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Dynamics of information processing in the hippocampal network. 

Margaret F. Carr 

 We rely on our memories of past experiences, in conjunction with our current 

perception of the external world, to guide our behavior. The hippocampus is essential for 

rapidly encoding new memories. Subsequent processes between the hippocampus and 

distributed neocortical circuits are thought to consolidate these memories for long term 

storage and to retrieve stored memories to guide ongoing behavior. These varied 

mnemonic functions are thought to be subserved by distinct patterns of activity in the 

hippocampal subfields. In particular, the highly recurrent hippocampal area CA3 is 

crucial for the formation and consolidation of stored associations. As the associations 

formed in the recurrent CA3 network can only influence the neocortex via hippocampal 

output area CA1, understanding when how and when CA3 communicates with CA1 is 

critical for understanding memory processes. In Chapter 1 we investigate how CA3 and 

CA1 are coordinated during sharp wave-ripple events (SWRs) that are thought to 

support memory consolidation. We find that during SWRs there is a transient increase in 

the gamma synchrony between CA3 and CA1 and that the degree of synchronization 

between CA3 and CA1 is predictive of the quality of the replay of past experiences. Our 

results suggest that transient CA3-CA1 gamma synchronization is a central component 

of SWRs and this synchronization serves to clock the reactivation of stored memories 

across the hippocampal network. In Chapter 2 we investigate how the influence of CA3 

on CA1 varies as a function of ongoing behavior. We find that as animals move faster, 

the influence of CA3 on CA1 decreases and that the level of coordinated spiking activity 

in CA1 reflects the influence of CA3. Our results suggest that movement speed drives a 

dynamic balance between learned associations and more independent sensory 

representations in the hippocampus which appears well suited to support the multiple 

mnemonic functions of the hippocampal circuit.  
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Introduction 
Our memories are central to our sense of self. We use past experiences to guide 

current decisions, an ability that requires both memory storage and retrieval. The highly 

plastic hippocampal circuit is believed to be the initial site of encoding episodic 

memories. Studies of hippocampal lesions have suggested that there is a subsequent 

process during which the hippocampus interacts with the rest of the brain to engrain 

stable, long lasting representations in hippocampal-neocortical circuits (Squire and Zola-

Morgan, 1991, Kim and Fanselow, 1992, Dudai, 2004). While there is still debate about 

how long this consolidation process lasts and whether memories ever become truly 

independent of the hippocampus (Jarrard, 2001, Nadel and Moscovitch, 2001), it is clear 

that the hippocampus plays an essential role in the initial encoding and subsequent 

stabilization of long term memories (Squire, 1982, Cohen and Eichenbaum, 1993, Rudy 

and Sutherland, 1995). This stabilization is thought to depend on the reactivation of 

previously encoded associations, engraining those associations into the less-plastic 

neocortex (Alvarez and Squire, 1994, Eichenbaum and Cohen, 2001). 

In the freely moving animal, pyramidal neurons in the hippocampus show firing 

responses that are tuned to specific locations in space such that in a given environment, 

neurons are active when the animal visits a particular limited region, and is nearly silent 

elsewhere (O'Keefe and Dostrovsky, 1971, O'Keefe and Nadel, 1978). The receptive 

fields of these “place cells” develop with experience, indicating that place cells “learn” to 

encode spatial information in a context dependent manner (Wilson and McNaughton, 

1993, Frank et al., 2004). Behavioral trajectories from one location to another in space 

are thus represented by the hippocampus as a sequence of place cells. 

During sharp wave ripples (SWRs), these sequences of place cells representing 

previously experienced behavioral trajectories are replayed on a compressed timescale, 
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suggesting a role for reactivation in consolidation (Buzsaki, 1986, Wilson and 

McNaughton, 1994, Eichenbaum and Cohen, 2001, Nakashiba et al., 2009, Diekelmann 

and Born, 2010). SWR replay can occur in either the same (forward) or the opposite 

(reverse) direction as observed during behavioral traversal (Foster and Wilson, 2006, 

Diba and Buzsaki, 2007) (Figure 1) and the direction of replay is related to the animal’s 

behavior. Reverse replay occurs preferentially at the end of runs when the animal 

reached the reward location, potentially linking behavioral trajectories to their outcomes 

(Foster and Wilson, 2006). Forward replay occurs preferentially at the beginning of runs, 

perhaps providing information relevant for evaluating future trajectories (Diba and 

Buzsaki, 2007). Behaviorally relevant sequences are replayed repeatedly during SWRs, 

such that sequences can be replayed more often than the trajectories they represented 

had been experienced (Foster and Wilson, 2006). SWR replay is seen immediately after 

the very first traversal; demonstrating that the hippocampus can replay sequences that 

are experienced only once and suggesting that replay contributes to one-trial learning. 
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Sharp-wave ripples originate in the hippocampus and are triggered by 

synchronized activation of CA3 pyramidal cells, leading to characteristic negative 

potentials (sharp waves) in the CA1 stratum radiatum (Buzsaki, 1986, Ylinen et al., 

1995, Csicsvari et al., 2000, Sullivan et al., 2011) (Figure 2). When recording in area 

CA3, this synchronized activation of local pyramidal cells can be measured as a 100-150 

Hz oscillation (Csicsvari et al., 1999). The population burst in the CA3 region recruits 

CA1 pyramidal cells as well as basket and chandelier cells, leading to a transient (~100 

ms) “ripple” oscillation (150-250Hz) in the CA1 pyramidal cell layer (Ylinen et al., 1995). 

The short latency bursts of CA3 and CA1 neurons during SWRs appear well suited to 

induce synaptic plasticity (Buzsaki, 1986, 1989). SWRs are prominent during sleep as 

well as in the awake state during immobility, consummatory behavior, grooming (Buzsaki 

et al., 1983, Buzsaki, 1986), and can also be seen during running (O'Neill et al., 2006, 

Cheng and Frank, 2008). Activity during SWRs propagates from CA3 to CA1, one of the 

major output areas of the hippocampus, and then out to neocortex (Chrobak and 

Buzsaki, 1996, Siapas and Wilson, 1998, Wierzynski et al., 2009). 
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The extensive excitatory recurrent connections among CA3 pyramidal cells 

(Amaral et al., 1990) have led some to suggest that CA3 acts as an auto-associative 

pattern completion network (Marr, 1971, McNaughton and Morris, 1987). Thus the 

activation of a small subset of CA3 neurons could initiate a cascade of excitation across 

previously modified synapses, leading to reverberating activity that eventually settles into 

an attractor state corresponding to a previously stored memory. Reinstatement of stored 

representations in CA3 could then reinstate the corresponding representations in CA1 

through feed forward excitation. Hippocampal replay during SWRs is thought to reflect 

this type of auto-associative pattern completion in CA3 in conjunction with feed forward 

recruitment of pyramidal cells and interneurons in CA1. This model is consistent with the 

observation that the fidelity of reactivation (measured across cell pairs) is higher in CA3 

than CA1 (Karlsson and Frank, 2009). Furthermore, CA3 output is necessary for SWR 

reactivation of CA1 representations (Nakashiba et al., 2009). 

For both chapters presented in this thesis, we investigate how CA3 

communicates with CA1. In the first chapter we asked how spatially distributed 

populations of CA3 and CA1 neurons can become coordinated during SWRs to replay 

learned associations with high fidelity. We show that during SWRs there are transient 

increases in gamma (20-50Hz) power and synchrony across the dorsal CA3 and CA1 

networks. These gamma oscillations entrain CA3 and CA1 spiking. Moreover, during 

awake SWRs higher levels of gamma synchrony are predictive of higher quality replay of 

past experiences. These results indicate that CA3-CA1 gamma synchronization is a 

central component of awake memory replay and suggest that transient gamma 

synchronization serves as a clocking mechanism to enable consistent memory 

reactivation across the hippocampal network. 

 In the second chapter we asked how the influence of CA3 on CA1 varies as a 

function of ongoing behavior. Standard models of hippocampal function have posited two 
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distinct processing states: encoding of memories driven by sensory input from the 

entorhinal cortex and subsequent consolidation of those memories driven by the 

recurrent CA3 network (Buzsaki, 1989). We show that rather than a two state model, 

ongoing behavior continuously modulates the influence of internal representations from 

CA3 on activity in CA1. We show that as animals move faster, the influence of CA3 on 

CA1 decreases as measured by the amplitude of SWRs, the power of slow gamma 

oscillations, and the synaptic strength of the CA3-CA1 pathway. The level of coordinated 

spiking activity in CA1 reflects the influence of CA3: cell assemblies are highly correlated 

at low speeds and become progressively less correlated with increasing movement 

speed. These results suggest that movement speed drives a dynamic balance between 

learned associations and more independent sensory representations in the 

hippocampus which appears well suited to support the multiple mnemonic functions of 

the hippocampal circuit.  
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Chapter 1  

Transient gamma synchrony underlies hippocampal 
memory replay 
 

Abstract 

The replay of previously stored memories during hippocampal sharp wave ripples 

(SWRs) is thought to support their consolidation in distributed hippocampal-neocortical 

networks. These replay events consist of precisely timed sequences of CA3 and CA1 

neural activity that are coordinated within and across hemispheres. The mechanism of 

this coordination is not understood. Here we show that during SWRs recorded in both 

awake and quiescent states there are transient increases in gamma (20-50 Hz) power 

and synchrony across the dorsal CA3 and CA1 networks of both hemispheres. These 

gamma oscillations entrain CA3 and CA1 spiking. Moreover, during awake SWRs higher 

levels of gamma synchrony are predictive of higher quality replay of past experiences. 

Our results indicate that CA3 – CA1 gamma synchronization is a central component of 

awake memory replay and suggest that transient gamma synchronization serves as a 

clocking mechanism to enable consistent memory reactivation across the hippocampal 

network. 

 

Introduction 

The hippocampus is essential for encoding and consolidating memories of 

experiences (Cohen and Eichenbaum, 1993). During exploration of an environment, 

subsets of CA3 and CA1 neurons are active in one or more restricted regions, the 

neurons “place field” (O'Keefe and Dostrovsky, 1971, O'Keefe and Nadel, 1978). This 

internal representation of the external world develops as animals learn about new 
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locations (Wilson and McNaughton, 1993, Frank et al., 2004). These learned 

representations are replayed during sharp-wave ripple (SWR) events that occur during 

periods of awake stillness and slow wave sleep (Wilson and McNaughton, 1994, Lee 

and Wilson, 2002, Foster and Wilson, 2006, Karlsson and Frank, 2009). Disruption of 

SWRs during sleep following learning impairs subsequent performance (Girardeau et al., 

2009, Ego-Stengel and Wilson, 2010), suggesting that hippocampal reactivation plays 

an important role in memory consolidation. 

The SWRs in which memory reactivation occurs are transient population events 

that originate in hippocampal area CA3. Near synchronous activation of neurons in CA3 

is associated with the characteristic sharp-wave recorded in CA1 stratum radiatum and 

results in recruitment of excitatory and inhibitory neurons in CA1, generating the fast 

ripple oscillation (150-250Hz) in stratum pyramidale (Buzsaki, 1986, Buzsaki et al., 1992, 

Ylinen et al., 1995, Csicsvari et al., 2000). During SWRs, excitatory neurons in both CA3 

and CA1 fire in short-latency bursts and CA1 neurons are phase-locked to the local 

ripple oscillations (Buzsaki et al., 1992, Ylinen et al., 1995, Csicsvari et al., 2000). 

Notably, SWRs often occur concurrently across hemispheres (Ylinen et al., 1995). While 

SWRs occur concurrently, the high frequency ripple oscillations are not coherent 

between CA3 and CA1 (Csicsvari et al., 1999) or across hemispheres (Ylinen et al., 

1995), suggesting that the ripple oscillation itself is an unlikely mechanism to coordinate 

memory replay events across the spatially distributed hippocampal network. 

We investigated possible mechanisms that could support the dynamic formation 

of CA3 and CA1 cell assemblies that replay representations of previous experience 

during SWRs. We show that replay events involve precisely timed activation of neurons 

from both hemispheres and find that there are specific patterns of gamma synchrony 

between CA3 and CA1 that are present during SWRs. This transient gamma 

synchronization entrains spiking across regions and hemispheres, suggesting that the 
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gamma rhythm serves as a clocking mechanism to enable consistent sequential 

reactivation across the hippocampal network. 

 

Results 

Bilateral dorsal CA3 and CA1 stratum pyramidale recordings were obtained from 

three rats as they performed a hippocampally-dependent spatial alternation task (Kim 

and Frank, 2009) in two initially novel W-shaped environments and during interleaved 

rest sessions in a high-walled enclosure (Karlsson and Frank, 2008, 2009) (Figure 1a). 

Each rat was exposed to a single W-track for two run sessions per day for either 6 (rats 

1 and 2) or 3 (rat 3) consecutive days before the first exposure to the second W-track 

(Figure S1). SWRs were detected by selecting periods when ripple power (150-250Hz) 

on any tetrode targeting CA1 stratum pyramidale exceeded 3 standard deviations above 

the mean when animals were moving less than 4 cm/second. All findings were 

consistent across individual animals. 

Large populations of spatially distributed neurons frequently reactivate previous 

experiences during SWRs. As illustrated in this example, neurons recorded bilaterally 

from both CA3 and CA1 are interleaved throughout each SWR (Figure 1b). We used a 

Bayesian decoder with a uniform prior to translate the ensemble spiking of this event into 

probability distributions over positions using place fields recorded in a previously 

experienced environment (Davidson et al., 2009, Karlsson and Frank, 2009) (see 

Methods). In this example, the neurons that fired earliest in time had place fields nearest 

the center well, whereas neurons that had place fields further from the center well fired 

progressively later in time (Figure 1c). Over the course of this SWR, a previously 

experienced behavioral trajectory (from center to outside reward well) was reactivated. 

This decoded sequence of positions corresponded to a coherent spatial trajectory that 

was very unlikely to occur by chance (p < 10-5). 
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We consistently observed the participation of neurons from spatially distributed 

networks during SWRs. Combining across all run and rest sessions, ninety-eight percent 

(655 out of 667) of significant replay events had neurons from both CA1 and CA3 

participating, and 89% (589 out of 667) of significant replay events had participating 

neurons from both hemispheres. Reactivation depends on the integrity of the CA3-CA1 

network (Nakashiba et al., 2009) and reflects activity generated in the hippocampus 

(Chrobak and Buzsaki, 1994, 1996, Sullivan et al., 2011), suggesting that a spatially 

coherent network pattern coordinates activity across CA3 and CA1 bilaterally during 

SWRs (Figure 1d). We therefore examined the structure of network activity in CA3 and 

CA1 during SWRs. We and others have shown that spiking during SWRs differs 

depending on whether the animal is awake or in a quiescent, sleep-like state (O'Neill et 

al., 2006, Karlsson and Frank, 2009, Dupret et al., 2010a), so we examined awake and 

quiescent SWRs separately. 

 

LFP activity during awake SWRs 

We asked what patterns of local field potential (LFP) activity are present during 

SWRs. We found that in both CA3 and CA1 there was a transient increase in gamma 

power (20-50Hz) concurrent with the increased power in the ripple band (Figure 2a-b; 

data from an example run session). To measure changes in gamma power, we 

computed a spectrogram around the time of each SWR (-400 ms to 400 ms from the 

time of SWR detection) for each tetrode located in CA3 or CA1 stratum pyramidale using 

the multi-taper method (Percival and Walden, 1993, Bokil et al., 2010) (see Methods). 

For this and all other spectral analyses we used 100 ms non-overlapping bins. We then 

converted the power in each frequency band to a z-score and averaged the 

spectrograms across tetrodes for each region. Multiple SWRs can occur in trains with 

close temporal proximity (Davidson et al., 2009), so we restricted our analysis to the first 
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SWR of each train (see Methods). We found that gamma power in both CA1 and CA3 

increased substantially above baseline levels at the time of SWR detection, reached 

peak amplitude at the peak of the SWR, remained elevated throughout the SWR and 

began to decay towards baseline values after 200 ms (Figure 2c-d; Kruskal-Wallis 

ANOVA, post-hoc tests; n = 7653 SWRs from 74 behavioral sessions; gamma power > 

baseline; CA1: 0ms-400ms, peak, p<10-5, CA3:0-300ms, peak p<10-5; 400ms p<0.05; for 

all analyses baseline was defined as the average value occurring -450 to -400 ms before 

SWR detection). As the duration of SWRs can vary from tens to hundreds of 

milliseconds and SWRs can occur in trains, the average gamma power can remain 

elevated for a period of time after the initial SWR detection before returning to baseline 

levels (not shown). The significant transient increase in CA3 and CA1 gamma power 

during SWRs was visible in the raw LFP trace (Figure 2e, example trace, same SWR as 

shown in Figure 1a-c). 

As expected, we also observed an increase in power for frequencies less than 

20Hz in CA1 corresponding to the sharp-wave (Buzsaki, 1986). We also observed a 

small but significant increase in fast gamma power (60-100Hz; Figure S2). We focused 

on the transient increase in slow gamma (20-50Hz) power because it was significantly 

larger than the increase in fast gamma power (Kruskal-Wallis ANOVA, post-hoc tests; 

slow gamma power > fast gamma power, p<0.05) and because slow gamma oscillations 

in CA1 are thought to reflect coupling between CA1 and CA3 (Bragin et al., 1995, Colgin 

et al., 2009). 

If oscillations in the gamma band are characteristic of SWRs, then the amplitude 

of gamma and ripple oscillations should be related. Therefore we asked whether this 

transient increase in gamma power during SWRs co-varied with ripple power. We found 

that gamma power in both CA1 and CA3 was correlated with ripple power on a SWR by 

SWR basis, with the correlation significantly greater than baseline for the 400ms 
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following the detection of an SWR and peaking at 100ms after SWR detection (Figure 2f-

g; Kruskal-Wallis ANOVA, post-hoc tests; gamma power > baseline; CA1: 0ms & 400ms, 

p<0.05; 100-300ms, peak, p<10-5; CA3: 100-300ms, peak p<0.001). 

The above results demonstrate that during SWRs there is a transient increase in 

gamma power and that the magnitude of this increase is correlated with the magnitude 

of the SWR. Next we asked whether the converse is true, that is, are increases in 

gamma power predictive of the presence of an SWR? Using a logistic regression 

generalized linear model (GLM), we found that gamma power in CA1 was significantly 

predictive of the presence of an SWR (CA1: 83% of sessions with significant GLM 

model, p<0.05). We illustrated this dependence by determining the probability that there 

was an ongoing SWR for different levels of gamma power. When CA1 gamma power 

exceeded 5 standard deviations above its mean, there was a 50% chance that there was 

a concurrent SWR and this probability increased with increasing gamma power (Figure 

2h). Interestingly, there was no consistent relationship between CA3 gamma power and 

the probability of observing an awake SWR (Figure 2h). These results show that gamma 

oscillations are a consistent feature of SWRs and they suggest that SWRs occur when 

CA1 is entrained by ongoing gamma oscillations in CA3. 

Does the transient increase in gamma power during SWRs reflect coupling 

between the CA3 and CA1 networks that could promote high fidelity replay of past 

experience? To address this question we asked whether the degree of gamma 

synchrony between CA3 and CA1 increases during SWRs. We examined synchrony 

using two related measures, phase locking and coherence. We first looked at gamma 

phase locking between CA3 and CA1. To compute gamma phase locking we measured 

the phase offsets over time between each pair of CA3 and CA1 tetrodes for each SWR. 

We then calculated the average phase offset across tetrode pairs for each SWR at each 

time. Phase locking describes the extent to which the phase offsets are consistent 
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across SWRs. Thus, a uniform distribution of phase offsets would have a phase locking 

value of 0 whereas the phase locking would be 1 if the phase offset between gamma 

oscillations recorded in CA3 and CA1 was the same value for each SWR.  

As shown for an example run session, the distribution of phase offsets between 

gamma oscillations recorded in CA3 and CA1 sharpened at the time of SWR detections 

and peaked ~75ms after SWR detection, reflecting an increase in phase locking 

between regions (Figure 3a). Across sessions there was a significant increase in gamma 

phase locking between CA3 and CA1 for the 400ms following SWR detection (Figure 3b; 

Kruskal-Wallis ANOVA, post-hoc tests; gamma phase locking > baseline: 0-200ms, 

p<10-5; 300-400ms, p<0.001). This increase in phase locking was also seen when 

analyses were restricted to CA3 and CA1 recording sites in different hemispheres, 

demonstrating that the transient synchrony we observe extends across hemispheres and 

was not simply due to volume conduction (Figure S3). 

We next asked whether the magnitude of gamma coherence between CA3 and 

CA1 increased during SWRs. We found a transient increase of gamma coherence 

between CA3 and CA1 during SWRs (Figure 3c). Notably, as can be seen for this 

example run session, we observed no increase in the ripple band coherence during 

SWRs, replicating previous findings that ripple oscillations are not strongly coherent 

across CA3 and CA1 (Ylinen et al., 1995, Csicsvari et al., 1999) (Figure 3c). Gamma 

coherence between CA3 and CA1 was significantly greater than baseline values from 0 

– 400 ms following SWR detection (Figure 3d; Kruskal-Wallis ANOVA, post-hoc tests; 0-

400ms, peak p<10-5; baseline CA3-CA1 coherence: 0.59). The increase in CA3-CA1 

coherence was also present across hemispheres (Figure S3) and was accompanied by 

increases in cross-hemisphere CA3-CA3 and CA1-CA1 coherence (Figure S4). These 

findings indicate that during SWRs, gamma oscillations are transiently synchronized 

across the spatially distributed hippocampal network. 
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Could decreases in measurement error associated with the transient increase in 

gamma power during SWRs explain the transient increases in phase locking and 

coherence we observed? To control for this possibility we identified periods of CA1 

gamma power associated with a 40-60% chance of SWRs (Figure 2h). When we 

compared the phase locking and the coherence magnitude of these gamma-power 

matched times for windows with (n = 2228) and without a SWR (n =16802), we found 

that phase locking and coherence were larger when an SWR was present than when it 

was not (gamma power matched coherence during SWRs, 0.73 ± 0.01 > no SWRs 0.69 

± 0.01; rank sum test, p<10-5; gamma power matched phase locking during SWRs, 0.91 

± 0.03 > no SWR, 0.84 ± 0.03; rank sum test, p<0.05). Thus increases in gamma power 

alone cannot account for the greater gamma phase locking and coherence we observe 

during SWRs. 

 

Gamma modulation of spiking during awake SWRs 

If the increase in gamma coupling across regions during SWRs contributes to 

ordered replay of past experience, gamma phase would likely modulate SWR spiking. 

We examined spiking for CA3 (n = 8,351 spikes recorded from 123 neurons) and CA1 (n 

= 11,443 spikes recorded from 205 neurons) neurons separately as a function of the 

phase of the gamma oscillation recorded on a representative CA3 stratum pyramidale 

tetrode (see Methods). As individual neurons fired sparsely during, spikes were pooled 

across all putative excitatory neurons. We found that the spiking of putative excitatory 

neurons in both CA1 and CA3 was significantly phase locked to the phase of CA3 

gamma oscillations during SWRs (Rayleigh tests: CA3 p<0.01, CA1 p<10-5, Figure 4a). 

CA3 neurons fired preferentially near the peak of CA3 gamma (mean angle = 25 

degrees) whereas CA1 neurons fired preferentially on the falling phase of CA3 gamma 

(mean angle = 114 degrees), a quarter of a cycle after CA3. CA3 firing occurred 
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significantly before the phase of CA1 firing (permutation test: p<0.001) at a timescale 

consistent with a monosynaptic delay between of ~8ms. 

We then asked whether the transient increase in gamma coupling we observed 

earlier was associated with a transient increase in gamma modulation. We found that the 

depth of the gamma modulation of spiking in CA1 was twice as large during SWRs as 

compared to the 500ms preceding each SWR (Figure 4b; bootstrap re-sampling, depth 

of modulation during SWRs > depth of modulation preceding; p < 0.001). Interestingly, 

there was no change in the depth of modulation for CA3, indicating that CA3 neurons 

retain the same degree of gamma modulation before and during SWRs. The increase in 

modulation depth during SWRs for CA1 was also observed when we examined CA1 

spiking relative to the gamma oscillation recorded on the local tetrode (depth of 

modulation preceding SWRs: 3%, depth of modulation during SWRs: 8%). These results 

indicate that during SWRs there is a transient increase in gamma coupling between CA3 

and CA1 and this synchrony between regions entrain the spiking activity of the 

hippocampal output region CA1. 

Replay events consist of the ordered spiking of CA3 and CA1 neurons during 

SWRs, and as CA3 drives downstream CA1 during these events, precise timing of CA3 

spiking would be expected to be particularly important. During SWRs, neurons in CA3 

and CA1 frequently fire in the context of multi-spike bursts (Buzsaki, 1986, Csicsvari et 

al., 2000), leading us to ask whether gamma modulated the onset of bursting. We found 

that gamma modulation was even more pronounced in CA3 when we included only the 

first spike each neuron fired during each SWR (n = 3,287 spikes from 123 neurons). 

Excluding all but the first spike each neuron fired during each SWR yielded a value for 

the depth of modulation of CA3 that was twice that seen when all spikes were included. 

Thus, the first spike from each CA3 neuron active during SWRs was strongly and 

significantly phase locked, with the proportion of spikes increasing during the rising 
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phase of gamma and the firing preferentially near the peak of gamma (preferred phase=-

15 degrees, Rayleigh test, p<0.01; Figure 4c). The first spikes of CA1 neurons (n = 

4,726 spikes from 205 neurons) were also significantly phase locked, with the spikes 

most likely to occur within a quarter cycle of gamma of the CA3 peak (preferred phase = 

52 degrees, Rayleigh test, p<0.01). The depth of modulation for first CA1 spikes was 

similar to that seen for the inclusive CA1 spike analysis. Consistent with our results for 

all spikes, the first spike of CA3 neurons tended to occur before the first spike of CA1 

neurons (permutation test: p<0.05). Taken together, these results suggest that gamma 

oscillations strongly modulate the onset of bursting in CA3 and couple CA1 to CA3 

during SWRs. 

 

Gamma modulation of awake replay during SWRs 

During SWRs, previous experiences are replayed on a compressed timescale. 

Sequences of place cells that encode previously experienced paths through an 

environment are reactivated, replaying the sequences on a millisecond timescale during 

SWRs (Lee and Wilson, 2002, Foster and Wilson, 2006, Karlsson and Frank, 2009). As 

a result, pairs of cells with place fields close together in a previously experienced 

environment fire in close temporal proximity to one another during SWRs whereas pairs 

of cells with place fields far apart fire with longer inter-spike intervals(Karlsson and 

Frank, 2009) (Figure 5a; Spearman ρ = 0.448). If gamma provides a clock that 

synchronizes spiking in the CA3 and CA1 networks during SWRs, then relative gamma 

phase would provide the best measure of spike timing during SWRs. 

Relative gamma phase and absolute time would be equivalent if gamma 

oscillations occurred at a constant frequency and were in perfect synchrony across the 

hippocampal network. However, while the correlation between relative spike timing and 

gamma phase is very high (Spearman ρ = 0.98), gamma frequency varies from cycle to 
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cycle (Atallah and Scanziani, 2009). Therefore, absolute time and gamma phase diverge 

when enough time has passed. This implies that any improvement in the description of 

spike timing using gamma as a clock will be most apparent at longer times / relative 

gamma phases. In contrast, if gamma oscillations do not act as a clock, then variations 

in gamma frequency across time would add noise to the reactivation of previous 

experience. 

We therefore asked whether gamma phase better described pair-wise spiking 

structure during SWRs and how that related to the distance between place fields. We 

examined the structure of spiking consistent with remote replay of a previous run 

experience (Karlsson and Frank, 2009) and found that the relative gamma phase of 

spikes was significantly correlated with the distance between the place field peaks 

(Figure 5b, Spearman correlation: 0.46). This is slightly, but significantly, larger than the 

correlation between distance between place field peaks and spike timing (bootstrap test 

Spearman rho gamma > Spearman rho time; p<0.05). We then asked how the 

correlation between relative spike timing or change gamma phase with distance between 

field peaks varied as a function of distance between field peaks.  

We divided place cell pairs into four equally sized groups and found that relative 

gamma phase and spike timing were both most correlated with distance for place fields 

with peaks far apart in space. Furthermore, for pairs of neurons with place fields farthest 

apart, the relative gamma phase was more correlated with distance than the relative 

time of spikes as measured in seconds (Figure 5c; bootstrap test, Spearman rho gamma 

> Spearman rho time; p<10-5). These results suggest that gamma acts as a clock to 

synchronize the replay of stored memories across the hippocampal network. 

Next we asked whether the strength of gamma synchrony was related to the 

presence of sequential replay of past experience. We reasoned that SWRs in which 

gamma synchronization of the CA3 and CA1 networks was greater should correspond to 
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SWRs in which sequential spiking activity could be most effectively maintained 

throughout the SWR. Bayesian population decoding yields a p-value describing the 

likelihood that the ordered firing seen during SWRs corresponded to a coherent 

trajectory through a previously experienced environment (Davidson et al., 2009, 

Karlsson and Frank, 2009). This p-value provides a measure of the quality of replay. 

Population decoding was restricted to candidate events defined as SWRs with at least 5 

active cells that had place fields. Decoding was done with templates for both the 

animal’s current W-track and where applicable, the previously experienced W-track 

environment, in order to minimize false negatives.  

We found that phase locking of gamma oscillations between CA3 and CA1 varied 

as a function of replay p-value, with highly significant replay events displaying the 

strongest levels of gamma phase locking following SWR detection. The magnitude and 

the duration of gamma phase locking appeared to decrease as a function of the decoded 

significance of the replay event (Figure 6a). To quantify this observation we compared 

gamma phase locking between CA3 and CA1 for significant (p<0.05; n = 454 SWRs) 

and non-significant (p>0.05; n = 477 SWRs) candidate events and found significantly 

higher phase locking during significant events 50-250ms following SWR detection 

(Figure 6b; permutation test: significant phase locking > non-significant phase locking; 

p<0.001). 

Similarly, the magnitude of the increase in gamma coherence between CA3 and 

CA1 strongly co-varied with the significance of memory replay. Highly significant replay 

events showed the biggest increase in coherence for the longest duration, less 

significant replay events showed a smaller increase in coherence for a shorter duration, 

and non-significant candidate events showed the smallest increase in coherence for the 

shortest duration (Figure 6c). As for gamma phase locking, the magnitude of gamma 

coherence between CA3 and CA1 was significantly different for significant (p<0.05) and 
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non-significant (p>0.05) candidate events for the 50-300ms after SWR detection (Figure 

12d, permutation test: significant coherence > non-significant coherence; p<0.001). 

There were no consistent differences in either CA3 or CA1 gamma power based on with 

the presence of significant memory replay. Thus, while all candidate events involve 

activation of large populations of place cells during SWRs, stronger of gamma synchrony 

in the hippocampal network is predictive of the presence of coordinated memory 

reactivation during waking. 

 

LFP Activity during quiescent SWRs 

SWRs are prevalent during slow wave sleep and when animals are at rest. We 

have previously shown that reactivation occurring during quiescent SWRs occurring in 

rest periods tend to be a less faithful recapitulation of patterns from previous awake 

experience than activity during awake SWRs (Karlsson and Frank, 2009). We therefore 

asked whether gamma synchronization during quiescent SWRs, defined as SWRs that 

occurred in the rest box when animals had been still for more than 60 seconds, differed 

from gamma synchronization seen during awake SWRs. As observed for awake SWRs, 

quiescent SWRs were accompanied by transient increases in gamma power in CA1 and 

CA3 (Figure 7a-b; Kruskal-Wallis ANOVA, post-hoc tests; gamma power > baseline 

power; CA1 -100ms - 400ms, peak p<10-5; CA3 0-400ms, peak, p<10-5). There was also 

a small but non-significant increase in gamma phase locking between CA3 and CA1 

during quiescent SWRs accompanied by a small but significant increase in gamma 

coherence (Figure 7c-d; Kruskal-Wallis ANOVA, post-hoc tests; phase locking > 

baseline, NS; gamma coherence > baseline, 0ms, 200-400ms p<0.05, 100ms, p<10-5). 

Interestingly, the smaller magnitude of the increase in gamma synchrony during 

quiescent SWRs as compared to awake SWRs could be explained in large part by an 

increased baseline gamma synchrony during quiescence. The average gamma phase 
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locking and coherence preceding SWRs was higher during quiescent SWRs (Figure 7e-

f; phase locking baseline quiescent SWRs > awake SWRs; rank sum test; p<10-5, 

coherence baseline quiescent SWRs > awake SWRs; p<10-5). Furthermore, while 

gamma synchrony reached a slightly higher level during quiescent SWRs as compared 

to awake SWRs  (Figure 7e-f; phase locking 100ms following SWR detection quiescent 

> awake; rank sum test, p<10-5; coherence 100ms following SWR detection; quiescent > 

awake; rank sum test, p<10-5), the higher baseline synchrony means that SWR 

associated increases reflected a smaller change than seen during awake periods. The 

higher baseline suggests the possibility that gamma synchrony across the hippocampal 

network acts as a gate for the occurrence of SWRs, with more synchronous network 

states (e.g. quiescence) resulting in a lower threshold for the occurrence of SWRs and 

less synchronous network states (e.g. awake) requiring more synchronous drive from 

CA3 in order to initiate an SWR.    

 

Gamma modulation of spiking and replay during quiescent SWRs 

Do gamma oscillations clock the replay of previous experiences when animals 

are at rest? As observed during awake SWRs, the spiking of putative excitatory neurons 

in both CA1 (n = 10,952 spikes recorded from 270 neurons) and CA3 (n = 6,848 spikes 

recorded from 226 neurons) was significantly phase locked to the phase of gamma 

during quiescent SWRs (Figure 7g; Rayleigh test, CA3 p<0.05; CA1 p<0.05). However, 

there was no significant difference in the modulation of either CA3 or CA1 spiking during 

SWRs as compared to the 500ms preceding SWR detection, suggesting that the high 

baseline values of gamma synchrony maintain gamma phase locking throughout periods 

of quiescence. 

We then asked how gamma phase was related to the reactivation of 

representations of past experience during quiescent SWRs. As for awake SWRs, we 
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computed the correlation between the distance between field peaks recorded during the 

preceding behavioral sessions and the relative spike timing or gamma phase during 

quiescent SWRs. As previously reported (Karlsson and Frank, 2009, Dupret et al., 

2010a), the correlations during quiescent SWRs were lower than those in the awake 

state (Figure 7g; permutation test, awake > quiescent Spearman ρ; distance between 

place field peaks vs. relative spike timing and distance between place field peaks vs. 

gamma phase p<0.001). Nonetheless, relative gamma phase was more correlated with 

distance between place field peaks than the relative spike timing (Figure 7h; bootstrap 

test, Spearman ρ gamma > Spearman ρ time; p<0.05). Thus, as we observed for awake 

SWRs, gamma oscillations during quiescent SWRs coherently modulates the 

hippocampal circuit and could act as a clock to synchronize the replay of stored 

memories. Finally we asked whether the strength of gamma synchrony during quiescent 

SWRs in the rest session was correlated with the presence of replay. In contrast to our 

results for awake SWRs, we found no consistent relationship between the increase in 

gamma synchrony during quiescent SWRs and the presence of significant replay. This 

may be a result of the smaller increases in gamma phase locking and coherence during 

quiescent SWRs and the overall lower fidelity of quiescent replay. 

 

Discussion 

Previous studies have examined the structure of local field potential and spiking 

activity within SWRs, but the patterns of activity that synchronize large populations of 

CA1 and CA3 neurons across hemispheres have remained unclear. We examined the 

structure of LFP activity associated with SWRs occurring during both awake and 

quiescent states and found a prominent and consistent increase in power in the 20-50 

Hz gamma band during SWRs. During this transient increase in power, gamma 
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oscillations in CA3 and CA1 became more coherent both within and across 

hemispheres, indicating a transient synchronization of the entire dorsal hippocampal 

network. Spikes from neurons in both CA3 and CA1 were phase locked to the common 

gamma rhythm during SWRs and relative gamma phase, rather than absolute time, 

better described the structure of pair-wise spiking during SWRs.  Further, during awake 

SWRs, higher levels of gamma phase locking and coherence across CA3 and CA1 were 

associated with higher fidelity replay of past experience. These results suggest that 

gamma modulation of spiking is important for maintaining the temporal organization of 

spiking during the reactivation of stored memories in the hippocampal network.  

Our results also revealed interesting differences between awake and quiescent 

SWRs that may be related to the lower fidelity of replay seen during quiescence as 

compared to awake states (Karlsson and Frank, 2009, Dupret et al., 2010b). We have 

also shown that there are overall levels of network activation during quiescent, as 

compared to awake SWRs (Karlsson and Frank, 2009), but the reason for these 

differences has not been clear. Here we found that during awake SWRs there were 

larger increases in gamma synchrony during SWRs than seen during quiescence, a 

difference that could be largely attributed to the higher baseline levels of synchrony 

during quiescence. Transient increases in gamma synchrony during awake SWRs were 

associated with strong phase modulation of the initial spikes from CA3 neurons and a 

substantial increase in the modulation of all spikes from CA1 neurons. Thus during 

awake SWRs, CA3 neurons tended to begin spiking near the peak of the CA3 gamma 

and CA1 neurons became strongly phase locked to the same gamma oscillation, firing 

approximately a quarter cycle later. Further, higher fidelity awake replay was associated 

with stronger gamma phase locking and coherence across the CA3 and CA1 networks. 

In contrast, CA1 and CA3 neurons were phase locked to gamma to the same degree 

before and during quiescent SWRs.   There was also no evidence for a clear relationship 
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between phase locking or coherence and the fidelity of quiescent replay. These findings 

demonstrate that there are differences in the baseline state of the network in the awake 

and quiescent states. We suggest that the higher baseline levels of gamma phase 

locking and coherence during quiescence contribute to the broader network activation 

and lower fidelity replay seen in the quiescent state. 

Our results suggest that current models describing the generation of ripples 

(Traub and Bibbig, 2000, Memmesheimer, 2010, Taxidis et al., 2011) need to be 

modified to account for the prominent gamma oscillations during SWRs. These models 

have proposed various mechanisms to account for the prominent high frequency ripple 

modulation in CA1, but none have posited a lower frequency gamma rhythm that 

transiently binds the CA3 and CA1 networks during SWRs. At the same time, our 

findings are entirely consistent with previous studies of gamma. Models have shown that 

gamma rhythms are well suited to synchronize networks with relatively low conduction 

delays (Kopell et al., 2000) as in the densely connected CA3-CA1 network. Gamma has 

also been shown to improve information transmission in cortical networks (Sohal et al., 

2009), consistent with our observation of stronger gamma synchrony for significant 

awake replay events. 

Previous studies of gamma in the hippocampus have largely focused on gamma 

in the context of the theta rhythm which modulates activity during awake exploration 

(Bragin et al., 1995, Jensen and Lisman, 1996, Chrobak and Buzsaki, 1998, Lisman and 

Otmakhova, 2001, Csicsvari et al., 2003, Montgomery and Buzsaki, 2007, Montgomery 

et al., 2008, Colgin et al., 2009). Our result demonstrates that 20-50 Hz slow gamma is 

present not only during theta, but is also prominent during SWRs, which occur most 

often when animals are still and theta is low amplitude or absent (Buzsaki et al., 1983). 

Thus, slow gamma may be a signature of a specific type of hippocampal information 

processing. 
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What functions could gamma support? We and others have suggested that 

replay during awake SWRs could support awake memory retrieval (Karlsson and Frank, 

2009, O'Neill et al., 2010, Carr et al., 2011). The strong gamma synchrony we found 

during awake memory replay provides a new connection between replay and previous 

studies linking gamma oscillations to memory encoding (Fell et al., 2003, Osipova et al., 

2006, Jutras et al., 2009, Tort et al., 2009, Fell and Axmacher, 2011) and retrieval  

(Lisman and Otmakhova, 2001, Montgomery and Buzsaki, 2007). In particular, one 

model proposed that gamma rhythms seen during awake exploration and theta are well 

suited to clock the retrieval of sequential memories in the hippocampus (Lisman and 

Otmakhova, 2001). Consistent with that idea, more recent work demonstrated that CA3 

– CA1 gamma coherence was enhanced during movement through a part of a maze 

where animals had to make memory-guided decisions (Montgomery and Buzsaki, 2007). 

Similarly, CA3 gamma is prevalent at times associated with vicarious trial and error 

activity (Johnson and Redish, 2007) that are strikingly similar to awake replay events. 

Further, the lower frequency gamma enhanced during SWRs has been shown to couple 

the CA3 and CA1 networks (Colgin et al., 2009). When viewed in the context of these 

previous findings, our results strongly suggest that there is a specific pattern of 

enhanced CA3-CA1 gamma power, phase locking, and coherence that is a consistent 

signature of awake memory retrieval in the hippocampal network, both when animals are 

still and when they are exploring. These gamma oscillations are well suited to promote 

accurate retrieval of sequential memories and may also contribute to the entrainment of 

neurons downstream regions such as entorhinal or prefrontal cortex. 

 Our findings also suggest a prominent role for fast-spiking interneurons that 

express the calcium-binding protein parvalbumin in memory reactivation. Parvalbumin 

positive interneurons play an important role in the generation of cortical and 

hippocampal gamma oscillations (Bartos et al., 2007, Tukker et al., 2007, Cardin et al., 
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2009, Sohal et al., 2009) and have also been shown to be active during SWRs in vivo 

(Klausberger et al., 2003). Thus, similar mechanisms may support gamma oscillations 

that occur during both in the context of theta and SWRs. Intriguingly, selective 

suppression of PV+ interneurons in the mouse hippocampus results in a working 

memory deficit (Murray et al., 2011). We would predict that the synchronization of the 

CA3 and CA1 networks was impaired in these animals, leading to a selective deficit in 

their ability to generate sequential memory replay. 

The link between gamma and memory replay in the hippocampus complements a broad 

array of studies linking enhanced gamma synchrony in information processing, object 

recognition, sensory processing, top-down control, and attention (Womelsdorf et al., 

2007, Cardin et al., 2009, Jutras et al., 2009, Sohal et al., 2009, Fell and Axmacher, 

2011). These studies showed that increases in gamma power and synchrony are 

associated with better sensory processing for external stimuli. Our results link gamma to 

internally generated patterns of activity that can be independent of sensory input, and 

suggests that gamma synchrony across the hippocampus plays a central role in the 

coherent reactivation of memories. 
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Methods 

Unique sets of analyses of the data used in this study and the associated methods have 

been presented previously (Karlsson and Frank, 2008, 2009).  

Data collection 

Three male Long-Evans rats (500-600g) were pre-trained to run back and forth on a 

linear track for liquid reward (sweetened condensed milk) and food deprived to no less 

than 85% of their baseline weight during behavioral training. Animals were implanted 

with a microdrive containing 30 independently movable tetrodes targeting anatomically 

connected regions of CA3 and CA1 bilaterally (Karlsson and Frank, 2008, 2009) 

following University of California San Francisco Institutional Animal Care and Use 

Committee and US National Institutes of Health guidelines. At the end of data collection 

electrolytic lesions were made and electrode locations were identified histologically 

(Karlsson and Frank, 2008). 

On each recording day, animals performed two or three 15 minute run sessions in W-

track environments (76cm x 76cm with 7cm wide track sections) with 20 minute rest 

sessions in a high walled box (floor 25cm x 34cm; walls 50cm tall)  before and after each 

run. The first W-track environment was introduced either 6 (n = 2) or 3 (n = 1) days 

before animals were introduced to the second W-track (Figure 4). Rats were rewarded 

for performing a continuous alternation task (Frank et al., 2000, Karlsson and Frank, 

2008, 2009). Rapid learning in this task requires an intact hippocampus(Kim and Frank, 

2009). 

Data were collected using the NSpike data acquisition system (L.M.F. and J. MacArthur, 

Harvard Instrumentation Design Laboratory). An infrared diode was attached to the 

preamps during recording. Following recording, the rat’s position on the track was 
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reconstructed using a semi-automated analysis of digital video of the experiment. Spike 

data were recorded relative to a reference tetrode located in the corpus callosum, 

sampled at 30KHz, digitally filtered between 600Hz and 6KHz (2 pole Bessel for high 

and low pass), and threshold crossing events were saved to disk. Local field potentials 

were recorded relative to a ground screw located above the cerebellum, sampled at 

1.5KHz, and digitally filtered between 0.5Hz and 400Hz. Individual units (putative single 

neurons) were identified by clustering spikes using peak amplitude and spike width as 

variables (MatClust, M.P.K.). Only well-isolated neurons with stable spike wave forms 

were included. 

Analysis  

Analyses were carried out using custom software written in Matlab (Mathworks) and the 

Chronux toolbox (http://www.cronux.org). SWRs were identified on the basis of peaks in 

the LFP recorded from tetrodes in the CA1 stratum pyramidale. For all analyses, 

tetrodes were defined as being in stratum pyramidale using post-mortem histology and 

the presence of at least 2 putative excitatory neurons. The raw LFP data was band pass 

filtered between 150-250Hz and the SWR envelope was determined using a Hilbert 

transform. The envelope was smoothed with a Gaussian (4ms standard deviation). SWR 

events were identified as times when the smoothed envelope was above 3 standard 

deviations from mean for at least 15ms on at least one CA1 tetrode. The entire SWR 

event was defined as including times immediately before and after that prolonged 

threshold crossing event during which the envelope exceeded the mean (Cheng and 

Frank, 2008). We restricted our analyses of awake SWRs to times when the animal was 

moving less than 4cm s-1 in either W-track and our analyses of quiescent SWRs to times 

when the animal as in the rest box and had been immobile for at least one minute. We 

excluded any SWR that occurred in a one second following detection of another SWR so 
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that no SWRs occurred during the baseline period. Behavioral or rest sessions with 

fewer than five SWRs were excluded from analyses. All analyses used non-parametric 

comparisons because the distributions were non-normal.   

Gamma power 

SWR triggered spectrograms were computed using the multi-taper method from the 

Chronux toolbox. Multi-taper estimates of the power spectrum were computed using 

100ms windows and a z-score was computed for each frequency band using the mean 

and standard deviation of the power calculated across the entire behavioral session for 

each tetrode. Thus for each 100ms bin, we obtained a normalized measure of power for 

each frequency band in units of standard deviations from the mean for each tetrode. For 

illustration in figures, power was computed using 10ms sliding windows. To quantify the 

increase in gamma power during SWRs, the z-scored power in the gamma band (20-

50Hz) was averaged across all CA1 or CA3 tetrodes. Baseline was defined as values 

between 450 and 400ms before SWR detection. As 100ms temporal bins were used to 

compute all spectral analyses, to determine the significance of gamma increases we 

asked how gamma power levels at 100 ms intervals compared to baseline values. To 

compute the correlation between gamma and ripple power, power in the ripple band 

(150-250Hz) was averaged across all CA1 tetrodes. The Spearman correlation between 

ripple power and CA1 or CA3 gamma power was taken for each behavioral session and 

the correlation coefficient was compared in 100ms intervals to baseline values. 

Generalized Linear Model 

We used a generalized linear model with a logistic link function (also known as logistic 

regression) to determine whether gamma power was predictive of the presence of an 

SWR.  The average gamma power across CA1 or CA3 tetrodes was computed across 
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the entire behavioral session using 200ms temporal bins. For each 200ms bin we also 

determined whether or not an SWR was observed. Gamma power was said to predict 

the occurrence of an SWR for behavioral sessions with significant coefficients. To 

illustrate the relationship between gamma power and the occurrence of an SWR, we 

binned gamma power and then computed the proportion of 200ms bins that had an 

SWR. 

Gamma synchrony 

SWR triggered coherence was computed for all CA3-CA1 tetrode pairs using the multi-

taper method from the Chronux toolbox using 100ms windows. Briefly, coherence 

provides an estimate for the extent to which one signal can be predicted by another and 

is a ratio of the cross spectrum divided by the product of the individual spectra. For 

illustration in figures, coherence was computed using a 10ms sliding windows. 

To quantify gamma phase locking during SWRs, the phase of coherence for the gamma 

band (20-50Hz) was averaged across all CA3-CA1 tetrode pairs for each SWR. Thus for 

100ms temporal bin relative to SWR detection there was a single value per SWR.  We 

combined values across SWRs to obtain a distribution of gamma phase offsets in each 

bin. Phase locking for each bin is a measure of the concentration of distribution of 

phases, calculated by creating a unit vector pointing in the direction of each member of 

the distribution, summing the unit vectors and normalizing the result.  This measure of 

phase locking will be one if the phase offset is equal for every SWR and zero if the 

phase offsets are uniformly distributed. Phase locking was computed for all behavioral 

sessions with at least five SWRs. To determine the significance of gamma phase locking 

increases we asked how phase locking at 100ms intervals compared to baseline. To 

quantify the magnitude of gamma coherence during SWRs, we computed the absolute 
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value of the average coherence in the gamma band (20-50Hz) across all CA3-CA1 

tetrode pairs. To determine the significance of increases in gamma coherence compared 

the magnitude of coherence at 100ms intervals to baseline values. 

Spiking modulation by gamma oscillations 

Gamma phase was measured on the CA3 tetrode with the largest number of isolated 

cells by band pass filtering (20-50Hz) the local field potential, performing the Hilbert 

transform on the filtered signal, and extracting the phase component. Spikes that 

occurred during an SWR were identified and the gamma phase at the time of the spike 

was assigned. As the firing during SWRs is very sparse, spikes were pooled across 

neurons recorded in either CA3 or CA1. The depth of modulation was defined as the 

difference between the peak and the trough of the spiking distribution divided by the sum 

of the peak and the trough of the spiking distribution. The depth of modulation for spikes 

that occurred in the 500ms before SWR detection was computed in order to determine 

the baseline gamma modulation of spiking in area CA3 and CA1. We used bootstrap re-

sampling to compute error bars on the depth of modulation. 

Pair-wise reactivation 

As in our previous work (Karlsson and Frank, 2009), for every pair of place fields we 

measured the linear distance between the place field peaks as the shortest path 

between the peak firing rate locations. We also measured the absolute value of both the 

time and gamma phase from each reference spike for one cell to all spikes from the 

other cell. For this analysis, relative gamma phase was determined by determining how 

many cycles of gamma had elapsed between spikes on the CA3 tetrode with the most 

cells. Only spikes occurring during SWRs and only times up to 500ms were included. 

We then computed the Spearman’s correlation between linear distance and either 
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relative spike timing or gamma phase to determine how strongly these measures co-

varied. Each pair of cells was included only once. To determine the relationship between 

place field distance and correlation with gamma phase and spike timing, we divided the 

data into roughly four equally sized groups based on the distance between place field 

peaks. We then computed the spearman’s correlation between linear distance and either 

relative spike timing or gamma phase for each group. We used bootstrap resampling to 

compute error bars on the correlations. 

Decoding 

To measure place field locations, we calculated an occupancy-normalized linearized 

place field for each cell, calculated in 2-cm bins and smoothed with a 4-cm standard 

deviation Gaussian curve. Only times outside of SWRs were included. The place field 

peak rate was defined as the maximum rate across all spatial bins. A peak rate of 3Hz or 

greater was required for a cell to be considered a place cell. Putative interneurons were 

identified on the basis of spike width and average firing rate (Ranck, 1973, Fox and 

Ranck, 1981, Frank et al., 2000) and were excluded from all analyses. 

Candidate replay events were defined as SWRs during which at least five place cells 

from the replayed environment fired at least one spike each. We determined the 

sequential representation of position seed during a candidate replay event using a 

simple Bayesian decode that has been described in detail before (Karlsson and Frank, 

2009). Briefly, each event was divided into 15ms bins and for each bin with at least one 

spike in it, we calculated the spatial probability distribution using an uninformative prior.  

To determine whether the temporal sequence of decoded spatial probability distributions 

was a significant memory replay we compared the regression of spatial locations with 

temporal bin to 10,000 regressions in which the order of the bins was shuffled. The P 
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value for each candidate event was defined as the proportion of the shuffled R2 values 

that was greater than the R2 value of the actual event, and an event with p<0.05 was 

considered to be significant. 

To ask how gamma phase locking and coherence varied as a function of replay 

significance, we separated candidate events by the replay p-value. We computed the 

phase locking and average coherence across significant and non-significant events. We 

used a permutation test to determine when the difference between significant and non-

significant candidate events was significant. We compared the measured difference to 

the difference computed on 1,000 permutations on the p-value associated with each 

candidate event. 
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Chapter 2 
Continuous network states in the hippocampus 

 

Abstract 

Hippocampal information processing is often described as two-state, with a place cell 

state during movement and a reactivation state during stillness. Here we show that 

hippocampal processing is better described as a continuum. We measured the 

relationship between moment-by-moment changes in behavior and information flow 

through hippocampal output area CA1 in rats. We examined local field potential (LFP) 

patterns, ensemble spiking, and evoked potentials associated with internal drive from 

CA3 to CA1. We found that there was a smooth transition from strong to weak CA3 drive 

of CA1 as animals moved progressively more quickly. LFP patterns associated with 

external entorhinal cortical drive of CA1 showed the opposite pattern, increasing in 

strength with increasing speed. Behavioral modulation of both CA3- and entorhinal-

driven patterns of activity was most pronounced in novel environments. Our results 

suggest that CA1 output represents a continuously changing balance between CA3-

driven learned associations and independent sensory representations. 

Introduction 

Hippocampal activity is required for both laying down the memories of ongoing 

experience and converting these initial, labile traces into long lasting distributed 

representations (Squire, 1992, Cohen and Eichenbaum, 1993). Standard models of 

hippocampal function have posited two distinct network states associated with these 

processes (Buzsaki, 1989). The creation of new memory traces is thought to occur 
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during active exploration when the ~8 Hz theta rhythm is prominent and hippocampal 

place cells are active in specific regions of the animal’s environment. During this state, 

highly processed sensory information from the entorhinal cortex (EC) drives activity 

throughout the hippocampal circuit (Bragin et al., 1995, Brun et al., 2008). 

In contrast, the consolidation process that leads to the formation of stable long 

term memories is thought to occur during periods of awake stillness or slow-wave sleep. 

At these times, sharp-wave ripple (SWR) events are prominent in hippocampal output 

area CA1 (Buzsaki, 1986). These events generally occur when bursts of activity 

generated in upstream hippocampal area CA3 propagate out through CA1 (Buzsaki et 

al., 1983, Csicsvari et al., 2000, Sullivan et al., 2011). In the absence of sensory input, 

the highly plastic and recurrent CA3 is thought to act as an auto-associative pattern 

completion network (Marr, 1971, McNaughton and Morris, 1987, Amaral et al., 1990) 

that can reinstate learned patterns. Neural activity during SWRs frequently involves 

replay of stored sequences associated with past experience (Lee and Wilson, 2002, 

Foster and Wilson, 2006, Diba and Buzsaki, 2007, Karlsson and Frank, 2009), and 

interrupting SWRs following learning is sufficient to impair subsequent performance 

(Girardeau et al., 2009, Ego-Stengel and Wilson, 2010), indicating that SWRs contribute 

to memory consolidation.  

These two network states are thought to reflect at least in part the strength of the 

Schafer Collateral (SC) pathway from CA3 to CA1.  Measures of field EPSP slope 

indicate that the effective strength of CA3 input to CA1 is substantially reduced when 

animals are running as compared to periods of immobility (Segal, 1978, Winson and 

Abzug, 1978, Leung, 1980). Thus, strong CA3 input to CA1 is associated with the 

still/consolidation state while weak CA3 input to CA1 is associated with the 

moving/encoding state.  



 

46 
 

While this framework dominates current thinking about hippocampal activity, a 

number of findings do not fit well within the two state model. In addition to its role in 

memory consolidation, CA3 input to CA1 is important for one-trial learning in a novel 

context (Nakashiba et al., 2008) which need not occur during periods of stillness. 

Furthermore, recent work has identified slow (~20-50 Hz) and fast (~50–100 Hz) 

frequency ranges of the gamma rhythm in CA1 that correspond respectively to CA3 or 

EC coherence with CA1 (Colgin et al., 2009). Both ranges of gamma were seen during 

exploration, suggesting that CA3 influence can be strong during movement. Finally, 

during new experiences when the hippocampus is critical for forming memories, rats 

exhibit complex, exploratory behaviors (O'Keefe and Nadel, 1978, Lever et al., 2006) 

that are not well understood as either “moving” or “still”. These new experiences lead to 

stronger reactivation, and that reactivation can be seen both when animals are moving 

and when they are still (O'Neill et al., 2006, Cheng and Frank, 2008). 

These results suggest the possibility of more nuanced relationship between 

behavior and information processing in the hippocampus. This led us to investigate the 

dynamics of the CA3-CA1 network as a function of behavior during learning. We found 

that movement speed continuously modulates the influence of CA3 on activity in CA1. 

As animals move faster, the influence of CA3 on CA1 decreases as measured by the 

amplitude of SWRs, the power of slow gamma oscillations, and the synaptic strength of 

the CA3-CA1 pathway. The level of coordinated spiking activity in CA1 reflects the 

influence of CA3: cell assemblies are highly correlated at low speeds and become 

progressively less correlated with increasing movement speed. In contrast, the power of 

the fast gamma oscillations that link EC and CA1 increased with speed. These results 

are not compatible with a two state model but instead suggest that movement speed 
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drives a dynamic balance between learned associations and more independent sensory 

representations in the hippocampus.   

Results 

Continuous changes in hippocampal LFP during exploration 

We investigated the influence of CA3 on CA1 while rats learned a hippocampally-

dependent spatial alternation task in an initially novel W-shaped maze (Figure 1a; Figure 

S1) (Frank et al., 2000, Karlsson and Frank, 2008, Kim and Frank, 2009). Both the maze 

and the available distal cues were entirely novel when animals were first exposed to the 

environment. We used head-mounted light-emitting diodes to track head movement in 

the plane of the maze and estimated two-dimensional movement speed by smoothing 

the temporal derivative of position with a Gaussian with a standard deviation of 0.5 

seconds (see Methods). As expected, animals initially spent more time exploring the 

environment. A signature of this exploration was an increase in periods when the rats 

moved at intermediate two-dimensional speeds (Figure 1b). Intermediate speeds were 

only weakly correlated with speed along the axis of the track (Figure 1c; no significant 

changes in correlations with experience). This indicates that the rats did not simply move 

towards goal locations more slowly in novel environments; rather, movement at 

intermediate speeds reflects exploratory behavior, as opposed to linear, goal directed 

motion. As the environment became more familiar, the distribution of movement speed 

shifted rightwards as animals spent more of their time running quickly between goal 

locations (Figure 1b). 

The two state model predicts a sharp transition in hippocampal network function 

as animals start moving, corresponding to the transition from SWR to theta dominated 

local field potential (LFP) activity. We tested that prediction by examining the LFP 
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recorded in CA1 during the first exposure to the novel W task. We observed striking and 

continuous changes in the power spectrum of the LFP recorded in CA1 stratum 

pyramidale as a function of movement speed (Figure S2). We found that movement 

speed was correlated with the power in three physiologically relevant frequency ranges 

(Figure 2), two associated with CA3 drive: slow gamma (~20-55Hz) and ripple (150-250 

Hz) oscillations, and one associated with EC drive: fast gamma oscillations (~65-140 

Hz). As seen in this example, with increasing speed in the novel environment there was 

an apparent decrease in the power of rhythms associated with CA3 input and a 

concurrent increase in the power of EC associated fast gamma. The tradeoff between 

CA3 and EC associated patterns occurred smoothly as a function of speed, in contrast 

to the predictions of the two state model. To quantify these observations, we 

investigated the modulation of each frequency band separately. 

Smooth modulation of gamma power during learning 

We began with an examination of slow and fast gamma oscillations (Colgin et al., 2009) 

during the first exposure to a novel environment. We replicated previous observations 

that CA3 and CA1 are most coherent at slow gamma frequencies (~20-55Hz) while EC 

and CA1 are most coherent at fast gamma frequencies (~65-140Hz; Figure S3) (Colgin 

et al., 2009). These findings have been interpreted to indicate that periods of increased 

slow gamma power in CA1 are indicative of greater CA3 drive, while increases in fast 

gamma power are indicative of greater EC drive (Bragin et al., 1995, Colgin et al., 2009). 

We found that the power of slow gamma was largest when the animal was still and 

decreased smoothly with the log of speed (Figure 3a; bootstrap linear regression, 

normalized slow gamma power vs. log(speed); p < 10-5).  Further, when we binned 

speed logarithmically, speeds of 1, 4, and 16 cm/sec were all associated with 

significantly different levels of slow gamma power (Kruskal-Wallis ANOVA, post-hoc 
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tests, p < 0.01).  In sharp contrast, the power of fast gamma oscillations continuously 

increased with increasing speed (Figure 3b; bootstrap linear regression, normalized fast 

gamma power vs. log(speed); p < 10-5). Fast gamma power was significantly different 

between all non-adjacent speed bins (Kruskal-Wallis ANOVA, post-hoc tests, p < 10-5). 

This finding is consistent with previous reports of positive correlation between high 

gamma power and speed (Chen et al., 2011) and slightly higher average speeds 

associated with fast as compared to slow gamma (Colgin et al., 2009).    

Does the modulation of slow and fast gamma power by speed reflect moment-by-

moment changes in behavior? If so, then the timescale of changes in gamma power 

should match the timescale of changes in movement speed. We first calculated the 

autocorrelations of movement speed and found that speed changes rapidly from second 

to second (Figure 3c). We then computed the cross-correlation between gamma power 

and speed. If gamma power reflected extended timescale changes in behavior (i.e., 

“moving” and “still”), then the cross correlation would fall off gradually. In contrast, we 

find that the correlation between speed and gamma power is largest when the speed 

and gamma power are measured at the same time (lag = 0), and decreases rapidly with 

increasing lags (Figure 3c; correlation decreases below 95% bootstrap confidence 

interval for offsets > 0.5 s). The similarity between the timescales of change in behavior 

and in cross correlation between gamma and speed suggests that there is a strong 

coupling between moment-by-moment movement and the power of gamma oscillations 

in CA1 on the timescale of a second. 

We found the same pattern of rapid change in gamma power when we examined 

periods of acceleration or deceleration.  We isolated two second segments of behavior in 

which the rat was rapidly changing speed, either increasing from less than 2 cm/s to 

more than 10 cm/s or decreasing from more than 10 cm/s to less than 2 cm/s. We then 
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examined the power of fast and slow gamma during these events. When rats 

accelerated slow gamma power decreased and fast gamma power increased (Figure 3d, 

87 events in 6 rats, ANOVA, interaction term and post-hoc tests of initial vs. final power, 

p < 10-5). Conversely, as rats decelerated, slow gamma power increased and fast 

gamma power decreased (Figure 3e; 152 events in 6 rats, all comparisons again p < 10-

5). These observations were robust to the duration and speed criteria used to identify 

acceleration and deceleration events. Thus, rapid changes in speed correspond to rapid 

alterations in the relative balance between slow and fast gamma. These findings suggest 

that the coupling of CA1 with both CA3 and EC changes with moment-by-moment 

alterations in behavior. 

Our results indicate that the speed that a rat moves is a parsimonious and 

temporally precise predictor of the relative intensity of fast and slow gamma oscillations 

in CA1. As speed is a behavioral measure, we also considered the possibility that a 

commonly used physiological measure, the power of the theta rhythm, could provide a 

more accurate prediction than speed. The theta (7-9 Hz) rhythm is prominent in rodent 

hippocampus and the power of theta increases with movement speed (Whishaw and 

Vanderwolf, 1973, Rivas et al., 1996, Buzsaki, 2002, Montgomery et al., 2009). The 

correlation between theta power and speed (Figure S4; R2 = 0.17) suggests that theta 

power could be a better predictor of moment-by-moment variations in gamma power 

than movement speed. However, during the first novel exposure we found that 

correlation between speed and slow and fast gamma power is nearly twice that of the 

correlation between theta and gamma power (Figure 3f, pooled data: ρspeed > ρtheta, 

bootstrap p’s < 0.01 for both slow and fast gamma; p < 0.05 for 5 of 6 animals 

individually). Thus during novel exploration, speed is a better predictor of gamma power 

than theta power. 
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As an environment becomes more familiar, animals begin to move faster, 

engaging in more goal directed movement. Activity patterns in CA1 change over this 

same time period, reflecting the development of stable representations (Wilson and 

McNaughton, 1993, Frank et al., 2004, Karlsson and Frank, 2008). These changes in 

behavior and CA1 output as well as the particular importance of area CA3 for rapid 

learning lead us to ask whether the influence of speed on the slow and fast gamma 

bands associated with CA3 and EC input to CA1 changed with experience. We found 

that the speed modulation of slow and fast gamma power was strongest during 

exploration of a novel environment and decreased with increasing familiarity. There was 

a two-fold change in the correlation between speed and gamma power between the first 

and tenth exposure to an initially novel environment for both slow and fast gamma 

(Figure 3g; permutation test, exposure vs. slope; slow gamma, p < 10-5; fast gamma, p < 

10-5). This was observed for both the group data and for each individual animal 

(permutation test, exposure vs. slope; p’s < 0.01). The introduction of a second novel 

environment led to greater modulation of both slow and fast gamma as a function of 

speed and was associated with an overall increase in both slow and fast gamma power 

as compared to that seen on the more familiar track (see Methods; Figure S5). The 

weakening relationship between gamma power and speed as the environment became 

more familiar may explain why a recent study found a positive relationship between slow 

gamma and speed in mice (Chen et al., 2011). 

Thus, there is a smooth shift from slow to fast gamma as animals move more 

quickly, which is most pronounced in novel environments but remains when the 

environment is familiar. In conjunction with the evidence that slow gamma reflects CA3 – 

CA1 coupling while fast gamma reflects EC – CA1 coupling (Colgin et al., 2009) our 

results suggests that in contexts in which the hippocampus is strongly engaged, the 
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balance of CA1 inputs from CA3 to EC changes continuously as a function of movement 

speed.  These results are not compatible with a simple two-state model but instead 

indicate that there is a smooth continuum related to the relative influence of internal CA3 

versus external EC drive of CA1. 

Smooth modulation of CA1 ripple oscillations 

We then asked whether ripple oscillations in CA1 also showed a smooth 

modulation as a function of movement speed. Ripple oscillations generally reflect 

synchronized CA3 input (Csicsvari et al., 2000) and are associated with the replay of 

previously stored memories (Wilson and McNaughton, 1993, Lee and Wilson, 2002, 

Foster and Wilson, 2006, Diba and Buzsaki, 2007, Karlsson and Frank, 2009). Just as 

for the CA3-related slow gamma oscillation, we found that during the first exposure to a 

novel environment, the power of ripple oscillations was largest when the animal was still 

and decreased smoothly with speed (Figure 4a; bootstrap linear regression, normalized 

ripple power vs. log(speed); p < 10-5). We also found that the power of ripple oscillations 

was most strongly modulated as a function of speed in a novel environment and 

decreased as the environment became more familiar. There was a three-fold change in 

slope between the first and tenth exposure to an initially novel environment (Figure 4b; 

permutation test, exposure vs. slope; p < 10-5). The enhancement of speed modulation 

in a novel environment was present in both the group data, for each individual animal 

and for within day comparisons (permutation test, exposure vs. slope, p’s < 10-5; Figure 

S6). Furthermore, as expected (Cheng and Frank, 2008), novelty was associated with 

an overall increase in ripple power (Figure S6). 

During ripple oscillations, sets of place cells reflecting previous experiences are 

frequently reactivated. This reactivation supports memory storage (Girardeau et al., 

2009) and may additionally support memory retrieval (Karlsson and Frank, 2009, O'Neill 
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et al., 2010, Carr et al., 2011). We asked how speed affected neural activation during 

ripple oscillations. We found that CA1 neurons were most likely to fire during ripples that 

occurred at slow speeds and became progressively less likely to fire during ripples that 

occurred at faster speeds (Figure 4c; bootstrap linear regression, activation probability 

vs. log(speed), p < 10-5). In contrast, while neurons in CA3 were active during ripples 

detected in CA1, we found no significant correlation between movement speed and 

activation probability for CA3 (Figure 4c; bootstrap linear regression, activation 

probability vs. log(speed); p > 0.1). Finally, we found that specifically in CA1, activation 

probability during ripples was largest during novel experiences and decreased as the 

environment became more familiar. In contrast the activation probability in CA3 

remained stable across time (Figure 4d; permutation set, exposure vs. slope; CA1 p<10-

5; CA3 p > 0.1). 

Thus, in a novel environment, rhythms in CA1 associated with CA3 input, both 

ripple and slow gamma power, are strongly modulated as a function of speed. These 

results indicate that CA3 input to CA1 is modulated by movement speed and novelty 

across the full dynamic range of behavior. Furthermore, these results suggest that 

modulation of CA3 input could explain previous observations of greater memory 

reactivation during and after new experiences (Cheng and Frank, 2008, O'Neill et al., 

2008). Interestingly, the activity of neurons within CA3 during ripple oscillations showed 

no modulation by either speed or novelty. This is particularly surprising given that this 

population activity in CA3 is thought to initiate ripple oscillations (Buzsaki et al., 1983, 

Csicsvari et al., 2000, Nakashiba et al., 2009) and suggests that CA3 activity is relatively 

independent of speed but that the impact of CA3 output on CA1 changes smoothly with 

movement speed.   
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Smooth modulation of SC pathway strength 

Does the smooth modulation of ripples and slow gamma reflect smooth 

modulation of the strength of the Schafer Collateral (SC) pathway from CA3 to CA1? 

The SC pathway is weaker in moving as compared to still rats (Segal, 1978, Leung, 

1980). However, it is unknown how the strength of the SC pathway varies on a moment-

by-moment basis during behavior. To determine whether speed-related changes in the 

strength of the SC pathway were sufficient to produce the physiological effects we 

observe, we measured evoked field responses to electrical stimulation of the SC 

pathway. We chronically implanted biphasic stimulating electrodes in either contralateral 

CA3 or in the commissural CA3 fibers (see Methods). Stimulation yielded similar 

patterns of activation, so we combined data across stimulation sites. 

We found that the slope of the field excitatory post-synaptic potential (fEPSP), 

showed a remarkable level of variation, by as much as 200%, which was very strongly 

correlated with the animals’ instantaneous movement speed. The evoked fEPSPs in 

area CA1 decreased smoothly with increasing movement speed, with intermediate 

speeds corresponding to an intermediate synaptic strength (Figure 5a; linear regression, 

fEPSP slope vs. log(speed); F(328)=305, p < 10-5, R2 = 0.48). This was true both for 

individual epochs and when normalized responses were pooled across behavioral 

epochs and animals (Figure 5b; Figure S7; 31 epochs from 4 animals, linear regression, 

normalized fEPSP slope vs. log(speed); F(2770)=616, p < 10-5, R2 = 0.18). We found 

that fEPSP slopes were significantly different across all non-adjacent speed bins 

(Kruskal-Wallis one way ANOVA, post-hoc tests, p’s < 0.05), such that speeds of 0.25, 

1, 4 and 16 cm/sec were all associated with progressively and significantly weaker SC 

input to CA1. These results demonstrate that hippocampal information processing 

cannot be meaningfully divided into two distinct states on the basis of behavior. 



 

55 
 

The slope of the fEPSP is frequently used as a measure of synaptic strength 

(Bliss and Lomo, 1973, Winson and Abzug, 1978, Whitlock et al., 2006), but multiple 

factors can influence fEPSP slope in-vivo, and so we considered how changes in factors 

other than synaptic strength would affect the interpretation of our results. For example, 

increased fEPSP amplitude in the dentate gyrus region can result from increases in 

temperature associated with exploration (Moser et al., 1993). Temperature is not a 

viable explanation for our results, however, as we found that CA1 fEPSP slope was 

largest when animals were still, when brain temperature would be expected to be lowest. 

We also considered the possibility that post-synaptic membranes were progressively 

more depolarized at higher speeds, leading to a decrease in the driving force and thus a 

decrease in fEPSP strength. While depolarization of neurons could lead to small 

changes in driving force, the magnitude of depolarization observed in vivo (Epsztein et 

al., 2011) is too small to account for the large changes we observed as a function of 

speed. We also reasoned that modulation of the SC pathway was unlikely to be due 

primarily to SC input onto interneurons based on interneuron morphology and the 

numbers (Freund and Buzsaki, 1996). Thus, the measured change in fEPSP slope is 

best understood as a change in the strength of the SC pathway. 

On what timescale do changes in movement speed correlate with changes in the 

strength in the SC pathway? We computed the correlation between speed and SC 

pathway strength as a function of the temporal offset between the speed and fEPSP 

measurements (Figure 5c). As for gamma power, speed was most predictive of SC 

strength at short timescales and the correlation decreased significantly for offsets of 

more than ±0.75 sec (bootstrapped 95% confidence interval; Figure S7). We next asked 

whether theta power could better explain the smooth modulation of synaptic strength 

than speed. We measured the R2 of the linear relationship between the fEPSP slope and 
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theta power. Again, speed was a consistently better predictor of the strength of the SC 

pathway than theta (Figure 5d; pooled data, bootstrap p < 0.001, rank sum test across 

epochs, p < 0.001, p < 0.05 for 29 of 31 epochs individually). These results demonstrate 

that the strength of the SC pathway is modulated continuously as a function of moment-

by-moment alterations in speed. These rapid alterations in the strength of the SC 

pathway are ideally suited to contribute to the rapid modulation of ripple and slow 

gamma power we observed in CA1. 

Smooth modulation of correlated neural activity in CA1 

Increasing speed is associated with a decrease in the strength of the CA3 inputs 

to CA1. Furthermore, as the CA3 input decreases in strength, there is a transition from 

CA3-associated slow gamma to EC-associated fast gamma and a decrease in the 

amplitude of CA3-driven ripple oscillations in CA1. How does this decrease in CA3 drive 

with increasing speed impact place cell activity in CA1? 

CA3 is necessary for forming new representations and generating reactivation of 

previous experiences, suggesting that spiking in CA3 reflects learned associations 

(Nakashiba et al., 2008, Nakashiba et al., 2009). The role of CA3 in memory-related 

activity is most apparent in the reactivated sequences observed during CA3 driven ripple 

oscillations (Diba and Buzsaki, 2007, Girardeau et al., 2009, Karlsson and Frank, 2009, 

Nakashiba et al., 2009), but the effect of changes in the strength of the CA3 input to CA1 

in the context of place cell activity has not been examined. We hypothesized that CA3 

input drives the expression of correlated activity in CA1 place cells, reflecting learned 

associations, and that this correlated activity would reflect the strength of the CA3 input 

to CA1. To investigate correlated population activity, we excluded ripple events and 

examined the structure of CA1 place cell activity. We asked how the correlation of 

residuals (Singer et al., 2010) between pairs of cells with overlapping place fields varied 
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with speed and novelty. The residual correlation (or “noise correlation”) is a measure of 

how moment-by-moment variability in firing rate co-varies between cell pairs. Cell pairs 

with strong residual correlations are likely to be part of functional cell assemblies (Harris 

et al., 2003), whereas cell pairs with small residual correlations fire more independently 

and this de-correlated activity may be more informative to downstream targets. 

We found that the distributions of residual correlations during the first two days of 

experience differed markedly across speeds (Figure 6a; KS test all pairs: p<10-5). To 

quantify these differences, which consisted of both larger positive and larger negative 

correlations at low speeds as compared to high speeds, we asked how the absolute 

value of the residual correlation coefficients, the coordination index, varied across 

speed. We found that the coordination index was largest at slow speeds and decreased 

smoothly as animals moved faster (Figure 6b). There was an approximately three-fold 

decrease in coordinated activity from the slowest to the fastest speed bin, and 

comparisons across all speed bins were highly significant (Kruskal-Wallis ANOVA, post-

hoc tests, p < 10-5). Thus, pairs of co-active neurons had higher residual correlations at 

slow speeds and became progressively de-correlated as animals moved faster. These 

results could not be explained by a correlation between the animal’s movement speed 

and the residuals themselves (Figure S8). Furthermore, the speed modulation of 

residual correlations was apparent when using shorter timescales (125 ms), when we 

restricted measurements to within the place fields (minimum spatial firing rate of 1Hz), 

and for cell pairs with every combination of peak firing rates (Figure S8). 

We next asked how novelty modulated the correlation of residuals. We found that 

in a familiar environment, there was an overall increase in the residual correlation, 

consistent with previous results showing that residual correlations increase with learning 

(Singer et al., 2010) (rank sum test, novel vs. familiar residual correlations for all speeds, 
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p < 10-5). However, this overall increase was due to increases specifically at higher 

speeds (Figure 6c; rank sum test; 4 cm/second novel vs. familiar; p < 0.05; 16cm/second 

novel vs. familiar, p <10-5). Thus while over time, correlations of cell pairs increased, the 

relationship between speed and correlated firing was strongest when animals were 

exploring a novel environment. This suggests that during exploration of a novel 

environment, correlated firing in CA1 reflects the rapid associations formed in the CA3 

recurrent network when the SC pathway to CA1 is strong at slower speeds. As the 

environment becomes more familiar, the correlated activity in CA1 may reflect both 

correlated input from CA3 and associations which have been learned by the network 

over time. Interestingly, the analysis by speed revealed a much larger dynamic range of 

coordination levels than the same analysis applied to periods with increased slow or fast 

gamma power (Figure 6c), demonstrating that speed is a better predictor of the structure 

of CA1 output than gamma frequency. Taken together, these findings indicate that the 

structure of CA1 spiking changes markedly as a function of movement speed, with the 

strongly correlated activity seen at low speeds when the influence of the highly recurrent 

CA3 network is greatest giving way to more independent activity as speed increases.  

Discussion 

Our results indicate that as animals behave in a novel environment, the speed of 

their head movement is a simple and parsimonious indicator of the influence of the 

recurrent CA3 network on CA1. We found that changes in CA3-associated patterns – 

slow gamma and ripple power – occur on the same timescale as changes in the 

underlying strength of the SC pathway, directly measured via the slope of evoked 

fEPSPs. This suggests that speed-dependent modulation of the SC is partially 

responsible for the changes we observe in CA1 activity. While CA1 activity related to 
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CA3 decreases with increasing speed, we found a concomitant increase in the power of 

EC-associated fast gamma oscillations (Bragin et al., 1995, Colgin et al., 2009). 

Increasing fast gamma power could simply reflect decreased CA3 input or potentially an 

additional modulatory influence of speed on the strength of the direct input from EC layer 

III or indirect cortical input from EC layer III through hippocampal area CA2 (Chevaleyre 

and Siegelbaum, 2010). The output spiking activity of CA1 reflected the smooth speed-

dependent dynamics seen in gamma and ripple oscillations. At low speeds where CA3 

input dominates, CA1 neurons were much more likely to be activated during ripple 

events and residual correlations of pairs of CA1 neurons were high. At higher speeds 

CA1 neurons tended to fire more independently, consistent with a decreasing influence 

of correlated activity from CA3. In a novel environment, animals spend less time moving 

quickly and more time at intermediate speeds, effectively increasing the influence of the 

recurrent CA3 network on CA1. In addition to this behavioral bias, novelty itself 

increases the influence of CA3 to CA1, particularly at low speeds. 

These findings are difficult to reconcile with the standard two state model of 

hippocampal function (Buzsaki, 1989, Hasselmo, 1999). Rather, we found that the 

patterns of activity we examined were smoothly modulated over a range of movement 

speeds. We propose that the traditional two states reflect extrema of a continuum in 

which the patterns of activity expressed in CA1 reflect the strength of the CA3-CA1 

pathway. Traditionally, studies of place cell activity have set a speed threshold and 

combined all speeds above that threshold together for analysis.  Our findings 

demonstrate that there are significant differences in the prevalence of CA3 and EC 

driven patterns in CA1 at speeds that traditionally would have been combined. Similarly, 

the level of correlated activity in CA1 decreases with increasing speed, reflecting these 

different patterns of activity, suggesting that variations in the input to CA1 as a function 
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of speed has the potential to alter the way CA1 activity influences downstream 

structures. These fast alterations in circuit activity suggest that a complete 

understanding of hippocampal activity and its influence on target structures will require 

knowledge of the specific recent history of neural activity and ongoing behavior.  

Our findings also provide new insight into how and when CA3 spiking can 

influence activity in CA1 and how those changes manifest in correlated activity in the 

CA1 network. Our findings suggest that the strength of the CA3 – CA1 Schaffer 

collateral pathway plays a central role in regulating the prevalence of slow gamma, 

ripples and correlated spiking in CA1.  Further, during learning there is a large increase 

in the prevalence of CA3 driven patterns in CA1 at low speeds and an increase in the 

prevalence of EC-associated fast gamma at high speeds. These results suggest that 

new experiences result in greater drive to CA1, providing a potential explanation for the 

higher firing rates seen in CA1 during new experiences (Nitz and McNaughton, 2004, 

Csicsvari et al., 2007, Karlsson and Frank, 2008).   

Head movement speed provides an experimentally measurable parameter that 

effectively characterizes the degree to which CA1 activity is driven by CA3. As low and 

intermediate values of movement speed were only weakly correlated with speed along 

the axis of the track, and as these low and intermediate speeds were more prevalent in 

novel environments, our results indicate that measuring movement speed captures 

important elements of behavior associated with learning. Movement speed is a 

behavioral parameter, however, and thus cannot directly affect the strength of specific 

hippocampal pathways. Nonetheless, differences in speed captured as much as 50% of 

the variance in fEPSP slope, indicating that the causal factor(s) must be tightly 

correlated with speed. Further, speed modulation was strongest in novel environments, 

indicating that the causal factor(s) should be enhanced during learning. Cholinergic 
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modulation of the hippocampal circuit is a likely candidate. First, acetylcholine has been 

shown in vitro to differentially suppress both the SC and EC layer III input to CA1 in a 

dose dependent manner, with significantly greater suppression of the SC pathway 

(Hasselmo and Schnell, 1994). This difference between the effect of cholinergic tone on 

SC and EC inputs to CA1 could explain the relative increase in EC-associated fast 

gamma power seen with increasing speed.  Second, The firing rate of neurons recorded 

in vivo from the medial septum, which sends cholinergic projections to the hippocampus 

(Amaral and Witter, 1995), increases with movement speed (King et al., 1998). Third, 

acetylcholine levels are higher in novel, as compared to familiar environments 

(Giovannini et al., 2001). Fourth, cholinergic modulation is also involved in regulating the 

hippocampal theta rhythm (Lee et al., 1994), consistent with the strong relationship 

between movement speed and theta power. Finally, the timescale of action of 

acetylcholine may also be consistent with the rapid modulation we seen (Parikh et al., 

2007). Taken together, these studies suggest that the cholinergic tone in the 

hippocampus increases with movement speed and that cholinergic modulation could 

account for the observed change in the influence of CA3 on CA1.  

The speed related changes in ensemble activity we found were present in both 

novel and familiar environments, indicating that speed-related changes in correlations 

are a consistent feature of the hippocampal code. Previous studies have for the most 

part assumed a two state model of CA1 activity and focused on presence of coordinated 

activity in sets hippocampal place cells active either during movement (Harris et al., 

2003, Dragoi and Buzsaki, 2006, Kelemen and Fenton, 2010, Singer et al., 2010) or 

during stillness (Kudrimoti et al., 1999, Foster and Wilson, 2006, Karlsson and Frank, 

2009). Our results suggest that the expression of these ensembles reflects a common 

factor: the relative strength of CA3 input to CA1. Further, the consistent and substantial 
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decrease in residual correlations seen with higher movement speeds suggests that 

ensembles are not present or absent, but rather are expressed to a greater or lesser 

extent on a moment-by-moment basis.  

Why might coordinated activity in CA1 be expressed dynamically? Correlations 

among neurons can be useful for driving plasticity or expressing specific stored 

representations, but correlations can also reduce the overall information content of a 

neural code (Averbeck et al., 2006). Thus, correlations in place cell activity during 

exploration could signal specific associations related to a place, but the expression of 

the coordination makes the spatial information itself less robust. In a novel environment, 

the increased correlated activity seen both during ripples and in the context of place 

fields is well suited to promote the plastic changes involved in building a representation 

of the environment. The more de-correlated place field activity present at high speeds 

provides an accurate and informative representation of the animal’s current location to 

downstream structures. In more familiar environments, the highly correlated activity seen 

at low speeds is well suited to support memory retrieval. This notion is consistent with 

observation that animals tend to slow down at decision points where memory is required 

(Johnson and Redish, 2007) and suggests that memory retrieval will be facilitated at 

lower movement speeds.  

We hypothesize that the continuous modulation of the influence of CA3 on CA1 

allows the hippocampus to subserve different functions at different times. At slow speeds 

CA3 input is strongest. At these times, we observe prominent ripple oscillations, which 

are thought to support memory consolidation via replay of previously stored associations 

(Girardeau et al., 2009, Carr et al., 2011). Intriguingly, the correlated place cell activity 

we observed at slow speeds also reflects the co-activation of neural ensembles on 

timescales that are thought to be well suited for driving synaptic plasticity in downstream 
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structures (Hebb, 1949). Taken together, these results suggest that when CA3 input is 

strongest, CA1 activity reflects associations stored in CA3 which may promote learning 

at the CA3-CA1 synapse and in distributed neo-cortical circuits and enable retrieval in 

these networks. As animals move more quickly, activity in CA1 shifts from representing 

primarily stored associations towards faithful representations of location. Thus 

movement speed and novelty are critical variables in understanding the smooth 

dynamics of the CA3-CA1 pathway and the structure the hippocampal output. 
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Methods 

Data Acquisition 

11 male Long Evans rats weighing between 400-600 grams were used. Neuronal activity 

was recorded in 7 rats with 30 independently movable tetrodes assembled in two 

bundles targeting dorsal hippocampal region CA1 and dorsal CA3 (n=4)(Karlsson and 

Frank, 2008), CA1 and EC (n=2; two 15 tetrode groups centered at -3.6mm AP, 2.2mm 

ML for hippocampal targets and 9.1mm AP, 5.6mm ML at a 10° angle in the sagital 

plane for medial entorhinal targets, coordinates relative to bregma), or CA1, CA3 and EC 

(n=1; same coordinates as CA1 and EC implantation). Analyses of data from the CA1-

CA3 animals has been reported previously(Karlsson and Frank, 2008, 2009). On the 

days following surgery, hippocampal tetrodes were advanced to the cell layers and 

entorhinal tetrodes were advanced through primary visual cortex until characteristic EEG 

patterns were observed. All spiking activity was recorded relative to a reference tetrode 

located in the corpus callosum. Local field potentials were recorded relative to ground. 

Tetrode positions were adjusted after daily recording sessions for all tetrodes that had 

poor unit recordings. Recording was initiated when EEG characteristics (sharp wave 

polarity, theta modulation) and neural firing patterns indicated that the target regions had 

been reached. On rare occasions, some tetrodes were moved before recording sessions 

but never within 4 h of recording. 

In a second set of experiments, electrically evoked responses were recorded in 4 male 

Long Evans. Movable 10 kΩ tungsten or platinum iridium bipolar stimulating electrodes 

(MicroProbes for Life Science, Gaithersburg, MD) were lowered into either the ventral 

hippocampal commissure (n=3; coordinates relative to bregma: -1.3 mm AP, +1.0 ML) or 

contralateral CA3 to stimulate the Schaffer collateral pathway (coordinates relative to 

bregma: -3.6 mm AP, -3.6 mm ML). Either a multi-tetrode array (n=2; coordinates 
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relative to bregma: -3.6 mm AP, -2.2 mm  ML) or a 16-channel linear array silicon probe 

(NeuroNexus Technologies, Ann Arbor, MI; n =2; coordinates relative to bregma: -

3.6mm AP, -3.6mm ML (n=1) or -2.2mm ML (n=1)) was implanted above the dorsal 

hippocampus. 

The depth of electrical stimulation electrodes was set to maximize evoked responses. 

Recording was initiated when EEG characteristics indicated that movable tetrodes had 

reached their target regions and animals had fully recovered from surgery. For all 

electrical stimulation experiments the level of current in the 0.2 ms biphasic pulse (A-M 

Systems, Sequim, WA) was set to evoke easily measurable fEPSPs in area CA1, 

typically halfway between threshold and maximum response, and between 50-250 µA. 

The level of current was always held constant across multiple sessions recorded in a 

single day. 

Recording only experiments 

Prior to implantation, animals were food deprived to 85-90% of their baseline weight and 

pretrained in a separate room to run back and forth on a raised track for liquid food 

reward (evaporated milk) at each end. Animals were exposed sequentially to two 

physically different W-shaped environments (76 x 76 cm with 7cm wide track sections) 

and during intervening sessions in a high walled rest box (20 minute rest periods, floor 

25 x 34 cm; walls, 50 cm tall)(Karlsson and Frank, 2008). Each rat was exposed to the 

first initially novel W-track and after either three days (n = 6) or five days (n = 1) of two 

run sessions per day, rats were introduced to a second W-track. The two W-tracks were 

oriented at 90 degrees with respect to one another and were separated by a high barrier 

so that the rat had access to largely distinct sets of visual cues. Both environments had 

one reward site at the endpoint of each arm and animals were rewarded for performing a 
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continuous alternation task(Frank et al., 2000). Rapid learning of this task requires an 

intact hippocampus(Kim and Frank, 2009). Animals completed two or three 15-min run 

sessions per day (Figure S1). 

Stimulation Experiments 

Prior to implantation, animals were food deprived to 85-90% of their baseline weight and 

trained to run back and forth on a raised track for liquid food reward (sweetened soy or 

evaporated milk) at each end. We used two different track designs, a linear track (either 

straight or U-shaped; 4 animals, 22 epochs) with food wells at each end and a W-

shaped maze (described above; 3 animals, 9 epochs). All pretraining was done in the 

recording room such that pretraining familiarized animals with both the tracks and the 

spatial context. We recorded one to three run sessions each day interspersed by 20 

minute periods in which the animal rested in a small enclosed box. To measure synaptic 

strength as rats behaved, we triggered electrical pulses at 0.05 – 0.1 Hz for several 

minutes at a time. Thus, for each animal and day of behavior, we gathered a set of field 

and spiking responses in area CA1 (31 data sets, minimum 46 and maximum 193 

pulses).  

Following the conclusion of the experiments we made microlesions through each 

electrode tip to mark recording locations (30 µA for 3 sec). After receiving an overdose of 

Euthanasol, animals were perfused intracardially with isotonic sucrose and 4% PFA. The 

brains were stored in PFA, frozen, cut either coronally or sagitally at 50 μm sections, and 

stained with cresyl violet. Exact reconstructions were not available for one CA1-EC 

recording animal, so we verified the locations of tetrodes targeted to the EC using theta 

coherence and theta polarity relative to CA1 as well as the absence of ripples in the LFP 

at the time of CA1 ripples(Mizuseki et al., 2009). EC tetrodes were included for analysis 
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only if the theta and ripple related activity was consistent with layer 3 recordings. We 

also verified that results from these tetrodes were consistent with results from tetrodes 

with histologically verified recording locations. 

Data were collected using the NSpike data acquisition system (L.M.F. and J. MacArthur, 

Harvard Instrumentation Design Laboratory). During recording sessions, we recorded 

both local field potentials (filtered 0.5—400 Hz and sampled at 1500 Hz) and threshold-

crossing spike snippets (40 samples at 30 kHz, filtered 300-3000 Hz or 300-6000 Hz). 

An infrared light emitting diode array with a large and a small cluster of diodes was 

attached to the preamps during recording. Following recording, the rat's position on the 

track was reconstructed using a semi-automated analysis of digital video of the 

experiment. The position of the front and back tracking diodes extracted from the video 

were first smoothed using a nonlinear method(Hen et al., 2004). We computed speed by 

taking the difference in position and then smoothing using a Gaussian kernel with 

standard deviation 0.5 s and a total length of 6 seconds. 

Single neuron data were clustered using custom software (MatClust, M. Karlsson) as 

described previously(Karlsson and Frank, 2008). We used standard waveform and mean 

rate criteria to separate putative excitatory pyramidal cells from putative inhibitory fast 

spiking cells(Fox and Ranck, 1981, Frank et al., 2001).  

For measuring evoked responses from the SC pathway the best measurements are 

obtained below stratum pyramidae, in which a large fEPSP can be recorded with a peak 

amplitude at approximately 8-12 ms. In recordings where multiple tetrodes were 

available, we chose the tetrode with the largest consistent response. By recording below 

the cell layer, we attempted to avoid contamination from population spikes. For the 

silicon probe recordings of stimulation of the SC pathways, we measured the fEPSPs 
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from recording sites near the stratum radiatum current sink revealed via current-source 

density analysis. The fEPSP measurements were highly variable in size across days and 

between animals. Thus, in order to combine across different recording days, we needed 

to normalize our data. For ease of comparison to other work, we chose to use a 

multiplicative normalization, scaling each fEPSP measurement by the average across all 

evoked responses during a given session. For the analysis of the effect of environmental 

novelty, we normalized fEPSP measurements in both sessions by the average from the 

familiar session. For regression analyses we eliminated points with a speed below 1/8 

cm/sec ensure robust linear fits in relation to log(speed). 

Analysis  

Speed spectrogram 

A windowed power spectrum was computed for a tetrode located in the CA1 cell layer 

using the multi-taper method from the Chronux toolbox. Multi-taper estimates of the 

power spectrum were obtained for 0.5 second non-overlapping windows and a z-score 

was computed for each frequency band. Thus for each 0.5 second bin, we obtained a 

normalized measure of power for each frequency band in units of standard deviations 

from the mean. We assigned each of these 0.5 second normalized power spectrum to a 

logarithmically spaced speed bin and then plotted the mean power for each speed bin. 

Identifying slow and fast gamma 

For gamma analyses, we defined slow and fast gamma bandwidths and gamma events 

as described previously(Colgin et al., 2009). Briefly, for each animal cross-frequency 

coherence was computed on the local EEG to determine slow and fast gamma bands. A 

lower limit was set to 20 Hz and an upper limit was set to 140 Hz to exclude theta 

harmonic and contamination by spikes. In 6 out of 7 cases, there was a clear separation 
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between slow and fast gamma. One animal was excluded from all gamma analyses due 

to large 60Hz noise which precluded adequate separation of slow and fast gamma 

bands. 

Gamma Oscillation Analyses. 

A windowed power spectrum was computed for each tetrode located in the CA1 cell 

layer using the multi-taper method from the Chronux toolbox. Multi-taper estimates of the 

power spectrum were obtained for 0.5 second non-overlapping windows, a z-score was 

computed for each frequency band and the power spectrum was averaged across all 

CA1 tetrodes. Thus for each 0.5 second bin, we obtained a normalized measure of slow 

and fast gamma power in units of standard deviations from the mean. For regression 

analyses we eliminated points with a speed below 1/8 cm/sec ensure robust linear fits in 

relation to log(speed). As the distribution of the residuals was non-gaussian, we used a 

bootstrap resampling method to determine the significance of the linear regression, 

resampling data to ensure  equal sampling across four logarithmically spaced speed 

bins with centers at [1/4, 1, 4, 16] cm/s. To evaluate the temporal specificity of speed 

modulation, we measured the Spearman correlation (a non-parametric measure) of 

normalized gamma power (in 0.5 s bins as described above) with log(speed) in the 

concurrent and adjacent time bins. We used a bootstrap to estimate the mean and 95% 

confidence interval of the correlation. To investigate how the depth of modulation 

changed across exposures, we used a bootstrap estimate of slope for each exposure, 

while resampling to ensure equal sampling across different speeds. To test for 

significant changes in slope over days, we used a permutation test to test against the 

null hypothesis. To measure the within day differences in gamma power between novel 

and familiar experiences, we normalized all data to the power spectrum from the familiar 

session. After binning the data into logarithmically spaced speed bins we used a rank 
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sum test to measure the difference in normalized gamma power between comparable 

speeds in the novel and familiar track. To measure the within day differences in the 

depth of modulation between novel and familiar experience we computed 1000 

bootstrap estimates of the slope to ensure equal sampling across animals and across 

different behaviors. 

Coherence Analyses. 

Coherence between CA1 and either CA3 or layer 3 of entorhinal cortex was computed 

for all CA1-CA3 or CA1-EC tetrode pairs. Coherence was computed between tetrode 

pairs using the multi-taper method from the Chronux toolbox. Multi-taper estimates of the 

cross-spectra were obtained for 10 second non-overlapping windows, and then all of the 

estimates were averaged in order to calculate the coherence. The mean coherence in 

the slow and fast gamma band were computed for all tetrode-pairs. 

Theta Power 

To compare whether speed or the strength of the theta rhythm is more predictive, we 

extracted theta power from our recordings. When available (n=2), we measured the 

theta power using recordings in the hippocampal fissure. Alternatively, we used the 

callosal reference electrodes (n=5), or if these were not available, electrodes in area 

CA3 (n=2). We measured theta power by first 7 – 9 Hz bandpass filtering (FIR filter, 6, 

10 Hz stopband) the recorded LFP. Our measure of theta power was the magnitude of 

the Hilbert transform of the filtered LFP. For the analysis of the modulation of gamma 

power by theta power, we used the theta power averaged over the 0.5s spectral 

estimation window. For the analysis of the modulation of evoked fEPSP slope by theta 

power, we used the average theta power measured in the second prior to stimulation. To 
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combine theta power across pooled data sets we computed a z-score of theta power 

across each epoch. 

Ripple Oscillations 

For ripple analyses, we used EEG characteristics and the presence of multiple pyramidal 

cells to select tetrodes that were located in either the CA1 cell layer. We filtered the field 

potentials recorded from these tetrodes using a 30 tap 150 – 250 Hz bandpass FIR filter 

(100, 300 Hz stopband) designed using least squares with equal weighting across 

bands. The magnitude of this filtered signal was then extracted using the Hilbert 

transform. Ripples were detected using the criterion that the magnitude of the ripple-

band field had to exceed its mean by a threshold of three standard deviations for at least 

15 ms. Normalized ripple power was defined as standard deviations above this 

threshold(Cheng and Frank, 2008). Note that the ripple magnitude is a normalized 

measure and thus did not require further normalization to compare across animals. The 

magnitude for each ripple event was defined as the mean across tetrodes for which that 

event was detected. To look at the relationship between movement speed and ripple 

power, we computed the linear regression between the log of the mean speed during 

each ripple event and the normalized power of each event. For regression analyses we 

eliminated points with a speed below 1/8 cm/sec ensure robust linear fits in relation to 

log(speed). As the distribution of the residuals was non-Gaussian, we used a bootstrap 

resampling method to determine the significance of the linear regression. To investigate 

how the depth of modulation changed across exposures, we used a bootstrap estimate 

of slope for each exposure to ensure equal sampling across animals. To test for 

significant changes in slope over days, we used a permutation test to test against the 

null hypothesis. Briefly, we compared the correlation between exposure day and slope to 

the distribution of correlations obtained by permuting the identity of the exposure 1000 
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times before computing the correlation. To measure the within day differences in ripple 

power between novel and familiar experiences, we normalized all data to the familiar 

session. After binning the data into logarithmically spaced speed bins we used a rank 

sum test to measure the difference in normalized ripple power between comparable 

speeds in the novel and familiar track. To measure the within day differences in the 

depth of modulation between novel and familiar experience we computed 1000 

bootstrap estimates of the slope to ensure equal sampling across animals and across 

different behaviors. 

Residual Correlations 

To determine whether speed altered the formation of cell assemblies, we computed the 

residual correlation between pairs of neurons with overlapping place fields. This 

approach, adapted from Singer et. al. (2010) examines the “noise” correlations, or how 

correlated trial to trial variability is among cell pairs. Residuals were calculated for each 

neuron as the difference between the expected number of spikes and the actual number 

of spikes recorded in 500ms bins. Spikes that occurred during ripples were excluded. 

To determine the expected number of spikes we computed the expected firing rate in 

33ms bins based on the animal's location in the track and the linearized place field. We 

then integrated that rate across each 500ms bin. We then calculated the residuals as the 

difference between the expected number of spikes and the actual number of spikes 

recorded in each time bin. We assigned each 500ms bin to one of four logarithmically 

spaced speed bins and computed the correlation between residuals of cell pairs for each 

speed bin. Correlations were only computed if there were at least 10 s of data to 

correlate, e.g., ≥20 bins in which both cells' expected firing rate was >0 Hz.  
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