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Abstract

Linked and Knotted Fields in Plasma and Gravity

Amy Violet Thompson

Hopfions are a class of fields whose topology is derived from the Hopf fibration,

with field lines that are linked circles which lie on a set of space-filling nested

toroidal surfaces. In this thesis, we use analytic and computational methods to

study hopfions and their generalization to field configurations based on torus knots

in both plasma and gravity.

The Kamchatnov-Hopf solution to the magnetohydrodynamic (MHD) equa-

tions is a topological soliton, a field configuration that is stable due to a conserved

topological quantity, with linking number one. By realizing that the angular mo-

mentum can also serve as a secondary stabilizing mechanism for certain field

configurations, we generalize this solution to a class of topological solitons with

linking number greater than one and show they are stable in ideal MHD. When

studied in full resistive MHD, the results of simulations indicate that the non-zero

linking number serves to inhibit the decay of the magnetic field energy.

The vacuum Maxwell and linearized Einstein equations take a similar form

when expressed as spin-N field equations, suggesting that electromagnetic and

gravitational radiation possess analogous topologically non-trivial field configura-

tions. The solutions to the massless spin-N equations can be found by complex

ix



contour integral transformations with generating functions in terms of twistor

variables. Using these methods, we construct the null electromagnetic hopfion

and the analogous Petrov Type N gravitational solution. The fields are decom-

posed into tendex and vortex lines, the analog of the electromagnetic field lines,

to investigate their physical properties and characterize their topology. For both

electromagnetism and gravity the topology manifests in the lines of force.

We then show that the hopfion solutions are the simplest case in a class of

Type N linked and knotted gravitational solutions based on torus knots. Repa-

rameterizing the twistor generating functions in terms of the winding numbers

of the field lines allows one to choose the degree of linking or knotting of the

associated field configuration.

Finally, we discuss how the singularity structure of the twistor generating

functions determines the spinor classification of the fields in Minkowski space.

Since the solutions are constructed by contour integral transformations, the poles

of the generating functions are directly related to the geometry of the physical

fields. By modifying the generating functions, we extend the construction of the

Type N gravitational hopfion to find the analogous spin-2 solutions of different

Petrov classifications and characterize their tendex and vortex line configurations.
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Chapter 1

Introduction

Knots and links are quite remarkable given that they are as old and ubiquitous as

ropes and thread and yet have only relatively recently seen a rigorous formulation

within mathematics. The study of knots and links has enjoyed a close relationship

with physics since its inception by Gauss [1]. Today the application of these

topological structures in theoretical physics is more widespread than it has ever

been, from fault resistant quantum computing [2], hadron models [3,4], topological

MHD and fluid mechanics [5,6], classical field theories [7–11], quantum field theory

[12,13], DNA topology [14], nematic liquid crystals [15], helium superfluid [16] to

Bose-Einstein condensates [17] just to name a few. In this thesis we shall focus on

linked and knotted field line configurations in classical electromagnetism, plasma

physics and gravitational radiation.

1



Chapter 1. Introduction

1.1 Overview

It is well-known that there exist solutions to Maxwell’s Equations with non-

trivial field line topology. Hopfions, or linked field configurations whose topology

is derived from the Hopf fibration, are one particular class of solutions that often

appears in physics. The Hopf fibration is a map from the 3-sphere (S3) to the

2-sphere (S2) such that great circles on S3 map to single points on S2. The circles

on S3 are called the fibers of the map, and when projected stereographically onto

R3 the fibers correspond to linked circles that lie on nested, toroidal surfaces and

fill all of space. The fibers can be physically interpreted as the field lines of the

configuration, giving the hopfion fields their distinctive toroidal structure [8].

First, we will review hopfion fields in electromagnetism. The solution method

originally outlined by Rañada [18] is based on reformulating Maxwell’s equations

in the language of the exterior calculus leading to a simple construction of solutions

on compactified space-time. We will discuss the topological properties of hopfions

and how these solutions can arise physically as optical radiation. Finally, we will

explore their relationship to other linked and knotted EM fields and give a method

for the generalizing hopfions to field configurations based on torus knots [19].

Toroidal magnetic fields with linked field lines are related to increased plasma

confinement and stability [20]. The hopfion solution to the magnetohydrodynamic

(MHD) equations found by Kamchatnov represents a topological soliton, a field

2



Chapter 1. Introduction

configuration that is stable due to a conserved topological quantity [5]. Using

a modified version of the construction methods for null EM fields, we generalize

this solution to an entire class of topological solitons based on torus knots and

show they are stable in ideal MHD. Numerical methods for investigating the time

evolution of magnetic fields in plasma are discussed. We are currently working on

simulations involving these topological solitons and the initial results show that

the topological structure is related to the stability of the fields.

We then review twistor integral methods that will allow us to construct so-

lutions to the linearized Einstein’s equations with linked and knotted field line

configurations. The salient feature of the null EM hopfion is the Poynting vector

which is everywhere tangent to a Hopf fibration that propagates at the speed of

light without deformation. The Poynting vector structure when extended to be-

come a future pointing light-like 4-vector generates a set of shear-free space-filling

null geodesics, collectively referred to as a Robinson congruence. In the twistor

formalism the Robinson congruence features prominently as a framework to which

many different physical fields are associated via the Penrose transform. From the

twistor perspective [21] all solutions of the massless spin-N field equations in

Minkowski space are seen to arise from the singularities of homogeneous functions

on twistor space. Of particular note are the solutions known as elementary states,

fields which are constructed from homogeneous twistor functions whose vanishing

defines a Robinson congruence [22]. There is a direct correspondence between

3



Chapter 1. Introduction

the elementary states and the EM hopfion. Moreover, the relationship between

the massless linear relativistic fields (massless Dirac, vacuum Maxwell, massless

Rarita-Schwinger, and linearized vacuum Einstein equations), as expressed in the

form of the massless spin-N field equations, implies that all linear physical fields

possess analogous topologically non-trivial field configurations.

After a review of spinor and twistor methods, we present the spin-N hopfion.

These solutions correspond to the simplest twistor elementary states. For N = 1

this reproduces exactly the EM hopfion constructed by Rañada. The spin-2 so-

lution is analyzed within the framework of gravito-electromagnetism [23, 24]. By

decomposing the Weyl tensor into spatial gravito-electric and gravito-magnetic

tensors, and the time evolution of the gravitational hopfion can be characterized

in terms of the EM hopfion.

We then show that this method can be extended to construct spin-N fields

based on torus knots. The twistor functions corresponding to the elementary

states admit a parameterization in terms of the poloidal and toroidal winding

numbers of the torus knots, allowing one to choose the degree of linking or knotting

of the associated field configuration. Using the gravito-electromagnetic formalism,

we show that the torus knot structure is exhibited in the tendex and vortex lines.

We describe the topology of the gravitational fields and its physical interpretation

in terms of the tidal and frame drag forces of the gravitational field.

4



Chapter 1. Introduction

Finally, we consider the relationship between the singularities of the twistor

generating functions and the geometry of the resulting physical fields. Since the

fields are constructed through a contour integral transform, the poles of the twistor

functions determine the spinor structure of the solutions in Minkowski space. By

modifying the twistor function that generates the null EM hopfion, we find the

generating function for a non-null EM solution with linked field lines. In a similar

manner, we use the Type N hopfion to construct gravitational hopfions of Petrov

Type D and Type III. For each case, we describe the time evolution of the tendex

and vortex configuration, and how the topological structure of the fields is related

to the Robinson congruence.

1.1.1 New Results

The main results presented in this thesis relate to the construction and analysis

of linked and knotted fields in magnetic plasmas and gravitational radiation, both

through analytic and computational methods, and are summarized as follows.

In Chapter 4, we construct a new class of magnetic field configurations in

plasma based on a torus knot topology. A subset of these solutions are shown

to represent topological solitons in ideal MHD by a stability analysis based on a

scaling argument. The evolution of the solitons is investigated in full MHD using

numerical simulations. We discuss the implications of these simulations and how

5



Chapter 1. Introduction

the results might lead to the construction of solutions with greater stability in

realistic plasma systems.

In Chapter 9, we give a new mathematical construction using twistor methods

for known null electromagnetic solutions with field line configurations related to

the Hopf fibration. This allows us to construct linearized gravitational fields of

Petrov Type N based on the same structure. We analyze their physical proper-

ties using the gravito-electromagnetic decomposition of the Weyl curvature tensor

and show that, similarly to the electromagnetic case, for gravitational fields the

topology also manifests in the lines of force.

In Chapter 10, the radiative electromagnetic and gravitational hopfions are

shown to be the simplest case in a class of solutions with field line structures based

on torus knots. These solutions are also shown to correspond to the elementary

states of twistor theory. Although the elementary states were previously known,

the details of their structure and the underlying torus knot topology have never

been described in literature.

In Chapter 11, we extend the analogy with the electromagnetic hopfion to

construct linked gravitational fields of Petrov Type D and Type III. We also

characterize the structure of their lines of force and discuss their time evolution.

6



Chapter 1. Introduction

1.2 History

1.2.1 Knot Theory

The foundation for the mathematical theory of knots began with Gottfried

Wilhelm Leibniz’s geometria situs, or “geometry of position” which is independent

of magnitude or scale. He explained in a letter to Christian Huygens in 1679 [25]

I am not content with algebra, in that it yields neither the shortest
proofs nor the most beautiful constructions of geometry. Consequently,
in view of this, I consider that we need yet another kind of analysis,
geometric or linear, which deals directly with position, as algebra deals
with magnitude.

Gottfried Wilhelm Leibniz

In 1771, the first paper to directly address the mathematics of knot theory

in terms of the geometry of position was Remarks on the theory of positions by

Alexandre-Théophile Vandermonde [26]. In it he stated

Whatever the twists and turns of a system of threads in space, one
can always obtain an expression for the calculation of its dimensions,
but this expression will be of little use in practice The craftsman who
fashions a braid, a net, or some knots will be concerned, not with
questions of measurement, but with those of position: what he sees
there is the manner in which the threads are interlaced.

Alexandre-Théophile Vandermonde

Carl Friedrich Gauss played an important role in the development of knot

theory. He had a deep interest in knots, and as early as 1794, he made drawings

of knots and considered methods for describing different configurations [1]. His
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approach was to draw the entire knot structure, then label each crossing in the

order that one would find it as they started at an arbitrary point and traced the

entire knot until they arrived back at that point. He called this classification the

“scheme of the knot.” He sketched and described 13 knots in this way. Throughout

the following years, Gauss also made many more sketches of knots, including one

which contains a drawing of a braid next to a complex coordinate representation of

the height of each strand [27]. His interest in knots remained into his later work in

electromagnetism, and led him to make one of the most important breakthroughs

in the early history of knot theory in 1833. He considered the work done on a

magnetic pole moving in closed loop around a closed loop of electric current. In

the process, he discovered what is now called the Gauss linking integral, which is

equal to an integer describing the linking number of the two curves [28].

Johann Benedict Listing, a student of Gauss at Göttingen University, became

interested in Gauss’s work on knot theory. He was the first person to use the term

“Topologie” (which translates to “Topology”) in reference to configurations with

links and knots, and in his 1847 paper Vorstudien zur Topologie he explained this

new branch of mathematical study

I hope you will let me use the name “Topology” for this kind of studies
of spatial images, rather than suggested by Leibniz name “geometria
situs”, reminding of notion of “measure” and “measurement” play-
ing here absolutely subordinate role and confiding with “géometrié de
position” which is established for a different kind of geometrical stud-
ies. Therefore by Topology we will mean the study of modal relations
of spatial images, or laws of connectedness, mutual disposition and

8



Chapter 1. Introduction

traces of points, lines, surfaces, bodies, and their parts or their mutual
unions in space, independently of relations of measures and quantities.
(Translated by M. Sokolov.)

Johann Benedict Listing

Listing went on to make contributions to understanding the relationship be-

tween a knot and its mirror image, referred to as the chirality of the knot. In

1947 he showed the right-handed and left-handed trefoil are not equivalent, and

in 1949 he showed that the figure eight knot and its mirror image are equivalent,

or amphichiral [1].

Gauss’s linking integral also inspired Hermann Karl Brunn to formalize the

concept of a knot diagram in 1892. Brunn realized that the linking number can

be found from a knot diagram by counting the crossings of the link components

K1 and K2, and assigning to each crossing a value of +1 for K1 crossing under

K2 and −1 for K1 over K2 [29].

1.2.2 Knots in Physics

In the 1800’s electromagnetic waves were generally thought of as vibrations of

the “luminiferous ether,” leading many scientists to attempt to understand electro-

magnetism in terms of analogies with fluid mechanics [30]. One clear motivation

for this is that the electrostatic equations in vacuum
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∇ · ~E = 0 (1.1)

∇× ~E = 0 (1.2)

have the same form as the equations describing the flow of an incompressible fluid

in the case of no friction, no viscosity, and no vorticity (curl)

∇ · ~v = 0 (1.3)

∇× ~v = 0. (1.4)

where ~v is the velocity of the fluid.

In 1858, Hermann von Helmholtz generalized this to the case with ∇× ~v 6= 0

and showed that vortex lines of an ideal fluid are stable closed curves. Peter

Guthrie Tait made a demonstration of this effect by pushing smoke out of a hole

in a box, thus generating smoke rings. William Thomson (Lord Kelvin) saw this

demonstration, and realizing the connection with electromagnetism. This led him

to propose his Theory of Vortex Atoms, in which atoms are vortices of the ether.

After the Michelson and Morley experiment disproved the existence of the ether in

1887 this theory lost favor, and even Thomson admitted that it was unsuccessful

in giving a physical description of atoms in 1905. Despite its failure in that regard,

it served to introduce knot theory to the physics community and led to searches

for other applications [30].

10
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It is also worth noting that Maxwell was interested in knot theory and its

application to physics. He wrote several unpublished papers on knot theory dur-

ing the late 1800’s which were not found until after the same results had been

discovered other scientists. These works included classifying knot diagrams and

a discussion of the three ways to change a diagram without affecting the knot,

which were later discovered by Reidemeister in 1926 [31].

1.2.3 Lines of Force in Electromagnetism

The concept of lines of force was first proposed by Michael Faraday. Around

1931 he began a series experiments on induction which led him to develop this

perspective [32]. If a wire intersects magnetic lines of force then a current will be

induced in the wire, and Faraday’s law of induction describes how the magnitude

of the current depends on the rate of change of the intersecting lines. He demon-

strated this by inserting a magnet into a helical coil of wire, and as the magnet

moved the wire cut through the lines of force thus inducing a current.

In contrast to most of the scientists of the day, Faraday considered electro-

magnetism to be a force, which could occur in vacuum, rather than a disturbance

propagating in a fluid, or ether. He wanted to apply this concept to a broad range

of physical phenomena. Many of his writings mention his desire to understand

the interconnectedness of the different forces of nature. In 1949 he wrote [33],
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“The exertions in physical science of late years have been directed to ascertain

not merely the natural powers, but the manner in which they are linked together,

the universality of each in its own action, and their probable unity in one.” In

his 1857 paper On the Conservation of Force [34], Faraday explained “if it acts

in time and across space, it must act by physical lines of force”, including “heat,

or electricity, or gravitation, or any other form of force.” In particular Faraday

wanted to understand lines of force in gravity, and in that same year he exchanged

several letters with Maxwell on the subject [35]. Maxwell was optimistic about

this approach and in his reply wrote that he hoped it could explain the motion of

planets and stars. Maxwell not only wanted to understand the physical nature of

lines of force in electromagnetism and gravity, but he also expressed interest in a

mathematical formulation of the analogous relationship between the two forces.

1.2.4 Lines of Force in Gravity

In 2010, Faraday’s vision of finding a gravitational analog of electromagnetic

field lines was realized. These gravitational lines of force for a particular observer

were introduced by Nichols, et al. [24], who were motivated by the desire to

understand the non-linear dynamics of curved space-time in a more intuitive,

directly physical way than previous approaches. The physical understanding of

the electromagnetic field is based upon the decomposition of the Faraday field
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strength tensor onto space-like foliations of constant time yielding two spacial

vector fields interpreted as the electric and magnetic fields. Analogously, the Weyl

curvature tensor admits a decomposition onto constant time hyperplanes yielding

two spatial tensors called the gravito-electric and gravito-magnetic tensors. The

integral curves of the eigenvector fields of these tensors are called tendex and

vortex lines respectively and represent the gravitational analog of electromagnetic

field lines. This method was elucidated through a series of papers where it was

applied to I) weak field solutions [24], II) stationary black holes [36], and III) weak

perturbations of stationary black holes [37].

This method of GEM decomposition is well-suited to studying linked and

knotted fields because, as we will show, the field topology manifests in the lines

of force for both the electromagnetic and analogous gravitational solutions.
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Knots in Electromagnetism

One of the simplest radiative solutions with non-trivial topology is called the

EM hopfion and was developed by Rañada in the 1980’s [18]. A hopfion is a

field configuration based on a topology derived from the Hopf fibration. The EM

hopfion is a null solution to the source-free Maxwell’s equations such that any two

field lines associated to either the electric, magnetic, or Poynting vector fields (EBS

fields) are closed and linked exactly once [7]. When an EM hopfion is decomposed

onto hyperplanes of constant time there always exists a hyperplane wherein the

EBS fields are tangent to the fibers of three orthogonal Hopf fibrations.

The derivation presented here uses the normalized area element of S2 and

the pullback by the Hopf map to generate a field configuration with linked field

lines. We then discuss how this configuration can be generalized to field line

configurations based on a torus knot topology.
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2.1 Linking Number

Before we derive the solutions with linked field lines, we will discuss the concept

of linking number and how it relates to the structure of physical fields. Typically

for EM fields, this is expressed in terms of the helicity carried by the magnetic

field. This quantity, called the magnetic helicity hm, is proportional to the linking

number (and equal if the field is normalized).

The Gauss linking number counts the linking of two distinct curves [38]. If two

closed curves are labeled 1 and 2 and parameterized by ~x(σ) and ~y(τ) respectively,

with ~r = ~x− ~y, then the Gauss linking number is given by the double integral

L12 =
1

4π

∮
1

∮
2

~r

r3
·
(
d~x

dσ
× d~y

dτ

)
dσdτ. (2.1)

A magnetic field will possess an infinite number of field lines each with infinitesimal

magnetic flux, but it can be approximated as a set of closed flux tubes. If each of

N flux tubes carries a total flux Φi, then the magnetic helicity can be calculated

by

hm =
N∑
i=1

N∑
j=1

LijΦiΦj. (2.2)

If we let N →∞ then Φi → 0, and from Eqns. (2.1) and (2.2) we find

hm =
1

4π

∫∫
~r

r3
·
[
~B(x)× ~B(y)

]
d3xd3y. (2.3)
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This is essentially taking the sum over the linking of each pair of field lines in a

volume. By taking vector potential in the Coulomb gauge,

~A(x) =
1

4π

∫
~r

r3
× ~B(y)d3y. (2.4)

we arrive at the standard expression for magnetic helicity

hm =

∫
~A · ~Bd3x. (2.5)

2.2 Differential Geometry and Electromagnetism

The electromagnetic field strength tensor is described by a differential 2-form

on Minkowski space M 1 that is the exterioir derivative of a 1-form potential A

F = dA.

Maxwell’s equations are then expressed in terms of F, its dual ∗F, and the dual

of a 4-current ∗J as

dF = 0

d ∗ F = ∗J.

In vacuum the current vanishes and Maxwell’s equations simplify to

dF = d ∗ F = 0.

1We follow the conventions of Penrose [39] so that η = diag (1,−1,−1,−1).
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There are two important properties of the exterior derivative d that we will need

later:

1. The exterior derivative of an n-form is an (n+ 1)-form, and thus is zero on

an n-dimensional manifold.

2. The exterior derivative commutes with the pullback operation, so that

d(f ∗ω) = f ∗dω

for any differential form ω and smooth function f.

These properties of differential forms lead to an obvious geometric solution method:

1. dF = 0 trivially for any 2-form F on a 2D manifold, so the first Maxwell’s

equation is trivially satisfied for the pullback ϕ∗σ of any 2-form from any

2D manifold.

2. If we introduce a second pullback which is dual to the first ∗ϑ∗σ = ϕ∗σ, then

we can construct a solution to the system dF = d∗F = 0, where F = −ϕ∗σ

and ∗F = ϑ∗σ.

Now that we have this solution method, we will derive the EM field from the

normalized area 2-form σ on S2. Given a smooth map ϕ : M −→S2, then

F = ϕ∗σ (2.6)
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implies that

dF = dϕ∗σ

= ϕ∗dσ

= 0

since S2 is a 2D manifold and 3-forms will vanish. The dual of Eqn. (2.6) yields

∗F = ∗ϕ∗σ.

We then want to find a second map ϑ : M −→S2 such that

∗ϕ∗σ = ϑ∗σ,

so the second Maxwell equation is trivially satisfied as

d ∗ F = d ∗ ϕ∗σ

= dϑ∗σ

= ϑ∗dσ

= 0.

Now we must find the pair of maps (ϕ, ϑ) such that

F = ϕ∗σ (2.7)

∗F = ϑ∗σ. (2.8)
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2.3 Hopf Map

We will obtain a pair of maps (ϕ, ϑ) corresponding to a physical field config-

uration, first by finding the Cauchy data for the fields at t = 0 and then using

Fourier analysis to determine their time evolution. Consider that these should be

finite-energy fields and therefore be single-valued at infinity. This means that at

each instant of time, the fields can be defined on R3, or equivalently on its 1-point

compactification S3. Thus, we seek maps (ϕ, ϑ) which take S3 −→ S2.

The Hopf map or Hopf fibration is a well-known map of this form sending

great circles on S3 to single points on S2. These great circles on S3 are the S1

fibers of the map. The Hopf fibration is denoted by

S3 S1−→ S2.

It will be useful to write the Hopf map in terms of two complex coordinates ζ1

and ζ2. If we identify S3 with the unit sphere of C2, and S2 with the 1-point

compactification of C via stereographic projection, we find

S3 =
{

(ζ1, ζ2) ∈ C2
∣∣ |ζ1|2 + |ζ2|2 = 1}

and the Hopf map h : S3 −→ S2 can be written as the ratio

h (ζ1, ζ2) =
ζ1

ζ2

. (2.9)
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In this form, the fiber structure of the Hopf map is apparent since Eqn. (2.9) is

invariant under the transformation (ζ1, ζ2) → eiψ (ζ1, ζ2), where ψ ∈ [0, 2π) gives

the parameterization of the circular fibers.

Define the stereographic projection, ST 3 : R3 → S3 by

(x, y, z) −→

(
2(x+ iy)

r2 + 1
,
2z + i

(
r2 − 1

)
r2 + 1

)
. (2.10)

Then the map ϕ = h◦ST 3 is the composition of the Hopf map in Eqn. (2.9) with

stereographic projection in Eqn. (2.10) and is given by

ϕ (t = 0, x, y, z) =
2 (x+ iy)

2z + i (r2 − 1)
. (2.11)

Now that we have the map ϕ, we can find a second map ϑ by permuting the

coordinates so that

ϑ (t = 0, x, y, z) = ϕ (t = 0, y, z, x)

=
2 (y + iz)

2x+ i (r2 − 1) .
(2.12)

A visualization of the Hopf fibration on R3 is shown in Figure 2.1. The inverse

image of a single point on S2 under the Hopf map is a great circle on S3. The

map ϕ gives the projection of the Hopf map onto R3. Stereographic projection is

a conformal map, thus circles remain circles. These great circles form a special

family of circles called Villarceaux circles that correspond to the integral curves

of the physical fields. To understand this field structure in more detail, consider a

plane intersecting S2 which is parallel to the equitorial plane. This intersection is
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Figure 2.1: The first column shows the structure of the Hopf fibration in R3 and
the second column shows the corresponding points in S2. a The inverse image of
two points on S2 is two linked circles in R3. b The set of points all lying on the
same circle in S2 corresponds to a set of circles filling out a toroidal surface in R3.
c Each circle on S2 corresponds to a different torus in R3. Note that the poles of
the sphere correspond to the degenerate tori.

a circle, and under the map ϕ = constant any two points on it correspond to two

linked circles lying on the same toroidal surface in R3 as in Figure 2.1a. The other

points on the same circle in S2 correspond to linked circles on the same torus in

R3 as in Figure 2.1b. The points on each circle in S2 intersecting a parallel plane

fill out a different toroidal surface as in Figure 2.1c. It should be noted that at

the poles the plane intersects S2 at a single point. In R3 the toroidal surfaces
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become degenerate, with one pole corresponding to a circle through infinity (a

line) and the other the unit circle inside the nested toriodal surfaces. This is the

characteristic Hopf structure of nested tori, filled by circles that are each linked

with every other circle exactly once.

2.4 EM Hopfion

2.4.1 Cauchy data

We now want to find the field of the EM hopfion at t = 0. We can use the

maps (ϕ, ϑ) to construct the initial magnetic and electric fields, BR and ER, by

Eqn. (2.7) and Eqn. (2.8) respectively. Since our maps send R3 −→ C, the area

element σ should be expressed terms of a complex coordinate λ. On S2, we can

express σ in terms of spherical coordinates

σ =
1

4π
dθ ∧ dφ

where we have normalized the area element so that

∫
S2

σ = 1.

Define the stereographic projection ST 2 : S2 −→ C so that the complex coordinate

is

λ(θ, φ) =
sin θ

1− cos θ
eiφ.
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The differential element is then

dλ =
∂λ

∂θ
dθ +

∂λ

∂φ
dφ

=
eiφ

1− cos θ
(i sin θdφ− dθ)

and its complex conjugate is

dλ =
−e−iφ

1− cos θ
(i sin θdφ+ dθ).

Since dλ ∧ dλ is the only 2-form (up to a scale factor) on C, σ must be

proportional to dλ ∧ dλ. To find the scale factor, write out dλ ∧ dλ explicitly as

dλ ∧ dλ =
2i sin θ

(1− cos θ)2
dθ ∧ dφ. (2.13)

Using the fact that

1 + λλ =
2

1− cos θ

we find Eqn. (2.13) can be solved for σ. The result is

σ =
1

2πi

dλ ∧ dλ(
1 + λλ

)2 . (2.14)

Now we return to our original task of finding the t = 0 expressions for ER and

BR. The magnetic field BR is found from of Eqn. (2.7) giving

F = ϕ∗σ

=
1

2πi

dϕ ∧ dϕ
(1 + ϕϕ)2 . (2.15)
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Writing out the coordinate expressions for the exterior derivatives and the wedge

product in Eqn. (2.15) gives the Faraday tensor Fµν as

Fµν =
1

4πi

∂µϕ∂νϕ− ∂νϕ∂µϕ
(1 + ϕϕ)2 . (2.16)

We can calculate the components of the field strength tensor. In matrix form the

result is

F ≡



0 0 0 0

0 0 −Bz By

0 Bz 0 −Bx

0 −By Bx 0



=



0 0 0 0

0 0 −4(−1+x2+y2−z2)
π(1+x2+y2+z2)

3
−8(x+yz)

π(1+x2+y2+z2)
3

0
4(−1+x2+y2−z2)
π(1+x2+y2+z2)

3 0 −8(y−xz)
π(1+x2+y2+z2)

3

0 8(x+yz)

π(1+x2+y2+z2)
3

8(y−xz)
π(1+x2+y2+z2)

3 0


. (2.17)
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The electric field ER is obtained similarly from the map ϑ and Eqn. (2.8), and

we find

∗F ≡



0 0 0 0

0 0 −Ez Ey

0 Ez 0 −Ex

0 −Ey Ex 0



=



0 0 0 0

0 0 − 8(y+xz)

π(1+x2+y2+z2)
3

8xy−8z

π(1+x2+y2+z2)
3

0 8(y+xz)

π(1+x2+y2+z2)
3 0 − 4(1+x2−y2−z2)

π(1+x2+y2+z2)
3

0 − 8xy−8z

π(1+x2+y2+z2)
3

4(1+x2−y2−z2)
π(1+x2+y2+z2)

3 0


.

Recall that in Eqn. (2.12) we generated the map ϑ from the map ϕ by a

right-handed permutation of coordinates. The resulting electromagnetic field is

oriented so that E, B, and E × B form a right-handed coordinate basis at every

point.
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Figure 2.2: The EM hopfion: a the electric field, b the magnetic field, and
c the Poynting vector. Row 1 shows the fields at t = 0 are tangent to three
orthogonal Hopf fibrations. The second row shows the fields at t = 1 configuration,
where the electric and magnetic fields have deformed, but the Poynting vector has
maintained its Hopf structure while propagating at the speed of light.

2.4.2 Time-Dependent Fields

From the Cauchy data, the time-dependent form of the EM hopfion is found

using Fourier analysis. The magnetic and electric fields can be expanded as

BR(t, r) =
1

(2π)3/2

∫
d3k

(
R1(k) cos k · x−R2(k) sin k · x

)
(2.18)

ER(t, r) =
1

(2π)3/2

∫
d3k

(
R1(k) sin k · x+ R2(k) cos k · x

)
. (2.19)
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where k = (ω,k). The key to finding the time-dependent fields is to write the

coefficients in the form

R1(k) + ıR2(k) =
1

(2π)3/2

∫
d3r
(
BR(0, r) + ıER(0, r)

)
eık·r (2.20)

so that they can be calculated from the t = 0 fields. From the Cauchy data in

Eqns. (2.17) and (2.18), we find the time-dependent fields2

BR(t, r) =
1

π(A2 + t2)3
(QH1 + PH2)

ER(t, r) =
1

π(A2 + t2)3
(QH2 − PH1) (2.21)

where we have defined the quantites A, Q, and P to be

A = 1
2
(r2 − t2 + 1), P = t(t2 − 3A2), Q = A(A2 − 3t2) (2.22)

and the vectors H1 and H2 are

H1 =
(
(y + t)− xz,−x− (y + t)z, 1

2
(−1− z2 + x2 + (y + t)2)

)
H2 =

(
1
2
(1 + z2 + x2 − (y + t)2),−z + x(y + t), (y + t) + xz

)
. (2.23)

By a clever guess Rañada was also able to find the maps that generate the time-

dependent fields according to Eqn. (2.16). These are

ϕ(t, x, y, z) =
(Ax− tz) + ı(Ay + t(A− 1))

(Az + tx) + ı(A(A− 1)− ty)

ϑ(t, x, y, z) =
Ay + t(A− 1) + ı(Az + tx)

(Ax− tz) + ı(A(A− 1)− ty)
. (2.24)

2Note that we have followed the conventions of Rañada, so the EM hopfion field we calculated
in this section propagates in the −ŷ-direction. A right-handed permutation of the coordinates
can generate a field propagating in any direction, and most other references will choose +ẑ as
the direction of propagation.
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Figure 2.3: Torus knots (green) wind (nt, np) times around a torus (purple) in
the toroidal and poloidal directions, respectively. Shown here are the cases of a
trefoil (2,3) knot, b cinquefoil (2,5) knot, c septafoil (2,7) knot, and d nonafoil
(2,9) knot.

2.5 Torus Knots

One generalization of the hopfion is based on the structure of torus knots.

A torus knot is a closed curve on the surface of a torus which winds an integer

number of times about the toroidal direction nt and poloidal direction np as in

Figure 2.3, where nt and np are coprime and both greater than one. If nt and np

are not coprime, then there are ng = gcd(nt, np) linked curves, each corresponding

to a (nt, np) mod ng torus knot. If either nt or np is equal to one, then the knot

is trivial with ng linked curves.

28



Chapter 2. Knots in Electromagnetism

Figure 2.4: The field line structure based on (2,3) trefoil knot. a The core field
line is a torus knot (green). b Each field line except the core lies on the surface of
a nested, deformed torus. c One field line fills a complete surface (red). d Another
field line fills a second surface (blue) linked with the first. The two linked core
field lines and the nested surfaces around them fill all of space.

2.6 EM Torus Knots

The EM torus knots are constructed from the Euler potentials

α =
(r2 − t2 − 1) + 2ız

r2 − (t− ı)2
(2.25)

β =
2(x− ıy)

r2 − (t− ı)2
(2.26)

where r2 = x2+y2+z2. As Ref. [19] points out, at t = 0 these are the stereographic

projection coordinates on S3. The Riemann-Silberstein vector for the fields is given

by

FR = ER + iBR (2.27)

= ∇αnt ×∇βnp . (2.28)

These fields are null torus knot configurations with a Poynting vector that is

everywhere tangent to a Hopf fibration and propagates in the ẑ-direction with-
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Figure 2.5: The EM trefoil knot at t = 0: a the electric field, b the magnetic
field, and c the Poynting vector field.

out deformation. Each (nt, np) with nt, np = 1, 2, 3... represents a solution to

Maxwell’s equations. The electric and magnetic vector fields each have the fol-

lowing topological structure as shown in Figure 2.4 [19]. There are 2ng core field

lines, where ng = gcd(nt, np), which are linked (and knotted if nt, np > 1). Each

core line has the same configuration as the corresponding torus knot with (nt, np)

as in Figure 2.3. A single core field line is surrounded by nested, toroidal surfaces,

each filled by one field line, as illustrated in Figure 2.4a-c. A second core field

line, also surrounded by nested surfaces, is linked with the first so that there are

2ng sets of linked nested surfaces which fill all of space as shown in Figure 2.4d.

A complete solution to Maxwell’s equations consists of an electric and a mag-

netic field orthogonal to each other, both with this field line structure as shown

in Figure 2.5. The (1,1) case corresponds to the electromagnetic hopfion.
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This gives the t = 0 configuration, where the electric and magnetic fields are

tangent to orthogonal torus knots. The fields will deform under time evolution,

but the topology will be conserved since ~E · ~B = 0 [40,41].

Note that the topology physically manifests in the lines of force for the vacuum

EM solutions. Later we will see this also occurs in magnetic configurations in

plasma, as well as vacuum solutions to Einstein’s equations.
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Plasma Physics Background

The linked and knotted fields in the previous chapter were source-free electromag-

netic solutions, but similar topological structures can be found in other areas of

physics. Toroidal magnetic fields with linked and knotted field line configurations

are particularly important in magnetically confined plasmas. Before discussing

knots in plasma we will first review the basics of plasma physics. Our results,

which are presented in the next chapter, are based on magnetohydrodynamic

(MHD) theory, a model of plasma behavior that is well-suited to large-scale,

highly magnetized plasma [42]. The derivation of the MHD equations involves

techniques used in other plasma physics models, so first we give a review of these

models which will lead into the discussion of MHD. Finally, we will examine the

reason why magnetic fields with a nested toroidal configuration are found in a

wide range of plasma physics applications.
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3.1 Introduction to Plasma

A plasma is a medium of positive and negative charged particles that is overall

electrically neutral. The particles are generally the constituents of a fluid, so they

are unbound, but not free. As the charges move in the plasma they generate

currents and associated fields, which in turn affect other particles. Thus, the

collective behavior of a plasma has many degrees of freedom and is more easily

described by models based on approximations appropriate in different regimes.

The three most common models [43] will be derived in Section 3.3: Vlasov, two-

fluid, and magnetohydrodynamics.

A plasma is characterized by three fundamental parameters:

• particle density n,

• temperature T , and

• steady state magnetic field B.

There are many useful quantities that are derived from these three funda-

mental parameters, such as the Debye length, Larmor radius, plasma frequency,

cyclotron frequency, and thermal velocity. In the case of partially ionized plas-

mas, the fractional ionization and the cross-section of neutral particles can also

be considered fundamental for describing the fluid dynamics.
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type n(m−3) T (eV ) B(T )
terrestrial non-fusion 1014 − 1022 1 10−4 − 1
terrestrial fusion 1019 − 1021 100− 104 1− 10
cosmic 106 − 1030 1− 100 10−10 − 1011

Table 3.1: Order of magnitude comparison of typical parameter values for dif-
ferent types of plasma.

Table 3.1 shows a comparison of typical parameters for different types of

plasma, compiled from Refs. [43–49]. Terrestrial non-fusion plasmas produced

in laboratories are weakly ionized and have electron temperatures of a few eV,

with ion temperatures that are colder, usually about room temperature. The

fields they produce are small, as is their density (compare Table 3.1 to air at

STP with n ∼ 1025 m−3). Fusion plasma systems are carefully designed to have

temperatures large enough to generate fully ionized hydrogen or deuterium. An

externally applied magnetic field with the desired geometry is supplied by the

tokamak (or spheromak) device. The magnetic confinement increases the density

of the plasma. Astrophysical plasmas are generated by a wide range of sources

and vary greatly. Plasmas in interstellar space are very cold and sparse, while

plasmas in stellar cores and near neutron stars are hot and dense.
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Figure 3.1: Plasma dynamics as determined by the Lorentz equation and
Maxwell’s equations.

3.2 Plasma Dynamics

Plasma dynamics can in principle be completely determined by the self-consistent

interaction between electromagnetic fields and statistically large numbers of charged

particles, as illustrated in Figure 3.1 [43]. Determining the time evolution of the

plasma is conceptually simple, but computationally intensive, given by the follow-

ing process:

1. If the initial trajectory xj(t) and velocity vj(t) for every particle j is known,

Maxwell’s equations determine the electric field E(x, t) and magnetic field

B(x, t).

2. Given the instantaneous electric field E(x, t) and magnetic field B(x, t), the

Lorentz equation determines the forces on every particle j. This information

can be used to calculate the new particle trajectories and velocities.
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An exact solution for plasma behavior using this iterative method is difficult

to attain given the immensely large number of particles and, in some cases, the

complexity of the electromagnetic fields involved. Therefore, plasma dynamics

is adapted into a more tractable problem by considering specific phenomena and

applying simplifying assumptions appropriate to the regime of interest.

The approximation methods most commonly used to describe plasma behavior

are based on assumptions about the particle motion for some species (electrons or

ions). Vlasov theory approximates particle behavior by considering the average

Lorentz force over particles of a given species with the same velocity at a given

location. The plasma is characterized by a distribution function fσ(v,x,t) for

each species σ that gives the density distribution for all particles having velocity

v at position x at time t. In two-fluid theory, the average velocities are taken

over particles of a given species at a given location so that one can characterize

the plasma by a density nσ(x, t), mean velocity uσ(x, t), and pressure (relative to

mean velocity) pσ(x, t) for each particle species σ. MHD theory involves averaging

the momentum over all particles of all species at a given location and the plasma

is characterized by the center of mass velocity U(x, t) and pressure (relative to

COM velocity) p(x,t).
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3.3 Plasma Models

3.3.1 Vlasov theory

Vlasov theory simplifies the description of plasma behavior by averaging the

Lorentz force over all the particles of a given species that have the same velocity

at a given location. Consider a phase space diagram with each of the particles in

the plasma depicted by it’s specific position and velocity, as in Figure 3.2. The

plasma can be characterized by a distribution function fσ(v,x,t) specifying the

instantaneous density of particles at each point (x,v) in phase space, so that

fσ(v,x,t)dxdv represents number of particles at time t at a position in the range

x to x+ dx and with a velocity in the range v to v+ dv. As the system evolves in

time, the velocities and accelerations of the particles cause the particles to move

in phase space. Thus, the plasma behavior can be simplified by considering the

time evolution of fσ(v,x,t) rather than the individual trajectories of each particle.

To derive Vlasov’s equation in one dimension, consider the flux into each side

of the box in Figure 3.2. If we define a(x, v, t) to be the acceleration of each

particle (due to the Lorentz force), then

• f(v, x,t)vdv is the flux into the left side,

• −f(v, x+ dx, t)vdv is the flux into the right side,

• f(v, x,t)a(x, v, t)dx is the flux into the bottom, and
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Figure 3.2: A phase space diagram for one instant in time showing the position
and velocity of each particle.

• −f(v + dv, x,t)a(x, v + dv, t)dx is the flux into the top.

Since f(v, x,t)dxdv represents the total number of particles in the box, the

rate of change of particles is

∂

∂t
f(v, x, t)dxdv =f(v, x, t)vdv − f(v, x+ dx, t)vdv

+ f(v, x, t)a(x, v, t)dx− f(v + dv, x, t)a(x, v + dv, t)dx.

(3.1)

Taylor expanding each term on the right side of Eqn. (3.1) results in the Vlasov

equation in one dimension

∂f

∂t
+ v

∂f

∂x
+

∂

∂v
(af) = 0. (3.2)
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By a similar analysis in three dimensions, the generalized Vlasov equation is found

to be

∂f

∂t
+ v · ∂f

∂x
+

∂

∂v
· (af) = 0. (3.3)

3.3.2 Two Fluid Theory

Moments of the Distribution Function

Two fluid theory is derived by “taking moments” of the Vlasov equation. To

understand this process, first consider the phase space diagram in Figure 3.3. The

shaded strip represents the range x to x+ dx. If n(x, t) is the number density of

particles, then n(x, t)dx is the total number of particles in the shaded region (at

time t). The number density is also equivalent to n(x, t) =
∫
f(v, x, t)dv, or the

zeroth moment of f . Thus, the phase space description (x, v are the dependent

variables) is equivalent to a position space description (x is a dependent variable),

where the velocity dependence has been “integrated out” leaving a function of x

only.

The mean velocity can also be calculated from the distribution function, since

f represents the probability that a particle at position x and time t has velocity v.

Thus, averaging over all particles gives n(x, t)u(x, t) =
∫
vf(v, x, t)dv, or the first

moment of f . The process of taking moments of the distribution function can be
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Figure 3.3: Moments are obtained by taking weighted averages over the particles
in the shaded strip representing the range x to x+ dx.

continued - the second moment n(x, t)ε(x, t) = m
∫
v2f(v, x, t)dv is related to the

mean energy ε of the particles, where m is the particle mass.

Similarly, in three dimensions, this process of “moment-taking”, i.e. integrat-

ing
∫

vjf(v,x, t)dv for j = 0, 1, 2, ... results in the following quantities:

• the density function (zeroth moment)

n(x, t) =

∫
f(v,x, t)dv,

• the mean velocity vector (first moment)

u(x, t) =

∫
vf(v,x, t)dv

n(x, t)
,

40



Chapter 3. Plasma Physics Background

• and the average stress tensor (second moment)

T (x, t) =

∫
v · vf(v,x, t)dv

m · n(x, t)
.

Two-Fluid Equations

The two-fluid model is based on taking moments of the entire Vlasov equa-

tion, rather than just the distribution function. This produces two sets of partial

differential equations relating the mean number density nσ(x, t), mean velocity

uσ(x, t), and stress tensor Tσ, where σ represents the particle species (electrons

or ions). The full derivation is lengthy, but we will list the results.

Electron Fluid Moment Equations (de
dt
≡ ∂

∂t
+ ue·5)

Density :
dene
dt

= −ne(5 · ue) (3.4)

Momentum : mene
deue
dt

= −nee[E + ue×B]−5pe (3.5)

Energy :
3

2
ne
deTe
dt

= −neTe(5 · ue) (3.6)

Ion Fluid Moment Equations (di
dt
≡ ∂

∂t
+ ui·5)

Density :
dini
dt

= −ni(5 · ui) (3.7)

Momentum : mini
diui
dt

= −niZie[E + ui×B]−5pi (3.8)

Energy :
3

2
ni
diTi
dt

= −niTi(5 · ui) (3.9)

where Zi is the ion atomic number, E and B are the electric and magnetic fields,

and pσ is the scalar pressure. We have also used that the acceleration due to
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the Lorentz force is qσ
m

[E + uσ×B]. The two-fluid equations sometimes include

terms for the frictional force between particles R ∼ (ue − ui) or energy exchange

Q ∼ (Te − Ti), where Tσ is the temperature of each species, but these can be

neglected in most systems. It should also be noted that the equations for the

zeroth moment are equivalent to the continuity equation, since the convective

derivative is dσ
dt
≡ ∂

∂t
+ uσ·5, so that

dσnσ
dt

= −nσ(5 · uσ)⇐⇒ ∂nσ
∂t

+5 · (nσuσ) = 0. (3.10)

3.3.3 Magnetohydrodynamics

Magnetohydrodynamics is a model of plasma behavior based on the center of

mass quantities for all particles (both ions and electrons). In two-fluid theory, the

particle motion was described by the mean velocity of each separate species ui,

ue. In MHD, two new “velocity-like” variables are defined that are each a linear

combination of ui and ue. This description also requires that we use the center

of mass pressure p. The first new variable is the current density, which describes

the relative velocity between ions and electrons

J =
∑
σ

nσqσuσ

and the second new variable is the center of mass velocity

U =
1

ρ

∑
σ

mσnσuσ
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where the total mass density is

ρ=
∑
σ

mσnσ.

The MHD equations can be derived from the Vlasov model, in a similar manner

to the two-fluid equations. Again, moments of the Vlasov equation are taken, but

they are now averaged over the momentum of all particles, by first multiplying

by mσ and summing over the particle species σ before integrating over velocity.

For example, the first moment of the Vlasov equation, with the acceleration due

to the Lorentz force, is given by the integral

∂

∂t

∑
σ

mσ

∫
vfσ(v,x, t)dv+

∂

∂x
·
∑
σ

∫
mσv · vfσ(v,x, t)dv

+
∑
σ

qσ

∫
v
∂

∂v
· [(E + v×B)fσ(v,x, t)] = 0.

(3.11)

The details of the integration are not shown here, but the results can be summa-

rized as follows:

Center of Mass Fluid Moment Equations

Continuity Equation :
∂ρ

∂t
+5 · (ρU) = 0 (3.12)

Momentum : ρ

(
∂

∂t
+ U · 5

)
U = J×B−5p+ F (3.13)

Energy :
d

dt

(
p

ργ

)
= (γ − 1)ηJ2 (3.14)
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Maxwell’s Equations

Faraday’s Law : 5× E = −∂B

∂t
(3.15)

Ampere’s Law : 5×B = µJ (3.16)

Ohm’s Law : E + U×B =ηJ (3.17)

where γ = (N + 2)/N , N is the number of dimensions of the system, and η is the

plasma’s electrical resistivity (or equivalently, the magnetic diffusivity). The term

F =

(∑
σ

nσqσ

)
E is usually neglected in MHD, since over large spatial scales the

plasma is effectively neutral and thus
∑
σ

nσqσ = 0.

The ideal MHD regime occurs when resistive effects are negligible, and thus the

ηJ term is small compared to the other terms in Ohm’s Law and can be effectively

ignored. In such cases, the plasma is considered to be perfectly conducting.

3.4 Toroidal Fields in Plasma

It is important to mention the special role of toroidal topology in plasma

physics. Toroidal magnetic fields are ubiquitous in plasma physics, and are found

in many physical systems from stars to fusion reactors. The reason this specific

field topology is so often found in magnetized plasma can be expressed as a spe-

cial case of the Poincaré-Hopf Theorem. It is straightforward to show that the
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magnetic surfaces form a family of nested toroidal surfaces in the magnetostatic

case, but the result also holds for fields in steadily diffusing plasma [50].

A plasma in static equilibrium is described by the equations

∇p = j×B (3.18)

∇×B = j (3.19)

∇ ·B = 0 (3.20)

where B is the magnetic field, j is the current, and p is the scalar pressure. Taking

the dot product of B and Eqn. (3.18) yields the condition

B · ∇p = 0. (3.21)

Thus, each magnetic surface corresponds to a constant pressure surface, given by

p = P [51].

The Ponicaré-Hopf Theorem relates the number of zeroes of a vector field on a

manifold to the Euler characteristic of the manifold. A formal statement follows

Theorem. Let M be a compact orientable differentiable manifold.
Let v be a vector field on M with isolated zeroes. If M has boundary,
then we insist that v be pointing in the outward normal direction along
the boundary. Then we have the formula∑

i

indexv(xi) = χ(M)

where the sum of the indices is over all the isolated zeroes of v and
χ(M) is the Euler characteristic of M .

For a surface of constant pressure that lies in a bounded volume of space and

has no edges, if the vector field (either B or j) vanishes nowhere on the surface,
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then we have χ(M) = 0. The only manifold that has χ(M) = 0 and is realizable

in physical space is a torus. (A Klein bottle or a Möbius strip are non-physical

manifolds with χ(M) = 0.) The proof of this theorem is quite long, but it is

possible to get some intuition for where it comes from by examining a manifold

with χ(M) 6= 0 such as a sphere. A common analogy is to think of the vector field

lines along a given constant pressure surface as strands of hair. On a spherical

surface, all the hair cannot lay flat on the surface at every point. There must

always be at least one point from which the hair spirals out. (Actually two points

on a sphere, so that χ(M) = 2.) At these points Eqn. (3.18) is not satisfied.

In other words, there is no smooth vector field on a topological sphere with no

sources or sinks, but it is possible for such a field to exist on a torus.

Thus, if we seek a non-trivial magnetic field topology, the field lines must lie

on nested toroidal surfaces. We will find in the next chapter that these toroidal

fields also possess field lines that wind around the toroidal surfaces in linked and

knotted configurations.
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Knotted Fields in Plasma

We present a class of topological plasma configurations characterized by their

toroidal and poloidal winding numbers, nt and np respectively. The special case

of nt = 1 and np = 1 corresponds to the Kamchatnov-Hopf soliton, a magnetic

field configuration everywhere tangent to the fibers of a Hopf fibration so that the

field lines are circular, linked exactly once, and form the surfaces of nested tori.

We show that for nt ∈ Z+ and np = 1 these configurations represent stable, local-

ized solutions to the magnetohydrodynamic equations for an ideal incompressible

fluid with infinite conductivity. Furthermore, we extend our stability analysis by

considering a plasma with finite conductivity and estimate the soliton lifetime in

such a medium as a function of the toroidal winding number. We will also discuss

the evolution of these fields in simulations using full resistive MHD.
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4.1 Topological Solitons in Condensed Matter

Systems

Hopfions have been shown to represent localized topological solitons in many

areas of physics - as a model for particles in classical field theory [3], fermionic soli-

tons in superconductors [52], particle-like solitons in superfluid-He [16], knot-like

solitons in spinor bose-einstein (BE) condensates [17] and ferromagnetic mate-

rials [53], and topological solitons in MHD [5]. The Hopf fibration can also be

used in the construction of finite-energy radiative solutions to Maxwell’s equations

and linearized Einstein’s equations [10,11]. Some examples are Ranada’s null EM

hopfion [7,18] and its generalization to torus knots [8, 19,54].

Topological solitons are metastable states. They are not in an equilibrium,

or lowest energy state, but are shielded from decay by a conserved topological

quantity. The energy E is a function of a scale factor, typically the size R of the

soliton, so that the field could decrease its energy by changing this parameter.

However, the topological invariant fixes the length scale and thus the energy. In

condensed states (superconductors, superfluids, BE condensates, and ferromag-

nets) the topological structure is physically manifested in the order parameter,

which is associated to a topological invariant. For example, the hopfion solutions

in ferromagnets are such that the Hopf fibers correspond to the integral curves of
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the magnetization vector ~m. The associated Hopf invariant is equal to the linking

number of the integral curves of ~m.

For many systems the solution can still decay by a continuous deformation

while conserving the topological invariant. Another physical stabilization mech-

anism is needed to inhibit collapse [55]. For example, this can be achieved for

superconductors with localized modes of a fermionic field [56], for superfluids by

linear momentum conservation [16], for BE condensates with a phase separation

from a second condensate [57], and for ferromagnets with conservation of the spin

projection Sz [58].

4.2 Topological Solitons in MHD

In MHD, the topological structure is present in the magnetic field. The topo-

logical soliton of Kamchatnov has a magnetic field everywhere tangent to a Hopf

fibration, so that the integral curves of the magnetic field lie on nested tori and

form closed circles that are linked exactly once. The Hopf invariant is equal to the

linking number of the integral curves of the magnetic field, which is proportional

to the magnetic helicity. In addition to the topological invariant, another con-

served quantity is required. MHD solitons can be stabilized if the magnetic field

has a specific angular momentum configuration which will be discussed below.
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Because of the importance of topology in plasma dynamics, there has previ-

ously been interest in generalizing the Kamchatnov-Hopf soliton [59]. The topol-

ogy of field lines has been shown to be related to stability of flux tube configura-

tions, with the helicity placing constraints on the relaxation of magnetic fields in

plasma [60, 61]. Magnetic helicity gives a measure of the structure of a magnetic

field, including properties such as twisting, kinking, knotting, and linking [38,62].

Simulations have shown that magnetic flux tubes with linking possess a longer

decay time than similar configurations with zero linking number [63–65]. Re-

cently, higher order topological invariants have been shown to place additional

constraints on the evolution of the system [60,66,67]. The work presented in this

chapter distinguishes itself from these topological studies of discrete flux tubes in

the sense that we are considering the topology and stability of continuous, space-

filling magnetic field distributions. Furthermore, for the ideal case our results are

analytic, rather than based on numerical simulations.

There are many applications where magnetic field topology has a significant

effect on the stability and dynamics of plasma systems. For example, toroidal

magnetic fields increase confinement in fusion reactors [68, 69], and solving for

the behavior of some magnetic confinement systems is only tractable in a coordi-

nate system based on a known parameterization of the nested magnetic surface

topology [69–71]. In astrophysics, the ratio of the toroidal and poloidal wind-

ing of the internal magnetic fields impacts many properties of stars, including
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the shape [72, 73] and momentum of inertia [74], as well as the gravity wave sig-

natures [75] and disk accretion [76] of neutron stars. The new class of stable,

analytic MHD solutions presented in this chapter may be of use in the study of

fusion reactions, stellar magnetic fields, and plasma dynamics in general.

The MHD topological soliton is intimately related to the radiative EM hopfion

solution. The EM hopfion constructed by Rañada is a null EM solution with

the property that the electric, magnetic, and Poynting vector fields are tangent

to three orthogonal Hopf fibrations at t = 0. The electric and magnetic fields

deform under time evolution, but their field lines remain closed and linked with

linking number one. The Hopf structure of the Poynting vector propagates at the

speed of light without deformation. The EM hopfion has been generalized to a

set of null radiative fields based on torus knots with an identical Poynting vector

structure [19]. The electric and magnetic fields of these toroidal solutions have

integral curves that are not single rings, but rather each field line fills out the

surface of a torus.

The time-independent magnetic field of the Kamchatnov-Hopf soliton is the

magnetic field of the radiative EM hopfion at t = 0

Bsoliton(x) = Bhopfion(t = 0,x). (4.1)

The soliton field is then sourced by a stationary current

j(x) =
1

µ0

∇×Bsoliton(x). (4.2)

51



Chapter 4. Knotted Fields in Plasma

We will use this relationship, along with the generalization of the EM hopfion to

toroidal fields of higher linking number, in order to generalize the Kamchatnov-

Hopf topological soliton to a class of stable topological solitons in MHD. We will

also discuss how the helicity and angular momentum relate to the stability of

these topological solitons.

4.3 Generalization of Kamchatnov-Hopf Soliton

We construct the generalized topological soliton fields using Eqns. (4.1) and

(4.2) applied to the null radiative torus knots. The time-independent magnetic

field of the soliton is identical to the magnetic field of the radiative torus knots

at t = 0. The magnetic field is sourced by a current, resulting in a stationary

solution.

The torus knots are constructed from the Euler potentials in Eqns. (2.25) and

(2.26)

α =
(r2 − t2 − 1) + 2ız

r2 − (t− ı)2

β =
2(x− ıy)

r2 − (t− ı)2

where r2 = x2 + y2 + z2. The magnetic field of the torus knots is obtained from

the Euler potentials for the Riemann-Silberstein vector F = E + ıB.1

1Note that the Riemann-Silberstein construction is a non-standard use of Euler potentials.
We are following the method in Ref. [19].
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Figure 4.1: One lobe of the field configuration for np = 1 and nt = 2. (a) A
single, closed core magnetic field line. (b) The core field line is surrounded by
nested toroidal surfaces, shown in cross section. (c) A complete magnetic surface
filled entirely by one field line.

The solitons are found by taking the magnetic field of the torus knots at t = 0

B = Im[∇αnt ×∇βnp ] |t=0 . (4.3)

Each (nt, np) with nt, np = 1, 2, 3... represents a solution to Maxwell’s equations.

A single magnetic field line fills the entire surface of a torus. These tori are nested

and each degenerates down to a closed core field line that winds nt times around

the toroidal direction and np times around the poloidal direction, as illustrated

in Figure 4.1. A complete solution for a given (nt, np) is composed of pairs of

these nested surfaces that are linked and fill all of space as shown in Figure 4.2.

For ng = gcd(nt, np), the solution is a magnetic field with 2ng linked core field

lines (knotted if nt > 1 and np > 1). If nt = 1 and np = 1, the solution is the

Kamchatnov-Hopf soliton.
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Figure 4.2: Topological solitons in MHD with np = 1 and (a)nt = 2, (b)nt = 3,
and (c)nt = 4. A single magnetic field line fills out each of the linked, toroidal
surfaces.

We will analyze these fields and how the linking of field lines affects the stability

of magentic fields in plasma. In particular, for np = 1 and nt ∈ Z+, we will show

that these fields can be used to construct a new class of stable topological solitons

in ideal MHD. The solutions with np 6= 1 are not solitons in plasma, and their

instability will be discussed in Section 4.4.1.

4.4 Stability Analysis

In this section we assume the plasma is an ideal, perfectly conducting, in-

compressible fluid. In a fluid with finite conductivity, the magnetic field energy

diffuses. Under this condition, one can estimate the lifetime of the soliton as will

be shown in Section 4.5.

First we consider the case where the poloidal winding number np = 1 and

the toroidal winding number nt is any positive integer. These will be shown to
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represent stable topological solitons in ideal MHD. In the next section, we will

consider the solutions with np 6= 1. Using the method in this chapter, these do

not represent stable solitons, and we will discuss how this instability relates to

the angular momentum.

To analyze the stability of these solutions, following the stability analysis in

Ref. [5]2, we study the two scaled quantities of the system - the length scale R

which corresponds to the size of the soliton and B0 which is the magnetic field

strength at the origin. (The length scale R is also the radius of the sphere S3

before stereographic projection.) First we change to dimensionful coordinates by

taking

{x, y, z} →{ x
R
, y
R
, z
R
} (4.4)

|B (0, 0, 0) | =B0. (4.5)

The stability depends on three quantities - energy, magnetic helicity, and angular

momentum - which are functions of R and B0. For a perfectly conducting plasma,

the magnetic helicity hm is an integral of motion and is thus conserved. The

magnetic helicity is also a topological invariant proportional to the linking number

of the magnetic field lines. If the field can evolve into a lower energy state by a

continuous deformation (therefore preserving the topological invariant) then it

will be unstable. However, we will show that such a deformation does not exist

2Note that Ref. [5] uses CGS units and we use SI units in our analysis. The reference also
has a typo - Eqn. (45) should have a factor of R2 instead of R.
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because the angular momentum M is also conserved and serves to inhibit the

spreading of the soliton.

The magnetic helicity is defined as

hm =

∫
A ·Bd3x (4.6)

where A = Im[αnt∇βnp ] |t=0 is the vector potential. From Eqns. (2.25)-(4.3), it

follows that

hm =
2nt

(nt + 1)
π2B2

0R
4. (4.7)

The MHD equations for stationary flow are satisfied for a fluid with velocity

v = ± B

(µ0ρ)
1
2

. (4.8)

The energy of the soliton is given by

E =

∫ (
ρv2

2
+
B2

2µ0

)
d3x (4.9)

=

∫
B2

µ0

d3x

so that

E =
2ntπ

2

µ0

B2
0R

3 (4.10)

∝hm
R
.
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The angular momentum is

M =ρ

∫
[x× v]d3x (4.11)

=

(
ρ

µ0

)1/2

4ntπ
2B0R

4ŷ

where we took the positive velocity solution. We find that the conserved quantities

hm and M fix the values of R and B0,

R =

(
1

8π2nt(nt + 1)

(
µ0

ρ

)
|M |2

hm

) 1
4

, (4.12)

B0 =2nt(nt + 1)

(
ρ

µ0

)1/2
hm
|M |

,

thus inhibiting energy dissipation. This shows that the solution given in Eqns.

(2.25)-(4.3) (and shown in Figure 4.2) represents a class of topological solitons

characterized by the parameter nt ∈ Z+ for np = 1.

4.4.1 Angular Momentum and Instability for np 6= 1

For np 6= 1, the angular momentum for all nt is zero. Some examples of fields

with nt = 1 and different np values are shown in Figure 4.3. The field lines fill

two sets of linked surfaces. For a given pair of linked surfaces, the field in each

lobe wraps around the surface in opposite directions. In Figure 4.3 the red and

blue surfaces wind in opposite directions. This means that the contribution to

the angular momentum of the two field lines cancels. In this case the length scale
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is not fixed by the conserved quantities. The energy can therefore decrease by

increasing the radius and the fields are not solitons.

Figure 4.3: The magnetic surfaces for nt = 1 and (a)np = 2, (b)np = 3, and
(c)np = 4. Solutions with np 6= 1 have zero angular momentum and are there-
fore not stable solitons. The magnetic field lines in each lobe wind in opposite
directions, represented by the red and blue surfaces.

4.5 Finite Conductivity and Soliton Lifetime

To include losses due to diffusion, we need to consider a plasma with finite

conductivity. We can estimate the soliton lifetime by dividing the energy by

dE/dt, calculated before any energy dissipation [5]. Since this is the maximum

rate of energy dissipation, we can obtain a lower bound on the time it takes for

the total energy to dissipate. Thus,

dE

dt
=

1

σ

∫
j2d3x (4.13)

=(3nt + 7n2
t + 5n3

t )
π2B2

0R

µ2
0σ

. (4.14)
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The resulting lifetime is

tnt ≥
3nt

3nt + 7n2
t + 5n3

t

µ0σR
2. (4.15)

For higher nt, the lifetime decreases although the helicity in Eqn. (4.7) increases.

This result is interesting as we would have expected from the results regarding

flux tubes mentioned previously that the lifetime would increase with increasing

helicity.

4.6 Numerical Methods

The new class of solitons described here is completely stable in ideal MHD. The

next step is to numerically study their stability in a resistive, compressible, and

viscous plasma. I would like to acknowledge Chris B. Smiet for working with me

to study the stability of these solitons in full MHD and running the simulations.

The simulations were done with Pencil Code [77], which solves the full MHD

equations using finite-difference methods to sixth-order in space and third-order

in time. We assume an isothermal plasma, thus we take the background pressure

to be the pressure for an isothermal gas p = ρc2
s, where ρ is the density and c2

s is

the speed of sound.

The equation of motion for an isothermal plasma is

DU

Dt
= −c2

s∇ ln ρ+ J×B/ρ+ Fvisc (4.16)
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where U is the fluid velocity and D
Dt
≡ ∂

∂t
+ U · ∇ is the convective derivative,

which represents the rate of change of a quantity as experienced by an observer

that is moving with the flow. The viscous force is

Fvisc = ρ−1∇ · 2νρS

where ν is the kinematic viscosity and S is the traceless rate of strain tensor

Sij = 1
2
(Ui,j + Uj,i)− 1

3
δij∇ ·U.

The continuity equation ∂ρ/∂t +∇ · ρU = 0 in terms of the logarithmic density

has the form

D ln ρ

Dt
= −∇ ·U. (4.17)

The induction equation

∂B

∂t
= ∇× (U×B− ηJ)

can be written terms of the vector potential as

∂A

∂t
= U×B + η∇2A (4.18)

where η is the magnetic diffusivity, which we have assumed to be constant and

is related to the electrical conductivity σ by η = 1/(µ0σ). The code solves Eqns.

(4.16), (4.17), and (4.18) for U, ρ, and A, from which the magnetic field is calcu-

lated by B = ∇×A.
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Eqn. (4.18) assumes that the vector potential is in the resistive gauge, so that

the divergence of A generates a resistive term

A0 = η∇ ·A (4.19)

where A0 is the electrostatic potential. Choosing this gauge removes an extra

term from the induction equation, which is equivalent to putting a constraint on

the components of the vector potential that stabilizes the diffusion of A in the

numerical simulations [78]. Although Pencil Code has built-in functionality for

several different gauge choices, the resistive gauge is typically the most convenient

for numerical reasons [79, 80]. Studies of magnetic helicity flux have shown that

the results of simulations performed with Pencil Code in different gauges produce

the same results [80].

The simulation domain is a square box of size (2π)3 with 2563 meshpoints.

All quantities are measured in dimensionless units, where the density is scaled

by units of the initial density ρ0, speed by the isothermal speed of sound cs, the

magnetic field by (µ0ρ0c
2
s)

1/2, and length by units of 1/k, where k = (2π/L) is the

smallest wavenumber that will fit into the box length L. This also gives time is

in dimensionless units.3

The boundary is taken to be perfectly conducting, so that B · n̂ = 0 where

n̂ is the vector normal to the simulation boundary. This is implemented in the

3For example, if one chooses SI units then the wavenumber is k = 1 meters−1, the box has
side length L = 2π meters, and each unit of time is one second.
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code by fixing the two tangential components of the vector potential A at the

boundary to be zero. In ideal MHD, this boundary condition would ensure that

the magnetic helicity is conserved (and also gauge invariant) since the magnetic

field lines do not have endpoints on the boundary. Thus, in our simulations any

changes in hm are due to the resistive term −ηJ in the induction equation.

4.7 Topological Solitons in Simulations

The preliminary results of simulations for a field with the (2, 1) soliton as its

initial configuration are presented here. Figure 4.4 shows a plot of the average

magnetic field energy (normalized to the energy at t = 0), average normalized

helicity (helicity divided by the magnetic field energy), and average helicity (nor-

malized to the helicity at t = 0). These quantities are shown as a function of time

for t = 0 to t = 250. The average magnetic field strength and average helicity first

decrease rapidly then stabilize, indicating that there is an initial fast reconnection

phase during which the topology changes rapidly. Then the field reaches a state

with a slow decay in the energy and a slow change in topology. The magnetic

helicity should limit the decay of the field energy [81], and indeed we see that the

helicity normalized to energy initially increases then levels off. This shows that

the field decays more rapidly than the helicity at the beginning but then they

decay steadily at a similar rate.
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Figure 4.4: The results from a numerical simulation of the nt = 2 and np = 1
topological soliton. The plot shows the average magnetic field strength (blue),
average normalized helicity (red), and average helicity (black) as a function of
time.

To examine this process in more detail, consider Figure 4.5 which shows snap-

shots of the magnetic field lines of the (2, 1) soliton during the early reconnection

phase, at time steps from t = 0 to t = 62. The soliton initially has a double

toroidal structure with field lines that lie on linked pairs of nested surfaces, or

more specifically Figure 4.5a has the same structure as Figure 4.2a. Then the

field reconfigures itself and by t = 24 (Figure 4.5e) the double toroidal structure

begins to deteriorate as the linking of the field lines begins to break. By t = 62
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(Figure 4.5g) the field has settled into a structure with single toroidal surfaces. Af-

ter this point, the variation in the field for each time step is small. This suggests

that perhaps there are other solutions based on single toroidal topologies with

greater stability in realistic plasma systems. Currently, we are working on gen-

erating new classes of topological solitons in ideal MHD and using both analytic

and numerical methods to investigate their stability.

4.8 Summary

We have constructed a new class of topological solitons in plasma, which con-

sist of two linked core field lines surrounded by nested tori that fill all of space.

The solitons are characterized by the toroidal winding number of the core field

lines and have poloidal winding number one in order to have non-zero angular

momentum. We have shown that the conservation of linking number and angu-

lar momentum give stability to the solitons in the ideal case. We are currently

studying the stability of these solutions in a resistive plasma using numerical sim-

ulations. Finally, we note that there may be related generalizations of the hopfion

fields in other physical systems, such as superfluids, Bose-Einstein condensates,

and ferromagnetic materials.
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Figure 4.5: A numerical simulation of the topological soliton with winding num-
bers nt = 2 and np = 1. The magnetic field lines are shown for a-k t = 0 to t = 60
with time steps of ∆t = 6, and l t = 62 (note the last time step is shorter). The
double toroidal configuration undergoes a fast reconnection phase and quickly set-
tles into a structure with single toroidal surfaces. Future time steps involve only
small variations in the field structure.
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Spinors

The second part of this thesis will focus on generalizing linked and knotted electro-

magnetic fields to analogous gravitational solutions and characterizing the topol-

ogy of their lines of force. To extend the topologically non-trivial field configu-

rations from electromagnetism to fields of spin-N we will apply complex contour

integral methods using generating functions over twistor space. The spin-2 fields

are then interpreted as solutions to the linearized Einstein equation representing

gravitational radiation. The new solutions we will construct are the analogous

gravitational fields corresponding to the null EM hopfions, the null EM torus

knots, and the non-null EM hopfions. These field configurations and the anal-

ysis of their topological properties will be presented in Chapters 9, 10, and 11

respectively.

First, we give a review of some of the background material related to twistor

theory. The heart of the twistor program is the relationship between SL(2,C)

spinors and light-like 4-vectors [82]. As preparation for understanding the twistor
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integral methods used to construct solutions to the spin-N field equations, we will

discuss SL(2,C) spinors as representations of the universal cover of the Lorentz

group and explore the underlying spin geometry of Minkowski space [39].

5.1 Introduction to SL(2,C) Spinors

SL(2,C) is the group of complex 2×2 matrices with unit determinant. Choos-

ing the standard basis to be the extended Pauli matrices we define the following

symbols, referred to as the Infeld-van der Waerden symbols1

σAA
′

0 ≡ 1√
2

1 0

0 1

 σAA
′

1 ≡ 1√
2

0 1

1 0



σAA
′

2 ≡ 1√
2

 0 i

−i 0

 σAA
′

3 ≡ 1√
2

1 0

0 −1

 .

and the inverse symbols σaAA′ are defined by

σAA
′

0 = σ0
AA′ σAA

′
1 = σ1

AA′ σAA
′

2 = −σ2
AA′ σAA

′
3 = σ3

AA′ .

1We reserve i and j for spatial indices, other lower case Latin letters for Lorentz indices, upper
case Latin letters and their primed variants for spinor and conjugate spinor indices respectively,
and lower case Greek letters for twistor indices.
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We will now consider the null structure of M in terms of an SL (2,C) spinorial

structure. To each 4-vector xa ∈M there corresponds a Hermitian matrix xAA
′

xAA
′

= xaσAA
′

a

=
1√
2

 x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

 .

It useful to note

detxAA
′

= 1
2

[
(x0)2 − (x1)2 − (x2)2 − (x3)2

]
(5.1)

= 1
2
xaxa. (5.2)

Thus we have

detxAA
′
> 0 if xa is a timelike vector (5.3)

= 0 if xa is a null vector (5.4)

< 0 if xa is a spacelike vector. (5.5)

(5.6)

Consider the transformation

x̃AA
′ → ΛA

Bx
BB′

ΛA′

B′ (5.7)

where ΛA
B ∈ SL(2,C) and ΛA′

B′ = ΛA
B act on the unprimed and primed spin

spaces, respectively. Note that elements of SL(2,C) have unit determinant, so

according to Eqn. (5.2), acting on any xAA
′

by an SL(2,C) matrix preserves the
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determinant, and thus the Minkowski pseudo-norm. So we have that the action of

SL(2,C) on M represents a set of linear transformations that preserve the metric,

or the Lorentz transformations. However, from Eqn. (5.7) it is clear that Λ and

−Λ represent the same element of SO(1, 3) so the correspondence is two-to-one.

The transformation in Eqn. (5.7) also preserves the direction of the time axis,

as shown by

x̃0 = σ0
AA′ΛA

Bσ
BB′

0 ΛA′

B′ (5.8)

= δAA′ΛA
Bδ

BB′
ΛA′

B′ (5.9)

=
∥∥Λ0

0

∥∥2
+
∥∥Λ1

0

∥∥2
+
∥∥Λ0

1

∥∥2
+
∥∥Λ1

1

∥∥2
(5.10)

> 0. (5.11)

So finally we can conclude that SL (2,C) is a 2-1 cover of the proper orthochronous

Lorentz group

SO+(1, 3) ' SL(2,C)/Z2. (5.12)

We can reparameterize the null structure of M in terms of an SL (2,C) spinorial

structure since

1. each 4-vector xa ∈M corresponds to a Hermitian matrix xAA
′
, and

2. if xaxa = 0, then det xAA
′
= 0.
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It then follows that for null hermitian xAA
′

there exists an SL (2,C) spinor πA
′

such that

xAA
′
= πAπA

′
= xaσAA

′

a . (5.13)

The inner product on these spin spaces is determined by invariance under SL (2,C)

and is given by the Levi-Civita spinor

εAB = εA′B′ = εAB = εA
′B′

(5.14)

which is given in the canonical basis as

εAB =

 0 1

−1 0

 . (5.15)

The raising and lowering of indices in terms of the ε symbol is defined by

ψA = εABψB

ψB = ψAεAB,

with similar relationships for the primed spin space.

The εAB symbol can be thought of as the spinor counterpart of the metric

tensor. They are related by

gab = εABεA′B′σ AA′

a σ BB′

b . (5.16)
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5.1.1 Spinor Decomposition of a Bivector

The field strength tensor and curvature tensor can be written in terms of their

spinor decompositions [83]. Consider a bivector Wab = −Wba that corresponds

to the spinor Wab → WAA′BB′ . The relative order of the primed and unprimed

indices is irrelevant, so we can rearrange them

WAA′BB′ = WABA′B′ . (5.17)

The anti-symmetry in the Lorentz indices allows us to write

WABA′B′ = WAB[A′B′] +W[AB]A′B′

= µABεA′B′ + εABµA′B′ (5.18)

with the symmetric spinor

µAB =
1

2
W C′

(AB)C′ . (5.19)

The dual of W is

∗Wab =
1

2
εabcdW

cd (5.20)

and the spinor equivalent of εabcd is given by

εAA′BB′CC′DD′ = i(εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′). (5.21)
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Using the above and with some algebra we can decompose W into the anti-self-

dual (ASD) and self-dual parts (SD) of W

(W+)ab =
1

2
(Wab + i ∗Wab)

(W−)ab =
1

2
(Wab − i ∗Wab)

and we find W+ and W− are

(W+)ABA′B′ = εABµA′B′

(W−)ABA′B′ = µABεA′B′ .

If W is the electromagnetic field strength tensor Fab, then the spinor fields µ̄AB

and µA′B′ satisfy the source-free field equations.

We can follow a similar procedure for the curvature spinor

Rabcd = RAA′BB′CC′DD′ . (5.22)

Since Rabcd is anti-symmetric in ab we can use the decomposition in Eqn. (5.18)

to write

Rabcd = 1
2
R X′

AX′B cdεA′B′ + 1
2
R X
XA′ BcdεAB. (5.23)

Using the anti-symmetry in cd, we can apply the bivector decomposition again to

obtain

Rabcd = X̄ABCDεA′B′εC′D′ + Φ̄ABC′D′εA′B′εCD (5.24)

+ΦA′B′CDεABεC′D′ +XA′B′C′D′εABεCD, (5.25)
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where

XABCD = 1
4
R X′ Y ′

AX′B CY ′D (5.26)

ΦABC′D′ = 1
4
R X′ Y
AX′B Y C′ D′ . (5.27)

In vacuum, Φ = Φ̄ = 0 yielding the Weyl tensor

Cabcd = X̄ABCDεA′B′εC′D′ +XA′B′C′D′εABεCD. (5.28)

5.2 SL(2,C) Spinor Geometry

The geometry underlying the SL(2,C) spinor structure is closely related to

the Celestial sphere of an observer in M [84]. The Celestial sphere is the Riemann

sphere corresponding to the null histories coincident with the origin. Figure 5.1a

illustrates this relationship. The null cone of the origin intersects the x0 = τ

hyperplane, with each null ray meeting this hyperplane exactly once. This inter-

section is described by the equation

(x1)2 + (x2)2 + (x3) = τ 2. (5.29)

This mathematically represents a 2-sphere which can be physically interpreted as

the set of light rays that are moving inward toward the observer for τ < 0, until it

collapses upon the origin at τ = 0, and then moves outward away from the origin

for τ > 0.
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Figure 5.1: The flagpole relation is the central relation in the spin geometry of
M. Here we see that to every 2-spinor πA

′
there corresponds a light-like 4-vector

ya called its flagpole. a When the lightcone of the origin (violet) is intersected
with the space-like hyperplane t = τ (dark grey), we obtain the Minkowski space
representation of an expanding sphere of light emitted at the origin, called the
Celestial sphere (blue). Any light-like 4-vector ya (white) may be represented by
the unique point where it meets this sphere (yellow). b Analogous to the pure
state representation of the Bloch sphere, the Celestial sphere may be put in 1-1
correspondence with the set of 2× 2 Hermitian matrices with trace equal to

√
2τ .

The 2-spinor πA
′
is taken as a homogeneous coordinate on the complex plane (light

grey) of the sphere ζ = π1′/π0′ (green). The flagpole of πA
′

is then identified with
the 4-vector yAA

′
written in flagpole form as a 2× 2 Hermitian matrix.

To relate the Celestial sphere to the spinor structure of SL(2,C), we associate

to it the Riemann sphere parameterized by the complex coordinate

ζ =
x1 + ıx2

τ − x3
(5.30)

as in Figure 5.1b. The Möbius group is the isometry group of the Riemann

sphere, and thus through stereographic projection is also the isometry group of

null rays passing through the origin of M. This means that the action of the
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proper orthochronous Lorentz transformations on the Celestial sphere are Möbius

transformations on its Riemann sphere. SL(2,C)/Z2 is related to the Möbius

group through the homomorphism with SO+(1, 3).

A general Möbius transformation has the form

ζ̃ =
aζ + b

cζ + d
(5.31)

with a, b, c, d ∈ C and ad− bc = 1. We can treat ζ as a homogeneous coordinate

using the 2-spinor πA
′

so that

ζ =
π1′

π0′
. (5.32)

This homogeneous coordinate allows us to represent Eqn. (5.31) as a fractional

linear transformation on an SL(2,C) spinor πA
′
.

π̃1′

π̃0′
=
aπ0′ + bπ1′

cπ0′ + dπ1′
(5.33)

where πA
′

goes to π̃A
′

via the SL(2,C) transformation given by the matrixa b

c d

 . (5.34)

To obtain the coordinates for xa we invert the stereographic projection given by

Eqn. (5.30) using the homogeneous coordinate in Eqn. (5.32), where we choose

75



Chapter 5. Spinors

τ = (π0π0′ + π1π1′)/
√

2 as the radius of the Celestial sphere. The result is

x0 =
1√
2

(π0π0′ + π1π1′) (5.35)

x1 =
1√
2

(π0π1′ + π1π0′)

x2 =
i√
2

(π0π1′ − π1π0′)

x3 =
1√
2

(π0π0′ − π1π1′).

5.3 Spin-N Field Equations

We will now discuss the massless spin-N equations and their solutions in their

standard form (on M).

A massless particle with spin-0 satisfies the wave equation given by

�φ = 0 (5.36)

where the standard wave operator is

� = ∇AA′∇AA′ (5.37)

with the 2-spinor derivative related to the gradient operator in M (or CM) by

∇AA′
= σAA

′

a ∂a. (5.38)

The spin-1 equation describes a physical electromagnetic field, so its solution must

be a real bivector. As we showed before in Eqn. (5.18), an arbitrary real bivector
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has the spinor form

FAA′BB′ = ϕABεA′B′ + εABϕA′B′ (5.39)

where the only real degree of freedom is a SD bivector generated by the symmetric

spinor

ϕA′B′ = ϕ(A′B′). (5.40)

Now consider the source-free Maxwell equation for a SD field

∂aF+
ab = 0. (5.41)

The spinor form of this equation is

∂aF+
ab → ∇

AA′
F+
AA′BB′ (5.42)

and can be written as

∇AA′
F+
AA′BB′ = ∇AA′

εABϕA′B′ . (5.43)

The spin-1 equation is then obtained from the vanishing of Eqn. (5.43)

∇AA′
ϕA′B′ = 0. (5.44)

This generalizes to the source-free massless spin-N spinor field equation given by

∇AA′
1ϕA′

1···A′
2h

(x) = 0. (5.45)

In the case of spin-1 and spin-2 the classical field strength tensors are given by

FA′
1A

′
2 A1A2

= ϕA′
1A

′
2
εA1A2 + ϕA1A2

εA′
1A

′
2

CA′
1···A′

4 A1···A4
= ϕA′

1···A′
4
εA1A2 εA3A4 + ϕA1···A4

εA′
1A

′
2
εA′

3A
′
4
. (5.46)
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The solutions for the half-integer spin cases have no world-tensor description,

but typically are associated with a physical current given by the flagpole of the

spinor. For example, the spin-1
2

current is

ja = σAA
′

a ϕAϕA′ . (5.47)

The spin-N field equations and their physical interpretations are summarized in

Table 5.1.

Spin Field Eqn. Spinor Eqn. Physical Interpretation
0 �ϕ = 0 �ϕ = 0 Scalar Wave

−1
2

∇AA′
ϕA = 0 Neutrino (massless)

+1
2

∇AA′
ϕA′ = 0 Anti-neutrino

−1 dF = 0 ∇AA′
ϕAB = 0 Electromagnetism (LH,ASD)

+1 d ∗ F = ∗J ∇AA′
ϕA′B′ = 0 Electromagnetism (RH,SD)

−3
2

∇AA′
ϕABC = 0 Anti-gravitino

+3
2

∇AA′
ϕA′B′C′ = 0 Gravitino

−2 gbdCabcd = 0 ∇AA′
ϕABCD = 0 Gravity (LH,ASD)

+2 ∇AA′
ϕA′B′C′D′ = 0 Gravity (RH,SD)

Table 5.1: The massless linear relativistic spin-N field equations and their phys-
ical interpretation.

5.4 Spinor Classification of Tensors

One of the most useful applications of SL(2,C) spinors in physics is the clas-

sification of solutions to the spin-N field equations. These solutions are totally

symmetric spinors, and can therefore be written as a symmetrized product of 2N

one-index spinors [21]. This is referred to as the canonical decomposition. For
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example, the spin-2 solutions can be written in general as

φ(A′B′C′D′) = α(AβBγCδD) (5.48)

where αA, βB, γC , and δD are all assumed to be non-vanishing and non-proportional.

The flagpole of each one-index spinor represents a principle null direction (PND)

of the symmetric spinor. The PNDs determine the spinor uniquely, upto an overall

complex scalar.

In special cases, the PNDs coincide with each other and this degeneracy pro-

vides a classification scheme. This is most often used with real spin-1 and spin-2

fields which are associated to a field strength tensor according to Eqn. (5.46).

For the Weyl curvature spinor (and its corresponding world-tensor) this scheme is

referred to as the Petrov classification, but it can be generalized to any solutions

described by a symmetric spinor. The spinor classification of a solution is related

to its physical properties. We will be particularly interested in the relativistic

scalar invariants of the fields. These invariants contain physical information about

the field configuration [85].

In elecromagnetism, there is one complex relativistic invariant - the square of

the RS vector ~FRS = ~E + ı ~B ,

K = ~F 2
RS

= ~E2 − ~B2 + 2i ~E · ~B, (5.49)
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whose real and imaginary parts are the two invariants

P = ~E2 − ~B2 = −1

2
F · F ≡ −1

2
F abFab, (5.50)

Q = 2 ~E · ~B = −1

2
F · ∗F ≡ −1

2
F abεabcdF

cd. (5.51)

For spin-1 fields, there are two PNDs and thus two possible configurations. A

field with two degenerate PNDs is called null. A field with two distinct PNDs is

non-null. Null EM fields are characterized by both invariants P and Q vanishing,

implying that the electric and magnetic fields are orthogonal and of the same mag-

nitude (in natural units). Physically null fields are purely radiative, for example

an EM plane wave. Non-null EM fields are characterized by K = P + ıQ 6= 0. If

Q = 0, and P < 0 (or > 0), then there must exist a frame in which the field is

purely magnetic, ~E = 0 (or purely electric, ~B = 0). Finally, if Q 6= 0 then there is

no frame in which the field is purely electric or purely magnetic, but it is possible

to find a frame in which ~E and ~B are proportional. The spinor classifications of

EM solutions are summarized in Table 5.2.

Spinor Classification PND degneracy φAB Scalar Invariants
null {2} αAαB 0 scalars

K = 0
non-null {11} α(AβB) 2 scalars

K 6= 0
O {−} 0 0 scalars

K = 0

Table 5.2: The spinor classifications of the EM field strength tensor and their
properties.
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Following the analogy with EM, we can use the relationship {F ·F ,F · ∗F } →

{R ·R,R · ∗R} between the EM and gravitational “curvature” invariants to gain

physical insight into the gravitational solutions of various Petrov type.2

In the case of the gravitational curvature, the two quadratic invariants are

given by

EijEij −BijBij =
1

8
R ·R, EijBij =

1

16
R · ∗R. (5.52)

These are often combined into a single complex quantity I ≡ 1
8
(R ·R+ iR · ∗R).

The Riemann tensor differs from the EM tensor in that, in addition to its quadratic

invariants, it has two cubic invariants

A ≡ 1

16
Rab

cdR
cd
efR

ef
ab, B ≡ 1

16
Rab

cdR
cd
ef ∗R

ef
ab, (5.53)

which are similarly combined into the complex quantity J ≡ A− iB.

Just as the EM tensor invariants contain physical information about the EM

field configuration, these gravitational invariants contain analogous information

about the gravitational field configuration. If R · R = R · ∗R = 0 then the

field is purely radiative. If on the other hand R · ∗R = 0, R ·R < 0 (or > 0),

and additionally M ≡ I3/J2 − 6 ≥ 0 (this quantity being real under the other

conditions), then there must exist a frame in which the field is purely magnetic,

Eij = 0 (or purely electric, Bij = 0). Finally if R · ∗R 6= 0 then there exists no

2Note that in vacuum solutions the Weyl tensor Cabcd is equal to the Riemann tensor Rabcd.

81



Chapter 5. Spinors

frame in which the field is purely electric or purely magnetic, which we again call

intrinsic curvature.

Petrov class PND degeneracy φABCD Scalar Invariants
N {4} αAαBαCαD 0 scalars

(null) I = J = 0
D {22} α(AαBβCβD) 2 scalars

(double) I3 = 6J2

III {31} α(AαBαCβD) 0 scalars
I = J = 0

II {211} α(AαBβCγD) 2 scalars
I3 = 6J2

I {1111} α(AβBγCδD) 4 scalars
I3 6= 6J2

O {−} 0 0 scalars
I = J = 0

Table 5.3: The Petrov classifications of the Weyl curvature tensor and their
properties.

Gravitational fields are spin-2 and therefore have four PNDs. There are five

non-trivial Petrov classifications. Solutions with three or more PNDs coinciding

have all four scalars vanishing. This includes Type N fields, which have four

PNDs aligned and are the analog of null EM fields, as well as Type III, which

have three PNDs aligned. Solutions with two or more PNDs coinciding have

I3 = 6J2, resulting in only two independent scalars. These fields are the Type D,

which have two pairs of aligned PNDs and are the analog of non-null EM fields,

and Type II, which has two aligned and two other unique PNDs. Finally there is

the most general case, Type I, which has four unique PNDs and four non-trivial
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scalar invariants. The spinor classifications of the Weyl curvature are summarized

in Table 5.3. These classifications will be important later in our characterization

of knotted EM and gravitational solutions.
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Twistor Theory

Twistor theory was developed by Roger Penrose in the late 1960’s as an exten-

sion of the sl(2,C) spinor algebra [86–88]. One can think of twistor space T

as the total momentum space for massless particles in which the linear and an-

gular momentum are combined into a single object called a twistor [21]. Using

the SL(2,C) representation of light-like 4-vectors in M, we can associate each

(projective) twistor to a spinor field, with null twistors corresponding to light-like

geodesics and non-null twistors corresponding to a collection of twisting shear-free

null geodesics called a Robinson congruence [89]. The projection of a Robinson

congruence onto a constant time hyperplane forms a vector field tangent to a Hopf

fibration, suggesting that the twistor formalism will provide a convenient method

for studying the hopfion fields discussed in later chapters. We will now review

the fundamentals of twistor theory highlighting its connection to the Robinson

congruence.
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6.1 Twistors and Total Momentum

Twistor theory uses the underlying geometry of light-like histories in M to

reparameterize the momentum of massless particles by an SL (2,C) spinor struc-

ture. When linear and angular momentum are combined, this total momentum

possesses two spinorial degrees of freedom denoted by ωA and πA′ . The dependence

of the momentum structure (Mab, pc) on the origin induces a position dependence

in (ωA, πA′), making them spinor fields on space-time.

The linear 4-momentum is given by a null 4-vector pa which we take to be the

flagpole of a spinor πA
′

so that

pa = πAπA
′
σaAA′ . (6.1)

The angular momentum is a bivector and by Eqn. (5.18) is given by

Mab = (µABεA′B′ + εABµA′B′)σAA
′

a σBB
′

b (6.2)

with µAB symmetric. The Pauli-Lubanski spin vector, Sa, is defined by

Sa = ∗Mabp
b

=
1

2
εabcdM

cdpb,

and from Eqn. (6.1) and (6.2) we find

SAA′ =
1

2

(
ıµABεA′B′πBπB

′ − ıεABµA′B′πBπB
′
)
.
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Since massless particles must have spin parallel to pa we have that

ıεABµA′B′πBπB
′
= 0.

Thus, µA′B′ must take the form

µA′B′ = α(A′βB′)

where either αA′ or βA′ must be proportional to πA′ , so that

µA′B′ = iω(A′πB′)

for some spinor we will call ωA. Thus we may regard (p,M) and (ω, π) as providing

equivalent parameterizations of the dynamical content of a massless free particle.

We can summarize this equivalence by

pa ←→ πAπA
′

(6.3)

Mab ←→ iω(AπB)εA
′B′ − iεABω(A′

πB
′). (6.4)

To see how the position dependence of (p,M) induces a position dependence on

(ω, π), consider a translation of the origin of M. Under a translation by xa we

have that the translated pair
(
p̃, M̃

)
is given by

p̃a = pa

M̃ab = Mab + 2x[apb].

The dependence of the momentum structure (Mab, pc) on the origin induces a

position dependence in (ω̃, π̃), so they becomes spinor fields on space-time given
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by

π̃A
′
(x) = πA

′
(6.5)

ω̃A(x) = ωA − ixAA′
πA′ . (6.6)

A twistor Z, in twistor space T, is composed of this pair of kinematically

related SL (2,C) spinors (ωA, πA′) such that:

1. The flagpole of π represents a 4-momentum.

2. The symmetrized products of iωπ and its conjugate represent respectively

the SD and ASD components of an angular momentum tensor.

Thus, a twistor is a 4D complex object with components

Zα =
(
ωA, πA′

)
, (6.7)

or more explicitly

(
Z0, Z1

)
=

(
ω0, ω1

)
(
Z2, Z3

)
= (π0′ , π1′) .

The index structure allows one to construct a useful relationship between the

twistor psedo-norm and helicity. The twistorial dual is found by permuting the

component spinors and taking an overall complex conjugate. This is denoted by

Zα ≡
(
πA, ω

A′
)
. (6.8)
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The twistor pseudo-norm

ZαZα = ωAπA + πA′ωA
′
. (6.9)

can then be related to helicity. Recall that for a massless particle we define its

helicity, h, as the constant of proportionality between Sa and pa. Thus we find

that

SAA′ = hpAA′

implies

h =
1

2
ZαZα. (6.10)

Helicity provides for a natural geometric partition of T into three sets, T+, T−,

and N, according to whether the helicity is positive, negative, or zero.

T+ ≡
{
Zα ∈ T|h > 0

}
N ≡

{
Zα ∈ T|h = 0

}
T− ≡

{
Zα ∈ T|h < 0

}
.

Twistors from N are called null and elsewise are called non-null. Only null twistors

have a direct geometric correspondence with M. As we shall see later, helicity also

provides a mechanism for twistor quantization.
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6.2 Twistor Geometry

We begin by returning to the spinor fields given in Eqns. (6.5) and (6.6)

π̃A
′
(x) = πA

′

ω̃A(x) = ωA − ixAA′
πA′ .

The spinors
(
ωA, πA′

)
are constant spinor fields on M that are equivalent to(

ω̃A, π̃A
′
)

at the origin. They define the general solution of

∇(A
A′ ω̃

B) = 0

which is referred to as the twistor equation. Consider the result obtained by taking

ω̃ = 0

ωA = ixAA
′
πA′ . (6.11)

Eqn. (6.11) is called the incidence relation and it defines the explicit relationship

between T and M. Since the definition of angular momentum involves both posi-

tion and momentum there is a direct relation between twistors and positions in

Minkowski space. To understand this relationship, fix
(
ωA, πA′

)
∈ T and solve

Eqn. (6.11) for xAA
′
. Suppose xAA

′
0 satisfies the incidence relation, then

xAA
′
= xAA

′

0 + ζAπA
′

(6.12)

also satisfies it for all ζA ∈ CP1, where all tangent vectors va are of the form

va = σaAA′ζAπA
′
.
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For a fixed πA
′
, varying ζA in Eqn. (6.12) gives a complex 2D subspace of complex-

ified Minkowski space CM, where each element is null and any two are orthogonal.

Planes with these properties are called α-planes. (There are actually two families

of planes on CM with these properties. The first are the α-planes. The second

kind, called β-planes, is found by fixing ζA and varying πA
′

and corresponds to

dual twistors.)

The intersection of any two α-planes represents a point ya ∈ CM. For two

twistors Zα =
(
ωA, πA′

)
and Wα =

(
θA, φA′

)
, we can apply the incidence relation

to each twistor and solve the set of equations

ωA = iyAA
′
πA′

θA = iyAA
′
φA′ ,

and we obtain an explicit formula for the point corresponding to their intersection

yAA
′
=
ωAφA

′ − θAπA′

i
(
φB′πB′

) .

In general a point ya ∈ CM is represented by a complex 2D subspace in T, given

by the set of all twistors Y α whose associated α-planes intersect at ya. We say

Y α is the family of α-planes corresponding to ya and it can be written as a linear

combination of Zα and Wα

Y α = c1Z
α + c2W

α (6.13)

with c1, c2 ∈ C.
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Most α-planes contain no real points. However, substituting the incidence

relation from Eqn. (6.11) into the helicity from Eqn. (6.10) and evaluating at

xAA
′

0 we find that

h =
i

2

(
xAA

′

0 − xAA′
0

)
πAπA′ . (6.14)

If h = 0 this implies that xAA
′

0 is real. If the plane contains one real point, then it

must contain a line of them. So the remaining solutions have the form

xAA
′
= xAA

′

0 + rπAπA
′

(6.15)

for r ∈ R. This describes a null straight line in the direction of the flagpole of π̄A.

Using the hermicity of xAA
′

0 and the incidence relation we find a particular

solution

xAA
′

0 =
ωAωA

′

i(ωB
′
πB′)

. (6.16)

Combining Eqn. (6.15) with Eqn. (6.16) we arrive at the geometric representation

of a null twistor in M. If we fix the origin O of M, then the null twistor Zα

represents a light-like worldline in M parallel to the flagpole of πA′ , which meets

the lightcone of the origin along the flagpole of ωA at the point xa0 given by

xa0 =
ωAωA

′

i(ωB
′
πB′)

σaAA′ .

Figure 6.1a illustrates the correspondence described above.

For non-null twistors, Eqn. (6.11) possesses no Hermitian solutions, and thus

its direct geometric interpretation is in terms of complexified Minkowski space.
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Figure 6.1: A null twistor Zα corresponds to a light-like world-line in M. A non-
null twistor Aα possesses only an indirect correspondence in M constructed via
the direct correspondence for null twistors. a If Zα = (ωA, πA′) is a null twistor,
then it corresponds to a light-like world-line (null geodesic) in M, parallel to the
flagpole of πA′ , which meets the lightcone of the origin along the light-like ray
parallel to the flagpole of ωA. Here Ω = xAA

′
0 . b The dual of a non-null twistor

Aα is a plane in T which is uniquely defined by its intersection with N (red). c
The Minkowski space representation of the non-null twistor Aα wherein each of
the null twistors in the intersection with N appear as the null geodesics in M
which comprise the Robinson congruence. d Viewed on a hyperplane of constant
time, the Robinson congruence defines a vector field whose integral curves are the
fibers of a Hopf map projected down stereographically onto the hyperplane.

However, as shown in Figure 6.1b-c, we can obtain an indirect geometric corre-

spondence by exploiting the direct relation for null twistors. If Aα is non-null then

its dual Aα is a plane in T. This plane is uniquely defined by its intersection with

N and hence by the solution of the system

AαZ
α = 0, (6.17)

ZαZ
α = 0. (6.18)

Each point in this intersection represents a null geodesic. The set of all null

twistors in the intersection corresponds to a space-filling set of null geodesics in

M called the Robinson congruence. If we project the tangent vector field of one of
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these congruences onto a hyperplane of constant time then we find that it forms

the tangent vector field of a Hopf fibration. The integral curves of the vector field

are a special family of circles which lie on a set of space-filling nested tori. Each

circle, called a Villarceau circle, is linked with every other one exactly once. In

fact, it was the Hopf structure of the Robinson congruence which inspired Penrose

to use the name “twistor.”

The geometric correspondence defined by the incidence relation in Eqn. (6.11)

is projective. That is, a twistor Zα multiplied by any non-zero complex number

corresponds to the same object in M as Zα itself. This leads us to consider as most

fundamental the projective twistor space PT defined as T under the equivalence

relation Zα ∼ λZα for λ 6= 0. The partitions of T naturally extend to partitions

of PT, denoted by PT+, PT−, and PN. The geometric correspondences are most

succinctly characterized in terms of the partitions of PT, as shown in Figure 6.2.
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Figure 6.2: A summary of the geometric correspondences in terms of PT and M.
A point in either PT+ (red) or PT− (green) corresponds to a Robinson congruence
in M. An entire CP1 (Celestial sphere) in PN (blue) corresponds to a point in
M. Any two points which lie on a CP1 in PN correspond to light-like world-lines
which lie on the light cone of the point corresponding to that CP1.
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The Penrose Transform

As early as 1903 the importance of a complex analytic structure to the solutions

of real PDE’s began to emerge with the work of Whittaker, who found a contour

integral expression for the general solution to Laplace’s equation [90]. In 1915

Bateman, building on the results of Whittaker, extended this analytic structure

to obtain the general solution to the vacuum Maxwell equations [91]. As we saw

in the previous chapters, the twistor program of Penrose interprets the complex

analytic structure as encoding the geometry of spinor fields on space-time [92,93].

In this language the various massless linear relativistic fields are represented as

symmetric spinor fields (spin-N fields).

In 1969, Roger Penrose first gave the solution to the spin-N field equations

for massless fields of helicity h by contour integration over homogeneous twistor

wavefunctions [94]. He found that the twistor parameterization of helicity allows

for a unique perspective on the standard relativistic field theories whereby the

massless spin-h field equations are replaced by the twistor helicity equation [22].
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However, the helicity equation simply specifies the helicity associated to the mo-

mentum structure encoded in Zα. In order to treat the helicity as an operator

from which we may deduce eigenfunctions, we must first quantize twistor space.

7.1 Helicity Eigenfunctions

The approach to twistor quantization proceeds in much the same way as the

process of ‘first quantization’ in standard quantum theory. We first identify a set of

canonical variables, which we promote to operators satisfying a set of commutation

relations. Once commutation relations are imposed, we fix a representation in

which one operator simply acts to multiply functions, and the other canonical

variable becomes a differential operator. After fixing the representation, we can

then construct explicit equations for some physical observable for which we can

seek eigenfunctions parameterized by only one of the canonical variables.

‘Twistor first quantization’ follows an analogous procedure [95]. The canonical

variables Zα and Zα become operators, and we impose the commutation relations

[Zα, Zβ] = [Zα, Zβ] = 0, (7.1)

[Zα, Zβ] = δαβ . (7.2)

These relations, under the momentum correspondences from Eqns. (6.1) and

(6.2), are equivalent the standard commutation relations between Mab and pc.

Therefore, twistor quantization can be viewed as total momentum quantization.
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Now we must make a choice of representation

(Zα, Zβ) = (Zα,− ∂

∂Zβ
) (7.3)

or

(Zα, Zβ) = (
∂

∂Zα

, Zβ). (7.4)

Essentially we are specifying that the eigenfunctions be either holomorphic in the

twistor parameter Zα,

∂

∂Zβ

f = 0, (7.5)

or anti-holomorphic,

∂

∂Zα
f = 0. (7.6)

Following Penrose [22] we choose the holomorphic representation defined by Eqns.

(7.3) and (7.5). For massless free fields, helicity is the only quantum number and

so the dynamics is entirely determined by the eigenfunctions of the helicity in

Eqn. (6.10). When the twistor variables are quantized and are therefore non-

commuting, the helicity operator becomes

h =
1

4
(ZαZα + ZαZ

α)

= −1

2
(Zα ∂

∂Zα
+ 2). (7.7)
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where we have taken our chosen representation in the last step. The operator z ∂
∂z

is the Euler homogeneity operator and its eigenfunctions satisfy

z
∂

∂z
f(z) = nf(z), (7.8)

f(tz) = tnf(z). (7.9)

Thus we can consider Eqn. (7.7) as representing a shifted Euler homogeneity

operator on twistor space, and thus its eigenfunctions are homogeneous twistor

functions. The relation between the homogeneity n and the helicity eigenvalue h

is given by

n = −2h− 2. (7.10)

7.2 Penrose Transform

The Penrose transform is a helicity-dependent integral transform which maps

the holomorphic eigenfunctions of the helicity operator f (Z) onto solutions of

the spin-h field equations on M [22]. Since we are interested only in real fields of

spin-1 and spin-2, and thus fields whose SD and ASD components are conjugate,

we require only the Penrose transform for positive helicity,

ϕA′
1···A′

2h
(x) =

1

2πi

∮
Γ

πA′
1
· · · πA′

2h
f (Z) πB′dπB

′
(7.11)

where Γ is a contour on the Celestial sphere of x (Figure 5.1b) which separates the

poles of f(Z). The result is a spinor field ϕA′
1···A′

2h
(x) which satisfies the spin-h
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massless field equation

∇AA′
1ϕA′

1···A′
2h

(x) = 0

which is the Minkowski space (position space) representation that corresponds to

the equation for helicity eigenfunctions on twistor space

hf (Z) = hf (Z) . (7.12)

7.2.1 Elementary States

Since the helicity operator is a shifted Euler homogeneity operator on T, we

have that the positive helicity eigenfunctions of Eqn. (7.7) are twistor functions

of negative homogeneity. The Penrose transform is manifestly a contour integral

on the Celestial sphere of x so there must be at least two poles in order for the

integral to be non-vanishing. The simplest function which is homogeneous of

degree n = −2h− 2 with two distinct poles is

f(Z) = (AαZ
α)a(BβZ

β)b, (7.13)

where a, b < 0 and a+ b = −2h− 2.

These fields can be generalized to a class of twistor functions whose singulari-

ties define Robinson congruences on M, which are called the elementary states of

twistor theory and were introduced by Penrose

f(Z) =
(C̄γZ

γ)c(D̄δZ
δ)d

(ĀαZα)a(B̄βZβ)b
(7.14)
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where a + b − c − d = −2h − 2 [22]. The space-time fields corresponding to

the elementary states are finite-energy, and in the null case are everywhere non-

singular [93]. For integer spin fields, the expansion of a solution over the elemen-

tary states in twistor space T is related to the expansion over spherical harmonics

in M through the Penrose transform [96]. These properties have made the ele-

mentary states the topic of many studies [22, 87,97], and for many problems it is

assumed that considering the elementary states is sufficient to describe any solu-

tion [98]. We will use the elementary states to explore the fundamental role of the

Robinson congruence and its connection to the topology of physical systems.

7.2.2 Example: Scalar Penrose Transform

This example will show the calculation of the simplest non-trivial Penrose

transform for scalar fields. It will illustrate the geometry of the Penrose transform,

as well as point out some of the mathematical tricks and substitutions that will

be used later to obtain our results.

Consider the following integral expression

φ(x) =
1

2πi

∮
Γ

f (Zα) πC′dπC
′
, (7.15)

where f (Zα) given by

f (Zα) =
1

(AαZα)
(
BβZβ

) (7.16)
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is homogeneous of degree −2. The homogeneity of f is n = −2hφ − 2, hence

hφ = 0 and φ is a scalar. Let Aα =
(
AA, A

A′
)

and Bβ =
(
BB, B

B′
)

so that

AαZ
α = iAAx

AA′
πA′ + AA

′
πA′

≡ AA′
πA′

BβZ
β = iBBx

BB′
πB′ +BB′

πB′

≡ BA′
πB′ , (7.17)

where we have used the incidence relation to get Zα = (ixAA
′
πA′ , πA′). We also

have

πC′dπC
′

= πC′dπD′εC
′D′

= π0′dπ1′ − π1′dπ0′

= (π0′)
2d

(
π1′

π0′

)
. (7.18)

Moreover, the expressions

1

π0′
AA′

πA′ = A0′ +A1′
(
π1′

π0′

)
1

π0′
BB′

πB′ = B0′ + B1′
(
π1′

π0′

)
(7.19)

imply that the Penrose transform becomes an integral manifestly over CP1. Thus,

φ(x) =
1

2πi

∮
Γ

d
(
π1′
π0′

)
(
A0′ +A1′

(
π1′
π0′

))(
B0′ + B1′

(
π1′
π0′

))
=

1

2πiA1′B1′

∮
Γ

dζ

(µ+ ζ) (ν + ζ)
,

101



Chapter 7. The Penrose Transform

where the projective coordinate and poles are represented by

ζ ≡ π1′

π0′

µ ≡ A0′

A1′

ν ≡ B0′

B1′
.

After the variable substitutions the integral is a contour integral evaluated using

Cauchy’s integral theorem for a contour Γ enclosing the pole −µ

φ(X) =
1

2πiA1′B1′

∮
Γ

dζ

(µ+ ζ) (ν + ζ)

=
1

A1′B1′

1

(ν − µ)

=
2

AABA(xa − ya)(xa − ya)

where the point y is given as

yAA
′
= i

AA
′
BA −BA′

AA

ABBB
. (7.20)

The geometry of the Penrose transform is shown in Figure 7.1a. The contour

integration turns the pole structure at each point xa into a specific field configu-

ration on M. The factors (AαZ
α) and

(
BβZ

β
)

determine the poles of the twistor

function f(Z) and are represented in PT by the planes A and B. The planes

intersect in a CP1 which corresponds to some ya in CM. The point at which we

are computing the field is x and is represented in PT as another CP1 which meets

A and B at the points µ and ν. The integral is taken over the Celestial sphere of

x, as shown in Figure 7.1b, where the contour Γ separates the poles.
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Chapter 7. The Penrose Transform

Figure 7.1: Geometry of the integral in the Penrose transform. a In PT, A
and B are given as planes on which f(Z) is singular, and they intersect at a
CP1 describing a point y ∈ CM. The point x at which we are computing ϕ is
represented as a CP1 which meets A and B at the poles −µ and −ν of f(Z). b
The Celestial sphere of x, where the contour Γ separates the poles.
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Chapter 8

Computational Methods for
Gravitational Fields

In the early chapters of this thesis, we discussed electromagnetic solutions with

linked and knotted field lines. In the case of electromagnetic radiation, the physical

properties of the fields are well understood. We can generalize these solutions

to fields of spin-N using the Penrose transform. Once these new solutions are

constructed, the goal is to understand their topological structure and analyze

their properties through methods that make use of the analogous relationship

with electromagnetism.

Here we present a method for visualizing and characterizing the structure of

topologically non-trivial fields of spin-2. The visualization techniques are based on

recent work by Nichols, et al. [24] that involves decomposing the curvature tensor

to find the gravitational lines of force, which are the analog of electromagnetic

field lines. Our research group has developed a Mathematica software package

to calculate gravitational radiation solutions using twistor integral methods and
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visualize their lines of force. I would like to acknowledge Alex Wickes, who worked

with me on applying these gravito-electromagnetic techniques to analyze knotted

field structures and developing the Mathematica code to make the visualizations.

8.1 Gravito-electromagnetism

Classical electromagnetism resides in the spin-1 sector of Eqn. (5.45) [39] with

source-free field equation and field strength spinor given by

∇AA′
ϕA′B′ = 0,

FA′B′AB = ϕA′B′εAB + c.c. (8.1)

The standard electric and magnetic fields are recovered by decomposing Fab using

a 4-velocity ua so that

Ea = Fabu
b,

Ba = − ∗ Fabub (8.2)

where ∗ denotes the Hodge dual ∗Fab = 1
2
ε cd
ab Fcd. Taking ua = (1, 0, 0, 0) we have

that

Fab =



0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


. (8.3)
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Linearized general relativity makes up the spin-2 sector of the spin-h equations

[39]. The field equation and associated field strength spinor are given by

∇AA′
ϕA′B′C′D′ = 0,

CA′B′C′D′ABCD = ϕA′B′C′D′εABεCD + c.c. (8.4)

In analogy with the spin-1 case, following Maartens, et al. [23] and Nichols,

et al. [24], we decompose the Weyl tensor and its dual by projection onto space-

like foliations orthogonal to a 4-velocity ua. This gives the gravito-electric and

gravito-magnetic fields

Eab = γ r
a γ

s
b Crcsdu

cud

Bab = −γ r
a γ

s
b ∗ Crcsducud, (8.5)

where γ b
a is the spatial projection operator defined by γab = ηab− uaub and again

∗ is the Hodge dual operator, so that ∗Cabcd = 1
2
εabrsC

rs
cd. Taking ua = (1, 0, 0, 0)

we define the spatial tensors

Eij = Ci0j0,

Bij = − ∗ Ci0j0. (8.6)

The symmetric traceless tensors Eij and Bij are called the tidal and frame-drag

fields, respectively. Two orthogonal observers separated by a small spatial vector

ξ will experience a relative tidal acceleration given by

∆ai = −Ei
jξ
j (8.7)
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and a gyroscope at the tip of ξ will precess with angular velocity

∆Ωi = Bi
jξ
j (8.8)

relative to inertial frames at the tail of ξ. Since the tidal and frame-drag fields are

symmetric and traceless, each may be characterized entirely by its eigensystem.

Thus, if v is an eigenvector of Eij or Bij then the integral curves of v are the

gravitational analog of field lines. The tidal field stretches or compresses objects,

and its associated field lines are referred to as tendex lines. The frame-drag field

rotates gyroscopes, and its associated field lines are referred to as vortex lines. The

tidal field has an associated eigenvalue Ev which has a physical interpretation

given by the tidal acceleration Eqn. (8.7). Thus, if the tendex eigenvalue is

negative (respectively, positive) then an object oriented along the tendex line is

stretched (compressed) along the tendex line. Similar relations hold for the frame-

drag field whose eigenvalues are interpreted using Eqn. (8.8), where an object

oriented along a vortex line observes counter-clockwise (clockwise) precession of

gyroscopes around the vortex line.

8.2 Computational Methods

The gravitational fields are constructed and decomposed analytically in Math-

ematica, and the lines of force are then plotted numerically. The code takes as

input a twistor function for an elementary state in the form of Eqn. (7.14), with
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specific values of Āα, B̄β, C̄γ, and D̄δ, then calculates the corresponding spinor

field on space-time from the Penrose transform (Eqn. (7.11)). This is converted

into the Weyl curvature spinor using Eqn. (8.4) and then to tensor form using

the Infeld-van der Waerden symbols. The Weyl curvature tensor is decomposed

into the tidal and frame-drag tensors according to Eqn. (8.6).

To visualize the gravitational lines of force, we need to plot the integral curves

of the eigenvectors of the tidal and frame-drag tensors. For fields described by

relatively simple expressions, such as the Type N hopfions that will be presented

in Chapter 9, the eigensystem can be computed analytically using the command

Eigensystem[m] for a matrix m. We then plot a specific field line by choosing a

starting point and then numerically integrating along a variable that parameterizes

the curve. The magnitude of eigenvalue is depicted by the color scale of the plot.

For more complicated fields, including the Type N torus knots in Chapter 10 and

the fields of other Petrov Types in Chapter 11, we must find the eigenvectors

numerically. This results in a set of values describing the eigensystem at different

points in space, and thus requires a modified version of the plotting routine, which

will be described later.

We also wrote a version of this code to calculate EM fields, which requires

a twistor function of the correct homogeneity as input, then performs the above

calculations with the analogous equations for spin-1 fields. It also plots the lines

of force, but without the color scaling as in the spin-2 case.
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8.2.1 Visualization Method

In the study of differential equations, flow functions give a formal description of

the continuous motion of points over time. They are fundamental in the solution

of ODEs and are often used to study motion of particles in fluids. Here we apply

this concept to find the lines of force for electromagnetic and gravitational fields.

An autonomous ordinary differential equation is an ODE that does not depend

explicitly on t. Given an initial value problem for an autonomous ODE

dx

dt
= f(x(t)) (8.9)

x(t0) = x0,

the flow function of the ODE is defined as the solution of Eqn. (8.9), denoted as

φt(x0), with the given initial condition, so that

φ0(x0) = x0,

φt′(φt(x)) = φt+t′(x)

and

d

dt
φt(x0) = f(φt(x0)) (8.10)

for all t for which the flow function is defined. In Mathematica syntax, this could

be written as

\[Phi][f_, x0_, tf_, opts___] :=

Module[{t, x}, x[tf] /. NDSolve[{x’[t] == f[x[t], t],

x[0] == x0}, x, {t, 0, tf}, opts][[1]] ]
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where x is the explicit variable and t ∈ [0, tf ] is the implicit variable. We can

adapt this type of ODE solver to plot field lines, by choosing a starting point then

“evolving” along the variable that parameterizes the integral curve of the vector

field. The function plotFieldLine plots the field lines on the interval [ti, tf ] for the

ODE in Eqn. (8.9) using the initial value x(0) = x0 and is defined as

plotFieldLine[f_, x0_, {ti_, tf_}, opts___] :=

Module[{sln, t, x}, sln = NDSolve[{x’[t] == f[x[t], t],

x[0] == x0}, x, {t, ti, tf}, MaxSteps -> \[Infinity],

WorkingPrecision -> MachinePrecision][[1]];

ParametricPlot3D[x[t] /. sln, {t, ti, tf}, opts] ]

where f is the normalized vector field, the implicit variable t is the parameter

along the field line (not time), and the parameter length that appears in the plot

is (tf − ti).

The variable opts contains all of the plotting style options. This allows the

user to change the plot range, lighting and viewpoint. This also includes the color

scaling, which in our program represents the magnitude of the eigenvalue, or the

field strength.

A note should be made about the choice of the initial points for the numerical

integration. The goal is to understand the topological structure of the field lines,

and thus the integral curves shown in the plot should exemplify the overall struc-

ture. For example, when visualizing hopfions it is useful to input a list of n evenly

spaced points about a circle of radius r in a plane whose normal is parallel to the

central axis of the Hopf fibration. This will correspond to a set of evenly spaced
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circular fibers that lie on the same toroidal surface. Choosing the initial points

from a circle with a different radius will result in another set of circular fibers all

lying on another toroidal surface.

When the eigensystem cannot be found analytically and must be computed

numerically, there is an important issue to address. Eigenvectors are equivalent

up to a nonzero scalar multiple, hence the overall sign and magnitude of an eigen-

vector is arbitrary. Thus, if the eigenvector is multiplied by a different scalar

multiple at different points in space the integral curves will not seem continuous,

and any attempts to plot them will not give meaningful results. Although many

programs have built-in methods for finding eigenvectors, most do not have the

functionality to plot eigenvectors obtained numerically.

Numerical algorithms for solving a differential equation ~̇y = ~f(t, y), such as the

Runge-Kutta Method, usually follow a step-by-step process. Each intermediate

step takes the previous data ~yn and tn as new input, which is used to calculate

the next increment typically of the form

~ki = f(tn + εi(dt), ~yn + ~δi(dt,~kj)). (8.11)

This is used to approximate the values of ~yn+1 with tn+1 = tn + dt, which is

then taken as the input for the next step. To resolve the problems caused by

the ambiguity in the sign and magnitude of the eigenvectors, we redefine our

111



Chapter 8. Computational Methods for Gravitational Fields

increment. Each time an increment ~ki is computed, it is replaced by

~k′i = sgn(~ki · ~f(tn, yn))~ki (8.12)

and this new increment is used for the next step in the computation.

Using this procedure, we can define a Mathematica function that solves ODEs

with a modified 4th order Runge-Kutta method as

eigCRK4[]["Step"[rhs_, t_, dt_, y_, yp_]] :=

Module[{k0, k1, k2, k3, ypNew},

k0 = yp;

k1 = rhs[t + dt/2, y + dt k0/2]; If[k1.yp < 0, k1 = -k1];

k2 = rhs[t + dt/2, y + dt k1/2]; If[k2.yp < 0, k2 = -k2];

k3 = rhs[t + dt, y + dt k2]; If[k3.yp < 0, k3 = -k3];

ypNew = Normalize[(k0 + 2 k1 + 2 k2 + k3)/6];

{dt, dt ypNew, ypNew}];

eigCRK4[___]["DifferenceOrder"] := 3;

eigCRK4[___]["StepMode"] := Fixed;

The integral curves for any arbitrary vector field can be plotted as before, now

using NDSolve with the argument Method -> eigCRK4.

8.3 Summary

We have described the methods we will use for calculating and plotting grav-

itational radiation solutions in Mathematica. Fields of spin-N are constructed

analytically from twistor functions via the Penrose transform. The visualization

techniques are based on the tidal tensor analogy with electromagnetism, whereby

the Weyl curvature tensor is first decomposed into the fields seen by a time-like

112



Chapter 8. Computational Methods for Gravitational Fields

observer. We then find the eigenvectors of the tidal and frame-drag tensors, and

the integral curves of these vector fields are the lines of force experienced by this

observer, called tendex and vortex lines, respectively.

We will now return to our discussion of the Penrose transform and how it can

be used to generate spin-2 fields based on different topological configurations. The

computational techniques based on the physical decomposition of these solutions

will serve as a useful aid in visualizing and analyzing the topology of their field

line structure.
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Hopfions in Gravity

As discussed in Chapter 2, the EM hopfion is a topologically non-trivial solu-

tion to the vacuum Maxwell equations with the property that any two field lines

belonging to either the electric, magnetic, or Poynting vector fields (EBS fields)

are closed and linked exactly once. The most striking and characteristic feature

of this particular field configuration is the existence of an exceptional constant-

time hyperplane wherein the EBS fields are tangent to three orthogonal Hopf

fibrations. Using twistor methods we find the spin-h generalization of the EM

hopfion. Furthermore, we analyze the spin-2 solution within the framework of

gravito-electromagnetism and show that the topology is manifest in the tendex

and vortex lines. By decomposing the spin-2 field into spatial gravito-electric and

gravito-magnetic tensors, we characterize its topological structure and evolution

in terms of the EM hopfion.
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9.1 Penrose Transform for Spin-h Hopfions

Consider the positive helicity eigenfunctions of Eqn. (7.13), and recall that

these must be twistor functions of negative homogeneity. In the case of spin-1 and

spin-2 the spinor fields ϕA′B′(x) and ϕA′B′C′D′(x) represent the Penrose transform

of twistor functions1 of homogeneity -4 and -6 respectively and correspond to the

SL(2,C) representations of the field strength tensor Fab of electromagnetism and

the Weyl tensor Cabcd of general relativity.

We will calculate the Penrose transform with f(Z) given by

f(Z) = (AαZ
α)−1(BβZ

β)−2h−1. (9.1)

Let Aα and Bα be dual twistors associated to the spinor fields AA′
and BB′

as in

Eqn. (7.17) so that

AαZ
α = iAAx

AA′
πA′ + AA

′
πA′

≡ AA′
πA′

BβZ
β = iBBx

BB′
πB′ +BB′

πB′

≡ BA′
πB′ ,

Recall from Eqn. (7.18) the measure can be written in the form

πC′dπC
′
= (π0′)

2dζ.

1Since the spinor fields ϕA′B′(x) and ϕA′B′C′D′(x) are obtained via complex contour integrals
there exists a certain freedom in their twistor descriptions. A detailed exploration of this fact
leads to the notion of complex sheaf cohomology.
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We also have the relations from Eqn. (7.19)

1

π0′
AA′

πA′ = A0′ +A1′ζ,

1

π0′
BA′

πA′ = B0′ + B1′ζ.

Introducing the canonical spin bases {oA′ , ιA′} into the primed spin space S ′ we

have that

πA′ = π0′oA′ + π1′ιA′

= π0′(oA′ + (
π1′

π0′
)ιA′)

= π0′(oA′ + ζιA′). (9.2)

Thus

ϕA′
1···A′

2h
(x) =

1

2πi

∮
Γ

(oA1 + (
π1′
π0′

)ιA′
1
) · · · (oA2h

+ (
π1′
π0′

)ιA′
2h

)

(A0′ +A1′(
π1′
π0′

))(B0′ + B1′(
π1′
π0′

))2h+1
d(
π1′

π0′
)

=
1

2πiA1′(B1′)2h+1

∮
Γ

(oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h

)

(µ+ ζ)(ν + ζ)2h+1
dζ (9.3)

where as before ζ = π1′/π0′ , µ = A0′/A1′ , and ν = B0′/B1′ represent the projective

coordinate and poles respectively.
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After the variable substitutions, the integral is straightforward. Taking the

contour Γ to enclose the pole −µ we have

ϕA′
1···A′

2h
(x) =

1

A1′(B1′)2h+1
Res
ζ=−µ

(oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h

)

(µ+ ζ)(ν + ζ)2h+1

=
1

A1′(B1′)2h+1

(oA′
1
− µιA′

1
) · · · (oA′

2h
− µιA′

2h
)

(ν − µ)2h+1

=
(A1′oA′

1
−A0′ιA′

1
) · · · (A1′oA′

2h
−A0′ιA′

2h
)

(A1′B0′ −A0′B1′)2h+1

=
1

(εA′B′AA′BB′)2h+1
AA′

1
· · · AA′

2h

=

(
2

AABA(xa − ya)(xa − ya)

)2h+1

AA′
1
· · · AA′

2h
(9.4)

where AAB
A is a constant we will call Ω, and the point y is given in Eqn. (7.20).

9.2 EM Hopfion

For h = 1, Eqn. (9.4) becomes

ϕA′B′(x) =

(
2

Ω|x− y|2

)3

AA′AB′ (9.5)

where AA′ defines the doubly degenerate principle null direction of Fab. Choosing

Aa = (−i
√

2,
√

2,−i, 1), (9.6)

Bβ =
π1/3

24/3
(−
√

2, i
√

2,−1, i) (9.7)

reproduces precisely the EM hopfion of Rañada [7]. The expressions for the elec-

tric and magnetic fields can be conveniently expressed by a Riemann-Silberstein
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vector,

FR = ER + iBR

=
4

π(−(t− i)2 + r2)3


(x− iz)2 − (t− i+ y)2

2(x− iz)(t− i+ y)

i(x− iz)2 + i(t− i+ y)2


, (9.8)

where r2 = x2 + y2 + z2. The energy density and Poynting vector field are

UR =
16(1 + x2 + (t+ y)2 + z2)2

π2(1 + 2(t2 + r2) + (t2 − r2)2)3
, (9.9)

SR =
UR

(1 + x2 + (t+ y)2 + z2)


2(x(t+ y) + z)

1 + (t+ y)2 − x2 − z2

2(z(t+ y)− x)


. (9.10)

A visualization of these solutions is presented in row 1 of Figures 9.1 and 9.2 and

the formulas are displayed here for comparison with the GEM field configurations

derived in the next section.

9.3 GEM Hopfion

The gravito-electromagnetic hopfion (GEM hopfion) is constructed in the same

fashion as the EM hopfion since linearized gravitational fields are taken to be spin-

2 fields on M. Thus, taking h = 2 in Eqn. (9.4) gives

ϕA′B′C′D′(x) =

(
2

Ω|x− y|2

)5

AA′AB′AC′AD′ (9.11)
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where AA′ defines the totally degenerate principle null directions of Cabcd, indicat-

ing this is a Petrov Type N linearized gravitational field. Taking the dual twistors

Aα and Bβ to be the same as in the EM hopfion we construct the Weyl curva-

ture from Eqn. (8.4). Then we perform the gravito-electric and gravito-magnetic

decompositions as in Eqn. (8.6).

The tidal and frame-drag fields are characterized by their spectral decomposi-

tion which provides a three-dimensional picture of the space-time via the integral

curves of their eigenvector fields and their physical interpretations given by Eqns.

(8.7) and (8.8). Performing the decomposition we find that both fields possess an

eigenvalue structure {+Λ,−Λ, 0} corresponding respectively to the eigenvectors

{E+,E−,E0} and {B+,B−,B0}. The magnitude of the eigenvalue

|Λ(x)| = 28/3(1 + x2 + (y + t)2 + z2)2

π5/3(1 + 2(t2 + r2) + (t2 − r2)2)5/2
(9.12)

determines the field strength for both the tidal and frame-drag fields.

Considering first the eigenvector fields which correspond to the zero eigenvalue,

we find

E0 = B0 =


2(x(t+ y) + z)

1 + (t+ y)2 − x2 − z2

2(z(t+ y)− x)


= (1 + x2 + (t+ y)2 + z2)

SR

|SR|
(9.13)
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which is, up to an overall scaling function, the Poynting vector of the EM hopfion.

Constructing Riemann-Silberstein structures for the remaining fields

FGE = E− + iE+, (9.14)

FGB = B− + iB+, (9.15)

we find that

FGE = eiπ/4FGB (9.16)

= eiArg(ϑ)FR, (9.17)

where

ϑ =
√
−(t− i)2 + r2. (9.18)

This defines the tidal and frame-drag fields in terms of the EM hopfion. Eqn.

(9.16) shows that the frame-drag field is a rotation of the tidal field about the

Poynting vector of the EM hopfion. Thus in passing to spin-2 we obtain two inde-

pendent gravitational hopfion structures: a gravito-electric hopfion and a gravito-

magnetic hopfion which differ simply by a global rotation. Eqns. (9.17) and (9.18)

show that the tidal field is a local duality transformation of the EM hopfion. At

t = 0, Arg(ϑ) = 0 and thus provides no duality transformation. Hence the tendex

structure of the tidal field is the same as the field line structure of the EM hopfion.

Furthermore, the vortex lines are the same as the tendex lines but rotated by 45◦

in the xy-plane. Ergo, the t = 0 tendex and vortex configuration is given by the
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six Hopf fibrations of Figure 9.1 (rows 2 and 3) so that for each fixed eigenvalue the

associated tendex (or vortex) lines are closed and linked exactly once. For t 6= 0,

ϑ is complex and hence the tendex lines differ from those of the EM hopfion by

a local duality transformation as shown in Figure 9.2, with the vortex structure

different again by only a rotation of 45◦.

For electromagnetic fields, there are two quantities that are invariant under

local duality transformations: the energy density and Poynting vector. For the

EM hopfion, these are given in Eqns. (9.9) and (9.10). In direct analogy with

the local duality invariants of electromagnetism, a covariant super-energy density

and super-Poynting vector that are invariant under a local duality transformation

can be defined [23]. For the GEM hopfion, we find the super-energy density and

super-Poynting vector are given by

UG =
1

2
(EabE

ab +BabB
ab)

=
64 · 21/3(1 + x2 + (t+ y)2 + z2)4

π10/3(1 + 2(t2 + r2) + (t2 − r2)2)5
, (9.19)

(SG)a = εabcE
b
dB

cd

=
UG

(1 + x2 + (t+ y)2 + z2)


2(x(t+ y) + z)

1 + (t+ y)2 − x2 − z2

2(z(t+ y)− x)


. (9.20)
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There is a striking similarity between the local duality invariants for the spin-1

and spin-2 cases, which differ only by the power of the scalar factor that shows

the energy falls off more rapidly for the higher spin fields.

9.4 Summary

According to Robinson, for each null shear-free geodesic congruence in Minkowski

space there exists a null solution of Maxwell’s equations [99]. Indeed, it has re-

cently been shown using Kerr’s theorem that the EM hopfion is derivable via the

method of Robinson [9]. Here we took a closer look at the fundamentals of twistor

theory and showed that the EM hopfion represents the simplest non-trivial classi-

cal solution to the spin-1 massless field equation in twistor space. This enabled the

extension of the spin-1 EM hopfion to solutions of the spin-h equations. Taking

the h = 2 solution as a linearized Weyl tensor, and aided by the concept of tendex

and vortex lines as recently developed for the visualization of solutions in general

relativity, we investigated the physical properties of the spin-2 GEM hopfion and

characterized its evolution in terms of the Riemann-Silberstein structure of the

EM hopfion.

These results capitalize on of one of the greatest strengths of the twistor pro-

gram. It is precisely the unifying power of the twistor philosophy, deeply connected
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with the concept of spin, which allows for such a physically sweeping generalization

of an EM radiation field to both matter and linearized gravitational fields.
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Figure 9.1: A comparison of the spin-1 (EM) and spin-2 (gravity) hopfions at
t = 0. The first row is the EM hopfion: a the electric field, b the magnetic field,
and c the Poynting vector field. The second row is the gravito-electric hopfion: d
the negative eigenvalue field E−, e the positive eigenvalue field E+, and f the zero
eigenvalue field E0. The third row is the gravito-magnetic hopfion: g the negative
eigenvalue field B−, h the positive eigenvalue field B+, and i the zero eigenvalue
field B0. The color scale indicates magnitude of the eigenvalue, with lighter colors
indicating a higher magnitude.
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Figure 9.2: A comparison of the spin-1 (EM) and spin-2 (gravity) hopfions at
t = 1, with layout the same as in Figure 9.1.
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Chapter 10

Knots in Gravity

In this chapter, we show that field configurations based on all the torus knots

are contained within the elementary states of twistor theory. The Hopf fibration

appears as the simplest case whereby the linked and knotted toroidal structure

degenerates down to the hopfion configuration. This generalization leads to a

construction for spin-h fields based on torus knots. We will focus our analysis on

the spin-1 and spin-2 fields, where the topology is physically manifest in the lines

of force.1

10.1 Parameterization of the Elementary States

We will relate the torus knot topology to the twistor elementary states, so that

we can use the Penrose transform to obtain solutions to the EM and gravitational

spinor field equations.

1For the Weyl fields, the linked and knotted topology appears in the current.
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Consider the twistor functions from Eqn. (7.14) which correspond to the

elementary states

f(Z) =
(C̄γZ

γ)c(D̄δZ
δ)d

(ĀαZα)a(B̄βZβ)b
.

Choosing a = 1 yields null or Type N solutions with b = 2h + 1 + c + d to give

the correct homogeneity n = −2h− 2 for a solution with helicity h. We will show

that the class of generating functions of the form

f(Z) =
(C̄γZ

γ)h(np−1)(D̄δZ
δ)h(nt−1)

(ĀαZα)(B̄βZβ)h(np+nt)+1
, (10.1)

lead to field configurations with a torus knot topology, where np and nt correspond

to the poloidal and toroidal winding numbers.2

We choose the dual twistors

Āα = ı(0,
√

2, 0, 1)

B̄β = ı(−
√

2, 0,−1, 0)

C̄γ = (0,−
√

2, 0, 1)

D̄δ = ı(−
√

2, 0, 1, 0). (10.2)

Āα and C̄γ correspond to Robinson congruences with opposite twist, both with

central axes aligned along the +ẑ-direction. B̄β and D̄δ correspond to Robinson

congruences with opposite twist, but in the −ẑ-direction. This choice leads to

2We use the conventions from Ref. [21]. Also, there is factor of 4ntnp in Ref. [19] that does
not appear in our construction, but it does not affect the topology.
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spin-h fields which propagate +ẑ-direction with field line configurations that are

based on a torus knot structure.

10.2 Penrose Transform for Spin-h Torus Knots

We will calculate the Penrose transform

ϕA′
1···A′

2h
(x) =

1

2πi

∮
Γ

πA′
1
· · · πA′

2h
f(Z)πB′dπB

′

with the twistor function given by Eqn. (10.1)

f(Z) =
(C̄γZ

γ)h(np−1)(D̄δZ
δ)h(nt−1)

(ĀαZα)(B̄βZβ)h(np+nt)+1
.

Let Aα be a dual twistor as in Eqn. (7.17) so that

AαZ
α = iAAx

AA′
πA′ + AA

′
πA′

≡ AA′
πA′ .

Similar relations hold for the other dual twistors BβZ
β ≡ BB′

πB′ , CγZ
γ ≡ CC′

πC′ ,

and DδZ
δ ≡ DD′

πD′ . We write the Penrose transform as an integral over the CP1

coordinate ζ = π1′/π0′ , so we use the measure previously given in Eqn. (7.18) as

πC′dπC
′
= (π0′)

2dζ.

We adopt the canonical spin bases {oA′ , ιA′} as in Eqn. (9.2) so that

πA′ = π0′(oA′ + ζιA′).
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Recalling from Eqn. (7.19) that AA′ is defined implicitly by ĀαZ
α = AA′πA

′
we

have

1

π0′
AA′

πA′ = A0′ +A1′ζ

and similarly for B, C, and D. Thus

ϕA′
1···A′

2h
(x) =

1

2πi

∮
Γ

f(Z)πA′
1
· · · πA′

2h
πB′dπB

′
(10.3)

=
1

2πi

∮
Γ

(C0′ + C1′(
π1′
π0′

))h(np−1)(D0′ +D1′(
π1′
π0′

))h(nt−1)

(A0′ +A1′(
π1′
π0′

))(B0′ + B1′(
π1′
π0′

))h(np+nt)+1

× (oA1 + (
π1′

π0′
)ιA′

1
) · · · (oA2h

+ (
π1′

π0′
)ιA′

2h
)d(

π1′

π0′
)

=
(C1′)h(np−1)(D1′)h(nt−1)

2πiA1′(B1′)h(np+nt)+1

∮
Γ

(ρ+ ζ)h(np−1)(τ + ζ)h(nt−1)

(µ+ ζ)(ν + ζ)h(np+nt)+1

× (oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h

)dζ

where µ = A0′/A1′ , ν = B0′/B1′ , ρ = C0′/C1′ , and τ = D0′/D1′ .

As before the contour Γ is taken to enclose the pole −µ, and applying Cauchy’s

integral theorem gives

ϕA′
1···A′

2h
=

(C1′)h(np−1)(D1′)h(nt−1)

A1′(B1′)h(np+nt)+1
Res
ζ=−µ

(ρ+ ζ)h(np−1)(τ + ζ)h(nt−1)

(µ+ ζ)(ν + ζ)h(np+nt)+1

× (oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h

)

=
(C1′)h(np−1)(D1′)h(nt−1)

A1′(B1′)h(np+nt)+1

(ρ− µ)h(np−1)(τ − µ)h(nt−1)

(ν − µ)h(np+nt)+1

× (oA′
1
− µιA′

1
) · · · (oA′

2h
− µιA′

2h
).
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After some algebra, we arrive at the result

ϕA′
1···A′

2h
=

(A1′C0′ −A0′C1′)h(np−1)(A1′D0′ −A0′D1′)h(nt−1)

(A1′B0′ −A0′B1′)h(np+nt)+1

× (A1′oA′
1
−A0′ιA′

1
) · · · (A1′oA′

2h
−A0′ιA′

2h
)

=
(εC′D′AC′CD′

)h(np−1)(εE′F ′AE′DF ′
)h(nt−1)

(εA′B′AA′BB′)h(np+nt)+1
AA′

1
· · · AA′

2h

=
(AC′CC′

)h(np−1)(AD′DD′
)h(nt−1)

(AB′BB′)h(np+nt)+1
AA′

1
· · · AA′

2h
. (10.4)

10.3 EM Torus Knots

Taking h = 1 in Eqn. (10.4), the resulting spinor field is

φA′B′(x) =
(AC′CC′

)np−1(AD′DD′
)nt−1

(AE′BE′)np+nt+1
AA′AB′ . (10.5)

The solution in Eqn. (10.5) satisfies the source-free spinor field equation by con-

struction and yields the field strength spinor

∇AA′
ϕA′B′ = 0,

FA′B′AB = ϕA′B′εAB + c.c.

The spin-1 fields are the null torus knots discussed in Section 2.6. With the

choice for C and D given in Eqn. (10.2), the poloidal and toroidal winding

numbers for the EM case are related to the exponents in Eqn. (7.14) by c = np−1

and d = nt − 1. The (1,1) case corresponds to the electromagnetic hopfion.
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10.4 GEM Torus Knots

Taking h = 2 in Eqn. (10.4), the resulting spinor field is

φA′B′C′D′(x) =
(AF ′CF ′

)2(np−1)(AG′DG′
)2(nt−1)

(AE′BE′)2(np+nt)+1
AA′AB′AC′AD′ . (10.6)

The source-free field equation and Weyl field strength spinor are

∇AA′
ϕA′B′C′D′ = 0,

CA′B′C′D′ABCD = ϕA′B′C′D′εABεCD + c.c.

The Weyl tensor can then be decomposed into the GEM components. For Type

N, the eigenvalues for both the gravito-electric and gravito-magnetic tensors take

the form {−Λ(x), 0,+Λ(x)}. The magnitude of the eigenvalues is

|Λ(x)| = (1 + r2 + t2 − 2tz)2(r2 − z2)np−1(r4 − 2r2(1 + t2) + (1 + t2)2 + 4z2)nt−1

23−2np(r4 − 2r2(−1 + t2) + (1 + t2)2)
5
2

+nt+np
.

(10.7)

We label the eigenvectors {~e−, ~e0, ~e+} and {~b−,~b0,~b+} corresponding to the eigen-

values for the tidal and frame-drag fields respectively. For the zero eigenvalue

fields, the eigenvectors ~e0 and ~b0 are both aligned with the Poynting vector of the

null EM torus knots. For the remaining eigenvectors, we can construct Riemann-

Silberstein (RS) vectors ~fe = ~e−+ i~e+ and ~fb = ~b−+ i~b+ which are related to each

other by

~fe = eiπ/4 ~fb. (10.8)
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Figure 10.1: The eigenvector field ~e− for the gravitational field based on the a
trefoil (2,3) knot, b cinquefoil (2,5) knot, c septafoil (2,7) knot, and d nonafoil
(2,9) knot. The color scaling is the same as in Figure 10.2.

At t = 0, the eigenvectors of the GE fields have precisely the same structure as

the EM fields, and the GM eigenvector fields have the same structure but rotated

by 45◦. For the spin-2 case, the poloidal and toroidal winding numbers are related

to the exponents in Eqn. (7.14) by c = 2(np− 1) and d = 2(nt− 1). The surfaces

of the ~e− eigenvector, color-scaled according to the magnitude of the eigenvalue,

for different values of (nt, np) are shown in Figure 10.1. The other GEM fields can

be constructed by rotating ~e− according to Eqn. (10.8). The ~e+ vector field is

found by rotating ~e− by 90◦ about the Poynting vector. The ~b− and ~b+ fields are

found by rotating ~e− and ~e+ by 45◦, respectively. The eigenvalues of the GEM

fields for a given (nt, np) have the same magnitude (color-scaling) given by |Λ(x)|

in Eqn. (10.7). The complete configuration for the GEM (2, 3) trefoil knot is

given in Figure 10.2, with the EM trefoil knot also shown for comparison.
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10.5 Summary

Here we have shown that the null EM torus knot solutions correspond to a

class of elementary states characterized the poloidal and toroidal winding numbers

of the associated field configuration. Using the relationship between fields of

different spin in the twistor formalism, we constructed the analogous gravitational

radiation configurations that possess tendex and vortex lines based on a torus

knot structure. Since the topology is manifest in the tendex and vortex lines, the

gravito-electromagnetic tidal tensor decomposition is a straightforward method

for characterizing these field configurations.

The elementary states were known as early as the 1970’s [22], however the

explicit forms of their associated spinor and tensor representations on M were

never published.3 The modern rediscovery of these solutions has raised interest in

obtaining a more complete physical understanding of the topological properties

of these fields. The parameterization of the twistor functions corresponding to

the elementary states in terms of the poloidal and toroidal winding indicates that

the torus knot structure is indeed inherent in the elementary states. For both

electromagnetism and gravity, the topology appears in the configuration of the

lines of force.

3from private discussions with Roger Penrose
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Figure 10.2: A comparison of the spin-1 (EM) and spin-2 (gravity) trefoil knots
at t = 0. The first row is the EM trefoil knot: a the electric field, b the magnetic
field, and c the Poynting vector field. The second row is the gravito-electric trefoil
knot: d the negative eigenvalue field ~e−, e the positive eigenvalue field ~e+, and f
the zero eigenvalue field ~e0.The third row is the gravito-magnetic trefoil knot: g
the negative eigenvalue field ~b−, h the positive eigenvalue field ~b+, and i the zero
eigenvalue field ~b0. The color scale indicates magnitude of the eigenvalue, with
lighter colors indicating a higher magnitude.
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Generalization of Electromagnetic
and Gravitational Hopfions by
Algebraic Type

An alternative definition for hopfion is a field configuration whose principal null

directions (PNDs) all lie tangent to Robinson congruences. As discussed in Chap-

ter 5, given a real-valued spin-h field ϕA′
A1
...A′

A2h
written in the self-dual SL(2,C)

spinor representation, the field can be decomposed into 2h single-index spinors

called its principal spinors [39]. This is described by the relation

ϕA′
A1
...A′

A2h
∝ α(A′

1
· · · γA′

2h), (11.1)

with the one-index spinors representing the field’s PNDs via their flagpole direc-

tions. Thus, for a hopfion arising from the definition given above, the PNDs of

the spinors α, . . . , γ lie tangent to Robinson congruences.

In Chapter 9, we used twistor integral methods to extend the EM solutions to

find an analogous topologically non-trivial Type N gravitational wave solutions.
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Now we will discuss how these methods can be used to find the analogous solutions

of the different spinor classifications. In particular, we will construct the non-null

electromagnetic, Type D and Type III gravitational hopfion solutions, and then

characterize the topology of their lines of force.

11.1 Twistor Methods for Spin-h Hopfions

We saw before that a null spin-1 field can be written as

ϕA′B′(x) = f(x)AA′AB′ (11.2)

where AA′ is an SL(2,C) spinor which defines the doubly degenerate principle

null direction of Fab and f(x) is a scalar function that is determined by the elec-

tromagnetic field equation.

This suggests for any helicity h there is an analogous spinor field

ϕA′
1···A′

2h
(x) = fh(x)AA′

1
· · · AA′

2h
(11.3)

with 2h-fold degenerate PNDs, but we will need to find the scaling function fh(x)

that satisfies the appropriate spin-h field equation.

The twistor formalism allows for the generalization of spin-1 fields to fields of

any spin. The Penrose transform expresses solutions to the massless field equations

as contour integrals over homogeneous twistor functions F (Z). Thus, generating

fields using twistor integral methods ensures that the result is indeed a solution
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to the field equations on space-time. We will also see that because of the contour

integral the poles of F (Z) play a physical role in the corresponding field geometry.

The twistor function which gives way to the EM hopfion through the Penrose

transform is given by

F1(Z) =
1

(AαZα)(BβZβ)3
. (11.4)

Consider the pole structure of Eqn. (11.4). The term (A · Z) has a simple pole

and the power of the (B · Z) term is chosen to give us homogeneity -4, and thus

a spin-1 field.

The spin-h analogue follows immediately. We keep the single pole for the

(A · Z) term and the power of the (B · Z) term is determined by the relation

between helicity and homogeneity given in Eqn. (7.10). The generating function

for the spin-h hopfion is then

Fh(Z) =
1

(AαZα)(BβZβ)2h+1
. (11.5)

We found before that the associated spinor field from the Penrose transform

of this twistor function is

ϕA′
1···A′

2h
(x) =

(
2

Ω|x− y|2

)2h+1

AA′
1
· · · AA′

2h
(11.6)

where Ω is a constant scalar, y is a constant 4-vector determined by the specific

values of Aα and Bβ, and AA′ is the spinor field associated to the twistor Aα.

As expected, we find the solution has a 2h-fold degeneracy in its PNDs and the
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Penrose transform has given us the correct form of the scalar function that will

satisfy the field equations.

11.1.1 Petrov Variants

The twistor function in Eqn. (11.5) had a single pole which resulted in a spinor

field with all its PNDs degenerate (null EM or Type N gravity fields). Changing

the pole structure yields different Petrov classes. Because the Penrose transform is

a contour integral, when transforming functions with a pole of order greater than

one Cauchy’s integral formula involves the derivative of F (Z). This derivative

brings the other spinor field, in this case BB′ , into the numerator thus breaking

the degeneracy of the PNDs. For example,

Fh(Z) =
1

(AαZα)h+1(BβZβ)h+1
. (11.7)

results in non-null EM {11} or Type D gravity {22} fields for h = 1, 2.

ϕA′
1A

′
2
(x) = f1(x)A(A′

1
BA′

2) (11.8)

ϕA′
1A

′
2A

′
3A

′
4
(x) = f2(x)A(A′

1
AA′

2
BA′

3
BA′

4) (11.9)

where AA′ and BA′ define the h-fold degenerate principle null directions.

This gives all the classifications of the EM field strength tensor, which has two

PNDs. For gravity we can also extend this to other classifications for which there
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is no EM analog, for example the Type III Petrov class generated by

F2,III(Z) =
1

(AαZα)2(BβZβ)4
(11.10)

and resulting in

ϕA′
1···A′

4,III
(x) =

(
2

Ω|x− y|2

)2h+1

A(A′
1
AA′

h
AA′

3
BB′

4). (11.11)

The simplest hopfions correspond to homogeneous twistor functions of the form

F (Z) =
1

(A · Z)a(B · Z)b
. (11.12)

The general result is

ϕA′
1...A

′
2h

=

(
2

Ω|x− y|2

)a+b+1

A(A′
1
· · · AA′

b
BA′

b+1
· · · BA′

2h). (11.13)

Thus the hopfions of different algebraic type are characterized by two quantities

a and b, with a+ b = 2h+ 2.

We now see that the null EM and Type N gravitational hopfions which we

studied in Chapter 9 are elementary hopfions with a = 1. In fact all null hopfions

take this form, which is obvious from the expression in Eqn. (11.13) where, in

the case a = 1, the PNDs are all proportional to the flagpole of AA′ and thus

completely degenerate. Before we consider the gravitational hopfions, we give a

brief overview of the electromagnetic hopfions.
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11.2 EM Hopfions

The electromagnetic hopfions are spin-1, and thus have two distinct classifica-

tions: fields with two degenerate PNDs (null) and fields with two distinct PNDs

(non-null).

11.2.1 Null EM Hopfion

The null EM hopfion ϕA′B′ ∼ AA′AB′ is the simplest example of a hopfion.

Previously, we used the twistor construction to generate exactly the solution con-

structed by Rañada, which propagated in the −ŷ-direction. It will simplify the

solution if we make a new choice of the dual twistors Aα and Bβ so that the

solution propagates in the +ẑ-direction. Taking the dual twistors as Robinson

congruences oriented in the +z and −z directions

Aα = (0,
√

2, 0, 1), Bα = (
√

2, 0, 1, 0), (11.14)

produces a solution with the same structure as studied previously in Chapter 9,

just with a different orientation. The same choice of Aα and Bβ will be used in

conjunction with Eqn. (11.13) to construct the hopfion fields of different algebraic

type.
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The Riemann-Silberstein vector is now

~Fnull = ~ER + i ~BR (11.15)

=
4

π(−(t− i)2 + r2)3


(x− iz)2 − (t− i+ y)2

2(x− iz)(t− i+ y)

i(x− iz)2 + i(t− i+ y)2


. (11.16)

The energy density u and Poynting vector ~S for this field are given by

unull =
(1 + x2 + y2 + (t− z)2)2

(1 + 2(t2 + r2) + (t2 − r2)2)3
, (11.17)

~Snull =
unull

(1 + x2 + y2 + (t− z)2)


2(x(t− z) + y)

2(y(t− z)− x)

x2 + y2 − (t− z)2 − 1


. (11.18)

We will use these properties to analyze the new solutions in terms of the structure

of the null EM hopfion.

11.2.2 Non-null EM Hopfion

The non-null EM hopfion ϕA′B′ ∼ A(A′BB′) can also be neatly expressed by an

RS vector,

~Fnon−null =
2

(−(t− i)2 + r2)3


−2(xz − iy(t− i))

−2(yz + ix(t− i))

(t− i)2 + x2 + y2 − z2


. (11.19)
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Figure 11.1: The field line structure of the non-null EM hopfion. (a) The electric

field lines at t = 0 have the structure of the Hopf fibration. Not shown are ~B and
~S, which are both identically zero at t = 0. For t = 1,(b) the electric field (c) the
magnetic field, and (d) the Poynting vector.

At t = 0 the ~E field for this hopfion is everywhere tangent to a Robinson congru-

ence, while ~B and hence ~S are identically zero since the RS vector is purely real.

For t 6= 0, ~B 6= 0 and the field line topologies for ~E and ~B are not preserved since

~E · ~B 6= 0, however the field lines do still lie on tori. The field line structure of

~S shows that the solution does not propagate, but rather energy flows outward

from the center of the configuration. These results are collected in Figure 11.1.

The non-null EM hopfion has the following expressions for the energy density

and Poynting vector

unon−null =
2(t4 + 2t2(1 + 3r2 − 4z2) + (1 + r2)2)

(1 + 2(t2 + r2) + (t2 − r2)2)3
, (11.20)
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~Snon−
null

=
2tunon−null

(t4 + 2t2(1 + 3r2 − 4z2) + (1 + r2)2)


x3 + 2yz + x(1 + t2 + y2 − z2)

y3 − 2xz + y(1 + t2 + x2 − z2)

2z(x2 + y2)


.

(11.21)

We will see in the next section that these are related to the analogous gravitational

hopfion fields.

11.3 GEM Hopfions

The gravitational hopfions are characterized by h = 2, so there are a total

of five distinct non-trivial gravitational hopfions, given by the Petrov Types N,

D, III, II, and I which classify the degeneracies of the PNDs. Here we review

the Type N, then present the Type D and Type III hopfions and analyze their

structure using the GEM formalism.

11.3.1 Type N GEM Hopfion

The Type N gravitational hopfion, previously studied in Chapter 9, has the

form ϕA′B′C′D′ ∼ AA′AB′AC′AD′ and provides a good starting point for discussing

the use of GEM in studying hopfions. The Weyl decomposition for the Type N

and Type III hopfions has eigenvalues for both GEM fields that take the form

{λ−, λ0, λ+}, with λ−(x) ≤ λ0(x) ≤ λ+(x) for all points x in space-time Thus,
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we may label the eigenvectors {~e−, ~e0, ~e+} and {~b−,~b0,~b+} corresponding to the

eigenvalues for the tidal and frame-drag fields respectively. For Type N fields,

the eigenvalues take the very simple form {−Λ, 0,Λ} with Λ(x) a function on

space-time.

For the Type N hopfion, the eigenvectors ~e0 and ~b0 are both equivalent to the

Poynting vector in Eqn. (11.18) for the null EM hopfion, up to an overall scalar.

For the remaining eigenvectors, we can construct RS vectors ~fe = ~e− + i~e+ and

~fb = ~b− + i~b+ which are related to the RS vector ~F for the null EM hopfion from

Eqn. (11.15) via

~fe = eiπ/4 ~fb = eiArg θ ~F , θ(x) =
√
−(t− i)2 + r2. (11.22)

The super-energy and super-Poynting vector for this field and their relationship

with the duality invariants of the null EM hopfion, as well as a discussion of the

tendex and vortex lines, are discussed in more detail in Chapter 9.

11.3.2 Type D GEM Hopfion

The Type D gravitational hopfion ϕA′B′C′D′ ∼ A(A′AB′BC′BD′) is the gravita-

tional analog of the non-null EM hopfion, in that its PNDs are split evenly into

two sets. For spin-2, the two sets consist of pairs of doubly degenerate PNDs.

This hopfion has eigenvalue structure {2Λ,−Λ + λ,−Λ − λ}, where λ = 0 at

t = 0 simplifying the eigenvalue structure to {2Λ,−Λ,−Λ}. Note also that Λ(x)
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used here represents a different function than the Λ(x) used before to describe the

Type N hopfion; we use the symbol only to describe the overall structure of the

eigenvalues. This eigenvalue structure is interesting because at t = 0 the eigen-

values −Λ ± λ coincide, so their eigenvectors collapse into a doubly degenerate

eigenspace. Furthermore, at t = 0, the GE field ~e2Λ is exactly tangent to a Hopf

fibration and the frame-drag field vanishes, hence the GM eigenvalues and eigen-

vectors vanish as well. The values of Λ and λ are rather complicated, so we will

not present them here. The tendex and vortex lines have been plotted numerically

in Figure 11.2.

The expressions for the super-energy and super-Poynting vector of the Type

D hopfion are quite long, but they take a simpler form when written in terms of

the duality invariants of the non-null EM hopfion

U =
t8 + 8t4(1 + 4x2 + 4y2) + (t6 + t2(1 + r2)2)(5 + 11r2 − 12z2) + (1 + r2)4

12(1 + 2(t2 + r2) + (t2 − r2)2)5

+
1
2
t2(−1 + 9r2 − 12z2)

12(1 + 2(t2 + r2) + (t2 − r2)2)2
unon−null,

(11.23)

~PD =
1

32
(1 + 2(t2 + r2) + (t2 − r2)2)unon−null~Snon−null. (11.24)

Similarly to the non-null EM case, the super-Poynting vector indicates that the

field configuration radiates energy outward from the center in all directions, but

the overall structure does not propagate.
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Figure 11.2: The Type D gravitational hopfion at t = 0 and t = 1: the tidal
fields (a) e−Λ+λ, (b) e2Λ, and (c) e−Λ−λ; and the frame-drag fields (d) b−Λ+λ, (e)
b2Λ, and (f) b−Λ−λ. The frame-drag fields at t = 0 are omitted because they are
all vanishing then. As before the field lines are colored by the relative magnitude
of their eigenvalues, with lighter colors indicating greater magnitude. The fields
at t = 0 in (a) and (c) are presented with the same color scheme to convey the
fact that they really represent a degenerate eigenspace together.
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11.3.3 Type III GEM Hopfion

The Type III gravitational hopfion ϕA′B′C′D′ ∼ A(A′AB′AC′BD′) has one set

of triply degenerate PNDs and one unique PND. This hopfion has eigenvalue

structure {λ−, λ0, λ+} = {−Λ, λ,Λ − λ}, where λ = 0 at t = 0. We again note

that the functions Λ(x) and λ(x) used here represent different functions than

those used to describe the Type N and Type D hopfions. The tendex and vortex

lines have been plotted numerically in Figure 11.3. At t = 0, both the GE and

GM fields are tangent to three orthogonal Hopf fibrations, but with different

orientations than the Type N case. For Type III, the eigenvectors ~e0 and ~b0 are

not aligned with the super-Poynting vector, but rather are orthogonal to it (and

each other).

For the Type III hopfion, the super-energy density and the super-Poynting

vector are given by

UIII =
(1 + x2 + y2 + (t− z)2)2(t4 + 2t2(1 + 7r2 − 8z2) + (1 + r2)2)

8(1 + 2(t2 + r2) + (t2 − r2)2)5
, (11.25)
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Figure 11.3: The Type III gravitational hopfion at t = 0 and t = 1: the tidal
fields (a) e−, (b) e+, and (c) e0; and the frame-drag fields (d) b−, (e) b+, and (f)
b0. The field lines are colored by the relative magnitude of their eigenvalues, with
lighter colors indicating greater magnitude.

~SIII =
UIII

2(1 + x2 + y2 + (t− z)2)


2(x(t− z) + y)

2(y(t− z)− x)

−1 + x2 + y2 − (t− z)2


(11.26)

+
4tUIII

t4 + 2t2(1 + 7r2 − 8z2) + (1 + r2)2


x3 + 2yz + x(1 + t2 + y2 − z2)

y3 − 2xz + y(1 + t2 + x2 − z2)

2z(x2 + y2)


.

148



Chapter 11. Generalization of Electromagnetic and Gravitational Hopfions by
Algebraic Type

Comparing with the energy density and Poynting vector of the EM hopfions, we

see that the two sets of local duality invariants are similar. The super-energy is

related by

UIII =
(t4 + 2t2(1 + 7r2 − 8z2) + (1 + r2)2)

8(1 + 2(t2 + r2) + (t2 − r2)2)2
unull. (11.27)

The two vector terms seen here in the super-Poynting vector are the same as the

vector terms in the Poynting vectors ~Snull and ~Snon−null of the EM fields, from

Eqns. (11.18) and (11.21) respectively, up to the overall scalar factors

~PIII =
UIII

2unull
~Snull +

UN
8unull

~Snon−null. (11.28)

11.3.4 Type II and Type I Fields

Finally, we briefly mention the Type II and Type I fields. It is not possible to

generate algebraically special fields of these types from an elementary state. Type

II fields contain three distinct PNDs, therefore one must introduce the (C ·Z) term

from Eqn. (10.1), where the twistor Cγ has the associated spinor field CA′ which

becomes one PND. However, when you apply Cauchy’s integral theorem to the

contour integral the derivative requires you use the product rule, thus the result

includes multiple terms. The solution is then a linear combination of different

Type II fields. A similar situation arises for Type I.
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11.4 Summary

The beauty of the Penrose transform lies in its complex contour integral nature,

which allows for the application of Cauchy’s theorem to bring out the spinor

structure of solutions in M. Thus, the pole structure of the twistor generating

functions encodes the geometry of the resulting physical fields. By understanding

this relationship, we used the twistor functions corresponding to the null EM and

Type N GEM hopfions to generate a class of spin-h fields, including the non-null

electromagnetic, Type D and Type III gravitational hopfions. We characterized

the tendex and vortex structure of the gravitational hopfions using the gravito-

electromagnetic formalism, and showed that the linked configuration of the Hopf

fibration appears in the lines of force.
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You are the first person in whom the idea of bodies acting at a distance
has arisen, as a principle to actually be believed in... You seem to
see the lines of force curving around obstacles and driving plumb at
conductors and swerving towards certain directions in crystals, and
carrying with them everywhere the same amount of attractive power
spread wider or denser as the as the lines widen or contract.

You have also seen that the great mystery is... how like bodies attract
(by gravitation). But if you can get over that difficulty... then your
lines of force can “weave a web across the sky” and lead the stars in
their courses...

James Clerk Maxwell, in a letter to Faraday (1857)

Since the earliest days of electromagnetism, when Gauss introduced his integral

for calculating the linking number of two curves, the topology of physical fields

has been of interest. The concept of field lines was developed by Faraday to

give a direct, physical description of electromagnetic phenomena. He had also

hoped to find a similar description for gravitational lines of force. Although he

and other scientists such as Maxwell gave much thought to finding this analogy

connecting electromagnetism and gravity, they were never able to give an adequate

explanation or mathematical formulation for this relationship.
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In modern times, the relationship between massless linear relativistic fields of

different spin has been understood in terms of the SL(2,C) spinor field equations.

In this language, the spin-N equations - the Dirac, Maxwell, Rarita-Schwinger,

and linear Einstein equations - take on a similar form. Their solutions can be ex-

pressed in terms of complex contour integrals allowing one to construct analogous

fields based on topologically non-trivial configurations for any spin.

The concept of field lines can be applied to gravity, as was once hoped by

Faraday and Maxwell, by decomposing the spin-1 and spin-2 solutions into the

forces experienced by a particular time-like observer to find the lines of force. This

gravito-electromagnetic tidal tensor analogy provides a direct way of analyzing the

hopfion fields and their generalizations based on torus knots, where the topology

physically manifests in the lines of force for both electromagnetism and gravity.

As we have seen, topology is also related to the dynamics of physical systems.

For null electromagnetic fields and ideal MHD the linking number of the field lines

is conserved, so the topology is preserved under time evolution. The radiative

fields maintain their linked structure while propagating at the speed of light.

Linked and knotted magnetic field configurations in plasma are stabilized by the

magnetic helicity, which is associated to a conserved topological number, and thus

these stationary solutions are exact solitons in ideal MHD. In full resistive MHD,

simulations show that these solitons decay but the lifetime is extended due to the

linking of the field lines. Whether a similar conservation law holds for Type N
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gravitational fields is not known, but the gravito-electromagnetic analogy with

null electromagnetic fields may provide an avenue for investigating how topology

affects the dynamics of gravitational fields.

The fields based on the Hopf fibration and torus knots studied here represent

some of the simplest topological structures found in continuous, space-filling con-

figurations. The methods presented in this thesis could potentially be extended

to the construction of classical electromagnetic and gravitational fields based on

more intricate topologies. For example, the twist knots are the simplest class of

knots after the torus knots [100], and have been observed in some areas of physics

such as polymer materials [101, 102], DNA organization [103, 104], and quantum

field theory [105, 106]. Identifying new field configurations and studying their

properties could open new physical applications. Deepening our understanding

of field line topology gives us insight into the structure and dynamics of physical

systems, for indeed, it is these lines of force that determine our paths through the

universe.
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[7] Antonio F. Rañada and José L. Trueba. Topological electromagnetism with
hidden nonlinearity. Modern Nonlinear Optics, Part III, 119:197–253, 2002.

[8] William T. M. Irvine and Dirk Bouwmeester. Linked and knotted beams of
light. Nature Physics, 4(9):716–720, 2008.

[9] Jan Willem Dalhuisen and Dirk Bouwmeester. Twistors and electromagnetic
knots. Journal of Physics A: Mathematical and Theoretical, 45(13):135201,
2012.

[10] Joe Swearngin, Amy Thompson, Alexander Wickes, Jan Willem Dal-
huisen, and Dirk Bouwmeester. Gravitational hopfions. 2014, arXiv:gr-
qc/1302.1431.

154



Bibliography

[11] Amy Thompson, Joe Swearngin, and Dirk Bouwmeester. Linked and knot-
ted gravitational radiation. Journal of Physics A: Mathematical and Theo-
retical, 47(35):355205, 2014.

[12] Edward Witten. Quantum field theory and the Jones polynomial. Commu-
nications in Mathematical Physics, 121(3):351–399, 1989.

[13] G. D. Robertson. Torus knots are rigid string instantons. Physics Letters
B, 226(3-4):244250, 1989.

[14] Javier Arsuaga, Mariel Vazquez, Paul McGuirk, Sonia Trigueros, De Witt
Sumners, and Joaquim Roca. DNA knots reveal a chiral organization of
DNA in phage capsids. Proceedings of the National Acadamy of Sciences,
102(26):91659169, 2005.

[15] T. Machon and G. Alexander. Knots and nonorientable surfaces in
chiral nematics. Proceedings of the National Acadamy of Sciences,
110(35):1417414179, 2013.

[16] G. E. Volovik and V. P. Mineev. Particle-like solitons in superfluid He
phases. Sov. Phys. JETP, 46(2):401–404, 1977.

[17] Yuki Kawaguchi, Muneto Nitta, and Masahito Ueda. Knots in a spinor
Bose-Einstein condensate. Physical Review Letters, 100(18):180403, 2008.
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