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Abstract of the Dissertation

Selmer ranks of twists of algebraic curves

By

Myungjun Yu

Doctor of Philosophy in Mathematics
University of California, Irvine, 2016

Professor Karl Rubin, Chair

Inspired by recent papers of Mazur-Rubin [8] and Klagsbrun-Mazur-Rubin [6], this thesis

investigates Selmer ranks of twists of Jacobians of various algebraic curves over number fields.

For example, we find sufficient conditions on hyperelliptic curves C2,f over a number field

such that for any nonnegative integer r, there exist infinitely many quadratic twists of C2,f

whose Jacobians have 2-Selmer ranks equal to r. This theorem is even more generalized to

the superelliptic curve case in this dissertation. We also present some results on 2-Selmer

ranks of elliptic curves. In particular, we prove if the set of 2-Selmer ranks of quadratic

twists of an elliptic curve over a number field contains an integer c, it contains all integers

larger than c having the same parity as c.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

We investigate Selmer ranks of elliptic curves, hyperelliptic curves and superelliptic curves

in the families of twists. For example, we find sufficient conditions for such curves to

have infinitely many twists whose Jacobians have Selmer ranks equal to r, for any given

nonnegative integer r.

1.1.1 Selmer ranks of twists of hyperelliptic curves and

superelliptic curves

Let E be an elliptic curve over a number field K. For the family of quadratic twists of E,

Mazur and Rubin [8] proved the following theorem.

Theorem 1.1.1 (Mazur and Rubin). Suppose that K is a number field, and E is an elliptic

curve over K such that Gal(K(E[2])/K) ∼= S3. Let ∆E be the discriminant of some model

of E, and suppose further that K has a place v0 satisfying one of the following conditions:

• v0 is real and (∆E)v0 < 0, or

• v0 - 2∞, E has multiplicative reduction at v0, and ordv0(∆E) is odd.

Then for every r ≥ 0, there are infinitely many quadratic twists E ′/K of E such that

dimF2(Sel2(E ′/K)) = r.
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We study the generalization of Theorem 1.1.1 to Jacobians of hyperelliptic and

superelliptic curves. Let p be a prime.

Definition 1.1.2. A superelliptic curve Cp,f over a field L is a smooth projective curve in

the projective space P2 whose affine model is

yp = f(x),

where f is a separable polynomial (not necessarily monic) defined over L such that p - deg(f).

The curve Cp,f has a point at infinity, which is denoted by ∞. When p = 2 (so π = 2), we

call C2,f a hyperelliptic curve. We denote the Jacobian of Cp,f by Jp,f .

Remark 1.1.3. More standard definition of superelliptic curves Cp,f includes the case when

p divides deg(f), in which case Cp,f has p points at infinity.

In the following theorems, see Definition 1.2.10 for the definition of a π-Selmer group.

Theorem 1.1.4. Suppose that K is a number field and f ∈ K[x] is a separable polynomial.

Let n = deg(f) and suppose that n ≡ 3 (mod 4) and Gal(f) ∼= Sn or An. Suppose further

that K has a real embedding. Then for every r = 0, the Jacobian J2,f has infinitely many

quadratic twists J2,df where d ∈ K×/(K×)2 such that dimF2(Sel2(J2,df/K)) = r.

Theorem 1.1.5. Suppose that K is a number field containing ζp, and f ∈ K[x] is a separable

polynomial. Let n = deg(f) and suppose that p - n is an odd prime and Gal(f) ∼= Sn. Then

for every r = 0, the Jacobian Jp,f has infinitely many twists Jp,df where d ∈ K×/(K×)p such

that dimFp(Selπ(Jp,df/K)) = r.

Corollary 1.1.6. Under the assumptions of Theorem 1.1.5 (resp. Theorem 1.1.4), there are

infinitely many twists Jp,df (resp. J2,df) such that Jp,df (K) (resp. J2,df (K)) is finite.

For a quadratic character χ ∈ Hom(GK , {±1}), let Eχ and Jχ2,f denote the quadratic

twists of E and J2,f by χ, respectively. In the elliptic curve case, Kramer showed that (see

[7, Theorem 1] and [8, Theorem 2.8]) there is a (parity) relation between two Selmer groups

Sel2(E/K) and Sel2(Eχ/K) as follows.
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Theorem 1.1.7 (Kramer). Let E be an elliptic curve over a number field K. Suppose

χ ∈ Hom(GK , {±1}). Then

dimF2(Sel2(E/K))− dimF2(Sel2(Eχ/K)) ≡
∑
v

hE,v(χv)(mod 2),

where χv is the restriction of χ to GKv , and hE,v(χv) is defined locally for every place v

(Definition 1.2.8).

We generalize this result to the hyperelliptic curve case.

Theorem 1.1.8. Let C2,f be a hyperellipitc curve over a number field K. Suppose that

χ ∈ Hom(GK , {±1}). Then

dimF2(Sel2(J2,f/K))− dimF2(Sel2(Jχ2,f/K)) ≡
∑
v

hJ2,f ,v(χv)(mod 2),

where χv is the restriction of χ to GKv and hJ2,f ,v is given in Definition 1.2.8.

Remark 1.1.9. The sum on the right hand side of the equation in Theorem 1.1.8 turns out

to be a finite sum. See Lemma 2.1.14.

In fact, this generalization plays an important role in proving the following theorem,

which is proved for elliptic curves by Klagsbrun, Mazur and Rubin [6, Theorem 7.6] first.

Theorem 1.1.10. Let C2,f be a hyperelliptic curve defined over a number field K. For all

sufficiently large X,

|{χ ∈ C(K,X) : dimF2(Sel2(Jχ2,f/K)) is even }|
|C2(K,X)|

=
1 + δJ2,f

2
,

where C2(K,X) and δJ2,f are defined in Definition 3.3.2 and Definition 3.3.1, respectively.

Corollary 1.1.11. If K has a real embedding and deg(f) ≡ 3(mod 4), then for all sufficiently

large X,

|{χ ∈ C(K,X) : dimF2(Sel2(Jχ2,f/K)) is even }| = |{χ ∈ C(K,X) : dimF2(Sel2(Jχ2,f/K)) is odd }|.

Remark 1.1.12. The condition deg(f) ≡ 3(mod 4) can’t be dropped in Corollary 1.1.11.

When deg(f) ≡ 1 modulo 4, dimF2(Sel2(Jχ2,f/K)) may have constant parity for all quadratic

twists Jχ2,f . See Proposition 3.4.1 and Proposition 3.4.4.
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1.1.2 2-Selmer ranks of quadratic twists of elliptic curves

Let E be an elliptic curve over a number field K. In this section, we write r2(E) for

dimF2(Sel2(E/K)) for simplicity. For E, one may study the set

AE := {r2(Eχ) : Eχ is a quadratic twist of E},

i.e., the set of (non-negative) integers r that appear as 2-Selmer ranks of some quadratic

twists of E.

Definition 1.1.13. Let E be an elliptic curve over K. We say E satisfies the constant

2-Selmer parity condition if K has no real embedding and E acquires good reduction

everywhere over an abelian extension of K.

The following theorem is due to Dokchitser and Dokchitser [2, Remark 4.9].

Theorem 1.1.14 (Dokchitser and Dokchitser). If E satisfies the constant 2-Selmer parity

condition, all integers in AE have the same parity.

Theorem 1.1.15. Let E be an elliptic curve over a number field K. Then there exist

infinitely many quadratic characters χ such that r2(Eχ) = r2(E) + 2.

Let tE denote the smallest integer in AE. For an elliptic curve E, clearly

(1.1) AE ⊂ Z≥tE .

By applying Theorem 1.1.15 inductively, we can see

Theorem 1.1.16. Let E be an elliptic curve over a number field K. Then AE ⊃ {r ≡

tE (mod 2) : r ≥ tE}, (with equality if E satisfies the constant 2-Selmer parity condition).

We find sufficient conditions on E so that equality holds in (1.1) (See Theorem 4.3.9,

Theorem 4.3.10 and Theorem 4.2.2).

Theorem 1.1.17. Suppose that Gal(K(E[2])/K) has order 1 or 2. Suppose that either

1. K has a real embedding, or
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2. Gal(K(E[2])/K) has order 2 and E has multiplicative reduction at a place q such that

q - 2 and vq(∆E) is odd, where ∆E is the discriminant of a model of E and vq is the

normalized (additive) valuation of Kq.

Then AE = Z≥tE .

Let Σ be a finite set of places of K containing all primes above 2, all primes where E has

bad reduction, and all infinite places. We suppose the elements (finite places) of Σ generate

the ideal class group of K. For tE, we have a trivial lower bound dimF2(E(K)[2]). However,

this lower bound turns out not to be sharp in some cases. Klagsbrun [5] found examples of

elliptic curves E such that tE is at least s2+1, where s2 denotes the number of complex places

of K (see Example 4.4.1 and Remark 4.4.2 for a discussion of this). In Section 4.4, when

E[2] ⊂ E(K), we give an upper bound for tE as follows (see Theorem 4.4.6 and Theorem

4.4.8).

Theorem 1.1.18. Suppose that E[2] ⊂ E(K). We have tE ≤ |Σ|+ 1. If moreover, E does

not satisfy the constant 2-Selmer parity condition, then tE ≤ |Σ|.

1.2 Preliminaries

1.2.1 Hyperelliptic curves and superelliptic curves

Let p be a prime and K be a number field containing ζp, where ζp is a primitive p-th root of

unity Let π = 1− ζp.

Definition 1.2.1. Let L be a field of characteristic 0, and ζp ∈ L . We write

Cp(L) := Hom(GL,µp).

If L is a local field, we often identify Cp(L) with Hom(L×,µp) via the local reciprocity map,

and let Cpram(L) ⊂ Cp(L) be the subset of ramified characters in Cp(L). Then χ ∈ Cpram(L) if

and only if χ(O×L ) 6= 1, where O×L is the unit group of the ring of integers of L, by local class

field theory.
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Remark 1.2.2. Let Cp,f be a superelliptic curve defined over L of any characteristic other

than p. Note that Jp,f has a natural Z[ζp]-action induced by ζp(α, β) = (α, ζpβ), where (α, β)

is a point of yp = f(x). In other words, there is a natural map

µp → Aut(J(Cp,f )),

where µp is the multiplicative group of p-th roots of unity.

Lemma 1.2.3. Let α1, α2, · · · , αn be the roots of f(x). Let Jp,f [π] denotes the Fp-vector

space of the π-torsion points of Jp,f . Then

[(α1, 0)−∞], [(α2, 0)−∞], · · · , [(αn−1, 0)−∞]

form a basis of Jp,f [π]. Moreover,

[(αn, 0)−∞] = −[(α1, 0)−∞]− [(α2, 0)−∞]− · · · − [(αn−1, 0)−∞].

Proof. For example, see [19, Proposition 3.2].

Remark 1.2.4. Let Cp,f be a superelliptic curve defined over a field L of any characteristic

other than p. Assume that µp ⊂ L. By a twist of Jp,f/L, we mean a pair (A′, φ) such that

A′ is an algebraic group over L and φ : A′ → Jp,f is an isomorphism over L. We denote the

set of twists of Jp,f/L by Twist(Jp,f/L). It is well-known (for example, see Proposition 5 in

[20, Chapter3 §1]) that there is a bijection

(1.2) Twist(Jp,f/L)→ H1(GL,Aut(Jp,f )).

It maps φ : A′ ∼= Jp,f to the cocycle ξ : GL → Aut(Jp,f ), where ξσ = φσ ◦ φ−1.

Then we have a composition of maps

(1.3) Hom(GL,µp)→ H1(GL,Aut(Jp,f ))→ Twist(Jp,f/L),

where the first map is given by the map µp → Aut(Jp,f ) in Remark 1.2.2. The last map is

the bijection given above.

Definition 1.2.5. A p-twist of Jp,f by χ ∈ Cp(K) is the image of χ in (1.3) and is denoted

by Jχp,f .
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Remark 1.2.6. We find an explicit superelliptic curve whose Jacobian is exactly Jχp,f here.

Let Cp,f be a superelliptic curve over a field L. Assume that µp ⊂ L. For χ ∈ Cp(L), let d

be the preimage of χ in the Kummer map

L×/(L×)p ∼= Hom(GL,µp),

i.e., σ(d1/p)/d1/p = χ(σ) for σ ∈ GL, where d1/p is a choice of p-th root of d. There is an

isomorphism

φ : Jp,d−1f
∼= Jp,f

given by the isomorphism Cp,d−1f
∼= Cp,f taking (a, b) to (a, d1/pb). Then the image of

(Jp,d−1f , φ) of the map (1.2) is represented by a cocycle ξ such that ξσ : Jp,f → Jp,f taking

[(a, b)−∞] to [(a, χ(σ)b)−∞]. Therefore we conclude that Jχp,f = Jp,d−1f .

Remark 1.2.7. Let Cp,f be a superelliptic curve defined over a number field K containing

a p-th root of unity ζp. Then there is a canonical (Gal(K/K)-module) isomorphism

Jχp,f [π] ∼= Jp,f [π],

which can be deduced directly from Lemma 1.2.3 and Remark 1.2.6.

1.2.2 Local conditions

In this section, we assume that K is a number field containing a p-th root of unity ζp and

Cp,f is a superelliptic curve over K. Recall that π = 1−ζp. From now on, we fix embeddings

K ↪→ Kv for all places v so that GKv ⊂ GK .

Definition 1.2.8. For χ ∈ Cp(Kv), define

αJp,f ,v(χ) := Im(Jχp,f (Kv)/πJ
χ
p,f (Kv)→ H1(Kv, J

χ
p,f [π]) ∼= H1(Kv, Jp,f [π])),

where the first map is given by the Kummer map. Define

hJp,f ,v(χ) := dimFp(αJp,f ,v(1v)/(αJp,f ,v(1v) ∩ αJp,f ,v(χ))).

Remark 1.2.9. For χ ∈ Cp(Kv), the constant hJp,f ,v(χ) quantifies the difference between

two local conditions αJp,f ,v(1v) and αJp,f ,v(χ). For example, if αJp,f ,v(1v) = αJp,f ,v(χ), then

hJp,f ,v(χ) = 0

7



Now we define the π-Selmer group of a superelliptic curve, which generalizes the 2-Selmer

group of an elliptic curve.

Definition 1.2.10. For χ ∈ Cp(K), define the π-Selmer group

Selπ(Jχp,f/K) := {x ∈ H1(K, Jp,f [π]) : resv(x) ∈ αJp,f ,v(χv) for every v},

where resv is the restriction map and χv is the restriction of χ to GKv .

1.3 Layout

Chapter 2 considers the superelliptic curve case. In section 2.1, we introduce various lemmas

concerning local conditions of Selmer groups. In section 2.2, when a certain Galois group is

large enough, we show that we can control the images of the localization maps (by choosing

appropriate primes). Theorem 1.1.5 is proved at the end of section 2.3.

Chapter 3 discusses the hyperelliptic curve case. In section 3.1, we define Metabolic

spaces and Lagrangian subspaces to be used to prove a parity relation (Theorem 1.1.8).

Section 3.3 discusses the parity distribution of 2-Selmer ranks of Jacobians of hyperelliptic

curves in the family of quadratic twists and proves Theorem 1.1.10. Applying results in

section 3.2, Theorem 1.1.4 is proved in section 3.3. Section 3.4 exhibits certain examples

such that all quadratic twists have even 2-Selmer ranks.

Chapter 4 concerns the elliptic curve case. In section 4.2, Theorem 1.1.15 is proved.

Theorem 1.1.17 is proved in section 4.3. In section 4.4, when Gal(K(E[2])/K) has order 2,

we find an upper bound for tE as in Theorem 1.1.18.
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Chapter 2

Superelliptic curves

In this chapter, fix a prime number p, a number field K containing a p-th root of unity ζp,

and a separable polynomial f(x) ∈ K[x] so that p - n(:= deg(f)) and Gal(f) ⊂ Sn. Let

Cp,f denote a superelliptic curve defined over K. For the rest of the paper, a local field is

either an archimedean field, or a finite extension of Q` for some prime number `. If Kv is

an archimedean field, we write v|∞, and if the residue characteristic of Kv is ` we write v|`.

Let 1v denote the trivial character in Cp(Kv). We denote the Jacobian Jp,f of Cp,f simply by

J in this chapter. The main theorem (Theorem 1.1.5) is proved at the end of section 2.3.

2.1 Comparison of local conditions

Definition 2.1.1. Let V be a finite dimensional vector space over Fp. We write dp(V ) for

the dimension of V over Fp.

Recall that π denotes 1−ζp. Let λ : J → Ĵ be the canonical principal polarization. Then

J [π] is self-dual; i.e., λ−1(Ĵ [π̂]) = J [π], where π̂ is the dual isogeny of π(see [19, Proposition

3.1]). Let 〈 , 〉π denote the Cartier pairing (for example, see Section 1 in [16]) for π : J → J

(multiplication by π).

Definition 2.1.2. Define a pairing

eπ : J [π]× J [π]→ µp

by sending (x, y) to 〈x, λ(y)〉π.

9



Remark 2.1.3. By properties of the Cartier pairing, the pairing eπ is bilinear,

nondegenerate, and GK-equivariant. In fact, eπ can be defined more concretely as follows.

If ep is the Weil pairing of J [p] associated to the canonical principal polarization λ,

eπ(a, b) := ep(a, (π
p−2)−1(b)),

which can be proved by using functoriality in [16, Corollary 1.3(ii)]. Here (πp−2)−1(b) denote

any inverse image of b of the map πp−2 : J → J . If p = 2, then eπ is nothing but the Weil

pairing of J [2] associated to the canonical principal polarization.

The following theorem follows from Tate’s local duality.

Theorem 2.1.4. Tate’s local duality and the paring eπ give a nondegenerate pairing

(2.1) 〈 , 〉v : H1(Kv, J [π])×H1(Kv, J [π]) −→ H2(Kv, ζp) = Fp.

If p = 2, then the pairing is symmetric.

Proof. For example, see [15, Theorem 7.2.6]. The last assertion holds because the pairings

given by cup product and the Weil pairings are alternating.

Lemma 2.1.5. The image of the Kummer map

J(Kv)/πJ(Kv)→ H1(Kv, J [π])

is its own orthogonal complement under pairing (2.1).

Proof. We prove it by applying the well-known fact that the image of the Kummer map

J(Kv)/pJ(Kv)→ H1(Kv, J [p])

is its own orthogonal complement in Tate’s local duality for H1(Kv, J [p]) and diagram

chasing. By applying long exact sequences to the following diagrams

0 // J [π] //
� _

��

J
π // J //

p/π

��

0 0 // J [π] // J
π // J // 0

0 // J [p] // J
p // J // 0 0 // J [p]

πp−2

OO

// J
p //

πp−2

OO

J //

u

OO

0

10



we get the following commutative diagrams with exact rows

0 // J(Kv)/πJ(Kv)
φ //

p/π

��

H1(Kv, J [π]) λ //

s

��

H1(Kv, J)[π] //

s′

��

0

0 // J(Kv)/pJ(Kv)
φ′ // H1(Kv, J [p]) λ′ // H1(Kv, J)[p] // 0

J(Kv)/πJ(Kv)
φ // H1(Kv, J [π])

J(Kv)/pJ(Kv)
φ′ //

u

OO

H1(Kv, J [p]),

πp−2

OO

where φ and φ′ are the Kummer maps and s, s′ are natural maps. Let Im(φ) denote the

set of the image of the map φ. We want to show that Im(φ) = Im(φ)⊥. First we show that

Im(φ) ⊂ Im(φ)⊥; i.e., Im(φ) ⊥ Im(φ). We have Im(s ◦ φ) ⊂ Im(φ′) and Im(πp−2 ◦ φ′) =

Im(φ◦u) = Im(φ) since the map u is surjective. By the fact that Im(φ′) ⊥ Im(φ′), we obtain

s−1(Im(φ′)) ⊥ Im(πp−2 ◦ (φ′)) because the following diagram commutes

H1(Kv, J [π]) × H1(Kv, J [π]) H2(Kv,µp)

H1(Kv, J [p]) × H1(Kv, J [p]) H2(Kv,µp).

s

∪

πp−2

∪

Therefore Im(φ) ⊥ Im(φ), or equivalently Im(φ) ⊂ Im(φ)⊥. Next we show Im(φ)⊥ ⊂ Im(φ).

Let b ∈ H1(Kv, J [π]) be an orthogonal element to Im(φ). Then

s(b) ⊥ (πp−2)−1(Imφ)⇒ s(b) ⊥ Im(φ′)

⇒ s(b) ∈ Im(φ′)

⇒ s(b) ∈ ker(λ′)

⇒ 0 = λ′ ◦ s(b) = s′ ◦ λ(b)

⇒ λ(b) = 0

⇒ b ∈ ker(λ) = Im(φ).

Hence we are done.

Remark 2.1.6. By Lemma 2.1.5 applied to Jχ, for χ ∈ Cp(Kv), one can see that αJ,v(χ) is

its own orthogonal complement in (2.1). Since the pairing (2.1) is non-degenerate, we have

dp(H
1(Kv, J [π])) = 2dp(αJ,v(χ)).
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Lemma 2.1.7. Suppose that v - p∞ and J/Kv has good reduction. Then

αJ,v(1v) ∼= J [π]/(Frobv − 1)J [π],

where the isomorphism is given by evaluating cocycles at a Frobenius automorphism Frobv.

Proof. Under the assumption, we have an exact sequence

0 // J [π] // J(Kur
v ) π // J(Kur

v ) // 0,

where Kur
v is the maximal unramified extension of Kv. Taking the long exact sequence, we

get an exact sequence

0 −→ J(Kv)/πJ(Kv) −→ H1(Kur
v /Kv, J [π]) −→ H1(Kur

v /Kv, J(Kur
v ))[π] −→ 0.

It is well-known that H1(Kur
v /Kv, J(Kur

v )) = 0 (e.g., see [12, proposition 1]). Hence

αJ,v(1v) ∼= J(Kv)/πJ(Kv) ∼= H1(Kur
v /Kv, J [π]) ∼= J [π]/(Frobv − 1)J [π],

as wanted (for the last isomorphism, which is given by evaluating cocycles at Frobv, see [18,

Lemma B.2.8]).

We identify αJ,v(1v) with J(Kv)/πJ(Kv) in the proof of the Lemma below.

Lemma 2.1.8. Suppose that χ ∈ Cp(Kv), and Fv := K
ker(χ)

v . Then we have

(2.2) αJ,v(1v) ∩ αJ,v(χ) ⊇ (N(J(Fv)) + πJ(Kv))/πJ(Kv),

where N(J(Fv)) is the image of the norm map J(Fv)→ J(Kv) and the intersection is taken

in H1(Kv, J [π]). In particular, if N(J(Fv)) = J(Kv), then hJ,v(χ) = 0.

Proof. Consider the commutative diagrams

J(Fv)/πJ(Fv) H1(Fv, J [π]) H1(Fv, J [π]) J(Fv)/πJ(Fv)

J(Kv)/πJ(Kv) H1(Kv, J [π]) H1(Kv, J [π]) J(Kv)/πJ(Kv)

i res cor N

12



H1(Fv, J [π]) × H1(Fv, J [π]) H2(Fv,µp)
∼= Z/pZ

H1(Kv, J [π]) × H1(Kv, J [π]) H2(Kv,µp)
∼= Z/pZ,

cor res

∪

∪

cor = id

where i is the natural map and N is induced by the norm map.

For convenience, let

A = αJ,v(1v),

B = αJ,v(χ), and

D = J(Fv)/πJ(Fv) ∼= Jχ(Fv)/πJ
χ(Fv).

By Lemma 2.1.5, we have D = D⊥ ⊆ res(A)⊥ = cor−1(A), and similarly, D = D⊥ ⊆

res(B)⊥ = cor−1(B). Therefore, N(D) = cor(D) ⊆ A ∩B.

Lemma 2.1.9. Let A be an abelian variety defined over Kv such that Z[ζp] ⊂ EndGKv (A).

Suppose that v - p∞. Then

A(Kv)/πA(Kv) ∼= A(Kv)[p
∞]/π(A(Kv)[p

∞]).

Proof. Multiplication by π is surjective on the pro-(prime to p) part of A(Kv), so only the

pro-p part A(Kv)[p
∞] contributes to A(Kv)/πA(Kv), whence the result follows.

Lemma 2.1.10. Suppose that χ ∈ Cp(Kv), and Fv = K
ker(χ)

v , where v - p∞. Then the

following hold.

1. dp(αJ,v(1v)) = dp(J(Kv)/πJ(Kv)) = dp(J(Kv)[π]).

2. Suppose further that, the extension Fv/Kv is ramified and J has good reduction. Then

J(Kv)/πJ(Kv) ∼= J(Fv)/πJ(Fv).

Proof. We have an exact sequence

0 // J(Kv)[π] // J(Kv)[p
∞] π // J(Kv)[p

∞] // J(Kv)[p
∞]/πJ(Kv)[p

∞] // 0.

Hence (i) follows from Lemma 2.1.9.

13



Now we prove (ii). Under the assumptions, Kv(J [p∞]) is an unramified extension over

Kv. Therefore Kv(J(Fv)[p
∞]) = Kv, so J(Kv)[p

∞] = J(Fv)[p
∞]. Assertion (ii) follows from

passing through (Lemma 2.1.9)

J(Kv)/πJ(Kv) ∼= J(Kv)[p
∞]/π(J(Kv)[p

∞])

∼= J(Fv)[p
∞]/π(J(Fv)[p

∞])

∼= J(Fv)/πJ(Fv).

Lemma 2.1.11. Suppose that σ ∈ Gal(f) ⊂ Sn consists of b orbits. Let J [π]σ=1 denote the

subgroup of J [π] which consists of the elements fixed by σ. Then

dp(J [π]σ=1) = b− 1.

Proof. Let σ be (α11α12 · · ·α1i1)(α21 · · ·α2i2) · · · (αb1 · · ·αbib), where αxy are the roots of f .

We rearrange αxy so that p - ib, which is always possible because p - n. Let axy denote the

divisor classes [(αxy, 0) − ∞]. Then with the equality
∑
axy = 0 (Lemma 1.2.3), one can

show that

a11 + a12 + · · ·+ a1i1 , a21 + · · ·+ a2i2 , · · · · · · , a(b−1)1 + · · ·+ ab−1ib−1

form a basis of J [π]σ=1.

Remark 2.1.12. Suppose that v - p∞. Let Kur
v be the maximal unramified extension of

Kv. It is well-known that if J/Kv has good reduction, then J [π] ⊂ J [p] ⊂ J(Kur
v ). Let Frobv

denote the Frobenius automorphism of Kur
v . Restricting Frobv to K(J [π]), one can regard

Frobv as an element in Sn (since Sn acts on the set of roots of f by permutation).

Lemma 2.1.13. Suppose that v - p∞, and J has a good reduction. Let b be the number of

orbits of Frobv ∈ Sn. Then

dp(αJ,v(1v)) = b− 1.

Proof. Note that J(Kv)[π] = J [π]Frobv=1. Then the lemma follows from Lemma 2.1.11 and

Lemma 2.1.10.
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Lemma 2.1.14. Let χ ∈ Cp(Kv). Suppose that J has good reduction, v - p∞, and χ is

unramified. Then hJ,v(χ) = 0 (equivalently, αJ,v(1v) = αJ,v(χ)).

Proof. Let Fv = K
ker(χ)

v . It follows from [9, Corollary 4.4] that N(J(Fv)) = J(Kv). Thus,

by Lemma 2.1.8, hJ,v(χ) = 0.

Lemma 2.1.15. Suppose that χ ∈ Cp(Kv) is non-trivial, and Fv := K
ker(χ)

v , where v - p∞.

Suppose that J(Kv)/πJ(Kv) ∼= J(Fv)/πJ(Fv) (which is satisfied if the extension Fv/Kv is

ramified and J has good reduction by Lemma 2.1.10). Then

αJ,v(1v) ∩ αJ,v(χ) = {0};

i.e., hJ,v(χ) = dimFp(J(Kv)[π]).

Proof. Consider the following commutative diagrams

J(Fv)/πJ(Fv) // H1(Fv, J [π]) H1(Fv, J [π])

cor

��

J(Fv)/πJ(Fv)

N
��

oo

J(Kv)/πJ(Kv)
j //

i∼=

OO

H1(Kv, J [π])

res

OO

H1(Kv, J [π]) J(Kv)/πJ(Kv)
joo

as in the proof of Lemma 2.1.8. The map i in the diagrams is an isomorphism by assumptions.

Let a ∈ J(Fv). Then a = πb+ c where b ∈ J(Fv) and c ∈ J(Kv). Therefore

N(a) = πN(b) + pc ∈ πJ(Kv).

This means the map N in the diagrams is actually the zero map. Let

A := J(Kv)/πJ(Kv),

B := Jχ(Kv)/πJ
χ(Kv), and

D := J(Fv)/πJ(Fv) ∼= Jχ(Fv)/πJ
χ(Fv),

for simplicity. From now on, we identify A,B and D with their Kummer images. We need

to show that A ∩ B = {0}. In other words, we want to show that A + B (= (A ∩B)⊥) =

H1(Kv, J [π]). One inclusion is trivial. For the other inclusion, let x be an element in

H1(Kv, J [π]). According to third diagram in the proof of Lemma 2.1.8, we have res−1(D) =
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(cor(D))⊥ = 0⊥ = H1(Kv, J [π]), so we can find y ∈ A such that res(x − y) = 0. Since

x− y ∈ ker(res), it is enough to show that

(2.3) ker(res) ⊆ A+B.

By the Inflation-Restriction Sequence,

ker(res) ∼= H1(Fv/Kv, J [π]GFv ).

But actually, J [π]GFv = J(Fv)[π] = J(Kv)[π] by Lemma 2.1.10(i). Hence we have

(2.4) ker(res) ∼= Hom(Gal(Fv/Kv), J(Kv)[π]).

Let ψ : J ∼= Jχ be an isomorphism defined over Fv. We have the following commutative

diagram

0

��
Hom(Gal(Fv/Kv), J(Kv)[π])

��
J(Kv)/πJ(Kv)

� � j //

��

H1(Kv, J [π])

��

Jχ(Kv)/πJ
χ(Kv)? _

jχoo

��
J(Fv)/πJ(Fv)

� � //

ψ

'

33
H1(Fv, J [π]) Jχ(Fv)/πJ

χ(Fv),? _oo

where the middle column is exact. Define a homomorphism

φ : J(Kv)[π]→ Hom(Gal(Fv/Kv), J(Kv)[π])

P 7→ j(P )− jχ(ψ(P )),

where P is the image of P in J(Kv)/πJ(Kv) and ψ(P ) is the image of ψ(P ) in

Jχ(Kv)/πJ
χ(Kv). That the map φ being well-defined can be shown by diagram chasing

in the diagram above. We claim that the map φ is an isomorphism, which will imply (2.3).

It is enough to show the map φ is injective since J(Kv)[π] and Hom(Fv/Kv, J(Kv)[π]) have

the same dimension over Fp. It can be easily checked that for P 6= 0,

(j(P )− jχ(ψ(P )))(τ) 6= 0,

where τ is a nontrivial element in Gal(Fv/Kv), so we are done.
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Until the end of this section, assume that p = 2. We show that equality holds in (2.2)

when p = 2. For the elliptic curve case, the following proposition is proved in [7, Proposition

7] and [11, Proposition 5.2].

Proposition 2.1.16. Let χ ∈ C2(Kv). Then

(2.5) αJ,v(1v) ∩ αJ,v(χ) = NJ(Lv)/2J(Kv),

where Lv = K
ker(χ)

v , and NJ(Lv) is the image of the norm map N : J(Lv)→ J(Kv).

The following two lemmas are used to prove the proposition.

Lemma 2.1.17. Suppose that χ ∈ C2(Kv) is a nontrivial quadratic character, and Lv :=

K
ker(χ)

v . Let

φ : H1(Kv, J [2])→ H1(Lv, J [2])

be the restriction map. Then (i) ker(φ) ⊆ αJ,v(1v) + αJ,v(χ), and (ii) d2(ker(φ)) =

2d2(J(Kv)[2])− d2(J(Lv)[2]).

Proof. Let

i :J(Kv)/2J(Kv)→ H1(Kv, J [2]), and

iχ :Jχ(Kv)/2J
χ(Kv)→ H1(Kv, J

χ[2]) ∼= H1(Kv, J [2]).

By the Inflation-Restriction Sequence,

ker(φ) = H1(Lv/Kv, J(Lv)[2]) = J(Kv)[2]/(τ − 1)J(Lv)[2],

where Gal(Lv/Kv) is generated by τ . Then for any P ∈ J(Kv)[2], its image cP inH1(Kv, J [2])

of the composition map

J(Kv)[2]→ J(Kv)[2]/(τ − 1)J(Lv)[2] ⊂ H1(Kv, J [2])

is given by cP (σ) = P if σ|Lv = τ , and cP (σ) = 0 otherwise. With the isomorphism

J(Kv) ∼= Jχ(Kv), it is straightforward to check that i(P ) + iχ(P χ) = cP , where P and P χ

represent the images of P in J(Kv)/2J(Kv) and Jχ(Kv)/2J
χ(Kv), respectively. This proves

(i). The exact sequence

0 // J(Kv)[2] // J(Lv)[2]
τ−1 // J(Kv)[2] // ker(φ) // 0

shows (ii).
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Lemma 2.1.18. Let Lv/Kv be a nontrivial quadratic extension. Then

2d2(J(Kv)[2])− d2(J(Lv)[2]) = 2d2(J(Kv)/2J(Kv))− d2(J(Lv)/2J(Lv)).

Proof. Consider the following diagram

0 // Jχ(Kv) //

2
��

J(Lv)
N //

2
��

J(Kv) //

2
��

J(Kv)/N(J(Lv)) //

2
��

0

0 // Jχ(Kv) // J(Lv)
N // J(Kv) // J(Kv)/N(J(Lv)) // 0.

Note that each row consists of two short exact sequences

0 // Jχ(Kv) // J(Lv)
N // NJ(Lv) // 0, and

0 // NJ(Lv) // J(Kv) // J(Kv)/N(J(Lv)) // 0.

Then applying the snake lemma for each short exact sequence and comparing the dimensions

over F2 together with Remark 1.2.7 and Remark 2.1.6 show the result.

Proof of Proposition 2.1.16. If Lv/Kv is trivial, then it is obvious. Thus assume Lv/Kv is a

nontrivial quadratic extension. By Lemma 2.1.8, it is enough to show that

(2.6) d2(αJ,v(1v) ∩ αJ,v(χ)) = d2(NJ(Lv)/2J(Kv)).

Consider the following exact sequence (M := J(Kv) + Jχ(Kv) + 2J(Lv))

0 //M/2J(Lv) // J(Lv)/2J(Lv)
N // J(Kv)/2J(Kv) // J(Kv)/N(J(Lv)) // 0,

where the middle map N is induced by the norm map and Jχ(Kv) is regarded as a subgroup

of J(Lv). For simplicity, write X, Y, Z and W for the nontrivial terms in the exact sequence

in order. Let A = αJ,v(1v), and B = αJ,v(χ). Then d2(A+B)+d2(A∩B) = d2(H1(Kv, J [2]))

since A ∩B is the orthogonal complement of A+B in (2.1). Let

φ : H1(Kv, J [2])→ H1(Lv, J [2])

be the restriction map. We have X = φ(A + B), so by Remark 2.1.6, Lemma 2.1.17, and

18



Lemma 2.1.18,

d2(X) = d2(A+B)− d2(ker(φ))

= d2(H1(Kv, J [2]))− d2(A ∩B)− d2(ker(φ))

= d2(H1(Kv, J [2]))− d2(A ∩B)− 2d2(J(Kv)[2]) + d2(J(Lv)[2])

= d2(J(Lv)/2J(Lv))− d2(A ∩B).

Then the equality d2(X) + d2(Z) = d2(Y ) + d2(W ) shows (2.6), as desired.

For the following lemma, we specify v0 so that Kv0 = R.

Lemma 2.1.19. Let C2,f be a hyperelliptic curve over Kv0 (∼= R). Let η be the sign character.

Suppose that f has 2k1 − 1 real roots and 2k2 complex roots. Then

1. J(Kv0)
∼= (R/Z)k1+k2−1 ⊕ (Z/2Z)k1−1, and

2. hJ2,f ,v0(η) = k1 − 1.

Proof. Complex conjugation corresponds to the element of Sn that consists of 2k1− 1 cycles

of length 1 and k2 cycles of length 2. Hence [13, Remark I.3.7] and Lemma 2.1.11 show (i).

Note that the image of the norm map N : J(C) → J(R) is the the connected component

of 0 (= (R/Z)k1+k2−1) according to [13, Remark I.3.7]. Then (ii) follows from Proposition

2.1.16.

2.2 Controlling the localization maps

We continue to assume K is a number field containing a primitive p-th root of unity ζp and

Cp,f is a superelliptic curve defined over K. Recall that the simple notation J stands for

the Jacobian of Cp,f and n denotes the degree of f . We write Gal(f) for the Galois group of

the splitting field extension of f ∈ K[x] over K. Note that there is an action of Sn on J [π]

induced by a permutation action of Sn on the roots of f by Lemma 1.2.3. In this way, we

may view Gal(f) as a subgroup of Sn. Recall that p - n.

Lemma 2.2.1. We have H1(Sn, J [π]) = 0.
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Proof. We regard Sn as the symmetric group on the set {1, 2, · · · , n}. Let H := {σ ∈ Sn |

σ(n) = n} ∼= Sn−1 ⊂ Sn. We have an Sn-module isomorphism

IndSnH Fp
∼= Fp[Sn/H]

where IndSnH Fp denotes the induced Sn-module of the H-module Fp (trivial action of H on

Fp). Let βi be the image of the permutation (i n) in Fp[Sn/H]. Note that σ(βi) = βσ(i) in

Sn/H. We put

D = {a(β1 + β2 + · · ·+ βn) | a ∈ Fp}.

Then

IndSnH Fp/D ∼= Fp[Sn/H]/D ∼= J [π].

In the last isomorphism the map is defined by βi 7→ αi where αi are the roots of f . We have

an (Sn-module) exact sequence

(2.7) 0 // D
j // IndSnH Fp

// IndSnH Fp/D // 0.

But since p - n, we have a map

g : IndSnH Fp −→ D

defined by a1β1 + · · ·+anβn 7→ n−1(a1 + · · ·+an)(β1 + · · · βn) where n−1 is taken in (Z/pZ)×.

Clearly g ◦ j = idD, so the exact sequence (2.7) splits. Hence

H1(Sn, IndSnH Fp) ∼= H1(Sn, D)⊕H1(Sn, J [π]).

By Shapiro’s lemma, H1(Sn, IndSnH Fp) ∼= H1(H,Fp). If p is odd, H1(H,Fp) = Hom(H,Fp) =

0. If p = 2 (so n ≥ 3), H1(H,F2) = Z/2Z = Hom(Sn, D) = H1(Sn, D). In either case, we

have H1(Sn, J [π]) = 0.

Definition 2.2.2. We say that Cp,f satisfies (∗) if one of the following holds.

• p = 2, Gal(f) ∼= An or Sn, and n ≥ 5.

• p = 2, n = 3, and Gal(f) ∼= S3.

• p is an odd prime, and Gal(f) ∼= Sn.
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If c ∈ H1(K, J [π]) and σ ∈ GK , let

c(σ) ∈ J [π]/(σ − 1)J [π]

denote the image of σ under any cocycle representing c.

Lemma 2.2.3. Let N be a finite subgroup of H1(K, J [π]) and σ ∈ GK. Suppose that φ :

N −→ J [π]/(σ − 1)J [π] is a homomorphism. Suppose that Gal(K(J [π])/K) = Gal(f) = Ω

satisfies the following conditions.

1. H1(Ω, J [π]) = 0,

2. J [π] is a simple Ω-module,

3. dimFp(HomΩ(J [π], J [π])) = 1, and

4. Ω does not act on J [π] trivially.

Then there exists an element ρ ∈ GK such that ρ |K(J [π])Kab= σ |K(J [π])Kab and c(ρ) = φ(c)

for all c ∈ N . In particular, if Cp,f satisfies (∗), then there exists such an element ρ ∈ GK.

Proof. The proof of Lemma 3.5 of [8] works here, too. For the last assertion, it is not

difficult to check that (ii), (iii), and (iv) are satisfied when Cp,f satisfies (∗). If Gal(f) ∼= Sn,

the condition (i) is Lemma 2.2.1. If p = 2, and Gal(f) ∼= An, then J [2]An=1 = 0. The

Hochschild-Serre Spectral Sequence (for example, see [15, Proposition 1.6.7]) together with

the fact that H1(Sn, J [2]) = 0 shows that H1(An, J [2])Sn/An=1 = 0. Then H1(An, J [2]) = 0

by the following fact that can be proved by a standard argument of group theory: If U, V

are nontrivial 2-groups such that U acts on V , then V U (:=the group of elements in V fixed

by every element in U) is non-trivial.

Remark 2.2.4. Note that if C2,f is an elliptic curve, and Gal(f) ∼= A3, the condition (iii)

in Lemma 2.2.3 does not hold.

Definition 2.2.5. For every place v of K, we write resv for the restriction map (fixing an

embedding K ↪→ Kv)

resv : H1(K, J [π])→ H1(Kv, J [π]).
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Suppose that J has good reduction at q - p∞. Define the localization map

locq : Selπ(J/K)→ αJ,q(1q) ∼= J [π]/(Frobq − 1),

where the former map is resq and the latter map given in Lemma 2.1.7. Note that locq is

given by evaluating cocycles at a Frobenius automorphism Frobq.

We define various Selmer groups as follows.

Definition 2.2.6. Let q be a prime of K and ψq ∈ Cp(Kq). Define

Selπ(J, ψq) := {x ∈ H1(K, J [π])|resv(x) ∈ αJ,v(1v) if v 6= q, and

resq(x) ∈ αJ,q(ψq)}.

Define

Selπ,q(J/K) := {x ∈ H1(K, J [π])|resv(x) ∈ αJ,v(1v) if v 6= q, and

resq(x) = 0}.

Define

Selqπ(J/K) := ker(H1(K, J [π])→
⊕
v 6=q

H1(Kv, J [π])/αJ,v(1v)).

Obviously, Selπ,q(J/K) ⊆ Selπ(J/K) ⊆ Selqπ(J/K).

Lemma 2.2.7. The images of the right hand restriction maps of the following exact sequences

are orthogonal complements under (2.1)

0 // Selπ(J/K) // Selqπ(J/K) // H1(Kv, J [π])/αJ,q(1q),

0 // Selπ,q(J/K) // Selπ(J/K) // αJ,q(1q).

In particular, dp(Selqπ(J/K))− dp(Selπ,q(J/K)) = dp(αJ,q(1q)) = 1
2
dp(H

1(Kq, J [π])).

Proof. The lemma follows from the Global Poitou-Tate Duality. For example, see [18,

Theorem 1.7.3] or [10, Theorem 2.3.4].
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2.3 π-Selmer ranks of Jacobians of superelliptic curves

We continue to assume that Cp,f is a superelliptic curve over a number field K containing ζp.

Let Σ denote a (finite) set of places which contains all places where J has bad reduction, all

archimedean places, and all primes above p. We enlarge Σ, if necessary, so that Pic(OK,Σ) =

0. As before, we write J for the Jacobian of Cp,f . In this section, we prove that if p is an

odd prime, there exist infinitely many p-twists of J whose Jacobians have π-Selmer ranks

equal to any non-negative integer r.

Remark 2.3.1. Note that a p-twist (Definition 1.2.5) of a p-twist of Jp,f is again a p-twist.

This enables us to use an inductive argument. For example, if we have an algorithm to

construct a p-twist of the Jacobian of a superelliptic curve having a strictly bigger π-Selmer

group than the original π-Selmer group, we can make the π-Selmer group as big (the

dimension over Fp) as we want by taking p-twists.

Proposition 2.3.2. Suppose that K is a number field containing ζp, and f ∈ K[x] is a

separable polynomial. Let n = deg(f) and suppose that p - n is an odd prime and Gal(f) ∼=

Sn. Let J := J(Cp,f ). Suppose that dp(Selπ(J/K)) ≥ 1. Then there exist infinitely many

p-twists Jχ such that dp(Selπ(Jχ/K)) = dp(Selπ(J/K))− 1.

Proof. We prove this proposition by following the method of the proof of [8, Proposition

5.1]. Let ∆f be the discriminant of the polynomial f . Let θ be the (formal) product of

p3, all primes where J has bad reduction and all archimedean places. Let K(θ) be its

ray class field and K[θ] be the p-maximal subextension of K(θ). Then, K[θ] and K(J [π])

are linearly disjoint. Indeed, Sn has no normal subgroup of index p for an odd prime p.

Therefore we can find an element σ ∈ GK such that σ |J(K[π]) consists of 2 disjoint orbits

(σ|J(K[π]) ∈ Gal(K(J [π])/K) = Gal(f) = Sn), and σ |K[θ]= 1.

Let

φ : Selπ(J/K) −→ J [π]/(σ − 1)J [π]

be a homomorphism. By Lemma 2.2.3, we can find ρ ∈ GK such that

• ρ |K[θ]K(J [π])= σ
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• c(ρ) = φ(c) for every c ∈ Selπ(J/K).

Let N be a Galois extension of K containing K(θ)K(J [π]), large enough so that the

restriction of every element in Selπ(J/K) to GN is zero (Choosing such a GN is possible

because the Selmer group is finite).

By the Chebotarev density theorem, we can find a prime q of K such that q - p, J has

good reduction at q, the extension N/K is unramified at q and Frobq ∈ (the conjugacy

class of ρ in Gal(N/K)). Since p - [K(θ) : K[θ]], the restriction of ρk to K(θ) is trivial

for some p - k. Therefore qk is principal generated by d ≡ 1(mod θ). Let F = K( p
√
d).

Then all places dividing θ split in F/K, the extension F/K is ramified at q, and nowhere

else because its discriminant divides ppdp−1. Let χ denote the image of the Kummer map

K×/(K×)p ∼= Cp(K). Therefore, by Lemma 2.1.14, α(1v) = α(χv) for all places v except q,

where χv is the restriction of χ to GKv .

Since J has good reduction at q,

αJ,q(1q) ∼= J [π]/(Frobq − 1)J [π] ∼= J [π]/(ρ− 1)J [π] = J [π]/(σ − 1)J [π].

The first isomorphism follows from Lemma 2.1.7. By Lemma 2.1.13 and our choice of σ, we

have dp(αJ,q(1q)) = 1.

The localization map (Definition 2.2.5)

locq : Selπ(J/K) −→ αJ,q(1q) ∼= J [π]/(ρ− 1)J [π]

is given by evaluation of cocycles at Frobq ∼ ρ. Therefore we have

locq(Selπ(J/K)) = φ(Selπ(J/K))

by Lemma 2.2.3. Note that dp(Selqπ(J/K)) − dp(Selπ,q(J/K)) = 1 by Lemma 2.2.7. Choose

φ so that dp(Im(φ)) = 1. Then, Selπ(J/K) = Selqπ(J/K). Then Lemma 2.1.15 and Lemma

2.2.7 show that

dp(Selπ(Jχ/K)) = dp(Selπ(J/K))− 1.
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Definition 2.3.3. Let θ be a (formal) product of primes of K. Define

Σ(θ) := Σ ∪ {q : q|θ},

PJ,i := {q : q /∈ Σ and dimFp(J [π]GKq ) = i} for 0 ≤ i ≤ n− 1, and

PJ := PJ,0
∐
PJ,1

∐
PJ,2

∐
· · ·

∐
PJ,n−1 = {q : q /∈ Σ}.

Although PJ,i and PJ depend on the choice of Σ, we suppress it from the notation.

Remark 2.3.4. If q ∈ PJ,i, then dp(αJ,q(1q)) = i by Lemma 2.1.10.

Lemma 2.3.5. Suppose that v is a prime of K such that v - p∞, and J has good reduction

at v. If ψv ∈ Cpram(Kv), then

Jψv(Kv)[p
∞] = Jψv(Kv)[π] (∼= J(Kv)[π])

Proof. Let Lv := K
Ker(ψv)

v so that Lv is a (totally) ramified extension over Kv of degree

p. Let Kur
v , L

ur
v denote the maximal unramified extensions over Kv, Lv, respectively. It is

sufficient to prove that

(2.8) Jψv(Kur
v )[p∞] = Jψv(Kur

v )[π].

Let σ ∈ Gal(Lur
v /K

ur
v ) be non-trivial. Then

Jψv(Lur
v )[p∞]σ=1 = Jψv(Kur

v )[p∞].

It is well-known that the assumptions that v - p∞ and J has good reduction at v imply that

J [p∞] ⊂ J(Kur
v ). Let

λ : Jψv ∼= J

be an isomorphism over Lv. Note that λσ = σλσ−1 = ψv(σ)λ. If P ∈ Jψv(Kur
v )[p∞], then

(2.9) λ(P ) = λ(P σ) = ψv(σ)−1λσ(P σ) = ψv(σ)−1(λ(P ))σ = ψv(σ)−1λ(P ),

whence P = ζpP if we take σ so that ψv(σ) = ζ−1
p . In the last equality in (2.9), we have

used the fact that J [p∞] ⊂ J(Kur
v ). Now it is easy to see that (2.8) holds.
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Definition 2.3.6. Choose a nontrivial unramified character εq ∈ Cp(Kq) and a ramified

character ηq ∈ Cpram(Kq) for every prime q ∈ PJ . Define

ηq,j := ηqε
j
q

for every 0 ≤ j ≤ p− 1.

Obviously, all ηq,j are in Cpram(Kq).

Lemma 2.3.7. Suppose that p is an odd prime. Let q ∈ PJ be a prime such that every orbit

of Frobq ∈ Sn has length not divisible by p. Then for any a, b such that 0 5 a, b 5 p− 1 and

a 6= b,

αJ,q(ηq,a) ∩ αJ,q(ηq,b) = {0}.

Proof. Lemma 2.1.9 and Lemma 2.3.5 show that

Jηq,a(Kq)/πJ
ηq,a(Kq) ∼= Jηq,a(Kq)[p

∞]/πJηq,a(Kq)[p
∞]

∼= Jηq,a(Kq)[π]/πJηq,a(Kq)[π]

= Jηq,a(Kq)[π].

Let Fq := K
Ker εb−aq

q , the degree p unramified extension over Kq. Since every orbit of Frobq

has length not divisible by p, the degree [Kq(J [π]) : Kq] is not as well. In particular, Fq and

Kq(J [π]) are linearly disjoint over Kq. Then it follows that

Jηq,a(Fq)[π] ∼= J(Fq)[π] = J(Kq)[π] ∼= Jηq,a(Kq)[π].

Hence we have

Jηq,a(Fq)/πJ
ηq,a(Fq) ∼= Jηq,a(Fq)[π] = Jηq,a(Kq)[π] ∼= Jηq,a(Kq)/πJ

ηq,a(Kq),

where the first isomorphism comes exactly as above. Finally, we apply Lemma 2.1.15 to get

the conclusion.

Lemma 2.3.8. [6, Lemma 6.6] Suppose that G,H are abelian groups and M ⊂ G×H is a

subgroup. Let πG and πH denote the projection maps from G×H to G and H, respectively.

Let M0 := ker(πG : M → G/Gp).
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1. The image of the natural map Hom((G × H)/M,µp) → Hom(H,µp)) is exctly {g ∈

Hom(H,µp) : πH(M0) ⊂ ker(g)}

2. If M/Mp → G/Gp is injective, then Hom((G×H)/M,µp)→ Hom(H,µp) is surjective.

Lemma 2.3.9. Suppose that Oq is the ring of integers of Kq for every prime ideal q. Then

the natrual map

(2.10) O×K,Σ/(O
×
K,Σ)p −→

∏
q∈PJ,0

O×q /(O×q )p

is injective.

Proof. Let α be a nontrivial element of O×K,Σ/(O
×
K,Σ)p. We want to find a prime q′ ∈ PJ,0

such that α /∈ (O×q′)p. Two fields K( p
√
α) and K(J [π]) are linearly disjoint over K because

Sn doesn’t have a normal subgroup of index p for an odd prime p. We choose an element

τ ∈ GK such that

• τ |K( p
√
α) 6= 1, and

• τ |K(J [π])∈ Sn is a n-cycle.

Let U be the conjugacy class of τ in Gal(K( p
√
α)K(J [π])/K). By the Chebotarev density

theorem, there exist infinitely many q′ such that Frobq′ ∈ U . Such a prime q′ satisfies both

α /∈ (O×q′)p and q′ ∈ PJ,0 if q′ 6∈ Σ.

Remark 2.3.10. One can check easily that Lemma 2.3.9 still holds if we replace Σ by a

finite set containing Σ.

Proposition 2.3.11. Suppose that p is an odd prime. Then there are infinitely many prime

ideals r ∈ PJ,1 and an integer 0 ≤ e ≤ p− 1 so that

(2.11) dp(Selπ(J, ηr,e)) = dp(Selπ(J/K)) + 1,

where ηr,e is as in Definition 2.3.6.
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Proof. Since Gal(K(J [π]/K) ∼= Sn, we can find a prime r ∈ PJ,1 (equivalently, Frobr has 2

orbits) such that neither of the order of the orbits of Frobr ∈ Sn is divisible by p (which is

possible since p is an odd prime) and that the localization map (Definition 2.2.5)

locr : Selπ(J/K) −→ αJ,r(1r) ∼= J [π]/(Frobr − 1)J [π]

is trivial by Lemma 2.2.3 combined with the Cheboterev Density Theorem. In other words,

Selπ(J/K) = Selπ,r(J/K). By Lemma 2.2.7, dimFp(Selrπ(J/K)) = dimFp(Selπ,r(J/K)) + 1.

Denote the image of the restriction map

resr : Selrπ(J/K))→ H1(Kr, J [π])

by resr(Selrπ(J/K)). Then the set resr(Selrπ(J/K)) is a 1-dimensional Fp-vector subspace of

H1(Kr, J [π]). But Lemma 2.3.7, Lemma 2.1.15, and Lemma 2.1.14 together show that one

can find a ηr,e ∈ Cpram(Kr) such that

resr(Selrπ(J/K)) = αJ,r(ηr,e),

since there are exactly p+1 pairwise distinct 1-dimensional subspaces of H1(Kr, J [π]) because

r ∈ PJ,1 (so d2(H1(Kr, J [π]) = 2). It follows that Selrπ(J/K) = Selπ(J, ηr,e), so we are

done.

Proposition 2.3.12. Suppose that K is a number field containing ζp, and f ∈ K[x] is

a separable polynomial. Let n = deg(f) and suppose that p - n is an odd prime and

Gal(f) ∼= Sn. Let J := J(Cp,f ). Then there exist infinitely many p-twists Jχ such that

dp(Selπ(Jχ/K)) = dp(Selπ(J/K)) + 1.

Proof. The main technique in the proof is already used in that of [6, Proposition 6.8].

Suppose that r ∈ PJ,1 is as in Proposition 2.3.11. As stated earlier in this section we

can enlarge Σ, if necessary, so that Pic(OK,Σ(r)) = 0. Thus global class field theory gives

Cp(K) = Hom(A×K/K
×,µp) = Hom((

∏
v∈Σ(r) K

×
v ×

∏
q/∈Σ(r)O×q )/O×K,Σ(r),µp).
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Let ψr,e ∈ Cpram(Kr) be the character such that (2.11) holds. Define

Q := PJ − {PJ,0 ∪ Σ(r)},

M := O×K,Σ(r),

G :=
∏

q∈PJ,0

O×q , and

H :=
∏
q∈Q

O×q ×
∏
v∈Σ(r)

K×v .

By Remark 2.3.10, the map M/Mp → G/Gp is injective. Therefore

Cp(K) = Hom((G×H)/M,µp) −→Hom(H,µp)

∼=
∏
q∈Q

Hom(O×q ,µp)×
∏
v∈Σ(r)

Hom(K×v ,µp)

is surjective by Lemma 2.3.8. Since the map is surjective, there exists a χ ∈ Cp(K) satisfying

• χr = ψr,e,

• χq|O×q = 1q for q ∈ Q, and

• χv = 1v for v ∈ Σ,

where χr, χq, χv are the restrictions of χ to GKr , GKq , GKv , respectively. Then in particular,

χq is an unramified character if q ∈ Q. Note that by Lemma 2.1.14 the local conditions of two

Selmer groups Selπ(Jχ/K) and Selπ(J/K) are the same except at r, namely, αp(χp) = αp(1p)

for p 6= r. Therefore, Selπ(Jχ/K) = Selπ(J, ηr,e), so by Proposition 2.3.11,

dp(Selπ(Jχ/K)) = dp(Selπ(J/K)) + 1

Proof of Theorem 1.1.5. Proposition 2.3.2, Proposition 2.3.12, and induction complete the

proof
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Chapter 3

Hyperelliptic curves

In this chapter, we keep the notation from the previous chapter except that J denotes the

Jacobian of a hyperelliptic curve C2,f . Theorem 1.1.8 is proved in section 3.2. Section 3.3

proves Theorem 1.1.10 and Theorem 1.1.4. Section 3.4 exhibits certain examples such that

all quadratic twists have even 2-Selmer ranks.

3.1 Canonical quadratic forms

In this section, we give a proof of the fact that the two quadratic forms (defined below)

on J [2] and Jχ[2] induced from the Heisenberg groups coincide. This enables us to show a

parity relation between two Selmer groups Sel2(J/K) and Sel2(Jχ/K) (See Theorem 1.1.8).

Let V be a F2-vector space. Following [6], we define quadratic forms, metabolic spaces,

and Lagrangian (maximal isotropic) subspaces.

Definition 3.1.1. A quadratic form on V is a function q : V → F2 such that

• q(0) = 0, and

• the map (v, w)q := q(v + w)− q(v)− q(w) is a bilinear form.

We say that X is a Lagrangian subspace or maximal isotropic subspace of V if q(X) = 0 and

X = X⊥ in the induced bilinear form.

A metabolic space (V, q) is a vector space V with a quadratic form (, )q such that (, )q is

nondegenerate and V contains a Lagrangian subspace.

30



Lemma 3.1.2. Suppose that (V, q) is a metabolic space such that d2(V ) = 2n. Then for

a given Lagrangian subspace X of V , there are exactly 2n(n−1)/2 Lagrangian subspaces that

intersect X trivially; i.e.,

|{Y : Y is a Lagrangian subspace such that Y ∩X = {0}}| = 2n(n−1)/2.

Proof. This is immediate from Proposition 2.6 (b),(c), and (e) in [17].

The most interesting case for our purposes is when V = H1(Kv, J [2]) for local fields

Kv. In this case, there is a canonical way to construct a quadratic form qH using the

Heisenberg group defined below (for more general case, see [17, §4]). The associated bilinear

form (Definition 3.1.1) given by such a quadratic form is the same as the pairing (2.1)

(see [17, Corollary 4.7]). Then αJ,v(1v) is a Lagrangian space by [17, Proposition 4.9], so

(H1(Kv, J [2]), qH) is a metabolic space. We explain the construction of qH in more detail

below. Following [3, Theorem A.8.1.1] we define a Theta (Weil) divisor.

Definition 3.1.3. Let C be a smooth projective curve of genus g ≥ 1. If j : C → J(C) is

an injection, define a Theta (Weil) divisor (depending on j) ΘJ(C),j by

ΘJ(C),j := j(C) + · · ·+ j(C) (g-1 copies).

Remark 3.1.4. Our main interest is when C is a hyperelliptic curve C2,f . In such case, we

fix an embedding j : C2,f → J by sending (x, y) to [(x, y)−∞]. Then the Theta divisor ΘJ

satisfies

[−1]∗ΘJ = ΘJ ,

since −[(x, y)−∞] = [(x,−y)−∞] in Pic0(C2,f )(∼= J).

Now we define the Heisenberg group for [2] : J → J .

Definition 3.1.5. The Heisenberg group HJ/K,Θ is defined by

HJ/K,ΘJ := {(x, g) : x ∈ J [2], and g ∈ K(J) such that div(g) = 2τ ∗x(ΘJ)− 2ΘJ}

where τx is translation by x, and K(J) is the function field of J over K. The group operation

is given by (x, g)(x′, g′) = (x+ x′, τ ∗x′(g)g′).
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Remark 3.1.6. By [17, Remark 4.5] and [3, Corollary A.8.2.3], we see that Definition 3.1.5

is a special case of the definition given in the paragraph just before [17, Proposition 4.6].

Let L be a field of characteristic 0, over which J is defined. There is an exact sequence

(3.1) 1→ L
× → HJ/L,ΘJ → J [2]→ 0,

where the middle maps are given by sending t to (0, t), and by projection. Then a quadratic

form qH is given by the connecting homomorphism

H1(L, J [2])→ H2(L,L
×

).

Note that the construction of qH is functorial with respect to base extension.

Definition 3.1.7. Let C2,f be a hyperelliptic curve over a local field Kv. Define

qJ,v : H1(Kv, J [2])→ H2(Kv, K
×
v ) ∼= Q/Z

given by the connecting homomrphism of the exact sequence

1→ K
×
v → HJ/Kv ,ΘJ → J [2]→ 0.

Lemma 3.1.8. Let C2,f be a hyperelliptic curve over a number field K. Suppose that x ∈

H1(K, J [2]). Then ∑
v

qJ,v(resv(x)) = 0,

where resv is the restriction map from H1(K, J [2]) to H1(Kv, J [2]).

Proof. We have an exact sequence (see [15, Theorem 8.1.17] for reference)

0 // Br(K) //
⊕

v Br(Kv)
⊕invv //Q/Z // 0.

The lemma follows from the functoriality mentioned in Remark 3.1.6.

Lemma 3.1.9. Let K(J) be the function field of J over K. Suppose that g ∈ K(J) satisfies

div(g) = 2τ ∗x(ΘJ)− 2ΘJ for some x ∈ J [2]. Then g ◦ [−1] = g.

Proof. Note that div([−1]∗(g)) = [−1]∗(2τ ∗x(ΘJ) − 2ΘJ) = 2τ ∗−x(ΘJ) − 2ΘJ = div(g) since

[−1]∗ΘJ = ΘJ . Hence [−1]∗g = cg for some constant c, and c has to be either 1 or −1.
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Let η be the generic point which corresponds to the divisor ΘJ . Write Ôη for the

completion of the local ring Oη (since ΘJ is an irreducible divior, Oη is a discrete valuation

ring). Then there is an isomorphism

Ôη ∼= k(Θ)[[t]],

where k(Θ) is the residue field of Oη, and t is a uniformizer. Then [−1]∗ ∈ Aut(k(Θ)[[t]])

is induced by [−1]. Since [−1]∗ has order 2, [−1]∗ sends t to (±t) + (higher degree terms).

By assumption, vΘ(g) = −2, where vΘ denote the valuation along ΘJ . Hence if one views g

as an element in k(Θ)((t)), it is immediate that [−1]∗g and g have the same leading term.

Therefore c = 1, and this completes the proof.

Let J ′ be the Jacobian of another hyperelliptic curve and λ : J → J ′ be an isomorphism

over Kv. By functoriality, the isomorphism λ induces an isomorphism λ∗ : HJ ′/Kv ,ΘJ′
→

HJ/Kv ,ΘJ . It is easy to check that the map

Isom(J, J ′)→ Isom(HJ ′/Kv ,ΘJ′
,HJ/Kv ,ΘJ )

given by λ 7→ λ∗ is a GKv -equivariant homomorphism. Now we show that the induced

quadratic forms above are indeed the same for all quadratic twists. The following theorem

generalizes [6, Lemma 5.2].

Theorem 3.1.10. Suppose that χ ∈ C2(Kv). The canonical isomorphism J [2] ∼= Jχ[2]

identifies qJ,v and qJχ,v for every place v.

Proof. Fix an isomorphism λ : J → Jχ defined over the field K
Ker(χ)

v . For every σ ∈ GKv ,

we have

λσ = λ ◦ [χ(σ)] = λ ◦ [±1].

Hence (λ∗)σ = (λσ)∗ = [±1]∗ ◦ λ∗. For all g such that div(g) = 2τ ∗x(ΘJ) − 2ΘJ for some

x ∈ J [2], we have [−1]∗g = g by Lemma 3.1.9. Therefore (λ∗)σ = λ∗ for all σ ∈ GKv , whence

qJ,v = qJχ,v since the following diagram commutes.

1 // K
×
v

//HJ/Kv ,ΘJ
// J [2] // 0

1 // K
×
v

//HJχ/Kv ,ΘJχ
//

' λ∗

OO

Jχ[2] //

'

OO

0.
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Proof of Theorem 1.1.8. Combine Theorem 3.1.10 with [6, Theorem 3.9].

3.2 2-Selmer ranks of hyperelliptic curves

Let K be a number field and f ∈ K[X] be a separable polynomial of odd degree (≥ 3)

such that α1, α2, · · ·αn are the roots of f . By an appropriate transformation of C2,f , we

may assume that αi are algebraic integers. We are mainly interested in the case where

Gal(f) ∼= Sn or An.

Let ∆f (:=
∏

i<j(αi − αj)2) be the discriminant of the polynomial f . Let Σ be a set of

primes containing all archimedean places, all primes above 2, and all primes that divide ∆f

(hence C2,f , so J(C2,f ) also, has good reduction at all primes not in Σ). We enlarge Σ so

that Pic(OK,Σ) = 1, where OK,Σ is the ring of Σ-integers, and fix it from now on. Note that√
∆f ∈ O×K,Σ if Gal(f) = An, and√
∆f 6∈ O×K,Σ if Gal(f) = Sn.

Lemma 3.2.1. 1. If q ∈ PJ,i for some even i and χq ∈ C2(Kq), then χq(∆f ) = 1.

2. If q ∈ PJ,i for some odd i and χq ∈ C2(Kq), then χq(∆f ) = 1 if and only if χq is

unramified.

Proof. It is well-known that
√

∆f is fixed exactly by even permutations. The condition

q ∈ PJ,i is equivalent to Frobq|K(J [2]) ∈ Sn being a product of i+ 1 disjoint cycles by Lemma

2.1.13. Therefore if i is even, then Frobq|K(J [2]) is an even permutation because n is odd, so√
∆f ∈ Kq. In other words, ∆f ∈ (K×q )2; i.e., χq(∆f ) = 1 for all χq ∈ C2(Kq). This shows

(i). If i is odd, then Frobq|K(J [2]) is an odd permutation, so it does not fix
√

∆f . Hence

∆f 6∈ (K×q )2. Therefore by the definition of Σ and PJ,i(not intersecting Σ), the discriminant

∆f must generate O×q /(O×q )2 ∼= Z/2Z, from which (ii) follows.

Lemma 3.2.2. Define A ⊂ K×/(K×)2 by

A := ker(O×K,Σ/(O
×
K,Σ)2 →

∏
q∈PJ,0

O×q /(O×q )2).
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Then A is generated by ∆f if Gal(f) ∼= Sn, and A is trivial if Gal(f) ∼= An.

Proof. If Gal(f) ∼= Sn, there is only one intermediate field K(
√

∆f ) between K and K(J [2])

of degree 2 over K. Hence if α ∈ O×K,Σ/(O
×
K,Σ)2 is not equal to ∆f , then K(

√
α) and K(J [2])

are linearly disjoint over K. Then by the Chebotarev Density Theorem, there exists a prime

q and Frobq ∈ Gal(K(J [2])K(
√
α)/K) such that

• Frobq(
√
α) = −

√
α, and

• Frobq|K(J [2]) ∈ Gal(f) = Sn is an n-cycle.

By Lemma 2.1.11 and the conditions on Frobq, we have q ∈ PJ,0 and
√
α 6∈ O×q , so α 6∈ A.

Lemma 3.2.1(i) with i = 0 shows that ∆f ∈ A. If Gal(f) ∼= An, the same argument with

∆f ∈ (O×K,Σ)2 shows that A is trivial.

For a prime q, we write resq(Selq2(J/K)) for the image of Selq2(J/K) of the map

resq : H1(K, J [2])→ H1(Kq, J [2]).

Lemma 3.2.3. The F2-vector space resq(Selq2(J/K)) is a Lagrangian subspace in the

metabolic space (H1(Kq, J [2]), qJ,q), where qJ,q is the quadratic form arising from the

Heisenberg group of J [2].

Proof. By Lemma 2.2.7,

d2(resq(Selq2(J/K))) =
1

2
d2(H1(Kq, J [2])).

Then [17, Proposition 4.9], [17, Corollary 4.7] and Lemma 3.1.8 show that resq(Selq2(J/K))

is a Lagrangian subspace.

Let q be a place where q - p∞ and J has good reduction. Recall that the localization

map

locq : Sel2(J/K)→ αJ,q(1q) ∼= J [2]/(Frobq − 1)J [2]

is given by evaluating cocycles at Frobq. The following two Propositions are the main

ingredient of Theorem 3.2.7.
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Lemma 3.2.4. Suppose that Gal(f) ∼= An or Sn. For an even number i, suppose that

r ∈ PJ,i and ψr ∈ C2(Kr). Then, there is a χ ∈ C2(K) such that

Sel2(Jχ/K) = Sel2(J, ψr).

Proof. Recall that Pic(OK,Σ) = 0, so Pic(OK,Σ(r)) = 0. Thus global class field theory shows

that

C2(K) = Hom(A×K/K
×,±1) = Hom((

∏
v∈Σ(r) K

×
v ×

∏
q/∈Σ(r)O×q )/O×K,Σ(r),±1).

Let

Q := PJ − {PJ,0 ∪ Σ(r)},

M := O×K,Σ(r),

G :=
∏

q∈PJ,0

O×q , and

H :=
∏
q∈Q

O×q ×
∏
v∈Σ(r)

K×v .

Define a map φ

φ : C2(K) = Hom((G×H)/M,±1) −→Hom(H,±1)

∼=
∏
q∈Q

Hom(O×q ,±1)×
∏
v∈Σ(r)

Hom(K×v ,±1).

Then by Lemma 3.2.2 and Lemma 2.3.8, φ is surjective if Gal(f) ∼= An, and Im(φ) is exactly

{g ∈ Hom(H,±1) : g(∆f ) = 1} if Gal(f) ∼= Sn. In either case, for all local characters

ψr ∈ C2(Kr), there is a global character χ ∈ C2(K) such that

• χr = ψr,

• χq|O×q = 1q for q ∈ Q,

• χv = 1v for v ∈ Σ

by Lemma 3.2.1, where χr, χq, χv are the restrictions of χ to GKr , GKq , GKv , respectively. For

example, if Gal(f) ∼= Sn, the existence of such a χ can be seen by Lemma 3.2.1(i). Then by

Lemma 2.1.14, αp(1p) = αp(χp) for all places p except r.
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Proposition 3.2.5. Suppose that Gal(f) ∼= An or Sn and suppose that d2(Sel2(J/K)) ≥ 2.

Then there exist infinitely many χ ∈ C2(K) such that

d2(Sel2(Jχ/K)) = d2(Sel2(J/K))− 2.

Proof. Decreasing 2-Selmer rank by 2 by twisting when n = 3 and Gal(f) ∼= A3 is done in

[8, Proposition 5.2]. Thus, assume that C2,f satisfies (∗) (Definition 2.2.2). Choose r ∈ PJ,2
so that d2(Im(locr)) = 2, which is poosible by Lemma 2.2.3 and the Chebotarev Density

Theorem. Then d2(Sel2,r(J/K)) = d2(Sel2(J/K))− 2. By Lemma 2.2.7,

d2(Selr2(J/K)) = d2(Sel2,r(J/K)) + 2,

whence Selr2(J/K) = Sel2(J/K). Taking any ramified character ψr ∈ C2
ram(Kr), we see that

d2(Sel2(J, ψr)) = d2(Sel2(J/K))− 2. The rest follows from Lemma 3.2.4.

Proposition 3.2.6. Suppose that Gal(f) ∼= An or Sn. Then there exist infinitely many

χ ∈ C2(K) such that

d2(Sel2(Jχ/K)) = d2(Sel2(J/K)) + 2.

Proof. First assume that C2,f satisfies (∗). Choose r ∈ PJ,2 so that Im(locr) = 0 and

Frobr|J(K[2]) ∈ Gal(f) ⊆ Sn is a product of 3 disjoint cycles of odd lengths. Choosing

such an r is possible by Lemma 2.2.3 and the Chebotarev Density Theorem. If n = 3 and

Gal(f) ∼= A3, one can find a sufficiently big field N containing K(J [2]) that is Galois over

K, and c(σ) = 0 for σ ∈ GN and c ∈ Sel2(J/K). Then there are infinitely many primes

r(∈ PJ,2) such that Frobr|Gal(N/K) = 1 by the Chebotarev density theorem.

In either case, we have Sel2(J/K) = Sel2,r(J/K). By Lemma 2.2.7 and Lemma 3.2.3.

d2(Selr2(J/K)) = d2(Sel2,r(J/K)) + 2

and resr(Selr2(J/K)) is a Lagrangian subspace (Lemma 3.2.3) of the metabolic space

(H1(Kr, J [2]), qJ,r) that intersects αJ,r(1r) trivially. Let C2
ram(Kr) = {ψ1, ψ2}. Then

αJ,r(1r)∩αJ,r(ψ1) = αJ,r(1r)∩αJ,r(ψ2) = {0} by Lemma 2.1.15, and αJ,r(ψ1)∩αJ,r(ψ2) = {0}

by Lemma 2.3.7. By Lemma 3.1.2, there are exactly 2 Lagrangian subspaces that intersect

αJ,r(1r) trivially, so there exists a ψr ∈ C2
ram(Kr) such that αJ,r(ψr) = resr(Selr2(J/K)).

Hence it follows that d2(Sel2(J, ψr)) = d2(Sel2(J/K)) + 2. Now Lemma 3.2.4 proves the

proposition.
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Finally, Proposition 3.2.5 and Proposition 3.2.6 show the following by induction.

Theorem 3.2.7. Suppose that C2,f is a hyperelliptic curve over a number field K such that

Gal(f) ∼= An or Sn. Then for all r ≡ d2(Sel2(J2,f/K)) (mod 2), there exist infinitely many

quadratic characters χ ∈ C2(K) such that d2(Sel2(Jχ2,f/K)) = r.

3.3 Parity of 2-Selmer ranks of Jacobians of

hyperelliptic curves

We continue to assume that J is the Jacobian of C2,f , where n = deg(f) is odd.

Definition 3.3.1. For every v ∈ Σ and χv ∈ C2(Kv), we define ωv : C2(Kv)→ {±1} by

ωv(χv) := (−1)hJ,v(χv)χv(∆f ).

Define

δJ,v :=
1

|C2(Kv)|
∑

χ∈C2(Kv)

ωv(χ) and δJ := (−1)d2(Sel2(J/K))
∏
v∈Σ

δJ,v.

Definition 3.3.2. Define a function C2(K)→ Z>0 by

‖χ‖ := max{N(q) : χ is ramified at q},

where N(q) is the order of the residue field of Kq. If X > 0, let C2(K,X) ⊂ C2(K) be the

subgroup

C2(K,X) := {χ ∈ C2(K) : ‖χ‖ < X}.

The following proposition is in fact the same as [6, Proposition 7.2] in a slightly more

general setting (hyperelliptic curves). For χ ∈ C2(K), let

r(χ) := d2(Sel2(Jχ/K))

and χv be the restriction of χ to GKv .

Proposition 3.3.3. Suppose that χ ∈ C2(K). Then

r(χ) ≡ r(1K) (mod 2)⇐⇒
∏
v∈Σ

ωv(χv) = 1.
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Proof. Let θ be a (formal) product of primes not in Σ such that χ is ramified exactly at the

primes which divide θ. Then by Lemma 3.2.1,∏
q6∈Σ

χq(∆f ) = (−1)|{q:q∈PJ,i for odd i and q|θ}|.

Note that for q|θ, we have (−1)hJ,q(χq) = χq(∆f ) by Lemma 2.1.15, Lemma 3.2.1, and Remark

2.3.4. Therefore Theorem 1.1.8 and Lemma 2.1.14 show that

r(χ) ≡ r(1K) (mod 2)⇐⇒ (−1)ΣvhJ,v(χv) = 1

⇐⇒
∏
v∈Σ

ωv(χv)χv(∆f )
∏
v 6∈Σ

χv(∆f ) = 1.

Clearly
∏

v χv(∆f ) = 1, so this completes the proof.

The following theorem is remarkable theorem due to Klagsbrun, Mazur, and Rubin ([6,

Theorem 7.6]) (for the elliptic curve case).

Theorem 3.3.4. For all sufficiently large X,

|{χ ∈ C2(K,X) : d2(Sel2(Jχ/K)) is even }|
|C2(K,X)|

=
1 + δJ

2
.

Proof. See the proof of Theorem 7.6 in [6]. Without difficulty, one can see [6, Theorem 7.6]

can be extended to the hyperelliptic curve case.

Proposition 3.3.5. Suppose that K has a real embedding K ↪→ Kv0. Then

δJ,v0 =

1 if n ≡ 1 (mod 4)

0 if n ≡ 3 (mod 4).

Proof. Let η be the sign character in C2(Kv0) = Hom(K×v0 ,±1) sending negative numbers to

−1. Suppose that f has 2k1− 1 real roots and 2k2 complex roots so that 2k1 + 2k2− 1 = n.

Let β1, β1, β2, β2, · · · βk2 , βk2 denote the complex roots of f , where βi is the complex conjugate

of βi. Then by an appropriate rearrangement of the roots, we get

∆f =
∏
i<j

(αi − αj)2 = cc
∏

1≤i≤k2

(βi − βi)2
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for some c. Hence η(∆f ) = (−1)k2 . By Lemma 2.1.19, we deduce that

(−1)hJ,v0 (η) = (−1)k1−1.

Therefore δJ,v0 = 1/2(1 +ωv0(η)) = 1/2(1 + (−1)k1+k2−1), so the proposition follows from the

equality 2k1 + 2k2 − 1 = n.

As an easy application, we have

Corollary 3.3.6. Suppose that n ≡ 3 (mod 4), and K has a real embedding. Then for all

sufficiently large X, we have

|{χ ∈ C2(K,X) : r(χ) is even }| = |{χ ∈ C2(K,X) : r(χ) is odd }| = |C
2(K,X)|

2
.

Remark 3.3.7. If n ≡ 1 (mod 4) or if K has no real embedding, we have to know values

of δJ,v other than δJ,v0 to compute an accurate density. In fact, the “disparity constant” δJ

may not be zero. We display such examples in the next section.

Theorem 3.2.7 and Theorem 3.3.4 show the following.

Theorem 3.3.8. Suppose that C2,f is a hyperelliptic curve defined over a number field K

such that n = deg(f) is odd. Suppose that Gal(f) ∼= Sn or An, and the disparity constant

δJ is neither −1 nor 1. Then for every r = 0, the Jacobian J of C2,f has infinitely many

quadratic twists Jχ such that d2(Sel2(Jχ/K)) = r.

Proof of Theorem 1.1.4. It is a corollary of Theorem 3.3.8 by Proposition 3.3.5.

Corollary 3.3.9. Suppose that C2,f is a hyperelliptic curve defined over a number field K.

Let n = deg(f), and suppose that n ≡ 3(mod 4) and Gal(f) ∼= Sn or An. Suppose further

that K has a real embedding. Then for every r = 0, the Jacobian J of C2,f has infinitely

many quadratic twists Jχ such that d2(Sel2(Jχ/K)) = r.

3.4 Examples

In this section, we show that the condition n ≡ 3(mod 4) in Theorem 1.1.4 cannot be

dropped, by giving counterexamples when n = 5. In fact, we give an explicit example of a
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hyperelliptic curve C2,h/Q such that d2(Sel2(Jχ2,h/Q)) has constant parity for all quadratic

twists Jχ2,h. More precisely, the main result of this section is the following.

Proposition 3.4.1. Suppose that C2,h is a hyperelliptic curve over Q whose affine model is

y2 = h(x) := −273(6x+ 1)(91x2 + 54x+ 9)(100x2 + 60x+ 1)

Then d2(Sel2(Jχ2,h/Q)) is even for any quadratic twist J2,h.

Let E be an elliptic curve labelled 1440D1 in [1]:

y2 = x3 − 273x+ 1672.

Then

E[2] = {∞, (−19, 0), (8, 0), (11, 0)}.

Define an isomorphism ψ : E[2]→ E[2] by sending (αi, 0) to (βi, 0), where

α1 = −19, α2 = 8, α3 = 11, β1 = 8, β2 = 11, and β3 = −19.

Clearly, ψ does not come from an isomorphism E → E since E does not have complex

multiplication (the j-invariant of E is not an integer).

Proposition 4 in [4] shows that the Jacobian of the curve defined by y2 = h(x) where

h(x) = −(−810Ax2 + 81B)(81Ax2 − 90B)(−90Ax2 − 810B)

is isomorphic to the quotient of E × E by the graph of ψ. The constant A and B are as

in Proposition 4 in [4], and one can see A = 1990170 = −B by simple algebra. Then by a

rational transformation of y2 = h(x) by

x =
3x′ + 1

x′
, y =

cy′

x′3
,

where c = 22 × 314 × 52 × 7× 13, we get

y′2 = −273(6x′ + 1)(91x′2 + 54x′ + 9)(100x′2 + 60x′ + 1).

By abuse of notation, let

h(x) := −273(6x+ 1)(91x2 + 54x+ 9)(100x2 + 60x+ 1).

Then the above observation shows that J is isogenous to E × E over Q.
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Definition 3.4.2. Let A be an abelian variety over a number field K. Define

Seln(A/K) := {x ∈ H1(K,A[n]) : resv(x) ∈ Im(iv) for all places v},

where resv is the restriction map

resv : H1(K,A[n])→ H1(Kv, A[n])

and iv is the Kummer map iv : A(Kv)/nA(Kv) → H1(Kv, A[n]). If p is a prime, we define

Selp∞(A/K) to be the direct limit of the Selmer groups Selpk(A/K).

Lemma 3.4.3. Suppose that C2,h and E are as above. Then for any χ ∈ C2(Q),

d2(Sel2(Jχ2,h/Q)) ≡ d2(J2,h(Q)[2]) (mod 2)

Proof. Since J2,h and E × E are isogenous over Q, the induced map

Sel2∞(J2,h/Q)→ Sel2∞((E × E)/Q)

has finite kernel and cokernel. Hence

corankZ2(J2,h/Q) = corankZ2((E × E)/Q),

so corankZ2(J2,h/Q) is even. In a similar way, one can see that corankZ2(J
χ
2,h/Q) is even for

all quadratic twists Jχ2,h. We have the following two exact sequences:

0 // J2,h(Q)⊗Q2/Z2
// Sel2∞(J2,h/Q) //X[2∞] // 0, and

0 // J2,h(Q)/2J2,h(Q) // Sel2(J2,h/Q) //X[2] // 0,

where the group X is the Shafarevich-Tate group of J2,h/Q. From the above exact sequences,

we see that

d2(Sel2(J2,h/Q)) = rk(J2,h(Q)) + d2(J2,h(Q)[2]) + d2(Xdiv[2]) + d2(X/Xdiv[2])

= corankZ2(J2,h/Q) + d2(X/Xdiv[2]) + d2(J2,h(Q)[2])

≡ d2(J2,h(Q)[2]) (mod 2),

where the last congruence holds by the following. Note that C2,h has a rational point ∞,

so the (K-rational) theta divisor given by j : C2,h → J2,h sending P to [P −∞] produces a

principal polarization. See Section A.8.2 of [3] for more details. Then the congruence follows

from the following two general facts.
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1. If A is an abelian variety over a number field K that has a principal polarization coming

from a K-rational (Weil) divisor, then there is a paring

XA/K ×XA/K → Q/Z,

that is alternating and nondegenerate after division by maximal divisible subgroup.

2. If there is a finite abelian group B with an alternating non-degenerate pairing

B ×B → Q/Z,

then d2(B[2]) is even.

Similarly, one can see

dimF2(Sel2(Jχ2,h/Q)) ≡ dimF2(J
χ
2,h(Q)[2]) (mod 2)

for all quadratic twists Jχ2,h. Then the lemma follows from Remark 1.2.7.

Proof of Proposition 3.4.1. It is easy to see d2(J2,h(Q)[2]) = 2 by Lemma 2.1.11. Then

Lemma 3.4.3 completes the proof.

We show one more example in the following proposition.

Proposition 3.4.4. Let C2,g be a hyperelliptic curve given by

y2 = g(x) = (2x+ 1)(3x2 + 4x+ 2)(3x2 + 2x+ 1).

Then d2(Sel2(Jχ2,g/Q) is even for all χ ∈ C2(K).

Proof. Let E ′ be the elliptic curve y2 = x3 − x. Let

α1 = 1, α2 = −1, α3 = 0, β1 = −1, β2 = 0, and , β3 = 1.

Then one can proceed exactly in the same way as above to get a hyperelliptic curve C2,g′

given by y2 = g′(x) for some g′ ∈ Q[X], whose Jacobian is isogenous to E ′ × E ′ and is a

quadratic twist of J2,g. It is easy to see d2(J2,g(Q)[2]) = 2 by Lemma 2.1.11. Then the rest

follows as in Lemma 3.4.3.
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Chapter 4

Elliptic curves

Let K be a number field and E be an elliptic curve defined over K. We drop K from the

notation Sel2(E/K) and write Sel2(E) for simplicity. The 2-Selmer rank dimF2(Sel2(E)) is

denoted by r2(E) in this chapter.

4.1 Selmer groups and comparing local conditions

Definition 4.1.1. For every place v of K, we let

resv : H1(K,E[2])→ H1(Kv, E[2])

denote the restriction map of group cohomology. Let T be a finite set of places. let

resT : H1(K,E[2])→
⊕
v∈T

H1(Kv, E[2])

denote the sum of restriction maps.

We define various Selmer groups as follows.

Definition 4.1.2. Let T be a finite set of places of K. Let S = {v1, · · · , vk} be a (finite)

set of places such that S ∩ T = ∅. Let ψvj ∈ C2(Kvj). Define

Sel2(E,ψv1 , · · · , ψvk) := {x ∈ H1(K,E[2])|resv(x) ∈ αE,v(1v) if v /∈ S, and

resvj(x) ∈ αE,vj(ψvj) for 1 ≤ j ≤ k}.
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Define

Sel2,T (E,ψv1 , · · · , ψvk) := {x ∈ Sel2(E,ψv1 , · · · , ψvk)|resT (x) = 0}.

Define

SelT2 (E,ψv1 , · · · , ψvk) := {x ∈ H1(K,E[2])|resv(x) ∈ αE,v(1v) if v /∈ S ∪ T, and

resvj(x) ∈ αE,vj(ψvj) for 1 ≤ j ≤ k}.

For a place v /∈ S, we simply write Sel2,v(E,ψv1 , · · · , ψvk), Selv2(E,ψv1 , · · · , ψvk) for

Sel2,{v}(E,ψv1 , · · · , ψvk), Sel
{v}
2 (E,ψv1 , · · · , ψvk), respectively.

Definition 4.1.3. For convenience, we write r2(Eχ), r2(E,ψv1 , · · · , ψvn) for

d2(Sel2(Eχ)), d2(Sel2(E,ψv1 , · · · , ψvn)), respectively.

The following theorem is due to [6, Theorem 3.9 and Lemma 5.2(ii)].

Theorem 4.1.4 (Kramer, Klagsbrun-Mazur-Rubin). Let χ ∈ C2(K). We have

r2(E)− r2(Eχ) ≡
∑
v

hE,v(χv)(mod 2),

where χv is the restriction of χ to GKv and hE,v is given in Definition 1.2.8. Let S =

{v1, · · · , vk} be a (finite) set of places. Let ψvi ∈ C2(Kvi). We have

r2(E,ψv1 , · · · , ψvk)− r2(E) ≡
k∑
i=1

hE,vi(ψvi)(mod 2).

From now on, let Σ denote a finite set of places of K containing all primes above 2, all

primes where E has bad reduction, and all infinite places. Recall the notation PE,i and PE
(Definition 2.3.3). We recall the following Lemma here for the reader’s convenience.

Lemma 4.1.5. For q ∈ PE,i and χ ∈ C2(Kq),

1. d2(αE,q(χ)) = d2(E(Kq)[2]) = i and

2. if χ ∈ C2
ram(Kq), then αE,q(1q) ∩ αE,q(χ) = {0}, and hE,q(χ) = i.

Proof. Lemma 2.1.10 and Lemma 2.1.15 prove the assertions.
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Theorem 4.1.6. Let T be a finite set of places of K. Let v1, · · · , vk 6∈ T be places and

ψvj ∈ C2(Kvj). The images of right hand restriction maps of the following exact sequences

are orthogonal complements with respect to the pairing given by the sum of pairings (2.1) of

the places v ∈ T

0 // Sel2(E,ψv1 , · · · , ψvk) // SelT2 (E,ψv1 , · · · , ψvk) //
⊕

v∈T H
1(Kv, E[2])/αE,v(1v),

0 // Sel2,T (E,ψv1 , · · · , ψvk) // Sel2(E,ψv1 , · · · , ψvk) //
⊕

v∈T αE,v(1v).

In particular,

d2(SelT2 (E,ψv1 , · · · ,ψvk))− d2(Sel2,T (E,ψv1 , · · · , ψvk))

= Σv∈Td2(αE,v(1v)) = Σv∈T
1

2
d2(H1(Kv, E[2])).

Proof. The lemma follows from the Global Poitou-Tate Duality. For example, see [10,

Theorem 2.3.4].

Corollary 4.1.7. Suppose T = {q1, · · · , qn}, where qi ∈ PE. Let ψi ∈ C2
ram(Kqi). Let v0 6∈ T

be a place and ψv0 ∈ C2(Kv0). Suppose that the map resT : Sel2(E,ψv0) →
⊕

v∈T αE,v(1v) is

surjective. Then we have

1. Sel2(E,ψv0) = SelT2 (E,ψv0), and

2. Sel2(E,ψ1, · · · , ψn, ψv0) = Sel2,T (E,ψv0).

Proof. The first assertion is clear because the orthogonality in Theorem 4.1.6 shows that the

image of

resT : SelT2 (E,ψv0)→
⊕
v∈T

H1(Kv, E[2])/αE,v(1v)

is trivial. Lemma 4.1.5 shows that

Sel2(E,ψv0) ∩ Sel2(E,ψ1, · · · , ψn, ψv0) = Sel2,T (E,ψv0),

where the intersection is taken in H1(K,E[2]). Now the second assertion is easy to see.

Corollary 4.1.8. Let q be a place and let v1, · · · , vk be places of K not equal to q. Let

ψvj ∈ C2(Kvj). For any φq, ηq ∈ C2(Kq), we have

|r2(E,ψv1 , · · · , ψvk , φq)− r2(E,ψv1 , · · · , ψvk , ηq)| ≤ d2(αE,q(1q)).
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Proof. In Theorem 4.1.6, take T = {q}. Note that Sel2(ψv1 , · · · , ψvk , φq) and

Sel2(ψv1 , · · · , ψvk , ηq) contains Sel2,q(ψv1 , · · · , ψvk) and are contained in Selq2(ψv1 , · · · , ψvk),

where the result easily follows from Theorem 4.1.6.

4.2 Increasing 2-Selmer rank by twisting

Let E be an elliptic curve over a number field K and let Σ be as in previous section.

Lemma 4.2.1. Let q be a prime of K such that q - 2. Then

1. if all the points of E[4] are Kq-rational and χ is a nontrivial quadratic character, then

Eχ(Kq)[4] = Eχ(Kq)[2] ∼= (Z/2Z)2;

2. if E(Kq)[4] = E(Kq)[2], then the map E(Kq)[2] → E(Kq)/2E(Kq) via the projection

is an isomorphism.

Proof. The first assertion (i) is obvious from the definition of quadratic twists. For (ii),

multiplication by 2 is surjective on the pro-(prime to 2) part of E(Kq), so only the pro-2

part E(Kq)[2
∞] contributes to E(Kq)/2E(Kq), hence

E(Kq)[2] = E(Kq)[2
∞]/2E(Kq)[2

∞] ∼= E(Kq)/2E(Kq).

The following generalizes methods that are used in the proof of Proposition 5.1 in [8].

Theorem 4.2.2. Let E be an elliptic curve over a number field K. Then there exist infinitely

many χ ∈ C2(K) such that r2(Eχ) = r2(E) + 2.

Proof. If Gal(K(E[2])/K) ∼= S3 or A3, the result follows from 3.2.6. Therefore, from now

on, we assume that Gal(K(E[2])/K) has order 1 or 2, i.e., there exists a non-trivial rational

2-torsion point P ∈ E(K)[2]. Let θ be the formal product of 8, and all places in Σ not

dividing 2. In particular, θ is divisible by primes where E has bad reduction. Let K[θ] be

the maximal 2-subextension of K(θ), where K(θ) is the ray class field modulo θ.
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Let L be a Galois extension containing K(E[4])K[θ] such that the image of the restriction

map

Sel2(E) ⊆ H1(K,E[2])→ H1(L,E[2]) = Hom(GL, E[2])

is trivial. Choose a prime (Chebotarev’s density theorem) q /∈ Σ so that q is unramified in

L/K and Frobq|L = 1. Note that the restriction map H1(K,E[2]) → H1(Kq, E[2]) factors

through the restriction H1(K,E[2]) → H1(L,E[2]) because q splits completely in L/K, so

resq(Sel2(E)) = 0 and

Sel2(E) = Sel2,q(E).

Moreover, there exists an odd integer k such that qk = (d) for some d ∈ K× such that

d ≡ 1 (mod θ). Note the following properties of the extension K(
√
d)/K:

• q is ramified in K(
√
d)/K,

• If v /∈ Σ and v 6= q, then v is unramified in K(
√
d)/K, and

• If v ∈ Σ, then v splits in K(
√
d)/K.

Let Ed denote the quadratic twist of E by d. Then by Lemma 2.1.14, the local conditions

of Sel2(E) and Sel2(Ed) are the same except at q, where two local conditions intersect

trivially by Lemma 4.1.5. By Corollary 4.1.8 and the fact that Sel2(E) = Sel2,q(E), we have

0 ≤ r2(Ed) − r2(E) ≤ 2. Moreover since q ∈ PE,2, Theorem 4.1.4 and Lemma 4.1.5 prove

that

(4.1) r2(Ed) = r2(E) or r2(E) + 2.

By our choice of a prime q, we have E[4] ⊂ E(Kq). By Lemma 4.2.1, P has a nonzero

local Kummer image for Ed at q. Therefore resq(Sel2(Ed)) 6= 0, where resq : Sel2(Ed) →

H1(Kq, E[2]) is the restriction map. Hence Sel(Ed) contains Sel2(E)(= Sel2,q(E)) properly,

i.e., r2(Ed) ≥ r2(E) + 1. Therefore by (4.1), we have r2(Ed) = r2(E) + 2. Since the only

constraint on our choice of q is Frobq|L = 1 and there are infinitely many such primes

(Chebotarev’s density theorem), we have infinitely many quadratic twists with the desired

property.
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Remark 4.2.3. A similar argument can show the following theorem: Let C2,f be a

hyperelliptic curve over a number field K given by an affine model

y2 = f(x),

where n := deg(f) > 1 is odd. Let J be the Jacobian of C2,f . If K contains a root of f ,

then for any given natural number r, there exist infinitely many quadratic twists Jχ such

that d2(Sel2(Jχ/K)) ≥ r.

4.3 Changing the parity of 2-Selmer rank by twisting

Recall that Σ is a finite set of places of K containing all places where E has bad reduction,

all primes above 2, and all infinite places. We enlarge Σ, if necessary, so that Pic(OK,Σ) = 1,

where OK,Σ denote the ring of Σ-integers. For the rest of the paper, we put n := |Σ|. Let

∆E denote the discriminant of some model of the elliptic curve E.

Lemma 4.3.1. d2(O×K,Σ/(O
×
K,Σ)2) = n.

Proof. It is well-known that O×K,Σ
∼= Zn−1 ⊕ Z/mZ, where m = #{roots of unity in K} is

divisible by 2 (for example, see [14, Proposition 6.1.1]).

Lemma 4.3.2. Let q /∈ Σ (so q - 2) be a prime of K and suppose g ∈ Hom(O×q , {±1}) is

non-trivial. Then g(b) = Frobq(
√
b)/
√
b for all b ∈ O×K,Σ. In particular, if ψ ∈ C2

ram(Kq),

then ψ(b) = Frobq(
√
b)/
√
b for all b ∈ O×K,Σ.

Proof. We have

Hom(O×q , {±1}) = Hom(O×q /(O×q )2, {±1}) ∼= Z/2Z

because O×q /(O×q )2 ∼= Z/2Z. Note that b ∈ (O×q )2 if and only if Frobq(
√
b) =

√
b, where the

assertion follows.

.
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Lemma 4.3.3. The image of the restriction map

C2(K) = Hom(A×K/K
×, {±1}) = Hom((

∏
µ∈Σ K

×
µ ×

∏
ν /∈ΣO×ν )/O×K,Σ, {±1})

−→
∏

µ∈Σ Hom(K×µ , {±1})×
∏

ν 6∈Σ Hom(O×ν , {±1})

is the set of all (((fµ)µ∈Σ), ((gν)ν 6∈Σ)) such that
∏

µ∈Σ fµ(b)
∏

ν 6∈Σ gν(b) = 1 for all b ∈ O×K,Σ,

where fµ ∈ Hom(K×µ , {±1}), gν ∈ Hom(O×ν , {±1}), and gν is trivial for all but finitely many

ν.

Proof. Global Class Field Theory and the condition Pic(OK,Σ) = 1 show the equalities. It

is clear that the image is as stated.

Proposition 4.3.4. Let v0 ∈ Σ and ψv0 ∈ C2(Kv). Suppose that ψv0(O×K,Σ) = 1. Then there

exists χ ∈ C2(K) such that Sel2(Eχ) = Sel2(E,ψv0)

Proof. Put fµ ∈ Hom(K×µ , {±1}) for µ ∈ Σ and gν ∈ Hom(O×ν , {±1}) for ν 6∈ Σ such that

• fv0 = ψv0 ,

• fv = 1v for v ∈ Σ\{v0}, and

• gp is trivial for p /∈ Σ.

By Lemma 4.3.3, there exists a character χ ∈ C2(K) such that for µ ∈ Σ and ν /∈ Σ, χµ = fµ

and χν |O×ν = gν , where χµ, χν are restrictions of χ to K×µ , K
×
ν via the local reciprocity maps,

respectively. Now one can see the local conditions for Sel2(Eχ) and Sel2(E,ψv0) are the same

everywhere by Lemma 2.1.14.

Lemma 4.3.5. Let v0 be a place in Σ and let T be a (finite) set of primes such that T∩Σ = ∅.

Suppose that ψv0 ∈ C2(Kv0). Then there exist infinitely many primes q /∈ Σ ∪ T for which

there exists a character χ ∈ C2(K) satisfying the following conditions.

1. χv0 = ψv0,

2. χv = 1v for v ∈ Σ\{v0},

3. χω is ramified for ω ∈ T ,
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4. χp is unramified for p /∈ Σ ∪ T ∪ {q},

5. χq is ramified,

where χv0 , χv, χω, χp, χq are restrictions of χ to K×v0 , K
×
v , K

×
ω , K

×
p , K

×
q via the local reciprocity

maps, respectively.

Proof. Let β1, · · · , βn be a basis of O×K,Σ/(O
×
K,Σ)2. Choose a prime q such that

(4.2) Frobq(
√
βi)/

√
βi = ψv0(βi) ·

∏
ω∈T

Frobω(
√
βi)/

√
βi

for all i, where the existence is guaranteed by Chebotarev’s density theorem. Put fµ ∈

Hom(K×µ , {±1}) for µ ∈ Σ and gν ∈ Hom(O×ν , {±1}) for ν 6∈ Σ such that

• fv0 = ψv0 ,

• fv = 1v for v ∈ Σ\{v0},

• gω is not trivial for ω ∈ T ,

• gp is trivial for p /∈ Σ ∪ T ∪ {q}, and

• gq is not trivial.

By Lemma 4.3.2, we have

gq(βi) = fv0(βi) ·
∏

v∈Σ\{v0}

fv(βi) ·
∏
ω∈T

gω(βi) ·
∏

p/∈Σ∪{q}∪T

gp(βi).

By Lemma 4.3.3, this means that there exists a character χ ∈ C2(K) such that for µ ∈ Σ

and ν /∈ Σ, χµ = fµ and χν |O×ν = gν , where χµ, χν are restrictions of χ to K×µ , K
×
ν via the

local reciprocity maps, respectively. It is easy to see χ satisfies the desired conditions. For

example, for ω ∈ T , χω|O×ω = gω, and this shows that χω is ramified since gω(O×ω ) 6= 1 by

our construction.

Proposition 4.3.6. Let v0 ∈ Σ and ψv0 ∈ C2(Kv0).

1. If ψv0(∆E) = −1 and Gal(K(E[2])/K) ∼= Z/2Z, there exist infinitely many ϕ ∈ C2(K)

such that r2(Eϕ/K) = r2(E,ψv0) + 1.
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2. If ψv0(∆E) = 1, there exist infinitely many ϕ ∈ C2(K) such that r2(Eϕ/K) =

r2(E,ψv0) + 2.

3. Suppose that ψv0(∆E) = 1 and there exists an element c ∈ Sel2(E,ψv0). Let T = ∅

and choose q and χ as in Lemma 4.3.5. Suppose that resq(c) 6= 0. Then there exist

infinitely many ϕ ∈ C2(K) such that r2(Eϕ/K) = r2(E,ψv0).

Proof. For (i) and (ii), let T = ∅ and we begin with choosing q and χ as in Lemma 4.3.5.

Note that the local conditions for Sel2(Eχ) and Sel2(E,ψv0) are the same everywhere except

possibly at q by Lemma 2.1.14. Thus Corollary 4.1.8 shows that |r2(Eχ) − r2(E,ψv0)| ≤ 2.

The conditions in (i) and the product formula imply χq(∆E) = ψv0(∆E) = −1, so ∆E /∈

(K×q )2, which shows that E(Kq)[2] ∼= Z/2Z. Hence Theorem 4.1.4, Lemma 4.1.5 prove that

r2(Eχ) is r2(E,ψv0) − 1, or r2(E,ψv0) + 1. Then (i) follows from Theorem 4.2.2. For (ii),

the condition ψv0(∆E) = 1 and the product formula imply χq(∆E) = 1, so ∆E ∈ (K×q )2,

which shows that E(Kq)[2] ∼= (Z/2Z)2 or E(Kq)[2] = 0. Then Theorem 4.1.4, Lemma 4.1.5

show that r2(Eχ) is r2(E,ψv0)− 2, or r2(E,ψv0) or r2(E,ψv0) + 2 and the rest follows from

Theorem 4.2.2. To see (iii), note that the condition resq(c) 6= 0 rules out the possibility for

r2(Eχ) to be r2(E,ψv0) + 2 in the proof of (ii) (for otherwise, r2(Eχ) ≥ d2(Sel2,q(E
χ)) + 3

and this would mean r2(Eχ) ≥ d2(Selq2(Eχ)) + 1, which is absurd).

Lemma 4.3.7. Suppose that K has a real place v0, so Kv0
∼= R. Let η ∈ C2(Kv0) be the

sign character. Then

hv0(η) =

0 if d2(E(Kv0)[2]) = 1,

1 if d2(E(Kv0)[2]) = 2.

Proof. The image N(E(C)) of the norm map

N : E(C)→ E(R)

is the connected component of the identity of E(R), i.e., N(E(C)) ∼= R/Z, where the result

follows by Lemma 2.1.16.

Lemma 4.3.8. Let M = K(E[2]). The restriction map

(4.3) H1(K,E[2])→ H1(M,E[2]) = Hom(GM , E[2])
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is an injection.

Proof. The Inflation-Restriction Sequence shows that the kernel of (4.3) is H1(M/K,E[2]).

It is well-known that H1(GL2(Z/2Z), E[2]) = 1 (GL2(Z/2Z) ∼= S3). For the other cases, let

σ be a generator of the cyclic group Gal(M/K). One can see Ker(σ + 1) = Im(σ − 1), so

the cohomology group vanishes.

Theorem 4.3.9. If K has a real embedding, there exist infinitely many χ ∈ C2(K) such that

r2(Eχ) = r2(E) + 1.

Proof. Let M = K(E[2]). We assume Gal(M/K) has order 1 or 2, since otherwise we already

know the result holds by [8, Theorem 1.5] and Theorem 4.2.2. We let v0 be a real place, so

that Kv0
∼= R. Let ψv0 ∈ C2(Kv0) denote the sign character, i.e., ψv0 sends negative numbers

to −1.

Case 1: E[2] ⊂ E(K). We have E(Kv0)
∼= R/Z⊕ Z/2Z. Therefore, there exists a point

P ∈ E(K)[2] that is not divisible by 2 in E(Kv0). One can see resv0(P ) 6= 0, where P is the

image of P in the map E(K)→ E(K)/2E(K)→ Sel2(E) ⊂ H1(K,E[2]), because the image

of P in E(Kv0)/2E(Kv0) is not trivial. The restriction map Sel2(E)/Sel2,v0(E)→ αv0(1v0) is

an isomorphism (since resv0(Sel2(E)) 6= 0) and the restriction map Sel2(E,ψv0)/Sel2,v0(E)→

αv0(ψv0) is an injection. Therefore, Theorem 4.1.4 and Lemma 4.3.7 show that r2(E,ψv0) =

r2(E)− 1. Then the result follows from Proposition 4.3.6(ii).

Case 2: Gal(M/K) ∼= Z/2Z and E(Kv0)
∼= R/Z (i.e., ψv0(∆E) = −1). We have

Sel2(E) = Sel2(E,ψv0) since αv0(1v), αv0(ψv0) ⊂ H1(R, E[2]) = 0 in this case. The result

follows form Proposition 4.3.6(i).

Case 3: Gal(M/K) ∼= Z/2Z and E(Kv0)
∼= R/Z⊕Z/2Z (∆E 6∈ (K×)2 and ψv0(∆E) = 1).

Suppose that β1, · · · , βn−1,∆E form a basis of O×K,Σ/(O
×
K,Σ)2. By Corollary 4.1.8, we have

|r2(E,ψv0) − r2(E)| ≤ 1. Then r2(E,ψv0) = r2(E) + 1 or r2(E) − 1 by Theorem 4.1.4 and

Lemma 4.3.7. If r2(E,ψv0) = r2(E) − 1, Proposition 4.3.6(ii) proves the result. Hence for

the rest of the proof, we assume r2(E,ψv0) = r2(E) + 1. Choose c ∈ Sel2(E,ψv0)\Sel2(E).

Then resv0(c) 6= 0. Let c̃ denote the image of c in the map (4.3) in Lemma 4.3.8. Let

L := M(
√
β1, · · · ,

√
βn−1) and N := M

ker(c̃)
(we identify K and M).

(i) First, suppose that N 6⊂ L. Choose q ∈ PE,2 so that
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• q is unramified in NL/M

• Frobq(
√
βi)/
√
βi = ψv0(βi),

• Frobq|Gal(N/M) 6= 1, i.e., N 6⊂ Kq.

It is possible because N 6⊂ L. Note that q is chosen as in Lemma 4.3.5 for T = ∅ (see (4.2)).

Then resq(c) 6= 0 since N 6⊂ Kq. The result follows from Proposition 4.3.6(iii).

(ii) Now we assume that N ⊂ L. By choosing a basis again, we may assume that

ψv0(β1) = −1 and ψv0(β2) = ψv0(β3) = · · · = ψv0(βn−1) = ψv0(∆E) = 1. Since resv0(c) 6= 0,

we have N 6⊂M(
√
β2,
√
β3, · · · ,

√
βn−1)(= L ∩Kv0). Choose q ∈ PE,2 so that

• q is unramified in L/K

• Frobq(
√
βi)/
√
βi = ψv0(βi).

Clearly, L∩Kq = M(
√
β2, · · · ,

√
βn−1). Note that q is chosen as in Lemma 4.3.5 for T = ∅

(see (4.2)). Therefore resq(c) 6= 0, since N ⊂ Kq would mean N ⊂ M(
√
β2, · · · ,

√
βn−1),

which is a contradiction. Then the theorem follows from Proposition 4.3.6(iii).

Theorem 4.3.10. Suppose that E has multiplicative reduction at a prime v0, where v0 - 2.

Then there exist (infinitely many) χ ∈ C2(K) such that r2(Eχ) = r2(E) + 3. If moreover,

E(K)[2] ∼= Z/2Z and v0(∆E) is odd where v0 denotes the normalized valuation of Kv0, then

there exist (infinitely many) χ ∈ C2(K) such that r2(Eχ) = r2(E) + 1.

Proof. If E(K)[2] = 0, [8, Theorem 1.5] and Theorem 4.2.2 prove the stronger statement

that AE = Z≥0. Suppose that E(K)[2] 6= 0. Choose the (non-trivial) quadratic unramified

character ψv0 ∈ C2(Kv0). By local class field theory, ψv0(∆E) = 1 if and only if v0(∆E) is

even. By Corollary 4.1.8, we have |r2(E) − r2(E,ψv0)| ≤ 2. Therefore, [7, Proposition 1

and 2(a)] and Theorem 4.1.4 show that r2(E) − r2(E,ψv0) is either −1 or 1. Let T = ∅

and choose q and χ as in Lemma 4.3.5. If ψv0(∆E) = 1, [7, Proposition 1 and 2(a)] shows

that hv0(ψv0) = 1. Then Proposition 4.3.6(ii) and Theorem 4.2.2 prove the first assertion. If

ψv0(∆E) = −1 (so E(K)[2] ∼= Z/2Z), [7, Proposition 1 and 2(a)] shows that hv0(ψv0) = 0, so

Sel2(E) = Sel2(E,ψv0). Therefore the second assertion follows from Proposition 4.3.6(i).
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4.4 An upper bound for tE

We continue to assume that E is an elliptic curve over a number field K. Recall that tE is

the smallest number in the set AE = {r2(Eχ) : χ ∈ C2(K)}. In this section, we study tE.

Let s2 be the number of complex places of K.

Example 4.4.1 (Klagsbrun [5]). Let E(m) be the elliptic curve over K defined by the equation

(4.4) E(m) : y2 + xy = x3 − 128m2x2 − 48m2x− 4m2.

Suppose that 1 + 256m2 /∈ (K×)2. Then E(m) has a single point (−1/4, 1/8) of order 2 in

E(m)(K). In [5], Klagsbrun shows that tE(m)
≥ s2 +1. Note that in this paper r2(E) is defined

(slightly) differently from that defined in [5] (In [5], the author subtracts the contribution of

rational 2-torsion points from d2(Sel2(E)) for the “2-Selmer rank”). As his example suggests,

tE can be a lot bigger than the trivial lower bound d2(E(K)[2]).

Remark 4.4.2. If K contains
√

1 + 256m2, then E(K) contains all 2-torsion points. In this

case, we still can prove tE(m)
≥ s2 using the argument in [5]. Note that all Lemmas and

Propositions in Section 3 in op. cit. can be proved by the exactly same methods. However,

in the proof of Proposition 4.1 in op. cit., now the map from Selφ(E) to Sel2(E) is injective

and d2(Selφ̂(E ′/K)) ≥ 0, so r2(E) ≥ ord2(T (E/E ′)) is the correct lower bound we can get

from applying the argument of the proof of Proposition 4.1 in op. cit..

For the rest of the paper, we let |Σ| = n and E[2] ⊂ E(K). Note that this means if

v /∈ Σ, then v ∈ PE,2. For a character χ ∈ C2(K) and a place v, we write χv ∈ C2(Kv) for

the restriction of χ to K×v via the local reciprocity map. Let L = K(
√
O×K,Σ). Let v0 ∈ Σ

and ψv0 ∈ C2(Kv0). We discuss an upper bound for tE from now on.

Definition 4.4.3. If q /∈ Σ, the composition map

Sel2(E,ψv0)
resq // Homur(GKq , E[2]) ∼= E[2]

is given by sending c ∈ Sel2(E,ψv0) ⊂ Hom(GK , E[2]) to c(Frobq), where Frobq is a Frobenius

automorphism at q (note that resq(c) 6= 0 if and only if c(Frobq) 6= 0).
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Lemma 4.4.4. Suppose that φ1, · · · , φn are homomorphisms from Fm
2 to F2

2 where m =

n + k and 1 ≤ k ≤ n such that ∩ni=1 ker(φi) = {0}. Then there exist i1, · · · , ik such that

φi1 × · · · × φik : Fm
2 → (F2

2)k sending v ∈ Fm
2 to (φi1(v), · · · , φik(v)) is surjective.

Proof. Define sj = d2(Im(φ1 × · · · × φj)). Then clearly sj = sj−1 or sj = sj−1 + 1 or

sj = sj−1 + 2. Then there are at least k many j such that sj = sj−1 + 2. Collect all j such

that sj = sj−1 + 2 and name them i1 < · · · < ik < · · · . Then it is easy to see φi1 × · · · × φik
is surjective.

Proposition 4.4.5. Let v0 ∈ Σ and ψv0 ∈ C2(Kv0). Then

1. Sel2(E,ψv0) ⊆ Hom(Gal(L/K), E[2]), and

2. r2(E,ψv0) ≤ 2n.

Proof. Clearly, we have Sel2(E,ψv0) ⊆ Hom(GK , E[2]). For all nonzero s ∈ Sel2(E,ψv0), we

claim that K
ker(s) ⊆ L = K(

√
O×K,Σ). Indeed, for any quadratic extension K(

√
a)/K,

where all primes not in Σ are unramified, one can replace a with an element in O×K,Σ
because Pic(OK,Σ) = 1. Now the claim follows easily once we note that K

ker(s)
is a

compositum of (possibly the same) quadratic extensions, where all primes not in Σ are

unramified. Therefore, (i) follows from the Inflation-Restriction Sequence. By Lemma 4.3.1,

d2(Gal(L/K)) = n, so (ii) is obvious.

Theorem 4.4.6. Suppose E[2] ⊂ E(K). If r2(E,ψv0) = n + k for 2 ≤ k ≤ n, then there

exist Eχ such that r2(Eχ) = n− k + 2. In particular tE ≤ n+ 1.

Proof. Let β1, · · · , βn be a basis of O×K,Σ/(O
×
K,Σ)2. Let L = K(

√
β1, · · · ,

√
βn). Define

σi ∈ Gal(L/K) so that σi(
√
βi) = −

√
βi and σi(

√
βj) =

√
βj for j 6= i. Note that an

element s ∈ Sel2(E,ψv0) is determined by s(σ1), · · · , s(σn) ∈ E[2] by Proposition 4.4.5(i).

Define ti ∈ Hom(Sel2(E,ψv0), E[2]) sending s ∈ Sel2(E,ψv0) to s(σi). Applying Lemma

4.4.4, without loss of generality, we may assume t1×· · ·× tk is a surjection from Sel2(E,ψv0)

to E[2]k. In other words, there exist s2i−1, s2i for 0 ≤ i ≤ k such that

• s2i−1(σi) = P1 and s2i(σi) = P2, where P1, P2 ∈ E[2] is a basis of E[2],

• s2i−1(σj) = s2i(σj) = 0 for 1 ≤ j 6= i ≤ k.
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For 1 ≤ i ≤ k, let ωi ∈ PE,2 be a prime such that Frobωi = σi in Gal(L/K). Then by

Definition 4.4.3 we have that

1. resωi(s2i−1) and resωi(s2i) generate αE,ωi(1ωi) = Homur(GKωi
, E[2]), and

2. resωj(s2i−1) = resωj(s2i) = 0 for 1 ≤ j 6= i ≤ k.

Let T = {ω1, · · · , ωk}. Let ψi ∈ C2
ram(Kωi). Then by Corollary 4.1.7 and Theorem 4.1.6, we

have Sel2(E,ψv0) = SelT2 (E,ψv0) and

(4.5) r2(E,ψ1, · · · , ψk, ψv0) = r2(E,ψv0)− 2k.

By Lemma 4.3.5, there exist q ∈ PE,2\T and χ ∈ C2(K) so that

• χv0 = ψv0

• χv = 1v for v ∈ Σ\{v0},

• χω is ramified for ω ∈ T ,

• χp is unramified for p /∈ Σ ∪ T ∪ {q}, and

• χq is ramified.

Then Sel2(Eχ) = Sel2(E,χω1 , · · · , χωk , ψv0 , χq). Theorem 4.1.4, Lemma 4.1.5, and Corollary

4.1.8 show

|r2(E,χω1 , · · · , χωk , ψv0 , χq)− r2(E,χω1 , · · · , χωk , ψv0)|

is even and less than or equal to 2, so by (4.5), we have r2(Eχ) = r2(E,ψv0) − 2k − 2 or

r2(E,ψv0)− 2k or r2(E,ψv0)− 2k + 2. In any case, by Theorem 4.2.2, there exist infinitely

many ϕ ∈ C2(K) such that r2(Eϕ/K) = r2(E,ψv0) − 2k + 2 = n + k − 2k + 2 < n + 1.

Proposition 4.4.5 with putting ψv0 = 1v0 shows that tE ≤ n+ 1.

Lemma 4.4.7. Suppose that there exist c1, c2 ∈ Sel2(E,ψv0) such that resω(c1) and resω(c2)

generate αE,ω(1ω) = Homur(Gω, E[2]) for some prime ω /∈ Σ. Then there exist infinitely

many ϕ ∈ C2(K) such that r2(Eϕ/K) = r2(E,ψv0).

Proof. Let T = {ω}. By Lemma 4.3.5, there exist infinitely many q /∈ Σ∪ T for which there

exists a character χ ∈ C2(K) such that
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• χv0 = ψv0 ,

• χv = 1v for v ∈ Σ\{v0},

• χω is ramified,

• χp is unramified for all p /∈ Σ ∪ T ∪ {q}, and

• χq is ramified.

Note that Sel2(Eχ) = Sel2(E,ψv0 , χω, χq) by Lemma 2.1.14. Let S = {ω, q}. Then

r2(E,ψv0) ≥ d2(Sel2,S(Eχ)) + 2, since by the condition on c1, c2, ω the following map is

surjective

resω : Sel2(E,ψv0)/Sel2,S(Eχ)→ Homur(GKω , E[2]).

Note that c1, c2, c1 + c2 ∈ SelS2 (Eχ)\Sel2(Eχ) since αE,ω(1ω) ∩ αE,ω(χω) = {0} (Lemma

4.1.5). Therefore d2(SelS2 (Eχ)) ≥ r2(Eχ) + 2. Theorem 4.1.6 shows that d2(SelS2 (Eχ)) −

d2(Sel2,S(Eχ)) = 4. Then it follows that r2(E,ψv0) ≥ r2(Eχ) and r2(E,ψv0) ≡

r2(Eχ) (mod 2) by Theorem 4.1.4. Then the assertion follows from Theorem 4.2.2.

Theorem 4.4.8. If E does not satisfy the constant 2-Selmer parity condition (Definition

1.1.13), then tE ≤ n.

Proof. If r2(E) ≡ n (mod 2), the result follows from Theorem 4.4.6. From now on, we

assume that r2(E) 6≡ n (mod 2). Since E does not satisfy the constant 2-Selmer parity

condition, there exist v0 ∈ Σ and ψv0 ∈ C2(Kv0) such that r2(E,ψv0) ≡ n (mod 2) by

Theorem 4.1.4 (note that since E[2] ⊂ E(K), all primes outside Σ are in PE,2, so twisting

locally at primes not in Σ does not change the parity by Lemma 2.1.14 and Lemma 4.1.5).

If r2(E,ψv0) ≤ n− 2 or r2(E,ψv0) ≥ n+ 2, then the result follows from Proposition 4.3.6(ii),

Theorem 4.4.6, respectively. Let r2(E,ψv0) = n. If ψv0(O×K,Σ) = 1, Proposition 4.3.4 shows

the result. Now let β1, · · · , βn be a basis of O×K,Σ/(O
×
K,Σ)2 such that ψv0(β1) = −1 and

ψv0(β2) = ψv0(β3) = · · · = ψv0(βn) = 1.

Define σ1, · · · , σn and t1, · · · , tn as in the proof of Theorem 4.4.6. If d2(Im(t1)) ≥ 1, let

c ∈ Sel2(E,ψv0) and c(σ1) 6= 0. Choose q (T = ∅) as in Lemma 4.3.5, i.e., Frobq = σ1 in

L/K (see (4.2)). Then c(Frobq) = c(σ1) 6= 0, so Definition 4.4.3 shows resq(c) 6= 0. Then
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the result follows from Proposition 4.3.6(iii). Therefore for the rest of the proof, assume

that d2(Im(t1)) = 0. Then without loss of generality, we may assume d2(Im(t2)) = 2.

Choose ω /∈ Σ so that Frobω = σ2 in Gal(L/K). Then Definition 4.4.3 shows that there

exist c1, c2 ∈ Sel2(E,ψv0) such that resω(c1) and resω(c2) generate Homur(GKω , E[2]). Now

Lemma 4.4.7 completes the proof.
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