UC Davis UC Davis Electronic Theses and Dissertations

Title

Short-Term Emission of Nitrous Oxide from Oxic Denitrification in Soil

Permalink

https://escholarship.org/uc/item/6fh5w6zk

Author Yang, Feifan

Publication Date

Peer reviewed|Thesis/dissertation

Short-Term Emission of Nitrous Oxide from Oxic Denitrification in Soil

By

FEIFAN YANG THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Soil & Biogeochemistry

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

William R. Horwath, Chair

Randy A. Dahlgren

Kate M. Scow

Committee in Charge

Acknowledgements

First and foremost I would like to thank my family, Zhou Jinhua and Yang Weiping, for your unconditional support throughout my educational pursuit. I would like to thank Will Horwath. Thank you for taking me as a student and providing financial support and academic leadership over the years. I would like to thank Timothy "Tad" Doane for numerous guidance in this project. I would like to thank members of the Horwath Lab – a place for personal growth and scientific enrichment. I would like to thank Xia Zhu-Barker, Richard R Doucett, Richard Farrell, and Frank Krijnen for assistance in an earlier project. I would like to thank my friends Meng Lu, Cynthia Creze and Daniela Reineke for encouragements and inspirations along the way. I would like to thank Randy Dahlgren, Kate Scow, and Tom Tomich. I treasure our long-term mentorship and friendship.

Abstract

The reduction of nitrate (NO₃⁻) to gaseous products in aerated environments (oxic denitrification) has been reported sporadically in the past, mostly in pure culture studies, but the extent to which it occurs in soil is not known. We investigated the emission of nitrous oxide (N₂O) due to oxic denitrification in bulk soil under continuous aeration in a soil slurry experiment. Out of 19 soils assayed, a subset of five, representing both cultivated and natural or unmanaged ecosystems, showed emissions of N₂O-N derived from NO₃⁻ ranging from 0.02 to 1.14 ng per gram of soil per hour. This emission occurred immediately after rewetting and continued during the 8 hour observation period. Although much less attention has been given to oxic denitrification in soils can occur may be far more extensive if both aerobic and anaerobic activities are considered, especially in soils that remain moist (but not necessarily anoxic) for long periods.

Acknowledgements	ii
Abstract	iii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
Introduction	1
Chapter 1	
Literature review on denitrification and N ₂ O production pathways in the soil nitr	ogen cycle
- I I J	
1.1. Biotic and abiotic sources of N ₂ O	
1.2. Denitrification	
1.2.1. Anaerobic denitrification	4
1.2.2. Enzymes involved in anaerobic denitrification	6
1.2.3. Factors controlling anaerobic denitrification	7
1.3. Aerobic denitrification	
1.3.1. Evidence in the literature	
1.3.2. Relationship with other denitrification pathways	
1.3.3. Factors that potentially explain and/or control aerobic denitrification	15
1.4. Ammonium oxidation and nitrifier denitrification	
1.4.1. Ammonia oxidation (nitrification)	
1.4.2. Initrite oxidation (miriner demirification)	
1.5. Coupled nitrification–denitrification and fertilized denitrification	
1.6. Co-denitrification	
1.7. Dissimilatory nitrate reduction to ammonia, and anammox	
1.8. Chemodenitrification and abiotic decomposition of ammonium nitrate	
Chapter 2	
Short-term emission of nitrous oxide from oxic denitrification in soil	
2.1. Introduction	
2.2. Methods	
2.2.1. Soil selection and characterization	
2.2.2. Experimental set-up	
2.3. Results and Discussion	
2.3.1. General N_2O production from ODn in the present study	
2.3.2. Previous observations of N ₂ O production from ODn	
2.3.3. Differences between Event 1 and Event 2	
2.3.4. Differences among soils	

Table of Contents

2.3.5. Ranking of soil properties from PLS analysis	43
2.4. Ecological importance of ODn	. 44
Works Cited	. 45
Supplement Materials	. 56

List of Tables

Table 2.1.	Basic properties of selected soils)
Table 2.2a.	Conversion of NO ₃ ⁻ to N ₂ O under oxic conditions	5
Table 2.2b.soil basis	Conversion of NO ₃ ⁻ to N ₂ O under oxic conditions, expressed as mass N ₂ O-N on	a 5
Table 2.3.	Correlation matrix of the soil properties evaluated in this study37	,
Table 2.4.conditions) ag	Results of simple linear regression of ODn (conversion of NO ₃ ⁻ to N ₂ O under ox ainst soil properties	ic
Table S1.	Basic properties of all soils and sampling locations)
Table S2. on a soil basis	Conversion of NO ₃ ⁻ to N ₂ O under oxic conditions and expressed as mass N ₂ O-N	1
Table S3.conversion of	Correlation matrix (r values) among the measured soil properties for the NO ₃ ⁻ to N ₂ O under oxic conditions (ODn) for all soils	

List of Figures

Figure 1.1.	Major N ₂ O production pathways in soil4
Figure 1.2. cytoplasmic m	Bacterial denitrification pathways with location of enzymes relative to the aembrane and periplasmic space
Figure 1.3.	Enzymes involved in microbial denitrification14
Figure 2.1.	Sampling scheme40
Figure 2.2.	Relative importance of soil properties in explaining oxic denitrification48

Introduction

While "how to feed a growing population" is still a pertinent issue, innovations in plant science, agronomy, engineering, and soil science remind us that a holistic approach is required beyond increasing crop productivity. Simply feeding the population is not a solution to all the problems associated with food insecurity and should not be done without consideration of the social and environmental externalities. Agriculture is more than a tool to feed people. It should be viewed as an ecosystem that functions within itself and in the context of the landscapes that contain it. Agriculture involves cultivating a relationship with soils, crops, livestock, water resources, air quality, climate variability, wildlife, and biodiversity. Human beings cultivate relationships with soil and land through agriculture, in which soil nitrogen plays a key role—in biological N fixation, decomposition of soil organic matter, fertilization, and other processes. Over the past two decades, the scientific body representing multiple disciplines has provided mountainous evidence to warn about the escalating consequences of climate change, as well as provided information about how agricultural activities and associated changes in land-use patterns contribute to these problems. Gaining an understanding of greenhouse gas (GHG) emissions due to agriculture will close the nitrogen budget, allowing achievement of economic benefits, as well as design of proper management practices to mitigate the impact of climate change.

In this project, the production of nitrous oxide (N₂O), a potent greenhouse gas, through denitrification, the "last mile" of the terrestrial nitrogen cycle, is studied with particular consideration of its occurrence under aerobic conditions. In this Chapter, I summarize known

biological and abiotic N₂O production pathways to give context to the role of denitrification under aerobic conditions and background for the incubation study presented in Chapter 2. This study examined the occurrence and extent of aerobic denitrification in soil under natural conditions to demonstrate other potential loss pathways formally not considered in our attempts to understand N losses in soil.

Chapter 1

Literature review on denitrification and N₂O production pathways in the soil nitrogen cycle

1.1. Biotic and abiotic sources of N₂O

 N_2O is a potent GHG with a global warming potential 298 times higher than that of CO_2 for a 100-year timescale. Apart from contributing to global warming, N₂O is also one of the important ozone-depleting agents in the stratosphere. Soil emits 6.6 Tg nitrogen annually as N₂O, accounting for about 60% of natural N₂O emission and about 37% of total N₂O emission¹. N₂O is produced by a wide range of microbiological and abiotic processes (Figure 1.1.), with autotrophic nitrification and heterotrophic denitrification being the main pathways in soils². Other microbial processes include nitrifier denitrification $^{3-5}$, co-denitrification, dissimilatory nitrate reduction to ammonia (DNRA), and heterotrophic nitrification. Firestone and Davidson⁶ proposed the classic hole-in-the-pipe conceptual model to represent nitrogen trace gas production $(NO, N_2O, and N_2)$. Since then, N₂O production pathways have been reviewed extensively, first by Bremner (1997) and Wrage (2001), then by Baggs (2011), Braker and Conrad (2011), and Butterbach-Bahl (2013), and more recently by Groenigen (2015) and Wrage (2018)^{3,7-12}. However, source partitioning the various N₂O production pathways across different soil nitrogen cycling processes remains challenging. Source partitioning of N₂O production is further complicated by abiotic reactions such as N_2O production from hydroxylamine (NH₂OH), a nitrification intermediate¹³. The complex interactions that occur between microorganisms and

biotic and abiotic factors may suggest a biotic–abiotic reaction sequence¹⁴ may be important to consider in studies of N_2O production and consumption.

Figure 1.1. Major N_2O production pathways in soil. Nitrification (NN), nitrifier denitrification (ND), denitrification (Dn), aerobic/oxic denitrification (ODn), chemodenitrification (CD), nitrate reduction to ammonium (DNRA), hydroxylamine oxidation (HO).

1.2. Denitrification

1.2.1. Anaerobic denitrification

Heterotrophic denitrification is the reduction of nitrate (NO₃⁻) to gaseous products, primarily N₂O and dinitrogen (N₂), but also including nitric oxide (NO) (equations [1]–[4]). The losses of the gaseous denitrification products are highly depended on soil moisture and their solubility. Denitrification represents a loss of soil fertility for plant growth; a means of reducing NO₃⁻ contamination of ground and surface waters; and a source of gaseous pollutants that contribute to the destruction of atmospheric ozone. Thus, it contributes to greenhouse gases. Factors such as aerobicity, pH, and carbon or nitrogen availability control the instantaneous denitrification rate and the relative proportions of NO, N₂O, and N₂ production. These drivers act through the microbial community. The denitrifier community composition depends on the interactions between soil properties, soil microorganisms, climate variabilities, and management practices.

$$NO_3^- + 2e^- + 2H^+ \rightarrow NO_2^- + H_2O \tag{1}$$

$$NO_2^- + 2e^- + 4H^+ \rightarrow NO + H_2O + 2OH^-$$
(2)

$$2NO + 2e^{-} + 2H^{+} \rightarrow N_{2}O + H_{2}O$$
(3)

$$N_2O + 2e^- + 2H^+ \rightarrow N_2 + H_2O \tag{4}$$

Denitrification is known as a facultative anaerobic respiration process where bacteria and other microorganisms substitute NO₃⁻ for oxygen as a terminal electron acceptor. It is commonly assumed that when oxygen is present as the superior terminal electron acceptor, NO₃⁻ respiration does not occur, due to the notion that oxygen represses or inhibits the synthesis of denitrifying enzymes and their activities^{15,16,17}. Denitrifiers are ubiquitous in soil^{18,19} but account for only 0.5–5% of the total bacterial community¹⁹. However, denitrifying activity has been shown to be prevalent in soils.²⁰ The process is not limited to bacteria; known denitrifiers include archaea, fungi, and protozoans from more than 60 genera²¹ as well. In general, denitrifiers utilize nitrogen oxides as electron acceptors in the generation of energy. Chemolithotrophic denitrifying bacteria

and archaea are also known to be capable of reducing nitrogen oxides when oxidizing inorganic compounds^{22,23}. In addition, denitrifiers, both bacteria^{24,25} and fungi²⁶, are found to lack one or more enzymes to catalyze the entire reduction processes (equations [1]–[4]). In other words, denitrifiers are variable in their ability to completely denitrify NO_3^- to N_2 . N₂O net production can be of particular concern in systems dominated by fungi and bacteria lacking N₂O reductase $(Nos)^{24,27}$. A detailed review of fungal denitrification is beyond the scope of this work and has been considered recently elsewhere²⁸.

1.2.2. Enzymes involved in anaerobic denitrification

Denitrification is carried out by a suite of enzymes including NO₃⁻ reductase (Nar), nitrite (NO₂⁻) reductase (Nir), NO reductase (Nor), and N₂O reductase (Nos) (Figure 1.2.), encoded by the genes narGH or napA, nirK or nirS, norB, and nosZ Clade I, respectively. Recently, Nos Clade II was identified among predominantly non-denitrifying N₂O reducers, but its role in regulating N₂O emissions has been overlooked²⁹. The tight coupling of denitrification enzymes is not necessarily universal in soils³⁰, and the expression of each enzyme may have a different sensitivity to oxygen, for example³¹. Bonin (1991)³² reported that the Nir and Nos of *Pseudomonas nautica* were more oxygen-sensitive than the Nar (with sensitivities of 0.25%, 0.15%, and 0.02%, respectively). Nos is highly sensitive to oxygen⁸ and high NO₃⁻ concentration^{33,34}. Evidence shows that denitrification enzymes can be induced rapidly in response to changes in aerobicity and substrate availability. Holtan-Hartwig (2000)³⁵ reported that Nar is activated within 2–3 h, Nir between 2 h and 12 h, and Nor between 24 h and 48 h.

Figure 1.2. Bacterial denitrification pathways with location of enzymes relative to the cytoplasmic membrane and periplasmic space. Nap: periplasmic nitrate reductase, Nar: nitrate reductase; Nir, nitrite reductase; Nor: nitric oxide reductase; Nos, nitrous oxide reductase. Adapted from Ji et al. (2015) and Wallenstein (2006).

1.2.3. Factors controlling anaerobic denitrification

Previous studies on environmental controls of denitrification often categorize factors as proximal and distal regulators^{20,36}. Proximal regulators of denitrification refer to the factors that immediately affect denitrification rates and relative proportions of NO, N₂O, and N₂ production, such as moisture or oxygen (aerobicity) and carbon or nitrogen availability. Distal regulators refer to factors that influence the composition and diversity of denitrifying communities over spatial and temporal scales beyond those of proximal regulators. Common regulators include plant–soil–water interaction, management practices (e.g., tillage, compost, fertilization, and animal grazing), soil texture, disturbances (wetting or drying, freeze or thaw), and predation (soil or sediment fauna and viruses)^{20,36–38}. Temperature and pH can affect the instantaneous denitrification rates, as well as denitrifier communication composition. Next, we discuss

proximal regulators of denitrification in soil and relative N₂O production that led into the incubation experiment presented in the following chapter of this thesis.

$$5C_{6}H_{12}O_{6} + 24NO_{3} \rightarrow 12N_{2} + 30CO_{2} + 18H_{2}O + 24OH^{-}$$
(5)

1.2.3.1. Carbon availability

As a heterotrophic process (equation [5]), denitrification depends on the availability of labile carbon substrates. Water-soluble organic carbon is shown to be a good proxy of the denitrification rate of soil³⁹. Carbon availability also controls oxygen consumption rates in the soil matrix, by either directly fueling aerobic heterotrophic respiration or indirectly supporting the anaerobic production of reductants such as Fe(II), which can react with oxygen subsequently. Actual carbon regulation on denitrification has not yet been fully understood⁸. The availability of carbon for microorganisms is an important factor in controlling denitrification, especially under field conditions. High potential for denitrification is reported for permanent pasture soils with high concentrations of organic material⁴⁰. The amendment of soil with slurries and organic manures provides for a readily available energy source for denitrifiers under field conditions^{39,41,42}.

1.2.3.2. Nitrate availability

Availability of NO_3^- is known to be a strong factor controlling the rate and net N_2O production via denitrification. Furthermore, an increase in NO_3^- concentration is reported to inhibit N₂O consumption^{43,44} and lead to higher net N₂O production^{45–48}. At a larger scale, little correlation has been found between NO_3^- concentrations and denitrifier abundance⁴⁹. In other words, NO_3^- supply might not be a primarily control of denitrifier community composition in soil systems. This perhaps is because the dynamics of the NO_3^- pool are affected by other factors such as carbon availability, moisture, and pH. Fertilization is shown to promote N₂O emission, in a nonlinear pattern rather than a linear one⁵⁰. Organic fertilizer application might promote N₂O reduction and thus contribute to lower N₂O emissions⁵¹. In addition, studies support an increase in the effect of NO_3^- on denitrification in unmanaged systems where net mineralization and nitrification are small. Conditions such as wet sites, clay-rich soils, and high precipitation often favor denitrification.

1.2.3.3. Soil pH

Soil pH is known to influence denitrification rates, as well as alter the microbial community over time. It may therefore indirectly regulate the predominate gaseous nitrogen product pathways. Overall, the denitrification rate decreases and the ratio of N₂O to N₂ increases in acidic soils compared with neutral or slightly alkaline soils^{52,53}, due to the high sensitivity of Nos to pH. In addition, soil pH indirectly affects organic carbon and mineral nitrogen availability to the denitrifying population. At low soil pH (i.e., pH < 6) a decrease of denitrification enzyme activity (DEA) is found^{54,55}. Simek (2002)⁵⁶ debunked the idea of an optimum pH, finding that the denitrifier community exhibits the ability to adapt to acidic conditions.

1.2.3.4. Soil temperature

The occurrence of denitrification has been reported over a wide range of soil temperatures, ranging from 0°C to 75°C, with DEA especially sensitive to changes in temperature⁴⁶. Q₁₀ rates of 1.6–2.8 have been reported^{57,58}. The Q₁₀ of denitrification indicates the stimulation of denitrification rate following an increase in temperature by 10°C, and is higher than that of soil CO₂ emissions^{59–61}. N₂O emitted from soil might have greater GHG impact than CO₂ in terms of global warming. However, substrate and moisture limitation of microbial nitrogen cycling processes under climate variability might offset such an effect. Low temperatures have been found to affect N₂O reduction⁶² and consequently lead to higher N₂O:N₂ ratios. During a three-week soil slurry incubation at different temperatures (4°C, 15°C, 20°C, 25°C, and 37°C), Braker (2010)⁶³ observed not only short-term effects, such as increasing denitrification rates, but also shifts in denitrifier community composition over the long term. This finding contributes to the notion that temperature serves as both a proximal and distal control on denitrification.

1.2.3.5. Water content

Denitrification is generally believed to be an anaerobic process. In soil, its rate is often positively related to water content.^{64,65} The relative contribution of N gas production (i.e., NO, N₂O, and N₂) varies with soil water content⁶⁶. Water slows oxygen diffusion by a factor of 10⁴ compared to air. It can reduce oxygen supply by blocking a fraction of the pores, thus increasing the effective distance an oxygen molecule has to travel to get to a given microsite⁶⁷. Denitrification is speculated to explain N₂O pulse after rewetting⁶⁸. In another study, the DEA in northern hardwood forests was found to vary with annual precipitation⁶⁹. The highest NO fluxes are expected at 30–60% water-filled pore space (WFPS), when nitrification is most active. The

highest N₂O fluxes occur at 50–80% WFPS, when nitrification and denitrification occur simultaneously⁷⁰. At higher WPFS ratios, denitrification continues to dominate while N₂O consumption increases. As a result, N₂ is expected to be the main gaseous product in saturated soils. Although this model is supported by observations from many studies⁷¹, WFPS should not be used as a sole proxy to distinguish N₂O from nitrification and denitrification. WFPS controls not only oxygen diffusion but also substrate availability. Li (2019) found denitrification to be the main source of N₂O at 40–80% WFPS in arable soils with crop residue addition⁷². The net N₂O production from denitrification remains unclear, due to the enormous difficulties in the quantification of N₂ production^{73,74}.

Denitrification under presumed aerobic conditions has been reported from pure culture, coastal sediment, and soil studies, although the relative proportion of aerobic process in soils remains unclear (discussed in detail in later sections). Simultaneous oxygen consumption and denitrification form anaerobic sites in soil aggregates⁷⁵, referred to as "hot spots" of denitrification. In a soil core segmentation experiment, Parkin (1987)⁷⁶ found that 1% of the soil mass derived from plant residue contributed 85% of total denitrification activity of the intact soil core. A high spatial variability in N₂O production is common in upland soil⁷⁶ and estuarine sediments⁷⁷. Conrad (1996)⁷⁸ estimated that microsites in upland soil contribute 70% of global N₂O emissions. Despite the importance of soil denitrification and an abundance of knowledge on the topic, denitrification remains the most poorly understood process in the terrestrial nitrogen cycle⁷⁹. Moreover, measurement of N₂ against high background atmospheric concentrations is challenging⁸⁰. Furthermore, spatial and temporal variability in point measurements of denitrification lead to high uncertainty when scaling up the measurements in space and time⁸¹.

1.3. Aerobic denitrification

1.3.1. Evidence in the literature

Denitrification is generally considered as an anaerobic process, despite the fact that aerobic or oxic denitrification has been reported since 1984 ⁸²⁸³. Existing evidence of aerobic denitrification across disciplines and environmental conditions is summarized here to provide context for the incubation study presented in the following chapter.

Pure culture experiments have revealed the occurrence of aerobic denitrification involving the production of N₂O and N₂^{83,84,85}. Lloyd (1987)⁸⁴ suggests that "aerobic bacterial denitrification...may, contrary to the beliefs of many, be as widespread and ecologically important as its anaerobic counterpart." Carter et al. (1995)⁸⁶ reported bacteria capable of aerobic NO₃⁻ respiration in greater abundance than those in its anaerobic counterpart. Patureau et al. (2000)⁸⁷ isolated 28 bacterial strains, among which 10 exhibited aerobic denitrifying activity in response to alternating aeration conditions. Indeed, aerobic denitrification as a novel biological nitrogen removal technology has motivated researchers to screen and isolate new aerobic denitrifiers and to understand the expression characteristics of key functional genes. This advancement has been reviewed by Ji et al. (2015)³¹ and, more recently, with a focus on intracellular electron transfer, by Yang (2020)⁸⁸. Through a combination of advancements in stable isotope techniques and enhanced temporal resolution, Gao et al. (2010)⁸⁹ challenged the role of oxygen as a primary control of N₂ production from denitrification in natural systems. This position was supported by Marchant (2017)⁹⁰, who reported simultaneous aerobic and anaerobic respiration from denitrifier communities as an important sink for anthropogenic nitrogen inputs. Co-respiration of NO₃⁻ and oxygen (discussed in more detail in the following paragraphs) is speculated to explain the rapid nitrogen loss, although the mechanisms of aerobic denitrification and whether N₂O is emitted remain unclear.

In soil studies, N₂O and N₂ from aerobic denitrification have been reported from laboratory studies using different methods. Using gas-flow soil core and acetylene (C₂H₂) inhibition, Parkin and Tiedje (1984)⁹¹ reported 0.4–10.29 ng N₂O-N/g/h from a sandy loam. Wang⁹² found 1 µg N/h/kg N₂ production when soil cores were under aerobic conditions for 40 h; NO and N₂O production were found to be one magnitude lower. Using the ¹³N technique, Speir et al. (1995)⁹³ found 0.1–183 ng/g/h N₂O production from soil cores. Using the ¹⁵N labeling technique, Batemen and Baggs (2005)⁹⁴ reported that 50% of N₂O was derived from denitrification under 20% WFPS (0.2 ng N₂O-N/g soil/h) in a silt loam soil. Zhu et al. (2013)⁵ showed that 45% of N₂O emitted from a clay loam soil was derived from heterotrophic denitrification in an atmosphere of 20% oxygen (0.3 ng N₂O-N/g soil/h). In another study, denitrification under 21% oxygen concentration accounted for 10–40% from Spanish forest soils⁹⁵. Similarly, low N₂ formation has been observed under aerobic conditions⁹⁶. Finally, denitrification dominated N₂O production (0.015 and 0.02 mg/kg/d) in the first two days of a 14day incubation under 0.35% and 20% oxygen concentrations⁹⁷.

1.3.2. Relationship with other denitrification pathways

The mechanism(s) of aerobic denitrification remains unclear. Co-respiration of nitrate and oxygen has been proposed to explain denitrification under aerobic conditions. The periplasmic nitrate reductase (Nap) enzyme (Figure 1.3) isolated from soil and sediment is involved in the first reduction step during aerobic denitrification. It is not inhibited by oxygen, unlike the membrane-bound nitrate reductase (Nar) of anaerobic denitrification⁸⁶⁹⁸. Roco (2016)⁹⁹ found a large diversity of bacteria capable of reducing nitrate to nitrite under oxic conditions in forest, agricultural, and wetland soils. Co-respiration provides a theoretical explanation to alleviate the oxygen bottleneck and facilitate denitrification, particularly in diffusion limited networks of soil and sediment micropores.

Figure 1.3. Enzymes involved in microbial denitrification. Red arrows indicate anaerobic processes; blue arrows indicate aerobic processes.

Nitrifier denitrification is technically denitrification, and it can occur under aerobic conditions. Unlike denitrification, however, nitrifier denitrification begins with ammonia (NH₃) oxidation followed by denitrification within the same organism. Nitrifier denitrification is dependent on initial oxidation of NH₃, unless an extra source of NO₃⁻ is produced or introduced. Similar to nitrifier denitrification, coupled nitrification–denitrification involves two steps: NO₃⁻ production and denitrification. Since these processes include the reduction of NO₃⁻ or NO₂⁻ under oxic conditions, both nitrifier denitrification and coupled nitrification–denitrification may be classified as oxic or aerobic denitrification. However, in both processes, denitrification

constitutes only half of the process. The two pathways are more accurately described as "ammonia oxidation–denitrification" processes, since "denitrification" in these cases depends on prior NH₃ oxidation. Unlike these two pathways, aerobic denitrification is strictly "denitrification" independent of ammonium (NH₄⁺) as a precursor.

Clarification regarding these terms helps not only better design methods to quantify N₂O production from aerobic denitrification but also fills the gaps in N₂O production pathway terminology. On the one hand, N₂O production processes and relevant microbial contributors under sub-oxic conditions warrant further studies; nitrifier denitrification is considered the main N₂O production pathway in sub-oxic conditions⁵, but aerobic denitrification challenges the notion that NH4⁺ oxidization is the only biological pathway for NO2⁻ reduction to N2O under sub-oxic conditions. Conversely, the net production of N₂O from (aerobic) denitrification is determined by both N₂O production and consumption. At present, N₂O consumption or uptake and N₂ production under aerobic conditions remain unclear. Nos is thought to be the most oxygen-sensitive step during denitrification. However, aerobic N₂ production has been reported. Wu (2013)¹⁰⁰ observed N₂O consumption in oxic, dry field soil using static flux chambers; this observation was supported by lab incubation showing significant N₂O consumption at 2% moisture. Qin (2017)¹⁰¹ showed using soil extracts that aerobic pathways accounted for 29–51% of N₂ produced relative to the anaerobic denitrification. The extent of aerobic denitrification and whether this process functions as a sink or source of N_2O emission largely depends on the final N₂O:N₂ ratio.

1.3.3. Factors that potentially explain and/or control aerobic denitrification

1.3.3.1. Oxygen availability

Anaerobic microsites formed in aerated soil under low WFPS and or artificial oxygen headspaces, or due to a high respiration rate under high carbon availability, are often suggested to explain the seemingly "aerobic" denitrification. Microsites within soil aggregates are widely observed; however, the existence of anaerobic niches does not necessarily rule out the possibility of aerobic denitrification. Co-respiration of oxygen and NO₃⁻ might offer a physiological advantage in environments subjected to fluctuating oxygen availability¹⁰². NO₃⁻ might temporally function as an auxiliary oxidant to dispose of the excess reducing equivalents or achieve redox balance for cell growth when oxygen is temporarily limiting. In other words, transition between oxic and anoxic conditions might be viewed as the best selective criterion in environments where fluctuating oxygen concentrations, such as under conditions of high soil or plant root respiration and/or reduced carbon are available, such as wastewater treatment plants. Few speculations have been made on the sequential reduction steps. One explanation for this might be that the production of NO_2^- from aerobic NO_3^- reduction can induce denitrification under oxic conditions. In this regard, expression of Nir might have the advantage of protecting against toxic spikes of NO2⁻¹⁰³. A similar detoxification hypothesis has been proposed to explain the nitrifier denitrification process⁴. In soil systems, the accumulation of NO₂⁻ depends on the interaction of several environmental factors, as discussed below.

1.3.3.2. Carbon availability

Most denitrifiers are chemo-organotrophic; thus, their activities are largely controlled by the reducing power of organic carbon compounds⁴⁶. A correlation between carbon availability

and denitrification rate is often found. However, this relationship is confounding, since carbon utilization affects oxygen supply; this relationship can be further complicated in the presence of aerobic denitrification. The consequences of dissolved organic matter (DOM) for denitrification depend on the character of the DOM (i.e., quality), which is strongly influenced by the carbon source¹⁰⁴. DOM as a carbon source can result in increased N₂O emissions—up to soil depths of 1.2 m¹⁰⁵. Melero (2011)¹⁰⁶ found that soils with high DOM favor some Nir enzymes, while Barrett¹⁰⁷ reported that DOM favors Nos more than Nir. The effect of carbon sources on denitrifying microbial abundance and activities remains unclear, and even less is known about the extent of denitrification under aerobic conditions. Aerobic denitrification is reported in the presence of carbon sources with a carbon-to-nitrogen ratio of 5-10. Extremely low or high carbon concentration has been found to negatively affect bacteria growth rates, leading to lower denitrification activity³¹. Obligate heterotrophs constitute the bulk of the microbial biomass and compete for carbon in the presence of oxygen, but not in the absence of oxygen. This finding indicates the importance of studying the relationship between carbon and aerobic denitrification.

1.3.3.3. pH

Above, pH as both a proximal and distal control of denitrification has been summarized. Here, the potential control of pH on aerobic denitrification is discussed. The adaptation of microorganisms to environmental change might be viewed as evidence that aerobic denitrification can be common to various ecosystems. Nevertheless, there is scarce evidence regarding the effect of pH on aerobic denitrification³¹, especially in soil systems¹⁰. We hypothesize that the general "rules" under anaerobic conditions will apply to aerobic denitrification. Despite the lack of evidence, the effect of pH on periplasmic nitrate reductase

(Nap) is of particular interest, as reduction of NO_3^- to NO_2^- is the first step in biological denitrification (aerobic and anaerobic); NO_2^- is therefore the "focal point" of most studies of N₂O production in soil.

1.3.3.4. Nitrate availability

The addition of NO₃⁻ either initiates or increases production of Nar. Roco (2016)⁹⁹ reported aerobic NO₃⁻ reduction in soils provided with both NO₃⁻ and a carbon source, with the highest rate in wetland sites. The reduction of NO₃⁻ was carried out mainly by gram-negative proteobacteria in this study, as in Ji et al. $(2015)^{31}$. It was observed at 45–86% atmospheric oxygen concentration. The paucity of knowledge about bacteria capable of performing anaerobic NO₃⁻ reduction hinders the process of aerobic denitrification as well. The activity of NO₃⁻ reduction under oxic conditions, which may be related to its abundance, influences NO₂⁻ production, and therefore likely has an important role in N₂O production.

1.4. Ammonium oxidation and nitrifier denitrification

NH₄⁺ oxidation and NO₃⁻ reduction processes complete the production of N₂O under aerobic and anaerobic conditions. It has been suggested that nitrification of NH₄⁺ and denitrification of NO₃⁻ account for about 70% of the annual N₂O budget globally¹⁰⁸. Autotrophic and heterotrophic nitrifiers oxidize reduced nitrogen forms (NH₃ or organic nitrogen) to NO₂⁻ under aerobic conditions (i.e., obligatorily requiring molecular oxygen).

1.4.1. Ammonia oxidation (nitrification)

In the first step of nitrification, NH₃ is oxidized to NH₂OH by ammonia monooxygenase^{3,109}. N₂O is formed during the NH₃ oxidation process via chemical decomposition of NH₂OH, with NO as a precursor^{110,111} (NH₃⁺ \rightarrow NH₂OH \rightarrow NO₂⁻ \rightarrow N₂O, N₂O as byproduct). This process is often viewed as a special form of chemodenitrification¹¹² (discussed separately below). Nitrifying organisms are often slow in growth and require high amounts of NH₃³. For a long time, the contribution of NH₂OH to N₂O production was neglected, compared with the N₂O production from "classic" denitrification and nitrifier denitrification.

Through an improved method of measuring NH₂OH¹¹³, Heli¹³ showed that some soils have the potential to oxidize NH₂OH to N₂O in a purely abiotic reaction. The process was found to be dependent on soil properties (i.e., soil pH, carbon-to-nitrogen ratio and manganese content). Based on Heli's study, even a small fraction of NH₂OH produced in soil during nitrification could be transformed into N₂O via fast chemical oxidation. Thus, in conditions such as fertilized agricultural systems where a high nitrification rate is common, environmental consequences can be substantial. A recent study highlighted the greater role of NH₂OH in N₂O formation than in NO₂⁻ formation (i.e., nitrifier denitrification). Under conditions with low carbon and high manganese content, NH₂OH contributes more to N₂O formation than to NO₂⁻ production via biotic processes¹¹⁴.

Although "classic" nitrification terminology includes both autotrophic and heterotrophic nitrifiers, some authors¹¹⁵ consider heterotrophic nitrification as a separate N₂O production pathway. In acidic soils, heterotrophic nitrifiers have been shown to contribute substantially to

 NO_3^- production^{116–118}, where the activity of autotrophic nitrifiers may be inhibited by the low pH. Heterotrophic nitrifiers are found to utilize both inorganic and organic substrates¹¹⁹, as well as utilizing unidentified organic nitrogen compounds, not NH_4^+ , as substrates^{120–122}. Between 0% and 25% of N₂O production has been reported to arise from heterotrophic nitrification^{95,123} in forest, pasture, and arable systems.

1.4.2. Nitrite oxidation (nitrifier denitrification)

In the second step of nitrification, NH₂OH is oxidized to NO₂⁻. The reaction is catalyzed by the enzyme hydroxylamine oxidoreductase (HAO). NO₂⁻ is further oxidized by NO₂⁻oxidizing bacteria to NO₃⁻. During nitrification, NH₃ and NO₂⁻ serve as energy sources to fix CO₂. Most nitrifying bacteria are chemolitho-autotrophs and taxonomically belong to *Nitrobacteraceae*¹²⁴. While N₂O is formed during NH₃ oxidation as a byproduct of a chemical process, NO₂⁻ is stepwise reduced to NO and N₂O within the same NH₃-oxidizing bacteria. Organisms processing enzymes responsible for this process (i.e., Nir and Nos) are not phylogenetically different from those that carry out denitrification, possibly because of lateral gene transfer^{11,125,126}. Despite the similarity, denitrifiers are heterotrophic, while NH₃-oxidizing bacteria are chemoautotrophic.

The lack of a proper method to quantify N₂O emitted through nitrifier denitrification hinders evaluating the proportion of N₂O production via nitrifier denitrification in soils. The ¹⁵N tracer method cannot distinguish N₂O from nitrification and nitrifier denitrification from the same NH₄⁺ pool⁷⁰. Inhibition methods were attempted in certain steps of (de)nitrification in one study but were found to be unreliable due to effusiveness and selectivity¹¹. In another study, the

intramolecular distribution of ¹⁵N within the N₂O molecule (site preference [SP]) was considered^{127,128}. This endeavor showed that SP can potentially serve as a tool to distinguish nitrifier denitrification and denitrification from classical nitrification and fungal denitrification. Decock and Six¹²⁹ concluded that analysis of SP will likely remain only a qualitative tool and should be coupled with other approaches (e.g., tracer and/or molecular tools). Although this observation remains relevant, improvements in modeling and analytical capability have been shaping the natural-abundance approach into a promising tool^{130,131}. Nevertheless, SP was not sufficient to unequivocally distinguish between the three pathways-nitrifier denitrification, denitrification, and nitrification—in the early 2010s. Kool (2007)¹³² took a different approach and quantified oxygen exchange between H₂O and intermediates of the (de)nitrification pathways. On the basis of this breakthrough, a dual method using ¹⁸O and ¹⁵N was developed, which revealed that nitrifier denitrification exceeded nitrification as a dominant source of NH4⁺derived N₂O emission in soils with low and intermediate moisture content^{4,132}. Other studies coupled this novel labeling method with an artificial oxygen gradient in the incubation headspace and confirmed that nitrifier denitrification contributes significantly in agriculture soils with different types of NH₄⁺ fertilizers under 3% and 0.15% oxygen concentrations⁵. Although this dual-isotope method includes a relatively large number of assumptions¹¹, it remains the only method to partition N₂O via nitrifier denitrification.

Using the methods described above, studies found that nitrifier denitrification and denitrification together accounted for 61-92% of N₂O production¹³³ and 50-100%¹³⁴ from agriculture systems. These results are consistent with laboratory incubations that found 10–40% of N₂O to be derived from nitrifier denitrification and/or coupled nitrification–denitrification¹³⁵,

with 54–100% from denitrification and nitrifier denitrification¹³⁶. Variations in the relative contributions of nitrification and (nitrifier) denitrification to N₂O emission were found using an Andisol fertilized with NH_{4^+} and poultry manure¹³⁷.

Nitrifier denitrification contributes considerably to N₂O emission from soils under conditions of low oxygen, low carbon, and low pH^{138–142}. The ability of aerobicity to directly control N₂O production through nitrifier denitrification is under debate. Wrage (2018)¹² has suggested that changes in aerobicity are directly influenced not by oxygen but rather by accumulation of NO₂⁻ under suboxic conditions. Nitrifier denitrification is favored under high NO₂⁻ concentrations, while N₂O production via NH₄⁺ oxidation (NH₂OH) might be triggered by high NH₃ and low NO₂⁻ in combination with high nitrogen oxidation rates¹⁴³. It is not clear why NH₃-oxidizing bacteria perform nitrifier denitrification by the bacteria could be a response to the toxicity caused by the accumulated NO₂⁻ under marginally aerobic conditions¹⁴⁴; and (b) the oxidation of NH₄⁺ might provide the electron source for NO₂⁻ reduction⁴. It remains unclear whether N₂ can be formed by nitrifier-denitrification¹⁴⁵.

1.5. Coupled nitrification-denitrification and fertilized denitrification

The term "coupled nitrification–denitrification" is used to describe the combination of two distinct processes, nitrification and denitrification, in a concerted action. The NO_2^- or NO_3^- produced by nitrifiers in aerobic microhabitats is rapidly reduced by nearby denitrifiers. The N_2O formation is carried out by "classical" nitrification and denitrification as defined earlier. In

environments where anaerobic and aerobic conditions coexist in microhabitats, coupled nitrification–denitrification is of high relevance (e.g., in hydromorphic soils³).

The term fertilizer denitrification was introduced to describe the denitrification occurring when NO₃⁻ was applied to soil or leaked into hydrological pathways—in other words, when NO₃⁻ was not of immediate microbial origin¹⁴². Fertilizer denitrification may surpass nitrifier denitrification as the predominate N₂O production pathway when soil moisture is high. Although these two N₂O production pathways are fundamentally a special form and/or combination of nitrification and denitrification, distinguishing these terminologies has applications to aid method choice to investigate denitrification. For example, the ¹⁵N gas flux method is used to determine denitrification gas products. The ¹⁵N gas flux method traces ¹⁵N-enriched NO₃⁻ to determine denitrification gas products is usually based on the application and tracing of ¹⁵N-enriched NO₃⁻, and thus is an approach to directly measure fertilizer denitrification only. In contrast, the direct measurement of N₂ and N₂O in an (almost) N₂-free helium/oxygen environment provides data on N gas formation from all contributing processes.

1.6. Co-denitrification

Co-denitrification is performed by fungi and bacteria and involves the formation of N₂ or N₂O through an N-nitrosation reaction by one nitrogen atom of NO originating from denitrification and another nitrogen atom from a co-substrate, for example, ammonia hydroxylamine or a range of monomeric organic nitrogen compounds^{146,147}. The process is termed as co-denitrification because it is simultaneous with denitrification and is at least partially

conducted by similar or the same microorganisms. During this reaction, co-denitrification was found to be a significant source of N₂ in a grassland study²⁷. Microbial formation of N₂O was reported with NH₂OH, N₃⁻, NH₄⁺, hydrazine (H₂N-NH₂), and salicylhydroxamic acid (C₇H₇NO₃) as precursors (Spott et al.,¹⁴⁸ and the reference therein). Since co-denitrification is dependent on the microbial reduction of nitrogen oxides in denitrification, it might be relatively safe to assume that the process is restricted to anaerobic conditions. The actual relevance of co-denitrification in terrestrial environments as a source of N₂O remains unclear¹⁴⁷. Co-denitrification might be an important process in environments where a closed nitrogen cycle is established by fungi and bacteria communities, such as permanent grasslands and undisturbed forest soils. Recently, Spott (2011)¹⁴⁸ proposed the term "BioNitrosation" to represent a wide range of possible biotic nitrosation reactions that can lead to either nitrogen gas release or nitrogen immobilization, independently from the main driving processes (e.g., nitrification or denitrification) and the current environmental conditions (e.g., aerobic or anaerobic). In terms of soils, it is assumed that N₂O formation via BioNitrosation is not significant compared with N₂ formation. However, the amount of research that has been conducted on this intriguing microbial process is not sufficient.

1.7. Dissimilatory nitrate reduction to ammonia, and anammox

DNRA is the dissimilatory reduction of NO₃⁻ to NO₂⁻ and NH₄⁺. Similar to microbial immobilization and remineralization, this pathway can lead to nitrogen retention and nutrient conservation. DNRA is strictly an anaerobic process carried out by facultative and obligate anaerobic microorganisms⁸. Recent studies suggest that it can be a significant pathway in upland soils and is not being limited to wetland ecosystems^{118,149}. Although DNRA is generally viewed

as a process that conserves nitrogen in the ecosystem, N₂O production in the process has been reported^{149,150}. The use of ¹³NO₃⁻ labelling proved the simultaneous production of NH₄⁺ and N₂O via DNRA, whereby NH₄⁺ accounted for 90% of the total production¹⁵¹. This finding was supported by soil studies confirming that N₂O accounted for 5–10% of the added NO₃⁻¹⁵². Nonetheless, the N₂O production rate is lower, usually in the range of 1% of the NO₂⁻ or NO₃⁻ reduction¹⁵⁰. It is worth noting that as both DNRA and denitrification use the same substrates (NO₃⁻ and NO₂⁻), the contribution of these two processes to total N₂O production cannot be investigated based on ¹⁵NO₃⁻ labelling alone. The accumulation of NO₂⁻ might explain the N₂O production by DNRA, especially under high pH^{153,154}. The quantity of N₂O produced during DNRA varies with the carbon-to-nitrogen ratio and is not correlated with the production of NH₄⁺¹⁵⁵.

Anammox refers to the microbial processes of anaerobic NH₃ oxidation, that is, the conversion of NO₂⁻ and NH₄⁺ directly into dinitrogen gas. Anammox is estimated to account for 50% of the nitrogen removed from the global oceans¹⁵⁶. Anammox bacteria have been reported from a wide range of terrestrial ecosystems, including temperate forest soil, peat soil, upland arable soils, paddy soil, and permafrost soils (Zhao (2021)¹⁵⁷ and the reference therein). Environmental conditions that favor anammox include low dissolved oxygen, low NO₂⁻, moderate nitrogen loading rate (in the form of NH₄⁺), and neutral to slightly alkaline pH¹⁵⁸. Wang (2012)¹⁵⁹ reported riparian zones as hot spots for anammox abundance and biodiversity. A relationship between depth and anammox has been observed, with higher rates in deeper layers^{156,160}. It is interesting that the highest rate of anammox occurs at oxic–anoxic interfaces in aquatic systems¹⁶¹, despite the fact that anammox is considered a strictly anaerobic process.

Although N₂O formation has not been observed in these processes¹⁶², anammox's role as a microbial nitrogen removal pathway in soil should not be overlooked. For example, in ecosystems where environmental conditions favor both anammox and denitrification, the extent of anammox may be expected to go hand in hand with the determination of N₂O production and consumption.

1.8. Chemodenitrification and abiotic decomposition of ammonium nitrate

$$4Fe^{2+} + 2NO_2^{-} + 5H_2O \rightarrow 4FeOOH + N_2O + 6H^+$$
(5)

Chemodenitrification is viewed as the sum of nonenzymatic (i.e., abiotic) pathways involving the formation of NO, N₂O, and N₂ in soil. The process includes the chemical decomposition of NH₂OH and NO₂⁻ during nitrification. Chemodenitrification typically occurs in acidic soils with high NO₂⁻ concentrations. This is because nitrous acid (HNO₂), the protonated form of NO₂⁻, has a pKa of 3.3 at 25°C. Additionally, HNO₂ can react with amino compounds and NH₄⁺ and soil organic matter (SOM). Under anoxic conditions, humic acids and fulvic acids, lignins, and phenols were found to reduce NO and HNO₂ to N₂ and N₂O^{163,164}. N₂O formation via NO₂⁻ reduction by Fe (II) (equation [5]) is stimulated by decreasing oxygen concentration¹⁶⁴ and increasing Fe(II)¹⁶⁵. N₂O formation from chemodenitrification is most likely to occur in anoxic habitats with a high organic carbon supply, such as wetland and waterlogged soils. Because high NO₂⁻ concentration and low pH are not common in natural environments, chemodenitrification and N₂O production via this pathway were not considered important at a global scale in early studies¹⁴⁵. However, increasing evidence has demonstrated that N₂O emission from chemodenitrification can be substantial in various ecosystems, including extremely arid areas and cold lakes, ponds, and soils^{166–168}, temperate forests and arable lands^{169,170}, and sediments¹⁷¹. Wang (2019)¹⁷² found that chemodenitrification accounted for 6.8– 67.6% of the total N₂O emissions in rice paddy soils. Wei (2017)¹⁷⁰ reported 43.2–483.8 µmol N₂O/mol NO₂⁻/kg soil/d from soils with lignin additions. Otte (2019)¹⁷³ reported 15–25% of total N₂O formation in coastal marine sediments to be via chemodenitrification. This new evidence indicates that the contribution of chemodenitrification to global N₂O emissions could have been substantially underestimated.

Other abiotic N₂O formation pathways include (1) the decomposition of soil nitrite through interaction with organic materials in the soil with NO as the main product¹⁷⁴ and (2) the decomposition of ammonium nitrate in the presence of light¹⁷⁵. These reactions could easily be overlooked because of the simultaneous activity of biological and abiotic N₂O source processes in close proximity in the matrix of soil. Up to now, N₂O production is generally accepted to be a microbial process. Including biotic-abiotic reaction sequences will improve our understanding of N₂O production and development of better predictions¹⁷⁶.

Chapter 2

Short-term emission of nitrous oxide from oxic denitrification in soil

2.1. Introduction

Denitrification is the reduction of nitrate to gaseous products, primarily nitrous oxide (N_2O) and dinitrogen (N_2) , but also including nitric oxide (NO). Denitrification represents a loss of available N for plant growth, a means of reducing nitrate contamination of ground and surface waters, and a source of greenhouse gaseous. This process occurs via anaerobic respiration when bacteria and other microorganisms substitute nitrate for oxygen as a terminal electron acceptor. It is commonly assumed that when oxygen is present, a superior terminal electron acceptor, is readily available that nitrate respiration will not occur, and that oxygen represses or inhibits the synthesis of denitrifying enzymes and their activities^{15–17}.

The production N₂O is relevant since it is an important greenhouse gas with a global warming potential 298 times than carbon dioxide for a 100-years' time frame. Besides global warming, N₂O is also one of the important ozone-depleting agents in the stratosphere. Soil emits 6.6 Tg N yr⁻¹ annually as N₂O, accounting for about 60% of natural N₂O emission and about 37% of total N₂O emission¹. N₂O is produced by a wide range of microbiological processes, with autotrophic nitrification and anoxic denitrification as the main pathways in soils². Other microbial processes include nitrifier denitrification^{3–5}, co-denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and heterotrophic nitrification. Nitrous oxide production

pathways have been reviewed extensively, first by Wrage et al. (2001), then by Baggs (2011), Braker and Conrad (2011), and Butterbach-Bahl et al. $(2013)^{3,9,10,147}$. However, the quantification N₂O production pathways among the variety of soil N cycling processes are difficult to separate and assign significance. Source partitioning of N₂O production is further complicated by abiotic reactions such as N₂O production from hydroxylamine, a nitrification intermediate¹³.

Aerobic or oxic denitrification (ODn) has been reported since 1984¹⁷⁷. The great majority of the studies that later investigated this process have used pure cultures of denitrifying organisms^{84,177}. The organisms in question are isolated and their activity measured under optimal growth conditions with minimal confounding factors. Recently, ODn as a novel biological nitrogen removal technology has motivated researchers to screen and isolate new aerobic denitrifiers and to understand the expression characteristics of key functional genes. This advancement has been reviewed by Ji et al. $(2015)^{31}$ and more recently, with a focus on intracellular electron transfer, by Yang (2020)⁸⁸. In contrast to pure culture studies which are designed to specifically favor and observe ODn, denitrification in general is considered essentially an anaerobic process in terrestrial and marine ecosystems, as substantial rates of ODn have not been postulated or observed. Recently, through a combination of advancement in stable isotope techniques and enhanced temporal resolution, Gao et al. (2010)⁸⁹, challenged the role of oxygen as a primary control of N₂ production from denitrification, a position supported by Marchant (2017)⁹⁰ who reported ODn as an important sink for anthropogenic N inputs. However, the mechanism of ODn remains unclear⁸⁹. The ability of denitrifiers to emit N₂O from soil under aerobic conditions has not been well studied; evidence for this process has been reported in only a few studies^{5,91,93,94,178,179}.

The intent of our work is to evaluate the potential significance of oxic denitrification in soil. We use a ${}^{15}NO_{3}$ tracer technique to estimate the existence and extent of the aerobic denitrification process in whole, intact soils, with all their inherent complexity and naturally occurring factors that may influence this process. ODn was measured under natural conditions, that is, at typical concentrations of nitrate and carbon; therefore we did not alter any of these pre-existing conditions apart from a small addition of nitrate. We focused specifically on emission of N₂O.

2.2. Methods

2.2.1. Soil selection and characterization

To represent a variety of managed and unmanaged ecosystems found in California, nineteen soils were collected from the top 5 cm and were air-dried following collection, sieved to 2 mm, and stored for 1-2 months before use. Air dried is the natural state of these soils during long time periods in this Mediterranean climate. Soil pH was measured in deionized water (DI) (1:1 w:v). Ammonium and nitrate was extracted by 1M KCl and determined colorimetrically¹⁸⁰. Dissolved organic carbon (DOC) was determined in water extracts by high-temperature combustion (Multi N/C 3100, Analytik-Jena, United States). Pyrophosphate-extractable iron (FeP) was determined following the method in Zhu et al. (2013)¹⁸¹ and determined colorimetrically. Soil properties are reported in Supplemental Table S1.

2.2.2. Experimental set-up

2.2.2.1. Preparation of oxic slurry

All experiments were performed using soil slurries to produce a homogenous environment amenable to continuous aeration and avoid persistent anaerobic microsites that can form in soil samples not actively aerated. In addition to ensuring continuous aeration, this also ensures maximum substrate (i.e. nitrate) availability, especially important during short-term measurements. Slurries were established in quart-size Mason jars with gas-tight lids fitted with a butyl rubber septum for gas sampling. Soil (50 gram) was weighed into each jar and water was added to form a slurry. The amount of water added was empirically determined as the minimum amount necessary so that the slurry was well mixed during stirring; moreover, avoiding excess water would facilitate aeration and minimize dissolved N₂O. Stirring was maintained throughout the experiment to favor oxygen diffusion into the slurry. Dissolved oxygen was monitored during the sampling periods with an optical sensor (Fibox 4, PreSens, Germany) affixed to the wall of each jar just above the bottom (the location most likely to suffer oxygen depletion).

2.2.2.2. Measurement of N₂O derived from nitrate

To determine if ODn activity leading to N₂O emission is present in soil,¹⁵N-labeled nitrate was added to soils immediately before beginning an experiment. The amount added was 10% of the existing nitrate pool; this amount was chosen to avoid a large increase in nitrate concentration while still providing sufficient ¹⁵N enrichment to be able to detect any N₂O derived from nitrate. Each experiment consisted of two measurement periods, denoted Event 1 and Event 2. The experimental scheme was as follows: ¹⁵N-labeled nitrate plus the pre-determined amount of water were added to 50 grams dry soil in a mason jar. Stirring was begun, and the jars were capped. After 1 hour, the headspace was sampled by inserting a syringe through the septum,

mixing several times with the plunger, and transferring to evacuated gas sampling vials; this is "Event 1". The jar was then uncapped and left, with continuous stirring, for 6-8 hours; during this time any water lost through evaporation was replaced. The jars were then capped a second time, and a gas sample was taken to mark the beginning of Event 2. One hour later, at the end of Event 2, a second sample was taken. Dissolved oxygen concentration remained above 6.8 mg/L during the entire experiment in all soils, confirming that oxic conditions were maintained for the duration of measurements. To account for any changes in nitrate concentration during the 8-hour interval, nitrate concentration at the beginning of Event 2 was measured by extracting the contents (entire jar) of a parallel sample that had undergone the same sampling scheme (Figure 2.1.).

The concentration and ¹⁵N enrichment of N₂O in the gas samples were determined by GC-IRMS at the University of California-Davis Stable Isotope Facility. The limit of quantitation of N₂O is approximately 150 picomoles. The long-term standard deviation of ¹⁵N is 0.1‰. The reference. N₂O is converted to N₂ via thermal decomposition in a heated gold tube (800°C). The resulting N₂ is calibrated against an Oztech N₂ standard (Oztech Trading Co., δ^{15} N vs air = -0.61 ‰).

Figure 2.1. Headspace sampling scheme. The headspace was sampled by inserting a syringe at the end of Event 1 and at the beginning and end of Event 2 (black arrows).

2.2.2.3. Initial screening and further analysis of soils

A preliminary evaluation was made by conducting the above experiment on all 19 soils collected (Table S2). The atom%¹⁵N of N₂O was compared to the background value for N₂O in ambient air. Any soil for which the atom%¹⁵N of N₂O in either Event 1 or Event 2 was more than 0.003 higher than background was considered to have ODn activity leading to N₂O emission, and was set aside for more rigorous, replicated evaluation. Five soils were met these criteria; their characteristics are given in Table 2.1. The experiment was repeated twice for these five soils, for a total of three replicates (for each of event 1 and event 2).

2.2.2.4. Calculations

N₂O produced during ODn was calculated and expressed as N₂O-N derived from nitrate (that is, recovery of nitrate-N as N₂O-N). To determine if there was significant conversion of nitrate to N₂O, a one-sample t-test was used to compare the atom% ¹⁵N of N₂O from the three replicates of a given sample with the atom% of N₂O in ambient air. Any sample (Event 1 and/or Event 2) for which this difference was significant at P <0.1 was considered to have significant conversion of nitrate to N₂O, and the amount of this conversion was calculated as follows.

Event 1

The amount (moles) of N₂O-N in the headspace at the end of Event 1 was calculated from the measured concentration of N₂O (ppm), using the ideal gas law. This was multiplied by the atom% ¹⁵N of N₂O to give the moles ¹⁵N as N₂O. The same was done for the beginning of the Event, using the ppm N₂O and atom% ¹⁵N of ambient air. The difference between the beginning and the end of Event 1 is the amount (moles) of ¹⁵N as N₂O accumulated during this time. The initial enrichment of soil nitrate was calculated using the concentration of nitrate present in soil (measured just prior to the start of the experiment) and the amount of the addition of ¹⁵Nlabeled nitrate (added as 99 atom% KNO₃). The amount of N₂O derived from nitrate was then calculated:

Moles N₂O derived from nitrate = moles ¹⁵N as N₂O accumulated / (atom%¹⁵N excess of soil nitrate/100)

where atom% 15 N excess of soil nitrate is atom% - 0.367.

The conversion of nitrate-N into N_2O -N (or recovery of nitrate-N as N_2O -N) is then calculated: Conversion of nitrate-N into N_2O -N = moles N_2O -N derived from nitrate / moles nitrate-N initially present.

This is then divided by the length of Event 1 (one hour) to give a rate of N₂O production from ODn.

Event 2

The calculation is analogous to that of Event 1, except that measured values of gas samples (ppm N₂O and atom% 15 N) taken at the beginning as well as the end of the Event were

used. The amount of nitrate at the start of Event 2 was determined (see above, Section 2.2.2) and used to calculate the atom%¹⁵N of nitrate at this time.

The portion of total N₂O present in solution was calculated using Henry's Law, given that the slurries were continuously mixed. The dissolved N₂O in slurry is combined with emitted N₂O-N in headspace, as calculated above, to represent total N₂O production during each event. Due to the large ratio of headspace to liquid, N₂O (aq) was very low (less than 3% of total N₂O). Step-to-step equations for the ODn calculation can be found in supplemental material.

2.2.2.5. Predictive power of soil properties

Partial least squares (PLS) multivariate analysis was performed to identify the soil properties that most strongly explained ODn (i.e., conversion of NO₃⁻ to N₂O), following the method in Zhu et al. (2013)¹⁸¹. Prior to data analysis, predicting variables (soil properties) and the observed response (ODn) were standardized by centering and scaling the data to have a mean of zero and a standard deviation of one to ensure that all variables have the same weight. PLS is particularly suitable when the number of predicting variables is greater than the number of observed variables, and when multicollinearity is expected among predicting variables. PLS ranks the predicting variables by importance based on linear regression models that project the predicting variables and the observed variables to a new, multivariate space. The variable importance in the projection (VIP) value is calculated to indicate the relative strength of each predicting variable in explaining the observed variable. Following the exploratory PLS analysis, linear regressions (Table 2.4) between ODn and soil properties were calculated using unweighted, untransformed data. The correlations among variables do not change the interpretation given by PLS. Nonetheless, a correlation matrix is presented (Table 2.3) to assess the relationship between the soil properties used in this study. All statistical analyses were performed using R Studio (version 1.4.1717). PLS analysis is performed using R packages *pls* and *plsVarSel*.

»••••• P•••• • 8)						
Soil	рН	DOC (µg/g)	N-NO3 ⁻ (µg/g)	N-NH4 ⁺ (µg /g)	FeP (µg/g)	
Forest	6.1	15.6	24.3	7.4	577	
Grassland	7.3	13.1	14.8	5.0	73	
Vineyard	6.3	9.7	43.5	2.4	684	
Ag 1	6.2	7.2	17.3	3.7	2150	
Ag 2	5.7	22.4	23.2	26.1	5600	

Table 2.1. Basic properties of selected soils (see supplement for all 19 soils and location of sampling)

Table 2.2a. Conversion of NO_3^- to N_2O under oxic conditions (mean +/- standard error); n.s. = not significant (p> 0.1). For explanation of events see Section 2.2.2.2.

Soil	Event 1	Event 2
	µmol N2O proc	luced per mol NO ₃ -N per hour
Forest	1.1 (± 0.3)	3.7 (± 2.7)
Grassland	n.s.	2.8 (± 1.7)
Vineyard	2.8 (± 0.6)	0.4 (± 0.1)
Ag1	4.6 (± 0.4)	2.3 (± 1.0)
Ag2	48.9 (± 11)	43.0 (± 12)

Table 2.2b. Conversion of NO_3^- to N_2O under oxic conditions, expressed as mass N_2O -N on a soil basis; n.s. = not significant (p> 0.1).

Soil	Event 1	Event 2			
	ng N ₂ O-N per gram soil per hour				
Forest	0.03	0.09			
Grassland	n.s.	0.41			
Vineyard	0.12	0.02			
Ag 1	0.08	0.04			
Ag 2	1.14	1.00			

	pН	DOC	Nitrate	Ammonium	FeP
pН	1.00	-0.13	0.08	-0.30	-0.30
DOC	-0.13	1.00	0.12	0.86	0.72
Nitrate	0.08	0.12	1.00	0.03	0.08
Ammonium	-0.30	0.86	0.03	1.00	0.93
FeP	-0.30	0.72	0.08	0.93	1.00

Table 2.3. Correlation matrix of the soil properties evaluated in this study. Bolded values are significance (p< 0.1).

Table 2.4. Results of simple linear regression of ODn (conversion of NO_3^- to N_2O under oxic conditions) against soil properties, for all 19 soils except missing values. The first value given is that of the slope of the regression, the second value given is that of r^2 , and the third is that of significance at the 0.05, 0.01, and 0.001 probability level (*, **, ***), respectively.

	Event 1		
FeP	0.008	0.92	***
Ammonium	1.9	0.93	***
Nitrate	-0.008	0	n.s.
DOC	1.9	0.62	**
pН	-11	0.09	n.s.
	Event 2		
FeP	0.005	0.09	n.s.
Ammonium	1.5	0.15	n.s.
Nitrate	-0.7	0.17	n.s.
DOC	1.3	0.09	n.s.
pН	-35	0.59	***
	Event1&2		
FeP	0.006	0.23	*
Ammonium	1.7	0.29	*
Nitrate	-0.49	0.1	n.s.
DOC	1.5	0.18	*
pН	-28	0.38	***

Figure 2.2. Relative importance of soil properties in explaining oxic denitrification. The size of each bar in each figure is given by the variable importance in the projection (VIP) value and indicates the relative strength of each variable in explaining ODn in that analysis. DOC= dissolved organic carbon; FeP = pyrophosphate-extractable iron. Significant results from linear regression between ODn and each soil properties at p<0.05 are highlighted (dark color).

2.3. Results and Discussion

2.3.1. General N₂O production from ODn in the present study

Five of the 19 soils tested showed the ability to convert ¹⁵NO₃⁻ to N₂O under oxic conditions (Table 2.2a). Except for the grassland soil, there was significant conversion both following rewetting (Event 1) and after 8 hours (Event 2). On a soil basis, the rate of N₂O produced during ODn observed in our soils (ranging from approximately 0.02-1.14 ng N₂O -N / g soil /hr; Table 2b) are similar to the range reported previously^{91,93}. Our values for the amount of nitrate converted to N₂O (Table 2.2a) are 1-2 orders of magnitude lower than what has been reported in other studies conducted in soil^{93,182}. While previous studies speculated on anaerobic microsites to explain N₂O production via denitrification under presumably aerobic conditions⁹⁴, we used a soil slurry with consistent stirring in our study to avoid this possibility. Locally higher concentrations of organic carbon and nitrate may also favor greater conversion to N₂O by either process independent of aerobicity. The use of soil slurry maintains homogenous conditions to minimize the effects of substrate availability.

2.3.2. Previous observations of N₂O production from ODn

N₂O production from nitrate in soil under aerobic conditions was observed in early investigations of soil denitrification. For example, Parkin and Tiedje $(1984)^{91}$ reported 0.4-10.29 ng N₂O -N/g/hr from a sandy loam. Using a ¹³N technique, Speir et al. $(1995)^{93}$ found 0.1-183 ng N₂O -N/g /g/ hr. These observations of N₂O production from ODn are 1-3 orders of magnitude lower than the rate of N₂O generation under anaerobic conditions, which might explain the subsequent lack of research interest to follow up on this topic. Nonetheless, since then more evidence has appeared in support of N₂O production from ODn. In an effort to determine the

contribution of nitrification and denitrification to N₂O emission at different values of water-filled pore space (WFPS), Batemen and Baggs (2005)⁹⁴ found that 50% of N₂O was derived from denitrification under 20% WFPS (0.2 ng N₂O -N/g soil / hr) in a silt loam soil. Zhu et al. (2013)⁵ found that 45% of N₂O emitted from a clay loam soil was derived from heterotrophic denitrification in an atmosphere of 20% oxygen (0.3 ng N₂O -N /g soil / hr). Based on N₂O site preference (SP) methods, Congreves et al. (2019)¹⁷⁸ found denitrification contributed 40% of the N₂O production from soils under dry conditions (20-40% WFPS), consistent with Thilakarathna and Hernandez-Ramirez (2021)¹⁷⁹, who reported that 60% of N₂O came from denitrification pathways at water content less than 31% WFPS. In instances such as these, ODn may indeed be occurring or it is also possible that denitrification could proceed in anaerobic microsites⁸⁶. Site preference (SP) is becoming a powerful tool for N₂O source partitioning, however, at this moment, it cannot distinguish between denitrification and nitrifier-denitrification¹⁸³. Despite the scarcity of studies of ODn, there are indications that this process may in fact be more significant and widespread than previously thought. For example, periplasmic nitrate reductase is involved in initial reduction of nitrate, allowing for the possibility of denitrification under aerobic conditions⁸⁶. Moreover, recent work by Roco et al., (2016)⁹⁹ found that aerobic nitrate reduction is a common trait present in bacteria across a wide range of soils and ecosystems. The five soils in which we observed N₂O production from ODn indeed span a fairly diverse range of natural and cultivated environments.

2.3.3. Differences between Event 1 and Event 2

Soils were air-dried before use. This was done to create the same initial condition in all soils before slurry preparation, in accordance with the intent of Event 1, which was to observe

any pre-existing enzymes and the ability to perform ODn immediately following rewetting. This method represented soils that switch from an inactive to an active state, as is typical of rewetting soils following the dry season in a Mediterranean climate. Because short-term emission is of particular interest of this study, we chose not to preincubate the soils as the pre-existing enzyme effect would most likely be masked under preincubation. Event 2 was set up to observe any *de novo* synthesis within 6-8 hours.

As described above, soils were tested for N₂O produced from ODn at two points: Event 1, immediately after rewetting, and Event 2, 6-8 hours later, allowing a short time for the stimulation of microbial activity relevant to ODn. In particular, data for Event 1 showed that the microorganisms and/or enzymes responsible for this process remain viable in dry soil for at least 1-2 months, and can generate N₂O shortly after rewetting, indicating the pre-existing enzyme capacity^{182,184} and the persistence of denitrifying enzymes under aerobic conditions. A pulse of N₂O after rewetting is a common phenomenon, although the relative importance of specific microbial processes to changes in N₂O fluxes remains poorly understood ^{68,185,186}. The significant enrichment of ¹⁵N in N₂O just one hour after the ¹⁵N-NO₃⁻ additions in our study implies rapid nitrate reduction to nitrite and subsequent reduction to N2O. Typically, de novo synthesis of denitrifying enzymes requires 4-8 hours¹⁸⁷; if this is true for ODn as well, this means that the relevant enzymes were present and active in the soil at the start of Event 1. Only in the grassland soil was there no significant for N₂O production during Event 1. In the forest and grassland soils, there was greater nitrate-derived N₂O in Event 2 compared to Event 1, while in the other three soils, the reverse was true. This might relate to different induction times required for ODn activity.

2.3.4. Differences among soils

The five soils with significant N₂O production from ODn are not particularly notable with respect to the five basic properties measured (pH, DOC, NO₃-N, NH₄-N and FeP), that is, these properties are not particularly indicative of the potential for ODn in the five active soils. Although organic carbon is a strong determinant of (anaerobic) denitrifier activity⁴⁶, bulk DOC may not indicate a soil's ODn activity if certain carbon sources are preferred over others. Other soil attributes are likely more important than these, the most obvious being the composition of the microbial community and the presence or absence of organisms capable of ODn. A soil's natural environment may also play a role. For example, the sample with the highest values in Tables 2.2a and 2.2b (Ag 2) is a soil under rice production; the frequent aerobic-anaerobic cycles characteristic of such soils may favor the abundance or activity of oxic denitrifiers.

Treatment manipulations of nitrate and carbon content, along with soil moisture (or oxygen) and pH have been used to demonstrate that these variables regulate denitrification rates and end products⁴⁵. The amount of ¹⁵N and NO₃⁻ added to the soils was relatively small. This approach may neglect to identify soils that do have inherent ODn activity, but may simply have such small native concentrations of nitrate that ODn is not detected or induced, especially under the short-term experiment used here. On the other hand, the amount of NO₃⁻ added would not, have stimulated subsequent processing rates and thus reflects the occurrence and extent of ODn under natural conditions. Enhanced N₂O production might be triggered by addition of nitrogen or carbon substrates, through events such as N deposition in forest systems and fertilization in managed systems.

2.3.5. Ranking of soil properties from PLS analysis

To further elucidate the relative importance of each soil property in explaining ODn, the PLS analysis was performed on all 19 soils. Each soil property was ranked based on its ability to explain ODn (i.e., conversion of NO₃⁻ to N₂O under oxic conditions). This analysis was first performed for event 1 and event 2 separately; then, results from both events were pooled to aid the interpretation (Figure 2.2). For event 1, NH₄-N ranked highest and explained 93% of variability. Like NH₄-N, a significant predictive ability was also found for FeP and ODn. It is worth noting that ammonium and FeP were highly correlated (Table 2.3). DOC explained 62% of the variability in conversion of NO₃⁻ to N₂O. NO₃⁻ and pH had lowest rankings with no significant connection with ODn. In contrast to Event 1, pH ranked highest for Event 2, while all other properties were insignificant in predicting ODn. When data for both events were pooled, pH ranked highest and nitrate concentration ranked lowest.

The negative values of slopes from linear regressions between pH and ODn agreed with previous studies of aerobic denitrification. Ji et al. (2015)³¹ reviewed pure culture studies and reported pH of 7-7.5 as the optimal range for aerobic denitrification. Denitrification activity in general decreases below pH 6, and below pH 5 denitrification gene expression is significantly reduced¹⁸⁸. The relationship between pH and ODn is intriguing as pH is often viewed as a distal, not a proximal, control that directly affects instantaneous denitrification rate and its gaseous emission. In our study, occurrence of the highest rate of conversion of NO₃⁻ to N₂O coincided with a lower pH range (5 to 6.1). At this pH, chemodenitrification is possible, by which Fe(II) can react with nitrite to form N₂O. However, chemodenitrification is induced under anoxic

conditions that favor accumulation of Fe(II) and is thus unlikely to occur in our slurry incubation when oxic conditions were maintained. In environments with oxic-anoxic fluctuations, chemodenitrification may be coupled with denitrification to fuel rapid N₂O production. The relative contribution of N₂O from chemodenitrification and ODn might be affected by the availability of reduced form of iron and carbon availabilities.

The non-significant relationship between NO₃⁻ and ODn indicates that under aerobic conditions, denitrification rate may not be directly controlled by nitrate availability. The ranking score of nitrate in event 2 was higher than that of event 1, suggesting nitrification occurred over the course of the experiment. In a preliminary experiment of 6 soils, both ammonium and nitrate concentrations were found to slightly increase over the course of incubation (data not shown). Unlike anaerobic denitrifiers, obligately aerobic heterotrophs make up the bulk of the microbial biomass and compete for carbon in the presence of oxygen.

2.4. Ecological importance of ODn

The tight coupling of denitrification enzymes is not necessarily universal in soils³⁰ and the expression of each enzyme may have different sensitivity to oxygen³¹. Despite the relative lack of understanding of ODn compared to classical (anaerobic) denitrification, our study and several others indicate that this process is active in a variety of environments. In particular, the ability to carry out ODn can persist over short periods (months) in dry soils, and emission of N₂O from reduction of nitrate can occur readily as soon as the soil is rewetted. We agree with Lloyd (1987, 1993)^{84,189} that, in view of survivability, the capability for both aerobic and anaerobic

denitrification would presumably enhance the resistance of an organism, or community of denitrifiers, to environmental changes. Heterogeneity in soils may provide considerable ecological niches for aerobic as well as anaerobic denitrifiers, and the periods during which denitrification can occur may in fact be far greater than originally thought given that both aerobic as well as anaerobic pathways appear to be important in soil.

Works Cited

- 1. Ciais, P. *et al.* Carbon and Other Biogeochemical Cycles BT Climate Change The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental Panel on Climate Change. *Clim. Chang. Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang.* 465–570 (2009).
- 2. Barnard, R., Leadley, P. W. & Hungate, B. A. Global change, nitrification, and denitrification: A review. *Global Biogeochem. Cycles* **19**, 1–13 (2005).
- 3. Wrage, N., Velthof, G. L., Van Beusichem, M. L. & Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. *Soil Biol. Biochem.* **33**, 1723–1732 (2001).
- 4. Kool, D. M., Dolfing, J., Wrage, N. & Van Groenigen, J. W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. *Soil Biol. Biochem.* **43**, 174–178 (2011).
- 5. Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 6328–6333 (2013).
- 6. Vinet, L. & Zhedanov, A. A 'missing' family of classical orthogonal polynomials. in *Journal of Physics A: Mathematical and Theoretical* **44**, 7–21 (John Wiley & Sons, Ltd, 2011).
- 7. Bremner, J. M. Sources of nitrous oxide in soils. *Nutr. Cycl. Agroecosystems* **49**, 7–16 (1997).
- 8. Baggs, E. M. & Philippot, L. Nitrous Oxide Production in the Terrestrial Environment. *Nitrogen Cycl. Bact. Mol. Anal.* 211–232 (2011).
- 9. Braker, G. & Conrad, R. Diversity, structure, and size of N 2 O-producing microbial communities in soils-what matters for their functioning? *Adv. Appl. Microbiol.* **75**, 33–70 (2011).
- Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? *Philosophical Transactions of the Royal Society B: Biological Sciences* 368, (2013).
- 11. Van Groenigen, J. W. *et al.* The soil n cycle: New insights and key challenges. *Soil* **1**, 235–256 (2015).

- 12. Wrage-Mönnig, N. *et al.* The role of nitrifier denitrification in the production of nitrous oxide revisited. *Soil Biol. Biochem.* **123**, A3–A16 (2018).
- 13. Heil, J., Liu, S., Vereecken, H. & Brüggemann, N. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. *Soil Biol. Biochem.* **84**, 107–115 (2015).
- Bengtsson, G., Fronæus, S. & Bengtsson-Kloo, L. The kinetics and mechanism of oxidation of hydroxylamine by iron(III). J. Chem. Soc. Dalt. Trans. 2548–2552 (2002). doi:10.1039/b201602h
- 15. Tiedje, J. M., Sexstone, A. J., Myrold, D. D. & Robinson, J. A. Denitrification: ecological niches, competition and survival. *Antonie Van Leeuwenhoek* **48**, 569–583 (1983).
- 16. Zumft, W. G. Cell biology and molecular basis of denitrification. *Microbiol. Mol. Biol. Rev.* **61**, 533–616 (1997).
- 17. Shapleigh, J. P. The Denitrifying Prokaryotes. in *The Prokaryotes* 769–792 (Springer New York, 2006). doi:10.1007/0-387-30742-7_23
- 18. Stevenson, F. J. Nitrogen in agricultural soils. *Nitrogen Agric. Soils* 1–940 (2015). doi:10.2134/agronmonogr22
- 19. Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. *Environ. Microbiol. Anaerobes* 179–244 (1988).
- 20. Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. *Ecol. Appl.* **16**, 2143–2152 (2006).
- 21. Philippot, L., Hallin, S. & Schloter, M. Ecology of Denitrifying Prokaryotes in Agricultural Soil. *Adv. Agron.* **96**, 249–305 (2007).
- 22. Van Cleemput, O. & Samater, A. H. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. *Fertil. Res.* **45**, 81–89 (1995).
- 23. Fernández, N., Sierra-Alvarez, R., Field, J. A., Amils, R. & Sanz, J. L. Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. *Chemosphere* **70**, 462–474 (2008).
- 24. Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. *Glob. Chang. Biol.* **17**, 1497–1504 (2011).
- 25. Hashimoto, T., Koga, M. & Masaoka, Y. Advantages of a diluted nutrient broth medium for isolating N 2-producing denitrifying bacteria of α-Proteobacteria in surface and subsurface upland soils. *Soil Sci. Plant Nutr.* **55**, 647–659 (2009).
- 26. Kobayashi, M. *et al.* Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. *J. Biol. Chem.* **271**, 16263–16267 (1996).
- 27. Laughlin, R. J. & Stevens, R. J. Evidence for Fungal Dominance of Denitrification and Codenitrification in a Grassland Soil. *Soil Sci. Soc. Am. J.* **66**, 1540–1548 (2002).
- 28. Aldossari, N. & Ishii, S. Fungal denitrification revisited Recent advancements and future opportunities. *Soil Biol. Biochem.* **157**, 108250 (2021).
- 29. Shan, J. *et al.* Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. *Glob. Chang. Biol.* **27**, 2669–2683 (2021).
- 30. Graf, D. R. H., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. *PLoS One* **9**, e114118 (2014).

- 31. Ji, B. *et al.* Aerobic denitrification: A review of important advances of the last 30 years. *Biotechnol. Bioprocess Eng.* **20**, 643–651 (2015).
- 32. Bonin, P. & Gilewicz, M. A direct demonstration of 'co-respiration' of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components. *FEMS Microbiol. Lett.* **80**, 183–188 (1991).
- 33. Blackmer, A. M. & Bremner, J. M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. *Soil Biol. Biochem.* **10**, 187–191 (1978).
- Gaskell, J. F., Blackmer, A. M. & Bremner, J. M. Comparison of Effects of Nitrate, Nitrite, and Nitric Oxide on Reduction of Nitrous Oxide to Dinitrogen by Soil Microorganisms. Soil Sci. Soc. Am. J. 45, 1124–1127 (1981).
- 35. Holtan-Hartwig, L., Dörsch, P. & Bakken, L. R. Comparison of denitrifying communities in organic soils: Kinetics of NO3/- and N2O reduction. *Soil Biol. Biochem.* **32**, 833–843 (2000).
- Saggar, S. *et al.* Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. *Sci. Total Environ.* 465, 173–195 (2013).
- 37. De Klein, C. A. M., Sherlock, R. R., Cameron, K. C. & van der Weerden, T. J. Nitrous oxide emissions from agricultural soils in New Zealand-a review of current knowledge and directions for future research. *J. R. Soc. New Zeal.* **31**, 543–574 (2001).
- Groffman, P. M. & Tiedje, J. M. Denitrification in north temperate forest soils: Spatial and temporal patterns at the landscape and seasonal scales. *Soil Biol. Biochem.* 21, 613–620 (1989).
- Burford, J. R. & Bremner, J. M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. *Soil Biol. Biochem.* 7, 389–394 (1975).
- 40. Ryden, J. C. Gaseous losses of nitrogen from grassland. *Nitrogen Fluxes Intensive Grassl. Syst.* 59–73 (1986). doi:10.1007/978-94-009-4394-0_6
- 41. Nishina, K., Takenaka, C. & Ishizuka, S. Spatial variations in nitrous oxide and nitric oxide emission potential on a slope of Japanese cedar (Cryptomeria japonica) forest. *Soil Sci. Plant Nutr.* **55**, 179–189 (2009).
- 42. Cayuela, M. L., Oenema, O., Kuikman, P. J., Bakker, R. R. & van groenigen, J. W. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. *GCB Bioenergy* **2**, 201–213 (2010).
- 43. Gillam, K. M., Zebarth, B. J. & Burton, D. L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. *Can. J. Soil Sci.* **88**, 133–143 (2008).
- 44. RYDEN, J. C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. *J. Soil Sci.* **34**, 355–365 (1983).
- 45. Firestone, M. K., Smith, M. S., Firestone, R. B. & Tiedje, J. M. The Influence of Nitrate, Nitrite, and Oxygen on the Composition of the Gaseous Products of Denitrification in Soil. *Soil Sci. Soc. Am. J.* **43**, 1140–1144 (1979).
- 46. Knowles, R. Denitrification. *Microbiological Reviews* **46**, 43–70 (1982).
- 47. Cooper, G. S. & Smith, R. L. Sequence of Products Formed During Denitrification in Some Diverse Western Soils. *Soil Sci. Soc. Am. J.* **27**, 659–662 (1963).
- 48. Weier, K. L., Doran, J. W., Power, J. F. & Walters, D. T. Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate.

Soil Sci. Soc. Am. J. 57, 66–72 (1993).

- 49. Mergel, A., Schmitz, O., Mallmann, T. & Bothe, H. Relative abundance of denitrifying and dinitrogen-fixing bacteria in layers of a forest soil. *FEMS Microbiol. Ecol.* **36**, 33–42 (2006).
- 50. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N 2O) emissions to fertilizer nitrogen. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 9199–9204 (2014).
- 51. Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. *Sci. Total Environ.* **616–617**, 908–917 (2018).
- 52. Thomas, K. L., Lloyd, D. & Boddy, L. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. *FEMS Microbiol. Lett.* **118**, 181–186 (1994).
- 53. Baggs, E. M., Smales, C. L. & Bateman, E. J. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. *Biol. Fertil. Soils* **46**, 793–805 (2010).
- 54. Parkin, T. B., Sexstone, A. J. & Tiedje, J. M. Adaptation of Denitrifying Populations to Low Soil pH. *Appl. Environ. Microbiol.* **49**, 1053–1056 (1985).
- 55. Saleh-Lakha, S. *et al.* Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. *Appl. Environ. Microbiol.* **75**, 3903–3911 (2009).
- 56. Šimek, M. & Cooper, J. E. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. *Eur. J. Soil Sci.* **53**, 345–354 (2002).
- 57. Stanford, G., Dzienia, S. & Vander Pol, R. A. Effect of Temperature on Denitrification Rate in Soils. *Soil Sci. Soc. Am. J.* **39**, 867–870 (1975).
- Fischer, E. N. & Whalen, S. C. Rates and controls on denitrification in an agricultural soil fertilized with liquid lagoonal swine waste. *Nutr. Cycl. Agroecosystems* **71**, 271–287 (2005).
- 59. Schaufler, G. *et al.* Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. *Eur. J. Soil Sci.* **61**, 683–696 (2010).
- 60. Schindlbacher, A., Zechmeister-Boltenstern, S. & Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO2, and N 2O emissions from European forest soils. *J. Geophys. Res. D Atmos.* **109**, 17302 (2004).
- 61. Phillips, R. L., Mcmillan, A. M. S., Palmada, T., Dando, J. & Giltrap, D. Temperature effects on N2O and N2 denitrification end-products for a New Zealand pasture soil. *New Zeal. J. Agric. Res.* **58**, 89–95 (2015).
- Holtan-Hartwig, L., Dörsch, P. & Bakken, L. R. Low temperature control of soil denitrifying communities: Kinetics of N2O production and reduction. *Soil Biol. Biochem.* 34, 1797–1806 (2002).
- 63. Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. *FEMS Microbiol. Ecol.* **73**, 134–148 (2010).
- 64. Drury, C. F., Findlay, W. I. & McKenney, D. J. Nitric Oxide and Nitrous Oxide Production from Soil: Water and Oxygen Effects. *Soil Sci. Soc. Am. J.* **56**, 766–770 (1992).
- 65. Groffman, P. M. & Tiedje, J. M. Relationships between denitrification, CO2 production and air-filled porosity in soils of different texture and drainage. *Soil Biol. Biochem.* **23**, 299–302 (1991).
- 66. Williams, E. J., Hutchinson, G. L. & Fehsenfeld, F. C. NOx And N2O Emissions From

Soil. Global Biogeochem. Cycles 6, 351–388 (1992).

- 67. Renault, P. & Sierra, J. Modeling Oxygen Diffusion in Aggregated Soils: II. Anaerobiosis in Topsoil Layers. *Soil Sci. Soc. Am. J.* **58**, 1023–1030 (1994).
- 68. Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. *Biogeosciences* **9**, 2459–2483 (2012).
- 69. Bohlen, P. J., Groffman, P. M., Driscoll, C. T., Fahey, T. J. & Siccama, T. G. Plant-Soil-Microbial Interactions in a Northern Hardwood Forest. *Ecology* **82**, 965 (2001).
- 70. Stevens, R. J., Laughlin, R. J., Burns, L. C., Arah, J. R. M. & Hood, R. C. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. *Soil Biol. Biochem.* **29**, 139–151 (1997).
- 71. Otter, L. B., Yang, W. X. X., Scholes, M. C. & Meixner, F. X. Nitric oxide emissions from a southern African savanna. *J. Geophys. Res. Atmos.* **104**, 18471–18485 (1999).
- Li, X., Sørensen, P., Olesen, J. E. & Petersen, S. O. Evidence for denitrification as main source of N2O emission from residue-amended soil. *Soil Biol. Biochem.* 92, 153–160 (2016).
- 73. Friedl, J. *et al.* Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils. *Curr. Opin. Environ. Sustain.* **47**, 61–71 (2020).
- 74. Almaraz, M., Wong, M. Y. & Yang, W. H. Looking back to look ahead: a vision for soil denitrification research. *Ecology* **101**, e02917 (2020).
- 75. Højberg, O., Revsbech, N. P. & Tiedje, J. M. Denitrification in Soil Aggregates Analyzed with Microsensors for Nitrous Oxide and Oxygen. *Soil Sci. Soc. Am. J.* **58**, 1691 (1994).
- 76. Parkin, T. B. Soil Microsites as a Source of Denitrification Variability. *Soil Sci. Soc. Am. J.* **51**, 1194–1199 (1987).
- Kana, T. M., Sullivan, M. B., Cornwell, J. C. & Groszkowski, K. M. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. *Limnol. Oceanogr.* 43, 334–339 (1998).
- 78. Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). *Microbiol. Rev.* **60**, 609–640 (1996).
- 79. Seitzinger, S. *et al.* Denitrification across landscapes and waterscapes: A synthesis. *Ecol. Appl.* **16**, 2064–2090 (2006).
- 80. Groffman, P. M. *et al.* Methods for measuring denitrification: Diverse approaches to a difficult problem. *Ecol. Appl.* **16**, 2091–2122 (2006).
- 81. Groffman, P. M. *et al.* Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. *Biogeochemistry* **93**, 49–77 (2009).
- 82. Robertson, L. A. & Kuenen, J. G. Aerobic denitrification: a controversy revived. *Arch. Microbiol.* **139**, 351–354 (1984).
- 83. Robertson, L. A. & Kuenen, J. G. Aerobic denitrification old wine in new bottles? *Antonie Van Leeuwenhoek* **50**, 525–544 (1984).
- 84. Lloyd, D., Boddy, L. & Davies, K. J. P. Persistence of bacterial denitrification capacity under aerobic conditions: The rule rather than the exception. *FEMS Microbiol. Lett.* **45**, 185–190 (1987).
- 85. Robertson, L. A., Dalsgaard, T., Revsbech, N. P. & Kuenen, J. G. Confirmation of 'aerobic denitrification' in batch cultures, using gas chromatography and 15N mass spectrometry. *FEMS Microbiol. Ecol.* **18**, 113–119 (1995).

- 86. Carter, J. P., Ya Hsin Hsiao, Spiro, S. & Richardson, D. J. Soil and sediment bacteria capable of aerobic nitrate respiration. *Appl. Environ. Microbiol.* **61**, 2852–2858 (1995).
- Patureau, D., Bernet, N., Delgenes, J. P. & Moletta, R. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. *Appl. Microbiol. Biotechnol.* 54, 535–542 (2000).
- 88. Yang, J. *et al.* A critical review of aerobic denitrification: Insights into the intracellular electron transfer. *Sci. Total Environ.* **731**, (2020).
- 89. Gao, H. *et al.* Aerobic denitrification in permeable Wadden Sea sediments. *ISME J.* **4**, 417–426 (2010).
- 90. Marchant, H. K. *et al.* Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. *ISME J.* **11**, 1799–1812 (2017).
- 91. Parkin, T. B. & Tiedje, J. M. Application of a soil core method to investigate the effect of oxygen concentration on denitrification. *Soil Biol. Biochem.* **16**, 331–334 (1984).
- 92. Wang, R. *et al.* Measurement of N 2, N 2O, NO, and CO 2 emissions from soil with the gas-flow-soil-core technique. *Environ. Sci. Technol.* **45**, 6066–6072 (2011).
- 93. Speir, T. W., Kettles, H. A. & More, R. D. Aerobic emissions of N2O and N2 from soil cores: Factors influencing production from 13N-labelled NO3- and NH4+. Soil Biology and Biochemistry **27**, (1995).
- 94. Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. *Biol. Fertil. Soils* **41**, 379–388 (2005).
- 95. Stange, C. F. *et al.* Use of the inverse abundance approach to identify the sources of NO and N2O release from Spanish forest soils under oxic and hypoxic conditions. *Soil Biol. Biochem.* **57**, 451–458 (2013).
- 96. Spott, O., Russow, R., Apelt, B. & Stange, C. F. A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release using the zeolite Köstrolith SX6. *Rapid Commun. Mass Spectrom.* **20**, 3267–3274 (2006).
- Khalil, K., Mary, B. & Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. *Soil Biol. Biochem.* 36, 687–699 (2004).
- Patureau, D., Bernet, N., Delgenes, J. P. & Moletta, R. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. *Appl. Microbiol. Biotechnol.* 54, 535–542 (2000).
- 99. Roco, C. A., Bergaust, L. L., Shapleigh, J. P. & Yavitt, J. B. Reduction of nitrate to nitrite by microbes under oxic conditions. *Soil Biol. Biochem.* **100**, 1–8 (2016).
- 100. Wu, D. *et al.* N2O consumption by low-nitrogen soil and its regulation by water and oxygen. *Soil Biol. Biochem.* **60**, 165–172 (2013).
- 101. Qin, S. *et al.* N2 production via aerobic pathways may play a significant role in nitrogen cycling in upland soils. *Soil Biol. Biochem.* **108**, 36–40 (2017).
- 102. Patureau, D., Davison, J., Bernet, N. & Moletta, R. Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. *FEMS Microbiol. Ecol.* **14**, 71–78 (1994).
- Morley, N., Baggs, E. M., Dörsch, P. & Bakken, L. Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2- and O2 concentrations. *FEMS Microbiol. Ecol.* 65, 102–112 (2008).
- 104. Fork, M. L. & Heffernan, J. B. Direct and Indirect Effects of Dissolved Organic Matter Source and Concentration on Denitrification in Northern Florida Rivers. *Ecosystems* 17,

14-28 (2014).

- 105. Jahangir, M. M. R. *et al.* Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. *Agric. Ecosyst. Environ.* **147**, 13–23 (2012).
- 106. Melero, S. *et al.* Denitrification in a vertisol under long-term tillage and no-tillage management in dryland agricultural systems: Key genes and potential rates. *Appl. Soil Ecol.* **47**, 221–225 (2011).
- 107. Barrett, M. *et al.* Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. *Environ. Sci. Pollut. Res.* **23**, 7899–7910 (2016).
- 108. Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O. & Minami, K. Assessing and mitigating N2O emissions from agricultural soils. *Clim. Change* **40**, 7–38 (1998).
- 109. Belding, J. A. Conservation As an Energy Source. *Nitrification* v, 4279–4291 (1978).
- Frame, C. H. & Casciotti, K. L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. *Biogeosciences* 7, 2695–2709 (2010).
- Wrage, N., Van Groenigen, J. W., Oenema, O. & Baggs, E. M. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. *Rapid Commun. Mass Spectrom.* 19, 3298–3306 (2005).
- 112. Chalk, P. M. & Smith, C. J. Chemodenitrification. *Gaseous Loss Nitrogen from Plant-Soil* Syst. 65–89 (1983). doi:10.1007/978-94-017-1662-8_3
- 113. Liu, S., Vereecken, H. & Brüggemann, N. A highly sensitive method for the determination of hydroxylamine in soils. *Geoderma* 232–234, 117–122 (2014).
- Liu, S., Schloter, M., Hu, R., Vereecken, H. & Brüggemann, N. Hydroxylamine contributes more to abiotic N 2 O production in soils than nitrite. *Front. Environ. Sci.* 7, 47 (2019).
- 115. Zhang, J., Müller, C. & Cai, Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. *Soil Biol. Biochem.* **84**, 199–209 (2015).
- Kreitinger, J. P., Klein, T. M., Novick, N. J. & Alexander, M. Nitrification and Characteristics of Nitrifying Microorganisms in an Acid Forest Soil. *Soil Sci. Soc. Am. J.* 49, 1407–1410 (1985).
- 117. Wood, P. M. Autotrophic and heterotrophic mechanisms for ammonia oxidation. *Soil Use Manag.* **6**, 78–79 (1990).
- 118. Huygens, D. *et al.* Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. *Nat. Geosci.* **1**, 543–548 (2008).
- 119. De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: Micro-organisms and mechanisms. *Soil Biol. Biochem.* **33**, 853–866 (2001).
- 120. Barraclough, D. & Puri, G. The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. *Soil Biol. Biochem.* **27**, 17–22 (1995).
- 121. Pedersen, H., Dunkin, K. A. & Firestone, M. K. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. *Biogeochemistry* **44**, 135–150 (1999).
- 122. Islam, A., Chen, D. & White, R. E. Heterotrophic and autotrophic nitrification in two acid pasture soils. *Soil Biol. Biochem.* **39**, 972–975 (2007).
- 123. Rütting, T., Clough, T. J., Müller, C., lieffering, M. & Newton, P. C. D. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. *Glob. Chang. Biol.* **16**, 2530–2542 (2010).

- 124. Sitaula, B. Nitrogen transformation. in *Soil Microbiology, Biochemistry, and Ecology* (ed. E.A. Paul, ed.) 41-42 LA-English (Springer, 1973).
- 125. Casciotti, K. L. & Ward, B. B. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria. *Appl. Environ. Microbiol.* **67**, 2213–2221 (2001).
- Garbeva, P., Baggs, E. M. & Prosser, J. I. Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. *FEMS Microbiol. Lett.* 266, 83–89 (2007).
- 127. Sutka, R. L. *et al.* Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. *Appl. Environ. Microbiol.* **72**, 638–644 (2006).
- 128. Ostrom, N. E. & Ostrom, P. H. The Isotopomers of Nitrous Oxide: Analytical Considerations and Application to Resolution of Microbial Production Pathways. in *Advances in Isotope Geochemistry* 453–476 (Springer, 2012). doi:10.1007/978-3-642-10637-8_23
- 129. Decock, C. & Six, J. How reliable is the intramolecular distribution of 15N in N2O to source partition N2O emitted from soil? *Soil Biol. Biochem.* **65**, 114–127 (2013).
- 130. Yu, L. *et al.* What can we learn from N2O isotope data? Analytics, processes and modelling. *Rapid Commun. Mass Spectrom.* **34**, (2020).
- 131. Harris, S. J. *et al.* N2O isotopocule measurements using laser spectroscopy: Analyzer characterization and intercomparison. *Atmos. Meas. Tech.* **13**, 2797–2831 (2020).
- 132. Marinas, M. *et al.* A nuclear magnetic resonance (1 H and 13 C) and isotope ratio mass spectrometry (d 13 C, d 2 H and d 18 O) study of Andalusian olive oils. *Rapid Commun. Mass Spectrom.* **24**, 1457–1466 (2010).
- 133. Opdyke, M. R., Ostrom, N. E. & Ostrom, P. H. Evidence for the predominance of denitrification as a source of N 2O in temperate agricultural soils based on isotopologue measurements. *Global Biogeochem. Cycles* **23**, (2009).
- 134. Ostrom, N. E. *et al.* Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland. *Soil Biol. Biochem.* **42**, 499–506 (2010).
- Deppe, M., Well, R., Giesemann, A., Spott, O. & Flessa, H. Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots. *Soil Biol. Biochem.* 104, 68–80 (2017).
- 136. Cardenas, L. M. *et al.* Effect of soil saturation on denitrification in a grassland soil. *Biogeosciences* **14**, 4691–4710 (2017).
- 137. Toyoda, S. *et al.* Characterization and production and consumption processes of N 2 O emitted from temperate agricultural soils determined via isotopomer ratio analysis . *Global Biogeochem. Cycles* **25**, n/a-n/a (2011).
- Ma, W. K. *et al.* Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. *Soil Biol. Biochem.* 39, 2001–2013 (2007).
- 139. Sánchez-Martín, L., Vallejo, A., Dick, J. & M Skiba, U. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. *Soil Biol. Biochem.* **40**, 142–151 (2008).
- Webster, E. A. & Hopkins, D. W. Contributions from different microbial processes to N2O emission from soil under different moisture regimes. *Biol. Fertil. Soils* 22, 331–335 (1996).

- Wrage, N., Velthof, G. L., Laanbroek, H. J. & Oenema, O. Nitrous oxide production in grassland soils: Assessing the contribution of nitrifier denitrification. *Soil Biol. Biochem.* 36, 229–236 (2004).
- 142. Kool, D. M. *et al.* Nitrifier denitrification can be a source of N2O from soil: A revised approach to the dual-isotope labelling method. *Eur. J. Soil Sci.* **61**, 759–772 (2010).
- Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. & Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. *Water Res.* 46, 1027–1037 (2012).
- 144. Shaw, L. J. *et al.* Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. *Environ. Microbiol.* **8**, 214–222 (2006).
- 145. Braker, G. & Conrad, R. Diversity, structure, and size of N 2 O-producing microbial communities in soils-what matters for their functioning? Advances in Applied Microbiology **75**, (2011).
- 146. Goldberg, S. D. & Gebauer, G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. *Soil Biol. Biochem.* **41**, 1986–1995 (2009).
- Baggs, E. M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. *Curr. Opin. Environ. Sustain.* 3, 321–327 (2011).
- 148. Spott, O., Russow, R. & Stange, C. F. Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation. *Soil Biol. Biochem.* **43**, 1995–2011 (2011).
- Rütting, T., Boeckx, P., Müller, C. & Klemedtsson, L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. *Biogeosciences* 8, 1779–1791 (2011).
- 150. Sprent, J. I., Cole, J. A. & Ferguson, S. J. (1988). The Nitrogen and Sulphur Cycles. in *The Journal of Applied Ecology* **26**, 362 (1989).
- 151. Bleakley, B. H. & Tiedje, J. M. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. *Appl. Environ. Microbiol.* **44**, 1342–1348 (1982).
- 152. Smith, M. S. & Zimmerman, K. Nitrous Oxide Production by Nondenitrifying Soil Nitrate Reducers. *Soil Sci. Soc. Am. J.* **45**, 865–871 (1981).
- 153. Stevens, R. J., Laughlin, R. J. & Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. *Soil Biol. Biochem.* **30**, 1119–1126 (1998).
- 154. Kaspar, H. F. Nitrite reduction to nitrous oxide by propionibacteria: Detoxication mechanism. *Arch. Microbiol.* **133**, 126–130 (1982).
- Stremińska, M. A., Felgate, H., Rowley, G., Richardson, D. J. & Baggs, E. M. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria. *Environ. Microbiol. Rep.* 4, 66–71 (2012).
- Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. *Limnol. Oceanogr.* 57, 1331– 1346 (2012).
- 157. Zhao, S., Zhang, B., Sun, X. & Yang, L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. *Sci. Total Environ.* **762**, 144168 (2021).
- 158. Zhu, G., Jetten, M. S. M., Kuschk, P., Ettwig, K. F. & Yin, C. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. *Appl. Microbiol. Biotechnol.* 86, 1043–1055 (2010).

- 159. Wang, S., Zhu, G., Peng, Y., Jetten, M. S. M. & Yin, C. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. *Environ. Sci. Technol.* **46**, 8834–8842 (2012).
- 160. Zhang, M. *et al.* Nitrogen loss by anaerobic ammonium oxidation in a mangrove wetland of the Zhangjiang Estuary, China. *Sci. Total Environ.* **698**, (2020).
- 161. Zhu, G. *et al.* Ubiquitous anaerobic ammonium oxidation in inland waters of China: An overlooked nitrous oxide mitigation process. *Sci. Rep.* **5**, 1–10 (2015).
- 162. Nsenga Kumwimba, M., Lotti, T., Şenel, E., Li, X. & Suanon, F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. *Chemosphere* **238**, 124627 (2020).
- Stevenson, F. J. & Swaby, R. J. Nitrosation of Soil Organic Matter: I. Nature of Gases Evolved During Nitrous Acid Treatment of Lignins and Humic Substances. *Soil Sci. Soc. Am. J.* 28, 773–778 (1964).
- 164. Nelson, D. W. & Bremner, J. M. Gaseous products of nitrite decomposition in soils. *Soil Biol. Biochem.* **2**, 203-IN8 (1970).
- 165. Nelson, D. W. & Bremner, J. M. Role of soil minerals and metallic cations in nitrite decomposition and chemodenitrification in soils. *Soil Biol. Biochem.* **2**, 1–8 (1970).
- 166. Samarkin, V. A. *et al.* Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. *Nat. Geosci.* **3**, 341–344 (2010).
- Peters, B. *et al.* Stable isotope analyses of NO2-, NO3-, and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica. *Geochim. Cosmochim. Acta* 135, 87– 101 (2014).
- Ostrom, N. E., Gandhi, H., Trubl, G. & Murray, A. E. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. *Geobiology* 14, 575–587 (2016).
- 169. Venterea, R. T. Nitrite-driven nitrous oxide production under aerobic soil conditions: Kinetics and biochemical controls. *Glob. Chang. Biol.* **13**, 1798–1809 (2007).
- 170. Wei, J. *et al.* N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. *Biogeochemistry* **132**, 325–342 (2017).
- 171. Wankel, S. D. *et al.* Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. *Nat. Commun.* **8**, 1–11 (2017).
- Wang, M., Hu, R., Ruser, R., Schmidt, C. & Kappler, A. Role of Chemodenitrification for N2O Emissions from Nitrate Reduction in Rice Paddy Soils. *ACS Earth Sp. Chem.* 4, 122–132 (2020).
- 173. Otte, J. M. *et al.* N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. *Sci. Rep.* **9**, 10691 (2019).
- 174. Smeets, E. M. W., Bouwman, L. F., Stehfest, E., van Vuuren, D. P. & Posthuma, A. Contribution of N2O to the greenhouse gas balance of first-generation biofuels. *Glob. Chang. Biol.* 15, 1–23 (2009).
- 175. Rubasinghege, G., Spak, S. N., Stanier, C. O., Carmichael, G. R. & Grassian, V. H. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. *Environ. Sci. Technol.* **45**, 2691–2697 (2011).
- Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. *Nat. Rev. Microbiol.* 8, 779–790 (2010).
- 177. Robertson, L. A. & Kuenen, J. G. Aerobic denitrification: a controversy revived. Arch.

Microbiol. 139, 351–354 (1984).

- 178. Congreves, K. A., Phan, T. & Farrell, R. E. A new look at an old concept: Using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways. *Soil* **5**, 265–274 (2019).
- 179. Thilakarathna, S. K. & Hernandez-Ramirez, G. Primings of soil organic matter and denitrification mediate the effects of moisture on nitrous oxide production. *Soil Biol. Biochem.* **155**, 108166 (2021).
- 180. Doane, T. A. & Horwáth, W. R. Spectrophotometric determination of nitrate with a single reagent. *Anal. Lett.* **36**, 2713–2722 (2003).
- 181. Zhu, X., Silva, L. C. R., Doane, T. A. & Horwath, W. R. Iron: The Forgotten Driver of Nitrous Oxide Production in Agricultural Soil. *PLoS One* **8**, 1–6 (2013).
- Kulkarni, M. V., Yavitt, J. B. & Groffman, P. M. Rapid Conversion of Added Nitrate to Nitrous Oxide and Dinitrogen in Northern Forest Soil. *Geomicrobiol. J.* 34, 670–676 (2017).
- 183. Denk, T. R. A. *et al.* The nitrogen cycle: A review of isotope effects and isotope modeling approaches. *Soil Biology and Biochemistry* **105**, 121–137 (2017).
- Firestone, M. K. & Tiedje, J. M. Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. *Appl. Environ. Microbiol.* 38, 673–679 (1979).
- 185. Groffman, P. M. & Tiedje, J. M. Denitrification Hysteresis During Wetting and Drying Cycles in Soil. *Soil Sci. Soc. Am. J.* **52**, 1626–1629 (1988).
- 186. Priemé, A. & Christensen, S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. *Soil Biol. Biochem.* **33**, 2083–2091 (2001).
- 187. Rudaz, A. O., Davidson, E. A. & Firestone, M. K. Sources of nitrous oxide production following wetting of dry soil. *FEMS Microbiol. Ecol.* **8**, 117–124 (1991).
- 188. Xie, S. guang, Zhang, X. jian & Wang, Z. sheng. Temperature effect on aerobic denitrification and nitrification. *J. Environ. Sci.* **15**, 669–673 (2003).
- 189. Lloyd, D. Aerobic denitrification in soils and sediments: From fallacies to factx. *Trends Ecol. Evol.* **8**, 352–356 (1993).

Supplement Materials

Part 1. Tables and figures

Table S1	Basic properties of all soils	s and sampling locations.	Bolded soils are examine in
triplicate	s.		

Soil ID	Vegetation	Location	nН	DOC	NO ₃ -N	NH4-N	FeP
501110	Vegetation	Location	pm	$(\mu g/g)$	$(\mu g/g)$	$(\mu g/g)$	(µg/g)
1	Forest	Pollock Pines	5.9	5.57	1.57	9.35	354.6
2	Forest	Pollock Pines	6.1	15.6	24.36	7.45	577.3
3	Forest	Pollock Pines	5	12.54	0.16	5.79	705.8
4	Grassland	Yolo	7.3	13.12	14.8	5.04	73
5	Grassland	Cache Creek	6.5	11.94	20.25	4.39	473.8
6	Grassland	Cache Creek	6.2	4.74	43.71	1.43	299.7
7	Vineyard(L)	Kearney	6.3	9.72	43.5	2.48	684.8
8	Vineyard (S)	Kearney	6.5	4.41	19.69	1.53	245.9
9	AG 1	Twitchell Island	6.2	7.27	17.3	3.74	2149.3
10	AG 2	Twitchell Island	5.7	22.44	23.28	26.16	5600
11	Riparian	Pollock Pines	6	2.45	0.28	1.38	455.4
12	Grassland	Cache Creek	5.9	5.84	21.7	3.33	392.2
13	Forest	Cache Creek	5.7	6.09	11.97	3.18	287.5
14	Forest, subsurface	Pollock Pines	5.9	5.97	6.13	2.33	390.7
15	Forest, subsurface	Pollock Pines	5.2	8.66	0	3.18	258.9
16	Bare soil, unmanaged	Cache Creek	6.8	7.76	8.79	2.23	251.1
17	Bare soil, unmanaged	Cache Creek	6.4	0.6	0.7	0.83	127.9
18	Grassland	Cache Creek	6.2	1.74	0.96	2.13	196.2
19	AG 3	Capay Valley	5.6	3.15	39	1.43	290.3

Table S2. Conversion of NO_3^- to N_2O under oxic conditions and expressed as mass N_2O -N on a soil basis; n.d. = not detectable or zero value. Bolded soils are examined in triplicates.

Soil ID	Event 1	Event 2	Event 1	Event 2
	µmol- N/mol N- NO3/hr	µmol- N/mol N- NO3/hr	ng N- N ₂ O/g/hr	ng N- N ₂ O/g/hr

1	n.d.	n.d.	n.d.	n.d.
2	1.1	3.73	0.03	0.09
3	n.d.	81.47	n.d.	0.01
4	n.d.	2.84	n.d.	0.04
5	1.42	0.39	0.03	0.01
6	0.22	0.12	0.01	0.01
7	2.8	0.43	0.12	0.02
8	0.23	0.44	0	0.01
9	4.6	2.35	0.08	0.04
10	48.9	43.05	1.14	1
11	n.d.	n.d.	n.d.	n.d.
12	0.58	15.43	0.01	0.33
13	0.1	45.23	0	0.54
14	0.49	0.05	0	0
15	n.d.	n.d.	n.d.	n.d.
16	3.6	n.d.	0.03	n.d.
17	n.d.	15.65	n.d.	0.01
18	n.d.	9.26	n.d.	0.01
19	1.23	n.d.	0.05	n.d.

Table S3. Correlation matrix (r values) among the measured soil properties for the conversion of NO_3 ⁻ to N_2O under oxic conditions (ODn) for all soils

	Event 1	Event 2
	ODn	ODn
рН	-0.82*	-0.96**
DOC	0.95**	0.57
NO ₃ ⁻ -N	-0.40	-0.70
NH_4^+-N	0.99***	0.67
FeP	0.99***	0.61

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively.

Part 2. Calculations

We calculate OD% as follows.

$$R_{sam} = ((\delta N_{sam} / 100) + 1) * R_{std}$$
$$F_{sam} = R_{sam} / (R_{sam} + 1)$$

Where R_{sam} =isotope ratio of gas sample, δN_{sam} = the ¹⁵N enrichment of a gas sample, and R_{std} = ¹⁵N/¹⁴N ratio of standard (atmospheric N₂)

$$Mol^{-15}N = Mol N * F_{sam}$$

Where $mol^{15}N = moles$ of ${}^{15}N-N_2O$ in the sample, mol-N = moles of total N-N₂O in the headspace, and $F_{sam} =$ the fraction of N in the sample as ${}^{15}N$

Net $Mol^{-15}N = mol^{-15}N$ before event $- mol^{-15}N$ after event

Where net mol- ${}^{15}N$ = moles of ${}^{15}N$ -N₂O generated in headspace during one sample event when the jar is closed, for event one, lab room air values are substituted as before event values

Total Mol- ${}^{15}N$ = Net Mol- ${}^{15}N$ + aq Mol- ${}^{15}N$

aq Mol-
15
N = K_H * P_{N20}

Where aq Mol-¹⁵N = dissolved N₂O proportion to headspace N₂O, calculated based on Henry's Law, K_H for N₂O at 25 °C is $0.024 \frac{mol}{L*atm}$

 $Mol-Ni = Total Mol-^{15}N / F_{Ni}$

Where Mol-Ni = equivalent moles of N-NO₃⁻ of total ¹⁵N-N₂O produced during one sample event, and F_{Ni} is the enrichment of nitrate pool expressed as at-%

 $OD-N_2O\% = Mol-Ni / Mol-total$

Where Mol-total = mole of nitrate present at the start of a sampling event