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ABSTRACT OF THE DISSERTATION

Higher-order polygonal finite element analysis of nearly-incompressible isotropic elastic
materials

by

Poorya Mirkhosravi

Doctor of Philosophy in Structural Engineering

University of California San Diego, 2018

Professor Petr Krysl, Chair

In the first part of this thesis, we present a stable higher-order polygonal finite element

method for modeling nearly-incompressible isotropic materials. Our method is based on apply-

ing the discontinuous Petrov-Galerkin methodology on a hybridized version of the ultraweak

formulation of linear elasticity. As a result, the unknown degrees of freedom are defined only

on the skeleton of the mesh (interface variables) and have a symmetric positive-definite coeffi-

cient matrix. The performance and convergence of the method is demonstrated with numerical

examples.

In the second part of the thesis, we present a heuristic algorithm that generates coarsened

xii



non-uniform hexahedral meshes with higher resolution close to selected regions in the domain of

3D micro-CT and micro-MR images. Applying a coarsening step on areas of the problem domain

in order to reduce the computational cost is inevitable; however, on the other hand, it is desirable

to have a fine mesh in regions containing small vital features. This algorithm takes as input a very

fine micro-CT data set, the location of the regions containing delicate geometrical details, and the

coarsening factor and produces a ready-to-use graded mesh.
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Chapter 1

Introduction

1.1 Motivation

This work is composed of two main parts. Both topics are motivated by the efforts in

Professor Krysl’s research group at UC San Diego in recent years to simulate the auditory system

of marine mammals [CKH08, CKA10, CMS+08]. Most of the tissues and cartilages modeled in

these simulations are biological materials that can be modeled as nearly-incompressible. The

finite element method has been used for mechanical and multi-physics simulation for several

decades now. However, it is a well-known fact that classical displacement-based finite element

methods do not perform well in nearly and totally incompressible regimes and experience the

so-called locking problem. Therefore, developing a robust and stable method for analysis of

nearly-incompressible elastic materials in the context of general polygonal meshes is the focus of

the first part (chapter 2) of this dissertation. In addition to stability, the accuracy of the numerical

method is also a concern. The mesh that is used to represent the geometry of the model is one of

the factors affecting accuracy. Thus, the second part (chapter 3) is concerned with developing an

algorithm to automatically create non-uniform hexahedral meshes from the CT-scan images of

the tympanoperiotic complex of marine mammals. The meshes are used by other researchers to

1



do vibrational analysis and compute the natural frequencies of the tympanoperiotic complex in

marine mammals [KTC12].

1.2 Polygonal finite elements

The mesh generation step takes a big portion of the analysis time in real-world applications

and using polygonal and polyhedral elements can make the mesh generation process faster. It

may even reduce the number of required degrees of freedom in some examples. The other

area that benefits from polytopal elements is the mesh refinement and coarsening because we

can naturally get rid of hanging nodes. In recent years, there has been much effort made to

use polytopal elements in different areas of solid mechanics like modeling fracture and poly-

crystalline materials. These elements have also been used in computational fluid mechanics

problems and even in topology optimization.

1.2.1 Equations of linear elasticity

We will use polygonal elements to solve nearly-incompressible linear elasticity problems.

The equations of linear elasticity read as follows:

−div(C : (∇u+(∇u)T )/2) = f in Ω

u = ū on Γu

(C : (∇u+(∇u)T )/2) ·n = t̄ on Γt

(1.1)

where u is the displacement vector and f is the vector of body force per unit volume defined over

the two-dimensional region Ω with the boundary ∂Ω . Γu and Γt are open subsets of the boundary

and they satisfy Γu∩Γt =∅ and Γu∪Γt = ∂Ω . Γu is the part of the boundary where the value of

the displacement is prescribed while Γt is the region where we have a condition on the gradient of

the displacement. n is the unit outward normal vector along Γt on the boundary. C is the stiffness

2



tensor. Equation 1.1 is usually referred to as the strong form of the linear elasticity equation.

The (primal) weak form is obtained by multiplying the first equation in 1.1 by a test function

and integrating over Ω and applying integration by parts to shift the derivative from u to the test

function. The primal weak form has been the starting point for classical finite element solutions

of elasticity equations. The primal weak form of equation 1.1 can be written as [Hug87]

Find u ∈ S such that for all v ∈ V ,∫
Ω

((∇u+(∇u)T )/2) : C : ((∇v+(∇v)T )/2)dΩ =
∫

Ω

f · vdΩ+
∫

Γt

t̄ · vdΓ ,
(1.2)

where S and V denote the trial and test spaces, respectively. The trial space, S , consists of

functions in HHH1(Ω) which have a value of ū on Γu . Similarly, the test space, V , consists of

functions in HHH1(Ω) which have a value of zero on Γu . So, the only space that we need to discretize

is HHH1(Ω) . HHH1(Ω) is the vector version of H1(Ω) which is the set of square-integrable functions

with the additional property that the square integral of the gradient is also bounded. The popular

choice in the FEM community to discretize H1(Ω) is to use the Lagrange basis functions for

triangles or the tensor product of Lagrange basis functions in the case of quadrilaterals. One way

to represent the Lagrange basis functions on triangles is in terms of barycentric coordinates. So,

finding barycentric coordinates for polygons, the so-called generalized barycentric coordinates

was the natural path to take in order to solve 1.2 on polygonal meshes. In the following, we briefly

review some of the previous efforts in developing different barycentric coordinates on polygons.

1.3 Generalized barycentric coordinates (GBCs)

For a convex polygon P shown in figure 1.1, the n vertices are denoted by vi , for i = 1 . . .n .

The generalized barycentric coordinates on this polygon are the n functions φi which satisfy the

following two properties:

3



Figure 1.1: The order of vertices

• partition of unity property:
n

∑
i=1

φi(x) = 1

• linear precision:

For any linear function f (x) on P, we have

f (x) =
n

∑
i=1

f (vi)φi(x) for x ∈ P

In addition, there are other properties which are desirable to have:

• being non-negative:

φi(x)≥ 0 for i = 1 . . .n

• Kronecker-delta property:

φi(v j) = δi j for i, j = 1 . . .n

where δi j is the Kronecker delta function. δi j = 1 if i is equal to j . Otherwise, it is equal to

zero.

• linearity on the edges:

4



φi(x) is a piecewise linear function on the boundary of the polygon, ∂P for i = 1, . . .n .

• smoothness within the element:

φi(x) ∈C∞(P) for i = 1 . . .n

Some of the generalized barycentric coordinates in the literature can be written in a general

format in terms of weight functions, ωi(x) . So, for an n-sided polygon, the GBCs, φ1,φ2, . . . ,φn,

are defined as

φi(x) =
ωi(x)

∑
n
j=1 ω j(x)

for i = 1,2, . . . ,n . (1.3)

Other GBCs can be totally computational without a closed-form formula. For example,

the maximum entropy coordinates in section 1.3.5 are obtained by numerically solving an

optimization problem.

1.3.1 Wachspress coordinates

The first generalized barycentric coordinate (GBC) was proposed for convex polygons

by Eugene Wachspress in 1971 using the ideas of projective geometry [Wac71, Wac75]. Warren

[War96] extended the definition to higher dimensions (convex polytopes) in 1996. The explicit

form of Wachspress coordinates are in terms of rational polynomials. As an example, these basis

functions are computed for a pentagon with the vertex coordinates given in table A.1 in Appendix

A. The final result is shown in figure 1.2.

Later, a more practical local formulation of Wachspress functions was proposed by Meyer

et al. in 2002, [MBLD02]. In this formulation you only need to know the coordinates of vertices

v j−1 , v j , and v j+1 to find the weighting function ω j and the Wachspress functions are calculated

5



N1 N2

N3 N4 N5

Figure 1.2: Wachspress basis functions

using equation 1.3. ω j is defined as

ω j(x) =
cotγ j + cotδ j

‖x− v j‖2 for j = 1,2, . . . ,n .

where γ j is the angle between the edges xv j and v j v j−1 and δ j is the angle between the edges xv j

and v j v j+1 (see figure 1.3).

Figure 1.3: Definition of angles γ j and δ j

6



Alternatively, Floater et al. [FGS14] wrote the Wachspress weighting functions in terms

of scaled vectors normal to the edges to avoid evaluating trigonometric functions,

ω j(x) = |p j−1× p j| for j = 1,2, . . . ,n .

where p j =
n j
h j

and h j = (v j− x) ·n j (see figure 1.4). This formulation is adopted in our work to

develop H(div) discretizations for polygons later in this chapter.

Figure 1.4: Definition of h j

1.3.2 Metric coordinates

Metric coordinates were introduced by Malsch and Dasgupta [MD04a, MD04b] as a way

to allow interior nodes inside convex polygons. But, one side effect is that the coordinates are no

longer necessarily positive. The formulation is summarized in [HF06]. For an n-sided polygon,

the metric coordinates, φ1,φ2, . . . ,φn, can be written in the general form of equation 1.3 where

ωi(x) = bi−1(x)Ai−2(x)−bi(x)Bi(x)+bi+1(x)Ai+1(x) .

Ai(x) and Bi(x) denote the areas of triangles [x,vi,vi+1] and [x,vi−1,vi+1] respectively as

shown in figure 1.5.

7



Figure 1.5: Definitions of Ai and Bi

bi(x) is defined as following

bi(x) =
1

Ci qi−1(x)qi(x)
,

where Ci is the area of triangle [vi−1,vi,vi+1] (figure 1.5) and qi(x) = ri(x)+ ri+1(x)− ei, with

ri(x) = ‖vi− x‖

ei = ‖vi+1− vi‖ .

1.3.3 Mean value coordinates

Mean value coordinates (MVC) were proposed by Floater in 2003 as a well-defined GBC

on star-shaped polygons [Flo03] motivated by the Mean Value Theorem for harmonic functions.

It was later generalized to three dimensions in 2005 [FKR05]. This method also follows the

general form of equation 1.3. The weighting functions are defined as

ωi(x) =
tan(αi−1

2 )+ tan(αi
2 )

‖vi− x‖
,

αi = αi(x) , 0 < αi < π

where αi is defined in figure 1.5.

8



1.3.4 Natural neighbor-based coordinates

Another category of GBCs are the natural neighbor-based coordinates which are defined

using the Voronoi diagram. The Sibson coordinates [Sib80] (also called the natural element

coordinates) and the Laplace coordinates are two examples of natural neighbor-based coordinates.

The Sibson coordinate can be written in the general form of equation 1.3. The weighting

function, ωi , at any point, x, is defined by overlaying two Voronoi diagrams; the Voronoi diagram

of the original vertices (see part (a) in figure 1.6) and the Voronoi diagram of the union of x with

the original vertices (see part (b) in figure 1.6). ωi(x) will be the area of the intersection of the

Voronoi cell of vertex vi in the first diagram and the Voronoi cell of vertex x in the second Voronoi

diagram. For example, in figure 1.6, ω2(x) is equal to the area of the region ghdc , Aghdc. Finally,

the Sibson basis function corresponding to v2 is

φ2(x) =
Aghdc

Aedcba
.

The details of implementation are described by Sukumar et al. in [SMB98].

1.3.5 Maximum entropy coordinates

The maximum entropy coordinates (MAXENT) were introduced by Sukumar in 2004

[Suk04] and was also developed independently by Arroyo and Ortiz in 2006 [AO06]. The idea is

based on Jaynes’ principle of maximum entropy [Jay57]. The unknown GBCs, φ1,φ2, . . . ,φn , are

determined by maximizing Shannon’s entropy (the information-theoretic entropy), H , given as

H(φ1,φ2, . . . ,φn) =−
n

∑
i=1

φi log(φi)

subject to the linear constraints ∑
n
i=1 φi(x) = 1 and ∑

n
i=1 φi(x)vi = x . The method of Lagrange

multipliers was used to solve this constrained optimization problem. Later in 2008, Hormann and

9



Figure 1.6: (a) Voronoi diagram of vertices {v1, . . . ,v5} (b) Voronoi diagram of vertices
{v1, . . . ,v5}∪{x}

Sukumar enhanced the method by restoring the Kronecker-delta property on the boundary with

the help of Prior functions [HS08].

1.4 Mixed finite element method

While the generalized barycentric coordinates make it possible for us to solve equation 1.2

on polygonal meshes, it does not lead to a stable method when the material is nearly incompress-

ible. The root of the problem stems from the fact that norm of the elasticity modulus, C , goes to

infinity as the Poisson’s ratio, ν , approaches 0.5 in the near-incompressible regime (discussed in

chapter 2). Using the so-called mixed formulation is one way to get rid of the stability problem in

the incompressibility limit. This is achieved by defining more independent variables in addition

to u in the strong form, equation 1.1 and deriving new weak forms accordingly. This family of

methods is referred to as the mixed finite element method [BBF13]. Having multiple independent

variables raises the question of how to discretize them. Unfortunately, using H1 discretizations

10



like the generalized barycentric coordinates on polygonal meshes for all the independent vari-

ables does not necessarily lead to a correct solution. The infinite-dimensional Hilbert spaces to

which the independent variables in the mixed formulation belong matter and each space needs

its own type of discretization. The common spaces are H1 , H(curl) , H(div) , and L2 and their

vector and matrix versions. Raviart and Thomas (RT) [RT77] and later Brezzi, Douglas, and

Marini (BDM) [BDM85] proposed H(curl)-conforming and H(div)-conforming discretizations

on meshes with triangular and square elements. Nedelec [Ned80, Ned86] generalized these dis-

cretizations to three dimensions for tetrahedral and cubic elements. To demonstrate the importance

of these new discretizations the solution of the Poisson’s equation, −∇2u = f , on (0,1)× (0,1)

obtained with two different discretizations is shown in figure 1.7. The independent variables are u

(the temperature) and σ (the flux). Both solutions approximate u using piecewise constants. The

picture on the left shows u obtained when σ is approximated using continuous piecewise linears

while the picture on the right is u when σ is approximated using Raviart-Thomas discretization.

The solution on the right correctly captures the exact solution, uex = x(1− x)y(1− y) , while the

one on the left is highly oscillatory and incorrect.

Figure 1.7: Numerical solution of the Poisson’s problem. u is plotted in two different cases.
Taken from [AFW10]
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1.4.1 The Finite Element Exterior Calculus (FEEC) framework

In 2006, Arnold, Falk, and Winther [AFW06] used the language of differential forms to

unify the mixed formulation discretizations into one framework called Finite Element Exterior

Calculus (FEEC). In this framework, discretizations of the spaces in the de Rham complex

are created using discrete differential forms [AFW09], especially the Whitney forms [Whi57],

satisfying some properties like being a subcomplex and existence of bounded cochain projections

between the original infinite-dimensional complex and the discrete subcomplex. Arnold et al.

showed the equivalence between discrete differential forms of FEEC and the classical vector-

valued spaces like RT and BDM through vector proxies and categorized these spaces into a

periodic table of finite elements [AL14] (see figure 1.8).

1.4.2 Vector-valued GBC elements

The table in figure 1.8 does not list any polygonal elements and only contains triangular

and square elements. One of the first efforts to address this issue was by Gillette et al. [GRB16].

They proposed ideas on how to utilize generalized barycentric coordinates to create basis functions

resembling Whitney forms for polygons. Chen and Wang [CW17] extended this idea further

and developed linear order H(curl)- and H(div)-conforming polygonal elements with smallest

possible dimension. As an example, the H(div)-conforming basis functions for the sample

pentagon given in Appendix A is shown in figure 1.9. The Mathematica implementation of Chen

and Wang approach is also listed in Appendix B.

We used these vector-valued basis functions to solve the mixed form of the Poisson’s

equation on the domain Ω = (0,1)× (0,1) (see the mesh in figure 1.10) with homogeneous

boundary condition, u = 0 on ∂Ω. The mixed weak form for the problem −∇2u = f reads as
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Figure 1.9: minimal degree H(div) basis functions

follows:

Find σ ∈ H(div,Ω), u ∈ L2(Ω)∫
Ω

σ · τdΩ+
∫

Ω

udivτdΩ = 0 , for all τ ∈ H(div,Ω) ,

−
∫

Ω

(divσ)vdΩ =
∫

Ω

f vdΩ , for all v ∈ L2(Ω) .

(1.4)

where the given right hand side is f = 2π2 sin(πx)sin(πy) . The exact solution for the given f is

uex = sin(πx)sin(πy) and σex = (πcos(πx)sin(πy),πsin(πx)cos(πy)) . The variables σ and τ are

approximated using the H(div)-conforming basis functions of Chen and Wang while piecewise

constants are used to approximate u and v . The exact and computed solutions are shown in figures

1.11 and 1.12. It shows that using the combination of H(div)-conforming and L2-conforming

subspaces leads to a correct numerical solution.
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Figure 1.10: The polygonal mesh which was used to solve the mixed Poisson problem

Figure 1.11: (a) uex = sin(πx)sin(πy) (b) the mixed FEM solution for u

Next, we tried to solve the mixed formulation of the elasticity equation using Chen and

Wang (CW ) basis functions. Two different scenarios were carried out. On the first attempt,

a mixed weak form with weakly enforced symmetry for the stresses [AFW07] was used so

that a Cartesian product of CW with itself can be used to approximate the stress matrix. The

components of the displacement vector and the rotation matrix were approximated with piecewise

constant functions. On the second attempt, the approximation of the components of the rotation

matrix was changed to piecewise linears. Also, bubble functions defined in terms of GBCs were

added to the previous approximation space for stresses as defined in the PEERS method of Arnold,

Brezzi, and Douglas [ABD84].

While we were able to solve the Poisson’s equation using CW basis functions, neither

15



Figure 1.12: The norm of σ: (a) the exact solution (b) the mixed FEM solution

of the two attempts described above were successful in correctly solving the elasticity problem.

This made us look at a method called discontinuous Petrov-Galerkin which was recently used

[AFMD18] to solve the Poisson’s equation on a polygonal mesh. In the next chapter, we extended

this idea to solve linear elasticity problems on polygonal meshes.

Chapter 1, in part is currently being prepared for submission for publication of the material.

Mirkhosravi, Poorya; Krysl, Petr. The dissertation author was the primary investigator and author

of this material.
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Chapter 2

The dPG framework

2.1 Introduction

The discontinuous Petrov-Galerkin framework was introduced in 2010 by Demkowicz

and Gopalakrishnan [DG10, DG11a]. It can be interpreted as a minimum residual finite element

method and it is usually applied on the ultraweak formulation [CD98] of the boundary value

problem. dPG is a general method and can be applied to other variational formulations too as long

as they are well-defined. Equivalently, the dPG can be interpreted as a Petrov-Galerkin method

with an optimal test space [DG14]. We choose a finite-dimensional subspace of the trial space

and the dPG will find the optimal test space associated to this trial space which involves inverting

the Riesz operator. This is called the ideal dPG [DG11b] because the Riesz operator is infinite-

dimensional and its inverse can only be computed in special cases. The practical dPG [GQ14]

finds an approximate optimal test space by using an enriched discrete test space. This makes the

Riesz operator finite-dimensional and its inverse can be computed by solving a global problem

which is still computationally expensive. By using the broken ultraweak formulations [CDG16]

the inversion of the Riesz operator becomes a local problem (at the element level). The method

leads to symmetric and positive definite stiffness matrices and is even equipped with a natural
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residual-based error estimator. It is getting more attention over time and has been applied to

different areas such as elasticity [KFD16, FKDLT17, BDGQ12], viscoelasticity [KKR+17], fluid

problems [EDC14], electromagnetism [CDG16], wave propagation [PD17], and Schrödinger

equation [DGNS17] to name a few. In this chapter, we first derive the ultraweak formulation and

its broken version for the linear elasticity problem and then describe the dPG method in detail

and derive the equations.

2.2 The variational formulation

2.2.1 The strong form

The equations of linear elasticity in the mixed form read

−divσ = f in Ω

σ =C : ε in Ω

u = ū on Γu

σ ·n = t̄ on Γt

(2.1)

where u and f are the displacement and body force vectors. σ and ε are the symmetric stress

and strain tensors. For a two-dimensional problem, which is our main focus, these tensors take

values in the space S := R2×2
sym over the two-dimensional region Ω with the boundary ∂Ω . Γu and

Γt are open subsets of the boundary and they satisfy Γu∩Γt =∅ and Γu∪Γt = ∂Ω . On Γu the

displacement field has a prescribed value of ū and on Γt , the traction vector is specified as t̄. n is

the unit outward normal vector along Γt on the boundary and C is the elasticity tensor. Equation

2.1 is derived by writing the equation 1.1 as a first-order system.
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2.2.2 The ultraweak formulation

Before deriving the weak form, we start by rewriting the second equation in 2.1 as

ε = S : σ where S :=C−1 is the 4-th order compliance tensor. In the limit of incompressibility

(ν→ 1
2) the norm of C goes to infinity while the norm of S remains bounded. So, writing the

constitutive equation in terms of S will result in robustness for nearly-incompressible materials.

Also, since the small strain tensor is defined as ε = 1
2(∇u+(∇u)T ), the gradient of u can be

written as ∇u = ε+ω where the infinitesimal rotation tensor, ω is defined as

ω :=
1
2
(∇u− (∇u)T ). (2.2)

Substituting ε = ∇u−ω in ε = S : σ, we can rewrite 2.1 as

−divσ = f in Ω

∇u−ω = S : σ in Ω

u = ū on Γu

σ ·n = t̄ on Γt

(2.3)

Now, as is common for all weak formulations, we start by multiplying the first two

equations in 2.3 by test functions v (a vector function) and τ (a 2nd-order tensor function and not

necessarily symmetric) respectively.

−
∫

Ω

(divσ) · vdΩ =
∫

Ω

f · vdΩ∫
Ω

∇u : τdΩ−
∫

Ω

ω : τdΩ =
∫

Ω

σ : S : τdΩ

(2.4)

In contrast to the mixed formulation used in the PEERS framework, in the ultraweak

formulation the integration by parts is applied on both equations to shift the derivatives completely
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to the test functions. So, for the first integral in the first equation we have,

∫
Ω

(divσ) · vdΩ =
∫

Ω

σi j, jvi dΩ

=
∫

Ω

[(σi jvi), j−σi jvi, j]dΩ

↓ using the Green’s theorem

=
∫

∂Ω

(σi jvi)n j ds−
∫

Ω

σi jvi, j dΩ

=
∫

Γu

(σi jn j)vi ds+
∫

Γt

(σi jn j)vi ds−
∫

Ω

σi jvi, j dΩ

↓ substituting the traction boundary condition

=
∫

Γu

(σi jn j)vi ds+
∫

Γt

t̄ivi ds−
∫

Ω

σi jvi, j dΩ

=
∫

Γu

(σn) · vds+
∫

Γt

t̄ · vds−
∫

Ω

σ : ∇vdΩ.

(2.5)

If we only use test functions, v, that are zero vectors on Γu we can further simplify the

equation to ∫
Ω

(divσ) · vdΩ =
∫

Γt

t̄ · vds−
∫

Ω

σ : ∇vdΩ. (2.6)

20



Also for the first integral in the second equation,

∫
Ω

(∇u) : τdΩ =
∫

Ω

ui, jτi j dΩ

=
∫

Ω

[(uiτi j), j−uiτi j, j]dΩ

↓ using the Green’s theorem

=
∫

∂Ω

(uiτi j)n j ds−
∫

Ω

uiτi j, j dΩ

=
∫

Γu

ui(τi jn j)ds+
∫

Γt

ui(τi jn j)ds−
∫

Ω

uiτi j, j dΩ

↓ substituting the displacement boundary condition

=
∫

Γu

ūi(τi jn j)ds+
∫

Γt

ui(τi jn j)ds−
∫

Ω

uiτi j, j dΩ

=
∫

Γu

ū · (τn)ds+
∫

Γt

u · (τn)ds−
∫

Ω

u · (divτ)dΩ.

(2.7)

If we assume that the test functions, τ, have the property, τn = 0 on Γt we can further

simplify the equation to

∫
Ω

(∇u) : τdΩ =
∫

Γu

ū · (τn)ds−
∫

Ω

u · (divτ)dΩ. (2.8)

Substituting 2.6 and 2.8 in 2.4, we get

∫
Ω

σ : ∇vdΩ =
∫

Ω

f · vdΩ+
∫

Γt

t̄ · vds∫
Ω

σ : S : τdΩ+
∫

Ω

u · (divτ)dΩ+
∫

Ω

ω : τdΩ =
∫

Γu

ū · (τn)ds
(2.9)

To write the formal definition of the ultraweak form we need to specify the function

spaces to which the trial and test variables belong.

• L2(Ω)

L2(Ω) is the space of square integrable scalar functions defined over Ω and the correspond-
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ing L2 norm is written as ‖ · ‖L2(Ω) and is defined as ‖u‖2
L2(Ω)

=
∫

Ω
|u|2 dΩ where | · | is the

absolute value.

• LLL2(Ω)

Similarly, we can define vector versions of L2(Ω). So, LLL2(Ω;R2) or just simply LLL2(Ω),

is the space of vector fields with each component belonging to L2(Ω) and the norm is

defined as ‖u‖2
LLL2(Ω)

=‖u1‖2
L2(Ω)

+‖u2‖2
L2(Ω)

=
∫

Ω
|u1|2 dΩ+

∫
Ω
|u2|2 dΩ=

∫
Ω
(u2

1+u2
2)dΩ=∫

Ω
|u|2 dΩ where | · | is the Euclidean norm.

• LLL2(Ω;S) , LLL2(Ω;A) and LLL2(Ω;M)

Also, we can define matrix versions of L2(Ω). For example, LLL2(Ω;S) is the space of

symmetric matrix functions where each component is a function in L2(Ω) and the norm is

defined as ‖u‖2
LLL2(Ω;S)=‖u11‖2

L2(Ω)
+‖u12‖2

L2(Ω)
+‖u21‖2

L2(Ω)
+‖u22‖2

L2(Ω)
where u12 = u21 .

Another example is LLL2(Ω;A) which is the space of skew-symmetric matrix functions with

each component being a function in L2(Ω). Its norm is defined similar to the norm of

LLL2(Ω;S) . Similarly, for a general 2×2 matrix M, we can define LLL2(Ω;M) .

• H1(Ω)

H1(Ω) is the space of scalar functions over Ω which belong to L2(Ω) with their gradients

also in L2(Ω). The H1 norm is written as ‖ ·‖H1(Ω) and is defined as ‖u‖2
H1(Ω)

=‖u‖2
L2(Ω)

+

‖∇u‖2
LLL2(Ω)

=
∫

Ω
|u|2 dΩ+

∫
Ω
|∇u|2 dΩ .

• HHH1(Ω)

The vector version of H1(Ω) is HHH1(Ω), the space of vector functions defined over Ω

where each component belongs to H1(Ω). Its norm is defined as ‖u‖2
HHH1(Ω)

=‖u1‖2
H1(Ω)

+

‖u2‖2
H1(Ω)

or alternatively, as ‖u‖2
HHH1(Ω)

=‖u‖2
LLL2(Ω)

+‖∇u‖2
LLL2(Ω;M)

.

• HHH1
Γu
(Ω)
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HHH1
Γu
(Ω) is a subspace of HHH1(Ω) . Its members have the additional property that their

components are zero on Γu .

• H(div,Ω)

The next space is H(div,Ω) . It’s the space of vector functions which belong to LLL2(Ω)

with their divergences in L2(Ω). The H(div,Ω) norm is defined as ‖u‖2
H(div,Ω)=‖u‖

2
LLL2(Ω)

+

‖div(u)‖2
L2(Ω)

=
∫

Ω
|u|2 dΩ+

∫
Ω
|div(u)|2 dΩ . Comparing the definition of H(div,Ω) with

H1(Ω) we can think of H1(Ω) as H1(grad,Ω) .

• HHH(div,Ω)

HHH(div,Ω) is the matrix version of H(div,Ω) . Its members are 2×2 matrix functions where

each row is a vector function in H(div,Ω) .

• HHHΓt (div,Ω)

HHHΓt (div,Ω) is a subspace of HHH(div,Ω) . Its members are the matrix function which belong

to HHH(div,Ω) with the additional property that the dot product of each row with the unit

normal vector on Γt is zero.

Looking back at equation 2.9, the trial functions are u , σ , and ω . u is a vector function

and it only appears in
∫

Ω
u ·divτdΩ and no differential operators are applied on it. So, we can

choose our largest space, LLL2(Ω) . σ and ω are symmetric and skew-symmetric matrix functions,

respectively and we do not see any derivatives applied on them in 2.9. Therefore, the former

belongs to LLL2(Ω;S) and the latter in LLL2(Ω;A) .

However, for test functions v , and τ , using LLL2 spaces is not enough anymore and more

regularity is needed. For the vector function v, its gradient appears in the term
∫

Ω
σ : ∇vdΩ.

Therefore, v should be differentiable and its gradient be square integrable. This forces v to be in

HHH1(Ω) . Moreover, in the derivation of equation 2.6 we assumed that all test functions v are zero

on Γu . Thus, v has to be in HHH1
Γu
(Ω) .
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The other test function, τ , is a general (not necessarily symmetric) matrix function. For

the term
∫

Ω
u ·divτdΩ to make sense, divτ needs to be square integrable. Hence, τ should be in

HHH(div,Ω) . Moreover, in the derivation of equation 2.8 we assumed that all test functions τ have

the property, τn = 0 on Γt . So, τ has to be in HHHΓt (div,Ω) . Therefore, the ultraweak formulation

can be written as following:

The ultraweak formulation

Find u ∈ LLL2(Ω), σ ∈ LLL2(Ω;S), ω ∈ LLL2(Ω;A)∫
Ω

σ : ∇vdΩ =
∫

Ω

f · vdΩ+
∫

Γt

t̄ · vdΩ ,

for all v ∈ HHH1
Γu
(Ω) .∫

Ω

σ : S : τdΩ+
∫

Ω

ω : τdΩ+
∫

Ω

u ·divτdΩ =
∫

Γu

ū · (τn)dΩ ,

for all τ ∈ HHHΓt (div,Ω) ,

(2.10)

To get a practical numerical method we need to choose finite-dimensional subspaces

of infinite-dimensional LLL2, HHH1, and HHH(div) spaces which is usually called the discretization.

In the discretized form of 2.10, all trial variables will belong to subspaces of LLL2 and can be

discontinuous across element boundaries. However, the subspaces of HHH1 need to be C0 continuous

at the element boundaries and for subspaces of HHH(div) , the normal components of the vector

fields should be continuous across the element boundaries. So, we still need to satisfy these

continuity requirements for the test functions and as it was mentioned in previous chapter, there

are no higher-order HHH(div) discretizations available for general polygons at the moment in the

literature [GRB16] and the options for higher-order HHH1 discretizations on polygons are very

limited [Suk13, RGB14]. This takes us to the next section where we are going to alleviate

the continuity requirements on the test functions by using the hybridization idea [CDG16], i.e.

defining independent variables on the interface (skeleton) of the mesh. For functions u ∈ HHH1(Ω),

the trace operator, trgrad : HHH1(Ω)→HHH
1
2 (∂Ω) , is defined by restricting the function to the boundary,
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trgrad u = u|∂Ω . For functions σ ∈HHH(div,Ω), the trace operator, trdiv : HHH(div,Ω)→ HHH−
1
2 (∂Ω) , is

defined as trdiv σ = σ|∂Ω ·n [Mon03] where n is the unit outward normal vector on the boundary.

2.2.3 The hybridized (broken) version of the ultraweak formulation

To achieve a more relaxed continuity requirement for our test functions we start by writing

the elasticity equations 2.3 on an arbitrary element T ⊆Ω and multiplying by test functions v

and τ . For simplicity, we assume homogeneous boundary conditions in this section. Problems

with inhomogeneous boundary conditions can be solved by splitting the solution into two parts

and moving the inhomogeneous data to the right-hand side [CH16].

−
∫

T
(divσ) · vdΩ =

∫
T

f · vdΩ ,∫
T

∇u : τdΩ−
∫

T
ω : τdΩ =

∫
T

σ : S : τdΩ .

(2.11)

Applying the integration by parts to both equations gives us

∫
T

σ : ∇vdΩ =
∫

T
f · vdΩ+

∫
∂T
(σnT ) · vds ,∫

T
σ : S : τdΩ+

∫
T

ω : τdΩ+
∫

T
u ·divτdΩ =

∫
∂T

u · (τnT )ds .
(2.12)

Our goal is to keep the trial variables in LLL2 space just like the case of ultraweak formulation.

Following the definition of the trace operator, the terms σnT and u in the integrals on ∂T are in

fact σ|∂T nT = trdivσ and u|∂T = trgrad u , respectively. These expressions are well-defined when

u ∈ HHH1 and σ ∈ HHH(div) . The problem is that the trace is not well-defined for functions in LLL2 .

Therefore, we introduce new variables û and t̂ that live on ∂T to represent trgrad u and trdiv σ .
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Then we can rewrite 2.12 as

∫
T

σ : ∇vdΩ =
∫

T
f · vdΩ+

∫
∂T

t̂ · vds ,∫
T

σ : S : τdΩ+
∫

T
ω : τdΩ+

∫
T

u ·divτdΩ =
∫

∂T
û · (τnT )ds .

(2.13)

Using the following notation for the inner product over T,

(u,v)T =
∫

T
uvdΩ , if u and v are scalars,

(u,v)T =
∫

T
uivi dΩ =

∫
T

u · vdΩ , if u and v are vectors,

(u,v)T =
∫

T
ui jvi j dΩ =

∫
T

u : vdΩ , if u and v are tensors,

(2.14)

and also the 〈·, ·〉∂T notation for integrals on ∂T , equation 2.13 can be rewritten as

(σ,∇v)T = ( f ,v)T + 〈t̂,v〉∂T ,

(S : σ,τ)T +(ω,τ)T +(u,divτ)T = 〈û,τnT 〉∂T .

(2.15)

Summing over all the elements T in a triangulation T we get

∑
T∈T

(σ,∇hv)T = ∑
T∈T

( f ,v)T + ∑
T∈T
〈t̂,v〉∂T ,

∑
T∈T

(S : σ,τ)T + ∑
T∈T

(ω,τ)T + ∑
T∈T

(u,divhτ)T = ∑
T∈T
〈û,τnT 〉∂T .

(2.16)

where ∇h and divh emphasize the piecewise actions of ∇ and div operators, respectively. Also,

because of the element-wise nature of the equations, test functions v and τ inside any element

Ti ⊆ Ω , v|Ti and τ|Ti , only need to be in the spaces HHH1(Ti) and HHH(div,Ti) , respectively. This

property allows the test functions to have different values (hence, be discontinuous) at the element

boundaries. In a formal definition, these test functions will belong to the so-called class of broken

Sobolev spaces defined as following:
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• LLL2(T )

Basically each function in this space belongs to LLL2(T ) when restricted to element T ∈ T .

This is the same space as LLL2(Ω). Therefore, its norm is the same, ‖ · ‖LLL2(T ) = ‖ · ‖LLL2(Ω).

• HHH1(T )

Similar to LLL2(T ), each function in HHH1(T ) belongs to HHH1(T ) when restricted to element

T ∈ T . But in this case the broken and the unbroken spaces are different, HHH1(Ω)⊂HHH1(T ) .

Its norm is defined as ‖ · ‖2
HHH1(T )

= ∑T∈T ‖ · |T‖2
HHH1(T )

.

• HHH(div,T )

Each function in this space belongs to HHH(div,T ) when restricted to element T ∈ T and

HHH(div,Ω)⊂ HHH(div,T ) . Its norm is defined as ‖ · ‖2
HHH(div,T ) = ∑T∈T ‖ · |T‖2

HHH(div,T ) .

For a consistent formulation, when we choose the test functions from the test spaces

HHH1(Ω) and HHH(div,Ω) , i.e. respecting the previous inter-element continuity requirements of the

test functions, we should be able to recover the (unbroken) ultraweak formulation 2.10. To show

this, let Eint be the set of all internal edges in the triangulation T . Furthermore, assume the

external edges are composed of two sets Eu := ∂T ∩Γu and Et := ∂T ∩Γt where the former

contains the edges with the displacement boundary condition and the latter contains the edges

with the traction boundary condition. Changing the order of the summation for boundary integrals

in 2.16 from element-wise to over the edges leads to

∑
T∈T
〈t̂,v〉∂T = ∑

e∈Eint

(∫
e+

t̂ · v+ ds+
∫

e−
t̂ · v− ds

)
+ ∑

e∈Eu

∫
e+

t̂ · v+ ds+ ∑
e∈Et

∫
e+

t̂ · v+ ds ,

∑
T∈T
〈û,τnT 〉∂T = ∑

e∈Eint

(∫
e+

û · (τ+ n+)ds+
∫

e−
û · (τ− n−)ds

)
+ ∑

e∈Eu

∫
e+

û · (τ+ n+)ds+ ∑
e∈Et

∫
e+

û · (τ+ n+)ds .

(2.17)
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For the internal edges, the two terms in parentheses come from the two elements sharing

one internal edge and the plus and minus signs represent the values of the quantities on the

different sides of the edge. The n+ and n− are the outward unit normal vectors of the neighboring

elements on the shared edge e shown in figure 2.1.

e

n+
n-

Figure 2.1: Neighboring elements

Using this notation, the continuity requirements at the element boundaries for functions

in HHH1(Ω) and HHH(div,Ω) can be expressed as

v+ = v− for all v ∈ HHH1(Ω) ,

(τ+ n+)+(τ− n−) = 0 for all τ ∈ HHH(div,Ω) .

(2.18)

Substituting 2.18 in equation 2.17 will simplify it to

∑
T∈T
〈t̂,v〉∂T = ∑

e∈Eu

∫
e+

t̂ · v+ ds+ ∑
e∈Et

∫
e+

t̂ · v+ ds ,

∑
T∈T
〈û,τnT 〉∂T = ∑

e∈Eu

∫
e+

û · (τ+ n+)ds+ ∑
e∈Et

∫
e+

û · (τ+ n+)ds .
(2.19)

Applying the homogeneous boundary conditions to t̂ and û on edges in Et and Eu respec-
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tively simplifies 2.19 to

∑
T∈T
〈t̂,v〉∂T = ∑

e∈Eu

∫
e+

t̂ · v+ ds ,

∑
T∈T
〈û,τnT 〉∂T = ∑

e∈Et

∫
e+

û · (τ+ n+)ds .
(2.20)

So, by choosing the test functions with the properties of v = 0 on Eu and τn = 0 on Et we can get

rid of the remaining terms and we recover the original (unbroken) ultraweak formulation. Now,

we can write 2.16 in its final form:

The broken version of the ultraweak formulation

Find u ∈ LLL2(Ω), σ ∈ LLL2(Ω;S), ω ∈ LLL2(Ω;A), û ∈ HHH
1
2
Γu
(∂T ), t̂ ∈ HHH

− 1
2

Γt
(∂T ),

∑
T∈T

(σ,∇hv)T − ∑
T∈T
〈t̂,v〉∂T = ∑

T∈T
( f ,v)T ,

for all v ∈ HHH1
Γu
(T ) ,

∑
T∈T

(S : σ,τ)T + ∑
T∈T

(ω,τ)T + ∑
T∈T

(u,divhτ)T − ∑
T∈T
〈û,τnT 〉∂T = 0 ,

for all τ ∈ HHHΓt (div,T ) .

(2.21)

Comparing equation 2.21 with equation 2.10, two new unknowns (û, and t̂) have been

added to the trial functions. But, now the test functions can be discontinuous across the boundaries

of the elements.

2.3 The discontinuous Petrov-Galerkin (dPG) framework

There are three interpretations for the dPG method. Two of them were mentioned before.

Here, we are interested in the third interpretation which is dPG as a mixed formulation.
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2.3.1 The abstract form

We can think of dPG as a minimum residual method. The weak form can be written in an

abstract form as
Find u ∈U such that

b(u,v) = l(v) for all v ∈V
(2.22)

where b is a bilinear form b : U×V → R and l is a linear form (functional) l : V → R . U and V

are in general infinite-dimensional Hilbert spaces. The operator form of this equation reads

Find u ∈U such that

Bu = L
(2.23)

where B : U → V ′ is defined as 〈Bu,v〉V ′×V = b(u,v) and L : V → R is defined as Lv = l(v) .

〈·, ·〉V ′×V denotes the duality pairing on V ′×V .

To find an approximate solution to u, we search in a finite-dimensional subspace of U and

pick the solution that minimizes the norm of the residual (i.e. has the shortest distance to the

exact solution).

argmin
uh∈Uh⊂U

‖Buh−L‖2
V ′ (2.24)

Following the discussion in [KFD16, FKDLT17, DG14], the optimality condition is obtained by

vanishing the directional derivative of ‖Buh−L‖2
V ′ in the arbitrary direction δu ∈Uh. So,

(Buh−L,Bδu)V ′ = 0

⇒ (R−1
V (Buh−L),R−1

V Bδu)V = 0
(2.25)

where RV : V →V ′ is the Riesz operator.

By defining the so-called error representation function ψ = R−1
V (Buh−L), we can rewrite
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(ψ,R−1
V Bδu)V = 0 in a mixed form as


Find ψ ∈V, uh ∈Uh

−(ψ,v)V +b(uh,v) = l(v) ∀v ∈V

b(δu,ψ) = 0 ∀δu ∈Uh

(2.26)

The first equation comes from the definition of ψ as follows

ψ = R−1
V (Buh−L)

=⇒ RV ψ = Buh−L

=⇒ 〈RV ψ,v〉V ′×V = 〈Buh,v〉V ′×V −Lv

=⇒ (ψ,v)V = b(uh,v)− l(v)

=⇒ −(ψ,v)V +b(uh,v) = l(v)

(2.27)

To get the second equation we have

(ψ,R−1
V Bδu)V = 0

=⇒ (R−1
V Bδu,ψ)V = 0

=⇒ 〈Bδu,ψ〉V ′×V = 0

=⇒ b(δu,ψ) = 0

(2.28)

To be able to solve equation 2.26 we still need to discretize V . The so-called ideal dPG

uses the optimal test space V opt
h = R−1

V BUh which requires finding the inverse of the Riesz map,

RV . This map is an infinite dimensional operator and computing its inverse is not possible in

general. To get a practical dPG method, the optimal test space is approximated by a finite

dimensional space V enr with a dimension higher than the dimension of Uh. So, we can rewrite
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equation 2.26 as 
Find ψh ∈V enr, uh ∈Uh

−(ψh,v)V +b(uh,v) = l(v) ∀v ∈V enr

b(δu,ψh) = 0 ∀δu ∈Uh

(2.29)

Or in operator form −RV enr B

BT 0


ψh

uh

=

 l

0

 (2.30)

where
(ψh,v)V =

〈
RV enrψh,v

〉
V ′×V

b(uh,v) =
〈
Buh,v

〉
V ′×V

b(δu,ψh) =
〈
BT

ψh,δu
〉

U ′×U

(2.31)

By static condensation and eliminating ψh we get

BT R−1
V enrBuh = BT R−1

V enr l (2.32)

Now, we choose the basis {ρi}M
i=1 for V enr and the basis {φi}N

i=1 for Uh where M = dim(V enr)

and N = dim(Uh) (Note: M > N). So, ψh =
M
∑

i=1
(ψh)iρi and uh =

N
∑

i=1
(uh)iφi where (ψh)i and (uh)i

are the degrees of freedom. Using these bases we get

[RV enr ]i j = (ρi,ρ j)V = [G]i j

[B]i j = b(φ j,ρi)

[l]i = l(ρi)

(2.33)

If the variational problem is written in the broken form then {φi}N
i=1 =

{
φ̊i

}N̊

i=1
∪
{

φ̂i
}N̂

i=1 where

N = N̊+N̂ and
{

φ̊i

}N̊

i=1
and

{
φ̂i
}N̂

i=1 are the basis functions for the domain and skeleton (interface)

degrees of freedom, (ůh)i and (ûh)i, respectively. In this case, The [B] matrix is composed of two
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submatrices, [
B

]
=

[
B̊ B̂

]
(2.34)

where [B̊]i j = b(φ̊ j,ρi) and [B̂]i j = b(φ̂ j,ρi). Substituting this B in equation 2.32 will give us

B̊T G−1B̊ B̊T G−1B̂

B̂T G−1B̊ B̂T G−1B̂


ůh

ûh

=

B̊T G−1l

B̂T G−1l

 . (2.35)

If we further condense out the domain degrees of freedom, [ůh], we get a linear system with only

the skeleton degrees of freedom as the unknowns

[
D−CA−1B

][
ûh

]
=

[
g−CA−1f

]
. (2.36)

where
A = B̊T G−1B̊

B = B̊T G−1B̂

C = B̂T G−1B̊

D = B̂T G−1B̂

f = B̊T G−1l

g = B̂T G−1l

(2.37)

This is a global linear system for all skeleton dofs. In general, having to compute the inverse

of the G matrix will be costly. But, in the broken version of the ultraweak formulation the

basis functions of domain variables, ρi and φ̊i, are discontinuous across the elements and since

[G]i j = (ρi,ρ j)V , [G]i j is non-zero only if (domain) degrees of freedom i and j belong to the same

element. Otherwise, it is zero. This leads to a block-diagonal G matrix when i and j are ordered

elementwise. Then, G−1 is obtained by inverting these elementwise blocks. So, similar to [G]i j,

[G−1]i j is non-zero only if (domain) degrees of freedom i and j belong to the same element and
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zero otherwise. With the same reasoning, since [B̊]i j = b(φ̊i,ρi), [B̊]i j is non-zero only if (domain)

degrees of freedom i and j belong to the same element.

2.3.2 dPG for linear elasticity

To use the general framework 2.3 in the case of linear elasticity in the broken ultraweak

form, the group variables for trial and test functions and the corresponding functional spaces are

as follows:
u= (σ,u,ω, û, t̂) ,

ů= (σ,u,ω) ,

û= (û, t̂) ,

v = (τ,v) ,

U = LLL2(Ω;S)×LLL2(Ω)×LLL2(Ω;A)×HHH
1
2
Γu
(∂T )×HHH

− 1
2

Γt
(∂T ) ,

U0 = LLL2(Ω;S)×LLL2(Ω)×LLL2(Ω;A) ,

Û = HHH
1
2
Γu
(∂T )×HHH

− 1
2

Γt
(∂T ) ,

V = HHHΓt (div,T )×HHH1
Γu
(T ) .

(2.38)

The bilinear form and the linear functional on the right-hand side (see equation 2.21) are given as:

b0((σ,u,ω),(τ,v)) = (S : σ,τ)T +(ω,τ)T +(u,divhτ)T +(σ,∇hv)T ,

b̂((û, t̂),(τ,v)) =−〈û,τnT 〉∂T −〈t̂,v〉∂T ,

l((τ,v)) = ( f ,v)T .

(2.39)

where the following notation is used to simplify the equations,

(·, ·)T := ∑
T∈T

(·, ·)T ,

〈·, ·〉∂T := ∑
T∈T
〈·, ·〉∂T .

(2.40)
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2.3.3 Discretization

Discretization of domain variables

To choose the finite-dimensional subspaces of the trial and test spaces we follow the

approach of [AFMD18] which is based on bounding the polygon by a box or a triangle and

using the more familiar higher-order discretizations of HHH1, HHH(div), and LLL2 spaces for squares or

triangles. This is possible because of the broken ultraweak formulation. There are no continuity

requirements across element boundaries for the domain variables σ, u, and ω and also for the test

variables τ and v . So, we can use the basis functions of a bigger triangle and restrict the functions

to the polygonal region of the element inside the triangle. We will use equilateral bounding

triangles (QT ) for all polygonal elements in the mesh (T ∈ T ) as shown in figure 2.2.

Figure 2.2: The equilateral triangle bounding a polygonal element

To find the coordinates of the bounding triangle, QT , we start by finding the smallest circle

that contains the polygonal element. The center of the circle will be the centroid of the element,

c = (cx,cy) = (1
n ∑

n
i=1 xi,

1
n ∑

n
i=1 yi) for a polygon with n vertices, vi = (xi,yi) for i = 1 . . .n . The

radius of the circle, r , will be the distance between the centroid and the farthest vertex from

the centroid, r = max{i=1...n} di = max{i=1...n}
√
(xi− cx)2 +(yi− cy)2 . Next, this circle will

be inscribed in an equilateral triangle with the vertex coordinates, q1 = (cx−AP,cy− r), q2 =

(cx +PB,cy− r), q3 = (cx,cy +OC) . Looking at figure 2.3, AP , PB , and OC can be written in
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terms of the radius of the incircle, r .

Figure 2.3: The inscribed circle of an equilateral triangle

AP = PB = OP · cot30◦ = r cot30◦ =
√

3r ,

OC = OB =
OP

sin30◦
=

OP
0.5

= 2r .
(2.41)

The coordinates of the three vertices of the bounding triangle (written in terms of cx , cy ,

and r) are listed in table 2.1:

Table 2.1: The coordinates of the vertices of the equilateral triangle bounding the polygonal
element

vertices x coordinate y coordinate

q1 cx−
√

3r cy− r
q2 cx +

√
3r cy− r

q3 cx cy +2r

To choose the discretizations of the spaces HHH1(QT ), HHH(div,QT ), and LLL2(QT ) over the

bounding triangle we use the fact that these spaces form the vector version of the de Rham

complex,

HHH1(QT )
curl−−→ HHH(div,QT )

div−→ LLL2(QT ) (2.42)
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where the curl and the div operators are applied row-wise. So, for a vector function v ,

curl(v) = curl(

v1

v2

) =
−v1,2 v1,1

−v2,2 v2,1

 , (2.43)

and for a tensor function τ ,

div(τ) = div(

τ11 τ12

τ21 τ22

) =
τ11,1 + τ12,2

τ21,1 + τ22,2

 . (2.44)

The complex 2.42 is basically created by stacking two copies of the classical (scalar) de

Rham complexes on top of each other. So, we can use two copies of the polynomial subcomplexes

of the scalar de Rham complex to discretize 2.42, [AFW06, AFW10]. In the case of Ω ⊆ Rn,

there are 2n−1 different polynomial subcomplexes to choose from. In our case, QT ⊂ R2 , n = 2

and there are only two different options:

PrΛ
0(QT )

d−→ Pr−1Λ
1(QT )

d−→ Pr−2Λ
2(QT ) , r ≥ 2 (2.45)

PrΛ
0(QT )

d−→ P−r Λ
1(QT )

d−→ Pr−1Λ
2(QT ) , r ≥ 1 (2.46)

where PrΛ
0(QT )=P−r Λ0(QT ) and Pr−1Λn(QT )=P−r Λn(QT ) . The complex 2.46 is the complex

of Whitney forms [Whi57] written in terms of differential forms [AFW10].This is the polynomial

complex that we are going to use. This sequence is shown on the periodic table of finite

elements [AL14] for r = 1,2,3 in figure 2.4. r is the order of the sequence and it is not necessarily

equal to the order of approximation. For example, for r = 2, P−2 Λ0 is of second order while

P−2 Λ2 is only of first order.
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Figure 2.4: The Whitney complex in R2 . The complex of order r = 2 is selected as an example.
Taken from http://www.femtable.org

The dimension of each space in the sequence is given by the following formula:

dimP−r Λ
k =

(
r+2
r+ k

)(
r+ k−1

k

)
(2.47)

As it is shown in the FEM table in figure 2.4, P−r Λ1 and P−r Λ2 spaces are the Raviart-

Thomas [RT77] and discontinuous Lagrange spaces, respectively. Pr(QT ) will be the space of all

(scalar) polynomials in x and y of an order not greater than r defined over the triangular domain

QT . The vector version of this space will be denoted by Pr(QT ) where each component is a

member of Pr(QT ) . Similarly, we can define spaces of matrix polynomials like Pr(QT ;S) and

Pr(QT ;A) for symmetric and skew-symmetric matrices, respectively. Specifically, for 2× 2
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matrices, M2×2 , we have

Pr(QT ;S) = {

a b

b c

 |a,b,c ∈ Pr(QT )}

Pr(QT ;A) = {

0 −a

a 0

 |a ∈ Pr(QT )}

(2.48)

The Raviart-Thomas spaces are defined [BBF13] as

R T r(QT ) = {p ∈

Pr(QT )+

x

y

Pr(QT )

 |p ·n ∈ Rr(∂QT )} (2.49)

where Rr(∂QT ) = {φ∈ L2(∂QT ) : φ|ei ∈ Pr(ei), for i = 1,2,3} . The matrix version of the Raviart-

Thomas space is defined as

RT r(QT ) = {τ =

τ11 τ12

τ21 τ22

 |−→τ1
T =

τ11

τ12

 ∈ R T r(QT )

and −→
τ2

T =

τ21

τ22

 ∈ R T r(QT )} .

(2.50)

The dimensions of these spaces are

dim R T r(QT ) = (r+1)(r+3) , for r ≥ 0 ,

dim RT r(QT ) = 2(r+1)(r+3) , for r ≥ 0 .
(2.51)

So far, the definitions of these finite-dimensional spaces were limited to just one bounding
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triangle, QT . In the following, we extend the definitions to the whole mesh, T .

Pr(T ) := {u| u|T ∈Pr(QT ), for all T ∈ T } ,

Pr(T ;S) := {σ| σ|T ∈Pr(QT ;S), for all T ∈ T } ,

Pr(T ;A) := {σ| σ|T ∈Pr(QT ;A), for all T ∈ T } ,

RT r(T ) := {σ| σ|T ∈RT r(QT ), for all T ∈ T } .

(2.52)

Using the above polynomial spaces we can define the discrete subspaces U0h ⊂U0 and

Vh ⊂ V (U0 and V were previously defined in equation 2.38). For U0h and Vh, the spaces are

chosen from complexes of order r and r +∆r , respectively. The criteria for choosing ∆r is

mentioned in the next section (after we discretized the skeleton variables).

U0h :=Pr−1(T ;S)×Pr−1(T )×Pr−1(T ;A) ,

Vh :=RT r−1+∆r(T )×Pr+∆r(T ) .

(2.53)

So, we have

σ ∈Pr−1(T ;S) ,

u ∈Pr−1(T ) ,

ω ∈Pr−1(T ;A) ,

τ ∈RT r−1+∆r(T ) ,

v ∈Pr+∆r(T ) .

(2.54)

∆r is chosen such that dim Vh ≥ dim Uh (Uh is defined later in equation 2.56). In our

computations, ∆r = 2 was enough to satisfy the inequality.

Next, we talk about how to discretize the variables on the element interfaces, û and t̂. We

refer to these variables as skeleton or interface variables.
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Discretization of skeleton variables

On the edges of each element T, the skeleton variables û and t̂ represent trgrad u and trdiv σ ,

respectively where u ∈ HHH1(T ) and σ ∈ HHH(div,T ) . In the previous section, for the discretization

of trial variables defined on the domain we used the discretization of a complex of order r .

Therefore, naturally we can use the traces of the same discrete complex to approximate û and t̂ .

The trace of HHH1(T ) should be compatible at the edges. So, Pr(e) will be used to

approximate û on any edge e. The trace of HHH1(T ) should also be compatible at the vertices. This

requires Pr(e) to be continuous at the vertices. Therefore, PC
r (e) .

The trace of HHH(div,T ) is compatible only at the edges. Thus, we can use Pr−1(e) to

discretize t̂ (discontinuous at the vertices).

For example, PC
2 (e) and P1(e) (for the case of r = 2) are shown in figure 2.5 for a sample

edge, e .

Figure 2.5: Example: The complex of order r = 2. Taken from http://www.femtable.org

The extension to the whole mesh will be

PC
r (E ) := {û|û|e ∈PC

r (e) for all e ∈ E } ,

Pr−1(E ) := {t̂|t̂|e ∈Pr−1(e) for all e ∈ E } .
(2.55)
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With these spaces in hand, we can now define the discrete trial space Uh :

Uh :=Pr−1(T ;S)×Pr−1(T )×Pr−1(T ;A)×PC
r (E )×Pr−1(E ) . (2.56)

where (u,σ,ω, û, t̂) ∈Uh .

As an example, the degrees of freedom for trial variables are shown in figure 2.6 for r = 2.

Figure 2.6: The degrees of freedom of trial variables for r = 2

2.3.4 Element matrices

The skeleton variables are the solution to the global linear system 2.36 and the domain

variables are recovered in a post-processing step. The stiffness matrix on the left-hand side

and the load vector on the right-hand side of 2.36 are computed by assembling the elemental

contributions. So, to find the stiffness matrix we need to find the element matrices [G](el) and
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[B](el). Then, [K](el) = [B](el)T
[G](el)−1

[B](el) . The final element stiffness matrix is obtained by

static condensation to eliminate the degrees of freedom associated with domain variables. We

refer to this final matrix as [K̂](el) . The [B] and [G] matrices were defined in 2.33 for an abstract

boundary value problem.

• The [B](el) matrix

In the case of linear elasticity, the bilinear form is given in 2.39 and the corresponding

[B](el) matrix will be

[B](el) =

BBBτu BBBτσ BBBτω BBBτ û 000

000 BBBvσ 000 000 BBBvt̂

 , (2.57)

where

BBBτu =

BBB−→
τx ux

000

000 BBB−→
τy uy

 (2.58)

BBBτσ =

BBB−→
τx σx

BBB−→
τx σy

BBB−→
τx σxy

BBB−→
τy σx

BBB−→
τy σy

BBB−→
τy σxy

 (2.59)

BBBτω =

BBB−→
τx ω

BBB−→
τy ω

 (2.60)

BBBvσ =

BBBvx σx 000 BBBvx σxy

000 BBBvy σy BBBvy σxy

 . (2.61)

For the case of plane stress elasticity we have

[B−→
τx ux

]i j = (φux
j ,divρ

−→
τx
i )T ,

[B−→
τy uy

]i j = (φ
uy
j ,divρ

−→
τy
i )T .

(2.62)
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[B−→
τx σx

]i j = (c3φ
σx
j ,ρ

−→
τx 1
i )T ,

[B−→
τx σy

]i j =−(c2φ
σy
j ,ρ

−→
τx 1
i )T ,

[B−→
τx σxy

]i j = (c1φ
σxy
j ,ρ

−→
τx 2
i )T ,

[B−→
τy σx

]i j =−(c2φ
σx
j ,ρ

−→
τy 2
i )T ,

[B−→
τy σy

]i j = (c3φ
σy
j ,ρ

−→
τy 2
i )T ,

[B−→
τy σxy

]i j = (c1φ
σxy
j ,ρ

−→
τy 1
i )T ,

(2.63)

where c1 = 1
2µ , c2 = λ

2µ(3λ+2µ) , c3 = λ+µ
µ(3λ+2µ) . Also,

[B−→
τx ω

]i j = (φω
j ,ρ
−→
τx 2
i )T ,

[B−→
τy ω

]i j =−(φω
j ,ρ
−→
τy 1
i )T .

(2.64)

[Bvx σx ]i j = (φσx
j ,∇1ρ

vx
i )T ,

[Bvx σxy]i j = (φ
σxy
j ,∇2ρ

vx
i )T ,

[Bvy σy]i j = (φ
σy
j ,∇2ρ

vy
i )T ,

[Bvy σxy]i j = (φ
σxy
j ,∇1ρ

vy
i )T , .

(2.65)

The rest of block matrices are defined as follows

BBBτ û =

BBB−→
τx ûx

000

000 BBB−→
τy ûy

 (2.66)

BBBvt̂ =

BBBvx t̂x 000

000 BBBvy t̂y

 (2.67)

where the components of the block matrices are computed by evaluating the integrals on the
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edges of each element and assembling the values into the element block matrix:

[B−→
τx ûx

]i j = ∑
assemble

−〈φ̂ûx
j ,ρ

−→
τx
i ne〉e∈∂T ,

[B−→
τy ûy

]i j = ∑
assemble

−〈φ̂ûy
j ,ρ

−→
τy
i ne〉e∈∂T ,

[Bvx t̂x ]i j = ∑
assemble

−〈φ̂t̂x
j ,ρ

vx
i 〉e∈∂T

[Bvy t̂y]i j = ∑
assemble

−〈φ̂t̂y
j ,ρ

vy
i 〉e∈∂T .

(2.68)

The functions φux ,φuy ,φσx ,φσy ,φσxy ,φω are the basis functions discretizing the compo-

nents of the u vector and the σ tensor and the only component necessary to represent the two

dimensional ω tensor, respectively. Also, the functions φ̂ûx , φ̂ûy , φ̂t̂x , φ̂t̂y ,ρvx ,ρvy discretize the

components of û , t̂ , and v , respectively. Lastly, ρ
−→
τx , and ρ

−→
τy discretize the first and second row

of the τ tensor. The specific basis functions used in our computations are the hierarchical basis

functions defined in [FKDN15] which were used in the PolyDPG framework [AFMD18].

• The Gram (norm) matrix, [G](el)

The symmetric, positive-definite Gram matrix or the norm matrix for a polygonal element

T depends on the inner product on the space V given in 2.39. So, we have

[G](el) =

GGGττ 000

000 GGGvv

 , (2.69)

where

GGGττ =

GGG−→
τx
−→
τx

000

000 GGG−→
τy
−→
τy

 , GGGvv =

GGGvx vx 000

000 GGGvy vy

 . (2.70)
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Therefore, we can write [G](el) as

[G](el) =



GGG−→
τx
−→
τx

000 000 000

000 GGG−→
τy
−→
τy

000 000

000 000 GGGvx vx 000

000 000 000 GGGvy vy


, (2.71)

where
[G−→

τx
−→
τx
]i j = (ρ

−→
τx
j ,ρ

−→
τx
i )T +(divρ

−→
τx
j ,divρ

−→
τx
i )T ,

[G−→
τy
−→
τy
]i j = (ρ

−→
τy
j ,ρ

−→
τy
i )T +(divρ

−→
τy
j ,divρ

−→
τy
i )T ,

[Gvx vx ]i j = (ρvx
j ,ρ

vx
i )T +(∇ρ

vx
j ,∇ρ

vx
i )T ,

[Gvy vy]i j = (ρ
vy
j ,ρ

vy
i )T +(∇ρ

vy
j ,∇ρ

vy
i )T .

(2.72)

All the terms in equations 2.62, 2.63, 2.64,2.65,2.68, and 2.72 are either integrals over the

polygonal domain, T , or integrals on the edges of the polygon, ∂T . The polygon is divided into

subtriangles and the integral over each subtriangle is transformed to an integral over the standard

triangle. Gaussian quadrature is then used to compute the result. Similarly, for integrals on the

edges, a transformation to a standard interval is used.

2.4 Numerical Examples

2.4.1 Example 1: The unit square

As the first example, we consider a problem with a manufactured solution on the unit

square to show the convergence of the method. The exact solution for the displacement field is

chosen to be uxex = uyex := sin(πx)sin(πy) and the corresponding exact applied body force for the
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plane stress case is

fxex = fyex =
π2µ

λ+2µ
((−3λ−2µ)cos(πx)cos(πy)+(5λ+6µ)sin(πx)sin(πy)) , (2.73)

where λ and µ are Lame constants. The chosen displacement fields results in homogeneous

boundary conditions. The assumed parameters are the Poisson’s ratio of ν = 0.499 and elasticity

modulus of E = 210 MPa (so, λ = 34953.3 and µ = 70.0467). The problem is solved on a

polygonal mesh of 1024 (32× 32) elements with r = 2 which is shown in figure 2.7. All the

polygonal meshes in this manuscript are created using the PolyMesher package [TPPM12].

∆r = 2 is used to create the test space. The computed displacement and stress components are

shown in figures 2.8 and 2.9, respectively

Figure 2.7: The mesh of 1024 polygonal elements

The relative errors in u, reu and the relative error in σ, reσ are calculated respectively as

reu =
‖uex−uh‖LLL2(Ω)

‖uex‖LLL2(Ω)

,

reσ =
‖σex−σh‖LLL2(Ω)

‖σex‖LLL2(Ω)

.

(2.74)

The relative errors are plotted versus the number of degrees of freedom in figure 2.10. For

both displacement and the stress the same rate of convergence of p is observed.
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(a) The recovered domain variable, ux = uy (b) The skeleton variable, ûx = ûy

Figure 2.8: The displacement field

(a) The recovered domain variable, σx = σy (b) The recovered domain variable, τxy

Figure 2.9: The stress field
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Figure 2.10: Relative error in the displacement and stress: (a) reu for r = 2; (b) reu for r = 3;
(c) reσ for r = 2; and, (d) reσ for r = 3.
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2.4.2 Example 2: The Cook’s membrane

In the second example we look at the Cook’s membrane problem which is a popular

benchmark problem for modeling with nearly-incompressible materials. The geometry of the

beam is shown in figure 2.11.

Figure 2.11: Cook’s membrane

All the dimensions are in millimeters. The left edge is fully clamped and on the right edge

an upward uniform force of 1 Newton per unit length (a total of 16 Newtons ) is applied. The top

and bottom edges are stress-free. The beam is made of a homogeneous material with material

properties nu = 0.499 and E = 210 N
mm2 . The deformed shape of the beam under the given load

using a mesh of 150 polygons (r = 2 and ∆r = 2) is shown in figure 2.12 (displacements are

magnified by a factor of 5).

The stress components σx, τxy, and σy are plotted in figures 2.13, 2.14, and 2.15, respec-

tively to show the combined shear and bending happening in the beam. The results are obtained

using a mesh of 500 polygons. The method is able to correctly capture the correct solution

without any checkerboarding or spurious oscillations in the stresses.

Also, the computed skeleton variables ûy and ûx and their recovered domain variable

counterparts uy and ux are shown in figures 2.16, 2.18, 2.17, and 2.19, respectively.
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(a) (b)

Figure 2.12: (a) The undeformed shape, (b) the deformed shape

Figure 2.13: The normal stress σx
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Figure 2.14: The shear stress τxy

Figure 2.15: The normal stress σy
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Figure 2.16: The skeleton variable ûy

Figure 2.17: The domain variable uy
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Figure 2.18: The skeleton variable ûx

Figure 2.19: The domain variable ux
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Chapter 2, in part is currently being prepared for submission for publication of the material.

Mirkhosravi, Poorya; Krysl, Petr. The dissertation author was the primary investigator and author

of this material.
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Chapter 3

Mesh generation

3.1 Introduction

With ever increasing interest in patient-specific simulations and in modeling all sorts of

biomechanical processes we are more than ever in need of having an automatic mesh generation

toolbox. The geometrical configuration is often captured via Computed Tomography (CT scan)

or Magnetic Resonance Imaging (MRI) techniques. The produced 3D images are volumetric data

sets in the form of stacks of 2D image slices. In order to do any numerical simulations like the

finite element analysis we need to make a computational mesh out of the 3D image.

The common approach in image meshing starts with setting a threshold to implicitly

define the bounding inner and outer iso-surfaces. The marching cube algorithm [LC87] is the

widely used technique to extract these iso-surfaces. The algorithm goes through all the voxels

and, based on the value of the volumetric data at the eight corners of the voxel, uses predefined

templates to locally triangulate the voxel. The problem with the Marching Cube algorithm is that

it often produces low quality elements and is only limited to uniform meshes. The other drawback

is that the existing sharp features in the model are not preserved. The extended marching cube

algorithm [KBSS01] and later the dual contouring method [JLSW02] were proposed to resolve
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these issues. The dual contouring method uses the intersection points and the normals at those

points (the so-called Hermite data) and it can preserve the sharp features. In the next step, these

extracted iso-surfaces serve as the boundary data to methods like advancing front techniques,

octree-based methods and Delaunay mesh generation algorithms to fill the interior space between

the iso-surfaces. The last step is quality improvement and surface smoothing [ZBX09]. Zhang et

al. [ZBS05] uses dual contouring and the octree technique to produce adaptive mesh with high

quality elements.

Most of the research in the past was focused on generating tetrahedral meshes out of

the biomedical data sets. Generally, hexahedral meshes are harder to produce and still a robust

and automatic hexahedral mesh generator is lacking. All-hex meshes are more accurate and

in similar situations, mesh the domain with a smaller number of elements in comparison with

tetrahedra. Because of the complexity of the geometries in biomedical images the meshes will

be unstructured. The unstructured hexahedral meshing is reviewed in [Owe98, She07] and is

classified as indirect and direct methods. In indirect methods, first a tetrahedral mesh of the

domain is created and then each tetrahedron will be divided to several hexahedra [Epp96]. Four

important categories of direct methods are

• The grid-based method,

• The medial surface method,

• The plastering method,

• The whisker weaving.

The grid-based method was proposed by Schneiders [Sch96] in 1996. It first fills the interior

volume with a regular grid and in the next step, meshes the boundary of the volume. The result has

high quality elements in the interior and elements with only acceptable quality on the boundary.

The algorithm produces uniform meshes and there is no control on mesh density. To alleviate this
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problem and allow for different sizes of elements, the method was enhanced using an octree-based

technique [SSW96, Sch97]. In medial surface method [PAS95], the medial axis (for 2D meshes)

or the medial surface (in 3D cases) which is a geometrical property of the domain is used to

decompose the domain into easily meshable subdomains. These subdomains are chosen from

thirteen predefined polyhedra templates. At first it was proposed for convex domains but later

it was improved to consider concave edges [PA97]. Plastering [Can91, BM93] is of advancing

front type and it starts from a quadrilateral mesh of the boundary and goes into the interior space

layer by layer. Seams and wedges are used to resolve the incompatibilities in the mesh during the

layer addition. The best quality elements are generated on the boundary and it drops as we go

more inside the domain. The whisker weaving algorithm [TBM96] is based on the concept of

Spatial Twist Continuum (STC) [MB95,MBBM97]. STC is the dual of the hexahedral mesh. The

algorithm starts with a quadrilateral mesh of the boundary and builds the element connectivities as

it goes inside the domain. After that it finds the vertex locations. The whisker weaving algorithm

is more focused on topology than on geometry and needs improvement on the robustness.

In our image meshing algorithm, we do not extract the iso-surface. Instead, we work on

the segmented image itself. The mesh generation and the coarsening are done at the same time

and in an automatic way, the important regions are kept less coarsened. An all-hex mesh with no

hanging nodes is produced with a totally heuristic approach. Minimum interaction with the user

is required. The user just needs to specify the coarsening factor and the important regions of the

domain.

3.2 Proposed magnification map approach to obtain graded

meshes

The micro-CT scans are stored as AVW images which are composed of 3D cubic voxels.

Basically, the images are stored as 3D matrices of density values. Therefore, every voxel has a
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location and a density value. The proposed magnification map approach works in several steps

which are shown in Figure 3.1 and are described in the following. At first, the 3D voxel set

(AVW image) will be directly converted to a hexahedral mesh. The result of this straightforward

conversion is a uniform structured cubic mesh. Next, we identify our region of interest in

the domain. This region will have finer elements than the other parts of the domain when we

go through all the steps. The assumed shape for this region is a sphere which is specified by

the coordinates of the center (xc, yc, and zc) and its radius (r0). Then the region is stretched

uniformly in all directions with a stretch ratio of λ. The user selects these parameters based

on the location and size of the small geometrical features in the domain. The material points

inside the sphere experience a radial displacement which is zero at the center and is linearly

increasing toward the surface of the region. All the points outside the spherical region have a

constant radial displacement equal to the displacement on the surface of the sphere. This step

is called “Magnification”. Obviously the resulting mesh is not uniform anymore. The next step

is the “Projection” step. In this step we create a new uniform grid with the same resolution

as the original grid before “Magnification” but only bigger to be able to contain the magnified

mesh. For convenience, the grid lines of this new grid and the original grid are aligned. Then

we project the magnified mesh onto this new structured grid. To do so we look at the centroid of

each element in the structured mesh and if the corresponding point in the magnified mesh was

“in”, that element will be labeled as “in”. The “Projection” algorithm is shown in more detail in

Algorithm 1. Next comes the coarsening step with the help of the “shrink-wrap” algorithm. The

way the shrink-wrap algorithm works is discussed in section 3.3 . Next, we apply the inverse

mapping to the material points to bring them back to their original position. We can think of this

step as removing the magnifying glass that was held over part of the region. In the last step, we

apply smoothing on the final non-uniform mesh to get a final smooth mesh that now has finer

elements in the original spherical region and coarser elements in the rest of the domain. The final

result of the whole process is producing a non-uniform mesh with finer elements in the areas with
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small but important geometrical details.

Figure 3.1: The flow of the algorithm

Algorithm 1 The Projection Algorithm
1: Create a blank 3D image and initialize all the IDs of its voxels to zero.

Ensure: this new blank image is big enough to contain the magnified version of the original
image.

2: for each voxel (voxi) in this image do
3: Obtain the location (px, py) of the centroid of the voxel voxi.
4: Apply the inverse map on the centroid to find its coordinates in the original image.
5: Using this coordinate, find the indices (i, j,k) of the voxel in the original image that

contains this mapped point.
6: The ID of voxi← the ID of voxel indexed by (i, j,k) in the original image.
7: end for

3.3 The shrink-wrap algorithm

The goal of this stage is to produce a mesh coarser than the original resolution of the

given AVW image. The amount of coarsening is set by a given factor of coarsening which is

called Voxels per edge (vpe for short) in the program. So a typical cubic element in the coarse

mesh would be of the size of vpe × vpe × vpe voxels of the original AVW image. Using a given

threshold we classify the voxels of the original AVW image as “in” and “out”. The voxels labeled

“in” define the shape that we want to represent using the coarse mesh. Now, based on the “in” and

“out” labels we classify the collections of vpe × vpe × vpe voxels (coarse elements) into 3 types:

0. “completely out”,
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Algorithm 2 The Inverse Map
1: function INVERSE MAP(px, py,cx,cy,r,ur)

cx,cy are coordinates of the center of the spherical region
r is the radius of the region and ur is the radial displacement on the surface of the region

2: d =
√
(px− cx)2 +(py− cy)2

3: if d < r+ur then
4: Ur =−( ur

r+ur
)d

5: else
6: Ur =−ur
7: end if
8: px = px +

px−cx
d Ur

9: py = py +
py−cy

d Ur
10: return px, py . The coordinates of the point after application of the inverse map
11: end function

1. “partially in/partially out”, and

2. “completely in”.

Figure 3.2 shows these three different cases in a 2D example.

Figure 3.2: Different classes of coarse elements

In the next step we create a hexahedral coarse mesh such that each element corresponds

to a pack of vpe × vpe × vpe voxels (refered to as sub volume in the future). Elements

corresponding to voxel collections with “0” label (completely out) will be discarded. Now, the

sub volume of each element has a label of “1” or “2”. The elements whose sub volume has a
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label of “2” need no more modification and represent the correct shape which is a filled cube. But

the elements with a sub volume of label “1” need modification to conform to the actual shape

represented by “in” voxels inside the sub volume . The core of the algorithm is to shrink-wrap

the sides of the coarse element around the “in” voxels. So for each element with a “partially

in/partially out” sub volume we try to move the vertices of the element closer to the “in” voxels.

The sub volume is a 3D matrix filled with zeros and ones, zero for voxels with “out” label and

one for the “in” voxels. To decide which vertices to be moved we classify the vertices based on

the value of the voxels located at the corners of the sub volume . The vertices corresponding to

corner voxels with a value of “1” (“in” voxel) are considered as “in”, hence will be fixed. The

vertices corresponding to corner voxels with a value of “0” (“out” voxel) are considered as “out”

and will be marked to move in later steps of the algorithm. Next, we look at the voxels on the

edges of the sub volume . If all the voxels on an edge are “out” (zero entries in the binary matrix)

that edge will be considered as “out”, otherwise it will be labeled as “in”. We do not distinguish

between “in” and “partially in/partially out” in this case.

Now that all the corners (vertices) and edges are classified we define three different

moving mechanisms for the vertices:

• edge pull,

• face pull, and

• volume pull.

These three mechanisms can only be applied on “out” vertices and they have no effect

on “in” (fixed) vertices. We start by describing the edge pull mechanism. Each vertex belongs

to 3 edges, one in each Cartesian direction. We look at the x-direction and if the edge in this

direction was not completely “out” the vertex will be moved in this direction until it meets an

“in” voxel in the sub volume . If this operation was successful the new position would be saved

and returned. Otherwise, we repeat this process in y- and then z-directions. If none of these 3
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attempts were successful it will be reported that the edge pull was not successful. In face pull

mechanism, we look at the three intersecting faces at the vertex. Starting with yz-face, if the

vertex on the opposite corner of this face is “in” (fixed) then we start moving the vertex towards

this fixed vertex on the diagonal direction of the yz-face until it meets an “in” voxel on its way.

The location where the vertex meets the “in” voxel will be saved and returned. If the vertex on

the opposite corner of the yz-face was not fixed, we try xz- and xy-faces. If none of them were

fixed the face pull is unsuccessful. The last mechanism is the volume pull. To volume pull

a vertex we look at the vertex at the opposite corner of the sub volume (not any faces) and if this

vertex was fixed we start moving the vertex on a straight line towards this fixed vertex until it

reaches an “in” voxel somewhere inside the sub volume . This location will be the result of the

volume pull. If the opposite vertex was not fixed the volume pull is unsuccessful. These three

mechanisms for moving the vertices are shown in Figure 3.3.

Figure 3.3: Three moving mechanisms acting on vertices

To modify a “partially in/partially out” element using these three mechanisms we look

at each of the eight vertices of the element and if it should be moved (“out” vertex) we try to

move it by applying the edge pull. Again, we go through the eight vertices and if any of them

have to move and have not moved yet we try the face pull on them. Similarly, we repeat the

process by trying to apply volume pull. After these three attempts, if all the vertices that have to

be moved were moved then the shrink-wrap of this element is successful. In case of failure of the
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shrink-warp the element will be deleted. But, if it was successful the final position of the moved

vertices will be recorded in correspondence to the global node numbers of these vertices. The final

position of a vertex depends on the modification results of all the elements sharing that vertex.

For simple geometries the final location can be considered as the mean of the contributions of

the neighboring elements. But, as it will be shown later the situation is more subtle. The general

structure of the shrink-wrap function is shown in Algorithm 3 (shown in figure 3.4).

3.4 Treatment of narrow gaps using space-divider algorithm

In Figure 3.5, the application of shrink-wrap on some 2D examples is shown. The

averaging to find the final position of the vertex works in situations like Figure 3.5-a but in

other shown configurations it leads to spurious new connections between closely located separate

regions. In these cases we have to properly add new vertices (shown with the red color in the

figure) into the mesh. To do so we need to identify the disconnected regions in the vicinity of the

vertices (the vertices that are going to move). Applying the space-divider function on a vertex

gives us information about separate regions close to the vertex in terms of two variables, bs and

disjoint. bs is the element numbers associated to the 8 boxes of voxels (sub volume s) around

the vertex (coarse elements sharing this node) with the following condition: bs(i) = 0 if the i-th

element out of the eight neighboring elements has been deleted due to getting a “0” label in the

coarsening process or due to shrink-wrap algorithm being unsuccessful. bs(i) = 0 also if the

vertex is located on the boundary of the domain and there are not eight surrounding non-empty

boxes of voxels. Otherwise, bs(i) contains the element number (id) listed in the connectivity

matrix. disjoint is a cell array and its length shows the number of separated regions in the

8 sub volumes around the vertex. disjoint(i) contains the element numbers of the coarse

elements in the i-th separate region. So disjoint contains all the necessary information to decide

how many additional vertices are needed and their final positions in the mesh. This is how the
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Figure 3.4: The Shrink-wrap function
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space-divider is used to obtain the final location of vertices: After we tried the shrink-wrap

algorithm on all of the “partially in/partially out” coarse elements in the mesh we start looking at

vertices. Each vertex is shared by at most eight neighboring coarse elements and the final position

of the vertex depends on the result of the application of the shrink-wrap algorithm on these 8

coarse elements. If the vertex has not moved in any of the 8 coarse elements its position remains

unchanged in the modified mesh. But, if the vertex has moved in at least one of the 8 coarse

elements the space-divider should be applied on this vertex to see if any additional vertices

are needed or not. If the space-divider identified m separated regions, m−1 additional nodes

will be added to match these regions. The final position of each of these additional nodes is the

average of the positions predicted by the shrink-wrap for that vertex in elements that compose

that separated region. At the end, we need to modify the connectivity matrix appropriately.

Figure 3.5: The application of the space-divider algorithm
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Since the number of coarse elements are the same; so in the connectivity matrix, the old

vertex numbers will be replaced with the new numbers of the additional nodes associated to

coarse elements of a region.

3.4.1 The space-divider algorithm

This algorithm specifies how many disconnected regions are around a specific vertex

and which coarse elements belong to each of these separated regions. In general, each vertex

is shared by eight neighboring coarse elements. The coarse elements around a generic vertex

are labeled as b1,b2, . . . ,b8 in Figure 3.7. These coarse elements are building blocks of the

disconnected regions. An example of having 2 disconnected regions is shown in Figure 3.8.

The 2 regions are region1= {b3,b7} and region2= {b5}. This information is encoded in a

variable called nd set. nd set(i) tells us to which region the i-th coarse element (bi) belongs.

So in this example nd set= [0,0,1,0,2,0,1,0]. For a set of coarse elements to make a region,

each coarse element should be sharing a face with at least one other coarse element in the

set. The criteria for two regions to be disconnected is that the “in” voxels of the sub volumes

corresponding to the coarse elements of these regions should be totally separated (not connected

through a face, or an edge, or a vertex) from each other. Using this criteria and the constraint

on definition of a region, finding disconnected regions becomes a combinatorial problem. A

number of different possible configurations which satisfy the constraint should be examined

for satisfaction of the disconnectedness criteria to find the final answer. The pseudocode of the

space-divider algorithm is shown in Algorithm 4 (shown in figure 3.6).

First, we talk about how to decide if a region is disconnected from the rest and then we

see how to look at all the combinations. To be able to examine the eight neighboring elements,

the variable vox is created by putting together the sub volumes of these eight coarse elements to

get a binary 3D matrix of dimension (2×vpe)× (2×vpe)× (2×vpe). Each of the eight coarse

elements has 3 boundary faces (inner faces), so 24 faces in total which are shown in Figure 3.9.
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Figure 3.6: The space-divider

Each face is a 2D binary matrix of dimension vpe×vpe.

A face is labeled as “out” if all its entries are zeros (“out” voxels). For regions we start

with the ones that contain only one coarse element like reg1= {b1}. In this case we look at

the 3 inner and 3 outer boundary faces of b1 and if all of them are “out” then region reg1 is

considered as being separated from other coarse elements, hence the “out” label. For regions that

are composed of more than one coarse element we consider the 3 inner and 3 outer boundary faces

of all the coarse elements of the region. Then, we pick one of the coarse elements of the region at

a time and compare its six faces to the faces of the rest of the coarse elements of the region in turn.

If there was any intersection between faces of two elements those faces are not considered for

decision on disconnectedness of the region. After comparing all the coarse elements of the region

with each other, the remaining faces determine the label of the region. Figure 3.10 explains this

procedure for the region reg2= {b5,b6,b7}. This process is called is out subfunction in the

space-divider algorithm.

Now that we can figure out if a region is “out” or not, we start looking at different

combinations of disconnected regions. pat1, pat2, pat3, and pat4 contain all the allowable

regions composed of one, two, three, and four coarse elements, respectively:
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Figure 3.7: The eight coarse elements (boxes of voxels) around a generic vertex

pat1= {{1} ,{2} ,{3} ,{4} ,{5} ,{6} ,{7} ,{8}}

pat2= {{1,2} ,{1,4} ,{1,5} ,{2,3}{2,6} ,{3,4} ,{3,7} ,{4,8} ,{5,6} ,{5,8} ,{6,7} ,{7,8}}

pat3= {{1,2,3} ,{1,2,4} ,{1,2,5} ,{1,2,6} ,{1,3,4} ,{1,4,5} ,{1,4,8} ,{1,5,6} ,{1,5,8} ,

{2,3,4} ,{2,3,6} ,{2,3,7} ,{2,5,6} ,{2,6,7} ,{3,4,7} ,{3,4,8} ,{3,6,7} ,{3,7,8} ,

{4,5,8} ,{4,7,8} ,{5,6,7} ,{5,6,8} ,{5,7,8} ,{6,7,8}}
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Figure 3.8: Two separate regions around a vertex (black) that needs an additional vertex (so,
two red vertices)

pat4= {{1,2,3,4} ,{5,6,7,8} ,{1,4,5,8} ,{2,3,6,7} ,{1,2,5,6} ,{3,4,7,8} ,

{1,2,3,7} ,{1,2,4,6} ,{1,2,3,5} ,{1,2,6,7} ,{1,3,4,7} ,{1,3,4,5} ,

{1,2,4,8} ,{1,4,5,6} ,{1,2,5,8} ,{2,3,4,8} ,{2,3,4,6} ,{2,3,7,8} ,

{2,3,5,6} ,{2,6,7,8} ,{3,4,6,7} ,{3,4,5,8} ,{3,5,6,7} ,{3,5,7,8} ,

{4,5,6,8} ,{1,4,7,8} ,{1,5,6,7} ,{2,5,6,8} ,{1,5,7,8} ,{4,6,7,8} ,

{1,2,3,6} ,{1,2,4,5} ,{1,3,4,8} ,{1,5,6,8} ,

{2,3,4,7} ,{2,5,6,7} ,{3,6,7,8} ,{4,5,7,8}}

patterns= pat1 ∪ pat2 ∪ pat3 ∪ pat4

|patterns|= 8+12+24+38 = 82 (different patterns)

We assume the 8 neighboring coarse elements to be connected at the beginning, hence

rembox= {1,2,3,4,5,6,7,8} showing the remaining elements. Then, we start going over these

82 different patterns starting with members of pat1. After applying the is out algorithm on
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Figure 3.9: The 3 boundary faces of b6 (Left), all the 24 faces (Right)

b1,b2, . . . ,b8, if any of them ends up being disconnected, those elements will be removed from

the rembox. Then, we look at patterns in pat2. If the elements of the pattern were present in

rembox the is out will be applied on them and in case of succession those elements also will be

removed from the rembox. This process will continue with pat3 and pat4 until we go through

all the patterns or the length of the rembox becomes smaller that the length of the patterns in

pat2, pat3 or pat4, whichever happens sooner. Note that there is no need to look at patterns

with 5 or more elements in them because of the symmetry of is out function. It means that

there is no difference in result whether you feed the is out function the {b1,b2,b3} region or its

complement {b4,b5,b6,b7,b8}. Another remark is that in the actual implementation some special

configurations are looked at first to accelerate the process.

3.5 Results

In this section we look at two different examples of application of our algorithm on

biomedical data sets. In the first example the focus is on the shrink-wrap and space-divider. So,

the CT image is uniformly coarsened with a factor of 7. The initial resolution of the image is
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Figure 3.10: (a) The 3 inner and 3 outer boundary faces of b6, (b) union of all the boundary
faces of b5,b6,b7, (c) boundary faces of {b5,b6,b7} after omitting the intersecting faces

184×157×236 voxels. The final mesh and a cut through the mesh are shown in Figure 3.11.

In the second example, the algorithm is applied on part of the tympanoperiotic complex

of a bottlenose dolphin to make a finite element mesh of the ear bones. The input CT image

has a resolution of 409×282×202 voxels and a coarsening factor of 7 has been applied. The

spherical region of interest is chosen to include part of the ossicular chain (Figure 3.12). We can

see the less coarsened elements in that region and the smooth transition to coarser elements in

Figure 3.13.

In application, our algorithm is used to obtain finite element meshes of the tympanoperiotic

complex of bottlenose dolphins to do free vibration analysis (eigenvalue problem) and compute

different vibration modes and frequencies.

To summarize, the important properties of the algorithm are the following:
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Figure 3.11: First example - The uniformly coarsened mesh (Left), A cut through the mesh
(Right)

Figure 3.12: Second example - CT image of the ear bones (Left), The produced finite element
mesh (Right)

• It creates an all-hex mesh.

• It doesn’t introduce any hanging nodes.

• The produced mesh in non-uniform.

• It can preserve the correct topology (only up to a level).

Chapter 3, in part is currently being prepared for submission for publication of the material.

Mirkhosravi, Poorya; Krysl, Petr. The dissertation author was the primary investigator and author

of this material.
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Figure 3.13: Second example - A better view of the spherical region of interest
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Chapter 4

Summary and future direction

In the first part of the thesis (Chapter 3), the PolyDPG framework [AFMD18] is extended

to linear elasticity problems. The discontinuous Petrov-Galerkin method is applied on the broken

ultraweak formulation of linear elasticity. The ultraweak formulation lifted the C0 continuity

requirement on discretization of the trial variables. Its broken version went one step further and

made it possible for test variables to be discontinuous across element boundaries with the expense

of introducing some new variables on the skeleton of the mesh. However, at the end all the degrees

of freedom associated with the domain variables were taken out of the system leading to a method

with a reasonable computational cost. The method can be arbitrarily higher-order, works on

general (convex or non-convex) polygons and adaptivity comes naturally because of the built-in

error estimator of the dPG. The motivation for developing this method was to extend it to 3D so

that it could be used alongside the meshing algorithm of the second part of the thesis (Chapter

4). This extension requires availability of arbitrarily higher-order basis functions (generalized

barycentric coordinates) for general polygons. There are a few papers on quadratic GBCs on

polygons. In [RGB14], Rand et al. showed how to use linear combinations of products of GBCs

to construct 2nd-order basis functions on polygons. Also, Sukumar [Suk13] has extended his

MAXENT framework to quadratic basis functions. However, there has been only one attempt
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at proposing higher-order GBCs by Mukherjee and Webb [MW15, MW16]. The robustness

and scalability of their approach needs further investigation. In the second part of the thesis,

we presented a heuristic algorithm that generates non-uniform hexahedral meshes with higher

resolution close to selected regions in the domain of 3D micro-CT and micro-MR images. This

algorithm takes as input a very fine micro-CT data set, the location of the regions containing

delicate geometrical details, and the coarsening factor to produce a ready-to-use graded mesh.

Goals for algorithm design were to reduce the user’s interaction with the program itself, and to

remain faithful during the coarsening step to the topology and geometry of the original problem.

The algorithm can be hugely benefited by including Homology group based methods to further

enhance its topology-preserving capabilities.
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Appendix A

Example - How to calculate rational

Wachspress functions

Following the derivation in [Das03], for a pentagon with the vertices given in table A, the

Wachspress basis functions are computed symbolically using Mathematica.

Table A.1: The coordinates of the vertices of a pentagonal element
vertices x coordinate y coordinate

v1 2 −1
v2 1 0.5
v3 −1 1
v4 −3 −0.2
v5 −1.8 −0.8

The main function is implemented as following:

computeWachspress [ v e r t i c e s ] := Module [

{xs , ys , $x , $y , xx , yy , a , b , aa , bb , k , Num, denum } ,

xs = v e r t i c e s [ [ All , 1 ] ] ;

ys = v e r t i c e s [ [ All , 2 ] ] ;

n s i d e = Length [ xs ] ;

$x = Append [ xs , xs [ [ 1 ] ] ] ;
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$y = Append [ ys , ys [ [ 1 ] ] ] ;

xx = Prepend [ xs , xs [ [ n s i d e ] ] ] ;

yy = Prepend [ ys , ys [ [ n s i d e ] ] ] ;

a = Table [ ( yy [ [ i + 1 ] ] − yy [ [ i ] ] ) / (

xx [ [ i ] ] yy [ [ i + 1 ] ] − xx [ [ i + 1 ] ] yy [ [ i ] ] ) , { i , n s i d e } ] ;

b = Table [ ( xx [ [ i ] ] − xx [ [ i + 1 ] ] ) / (

xx [ [ i ] ] yy [ [ i + 1 ] ] − xx [ [ i + 1 ] ] yy [ [ i ] ] ) , { i , n s i d e } ] ;

aa = Append [ a , a [ [ 1 ] ] ] ;

bb = Append [ b , b [ [ 1 ] ] ] ;

$L = Table [1 − a [ [ i ] ] x − b [ [ i ] ] y , { i , n s i d e } ] ;

k = Table [ 1 , { i , n s i d e } ] ;

For [ i = 2 , i <= n s i d e , i ++ ,

k [ [ i ] ] =

k [ [ i − 1 ] ] ( (

aa [ [ i + 1 ] ] ( $x [ [ i − 1 ] ] − $x [ [ i ] ] ) +

bb [ [ i + 1 ] ] ( $y [ [ i − 1 ] ] − $y [ [ i ] ] ) ) / (

a [ [ i − 1 ] ] ( $x [ [ i ] ] − $x [ [ i − 1 ] ] ) +

b [ [ i − 1 ] ] ( $y [ [ i ] ] − $y [ [ i − 1 ] ] ) ) ) ] ;

Num = Table [

k [ [ i ] ] Product [ $L [ [ 1 + Mod[ i + j , n s i d e ] ] ] , { j , 1 ,

n s i d e − 2} ] , { i , n s i d e } ] ; denum = Expand [ Apply [ Plus , Num ] ] ;

Expand [Num ] / denum ]

Applying this function to the given vertex coordinates will give us the shape functions.

v e r t i c e s = {{2 ,−1} , {1 , 1 / 2} , {−1 ,1} , {−3 ,−1/5} , { −9/5 ,−4/5}} ;

$N = computeWachspress [ v e r t i c e s ]

78



The result is

N1(x,y) =
− 5x3

136 −
65x2y
408 −

23x2

204 + 5xy2

68 −
43xy
51 + 137x

408 + 25y3

51 −
65y2

204 −
559y
408 +1

−1039x2

7480 −
4857xy
7480 −

713x
22440 −

3527y2

3740 −
10147y
22440 + 622

165

,

N2(x,y) =
5x3

748 +
145x2y
1122 + 173x2

1122 + 15xy2

748 + 603xy
748 + 3x

4 −
475y3

1122 −
315y2

748 + 49y
44 + 34

33

−1039x2

7480 −
4857xy
7480 −

713x
22440 −

3527y2

3740 −
10147y
22440 + 622

165

,

N3(x,y) =
− x3

88 −
65x2y
264 −

13x2

60 −
13xy2

22 −
421xy
440 −

153x
440 −

19y3

66 −
113y2

660 + 697y
660 + 289

330

−1039x2

7480 −
4857xy
7480 −

713x
22440 −

3527y2

3740 −
10147y
22440 + 622

165

,

N4(x,y) =
x3

136 +
71x2y
408 + 19x2

204 + 137xy2

204 −
31xy
408 −

209x
408 + 19y3

51 −
47y2

68 −
73y
204 +

1
2

−1039x2

7480 −
4857xy
7480 −

713x
22440 −

3527y2

3740 −
10147y
22440 + 622

165

,

N5(x,y) =
3x3

88 + 9x2y
88 −

5x2

88 −
23xy2

132 + 37xy
88 −

17x
66 −

5y3

33 + 29y2

44 −
59y
66 + 4

11

−1039x2

7480 −
4857xy
7480 −

713x
22440 −

3527y2

3740 −
10147y
22440 + 622

165

.

The partition of unity property can be checked by executing the following code:

S i m p l i f y [ Apply [ Plus , $N ] ]

The result is N1(x,y)+N2(x,y)+N3(x,y)+N4(x,y)+N5(x,y) = 1.

Also, the linear precision property is shown using the following code:

f [ x , y ] := a l p h a x + b e t a y + gamma

$f = f [ v e r t i c e s [ [ All , 1 ] ] , v e r t i c e s [ [ All , 2 ] ] ]

S i m p l i f y [ Apply [ Plus , $ f $N ] ]

f is an arbitrary linear function and is evaluated at all the vertices, fi = f (xi,yi) . The result is

N1(x,y) f1 +N2(x,y) f2 +N3(x,y) f3 +N4(x,y) f4 +N5(x,y) f5 = f (x,y) .

A three-dimensional version of figure 1.2 is produced using the following code snippet:

p r e l = Plot3D [ 0 , {x , −3.5 , 2 . 5} , {y , −2, 2} ,

R e g i o n F u n c t i o n −>

Funct ion [{ x ,
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y } , $L [ [ 1 ] ] >= 0 && $L [ [ 2 ] ] >= 0 && $L [ [ 3 ] ] >= 0 && $L [ [ 4 ] ] >=

0 && $L [ [ 5 ] ] >= 0 ] , PlotRange −> {0 , 1} ,

Plo tLabe l −> ” The e l e m e n t ” , Mesh −> None ,

B o u n d a r y S t y l e −> D i r e c t i v e [ Black , Th ick ] ,

ColorFunct ion −> Funct ion [{ x , y , z } , White ] ] ;

$p = Table [

Plot3D [ $N [ [ i ] ] , {x , −3.5 , 2 . 5} , {y , −2, 2} ,

R e g i o n F u n c t i o n −>

Funct ion [{ x ,

y } , $L [ [ 1 ] ] >= 0 && $L [ [ 2 ] ] >= 0 && $L [ [ 3 ] ] >= 0 && $L [ [ 4 ] ] >=

0 && $L [ [ 5 ] ] >= 0 ] , Plo tLabe l −> ”N” <> ToString [ i ] ,

P l o t S t y l e −> O p a c i t y [ 0 . 5 ] , P l o t P o i n t s −> 75 ,

ColorFunct ion −> ” S t a r r y N i g h t C o l o r s ” ] , { i , n s i d e } ] ;

G r a p h i c s G r i d [{{ p r e l , Show [ $p [ [ 1 ] ] , p r e l ]} , {Show [ $p [ [ 2 ] ] , p r e l ] ,

Show [ $p [ [ 3 ] ] , p r e l ]} , {Show [ $p [ [ 4 ] ] , p r e l ] , Show [ $p [ [ 5 ] ] , p r e l ]}} ,

Frame −> True , FrameStyle −> D i r e c t i v e [ Black , Th ick ] ]

The result is shown in figure A.1.
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Figure A.1: A 3D plot of Wachspress basis functions
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Appendix B

Example - Minimal H(div) basis functions

for a pentagon

The vector-valued H(div)-conforming basis functions for the pentagon in appendix A is

computed using Mathematica,

v e r t i c e s = {{2 ,−1} ,{1 ,1/2} ,{ −1 ,1} ,{ −3 ,−1/5} ,{ −9/5 ,−4/5}} ;

$q = HdivBas i s [ v e r t i c e s ] ;

where the HdivBasis module is defined as follows

c u r l 2 d [ N ] := {−D[N , y ] , D[N , x ]}

HdivBas i s [ $v ] := Module [

{xs , ys , $x , $y , $e , $en , $t , $ x s t a r , $d , $Tni , $Tn , $bm , $cm , \

$c0 } ,

xs = $v [ [ All , 1 ] ] ;

ys = $v [ [ All , 2 ] ] ;

n s i d e = Length [ xs ] ;

$x = Append [ xs , xs [ [ 1 ] ] ] ;
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$y = Append [ ys , ys [ [ 1 ] ] ] ;

$N = computeWachspress [ $v ] ; $e =

Table [{ $x [ [ i + 1]]−$x [ [ i ] ] , $y [ [ i + 1]]−$y [ [ i ] ] } , { i , n s i d e } ] ;

$en = Norm /@ $e ;

$ t = MapThread [ Divide , {$e , $en } ] ;

$ x s t a r = {0 , 0} ;

$n = Table [ R o t a t i o n M a t r i x [−Pi / 2 ] . $ t [ [ i , A l l ] ] , { i , n s i d e } ] ; $d =

Table [Norm [

Cross [{ $e [ [ i , 1 ] ] , $e [ [ i , 2 ] ] ,

0} , { $ x s t a r [ [ 1 ] ] − $v [ [ i , 1 ] ] , $ x s t a r [ [ 2 ] ] − $v [ [ i , 2 ] ] ,

0 } ] ] / $en [ [ i ] ] , { i , n s i d e } ] ; $Tni =

MapThread [ Times , {$en , $d } ] / 2 ;

$Tn = Apply [ Plus , $Tni ] ; $bm =

Table [ KroneckerDelta [ i , j ]∗ $en [ [ j ]]− $en [ [ i ] ] ∗ ( $Tni [ [ j ] ] / $Tn ) , { i ,

n s i d e } , { j , n s i d e } ] ; $cm =

Table [Sum[ (−1/ n s i d e ) ( k∗$bm [ [ i , 1 + Mod[ j +k−1, n s i d e ] ] ] ) , {k ,

1 , n s i d e − 1} ] , { i , n s i d e } , { j , n s i d e } ] ;

$c0 = $en / ( 2 $Tn ) ;

Table [ $c0 [ [ i ] ] ({ x , y} − $ x s t a r ) +

Sum[ $cm [ [ i , j ] ] c u r l 2 d [ $N [ [ j ] ] ] , { j , 1 , n s i d e } ] , { i , n s i d e } ] ]

B.1 Kronecker-delta property

The objective is to show the following property for the computed H(div)-conforming

basis, qi , i = 1, . . . ,5,

qi ·n j = δi j for i, j = 1, . . . ,5 ,
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where δi j is the Kronecker delta function.

• On the first edge connecting v1 to v2

S i m p l i f y [ Dot [ $q , $n [ [ 1 ] ] ] / . {y −> 2 − (3 x ) / 2 } ]

{1,0,0,0,0}

So, it shows that {q1 · n1,q2 · n1,q3 · n1,q4 · n1,q5 · n1} = {1,0,0,0,0} . Similarly, for the

other edges we get:

• On the second edge connecting v2 to v3

S i m p l i f y [ Dot [ $q , $n [ [ 2 ] ] ] / . {y −> − (1 /4)∗ x + 3 / 4} ]

{0,1,0,0,0}

• On the third edge connecting v3 to v4

S i m p l i f y [ Dot [ $q , $n [ [ 3 ] ] ] / . {y −> 8 / 5 + (3 x ) / 5 } ]

{0,0,1,0,0}

• On the fourth edge connecting v4 to v5

S i m p l i f y [ Dot [ $q , $n [ [ 4 ] ] ] / . {y −> − (17/10) − x / 2 } ]

{0,0,0,1,0}

• On the fifth edge connecting v5 to v1

S i m p l i f y [ Dot [ $q , $n [ [ 5 ] ] ] / . {y −> − (1 /19)∗ x − 1 7 / 1 9} ]

{0,0,0,0,1}
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