them in Figure 2.3 to provide a more

detailed comparison.

On average, MEA achieves more future hits than FC by 16%, 81% and 68% on the

top three tiers respectively. Figure 2.3 shows selected individual workloads that generated

interesting results and provides a more detailed comparison. Cactus1 is the only workload where

FC outperformed MEA’s prediction. In fact it outperformed MEA on every tier.

Xalanc and mix9 are most representative of our overall results. We can see MEA

outperforming FC’s prediction accuracy in every bin. The last two workloads we selected,

bwaves and lbm, show FC failing entirely to predict the future (FC also scored zero future

hits with our libquantum workload). With bwaves (and libquantum) MEA reports a very low

number of future hits but not zero. These results can happen when an application streams through

large structures that exceed the size of the interval. In that case, the past interval has little

overlap with the next interval, but recent accesses are much more likely to be overlapped. Lbm

shows an interesting result, where MEA reports a high number of hits (outside of the first tier)

in a workload where FC failed entirely. This can happen with a large working set where the

application does a fairly constant amount of work per page. Full counters, then, will record the

highest access counts for pages the application is done with, while MEA will favor pages the

application was still working on at the end of the interval.

MEA has not previously been used in any kind of architectural event tracking; however,

our results indicate it is an attractive alternative to full counters at a very small fraction of the

hardware cost.
1We use a single benchmark’s name as a shorthand for workloads running the same benchmark 8 times

simultaneously on 8 cores.
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Figure 2.2. MEA prediction accuracy (part 1) compared to Full Counters on the top three
tiers (ranks 1-10, 11-20, 21-30). Results for homogeneous(WL-HG), mixed (WL-MIX) and all
(WL-ALL) workloads shown.
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cactus mix9 xalanc bwaves lbm

21‐30 27496 32302 8176 5154 2860 1508 0 0 19478 0
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Figure 2.3. MEA prediction accuracy (part 2). This graph presents the most interesting results
from individual workloads.
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2.4 Migration Building Blocks

The design of a complete memory manager can be broken down into the following 5

“building blocks”:

Migration flexibility: This is defined by the possible mappings in fast memory that a particular

memory region (page) can map to.

Remap table: A structure that keeps track of migrated pages and is able to provide a relay

address given a requested address.

Activity tracking: Logic and structures needed to profile memory requests and predict future

“hot” pages.

Migration trigger: Defines when migration occurs. Commonly the trigger can be event, inter-

val, or threshold-based.

Migration driver/datapath: Defines the path followed and the hardware modules involved in

performing migrations.

Each of the above building blocks introduces some trade-off. For example, allowing

more flexibility in migration locations can lead to higher performance benefits, at the cost of

larger book-keeping structures. The design choices for the various building blocks are largely

orthogonal. Thus, architects can select an approach to each building block suitable to their

system’s capabilities and limitations and simply combine them to create a desirable memory

management mechanism.

2.4.1 Migration Flexibility and Remap Table Size

Migrating pages can provide the highest benefit when no restrictions are imposed on the

available migration locations. This amount of flexibility, however, requires more bookkeeping

and can incur a higher cost.
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A hardware-driven migration mechanism requires some kind of remap table, commonly

implemented as a hash structure, indexed by a page’s address and pointing to the migrated (or

relay) page address if one exists. On a page migration, the remap table is updated to reflect the

new address of a migrated page.

The remap table should provide the remap (relay) address for each original page address.

Some other structures may also be necessary to avoid expensive table searches when an inverse

lookup is needed (e.g., to identify pages currently mapped to slow or fast memory).

2.4.2 Activity Tracking

Activity tracking is a critical element of any management mechanism for hybrid memories.

In most studies on the subject, activity tracking becomes a synonym for identifying hot regions

by counting the number of accesses to each one. In a more generalized approach, it could

potentially be extended to track patterns, parallelism, bit flips/faults or any other information

useful to the underlying mechanism.

The overhead of maintaining a set of counters per memory page (or other granularity)

will be high. Space requirements will increase linearly as memory capacities grow and the cost of

sorting all the counters can overshadow any potential benefits in performance. Furthermore, our

evaluation presented in Section 2.3 demonstrates that using full counters to ensure 100% accurate

counting may still lead to poor prediction accuracy. Frequently encountered cost-reducing

solutions in the literature consist of increasing the activity tracking granularity in order to reduce

the number of counters needed (i.e. track a group of pages together), limiting the bit width of

counters, and caching a subset of the tracking state while the full set resides in main memory.

2.4.3 Migration Triggers

Each memory management policy must decide when to trigger migrations. Migrations

add significant delays to a system and any penalties incurred should be amortized by the

performance improvement from placing a page in the fast memory. Requests that arrive while
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migrations are being performed have to be delayed to ensure functionally correct memory

behavior. Throughout the literature, three triggers are most commonly used whenever state must

be updated based on tracking information (MC scheduling, migrations, dynamic voltage and

frequency scaling etc.). Interval-based (or epoch-based) triggers occur with a set frequency, while

threshold-based solutions trigger whenever a predetermined criterion is met. Finally, event-based

triggers react to predefined events. Both interval-based and threshold-based approaches face the

same challenge of identifying the optimal interval or threshold value.

2.4.4 Migration Datapath

Regardless of the choice for each migration building block described so far, once mi-

gration is triggered, the migration manager has to follow a number of steps: First, migration

candidates need to be identified. Traditionally, one page (or a segment/line depending on the

migration granularity) from the slow memory and one from fast memory. Then, the two identified

candidates need to be swapped. During the swap process, one or both pages will be read and

stored in temporary buffers and then written at their remapped locations.

Without dedicated migration driver hardware, migrations will have to be orchestrated by

the OS and CPU cores. Consequences include communication delay, potentially some pollution

of the processors’ caches and the unavailability of those CPUs during migration.

MemPod implements the migration driver within each Pod. As each Pod has direct

communication with its member MCs, added delays are kept to a minimum, and no traffic is

generated at the global switch (saving energy and eliminating contention). In HMA, the OS

orchestrates everything. Some CPU cores have to be stalled and used to service the OS interrupt,

causing the migrated pages to traverse through communication mediums and caches on each way.

THM does not fully describe its datapath, but it appears that CPUs are used in this case as well.

CAMEO describes its swapping operation to be transparent to the OS by using existing writeback

and fill queues. Its mechanism relies on the two memories sending writeback or demand read

requests to each other, which further implies some added logic in Memory Controllers, as well
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as communication between MCs.

To make a generous comparison, we do not model the penalty introduced by using CPUs

or global communication mediums for migration in our HMA, THM, and CAMEO simulations

presented in Section 2.6.

2.5 Architecture

Our clustered migration mechanism is designed to address key challenges associated

with the migration problem. In this section, we first present a high-level overview of MemPod’s

proposed micro-architectural design, followed by a more detailed discussion regarding each

building block. Throughout this section we also discuss some of the major design decisions of

the state-of-the-art mechanisms.

2.5.1 Clustered Migration Architecture

Figure 2.4 presents an overview of MemPod. MemPod’s design was kept modular to

facilitate system integration and scalability. A number of memory “Pods” are injected between

the Last Level Cache (LLC) and the system’s memory controllers (MCs). Each Pod clusters a

number of MCs and enforces migrations to only occur among its member MCs. Pods do not

communicate with each other, preventing inter-Pod migrations. To the rest of the system, Pods

are exposed as MCs. With MemPod’s transparent design, each Pod will now be receiving all the

requests originally addressed to any of the Pod’s member MCs.

When a memory request arrives, the Pod monitors the request, updates any necessary

migration-related activity tracking counters, and forwards the request to the intended recipient

MC. The migration logic within a Pod does not need to be invoked during a response from any

MC and can be bypassed to reduce memory access latency. A drawback of clustering MCs into

Pods is the serialization of potentially parallel requests to different MCs of a single Pod. As

such, activity tracking within a Pod as well as the subsequent forwarding of requests must be as

efficient as possible.
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Figure 2.4. MemPod high-level architecture

MemPod’s clustered architecture also reduces global traffic during migrations compared

to non-partitioned mechanisms. Because migration traffic happens within a Pod, this architecture

significantly reduces global traffic and enables parallel migrations.

Memory Pod

The major architectural elements of a Pod are shown in Figure 2.5. A Pod includes an

activity tracking (MEA) unit, a remap table for keeping track of migrated pages and a forwarding

unit that can re-encode a request with the relay address and, based on that address, send the

request to the appropriate MC.

A designer can vary the parallelism and flexibility of MemPod by varying the number

of Pods. A design with one Pod is equivalent to a centralized migration controller allowing

any-to-any migration, while a design with a Pod number equal to the number of MCs would

imply that migration is disabled. A reasonable design point would be to set the number of Pods

equal to the number of slow-memory MCs. Such a configuration inherently prevents migration

between slow off-chip channels, while at the same time maintaining full channel-level parallelism
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Figure 2.5. Major architectural Pod elements

on the system’s bottleneck: the slow MCs. In a configuration where the number of fast-memory

MCs are not a multiple of slow-memory MCs, Pods can be configured asymmetrically or some

MCs could be members of multiple Pods, with their capacity partitioned to avoid crosstalk issues.

In Figure 2.4 we present a system with eight MCs for the fast, on-die stacked memory and four

MCs for the slow off-chip memory. Throughout this paper we use die-stacked HBM as the fast

memory [50] and DDR4-1600 as our off-chip memory, and we set the number of Pods to four, as

shown in Figure 2.4.

2.5.2 Building Blocks

MemPod imposes few migration restrictions since each slow page can migrate to any fast

page location as long as it’s within the same Pod. To support high flexibility MemPod requires a

Remap Table structure capable of tracking all pages at each Pod and upon a lookup return the

new address. The page table is updated to reflect changes with each migration. In addition to the
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remap table, our algorithm also needs to identify all pages currently mapped to fast memory (to

identify a candidate to be evicted in favor of a new hot page). We do this with a smaller, inverted

table that gives the original address of each page currently mapped to fast memory.

MemPod requires an MEA map structure of K entries, where K is the number of hot

pages we wish to identify at each interval. Our evaluation presented in Section 2.6 finds a good

number of MEA counters to be 64. Each entry maps a page’s address to a counter. Through our

evaluation, we identified a good counter size to be 2 bits and 21 bits are needed to address each

page within a Pod, leading to a total storage cost of 736B. Using the MEA counters, MemPod’s

activity tracking profiles every page in memory with minimal hardware cost.

MemPod uses timing intervals. At each interval a Pod will migrate up to K pages into

its fast memory, where K is the number of MEA counters used. MemPod is transparent to the

system, rendering costly OS intervention unnecessary. Since each one of the N Pods will attempt

to migrate up to K pages, up to N×K migrations can happen within each interval. However, all

Pods can perform their migrations in parallel. Due to MemPod’s lightweight activity tracking,

intervals can be kept very small, allowing each Pod to better adapt to the application’s phase

changes. Our evaluation shows a good interval length to be 50us.

With the use of MEA counters, identifying the fast-memory page candidate is as simple

as checking that it’s not part of the K hot pages. The identification algorithm starts at the very

first fast memory location and iterates sequentially until it detects a page address that is not in

the set of hottest pages. For the next migration, the identification algorithm simply continues

from where it left off. If a hot page already resides in the fast memory it is ignored.

In the state of the art mechanisms presented and evaluated in this paper, building block

decisions vary significantly. HMA does not require a remap table due to the OS updating

the existing system’s structures. For activity tracking it uses Full Counters. The costly OS

involvement and the high penalty for sorting all its counters force HMA to operate at very large

intervals, weakening its adaptability to phase changes. However, HMA offers full flexibility for

migrations.
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THM offers significantly limited flexibility by restricting migrations withing segments,

however this decision reduces bookkeeping costs significantly. Competing counters in each

segment are used for activity tracking, occasionally leading to false (threshold-based) migration

triggering if a cold page gets accessed at the right time. Identifying migration candidates incurs

very little overhead since there is exactly one fast memory location for each slow memory page

that triggers migration.

CAMEO operates similarly to THM, restricting migrations within segments (called

congruence groups) but it operates at a finer granularity. Due to its finer granularity, it requires a

larger remap table structure than THM. CAMEO does not require activity tracking since it uses

an event based migration trigger performing a swap at each slow memory access. The process

for identifying migration candidates is identical to THM’s.

Table 2.1 shows a detailed comparison of all mechanisms’ building block decisions,

comparing their costs and presenting the tradeoff impact of each one.

2.5.3 Distributed Migration Controllers

Migration mechanisms in the literature [96, 27] assume a centralized migration controller

which all memory requests have to go through before reaching the memory, in order to monitor

memory activity, read remap tables and control migrations. MemPod’s distributed migration

controllers control every aspect of the migration process. The use of four Pods breaks the

problem into smaller pieces in a divide-and-conquer approach. Instead of trying to identify the N

best pages to migrate from the entire memory, each Pod now has to identify the N
4 pages per Pod.

Each Pod will also require lower bandwidth than a centralized unit as it handles a fraction of the

traffic.

Prior publications [68] demonstrate that the layout and address interleaving of main

memory and last level cache can be co-designed and benefit a system by increasing efficiency

and reducing global traffic. The proposed designs align cache “banks” with main memory banks

(among other optimizations). Even though not specifically proposed for 3D-stacked memories, if
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such a design is assumed, a centralized migration controller would be detrimental to the carefully

designed alignment since all LLC misses will now have to go through the centralized unit and

then fan back out to their respective MCs.

Finally, a clustered design ensures that we are never moving data across the entire

system. Migration can only occur within a Pod and between “sibling” MCs. By limiting

migration distance, MemPod imposes a tighter ceiling on data movement energy which can lead

to migration-related energy savings when compared to a centralized design.

2.6 Results

2.6.1 Evaluation Framework

The goal of our evaluation framework is to quantitatively and qualitatively assess Mem-

Pod’s capabilities and compare it against state-of-the-art proposed mechanisms. Throughout

our evaluation section, we study MemPod’s performance running with an eight-core CPU. We

extend Ramulator [57] to support flat address space hybrid memories. We model the MemPod

architecture, as well as HMA, THM, and CAMEO in our simulation framework. Ramulator

enables cycle-level memory simulation and includes a simple CPU front-end capable of approxi-

mating resource-induced stalls. We evaluate MemPod under a realistic memory configuration

consisting of 1GB 3D-stacked HBM [50] and 8GB of off-chip DDR4-1600. Table 2.2 Provides a

more detailed description of the simulated system’s configuration.

2.6.2 Experimental Methodology

We use benchmarks from the SPEC2006 suite [41] as our workloads. Using Sniper [21],

we record memory request traces while simultaneously executing 8 benchmarks on a simulated

8-core CPU. We then feed these multi-programmed memory traces into Ramulator, executing

all workloads to completion. Our complete set of workloads consists of 15 “homogeneous”

workloads, where 8 copies of the same benchmark are run in parallel (we simply refer to these
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Table 2.2. Experimental framework configuration

Processor 
Cores  8 @ 3.2GHz 
Pipeline  4 wide out‐of‐order 

 

 

 

 

 

 

 

   

Caches 
L1 I‐Cache(private)  64KB, 2 way, 4 cycles 
L1 D‐Cache (private)  16KB, 4 way, 4 cycles 
L2 Cache (shared)  8MB, 16 way, 11 cycles 

  HBM  DDR4‐1600 
Capacity  1GB  8GB 
Bus Frequency  1 GHz  800 MHz 
Bus Width (bits)  128  64 
Channels  8  4 
Ranks  1  1 
Banks  16  16 
Row Buffer Size  8KB  8KB 
tCAS‐tRCD‐tRP‐tRAS  7‐7‐7‐17  11‐11‐11‐28 

workloads by the benchmark’s name in later results), as well as 12 workloads featuring a random

mix of 8 benchmarks each (referred to as mix1-12). Each benchmark is executed and traced

under its reference input. When running homogeneous workloads, Sniper ensures that memory

pages are not shared between workloads. A breakdown of the mixed workloads is shown in

Table 2.3.

We also extended Ramulator with caching for the activity tracking and/or remap tables

depending on the simulated mechanism. Bookkeeping-related cache misses inject memory

requests into the stream of requests fed by our trace files to retrieve the missing information. No

priority is given to these cache miss requests over regular requests. In experiments where the

caches for hybrid memory management techniques are disabled, the simulator assumes that any

information needed by any mechanism exists on chip and is accessible without any delay. The

migration process was implemented in detail as well. In order to read an entire 2KB DRAM

page from memory, 32 read requests need to be sent for each of the two migration candidates

and then another set of 32 requests for each of the two write-backs.

As we use Ramulator with recorded traces, we report Average Main Memory Access

Time (AMMAT) in our results. Even though Ramulator has the ability to approximate IPC with a
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Table 2.3. Mixed workloads description
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astar                
bwaves                 
bzip               
cactus              
dealII                 
gcc             
gems                
lbm             
leslie                
libquantum             
mcf             
milc              
omnetpp               
soplex             
sphinx               
xalanc                
zeusmp                

 

simple CPU model, AMMAT is computed with much greater fidelity with this tool, as it models

the memory system in great detail. AMMAT is the average time spent accessing and waiting for

main memory by each request (lower is better).

In our AMMAT experiments, we typically introduce additional accesses to the system

(migrations, bookkeeping cache misses). The overhead of the additional misses is accounted to

the total memory stall time, but the total memory stall time is divided by the number of original

LLC misses (main memory requests) captured in our traces – that is, the denominator in our

AMMAT equation does not change between experiments and equals the number of requests in

our trace file.

Due to space limitations we are not able to show results for individual workloads in most

of the graphs in this paper. In those graphs, we only present the average of all mixed workloads,

average of all homogeneous workloads, and overall average.
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Figure 2.6. Average AMMAT from all workloads under various MemPod configurations.

2.6.3 Simulation Results

Page Tracking and Migration Design Space

MemPod’s activity tracking overhead and migration traffic is impacted by the number

and size of the MEA counters, as well as the epoch (interval) size over which the counters

accumulate. We examine each of these design space parameters in this section. The number of

MEA counters dictates the highest possible number of migrations that can be performed at each

interval by each Pod, while the epoch length will determine MemPod’s ability to better adapt to

phase changes in a workload. Furthermore, a small number of counters favors less aggressive

migration at each interval boundary. The size of each MEA counter sacrifices accuracy when

smaller counters are used but can also save space on the chip. Smaller counters also sacrifice

previous-interval counter accuracy for recency, as it makes it easier to replace a counter for a

previously hot page no longer being accessed.

We first identify the optimal number of counters and epoch length by running a series of

experiments. We executed all combinations of epoch length and number of counters pairs with
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epoch lengths of 25-500us. We also exponentially increase the number of MEA counters per pod

from 16 to 512. In order to minimize the impact of other factors, we execute this experiment

with 16 bits per counter and remap table caches disabled.

Figure 2.6 shows our results obtained by taking the average AMMAT from all workloads

under each MemPod configuration. Based on the results we derive some observations:

• MemPod achieves the best performance (lower AMMAT) with 50us intervals and 64

counters per Pod. MemPod’s lightweight operation allows for such small intervals. For

comparison purposes, HMA [72] identified the best epoch length to be 100ms (2000x

larger) in order to support all the lengthy processes that take place during a migration event

for that method.

• The lowest AMMAT values lie on the diagonal of our result matrix. This implies that the

key determinant is the number of migrations, as the maximum migration rate is (roughly)

a constant across the diagonal.

• Few counters and long intervals (inability to react well to phase changes), at least in this

sweep of parameters, appears to be worse than many counters and small intervals (overly

aggressive migration activity).

The size (in bits) of each counter defines the area requirements of our MEA tracking

mechanism.

Figure 2.7a presents AMMAT results normalized to a configuration with 2-bit counters

as well as the average number of migrations per Pod per epoch (secondary axis). We first observe

that 8 bits are sufficient for our workloads, as larger sizes report identical results. We also

observe that reducing the counter size to even less than 8 bits benefits performance, although

very marginally. Small counters, as mentioned, favors recency. The smaller the interval, the more

important recency becomes over accurate counting; plus, the fewer bits required for accurate

counting since there are fewer events. Finally, for 50 us intervals, 2 bit counters offer the best

performance (but again, the differences are small).
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Figure 2.7b shows the same experiment with MemPod’s parameters set to 100us intervals

and 128 counters. This figure demonstrates that as the interval and number of counters increases

(i.e. less focus on temporal locality required), the optimal counter size grows from 2 to 4 bits.

Based on these results, we use 64 MEA 2-bit counters over 50us intervals for subsequent

results in this paper. Each one of the 64 MEA entries needs 21 bits for addressing the 1.1M

pages per Pod and 2 bits for its counter, leading to an area cost of only 184B per Pod and 736B

total. Compared to the state of the art, MemPod’s activity tracking requirement is ∼712x smaller

than THM’s (512KB) and ∼12800x smaller than HMA’s (9MB).

Performance Comparison

Figure 2.8 presents a performance comparison of MemPod, HMA, THM, CAMEO

and a configuration with 9GBs of on-chip HBM memory, normalized to the performance of a

hybrid memory configuration without migration capabilities. We evaluat all mechanisms with

migration-related caching disabled.

In order to model HMA’s penalties more accurately, we profiled sorting 4.5M integers

using quicksort ( NlogN complexity) on a real system with a recent Intel Core i7 processor

running at 2.1GHz. Our experiment showed that sorting all of HMA’s activity tracking counters,

at these memory sizes, takes 1.95s on average. When we scale this overhead to our simulated

3.2GHz core, the expected delay would be approximately 1.2s, which is much larger than

the proposed optimal interval size for HMA. We instead assumed a very generously reduced

overhead of 7ms per interval, assuming we could sort in parallel and discard obvious low values

before sorting.

Based on the results we make the following observations:

• MemPod outperforms the state-of-the-art competitors in the majority of our workloads,

and in several cases is very close to an HBM-only configuration. MemPod improves

AMMAT over a two-level memory without migrations by 19% on average.

• On average, CAMEO reports AMMAT degradation of 41% over the no-migration scheme.
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The negative impact is caused by our high ratio of slow to fast memory capacity. Given

CAMEO’s algorithm, 9 slow lines compete for one fast line. At that ratio, it is much more

likely for two or more lines to thrash competing for the one spot. From our experiments,

we observe CAMEO to force the most movement despite the fact that each move is much

smaller. CAMEO moves 3.9GB of data on average per 8-core experiment. For comparison

purposes, MemPod moved 3.1GB on average, however migration traffic was divided

between Pods, resulting in 804MB per Pod. THM moved 865MB on average and HMA

moved 578MB due to its large intervals. We also frequently observe wasted migrations

with CAMEO, where a line is evicted before it is touched.

• On average MemPod reports 21% higher AMMAT than HBM-only, while THM and HMA

report 33% and 40% respectively.

• In some workloads migration overall is harmful to performance, as observed with the

bwaves workload, where a no-migration scheme reports higher performance (lower AM-

MAT). We observe that in those cases, MemPod leads to deteriorated performance com-

pared to the other mechanisms. However, in the cases of lbm and zeusmp, MemPod

increases performance, while THM, HMA and CAMEO report higher AMMAT than the

no-migration scheme.

• HMA and MemPod outperform HBM-only when executing the libquantum experiment. In

the case of libquantum, the working set size fits entirely in our fast memory. As a result,

after some migrations, the entire working set will be present in HBM. With an HBM-only

system and no migrations, pages are inserted sequentially by address. In a migration-based

system, simultaneously-hot pages are inserted together after each epoch. As the DRAM

row buffer is bigger than a page, we find that the co-location of simultaneously-hot pages

increases row buffer hit rate from 7% (HBM only) to 90% (MemPod), with 87% of those

taking place in fast memory. HMA also sees an improvement in row buffer hit rate. THM

and CAMEO cannot take advantage of the small footprint due to their restricted migration
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flexibility (only one hot page/line per segment can reside in fast memory).

Caching Effect

Migration mechanisms will be forced to include a cache as activity tracking and remap

table structures are too large to store on-chip. The use of a cache will unavoidably hinder

performance. Each mechanism has different cache requirements. THM caches its counters and

remap table together with its SRT structure. HMA has no need for a remap table but has high

storage requirements for its counting mechanism. MemPod must cache only its remap table as

MEA counters easily fit on chip.

In this experiment we evaluate the impact of a cache on MemPod’s performance and we

also compare it against HMA and THM when operating with a cache. MemPod was configured

with the optimal parameter values identified over the course of this section. Every mechanism was

evaluated with 16, 32 and 64 KB of cache. For MemPod, the cache capacity is distributed equally

over its four Pods. A part of stacked memory was partitioned to serve as each mechanism’s

backing store.

In our implementation, each cache miss injects a read request to retrieve missing data.

Since all of MemPod’s cache misses will occur due to Remap Table updates or lookups it

becomes a blocking request for the affected page. All incoming requests to that page need to be

delayed until the missing data is retrieved. In-flight requests are not affected by incoming cache

misses.

Figure 2.9 shows our results obtained by taking the average AMMAT from all our

workloads for each cache size for each mechanism. We present AMMAT results normalized to a

two-level memory configuration without any migration mechanism. With 16, 32 and 64kB of

cache, MemPod reports 4, 7 and 9% AMMAT improvement over a 2-Level Memory (2LM) with

no migration capability and outperforms the other mechanisms.

For 16, 32 and 64kB of cache, the impact on MemPod’s performance (when compared to

its performance without a cache) is 16, 14 and 12% respectively. THM reports impacts of 12, 10
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Figure 2.9. Sensitivity analysis: Cache size. AMMAT normalized to a TLM memory.

and 9%. Interestingly, HMA reports lower performance impact with smaller cache sizes rather

than larger. Our investigation revealed that the extra cache misses caused by a smaller cache lead

to a reduced number of incoming requests to be serviced per interval. As a result, HMA’s activity

tracking counters have lower values at the end of the interval, leading to fewer migrations. As

demonstrated earlier in Section 2.3, HMA (using Full Counters) has a low prediction accuracy.

As such, by reducing the number of migrations, we observe the number of requests serviced by

the fast memory to increase, due to hot pages that were not replaced as aggressively.

Scalability

MemPod is designed to be scalable with future technology. If we grow memory sizes by

increasing the number of pods, the size of the remap table and the size of the MEA counters will

remain constant (per pod, and thus per memory page) if the memory per pod remains constant.

If instead we increase memory capacity per pod, the size of the remap table (per memory page)

will go up only with the log of the per-pod memory. If we choose to scale the number of counters

with the size of memory per pod, it will go up similarly; however, if we do not scale up the

counters at the same rate (e.g., four times the memory, but double the counters), then the cost of

the counters (per memory page) will go down.

Additionally, the memory traffic caused by migrations will remain distributed and off the

primary processor interconnect.
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We also expect the latency differential between main memory levels to continue to grow.

This will happen as 3D memory parts mature, and as we integrate new memory technologies

into the system (e.g. hybrid volatile and non-volatile memory systems). To examine this, we

model a system where both the 3D DRAM and the DDR memory are faster, but the 3D DRAM is

accelerated further resulting in a higher latency ratio between the two. In particular, we simulate

a 4GHz HBM as our stacked memory and a DDR4-2400 as our off-chip memory. Since we are

modelling a future system, we reduced the fixed penalty for HMA’s sorting process from 7ms to

4.2ms (40% reduction) in order to model future faster processors. We assume no caching effects

in this experiment.

Figure 2.10 shows our AMMAT results, normalized to a configuration with 9GBs of

off-chip DDR4-2400. The label “HBMoc” shows a 9GB configuration with overclocked HBM

only. We first observe that CAMEO now reports a 1% AMMAT degradation. The increase in

speed differential between stacked and off-chip memory appears to be beneficial for CAMEO,

however we can still observe the impacts of intra-segment conflicts. Compared to a configuration

with no migration support (TLM), HMA improves AMMAT by 2%, THM by 13% and MemPod

by 24%. The overclocked HBM-only configuration is 40% faster compared to TLM.
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2.7 Conclusions

MemPod is a scalable, modular and efficient dynamic memory management mechanism.

Our analysis demonstrates significant gains compared to state-of-the-art proposals. The modular

design achieved with the use of Pods allows for a more scalable migration mechanism while at

the same time enforcing small limitations on migration opportunities.

MemPod uses MEA counters to track page access activity and identify hot pages. They

are dramatically smaller than prior tracking mechanisms while capturing activity counts and

temporal recency in a way that provides more effective prediction of future page access.
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Chapter 3

Platform-Agnostic Learning-Based Schedul-
ing: Deciphering Predictive Schedulers for
Heterogeneous-ISA Multicore Architec-
tures

In this chapter, we apply a variety of machine learning techniques to the problem of

cross-core performance prediction, where the target core potentially differs in terms of its CPU

microarchitectural traits, cache organizations, ISA, inorder/out-of-order execution semantics,

vector support, and floating point support. The inputs to our predictors consist of application-

specific features (obtained via profiling on a “reference” core), and target core-specific features.

The output of the model is a performance prediction for the application and target core pair.

Our goal is to not just make effective predictions, but to gain particular insights about

the salient features of predictive ML models, the feature correlations (program characteristics,

microarchitectural measurements) that are picked up and amplified by the best ML models, and

those that are less important. We do this by deciphering (reverse-engineering) our most accurate

predictive models. This approach allows us to probe a fundamental question – to what extent

can machine learning models understand, analyze, and project the execution of code on arbitrary

processor hardware?

Due to the vast number of possible CMP combinations in our database, we present a

meticulously developed methodology utilizing statistical analyses and a variety of evaluation
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frameworks that allow us to derive insights and statistical expectations regarding prediction

accuracy and scheduler efficiency.

3.1 Background

Heterogeneous multicores employ cores that can vary in microarchitecture and even

instruction set architectures, on the same processor chip. These architectures allow a running

application to dynamically migrate execution to the most suitable core, reacting to phase changes

and changes to the dynamic execution environment, and further maximizing performance and

energy efficiency. While single-ISA heterogeneous multicores [62, 63, 37, 3, 4, 42, 1, 2]

offer cores that vary in their microarchitectural configurations to cater to the diverse execution

characteristics (e.g., instruction-level parallelism, cache access patterns, branch behavior, etc.)

of mixed workloads, heterogeneous-ISA architectures [32, 108, 106, 10, 13, 81, 6, 5, 64, 105],

capture an additional dimension of heterogeneity – ISA affinity – the inherent preference of

an application code region to execute on a particular ISA. Multiple studies have shown that

exploiting ISA affinity could result in significant (> 30%) additional gains in performance and

energy efficiency.

However, as the amount of on-chip heterogeneity increases, intelligent scheduling be-

comes more crucial, since the potential performance and power benefits arrive from smart job

allocation. In fact, subpar job allocation can waste resources and power.

State-of-the-art schedulers employ either analytical [31, 25, 78] or statistical [24, 115, 9]

(for example, machine learning) predictive models that strive to make accurate performance

predictions, and thereby enable near-optimal scheduling decisions. In both cases, predictions

are derived using a mathematical equation (or model) whose inputs are typically associated

with weights that signify their importance. Analytical models typically employ linear equations,

similar to those used by linear regression models. However, these models rely heavily on domain

expertise to identify correlations between input features (e.g., instruction mix) and the prediction
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target (e.g., performance), and consequently determine the appropriate set of feature weights.

These models are typically confined to use only a handful of features due to the exponentially

increasing complexity of identifying such correlations. Statistical models on the other hand, are

trained in software using sophisticated machine learning algorithms that can not only handle far

more input features, but can further adapt to non-linear correlations.

Recent technological advances have increased the availability and popularity of machine

learning algorithms and tools, leading to an increased number of ML-based computer architecture

proposals [24, 115, 9, 113] in recent years. Researchers have demonstrated that predictive models

can be deployed and used in modern computation environments, from heterogeneous CMPs

to datacenters [25, 78]. However, scheduling for general-purpose heterogeneous-ISA CMPs

has not been extensively studied, despite significant opportunity for greater performance and

energy efficiency. This is in part because, as core diversity increases, the problem of cross-core

performance prediction and subsequently the problem of optimal job allocation grows more

complex. In a homogeneous multicore architecture, a running thread is expected to have similar

performance when it executes on a different core. However, in a single-ISA heterogeneous

multicore, the performance difference of the same code region can be vastly different on different

cores depending upon the microarchitectural diversity. ISA heterogeneity adds an extra degree

of freedom, resulting in a more complex set of parameters that could now potentially affect

performance.

3.2 Related Work

This work lies in the intersection of machine learning and computer architecture: We

seek to quantify the influence of predictive models and their accuracy, on the final product; a

scheduler for heterogeneous-ISA architecture.

We explore three ML algorithms: (a) ridge regression [44] (RR) which is a variant of

linear regression [79], (b) decision trees [76] (DT) that are capable of exploiting non-linear
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relationships by creating a binary decision tree with one condition on a single feature in each

node, (c) random forests [17] (RF) that create a collection of decision trees during training

and when queried for a prediction, return the average response from all trees. To identify the

correlations picked up by our best models, we use two commonly used exploration techniques:

linear coefficient analysis, and feature impurity analysis [75]. We further develop a new analysis

for categorical microarchitectural features, named “Reverse Path Purity”. We describe these

techniques in more detail later in the paper.

Single-ISA heterogeneous architectures have been proposed by Kumar et al. [62]. Be-

sides a large body of research proposals, we already see processor manufacturers offering

heterogeneous products [37, 53, 104, 26]. There is a large body of research on scheduling and

resource management on single-ISA heterogeneous CMPs (such as [101, 31, 98] and more).

General-purpose Heterogeneous-ISA multicore architectures [32, 108] include microarchitec-

turally heterogeneous cores that implement different ISAs. Barabalace, et al. [11, 10] propose

Popcorn Linux, an operating system that allows running shared memory applications on a general-

purpose heterogeneous-ISA system and further assists in execution migration between the cores.

Our work assumes similar software support. Furthermore, exploiting heterogeneous-ISA archi-

tectures has been shown to improve security against code-based attacks, such as Return-Oriented

Programming, by frequently switching ISAs [107].

Systems combining CPUs and GPUs (or accelerators) in the same package are also

examples of heterogeneous-ISA architectures. Our work focuses on systems with general-

purpose CPU cores implementing ARM’s Thumb ISA[66], Alpha [30] and Intel’s x86-64

[45]. Accelerator-based systems (including GPUs) are out of the scope of this work, since the

interaction between software and hardware varies greatly between CPUs and GPUs. However,

various prediction-based mechanisms have been proposed for such systems [74], often utilizing

ML algorithms: Ardalani et al, propose XAPP [8], an ensemble prediction mechanism, which

given CPU source code can predict whether this code would benefit from porting to a particular

GPU architecture. Hayashi et al. propose a mechanism based on Support Vector Machines
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(SVM), which predicts if a given code block should run on a CPU or a GPU for better performance

[39].

LACross [115] is a cross-platform scheduler that uses the LASSO linear regression

algorithm to predict a phase’s performance and power consumption. LACross is evaluated on

two heterogeneous machines and enables efficient resource management. Chen et al. [24] utilize

Principal Component Analysis for dimensionality reduction and clustering of similar applications

for scheduling purposes.

Scheduling on general-purpose heterogeneous-ISA CMP architectures has not been

investigated to the same extent as single-ISA or CPU-GPU heterogeneous architectures. Popcorn

Linux implements a scheduler that relies on application instrumentation and generates a mapping

of application’s functions to cores [11].

3.3 Limitations in Prior Work

We identify some common limitations in prediction-based scheduling proposals we aim

to address with our methodology: Systems under test are often predefined and do not change

throughout each proposal, without discussing if and how the proposed scheduler adapts to other

systems. A closely related, frequently-observed drawback is the use of small datasets on which

these predictors are trained and evaluated. This is due to the difficulty in obtaining large datasets,

particularly if the data is accumulated via simulations (slow). In studies where profiling is used,

the hardware cannot be significantly varied, so a large dataset would require tens of thousands of

benchmarks.

Several prior studies select one machine learning algorithm, often a linear model, which

according to our findings is not necessarily the best option for most cases. Discussion of other

available algorithms and how well they perform in the presented use cases is often omitted.

Aside from the limited exploration of available algorithms, researchers often pre-select the input

features of their models. This selection tends to reflect the collective knowledge of this field and
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includes variables that have been identified in the past to track dynamic characteristics. However,

with modern execution environments we are able to collect significantly more measurements,

especially if simulations are used. Furthermore, even though feature selection often requires

significant skill and time investment, some ML algorithms are particularly good at filtering

features and internally discarding those that have no impact on the final prediction. Finally,

ML-based studies that show high prediction accuracy do not explore the machine’s “reasoning”

when making decisions. We seek to understand what these models consider important when

predicting an application’s performance on a core.

In this work, we address drawbacks commonly found in prior work: To address the issue

of small datasets we simulate 72 workloads on 600 different cores each, for a total database

size of 43200 entries. The cores we include span 3 different ISAs: Thumb, Alpha, and Intel’s

x86. The large heterogeneous-ISA core collection is shown to result in predictive models that

generalize and adapt to a variety of underlying systems without modification. We explore

thousands of configurations of each ML algorithm (different optimizations, input sets etc) and

identify the optimal models. For the majority of this work, we do not attempt to pre-select the

desired features, instead we allow the ML models to use them all as they see fit. Once our models

are trained and report acceptable prediction accuracy, we seek to understand how these accurate

predictions are achieved. We use an in-house scheduler evaluation framework to describe the

relation between ML metrics (such as mean error, standard deviation etc) and the efficiency of

ML-based schedulers. We demonstrate that when we use ML models as the predictive unit of a

scheduler, isolated ML metrics do not necessarily reflect the scheduler’s quality.

3.4 Prediction Accuracy Vs Scheduler Quality: An In-
Depth Evaluation

Schedulers clearly benefit from accurate performance predictions. Depending on the

system under test, trial and error scheduling on a complex system (many threads, diverse cores)
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is (1) unlikely to find the optimal schedule and (2) likely to sample many poor schedules before

finding good ones. A scheduler that can predict the performance of any given application on any

core can intelligently distribute jobs for maximal throughput without the overhead of sampling

all possible permutations.

Intuitively, we expect that a system’s level of heterogeneity can affect the difficulty of the

scheduling problem. In other words, it should be easier to create good schedulers for systems

with lower diversity. In case of predictive schedulers (ML-based or otherwise), prediction error

should have a smaller impact on realizing efficient schedules on less diverse systems. Although

intuitive, to the best of our knowledge, the impact of heterogeneity with respect to the scheduling

problem has not been quantified in the literature. Our Ease-of-Scheduling (EoS) metric has

been developed in response to this ambiguity.

Regardless of the underlying system, all prediction units can be characterized by their

prediction accuracy, using the mean and standard deviation of their prediction error. However,

depending on the amount of underlying heterogeneity, these metrics do not necessarily provide

an accurate image as to the expected performance of the derived scheduler that uses this unit. Our

Expected Scheduler Efficiency (ESE) metric statistically quantifies how accurate a performance

predictor needs to be in order for the scheduler to lead to high performance, given a system with

some arbitrary scheduling difficulty (a system with a given EoS).

Finally, we use αIPC to maintain fair performance comparison between workloads

compiled for different ISAs. Since the number of dynamic instructions varies between ISAs, we

measure execution progress in Alpha Instructions Per Cycle. Our compilation framework allows

us to map regions of executables to their corresponding regions in an Alpha executable, thereby

enabling this metric.

3.4.1 Ease of Scheduling (EoS)

We measure EoS by evaluating a system that uses a random scheduler. Workloads are

run to completion and when execution completes, we compare the obtained mean αIPC against

47



0.0 0.5 1.0 1.5 2.0 2.5 3.0
(Oracular) aIPC Per Core

0.0

0.2

0.4

0.6

0.8

1.0

E
a
se

 o
f 

S
ch

e
d
u
lin

g
 (

E
o
S
)

4 Cores
8 Cores
16 Cores

Figure 3.1. Ease of Scheduling analysis

48



the mean αIPC the same system reports using a “monte-carlo optimal scheduler”. The closer the

random scheduler scores compared to optimal, the easier it is to schedule for the system under

test. Higher scores mean easier systems.

To minimize noise caused by random decisions, we execute each experiment 300 times,

with 200 workloads scheduled per execution and report mean performance. The workloads

are randomly chosen before the experiment begins and remain constant throughout the entire

experiment, for all 300 runs on each of the 7500 systems under test. We ignore cross-core migra-

tion overhead since our predictive models don’t yet consider cross-ISA binary translation and

state transformation costs, which can significantly vary with different application characteristics

and different target ISAs. More details on our experimental methodology are presented later in

Section 3.5.

With 200 workloads, the problem of finding a globally optimal schedule is practically

infeasible. The number of possible schedules for a 4-core system is 270 digits long. We define

optimal performance for each system, as the maximum observed performance from all our EoS

and ESE experiments. Combined, we compare almost 14 thousand scheduling options on all

systems, while scheduling the same 200 workloads appearing in the same order. Throughout

the experiment, we use a random scheduler, as well as schedulers based on predictors of varied

statistical accuracy, in terms of their Mean Absolute Error and Standard Deviation.

Figure 3.1 presents our EoS analysis on 7500 randomly chosen heterogeneous-ISA

multicore systems. More accurately, we present results on 2500 randomly chosen 4-, 8-, and

16-core systems. Our results highlight the impact of various factors on a system’s EoS. First,

we observe that the number of cores appears to have an impact, regardless of the system’s

level of heterogeneity, with each cluster hitting a lower EoS ceiling than the previous one. We

also observe significant intra-cluster diversity for all clusters. Our results show that the most

difficult systems to schedule resemble a Cell-like heterogeneous-ISA architecture. For example,

the most difficult (lowest EoS) 8-core system, contains one high-end x86 core, two medium

cores (1 Alpha, 1 x86) and five low-performance, microarchitecturally heterogeneous Thumb
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cores. Such systems appear to be very unforgiving towards prediction error since there are

statistically, limited options that provide optimal or near-optimal performance, each time the

scheduler is invoked to make a decision. The easiest systems tend to have more balanced (in

terms of performance) cores. Our easiest 16 core system for example, has three high-end x86

cores, while all others are medium performance Alpha, Thumb, or x86.

We use EoS to select benchmark systems for the remainder of this paper. Due to space

restrictions, we cannot present all architectural details for each core in the system, unless we

limit our study to a very small number of systems. In this work, we consider benchmark systems,

characterized by their EoS instead of their architectural traits. Specifically, we use three 4-core,

three 8-core, and three 16-core benchmark systems. For each category we use the easiest,

medium, and most difficult system. With our benchmark systems ranging from maximum to

minimum EoS, and from 4 to 16 cores, we cover a wide range of heterogeneous-ISA multicore

systems.

3.4.2 Expected Scheduler Efficiency (ESE)

ESE is defined as the ratio of average system αIPC over the average αIPC of an optimal

scheduler, given a predictor characterized by some mean prediction error and standard deviation

(of prediction error) values. We find that more accurate predictions do not necessarily translate

into more efficient schedulers. Instead, the system’s EoS can have a significant impact, as well

as the predictor’s accuracy uniformity (standard deviation of prediction error).

In this experiment, we evaluate a typical predictor-based scheduler on each of our 9

benchmark systems. We perform a sweep over possible predictive units by varying Mean

Absolute Error (MAE) values from 0 (very accurate) to 1.5 (high prediction error) αIPC and

we use three different standard deviation (STD) values (low, medium, high). Prediction error is

randomly drawn from a normal distribution characterized by MAE and STD, and applied on the

real (oracularly obtained from cycle-accurate simulations) αIPC values. The assumed scheduler

receives predictions and decides on a greedily optimal schedule that maximizes overall αIPC .
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We negate absolute error values (since we use MAE), based on the outcome of a fair coin flip

before we add it to true performance. Once again, we perform 300 runs with 200 workloads

scheduled in each run to measure average αIPC for each data point.

Figure 3.2 presents our ESE evaluation results. We label each of our benchmark systems

using ’E’ (for Easy), ’M’ (Medium), and ’H’ (Hard), followed by the number of cores. For

example, “M16” is a 16-core system of medium scheduling difficulty as identified by our EoS

analysis. We also include the EoS value of each system in our results. We first observe that

standard deviation demonstrates equal or even higher impact on ESE than MAE. Increased

system difficulty further exacerbates this effect. For example, the H4 system’s ESE drops by up

to 17% within the MAE range, but by 19% within the STD range. We further observe that even

in the presence of predictors with very high accuracy and uniformity, the system itself dictates

how efficient the final scheduler can be, with statistical drops over optimal scheduling of 8%,

13%, and 16% for our 16-core (E,M,H respectively) benchmark systems. On the other hand, the

easier a system is, the more immune it becomes to prediction error, with ESE lines not varying

much as MAE increases.

Lastly, we find that all our systems demonstrate a significant error tolerance slack: We

observe no more than a 2% ESE drop for MAE values under 0.3 and STD=0.2 across all systems.

Furthermore, as STD increases, MAE slack also increases, since the predictor is closer to random

and eventually plateaus to a low expected efficiency. Beyond the system’s EoS level, it is worth

noting that even with 100% accurate predictions, a greedy scheduler (locally optimal decisions,

no knowledge of the future) cannot guarantee optimal scheduling.

In conclusion, based on our results, and assuming full and extended system utilization, we

argue that ESE analyses can unveil tradeoffs during the design phase of future heterogeneous-ISA

CMP systems. It is possible that system peak performance can be traded off in order to ensure

more uniformity during execution, as well as cost savings on scheduler development. Both EoS

and ESE metrics are computationally easy and cost effective exploratory tools.
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Figure 3.3. Experimental Framework overview

3.5 Experimental Framework

This study requires a diverse set of evaluation frameworks. First, to train and evaluate

machine learning models, we develop an in-house ML suite which allows us to explore a variety

of ML models in depth. Second, to assess the capabilities of trained ML models when used

within schedulers, we implement a runtime scheduler framework that makes greedily optimal

decisions periodically.

We use the simulation-based dataset collected during the design-space exploration pub-

lished by Venkat et al. [108]. Figure 3.3 presents a high-level overview of our experimental

framework, including the toolchain flow for creating the dataset. Our frameworks allow us to

efficiently explore the interaction between ML models and multi-ISA software and hardware.

3.5.1 Machine Learning Suite

The Machine Learning aspect of this work is a multi-dimensional problem. On one

hand, we seek to explore the behavior of various ML algorithms, with each having its own set
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Table 3.1. Configuration flags description (ML Suite)

Flag  Description 

Scale  Performs data scaling 

Whiten  Performs data whitening 

RefCore  Reference core selection (1‐600) 

KeepRAW  Keeps features with raw values (e.g. INT_R) 

KeepPower  Keeps profiled dynamic power features 

KeepL1  Keeps L1 cache features 

KeepL2  Keeps L2 cache features 

Target  Sets the prediction target (typically, aIPC) 

KeepRefTarget  Keeps the profiled target (aIPC) value 

KeepFI  Keeps Fetch/Issue rate measurements 

TreeDepth  Used with tree‐based algorithms 

 
of parameters that could potentially improve its accuracy if set at proper values. On the other

hand, we work with a significantly large set of features, on which we need to have fine grain

control across experiments. For example, we want to have the ability to study how each ML

algorithm reacts if we stop providing cache-related features (capacity, number of hits and misses,

etc), branch misprediction statistics, etc. Our ML suite supports all our requirements and ensures

a fair comparison across all the ML models explored in this work. At its core, our ML suite

utilizes the sklearn Python library [93].

The ML suite supports a variety of boolean flags for enabling and disabling feature

groups (e.g. cache information) at the model’s input, as well as ML optimizations (data scaling

and whitening). Table 3.1 presents an overview of all available flags. Besides control over the

input and optimizations, we also have the ability to select which ML algorithm will be used and

what kind of training will be performed (i.e. how our database will be split into train and test

sets - discussed in Section 3.7).

Once the parameters are populated with the desired values, our suite includes functions

to train, test and score each model. Due to the multiple control options in our study, each

machine learning algorithm we explore can have 1024 different configurations (10 boolean flags).

Tree-based algorithms have 5120 flavors because of the tree depth variable.
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3.5.2 Scheduler Framework

We developed an event-driven scheduler framework, in order to compare predictors, when

used within schedulers.When studying ML-based schedulers, our framework is directly linked

to the ML suite presented earlier. The model-under-test is first restored and trained. Once it is

ready, our scheduler queries the ML suite to retrieve predictions when necessary. Non-ML-based

schedulers such as oracular and random, are implemented directly in our framework.

To compare predictors, we first configure the target system by selecting cores from our

database using their unique identifier. We then select and if necessary, train the predictor, before

scheduling begins. We designed our scheduler to mimic an execution scenario where workloads

appear one at a time as soon as an in-flight workload finishes. In other words, at any given time,

the number of in-flight workloads equals the number of cores in our system. Our scheduler’s goal

is to greedily (no knowledge of future workloads) schedule these workloads in order to achieve

the maximum sum of αIPC across all cores, according to the αIPC predictions it receives. Once

a schedule has been identified, workloads are migrated to their new cores and resume execution.

In this work, we assume that all our workloads have been profiled on one reference

core, which is not necessarily part of the underlying system. Our ML models are trained to

provide “one-to-all” predictions. In other words they extrapolate application behavior on the

reference core, to the target core. During evaluation we provide our models with a choice of

two medium-performance reference cores, one Alpha and one x86, and we allow them to select

one to be used in future experiments. Our methodology can be adapted to use one or more of

the system’s cores as reference, as well as train more specialized predictors for each pair of

underlying cores. We choose to use one predefined reference core for two reasons: (1) we can

better study the generality of our models in a one-to-all prediction setting, and (2) training more

specialized, pairwise predictors would require severely reducing our dataset (to only include two

cores instead of 600).
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Table 3.2. Breakdown of workloads in our database. 

 Benchmark  # of Phases 

bzip2  9 

gcc  8 

gobmk  8 

hmmer  5 

lbm  1 

libquantum  7 

mcf  9 

milc  9 

sjeng  7 

sphinx  9 

Design Parameter  Design choices 

ISA  Thumb, Alpha, x86‐64 

Execution Semantics  In‐order, Out‐of‐Order 

Branch Predictor  Local, Tournament 

Reorder Buffer ‐ Register File 
(ROB ‐ Int. regs ‐ FP regs) 

64‐96‐64, 128‐160‐96 

Issue Width ‐ Functional Units 
 

(Width ‐ Int. ALUs ‐ Int. mult ‐ 
FP ALUs ‐ FP mult ‐ SIMD) 

1‐1‐1‐1‐1‐1 
1‐3‐2‐2‐2‐2 
2‐3‐2‐2‐2‐2 
4‐3‐2‐2‐2‐2 
4‐6‐2‐4‐2‐4 

Load Store Queue Sizes  16, 32 entries 

Cache Hierarchy 
 

(L1 ‐ L2 ‐ L3) 
32K/4  32KB, 4‐way 

32K/4 ‐ 32K/4 ‐ 4M/4 
32K/4 ‐ 32L/4 ‐ 8M/8 
64K/4 ‐ 64K/4 ‐ 4M/4 
64K/4 ‐ 64K/4 ‐ 8M/8 

3.6 Database Description and Data Optimizations

This section describes the database we use throughout this work and our data splitting

methodology. Table 3.2 lists all the workloads (benchmark phases – 100M instructions each) in

our database. Table 3.3 presents the configurations of the cores in our dataset. A justification is

presented on why these particular configurations are chosen out of a vast set of possible – but

often unrealistic – microarchitectural options, in the original proposal [108].

Each database entry consists of 48 features. Of those, 30 are workload characteristics

obtained via gem5-based profiling. The remaining 18 characterize cores and are statically

available features. We refer to these two sections of our database as the “workload” and “core”

sections.

3.6.1 Workload and Core Sections:

Dynamic workload features can vary according to the core they execute on; for example,

instruction count will be constant within an ISA, but different across ISAs, while cache misses

will vary by core features and ISA. Table 3.4 presents a breakdown of these features, grouped for

brevity.

We characterize each core using 18 features. Each feature is collected from the core’s

microarchitectural specifications and is available from the manufacturer. Table 3.5 presents all
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Table 3.3. Description of core configuration points.

 

 Benchmark  # of Phases 

bzip2  9 

gcc  8 

gobmk  8 

hmmer  5 

lbm  1 

libquantum  7 

mcf  9 

milc  9 

sjeng  7 

sphinx  9 

Design Parameter  Design choices 

ISA  Thumb, Alpha, x86‐64 

Execution Semantics  In‐order, Out‐of‐Order 

Branch Predictor  Local, Tournament 

Reorder Buffer ‐ Register File 
(ROB ‐ Int. regs ‐ FP regs) 

64‐96‐64, 128‐160‐96 

Issue Width ‐ Functional Units 
 

(Width ‐ Int. ALUs ‐ Int. mult ‐ 
FP ALUs ‐ FP mult ‐ SIMD) 

1‐1‐1‐1‐1‐1 
1‐3‐2‐2‐2‐2 
2‐3‐2‐2‐2‐2 
4‐3‐2‐2‐2‐2 
4‐6‐2‐4‐2‐4 

Load Store Queue Sizes  16, 32 entries 

Cache Hierarchy 
 

(L1 ‐ L2 ‐ L3) 
32K/4  32KB, 4‐way 

32K/4 ‐ 32K/4 ‐ 4M/4 
32K/4 ‐ 32K/4 ‐ 8M/8 
64K/4 ‐ 64K/4 ‐ 4M/4 
64K/4 ‐ 64K/4 ‐ 8M/8 

the core features in our database. Some of our features are categorical, without an intrinsic order,

for example a core’s ISA. In other words, they cannot be ordered from best to worse, smallest to

largest etc. Such features are a problem when used with certain ML models. “1-hot encoding” is

a commonly used technique that provides a simple solution to this problem. Ordinal features

such as cache sizes do not present this problem.

3.6.2 Data Splitting

Our decision to use benchmark phases as workloads complicates how we split our

database into train and test sets for correct evaluation. If we follow the commonly used ratio split

method (database entries randomly assigned to either train or test set), we introduce information

leakage between the two sets: if some workload A, runs on CPUs 1 and 2, these two database

entries should not be split across train and test sets, because the trained predictor would have full

information about workload A when making predictions. Similarly, workload A and workload B,

on any pair of CPUs, where A and B are different phases of the same benchmark, should also

not be split across train and test, because the phases may actually share some code, and certainly

share the dataset.

We use our ML suite to study both these problems: When using random data split, we
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observe excellent prediction accuracy (0.006 MAE) over the (supposedly) unseen test set, which

is of course a consequence of this particular splitting approach and not a representative result.

When we assign all 9 phases of the mcf benchmark as our test set (all other benchmarks in train

set), we measure 0.48 MAE, which is quite high. Moving just one mcf phase from test to train,

MAE immediately drops to 0.16.

A better way to split data in such cases is to use a cross validation technique named

Leave-One-Group-Out (LOGO) [92]. Following the LOGO strategy, one group is assigned as

the test set, while all other groups form the train set. For correct evaluation under this technique,

training and testing are performed in a loop, with each group assigned as the test set at least once.

To solve the information leakage problem caused by our workload definition and increase

the generality of our evaluation, we define LOGO groups as entire benchmarks, with all their

phases, including runs on all core types. Training and testing is performed over all groups for

each ML model and we measure MAE across all iterations. We use single-benchmark LOGO for

this exploratory phase of our work.

3.7 Deciphering ML Models

3.7.1 ML Model comparison

We perform a brute-force exploration over the space generated by our configuration flags

(Table 3.1), to identify the best variation for each of our three algorithms.

We rank the top models based on their prediction accuracy (Mean Absolute Error) over

the test set. To study the impact of the reference core’s ISA, we use a mid-range Alpha as well as

its equivalent x86 core as reference cores (an equivalent core is one where the microarchitecture

features are constant, only ISA-specific differences). Our test sets still contain cores from all 3

ISAs, so regardless of the reference core chosen, all our models make αIPC predictions for all

other cores in our database. Our ML framework allows us to pick any of the 600 cores as the

reference core.
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Table 3.4. Dynamically-collected feature groups in our database.

Feature Names (grouped)  Description 

APPID 
Unique workload identifier.  

Never used for testing or training 

INT_R, FP_SIMD_R, BR_R, 
LOAD_R, STORE_R 

Dynamic count of five instruction types: 
Int, fp or simd, branch, load, store 

INT_N, FP_SIMD_N, 
BR_N, LOAD_N, STORE_N 

Normalized dynamic instruction count 

OPS  Total number of operations. Varies across ISAs 

<TYPE>_HITS_R, 
<TYPE>_MISS_R, 
<TYPE>_MISS_N 

Raw count of hits and misses, and miss ratio. 
TYPE=$I (I‐cache), $D (D‐cache), L1 ($I & $D), L2. 

Total of 12 features in this group.  

FETCH, ISSUE  Dynamic fetch and issue rates 

REF_IPC  Performance measurement (in aIPC) 

MISSPRED  Branch missprediction rate 

D_PROC_PWR, 
D_CORE_PWR 

Dynamic processor and core power consumption 
(McPat) 

 

Table 3.5. Statically-collected core features in our database.

Feature Names   Description 

CPUID 
Unique core identifier.  

Never used for testing or training. 

ISA (THUMB, ALPHA, X86)  Core’s ISA. Categorical feature. 

SEMANTICS (IO, OOO)  In‐order or Out‐of‐Order. Categorical feature. 

BR_PRED (LOCAL, TMNT) 
Core’s branch predictor, local or tournament. 

Categorical feature. 

WIDTH  Core’s width 

ROBSIZE  Reorder buffer size 

INTREGS, FPREGS  Number of int and fp registers 

LSQSIZE  Load‐Store Queue size 

L1SIZE, L2SIZE  Cache sizes for L1 (kB) and L2 (LLC, MB) 

INTALUS, FPALUS  Number of int and fp ALUs 

INTMULTDIV, FPMULTDIV  Number of int and fp multiply‐divide units 

SIMD  Number of SIMD units 

AREA  Core’s area (McPat) 

PEAKPOWER  Core’s peak power (McPat) 
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Table 3.6 presents our evaluation results as well as the configuration of each model.

we present MAE, and STD results of each model when queried on their train set entries (all

previously seen data), in addition to showing results when queried with the test set. Without

loss of generality, we can expect any scheduler to occasionally be confronted with the same

applications, possibly even similar inputs – querying with train set entries gives an upper bound

to the quality of the predictions when a new workload closely matches a previously seen one.

On the configuration side, the top models have some interesting disagreements. First,

an Alpha reference core is preferred by the RR model, while the tree-based models prefer the

x86 core. For comparison, the equivalent RR model that uses the x86 reference core, reports

5.4x higher prediction error over the test set and the most accurate RR model that uses the x86

reference core shows 13% lower prediction accuracy compared to the top RR model. Second, our

three models also disagree on whether to keep dynamic power consumption measurements, with

only the RF model utilizing this information. Third, the RR model scales its input features and

drops all raw measurements (very high values) in an attempt to keep all its feature values roughly

in the same range which is a common optimization for linear models. Finally, the only features

kept by the RR model in addition to normalized dynamic instruction breakdown (cannot be

turned off by any model) are L1 cache and reference target features (profiled αIPC on reference

core). We later explore which of these features our models consider important and how much

weight they are assigned on the final prediction.

Interestingly, the DT model chooses to ignore L1 cache features and the αIPC measure-

ment from the reference core and instead works with raw values, measured fetch and issue rates,

and L2 cache features. No optimizations are applied since the DT algorithm shines at internally

dealing with messy data. The RF model keeps the highest number of features, but ignores all

cache information. It also chooses to whiten its features. This is because keeping correlated fea-

tures reduces the variance between the forest’s trees and as a result reduces prediction accuracy.

For comparison, the equivalent RF model without whitening reports a 6% higher MAE.

All three of our models enjoy a very large training dataset, due to the LOGO splitting
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technique. Such a dataset is not unreasonable in a production-level scheduler, given periodical

re-training with newly observed workloads. However, we later (Section 3.9) show that the RR

model is much more sensitive to reduction of the train set size, whereas tree-based models remain

within error tolerance.

3.7.2 Linear Coefficients (LC) Analysis

The linear coefficients analysis can be applied to linear models and gives us an un-

derstanding of how it internally utilizes its input variables. During training, Ridge (linear)

Regression algorithms generate an equation of the form: αIPC = ∑
n
i=1 ci fi where n is the number

of features, and ci is the coefficient associated with the feature fi. Features with higher absolute

coefficient values have more impact on the final prediction than those with lower coefficient

values. The linear coefficient analysis simply sorts each feature based on its significance. How-

ever, features with extremely high measurement values compared to the rest of the input can still

have significant impact even with lower coefficients. Since our top RR model applies the scaling

optimization, we know that all our features have the same mean value of zero, and standard

deviation of one. This allows us to simply sort the coefficients themselves in order to understand

each feature’s significance.

Our results presented in Figure 3.4a reveal that this linear model assigns extremely high

weight on the hardware characteristics of the target core. We only present features that have

normalized weight of at least 1%. Interestingly, this model assigns significant weight on the type

of branch predictor of the target core (LOCAL or TMNT). It also assigns some weight to the

target’s ISA, as well as its number of functional units, and execution semantics (IO or OOO).

When we look at the collection of hardware features that are considered important, it appears

that this model is attempting to quantify the computational capacity of its target core. Such

an approach is reasonable since this model is only allowed to draw a straight αIPC prediction

line. Its best bet is to predict performance based on the overall computational capacity offered

by the core. If instead it tried to predict based on dynamic workload measurements or even a
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Figure 3.4. Normalized feature importance from three different analysis techniques. Refer to
tables 3.4 and 3.5 for a description of our keywords. LC analysis performed on top RR model.
MDI performed on top RF model. RPP performed on near-oracular DT predictor.
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combination of the two, the relationship is likely to be non-linear. We notice that even though

the profiled αIPC from the reference core is part of this model’s input (refer to Table 3.6), it

is assigned a weight less than 1% – in other words it is an insignificant part of the prediction

equation derived by our most accurate RR model. Finally, we observe that this model picks one

dynamic (profiled) feature and assigns it a small weight – the number of dynamic instruction

cache misses, which confirms the fact that instruction cache misses, although infrequent, can

have a substantial impact on overall performance.

3.7.3 Mean Decrease of Impurity (MDI) Analysis

Feature impurity analysis is performed on tree-based models. We apply it on our top

random forest, since a collection of decision trees gives us a broader view of the feature space.

During tree construction, these algorithms create decision nodes with each node being a “less

than X” condition on a single feature, where X is typically a real number.

Similarly to linear models gradually adjusting feature weights to minimize prediction

error, decision node conditions are chosen such that they minimize the “impurity” of the two

subtrees generated by that node. Since we are using regression models (not classifiers), the

impurity measurement is defined as the variance between all final responses (predictions) of

each subtree. During training, we can compute how much each feature decreases the weighted

impurity in a tree (e.g. how narrow it makes the subtree’s prediction range). Since our RF model

performs data whitening, we avoid a shortcoming of this analysis, where the presence of highly

correlated features gives the appearance of lower importance (because correlated features can be

used interchangeably at decision nodes).

Figure 3.4b presents our impurity analysis results. Similarly to Figure 3.4a, we only plot

the features with at least 1% of normalized importance. Since we study a collection of predictors,

we are also able to plot standard deviation lines showing how each feature is ranked amongst all

trees.

Very short deviation lines mean that the given feature is considered roughly equally
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important by the collection of trees, while longer lines imply that the feature’s importance varies

more between trees.

The RF model assigns high significance to fewer features than the RR model (8 vs 15). We

also observe that this collection of features seems more reasonable for performance predictions.

For example, if we focus on their average importance, the profiled αIPC is considered the

most influential feature, followed very closely by the target core’s static peak power (not to be

confused with the workload’s profiled dynamic power consumption).

Peak power is a very good proxy for the peak performance of the target core – power

consumption is a major factor for any commercial core produced, so manufacturers are typically

not willing to increase their product’s peak power consumption unless it offers significant gains

in performance.

Interestingly, we observe significant difference in the amount of deviation in the top two

features. While all trees consider peak power equally important (predict based on target core),

the importance of the profiled αIPC varies significantly amongst trees. This partially explains

the surprising decision of the linear model presented earlier to not use any of these measurements.

Even though this feature combination is meaningful and according to our results successful, their

relationship towards the prediction target is non linear (we verify this phenomenon by visualizing

all our database entries). Random forests on the other hand are able to exploit this non-linear

relationship by having only a small set of trees using profiled αIPC while the remaining trees

use other measures to minimize the overall prediction error, and at the same time use the peak

power feature in all trees. Clearly, this feature combination is very strong given the excellent

prediction accuracy of this model on the train set.

We further observe an architectural feature overlap between the RF and RR models –

the target core’s instruction width and ISA (all with relatively low importance but also short

deviation lines). Notice that when a decision tree path asks the two ISA questions sequentially, it

is able to differentiate between all three of our ISAs, unlike the linear model which ends up with

less information. Instruction width and ISA are among the top features in our best DT model as
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Figure 3.5. Reverse Purity Analysis, applied on 100% accurate DT model.

well (MDI analysis results not shown), showing a strong consensus among all types of predictors

on the usefulness of these variables. With the ISA variable playing such an important role, it is

clear that prediction techniques focused on single-ISA heterogeneous datasets cannot predict

accurately when applications cross ISAs. To the best of our knowledge, we are the first to design

predictors that remain accurate across general-purpose ISAs.

We finally observe that this model also focuses on profiled features such as the profiled

number of ops (very high deviation), issue, and fetch rates. It stands to reason that fetch and

issue rates hint towards the workload’s parallelism levels which eventually affect its performance.

The amplitude of this effect depends on the target core’s characteristics, which are also queried

by our RF model.

3.7.4 Reverse Path Purity (RPP) Analysis

Consider a decision tree model which has near-perfect prediction accuracy. This model

is essentially a collection of paths that start at the root node and end on leaf (decision) nodes.

Each path asks a sequence of questions that “filter” the input query. Intuitively, if we observe

that some categorical feature X which has N possible values gets cleanly separated amongst the

tree’s paths, then we can argue that the given model deemed important to always “know” the
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exact value of X before making a prediction. In this experiment we refer to tree paths as pure, if

and only if they can be traversed by exactly one value of some categorical feature. Paths that are

shared by two or more values are referred to as impure.

It is challenging to measure path purity by simply traversing all paths and reading their

questions, because some features can be extrapolated by questions on other features. For example,

our tree can ask “Is the target ISA Thumb?”, or it can ask “Is there floating point support on the

target core?”. We devise this experiment to overcome the possibly unpredictable combination of

questions that can lead to a single feature value, and it allows us to measure path purity for all

features that have a finite number of values.

We begin by creating a near-perfect predictor. We achieve this by training our best DT

model using the entirety of our dataset (everything is in the train set). This leads to minimal

MAE and STD (both are measured below 0.02). Of course the actual accuracy measurements

are irrelevant to this study, but we now know that we have a predictor that successfully converted

our entire dataset to 2117 (measured) distinct paths of up to 12 questions each.

In order to measure path purity, we first pick the categorical feature we seek to study. For

this walkthrough example, let’s assume we pick the ISA feature. Then, we query this model for

a prediction for each row of our dataset. We maintain a map between leaf node ID and a count

of different ISA values that reached it; by definition exactly one path can reach one leaf node.

Those nodes that only counted a single ISA value are pure, while all others (with 2 or 3 values)

are not. Clearly, if the model internally fully separates ISAs to different paths, it is of paramount

importance (to the model) to “know” which ISA it’s predicting for, leading us to the conclusion

that ISA is an important feature. If on the other hand, some other feature is shared in most paths,

then – regardless of the features implicit weight – this accurate model cares less about extracting

the exact value, thus the feature is of lower importance.

We plot our findings in Figure 3.4c. We see that a near-perfect model separates the

target core’s ISA and width almost entirely (97% and 95% of the paths are pure respectively).

Execution semantics (inorder/OoO) follow with 89% path purity. The majority of our core-
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Figure 3.6. Predictor algorithm overhead comparison: Training time (left), Query time (middle),
Memory overhead (right).Y axes shared and in log scale.

describing features lies between 80% and 60%, while cache sizes and the number of integer

ALUs are below 50% (the majority of their paths are impure). This experiment proves that

ISA, width, and execution semantics are of paramount importance when predicting performance

for heterogeneous-ISA systems. This finding is in agreement with our insights derived in the

previous two experiments, however we now have a clear image of just how important these

features are. The reason previous experiments do not show higher weights on some of the

features (e.g., the ISA) is because they can often be extrapolated via other features.

3.8 Predictor Overhead Comparison

This section presents an overhead comparison for our three models. We perform the

following experiments on a system with an i7-3770K processor running at 2.9GHz and 16 GB of

memory. We use the algorithm implementations from sklearn [93].

First, we vary the dataset size and train each model 100 times to report average training

overhead. All algorithms are measured to have linear algorithmic complexities for training,

however RR has the lowest slope of 1.4, followed by DT (14.3) and RF (92.7). Training times

for a dataset of 30k entries are 21ms, 203ms, and 1.4s for RR, DT, and RF respectively (Fig. 3.6 –

left). Training overhead has little significance in choosing a model, since it happens infrequently.

For extremely large datasets however, RF’s overhead might become prohibitive.

68



We measure query overhead (Fig. 3.6 – middle), by asking each trained model for 55k

predictions and report the average time per prediction. Overhead per query for RR, DT, and RF

is 24ns, 29ns, and 667ns respectively. Query overhead is an important metric, since predictions

can be part of the critical path, especially in the context of job scheduling. RR and DT are

comparable, however RF is significantly slower.

Our deciphering methodologies presented in Section 3.7 identify which dynamic mea-

surement each model requires. Dynamic measurements require HW support, specifically on-chip

counters. We find that the RR model requires one counter (# instruction cache misses) and

the DT model needs 4 counters (# ops, # L2 cache misses, # load instructions and # of branch

instructions). Finally, the RF model requires 5 counters (profiled αIPC , issue and fetch rates, #

ops and # loads). We note that most modern cores already feature these performance counters.

Finally, we measure the memory overhead of each model (Fig. 3.6 – right). Linear

models only need to store their coefficients’ values. Tree-based models must store a condition

value and a feature identifier for each node. We assume that all condition and coefficient values

require 64 bits and the number of features defines the number of bits necessary to represent them.

The RR model needs 960 bits, the DT model 276kB, and the RF model 1.5MB. Overall, RF is

expensive compared to the others. Although it does provide high accuracy, the predictions do

not necessarily translate to a significant gain in scheduler efficiency, as observed later.

3.9 Scheduler Evaluation

This section materializes our insights derived in the exploratory part of this work. Specif-

ically, we train our most accurate RR, DT, and RF models using only the features we identify

as important in Section 3.7. Each model is then linked to a scheduler that receives a prediction

matrix and derives a greedily optimal schedule to maximize performance. Using this scheduler

framework, we run 200 workloads to completion on each of our 9 benchmark multicore systems

identified in Section 3.4.1. We compare our schedulers against a greedy oracular scheduler that
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Figure 3.7. Scheduler performance comparison.

consistently makes 100% accurate performance “predictions” on every probe.

We no longer use the LOGO data splitting approach to measure the overall scheduler

efficiency. Instead, we increase the size of the test set and reduce the size of the training set, by

assigning four randomly chosen benchmarks (instead of one) to be our test set. While this could

potentially result in reduced predictor quality in terms of MAE and STD, it enables a larger

selection of previously unseen workloads allowing us to explore more realistic computation

environments.

For this experiment, we randomly select input workloads that create a mix of 50% unseen

(from test set) and 50% previously seen workloads (from train set), resembling a typical IaaS

(Infrastructure-as-a-Service) environment (e.g., Amazon’s EC2) – some users use EC2 instances

to run the same application every time (such as a web server), while others execute a more

diverse mix of workloads (software development and testing).

3.9.1 Performance Evaluation on Heterogeneous-ISA Architectures

Figure 3.7 presents our results normalized to the average performance under the optimal

scheduler that emits a schedule resulting in the maximum-achievable overall throughput. We

first observe that the RF-based scheduler has an advantage compared to the other ML-based
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schedulers. However, the much cheaper DT-based scheduler scores very close, across all systems.

Compared to RF, DT reports a 2.8% average performance reduction (6.2% max reduction), while

it outperforms RF on the E8 system by 1.2%. We further observe that our RF scheduler is

within 2.2-11.2% (7.5% on average) from an oracular scheduler, and DT within 1.6-16.8% (10%

average).

Our RR-based scheduler shows significantly reduced performance. The reduced training

set size affects our top RR predictor’s accuracy significantly enough to move it past the error

tolerance zones we identify in our ESE analysis. While the (test set) accuracy of all our models

drops due to the reduced training data set, RR is affected the most, with its MAE doubling and

STD increasing by almost 3x. For comparison, tree-based models only experience 6% MAE

and STD degradation. Furthermore, tree-based prediction accuracy on the training set is slightly

better (by 1%), which provides a significant advantage over RR in this experiment. RR remains

roughly within the same levels of accuracy on the training set.

3.9.2 Performance Evaluation on Single-ISA Architectures

To demonstrate the adaptability of our schedulers to less complex systems, we also

examine single-ISA heterogeneous systems. We repeat the EoS-based system selection presented

in Section 3.4.1. However, this time we enforce our systems to only use Alpha cores. We

must note that our predictors have not been re-trained between the two experiments. Figure 3.8

presents our results.

We first observe that, unlike with heterogeneous-ISA systems, the DT scheduler has an

advantage over RF. The added complexity of the RF predictor does not appear to be as beneficial

in the single-ISA case. We can also observe that our linear predictor now reports comparable

efficiency as RF and DT (1.5-4.8%). This happens due to the reduced scheduling difficulty on

single-ISA systems (higher EoS values). Our best scheduler (DT) performs within 0.2-12.5%

across all systems compared to the oracular scheduler (4% on average).
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Figure 3.8. Scheduler performance comparison on Single-ISA heterogeneous systems.

3.9.3 Scheduler Sensitivity to Underlying System

From Figure 3.7, we observe that our tree-based (DT, RF) schedulers are affected by the

transition from 4 to 8 cores, but their performance remains almost intact when we move from 8 to

16 cores. In comparison, the oracular scheduler is affected by both transitions (4→ 8, 4→ 16),

albeit with a smaller impact. These trends are also observed when our schedulers accompany

single-ISA systems (Figure 3.8). Our results show that tree-based schedulers were able to mostly

overcome (1) the increase in scheduling difficulty between 8 and 16-core systems, and (2) the

variety of underlying ISAs.

3.10 Conclusions

With heterogeneity becoming more and more available in modern systems, predictive

models enjoy increased attention from the scientific community for applications in scheduling,

power management, resource management, resource allocation and more. In this work we first

present an exhaustive exploration and analysis of the abilities of ML models to act as performance

predictors. Our results reveal that accuracy metrics typically used in ML works do not necessarily

translate to computer architecture applications such as scheduling in a predictable fashion.
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Furthermore, we reverse-engineer trained ML models and conclude on which measurements

are necessary for accurate predictions. We finally materialize our insights in three ML-based

schedulers for heterogeneous-ISA systems and demonstrate their effectiveness on systems of

varying scheduling difficulty.
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Chapter 4

Agon: A Scalable Competitive Scheduler

This chapter proposes a competitive scheduling approach, designed to scale to large

heterogeneous multicore systems. This scheduler overcomes the challenges of (1) the high

computation overhead of near-optimal schedulers, and (2) the error introduced by inaccurate

performance predictions. We present Agon, a scheduler that employs a range of schedulers, from

simple to very accurate, and learns which scheduler provides the right balance of accuracy and

overhead for each scheduling interval.

4.1 Background

Recent years have seen an increase in interest in heterogeneous hardware, both in

industry and in the research literature. Processors or systems that allow diverse execution engines

maximize the likelihood that any particular thread or application finds an execution core most

suited to its execution, resulting in more efficient (higher performance, lower energy) execution.

This execution diversity can take the form of application-specific accelerators [19, 29, 102, 89,

52], as well as general purpose cores with diverse micro-architectures [62, 63] or even Instruction

Set Architectures [32, 108, 106].

Harvesting the full potential of heterogeneity is not trivial, as it requires effectively

assigning diverse tasks with constantly changing resource needs, to the best combination of

hardware engines at any point in time. The larger the system and the greater the level of diversity,
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the more difficult it is to find the best solution. A large body of work can be found in the literature

with proposals to address resource management in heterogeneous hardware [98, 31, 25, 78].

A variety of proposals [31, 24, 115, 9] focus on predicting the performance of each

workload on each core of a heterogeneous system. This information can then be passed to the

scheduler which will use it to generate a schedule (workload-to-core assignment). This research

focuses on the scheduler itself. While several proposals have been successful in predicting

runtime characteristics with high accuracy, many just assume the presence of a scheduling

algorithm that can utilize their predictions. With small, or less heterogeneous, systems this

assignment can be trivial, assuming the predictions are accurate. As systems get larger and more

diverse, however, the workload-to-core assignment becomes computationally prohibitive, with

the cost of the assignment algorithm potentially overwhelming the gains from a good schedule.

Thus, we find that in a complex system, a scheduler can fail (or perform suboptimally) in

two ways – it can identify a poor schedule, or it can spend so much time computing the schedule

that it significantly defers useful computation. The fact that scheduling needs can differ between

cases is the foundation of this work. We propose Agon. Given the state of a system, Agon selects

the appropriate scheduling algorithm (from a number of options), such that it maximizes overall

system performance. For example, in cases where there is significant gain between the best

schedule and a ”good” schedule, it might employ a high-cost scheduler, but in another case

where many of the potential schedules are near-optimal it will employ a low-cost scheduler.

Thus, Agon is not a scheduler, but an arbiter between schedulers.

We design Agon as a trainable, neural network module. We further present and evaluate

multiple configurations and neural network architectures that can be used. Some focused more

on simplicity and efficiency, while others focus on improving Agon’s prediction accuracy.

Agon has a dual-part architecture. Its novel front-end is trained to filter out performance

prediction error (denoiser), much like neural network modules that remove noise from images.

Its back-end is a typical classifier that receives performance predictions and outputs a choice of

scheduling algorithm.
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We evaluate Agon on a variety of underlying heterogeneous-ISA systems, multiple

datasets, and multiple scheduling goals. Our results show that Agon is capable of selecting

the optimal scheduler for each problem instance with accuracy up to 89%. We further find

that simply due to avoiding scheduling overhead when possible, average system performance

improves by ∼ 6% compared to a system equipped with the best scheduler available, while at

the same time we approach the performance of an oracular scheduler selector (99.1% of oracle

performance).

We first present an overview of related work in Section 4.2. We then motivate our work

via a detailed exploration of all the variables that can affect which scheduler should be used in

Section 4.3. We discuss the details of Agon’s architecture (Section 4.4), as well as the details of

our dataset (Section 4.5) and evaluation methodology (Section 4.6). Section 4.7 presents and

discusses our results, and finally Section 4.8 concludes the paper.

4.2 Related Work

Single-ISA heterogeneous architectures are proposed by Kumar, et al. [62], with proces-

sor manufacturers currently offering heterogeneous products [37, 53, 104]. General-purpose

heterogeneous-ISA multicore architectures [32, 108, 106], include microarchitecturally heteroge-

neous cores that implement different ISAs and demonstrate significant added benefits compared

to its single-ISA counterpart. A recent proposal by Venkat, et al. [106] further demonstrates

how a heterogeneous-ISA CMP can be based on feature-diverse variations of a single ISA,

significantly alleviating several barriers to adoption.

In this work we choose to evaluate our mechanisms on heterogeneous-ISA multicore

architectures, primarily because such architectures significantly increase the difficulty of the

scheduling problem. The three ISAs we use in this study are Thumb [66], Alpha[30], and

x86-64[45]. Our proposal is however orthogonal to the underlying system and can be (re-trained

and) used with any combination of cores, systems, and performance predictors.
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Scheduling in the presence of heterogeneous hardware is typically a two-step process:

First, some predictive mechanism attempts to predict how each workload will perform on each

execution option (e.g. heterogeneous cores of the underlying system, independent systems such

as heterogeneous servers, etc). The result of this first step looks like a 2D array of workload-core

predictions, which is then fed to the second stage: the scheduler. The scheduler’s task is to

receive the prediction matrix and decide on the final job-to-core assignment that optimizes some

execution aspect, such as overall performance, bandwidth, and/or power consumption.

Some schedulers (scheduling algorithms) suffer from scalability issues due to their

algorithmic complexity. For example, the Hungarian algorithm [51] is the only known algorithm

besides brute-force that guarantees finding an optimal assignment in polynomial (O(N3)) time.

As we show in this work, this complexity can be impractical for chips with as little as 8 cores.

The scalability issues of scheduling algorithms have been studied extensively in the literature

in various contexts, such as power management in dynamically heterogeneous multicores [112,

111, 15], real-time systems [16], and more [70].

We base our work on the scheduling algorithms and heuristics evaluated by Winter et

al. [112]. The authors assume the decay of CMPs throughout their lifetime due to permanent er-

rors, which lead to dynamic heterogeneity and evaluate how each scheduling algorithm performs.

They also propose an iterative scheduling solution termed “local” scheduling. Unlike prior work,

our goal is not to design a new scheduling heuristic, but to assume the existence of multiple

scheduling algorithms and build a mechanism that selects the appropriate algorithm to be used.

Numerous proposals from the literature focus primarily on the first step of scheduling,

workload-core performance prediction. Some simply assume the existence of a fast, optimal

scheduler and focus entirely on improving prediction accuracy [87, 88, 115, 94], while others also

attempt to alleviate its overhead. Two methods are commonly utilized to achieve that: Iterative

methods perform job migrations upon scheduling intervals, slowly progressing towards a better

schedule but likely sampling poor schedules along the way [94, 67, 100]. The second method

logically divides large systems into smaller independent scheduling islands [23], allowing the use
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of more complex algorithms operating with limited-scope knowledge. Scheduling islands are a

reasonable solution, especially for very large systems, however we show that limited knowledge

can have a significant (in some cases) impact on overall system performance.

The Agon scheduler we propose is a classification neural network [12], with each class

corresponding to the scheduling algorithm to be used. Classifiers are used extensively in a wide

range of applications, from object recognition [61], to medical imaging (e.g. classifying tumors

as benign or malignant [34]), to credit card fraud detection [35], and more. Agon explores

various neural network architectures, such as basic Feed Forward Networks (FFN), convolutional

layers, and convolutional autoencoder architectures used for denoising their input [109, 36].

Convolutions and convolutional autoencoders are typically used with image inputs. In this work

we are able to utilize these architectures and operate successfully on 2D performance prediction

matrices. In fact we find that denoising autoencoders can remove performance prediction error

almost entirely when properly trained.

The overhead of neural network inference (running an input through the network and

getting a prediction) has been and still is improving rapidly, due to the meteoric rise of inference

accelerators over the last few years [52, 60, 103, 83].

4.3 Motivation

This work is motivated primarily by the fact that determining optimal or near-optimal

schedules for large, heterogeneous systems is difficult to get right and computationally expensive.

In this section we discuss the factors that make the scheduling problem hard: The computa-

tional overhead of the scheduler, the varying difficulty of hardware/workload combinations, the

inaccuracy of performance predictions, and finally the scheduler’s goal.

4.3.1 Scheduler Overhead

The scheduling problem we address in this work is a special case of the linear sum assign-

ment problem [20]. The most efficient solution is the hungarian algorithm, which guaranteed to
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find (one of) the matrix permutations that generates the largest sum on its diagonal (this diagonal

is a job-to-core assignment in our case). Many other heuristics have been developed, that do not

guarantee the optimal, or in some cases even a good solution, but operate much faster than the

hungarian solution.

The impact of a scheduler’s algorithmic complexity has been demonstrated and discussed

in prior work [112] in the context of dynamically heterogeneous architectures. These architec-

tures begin as a homogeneous system, but become heterogeneous due to hardware failures during

the system’s lifetime. Besides that work however, the scheduling step is often simply assumed in

performance prediction proposals. In other words, proposals that design performance predictors,

assume the existence of a scheduler that will receive these predictions and generate the actual

job-to-core assignment.

In reality, the hungarian scheduler, with O(N3) algorithmic complexity, cannot scale to

large multicore systems. In fact, we find that in systems with as little as 8 cores, the overhead of

hungarian scheduling is sometimes not covered by the returned performance benefit. On very

large systems, hungarian scheduling can take as much as a full second to complete.

We measure scheduler overhead by creating random inputs of varying sizes (4-256

cores) and feeding them to each scheduling algorithm (implemented in Python). We repeat each

experiment 10000 times to minimize random noise. Measurements were performed using an i7

processor running at 3GHz.

We present our results in Figure 4.1 (note the logarithmic Y axis). We compare 6

scheduling algorithms. Smart random is the only new scheduler that we develop in this work,

while all others are described in prior work. Our measured overheads track each scheduler’s

algorithmic complexity.

As we discuss in the remainder of this section, we cannot safely assume that higher

overhead will lead to better performance, or that the returned performance will be enough to

cover the time spent in scheduling.
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Figure 4.1. Overhead comparison of 6 scheduling algorithms (Logarithmic Y axis)

Scheduler Description

In this work we compare the following schedulers:

Hungarian Algorithm: Guarantees finding one (of many in case of ties) optimal solution

to the linear assignment problem in O(N3) (Jonker et al. [51]).

Serial Hungarian: System is divided into smaller pods. In our exploration we evaluate

pod sizes of 4 and 32. Each pod internally runs the hungarian algorithm and pods run serially.

Algorithmic complexity remains O(N3), but N is the pod size.

Random: Given N workloads and assuming their order corresponds to the core each one

executes, the random scheduler returns a shuffled list with algorithmic complexity O(N).

Smart Random: If possible, this scheduler avoids assigning floating point workloads

on Thumb ISA cores (which do not have FP hardware support). Besides this one rule, all other

decisions are random. This scheduler has O(N) complexity.

Local: Given some starting schedule (random at first), this algorithm randomly partitions

the schedule into two halves and swaps workloads pairwise. If the new assignment is not

beneficial compared to the previous one, swaps are reversed. This process is repeated N/2 times

and spans N/2 consecutive scheduling intervals. It can be implemented with O(N2) complexity.
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Greedy: Sorts workloads according to ILP and cores according to performance. Final

schedule is a one-to-one assignment between the two lists. Can be implemented with O(N logN)

complexity.

4.3.2 HW/SW heterogeneity and EoS

The first factor that can affect scheduler quality in our list is core heterogeneity. Rather

than limit our study to a single instance of a heterogeneous system, we examine a large number

of combinations taken from 600 unique heterogeneous cores and 3 ISAs, which is the extent of

our dataset. Given a randomly selected N-core system, its member cores might be closer to each

other in terms of performance or the difference could be quite significant. As inter core variance

increases, we would expect that so does the difficulty of scheduling.

Software heterogeneity affects scheduling in a similar fashion as hardware heterogeneity:

Software can be compute- or memory-bound, can include floating point or SIMD operations, can

have varied register pressure, etc. Prior work has demonstrated that software, and even distinct

phases within each program present “ISA affinity” [108] - an inherent preference to one ISA

over others. This can be due to obvious factors such as the presence or lack (e.g. Thumb) of FP

hardware, or more subtle factors such as register file size, addressing modes supported, code

density, etc.

Combined, hardware and software heterogeneity can severely impact a scheduler’s

ability to find a good job assignment. Prior work proposed an Ease-of-Scheduling (EoS) metric

that quantifies the impact of these factors in respect to the scheduler’s outcome in a single

number [87].

In this work we repeat the EoS experiment with our dataset. Due to the difference in

scope between this and prior work, we modify the EoS experiment slightly: Instead of assuming

a series of workloads, with a new one appearing as soon as another finishes, we only use single

problem instances to the scheduling problem. A problem instance for an N-core system consists

of an N×N performance prediction matrix - the input to the scheduler. For each N-core system
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we study, we run 20K problem instances and report the average performance across all of them.

The 20K N-long workload sets are randomly chosen and do not change between systems. EoS

relies on measuring the performance of a random scheduler. To minimize noise from random

decisions, we randomly schedule each problem instance 10000 times.

Our results in Figure 4.2 show that for each system size (4/8/16 cores) scheduling

difficulty can vary significantly, with some systems being quite easy to schedule, even for a

random scheduler, while others can be quite challenging. Subfigures separate each system size

and provide a non-overlaped view. In accordance to prior work, we use our EoS results to define

the benchmark systems of this study: For each N value (4/8/16), we select the easiest (highest

dot), hardest (lowest), lowest-performing (leftmost), and highest-performing (rightmost). In the

remainder of this paper, benchmark systems are labeled as E, H, LP, or HP respectively, followed

by the number of cores in the system. For example, H4 is the label for the hardest-to-schedule

4-core system, and LP8 is the lowest-performing, 8-core system.

4.3.3 Prediction Error

Agon assumes that some predictive unit generates the scheduler’s input. As such we

can safely assume that the scheduler, regardless of its complexity, will be faced with erroneous

inputs. The quality of the predictor can significantly affect scheduling quality.

We measure the impact of prediction error on three schedulers: hungarian, serial hun-

garian and local. Random and greedy schedulers do not depend on performance prediction

and are immune to prediction error. For fair evaluation, we assume the existence of a good

predictor, since as prediction quality drops, all schedulers tend to converge to the performance

of a random scheduler. Prior work has evaluated numerous such predictors, using a variety of

different machine learning algorithms [87, 88]. We choose their Decision-Tree based predictor

and assume it to be the generator of Agon’s input matrix, due to its low overhead and high

accuracy.

Figure 4.3 shows our results. We find that compared to oracular performance predictions,
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Figure 4.2. Modified Ease of Scheduling (EoS) Evaluation
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Figure 4.3. Impact of prediction error on three schedulers (Hungarian, serial hungarian with
pod size=4, local). Predictor accuracy is modeled with a bell curve (mean error=0.22, standard
deviation=0.35).

hungarian algorithms, both the originally proposed as well as the serial version, are affected

between 7.2−9.8% on average by the prediction error of a good performance predictor. The

local algorithm is affected at a lesser degree (4.1−4.9%), however, compared to the hungarian

scheduler, local returns up to 21% and 17% lower performance on average for oracular and

predicted inputs respectively.
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Figure 4.4. Normalized performance of schedules found using the Hungarian algorithm under
performance predictors of varied quality. Predictors are emulated using the mean (MEAN) and
standard deviation (STD) of their prediction error.
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Figure 4.4 presents the impact of prediction error on a single instance of the scheduling

problem (i.e. for one particular 8-core system and one set of 8 workloads). Both the system under

test, as well as the set of workloads were randomly selected for this experiment. Performance (Y

axis) is normalized to the performance of the best possible schedule, which is calculated using the

hungarian algorithm fed with oracular (error-free) performance predictions. All nine schedules

presented in the figure are generated using the hungarian algorithm and each bar corresponds

to a different performance predictor that generates the scheduler’s input. Each predictor is

emulated using the mean and standard deviation of its prediction error. We minimize noise from

random decisions by repeating the experiment 10000 times and reporting average performance

of schedules. With the worst predictor generating inputs to the scheduler, the derived schedule

performs 33% worse compared to the best possible schedule. We also observe that while mean

error in predictions has a significant impact, so does the standard deviation of error our predictor

exhibits.

4.3.4 Scheduling Goals

Some of the factors that can affect a scheduler’s quality are also dependent on what we

refer to as scheduling goals. For example, scheduling overhead (Figure 4.1), will have high

impact on a scheduler that operates very frequently. A less frequent scheduler will spend less

(percentage-wise) time on overheads and more on executing useful instructions.

Later in this study, we calculate the winner scheduler under a variety of scenarios, such

as varied error at the classifier’s input, varied system sizes, etc. The correct answer is of course

dependent on what our scheduling goal is.

In this work, we explore 4 different scheduling goals: The FIRST100 goal, defines the

winner scheduler to be the one that will first execute 100M Alpha instructions (or equivalent

work on another ISA). Similarly, our FIRST400 goal selects the scheduler that will first execute

400M Alpha instructions. MOST50 selects the scheduler that will execute the highest number

of instructions within 50M cycles and finally, MOST200 allows for 200M cycles.
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In calculating the winner scheduler, we take into account each scheduler’s overhead. For

example, if the hungarian scheduler needs 10M cycles to execute and the goal is set to MOST50,

this leaves the scheduler with only 40M cycles to execute useful instructions. Thus, each goal is

impacted by the computational overhead a bit differently.

4.4 Architecture

Agon is a “competitive” scheduler. Conceptually, a number of schedulers (scheduling

algorithms) compete to be the one to solve the assignment problem. Agon acts as the arbiter

which decides the winner in each instance. In a realistic execution scenario, available input

information will be an N×N performance matrix, representing the (predicted) performance of

each of the N in-flight workloads on each of the N cores.

A performance predictor can be responsible for generating the performance matrix.

Proposals from the literature that tackle this particular problem are presented and discussed in

Section 4.2. During evaluation, we also examine the impact of oracularly obtained performance

matrices, however we cannot realistically expect the presence of 100% accurate predictions

during runtime, unless we operate in a highly predictable environment.

Figure 4.5 shows a high-level overview of our mechanism’s architecture: Agon acts

as the control signal of a K-way multiplexer, where K is the number of available schedulers.

Internally, Agon runs the input matrix through its (optional) denoising front-end, followed by its

classification back-end . A series of hidden layers in both modules process the information. The

classifier’s output layer consists of K nodes. With the output nodes using softmax activation [71],

Agon’s output is the probability of each scheduler to be the most effective one. We then select

the scheduler with the highest probability as the winner.

At its heart, Agon is a classifier, which receives a performance matrix as input and selects

one (of six in this study) available schedulers. We explore a variety of possible architectures for

Agon, with varied complexity, classification accuracy, and system performance. We describe
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these architectures in the remainder of this section.

4.4.1 Classification Back-End

This is the main control center of Agon, where the final decision is made. We explore

two neural network architecture options: A simple, feed forward architecture (labeled “deep” in

the remainder of this work), as well as a convolutional classification architecture (“cnn”). Both

architectures result in a softmax output layer with 6 nodes, since we are training it for 6-way

classification.

As a classifier, the operation of Agon’s back-end is quite straightforward: The returned

class is the one with the highest (softmax) probability. The input layer is internally ensured to be

compatible with the selection of denoiser (described in Section 4.4.2 - via the use of pseudolayers

such as “Flatten” and “Reshape”). For example, a convolutional denoiser will output a 2D matrix,

while the simple denoiser will output a flattened 1D list. Similarly, a feed-forward classifier will

expect a flat input, while a convolutional one will expect a 2D input.

Table 4.1. Layer breakdown: Deep FFN classifier

Layer ID Layer Type # Nodes Activation
1 Dense 128 ReLU
2 Dense 32 ReLU
3 Dense 6 softmax

Tables 4.1 and 4.2 present more details about the architectures we explore. We have

explored various architectural options and selected the two most efficient for our study.

4.4.2 Denoising Front-End

We propose an autoencoder-based front-end, responsible for removing prediction error

(if any) from the input matrix, which is produced by some performance predictor. This idea is

inspired by neural-network-based noise-reduction techniques for images. The parallels between

our use case and noisy images is apparent: Both are 2D arrays of values and prediction error
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Table 4.2. Layer breakdown: Deep convolutional classifier

CNN section of classifier
Layer Type # Filters Kernel Size

Conv2D 64 (4,4)
MaxPooling2D NA (2,2)

Flatten Pseudolayer: Flattens output matrix
FFN section of classifier

Layer Type # Nodes Activation
Dense 64 ReLU
Dense 32 ReLU
Dense 6 softmax

can definitely be considered as noise. Given that autoencoders are very successful in denoising

images, we expect it to also work well in our example. To the best of our knowledge, this is the

first neural network based proposal that attempts to reduce prediction error after predictions are

made.

Autoencoders are typically trained to output their input, after its dimensionality has been

internally reduced. In other words, during training, labels (the correct answers) are identical to

the input. Denoising autoencoders on the other hand receive some realistic input during training

(e.g. a noisy image). They are trained to output the oracular (i.e. image without noise) data

at their outputs. We adapt this methodology and train our denoising frontends with realistic,

non-oracular predictions from our performance predictor module, and use our oracular dataset as

labels. Our datasets are described in more detail in Section 4.5.

Similarly to the back-end classifier, we explore two denoiser architectures for Agon: A

simple, feed forward architecture, and a convolutional architecture. The feed forward architecture,

labeled “simple” for the remainder of this work, consists of three layers. For 8-core systems,

these layers would have 64 nodes at the input and output layers, and 32 nodes in the one hidden

layer. We experimented with deeper architectures with more hidden layers, however this simple

one was evaluated to be the most successful one.

Convolutional neural network architectures are typically used along with images, due to
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Table 4.3. Layer breakdown: Simple FFN denoiser

Layer ID Layer Type # Nodes Activation
1 Dense 32 ReLU
2 Dense 64 ReLU

their ability to recognize shapes, forms, and other elements found in images (information that

is typically lost when the 2D image is flattened into a 1D array of pixel values). Convolutional

autoencoders are particularly successful at reducing noise from images.

A (predicted) performance matrix might not have any meaning as an image, however, we

claim that a convolutional “deconstruction” can still be meaningful: Assume we have a system

of 8 cores (8×8 input matrix) and a convolutional 4×4 window that slides in 2 dimensions over

the input. Also assume that the input matrix is a greyscale image (higher values are darker). The

(sliding) convolutional window will look at the input in groups of 4x4. Each 4x4 sub-matrix

might include a shape – for example a dark diagonal, a straight line, a shape similar to a block in

the game of tetris, a diamond, etc. All these “shapes” are meaningful to the denoiser and through

training over many such subfigures it can learn to darken or whiten (increase or decrease the

predicted performance) of certain entries of these sub-matrices such that the shape is consistent

with its training. Because of the 4x4 sliding window, each entry of the matrix will be examined

16 times, in 16 different neighboring sum-matrices, allowing the denoiser to have even higher

confidence in its changes.

Besides the two denoiser architectures, we also evaluate Agon without a denoiser. In

conclusion, the three available denoiser options for Agon are: none, simple, and cnn. Tables 4.3

and 4.4 present more details for our proposed architectures.

We utilize Tensorflow’s Keras API and design each back-end classification module with a

non-trainable input layer that reshapes the input to whatever shape is expected in order to create

standalone front- and back-end modules that can be easily combined.
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Table 4.4. Layer breakdown: Deep convolutional denoiser. All Conv2D layers use the ReLU
activation function. Where it applies, padding is set to “same”

Layer Type # Filters Kernel Size
Conv2D 32 (3,3)

E
nc

od
erMaxPooling2D NA (2,2)

Conv2D 32 (3,3)
MaxPooling2D NA (2,2)

Conv2D 32 (3,3)

D
ec

od
erUpSampling2D NA (2,2)

Conv2D 32 (3,3)
UpSampling2D NA (2,2)

Conv2D 1 (3,3)

4.4.3 Front-End, Back-End Synergy

Agon’s two-part decoupled architecture generates some opportunities for synergy be-

tween the front and back-ends. An individually trained front-end denoiser with high efficiency,

can be used in conjunction with a classifier that has been (also individually) trained using oracu-

lar data. Assuming successful denoising, there is no reason to train a classifier with data that

comes straight from a predictor. On the other hand, if the classifier expects stellar, error-free

predictions, it could fail in the presence of even small error, if any is left from the denoiser.

We can also train the denoiser and classifier together as one linked unit, in which case

something interesting happens: The front-end no longer acts as a denoiser. Instead, it will learn

to transform the erroneous input into a new matrix (which may or may not be error-free, may

or may not look similar to the actual input), but generated with the back-end in mind. In other

words, the front-end will generate a classifier input from the real input, such that the classifier’s

accuracy increases. Our evaluation shows that this indeed happens, with linked Agon models

outperforming even classifiers trained using oracular data.
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4.5 Dataset Generation

We start with our in-house, simulation-based dataset of 72 workloads, each one simulated

in isolation on 600 different cores. These cores are divided into three groups of 200 (heteroge-

neous) cores each, one group for each of the three ISAs of our study: Arm’s Thumb, Alpha,

and Intel’s x86-64. The workloads are benchmark phases of 100 million Alpha instructions

each, identified using Simpoint, from the SPEC2006 benchmark suite (10 benchmarks used).

Our in-house, LLVM-based compiler infrastructure allows us to map code regions (phases) to

their equivalent code regions in compiled executables for a different ISA. The dataset contains

workload profiling results (Gem5, McPat), as well as microarchitectural descriptions of each core.

Overall, this dataset contains 43200 entries. Each entry contains 30 features that characterize the

workload (e.g cache access stats, fetch/issue rates, performance in aIPC (Alpha-IPC), etc), and

18 features that describe the core’s architecture (e.g. in-order or out-of-order, cache hierarchy,

SIMD support, number of functional units, registers, etc).

4.5.1 Generation of Agon’s dataset

Agon requires a different dataset for its training, as its input is an N ×N matrix of

predicted performance for each workload-core pair (N is the number of cores of the multicore

system under test).

We first generate a list of 3×1000 multicore systems, 1000 systems for each N (4/8/16).

The cores of each system are chosen randomly out of the 600 cores in our dataset (1.6×

1022 possible 8-core system combinations). We force our system generator to ensure each

system includes at least one core from each of the three ISAs, in order to ensure significantly

heterogeneous(-ISA) systems that consequently make scheduling more challenging. We then

generate a list of 20K workload combinations in a similar way, by randomly picking from our

list of 72 workloads (7.2×1014 possible 8-workload combinations). We generate three lists of

workload combinations, one for each size of N in our study. All 20k workload selections for
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each value of N can run on each of the 1000 systems of the same size, leaving us with a dataset

of 60M entries (20M for each N).

Each entry (row) in our dataset is populated with the measured (profiled via simulation)

performances of the workload-core pairs. For example, on 8-core, 8-workload systems, each

dataset entry will have 64 performance measurements. This becomes our oracular dataset.

We use the oracular dataset as a comparison point later in our explorations, but it is

also necessary for calculating the correct answer (label, scheduler to be used), for each entry of

our dataset: Using oracularly obtained information, we execute each scheduler using the same

six scheduler implementations used to generate Figure 4.1 and we receive one schedule from

each one. For each of the 6 produced schedules (which may or may not be different from each

other), we calculate its effective aIPC, which takes into account the scheduler’s overhead. Finally,

whichever scheduler produces the highest effective aIPC is considered the correct answer. Even

in cases where we don’t use an oracular, error-free input matrix, Agon is required to output the

labels we calculate using oracular data since, regardless of prediction error, that still is the correct

answer.

We generate a total of 4 datasets for this study: The first is oracular which we just

described. We also generate two predictor-based datasets, using trained predictors from prior

work: One Decision Tree (DT) predictor, which has been trained with 6/10 benchmarks, while the

remaining 4 are reserved for testing as previously-unseen data. We term this dataset “multiLOGO

DT”, due to the multi-LOGO data splitting process we used. This process is similar to the

methodology used in prior work [87]. The third dataset also uses a DT predictor, this time

however, we train it with the entirety of our dataset to reflect a predictor in a system that executes

the same workloads over and over again. In our study we use it mostly as a comparison point,

while we focus on getting good results on the multiLOGO-DT. We name this third dataset

“fully-trained DT”.

Our last dataset is called the “statistical” dataset. Our DT performance predictors’ error

can be modeled as a bell curve, with a mean value and standard deviation. Specifically, our
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Figure 4.6. Breakdown of preferred schedulers for each entry in our dataset.

multiLOGO DT performance predictor reports mean = 0.25(aIPC) and std = 0.35. We generate

the statistical dataset by randomly drawing a prediction error value from the bell-curve that

characterizes our predictors and simply applying it on the oracular value we get from the oracular

dataset. Statistical error injection makes Agon’s job artificially more difficult. Any real predictor

is likely to make errors with some consistency or pattern that Agon could potentially learn.

4.5.2 Dataset Imbalance

Figure 4.6 presents a breakdown of the labels in our dataset, which correspond to the

optimal scheduler choice of each entry in our dataset. The x-axis of the figure presents a variety

of scheduling goals, as discussed in Section 4.3.4. HUN and SHUN4 are shorthands for the

hungarian and serial hungarian (with pod size of 4) schedulers respectively.

Our results show that our dataset is imbalanced in favor of the hungarian algorithm,

which dominates most bars in the figure. Dataset imbalance is a challenge in training a good

classifier. On a 4-core system for example, the hungarian scheduler is preferred for the vast

majority of cases, due to its low overhead (since we only have 4 cores) and the fact that it tends

to lead to the highest performance. As systems grow in size, we see a trend to move away from

expensive hungarian-based schedulers and more towards random and greedy (i.e. ultra-low

cost) schedulers. However, in systems where we run the scheduler less frequently (such as 16

94



cores – MOST200) hungarian again is important, because relative overhead is reduced and the

importance of a good schedule is increased because it runs longer. However, some of our large

systems with reduced scheduling frequency, rarely use hungarian.

This imbalance makes it easy for classifiers to learn to always pick one class. If hungarian

is the correct answer 90% of the time, always picking it guarantees a 90% prediction accuracy.

This classifier is of course not useful and could simply be removed from the scheduling process.

Dealing with imbalanced datasets is actively pursued in the literature, since many crucial

problems require good performance on edge cases (e.g. credit card fraud, self-driving cars).

These are also problem categories where mispredicting corner cases can lead to catastrophic

errors. A few options found in the literature are: Upsampling of corner cases, downsampling of

popular cases, algorithmic dataset-driven generation of new (random) entries, and using class

weights during training [59]. We find upsampling to work best in our study: We clone the entries

of under-represented classes until the count of each class in our dataset is roughly even. Due to

upsampling, the classifier will no longer blindly choose one option. On the other hand however,

we have to be careful when dividing our dataset into training and testing subsets, since we don’t

want cloned entries to appear in both sets. Statistical error injection is immune to this issue since

the applied error will differ between cloned entries.

4.6 Evaluation Methodology

We evaluate Agon on 4 datasets, 12 heterogeneous-ISA multicore systems, 4 scheduling

goals, 6 different schedulers and 6 proposed neural network architectures. This section presents

our experimental framework and training methodology.

4.6.1 Experimental Framework

The majority of our framework is developed in Python, using the Tensorflow framework

for neural network training and evaluation. More specifically, we use the Keras API with a

Tensorflow backend, due to its simplicity. Our front-end denoisers, back-end classifiers and
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complete Agon models are implemented using the Sequential model API and we use the standard

Keras layers (Dense, Conv2D, etc).

During our evaluation, we assume that workloads appear in groups of N and each instance

is independent. In other words, we assume an 8-core (for example) system that is presented with

8 workloads as soon as the previous batch of 8 workloads finishes. Each batch of 8 workloads

represents a new scheduling problem instance (i.e. new predicted performance matrix, new

prediction from Agon). In the majority of our results, we report the average performance after

all batches finish executing.

We use effective aIPC as our performance metric in this work. We use Alpha Instructions

Per Cycle (aIPC) to fairly compare the progress of executables of different ISAs, as proposed in

prior work [87]. Effective aIPC represents a system’s true performance once scheduling overhead

is applied, as discussed earlier in Section 4.3.4.

We do not take into account Agon’s overhead, even though it is definitely not negligible.

Progress in neural network inference hardware accelerators leads to ever increasing inference

performance [52, 60, 103, 83]. Even though Agon (or at least its more expensive versions with

CNN denoisers etc) might not be viable today, we fully expect its overhead to be negligible in

the future.

4.6.2 Agon Training Methodology

We train a different, independent Agon model for each underlying system. We utilize the

EarlyStopping callback from Keras to avoid overfitting: This callback will automatically stop

the training process once accuracy over the validation test ceases to improve for a number of

consecutive training epochs.

We divide our dataset into three sets: 85% of our data is assigned to the training set,

5% for our validation set and the remaining 15% forms our test set. We use the training and

validation sets during training. The validation set does not train the models (i.e. does not update

weights), it simply exists for quick evaluation during training. The third set remains completely
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unseen by our models until they are finished training. We then use the test set to evaluate each

model and report our results.

Agon’s backend classifier uses “sparse categorical crossentropy” as its loss function.

This function is implemented in both Tensorflow and Keras and is typically the loss function

of choice for multi-class classification problems such as ours with a softmax output layer. By

extension, Agon models that link a denoiser and a classifier for simultaneous training also use

this loss function since the end goal is accurate classification. When we train front-end denoisers

in isolation, we use “Mean Absolute Error” as the loss function, since we want the autoencoder’s

output to be as close as possible to the oracularly obtained performance matrices. Finally, we

use the Adam [58] optimizer for all our training.

We focus our evaluation on 8-core systems and the “FIRST100” scheduling goal to

narrow the scope of the work to a size that allows us to come to conclusions without harming the

generality of our proposal. We choose this particular combination due to the healthier distribution

of scheduling labels, as shown in Figure 4.6.

4.7 Results

4.7.1 Classifier Accuracy

Figure 4.7 presents our classifier’s prediction accuracy, for a backend-only configuration

(i.e. without a denoiser frontend). Prediction accuracy reveals our classifier’s ability to pick

the correct scheduling class. In other words, it is the ratio of correct scheduler predictions. For

comparison, a random arbiter would have 16.6% (1/6) accuracy. Specifically, we present a

two-fold comparison: For each of our 4 benchmark systems we compare the classifier’s accuracy

under our oracular (unrealistic), multilogo (realistic), and statistical (artificially more challenging)

datasets. We further compare the two classification architectures we propose for Agon. The

deep feed forward architecture is presented on the left half of the figure, while the convolutional

classifier architecture is shown on the right half.
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Figure 4.7. Classifier Prediction Accuracy. DEEP Vs CNN classifier architecture, oracle Vs
multilogo Vs statistical datasets.

We first observe that accuracy on the realistic dataset is comparable with the unrealistic

oracular. Specifically, the difference in prediction accuracy ranges between 8% (E8, DEEP) in the

worst case to 1% (LP8, CNN), practically within noise levels. This result hints that our classifiers

are able to reach the predictability limits of our problem. In other words, the missclassified

cases are roughly those that would be missclassified even with oracular information. Due to

the good quality of our multilogo predictor and its error consistency the classifier can still work

efficiently with the erroneous input. Results over the statistical dataset show that prediction error

inconsistency can severely impact classification quality.

Our results further show the convolutional classifier outperforming the simpler deep ar-

chitecture. Specifically, CNN outperforms DEEP by 3.7-7.1% (oracular), 3.3-10.4% (multilogo),

across all systems. The two architectures perform almost identically on the statistical dataset,

again due to the unpredictability of the input.

The underlying heterogeneous-ISA multicore system is shown to have an impact on

predictability as well. In fact, our results show an inverse correlation between a system’s EoS

(difficulty of a scheduler to find a good schedule), and the system’s difficulty level in predicting

the most efficient scheduler. Using a convolutional classifier on the multilogo dataset, Agon
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reports accuracy up to 89% for the most difficult, lowest-EoS system (H8). The other three

systems report accuracy between 68-76%. The deep architecture reports lower accuracy, but still

follows the same trend.

Prediction accuracy is not necessarily representative of the resulting performance we

should expect. For example, if we misspredict one problem instance of the E8 system, we

should still expect the (wrong – not most efficient for this instance) scheduler to produce a good

schedule, due to the increased odds of success (high EoS). We present a performance comparison

later in this section.

4.7.2 Denoiser Accuracy

Agon’s denoiser (when individually trained) attempts to minimize Mean Absolute Error

(MAE) and bring the output layer’s values as close to ground truth as possible. We present

our denoiser MAE results in Figure 4.8 (lower is better). On its own, this experiment does

not provide any insight on how Agon improves with the addition of a denoiser. However, our

results demonstrate that the denoising problem is in fact solvable, allowing computer architects

to attempt denoising on other problems where hardware predictions are utilized.

For Paper – Denoiser MAE
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Figure 4.8. Denoiser loss in MAE (lower is better). SIMPLE Vs CNN classifier architecture,
oracle Vs multilogo Vs statistical datasets.
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Similarly to prior results, we present a comparison between three datasets. Denoising

the oracular dataset represents an interesting case, which corresponds to typical autoencoder

operation, where the output is trained to match the input, while internally, the dimensionality of

the input reduces in the network’s hidden layers – in our “simple” architecture, 64 input values

reduce to 32 before fanning out to 64 output values. Results on multilogo and statistical, require

true denoising, since we ask the frontend module to output oracular values, while receiving

erroneous inputs.

In our use case, MAE is measured in aIPC, which in our dataset can be as high as 4.5

aIPC. Agon’s frontend successfuly restores oracular inputs with absolute error below 0.05 in

all cases but one (0.08 MAE), demonstrating that while dimensionality reduces, there remains

enough information in the hidden layers to accurately characterize the entire input.

When dealing with multilogo erroneous inputs, denoiser error grows significantly com-

pared to oracular, remaining however between 0.06-0.18 aIPC (0.11 aIPC on average). Finally,

the statistical dataset, which is our most challenging case, exceeds 0.2 MAE in only one case.

Overall, MAE on statistical input ranges between 0.12 and 0.21 (0.14 on average) aIPC.

4.7.3 Combined Agon Prediction Accuracy

Figure 4.9 presents a denoiser’s effect in prediction accuracy, for the two classifier

architectures we study and between multilogo and oracular datasets. Each bar cluster includes

three data points: NONE corresponds to a backend-only Agon, SIMPLE and CNN correspond to

the two denoiser architectures. For each case, the classifier’s architecture is displayed under each

group of benchmark multicore systems.

We observe that in almost all cases, the addition of a denoiser can improve the prediction

accuracy compared to a “naked” backend-only Agon. In some cases, the CNN-CNN Agon neural

network becomes too large for the problem and training halts (weights become NaN or zero),

resulting in the few cases of chance-level prediction accuracy (16-20%) seen in the figure.

Interestingly, the addition of a frontend module improves prediction accuracy even in
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oracularly trained, oracularly-fed classifier models. Our results verify the expectation of a

generative (rather than denoising) frontend. Agon’s frontend manipulates the (oracular in this

case) input in such a way as to improve the linked classifier’s accuracy. We observe the same

behavior in the majority of cases of the oracular part of our results.

Our observations using the oracular dataset present some insights as to the behavior of

Agon’s two parts. On the other hand, results on the more realistic multilogo dataset present the

real-world impact of our proposed architecture.

The addition of a simple denoiser is observed to be beneficial in many cases of our

experiment. Paired with a deep classifier, a simple denoiser boosts prediction accuracy by

3.6-6.3%. Replacing the simple denoiser with the much more complex convolutional architecture

(still using a deep classifier) further increases accuracy to 4.5-11% with the exception of the

failed case.

Pairing a denoiser with a convolutional classification backend presents new behavior.

First, adding a simple denoiser is no longer beneficial for prediction accuracy. The naked

classifier’s accuracy is negatively impacted by 0.7-6% (the H8 case is improved by 0.7%). Our

results hint that our convolutional classifier is already complex enough to handle error at its inputs.

It also appears that even though the CNN classifier can render a simple denoiser unnecessary,

it can still (slightly) benefit from a more complex convolutional denoiser (0.5-2.6% accuracy

improvement).

4.7.4 Agon Performance

We finally present a performance comparison of Agon in Figure 4.10. Specifically, we

compare the six Agon configurations we propose in this work, against six “always” scheduling

strategies. We refer to a strategy as “always”, when there is no competition between scheduling

algorithms. For example, the always-RAND bar (4th bar from the left in each group) represents a

system equipped with only a random scheduler. The first bar in each group (labeled ORACULAR)

represents the best case scenario, where we oracularly pick the optimal scheduler for each
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problem instance. Agon configurations are labeled with [frontend] [backend] keywords.

For each system, we run our 20K problem instances through each of the 13 strategies

and report average system performance in aIPC. We normalize our results to the ORACULAR

performance. We only present results using our realistic multilogo dataset for this experiment.

Starting from the E8 system, Agon boosts performance by ∼ 4% compared to the most

efficient always strategy (always-hungarian). Specifically, the best Agon configuration performs

within 5% of an oracular selector. The two cnn * Agon configurations are outperformed by

most always strategies for this system, however in the remaining 3 systems, all versions of Agon

outperform the best always strategy.

In very difficult (H8) systems, we see the always-HUN and always-SHUN4 (Serial

Hungarian, pod size=4) cases performing much better than the rest of the always strategies. All

versions of Agon outperform the best always strategy, with the none cnn configuration reporting

99% of the oracular performance (compared to 94% for always-HUN).

Our results on the LP8 system show that always-HUN is comparable in performance to

the best Agon configuration. The lowest-performing 8 core system consists of a combination

of weak cores and, as a result, the majority of schedules for each problem instance will lead to

roughly the same low performance. Consequently, focusing on selecting the best scheduler for

each case appears to be unnecessary, even though we still measure Agon to perform within 1%

of oracle.

In contrast to LP8 however, HP8 presents a different image. First, we observe hungarian

strategies failing. This is due to the increased cost of each cycle spent in scheduling, as this

system can get the maximum amount of work done in one clock cycle compared to all other

systems in our study. This is also the reason we observe the low-overhead schedulers performing

well. Agon (cnn cnn) scores 99.1% of oracular performance (97.6-99.1% for all Agon flavors).

In comparison, the best always strategy (always-greedy) scores 95.1%.

In conclusion, our results reveal that a competitive scheduling approach like Agon is more
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beneficial when used with difficult-to-schedule systems such as H8, and with high-performance

systems such as HP8.

4.8 Conclusions

This Chapter presents Agon, a neural network-based competitive scheduler, which

successfully selects the most efficient scheduler from a list of six candidates, according to the

different instances of the scheduling problem it is faced with. Agons architecture includes a novel

denoising autoencoder front-end capable of minimizing the prediction error introduced at its

input by the system’s performance prediction module. Our evaluation methodology demonstrates

Agon to outperform single-scheduler approaches in all our benchmark systems, while achieving

performance within 1% of an oracular scheduler selector.
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Chapter 5

Concluding Remarks

Heterogeneous hardware is becoming increasingly more available in modern hardware.

Over the years, more and more heterogeneous products appear in the market, while research

breakthroughs enforce the expectation that heterogeneity will increase in the future. Today, one

can find commercial products with heterogeneous memory architectures, and (single-ISA for the

moment) heterogeneous multicore architectures. Recent research proposals further demonstrate

that even the Instruction Set Architecture can vary in future generations of these products, dubbed

“Heterogeneous-ISA multicore architectures”.

Allowing hardware to be heterogeneous, has been shown in the literature to lead to

significant gains in performance and power consumption, assuming intelligent scheduling and

resource management. However, as the amount of heterogeneity within systems increases, the

scheduling problem becomes a significant challenge. Existing proposals lead to poor utilization

of a system’s structures, incur significant cost due to their high overhead, and do not scale well

to higher core counts.

This dissertation demonstrates the necessity and impact of accurate predictions in the

presence of heterogeneous hardware and explores algorithms, methodologies and microarchitec-

tural modifications towards this pursuit. System schedulers can utilize a predicted view of the

near future and intelligently allocate resources to executing software.

Utilizing a Majority Element Algorithm proposed for big data management, we were
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able to implement an extremely lightweight and high accuracy predictor for dynamic memory

activity patterns, which is demonstrated to significantly outperform typically used, counter-

based predictors. This dissertation proposes MemPod as a manager for heterogeneous memory

architectures, which couples this novel predictor with our proposed clustering of memory

channels into independent Pods. Our evaluation demonstrates MemPod to improve average main

memory access time by proactively migrating soon-to-be-accessed pages into fast memory.

This dissertation further presents proposals for machine learning-based performance

predictors for heterogeneous-ISA multicore architectures. The proposed predictors are trained

to capture the subtle interactions between software and hardware, allowing them to extrapolate

measurements from a “reference core”, to runtime performance when the same software executes

on any other core configuration from our dataset. We propose three novel metrics that allow us

to set solid requirements on the quality our performance predictors should have in order to be

useful. We are able to utilize our findings and keep our predictors simpler without a negative

impact on system performance. This work unlocks performance prediction that for the first time

remains accurate across general purpose ISAs.

With the ability to “see the future” via accurate performance predictions, we shifted

our focus on the last piece of the puzzle: the scheduler itself. We propose Agon, our scalable,

competitive scheduler. This neural network-based proposal, decides which scheduling algorithm

should operate at any given moment, in such a way that it chooses the scheduler with the

lowest possible overhead, which should still result in high performance. While it’s true that

higher-overhead schedulers tend to result in higher system performance, a combination of the

underlying hardware heterogeneity, the set of software waiting to be executed, and the small but

unavoidable performance prediction error at the scheduler’s input provide ample opportunity to

save on scheduling overhead. Our proposed neural network architecture for Agon also includes

a denoising autoencoder front-end which is shown to successfully “repair” predictions and

significantly reduce error, very similarly to image denoising approaches.

In conclusion, this dissertation tackles one crucial aspect of execution on heterogeneous,
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and even heterogeneous-ISA hardware. We improve memory access time, we are able to assign

workloads to the appropriate cores such that overall system performance is maximized, and we

are able to predict the correct scheduler for a given instance.
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