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ABSTRACT OF THE DISSERTATION

Pursuit and Evasion Strategies in Zebrafish: Mathematical Modeling and Behavioral
Experiments

By

Alberto Prado Soto

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2019

Professor Matthew J. McHenry, Chair

Predator-prey interactions are important to the ecology and evolution of animals and have

major implications for the behavioral and locomotor strategies they exhibit. They offer a

system to study the strategies used by animals to pursue prey and evade predators from

both a theoretical and experimental perspective. Here I have mathematically modeled

the evasion strategy of prey fish, conducted experiments to assess the pursuit strategy of

zebrafish, and developed a technique to investigate the biomechanics of fish locomotion

during pursuit.

My first dissertation chapter revisited the mathematics of a classic pursuit-evasion model

and tested the predictions against empirical data on the escape response of larval zebrafish.

The evasion strategy of prey in response to an approaching predator had been previously

modeled and predicted an optimal escape direction based on the relative speed of the

prey, but empirical results often failed to confirm the model predictions. I revisited and

generalized the model to reveal a large region of parameter space that predicted a previously

unknown performance plateau. The plateau indicated that fast prey can escape away from

a slower predator in many directions without diminishing their escape performance. I tested

xii



the model predictions against data on the escape direction of larval zebrafish in response

to an approaching robotic predator and found general agreement.

Chapter two of my dissertation focused on the pursuit strategy of zebrafish in pursuit of

prey. To study the locomotion of zebrafish chasing prey, I built an experimental setup to

film predator–prey interactions at high–speed. These interactions were automatically ana-

lyzed with a custom image processing algorithm that tracks the midline of the predator and

the position of the prey through time. I confirmed that zebrafish swim intermittently in a

burst–and–coast swimming pattern during pursuit. The predator turned and accelerated

toward the prey with a single tail beat. The change in heading during a turning maneuver

could be predicted by the bearing angle immediately before the burst phase and was cor-

related with the lateral excursion of the caudal fin. This intermittent pursuit strategy is a

form of pure pursuit in which the predator aligns its heading with the position of the prey.

My third dissertation chapter developed a technique to acquire multichannel imaging data

using a single camera. In chapter two, I found that zebrafish predators execute turning

maneuvers that orient them toward the position of the prey. A mechanistic understanding

of how fish execute turning maneuvers continues to elude biologists and physicists alike

because it requires measuring the forces produced by the swimming fish. I addressed this

challenge by designing an experimental system which allows for simultaneous acquisition of

images for flow visualization and automatic tracking using a single high–speed video cam-

era. This technique, Multichannel Stroboscopic Videography (MSV), provides the ability

to automate measurements of both the animal’s body and flow field and illustrates MSV’s

powerful capacity for high-throughput experimentation with a complex hydrodynamic anal-

ysis.
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Introduction

Organisms need to eat and avoid being eaten to survive. These two challenges have major

implications for the behavioral and locomotor strategies they exhibit. Many fishes are

subject to predation throughout their life and are predators themselves. Zebrafish are a

small freshwater species (Family Cyprinidae) of fish native to rivers and inland streams

of India (Parichy, 2015). They are omnivores and begin actively hunting for food at 5

days post fertilization (dpf). In the wild, they also have to contend with predation by

other fish such as the knifefish (Notopterus) (Parichy, 2015). In the lab, juvenile and adult

zebrafish will readily prey on larvae of the same species. This makes it tractable to study

their behavior and locomotion as predator and prey at the same time, depending on the

fish’s life stage. The goal of this dissertation is to address the locomotor strategies that

fish implement to pursue prey and evade predators. I begin by offering a brief introduction

to predator-prey interactions and describe how an interdisciplinary approach enables the

synthesis of complex animal behavior.

The violent encounters between predator and prey have long fascinated humans and they

have been an exciting topic of inquiry for biologists. Animals have acquired a large variety

of specialized mechanisms and tactics for prey capture (e.g. Catania, 2009; deVries et al.,

2012; Domenici et al., 2000) and predator evasion (e.g., Emlen, 2014; Evans and Schmidt,

1990). Given the wide range of tactics observed in nature, mathematical modeling coupled
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with traditional experimental approaches is increasingly becoming an attractive method

for understanding animal behavior during predator-prey interactions (Lima and Dill, 2011;

Morice et al., 2013; Brighton et al., 2017). Despite the large number of experimental studies

describing the kinematics of escape maneuvers and predatory strikes, a concise theoretical

framework for understanding the optimal strategies remains unresolved. The purpose of this

introduction is to describe the mathematical and experimental tools available to biologists

interested in understanding the strategies employed by organisms during predator-prey

interactions. I begin with a brief description of experimental studies that have advanced our

mechanistic understanding of predator-prey interactions. Then I discuss the mathematics

of optimal strategies and detail a classic model that can be applied to study evasion strategy

(Weihs and Webb, 1984). In the last section I describe two pursuit strategies commonly

found in nature.

Predator-prey interactions in the lab

Predator-prey interactions vary across animal groups and by environment. For exam-

ple, an animal’s habitat is known to affect both locomotor performance (McElroy et al.,

2007; Vanhooydonck and Van Damme, 2003) and predator evasion strategy (Morice et al.,

2013; Vasquez et al., 2002). Experimental studies of predator-prey interactions are often

restricted to laboratory settings and typically only consider the strategy of either the preda-

tor or the prey (Lima, 2002). Despite the limited scope of these studies, they can reveal the

strategies used by animals to escape predators (e.g., Card and Dickinson, 2008; Casas and

Steinmann, 2014) or pursue prey (e.g., Ghose et al., 2006; McHenry et al., 2019). These

studies also provide rich datasets that can be used to test the predictions of mathemati-

cal models (see chapter 1). Here, I briefly describe one such approach that uses a model

predator to investigate the evasion strategy of prey.
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Using model predators to study prey escape strategy

Simultaneously considering predator and prey actions during a predatory interaction is

a difficult problem from both an experimental and a theoretical perspective. For this

reason, many experimental studies on predator evasion have focused solely on the actions

of the prey (Lima, 2002). This is typically achieved by presenting an artificial stimulus

to elicit an escape response (reviewed by Domenici and Blagburn, 2011a,b). An artificial

stimulus reduces the complexity of the interaction and allows the experimenter to control

important aspects of the interaction, such as the direction and speed of the approach. While

these qualities often make experiments tractable, an artificial stimulus may not provide

appropriate sensory stimuli for prey. Model predators offer an alternative to this approach

by presenting a mimic of a natural predator, which is of greater ecological relevance, while

also controlling the kinematics of an attack. This approach has been used to study predator

evasion in fish (Stewart et al., 2014) and birds (Kullberg et al., 1998).

Larval zebrafish (Danio rerio) use their lateral line system to detect subtle water distur-

bances generated by an approaching predator (Stewart et al., 2013). This allows prey to

detect the bow wave generated by the motion of a predator and to direct their escape

away from the side of the body that perceives higher flow rates (Stewart et al., 2014). The

robotic predator described in (Stewart et al., 2014) controls for the trajectory of an attack

and thus allows for the investigation of prey evasion strategy under varying conditions such

as predator approach speed. Using a similar experimental approach, male great tits (Parus

major) have been shown to vary their takeoff (escape) angle in response to the approach

direction of a model predator (Kullberg et al., 1998). Although these examples fix the

predator strategy, they have provided insight into how prey respond to specific predatory

threats. Mathematical modeling can then be used to determine whether or not prey are

performing optimally.
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Mathematics of optimal strategy

The mathematics of decision-making in conflict situations is grounded in game theory

(Aliprantis and Chakrabarti, 2011). Classic game theory deals with what are known as

static games (Gibbons, 1992). For example, the game of chess is a static game as moves

are made one after the other and there are a finite number of possible moves. There are

many situations in which decisions are made dynamically and the number of possible moves

is not finite. A classic example is that of a missile interceptor, which must track its target

in real-time and correct its trajectory toward the target by implementing a programmed

pursuit strategy. This is an example of dynamic games, which were introduced by Rufus

Isaacs in the 1950’s in a series of RAND Corporation reports.

Differential game theory and pursuit-evasion games

Differential game theory (Isaacs, 1965) combines elements of game theory (strategy) and

optimal control theory (optimization) to study the optimal strategies during interactions,

or games, between two or more players. The theory has applications in areas as diverse

as biology (Alpern et al., 2011), military combat (Jarmark et al., 1981), and robotics

(Karaman and Frazzoli, 2011b). For the purpose of this introduction, I will focus on a

particular class of problems known as pursuit-evasion games that have direct applications

in biology.

Pursuit-evasion (PE) games deal with the problem of a pursuer attempting to capture an

evader, such as a cheetah chasing down a gazelle. Associated with any game is a numerical

quantity which the pursuer attempts to minimize and the evader attempts to maximize.

This quantity is called the payoff. In a PE game where capture is the objective, it is

mathematically convenient to consider the time of capture as the payoff. Note that within
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this setting, the goal of the pursuer is to capture the evader in the least amount of time

while the evader attempts to hold off capture as long as possible or indefinitely (infinite

time would indicate successful escape). The solution to a game, the so-called minimax

solution, includes a set of optimal strategies, one each for the pursuer and evader, which

yields the greatest minimal payoff (minimax payoff). This implies a precarious scenario

in which any deviation from the optimal strategy by the pursuer leads to a better payoff

for the evader and vice versa. Rigorous solutions to even the simplest games are very

complex and thus the theory has not been widely applied to biological systems. Advances

in numerical techniques for solving differential games (e.g., Bardi et al., 1999; Karaman

and Frazzoli, 2011a) provide important tools for researchers interested in applying this

theory to biological systems, but these methods are beyond the scope of this dissertation.

Another approach to making problems tractable is to make modeling assumptions that can

be justified by appealing to biomechanical constraints of the biological system in question

(Justh and Krishnaprasad, 2006). This is analogous to fixing the predator strategy by using

a model predator in experiments (as described in the previous section).

A biological application of differential game theory

The homicidal chauffeur is the macabre title for a pursuit-evasion game (Isaacs, 1965) that

has been adapted to model predator-prey interactions (Weihs and Webb, 1984; Ghose et al.,

2006). In this game a driver (the pursuer) attempts to run-down a more agile pedestrian

(the evader) in a large parking lot. Although the full analytical solution to this game

is complex and multivalued (Merz, 1971), a reduced version can be solved by geometric

arguments. To determine the optimal escape direction a prey should travel when attacked

by a predator, Weihs and Webb adapted the homicidal chauffeur game. In chapter 1 of this

dissertation, I discuss the Weihs and Webb model in detail and offer a new interpretation

of their results based on measurements of escape direction in larval zebrafish.
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Pursuit strategy

A pursuit strategy defines how the pursuer maneuvers toward the evader during pursuit-

evasion games. From a biological perspective, they can be interpreted as the behavioral

algorithms implemented by predators targeting evasive prey. Predators in pursuit of eva-

sive prey have to redirect their motion in response to the prey’s actions. Theoretically,

there exist many possible solutions to this problem (Nahin, 2007). Here I focus on two

fundamental pursuit strategies found in nature, pure pursuit and interception.

Pure pursuit is a form of targeting in which the pursuer (or predator) aligns its direction

of travel with the instantaneous position of the evader. The typical trajectory traced by a

predator implementing pure pursuit against a nonevasive prey is curvilinear (see Chapter

2 Fig. 2.1). If the predator is faster than the prey, then it is guaranteed capture given

sufficient time. This pursuit strategy is implemented, for example, by houseflies (Land and

Collett, 1974) and bats (Chiu et al., 2010) pursuing conspecifics, and tiger beetles pursuing

prey dummies (Gilbert, 1997). When vision is the dominant sensory modality during

pursuit behavior, the position of the prey on the predator’s retina is sufficient information

to implement pure pursuit. For this reason, pure pursuit is often characterized as a simple

strategy; although, it requires continuous sensory feedback.

Interception requires that the pursuer compute a pursuit path that will coincide with the

evader’s estimated future position. The pursuit path must take into account the relative

speed and heading of the evader at the onset of a pursuit. The trajectory traced by a

predator on an interception path against nonevasive prey is a straight line (see Chapter

2 Fig. 2.1). Compared with pure pursuit, this strategy is time optimal under certain

assumptions (Justh and Krishnaprasad, 2006). Interception is used by hoverflies (Collett

and Land, 1978) and dragonflies pursuing nonevasive prey dummies (Olberg et al., 2007).

Evasive prey maneuvers during pursuit require the computation of a new interception path,
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as exhibited by bats in pursuit of evasive moths (Ghose et al., 2006) and goshawks flying

toward targets or pursuing prey (Kane et al., 2015). This strategy is known as constant

absolute target direction and is equivalent to interception for evasive prey. Interception is

thought to be an open-loop behavior, once a pursuit path is computed the pursuer must

commit (Moore and Biewener, 2015), but a different interpretation based on visual fixation

suggests that predators can implement this strategy without computing an interception

path (Olberg et al., 2000).

The current dissertation

The three chapters that comprise this dissertation underscore the value of combining math-

ematical modeling with behavioral experiments to study complex animal behavior. In chap-

ter one, I have shown that a simplified pursuit-evasion model generates testable hypotheses

about escape strategy. In chapter two, I resolved the pursuit strategy of an intermittent

swimmer and developed methods for modeling active pursuit in fish. In chapter three, I

developed a technique to acquire multichannel data using a single camera that may be

applied to study the biomechanics of fish maneuvers, which was a critical component of

the pursuit strategy found in chapter two.
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Chapter 1

When Optimal Strategy Matters to

Prey Fish

1.1 Abstract

Predator-prey interactions are commonly studied with an interest in determining whether

prey adopt an optimal strategy to evade predators. Here we examine the strategic conse-

quences of deviating from optimal strategy in fish that are preyed upon by fish predators.

We simulated these interactions with numerical and analytical mathematics and compared

our predictions with measurements in zebrafish (Danio rerio). As in previous models, we

focused on the effect of the escape direction on the minimum distance between predator

and prey. We found that differences in escape direction had only a small effect on the

minimum distance when predators were more than an order of magnitude faster than the

prey. Furthermore, differences in direction had no effect on performance for a broad range

of escape angles when the prey were faster than the predator. Optimal strategy is therefore

most meaningful to prey when approached by a predator of intermediate speed. When the
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predator is either slower or much faster than the prey, an optimal strategy may not exist

or offer little benefit to predator evasion.

1.2 Background

Biologists have long–appreciated the importance of predation in the ecology and evolution of

prey species. This subject is extensive enough to fill the pages of books with the fascinating

diversity of strategies that prey use to avoid encounters with predators (e.g. Ruxton et al.,

2004) or to defend themselves when discovered (e.g. Emlen, 2014; Evans and Schmidt,

1990). In contrast, our understanding for how prey evade capture by locomotion is relatively

rudimentary. Although biomechanical studies commonly speculate on the importance of

locomotor performance to survival, relatively few have tested what aspects of locomotion

are most meaningful in these interactions. Studies that have explored this subject (reviewed

by Domenici and Blagburn, 2011a) underscore the common-sense notion that the direction

of an escape matters to a prey’s survival. This idea is formalized by pursuit models that

aim to determine the optimal direction of an escape response. The present study examined

such a model, based on Weihs and Webb (1984), to consider the strategic consequences

of deviating from optimal strategy in piscivorous interactions. We compared the model’s

predictions to experimental results in zebrafish (Danio rerio) (Stewart et al., 2014) and

arrived at new interpretations of theory on prey strategy.

Pursuit–evasion models are an area of differential game theory that offers a basis for ex-

amining locomotor behavior in strategic terms. There is recent interest in revisiting these

models (e.g. Howland, 1974; Weihs and Webb, 1984) with experimental studies that con-

sider the behavior of both predators and prey. This includes work on running vertebrates

(e.g. Wilson et al., 2013), birds (e.g. Kullberg et al., 1998) and bats (e.g. Ghose et al., 2006)

in flight, running insects (Domenici et al., 2008), flying insects (e.g. Combes et al., 2012),
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and swimming zooplankton (e.g. Arnott et al., 1999; Heuch et al., 2007) and fishes (e.g.

Domenici et al., 2000). These efforts offer the potential to reveal how sensory and motor

systems govern the outcome of predator–prey interactions.

A piscivorous interaction offers some advantages as a model for examining the sensory-

motor basis of predator evasion. In many cases, this interaction can be easily studied in a

laboratory, where predatory fishes attempt to feed on prey and prey initiate a ‘fast-start’ es-

cape response (Fig. 1.1). Both players operate with motion that is largely two-dimensional

and therefore relatively simple to measure and describe. Zebrafish adults prey on larvae of

the same species in the lab (Stewart et al., 2013) and this species offers a growing wealth of

understanding in physiology and neuroscience (e.g. McLean and Fetcho, 2011; Briggs, 2002)

that may be leveraged for mechanistic insight on predator–prey interactions. In addition,

fish offer one of the few biological pursuit systems that have been mathematically modeled

(Weihs and Webb, 1984). This model offers specific predictions of swimming trajectories

that may be tested with kinematic measurements.

Deviation from optimal strategy has been interpreted as a strategic adaptation. The pro-

tean hypothesis suggests that prey that are unpredictable have an advantage in predator

evasion over predictable prey (Humphries and Driver, 1970). This idea may apply to the

erratic motion of an individual or a population of prey that collectively exhibit variable mo-

tion that challenges a predator’s ability to learn or adapt. The fast start of a fish generates

a turn and acceleration of the body in a particular direction and therefore would appear

to correspond to the latter category (Weihs, 1973). Regardless, a potential trade-off exists

between a direction that generates optimal displacement from a predator and one that is

unpredictable.

Interpretations of prey motion have generally not considered the implications of deviating

from optimal strategy. For example, it is not clear whether an escape that is 5 ◦ or 50 ◦ from
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the optimum predicted by Weihs and Webb (1984) has a major or negligible effect on evasion

success. If the performance of an escape is insensitive to differences in escape direction,

then no trade-off will exist between evasiveness and predictability. In short, it is unclear

when optimal strategy matters. The present study therefore revisited the mathematics of

the Weihs and Webb (1984) model to examine how deviation from optimal strategy affects

prey evasion. We expanded this model and performed numerical simulations for comparison

with experimental results. In this effort, we arrived at new interpretations of theory on

prey evasion. In particular, we identified conditions where the escape direction is predicted

to have little or no effect on the evasiveness of prey.

1.2.1 Optimal prey strategy

The Homicidal Chauffeur is the colorful title for a pursuit–evasion game that has been ap-

plied to a variety of systems, including predator–prey interactions (Isaacs, 1965). Pursuit–

evasion games consider the trajectories of its players and thereby address the effects of

directional decision–making to the outcome of an interaction. Weihs and Webb (1984)

adopted the Homicidal Chauffeur to model the responses of a prey fish that encounters a

predator fish. Here we offer a brief review of this model as a means to explain the basis

for our expansion of the theory and our interpretations of prey strategy, though a more

complete derivation is presented in the original study (Weihs and Webb, 1984).

The payoff is a quantity used in game models to define the beneficial or detrimental conse-

quences of playing with a particular strategy (Webb, 2007). For the Homicidal Chauffeur,

the payoff is often defined as the minimum distance between predator and prey. This quan-

tity reflects the condition where the predator has the best opportunity to capture the prey.

The optimal strategy for an evasive prey is therefore defined as the escape angle that yields

the greatest minimum distance (Weihs and Webb, 1984).
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Predicting the distance between predator and prey requires relatively few parameters under

some simplifying assumptions. In the rapid events of a predatory strike, it is reasonable to

approximate the predator’s motion as a constant speed, U . If one neglects the acceleration

period of the fast start, then the prey’s motion may also be approximated with a con-

stant speed, V , at an escape angle α, defined with respect to the heading of the predator

(Fig. 1.2A). Under these conditions, the distance between predator and prey, D, may be

calculated over time:

D2 = ((X0 − Ut) + V t cosα)2 + (V t sinα)2, (1.1)

where X0 is the starting position of the prey.

The minimum distance, the payoff in this game, may be calculated from the distance

equation. The first step is to calculate the time, tmin, at which the minimum distance

occurs. This may be found from the root of the derivative of Eqn. 1.1 with respect to time,

which yields the following equation:

tmin =
X0

V

K − cosα

1− 2K cosα +K2
, (1.2)

where K indicates the speed of the predator relative to the prey (K = U/V ). This equation

yields negative values of time where K < 1 and therefore only applies where K > 1. The

minimum distance was consequently determined for K > 1 by solving for distance (Eqn.

1.1) at tmin:

D
2

min =
D2

min

X2
0

=
sin2 α

K2 − 2K cosα + 1
, (1.3)

where Dmin is the minimum distance normalized by the starting position of the prey.

Finally, the optimal strategy for the prey may be determined by finding the escape angle

that yields the greatest minimum distance. This occurs where the derivative of Eqn. 1.3
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with respect to α is equal to zero, which is explicitly described by the following equation:

0 =
∂D

2

min

∂α
=

2 sinα cosα(K2 − 2K cosα + 1)− 2K sin3 α

(K2 − 2K cosα + 1)2
. (1.4)

Among the solutions that satisfy this equation, Weihs and Webb proposed that the following

indicates the optimal strategy when the predator is faster than the prey (K > 1):

αopt = ± arccosK−1. (1.5)

We added the ± symbol to this expression to indicate that prey are equally effective if

escaping at an optimal angle toward the left (α > 0), or right (α < 0) of the predator’s

heading. For relatively fast prey (K < 1), Weihs and Webb suggested that the optimal

solution consists of swimming directly away from the predator (α = 0) (Weihs and Webb,

1984). Therefore, for any predator speed, this model offers predictions for how a prey can

direct its escape to maximize its chances for survival by creating the greatest distance from

a predator.

1.3 When optimal strategy matters

An optimum adopts a different meaning if it corresponds to a sharp global maximum, a

local peak much smaller than the global maximum, or a shallow peak in performance.

We considered the conditions exist that surround optimal strategy by calculating how

the payoff in this pursuit model, the minimum distance (Weihs and Webb, 1984), varies

with escape angle and the relative speed of the predator. As an alternative to analytical

mathematics, we first formulated this performance landscape with a numerical approach

that is simple enough to execute in a spreadsheet, but which we implemented in Matlab

(v2014b, MathWorks, Natick, MA, USA). This was done by defining a series of time values
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at a regular interval, which was used to calculate the positions of the predator (Xpred = Ut,

Ypred = 0) and prey (Xprey = V t cosα, Yprey = V t sinα). The minimum value of the distance

between them was determined in this way for variable escape angle and predator speed,

over a range of K and α values (Fig. 1.2B). This yielded results that were coincident

with the analytical equation for Dmin formulated by Weihs and Webb (1984) for relatively

fast predators (K > 1, Eqn. 1.3). However, the advantage of this numerical calculation

was that it allowed us to examine variation in the minimum distance for slower predators

(i.e. K < 1) as well. The resulting performance landscape (Fig. 1.2B) illustrates how the

minimum distance varies over a broad range of values in the relative speed of the predator.

Our results suggest that the fast start is unlikely to be effective at any escape angle when

a prey is approached by a very fast predator. For example, if a predator is an order of

magnitude faster than its prey (i.e. K = 10), then the prey can do no better than displace

its body by 10% of its initial distance (Fig. 1.2B). In addition, differences in escape angle

have little effect on the minimum distance. Specifically, an escape that is 24.5 ◦ larger or

smaller than the optimum yields a minimum distance that is less than the value at the

optimum by 0.1 (i.e. 1% of the starting position of the prey). These metrics become

increasingly unfavorable for the prey when approached by an even faster predator (Fig.

1.2B). At these speeds, inaccuracy in the feeding strike is likely a more decisive factor to

prey survival than anything the prey may do in response.

A different picture emerges when one considers prey that move more quickly than their

predators (i.e. K < 1). This condition occurs when predators brake or glide slowly on

their approach toward a prey (Higham, 2007; Higham et al., 2005) while the prey initiates

a rapid escape. For a variety of escape angles, the fast start of these prey cause the predator

to reach no closer than the starting distance (i.e. Dmin = 1, Fig. 1.2B). In order to define

the bounds of this domain, it is useful to consider the first derivative of the distance function
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with respect to time (see Supplemental Materials for details):

∂D2

∂t
= 2(t(U2 + V 2)− UX0 + V (X0 − 2tU) cosα). (1.6)

An optimal escape (Dmin = 1) can be achieved if the distance function increases for all time

(i.e. ∂D2

∂t
≥ 0). This holds true for α = 0, which Weihs and Webb proposed as the optimal

direction (Weihs and Webb, 1984). However, it also holds true that distance increases for

another solution to Eqn. 1.4 (α = ± arccosK) and all values in between (see Supplemental

Materials for details). Therefore, the following defines the domain of optimal directions

when the prey is faster than the predator (K < 1):

Dmin = 1 if |α| ≤ arccos(K). (1.7)

This analysis suggests that if the escape response of a prey is capable of exceeding the

approach speed of the predator, then a wide range of angles yield equally successful escapes

for the prey and thereby define a performance plateau.

The domain where the optimal strategy matters the most resides between where the prey

and predator are equivalent in speed and where the predator is an order of magnitude

faster (1 < K < 10). In this domain, prey are capable of attaining appreciable minimum

distance values and there is a penalty in minimum distance for deviating from the optimal

angle (Fig. 1.2B). Therefore, a prey fish has a strong incentive to conform to the optimal

prediction when encountering a predator that can move slightly faster than itself.
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1.4 Comparing models with measurements

We were interested in examining whether optimal strategy matters under experimental

conditions. This was addressed with recent measurements on larval zebrafish, which were

preyed upon by adults of the same species (Stewart et al., 2013). This work included

experiments that used a robot to simulate the approach of a predator toward prey in the

dark, with recordings of the position at which the prey responded with a fast start and the

direction of that response (Stewart et al., 2014). This evasive action was stimulated by the

lateral line system of the prey, which detected the water flow generated by the approaching

predator.

As detailed above, the predictions of the model depend on the speed of the predator relative

to the prey. The approach speed of the robot, and consequently K, was varied to span

the range of values observed for a live predator (Stewart et al., 2013). Our calculations of

K used a prey speed (U = 22 cms−1) from the literature that approximates the maximum

value attained during a fast start for larvae of this species (Budick and O’Malley, 2000;

Müller and van Leeuwen, 2004). As a consequence of the relatively slow approach made by

these suction–feeding predators, the prey had the potential to move faster at all approach

speeds, which yielded K–values that were uniformly less than unity (Fig. 1.3A).

One discrepancy between the model and our experiments was that the majority of prey

fish did not exhibit an initial position that was aligned with the heading of the predator

robot. This condition has biological relevance because it corresponds to a situation where

a predator fails to approach a prey with perfect accuracy. We therefore modified the Weihs

and Webb model by adding a lateral component to the initial position of the prey in our

distance function. Following the same procedure (Eqns. 1.2–1.3), we arrived at a minimum

distance function (see A for details). This function was simplified by the use of polar
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coordinates, as in the following equation:

D
2

min =
D2

min

R2
0

=
(sin(α− θ0) +K sin θ0)

2

K2 − 2K cosα + 1
(1.8)

where R0 and θ0 are the initial radial and angular positions of the prey relative to the

mouth of the predator (Fig. 1.2A). Numerical solutions to this equation showed a broad

range of angular positions and escape angles that defined a performance plateau where

Dmin = 1 (Fig. 1.3B). We found the margins of this plateau using a similar procedure as

outlined above (Eqn. 1.4). Specifically, we solved for the conditions where the derivative

of the minimum distance with respect to α was equal to zero:

0 =
∂D

2

min

∂α
=

2(K cosα− 1)(K cos θ0 − cos(α− θ0))(K sin θ0 + sin(α− θ0))
(K2 − 2K cosα + 1)2

, (1.9)

We found the solutions that satisfy this equation by setting the terms in the numerator

equal to zero. The solution for K > 1 and θ0 < arccos(K−1) was similar to Eqn. 1.5,

though the initial angular position determines the sign of the optimal angle:

αopt =
θ0
|θ0|

arccos(K−1). (1.10)

This solution indicates that the same optimal direction exists when the predator is faster

than the prey, irrespective of the prey’s initial position up to an initial angular position of

90 ◦. As detailed above, we found that the escape angle is equally effective (i.e. Dmin = 1)

when the prey is aligned with the predator for a broad range of values (Eqn. 1.7). This

result holds true when prey are positioned lateral to the predator, but this performance

plateau depends on the initial angular position of the prey. We found that the following

equation defines the bounds of this plateau among the solutions that satisfy Eqn. 1.8 for

K < 1:

Dmin = 1 if |α− θ0| ≤ arccos(K cos θ0), (1.11)
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This demonstrates that the performance plateau reduces in area with increasing predator

speed (Fig. 1.3B). Therefore, fewer combinations of starting positions and escape angles

yield equivalent escape performance for faster predators.

Using this formulation of the pursuit–evasion model, we evaluated how the measured re-

sponses of prey compared to the model predictions (Fig. 1.3C). This revealed that the vast

majority of larvae operated within the performance plateau and therefore were predicted

to yield maximal performance (Dmin = 1). This was true even at the fastest predator

approach speed (K = 0.90), where the performance plateau encompasses a smaller area

of the performance landscape. Therefore, the large variation in observed escape direction

incurs no penalty in the evasive performance of most larvae.

1.5 Predator strategy

Although the present pursuit–evasion models were formulated with a focus on prey fish, they

provide the opportunity to consider the strategy of fish predators. The payoff considered

by these models is normalized by the initial response distance of the prey (Figs. 1.2–1.3).

Because the absolute distance traversed is therefore predicted to be proportional to the

initial response distance, the predator may first do well to minimize this distance. This

may be achieved by moving with a slower approach to reduce the stimulus intensity for the

visual (Dill, 1974) and lateral line (Stewart et al., 2014) systems that could startle the prey.

This is one benefit to the braking behavior that suction–feeding predators exhibit before a

strike (Higham, 2007; Higham et al., 2005). Another advantage to a slow approach is the

potential for greater accuracy in the timing and direction of a suction–feeding strike, which

is restricted to a brief duration over a relatively small region around a predator’s mouth

(Wainwright et al., 2001).
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Our results also indicate some of the strategic advantages for fast predators. Moving faster

than the escaping prey greatly diminishes the escape angles that are beneficial for evasion

(Fig. 1.2B). As we discussed above (in Section 1.2.1 “Optimal prey strategy”), the fast

start can become ineffective at offering any benefit to predator evasion when the predator is

substantially faster and headed directly at the prey. However, such a high–speed approach

may present a challenge for a predator to coordinate the timing of the strike (Higham,

2007; Higham et al., 2005).

We conducted a series of simulations that examine the effect of an inaccurate strike by a

fast predator. As in our comparison with experimental results (Fig. 1.3), we calculated

the minimum distance for a range of values in escape angle and initial position, but this

time considered predators that were faster than prey (K > 1). We interpreted deviation

from a zero angular position as a measure of inaccuracy in the strike of the predator with

the assumption that fish lack the interception targeting used by bats (Ghose et al., 2006)

and birds (Kane and Zamani, 2014). This measure of inaccuracy neglects the increasing

challenge of correct timing in the opening of the jaws at increasing approach speeds (Kane

and Higham, 2014, 2011), but does address errors in the direction of the approach.

The results of these simulations illustrate the relative contribution of escape angle and strike

accuracy on evasion for different approach speeds. For a predator that is twice as fast as

the prey (K = 2), the minimum distance varied substantially with both escape direction

and strike accuracy (Fig. 1.4A). For example, the optimal escape angle (αopt = 60.0 ◦)

generated a minimum distance (Dmin = 0.71) that was more than two-orders of magnitude

better than what was achieved with the least effective escape direction (Dmin = 0.002)

when the prey is positioned 15 ◦ from the predator’s heading. This advantage in minimum

distance was not greatly reduced (Dmin = 0.50 at αopt = 60 ◦) if the predator successfully

aligned its strike (θ0 = 0 ◦). However, the escape angle played a reduced role in aiding

predator evasion at faster approach speeds. For example, when the predator was 10-times
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faster (Fig. 1.4C) and inaccurate (θ0 = 15 ◦), then the optimal escape angle (αopt = 84.3 ◦)

was only slightly more than twice the value (Dmin = 0.35) for the least effective angle

(Dmin = 0.16). Furthermore, the optimal minimum distance (Dmin = 0.10) was relatively

ineffective for an accurate strike (θ0 = 00 ◦). Therefore, the accuracy of a predators’ strike

becomes an increasingly dominant factor in determining prey survival with predators that

are many times faster than the prey.

1.6 Conclusions

The results of our modeling demonstrates theoretical conditions where the optimal strategy

of prey matters little to the outcome of a predatory strike. These conditions depend on the

relative speed of the predator and prey, which underscores the coupled nature of pursuit

strategy. When a predator approaches relatively slowly, prey have the opportunity to escape

in a variety of directions (Figs. 1.2B, 1.3B–C). When they strike quickly, the accuracy of

the predator’s heading becomes a major determinant in the outcome (Fig. 1.4). These

interpretations have the potential to inform our reading of previous studies. However, the

behavior of predator and prey fish are rarely studied simultaneously and the relative speed

of predator and prey are seldom reported. Therefore, the present modeling may be most

useful in offering a framework for future investigations.

It may appear counter-intuitive that any predator would move more slowly than its prey.

Predatory fishes are commonly between 2- and 20-fold greater in length than their prey

(Fuiman, 1994) and are generally capable of swimming many times their body length per

second by rapid undulation (Bainbridge, 1958). However, fishes also exhibit a large scope

of swimming speeds and may move slowly by the coordinated braking action of their many

fins (Videler, 1981; McHenry and Lauder, 2005). Many suction-feeding predators take

advantage of this hydrodynamic plasticity to slow swimming on the approach of a feeding
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strike. This braking results in swimming that is in the lower range of potential speeds,

at rates below a single body length per second (Higham et al., 2005; Higham, 2007). In

contrast, a startled prey may act to maximize its proximity from a predator with its fastest

swimming possible. Even a larval fish may attain speeds in excess of 50 BLs−1 during a fast

start (Müller and van Leeuwen, 2004). Therefore, prey may compensate for their smaller

size if the predator brakes for suction feeding to yield a condition whereK < 1 (Fig. 1.3).

When a prey swims faster than a predator escape may be successful in a variety of directions

(Eqn. 1.11). Any escape in this domain prohibits the predator from getting any closer

than the distance at which the prey initiates its escape (Fig. 1.3). This strategic benefit

is compatible with our thinking about the motor control of the escape response. Zebrafish

larvae respond to a robotic predator with directionality that is no more specific than moving

away from the side of the body exposed to a faster flow stimulus (Stewart et al., 2014).

Such crude decision-making may be achieved through relatively few synapses that serve to

create motion with brief latency (Liu and Fetcho, 1999). The present results suggest that

there is little strategic disadvantage to this motor control. A shorter latency allows the

prey to respond at greater distance and the direction of most responses is equally effective,

even for the fastest predator (Fig. 1.3C).

It could be suggested that a failure of prey to conform to a single escape direction indicates

deviation from optimal strategy. The benefit to a population of prey responding this way

is that they become unpredictable to predators (Humphries and Driver, 1970). However,

our view is that a performance plateau, and not an optimum, permits maximal evasiveness

for a large range of escape directions (Fig. 1.3B–C). Therefore, no trade-off exists in this

domain between predictability and evasiveness.

Different strategic dynamics come into play when the predator is faster than the prey. At

intermediate speeds (1 < K < 10), deviation from optimal strategy has the potential for
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large adverse consequences (Fig. 1.2B, 1.4A–B) and it is therefore in this domain that

optimal strategy is most likely to be meaningful for the prey. To move in the optimal

direction, the prey must detect the heading and speed of the predator, which is likely to

be achieved by the visual or lateral line systems (Stewart et al., 2013; Dill, 1974; Paglianti

and Domenici, 2006; Higgs and Fuiman, 1996). It is additionally necessary that the motor

system be capable of rapidly propelling the fish in the optimal direction. As noted by

Domenici, constraints on the sensory and motor systems can prohibit a prey from conform-

ing to an optimum (Domenici and Blagburn, 2011a).

Sensory-motor constraints may play a role in guppies (Poecilia reticulata) that are preyed

upon by pike cichlids (Crenicichla alta) (Walker et al., 2005). These predators are approxi-

mately twice as fast as the prey and the prey escape in a variety of directions. The survivor-

ship was also higher in prey that escaped directly away from predators (α ∼ 180 ◦) than

those which responded in the optimal direction that our model would predict (αopt = 60 ◦).

It is alternatively possible that the pike may accelerate to a degree that substantially vio-

lates the assumptions of our model.

Our model predicts that the accuracy of a predator’s strike becomes a dominant factor in

the outcome of an interaction for predators that approach at high speed (K > 10). In this

domain, differences in minimum distance amount to minor performance differences cross

a broad range of escape angles (Fig. 1.2B). It remains possible that these differences in

distance are more meaningful to the hydrodynamics of prey evasion when the predator is

attempting a rapid strike. Resolving this issue would require an explicit consideration of

hydrodynamics (as in Holzman et al., 2011).

1.7 Figures
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Figure 1.1: A predator-prey
interaction in zebrafish. Sil-
houettes of zebrafish from a dor-
sal perspective have been traced
from video stills (5 ms interval)
as an adult attempts to capture
a larva with a suction feeding
strike. (A–B) On the predator’s
approach, the prey initiates a
‘fast-start’ escape response to
accelerate away from the preda-
tor. The strike has yet to begin,
as shown by the lack of protru-
sion by the jaws of the predator
(orange). (C–D) The predator
initiates a strike, which is visible
from jaw protrusion (red). (E–F)
With its jaws fully extended, the
predator fails to capture the prey
which proceeds to move away
from the predator with rapid un-
dulatory swimming. Recording
from Stewart et al. (2014).

23



0.1
1.0

0.01

10
100

Predator speed 
, KPrey speed 

0

0.25

0.50

0.75

1.00

Minimum 
distance,

Dmin

α = arccos(K)
α = arccos(K-1)

Slow predators: Differences in α here 
have no effect on minimum Dmin

Fast predators: Differences in α 
have a minor effect on Dmin

90°
120°

150°
180°

60°
30°

0°

Escape angle, α 

A

B

θ
U

V α
A

Figure 1.2: A pursuit–evasion model for predator–prey interactions in fish. (A)
Pursuit–evasion models consider the motion of a predator (viewed from dorsal perspective)
with speed U and a prey with speed V and escape angle α. Some versions of this model
consider prey positioned lateral to the predator’s approach (θ0 > 0). (B) Numerical sim-
ulations were run at varying escape angle and predator approach speed (with θ0 = 0) to
examine variation in the minimum distance. At K > 1, the optimal angle (black curve) was
predicted analytically (Eqn. refK¿1 by Weihs and Webb (1984). Deviation from the opti-
mum by 0.1Dmin (gray curves) is shown to increase at greater values of K. The performance
plateau where Dmin = 1 is predicted by Eqn.1.7.
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Figure 1.3: Model predictions and measurements of the fast start. The pursuit–
evasion model was compared with experiments that recorded the responses of larval zebrafish
that were approached by a robotic predator at three speeds (2, 11 and 20 cm s−1) (Stewart
et al., 2014). The results of experiments and modeling are arranged in column that correspond
to each of these speeds. (A) The fast–start responses are illustrated by the center–of–body
displacement for the two stages of the behavior (blue arrow). (B) Numerical results of the
simulated interactions show how the minimum distance (Dmin) varies with the escape angle(α)
and initial position (θ0). The plateau region (defined by Eqn. 1.7) shows an area where
Dmin = 1. (C)This area (in yellow) is plotted with measurements of the initial position and
escape angle of the measured responses shown in A.
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Figure 1.4: Evasive performance when the predator is faster than the prey. Nu-
merical simulations calculated the minimum distance for variable initial position (θ0) and
escape angle (α) of the prey for predators that are faster than the prey by a factor of two
(A), five (B), and ten (C).
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Chapter 2

Zebrafish locomotion and trajectory

control during active pursuit

2.1 Abstract

A fish predator’s survival depends on its ability to chase down prey. Their pursuit strategy

often depends on the ability to sense the location of prey and maneuver toward it. Unlike

flying predators, many fish predators move in discrete, burst-and-coast bouts of activity. To

understand the biomechanics of active pursuit with intermittent locomotion, we conducted

predation experiments in zebrafish. Zebrafish accelerated and turned toward their prey

during each burst phase, which was identified by a single tail beat. The change in heading

during a tail beat could be predicted by the bearing angle preceding the burst phase and

was correlated with the lateral excursion of the tail fin. This intermittent pursuit strategy

is a form of pure pursuit in which the predator aligns its heading with the position of the

prey. To investigate the mechanisms of directional control during intermittent pure pursuit,
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we are developing a biomechanical model that simulates active pursuit. This work provides

insight into the biomechanics of active pursuit of a broad diversity of aquatic predators.
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2.2 Background

Successful predation is critical for the survival of animals and depends on their ability to

sense and chase down prey. The strategies implemented by predators to track and capture

prey vary widely among animals. Biologists have successfully applied mathematical models

developed for missile guidance (Yuan, 1948; Shneydor, 1998) to determine the pursuit

strategies of flying predators, such as dragonflies (Olberg et al., 2007; Mischiati et al., 2015),

bats (Ghose et al., 2006), and raptors (Kane and Zamani, 2014; Kane et al., 2015; Brighton

et al., 2017). These models generally assume continuous motion, but many predators

move through their environment in discrete bouts of activity, such as the burst-and-coast

swimming of zebrafish. The aim of this study was to determine the pursuit strategy of

zebrafish, an intermittent swimmer, during active pursuit of evasive prey.

Kinematic measurements of pursuit trajectories can be compared with predictions of math-

ematical models to determine a predator’s pursuit strategy. Two pursuit strategies com-

monly observed in nature are known as pure pursuit and interception (Nahin, 2007). The

bearing angle (φ), defined as the angular position of the prey relative to the predator’s

heading (Fig. 2.1B), is useful for distinguishing between these two pursuit strategies. A

predator implementing pure pursuit aligns its heading with the instantaneous position of

the prey, while interception requires that the predator move toward the anticipated point of

collision. If a predator is implementing a pure pursuit strategy, then we expect the bearing

angle to be maintained at or driven to zero (φ → 0) during its approach toward the prey

(Fig. 2.1C, φ = 0). Alternatively, an interception strategy requires that the predator adopt

a constant, optimal bearing angle (φopt), which is determined by the initial geometry of the

interaction (Fig. 2.1C, φ 6= 0). Aerial predators have been shown to implement a type of

interception strategy known as proportional navigation (e.g., Brighton et al., 2017; Mills

et al., 2018). These strategies require the predator to sense and maneuver toward its prey.
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Vision is the dominant sensory modality in this behavior for fish as it allows for the greatest

detection distance (Dill, 1974) in bright conditions and thus serves as input to the neural

controller. The input sensory signals are used to determine the necessary motor commands

for trajectory control (Tytell et al., 2011; Roth et al., 2014). Appropriate maneuvering is

required to execute the pursuit strategy against evasive prey.

It is unclear whether predatory fish employ a common pursuit strategy as has been found

for aerial predators. Recent work from our lab has shown that bluefish pursue evasive prey

with a strategy known as deviated pursuit (McHenry et al., 2019), an intermediate strategy

between pure pursuit and interception. Bluefish engage in fast, continuous pursuit that

share many qualities with the pursuit behavior of aerial predators. Due to the intermittent

swimming style of zebrafish, we do not expect them to employ such a strategy. In the

present study, we use kinematic measurements of zebrafish during active chase sequences

to determine its pursuit strategy. Biomechanical modeling allowed us to test the role of the

caudal fin in controlling the predator’s trajectory toward prey. This work provides insight

into the biomechanics of active pursuit of a broad diversity of aquatic predators.

2.3 Materials and methods

2.3.1 Experiments

To investigate the targeting strategy of zebrafish, we built an experimental setup to film

predator–prey interactions (Fig. 2.1A). We used a high-speed video camera (FASTCAM

Mini AX100, Photron, San Diego, CA, USA) with high spatial resolution (1024×1024 pixels)

configured with a macro lens (Micro-Nikkor 105 mm f/2.8, Nikon Inc., Melville, NY, USA).

To visualize the predator and prey, three infrared (IR, 940 nm) LED panels were placed be-

low a translucent white acrylic diffuser, which was placed below the predation arena. This
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generated a high-contrast image of the fish with transmitted illumination. A white LED

panel placed above the arena provided reflected illumination. The camera was placed in

front of the arena and directed at a mirror oriented at 45 ◦ from the horizontal to visualize

the fish from a dorsal perspective.

Predation experiments were performed with npred = 38 (1.49 cm±0.43 cm, standard length)

predator and nprey = 31 (5−13 dpf) prey zebrafish (Danio rerio, Hamilton 1822) maintained

in a recirculating freshwater system at 27 ◦C on a 14 L:10 D cycle. For each predator-prey

pair, fish were transferred to the predation arena and separated by an acrylic divider. We

waited at least 10 min. prior removing the divider and filming. We stopped recording and

saved the sequence to disk when the predator completed an active chase, which was defined

as the moment when the predator either captured the prey or ceased moving toward the

prey. We filmed n1 = 31 active chase sequences of varying duration and n2 = 22 sequences

of the predator fish swimming without the prey present. All experiments were conducted

in accordance with the University of California, Irvine’s Institutional Animal Care and Use

Committee (Protocol #AUP-17-012).

2.3.2 Image processing and data analysis

Our recordings of the fish were analyzed to automate tracking of the prey’s position and

the predator’s body midline. This procedure, and all data analyses, were performed by

programming within MATLAB (v.2014b, MathWorks, Natick, MA, USA). Our program

employed the image processing task generally known as blob analysis which requires the

conversion of grayscale images into binary images by defining an intensity value that par-

titions dark and light pixels, designated as background and foreground, respectively. This

image segmentation technique, known as thresholding, generates ‘blobs’ of connected pixels

from which features (e.g. centroid and area) may be calculated.
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The high spatial resolution of our experimental setup combined with the size differential of

the predator and prey allowed for automated blob analysis for both fish and midline tracking

of the predator (Fig. 2.2A). We used an input reference image for background subtraction

and applied a local thresholding technique (‘adaptthresh’ function in MATLAB) that is

robust to nonuniform illumination. The resulting binary image (Fig. 2.2A, ii) described

the shape of the fish’s body, which we refined with morphological operations to fill holes

and connect any gaps with neighboring blobs. The prey fish blob was manually selected in

the first video frame and subsequently identified by its area and proximity to the previous

frame’s blob. For each frame, we measured the blob’s area and identified its center-of-area

(red dot in Fig. 2.2A, ii). The predator blob was identified by a similar procedure and its

midline was extracted. The midline was identified by distance mapping, which encodes a

value for each pixel of the blob according to its distance to the nearest background pixel

(Fig. 2.2A, iii). We applied distance mapping along the rows and columns of the binary

image and the resulting maps were concatenated to produce the set of pixels that define

the predator’s midline. For kinematic analysis, the raw midline coordinates for each video

frame were smoothed with the ‘loess’ method, a locally weighted polynomial regression

(Fig. 2.2A, iv). We extracted several positions along the predator’s midline to compute its

heading, center-of-mass velocity, and angular position of the caudal peduncle and fin. The

final result was a kinematic dataset for the prey’s body and the predator’s midline that

was obtained automatically.

For each active chase sequence, we identified every tail beat and coast phase from the

predator’s time series data (Fig. 2.2B). A discrete tail beat was identified by the interval

of nonzero values of angular velocity, θ̇(t), which signify that the heading, θ(t), is changing.

The coast phases were identified as the intervals where heading was relatively constant

or θ̇ = 0. To assess the predator’s pursuit strategy, we measured the angular position

of the prey relative to the predator’s heading (Fig. 2.1B). This angle (φ) is known as
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the bearing angle and its value through time may be used to interpret the predator’s

pursuit strategy. To determine which pursuit strategy (pure pursuit or interception) best

described the predator’s behavior, we used a linear regression (Model 2 regression) between

the expected and measured bearing angle. Since we did not observe an effect of distance

between predator and prey, we treated each turn during an active chase as independent

events.

2.3.3 Mathematical modeling of predator locomotion

The aim in modeling the predator’s locomotion was to gain an understanding of how the

swimming hydrodynamics affect the pursuit trajectory. Mathematical models of swimming

range from simple, one-dimensional kinematic models to complex, three-dimensional models

that require computational fluid dynamics (Borazjani and Sotiropoulos, 2008; Miller et al.,

2012) simulation. Due to a growing interest from the robotics community in biomimetic

swimmers (e.g., Morgansen et al., 2007; Suebsaiprom and Lin, 2015; Wang et al., 2015;

Scaradozzi et al., 2017; Gravish and Lauder, 2018), we opted for a dynamic model that

would be amenable for robot optimization and control rather than a complete description

of the fluid-body interaction. We therefore modeled the fish as a rigid body attached to

a tail, which is actuated at the base. The tail is composed of two segments connected in

series through a torsion spring and viscous damper. In the following sections we describe

the rigid-body dynamics for the fish body and the hydrodynamic force model for the tail.
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2.3.3.1 Rigid-body dynamics

The equations of motion for the swimming predator in a fixed X − Y plane are given by

F = mba, (2.1)

M = IbΩ, (2.2)

where F, M are the external forces and moments exerted on the body about the center

of mass (COM), mb and Ib are the mass and moment of inertia of the body, and a and Ω

are the translational and angular acceleration of the body in the inertial reference frame.

Since we assume planar motion, we have a = (ẍ, ÿ) and Ω = θ̈, where v = (ẋ, ẏ) and θ̇ are

the COM translational and rotational velocity of the body, respectively. These quantities

represent the three degrees of freedom for the planar rigid body.

We further assume that the fish body and tail are neutrally buoyant. Therefore, the external

forces and moments are due only to hydrodynamic interactions between the fish body and

tail with the fluid. These include the hydrodynamic force and moment generated by the

motion of the tail (described in the following subsection) as well as drag force FD and drag

moment MD on the body.

The drag on the body is given by

FD = −
(

1

2
ρCdS‖v‖

)
v, (2.3)

where ρ is the density of the fluid (1, 000 kg/m3), Cd is a dimensionless drag coefficient, S

is the wetted surface area of the fish. The drag moment is given by

MD = −CMµL3θ̇, (2.4)
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where CM is a dimensionless drag moment coefficient, L is a characteristic length, and µ

is the dynamic viscosity of the fluid.

2.3.3.2 Hydrodynamics of tail model

In this section, we describe the hydrodynamic forces generated by the motion of the tail.

The tail is attached to the rigid body through a passive joint and is composed of two

rigid segments, which represent the peduncle and caudal fin of the fish. The tail segments

are linked through a joint modeled as a torsion spring and viscous damper. The rotational

joints connecting the three segments have joint angles ψ1 and ψ2. For simplicity, we assume

that there is no hydrodynamic interaction between the two tail segments. Therefore, the

hydrodynamic forces are generated solely by the motion of the posterior caudal fin section.

Let lb be the distance between the body COM and the peduncle, lp the length of the pedun-

cle, and lf the length of the fin with surface area Sfin. Note that ψ1 is measured relative

to the longitudinal body axis and ψ2 is measured relative to the peduncle orientation. Let

η = θ + ψ1 + ψ2, which is the angle of the fin relative to the inertial x−axis. Then the

velocity at the fin’s quarter chord point is given by

vqc =


ẋ+ lb sin θ(θ̇) + lp sin(θ + ψ1)(θ̇ + ψ̇1) +

lf
4

sin η(η̇)

ẏ − lb cos θ(θ̇)− lp cos(θ + ψ1)(θ̇ + ψ̇1)−
lf
4

cos η(η̇)

 (2.5)

We calculated the Reynolds number (Re) for the caudal fin in our experiments and found

that Refin ≈ 150. In this fluid regime, both viscous and inertial forces play a significant

role in the fluid dynamics. As a consequence, we used a quasi-steady lift and drag model

(Dickinson et al., 1999; Morgansen et al., 2001; Sane and Dickinson, 2002) of the forces on
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the fin. These forces are defined as

Lfin =
1

2
ρCL(α)Sfin‖vqc‖vqc (2.6)

Dfin =
1

2
ρCD(α)Sfin‖vqc‖vqc, (2.7)

where CL(α) and CD(α) are the lift and drag coefficients, respectively. For a dynamically

oscillating fin (or airfoil), the lift and drag forces are dependent on the angle between the

local flow velocity and the orientation of the fin or angle of attack, α. This dependence

is captured in our model by CL(α) and CD(α), which are based on experimental results on

model insect wings operating at a similar Re (Dickinson and Götz, 1993; Dickinson et al.,

1999; Sane and Dickinson, 2002).

2.3.3.3 Longitudinal and lateral body forces

By definition, drag is oriented in the negative direction relative to vqc and lift is perpendic-

ular to drag. The vector sum of Lfin and Dfin yields the resultant force Ffin = (Fx, Fy).

Since these components are oriented along the inertial x and y directions, we premulti-

ply Ffin by a rotation matrix R to get the longitudinal, F‖, and lateral, F⊥, components

relative to the orientation of the body. That is,

F‖
F⊥

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


Fx
Fy

 (2.8)

2.3.3.4 Dynamic model equations

With the forces defined, we can now apply Eqns. (2.1)–(2.2) to obtain a system of ordinary

differential equations (ODEs) that describe the motion of (x, y, θ).
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Substituting v = vxex + vyey into Eqn. (2.3) yields

FD = −
(

1

2
ρCdS‖v‖

)
(vxex + vyey) = −

(
1

2
ρCdS‖v‖

)
vxex −

(
1

2
ρCdS‖v‖

)
vyey,

where vx = ẋ, vy = ẏ, and ‖v‖ =
√
ẋ2 + ẏ2. The x and y components of the drag force are

then

FDx = −
(

1

2
ρCdS‖v‖

)
ẋ, (2.9)

and

FDy = −
(

1

2
ρCdS‖v‖

)
ẏ (2.10)

Substituting the above into Eqn. (2.1) along the x and y directions and carrying out the

multiplication in Eqn. (2.8), we obtain

mẍ = F‖ cos θ − F⊥ sin θ − 1

2
ρCdS‖v‖ẋ (2.11)

mÿ = F‖ sin θ + F⊥ cos θ − 1

2
ρCdS‖v‖ẏ (2.12)

Note that if F‖ is the only component of thrust acting on the body, the motion is pure

translation with direction θ. In order to change the heading, we must have a nonzero turning

moment about the body COM. The turning moment, M, is composed of the moment due

to the hydrodynamic force generated by the tail, Mfin, and the drag moment, MD. Mfin

is found by taking the z-component of the following cross product

Mfin = (xqc, yqc, 0)× (Fx, Fy, 0),

where (xqc, yqc, 0) is the position of the fin’s quarter chord point relative to the body COM.

Substituting Mfin and MD into Eqn. (2.2) we obtain the following

Ibθ̈ = xqcFy − yqcFx − CMµL3θ̇, (2.13)
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The system of ODEs is defined by Eqns. (2.11)–(2.13).

2.3.3.5 A note on second–order differential equations in MATLAB

The system equations describing the dynamics all contain the second derivative of the state

variable. These are known as second–order differential equations. To solve this type of dif-

ferential equation numerically, we must write each second–order equation as a system of

two first–order equations. This is accomplished through a simple, but clever, substitution.

Let ÿ = f(y, ẏ, t) be any second–order differential equation. Set y1 = y and y2 = ẏ. Then,

Ẏ =

ẏ1
ẏ2

 =

 y2

f(y1, y2, t)

 (2.14)

In this form, numerical solvers such as MATLAB ’s ode45 can be utilized to solve the

second-order ODE.

2.4 Results and discussion

We measured swimming kinematics of active pursuit in zebrafish. Predatory zebrafish

swam in a burst-and-coast style during active pursuit (Fig. 2.2C). The average maximum

speed during the burst phase was 6.3 cm s−1 and exponentially decreased during the coast

phase to values below 1 cm s−1, a nearly six-fold decrease. The decrease in speed occurred

over the duration of the coast phase, which had a median value of 0.31 sec. During the

burst phase, the predator accelerated and turned toward the prey with a single tail beat,

which was characterized by large lateral excursions of the caudal fin. The maximum lateral
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excursion of the tail was tightly correlated with the change in heading (∆θ) during a tail

beat (Fig. 2.3B).

We measured the bearing angle through time to determine the predator’s pursuit strategy.

Since the predator swam intermittently, our analysis focused on the burst phase where

changes in heading were observed. The bearing angle immediately before a prey-oriented

turn φpre was found to predict the change in heading of the turning maneuver (Fig. 2.3A).

In contrast, we found no correlation between the measured bearing angle and the expected

bearing for an interception strategy. The mean absolute bearing angle after a turning

maneuver was φµ = 20 ◦, which implies some degree of inaccuracy. The slope of the

regression line for ∆θ versus φpre (m = 0.71) suggests that the predator undershot its

target. This could be due to sensory limitations or may be a strategic component of the

pursuit behavior. Larval zebrafish have been shown to approach targets in a series of

bouts, similar to the bursts of our predators, and their successive maneuvers become more

accurate (Bianco et al., 2011).

To further investigate how the bearing angle affects the control of locomotion toward prey,

we developed a model to simulate a predator during active pursuit. We used classical

aerodynamic models for lift and drag to compute the forces generated by the caudal fin.

Our modeling approach was adapted from the robotics literature on fish-like swimmers.

Dynamic models are often used by robotics researchers to develop control algorithms for

their robotic fish (Morgansen et al., 2001; Wang et al., 2015, e.g.,). In contrast, our aim was

to test the role of the caudal fin during turning maneuvers. Our model did not reproduce

the experimentally established relationship between change in heading and tail angle (Fig.

2.3A). Instead, the simulated change in heading was minimal (results not shown). This

result indicates that our model may be neglecting critical aspects of the fluid dynamics, in

particular the explicit accounting of fluid-solid interactions (Fauci and Peskin, 1988; Bo-

razjani, 2015). Another implication is that zebrafish do not rely solely on their caudal fin
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to generate turning maneuvers. The pectoral and paired fins are likely important contrib-

utors and regulators of turning moments that facilitate maneuvering in zebrafish as has

been shown for other species of fish (Drucker and Lauder, 2003; Fish and Lauder, 2017).

Preliminary results from flow visualization (using digital particle image velocimetry) during

turning maneuvers suggests that the motion of the rigid head region contributes momentum

to execute turning maneuvers (see Chapter 3 Fig. 3.3 for preliminary results).

The direct relationship between the change in heading during a prey-oriented turn and

the bearing angle immediately preceding the turn suggests an enhanced role of vision in

this behavior. The prey’s position within the predator’s visual field is a critical source

of sensory information that informs the predator’s subsequent motor command. Since

locomotion is the product of information processing (Cowan et al., 2014), we gain insight

into the behavioral algorithms implemented by the neural controller of fish by assessing their

pursuit kinematics. The prey-oriented turning maneuvers appear to be under feed-forward

control since we did not observe the predator correct their heading during maneuvers in

which the prey swam to a new position.

Our findings in the present study are limited to zebrafish predators in pursuit of evasive

fish prey. It is likely that our zebrafish predators would adopt a different pursuit strategy

in response to different prey items. Indeed, humans have been shown to pursue a slow

moving target with a pure pursuit strategy, but adopt an interception strategy when the

target moves at a sufficiently high speed (Fajen and Warren, 2007). Raptors use a mixed

strategy when pursuing their prey (Kane et al., 2015). During the initial approach they

use a parallel navigation strategy and switch to pure pursuit toward the end of the chase.

Owls use pure pursuit during their approach to a stationary perch but use an interception

strategy to pursue mice (Shifferman and Eilam, 2004). These examples demonstrate that

organisms are capable of implementing a variety of pursuit strategies and the choice is

context dependent.
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Our predator-prey system offers the opportunity for novel research in robotics research

aimed at understanding the underlying control algorithms of intermittent locomotion.

Interest in the design of efficient and maneuverable underwater robotic swimmers has

been growing since the advent of fish-like robots such as Robotuna (Barrett et al., 1996).

Robotics engineers are increasingly looking to biology for inspiration and are collaborat-

ing with organismal biologists to understand the mechanics of locomotion (Gravish and

Lauder, 2018). Intermittent locomotion is an efficient mode of travel (Paoletti and Ma-

hadevan, 2014) and, as we have demonstrated, can be an effective strategy to pursue prey.

We see the potential for biologists, engineers, and mathematicians to engage in interdisci-

plinary research aimed at understanding the mechanics of intermittent locomotion during

goal directed behavior and applying this knowledge to design more efficient and agile robots.

41



2.5 Figures
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Figure 2.1: Experimental setup and pursuit strategy definitions. (A) Chase sequences were
filmed from a dorsal perspective with an infrared sensitive, high-speed camera. Infrared lights
provided transmitted illumination from below. A visible light source (white light) was used
to provide ambient lighting. (B) The predator’s heading angle (θ) is defined relative to the
horizontal axis and the bearing angle (φ) is defined with respect to heading. Here the bearing
angle is positive. (C) Hypothetical pursuit trajectories on a 2D plane for pure pursuit (left)
and interception (right) for non-evasive prey. The red dot is the prey’s initial position and
the gray curve is its trajectory through time. The blue dot is the predator’s initial position
and the blue curve is its pursuit trajectory through time.
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Figure 2.2: Image processing and the kinematics of pursuit in zebrafish. (A) We used
image processing to extract the position of the prey (red dot in ii. and iv.) and the midline
of the predator. Input images (i.), cropped for clarity, are binarized for blob analysis (ii.).
The predator and prey are identified by the size of the binary blob that describes its shape.
Distance mapping (iii.) is applied to the predator blob to identify the pixels that define the
body midline (yellow curve in iv.). The color bar (iii.) indicates the value assigned to pixels of
the predator blob based on its distance (in pixels) to the background. (B) We used features of
the predator’s angular velocity (θ̇), to identify the tail beat phases in the predator’s motion.
Red crosses indicate the start and end time points of a tail beat. Intervals in which the
angular velocity did not meet the threshold criteria were rejected (blue bar) and intervals
that achieved the threshold value were labeled as tail beat intervals (gray bars). The tail beat
intervals correspond to turning maneuvers with substantial changes in the predator’s heading
(θ). (C) Sample time series of distance between predator and prey (purple), bearing angle
(green), and heading angle (blue). The gray bars highlight the tail beat or burst phase of
burst–and–coast swimming where the predator accelerates and changes heading.
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Figure 2.3: Heading change is predicted by bearing angle and correlated to tail motion. (A)
The change in heading angle during a turning maneuver is predicted by the bearing angle
before the turn is initiated. The slope of the regression line indicates that predator’s turn
toward prey to null the bearing angle, typical of a pure pursuit strategy. (B) The change in
heading during a turning maneuver is correlated to the tail angle, measured as the angular
deviation between the predator’s heading and the position of the caudal peduncle. The slope
of the regression line indicates that the predator modulates its turn amplitude by controlling
the motion of its caudal fin.
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Chapter 3

Multichannel Stroboscopic

Videography (MSV)

Abstract

Biologists commonly visualize different features of an organism using distinct sources of il-

lumination. Multichannel imaging has largely not been applied to behavioral studies due to

the challenges posed by a moving subject. We address this challenge with the technique of

Multichannel Stroboscopic Videography (MSV), which synchronizes multiple strobe lights

with video exposures of a single camera. We illustrate the utility of this approach with

kinematic measurements of a walking cockroach (Gromphadorhina portentosa) and calcu-

lations of the pressure field around a swimming fish (Danio rerio). In both, transmitted

illumination generated high-contrast images of the animal’s body in one channel. Other

sources of illumination were used to visualize the points of contact for the feet of the cock-

roach and water flow around the fish in separate channels. MSV provides an enhanced
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potential for high-throughput experimentation and the capacity to integrate changes in

physiological or environmental conditions in freely-behaving animals.
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3.1 Introduction

The visualization of multiple channels of spatial information is common to numerous fields

of biological study. Multichannel visualization is often associated with fluorescence mi-

croscopy, where distinct channels may be recorded by using different fluorophores (e.g.

Parak et al., 2005; Miyawaki et al., 2003; Carlsson et al., 1994). Individual channels are

visualized with a single camera by changing the filter sets in a light path that are specific to

each fluorophore. Overlaying these channels into a single image provides the ability to map

disparate types of information offered by each channel (e.g. gene expression, ion concen-

tration, mechanical stresses) with respect to an organism’s body. In this way, multichannel

visualization provides a powerful means for experimental inquiry. However, the leverage

gained by a multichannel approach has largely eluded studies of animal behavior due to

the relatively rapid motion of the subject. Here we present a technique called Multichannel

Stroboscopic Videography (MSV) that permits multichannel visualization for behavioral

experiments with a single camera. MSV operates through the use of strobe lights that are

synchronized with respect to the exposures of a video camera. Each set of lights provides

illumination that is specific to an individual channel in a recording. Channels are recorded

during distinct video frame exposures. We illustrate the utility of this technique by mea-

suring (1) two channels of kinematic data in a walking cockroach and (2) the flow field and

kinematics in separate channels for a swimming zebrafish.

Our measurements of a walking cockroach were intended to demonstrate the general ap-

proach and value of MSV for automated kinematic analysis. Cockroaches are a model

system for the neuromechanics of locomotion and studies on this insect can include simul-

taneous measurements of the animal’s body and where its feet contact the ground (Kram

et al., 1997; Schaefer and Ritzmann, 2001; Watson and Ritzmann, 1997; Full and Tu, 1990)

that are acquired by established methods. As detailed in Materials and methods, we used
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MSV to independently optimize the illumination of the body in one channel and the feet

in another. The contrast for both the body and feet were sufficient to automate the acqui-

sition of coordinates for both features without the use of synthetic markers. This approach

could be applied to other such situations where two or more sources of illumination provide

high contrast for distinct features of an organism. Automated kinematic analysis allows

for high-throughput behavioral experimentation.

Our experiment on a swimming zebrafish was designed to evaluate the use of MSV to

generate two distinct types of data. One channel recorded the flow field around the fish

using digital particle image velocimetry (DPIV) and the other tracked the peripheral shape

of the body. In addition to the benefits of correlating measurements from the two channels,

measurements of the fish’s body were also incorporated in our analysis of DPIV data. In

particular, automated tracking of the body allowed for the definition of a dynamic mask to

reject erroneous velocity vectors. In addition, the position of the fluid-body interface was

necessary to calculate the pressure field using a previously described method (Lucas et al.,

2017; Dabiri et al., 2014). The ability to automate measurements of both the animal’s body

and flow field illustrates MSV’s powerful capacity for high-throughput experimentation with

a complex hydrodynamic analysis.

3.2 Materials and methods

3.2.1 Experiments

MSV requires an ability to synchronize sources of stroboscopic illumination with respect

to the frame exposures of a video camera. We used a high-speed video camera (FAST-

CAM Mini AX100, Photron, San Diego, CA, USA) with high spatial resolution (1024 ×

1024 pixels) configured with a macro lens (Micro-Nikkor 105 mm f/2.8, Nikon Inc., Melville,
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NY, USA), appropriate for recording small animals (Fig. 3.1). This camera was configured

to have the timing of exposures dictated by the rising edge of an external 5 V square-wave

control signal of variable frequency. This signal was provided by a 2-channel arbitrary wave-

form function generator (DG1022Z, RIGOL Technologies, Beaverton, OR, USA), which also

generated a second 5 V control signal for the lights at half the frequency of the camera’s

control signal. The signals used to operate the camera and light sources were synchronized

using the ‘align-phase’ feature of the function generator and verified with a multi-channel

digital oscilloscope (DS1054Z, RIGOL Technologies, Beaverton, OR, USA). When record-

ing at high speed, MSV requires lights such as LEDs that have a nearly instantaneous

response to a power control signal. A consequence of MSV is that the different channels

generate measurements that are separated in time, which requires interpolating the data

in post-processing (explained below).

We used MSV to measure the kinematics of the body and feet of a cockroach in separate

channels. To visualize the body, we used an infrared (IR, 940 nm) LED panel placed above

a translucent white acrylic diffuser, which was placed above the experimental tank (Fig.

3.1A). This generated a high-contrast image of the body with transmitted illumination. A

circuit (Fig. S1) delivered power to this light when a control signal was set to 0 V and no

power at 5 V. We visualized where the feet of the cockroach contacted the floor of the tank

using a second light that consisted of a strip of white LEDs aligned with the edge of the

floor. The floor was composed of a clear sheet of acrylic (30.5 cm× 30.5 cm× 1.3 cm) and

the strip of LEDs generated an evanescent field by partial total internal reflection (Martin-

Fernandez et al., 2013) above the acrylic surface. When the legs of the cockroach contacted

the surface, light within the evanescent field was reflected and imaged from below. The

strip of white LEDs was powered throughout the experiment, but their low brightness was

barely visible when the IR light source was activated to visualize the cockroach’s body. As
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a consequence, video recordings consisted of alternating high-contrast images suitable for

automating the body and footfall kinematics of a walking cockroach in separate channels.

Our experimental setup for zebrafish allowed for simultaneous recordings of the fish’s body

and the surrounding flow field. The body was visualized with the same IR LED panel

and diffuser (Fig. 3.1B) as used for the cockroach experiment. The IR LED panel was

oriented below the experimental tank (7.5 cm × 7.5 cm) and the camera was placed above

to visualize the fish as a high-contrast silhouette from a dorsal perspective. We visualized

flow by splitting a laser beam (2 W DPSS, 532 nm wavelength, Laser Quantum, San Jose,

CA, USA) into two light paths, one of which was reflected upon two mirrors, and passing

each path through sheet generator optics (Fig. 3.1B). This arrangement generated a plane

of light parallel to the focal plane of the camera from two perpendicular sources. The laser

sheet illuminated reflective particles (industrial diamond powder, 3−6µm, Lasco Diamond

Products, Chatsworth, CA, USA) mixed at a concentration of 0.0056% by weight in the

water contained within the tank, which was filled to a depth of 2.5 cm.

The two different single-wavelength light sources used in our fish experiments created a

chromatic aberration. Most lenses have different refractive indices for different wavelengths

of light. As a consequence, a lens focused on a subject for one color will be out of focus for

a different color. Due to this effect, we optimized the setup for increased depth-of-field by

increasing the intensity of the IR LED panel and the gain on the camera so that we could

set the lens with a higher f-number and hence smaller aperture. In addition, we focused

our lens on the laser sheet because DPIV results were found to be more sensitive to focus.

The fish’s body and flow field were independently recorded at high speed (Fig. 3.2). The IR

LED panel and laser received a common 500 Hz control signal from the function generator.

We modified the external control hardware of the laser to emit only when this signal reached

5 V. In contrast, the IR LED panel emitted light at 0 V and hence out of phase with the
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laser. The other channel from the function generator synchronized frame exposures with

a 1000 Hz control signal. Thus two channels of alternating video frames were recorded for

dynamic boundary tracking and flow visualization.

Experiments were performed on a single fish and one cockroach. The zebrafish (Danio

rerio, Hamilton 1822, 120 days post-fertilization, 18.9 mm standard length) was main-

tained in a recirculating freshwater system at 27 ◦C on a 14 L:10 D cycle. The cockroach

(Gromphadorhina portentosa, 6.83 g) was obtained from a laboratory colony maintained at

24 ◦C under a 12 L:12 D cycle. Both animals were transferred to their experimental tank and

allowed to acclimate for at least 10 min prior to filming. Spontaneous behavior was recorded

for both animals. For the fish, we stopped recording and saved the sequence to disk when

the animal executed a turning maneuver within the horizontal plane of the laser sheet. All

experiments on the fish were conducted in accordance with the University of California,

Irvine’s Institutional Animal Care and Use Committee (Protocol #AUP-17-012).

3.2.2 Image processing and data analysis

Our recordings of the cockroach were analyzed to automate tracking of both the body

and feet. This procedure, and all data analyses, were performed by programming within

MATLAB (v.2014b, MathWorks, Natick, MA, USA). Our program employed the image

processing task generally known as blob analysis which requires the conversion of grayscale

images into binary images by defining an intensity value that separates dark and light

pixels. This image segmentation technique, known as thresholding, generates ‘blobs’ of

connected pixels from which features (e.g. centroid and area) may be calculated. The

program first identified the frames for the body by the relatively high mean pixel intensity

generated by the IR LED panel (Fig. 3.3A). This initial detection procedure allowed us

to input the entire video without imposing a specific ordering to the frames and without
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manually separating frames into subdirectories. After thresholding, the cockroach’s body

was distinguished as the largest blob in each frame and its centroid position was recorded.

We performed a similar operation to identify the illuminated points of contact for the feet

from the darker video frames. The more subtle contrast of these images was improved by

subtracting a time-averaged image to remove imperfections in the surface of the floor. We

combined the coordinates from both channels by linear interpolation (‘interp1’ function in

Matlab) of the body position coordinates at the same time points for which we obtained

measurements of the feet. The final result was a kinematic dataset for the body and feet

that was obtained automatically through two channels.

One of the channels for our fish experiments similarly allowed for body tracking. Our

program automatically tracked the boundary and midline of the dark fish body from the

video frames illuminated by IR light (Fig. 3.3B). We applied a local thresholding technique

(‘adaptthresh’ function in MATLAB) that is robust to nonuniform illumination and can

be used with or, as implemented here, without an input reference image for background

subtraction. The resulting binary image described the shape of the fish’s body, which we

refined with morphological operations to fill holes and connect any gaps with neighboring

blobs. The fish blob was manually selected in the first video frame and subsequently

identified by its area and proximity to the prior frame’s blob. This blob was used as our

dynamic mask for DPIV analysis and served as the basis for kinematic measurements. For

each frame, we measured the blob’s area and identified its center-of-area, boundary, and

midline. The midline was identified by distance mapping, which encodes a value for each

pixel according to its closest proximity to the blob’s edge. We applied distance mapping

along the rows and columns of the binary image and the resulting maps were concatenated

to produce the set of pixels that define the midline (Fig. 3.3B, right column). For kinematic

analysis, the raw midline coordinates were smoothed with the ‘loess’ method, a locally

weighted polynomial regression.
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The DPIV flow fields were analyzed to estimate the pressure field around the swimming

fish (Figs. 3.3C and S2). We analyzed our recordings of particle motion using an open-

source MATLAB application PIVlab (Thielicke and Stamhuis, 2014). This software was

configured for a direct Fourier transform correlation with three passes and 50% window

overlap. We decreased the interrogation window sizes (64 × 64, 32 × 32, and 16 × 16)

in each pass, which resulted in a 128 × 128–velocity vector field. We modified PIVlab to

accept the dynamic mask that we identified from our blob analysis (Fig. 3.3B). A linear

interpolation of the flow fields with respect to time was performed to estimate the flow field

for the same instants of time for which we recored body kinematics. Pressure calculations

were performed with the queen2 algorithm (Dabiri et al., 2014) with default settings. This

algorithm directly computed the pressure gradient term in the Navier-Stokes equations

along several paths and performed a median-polling scheme to estimate the pressure at

each point. These calculations required the coordinates of the mask boundary for the fish’s

body from each frame.

3.3 Results and discussion

Our experiments illustrate how MSV allows multichannel visualization for behavioral exper-

iments. Channels of data were obtained from images of alternating sources of illumination

in a single-camera video recording. The two channels of kinematics in our cockroach ex-

periment were acquired from images that individually visualized the footfall pattern and

body position through time (Fig. 3.3A). In our fish experiment, flow was visualized with

a DPIV channel and kinematics were obtained through another channel. This kinematics

channel was then used in the post-processing of the DPIV channel (Fig. 3.3B-C). We see

the potential for broad applications of MSV in the study of animal behavior and engineering

research.
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MSV can enhance the automated acquisition of kinematic measurements. Automated anal-

yses allow high-throughput data acquisition that is useful for expanding the size of a dataset

and may facilitate applications such as behavioral mutant screens (e.g. Brockerhoff et al.,

1995; Mirat et al., 2013). Machine learning and other frontiers in image processing offer

opportunities for the development of sophisticated software for automating kinematic mea-

surements (Colyer et al., 2018; Robie et al., 2017). However, a more direct and robust

approach to automation may be obtained from video recordings of subjects that are illu-

minated with high contrast. Under two or more sources of illumination, each source may

be optimized to enhance the contrast of a particular feature. In the case of the cockroach,

the lighting conditions for the body and feet were optimized independently (Fig. 3.3A).

Recording over two channels allowed these features to be visualized with sufficient con-

trast for automated tracking. This example demonstrates the value of MSV in allowing

landmark tracking under two or more sources of illumination, which may be required in

animal behavior research for which automated tracking methods are not well established.

MSV could be extended to tracking multiple individuals in an experiment. For example,

individuals marked with a UV fluorescent tag (Delcourt et al., 2013, 2011) could be iden-

tified under UV illumination in one channel and body kinematics could be recorded via

transmitted illumination in another channel.

Our fish experiment demonstrates the utility of MSV in measuring flow around a moving

body. DPIV operates by identifying the displacement of particles within an Eulerian system

grid (Stamhuis et al., 2002; Adrian, 1991). Excluding the cells within an interrogation

window that contain a body may be accomplished by dynamic masking. Dynamic masks

may be isolated with image processing from a single-channel recording when the body is

uniformly illuminated (Gemmell et al., 2016), but the lighting conditions that are amenable

to recording particles are generally unfavorable for visualizing the body. As a consequence,

the body is often manually drawn for each frame of the video (Gemmell et al., 2016; Tytell
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and Lauder, 2004), which is labor-intensive. As demonstrated presently, MSV provides

the opportunity to resolve this challenge by producing images of the moving body under

transmitted illumination that may be easily converted into a dynamic binary mask. This

automated process has the potential for utility beyond biology and into areas of fluid

dynamics research. When imaging a moving subject in flow, MSV can be used in place of

image processing techniques for masking that require a priori descriptions of the object’s

geometry and motion (e.g. Nikoueeyan and Naughton, 2018; Dussol et al., 2016). As an

alternative to MSV, it is possible to use two sources of illumination and multiple cameras

to simultaneously acquire the different channels (Adhikari et al., 2015). However, such a

system results in higher cost and greater computational time for image registration of the

different camera views relative to MSV.

MSV offers additional benefits in the post-processing of flow measurements for near-field

analysis. After acquiring a velocity field, investigators are generally interested in extracting

derived features from those data. Such post-processing has included measurements of

variables describing the circulation and spacing of vortices shed in the wake of an animal

(Drucker and Lauder, 2001; Müller et al., 2000). When conducted in the far field, such

calculations may not require articulating the location of the body’s surface. However, the

body’s boundaries are essential for calculating near-field phenomena, such as boundary

layers and flow separation (Anderson et al., 2001). Measurements of the surface in these

cases offers the same challenge as the dynamic mask used in acquisition. Again, MSV

resolves this task by allowing for the automated extraction of a body’s boundary in the

flow field, as demonstrated in our calculation of pressure (Fig. 3.3C). The algorithm that

we used, developed previously (Lucas et al., 2017; Dabiri et al., 2014), required identifying

the boundary of the fish for each video frame.

There are limitations to MSV that are a direct consequence of using a single camera to

collect multi-channel data. Consecutive images from a single light source (Fig. 3.2C)
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are offset by an inter-frame interval equal to the camera’s frame rate, which effectively

reduces the frame rate by half. This drop in frame rate can be ameliorated, to some

extent, by using a high speed video camera and sufficient lighting to illuminate the object

as exposure time decreases. Another potential drawback is that MSV does not generate

simultaneous multi-channel data. Many biological investigations benefit from correlating

simultaneous data from multiple sources (e.g. Venkatraman et al., 2010; Mead et al., 2003).

The high temporal resolution of our data allowed for interpolating the data of one channel

at corresponding time points of the second channel. Similar post-processing is required to

synchronize measurements from different channels.

The ability of MSV to acquire multiple channels of image data has potential applications in

diverse areas of biological research. Multichannel visualization is common to fluorescence

microscopy, where distinct channels may be imaged with different fluorophores (e.g. Parak

et al., 2005; Miyawaki et al., 2003; Carlsson et al., 1994). Each fluorophore, visualized with a

distinct filter set, can offer a channel that maps a type of information (e.g. gene expression,

ion concentration, mechanical stresses) to an organism’s anatomy and these channels may

be combined in a single image. The use of transgenic lines of animals for the visualization of

neuronal activity has become a popular optical approach to neurophysiology but generally

requires a stationary subject (e.g. Bruegmann et al., 2015; McLean and Fetcho, 2011).

Using independent frame exposures, MSV may permit visualization of tissues in a moving

subject by combining a fluorescence channel with another light source to visualize the body.

In summary, MSV offers the opportunity for multichannel visualization with a moving

subject. By separating the channels in separate exposures of a video recording, the illu-

mination for each channel may be optimized for a particular source of information. Such

conditions offer the promise of automated analysis and sophisticated post-processing. We

feel that the cockroach and fish experiments presented here illustrate just some of the pos-
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sibilities for incorporating this approach in experimental methods for research in biology

and engineering.

Data accessibility

Dash UCI: https://doi.org/10.7280/D1R67V

3.4 Figures: MSV
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Figure 3.1: Two experimental setups that use MSV. (A) We performed an experiment
on a cockroach using two channels of kinematics. Foot kinematics were obtained using LEDs
directed toward the side of the acrylic floor to illuminate where the feet contacted the floor.
Body kinematics were measured using an IR LED panel positioned above the animal and
holding tank to visualize the body with high contrast. This panel was activated by a function
generator using a control signal that was synchronized with a camera that recorded at twice
the frequency. (B) We performed experiments with channels for flow visualization (via DPIV)
and kinematics for a fish executing a turning maneuver. The camera recorded the motion of
the fish’s body under transmitted illumination using the IR LED panel and the motion of
suspended reflective particles using the laser in alternating frames of video. See Fig. 3.2 for
further details on the synchronization of lights and camera.
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Figure 3.2: The control of light sources and camera exposures for DPIV and
kinematics channels with MSV. (A) We used a square-wave signal (1000 Hz, 5 V) to
control the timing of exposure for the high-speed video camera, which was configured to
respond to the leading edge of the signal. (B) A second signal from the function generator
that generated the camera signal (Fig. 3.1) was output to control hardware for the laser and IR
LED panel. This square-wave was in-phase with the camera signal, but at half the frequency
(500 Hz, 5 V). The control hardware for the laser was configured to turn ‘On’ in response to
a 5 V signal, whereas the IR LED panel had the opposite response. As a consequence, the
two sources emitted light out of phase and were captured on different frame exposures. (C)
Using this method, sample images were acquired of an adult zebrafish from a dorsal view as
it executed a turn at 1 ms intervals alternating between the two channels. The DPIV channel
illuminated suspended particles with laser light (see Fig. S2B) and the kinematics channel
used the IR LED panel for transmitted illumination.
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Figure 3.3: Workflow of MSV analysis for experiments on a (A) cockroach and
(B–C) fish. (A) Cockroach motion was measured using body kinematics and foot kinematics
channels. An individual video frame (left) shows the body under transmitted illumination
from which the center-of-area of the body (green circle in inset) was obtained by automated
image processing. The position of the center of three contact points for the feet (green circles)
are shown for the foot kinematics channel (frame is contrast-enhanced). By interpolating the
body position, we combined measurements of the center of body (open circles) and points
of contact for the feet (filled circles) for the same point in time (connected by lines at 0.32 s
intervals). The contact points of other times (in gray) are shown as well. (B) A video frame
of a zebrafish executing a turning maneuver (left column) was automatically processed to
extract the object mask, boundary, and midline (center column). By analyzing a sequence
of frames (right column), the midlines (in blue) and rostrum (in magenta) are shown for
a 200 ms counterclockwise turn to demonstrate an automated analysis conducted from the
kinematics channel. (C) A video frame from the DPIV channel displays the particles around
the zebrafish. From a pair of such images, the velocity field was calculated (center column)
using a dynamic binary mask for the body from the kinematics channel. A pressure field was
calculated (right column) by post-processing of the velocity field using the mask boundary
from the kinematics channel.
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Appendix A

Chapter 1 Supplemental Material

A.1 Performance plateau in the slow-predator domain

The present study included the results of numerical solutions that showed a performance

plateau in the slow-predator domain, where the prey is faster than the predator. Here we

define the boundary to this plateau, where an equivalent escape performance is achieved

for a large range of escape angles α (Fig. 2A). For each escape angle in this range, the

prey performs equally well by not allowing the predator to approach any closer than the

distance at which the prey initiates an escape.

The distance between predator and prey varies with time, as given by the following equa-

tion:

D2 = ((X0 − Ut) + V t cosα)2 + (V t sinα)2, (A.1)

where U and V are respectively the predator and prey speeds that do not vary with time,

and X0 is the initial position of the prey (i.e. D2 = X2
0 at t = 0). As explained in our

article, the distance function may be solved for the time at which the minimum distance
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between predator and prey is achieved. The minimum distance distance occurs at t = 0 if

the distance function increases monotonically with time. All escape angles for which this

is true will yield an ideal minimum distance ( D
X0

= 1). We will consider whether this is

true of the following range of angles, which is bounded by the two solutions to Eqn. A.1

reported by Weihs and Webb (1984):

0 ≤ α ≤ arccos(K), (A.2)

where K = U/V . For our purposes, it is helpful to formulate this inequality as follows:

K ≤ cosα ≤ 1. (A.3)

Toward this aim, it suffices to show that the distance function is increasing for all positive

time values. This may be achieved by proving that the derivative of Eqn. A.1 with respect

to time is greater than or equal to zero. This derivative is given by the following equation:

∂D2

∂t
= 2(t(U2 + V 2)− UX0 + V (X0 − 2tU) cosα). (A.4)

It is helpful to rewrite this expression as a linear function of time as follows:

∂D2

∂t
= 2(U2 + V 2 − 2UV cosα)t+ 2X0(V cosα− U), (A.5)

In order to show that Eqn. A.5 is nonnegative for t ≥ 0, it suffices to show that the slope

is positive and the intercept (when t = 0) is nonnegative.

• Positive slope.

Eqn. A.3 implies that V cosα ≤ V . Multiplying this inequality by −2U and adding
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U2 + V 2 on both sides yields:

U2 + V 2 − 2UV cosα ≥ V 2 − 2UV + U2 (A.6)

The right hand side of this inequality is equivalent to (V − U)2. Because K < 1, it

follows that V > U . Thus,

U2 + V 2 − 2UV cosα ≥ (V − U)2 > 0 (A.7)

• Nonnegative intercept.

Because we consider only the situation where X0 > 0, we simply need to show that

V cosα− U ≥ 0.

Eqn. A.3 implies that KV ≤ V cosα. Since K = U/V , we have

U ≤ V cosα. (A.8)

We can rewrite this inequality as

V cosα− U ≥ 0. (A.9)

Eqns. A.6 and A.9 together show that the distance is always increasing for 0 ≤ α ≤

arccos(K) and K < 1. An analogous argument applies for − arccos(K) ≤ α < 0. The

preceding proof shows that the minimum distance occurs at t = 0 and is given by D2 = X2
0 .

This defines a performance plateau for the prey as a wide range of angles that yield equally

successful escapes.

74



A.2 Initial Lateral Displacement

The distance function given by Eqn. A.1 is based on the assumption that the predator

is headed directly at the initial position of the prey. However, previous experiments have

shown that predators often fail to perfectly align their approach toward the prey. To model

this situation, here we introduce a lateral initial position to the distance function.

A.2.1 Distance function with initial lateral displacement

This general form of the distance function is now given by the following:

D2 = ((X0 − Ut) + V t cosα)2 + (Y0 + V t sinα)2. (A.10)

Note that the introduction of an initial lateral position (Y0) allows us to rewrite the equation

in polar coordinates, which simplifies our analysis below. We can rewrite Eqn. A.10 in

polar coordinates (R, θ) by setting R2
0 = X2

0 +Y 2
0 , and θ0 = arctan(Y0/X0). Here we assume

that Y0 ≥ 0, but the final results are presented for the more general case. This yields the

following:

D2
0 = R2

0 + (1 +K2)t2V 2 − 2V t(KV t cosα−R0 cos(α− θ0) +KR0 cos θ0). (A.11)

To find the time at which Eqn. A.11 is minimal, we find the roots of the derivative of Eqn.

A.11 with respect to t, which yields the following solution:

tmin =
R0

V

[K cos θ0 − cos(α− θ0)]
1− 2K cosα +K2

(A.12)
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The above is negative when K cos θ0 < cos(α−θ0). Rewriting this inequality gives the range

of α for which the distance is solely increasing. Explicitly, this is given by the following:

θ0 − arccos(K cos θ0) < α < θ0 + arccos(K cos θ0). (A.13)

For these values of α, the minimum distance occurs at t = 0 and is thus equal to the initial

distance R2
0. This defines a performance plateau when K < 1. If we now substitute tmin for

t in Eqn. A.11, we get the minimum distance as a function of α with respect to parameters

K and θ0. This is given by the following:

D
2

min =
D2

min

R2
0

=
(sin(α− θ0) +K sin θ0)

2

K2 − 2K cosα + 1
. (A.14)

A.2.2 Finding values of α that optimize the minimum distance

To find the escape angle which yields the largest minimum distance, we solved the following

equation:

0 =
∂D

2

min

∂α
=

2(K cosα− 1)(K cos θ0 − cos(α− θ0))(K sin θ0 + sin(α− θ0))
(K2 − 2K cosα + 1)2

(A.15)

The solutions to this equation are found by finding where the numerator is equal to zero

which is done by considering the following three cases:

Case 1: K cosα− 1 = 0.

Solving this equation yields the following relationship:

α1 = ± arccosK−1 (A.16)
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This solution is valid for K ≥ 1, which indicates that prey are equally effective

if escaping at an optimal angle toward the left (α > 0), or right (α < 0) of the

predator’s heading.

Case 2: K cos θ0 − cos(α− θ0) = 0.

A careful analysis is required for this case because the solution can include complex

numbers for some combinations of K and θ0. This equation may be formulated as

follows:

cos(α− θ0) = K cos θ0. (A.17)

This equation imposes conditions on the values of K and θ0 to yield solutions which

are real numbers. Explicitly, this condition is given by the following

|K cos θ0| ≤ 1 (A.18)

Eqn. A.18 is always satisfied when 0 ≤ K ≤ 1. If K > 1, then we must have that

| cos θ0| ≤ 1/K. This leads to the following bound for θ0:

arccos(K−1) ≤ θ0 ≤ arccos(−K−1). (A.19)

Note that as the value of K increases, the allowable range for θ0 decreases. With

these restrictions in mind, we proceed to solve Eqn. A.17. The solution is given by:

α2 = θ0 + arccos(K cos θ0),

α3 = θ0 − arccos(K cos θ0).

Therefore, the following equation defines the boundaries of the performance plateau

for K < 1 :

|α− θ0| ≤ arccos(K cos θ0). (A.20)

77



For K > 1, the solutions α2,3 are not optimal unless θ0 simultaneously satisfies Eqn.

A.19.

Case 3: K sin θ0 + sin(α− θ0) = 0.

Solving this equation yields the following:

α4 = θ0 − arcsin(K sin θ0),

α5 = π + θ0 + arcsin(K sin θ0).

For K < 1, α4 is contained within the bounds defined by Eqn. A.13. This means

that the solution is contained within the performance plateau of the slow–predator

domain. When K > 1, α4 is a local minimum. Because we seek to find the angle

which yields the greatest minimum distance, α4 is not optimal when K > 1. Similarly,

the solution given by α5 is a local minimum for all values of K, so this solution does

not yield an optimal escape.
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