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ABSTRACT OF THE DISSERTATION 
 
 

Visuospatial Cognition, Movement and the Mathematic Achievement of Students 
 
 
 

by 
 
 

Courtney M. Hilton 
 

Doctor of Philosophy, Graduate Program in Education 
University of California, Riverside, June 2018 

Dr. Keith Widaman, Chairperson 
 
 
 

The study investigated the predictive relations of language and cognitive variables 

and three domains of mathematics achievement in grade levels spanning first to 

undergraduate students. The research is particularly interested in the moderating effects 

of grade level on the relations of visuospatial working memory and mathematics. The 

research is guided by Baddeley’s model of working memory (Baddeley and Hitch, 1974, 

1986, 1996, 2000), Logie’s two-part visuo-sketchpad (1995), and the growing body of 

research investigating the dissociative properties of working memory. A sample of 2,375 

participants was drawn from the Woodcock Johnson-Fourth Edition standardization 

sample. The participants were administered assessments in the areas of oral language, 

mathematics, verbal working memory ability, and visuospatial ability. A theoretical 

visuospatial working memory variable was created from the visuospatial ability 

assessments. The results of four hierarchical regression analyses revealed oral language, 

verbal working memory, and visual working memory are significant predictors of 

mathematics achievement. The tests of moderating effects results showed grade level 



vii 

moderated the relations between visuospatial working memory and mathematics 

achievement.  
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Chapter 1: Introduction 

Mathematics is a prominent topic in academic communities, although this is a 

relatively new distinction. The literature often tracks increased mathematics discourse to 

periods surrounding the launch of Sputnik and the innovative publications emerging from 

that era. The said publications detailed the need to focus on individual differences and 

ways to nurture scientific and technical potential in U.S. students (Newcombe et al., 

2009; Wai, Lubinski, & Benbow, 2009). Researchers highlighted the need for improved 

skills in science, technology, engineering, and mathematics (STEM) domains.  

Several studies have compared the math achievement of U.S. students to the 

achievement of students in other nations. The results often reveal U.S. students fall below 

their counterparts in other countries. For example, the Organization for Economic 

Cooperation and Development’s Program for International Student Assessments reported 

that 15-year-old students in the United States ranked 24th out of 29 countries in problem 

solving and mathematics literacy (Lemke et al., 2004). Cross-cultural studies with a 

comparison of U.S. students to East Asian students revealed East Asian students 

consistently outperform U.S. students in almost every area of mathematical knowledge 

(Geary, Fan, & Bow-Thomas, 1992; Lemke et al., 2004; Lim & Son, 2013). The prior 

findings increased national interest in improved mathematic outcomes and particularly 

led to robust interest in a variety of factors related to math learning (e.g., instruction, 

intervention, learning, and cognition).  

The present study pertained to cognitive factors related to mathematic 

achievement. The collective body of research regarding cognition and mathematic 



2 

achievement has demonstrated several cognitive factors contribute to mathematic 

performance. For example, working memory (Chong & Siegel, 2008; Geary, 2011; 

Mazzocco & Myers, 2003; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2014), 

phonological or language processing (Swanson & Beebe-Frankenberger, 2004; Szucs et 

al., 2014), and attentional systems (Fuchs et al., 2006; Fuchs, Geary, Fuchs, Compton, & 

Hamlett, 2014; Geary, Hoard, Nugent, & Bailey, 2012) have substantial support in the 

literature as cognitive predictors of mathematic achievement. The present research was a 

quantitative analysis of the predictive power of several cognitive processes related to 

mathematic achievement in children and adults in elementary grades through college. Of 

primary interest was the predictive relations of visual-spatial working memory, grade 

level, and multiple mathematic domains.  

The first section of this chapter is an overview of the developments in mathematic 

research and the changes to content standards for mathematics. The second section 

provides a review of the literature on three subdomains of mathematics (arithmetic, 

algebra, and geometry). The individual differences associated with mathematic 

performance are also discussed. The final section includes a review of the component 

processes underlying mathematic competence (e.g., working memory, spatial perception, 

and attention).  

Developments in State Content Standards for Mathematics 

The lagging mathematic performance of U.S. students has led to increased 

attention from national committees, policy-makers, and councils. The extensive interest 

in improving math outcomes led to a significant shift in mathematics instruction in public 
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classrooms. The Common Core State Standards for Mathematics unveiled in 2010 were 

part of the Common Core State Standards Initiative, and revealed drastic changes to 

content goals, placement of topics in grades, and attention to mathematic practices, such 

as problem solving, reasoning, and modeling (Teuscher, Tran, & Reys, 2015). One 

example of the sweeping change involves classroom instruction in mathematic problem 

solving. Common Core State Standards for Mathematics and Common Core State 

Standards Initiative transformed the role of problem solving by defining it as central to all 

mathematic content areas and advocated for its instruction to be connected to multiple 

processes and integrated into student experiences, rather than taught as an isolated unit or 

lesson. Another example is algebra and geometry concepts previously thought to be too 

challenging for young children; however, these concepts were recommended for early 

learning with the unveiling of Common Core State Standards for Mathematics.  

Algebra was once thought to be developmentally inappropriate for young children 

(Sfard, 1991). The terms cognitive gap and interference were used in the literature to 

explain the difficulty young children encountered in developing algebraic competence 

(Linchevski & Herscovics, 1996; Sfard, 1991). Recent researchers suggested arithmetic 

principles involve generalizations that are algebraic in nature; therefore, algebra warrants 

a prominent role in early instruction (Blanton & Kaput, 2001; Carraher & Schliemann, 

2002; Fuchs et al., 2012). The National Council of Teachers of Mathematics (2000) 

identified algebra as one of the content standards for students in kindergarten through 

Grade 12. With Common Core State Standards (2010), algebraic reasoning became a 

Common Core domain area in elementary school, a part of several domain areas in 
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middle school curriculum, and is one of six important areas of study for high school 

students (National Governors Association Center for Best Practices and Council of Chief 

State School Officers, 2010; Powell & Fuchs, 2014).  

Geometry also received attention from national committees and councils. 

Geometry standards from Common Core State Standards and the National Council for 

Teachers of Mathematics in 2000 called for effective geometry instructional programs for 

children in kindergarten through Grade 12 as a response to international research showing 

that the geometry problem solving skills of U.S. students had fallen behind the skills of 

peers in other countries (Bybee & Stage, 2005; Lemke & Gonzales, 2006; Zhang, Ding, 

Stegall, & Mo, 2012). Teuscher et al. (2015) analyzed the content of geometry taught in 

the middle grades and reported dramatic changes to the instruction of geometry. For 

example, after reviewing the geometry content of the Common Core State Standards for 

mathematics, Teuscher et al. determined more than 50% of what should be taught to meet 

the new standards will be new information to the respective grade levels in six of the 

eight states reviewed. Furthermore, according to the Common Core State Standards 2010, 

students should begin learning geometry in kindergarten and progress to using more 

precise definitions and developing proofs while in elementary and secondary schools. For 

example, kindergarteners should be able to identify shapes (squares, circles, triangles, 

rectangles, hexagons, cubes, and spheres), and by third grade, students should be able to 

reason with shapes and their attributes (Zhang et al., 2012). 

As expectations in higher-order math domains increase for U.S. students, natural 

concern arises regarding the mastery of concepts. Only 26% of 12th-grade students 



5 

performed at or above the proficient level in math on the National Assessment of 

Educational Progress (NAEP; National Center for Educational Statistics, 2010). Students 

with learning disabilities are especially at-risk for learning challenges in higher order 

math domains. Dobbin, Gagnon, and Ulrich (2014) reported only 6% of students with 

learning disabilities scored at or higher than proficient on 12th-grade NAEP tests in the 

math domain. In this study, the researcher investigated the relations between mathematic 

achievement and cognitive variables across multiple grade levels to determine whether 

different variables have stronger associations with achievement at different times in a 

student’s advancement through the grades. 

State of Research on Mathematic Competence 

Math difficulties have been researched far less than reading difficulties 

(Mazzocco & Myers, 2003). One explanation for the lack of research on mathematic 

difficulties is because poor math skills have long been considered more socially 

acceptable than poor literacy skills (O’Hare, Brown, & Aitken, 1991). It is therefore 

plausible that the limited number of studies on math performance is because of the 

amount of resources devoted to reading difficulties in the last several decades. Another 

explanation for the neglectful trends of the past with respect to mathematic competence 

may be attributed to the persistent belief that mathematic difficulties are based in 

linguistic competencies (Rourke & Conway, 1997). Reading development has benefited 

much from this belief. Empirical research devoted to reading development has proven 

beneficial to students. From this body of research came the identification of core 

cognitive deficits: phonological processing in early identified reading disabilities and oral 
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language deficits in late-identified disabilities (Catts, Compton, Tomblin, & Bridges, 

2012; Mazzocco & Myers, 2003). Furthermore, recommendations for evidence-based 

instruction and intervention resulted from the reading research.  

The mathematics performance of U.S. students has not received the same 

attention as reading performance. Currently, there is no consensus on the definition of 

math disability. Mazzocco and Myers (2003) reported it is unlikely that poor mathematic 

performance is linked to a core deficit. Geary (2011) referred to early mathematic 

cognition as a “suite” of basic quantitative competencies that include understanding of 

numeric magnitude and quantities, principles of counting, and mastery of addition and 

subtraction concepts. Vukovic and Siegel (2010) found the most persistent types of math 

problems are associated with deficits in calculation, practical problem solving, number 

facts, and reading.  

Despite the lack of empirical mathematic research spanning several decades, 

evidence of important outcomes exists from researchers who have studied math. The 

literature includes several cognitive deficits and fundamental arithmetic difficulties 

attributed to math disability (Fuchs & Fuchs, 2006). It is important to continue expanding 

math research, as mathematic difficulty can be a persistent and pervasive problem for 

students who struggle in mathematic domains (Simos et al., 2008). Furthermore, 

mathematics competence accounts for significant variance in employment, wages, and 

productivity (Rivera-Batiz, 1992). Poor mathematics skills limit access to advanced 

mathematic concepts and preclude many employment opportunities (McCloskey, 2007). 

Nearly 60% of North American adults have lower levels of mathematics competence than 
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what is considered necessary for coping with everyday life and work in advanced 

societies (Statistics Canada and Organization for Economic Cooperation and 

Development, 2005; Vukovic & Siegel, 2010). 

The current state of math research suggests the neglectful trends in mathematics 

research are a thing of the past. Researchers are conducting more empirical studies to 

investigate math difficulties and learning disabilities; for example, a search of peer-

reviewed articles on ProQuest databases using the term math achievement from the years 

1986–2016 (30 years) yielded 13,579 studies. Another search using the term math 

disability yielded 3,369 articles on mathematic disabilities. When the same topics were 

searched between the years of 1956–1986 (the preceding 30-year period), the results were 

8,290 and 478 citations, respectively. The numbers from the years 1986–2016 were 

substantially higher than for the years 1956–1986.  

Another concern with the previous state of mathematic research is the observation 

that earlier investigators disproportionately focused on the acquisition of basic facts. 

When compared to basic math skills, studies of mathematic competence with algorithms 

and other higher- order skill are few (Fuchs & Fuchs, 2006). A search of peer-reviewed 

articles investigating algebra and math disabilities between 1986 and 2016 revealed 188 

studies. A search using the keywords geometry and math disabilities within the same time 

frame yielded 140 peer-reviewed studies. Between the years 1956 and 1986, the number 

of peer-reviewed studies in algebra and geometry paired with math disabilities were 11 

and 8, respectively. Again, the numbers were remarkably higher for the years 1986–2016. 
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The present study contributes to growing research on mathematics competence and 

cognition, across multiple mathematics domains and grade levels. 

Subdomains of Mathematics Competence: Arithmetic 

Researchers do not fully understand all factors that influence children’s 

mathematical learning or the sources of individual differences in mathematics 

competence, but progress has occurred (Geary, 1994). For example, Duncan et al. (2007) 

reported children who begin school with less understanding of number counting and 

simple arithmetic than their peers are at risk of falling behind throughout their schooling. 

Many researchers of empirical studies investigated math competence in terms of skill 

development. Geary (1993) reported children who have trouble with math tend to use 

immature problem-solving strategies, have long solution times, have atypical long-term 

memory representations of basic addition facts, and frequently commit computational and 

memory retrieval errors. These difficulties may be because of poor procedural (i.e., steps 

and procedures) and conceptual knowledge (e.g., logical relations, working memory 

resources, attention, memory retrieval, speed of processing, especially counting speed, 

and counting concepts; Fleischner, Garnett, & Shepherd, 1982; Geary, Bow-Thomas, & 

Yao, 1992; Geary, Brown, & Samaranayake, 1991; Geary & Widaman, 1987; Goldman, 

Pellegrino, & Mertz, 1988).  

Geary et al. (2012) noted that children with math disabilities have severe deficits 

in the ability to develop long-term memory representations of basic arithmetic facts and 

retrieve learned arithmetic facts. Geary et al. (1991) found children without math 

disabilities rely more on memory retrieval, have fewer errors, and rely less on counting to 
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solve addition problems; moreover, the speed of executing both computational and 

retrieval strategies increases across time for students without math disabilities. In 

contrast, children with math disability showed no change in their use of strategies or their 

rate of fact retrieval. For many children with math disability, this pattern does not appear 

to change substantially across the elementary school years, even with extensive drilling 

(Fleischner et al., 1982; Howell, Sidorenko, & Jurica, 1987). The findings of these 

studies suggest a retrieval developmental delay that many children may not outgrow 

(Geary, 1993; Goldman et al., 1988).  

Geary, Bow-Thomas, et al. (1992) found first graders with math disability are 

developmentally delayed when compared to nondisabled peers in their understanding of 

counting concepts, which contributes to poor computational and arithmetic skills later. 

Children with math disability have difficulty acquiring more complex mathematical skills 

because of a fundamental deficit in basic arithmetic and number sense. Based on early 

findings of retrieval and computational deficits in children with a math disability, 

considerable research exists to expand these investigations. Children with math 

disabilities have significant deficits in procedural skill (e.g., ability to use algorithms to 

solve simple and complex calculations), and the most consistent computational deficit is 

poor fact retrieval (Chong & Siegel, 2008; Geary, 1990). Deficiencies in fact mastery and 

calculation fluency may be persistent and defining features of math disabilities 

(Andersson, 2008; Chong & Siegel, 2008; Jordan, Kaplan, & Hanich, 2002; Jordan, 

Hanich, & Kaplan, 2003a, 2003b). 
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Mathematic research has primarily pertained to whole numbers, but other types of 

numbers deserve the attention of researchers. Many children struggle to acquire fraction 

knowledge (Siegler & Pyke, 2013). Fractions represent a mathematic skill area that 

presents persistent difficulty for children with mathematic difficulties (Algozzine, 

O’Shea, Crews, & Stoddard, 1987; Hecht & Vagi, 2010; Hecht, Vagi, & Torgesen, 2007; 

National Math Advisory Panel [NMAP], 2008a). A recent NAEP report revealed that 

50% of eighth-grade students could not order a set of three fractions from smallest to 

largest correctly and these difficulties continue into high school. Another NAEP report 

revealed less than 30% of 11th graders were able to translate .029 into the correct fraction 

(Siegler & Pyke, 2013). Poor mastery of fractions has long-term effects. Siegler et al. 

analyzed (2012) two longitudinal data sets and the results revealed fifth-grade students’ 

knowledge of fractions predicted success with algebra and overall math achievement 5 to 

6 years later. Therefore, fractions are a gateway to advanced mathematic concepts. 

Children who have difficulty with both the conceptual and procedural aspects of 

fractions are at a higher risk for obstacles that prevent moving beyond basic math to 

advanced topics in mathematics (Hecht, Close, & Santisi, 2003; Hecht & Vagi, 2010; 

Heller, Post, Behr, & Lesh, 1990; Loveless, 2003; NMAP, 2008a). For example, 

conceptual fraction knowledge may include knowing fractions are numbers that can 

range from negative to positive, knowing numerator and denominator relations, and 

understanding magnitude (Siegler & Pyke, 2013). Procedural knowledge of fractions may 

include addition and subtractions of fractions, common denominators, and multiplication 

and division of fractions. Individual differences in conceptual and procedural knowledge 



11 

of fractions explain the variability in success with fraction computation and fraction word 

problems, set-up, and accuracy (Siegler & Pyke, 2013). Conceptual knowledge uniquely 

explains individual differences in fraction estimation skills (Hecht, 1998).  

Problem solving is an area of mathematic skill that presents considerable 

difficulty to children struggling with mathematic competence. Difficulty with word 

problems may arise because of the requirement to use multiple steps and skills to solve 

the problems (Parmar, Cawley, & Frazita, 1996; Powell & Fuchs, 2014). Difficulty may 

also arise from language-based challenges as word problems are embedded within a 

linguistic context and many students experience challenges with language (Fuchs, 

Seethaler, et al., 2008; Powell & Fuchs, 2014). To correctly solve a word problem, 

students must use the language of the problem narrative to develop a problem model, 

identify the missing information, generate a number sentence that represents the problem 

model and incorporates the missing information, and derive the calculation problem for 

finding the missing information (Powell & Fuchs, 2014). Using narrative to extract 

pertinent information for developing a number sentence from a word problem can be 

difficult for many students (Carpenter, Moser, & Bebout, 1988; Herscovics & Kieran, 

1980; Powell & Fuchs, 2014). Math education reform during the last few decades has 

prompted schools to emphasize the development of a more complex problem-solving 

capacity in children (Fuchs & Fuchs, 2006; Resnick & Resnick, 1992) with a 

measurement focus on performance with real-world problem solving and solutions that 

involve applied mathematical skills (Fuchs & Fuchs, 2006).  
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Andersson (2008) extended the literature on mathematics competence by looking 

beyond acquisition of basic math skills (e.g., number sense, basic calculations) and 

investigated math performance in children who struggle mathematically and children who 

struggle with reading, across a variety of math tasks. Andersson found that children with 

math difficulties experienced substantial difficulty with mathematics word problem 

solving. The challenges with problem solving were attributed to several processes: poor 

skills in multidigit calculation, poor arithmetic fact retrieval, poor understanding of 

calculation principles, and deficits related to specific problem-solving processes (e.g., 

establishing a problem representation and developing a solution plan). Fuchs et al. (2009) 

reported mathematic problem solving conceptually is a transfer task that requires students 

to apply skills, knowledge, and strategies to novel problems. Furthermore, this form of 

transfer can be highly difficult for younger children and children with disabilities who 

have difficulties generalizing.  

The literature on mathematics competence with problem solving also suggests 

working memory and listening comprehension are predictors of children’s skill with 

solving word problems and pre-algebraic concepts (Fuchs, Powell, et al., 2014). Explicit 

word-problem instruction has been effective in helping students who struggle with word 

problems (Kroesbergen, Van Luit, & Maas, 2004; Powell & Fuchs, 2014). In recent 

work, researchers have focused on schemas, with which students are taught to recognize 

problems as belonging to problem types and to apply solutions that match the 

accompanying schemas (Fuchs et al., 2004; Jitendra, Griffin, Deatline-Buchman, & 

Sczesniak, 2007). Developing schemas for categorizing word problems helps students 
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understand that problems can belong to familiar categories (Cooper & Sweller, 1987). In 

addition, developing schemas accommodates working memory deficits that may exist, 

which are linked to difficulty with word problems (Swanson & Beebe-Frankenberger, 

2004).  

Subdomains of Mathematics Competence: Algebra 

 Landy, Brookes, and Smout (2014) defined algebra as the structural 

representation of numerical relations. Moreover, algebraic equations are described as one 

of the most powerful mathematical representations for expressing quantitative relations. 

Algebraic statements in which variables represent relations among unknown quantities 

express some of the most abstract assertions many people will ever consider. Algebra is 

qualitatively different from the thinking involved in arithmetic (Tolar, Lederberg, & 

Fletcher, 2009). For example, arithmetic problems are typically set on the page and 

require minimal structural changes or movements, thus allowing students to concentrate 

easily on computational demands. One may even argue that algebra is quantitatively 

different from arithmetic because of an increased number of operations and increased 

demands on cognition. Algebra requires students to manage structural, procedural, and 

numerical relations simultaneously. Additionally, formal notations found in algebra 

typically make extensive use of physical proximity and spatial relations (Landy et al., 

2014).  

Theories of mathematics achievement suggest algebra is cognitively demanding 

because students must flexibly switch between operational and structural views of 

mathematical expressions to be proficient (Mason, 1989; Sfard & Linchevski, 1994; 
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Tolar et al., 2009). Algebra achievement is not only a function of acquired arithmetical 

skill, but it is also a function of basic cognitive resources that may have direct effects on 

algebra achievement. Tolar et al. (2009) reported three-dimensional visualization as one 

of three cognitive resources related to algebra achievement. The other two cognitive 

resources are working memory and computational fluency (Engle, Tuholski, Laughlin, & 

Conway, 1999; Geary, Saults, Liu, & Hoard, 2000; Reuhkala, 2001). Working memory 

may be related to algebra achievement because of the requirement to actively maintain 

multiple conceptions of mathematic expressions (e.g., objects with features as a set of 

procedures) while solving algebraic problems and switching between them as appropriate 

(Tolar et al., 2009). In addition to working memory, visual-spatial tasks that include 

mental manipulation of three-dimensional objects correlate with math assessments 

involving higher-order math skill in samples of adolescents and adults (Tolar et al., 

2009).  

Subdomains of Mathematics Competence: Geometry 

Geometry requires strong visual imagery and higher-order cognitive skills, such 

as metacognitive skills, prediction, planning, monitoring, and evaluation of math 

information (Dobbins et al., 2014; Zhang et al., 2012). Children may be especially 

challenged by geometric problem solving because the comprehension of geometric 

problems is much more complex than that of other math domains, such as calculation 

(Wong, Hsu, Wu, Lee, & Hsu, 2007). Researchers of geometry reported problems in 

geometric competence stem from lacking the prerequisite skills (e.g., calculation skills, 
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graphing, working with lines, reasoning with geometric ideas) for geometry (Carroll, 

1998; Mistretta, 2000).  

Many students who struggle with learning geometry have visual-spatial learning 

deficits. Geometry competence depends on having the ability to spatially represent 

mathematic relations (Zhang et al., 2012). McLean and Hitch (1999) reported children 

with mathematic difficulties performed at a lower level in spatial working memory tasks 

than did their peers. Students who have high levels of competence with geometry 

demonstrate the ability to manipulate and hold the complex spatial information required 

to solve the geometric problems (Zhang et al., 2012). 

New developments in research on visual-spatial skills include increased interest in 

the relations between spatial reasoning and geometry (Mulligan, 2015). Relative to other 

mathematics domains, geometry is intuitively and mathematically spatial because of the 

relations between points or collections of points, such as lines. The fact that a point is at a 

certain distance from a second point is a geometric property and a spatial property 

(Cheng, Huttenlocher, & Newcombe, 2013). Studies of mathematics learning highlight 

the role of spatial ability in the development of skills involved with interpreting patterns 

(Clements & Sarama, 2011; Papic, Mulligan, & Mitchelmore, 2011). The implications of 

these studies for teaching, learning, and professional practice make these studies different 

from traditional educational views that ignored visual-spatial development. This 

difference results from design of spatial reasoning tasks and instruments, attention to 

children’s growth of broader mathematical conceptual ideas, and application in practice. 

The results of these studies raised important questions regarding how to differentiate 
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instruction, assessment, curriculum, and intervention programs for learners who display 

differences in spatial ability and mathematics learning (Mulligan, 2015).  

Individual Differences in Mathematics Competence 

Landy et al. (2014), described mathematic ability as the ability to interpret 

abstract relations among abstract entities. In another definition, math is described as a 

language (Terao et al., 2004). According to Terao et al. (2004), mathematics is a 

language of formal symbols that describe the phenomenon being viewed. Many theorists 

argue math is fundamentally visual. Dehaene, Spelke, Pinel, Stanescu, and Tsivkin 

(1999) suggested mathematical thinking emerges from an interplay between the symbolic 

areas of the brain and the visual-spatial systems.  

Whether one advocates language-based learning of mathematics, visual learning, 

or the combination of factors, one of the promising aspects of math research is the 

consistency among the relations of cognitive variables (Mazzocco & Myers, 2003). Per 

Mazzocco and Myers (2003), consistency across reports shows that both reading-related 

skills (e.g., phonological processing) and executive skills (e.g., working memory, 

inhibition) are associated with math achievement. Still, researchers have not identified 

the extent to which these cognitive correlates underlie one or more specific types of math 

difficulties or disabilities. This finding highlights the need for additional research.  

Mathematics builds on several cognitive abilities (Chong & Siegel, 2008; Geary, 

2011; Mazzocco & Myers, 2003; Szucs et al., 2014). Researchers suggest the individual 

differences of mathematics learning during elementary school depend not only on the 

school’s instructional program, but also on the children’s early numerical competencies, 
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such as understanding of magnitude as well as general cognitive abilities (Fuchs, Geary, 

et al., 2014; Swanson & Beebe-Frankenberger, 2004). Chong and Siegel (2008) identified 

working memory as the strongest cognitive deficit linked to math difficulties based on 

prior research (Bull, Espy, & Wiebe, 2008; Passolunghi, Mammarella, & Altoe, 2008; 

Swanson, 2011). However, other researchers have hypothesized that sets of cognitive 

variables associated with aspects of math development may differ as a function of the 

math domain (e.g., working memory supports fact fluency; phonological processing 

supports computation; Fuchs et al., 2005; Geary et al., 1991; Wilson & Swanson, 2001). 

Reading and phonological processing have been tied to mathematic competence for some 

time. Phonological processing is associated with computations in Grades 2–5 (Hecht, 

Torgesen, Wagner, & Rashotte, 2001). Swanson and Beebe-Frankenberger (2004) and 

Swanson, Jerman, and Zheng (2008) found phonological processing is a predictor of 

performance on word problems in elementary children.  

Solutions to multiplication and addition problems are likely to be verbally 

encoded and retrieved from long-term phonological memory, rather than computed on 

demand (Ashcraft, 2002; Ashcraft & Bataglia, 1978; Ashcraft & Stazyk, 1981; Szucs et 

al., 2014). However, early models of memory advocate for fact retrieval from declarative 

memory or semantic memory (Cohen & Squire, 1980; Tulving, 1987). Leather and Henry 

(1994) reported strong correlations between phonological awareness measures and 

arithmetic test scores in 7-year-olds. Hecht et al. (2001) found phonological memory, the 

rate of access to phonological codes in long-term memory (rapid naming of letters and 

numbers), and phonological processing were strongly associated with computational 
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ability; additionally, overall phonological skill nearly completely explained the relation 

between reading and computational ability in elementary students. Swanson and Beebe-

Frankenberger (2004) and Simmons, Singleton, and Horne (2008) reported similar 

findings in young children.  

According to Szucs et al. (2014), a large number of researchers have reported 

strong relations of short-term memory and working memory with mathematic 

achievement (Gathercole, Pickering, Knight, & Stegmann, 2004; Passolunghi & 

Mammarella, 2010; Passolunghi & Siegel, 2001; Raghubar, Barnes, & Hecht, 2010; 

Simmons, Willis, & Adams, 2012; Swanson & Jerman, 2006). Poor working memory 

resources can influence mathematic skills development (Geary, 1993; Hecht & Vagi, 

2010). For example, Geary et al. (1991) found a numerical memory span advantage of 

about 1 digit for students without math learning disabilities when compared to students 

with math disabilities; moreover, the shorter the memory span, the more frequent the 

computational errors (Geary, 1993). Swanson (2011) reported working memory as 

explaining a significant portion of the variance in children’s solution accuracy with word 

problems. Wilson and Swanson (2001) reported that students with poor mathematic 

competence have more problems with visual working memory than their typical peers. 

The current study will extend the literature by investigating visual-spatial working 

memory’s relation with multiple mathematic domains.  

Another important consideration in the working memory and math achievement 

literature is what Swanson (2011) reported. According to Swanson, the body of working 

memory research does not consistently identify working memory as having a significant 
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relation with mathematic problem solving. Other studies report reading proficiency 

mediates the role between working memory and problem solving (Lee, Swee-Fong, Ee-

Lynn, & Zee-Ying, 2004); additionally, Lee et al. reported high intelligence and 

vocabulary skills led to better performance on mathematic word problems. Fuchs et al. 

(2006) also did not find a significant relation between working memory and mathematic 

problem solving. Furthermore, nonverbal problem solving, concept formation, sight word 

efficiency, and vocabulary were identified as predictor variables.  

Attention is also identified as a robust cognitive predictor of mathematics 

competence in the literature (Fuchs, Compton, et al., 2014; Fuchs et al., 2005, 2006; 

Geary et al., 2012). William James, the 19th century psychologist, described attention as 

the “taking of the mind” out of several possible objects or trains of thought, to effectively 

deal with one of them. Posner (1994) added the element of “selection” to the definition of 

attention. Several models of memory emphasize the role of attentional processes. 

Attention is involved in all aspects of memory (e.g., selecting stimuli for further 

processing, encoding, storage, and retrieval; Muzzio, Kentros, & Kandel, 2009; Posner, 

1994). To maintain information in short term memory, one must focus one’s attention in 

the present (Anderson, 2005; Greenstein, Blachstein, & Vakil, 2009).  Active rehearsal 

and retrieval of information requires attention (Cowan, Nugent, Elliott, Ponomarev, & 

Saults, 1999; Greenstein et al., 2009).  Attention is considered to be a part of the central 

executive of Baddeley’s (2002) model of working memory. The central executive is 

believed to control the flow of information: switching between tasks, selection of stimuli, 

and inhibition of irrelevant ones, which are functions mainly attributed to attention.  
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Children with math difficulties tend to engage in less attending behavior during 

math instruction (Fuchs et al., 2005; McKinney & Speece, 1986; Passolunghi, Cornoldi, 

& De Liberto, 1999). Bull, Johnston, and Roy (1999) and Miyake, Friedman, Rettinger, 

Shah, and Hegarty (2001) found that executive skills (a subsystem of attentional systems) 

contribute to math performance. Swanson (2011) reported inattention as a co-morbid 

condition in children with working memory deficits. Fuchs et al. (2006), using path 

analysis, found teacher ratings of inattentive behavior significantly predict mathematic 

problem solving.  

Fennema (1979) suggested that all mathematical tasks require spatial thinking, 

particularly as the mathematic concepts become more complex (van Garderen, 2006). 

Visual-spatial reasoning predicts many forms of mathematics learning such as arithmetic 

and word-problem solving (Fuchs et al., 2014).  Spatial skills can improve children’s 

development of numerical knowledge by helping them to acquire a linear spatial 

representation of numbers (Gunderson, Ramirez, Beilock, & Levine, 2012). Visual-

spatial deficits can disrupt performance in arithmetic (Geary, 1993. Son and Meisels 

(2006) found that early kindergarten visual-motor skills added a small, but unique 

amount of variance to prediction of achievement in math at the end of first grade. Fuchs 

et al. (2014) identified visual-spatial reasoning as one of four general cognitive abilities 

involved in individual differences in numeration (collections constitutes magnitude), 

along with working memory, listening comprehension, and attentive behavior.  

In adolescence, spatial-mechanical reasoning is correlated with performance on 

math tests measuring fractions, number sense, measurement, geometry, and data 
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representation (Casey, Nuttall, & Pezaris, 2001; Gunderson et al., 2012); moreover, 

mental rotation ability among college students and high-ability middle school students 

predicts performance on the math portion of the SAT-M (Casey, Nuttall, Pezaris, & 

Benbow, 1995; Gunderson et al., 2012).  

Hegarty and Kozhevnikov (1999) discussed the relation between two types of 

visual-spatial representations and mathematic problem solving. The types of 

representations discussed were schematic representations that encode spatial relations 

described in problems and pictorial representations that encode the visual appearance of 

the objects described in the problems. The results of analysis by Hegarty and 

Kozhevnikov revealed that the use of schematic representations was more closely 

associated with mathematic performance than was pictorial representations.  

Math Difficulties and Disability 

Like reading difficulty, having challenges in math is a substantial obstacle to 

academic achievement (Mazzocco & Myers, 2003). The acquisition and application of 

mathematical skills, such as counting and subtraction, are significant because of demands 

of formal schooling, daily living activities, and employment (Floyd, Evans, & McGrew, 

2003; Rivera-Batiz, 1992; Rourke & Conway, 1997). Math disability in children is not 

unusual (Badian, 1983; Geary, 1993). Badian (1983) reported that 6.4% of elementary 

and junior high school students have a math disability when compared to 4.9% who 

showed a form of reading disability. Fuchs and Fuchs et al. (2005) reported similar 

findings, showing 5% of the school-age population experiences some form of math 

disability. Moreover, it is possible that many additional children struggle with low 



22 

mathematic performance without a formal diagnosis of math disability (Shalev, 

Auerbach, Manor, & Gross-Tsur, 2000).  

Geary (1993) suggested three subtypes of math disability: semantic memory, 

procedural, and visual-spatial. The semantic subtype is associated with reading disability 

and is characterized by poor fact retrieval and variable response time. The procedural 

subtype is characterized by immature strategies, errors in execution, and conceptual 

delays. The visual-spatial subtype involves misalignment of numeric information, sign 

confusion, number omission or rotation, and general misinterpretation of spatially 

relevant information. Of the three math disability subtypes, the visual-spatial subtype is 

the least understood because of the lack of empirical studies (Mazzocco & Myers, 2003). 

However, critical gaps in understanding of math disability overall exist, such as how 

mathematics deficits occur in children over time and within developmental levels 

(Mazzocco & Myers, 2003). Further research is necessary to have a better understanding 

of the definition of math disability and the manifestation of underlying deficits.  

Geary (2006) reported mathematic disabilities theoretically can result from 

deficits in the ability to “represent” or process information in one or all of the many areas 

of mathematics. Therefore, math difficulties may logically stem from a vast number of 

mathematic domains (e.g., arithmetic, geometry, graphing, theorems; Geary, 2006, p. 

199). Mazzocco and Myers (2003) stated math disabilities may vary in type and features 

as a function of development. Not enough is known for most mathematical domains (e.g., 

geometry, algebra); however, theory and experimental methods are well developed in the 
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areas of counting and simple arithmetic (Briars & Siegler, 1984; Geary, 1994, 2006; 

Gelman & Meck, 1983; Siegler & Shrager, 1984).  

No current consensus exists regarding the definition of math disability; 

furthermore, there is no agreement in how math disability is diagnosed. This deficit exists 

despite the recent emergence of topics on the identification of children with math 

disability. In the schools, practitioners use discrepancy models or a student’s response to 

mathematic intervention over time as tools to help educational teams determine whether a 

student has a learning disability (Individuals with Disabilities Education Act, 2004). 

Clinical practitioners rely on the use of the Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-V), which defines a math learning disability as a 

neurodevelopmental disorder of biological origin manifested in learning difficulties and 

problems in acquiring academic skills and markedly below age-level performance. The 

symptoms must manifest in early school years, last for at least six months, and must not 

be attributed to intellectual disabilities, developmental disorder, or neurological or motor 

disorders (DSM-V; American Psychiatric Association, 2013). Most researchers have 

relied on standardized tests of achievement and intellectual functioning (IQ) to determine 

whether a student is mathematically disabled, whereas, scores lower than the 20th or 25th 

percentile on a math achievement test combined with low average or higher than average 

IQ scores constitute a math learning disability (Geary, 2006; Geary, Hamson, & Hoard, 

2000; Gross-Tsur, Manor, & Shalev, 1996).  

The problem with current methods of identifying mathematics disabilities is the 

potential to have over- and under-identification of students with learning disabilities. 
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Geary (1990) and Geary et al. (1991) found that use of scores below the 20th and 25th 

percentile applied in a single academic year led to many false positives and that children 

typically improved in later grades. Furthermore, the 25th percentile cut-off does not 

correspond to the popular estimation of math disability affecting 5–8% of the population 

(Geary, 2006). The discrepancy model has long been criticized for its inaccuracy in 

identifying learning disabilities because of its formula seemingly overlooking those 

children that struggle academically despite not having a discrepancy. Recent critics of 

response to intervention (RTI) describe RTI as a way of identifying the lowest 10% of the 

learning-disabled distribution while neglecting more competent students who may be 

performing markedly below their potential. The present researcher was concerned with 

identifying predictors of math competence across grade levels to advance research on 

improving lagging math performance in school-aged children. 

Component Processes Underlying Competence in Mathematics 

Working memory. Working memory is a cognitive system with limited capacity 

and is essential to encoding, storage, and retrieval of information being processed on any 

cognitive task (Atkinson & Shiffrin, 1971; Baddeley, 2003; Engle, Kane, & Tuholski, 

1999). Working memory is therefore a robust predictor of performance on a range of 

cognitive abilities such as language functioning, problem-solving, and reasoning (Towse 

& Cowan, 2005). The working memory system maintains information in an active state 

while that or other information is being processed (Baddeley & Logie, 1999). Short-term 

memory requires temporary retention of information, whereas working memory requires 

an additional processing component (Szucs et al., 2014).  
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Baddeley and Hitch (1974) proposed a model of working memory that consists of 

three components: the central executive, the phonological loop, and the visuospatial 

sketchpad. The central executive is a system for controlling attention, directing the 

resources of working memory, and ensuring these resources are used appropriately to 

achieve the goals that have been set. The model also included two temporary storage 

systems: the phonological loop and the visuospatial sketchpad (Baddeley & Hitch, 1974). 

The phonological loop is responsible for holding speech-based information. The second 

storage system is for holding visual and spatial information and is known as the 

visuospatial sketchpad. The phonological loop and the visuospatial sketchpad storage 

mechanisms hold information briefly. The central executive is not an area of storage; 

rather, it is the active portion of working memory. Baddeley and Hitch’s model of 

working memory has undergone several revisions with the most current version adding a 

component called the episodic buffer (Baddeley, 2000). The episodic buffer is a link to 

long-term memory, additional storage beyond the sensory perception and sensory stores, 

and an integrator of information from the other systems.  

Many researchers associate working memory with mathematic competence. 

Leikin, Paz-Baruch, and Leikin (2014) reported working memory storage is critical to 

solving multistep arithmetical problems (Hitch & Baddeley, 1976; Hoard, Geary, Byrd-

Craven, & Nugent, 2008) and in solving single-digit addition problems (Barrouillet & 

Lépine, 2005). Dark and Benbow (1991) revealed individual differences in working 

memory span are related to mathematic intellectual giftedness. Hoard et al. (2008) found 

intellectually gifted individuals have an advantage in visual-spatial working memory.  
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In most studies regarding working memory, researchers have relied on Baddeley’s 

model of working memory and have assumed the “additional processing” component that 

differentiates working memory from short-term memory relies on the domain-general 

central executive function. This assumption resulted from studies involving only verbal 

tasks to test working memory. Evidence suggests verbal and visual working memory 

function can be distinguished (Jarvis & Gathercole, 2003; Klauer & Zhao, 2004; Shah & 

Miyake, 1996; Szucs et al., 2014) and may differently relate to mathematical competence. 

For example, several researchers testing both verbal and visual memory found that only 

visual, but not verbal, working memory performance discriminates children with poor 

and typical mathematical achievement (Andersson & Östergren, 2012; Kyttälä & Lehto, 

2008; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013; Szucs et al., 2014; White, Moffitt, 

& Silva, 1992). The results of prior research on visual-spatial working memory revealed 

a need to research both verbal and visual working memory separately.  

Following the publication by Baddeley and Hitch (1974), researchers analyzing 

the visuospatial sketchpad sought to explain its role in mental imagery. The visuospatial 

sketchpad was thought to offer a medium within which to generate and manipulate 

images (Logie & Pearson, 1997). Recent findings suggest the visuospatial sketchpad is 

less a model for mental imagery and more an online “cache” for visual or spatial 

information (Logie, 1995; Logie, Zucco, & Baddeley, 1990; Pearson, Logie, & Green, 

1996; Salway & Logie, 1995). Moreover, recent research suggests there are two 

components of the visuospatial sketchpad. The idea of a two-part visuospatial working 

memory evolved from observations by Goldman-Rakic (1987), who described the 
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organization of visual working memory as mirroring the what and where organization of 

the visual system (Postle, Idzikowski, Della Sala, Logie, & Baddeley, 2006).  

According to Logie (1995), within the two-part visual-spatial working memory 

system, one system is for the retention of recently presented visual forms, and another 

system is for the retention of movement sequences. Logie argued for a form of 

partnership in working memory between a “visual cache” and a spatially oriented “inner 

scribe.” The visual cache theoretically stores information about visual form (color, 

shape), is a passive memory store of static visual patterns, and is closely tied to visual 

perception (Pearson, 2001; Rudkin, Pearson, & Logie, 2007; Salway & Logie, 1995). The 

inner scribe retains information about sequential movements and is closely linked to 

planning and executing movements. Therefore, a fractionation occurs within the 

visuospatial sketchpad. A large body of evidence supports the notion that visuospatial 

working memory is not a unitary system; rather, visuospatial working memory consists of 

at least two separate subcomponents (Pearson, 2001; Salway & Logie, 1995).  

Researchers have investigated the distinction between the subcomponents of the 

visuospatial sketchpad using Corsi Blocks and Matrix patterns (Della Sala, Gray, 

Baddeley, Allamano, & Wilson, 1999; Logie & Pearson, 1997; Salame, Danion, Peretti, 

& Cuervo, 1998). The Corsi Block task is assumed to rely on spatial working memory 

because it requires memory of movement sequences (Rudkin et al., 2007). For example, 

in Della Sala et al. (1999), the Corsi Block task consisted of nine wooden blocks 

unevenly distributed across (and fixed upon) a flat board. The experimenter tapped 

sequences of blocks at the rate of one block per second, and the subject was asked to tap 
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out the same sequences. The sequences were randomly presented, and the 

difficulty level increased progressively. In contrast, matrix patterns are usually 

visual images that are still on the page. They are considered to be a purer form of 

visual memory than the Corsi Block Test, which also taps memory for positional 

sequences (Della Sala et al., 1999).  

Numerous researchers have investigated the relation between spatial working 

memory and execution of planning of movement (Pearson & Sahraie, 2003; Quinn, 1988, 

1991; Quinn & Ralston, 1986; Smyth, Pearson, & Pendleton, 1988). This research has 

revealed a specialized system that controls and monitors movements specific to spatial 

locations. This system appears to be related to the system employed during the encoding 

of an imaged matrix pattern and covert movements around the image (Quinn & Ralston, 

1986). Shifts in spatial attention are related to this system and spatial attention shifts can 

disrupt recall of movement sequences (Smyth & Scholey, 1994). Della Sala et al. (1999) 

investigated the two subsystems of visuospatial working memory and found evidence for 

distinct components of visual short-term memory and visual and spatial and sequential 

memory. Moreover, Della Sala et al. reported a double association in the pattern of 

interference produced by visual and spatial secondary tasks. In other words, the 

concurrent presentation of irrelevant pictures disrupted matrix span recall to a 

significantly higher degree than the Corsi span, while the opposite pattern of results 

occurred for concurrent tapping. The tapping movements involved in the Corsi task 

movements disrupted the Corsi task to a more significant extent. 
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The present study pertained to the visual-spatial components of working memory 

and their relations with mathematic competence. The researcher extended previous 

research on the dissociative properties of working memory by examining language 

cognition, verbal and visual working memory, and their relations to mathematic 

achievement across grade levels and mathematic domains. This study is the first of its 

type to include an investigation of the dissociative properties of working memory and its 

relation to grade level. 

 Spatial visualization. Lohman (1994) adequately defined spatial ability as the 

ability to generate, retain, retrieve, and transform well-structured visual images. Research 

has shown that visual-spatial ability can account for a significant amount of unique 

variance associated with general intelligence and academic achievement (Johnson & 

Bouchard, 2005; Rohde & Thompson, 2007) and that students with more highly 

developed abilities of spatial perception perform better in mathematics, science, and other 

areas requiring spatial skills (Leikin et al., 2014). Van Garderen and Montague (2003) 

reported gifted students used significantly more visual-spatial representations than 

average students and students with learning disabilities. Moreover, successful 

mathematical problem solving was positively correlated with use of schematic 

representations. In another study, Stavridou and Kakana (2008) investigated how graphic 

abilities in adolescents relate with performance in several academic areas. The research 

findings suggested a correlation between the level of graphic abilities and student 

performance in mathematics and science (Stavridou & Kakana, 2008). 
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Recent analyses have shown that spatial abilities uniquely predict STEM 

achievement and attainment even while holding constant other variables, such as math 

and verbal skills (Humphreys, Lubinski, & Yao, 1993; Shea, Lubinski, & Benbow, 2001; 

Wai et al., 2009). Given the recent focus on developing STEM domains and improving 

student performance, spatial visualization is an important skill that deserves instructional 

attention. In the domain of mathematic competence, Sherman (1979) reported spatial 

ability as one of the main factors affecting mathematic performance. According to 

Chavez, Reys, and Jones (2005), time spent helping students develop their spatial 

visualization skills benefits students’ mathematical growth and improves test 

performance. Battista (1998) documented specific problems that middle school students 

have in developing spatial structuring (e.g., building prisms of same volume but different 

forms and turning containers filled with liquid to observe changes). Spatial visualization 

together with logical reasoning call on higher-level cognitive processes and can improve 

with practice (Chavez et al., 2005). Uttal et al. (2013) found spatial skills of children and 

adult participants are malleable (i.e., capable of being shaped or trained) and gains in 

spatial skills training can transfer to other spatial tasks. The teaching of spatial thinking 

has gained such momentum that in 2006, the National Research Council published a 

report solely on the topic of teaching students to think spatially across the K–12 years of 

schooling. 

Mental imagery. The notion of human beings experiencing mental 

representations is fraught with debate. The concept of mental representation is abstract in 

nature and is therefore controversial. Many theorists imply it is nearly impossible to 
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experimentally discriminate between what is a visual representation and what is a 

language-based mental representation, because it is probable the same representation can 

be explained both ways. Logie, Pernet, Buonocore, and Della Sala, (2011, pp. 3071) 

described the debate in terms of propositional knowledge versus mental images, where 

propositional knowledge is described as “being enough” to support performance and 

visual images play a key functional role. What is accepted is that mental representations 

exist. Recent theorists of mental representation embrace the idea that multiple 

representations are necessary to capture the flexibility of cognitive performances, such as 

thinking, reasoning, and comprehension and individuals may differ in their capacity for, 

or experience of, mental imagery (Fleming, Ball, Ormerod, & Collins, 2011; Logie et al., 

2011).  

Movement and Visual-Spatial Working Memory 

Baddeley (1986) briefly discussed eye movements and visuospatial working 

memory. Early studies by Baddeley et al. explained possible functional links between 

visuospatial working memory and motor systems. Early among these were 

demonstrations that concurrent visual tracking of a pursuit rotor and an overhead 

swinging pendulum interfered with spatial versions of the Brooks memory span task, 

which led to a consideration of the role of eye movements in establishing and maintaining 

a spatial frame of reference. Hebb (1968) found eye movements, or their control system, 

may play an important intermediate role in imagery. In the late 1970s and early 1980s, 

Baddeley et al. conducted a series of experiments to investigate the role of eye 

movements in visual working memory. Baddeley (1986) referenced these three 
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experiments on eye movements. Postle et al. (2006) presented the studies in full, along 

with a fourth experiment. In Experiment 4 by Postle et al., participants were markedly 

less able to produce perfect sequences on a memory task in one of three conditions where 

the eyes were moving. The reaction time data from Experiment 4 showed a highly 

significant main effect for eye movement when the background changed. Overall, making 

voluntary eye movements significantly impairs performance on a mental task involving 

imagery; therefore, the system involved in control of voluntary eye movements must 

share capacity with the encoding of images and the retrieval or scanning of images. 

Postle et al. demonstrated several facts about the sensitivity of visuospatial working 

memory to eye movements; it is eye movement control, not the movement per se, that 

produces disruptive effects. These effects are limited to location (spatial information) and 

do not generalize to working memory for shapes (visual forms). The researchers found 

saccadic distraction to disrupt spatial working memory, but not performance on a 

comparable nonspatial task (Postle et al., 2006). 

Brooks (1967) developed a pair of tasks pertinent to developing the concept of a 

special visuospatial resource in working memory. These tasks required study participants 

to generate and retain a mental image of a matrix pattern and concurrent verbal 

sequences. This particular task has had widespread use in the working memory literature 

and has given it the status of an almost definitive task for visuospatial working memory 

(Baddeley & Lieberman, 1980; Logie et al, 1990; Quinn & Ralston, 1986; Salway & 

Logie, 1995). The task asked participants to imagine a square matrix pattern. The subjects 

were given oral instructions (sentences) or were asked to listen to the oral instructions 



33 

and read them simultaneously. The instructions asked the participants to place 

consecutive numbers in particular squares, starting in the second row. The subjects 

repeated the sequence aloud using their generated image as a mnemonic aid for recall. 

Brooks found the additional requirement to read the sentences resulted in poorer recall 

than listening alone, and similar results were found with other forms of mental imagery. 

From this apparent interference, Brooks stated the visual input systems used in reading 

required some of the same cognitive resources used for generating the mental image 

(Salway & Logie, 1995). Brooks tested the interference using an equivalent verbal task in 

which the words up, down, left, and right, were replaced by the words good, bad, slow, 

and quick. This created a set of nonsense sentences that could not easily be retained by a 

generated image and relied on verbal rehearsal. This type of task was recalled better 

when subjects read and listened to the sentences than when they listened alone. The 

visual requirement to read did not interfere with the verbal task. Therefore, some 

specialized visual imagery resources overlapped with mechanisms of visual perception, 

and some specialized verbal rehearsal mechanisms rely on some of the speech input 

channels.  

Other researchers have conducted follow-up studies to Brooks (1967) with similar 

findings. Baddeley and Lieberman (1980) conducted a follow-up study using the Brooks 

tasks and had similar findings. Placing spatial or movement demands on the participants 

interfered with the matrix task, but the spatial and movement demands did not interfere 

with the verbal version of Brooks’s task (Baddeley & Lieberman, 1980; Salway & Logie, 

1995). Quinn and Ralston (1986) asked subjects to perform the Brooks matrix task while 
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moving their hands, with their hands hidden from view. The movements were described 

as either incompatible or compatible with Brooks’ task and were passive or active. 

Compatible hand movements were hand movements in the same direction as the Brooks 

matrix instructions (Quinn & Ralston, 1986). Incompatible movements were not 

compatible with the matrix instructions. Active hand movements were movements 

initiated and performed by the subjects. Passive hand movements involved the 

experimenter holding the arms of subjects and moving the hands for them.  

Quinn and Ralston (1986) found that incompatible movements interrupted 

performance on recall of the matrix instructions and the disruption was observed when 

the movements were passive. In a follow-up study, Quinn (1994) found that only passive 

predictable movements disrupt performance; only when subjects could anticipate the 

movement of their arms or executed the movement themselves was there evidence for 

competing cognitive demands. The results of Quinn and Ralston (1986) and Quinn 

(1994) suggest mechanisms involved in performance on the Brooks matrix overlap with 

cognitive mechanisms for planning movements and not just movement executions. Postle 

et al.’s (2006) unpublished study provided further evidence for a link between movement 

control and the visuospatial sketchpad, as discussed by Baddeley (1986). Idzikowski et 

al. showed that concurrent intentional eye movements disrupted performance on the 

Brooks matrix task while passive eye movements (eye movements resulting from being 

spun in a chair) did not.  

Logie and Marchetti (1991) demonstrated the cognitive demands of arm 

movements may also affect the retention of a spatial or movement sequence. Johnson 
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(1982) indicated a complementary finding in which visual input of moving patterns 

appeared to disrupt the ability to imagine and to plan movement sequences. Other 

researchers have failed to show disruptions (Quinn, 1991). However, the data from 

studies involving concurrent dual-task performance strongly support an overlap between 

the construction of images of spatial information and the planning and production of 

movement (Salway & Logie, 1995).  

Verschaffel, De Corte, and Pauwels (1992), by tracking eye movements, found 

students make more comprehension errors when word problem terms are not consistent 

with a preferred order (e.g., when the problem includes the word more, but is a 

subtraction problem). Saccadic eye movements refer to rapid, jerk-like movement of the 

eyeball that subserve vision by redirecting the visual axis to a new location. Saccades can 

be voluntary or reflexive. People make rapid, saccadic eye movements to change the 

locus of fixation when they read, view pictures, or explore the world around them. 

Abnormalities in saccadic eye movement (SEM) are seen in a variety of disorders; 

therefore, SEM is a sensitive instrument for analyzing some psychopathologies. 

Researchers consider SEM a cognitive parameter to evaluate attention.  

Bittencourt et al. (2013) found abnormal SEMs are heavily involved in several 

psychiatric disorders: schizophrenia, ADHD, Anxiety Disorder, Bipolar Disorder. If 

abnormalities in saccadic eye movements are found in several disorders, such as ADHD, 

it is plausible that those with learning challenges may experience abnormal patterns in 

SEMs because of strong correlations between attention and learning. Researchers now 

explored the possible relation between attention and oculomotor control through 
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microsaccades, which are tiny eye movements that persist during fixation (Martinez-

Conde, Macknik, & Hubel, 2004).  

Microsaccades may also affect visual-spatial working memory. Voluntary 

saccades during retention decrease spatial span to a greater degree than attention shifts 

(Lawrence, Myerson, & Abrams, 2004; Pearson & Sahraie, 2003). During saccadic eye 

movement, visual input is reduced such that visual perception is confined to fixations, 

which is a phenomenon called saccadic suppression (Irwin & Brockmole, 2004). 

According to Irwin and Brockmole (2004), several recent studies have shown that certain 

cognitive processes are suspended during saccadic eye movements (e.g., memory 

scanning, stimulus encoding, counting tasks, and mental rotation; Irwin & Brockmole, 

2000) and other processes are not suspended. Irwin and Brockmole (2004) suggested the 

distinction between what is suppressed and what is not suppressed during saccades is as 

simple as what (e.g., object identification) and where (e.g., object location/orientation). 

Where processes were found to be suppressed during saccades and what processes were 

not. Irwin and Brockmole (2000) found saccadic movements suppress mental rotation 

efforts.  

Mental Rotation 

Recently, a debate has emerged regarding the role of motor processes in mental 

rotation. In early neuroimaging studies, researchers found activity during mental rotation 

tasks in areas in the posterior frontal cortex are associated with motor planning and 

execution (Cohen & Bookheimer, 1994; Zacks, 2008). Larsen (2014) defined mental 

rotation as the ability to determine that objects have the same shape despite differences in 
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orientation or size. Based on definitions of mental rotation and the components of the 

visuospatial sketchpad, mental rotation is theoretically a task of the inner scribe 

components of the visuospatial sketchpad (Hyun & Luck, 2007; Salway & Logie, 1995). 

Mental rotation involves passive storage of visual information but also its active 

manipulation (Albers, Kok, Toni, Dijkerman, & de Lange, 2013). First, an object is 

encoded into a mental representation. Second, this encoded representation is manipulated 

in a rotation-like manner. An example of a passive working memory task that does not 

involve active manipulation is the change-detection task (Liesefeld, Liesefeld, & 

Zimmer, 2014; Luck & Vogel, 1997).  

According to Liesefeld and Zimmer (2013), inherent in the conceptualization of 

mental rotation (e.g., introspection, theories, and interpretations) is a certain type of 

mental representation; namely, visual mental images are implied. The results of their 

research revealed contrary but compelling results, suggesting mental representation 

cannot be accurately described as purely visual (in the sense of visual form). 

Furthermore, during the process of mental rotation, orientation-dependent spatial 

information is extracted from the visually complex information. In other words, Liesefeld 

and Zimmer (2013) found “in an early time window, the observed working memory load-

dependent slow potentials were sensitive to the stimuli’s visual complexity; however, as 

the cognitive load visual stimuli are mentally rotated, orientation-dependent information 

is contained in the rotated representation” (Liesefeld & Zimmer, 2013). Something within 

human cognition separates spatially-oriented information from visual information in 
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cognitive systems. This finding supports the notion of two separate visual systems in 

working memory.  

While investigating studies of motion aftereffect, Larsen (2014) reported findings 

of a close relation between transformation of visual images in mental rotation and visual 

motion perception. According to Larsen, motion aftereffect is found to interfere in tasks 

of mental rotation (Corballis & McLaren, 1984; Seurinck, de Lange, Achten, & 

Vingerhoets, 2011). A meta-analysis of 32 investigations of brain activations during 

mental rotation was conducted and the findings revealed “all experiments using 

transformation specific contrasts (i.e., within-task comparisons of effects of mental 

rotation, comparing large rotations with small rotations) have found activations located 

about (_47.5, _59.5, _10.0, in Talairach space) that corresponds to the visual motion area 

(V5/MT_)” (Larsen, 2014; Zacks, 2008). This finding provides further evidence of an 

area within the brain for processing visual movement and motion.  

Larsen (2014) found a linear relation between the number of eye movement 

switches between and stimuli as a function of angular difference in orientation. The initial 

processing time of subjects was almost constant, until the first switch between stimulus 

objects. The duration of the remaining trials increased linearly as a function of discrepant 

angles (Larsen, 2014). The linear increase resulted from the number of saccades and the 

number and duration or fixations. This information supports the notion that a mental 

rotation task produces increased demands on saccadic movements because of the angular 

discrepancies involved in the task. In this study, the researcher investigated whether a 

student’s ability on a visuospatial working memory task involving mental imagery and 
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mental rotation predicted math performance. Moreover, the researcher investigated 

whether the relations between the components of working memory vary by grade level.  
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Chapter 2: The Present Study 

Rationale 

According to Lim and Son (2013), cross-cultural studies comparing the U.S. 

students to East Asian students typically find that East Asian students consistently 

outperform U.S. students in almost every area of mathematical knowledge (Geary et al., 

1992; Lemke et al., 2004). It has been said that the difference in the success of students in 

high-performing countries when compared to the United States may be attributed in part 

to the teacher’s knowledge of student needs and the teacher’s ability to craft instruction at 

the student’s proximal zones of development (Vygotsky, 1978). Moreover, teaching in 

high-performing countries is a highly-esteemed profession, in contrast to the U.S. 

Educational entities in other countries often recruit the most talented professionals and 

teachers are well compensated.  

Terao et al. (2004), in a grant proposal to the National Science Foundation, stated 

that “Instruction is effective to the degree that it is sensitive to the individual student.” It 

is therefore plausible to assume that U.S. teachers are having difficulty with 

implementing effective instruction, in part, due to lacking the tools and resources 

necessary to adequately address individual differences among students. If one is to ever 

solve the problem of poor mathematics achievement in America, one should have 

individualized understanding of the unique differences contributing to poor mathematic 

performance. U.S. teachers may not be fully aware of the individual needs of students. 

Fuchs et al. (2012) reported that little is known about individual differences in the 
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development of competence with algebra, and Fuchs and Fuchs (2006) stated that little is 

known about several other math domains beyond computation.  

According to Leikin et al. (2014), working memory is thought to be critical to 

many aspects of mathematical learning (Meyer, Salimpoor, Wu, Geary, & Menon, 2010). 

Many early studies of working memory and learning used only verbal tasks to test 

working memory. Evidence is now accumulating that verbal and visual working memory 

functions can be dissociated (Jarvis & Gathercole, 2003; Klauer & Zhao, 2004; Shah & 

Miyake, 1996; Szucs et al., 2014) and may relate differentially to mathematical 

competence. Several studies testing both verbal and visual memory found that only visual 

but not verbal working memory performance discriminates children with poor and typical 

mathematical achievement (Andersson & Östergren, 2012; Kyttälä & Lehto, 2008; Szucs 

et al., 2013; Szucs et al., 2014; White et al., 1992).  

According to Logie (1995), visual-spatial working memory is a two-part system. 

One system is for the retention of recently presented visual forms and another system is 

for the retention of movement sequences. Logie (1995) argues for a form of partnership 

in working memory between a “visual cache” and a spatially oriented “inner scribe.” The 

visual cache theoretically stores information about visual form (color, shape), is a passive 

memory store of static visual patterns, and is closely tied to visual perception (Pearson, 

2001; Rudkin et al., 2007; Salway & Logie, 1995). The inner scribe retains information 

about sequential movements and is closely linked to planning and executing movements. 

Therefore, a fractionation occurs within the visuospatial sketchpad. A large body of 

evidence supports the notion that visuospatial working memory is not a unitary system; 
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rather, visuospatial working memory consists of at least two separate subcomponents 

(Pearson, 2001; Salway & Logie, 1995). Growing evidence that visual-spatial skills are 

related to mathematic competence, especially in higher-order domains (Fennema, 1979; 

Humphreys et al., 1993; Shea et al., 2001; Wai et al., 2009). 

As discussed earlier, Geary (1993) suggested three distinct subtypes of math 

disability: semantic memory, procedural, and visual-spatial. The semantic subtype is 

associated with reading disability and is characterized by poor fact retrieval and variable 

response time. The procedural subtype is characterized by immature strategies, errors in 

execution and conceptual delays. The visual-spatial subtype involves misalignment of 

numeric information, sign confusion, number omission or rotation, and general 

misinterpretation of spatially relevant information. Of the three types of well-established 

patterns of math difficulty and disability, the visuospatial subtype is the least understood 

and has had the least amount of empirical research conducted on it attributes (Mazzocco 

& Myers, 2003). This is somewhat surprising considering the growing body of research 

that suggests visual-spatial skills correlate with several mathematic skillsets and domains.  

In the present study, I will investigate mathematics performance and cognitive variables 

across multiple grade levels in order to analyze whether differences exist as a function of 

grade level. In other words, do verbal working memory variables or language variables 

have more robust relation with math achievement in younger students than in older 

students? And does visual working memory have a more robust relation with the 

mathematic performance of older students? The present study is interested in determining 

whether children scoring lowest on cognitive measures that tap into visual-spatial 
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working memory are more likely to have trouble with specific mathematic domains (e.g., 

calculation, problem solving, fact retrieval) and in what grade level these relations are 

most prominent. Additionally, the present research is interested in knowing the amount of 

variance in various areas of math achievement is explained by the visual-spatial 

components of working memory. The data for this research was obtained from the 

Standardization data from the Woodcock-Johnson® IV (WJ IV®). Copyright © by 

The Riverside Publishing Company. All rights reserved. Used with permission of 

the publisher. 

 

Research Questions 

The research questions in the present study are:  

1. Do visuospatial working memory, verbal working memory, and language ability 

predict mathematic achievement as measured by the Woodcock Johnson-IV? This 

has been indicated in many studies, although the relations are not consistent 

across studies.  

2. Does grade level moderate the relations between visuospatial working memory, 

verbal working memory, and language ability with mathematics achievement as 

measured by the Woodcock Johnson-IV? It has been suggested that, as math 

becomes more complex, spatial skills become better predictors of mathematic 

performance. However, prior research has not investigated this question by 

analyzing grade levels. 
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Research Question 1 in many ways will likely replicate previous research findings 

regarding the cognitive correlates of mathematic achievement in various domains. It 

extends the literature by being the first of its kind to investigate the partitioning of 

working memory and its relation to grade level. 

The second aspect of my research question related to visuospatial working 

memory and movements was developed out of my own experiences with mathematic 

difficulties. Although numeric and arithmetic competence was not a significant issue, I 

experienced difficulty with advanced concepts due to managing the conceptual, spatial, 

and structural demands. I noticed the movements of teachers as they worked problems 

from left to right and top to bottom of the board/page interfered with my cognition. As 

soon as numbers were “represented” by letters and they started to “move”, I experienced 

conceptual difficulty. Even as I entered advanced statistics, I noticed the movements of 

the professor around an algebra matrix hampered my ability to follow the lecture, and I 

required extended practice with matrix solving, while my peers had done the problems 

during class.  

This discovery led into research question two, which looks at the relations of 

cognitive variables across grade levels. Previous research has found arithmetic and early 

mathematic competence is related to verbal, cognitive and academic variables 

(phonological processing, vocabulary, oral language, verbal working memory, reading). 

Although there are recent studies identifying visuospatial relations and early math 

competence, (Fuchs et al., 2014; Geary, 1998a; Gunderson et al., 2012; Son & Meisels, 

2006), the present research seeks to identify whether these variables have more 
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prominence at certain grade levels. Moreover, the present study seeks knowledge about 

whether the relations between visuospatial skills and mathematics competence is 

moderated by grade level. 

Mazzocco and Myers (2003) referred to an important aspect in the identification 

of math disabilities: emerging evidence supports the need to define math disability 

because approximately one-third of individuals who meet low achievement criteria for 

math disability at any one time do not maintain low achievement over time (Mazzocco & 

Myers, 2003). Unfortunately, most of the research on math disability has been informed 

by studies that have not investigated the transient nature of math disability (Vukovic & 

Siegel, 2010). The purpose of this study was to examine the academic and cognitive 

characteristics of students across grade levels to provide insight into which cognitive 

variables are related to math achievement as mathematic concepts become progressively 

complex. Many experts have argued that mathematics relies more strongly on 

visuospatial skills as the math concepts become more advanced (Casey et al., 1995; 

Casey et al., 2001; Fennema, 1979; Gunderson et al., 2012; Hegarty & Kozhevnikov, 

1999). Such an analysis is necessary in understanding the development of mathematic 

competence.  

Variables 

Visuopatial working memory. Visuospatial working memory will consist of two 

variables. These include the visualization and picture recognition subtests of the 

Woodcock Johnson-IV. 
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Verbal working memory. Verbal working memory will consist of three 

variables. These include the verbal attention, numbers reversed, and memory for words 

subtests of the Woodcock Johnson-IV. The scores from these subtests will be averaged to 

create a single composite score for verbal working memory. 

Language ability. Language ability will consist of two variables. These include 

listening comprehension and oral expression subtests of the Woodcock Johnson-IV. The 

scores from these subtests will be averaged to create a single composite score for 

language ability. 

Mathematic achievement. Mathematic achievement will consist of three 

variables. These include the applied problems, calculation, and math facts fluency 

subtests of the Woodcock Johnson-IV. The scores from these subtests will be averaged to 

create a single composite score for mathematic achievement. 

Demographic variables. The demographic variables of interest in this study will 

be grade level and age. Grade level will be represented as a continuous variable. 

Hypotheses 

H1a: Visuospatial working memory, verbal working memory, and language ability 

significantly predict mathematic achievement as measured by the Woodcock Johnson-IV. 

The visuospatial working memory variable will add unique variance the model.  

H2a: Grade level significantly moderates the relations between visuospatial 

working memory, verbal working memory, language ability, and mathematic 

achievement as measured by the Woodcock Johnson-IV.  
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If it is determined that visuospatial working memory is significantly linked to 

math competencies, and grade level is found to moderate the relation, visuospatial 

working memory interventions that provide extended practice with the skill necessary to 

store mathematic information necessary to solve equations, interpret visual stimuli, and 

solve multi-step problems images can be developed. Students may develop more 

cognitive space for abstract mathematic concepts if they are not lost in the demands for 

managing memory and structural/visual-spatial aspects of the task. If it is determined that 

certain components of working memory have stronger relations at certain grade levels, it 

will inform educators of the important cognitive variables at play as students develop. 
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Chapter 3: Methods 

Participants 

The national standardization sample of the Woodcock Johnson-IV was comprised 

of more than 7,000 individuals aged 2 to 90. It is important to note that the Woodcock 

Johnson norms are based on a single sample. The cognitive, oral language, and 

achievement test data were collected at the same time on the same participants. (Mather 

& Wendling, 2014a,b,c).The sample for the present study included undergraduate college 

students, with community characteristics and demographics closely resembling the 

general United States population. This present study sampled participants from the larger 

standardization sample from first, third, fifth, seventh, ninth, and eleventh grades, and 

undergraduates for the purpose of comparison across school-aged children and 

undergraduates.  

A power analysis was conducted using G*Power 3.1.9.2 (Faul, Erdfelder, 

Buchner, & Lang, 2014) to determine the minimum sample size necessary to obtain 

statistically valid results. The power analysis was based on a hierarchical regression with 

nine predictors (four terms for the independent variables, one term for the continuous 

grade level variable, and four interaction terms), a medium effect size of 0.15 for the 

overall significance of the model, a power level of .80, and a significance level of .05. 

The results of the power analysis revealed that the minimum sample size required for this 

study is 114 total cases across all grade levels. 
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Description of Instrument 

The data analyzed in the present study are the normative Woodcock Johnson 

Fourth Edition (WJ-IV) test of achievement, cognition, and oral language data already 

published by The Riverside Publishing Company (2014). This gives me the unique 

opportunity to study relations between broad measures of academic, language, and 

cognitive performance. The Woodcock Johnson-IV is a refined, revised version of 

previous versions of the instrument. 

The Woodcock Johnson-IV is administered individually; therefore, individuals are 

typically tested in an area with no other persons, other than the examiner or clinician 

administering the assessment. According to the WJ-IV examiner’s manual, the testing 

room is a place that is quiet, comfortable, and has adequate ventilation and lighting. The 

room should have all of the necessary equipment for test administration (e.g., table, 

chairs, test books, audio equipment, response booklets, writing utensils). The Woodcock 

Johnson-IV’s examiner’s manual lists several standardized procedures for test 

administration and recommends adherence to these procedures (e.g., rapport, order of 

administration, timing, basals, ceilings, and allowed accommodations).  

According to the Woodcock Johnson-IV examiner’s manual, the Cognitive 

portion of the Woodcock Johnson-IV battery includes eighteen subtests comprising a 

standard and extended battery. The WJ-IV cognitive assessment is designed to be on the 

cutting edge of practice and expands on its previous basis in CHC theory to focus on the 

most important broad and narrow CHC abilities. The broad CHC abilities include 

comprehension and knowledge, fluid reasoning, long-term retrieval, visual processing, 
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auditory processing, processing speed, short-term working memory, quantitative 

knowledge, and the narrow CHC abilities include perceptual speed, quantitative 

reasoning, auditory memory span, number facility, vocabulary, and cognitive efficiency. 

The differentiation of broad and narrow abilities is based in the original work of Cattell 

(1941, 1943, 1950), Horn (1965, 1998; Horn & Blankson, 2005), and Carroll (1993, 

1997, 2005) (Mather & Wendling, 2014a).  

The Achievement portion of the WJ-IV assessment has a total of twenty subtests 

which create the standard and extended batteries. The WJ-IV Achievement battery is a 

comprehensive battery of achievement domains including basic reading, reading 

comprehension, calculation, math applications, written expression, spelling, history, and 

science. The Oral Language battery of the WJ-IV is comprised of twelve subtests of 

phonological and language-based skills (Mather & Wendling, 2014b). The standard 

scores of the participants analyzed in the present study were derived from the following 

subtest tests. 

Cognitive subtests and composites.  

Verbal attention. Verbal attention is a test of verbal working memory. Verbal 

attention evaluates one’s ability in tasks of attentional control or controlled executive 

function. The task requires the examinee to listen to an intermingled list of animals and 

digits, before answering a specific question about the sequence. For example, “Say the 

animal that came before the 5” (Mather & Wendling, 2014a). 
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 Numbers reversed. The numbers reversed subtest is a test of short-term working 

memory and is delivered orally. It requires examinees to listen to increasing spans of 

numbers, before repeating them in reversed order (Mather & Wendling, 2014a). 

Memory for words. The Memory for Words subtest is a test of auditory working 

memory. The participants are asked to repeat a list of unrelated words in correct sequence 

(Mather & Wendling, 2014a).  

 Visualization. The visualization composite consists of two subtests: Spatial 

Relations and Block Rotation. The Spatial Relations subtest requires the examinee to 

identify the two or three pieces that form a complete target shape. The target shapes 

become increasingly difficult and complex. The block rotation task requires the examinee 

to identify two block patterns that match a target pattern (Mather & Wendling, 2014a). 

The present study’s theoretical perspective considers these subtests’ tasks processed in 

the visuospatial sketchpad, specifically the visual cache and the inner scribe respectively.  

Picture recognition. The picture recognition measures visual memory for objects 

or pictures. The examinee is shown a subset of pictures within a field of distracting 

patterns, and after a five-second delay, they are asked to select pictures through 

recognition (Mather & Wendling, 2014a).  

Achievement subtests.  

Applied problems. Applied problems is a test measuring the participant’s skills 

with constructing mental models via language comprehension, and application of 

calculation, reasoning, and insight. 



52 

 Calculation. Calculation is a test measuring the participant’s access and 

application of knowledge of numbers and procedures, including verbal associations 

between numbers represented as a string of words.  

Math facts fluency. The math facts fluency test measures speed and access with 

application of digit-symbol arithmetic procedures.  

Oral language subtests. 

Listening comprehension. Listening comprehension is a measure of listening 

ability and verbal comprehension. This cluster is composed of Understanding Directions 

(pointing to objects in a picture after given oral directions) and Oral Comprehension 

(listening to a passage and providing the final word to complete the passage). 

Oral expression. Oral expression is a measure of lexical knowledge, language 

development, and syntactic knowledge. It is a combination of Picture Vocabulary 

(identifying names of specific pictures) and Sentence Repetition (remember and repeat 

single words, phrases and sentences). 

Analytic Approach 

Prior to analysis, the data will be checked for missing scores and the presence of 

outliers. It is important to note that missing cases are unlikely to occur in the data as the 

dataset has been taken from a normative sample. In the event of missing scores, cases 

with missing scores on the variables of interest will be excluded from the analysis. The 

presence of outliers will be examined using standardized values. Tabachnick and Fidell 

(2012) suggest that scores with standardized values greater than 3.29 or less than -3.29 

should be considered outliers and removed prior to analysis. 
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An exploratory factor analysis was conducted prior to the main analysis in order 

to determine the most appropriate composite groupings for items on the WJ-IV subtests 

that were described previously. For the factor analysis, the unweighted least squares 

method of extraction and a Harris-Kaiser rotation were used. The analysis was specified 

to retain four factors, which corresponded to visuospatial working memory, verbal 

working memory, language ability, and mathematic achievement. The full results and 

statistics for the exploratory factor analysis will be presented in the results chapter. 

In order to address Research Questions 1 and 2 of this study, a hierarchical linear 

regression analysis will be conducted. A hierarchical linear regression is an appropriate 

statistical analysis when the goal of the research is to investigate the strength and 

direction of relations between a continuous dependent (outcome) variable and multiple 

independent (predictor) variables (Stevens, 2009; Tabachnick & Fidell, 2012). The 

dependent variable in this analysis will be the mathematic achievement composite 

variable (consisting of applied problems, calculation, and math facts fluency) measured 

by the Woodcock Johnson-IV. The independent variables in this analysis will be 

visuospatial working memory, verbal working memory, language ability, age, and grade 

level. The regressions will include an analysis in which visuospatial working memory is 

represented by one composite variable. To aid in interpretation, all independent variables 

will be mean-centered. 

The assumptions of hierarchical linear regression will be tested prior to analysis. 

These assumptions include normality, homoscedasticity, and absence of multicollinearity. 

The assumption of normality states that the regression residuals must be normally 
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distributed. This will be tested by examination of a normal P-P plot. The assumption of 

homoscedasticity states that the scores must be equally distributed around the regression 

line. This will be tested by examination of a scatterplot. Finally, the absence of 

multicollinearity means that the independent variables are not too highly correlated with 

each other. This will be tested using Variance Inflation Factors (VIF). Stevens (2009) 

suggests that VIF values greater than 10 indicate the presence of multicollinearity. 

For each regression model, the variables will be entered in steps. In order to 

address Research Question 1, the first step of each model will include visuospatial 

working memory, verbal working memory, and language ability. In order to address 

Research Question 2, grade level will be added in Step 2, and interaction terms for 

visuospatial working memory x grade level, verbal working memory x grade level, and 

language ability x grade level will be entered into each model at Step Three. The 

interaction terms will assess the moderating effect of grade level on the relations between 

visuospatial working memory, verbal working memory, and language ability with 

mathematic achievement. A significant interaction term indicates the presence of a 

moderating effect (Baron & Kenny, 1986). The overall model significance at each step 

will be tested using the F-test at a significance level of .05. Additionally, R-squared will 

provide a measure of the proportion of variability in the dependent variable that the 

independent variables explain at each step. If the overall model is significant, the 

significance of individual predictors will be tested using t-tests at a significance level of 

.05. Squared semi-partial correlations will be calculated to determine the amount of 

variability explained by each predictor. 
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Limitations 

There are several limitations inherent to the present study design. First, although a 

quantitative method is able to answer the specific research hypotheses, it is unable to 

examine the depth, underlying details, and subjective experiences that students have in 

regard to mathematic achievement (Mitchell & Jolley, 2001). Second, although the 

present study can examine the relations among the independent and dependent variables, 

it cannot determine the causal nature of the relations. This study is not able to determine 

if having better visuospatial working memory causes better mathematical achievement. 

Only an experimental design can produce causal conclusions about the relations among 

variables. 
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Chapter 4: Results 

 The purpose of this study is to examine cognitive processing and mathematic 

achievement in children and college students. This chapter contains the results of the data 

analysis conducted to address the research questions. First, the data cleaning procedures 

will be described, followed by descriptive statistics for the variables of interest. Then the 

results of the data analyses will be presented, including an exploratory factor analysis and 

a series of regressions. Finally, this chapter will conclude with a summary. 

Pre-Analysis Data Cleaning 

 A total of 2417 cases were received in the initial dataset. Prior to analysis, the 

data were screened for missing data and outliers. Four cases had missing scores for the 

variables of interest, so these cases were excluded from the analysis. Outliers were 

examined using standardized values. Tabachnick and Fidell (2012) suggested that scores 

with standardized values greater than 3.29 or less than -3.29 should be considered 

outliers. Thirty-eight cases contained outliers on the variables of interest, so these cases 

were excluded from analyses. A final total of 2375 cases were included in analyses. 

Descriptive Statistics 

 Table 1 displays descriptive statistics for the demographic and research variables. 

The age range of the sample was 5 to 61 years (M = 13.90, SD = 5.73). Grade levels 

included in the sample were 1, 3, 5, 7, 9, 11, and undergraduate (13-16). The average 

standardized scores on the composite variables and subtests (i.e., visualization and picture 

recognition) used in the analysis ranged from 101.01 to 101.21 with standard deviations 

ranging from 11.91 to 13.81. 
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Table 1 

Descriptive Statistics for Demographic and Research Variables 

Variable Min Max M SD 

     
Age (in years) 5.00 61.00 13.90 5.73 
Grade level 1.00 16.00 7.85 4.72 
Mathematic achievement 55.27 142.56 101.02 13.30 
Visuospatial working memory 54.96 149.55 101.04 12.89 

Visualization 49.11 152.76 101.01 15.61 
Picture recognition 55.28 150.43 101.07 15.15 

Verbal working memory 61.63 139.22 101.06 11.91 
Language ability 53.81 141.10 101.21 13.81 

 

Exploratory Factor Analysis 

 An exploratory factor analysis was conducted prior to the main analysis in order 

to determine the most appropriate composite groupings for items on the WJ-IV subtests. 

The exploratory factor analysis was conducted using the unweighted least squares 

method of extraction and a Harris-Kaiser rotation (with power set to 0), which allowed 

factors to be correlated. The analysis was specified to retain four factors, and Table 2 

displays the eigenvalues for the unrotated factors from the reduced correlation matrix. 

Correlations among the rotated factors are shown in Table 3, and these correlations 

ranged from .51 to .66. 
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Table 2 

Eigenvalues for Reduced Correlation Matrix for Exploratory Factor Analysis 

Factor Eigenvalue 
Eigenvalue 
Difference 

Proportion 
of Variance 

Cumulative 
Proportion 
of Variance 

     
1 4.32 3.40 0.68 0.68 
2 0.92 0.34 0.14 0.83 
3 0.57 0.06 0.09 0.92 
4 0.51 0.36 0.08 1.00 

 

Table 3 

Inter-Factor Correlations for Exploratory Factor Analysis 

Factor 1 2 3 
1. Mathematic Achievement - 

  

2. Language Ability .58 - 
 

3. Verbal Working Memory .54 .66 - 

4. Visuospatial Working Memory .51 .55 .51 

 

 Table 4 displays the rotated factor loadings for each of the subtests included in the 

exploratory factor analysis. Applied problems, calculation, and math facts fluency all 

loaded strongly (i.e., loading greater than 0.40) on Factor 1 (Mathematic Achievement). 

Oral expression and listening comprehension loaded strongly on Factor 2 (Language 

Ability). Verbal attention, numbers reversed, and memory for words all loaded strongly 

on Factor 3 (Verbal Working Memory). Finally, visualization and picture recognition 

loaded strongly on Factor 4 (Visuospatial Working Memory). The scores on the subtests 

loading on each factor were averaged to create composite scores for mathematic 
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achievement, language ability, verbal working memory, and visuospatial working 

memory (see Table 1). 

Table 4 

Rotated Factor Loadings for Exploratory Factor Analysis 

 Factor 
Subtest 1. Mathematic 

Achievement 
2. Language 

Ability 
3. Verbal 
Working 
Memory 

4.Visuospatial 
Working 
Memory      

Verbal attention .16 .17 .64 -.26 
Numbers reversed .26 -.12 .46 .11 
Memory for words -.16 -.13 .91 .10 
Applied problems .67 .12 -.01 .18 
Calculation 1.03 -.11 -.05 -.01 
Math facts fluency .73 .09 -.06 -.05 
Visualization .04 -.05 .04 .85 

Picture recognition -.17 .29 -.01 .42 

Oral expression .07 .49 .29 -.03 
Listening 
comprehension 

-.03 1.07 -.07 -.02 

Note. Boldfaced loadings are salient loading > 0.40. 

Linear Regression Analyses 

 Regression 1: Predicting math achievement composite scores. In order to 

address Research Questions 1 and 2 of this study, eight regression analyses were 

conducted. For Regression 1, the dependent variable was the mathematic achievement 

composite variable. The independent variables in this analysis were visuospatial working 

memory, verbal working memory, and language ability. Additionally, age was included 

as a covariate variable. The assumptions of normality, homoscedasticity, and absence of 

multicollinearity were tested prior to the analysis. Normality was tested by examination 

of a normal P-P plot (see Figure 1). The data did not deviate from the normal (diagonal) 



60 

line, so this assumption was met. Homoscedasticity was tested by examination of a 

scatterplot (see Figure 2). The data were equally distributed around zero, so this 

assumption was also met. Finally, multicollinearity was tested using Variance Inflation 

Factors (VIF). All VIF values were below 10 (see Table 5), indicating that 

multicollinearity was not a problem. 

 

Figure 1. Normal P-P plot for Regression 1. 



61 

 

Figure 2. Scatterplot for Regression 1. 

Table 5 

Regression 1: Predicting Mathematic Achievement Composite Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Visuospatial working 
memory 

0.17 (0.02) 8.38 < .001 0.03 1.34 

Verbal working memory 0.23 (0.02) 10.14 < .001 0.04 1.53 
Language ability 0.33 (0.02) 15.74 < .001 0.09 1.67 
Age 0.12 (0.04) 3.09 .002 < 0.01 1.01 

Note. F(4, 2370) = 315.01, p < .001, R2 = .35. 

 The results of the regression were significant, F(4, 2370) = 315.01, p < .001, R2 = 

.35, which indicates that, collectively, visuospatial working memory, verbal working 

memory, language ability, and age significantly predicted mathematic achievement. The 

R2 value indicates that these variables accounted for 35% of the variability in mathematic 
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achievement. The full results of the regression are presented in Table 5. Visuospatial 

working memory (B = 0.17, p < .001), verbal working memory (B = 0.23, p < .001), 

language ability (B = 0.33, p < .001), and age (B = 0.12, p = .002) were all individually 

significant positive predictors. This means that students with higher visuospatial working 

memory, verbal working memory, and language ability scores tended to have higher 

mathematic achievement scores, after controlling for age.   

Regression 2: Predicting applied problems subtest scores. For Regression 2, 

the dependent variable was the applied problems subtest of mathematic achievement. The 

independent variables in this analysis were visuospatial working memory, verbal working 

memory, and language ability. The assumptions of normality, homoscedasticity, and 

absence of multicollinearity were tested prior to the analysis. Normality was tested by 

examination of a normal P-P plot (see Figure 3). The data did not deviate from the 

normal (diagonal) line, so this assumption was met. Homoscedasticity was tested by 

examination of a scatterplot (see Figure 4). The data were equally distributed around 

zero, so this assumption was also met. Finally, multicollinearity was tested using 

Variance Inflation Factors (VIF). All VIF values were below 10 (see Table 6), indicating 

that multicollinearity was not a problem. 
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Figure 3. Normal P-P plot for Regression 2. 

 

Figure 4. Scatterplot for Regression 2. 
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Table 6 

Regression 2: Predicting Applied Problems Subtest Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Visuospatial working 
memory 

0.23 (0.02) 10.56 < .001 0.04 1.34 

Verbal working memory 0.23 (0.03) 9.20 < .001 0.03 1.52 
Language ability 0.42 (0.02) 18.72 < .001 0.13 1.67 

Note. F(3, 2371) = 522.40, p < .001, R2 = .40. 
 
 The results of the regression were significant, F(3, 2371) = 522.40, p < .001, R2 = 

.40, which indicates that, collectively, visuospatial working memory, verbal working 

memory, and language ability significantly predicted applied problems subtest scores. 

The R2 value indicates that these variables accounted for 40% of the variability in applied 

problems. The full results of the regression are presented in Table 6. Visuospatial 

working memory (B = 0.23, p < .001), verbal working memory (B = 0.23, p < .001), and 

language ability (B = 0.42, p < .001) were all individually significant positive predictors. 

This means that students with higher visuospatial working memory, verbal working 

memory, and language ability scores tended to have higher applied problems scores. 

 Regression 3: Predicting calculation subtest scores. For Regression 3, the 

dependent variable was the calculation subtest of mathematic achievement. The 

independent variables in this analysis were visuospatial working memory, verbal working 

memory, and language ability. The assumptions of normality, homoscedasticity, and 

absence of multicollinearity were tested prior to the analysis. Normality was tested by 

examination of a normal P-P plot (see Figure 5). The data did not deviate from the 

normal (diagonal) line, so this assumption was met. Homoscedasticity was tested by 
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examination of a scatterplot (see Figure 6). The data were equally distributed around 

zero, so this assumption was also met. Finally, multicollinearity was tested using 

Variance Inflation Factors (VIF). All VIF values were below 10 (see Table 7), indicating 

that multicollinearity was not a problem. 

 
Figure 5. Normal P-P plot for Regression 3. 
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Figure 6. Scatterplot for Regression 3. 

Table 7 

Regression 3: Predicting Calculation Subtest Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Visuospatial working 
memory 

0.12 (0.02) 5.04 < .001 0.01 1.34 

Verbal working memory 0.27 (0.03) 9.71 < .001 0.04 1.52 
Language ability 0.29 (0.03) 11.44 < .001 0.05 1.67 

Note. F(3, 2371) = 245.06, p < .001, R2 = .24. 
 
 The results of the regression were significant, F(3, 2371) = 245.06, p < .001, R2 = 

.24, which indicates that, collectively, visuospatial working memory, verbal working 

memory, and language ability significantly predicted calculation. The R2 value indicates 

that these variables accounted for 24% of the variability in calculation. The full results of 

the regression are presented in Table 7. Visuospatial working memory (B = 0.12, p < 
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.001), verbal working memory (B = 0.27, p < .001), and language ability (B = 0.29, p < 

.001) were all individually significant positive predictors. This means that students with 

higher visuospatial working memory, verbal working memory, and language ability 

scores tended to have higher calculation scores. 

 Regression 4: Predicting math facts fluency subtest scores. For Regression 4, 

the dependent variable was the math facts fluency subtest of mathematic achievement. 

The independent variables in this analysis were visuospatial working memory, verbal 

working memory, and language ability. The assumptions of normality, homoscedasticity, 

and absence of multicollinearity were tested prior to the analysis. Normality was tested 

by examination of a normal P-P plot (see Figure 7). The data did not deviate from the 

normal (diagonal) line, so this assumption was met. Homoscedasticity was tested by 

examination of a scatterplot (see Figure 8). The data were equally distributed around 

zero, so this assumption was also met. Finally, multicollinearity was tested using 

Variance Inflation Factors (VIF). All VIF values were below 10 (see Table 8), indicating 

that multicollinearity was not a problem. 
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Figure 7. Normal P-P plot for Regression 4. 

 

Figure 8. Scatterplot for Regression 4. 
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Table 8 

Regression 4: Predicting Math Facts Fluency Subtest Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Visuospatial working 
memory 

0.14 (0.03) 5.62 < .001 0.01 1.34 

Verbal working memory 0.20 (0.03) 6.95 < .001 0.02 1.52 
Language ability 0.27 (0.03) 10.21 < .001 0.04 1.67 

Note. F(3, 2371) = 181.52, p < .001, R2 = .19. 
 
 The results of the regression were significant, F(3, 2371) = 181.52, p < .001, R2 = 

.19, which indicates that, collectively, visuospatial working memory, verbal working 

memory, and language ability significantly predicted math facts fluency. The R2 value 

indicates that these variables accounted for 19% of the variability in math facts fluency 

scores. The full results of the regression are presented in Table 8. Visuospatial working 

memory (B = 0.14, p < .001), verbal working memory (B = 0.20, p < .001), and language 

ability (B = 0.27, p < .001) were all individually significant positive predictors. This 

means that students with higher visuospatial working memory, verbal working memory, 

and language ability scores tended to have higher math facts fluency scores. 

 Regression 5: Testing whether grade moderates prediction of math 

achievement composite scores. For Regression 5, the dependent variable was the 

mathematic achievement composite variable. The independent variables in this analysis 

were visuospatial working memory, verbal working memory, language ability, and grade. 

To aid in interpretation, all independent variables were mean-centered (before computing 

the interaction terms), and the variables were entered in steps. The first step of the model 

included visuospatial working memory, verbal working memory, and language ability. In 
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the second step, grade level was entered into the model. In the third step, interaction 

terms for visuospatial working memory x grade level, verbal working memory x grade 

level, and language ability x grade level were entered into the model. The interaction 

terms were used to assess the moderating effect of grade level on the relations between 

visuospatial working memory, verbal working memory, language ability, and mathematic 

achievement. 

 The assumptions of normality, homoscedasticity, and absence of multicollinearity 

were tested in the same manner as the previous regressions. The normal P-P plot (see 

Figure 9) showed that the data did not deviate from the normal line, so the normality 

assumption was met. Figure 10 shows that the data were equally distributed around zero, 

so the assumption of homoscedasticity was also met. Finally, all VIF values were below 

10 (see Table 9), indicating that multicollinearity was not a problem. 

 

Figure 9. Normal P-P plot for Regression 5. 
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Figure 10. Scatterplot for Regression 5. 

 The results of the regression at Step 1 were significant, F(3, 2371) = 415.34, p < 

.001, R2 = .34, which indicates that, collectively, visuospatial working memory, verbal 

working memory, and language ability significantly predicted mathematic achievement at 

Step 1. The R2 value indicates that these variables accounted for 34% of the variability in 

mathematic achievement. 

 The results of Step 2 of the regression were also significant, F(4, 2370) = 317.42, 

p < .001, R2 = .35, which indicates that the set of independent variables and grade level 

significantly predicted mathematic achievement at Step 2. The R2 value indicates that 

these variables accounted for 35% of the variability in mathematic achievement, or 1% 

more than visuospatial working memory, verbal working memory, and language ability 

alone. The R2 change from Step 1 to Step 2 was significant, F(1, 2370) = 15.86, p < .001, 
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indicating that the addition of grade level at Step 2 accounted for significantly more 

variance in mathematic achievement compared to Step 1, ΔR2 = .01. 

Table 9 

Regression 5: Testing Main and Moderating Effects of Grade on Mathematic 

Achievement Composite Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Step 1      

Visuospatial working 
memory 

0.16 (0.02) 8.28 < .001 0.03 1.34 

Verbal working memory 0.24 (0.02) 10.26 < .001 0.04 1.52 
Language ability 0.33 (0.02) 15.81 < .001 0.10 1.67 

      
Step 2      

Visuospatial working 
memory 

0.17 (0.02) 8.37 < .001 0.03 1.34 

Verbal working memory 0.23 (0.02) 10.09 < .001 0.04 1.53 
Language ability 0.32 (0.02) 15.67 < .001 0.09 1.67 
Grade level 0.19 (0.05) 3.98 < .001 0.01 1.01 
      

Step 3      
Visuospatial working 
memory 

0.16 (0.02) 8.29 < .001 0.03 1.34 

Verbal working memory 0.23 (0.02) 10.03 < .001 0.04 1.54 
Language ability 0.32 (0.02) 15.64 < .001 0.09 1.68 
Grade level 0.20 (0.05) 4.14 < .001 0.01 1.02 
Visuospatial working 
memory x Grade 

-0.01 (0.00) -2.01 .045 0.00 1.38 

Verbal working memory x 
Grade 

0.00 (0.01) -0.89 .375 0.00 1.49 

Language ability x Grade 0.00 (0.00) 0.17 .864 0.00 1.66 
Note. Step 1: F(3, 2371) = 415.34, p < .001, R2 = .34. Step 2: F(4, 2370) = 317.42, p < 
.001, R2 = .35. Step 3: F(7, 2367) = 182.92, p < .001, R2 = .35. 
 
 The results of Step 3 of the regression were also significant, F(7, 2367) = 182.92, 

p < .001, R2 = .35, which indicates that the set of independent variables and interaction 
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terms significantly predicted mathematic achievement at Step 3. The R2 value indicates 

that these variables accounted for 35% of the variability in mathematic achievement, or 

less than 1% more than the independent variables at Step 2. The R2 change from Step 2 to 

Step 3 was significant, F(3, 2367) = 2.68, p = .045, indicating that the addition of the 

interaction terms at Step 3 accounted for significantly more variance in mathematic 

achievement compared to Step 2, ΔR2 < .01. 

 The full results of the regression are presented in Table 9. Visuospatial working 

memory (B = 0.16, p < .001), verbal working memory (B = 0.23, p < .001), and language 

ability (B = 0.32, p < .001) were all individually significant positive predictors in the final 

model. This means that students with higher visuospatial working memory, verbal 

working memory, and language ability scores tended to have higher mathematic 

achievement scores. Grade level was also a significant positive predictor in the final 

model (B = 0.20, p < .001). The visuospatial working memory x grade interaction was 

significant (B = -0.01, p = .045), indicating that grade level significantly moderated the 

relation between visuospatial working memory and mathematic achievement. 

Specifically, among students with low visuospatial working memory scores, students at 

higher grade levels tended to have higher mathematic achievement scores compared to 

students at lower grade levels. Among students with high visuospatial working memory 

scores, students at higher grade levels tended to have similar mathematic achievement 

scores compared to students at lower grade levels (see Figure 11). In other words, in the 

lower grades, visuospatial working memory is more strongly related to math 
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achievement, but as grade level increases, the relations between visuospatial working 

memory relates and mathematic achievement weakens.  

 

Figure 11. Interaction of visuospatial working memory and grade for Regression 5. 

 Regression 6: Testing whether grade moderates prediction of applied 

problems subtest scores. For Regression 6, the dependent variable was the applied 

problems subtest of mathematic achievement. The independent variables in this analysis 

were visuospatial working memory, verbal working memory, language ability, and grade. 

To aid in interpretation, all independent variables were mean-centered (before computing 

the interaction terms), and the variables were entered in steps. The first step of the model 

included visuospatial working memory, verbal working memory, and language ability. In 

the second step, grade level was entered into the model. In the third step, interaction 

terms for visuospatial working memory x grade level, verbal working memory x grade 

level, and language ability x grade level were entered into the model. The interaction 
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terms were used to assess the moderating effect of grade level on the relations between 

visuospatial working memory, verbal working memory, language ability, and applied 

problems. 

 The assumptions of normality, homoscedasticity, and absence of multicollinearity 

were tested in the same manner as the previous regressions. The normal P-P plot (see 

Figure 12) showed that the data did not deviate from the normal line, so the normality 

assumption was met. Figure 13 shows that the data were equally distributed around zero, 

so the assumption of homoscedasticity was also met. Finally, all VIF values were below 

10 (see Table 10), indicating that multicollinearity was not a problem. 

 

Figure 12. Normal P-P plot for Regression 6. 
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Figure 13. Scatterplot for Regression 6. 

 The results of the regression at Step 1 were significant, F(3, 2371) = 522.40, p < 

.001, R2 = .40, which indicates that, collectively, visuospatial working memory, verbal 

working memory, and language ability significantly predicted applied problems at Step 1. 

The R2 value indicates that these variables accounted for 40% of the variability in applied 

problems. 

 The R2 change from Step 1 to Step 2 was 1%, which was statistically significant 

F(1, 2370) = 28.62, p < .001, indicating that the addition of grade level at Step 2 

accounted for significantly more variance in applied problems compared to Step 1, ΔR2 = 

.01. The R2 change from Step 2 to Step 3 was less than 1% which was not statistically 

significant F(3, 2367) = 1.77, p = .151, indicating that the addition of the interaction 

terms at Step 3 did not account for significantly more variance in applied problems 

compared to Step 2, ΔR2 < .01. 
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Table 10 

Regression 6: Testing Main and Moderating Effects of Grade on Applied Problems 

Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Step 1      

Visuospatial working 
memory 

0.23 (0.02) 10.56 < .001 0.04 1.34 

Verbal working memory 0.23 (0.03) 9.20 < .001 0.03 1.52 
Language ability 0.42 (0.02) 18.72 < .001 0.13 1.67 

      
Step 2      

Visuospatial working 
memory 

0.23 (0.02) 10.71 < .001 0.05 1.34 

Verbal working memory 0.22 (0.03) 8.98 < .001 0.03 1.53 
Language ability 0.42 (0.02) 18.57 < .001 0.13 1.67 
Grade level 0.27 (0.05) 5.35 < .001 0.01 1.01 
      

Step 3      
Visuospatial working 
memory 

0.23 (0.02) 10.68 < .001 0.05 1.34 

Verbal working memory 0.22 (0.03) 8.91 < .001 0.03 1.54 
Language ability 0.41 (0.02) 18.49 < .001 0.13 1.68 
Grade level 0.28 (0.05) 5.45 < .001 0.01 1.02 
Visuospatial working 
memory x Grade 

-0.01 (0.01) -1.80 .071 0.00 1.38 

Verbal working memory 
x Grade 

0.00 (0.01) 0.13 .899 0.00 1.49 

Language ability x 
Grade 

0.00 (0.01) -0.35 .728 0.00 1.66 

Note. Step 1: F(3, 2371) = 522.40, p < .001, R2 = .40. Step 2: F(4, 2370) = 403.52, p < 
.001, R2 = .41. Step 3: F(7, 2367) = 231.56, p < .001, R2 = .41. 
 
 The full results of the regression are presented in Table 9. Visuospatial working 

memory (B = 0.23, p < .001), verbal working memory (B = 0.22, p < .001), and language 

ability (B = 0.41, p < .001) were all individually significant positive predictors in the final 
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model. This means that students with higher visuospatial working memory, verbal 

working memory, and language ability scores tended to have higher applied problems 

scores. Grade level was also a significant positive predictor in the final model (B = 0.28, 

p < .001). None of the interaction terms was significant (all p-values > .05).  

Regression 7: Testing whether grade moderates prediction of calculation 

subtest scores. For Regression 7, the dependent variable was the calculation subtest of 

mathematic achievement. The independent variables in this analysis were visuospatial 

working memory, verbal working memory, language ability, and grade. To aid in 

interpretation, all independent variables were mean-centered (before computing the 

interaction terms), and the variables were entered in steps. The first step of the model 

included visuospatial working memory, verbal working memory, and language ability. In 

the second step, grade level was entered into the model. In the third step, interaction 

terms for visuospatial working memory x grade level, verbal working memory x grade 

level, and language ability x grade level were entered into the model. The interaction 

terms were used to assess the moderating effect of grade level on the relations between 

visuospatial working memory, verbal working memory, language ability, and calculation. 

 The assumptions of normality, homoscedasticity, and absence of multicollinearity 

were tested in the same manner as the previous regressions. The normal P-P plot (see 

Figure 14) showed that the data did not deviate from the normal line, so the normality 

assumption was met. Figure 15 shows that the data were equally distributed around zero, 

so the assumption of homoscedasticity was also met. Finally, all VIF values were below 

10 (see Table 11), indicating that multicollinearity was not a problem. 
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Figure 14. Normal P-P plot for Regression 7. 

 

Figure 15. Scatterplot for Regression 7. 
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Table 11 

Regression 7: Testing Main and Moderating Effects of Grade on Calculation Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Step 1      

Visuospatial working 
memory 

0.12 (0.02) 5.04 < .001 0.01 1.34 

Verbal working memory 0.27 (0.03) 9.71 < .001 0.04 1.52 
Language ability 0.29 (0.03) 11.44 < .001 0.05 1.67 

      
Step 2      

Visuospatial working 
memory 

0.12 (0.02) 5.10 < .001 0.01 1.34 

Verbal working memory 0.27 (0.03) 9.56 < .001 0.04 1.53 
Language ability 0.29 (0.03) 11.32 < .001 0.05 1.67 
Grade level 0.18 (0.06) 3.19 .001 0.00 1.01 
      

Step 3      
Visuospatial working 
memory 

0.12 (0.02) 5.05 < .001 0.01 1.34 

Verbal working memory 0.27 (0.03) 9.49 < .001 0.04 1.54 
Language ability 0.29 (0.03) 11.29 < .001 0.05 1.68 
Grade level 0.19 (0.06) 3.30 .001 0.00 1.02 
Visuospatial working 
memory x Grade 

-0.01 (0.01) -1.73 .084 0.00 1.38 

Verbal working memory x 
Grade 

0.00 (0.01) -0.66 .509 0.00 1.49 

Language ability x Grade 0.00 (0.01) 0.28 .778 0.00 1.66 
Note. Step 1: F(3, 2371) = 245.06, p < .001, R2 = .24. Step 2: F(4, 2370) = 187.06, p < 
.001, R2 = .24. Step 3: F(7, 2367) = 107.73, p < .001, R2 = .24. 
 
 The results of the regression at Step 1 were significant, F(3, 2371) = 245.06, p < 

.001, R2 = .24, which indicates that, collectively, visuospatial working memory, verbal 

working memory, and language ability significantly predicted calculation at Step 1. The 

R2 value indicates that these variables accounted for 24% of the variability in calculation. 
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 The R2 change from Step 1 to Step 2 was less than 1%, but was statistically 

significant F(1, 2370) = 10.19, p = .001, indicating that the addition of grade level at Step 

2 accounted for significantly more variance in calculation compared to Step 1, ΔR2 < .01. 

The R2 change from Step 2 to Step 3 was less than 1% which was not statistically 

significant F(3, 2367) = 1.73, p = .160, indicating that the addition of the interaction 

terms at Step 3 did not account for significantly more variance in calculation compared to 

Step 2, ΔR2 < .01. 

 The full results of the regression are presented in Table 11. Visuospatial working 

memory (B = 0.12, p < .001), verbal working memory (B = 0.27, p < .001), and language 

ability (B = 0.29, p < .001) were all individually significant positive predictors in the final 

model. This means that students with higher visuospatial working memory, verbal 

working memory, and language ability scores tended to have higher calculation scores. 

Grade level was also a significant positive predictor in the final model (B = 0.19, p = 

.001). None of the interaction terms was significant (all p-values > .05). 

 Regression 8: Testing whether grade moderates prediction of math facts 

fluency subtest scores. For Regression 8, the dependent variable was the math facts 

fluency subtest of mathematic achievement. The independent variables in this analysis 

were visuospatial working memory, verbal working memory, language ability, and grade. 

To aid in interpretation, all independent variables were mean-centered (before computing 

the interaction terms), and the variables were entered in steps. The first step of the model 

included visuospatial working memory, verbal working memory, and language ability. In 

the second step, grade level was entered into the model. In the third step, interaction 
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terms for visuospatial working memory x grade level, verbal working memory x grade 

level, and language ability x grade level were entered into the model. The interaction 

terms were used to assess the moderating effect of grade level on the relations between 

visuospatial working memory, verbal working memory, language ability, and math facts 

fluency. 

 The assumptions of normality, homoscedasticity, and absence of multicollinearity 

were tested in the same manner as the previous regressions. The normal P-P plot (see 

Figure 16) showed that the data did not deviate from the normal line, so the normality 

assumption was met. Figure 17 shows that the data were equally distributed around zero, 

so the assumption of homoscedasticity was also met. Finally, all VIF values were below 

10 (see Table 12), indicating that multicollinearity was not a problem. 

 

Figure 16. Normal P-P plot for Regression 8. 
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Figure 17. Scatterplot for Regression 8. 
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Table 12 

Regression 8: Testing Main and Moderating Effects of Grade on Math Facts Fluency 

Scores 

Variable B (SE) t Sig. 
Squared Partial 

Correlation 
VIF 

      
Step 1      

Visuospatial working 
memory 

0.14 (0.03) 5.62 < .001 0.01 1.34 

Verbal working memory 0.20 (0.03) 6.95 < .001 0.02 1.52 
Language ability 0.27 (0.03) 10.21 < .001 0.04 1.67 

      
Step 2      

Visuospatial working 
memory 

0.14 (0.03) 5.65 < .001 0.01 1.34 

Verbal working memory 0.20 (0.03) 6.86 < .001 0.02 1.53 
Language ability 0.27 (0.03) 10.13 < .001 0.04 1.67 
Grade level 0.10 (0.06) 1.74 .082 0.00 1.01 
      

Step 3      
Visuospatial working 
memory 

0.14 (0.03) 5.54 < .001 0.01 1.34 

Verbal working memory 0.20 (0.03) 6.83 < .001 0.02 1.54 
Language ability 0.27 (0.03) 10.14 < .001 0.04 1.68 
Grade level 0.12 (0.06) 1.92 .055 0.00 1.02 
Visuospatial working 
memory x Grade 

-0.01 (0.01) -1.51 .131 0.00 1.38 

Verbal working memory x 
Grade 

-0.01 (0.01) -1.55 .121 0.00 1.49 

Language ability x Grade 0.00 (0.01) 0.43 .671 0.00 1.66 
Note. Step 1: F(3, 2371) = 181.52, p < .001, R2 = .43. Step 2: F(4, 2370) = 137.02, p < 
.001, R2 = .43. Step 3: F(7, 2367) = 79.54, p < .001, R2 = .44. 
 
 The results of the regression at Step 1 were significant, F(3, 2371) = 181.52, p < 

.001, R2 = .43, which indicates that, collectively, visuospatial working memory, verbal 

working memory, and language ability significantly predicted math facts fluency at Step 
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1. The R2 value indicates that these variables accounted for 43% of the variability in math 

facts fluency. 

 The R2 change from Step 1 to Step 2 was less than 1% which was not statistically 

significant F(1, 2370) = 3.03, p = .082, indicating that the addition of grade level at Step 

2 did not account for significantly more variance in math facts fluency compared to Step 

1, ΔR2 < .01. The R2 change from Step 2 to Step 3 was less than 1% which was not 

statistically significant F(3, 2367) = 2.55, p = .054, indicating that the addition of the 

interaction terms at Step 3 did not account for significantly more variance in math facts 

fluency compared to Step 2, ΔR2 < .01. 

 The full results of the regression are presented in Table 11. Visuospatial working 

memory (B = 0.14, p < .001), verbal working memory (B = 0.20, p < .001), and language 

ability (B = 0.27, p < .001) were all individually significant positive predictors in the final 

model. This means that students with higher visuospatial working memory, verbal 

working memory, and language ability scores tended to have higher math facts fluency 

scores. None of the other predictors was significant (all p-values > .05). 

Summary 

 Eight regressions were conducted to address the research questions. The results 

showed that visuospatial working memory, verbal working memory, and language ability 

significantly predicted the mathematic achievement composite score and all three subtest 

scores. Therefore, H1a was supported. The results also showed that grade level 

significantly moderated the relation between visuospatial working memory and 

mathematic achievement in Regression 5. However, grade level did not moderate the 
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relation between language ability and mathematic achievement. Therefore, H2a received 

only mixed support. The next chapter will contain a discussion of these results, as well as 

directions for future research. 
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Chapter 5: Discussion 

The present study was guided by Baddeley’s model of working memory, Logie’s 

two-part model of the visual-spatial sketchpad, and recent studies that highlight potential 

dissociative properties of verbal and visual working memory (Baddeley, 1986, 2000; 

Logie, 1995; Szucs et al., 2014). The purpose of this study was to examine the relations 

among math achievement, student grade level, and multiple cognitive variables (visual-

spatial working memory, verbal working memory, and language ability) to determine 

whether grade level moderated the relation between the cognitive variables and math 

achievement. This research found that the cognitive variables (visual-spatial working 

memory, verbal working memory, and language ability) are predictors of mathematic 

performance. Additionally, grade level enhances the relation between visual-spatial 

working memory and mathematic achievement. The findings of the present study 

confirm, as children progress through the grades, visual-spatial cognition is an important 

predictor of mathematic competence but becomes a weaker predictor of mathematics 

competence at higher grade levels. 

The language composite of the Woodcock Johnson-IV included two variables: 

listening comprehension and oral expression. Visual-spatial working memory consisted 

of two variables: visualization and picture recognition. Verbal working memory consisted 

of three variables: verbal attention, numbers reversed, and memory for words. 

Mathematic achievement consisted of three variables: applied problems (word problems), 

calculation, and math facts (timed-test of simple math facts). The scores from these 



88 

subtests were averaged to create a single composite score for mathematic achievement. 

The additional variables were demographic: age and grade level. 

The cognitive variables were expected to predict performance on the math 

subtests and composite scores on the Woodcock Johnson Test of Achievement. 

Additionally, grade level was expected to moderate the relations between the cognitive 

variables and mathematic achievement. In this chapter, the findings, theoretical 

implications, and educational implications of the study are discussed. Directions for 

future research and limitations are also examined.  

Findings from this research revealed that the cognitive variables of language, 

verbal working memory, and visual-spatial working memory all predict a child’s 

performance on multiple mathematic domains. Additionally, age and grade are predictors 

of math performance. Grade level proved to have a moderating effect on the relation 

between the mathematic achievement composite and visual-spatial working memory, 

with a stronger relation between visual-spatial working memory and math achievement 

among students in lower grades. This is an important finding because of the limited 

research detailing the relations of visual-spatial ability and mathematic achievement as 

math topics become more complex. Grade level did not moderate the relation between 

verbal working memory, language ability, and the composite score for mathematic 

achievement. Moreover, the analyses of the relations between the individual domains of 

mathematic achievement (applied problems, calculation, and math facts fluency) and 

cognitive variables (visual-spatial working memory, verbal working memory, and 

language ability) were not found to be moderated by grade level.  
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These findings affirm the first hypothesis that multiple areas of cognition (visual-

spatial working memory, verbal working memory, and language ability) were predictors 

of mathematic achievement. As previously stated, grade level moderated the relation 

between visual-spatial working memory and the mathematic achievement composite. 

There was no moderating effect for the subdomains of mathematics. Therefore, the 

results revealed a partial confirmation for the second hypothesis that estimated grade 

level moderates the relation between mathematic achievement and the cognitive 

variables. These findings only partially supported the second hypothesis as there was no 

significant interaction for grade level and the subdomains of mathematic achievement 

(applied problems, calculation, and facts fluency). Additionally, there was no significant 

interaction for grade level with either verbal working memory or language ability on 

mathematic achievement.  

Cognitive Variables and Mathematic Achievement 

In the present study, the research addressed whether the cognitive variables of 

visual-spatial working memory, verbal working memory, and language ability as defined 

by the Woodcock Johnson Test of Cognitive Ability-Fourth Edition, would predict math 

performance on a mathematic composite of achievement and individual subtests of 

mathematic achievement (applied problems, calculation, and facts fluency). Cognitive 

variables have much support in the literature as predictors of mathematic achievement. 

For example, working memory (Chong & Siegel, 2008; Geary, 2011; Mazzocco & 

Myers, 2003; Szucs et al., 2014), phonological/language processing (Henry, 1994; 

Swanson & Beebe-Frankenberger, 2004; Szucs et al., 2014), and attentional systems 
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(Fuchs et al., 2005, 2006; Fuchs et al., 2014; Geary et al., 2012) have substantial support 

in the literature as predictors of mathematic achievement. As previously discussed, prior 

research does not consistently list the said variables as predictors (Fuchs et al., 2006; Lee 

et al., 2004; Swanson, 2011). The current research supports visual-spatial working 

memory, verbal working memory, and language ability as unique predictors of 

mathematic achievement.  

 A significant finding from the present study was that visual-spatial working 

memory ability did not explain most of the variance in any of the regression models. 

Recent research has placed emphasis on the importance of visual-spatial and working 

memory skills in relation to mathematic development; however, language processing 

consistently emerged as the variable that explained the largest amount of variance in each 

regression model, often followed closely by verbal working memory. Visual-spatial 

working memory explained the least amount of variance in all but one regression 

(Regression 2, in which applied problems was the dependent variable), which suggested 

that it was the least important predictor among those included in the present research. 

This finding was consistent across the dependent variables, except for the applied 

problems variable.  

 The finding that visual-spatial working memory, in general, explained the least 

amount of variance in the model does not eliminate the importance of visual-spatial 

working memory in the acquisition of mathematic competence. This finding merely puts 

the relation in perspective. For the sampled students, poorly developed visual-spatial 

working memory was associated with low mathematic achievement, particularly among 
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students in lower grades. Visual-spatial working memory positively related to 

mathematic achievement in all regression equations. Thus, as visual-spatial working 

memory ability increases, so does performance on measures of mathematic achievement.  

 For many decades, researchers and educators assumed that poor mathematic 

performance was based in linguistic competencies (Rourke & Conway, 1997). The 

present research appears to support previous notions that language competence is 

relatively strongly related to math achievement; however, the present research moves 

beyond this notion and provides support that visual-spatial abilities are also significantly 

related to mathematic competence, but to a lesser degree. Therefore, it is safe to assume 

that to have whole mathematic learners, educators need to know whether poor visual-

spatial working memory deficits are contributing to a student’s weakness in mathematic 

performance. Some students may need instruction or strategies that assist in 

compensating for or overcoming visual-spatial deficits to achieve optimal levels of 

mathematic performance (Gade, Zoelch, & Seitz-Stein, 2017; National Research Council, 

2006; Uttal et al., 2013).  

Consider the early task of “adding on” in which students are required to hold a 

numerical representation in memory, while adding a second quantity. Another example is 

early word problems in which children must create numerical representations from text 

and transform both into mathematic solutions. Visuospatial working memory may 

significantly affect these early skills. The same consideration could be given to the task 

of single-digit addition and subtraction using a number line. Students who are adept at 

perceiving visual stimuli may find this exercise relatively easy to achieve, but a student 
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with visual-spatial deficits or delays may struggle with managing the conceptual aspects 

of simple calculation and the structural aspects of moving back and forth on a number 

line. The student may require additional support and practice to master this exercise, not 

because he or she does not understand the linguistic concepts of simple calculations, but 

because the added demand of visual-spatial perception via the number line places 

additional demands on the task beyond the cognitive resources available. Similarly, early 

concepts of magnitude, such as putting numbers in order from least to greatest and 

greatest to least; use of the greater than, less than, and equal to symbols in early 

mathematic expressions; or managing the directional aspects of rounding up and down 

can be adversely affected by visuospatial perception. Difficulty visualizing the number 

line may contribute to difficulty with perceiving magnitude in young children––a concept 

strongly correlated with math competence (Geary, Hoard, et al., 2008; Fuchs et al., 2014). 

Readers and future researchers should also consider the findings of this study 

related to grade level. The researcher expected grade level to moderate the relation 

between mathematic achievement and visual-spatial working memory. The findings of 

the present study supported this expectation (review the results of Regression 5 for a full 

summary). The results of Regression 5, which regressed math achievement composite 

scores on predictors, revealed a significant finding: being in a higher grade level related 

to a weakened relation between visual-spatial skills and mathematic achievement. In 

other words, children in lower grade levels who had high visual-spatial working memory 

experienced correspondingly high mathematic competence, whereas students in higher 

grade levels’ math achievement did not increase as sharply in relation to their visual-
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spatial working memory, even if those students had similarly high visual-spatial skills. 

Although this finding gives little insight into why, previous researchers asserted that 

visual-spatial ability becomes more important as students age (Casey et al., 1995; Casey 

et al., 2001; Fennema, 1979; Gunderson et al., 2012). The result of the present research 

presents a quandary because the results indicate visual-spatial working memory is more 

important for mathematic achievement in the early grades and, as students age, they are 

able to achieve similar mathematic achievement with less contribution by visual-spatial 

working memory ability.  

Perhaps the reason that visual-spatial working memory became less strongly 

related to math competence with increasing grade was the math achievement measures 

available in this study, which tested ability to deal with a wide array of problems but did 

not teach any new math skills. With increasing age, various forms of math become more 

automatized and rely more on memory retrieval, reducing the need to involve current 

solution processing with visual-spatial skills. Another way of thinking about the 

interaction observed in the present research is the relation between visuospatial skills and 

the acquisition of new math skill. Visuospatial cognition may be rather important during 

the early learning of many math concepts. For example, a student who has relatively 

weak visuospatial skills may initially struggle with new math lessons, relative to a student 

with more advanced visuospatial skills. The result is a stronger relation between 

visuospatial skills and math competence during earlier stages of learning in a new domain 

of math. However, with increasing age or grade, students become increasingly more 

familiar with many kinds of mathematics material. When this occurs, solution algorithms, 
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heuristics, and math facts tend to be recalled from memory, decreasing the influence of 

visuospatial skills on successful solution of math problems and thereby decreasing the 

relation between individual differences in visuospatial skill and individual differences in 

math competence. It is also possible that older students have developed resilience and 

have learned to compensate for weaknesses in visuospatial ability by utilizing previously 

learned strategies or habits. 

The results of the present research contribute to the body of literature by 

indicating a difference or a shift in the importance of visual-spatial ability, wherein older 

students’ visual-spatial abilities were not as important to math achievement when 

compared to younger students. The present research findings show that strong capabilities 

in visual-spatial working memory are positively associated with mathematic competence. 

The present research provides insight into the potentially transient nature of math 

learning disability as reported by Vukovic and Siegel (2010): whereas younger students 

may be at-risk for learning challenges if visual-spatial deficits are not addressed, older 

students may rely less on visual-spatial ability for mathematic competence. Additionally, 

the present research may have developmental implications as previous researchers 

indicated working memory continues to develop through adolescence (Isbell, Fukuda, 

Neville, & Vogel, 2015). 

Working Memory 

The present research was guided by the literature on working memory and 

learning. Researchers have highlighted working memory as having a primary role in 

learning (Baddeley, 1986; Baddeley & Hitch, 1974; Chong & Siegel, 2008; Fuchs et al., 
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2010; Geary, 2011; Mazzocco & Myers, 2003; Szucs et al., 2014). Working memory 

research has grown considerably in recent decades because of the abundance of studies 

supporting an active state of memory (working memory) that is directly linked to 

learning. Many researchers have been invested in exploring working memory in hopes of 

improving outcomes for learners.  

The present study’s findings did not support the expected finding of working 

memory variables explaining the largest amount of variance in math achievement scores. 

The results revealed working memory variables did not explain the largest amount of 

variance in any model. This result may have been different if the verbal and visual-spatial 

working memory variables were combined. Furthermore, the present study was primarily 

interested in the recent studies highlighting the dissociative aspects of visual-spatial and 

verbal working memory, where the subcomponents relate differently to tasks. 

A growing body of research suggests that multiple aspects of working memory 

can be distinguished or dissociated and relate differently to mathematics (Jarvis & 

Gathercole, 2003; Klauer & Zhao, 2004; Logie, 1995; Shah & Miyake, 1996; Szucs et al., 

2014). The results of the present study revealed the visual and verbal subcomponents of 

working memory show considerable differences in their predictive capacity on the 

selected mathematic tasks (see Tables 5–11). Verbal working memory consistently 

exceeded visual-spatial working memory in explaining variance in all areas of 

mathematic competence except for one area: applied problems (see Table 5–11). The 

visual and verbal subcomponents of working memory explained equal amounts of 

variance in the applied problems model (see Table 2).  
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Limitations of the Study 

The present study had limitations that warrant consideration. First, although the 

methods used in the present study allowed the researcher to answer the research 

questions, the researcher was not able to examine the underlying details, latent variables, 

and the subjective experiences of students. Although the relation among the independent 

and dependent variables was examined, the researcher could not determine the causal 

nature of the relation. Only an experimental design can produce causal conclusions about 

the relation among variables. The predictor variables explained significant amounts of 

variance in the models; however, more than 50% of the variance was not explained by the 

predictor variables. 

The second limitation was construct validity. The researcher created a visual-

spatial working memory variable using two subtests from the Woodcock Johnson-IV, 

Test of Cognitive Abilities. The authors of the Woodcock Johnson-IV did not identify the 

visual-spatial subtests as tests of visual-spatial working memory. The researcher accepted 

the visual subtests as tests of visual-spatial working memory because the structures are 

well supported by neurological research (Engle & Kane, 2004) and they fit widely 

accepted definitions of visuospatial working memory, in that they required short-term 

retention of visual stimuli as well as place additional processing demands on the subjects, 

creating an active state of memory (Baddeley & Hitch, 1974; Jarvis & Gathercole, 2003; 

Klauer & Zhao, 2004; Logie, 1995; Shah & Miyake, 1996; Szucs et al., 2014). Moreover, 

the factor analysis results in the current study revealed the visual subtests loaded on the 

same factor, providing further support for a visual-spatial working memory variable. 
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Formal standardized tests that specifically measure visual-spatial working memory are 

relatively few and are have yet to be published in the United States. A search for a 

standardized, widely used measure of visual-spatial working memory revealed zero tests 

meeting these criteria in the United States.  

Many definitions of working memory exist (Baddeley & Hitch, 1974; Cowan, 

1995; Engle & Kane, 2004; Voyer, Voyer, & Saint-Aubin, 2017). The third limitation is 

related to the multiple definitions of working memory. A growing body of evidence 

suggests attention and working memory’s shared capacity is the overarching, predictive 

variable in complex learning, and it is the shared capacity of working memory that holds 

the true predictive power (Cowan, 1995; Engle et al., 1999; Engle & Kane, 2004; 

Kyllonen & Christal, 1990; Süß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002). 

Adding a shared working memory capacity variable to the regressions may have provided 

additional insight into the relations between working memory and mathematic 

achievement. However, much like widely accepted standardized measures of visual-

spatial working memory, standardized measures of shared working memory capacity are 

scant. A review of recent literature revealed studies of shared working memory capacity 

primarily involved measures of attention and executive function, span tasks, and 

measures of fluid intelligence to evaluate working memory capacity (Daneman & 

Carpenter, 1980; Kane & Engle, 2002).  

A fourth limitation of the present research related to the varying literature on what 

constitutes a visual-spatial working memory task. A review of visual-spatial working 

memory research revealed use of a wide array of visual-spatial tasks (i.e., Corsi Blocks, 
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rotation tasks, locations tasks) used as measures visual-spatial working memory. The 

present researcher elected to use a large standardization sample from a widely used 

national assessment of cognition, language, and academic achievement that included 

comparable tasks, although not exactly identical tasks. The lack of consensus in the 

research community regarding the definitions of working memory and the appropriate 

instruments used to measure it posed limitations. The research was concerned with the 

most widely accepted and researched definition of working memory: Baddeley and 

Hitch’s (1974) compartmental model and fractionation for the visuospatial sketchpad 

(Logie, 1995). The compartmental definitions of working memory suited the present 

research, not because other definitions of working memory were not appropriate, but 

rather to satisfy the interests of the present study. The present researcher focused on the 

individual components of visual and verbal working memory (Baddeley & Hitch, 1974; 

Logie, 1995) and the additional processing demands that theoretically access the central 

executive component (Baddeley & Hitch, 1974; Engle, 2002; Engle et al., 1999).  

Implications for Future Research 

 The findings from the present study have implications for theory and educational 

practice. The contributions of visual-spatial working memory to mathematic competence 

are poorly understood. It is well accepted that visual-spatial skills are associated with 

mathematic competence in older children, but little is known in addition to this relation. 

Moreover, the results of the current study were inconsistent with prior research, as visual-

spatial ability was more strongly associated with math competence in younger children. 

The body of research on visual-spatial working memory is expanding and the literature 
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on the connection between mathematic achievement and visual-spatial cognition creates 

fertile ground for educators who may benefit from strategies and techniques that advance 

mathematic learning.  

The present research adds to the discussion on the importance of assessing visual-

spatial ability in young children. The results revealed visual-spatial working memory is a 

significant predictor of mathematic achievement across the mathematic domains of 

applied problems, calculation, and facts fluency. However, increased grade level reduced 

the relation between visual-spatial working memory and mathematics competence.  

Future research is necessary to determine what concepts in early grades are linked 

to visual-spatial working memory. Mix et al. (2016) determined mental rotation is the 

best predictor of mathematics in kindergarten and visual working memory is the best 

predictor of mathematics in sixth grade. Future researchers should seek to discover both 

basic and advanced mathematic concepts based on visual-spatial working memory 

capacity for learning. If the unique components of basic and advanced math topics that 

place high demand on visual-spatial working memory resources are properly identified, it 

will assist educators in providing support to children who are weak in select mathematic 

topics. By identifying the concepts that are highly correlated to visual-spatial working 

memory ability, educators are given the footing to match learners who potentially have 

delayed development of visual-spatial abilities to compensatory strategies and 

interventions. Current researchers are proving that visual-spatial skills are malleable 

(Gade et al., 2017; Uttal et al., 2013); however, more research is needed to establish 

practical strategies for educators and parents to help children who experience delays or 
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weaknesses in visual-spatial cognition. If mathematics topics associated with visual-

spatial working memory are identified, educators and families can address the delays in 

younger students and help them achieve adequate performance in advanced mathematic 

topics.  

Future research is needed to establish a firm definition of visuo-spatial working 

memory. Currently, three themes in the working memory literature define working 

memory: compartment-based literature, attention-based literature, and shared capacity 

literature. The research may soon establish a consensus on how to integrate the models or 

determine the most efficient manner of defining working memory across human 

development. Additionally, future researchers should seek to understand whether 

different definitions of visual-spatial working memory explain the differences observed 

as students develop. For example, it is unclear if compartmental approaches to working 

memory (Baddeley & Hitch, Logie) better explain working memory relations in younger 

students and attentional or capacity models (Cowan, Engle, Kane) better explain relations 

for complex mathematic topics. Additionally, research into defining a consistent set of 

tasks used to evaluate visual-spatial working memory is needed.  
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