
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Connections Between and Techniques For Circuit Meta-Complexity Problems and Lower
Bounds

Permalink
https://escholarship.org/uc/item/6dq3c43p

Author
Hoover III, Kenneth Donald

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6dq3c43p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Connections Between and Techniques For Circuit Meta-Complexity Problems and Lower
Bounds

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Kenneth Donald Hoover III

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Samuel Buss
Professor Shachar Lovett
Professor Ramamohan Paturi
Professor Jacques Verstraete

2022

Copyright

Kenneth Donald Hoover III, 2022

All rights reserved.

The Dissertation of Kenneth Donald Hoover III is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Algorithms . vi

Acknowledgements . vii

Vita . viii

Abstract of the Dissertation . ix

Chapter 1 Introduction . 1
1.1 Switching Lemmas . 4
1.2 Lifting Theorems . 5
1.3 Reductions between MCSP Variants . 7
1.4 Hardness for MCSP Variants . 9
1.5 Meta-algorithms versus Circuit Lower Bounds . 12
1.6 Communication Complexity . 13

Chapter 2 Preliminaries . 17
2.1 General . 17
2.2 Circuits . 18
2.3 Minimum Circuit Size Problem . 20
2.4 Communication Complexity . 22
2.5 Information Theory . 23

Chapter 3 Blockwise Switching Lemma . 25

Chapter 4 Constant-Depth GapMCSP Reductions . 31
4.1 Depth d +1 to d + 1/2 . 32
4.2 Depth d + 1/2 to (d +1)+ 1/2 . 34
4.3 Depth d + 1/2 to d +1 . 36
4.4 Combining the steps: Depth d +1 to d + c for any constant c > 1 38

Chapter 5 Constant-Depth Tolerant GapMCSP Reductions . 41
5.1 Tolerant depth d +1 to d + 1/2 and reverse . 41
5.2 Tolerant depth d + 1/2 to (d +1)+ 1/2 . 42
5.3 Combining the steps: Tolerant depth d +1 to d +2 . 44

Chapter 6 NP-hardness and Approximation Algorithms for bounded fan-in DNF-MCSP 46

Chapter 7 Barriers to More Efficient Natural Reductions . 50
7.1 Efficient Natural Reductions Between AC0

d-,AC0
d+1-MCSP: Win/Win 52

iv

7.2 Quantitative Consequences of a Hardness Hypothesis for MCSP 53

Chapter 8 Half-Duplex Communication . 56
8.1 Trivial bounds . 58
8.2 Rectangles . 60

8.2.1 Round elimination . 63
8.3 Half-duplex communication with silence . 64
8.4 Half-duplex communication with zero . 67
8.5 Half-duplex communication with adversary . 69

8.5.1 Upper-bound on internal information . 71

Chapter 9 Conclusions and Open Questions . 75

Bibliography . 77

v

LIST OF ALGORITHMS

Algorithm 1. ENC . 27

Algorithm 2. DEC . 28

vi

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Russell Impagliazzo for all the help and advice

he’s given over the years. I would also like to thank our co-authors, Marco Carmosino, Valentine

Kabanets, Antonina Kolokolova, Ivan Mihajlin, and Alexander Smal. I want to give a special

thanks to my labmates, Marco Carmosino, Jessica Sorrell, Rex Lei, Sam McGuire, Sasank Mouli,

Anant Dhyal, and Ivan Mihajlin, for all the ideas we bounced off each other over the years. I

want to thank my family, without whom I wouldn’t be giving this defense today. Finally, I want

to thank my fiancée, Kylyn Estoesta, for all the support and patience she’s given me (especially

over the past few months), and her family for being so welcoming to me here in San Diego.

Chapters 3, 4, 5, and 7, in part, are based on material as it appears in “Marco Carmosino,

Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting

for Constant-Depth Circuits and Applications to MCSP. In Nikhil Bansal, Emanuela Merelli,

and James Worrell, editors, 48th International Colloquium on Automata, Languages, and

Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik”. The dissertation author was the primary investigator and author of that paper.

Chapter 8, in part, is based on material as it appears in “Kenneth Hoover, Russell

Impagliazzo, Ivan Mihajlin, and Alexander V. Smal. Half-Duplex Communication Complexity.

In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium

on Algorithms and Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 10:1–10:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik”. The dissertation author was the primary investigator and author of that

paper.

vii

VITA

2016 Bachelor of Science, University of Toronto

2018 Master of Science, University of California San Diego

2022 Doctor of Philosophy, University of California San Diego

viii

ABSTRACT OF THE DISSERTATION

Connections Between and Techniques For Circuit Meta-Complexity Problems and Lower
Bounds

by

Kenneth Donald Hoover III

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Russell Impagliazzo, Chair

This dissertation presents some circuit complexity results and techniques. Circuit com-

plexity is a branch of computational complexity dealing with classes of circuit families as

opposed to classes of Turing Machines. Recent research has shown that there are rich connec-

tions between circuit complexity and other areas in theoretical computer science: Carmosino

et al. construct learning algorithms from “natural” circuit lower bounds; Murray and Williams

show that slightly better than brute-force SAT algorithms lead to circuit lower bounds against NP,

and; Ilango, Ren, and Santhanam show that the existence of one-way functions is equivalent to

hard distributions with certain properties existing for the Minimum Circuit Size Problem (MCSP).

ix

A common theme throughout these results is the concept of “meta-algorithms,” algorithms

which take functions as input and attempt to either construct objects computing the function

in some way (e.g. construct a circuit that well-approximates the function), or finding some

computationally relevant quantity (e.g. what is the minimum size of a circuit computing the

function).

This dissertation will focus on circuit complexity and MCSP for classes of low-depth

circuits, particularly those of bounded fan-in. Here, we will present a lifting theorem from

small-constant-depth bounded bottom fan-in circuits to larger-constant-depth bounded bottom

fan-in circuits, leading to a reduction between MCSP for the corresponding classes. As part of

this, we also present a new switching lemma, which may be of independent interest. We then

demonstrate that MCSP for depth-2 bounded bottom fan-in circuits is NP-hard to compute, and is

approximable within a factor of O(logN). After, we give a barrier result stating that “natural”

reductions between MCSP for different fixed-depth circuit classes yields unexpectedly fast MCSP

algorithms or new circuit lower bounds against these classes. Finally, we introduce a family

of new models of communication complexity and give some upper and lower bounds in these

models, with an eye to separating P from fan-in 2 O(logn)-depth circuits.

x

Chapter 1

Introduction

We will begin with some historical background on the results this thesis presents. Com-

putational complexity has two fundamental problems: lower bounding the amount of resources

(e.g. time, space, randomness) needed to compute a function, and upper bounding the amount.

These problems are immensely important, defining what sorts of tasks and problems we can

or cannot expect computers to solve. Early on in the field, Cobham and Edmonds arrived at

“using a polynomial amount of time, relative to the input size,” the complexity class P, being the

threshold for what makes a problem efficient to solve [25, 32]. As for what makes a problem

inefficient to solve, Hartmanis and Stearns showed that there is a hierarchy of time complexity

classes, where higher classes are strict supersets of the lower classes [40]. However, the functions

defined there are very artificial, and doesn’t say anything about more natural problems we would

like to solve. For these more natural problems, such as finding the shortest loop between a set

of cities, it is easy to verify that we have been given a correct solution, but seemingly hard to

generate solutions from the problem instances. In seminal works by Cook and Levin, a class

NP was introduced that captured this notion of easy verification [26, 67]. It has since been the

central question of complexity theory to relate P and NP.

Open Problem 1. Is P equal to NP?

The research problems above have so far been posed in terms of determining how

(in)efficient a program is at computing various functions. This makes sense for designing

1

algorithms with step-by-step instructions, run on some sort of general-purpose computer. But

to actually make use of these algorithms, we need to build such a computer, and this requires

discussing circuits and how to implement functions using them. Circuits, in this context, are not

physical circuits with resistors, capacitors, or other such components, but are instead a network

of gates (logical connectives such as AND, OR, NOT, XOR, etc.) and wires connecting inputs

and outputs of each gate to each other, with one of the component gates labelled the output of

the circuit. Owing to their concrete nature, they have certain differences from more abstract

programs. The first difference is that a circuit accepts a fixed number of input bits. Thus, in

order to compute functions over arbitrary-length inputs, we are required to talk about families of

circuits {Cn}, where n is a parameter indexing each circuit by the number of inputs it takes. From

a complexity standpoint, we can analyze the complexity of these circuit families by looking at

how the number of gates grows as n increases, which we call the circuit size, and by how the

depth (the longest path from any of the circuit’s inputs to the output gate) grows, the circuit

depth. Another difference from the usual model of computation is the non-uniformity; whereas a

program only has one set of instructions that it uses on all possible inputs, a circuit family can

use completely different circuits for each input length. This allows sufficiently-large circuits to

compute all possible binary functions, whereas there are well-known binary functions which

cannot be computed by a single program no matter how complex (see [94] for an example).

Finally, we know that all circuits have a non-trivial (i.e. smaller than 2n) upper bound on their

size [71].

As a circuit analogue to P, we can define the class P/poly of circuit families where the

size is polynomially-bounded relative to the input length. Similar to uniform algorithms, we

have a hierarchy of size classes for circuits. Unlike uniform algorithms, however, we also know

that most boolean functions require exponentially-large circuit sizes to compute [92]. While

it is useful to know most functions need large circuits, ultimately we want to find an explicit

function that is hard. As an example, if we can find an explicit function that takes 2O(n) time to

compute, but no polynomial-sized circuit family can compute it, then using randomness is no

2

more powerful than time for polynomial-time computation.

Theorem 2 (Hardness-to-Randomness [78, 58]). If E ̸⊂ P/poly, then P= BPP.

We can also reformulate the P versus NP question using our new circuit complexity

classes.

Open Problem 3. Is NP contained in P/poly?

A great deal of work has been done in attempting to resolve this question, with larger and

larger lower bounds being proven against stronger and stronger subclasses of P/poly [39, 41, 63,

68, 55, 93, 42, 97]. However, many of the techniques used to achieve these results were found to

be unable to separate P/poly and NP, due to Razborov and Rudich [86]. Informally, this barrier

states that any proof of super-polynomial circuit size lower bounds that uses a “natural property,”

i.e. a property of the function that is easy to test given the truth-table of the function and is true

of many functions, implies that cryptography cannot exist. As it is widely believed that we can

do cryptography, this result forms a barrier which many known techniques seem unable to cross,

although there has been some recent progress in circumventing it [23, 29].

Focusing on the first part of the natural property definition, the ability to test whether a

function has the property or not, we can observe an interesting kind of “meta-computational”

problem emerge. We use the term meta here because we are designing an algorithm that computes

some computational property of a given input function, i.e. computation to decide computational

properties. These meta-computational problems have a rich history in the area; the Halting

problem and Rice’s theorem both explicitly concern meta-computation when given a program

as input [24, 94, 87]. The first NP-complete problem, Circuit Satisfiability, is also of a meta-

computational nature: given a circuit as input, decide if the circuit ever outputs TRUE on any

input.

The Minimum Circuit Size problem (MCSP) is another problem in this family: given a

function, represented by its truth-table, and a size s, decide if the function has a circuit computing

3

it of size at-most s. While the problem is in NP,1 it has been notoriously difficult to determine

whether it is NP-hard, in P, or perhaps somewhere in-between. In recent years, spurred on by

Kabanets and Cai, we’ve seen a flurry of work studying MCSP, with many papers examining

why it has been so difficult to prove hard [61, 76, 47, 9, 46, 8, 45, 89]. In the remainder of the

introduction, we will be explaining what our results are, and further situate them within the

existing literature.

1.1 Switching Lemmas

As part of the initial work in investigating NP versus P/poly, subclasses defined by

restricting the circuit depth were looked at. Furst, Saxe, and Sipser showed that circuit families

with a fixed constant depth could not compute the parity of n bits using a polynomial number of

gates [34]. A key part of their proof was showing that given a depth-d circuit for n-bit parity, if

they fixed a random subset of the bits to random constants, this fixing being called a random

restriction, then with non-zero probability they would get a depth-d circuit for m-bit parity, where

m ∈ Ω(
√

n) where each conjunctive normal form formula (CNF) or disjunctive normal form

formula (DNF) at the bottom of the circuit has sized bounded by a constant. By doing this, they

could “switch” the bottom formulas from CNFs to DNFs and vice versa, and thereby decrease

the overall depth of the circuit by 1 without inflating the size too much. By repeatedly doing this,

they would arrive at a “small” depth-2 circuit for parity, contradicting a known exponential lower

bound from Lupanov [72]. A similar lemma can be found in [2], in the context of determing

the power of first- and second-order formulas. This style of lemma was formally named as a

switching lemma by Håstad, when improving on the prior result by giving a fully exponential

lower bound on the size of parity circuits for any constant depth [41].

This version of the switching lemma has been used in multiple other results: Rossman

proved an Ω(nk/4) lower bound on the size of constant-depth circuits for deciding if a graph

1Because we’re given the 2n-bit truth table as input, given a candidate circuit we can check in linear time that it
agrees with each possible input to the function.

4

contains a k-clique [88], and Agrawal, Allender, and Rudich were able to prove that problems

complete using fixed-depth-circuit computable reductions are also isomorphic using such circuits

[1]. However, what is more common is the use of variants of the Switching Lemma. In [54],

Impagliazzo, Matthews, and Paturi gave a variant showing that applying a random restriction to

a set of DNFs over the same variables results in a small number of high fan-in DNFs or all high

fan-in DNFs depending on an identical smaller subset of variables. And in [91], Segerlind, Buss,

and Impagliazzo introduce a switching lemma that allows for a polynomially-small fraction of

the inputs to be fixed, rather than the Ω(1) fraction needed for Håstad’s version. This comes at a

cost of requiring an Ω(
√

n) fan-in for the resulting formula, however.

Our contribution is a block-wise switching lemma, where the the input is broken into

equally sized blocks and the restrictions fix all but a single bit in each block. Another version of

a block-wise switching lemma has appeared in previous work [41, 43], but differs from ours in

that it attempts to use groups that match the structure of Sipser’s function, whereas our groups

are meant to preserve the structure of a constituent function in a composition. This results in very

different restriction distributions being used, as well as a quantitative difference in the number of

unset variables and the probability of having a good restriction.

Lemma 4. Let ϕ be a k-CNF over nl variables, and let the variables be grouped into n arbitrary

disjoint blocks of l bits each. Let D be the uniform distribution over restrictions which leave

exactly one variable in each block unset. The probability that ϕ cannot be written as a t-DNF

after applying a random restriction selected from D is at most
(8k

l

)t
.

1.2 Lifting Theorems

A recurring theme in computational complexity is the differing “power” of various models

of computation. As a concrete example, consider the parity function; whereas there is a simple

linear time algorithm for computing it, any constant-depth circuit requires exponential size to

even well-approximate it. Given this state, we could imagine finding models of computation in

5

which it is easy to prove lower bounds, and then attempt to construct related functions which

“lift” the lower bounds into a different, stronger model. A common scheme for this is using

function composition to lift. Under this scheme, a suitable “gadget” function g is identified, and

it is shown that for any function f , the complexity of f in the weaker model is (approximately)

equal to the complexity of f ◦g in the stronger model. First shown by Raz and McKenzie [84], a

number of lifting theorems can now be observed in the literature [20, 38, 82, 37, 28, 83]. The

majority of these theorems use a query model as the weaker model, where computation is done

by examining a single bit of the input at a time and branching depending on the value, and a

communication model as the stronger model. They also often use depth as the measure for

complexity, as opposed to size.

Recently, in a breakthrough result, Ilango showed that using randomized quasi-polynomial

time Turing reductions,2 MCSP for constant-depth formulas is NP-hard [50]. The main lemma

used in this a type of lifting argument, in which the depth-(d−1) size of a function f is lifted to

lower bound the depth-d size of the function f ∧g, where g is a random function selected from a

carefully designed distribution. This breaks with more standard lifting theorems in a number of

ways; one is that there is a distribution over gadgets, as opposed to a single fixed choice. In fact,

this distribution itself depends on the function f being lifted. In addition, they are lifting between

two models of the same type, in the sense that both models are formulas over unbounded fan-in

AND and OR with the output gate being an OR, but with different restrictions on depth. This

lifting theorem works by first showing that g−1(1) is covered redundantly by the subformulas

under the output gate, and then using this redundancy to give a smaller approximation for g

than is assumed possible. Such an approach does seem to require formulas as the model, lever-

aging the fact that subformulas must be disjoint from each other to achieve the contradiction

above; subcircuits can reuse most of the gates beneath the top gate of each subcircuit, in effect

amortizing the complexity of computing a “hard core” over multiple subcircuits.

2Turing reductions are stronger than the many-one reductions used as the standard definition for NP-hardness.
As one example, under linear-time Turing reductions NP= coNP.

6

Our lifting theorem is more in line with previous lifting theorems, using the composition

of an arbitrary f with the parity function to lift the size complexity of f for bounded bottom

fan-in depth-d circuits to bounded bottom fan-in depth-(d +1) circuits. Here, both the bottom

fan-in bounds and the number of input bits for the parity gadget are logarithmic in the depth-d

size of f . Such bounded bottom fan-in models have been studied before in the literature, with

fixed-constant bounds appearing in [16, 80, 81, 57] in the context of both finding circuit lower

bounds and designing algorithms, and logarithmic bounds similar to our own appearing in [41].

Theorem 5. Let f be a function with bounded bottom fan-in depth-d complexity s. Then f

composed with the parity function over Θ(logs) bits has bounded bottom fan-in depth-(d +1)

complexity sΘ(1).

The two main ingredients of this theorem are our switching lemma, which we use to

transform a depth-(d +1) circuit for the composition into a depth-d circuit computing a function

that can be projected into f , and what we call “clever brute force.” What we mean by this is the

following: if we use an optimum CNF or DNF for parity, and wire the outputs of each parity

group into the inputs for f , we would either have too large a depth or the bottom fan-in would be

too large for our switching-based approach to work. So instead, we view the single parity as a

composition of two separate parities, and distribute the number of inputs between them such that

the overall bottom fan-in meets our bound (the clever part). Then, we use distributivity to take

what would be a depth-(d +3) circuit and instead collapse two layers, giving us a depth-(d +1)

circuit at some cost to the size (the brute force part).

1.3 Reductions between MCSP Variants

When we demonstrate a lifting theorem, we can view it through two lenses. The standard

lens is that of lower bounds; we can lift a lower bound in one model up into lower bounds in an-

other. The alternative lens is viewing the lifting as a reduction. As an example, consider decision

tree to communication complexity lifting, where we show that the decision tree complexity of a

7

function f is roughly equivalent to the communication complexity of a composed function f ◦g

[20]. If we view it through the alternative lens of a reduction, we can see that we are reducing

“finding the decision tree complexity of f ” to “finding the communication complexity of f ◦g.”

Considering decision tree complexity can be approximated to within a polynomial factor in

polynomial time given the full truth table of f ,3 this reduction on its own isn’t very interesting.

However, the lifting theorem present in [50] is much more interesting to us. In particular,

we know that computing the minimum DNF size of function is NP-complete [73], while hardness

for other constant depth formula classes is unknown. Thus such lifting theorems actually do

present us with new hardness results! In a similar vein, we transform our lifting theorem into an

algorithmic reduction, and obtain a quasi-polynomial Karp reduction from approximating MCSP

for small depth bounded bottom fan-in circuits to approximating MCSP for large depth bounded

bottom fan-in circuits, where the approximation factor shrinks by a polynomial factor.

Theorem 6. Let k > 0 be a sufficiently large constant. Approximating MCSP for depth-d bounded

bottom fan-in circuits to within a factor of sk can be reduced in quasi-polynomial time to

approximating MCSP for depth-(d +1) bounded bottom fan-in circuits to within a factor of sΘ(k).

We can then combine this reduction with a size versus bounded bottom fan-in trade-off,

and another lift from bounded bottom fan-in depth-d to unbounded bottom fan-in depth-d,

to obtain a quasi-polynomial time reduction from approximating MCSP for depth-d circuits to

approximating MCSP for depth-(d +1) circuits.

Theorem 7. Let 0 < α < β < γ < δ < 1 be constants, with a sufficiently large gap between

γ and δ and between α and β . Distinguishing between n-bit functions which have 2nα

-sized

depth-d circuits and those which do not have any 2nδ

-sized depth-d circuit can be reduced

in quasi-polynomial time to distinguishing between nΘ(1)-bit functions which have 2nβ

-sized

depth-(d +1) circuits and those which do not have any 2nγ

-sized depth-(d +1) circuit.

3Block sensitivity, a measure of complexity for boolean functions, can be brute forced in time 2O(n) on an n-bit
function, and is polynomially related to decision tree complexity [77].

8

We can also consider a tolerant version of MCSP, where instead of finding the smallest

circuit exactly computing a function f , we want the smallest circuit that approximates f to

within an error ε . Just as we can view MCSP as a generalization of natural properties versus

worst-case complexity classes, we can view tolerant MCSP as being a generalization of natural

properties versus average-case complexity classes, as is done in [19] to construct agnostic

learning algorithms. In the tolerant case, we can use a well-known trade-off between the bottom

fan-in of a circuit and the error to obtain a reduction for unbounded bottom fan-in circuits, instead

of resorting to the exponential size blow-up of the size versus bottom fan-in trade-off.

Theorem 8. Let k > 0 be a sufficiently large constant. Approximating tolerant MCSP for depth-d

circuits to within a factor of sk can be reduced in quasi-polynomial time to approximating

tolerant MCSP for depth-(d +1) circuits to within a factor of sΘ(k), with a 1/poly(n) additive loss in

the tolerance.

1.4 Hardness for MCSP Variants

As mentioned earlier in the introduction, determining the hardness of MCSP has been an

elusive problem within the field. While we have seen some limited success in showing MCSP is

hard, under various types of reductions and for smaller classes than NP [6, 79], and have some

lower bounds for MCSP in subclasses of P/poly [5, 49, 36, 22], we also have a number of barrier

results that either rule out certain classes of reductions for proving hardness ([8, 76, 10]) or show

that hardness for MCSP leads to resolving longstanding open questions (we’ll discuss this line in

the next section of the introduction). In light of that, instead of attempting to show results about

MCSP itself, we can think about variants to the problem.

Until very recently, the only variant with unconditional NP-hardness was DNF-MCSP,

where given a function we want to find the minimum number of terms in any DNF computing

the function. This was originally due to Masek [73], with simplified proofs appearing later

[27, 95, 7]. Focusing on the proof in Allender et al. [7], it proceeds in two stages: first, a

9

reduction is given from 3-Partite Set Cover (closely related to 3D Matching) to DNF-MCSP for

partial functions; then a reduction from DNF-MCSP for partial functions to DNF-MCSP for total

functions. The first stage uses the fact that each term of a DNF corresponds to a projection of

the boolean hypercube, and constructs a mapping from universe elements and sets to boolean

vectors and projections such that the membership relation is unchanged. The second stage uses a

clever technique where they introduce two new bits, used to select whether the function should

accept: all non-rejecting inputs for f ; all indeterminate inputs of even parity; all indeterminate

inputs of odd parity, or; no inputs. They then argue that any DNF computing this new function

must contain one term for each indeterminate input and a DNF for f , with the two sets of terms

being disjoint.

In 2018, Hirahara, Oliveira, and Santhanam demonstrated that MCSP for OR-AND-MOD2

circuits is NP-complete [45]. Such circuits consist of an output OR gate of unbounded fan-in,

with unbounded fan-in AND gates underneath it, and finally unbounded fan-in MOD2 gates

beneath those. Their reduction follows a similar two-stage approach as Allender et al., reducing

from 2-approximating r-Bounded Set Cover to the partial function version of MCSP, and from the

partial function version to the total function version. The main difference is that the reductions

here are zero-error randomized reductions, rather than deterministic. This is resolved in a third

stage, where they construct a pseudorandom generator with sufficient strength to derandomize

their reductions. Here too, they use a geometric property of AND-MOD2 circuits, namely that

all such circuits only accept affine subspaces of Zn
2. Similar in spirit to Allender et al., they

map the elements of the universe uniformly at random onto a sufficiently large hypercube, and

map the sets onto the span of the contained elements. In the second stage, they map each input

x onto a function fx(y), with all accepting inputs mapping to the function y = 0, all rejecting

inputs mapping to the constant FALSE function, and all indeterminate inputs being mapped to

the indicator for the linear span of a random vector set. Again, in a similar argument to Allender

et al., they show that each AND gate either computes fx(y) for a single indeterminate input x, or

is part of computing the original partial function.

10

Both of these results leverage geometric properties of their circuit classes when viewed

as subsets of the hypercube. Such leverage disappears once we consider OR-AND-OR circuits, as

now the depth-2 AND-OR subcircuits form a complete class, i.e. any function can be expressed

as an AND-OR circuit. As such, we are forced to examine other techniques for hardness. In

[50], Ilango gives super-polynomial time lower bounds under the Exponential Time Hypothesis

(ETH) for partial function MCSP,4 and unconditional NP-hardness under quasi-polynomial time

randomized reductions for depth-k formula MCSP, for all constants k. The former result uses

the Bipartite Permutation Independent Set (BPIS) problem, proved hard under the ETH in [70],

and shows that given a suitably defined function, any small circuit computing the function has

a canonical form from which a permutation solving the original BPIS problem can be derived.

This result also carries over to the partial-function version of MFSP, the Minimum Formula Size

Problem. A similar technique of forcing all minimum formulas into a canonical form can be

seen in [51], where ETH hardness for total-function MFSP is proven. In that case, they first prove

a lower bound assuming the formula is already in canonical form, and then demonstrate that any

general formula embeds the canonical form after a projection that kills a small number of leaves,

using a technique from [14]. For the fixed-constant-depth formula MCSP result, a lifting approach

is taken instead, as outlined previously.

In Chapter 6, we demonstrate a reduction from total-function DNF-MCSP to bounded

bottom fan-in total-function DNF-MCSP, with the hope of possibly using this as a starting point

for hardness of higher-depth circuits. Our reduction uses a padding argument to blow up the

required size in a controlled way, allowing formerly unbounded bottom fan-in circuits to be

recast as bounded bottom fan-in circuits.

Theorem 9. DNF-MCSP for bounded bottom fan-in circuits is NP-hard.

Unfortunately for us, the gap for which we can possibly expect the DNF version to be

hard is much smaller than needed, having an efficient algorithm for distinguishing functions with
4The Exponential Time Hypothesis, informally stated, claims that the Circuit Satisfiability problem requires

deterministic time 2Ω(n) to compute [56, 57].

11

size-s bounded bottom fan-in DNFs versus functions with no size-sn bounded bottom fan-in

DNFs.

Theorem 10. Distinguishing between n-bit functions having size-s bounded bottom fan-in DNFs

versus n-bit functions with no size-sn bounded bottom fan-in DNFs can be done in polynomial

time.

1.5 Meta-algorithms versus Circuit Lower Bounds

Consider meta-computational problems at their most abstract: an algorithm is given a

function, or a circuit, or a program, and is asked to determine if some computational property

is true of the given object. Informally, being able to design such an algorithm should entail a

sufficient degree of understanding about the property in question. However, designing reductions

to such a problem would also seem to require such understanding, in order to prove the reduction

correct. Thus being able to make statements about meta-computational problems would seem to

go hand-in-hand with our ability to prove statements regarding the underlying property. Such an

intuition can be made explicit, as was done with the Natural Proofs barrier [86]. A good example

of this phenomenon is the Easy Witness line of papers, which tie together circuit upper bounds for

various non-deterministic time classes and the complexity of generating witnesses for problems

in those classes [60, 53, 96, 97, 75, 21]. A particular highlight is the main result of [75], which

shows that faster C Satisifiability algorithms, for any C a standard circuit class, yield C -circuit

lower bounds against NP. We can also see this again in [18], in which the distinguisher-to-circuit

algorithm present in the proof of the Nisan-Wigderson pseudorandom generator is leveraged to

construct learning algorithms from natural properties.

Even more recently, a deep connection between the existence one-way functions (the core

from which the cryptographic schemes in use today can be derived) and MCSP has been uncovered

[69, 90, 52]. The latest in this sequence, from Ilango, Ren, and Santhanam, go beyond MCSP,

showing that one-way functions existing is in fact equivalent to showing that, for some “nice”

12

complexity measure C and polynomial-time samplable distribution D where the C complexity

of a function f ∈ D is bounded by roughly log(1/D(f)), approximating C complexity is hard on

average over D. Going back to natural properties, then, the existence of one-way functions would

imply strong pseudorandom generators exist; these generators would rule out MCSP ∈ P/poly,

giving circuit lower bounds from a uniform average-case hardness result.

Our contribution in Chapter 7 can be viewed as an expansion of the “natural reductions

imply circuit lower bounds” result in [61]. In their paper, they define the concept of a “natural”

reduction to MCSP as one where the size parameter for the MCSP instance only depends on the

length of the instance being reduced from. They then demonstrate in Theorem 15 how, if MCSP

is NP-hard using such a reduction then there is a family of functions computable in time 2O(n)

that require super-polynomial sized circuits. We instead look at inter-reductions between MCSP

variants, in particular constant-depth circuit variants, and so relax this notion of “natural” to

instead allow for the size parameter of the output instance to vary depending on the length as

well as the size parameter of the input instance. We can then apply a similar win-win argument

to obtain new circuit lower bounds from efficient natural reductions.

Theorem 11. Suppose there is a natural polytime reduction from MCSP for depth-d circuits

to MCSP for depth-d′ circuits, where d′ > d. Then MCSP for depth-d circuits can be solved

surprisingly fast, or there is a function family computable in time 2O(n) that does not have

size-2Ω(n1/(d−1)) depth-d′ circuits.

1.6 Communication Complexity

In Yao’s communication model of computation [98], we have two parties, Alice and

Bob, who wish to compute some function f : A×B→ Z. Alice is given the A input, Bob is

given the B input, and both are assumed to have unbounded computational resources (besides

knowing which input the other party received). Their task is to communicate bits to each other,

one at a time, until the output of f on their joint inputs is known to both parties. A protocol is a

13

binary tree with internal nodes each labelled with either a partition of A or a partition of B and

leaves each labelled with an element of Z. The two parties communicate using the protocol as

follows; starting at the root, check whether Alice’s (Bob’s) input is in the left or right partition,

then traverse to the left or right child accordingly. Repeat this process until a leaf is reached,

and then output the label of that leaf. Traversing to the left or right child corresponds to Alice

(Bob) sending a 0 or 1 bit and both players updating their state accordingly. The communication

complexity of a protocol is the depth of the tree, and the communication complexity of f is the

minimum communication complexity of any protocol computing f . We can extend this model to

relations R ⊆ A×B×Z and partial functions as well; for partial functions, we say a protocol

computes the partial function if on all inputs for which the function is defined, the protocol

outputs the correct value. Similarly, a protocol computes a relation if for every leaf, the label z

for the leaf and the input set S⊆ A×B which can reach the leaf are such that S×{z} ⊆ R.

In [63], Karchmer and Wigderson define a communication relation called the Karchmer-

Wigderson game for f , KW f , where f : {0,1}n→{0,1}. In this relation, Alice is given an input

in x ∈ f−1(1), Bob an input y ∈ f−1(0), and they wish to find an index i ∈ [n] where xi ̸= yi.

As they show in their work, the communication complexity of this relation is exactly equal to

the minimum formula depth needed to compute f . Using a closely related relation applicable

to monotone functions and formulas, they manage to separate monotone P from logarithmic-

depth fan-in-2 monotone formulas. Seeking to drop the monotone restriction and obtain a full

separation between P and these low-depth formulas, Karchmer, Raz, and Wigderson introduce

the following conjecture.

Conjecture 12 ([62]). There is some 1≥ ε > 0 such that for all functions f , the communication

complexity of KW f◦ f is at least 1+ ε times the complexity of KW f .

If this conjecture were true, then we would have our separation. To see why, consider the

hardest function f ∗ on logn variables requiring formula depth Ω(logn). If we compose f ∗ with

itself logn/ log logn times, the resulting function would have n variables, and by the conjecture

14

above would require formulas of depth log1+ε ′ n/ log logn ∈ ω(logn).

Instead of directly attempting to study the complexity of compositions for concrete

functions, we can examine the complexity of the Universal Composition Relation and Iterated

Multiplexor function. The former is a generalization of the KW game for compositions where

each player is given a k-ary tree of depth d, with each node labeled 0 or 1, with the property

that if the label given to each player for a particular internal node is different, then some child

of that node is given different labels for each party’s tree. Alice’s root is labelled 1, Bob’s root

is labelled 0, and they wish to find a leaf which is labelled differently in each tree. Formalized

in [63], lower bounds that are almost tight for the regimes of k and d we are concerned with

were proven independently by Edmonds et al. and Håstad and Wigderson [33, 44]. The Iterated

Multiplexor takes as input a kd-bit vector and a k-ary depth-d tree where the leaves are labelled

with variable names and the internal nodes are labelled with k-ary functions, and outputs the

natural composition computation indicated by the tree. If we restrict all internal nodes at the

same depth to have the same function label, the Iterated Multiplexor can then be viewed as

a single function through which we can study the behaviour of all function composition with

respect to depth.

It was hoped that techniques used in proving the lower bounds for the Universal Com-

position Relation would be useful in demonstrating lower bounds for the Iterated Multiplexor,

which would then give us P formula depth lower bounds. However, the techniques used in lower

bounding the Universal Composition Relation rely on being able to maintain symmetry between

the possible sets of Alice and Bob inputs as the protocol proceeds, whereas for the KW game for

the Iterated Multiplexor the two parties have already broken symmetry completely. Moreover,

the Iterated Multiplexor KW game is difficult to study due to how Alice and Bob may want to

change who gets to speak at a given protocol node depending on what a particular function

in the Multiplexor tree; such behaviour is not allowed in the standard communication model.

Several results since have begun bridging this gap between known lower bounds for Universal

Composition and the lack of such results for Iterated Multiplexor [31, 65, 35, 74].

15

In Chapter 8, we introduce a new model of communication through which we hope to

better study the complexity of Iterated Multiplexor. In this half-duplex model, Alice and Bob

are allowed to simultaneously send or simultaneously receive bits, in addition to one sending

the other a bit. In addition to this new ability for the two players to conflict, it also allows for

them to, e.g., change who is the speaker and who is the receiver based on the function label

given to a Multiplexor tree node. Introducing alternative models of communication to facilitate

better analysis of an existing problem has prior examples in the literature [59, 30, 11, 64]. In

particular, Impagliazzo and Williams [59] use their model, defined somewhat similarly to ours,

in order to obtain lower bounds for the communication analogue of PNP, although they focus on

the complexities of protocols where choosing to send, receive, or do neither all have different

costs. We introduce three variants of the half-duplex model according to what happens when

both parties choose to receive bits, termed a silent round, and give some upper and lower bounds

of various communication problems within these models. Additionally, for one such variant we

give an upper bound on the amount of information the two parties can exchange in a single round,

and use it to derive lower bounds for parity that match the known lower bounds of standard

communication.

16

Chapter 2

Preliminaries

We will follow the convention that capitalized Greek letters, e.g. Λ, Γ, refer to circuit

classes; lowercase Greek letters, e.g. α , β , refer to functions N→N, and; constants are lowercase

Latin letters.

2.1 General

Definition 13 (Time Complexity). Given a language L⊆ {0,1}∗, we say L ∈ TIME[t(n)] if there

is an algorithm running in asymptotic time O(t(n)) that accepts an input x if and only if x ∈ L.

Definition 14 (Standard Time Complexity Classes). The class P is defined as P=
⋃

k∈NTIME[nk].

The class QuasiP is defined as QuasiP =
⋃

k∈NTIME[2logk(n)]. The class E is defined as E =⋃
k∈NTIME[2kn].

Definition 15 (Truth Table). The truth table of a function f : {0,1}n→{0,1} is the 2n-bit string

z where zi is equal to f on the binary representation of i.

Definition 16 (Composition). Given two boolean functions f : {0,1}n→{0,1} and g : {0,1}m→

{0,1}, we say that the composition of f with g is the function f ◦g : {0,1}nm→{0,1} defined

by breaking the inputs into n blocks [x⃗1, . . . , x⃗n] of m bits each, computing g for each block, and

then outputting f (g(x⃗1), . . . ,g(x⃗n)).

Definition 17 (Promise Problems). A promise problem is defined by two disjoint sets Y,N ⊂

17

{0,1}∗. An algorithm computes a promise problem if for every xY ∈ Y the algorithm accepts xY

and for every xN ∈ N it rejects xN .

We will sometimes call the sets Y and N the YES and NO sets, respectively.

Definition 18 (Many-One Reductions). A t(n)-many-one reduction from a language A to a

language B is a function f : {0,1}∗→{0,1}∗ computable in time O(t(n)) such that for any x,

x ∈ A⇔ f (x) ∈ B. We denote this as A≤t(n)
m B. We will use ≤poly

m to allow any polynomial be

used for t, and ≤qpoly
m for any quasi-polynomial.

Definition 19 (Hardness). For any standard complexity class C⊇ P, we say that a language L is

C-hard if for every language L′ ∈ C, L′ ≤poly
m L. We say that L is C-complete if L ∈ C as well.

Definition 20 (Parity). The n-bit parity function, which we denote as ⊕n : {0,1}n→{0,1}, is

defined as outputting 1 if and only if the number of 1s in the input is odd.

We will omit n when it is clear from context what the value is.

2.2 Circuits

Definition 21. A circuit over n-bit inputs is a labelled directed acyclic graph, where all source

vertices have labels from {xi,¬xi | i ∈ [n]}∪{0,1}, all non-source vertices v have as a label a

function fv : {0,1}in-deg(v)→ {0,1}, and there is a single sink vertex designated as the output.

For our purposes, we will suppose that for each i, there is a source labelled with xi or ¬xi, i.e. all

circuits have at least n vertices. We define the size of a circuit to be the number of vertices in the

underlying graph. The depth of a vertex v (also called a gate) is the edge-length of the longest

path from any source that can reach v to v. The depth of a circuit is the depth of the output gate.

Computation using a circuit given an input x works by first replacing each source label xi

(or ¬xi) with the value (or negation) of the input at position i. Then, for each non-source v with a

function label, if all in-neighbours have boolean valued labels, we compute fv on those values

18

and replace fv with the resulting output. When the output vertex is given a boolean value, we

take that as the result of the entire circuit.

As circuits are concrete objects that only ever accept n-bit inputs, in order to talk about

circuits “computing” functions/languages over arbitrary input lengths we refer to circuit families

instead.

Definition 22. A circuit family is a sequence of circuits C = {Cn}n∈N where each Cn takes n

bits as input. We say the size and depth of a family are the asymptotic upper bounds of the size

and depth of Cn as n goes to infinity.

We also have a subset of circuits where reusing computation from vertices within the

circuit is not allowed.

Definition 23 (Formulas). A formula is a circuit where the underlying undirected graph is a tree.

The formula size of such a circuit is the number of source vertices.

If we do not otherwise specify, we assume all formulas have function labels taken from

(are over the basis)
{
∧ : {0,1}2→{0,1},∨ : {0,1}2→{0,1},¬ : {0,1}→ {0,1}

}
.

Definition 24 (Circuit Complexity Classes). We define the class of general circuits to be all

circuits where the function labels are taken from arbitrary arity {∧,∨,¬}, and define SIZE[t(n)]

to be all functions computable by a family of general circuits of size O(t(n)). Similar to P, we

define P/poly as P/poly =
⋃

k∈NSIZE[n
k].

We can also place other restrictions on the properties of the circuits, and define size

classes in terms of those as well.

Definition 25 (AC0). We say a circuit is in AC0
d if it is a general circuit of depth at most d, and

for any two non-source vertices at the same depth, they are either both labelled ∧ or both labelled

∨, possibly of differing arities. The AC0
d size of a function f is the size of the smallest family of

AC0
d circuits computing f . We defined AC0

d-SIZE[t(n)] to be the class of functions computable

by size O(t(n)) families of AC0
d circuits.

19

We will be analyzing a subclass of these AC0 circuits, where the in-degree of any gate

neighbouring a source is bounded.

Definition 26 (Bounded Bottom Fan-in). A circuit is in AC0
d+1/2 if it is an AC0

d+1 circuit of size

s where all vertices neighbouring a source have in-degree at most logs. We will also refer to

these circuits as bounded bottom fan-in circuits.

For the case of d = 2, we have two special definitions.

Definition 27 (CNF and DNF). A CNF is an AC0
2 circuit where the output gate is labelled ∧, and

a DNF is an AC0
2 circuit where the output gate is labelled ∨. The size of a CNF or DNF is the

number of ∨ or ∧ gates in the circuit, respectively.

Definition 28 (NC). A general circuit is in NCi if all vertices have in-degree at most 2, and the

depth of the circuit is O(logi n). We define NC as NC=
⋃

i∈NNC
i. The NC depth of a function f

is the smallest depth over any family of polynomially-sized NC circuits computing f (or ∞ if no

such family exists), and will say f ∈ NCi if the NC depth of f is O(logi n).

Note that for NC1 in particular, all such circuits will be polynomially-sized. Moreover, we

can also assume all such circuits are formulas, as duplicating gates with multiple out-neighbours

only increases the size by a polynomial factor with such a low depth.

Definition 29 (Tolerance). For a complexity class C, we say that a function f is in Ĉ[ε] if there

is a function f ′ ∈ C such that Prx∼U [f (x) ̸= f ′(x)]≤ ε .

2.3 Minimum Circuit Size Problem

Definition 30 (Λ-MCSP). The Minimum Λ-Circuit Size Problem is the language Λ-MCSP defined

by

{(f ,s) | f ∈ Λ-SIZE[s]},

where f is given in the form of its truth-table.

20

When Λ is unspecified, the problem is for general circuits.

Definition 31 (Fixed-Parameter MCSP). For a fixed s ∈ N, Λ-MCSP[s] is the language defined by

{ f | f ∈ Λ-SIZE[s]}.

The difference between this definition and the one previous is that s isn’t given as part

of the input, but is instead fixed ahead of time, similar to the difference between Clique and

k-Clique.

Definition 32 (Gap MCSP). For fixed syes,sno ∈ N, Λ-GapMCSP[syes,sno] is the promise problem

defined by

Y = { f | f ∈ Λ-SIZE[syes]}

N = { f | f ̸∈ Λ-SIZE[sno]}.

These can be combined with the tolerance operator •̂ introduced above to obtain tolerant

versions of all the above problems. For GapMCSP, we can also introduce a gap in the tolerance

allowed, leading to the following definition.

Definition 33 (Tolerant Gap MCSP). For fixed syes,sno ∈ N and ε1,ε2 ∈ [0,1], Λ̂[ε1,ε2]-

GapMCSP[syes,sno] is the promise problem defined by

Y = { f | f ∈ Λ̂[ε1]-SIZE[syes]}

N = { f | f ̸∈ Λ̂[ε2]-SIZE[sno]}.

We can restrict the problems further by only accepting (or in the case of GapMCSP,

accepting or rejecting) functions over n bits; we will denote this as Λ-MCSPn, etc. We can then

view our above definitions as the union of these fixed-bit versions where n ranges over N. By

21

doing this, we can also generalize our gap definition to allow for size functions instead of fixed

size constants.

Definition 34. Given size functions α,β : N→ N,

Λ-GapMCSP[α,β] =
⋃

n∈N
Λ-GapMCSPn[α(n),β (n)],

where for promise problems we define the union as being a promise problem where Y and N are

defined as the unions of the constituent Y and N sets.

2.4 Communication Complexity

Definition 35 (Rectangles). A rectangle R ⊆ X ×Y is a set that can be written as X ′×Y ′ for

X ′ ⊆ X and Y ′ ⊆ Y .

Definition 36 (Communication Protocol). A communication protocol over X×Y → Z is a rooted

labelled proper binary tree where all leaves are given a label from Z, and all internal vertices are

given a label from {⟨A, f : X→{0,1}⟩}∪{⟨B,g : Y →{0,1}⟩}. The communication complexity

of a protocol is the edge-length of the longest root-leaf path in the tree.

To evaluate a communication protocol on an input pair (x,y), we recursively perform the

following from the root: if the current vertex is a leaf, output its label. If it is not, evaluate f (x)

or g(y), depending on the type of label the vertex was given, and proceed to the left child if the

value is 0 or the right child otherwise. We say a protocol computes a function f : X×Y → Z if

for all pairs (x,y), evaluating the protocol on (x,y) outputs f (x,y). For relations R⊆ X×Y ×Z,

we say a protocol computes the relation if for all (x,y) such that there is a z for which (x,y,z)∈ R,

the protocol evaluates to some zP such that (x,y,zP) ∈ R.

Definition 37 (Communication Complexity). The communication complexity of a function f or

relation R, denoted D(f) or D(R), is the minimum communication complexity of any protocol

computing f or R.

22

Similarly to circuit complexity, we can define families of protocols and talk about

asymptotic communication complexity in terms of them.

Definition 38 (Karchmer-Wigderson Games [63]). For a boolean function f : {0,1}n→{0,1},

the Karchmer-Wigderson Game for f is the relation KWf ⊆ {0,1}n×{0,1}n× [n] defined by

KWf = {(x,y, i) | f (x) = 1, f (y) = 0,xi ̸= yi}.

Theorem 39 ([63]). For any function f , D(KWf) is equal to the formula depth of f .

2.5 Information Theory

We will slightly abuse notation, here and throughout, by referring to random variables

from a distribution as being the distribution itself when no other variables are sampled from the

same distribution.

Definition 40 (Entropy). The entropy of a distribution X is the quantity

H(X) = ∑
x∈X
−Pr

X
[x] log

(
Pr
X
[x]
)
.

The joint entropy of two distributions X ,Y is the quantity

H(X ,Y) = ∑
x∈X ,y∈Y

− Pr
X ,Y

[x,y] log
(

Pr
X ,Y

[x,y]
)
.

Definition 41 (Conditional Entropy). Given two distributions X ,Y , the conditional entropy of X

given Y is the quantity

H(X | Y) = H(X ,Y)−H(X).

Definition 42 (Mutual Information). Given two distributions X ,Y , the mutual information

23

between the two is the quantity

I(X ;Y) = H(X)−H(X | Y).

Definition 43 (Conditional Information). Given three distributions X ,Y,Z, the mutual informa-

tion between X and Y conditioned on Z is the quantity

I(X ;Y | Z) = H(X | Z)−H(X | Y,Z).

We will now give some basic equalities and relations relating to mutual information.

Fact 44 (Symmetry). I(X ;Y) = I(Y ;X).

Fact 45 (Non-negativity). I(X ;Y | Z)≥ 0.

Fact 46 (Chain Rule for Mutual Information). I(X ;Y,Z) = I(X ;Y)+ I(X ;Y | Z).

Corollary 47. I(X ;Y)≤ I(X ;Y,Z).

These will suffice to prove Theorem 104.

24

Chapter 3

Blockwise Switching Lemma

We will need a strengthening of Håstad’s Switching Lemma [41] for the case of structured

random restrictions that leave exactly one variable unset in every block of variables.

Definition 48 (Blockwise Restrictions, Bl
n). A binary string of length n · l can naturally be

divided into n consecutive “blocks” of l bits each. Variables {yi, j : i ∈ [n], j ∈ [l]} index

into these strings. Denote by Bl
n the set of all restrictions ρ that place exactly one ⋆ in

each block of an n-block, l-block-size string. Formally, we have ρ : [n]× [k]→ {0,1,⋆} and

∀i ∈ [n] ∃! j ∈ [k] such that ρ(i, j) = ⋆.

Lemma 49 (Blockwise Switching Lemma). Let ϕ be a k-CNF on n · l variables. For any s≥ 0,

Prρ∼Bl
n
[ϕ ↾ρ cannot be expressed as an 2s-term s-DNF]≤

(8k
l

)s
.

Remark 50. While the proof of Lemma 49 is actually slightly simpler than that of the standard

Switching Lemma [85, 12], this Blockwise Switching Lemma implies the standard Switching

Lemma (as stated in [12]). A uniformly random subset of pn out of n variables can be chosen as

follows: Randomly uniformly permute the n variables, then partition them into pn consecutive

disjoint blocks of size 1/p each, and, finally, randomly uniformly choose exactly one variable

from each of the pn blocks. For each fixed permutation of n variables, Lemma 49 applies with

l = 1/p. We get that the probability that a given k-CNF fails to simplify to an s-DNF when hit

with a random restriction that leaves exactly pn variables unset is upper-bounded by (8pk)s.

25

We prove the Switching Lemma (Lemma 49) below, via a modification of the “compres-

sion” based proof of the Switching Lemma due to Razborov [15, 85, 12].

Canonical Decision Trees & Notation.

We write assignments to a set of variables {xi|i ∈ [n]} as functions α : [n]→ {0,1}. A

k-CNF ϕ(x1, . . . ,xn) is a conjunction of m clauses, where each clause is a disjunction over at

most k literals. A Decision Tree is a binary tree where nodes are labeled by variables x1, . . . ,xn,

and leaves and edges are labeled by constants {0,1}.

To evaluate a Decision Tree on an assignment α , begin at the root, labeled by some xi.

Move down the edge labeled by α(i). Repeat until you arrive at a leaf and report the constant

labeling that leaf as the value of the tree.

Given a k-CNF ϕ(x1, . . . ,xn) =C1∧·· ·∧Cm we can create a Canonical Decision Tree.

Fix a lexical ordering on variables and use it to sort and de-duplicate clauses; let i ∈ [m] index

the clauses of ϕ in this sorted order. We define CDT(ϕ) recursively:

1. Transform C1 ∈ ϕ to a depth ≤ k tree T querying all variables of C1 in lexical order

2. for each branch b of T :

(a) follow b to induce a partial assignment αb

(b) ϕb← Simplify ϕ/αb

(c) Case Analysis:

i. ϕb is empty: terminate b with leaf labeled 1

ii. ϕb is falsified: terminate b with leaf labeled 0

iii. ϕb is undetermined: extend b with CDT(ϕb)

A restriction is a partial assignment: a map ρ : [n]→{0,1,⋆}. The result of applying a

restriction to a Boolean function f is written f ↾ρ where we substitute each occurrence of xi by

ρ(i) for every ρ(i) ̸= ⋆. We will need to define restrictions that extend other restrictions. Let

26

ED(ρ) denote the set of restrictions that are identical to ρ , except for replacing D star locations

with constants. Let E (ρ) denote the set of restrictions that replace all ⋆-locations of ρ with

constants. We will be concerned with the blockwise restrictions of Definition 48.

Coding and Decoding Large-Depth Restrictions.

Suppose all we know about ρ is that it produces a large-depth canonical decision tree

when applied to ϕ . We can witness this with some “long” path σ through the tree. Our code will

consist of a restriction ρ̃c that extends ρ and a short bitstring “hint” that allows us to implicitly

navigate “down” a long path of the CDT and guess ρ by un-setting variables of ρc.

Algorithm 1. ENC

• Let σ be a long path (≥ depth D) through T

• For each clause along σ , Cσ
i :

1. For each variable ηi j appearing in Cσ
i , record a hint:

(a) ηi j as an index into Cσ
i (logk bits)

(b) Assignment to ηi j along σ (single bit)
(c) Is this the last variable queried in Cσ

i ? (single bit)

2. Record τi as an assignment to ηi that falsifies Cσ
i

• ρc = ρ ◦ τ1 ◦ · · · ◦ τD

• Return:

1. ρ̃c← ρc completed to a full assignment uniformly at random

2. all hints concatenated together

Claim 51 (Decoding from ENC output). Suppose ρ ∈Bl
n fails to simplify a particular k-CNF ϕ ,

so that CDT(ϕ ↾ρ)≥ D. Then, Prρ̃c∼ENC(ρ) [DEC(ρ̃c) = ρ]≥
(1

l

)(n−D)
.

Proof of Claim 51. Fix ρ ∈ Bl
n and suppose T = CDT(ϕ ↾ρ) has depth ≥ D. Let σ be a

witnessing path of length at least D through T . We’ll require some notation; denote by Cσ
i the

ith clause traversed along the path σ , in the sense that the recursive CDT construction worked on

27

Algorithm 2. DEC

1. Initialize: ρ1← ρc = ρ ◦ τ1 ◦ · · · ◦ τD and i← 1

2. for i = 1 to D

3. Simplify ϕi ↾ρi

4. Find first falsified clause of ϕi =Cσ
i

5. Read hint to find τi and σi (stop-bit tells you when to stop).

6. ρi+1← ρi with τi replaced by σi (so ρi+1 = ρ ◦σ1 ◦σi−1 ◦σi ◦ τi+1 . . .τD)

7. return ρD with σ1 ◦ . . .σD unset, and ⋆’s guessed uniformly at random for all other blocks

clause C to produce that section of the decision tree. Note, this may well be smaller than m, due

to simplifications applied during construction of the CDT. Further, let σi be the section of σ that

traverses Cσ
i and let ηi be the variables queried along σi. We can think of σi as a sequence of

assignments to these variables.

Now, consider the operation of DEC on ρ̃c ∼ ENC(ρ). First observe that no clauses of ϕ

were falsified by ρ alone, by our assumption that CDT(ϕ ↾ρ)≥ D — a falsified clause would

give a depth-1 decision tree with a single 0 leaf. Therefore, any falsified clause is due to variables

set by some τi or a randomly set variable.

Because the CDT is constructed in lexical-clause-order and ENC follows this order, the

first falsified clause of ϕ ↾ρ̃c must be Cσ
1 . We wish to recover which variables τ1 set; the trick is

that now we know they must reside in a uniquely identified clause of at most k variables. So, we

spend logk bits of the hint per variable to name which variables of Cσ
1 were along σ and thus set

in τ1.

Iterating this argument, we see that lexical ordering of the canonical decision tree ensures

recovery of D ⋆ locations of ρ . So, after running the main loop of DEC on ρ̃c we have a candidate

that matches ρ exactly in D blocks. For each remaining block, DEC will simply guess at random

which variable in the block was a ⋆ in ρ . Each block has l bits, so we have a (1/l) chance of

28

guessing correctly — that is, in agreement with the original location of the ⋆ in ρ . The number of

blocks that must be guessed (instead of recovered using deterministic decoding, DEC) is (n−D).

Every guess must be correct to successfully decode ρ . This gives the claimed probability of

decoding.

Given instead a random completion ρr of blockwise restriction ρ and a random hint hr,

can any algorithm decode ρ? We can upper bound this probability.

Claim 52 (Decoding from random information). For any algorithm A , for every blockwise

restriction ρ , Prρr∼E (ρ)[A (ρr,hr) = ρ]≤
(1

l

)n
.

Proof of Claim 52. The hint hr is clearly useless, because it is a random string. Furthermore, the

random variables ρr and ρ are conditionally independent, given that ρr is a randomly sampled

completion of ρ . This means that observing ρr provides no information regarding the ⋆-locations

of ρ . Therefore, no algorithm can do better than to randomly guess which location, in each block,

was a star, for every block of the received ρr. There are n blocks of l bits each and every guess

must be correct, for the overall probability (1/l)n.

Completing the proof.

Lemma 53 (Blockwise Switching Lemma). Let ϕ be a k-CNF. Pick ρ from Bl
n uniformly at

random. Then Pr[CDT(ϕ ↾ρ)≥ D]≤
(8k

l

)D
.

Proof. We can lower-bound the probability of decoding from random completion ρr: if we are

lucky enough that the randomly sampled completion agrees with ρc in the “special” blocks set

by ENC, then we can significantly narrow down the number of blocks whose ⋆ must be guessed

at random! That is, the non-trivial probability of recovery for DEC can be exploited. Formally,

(
1
l

)n

≥ Pr[DEC(ρr,hr) = ρ] (by Claim 52)

≥ Pr[CDT(ϕ ↾ρ)≥ D]×Pr[hr = h]×Pr[ρr extends ρc]×Pr[DEC decodes⋆ ’s]

29

Taking each event in turn:

1. |h|= D(log(k)+2) so there are (4k)D possible strings. Flipping hr uniformly at random,

Pr[hr = h] = (4k)−D.

2. To extend ρc, the randomly chosen ρr must agree in D locations. One of these settings is

correct, so Pr[ρr extends ρc] = 2−D.

3. Given a correct hint and randomly completed ρc, the probability of DEC recovering ρ is(1
l

)(n−D)
by Claim 51.

Plugging in, we get

(
1
l

)n

≥ Pr[CDT(ϕ ↾ρ)≥ D]× (4k)−D×2−D×
(

1
l

)(n−D)

.

The proof of the lemma follows.

Chapter 3, in part, is based on material as it appears in “Marco Carmosino, Ken-

neth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting

for Constant-Depth Circuits and Applications to MCSP. In Nikhil Bansal, Emanuela Merelli,

and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik”. The dissertation author was the primary investigator and author of that paper.

30

Chapter 4

Constant-Depth GapMCSP Reductions

The focus of this chapter is “hardness lifting” for circuits of depth (d +1) to circuits of

depth (d +2), and its applications to GapMCSP for the respective classes. Theorem 56 shows

how to lift hardness for bounded-fan-in AC0 circuits from depth d to depth d +1 (also bounded

fan-in). Here, a function of a not much larger size yet higher depth is constructed by replacing

input variables of the original function by disjoint relatively small parities. This theorem is then

applied to reduce GapMCSP for AC0
d circuits to GapMCSP for AC0

d+1 circuits.

The reduction proceeds in three steps, with the middle step potentially repeated multiple

times for a larger depth increase. The first step converts unbounded bottom fan-in circuits of

depth (d +1) to bounded (by log of the circuit size) fan-in circuits of the same depth, at the cost

of increasing the size from s to 2O(
√

n logn logs); see Corollary 55. This rebalancing only needs to

be done once.

The second step, which relies on the hardness lifting theorem, is the quasi-polynomial

time reduction from GapMCSP for bounded bottom fan-in circuits of depth (d+1), to GapMCSP

for bounded bottom fan-in circuits of depth (d +2). The quasi-polynomial running time of this

reduction comes from the blow-up in the size of the output truth table of the new function. Then,

we show that for this setting GapMCSP for depth d +1 circuits reduces to GapMCSP for depth

d +2 circuits (both bounded bottom fan-in), with a small loss in the gap size. See Theorem 57

for the exact statement.

31

The last step is a polytime reduction from GapMCSP for bounded bottom fan-in circuits

of depth (d + 2), to GapMCSP for unbounded bottom fan-in circuits of the same depth; see

Theorem 59.

4.1 Depth d +1 to d + 1/2

Lemma 54 (Fanin vs Size Tradeoff). For any d ≥ 3, let C be any depth-d size-s circuit over n

inputs. Then, for any w≥ 1, there is an equivalent depth-d circuit C′ with bottom fan-in at most

w, and the size at most s(4n logn)/w.

Proof. Assume WLOG that all the bottom gates of C are disjunctions. We will recursively define

a decision tree T such that each leaf l is associated with a restriction ρl resulting in C ↾ρl having

bottom fan-in at most w.

Initially, T consists of a single leaf node corresponding to the empty restriction. While

there is a leaf v in T corresponding to a restriction ρ such that C ↾ρ has some nonempty set S

of bottom gates of fan-in greater than w, do the following. Let t = |S| ≤ s. Let z be the literal

that occurs in the most gates of S. Since there are more than tw literal occurrences among the

gates in S and there are 2n literals, z must appear in more than (tw)/(2n) bottom gates. Branch

on z, with the left child v1 of v corresponding to z = 1, and the right child v0 to z = 0. Note

that the restriction corresponding to v1 satisfies all bottom gates containing z, and the restriction

corresponding to v0 reduces their fan-in by 1.

Every left branching we take in the decision tree results in t shrinking by more than a

factor
(
1− w

2n

)
. So after k left branchings, there are fewer than t

(
1− w

2n

)k large fan-in gates left.

Setting k = (2n/w) lns, we have that after k left branchings there are no large fan-in gates left. If

k ≥ n/2 (i.e., w≤ 4lns), then we can use the trivial upper bound 2n on the size of T ; note that,

in this case, 2n ≤ 24n·(lns)/w, as required.

Otherwise, for k < n/2, we can upper-bound the size of T as follows. Since each branch

of T is of length at most n, and it may contain at most k left branchings, we get that the size of T

32

is at most

k

∑
r=0

(
n
r

)
≤ k ·

(
n
k

)
≤ k ·

(ne
k

)k
≤ k ·

(we
2lns

)k
≤ 2(1.5)k·log(w/ lns) ≤ s

3n logn
w ,

where for the last inequality we used the definition of k and the bound (w/ lns)≤ w≤ n.

Suppose without loss of generality that the top gate of C is a disjunction, i.e., C =∨
i
∧

j gi, j. We can rewrite C(x) as

∨
leaves l∈T

(
φ(x,ρl)∧C ↾ρl (x)

)
, (4.1)

where, for a fixed restriction ρl , the formula φ(x,ρl) indicates whether x is consistent with ρl

(i.e., whether x ends up at leaf l of our decision tree T). It is easy to see that φ(x,ρl) can be

written as a conjunction of at most n literals.

As written, the circuit above is a depth-(d + 2) size at most (1 + |T |+ |T | · s) cir-

cuit with fan-in at most w. By distributivity, we can rewrite each φ(x,ρl) ∧C ↾ρl (x) as∨
i
(
φ(x,ρl)∧

∧
j
(
gi, j ↾ρl (x)

))
. Plugging this into equation (4.1), we obtain a depth-d circuit

C′ with fan-in at most w, computing the same function as C, and the size of C′ is at most

|T | · s≤ s(4n logn)/w, as required.

Corollary 55 (Depth (d +1)→ (d + 1/2)). For any d ≥ 2, n, and syes,sno such that logsyes ≤
log2(sno/4)

n logn , we have

AC0
d+1-GapMCSPn[syes,sno] ≤poly

m AC0
d+1/2

-GapMCSPn[2
4·
√

n(logn)(logsyes),sno]

with the identity functions as a reduction.

Proof. The “NO→NO” case is immediate: if f : {0,1}n→{0,1} doesn’t have size-sno circuits

with no restriction on the bottom fan-in, then f doesn’t have size-sno circuits with restricted

bottom fan-in.

33

For the “YES→YES” case, we apply Lemma 54 to a depth-(d +1) size-syes circuit for

f , with w =
√

n(logn)(logsyes). This results in a circuit for f of size at most 24·
√

n(logn)(logsyes),

with bottom fan-in at most
√

n(logn)(logsyes).

4.2 Depth d + 1/2 to (d +1)+ 1/2

Theorem 56 (Hardness lifting). Let f have AC0
d+1/2

circuit complexity s. Fix s0 > 0. Then

there is a function f ′ on n′ = n · 16logs0 inputs with AC0
(d+1)+1/2

circuit complexity s′ where

s′ ≤ 2s2
√

16logs logs0
√

16logs logs0. Moreover, if s0 <
√

s/3, then s0 ≤ s′.

Proof. The construction is as follows: given the truth table of f : {0,1}n→ {0,1}, output the

truth table of f ′ = f ◦⊕l for l = 16logs0. This takes time 2nl = N16logs0 ≤ NO(logN), quasi-

polynomial in N since s0 ≤ N. We argue the correctness next.

Bounding s′ from below:

Note that the parameter l must be sufficiently larger than logs0 so that we can apply the

Blockwise Switching Lemma to a depth-(d + 2) size-s0 circuit with bottom fan-in logs0 that

presumably computes f ◦⊕l to obtain a depth-(d +1) size-s circuit with bottom fan-in logs that

computes f . We prove that if f ′ has a AC0
(d+1)+1/2

of size s0, then f has a AC0
d+1/2

circuit of size

s≤ 3(s0)
2.

Suppose f ◦⊕l has a depth-(d + 2) circuit C′ of size s0 and bottom fan-in at most

logs0. We shall hit C′ with a blockwise random restriction ρ , where the blocks are the inputs

to each ⊕l . Since exactly one bit is left unset in each block, C′ ↾ρ computes f with some of

the input bits potentially negated. For C′ ↾ρ to simplify to a depth-(d +1) circuit with bottom

fan-in at most k ≤ log(3s2
0) ≤ logs, we need to argue that there exists a blockwise restriction

ρ which makes every depth-2 bottom circuit of C′ into a decision tree of depth at most k. By

the Blockwise Switching Lemma (Lemma 49), this is implied if s0

(
8logs0

l

)k
< 1, which is

equivalent to 2logs0−k < 1, for our choice of l = 16logs0. Thus, setting k = logs0 +1 satisfies

34

this inequality. Moreover, each bottom CNF or DNF of C′ is turned into a DNF or CNF with 2k

clauses. So the size of C′ ↾ρ is at most s0 + s0 ·2k ≤ 3(s0)
2 ≤ s, as required.

Bounding s′ from above

Next we need to show that if f has a small depth-(d+ 1/2) circuit, then f ◦⊕l has a small

depth-(d+1+ 1/2) circuit. Note that computing the l-bit parities by naive depth-2 circuits of size

2l is prohibitively expensive, as this would make the size of the new circuit for f ◦⊕l at least

(s0)
16 > s′, for our choice of l = 16logs0 (which was dictated by the “NO→NO” case analysis

above). Instead we will compute each ⊕l by a depth-3 circuit, as a parity of parities, adapting

the standard construction of optimal size-(l2
√

l) depth-3 circuits. To get a final circuit for f ◦⊕l

to be of depth d +1+ 1/2, we will need to carefully balance the parameters of our partition of l

bits into l1 blocks of size l2 each, for l1 and l2 such that l = l1 · l2.

Suppose f has a depth-(d+1) circuit C of size s and bottom fan-in at most logs, with all

negations at the leaves; this at most doubles the size. Without loss of generality, assume that the

bottom layer of gates consists of disjunctions with fan-in logs. To obtain a circuit for f ◦⊕l , we

will compose ⊕l with each of the bottom CNFs of C. Consider a particular CNF hi =
∧k

j=1 gi, j

at the bottom of C, where k ≤ s and each gi, j is a disjunction of at most logs literals.

For l1 to be chosen later, let l2 = l/l1. Using the trivial 2l1-size CNF for computing ⊕l1 ,

we can compute each gi, j ◦⊕l1 by an OR-AND-OR circuit, where the top OR gate has fan-in

logs and the AND gates each have fan-in 2l1 . By distributivity, we can rewrite gi, j ◦⊕l1 as a

CNF with 2l1 logs clauses, each of width at most l1 logs.

Since C is a layered circuit, we can merge this CNF into hi to obtain a depth-2 circuit

computing hi ◦⊕l1 . Finally, composing this with the DNF for ⊕l2 , we get a depth-3 circuit with

bottom fan-in l2 computing hi ◦⊕l . Replacing each hi in C with circuits constructed in this way,

we obtain a depth-(d +2) circuit for f ◦⊕l with bottom fan-in l2. The subcircuit for computing

each gi, j ◦⊕l is of size at most σ = 1+2l1 logs +2l2 · l1 logs. So the total size of the circuit for

f ◦⊕l is at most s+ s ·σ = s(σ +1). If we set l2 =
√

l logs and l1 =
√

l
logs , then the total size

35

is at most

s
(

2+2
√

l logs +2
√

l logs ·
√

l logs
)
≤ (2s) ·2

√
l logs ·

√
l logs≤ s′.

Since the bottom fan-in is at most
√

l logs≤ logs′, this concludes the proof.

Theorem 57 (Depth (d + 1/2)→ ((d +1)+ 1/2) GapMCSP). For any d ≥ 1, n,syes, s′yes, s′no, and

sno such that syes < sno, s′yes < s′no, sno ≥ 3(s′no)
2 and

s′yes ≥ 2(syes)2
√

16(logsyes)(logs′no)
√

16(logsyes)(logs′no),

we have

AC0
d+1/2

-GapMCSPn[syes,sno] ≤qpoly
m AC0

(d+1)+1/2
-GapMCSPn′[s

′
yes,s

′
no],

where n′ = 16n logs′no ∈ O(n2).

Proof. We use the construction in Theorem 56 as the reduction function, with s0 = s′no. For the

YES→ YES side, if AC0
d+1/2

(f)≤ syes, then

AC0
d+1+1/2

(f ′)≤ 2(syes)2
√

16(logsyes)(logs′no)
√

16(logsyes)(logs′no)

as desired. For the NO→ NO side, if AC0
d+1/2

(f)> sno, then AC0
d+1+1/2

(f ′)≥ s0 = s′no.

Remark 58. If we apply this to succinct MCSP, we actually get a polytime reduction instead;

constructing the naı̈ve f ◦⊕l circuit given a circuit for f takes polytime, it just makes the truth

table too large.

4.3 Depth d + 1/2 to d +1

Theorem 59 (Depth (d+ 1/2)→ (d+1)). For any d ≥ 1, n,syes,sno,s′yes,s
′
no, such that syes < sno,

s′yes < s′no, sno ≥ (s′no)
5 and s′yes ≥ 2(syes)

3, we have

AC0
d+1/2

-GapMCSPn[syes,sno] ≤poly
m AC0

d+1-GapMCSP2n[s
′
yes,s

′
no]

36

Proof. The reduction is as follows: given the truth table of f : {0,1}n→{0,1}, output the truth

table of g = f ◦⊕2. The size of the input for g is 2n. The runtime of the reduction is poly(N).

Next we argue the correctness of this reduction.

NO→ NO:

Suppose f ◦⊕2 : {0,1}2n→{0,1} is computable by a size-s′no circuit C′ of depth d +1.

Without loss of generality, we may assume that the bottom gates of C′ are ANDs. We will hit

C′ with a random blockwise restriction ρ . Consider a particular bottom AND-gate of fan-in t,

for some 1≤ t ≤ n. Since each block in a blockwise restriction is of size two, there must be at

least t/2 variables from distinct blocks that feed into this AND gate. Each one of these variables

will be chosen as a non-star variable by ρ with probability 1/2, and then independently set to 0

with probability 1/2. This would simplify the AND gate to the constant 0, with probability 1/4.

This happens independently for each of these t/2 variables. Thus the probability that the AND

gate of fan-in at least t survives a random restriction is at most (3/4)t/2. By the union bound,

the probability that any such AND gate survives is at most s′no · (3/4)t/2, which is less than 1 for

t = 5(logs′no). Thus there exists a blockwise restriction ρ which simplifies C′ to a depth-(d +1)

circuit computing f , with size at most s′no ≤ sno and bottom fan-in at most 5(logs′no)≤ logsno.

YES→ YES:

Suppose f : {0,1}n→{0,1} is computable by a size-syes circuit C of depth d +1, with

bottom fan-in at most logsyes. WLOG, assume the bottom gates of C are ANDs. Note that we

can express the XOR and the negated XOR of two variables as the following 2-CNFs:

y⊕ z = (ȳ∨ z̄)∧ (y∨ z) and ¬(y⊕ z) = (ȳ∨ z)∧ (y∨ z̄).

Replacing the input literals of C by these circuits for (possibly negated) ⊕2, and merging the

bottom AND gate of C with the top AND gate of these parity circuits, we get a depth-(d +2)

circuit C′ for f ◦⊕2, with 2-CNFs on t = (2logsyes) clauses as the bottom depth-2 sub-circuits.

37

By distributivity, we can rewrite each 2-CNF on t clauses as a t-DNF on 2t terms. Then merge the

OR gates of these DNFs with the OR gates at the preceding level in C′, obtaining an equivalent

depth-(d + 1) circuit C′′ for f ◦⊕2, of size at most syes + syes · (syes)
2 ≤ 2(syes)

3 ≤ s′yes (and

bottom fan-in at most (2logsyes)≤ logs′yes).

4.4 Combining the steps: Depth d + 1 to d + c for any
constant c > 1

The reduction in Theorem 57 can be repeated multiple times, resulting in the overall

reduction lifting hardness to constantly many levels. The following theorem shows how the

parameters evolve over all steps of the reduction.

Theorem 60 (Depth (d+1)→ (d+c)). For any d≥ 2, c> 1, n≥ n0(α,δ ,c), and 0<α < δ < 1

where 1+α < 2δ , we have

AC0
d+1-GapMCSPn[2

nα

,2nδ

] ≤qpoly
m AC0

(d+c)-GapMCSPn′[2
(n′)β

,2(n
′)γ

],

where n′ = n(c−1)δ+1, γ ≈ 1
c−1 , β ≈ 1

c−1 −
1

(c−1)2c−1 · (1− 1+α

2δ
).

Proof. As outlined at the beginning of the chapter, we will create this reduction via composing

the reductions in Corollary 55 and Theorems 57 and 59. Let a =
1+α+ log logn+4

logn
2 .

Step 1: AC0
d+1-GapMCSPn[2

nα

,2nδ

] ≤poly
m AC0

d+1/2
-GapMCSPn[2

na
,2nδ

]

This follows immediately from Corollary 55 with syes = 2nα

and sno = 2nδ

.

Step 2: AC0
d+1/2

-GapMCSPn[2
na
,2nδ

] ≤qpoly
m

AC0
(d+c−1)+1/2

-GapMCSPn(c−1)δ+1/2[exp2

(
5n

a+(2c−1−1)δ
2c−1

)
,exp2(

nδ

2c−1 − 2c−1−1
2c−1 log3)]

We will show each of n, syes, and sno map to the corresponding values after c− 1

applications of the reduction in Theorem 57. Define n(i), s(i)yes, and s(i)no to be each value after

applying i iterations of the reduction, with n(0), s(0)yes, and s(0)no set to the initial values.

38

We will first show that s(i)no = 2
nδ

2i −
2i−1

2i log3; this is true for i = 0, and for larger i we have

s(i+1)
no =

√
s(i)no
3 = 2

nδ

2i+1−
2i−1
2i+1 log3− log3

2 = 2
nδ

2i+1−
2i+1−1

2i+1 log3
.

Next, we show that n(i) = 16in∏
i
j=1[

nδ

2 j − 2 j−1
2 j log3]; via padding, we can increase the

number of variables to n(c−1)δ+1/2 at the end. Again, this is true for i = 0. For larger i,

n(i+1) = 16n(i) logs(i+1)
no = 16i+1n

i+1

∏
j=1

[
nδ

2 j −
2 j−1

2 j log3

]
.

Finally, for s(i)yes, we show that after i iterations of the Theorem 57 reduction, syes = 2na
,

sno = 2nδ

would be mapped to at most s′yes = exp2(5n
a+(2i−1)δ

2i). For i > 0, assuming s(i)yes ≤

exp2(5n
a+(2i−1)δ

2i), we have s(i+1)
yes is at most

exp2

(
1+5n

a+(2i−1)δ
2i +

√
80
2i n

a+(2i−1)δ
2i (nδ −Θ(2i))+O(logn)

)
≤ exp2

(
5n

a+(2i+1−1)δ
2i+1

)
,

fixing n0 sufficiently large. For i = 0, note that na < 5n
a+(20−1)δ

20 .

Step 3: AC0
(d+c−1)+1/2

-GapMCSPn(c−1)δ+1/2[exp2

(
5n

a+(2c−1−1)δ
2c−1

)
,exp2(

nδ

2c−1− 2c−1−1
2c−1 log3)] ≤poly

m

AC0
d+c-GapMCSPn(c−1)δ+1 [2nβ

,2nγ

]

This follows immediately from Theorem 59, setting

syes = exp2

(
5n

a+(2c−1−1)δ
2c−1

)
and sno = exp2

(
nδ

2c−1 −
2c−1−1

2c−1 log3

)
.

Chapter 4, in part, is based on material as it appears in “Marco Carmosino, Ken-

neth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting

for Constant-Depth Circuits and Applications to MCSP. In Nikhil Bansal, Emanuela Merelli,

and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics

39

(LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik”. The dissertation author was the primary investigator and author of that paper.

40

Chapter 5

Constant-Depth Tolerant GapMCSP Reduc-
tions

We will show an analogous “hardness lifting” reduction from the GapMCSP problem for

average-case circuits of depth d to depth d +1. In this average case setting, instead of applying

the machinery of Lemma 54, we can make use of the observation that bottom gates of large

fan-in are almost always equal to their bias; see Theorem 61. Thus we get smaller gaps on the

output side of the reduction, at a small cost to the tolerance parameter.

5.1 Tolerant depth d +1 to d + 1/2 and reverse

Theorem 61 (Tolerant depth (d +1)→ (d + 1/2)). For any 0≤ ε1,ε2 < 1/2, d ≥ 1, n≥ 1, and

syes < sno, we have

ÂC
0
d+1[ε1,ε2]-GapMCSPn[syes,sno] ≤poly

m ÂC
0
d+1/2[ε1 + 1/n,ε2]-GapMCSPn[(syes)

2,sno]

with the identity functions as a reduction.

Proof. The “NO”→“NO” case is obvious. For the “YES”→“YES” case, suppose C is a depth

d + 1 circuit of size syes that disagrees with f on at-most an ε1-fraction of inputs. For each

bottom gate of C with fan-in larger than 2log |C|, replace the gate with a 1 if it is an OR, or

a 0 if it is an AND. Call this new circuit with the replaced gates C′. For a uniformly-random

41

sampled input, any of the replaced gates would disagree with this bit with probability at most

|C|−2, and so the probability C′ disagrees with C on a uniformly-random input is at most 1/|C|,

via a union bound. Since |C| ≥ n, this is at most 1/n, and so C′ disagrees with f on at most an

(ε1+1/n)-fraction of inputs. Note that |C′| ≤ |C| ≤ (syes)
2 and the bottom fan-in of C′ is at most

2 logsyes ≤ log(syes)
2, as required.

Theorem 62 (Tolerant depth (d + 1/2)→ (d + 1)). For any 0 ≤ ε1,ε2 < 1/2, d ≥ 1, n ≥ 1,

syes,sno,s′yes,s
′
no such that syes < sno, we have, via the the identity functions as a reduction,

ÂC
0
d+1/2[ε1,ε2 + 1/n]-GapMCSPn[syes,sno] ≤poly

m ÂC
0
d+1[ε1,ε2]-GapMCSPn[syes,

√
sno].

Proof. The “YES”→“YES” case is obvious. For the “NO”→“NO” case, let C′ be depth-(d +1)

circuit of size at most s′no =
√

sno that ε2-approximates f . As in the proof of Theorem 61 above,

we replace by constants all bottom gates of C′ that have fan-in larger than 2log |C′|, getting a

new circuit C that computes f on all but at most ε2 +(1/n) fraction of inputs. The size of C is at

most s′no ≤ sno, and the bottom fan-in is at most 2 logs1/2
no = logsno, as required.

5.2 Tolerant depth d + 1/2 to (d +1)+ 1/2

Theorem 63 (Tolerant depth (d + 1/2)→ ((d + 1)+ 1/2)). For any d ≥ 1, n ≥ 1, 0 ≤ ε1,ε2 <

1/2, syes, s′yes, s′no, and sno such that syes < sno, s′yes < s′no, sno ≥ 3(s′no)
2(ε2n+ 1) and s′yes ≥

2(syes)2
√

16(logsyes)(logs′no)
√

16(logsyes)(logs′no), we have

ÂC
0
d+1/2[ε1,ε2 +1/n]-GapMCSPn[syes,sno] ≤qpoly

m ÂC
0
(d+1)+1/2[ε1,ε2]-GapMCSPn′[s

′
yes,s

′
no],

where n′ = 16n logs′no ≤ O(n2).

Proof. We shall use the same reduction as in Theorem 57, outputting f ◦⊕l on input f , where

l = 16logs′no.

42

NO→ NO:

Let C′ be a depth-(d + 2) circuit of size s′no and bottom fan-in at most logs′no that ε2-

approximates f ◦⊕l . We shall hit C′ with a blockwise random restriction, as before. Here, we

simultaneously require that C′ ↾ ρ simplifies to a depth-(d + 1) circuit with bounded bottom

fan-in, and that its truth table is (ε2 +1/n)-close to (some fixed shift of) f .

For any x ∈ {0,1}n and a blockwise restriction ρ , we denote by ⟨x,ρ⟩ the (n · l)-tuple

of bits obtained by placing x in the star positions of ρ . Clearly, picking x and ρ uniformly at

random results in ⟨x,ρ⟩ being the uniform distribution on {0,1}n·l . By our assumption on C′, we

have Expx,ρ [C′(⟨x,ρ⟩) ̸= (f ◦⊕l)(⟨x,ρ⟩)]≤ ε2. By Markov’s Inequality,

Pr
ρ

[
Expx

[
C′(⟨x,ρ⟩) ̸= (f ◦⊕l)(⟨x,ρ⟩)

]
> ε2 +

1
n

]
<

ε2

ε2 +(1/n)
.

Hence, with probability at least (ε2 ·n+1)−1, for a randomly chosen blockwise restriction ρ

Expx
[
C′(⟨x,ρ⟩) ̸= (f ◦⊕l)(⟨x,ρ⟩)

]
= Expx

[
C′ ↾ρ (x) ̸= (f ◦⊕l) ↾ρ (x)

]
= Expx

[
C′ ↾ρ (x) ̸= f (x⊕bρ)

]
≤ ε2 +

1
n
,

for bρ = b1 . . .bn ∈ {0,1}n such that bi is the parity of assigned values in the ith block of ρ .

So, if C′ ↾ρ fails to simplify with probability less than (ε2 ·n+1)−1, then we are guar-

anteed there is some ρ such that C′ ↾ρ (x) agrees with f (x⊕bρ), a shift of f , on all but at most

(ε2 +(1/n))-fraction of inputs x ∈ {0,1}n, and is a depth-(d +1) circuit with bounded bottom

fan-in.

By the Blockwise Switching Lemma (Lemma 49), the probability that C′ ↾ ρ fails to

simplify to depth (d+1) circuit with bottom fan-in at most k is at most s′no

(
8logs′no

l

)k
= 2logs′no−k,

which is less than (ε2 ·n+1)−1 if we choose k = log(2s′no(1+ ε2n)).

Thus, there must exist a blockwise restriction ρ such that C′ ↾ρ is simplified and agrees

with f (x⊕bρ) on all but at most (ε2 +(1/n)) fraction of inputs. We have that C′ ↾ρ is of size at

43

most s′no(1+2k)≤ s′no(1+2s′no(1+ ε2n))≤ 3(s′no)
2(1+ ε2n)≤ sno. Also, the bottom fan-in is

at most k ≤ logsno for our choice of k. Then the circuit C(x) =C′ ↾ρ (x⊕bρ) agrees with f (x)

on all but at most (ε2 +(1/n)) fraction of inputs, and C has depth (d +1), size at most sno, and

bottom fan-in at most logsno, as required.

YES→ YES:

Suppose f is ε1-approximated by a depth-(d + 1) circuit C with size syes and bottom

fan-in logsyes. Let g be the Boolean function computed by C. Using the same techniques as in

the “YES→YES” case analysis in the proof of Theorem 57, we construct a depth-(d +1) circuit

C′ computing g◦⊕l , with size at most s′yes and bottom fan-in at most logs′yes.

We will argue that C′ computes f ◦⊕l on all but at most ε1 fraction of inputs. Indeed,

since the parity of a uniformly random string of bits is a uniformly random bit, we get that

Pr
z∈{0,1}nl

[(f ◦⊕l)(z) = (g◦⊕l)(z)] = Pr
x∈{0,1}n

[f (x) = g(x)],

which is at most ε1 by our assumption. This concludes the proof.

5.3 Combining the steps: Tolerant depth d +1 to d +2

Using the above reductions, we can obtain a reduction from tolerant depth d + 1 gap-

MCSP to tolerant depth d+2 gap-MCSP. Extending this to depth d+c can be done via repeatedly

composing this reduction with itself.

Corollary 64. For any d ≥ 1,0≤ ε1,ε2 < 1/2,syes,sno,s′yes, s′no where sno ≥ (2εn+1)s′no
4 and

s′yes ≥ 2syes
22
√

16log(syes2) log(s′no
2)
√

16log(syes2) log(s′no
2), we have

ÂC
0
d+1[ε1,ε2 +

2
n
]-GapMCSPn[syes,sno] ≤qpoly

m ÂC
0
d+2[ε1 +

1
n
,ε2]-GapMCSP32n logs′no

[s′yes,s
′
no].

Proof. We obtain the desired reduction by composing the reductions from Theorems 61, 63,

and 62. Using ⟨ε1,ε2,syes,sno⟩d,n as a shorthand for ÂC
0
d[ε1,ε2]-GapMCSPn[syes,sno], the reduc-

44

tions operate as follows:

⟨ε1,ε2 +
2
n
,syes,sno⟩d+1,n 7→ ⟨ε1 +

1
n
,ε2 +

2
n
,syes

2,sno⟩d+1/2,n Theorem 61

7→ ⟨ε1 +
1
n
,ε2 +

1
n
,s′yes,s

′
no

2⟩d+1+1/2,32n logs′no
Theorem 63

7→ ⟨ε1 +
1
n
,ε2,s′yes,s

′
no⟩d+2,32n logs′no

Theorem 62

Chapter 5, in part, is based on material as it appears in “Marco Carmosino, Ken-

neth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting

for Constant-Depth Circuits and Applications to MCSP. In Nikhil Bansal, Emanuela Merelli,

and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik”. The dissertation author was the primary investigator and author of that paper.

45

Chapter 6

NP-hardness and Approximation Algo-
rithms for bounded fan-in DNF-MCSP

As was done in [50], we would like to use depth-2 hardness for our bounded fan-in model

to bootstrap our reductions to higher depths. While we can obtain hardness for bounded fan-in

DNF-MCSP, we end up showing that approximating the size to within a factor of n (which is

much smaller than the gaps used in our reductions) is solvable in polynomial time. We begin

with our hardness result, and introduce the following operator for combining multiple functions.

Definition 65. The k-wise multiplexing of k partial binary functions { fi : {0,1}ni →{0,1,∗} is

the partial function M f1,..., fk(x1, . . . ,xk,b1, . . . ,bk) : {0,1}∑i(ni+1)→{0,1,∗} defined by

M f1,..., fk(x1, . . . ,xk,b1, . . . ,bk) =
k∨

i=1

fi(xi)∧bi,

where ∗∧1 = ∗∧∗= ∗, ∗∧0 = 0, ∗∨1 = 1, and ∗∨0 = ∗∨∗= ∗.

Observe that if each input function is total, the resulting multiplexed function is also total.

We will use this multiplexing operator to increase the DNF size required to compute a given

input function, such that any DNF for the function can be regarded as a bounded fan-in DNF for

the multiplexed function.

Lemma 66. Let f : {0,1}n→{0,1,∗} be a partial function, and let ⊕1,⊕2,⊕3,⊕4 : {0,1}n→

{0,1} be the n-bit parity function over 4 distinct sets of input variables. Then f has a size m DNF

46

if and only if the 5-wise multiplexing M f ,⊕1,...,⊕4 has a bounded fan-in DNF of size m+4(2n−1).

Proof. For the forward direction, let ϕ =∨k
i=1Ci be a size m DNF for f and let ψi be the standard

DNF for ⊕i obtained by OR-ing together all satisfying assignments. To construct a DNF for

the multiplexed function, take each Ci, and generate a new term C′i = Ci ∧ b1. Similarly, for

each term of each ψi, add the corresponding bi+1 to the term. Note that the resulting DNF is

equivalent to

(ϕ ∧b1)∨ (ψ1∧b2)∨ (ψ2∧b3)∨ (ψ3∧b4)∨ (ψ4∧b5),

which is exactly the definition of M f ,⊕1,...,⊕4 . Each term of the DNF has width at-most n+1,

whereas the size is m+4(2n−1)≥ 2n+1, so this DNF is actually a bounded fan-in DNF of the

correct size.

For the reverse direction, suppose we have a minimum-sized bounded fan-in DNF ϕ for

the multiplexed function, with at-most m+4(2n−1) terms. For succinctness, we’ll rename the

functions such that g1 = f , and gi+1 =⊕i. First, we can assume that all occurrences of the bi

variables are as positive literals, since ϕ is monotonic in them. Second, note that every term must

contain at least one bi literal, as otherwise fixing all the bi to 0 would still leave ϕ as satisfiable.

Moreover, each term must contain at most one bi as well. To see why, consider the restrictions ρi

which set bi = 1 and the remaining b j = 0. The claim is that any term which is fixed under every

ρi is redundant and can be removed. A term τ being redundant means there is no assignment

α ∈M−1
g1,g2,g3,g4,g5

(1) under which τ is the sole satisfied term. For contradiction, let τ be a term

which is fixed under each ρi. This means there is some multi-element set I ⊆ {1,2,3,4,5} such

that {bi | i ∈ I} ⊆ τ . Now suppose α is an assignment that makes τ non-redundant. Pick an i ∈ I

such that gi is not satisfied by α ; if all gi are, pick an arbitrary one. Since τ is satisfied by α , we

have that bi = 1. If we now set bi = 0, τ becomes falsified by the new assignment α ′. However,

ϕ(α) remains 1, so some other term τ ′ must be satisfied by α ′. And since the bi only appear as

positive literals, this τ ′ was also satisfied by α , contradicting τ being the only term satisfied by

α .

47

With this, we can now partition the terms into disjoint sets Ti according to which bi

appears in them. Moreover, we have that ϕ ↾ρi ([xi], [bi]) = gi(xi), and the terms in Ti are the

only non-fixed terms in ϕ ↾ρi . Thus, |Ti| ≥ DNF(gi), and in particular the four parity functions

each require 2n−1 terms, leaving at-most m terms for f . So ϕ ↾ρ1 is a DNF computing f , and it

contains at most m terms.

This multiplexed function also has other nice properties. Its truth-table length is poly-

nomial in the truth-table length of f , and generating any bit of the multiplexed truth-table is a

poly-time operation given the truth-table for f . Also, if f is a total function, then as observed

above the lemma, the multiplexed function is also total. This gives as immediate corollaries

NP-hardness for the partial function and total function versions of MCSP for bounded fan-in

DNFs.

Corollary 67. MCSP∗ for bounded fan-in DNFs is NP-hard.

Corollary 68. MCSP for bounded fan-in DNFs is NP-hard.

Unfortunately for our hopes of bootstrapping, we can also show that GapMCSP is easy for

a gap smaller than the minimum gap needed in the Chapter 4 reductions.

Theorem 69. GapMCSPn[s,sn] for bounded fan-in DNFs is solvable in polynomial time.

Proof. We will use the logn-factor approximation for Set Cover, on an O(2n)-sized instance.

Given an n-bit function f as input, let the universe U to cover be all strings in f−1(1). The

set family S is obtained as follows. Iterate over all fan-in logs conjunctions over the n input

variables. For each conjunction, let S be the strings it accepts. If all these strings are in U ,

add S to S , otherwise continue. Each S can be generated in O(2n) time, and there are at-most

∑
logs
i=0
(n

i

)
≤ 2n such sets. After generating U and S , we run the greedy Set Cover approximation,

and accept if and only if that approximation outputs something less than sn.

For correctness, if the bounded fan-in DNF complexity of f is at-most s, then there is an

s-cover of U by sets in S , obtained by taking all the sets which correspond to terms in the small

48

DNF for f . Each accepted input of f must be accepted by at least one of those terms, and so the

string will be contained in the corresponding set in S . Similarly, if there is an s-cover of U by

sets in S , then each set in that cover corresponds to a particular bounded fan-in term that only

accepts strings in the 1-set of f , and all strings in the 1-set are accepted by some such term. So

the disjunction over all the corresponding terms is a bounded fan-in DNF for f .

49

Chapter 7

Barriers to More Efficient Natural Reduc-
tions

Our reductions are deterministic, many-one, and “simple” in the original size parameter.

However, they require quasi-polynomial time. Here, we give evidence that improving such

“nice” reductions to run in polynomial time for the exact MCSP is difficult: such reductions would

immediately give breakthrough circuit lower bounds or non-trivial MCSP algorithms, and either

outcome seems like dramatic progress.1 To begin, observe that every reduction we present is

qpoly-Natural in the following sense.

Definition 70 (Natural Reductions between Parametric Problems). Let A and B be parametric

problems, that is, inputs are of the form: {⟨x,s⟩ : x ∈ {0,1}n, s ∈ N}. We call a parametric

reduction R = ⟨RI,RP⟩ where RI outputs instances and RP outputs parameters, t(·)-natural if it

is:

• Parametric Many-one: ⟨x,s⟩ ∈ A ⇐⇒ ⟨RI(x,s), RP(x,s)⟩ ∈ B

• Parameter-Value Uniform: RP(x,s) depends only on the size of the input and value of

the parameter; we will treat RP as a function from N×N in this case.

• t(·)-Efficient: The combined runtime of RI and RP is bounded by t(|x|,s).
1Similar arguments apply to the gap-versions of the problem that we study above, but we argue about the exact

version here to facilitate exposition.

50

A natural reduction R from Λ-MCSP to Γ-MCSP is many-one, so a Λ-MCSP algorithm

follows by brute-force search through Γ-circuits, and Λ-to-Γ lifting follows by mapping a Λ-hard

function h through R. This gives the next two lemmas. Kabanets and Cai used the same reasoning

to prove that NP-hardness of MCSP under poly-time natural reductions would imply breakthrough

circuit lower bounds (Theorem 15 of [61]). Removing NP-hardness from the picture, we instead

obtain the following:

Lemma 71 (Black-Box MCSP Algorithms from Natural MCSP-Redux). If there is a poly-Natural

Reduction from Λ-MCSP to Γ-MCSP, then there is a fixed constant k ∈ N such that Λ-MCSPn

∈ TIME[poly(nk)×Γ -count(RP(2n,s))]

Proof. Fix a reasonable encoding of Γ-circuits that admits efficient evaluation. Then write

Γ -count(s) for the total number of circuits so encoded that witness Γ-measure at most s. On

input (f ,s) to Λ-MCSPn we first run (f ,s) through the natural reduction R to obtain (f ′,s′). Just

as above, because R is poly-time, there is a fixed k such that t(n) = 2kn. This means | f ′| ≤ 2kn,

so we obtain an instance of Γ-MCSP with new size parameter s′ = RP(2n,s) on at most kn input

variables.

Then, because R is parametric many-one, a (yes, no)-instance of Λ-MCSPn becomes a

(yes, no)-instance of Γ-MCSPkn (respectively). So, we can solve the resulting instance of Γ-

MCSP by brute-force search over the set of all s′-measure-witnessing Γ-circuits, and answer

accordingly. We must evaluate a s′-size Γ-circuit on ≤ kn bits at most Γ -count(s′) times. This

takes poly(nk) ·Γ -count(s′) time in total.

Lifting begins with pre-existing lower bounds for Λ, which we formalize below. Many

concrete circuit lower bounds are far more explicit, but this weak notion will suffice for lifting

via natural and efficient inter-MCSP reductions.

Definition 72 (Explicit Complexity Lower Bounds). Let H = {hn}n∈N be a sequence of Boolean

functions in E, and let sΛ : N→ N be a function in FP. We call the pair ⟨H,sΛ⟩ an explicit

Λ-complexity lower bound if ∀n Λ(hn)> sΛ(n).

51

Lemma 73 (Black-Box Lifting from Natural MCSP-Redux). Let ⟨H,s⟩ be a Λ-complexity

lower bound. If there is a poly-Natural Reduction R from Λ-MCSP to Γ-MCSP, then there exists a

constant k and sequence of m-input Boolean functions H ′ such that ⟨H ′,RP(2
m/k,s(m/k))⟩ is an

explicit Γ-complexity lower bound.

Proof. Fix an explicit Λ-complexity lower bound ⟨H,s⟩ and poly-natural reduction R = ⟨RI,RP⟩

from Λ-MCSP to Γ-MCSP. Now run the reduction: let H ′ be the sequence h′n = RI(hn,s(n)) and let

s′(n) = RP(hn,s(n)). We know (hn,s(n)) ̸∈ Λ-MCSP by the hardness assumption about H. Then,

because R is parametric many-one, (h′n,s
′(n)) ̸∈ Γ-MCSP and thus Γ(h′n)> s′(n). To make this

explicit, we bound the runtime of answering queries according to h′ on inputs x of m bits. This

amounts to re-indexing the sequence H ′ to ensure that a Γ-hard function is defined everywhere

and computable in E.

First, because R is poly-time, there is a fixed k such that t(n) = 2kn. This means |h′n| ≤ 2kn,

so we send each input length n through the reduction to a new input length of at most kn. We

evaluate h at m/k input bits and pad to fill in the gaps. Propagating this padded sequence

of functions through the parameter-map RP, we obtained the claimed Γ-complexity lower

bound.

7.1 Efficient Natural Reductions Between AC0
d-,AC0

d+1-
MCSP: Win/Win

Notice how both applications of poly-Natural reductions depend quantitatively on RP,

the size parameter of the reduction. For lifting, we want RP(·) large enough to improve the best

known Γ-complexity lower bound by starting with a stronger lower bound for Λ. For solving

Λ-MCSP by brute-force on Γ-MCSP, we want RP(·) small enough such that searching all relevant

Γ-circuits is faster than trivial brute-force over all relevant Λ-circuits. This observation suggests a

case analysis of the function RP, to obtain either a non-trivial MCSP algorithm or improved circuit

lower bounds. For poly-Natural reductions from AC0
d-MCSP to AC0

d+1-MCSP, such a win/win

52

argument succeeds. Informally, we have the following:

Theorem 74 (poly-Natural MCSP Reduction Win/Win). Suppose there is a poly-Natural reduc-

tion from AC0
d-MCSP to AC0

d′-MCSP, for d′ > d. Then, either:

• There is a surprisingly fast algorithm for AC0
d-MCSP, or

• There are breakthrough explicit circuit lower bounds against AC0
d′[2

Ω(n1/d)] for d < d′ !

We spend the remainder of this chapter formalizing and proving variations on the above.

7.2 Quantitative Consequences of a Hardness Hypothesis
for MCSP

We first formulate an appropriate hypothesis about the hardness of MCSP.

Definition 75 (Weak Exponential Time Hypothesis (WETH) for Λ-MCSP). There exists an ε > 0

such that for all “nice” size functions s(n), Λ-MCSPn[s(n)] ̸∈ TIME[2s(n)ε

].

For the general MCSP (when Λ is the class of unrestricted Boolean circuits), it can be

shown that the WETH for MCSP is implied by the cryptographic conjecture that exponentially-

strong one-way functions exist (using the ideas of [86, 61, 5]). One can also show that if WETH

for general MCSP is false, then NEXP ̸⊂ P/poly (using the ideas of [53]). For every d ≥ 2, the

WETH for AC0
d-MCSP is also reasonable to assume, although we don’t seem to have any strong

evidence to support it yet (see [7] for some cryptographic hardness of AC0
d-MCSP for large d).

Under this hypothesis, we establish barriers to giving poly-Natural reductions from

AC0
d-MCSP to AC0

d+c-MCSP. We begin by recalling the best-known AC0
d circuit lower bounds.

Theorem 76 (Håstad [41]). Any depth (d +1) alternating circuit computing ⊕n requires 2Ω(n1/d)

gates. Furthermore, this bound is clearly explicit as in Definition 72.

Theorem 77. Suppose there is a poly-Natural reduction from AC0
d-MCSP to AC0

d′-MCSP, for d′> d.

Then, either:

53

• The WETH for AC0
d-MCSP is false, or

• There is an explicit circuit lower bound with s(n) = 2Ω(n1/(d−1)) against AC0
d′ .

Proof. Assume such a poly-Natural reduction R = ⟨RI,RP⟩ exists, with run-time 2kn. We reason

by cases on bounds for RP.

Suppose RP is small. That is, ∀ε.RP(2n,s(n))< s(n)ε . Substituting into the black-box

MCSP algorithm above, we have that ∀ε.AC0
d-MCSPn ∈ TIME[poly(nk)×AC0

d′-count(s(n)ε)] ∈

TIME[2s(n)2ε

], where the first inclusion is by Lemma 71, and second by counting AC0
d′ circuits.

This contradicts the MCSP-WETH for AC0
d .

Suppose RP is large. That is, ∃ε.RP(2n,s(n)) > s(n)ε . Lifting ⊕ through R we have

that there is an explicit sequence of Boolean functions H on m-bit inputs such that we have the

following explicit AC0
d′-complexity bounds: RP(2

m/k,s(m/k))> s(m/k)ε > 2Ω(m1/(d−1)). Here, the

lower bound is by Lemma 73, the first inequality by size assumption about RP, and the last by

application of Håstad’s bound.

When d′ > d, the lower-bound case above would be a breakthrough in circuit complexity.

Corollary 78 (Breakthrough Circuit Lower Bounds for Alternating Constant-Depth). Suppose

the WETH for AC0
d-MCSP holds, for every d ≥ 2. Then, if ∀d > d0 we have a poly-Natural

reduction Rd from AC0
d-MCSP to AC0

(d+1)-MCSP, then there is a fixed constant α such that, for

each depth d > d0, there is a Boolean function f d ∈ E such that any depth-d alternating circuit

computing f d
n requires 2Ωd(nα) gates.

Proof. Fix any constant d > d0. We first compose Rd with itself sufficiently many times to obtain

a many-one reduction R′d all the way from AC0
d0

-MCSP to AC0
d-MCSP. Observe that R′d remains

poly-Natural, because all the polynomial resource bounds are closed under a constant number

of compositions — though the leading constant exponent of runtime for R′d certainly increases

proportional to the gap between d and d0; this is precisely what is hidden by Ωd in the bound.

54

To conclude, we apply black box lifting (Lemma 73) to the composed poly-Natural reduction R′d ,

with Håstad’s lower bound for ⊕ at depth d0, getting α = 1/d0 in the theorem.

Combining with a simulation of shallow formulas by constant-depth circuits, we get

Lemma 79 (Folklore). Any sequence fn of Boolean functions on n inputs computable by formulas

of depth c log(n) is computable by depth-d alternating circuits of size 2d×2n(c/d)
.

Theorem 80 (Breakthrough Circuit Lower Bounds for Formulas). Suppose the WETH for AC0
d-

MCSP holds, for every d ≥ 2. Then, if ∀d > d0 we have a poly-Natural reduction Rd from

AC0
d-MCSP to AC0

(d+1)-MCSP, for every fixed k there exists f k a sequence of Boolean functions in

E, such that f k does not have size-nk formulas.

Proof. Fix constant k, and let c ∈ N be the leading constant that results from re-balancing an

arbitrary nk-size formula to log-depth. Any function computed by such a formula will have —

for every d — AC0
d circuits of size ≈ 2nc/d

by Lemma 79. Therefore, if we choose d such that

1/d0 > c/d, the size bound that results from lifting ⊕ through iterated composition of Rd exceeds

the constant-depth simulation-size of any nk-size formula. The rest of this argument is identical

to the proof of Corollary 78 above.

Chapter 7, in part, is based on material as it appears in “Marco Carmosino, Ken-

neth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting

for Constant-Depth Circuits and Applications to MCSP. In Nikhil Bansal, Emanuela Merelli,

and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik”. The dissertation author was the primary investigator and author of that paper.

55

Chapter 8

Half-Duplex Communication

Definition 81. Let X , Y and Z be some finite sets. We say that two players, Alice and Bob,

are solving half-duplex communication problem for function f : X ×Y → Z if sets X , Y , Z

and function f are known by both players, Alice is given some x ∈ X , Bob is given some

y ∈ Y , and players want to compute the value of f (x,y) by communicating to each other. The

communication is organized in rounds. At every round, each player decides (depending only on

its own input and previous communication) to do one of three available actions: send 0, send 1

or receive. If one player sends some bit b ∈ {0,1} and the other one receives then the latter gets

bit b, we call such rounds normal. If both players send bits at the same time then these bits get

lost, we call such rounds spent (it is important that the player that is sending can not distinguish

whether this round is normal or spent). If both players receive at the same time, we call such

rounds silent. There are three variants of half-duplex communication problem depending on how

silent rounds work.

• In a silent round both players receive nothing, so it is possible for both players to distin-

guish a silent round from a normal one, the corresponding problem is called half-duplex

communication problem with silence.

• In a silent round both players receive 0, i.e., players cannot distinguish a silent round

from a normal round where the other player sends 0, the corresponding problem is called

half-duplex communication problem with zero;

56

• In a silent round each player receives some arbitrary bit, not necessarily the same as the

other player; the corresponding problem is called half-duplex communication problem

with adversary.

We say that half-duplex communication problem is solved if at the end of communication both

players know f (x,y).

Note that solving half-duplex communication problem with zero there is no need to send

zeros — player can receive instead and the other player will not notice the difference.

Definition 82. Half-duplex communication protocol with silence (with zero) for function f :

X×Y → Z is a rooted tree that describes how Alice and Bob solve communication problem using

half-duplex channel on all possible inputs. Every leaf l of the protocol is labeled with zl ∈ Z.

Let A = {send 0,send 1, receive} be the set of possible actions. Every internal node v of the

protocol is labeled with three functions gA
v : X→A , gB

v : Y →A , and hv : A ×A →C(v), where

C(v) is a set of child nodes of v. Root node corresponds to the initial state of communication. If

the current state of communication corresponds to a node v, then Alice does action gA
v (x), Bob

does action gB
v (y), and the next node is defined by h(gA

v (x),g
B
v (y)).

The protocol definition for half-duplex communication problems with an adversary is a

little bit more complicated.

Definition 83. Half-duplex communication protocol with adversary for function f : X×Y → Z is

a rooted tree that describes how Alice and Bob solves communication problem over half-duplex

channel on all possible inputs and for any strategy of adversary w ∈ {0,1}∗. Every leaf l of

the protocol is labeled with zl ∈ Z. Let A = {send 0,send 1, receive} be the set of possible

actions, and E = {send 0,send 1, receive 0, receive 1} be the set of all possible events. Every

inner node v of the protocol is labeled with three functions gA
v : X → A , gB

v : Y → A , and

hv : E ×E →C(v), where C(v) is a set of child nodes of v. Root node corresponds to the initial

state of communication. If the current state of communication corresponds to a node v, then

57

Alice does action gA
v (x), Bob does action gB

v (y). If at least one of players decides to send then

corresponding events are defined in a natural way. If both players decide to receive, i.e., this

is a silent round, then Alice receives bit w2i−1 and Bob receives bit w2i. The next node of the

protocol is defined by function h.

Definition 84. We say that half-duplex communication protocol computes function f : X×Y → Z

if for all (x,y) ∈ X×Y , every leaf l of the protocol labeled with zl corresponds to a state where

both players know zl = f (x,y).

The arity of half-duplex communication protocols with silence and with zero is at most

nine. The arity of half-duplex communication problems with adversary is at most 12: there are

four possible events for each player, 16 options in total, but four of them are prohibited (e.g., if

Alice sends 0 and Bob receives 1).

The classical communication complexity of a communication problem for function f ,

D(f), is defined in terms of the minimal depth of a protocol solving it. Analogously, we define

communication complexity for half-duplex communication problems.

Definition 85. The minimal depth of a communication protocol solving half-duplex commu-

nication problem for function f with silence, with zero, with adversary, defines half-duplex

communication complexity of function f with silence, denoted Dhd
s (f), with zero, denoted

Dhd
0 (f), with adversary, denoted Dhd

a (f), respectively.

We will focus on half-duplex communication complexity for a special case of Boolean

functions {0,1}n×{0,1}n→{0,1} (i.e., X = Y = {0,1}n, Z = {0,1}).

8.1 Trivial bounds

As far as half-duplex communication generalizes classical communication the following

upper bound is immediate.

58

Theorem 86. For every function f : {0,1}n×{0,1}n→{0,1}k,

Dhd
s (f)≤ Dhd

0 (f)≤ Dhd
a (f)≤ D(f).

Proof. Every classical communication protocol can be embedded in half-duplex communication

protocol that does not use spent and silent rounds.

Next theorem shows that every half-duplex protocol with zero or with adversary can be

transformed in a classical communication protocol of double depth.

Theorem 87. For every function f : {0,1}n×{0,1}n→{0,1}k,

D(f)
2
≤ Dhd

0 (f)≤ Dhd
a (f).

Proof. Every t-round half-duplex communication protocol with silence or with adversary can

be transformed into 2t-round classical communication protocol. Every round of the original

protocol corresponds to two consecutive rounds of the new one: at first round Alice sends a bit

she was sending in the original protocol or sends 0 if she was receiving, at second round Bob

does the same thing.

As we will see later, half-duplex protocols with silence can use silent rounds as an

additional third symbol and hence not every t-round half-duplex protocol with silence can be

embedded in 2t classical protocol. The following theorem shows that instead we can embed

every such protocol in a classical protocol with 3t rounds.

Theorem 88. For every function f : {0,1}n×{0,1}n→{0,1}k, Dhd
s (f)≥ D(f)

3 .

Proof. Every t-round half-duplex communication protocol with silence can be transformed into

3t-round classical communication protocol. Every round of the original protocol corresponds

to three consecutive rounds of the new one: at first round Alice sends 1 to indicate if she was

sending a bit in the original protocol, or sends 0 otherwise, at second round Bob does the same

59

thing symmetrically. After that they are both aware of the intentions of each other. If they were

both planning to send, they can skip the third round. If they were both planning to receive, then

they can just assume that they heard silence. If one player was planning to send and the other

one was planning to receive they can perform such an action on third round.

8.2 Rectangles

Many lower bounds on classical communication complexity were proved by considering

combinatorial rectangles that are associated with the nodes of communication protocol [66]: it’s

easy to see that every node v of the (classical) protocol corresponds to a combinatorial rectangle

Rv = Xv×Yv, where Xv ⊆ X , Yv ⊆ Y , such that if Alice and Bob are given an input from Rv

then their communication will necessarily pass through node v. This implies that the rectangles

associated with the child nodes of v define a subdivision of Rv.

There is a general technique [66] for proving lower bounds using associated combina-

tional rectangles in: if for some sub-additive measure µ defined on combinatorial rectangles we

show both

1. a lower bound on the measure of X×Y , the rectangle in the root node, i.e., µ(X×Y)≥ µr

for some µr, and

2. an upper bound on the measure of rectangles in leaves, i.e., for every leaf l the measure of

the corresponding rectangle Rl is at most µℓ for some µℓ,

then we can claim lower bound of log2(µr/µℓ) on the depth of the protocol.

One of the most studied sub-additive measure on rectangles is µM(R) that is equal to the

minimal number of monochromatic rectangles that covers R. Rectangle R is z-monochromatic

in respect to function f for some z ∈ Z if for all (x,y) ∈ R, f (x,y) = z. As far as both players

have to come up with the same answer at the end of communication every rectangle in leaves is

monochromatic, thus for this measure µℓ = 1.

60

Almost the same technique can be used for half-duplex protocols. There are some

technical differences that we have to keep in mind. First of all, as we have already mentioned

above, half-duplex protocol trees has different arities. Secondly, we should be careful while

defining associated combinatorial rectangles for half-duplex protocols with adversary — in case

of silent rounds the next node of the protocol depends also on a strategy w of adversary, so we

have to formally consider w it as a part of input. This leads to the following lower bound for

equality function EQn : {0,1}n×{0,1}n→{0,1}, such that EQn(x,y) = [x = y].

Theorem 89.

• Dhd
s (EQn)> log9 2n = n/ log9,

• Dhd
0 (EQn)> log9 2n = n/ log9,

• Dhd
a (EQn)> log12 2n = n/ log12.

Proof. Let µ = µM. All rectangle in leaves are monochromatic, µℓ = 1. Every 1-monochromatic

rectangle is of size one: if some rectangle contains two elements, say (x,x) and (x′,x′), then

it also contains (x,x′) and (x′,x), so it is not 1-monochromatic. Thus, the root rectangle has

measure at least µr = 2n +1 [66].

Unlike the classical communication in half-duplex communication players do not always

know what was the other’s player action — the information about it can be “lost” i.e., in spent

rounds player do not know what was that other’s player action. It means that a player might not

know what node of the protocol corresponds to the current state of communication. Keeping this

in mind, we can give an alternative definition of half-duplex protocols.

Definition 90. Internal half-duplex communication protocol for function f : X ×Y → Z is a

pair (TA,TB) of rooted trees that describe how Alice and Bob solve half-duplex communication

problem on all possible inputs (and for any strategy of adversary w ∈ {0,1}∗). Every node

of TA corresponds to a state of Alice, every node of TB — to a state of Bob. Every leaf l

61

is labeled with zl ∈ Z. Let A = {send 0,send 1, receive} be the set of possible actions, and

E = {send 0,send 1, receive 0, receive 1} be the set of all possible events. Every node v of TA

(of TB) is labeled with two functions gv : X →A (gv : Y →A) and hv : E →C(v), where C(v)

is a set of child nodes of v. Root nodes of TA and TB correspond, respectively, to the initial states

of Alice and Bob. If Alice (Bob) is in a state that corresponds to node v ∈ TA (v ∈ TB), then she

does action gv(x) (he does action gv(y)). The next node of the protocol is defined by the function

h (and also by strategy w in case of silent round).

Trees TA and TB have smaller arity than protocol trees we defined earlier. In fact,

• arity is 5 for half-duplex communication with silence (send 0 or 1, receive 0 or 1, silence),

• arity is 3 for half-duplex communication with zero (send 1, receive 0 or 1),

• arity is 4 for half-duplex communication with adversary (send 0 or 1, receive 0 or 1).

For internal half-duplex protocols we still can define associated combinatorial rectangles and

apply the same technique. This allows us to improve Theorem 89.

Theorem 91.

• Dhd
s (EQn)≥ log5 2n = n/ log5,

• Dhd
0 (EQn)≥ log3 2n = n/ log3,

• Dhd
a (EQn)≥ log4 2n = n/2.

Proof. See the proof of Theorem 89.

Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term.

We can get better bound if we improve this technique using round elimination.

62

8.2.1 Round elimination

Let us fix a protocol for some half-duplex communication problem and consider the first

round. Let Rc = X×Y be the corresponding rectangle of all possible inputs. We can subdivide

Rc in nine rectangles, one for each possible combination of actions.

Alice\Bob send 0 send 1 receive

send 0 R00 R01 R0r

send 1 R10 R11 R1r

receive Rr0 Rr1 Rrr

Consider two rectangles: Rgood = R00∪R01∪R0r and Rbad = R0r ∪R1r. If we restrict f to be

a partial function defined only on Rgood , i.e., players will always get some (x,y) ∈ Rgood , then

there is no need in the first round — the information the players get about the other part of the

input is fixed: Alice does not get any information, Bob can receive 0 if he decide to receive. On

the other hand if we restrict f to Rbad then the first round is still needed: Bob can receive both 0

and 1 and this information in necessary to proceed to the next round. Lets call a rectangle R good

for functions f if restricting f to R makes the first round unnecessary (i.e., protocol without the

first round is correct for all (x,y) ∈ R). The idea of this method is to consider some covering of

Rc with a set of good rectangles and prove that there is always a good rectangle of large enough

measure. If we can show that there is always a rectangle of measure at least α ·µ(Rc) then we

can iterate this idea and claim that protocol depth is at least log1/α(µr/µℓ), where µr is a lower

bound on the measure of the root rectangle and µℓ is an upper bound on the measure of leaf

rectangles.

Lemma 92. Let µ be some sub-additive measure on rectangles such that µ(X×Y)≥ µr and for

any leaf rectangle Rl , µ(Rl)≤ µℓ. If for any rectangle R there is always a good subrectangle for

function f ↾ R of measure at least α ·µ(R) then the depth of the protocol is at least log1/α

µr
µℓ

.

Proof. We start with R = X ×Y . Every round restrict f to some good Rgood ⊆ R such that

63

µ(Rgood)≥ α ·µ(R), let R to be Rgood , and proceed to the next round. At the end we will reach

some leaf. Thus there is at least log1/α(µr/µℓ) rounds.

8.3 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever

players have silent round, they learn about it. In some sense they have a third symbol in the

alphabet — receiving player can get either 0/1 or a special symbol corresponding to “silence”.

Next theorem shows how players can take the advantage of silence to transfer data.

Theorem 93. For every f : {0,1}n×{0,1}n→{0,1}, Dhd
s (f)≤ ⌈n/ log3⌉+1.

Proof. Alice encodes x in ternary alphabet {0,1,2} and sends it to Bob: in order to send 0 or 1

Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence). This

requires ⌈log3 2n⌉= ⌈n/ log3⌉ bits. At the last round Bob computes f (x,y) and sends it back to

Alice.

Using the idea of encoding in a non-binary alphabet, we managed to prove a better upper

bound for equality function.

Theorem 94. Dhd
s (EQn)≤ ⌈n/ log5⌉+ ⌈logn/ log3⌉+2.

Proof. Alice and Bob encode their inputs in alphabet of size five {0,1,2,3,4}. Then they process

their inputs symbol by symbol sequentially in ⌈n/ log5⌉ rounds. At round i they process ith

symbol in the following manner.

Symbol Alice Bob

0 send 0 receive

1 send 1 receive

2 receive send 0

3 receive send 1

4 receive receive

64

If ith round is normal then one player can check whether ith symbols are different. If ith round is

silent then again one player knows if ith symbols are different. If after ⌈n/ log5⌉ rounds one of

the players has already learned that the answer is 0, then he or she sends 0. If this round is not

silent, then both players know that the answer is 0. Otherwise, Alice and Bob have to make sure

that there were no spent rounds. In order to check it, Alice sends the number normal rounds she

was receiving in encoded in ternary, that requires ⌈logn/ log3⌉ rounds. Bob checks whether this

number is equal to the number of rounds he was sending in. If so, inputs are equal. In the last

round, Bob sends the answer back to Alice.

The next theorem shows better than n/ log3 upper bound for disjointness function

DISJn : {0,1}n×{0,1}n→ {0,1}, such that DISJn(x,y) =
∧

i∈[n]¬(xi∧ yi), which in classical

case is one of the hardest functions of this type.

Theorem 95. Dhd
s (DISJn)≤ ⌈n/2⌉+2.

Proof. Alice and Bob process their inputs two bits per round, ⌈n/ log2⌉ rounds. At round i they

process symbols 2i−1 and 2i in the following manner.

Symbols Alice Bob

00 send 0 receive

01 receive send 0

10 receive send 1

11 receive receive

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s

input was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having 01

or 11, or received 1 having 10 or 11 (again, inputs are not disjoint).

The next function we have results for is the inner product function IPn : {0,1}n ×

{0,1}n→{0,1}, such that IPn(x,y) =
⊕

i∈[n] xiyi. In the classical model, this function is one of

the harder ones. This might also be the case for half-duplex models as the same time we do not

65

know efficient protocols for it, and this is the function we can prove the best lower bounds for.

On the other hand, the best lower bound we can prove for it in this model is n/2.

Theorem 96. Dhd
s (IPn)≥ n/2.

For this theorem we need the following fact about inner product function.

Lemma 97. Every leaf rectangle of a protocol solving communication problem for IPn has size

at most 2n.

Proof. We start with proving it for leaves labeled with 0. Let Rl = Xl×Yl be a rectangle of leaf l

labeled with 0, i.e., Rl is 0-monochromatic. For every x ∈ Xl and y∈Yl , IPn(x,y) = 0, set Xl must

be contained in the orthogonal complement for span of Yl . Thus, dim({Xl})+dim({Yl})≤ n,

and hence, |R|= |Xl|× |Yl| ≤ 2n.

If leaf is labeled with 1 then for every x ∈ Xl and y ∈ Yl , IPn(x,y) = 1. Let y′ be arbitrary

element of Yl . Consider a set Y ′l = {y⊕ y′ | y ∈ Yl}. It is easy to see that for every x ∈ Xl and

y∈Y ′l , IPn(x,y) = 0, so we can apply the argument above to show that |Xl|×|Y ′l | ≤ 2n. It remains

to notice that |Yl|= |Y ′l |.

Proof of Theorem 96. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the

following set of good rectangles: a rectangle Rsilent = Rrr where round is silent, four rectangles

R0∗=R00∪R01∪R0r, R1∗=R10∪R11∪R1r, R∗0 =R00∪R10∪Rr0, R∗1 =R01∪R11∪Rr1, where

one of players sends some bit, and a rectangle Rspent = R00∪R01∪R10∪R11, where round is

spent. We claim one of these good rectangles has measure at least µ(Rc)/4.

For µ(R) = |R| we can use the following fact. Let a0, a1 and ar be the probability over

all possible inputs that Alice sends 0, sends 1, and receives, respectively. Analogously, we define

b0, b1 and br to be the probability that Bob sends 0, sends 1, and receives. It is easy to see that

a0 +a1 +ar = b0 +b1 +br = 1 and for all α,β ∈ {0,1,r}, µ(Rαβ) = aα ·bβ ·µ(Rc).

We need to show that

max
{

µ(R0∗),µ(R1∗),µ(R∗0),µ(R∗1),µ(Rsilent),µ(Rspent))
}
≥ µ(Rc)/4.

66

This is equivalent to showing that

max
{

a1,a0,b1,b0,arbr,(1−ar)(1−br)
}
≥ 1/4

for any a0,a1,ar,b0,b1,br ∈ [0,1], such that a0+a1+ar = b0+b1+br = 1. Let ā= (a1+a0)/2,

b̄ = (b1 +b0)/2. As far as max{a0,a1} ≥ ā and max{b0,b1} ≥ b̄,

max
{

a1,a0,b1,b0,arbr,(1−ar)(1−br)
}
≥max

{
ā, b̄,arbr,(1−ar)(1−br)

}
.

Note that ar +2ā = 1, br +2b̄ = 1. Hence ā = (1−ar)/2, b̄ = (1−br)/2,

max
{

ā, b̄,arbr,(1−ar)(1−br)
}
= max

{
(1−ar)/2,(1−br)/2,arbr,(1−ar)(1−br)

}
.

If ar ≤ 1/2 or br ≤ 1/2 then one of first arguments is at least 1/4. On the other hand if ar > 1/2

and br > 1/2 then arbr > 1/4. Now we apply Lemma 92 for µr = 4n, µℓ = 2n (Lemma 97),

α = 1/4, and get the desired bound.

8.4 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model:

send 1 or receive. The following theorem shows that half-duplex communication with zero is

more powerful than classical communication, namely, it is possible to solve communication

problem for EQn in less than n rounds of communication.

Theorem 98. Dhd
0 (EQn)≤ ⌈n/ log3⌉+2⌈logn⌉+1.

Proof. Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they

process their inputs sequentially symbol by symbol in ⌈n/ log3⌉ rounds. At round i they process

ith symbol in the following manner.

67

Symbol Alice Bob

0 receive receive

1 send 1 receive

2 receive send 1

In the next 2⌈logn⌉ they send each other the number of ones they sent in the first phase. If inputs

were different then one of players must have noticed it. At the first phase at round i Alice learns

if their corresponding symbols are (0,2), (2,0) or (2,1), Bob learns if their symbols are (0,1) or

(1,0). In the second phase, they can learn whether any of (1,2) situation happened in the first

phase. The last round players use to notify each other if somebody noticed a mismatch — in this

case the player that noticed sends 1.

Next theorem shows that there are functions of higher complexity than EQn.

Theorem 99. Dhd
0 (IPn)≥ n/ log 2

3−
√

5
> n/ log2.62.

Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the following set

of good rectangles: Rslilent = Rrr, Rspent = R11, R1∗ = R11∪R1r and R∗1 = R11∪Rr1. We claim

one of these good rectangles has measure at least 3−
√

5
2 ·µ(Rc). We need to show that

max
{

µ(R1∗),µ(R∗1),µ(Rsilent),µ(Rspent))
}
≥ 3−

√
5

2
·µ(R).

It is equivalent to showing that for any a,b ∈ [0,1],

max
{

a,b,ab,(1−a)(1−b)
}
≥ 3−

√
5

2
,

where a and b denote the probabilities over all possible inputs that, respectively, Alice and Bob

sends 1. It’s easy to see minimum value of max
{

a,b,ab,(1−a)(1−b)
}

is at most 1/2, so we

can consider only a≤ 1/2 and b≤ 1/2. Thus,

max
{

a,b,ab,(1−a)(1−b)
}
= max

{
a,b,(1−a)(1−b)

}
.

68

Now we can argue that minimum of this max is achieved when a = b = (1−a)(1−b): indeed,

increasing or decreasing a or b increases one of the arguments. Solving corresponding quadratic

equation a = (1−a)2 we get a = 3−
√

5
2 , and hence

max
{

a,b,ab,(1−a)(1−b)
}
≥ 3−

√
5

2
.

Applying Lemma 92 for µr = 4n, µℓ = 2n, and α = 3−
√

5
2 finishes the proof.

8.5 Half-duplex communication with adversary

The main feature of this model is that receiving player can not be 100% sure that the

received bit if in fact is “real”, i.e., this bit originates from the other player, not from an adversary.

But the protocol must be correct for any strategy of adversary. Our intuition prompts that in this

setting silent and spent rounds would be useless. So we state a conjecture.

Conjecture 100. There is function f : {0,1}n×{0,1}n→{0,1} that requires n−o(n) rounds

of half-duplex communication with an adversary.

There is a common obstacle our methods faced when we were trying to prove this

conjecture — it could be the case that players send different bits in spent rounds. For some

reason, our methods do not work in this case which is strange because these spend rounds do not

transmit any information. If we somehow forbid players to send different bits in spent rounds

(e.g., in this case, we immediately terminate the communication and make players output 0) then

we can prove that EQn requires n rounds of communication. The same bound can be achieved

if we allow such spent rounds only on distinct inputs. We suppose that this is an artifact of our

methods and there is a way to overcome this obstacle. For unrestricted model, the best we can

show is the following two theorems.

Theorem 101. Dhd
a (EQn)≥ n/ log2.5.

69

Proof. Let Rc be the rectangle of all possible inputs and µ(R) =
∣∣{(x,x) ∈ R}

∣∣. Consider the

following set of 5 good rectangles:

Rspent = R00 +R01 +R10 +R11,

and four rectangles

R1̄1̄ = R00∪R0r∪Rr0∪Rrr, R0̄1̄ = R10∪R1r∪Rr0∪Rrr,

R1̄0̄ = R01∪R0r∪Rr1∪Rrr, R0̄0̄ = R11∪R1r∪Rr1∪Rrr,

where Alice does not send α and Bob does not send β some fixed bits α,β .

Now let us observe that together all these good rectangles cover the entire rectangle of

possible input twice, and hence one of it has measure at least 2/5 ·µ(Rc).

The last theorem of this section demonstrates the best known lower bound for this model.

Theorem 102. D(IPn)≥ n/ log 7
3 .

Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. We use a set of good

rectangles consisted of rectangles Rspent ,R1̄1̄,R0̄1̄,R1̄0̄,R0̄0̄ from the proof of Theorem 101 and

four additional rectangles

R0∗ = R00∪R01∪R0r, R∗0 = R00∪R10∪Rr0,

R1∗ = R10∪R11∪R1r, R∗1 = R01∪R11∪Rr1,

where one of players sends some fixed bit. The following lemma shows that for this set of good

rectangles and this specific measure we can prove a better bound.

70

Lemma 103. For all half-duplex protocols with adversary

max
{

µ(Rspent),µ(R0∗),µ(R∗0),µ(R1∗),µ(R∗1),µ(R1̄1̄),µ(R0̄1̄),µ(R1̄0̄),µ(R0̄0̄)
}
≥ 3

7
·µ(Rc).

Proof. We use the idea we have already seen in the proof of Theorem 96. Let a0, a1 and ar be

the probabilities over all possible inputs that Alice sends 0, sends 1 and receives, respectively.

Analogously, we define b0, b1 and br to be the probabilities that Bob sends 0, sends 1 and

receives. It is easy to see that a0 + a1 + ar = b0 + b1 + br = 1 and for all α,β ∈ {0,1,r},

µ(Rαβ) = aα ·bβ ·µ(Rc) (it is important here that µ(R) = |R|). Minimization of maximum of

linear functions with such constraints can be reduced to a semidefinite programming problem.

Its solution gives us a desired bound.

Application of the Lemma 92 for µr = 4n, µℓ = 2n and α = 3/7, finishes the proof.

8.5.1 Upper-bound on internal information

A useful tool for proving lower bounds on the communication complexity of problems in

the classical model is the upper bound on the information Alice and Bob have learned about the

other’s inputs, as a function of the number of rounds that have been run. Such tools allow for

proving lower bounds, such as the 2logn-bit lower bound on the KW-game for parity.

Theorem 104. Let f be a partial function and P a half-duplex communication protocol with

adversary computing f , and D an arbitrary distribution over the range of f . Let X and Y be

the marginal distributions over inputs to Alice and Bob, and for any k let Πk
A and Πk

B be the

marginal distributions over Alice and Bob’s partial transcripts after running P for k rounds

induced by D , where on silent rounds the adversary picks whether to send 0 or 1 uniformly and

independently at random for both players separately. Then for any k,

I(X : Π
k
B | Y)+ I(Y : Π

k
A |X)≤ k.

71

Proof. We will induct on k, the number of rounds that have been run. For k = 0, there is only one

possible partial transcript for either player, the empty transcript, and thus the result is immediate.

Now suppose that this is true in round k. Let E k+1
A and E k+1

B be the marginal distributions over

which event each player will observe. Note that

I(X : Π
k+1
B | Y) = H(X | Y)−H(X | Y ,Πk+1

B)

= H(X | Y)−H(X | Y ,Πk
B)+H(X | Y ,Πk

B)−H(X | Y ,Πk
B,E

k+1
B)

= I(X : Π
k
B | Y)+ I(X : E k+1

B | Y ,Πk
B).

Thus, it suffices to show that

I(X : E k+1
B | Y ,Πk

B)+ I(Y : E k+1
A |X ,Πk

A)≤ 1.

Let (y,πk
B) be a particular valid input-transcript pair for Bob. Consider I(X : E k+1

B |

Y = y,Πk
B = πk

B); note that

I(X : E k+1
B | Y = y,Πk

B = π
k
B)≤ I(X ,Πk

A : E k+1
B | Y = y,Πk

B = π
k
B)

≤ H(E k+1
B | Y = y,Πk

B = π
k
B)−H(E k+1

B | Y = y,Πk
B = π

k
B,X ,Πk

A).

Suppose Bob will be receiving in round k+1; otherwise

H(E k+1
B | Y = y,Πk

B = π
k
B) = H(E k+1

B | Y = y,Πk
B = π

k
B,X ,Πk

A) = 0.

Consider each (x,πk
A) input-transcript pair for Alice consistent with (y,πk

B). Note that H(E k+1
B |

Y = y,Πk
B = πk

B,X = x,Πk
A = πk

A) will either be 0, if Alice is sending a bit in round k+1, or 1,

if she is receiving. The latter is because the adversary will choose whether Bob receives a 0 or 1

72

in round k+1 uniformly at random independent of Alice or Bob’s transcripts or inputs. Thus

H(E k+1
B | Y = y,Πk

B = π
k
B,X ,Πk

A) = Pr[Alice receives | Y = y,Πk
B = π

k
B],

and thus

I(X : E k+1
B | Y = y,Πk

B = π
k
B)≤ 1−Pr[Alice receives | Y = y,Πk

B = π
k
B]

≤ Pr[Alice sends | Y = y,Πk
B = π

k
B].

We then have that

I(X : E k+1
B | Y ,Πk

B) = ∑
(y,πk

B)

Pr[y,πk
B] · I(X : E k+1

B | Y = y,Πk
B = π

k
B)

≤ ∑
(y,πk

B)

Pr[Alice sends,Y = y,Πk
B = π

k
B] ·1[Bob receives]

≤ Pr[Alice sends, Bob receives].

A symmetric argument holds for Alice, giving

I(X : E k+1
B | Y ,Πk

B)+ I(Y : E k+1
A |X ,Πk

A)

≤ Pr[Alice sends, Bob receives]+Pr[Alice receives, Bob sends]≤ 1.

As an immediate corollary we obtain a lower bound on the number of rounds needed to

compute the Karchmer-Wigderson game for parity.

Corollary 105. The Karchmer-Wigderson game for n-bit parity requires exactly 2logn rounds

of half-duplex communication with adversary.

73

Proof. Take the uniform distribution over valid input pairs with a single bit of difference. Then

H(Y |X)+H(X | Y) = 2logn

before any communication takes place, as Y |X corresponds to the uniform distribution over

the n possible bit locations that are different, and

H(Y |X ,ΠA)+H(X | Y ,ΠB) = 0

at any leaf, as given each leaf corresponds to a single bit position, there is only one possible (x,y)

pair given x or y.

Chapter 8, in part, is based on material as it appears in “Kenneth Hoover, Russell

Impagliazzo, Ivan Mihajlin, and Alexander V. Smal. Half-Duplex Communication Complexity.

In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium

on Algorithms and Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 10:1–10:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik”. The dissertation author was the primary investigator and author of that

paper.

74

Chapter 9

Conclusions and Open Questions

We have given reductions from low-depth AC0-MCSP to high-depth AC0-MCSP for both

bounded and unbounded bottom fan-in, demonstrated barriers to improving these reductions,

and proven hardness for bounded fan-in DNF-MCSP. We have also given an approximation

algorithm for the DNF case that prevents us from using it as the base case for bootstrapping

hardness. On the communication complexity side, we have introduced the half-duplex model and

its three variants, and proven tight upper and lower bounds for a variety of classic communication

problems. We also demonstrated an upper bound on the information both parties exchange over

the course of a protocol, for one of the variants.

One open question is whether we can reduce how much our depth-increase reduction

shrinks the gap between the YES and NO sets of our GapMCSP problems. On the one side, we are

leveraging a kind of “pick 2 out of 3” trade-off between size, fan-in, and depth for composing

our parity circuits, and giving up size. We can’t give up fan-in without finding an alternative

to switching lemmas, and if we allow the depth to increase by 2 instead of 1, we would need

to apply switching twice. This was attempted at one point while studying the reductions, and

we could not go from d +2 to d without losing the structure of f in one of the two applications

of switching. At this point, if we want to continue with the switching approach, it would be

worthwhile to examine other choices of function than parity; perhaps the TRIBES function would

be an interesting alternative?

75

On the other side, our switching lemma only examines the bottom DNFs/CNFs of the

circuit one at a time. In [54], they present a switching lemma that looks at the probability of a

collection of DNFs/CNFs over the same set of variables failing to simplify, with each contributing

to the overall long CDT path. Such a global analysis could be useful for us as well, in allowing

for multiple CNFs/DNFs in the switched circuit to share their clauses/terms.

Due to the depth 1+1/2 case having efficient algorithms, any bootstrapping of hardness

up from low depths to higher depths must be based on hardness at depth 2+1/2 at minimum

(assuming there aren’t dramatic improvements in the minimum gap needed to run the reduction).

Rather than immediately attempt to show depth 2+1/2 is hard, we could instead look at even

more restricted bottom fan-ins, e.g. bottom fan-in 2. Alternatively, we could try and base our

hardness on ETH instead.

The WETH for AC0
d-MCSP seems like a reasonable assumption to make, being implied by

one-way functions. It would be useful to give further arguments for/against this hypothesis. One

possible avenue to explore would be tying it closer to one-way functions, as has already been

done in the average case setting.

In the half-duplex model with adversary, demonstrating an explicit n−o(n) lower bound

remains an open question. The reason we cannot do this with our existing information upper

bound is it refers to the information each party learns about the other’s input. Therefore, if we

want to say something like, e.g., “Take the uniform distribution over all inputs; at any leaf the

rectangle can have at most X elements. . . .”, we need to ensure that these are leaves in each

party’s local protocol tree, not the global tree.

Another open question in the half-duplex models is characterizing the complexity of the

universal composition relation, or KWMUX . While this was the initial inspiration for studying

half-duplex communication, we have no new results on that front so far. It would be interesting to

see if the techniques from [33] generalize to this half-duplex setting, or if we can give non-trivial

upper bounds on KWMUX within the half-duplex setting. One idea is relaxing the notion of

“computing” a relation, i.e. allowing Alice and Bob to have different values of z.

76

Bibliography

[1] Manindra Agrawal, Eric Allender, and Steven Rudich. Reductions in circuit complexity:
An isomorphism theorem and a gap theorem. Journal of Computer and System Sciences,
57(2):127–143, 1998.

[2] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48,

1983.

[3] Eric Allender. The complexity of complexity. In Adam Day, Michael Fellows, Noam
Greenberg, Bakhadyr Khoussainov, Alexander Melnikov, and Frances Rosamond, editors,
Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion
of His 60th Birthday, pages 79–94. Springer International Publishing, Cham, 2017.

[4] Eric Allender. The new complexity landscape around circuit minimization. In Alberto
Leporati, Carlos Martı́n-Vide, Dana Shapira, and Claudio Zandron, editors, Language
and Automata Theory and Applications, pages 3–16, Cham, 2020. Springer International
Publishing.

[5] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM Journal on Computing, 35(6):1467–1493,
2006.

[6] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information
and Computation, 256:2–8, 2017.

[7] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM
Journal on Computing, 38(1):63–84, 2008.

[8] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimiza-
tion and related problems. ACM Transactions on Computation Theory (ToCT), 11(4):1–27,
2019.

[9] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, pages 21–33, 2015.

77

[10] Eric Allender, Rahul Ilango, and Neekon Vafa. The non-hardness of approximating circuit
size. In René van Bevern and Gregory Kucherov, editors, Computer Science - Theory
and Applications - 14th International Computer Science Symposium in Russia, CSR 2019,
Novosibirsk, Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in
Computer Science, pages 13–24. Springer, 2019.

[11] Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. On the complexity of radio
communication. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, page 274–285, New York, NY, USA, 1989. Association for
Computing Machinery.

[12] Paul Beame. A switching lemma primer. 1994.

[13] Paul Beame, Russell Impagliazzo, Jan Krajı́ček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on hilbert’s nullstellensatz and propositional proofs. Proceedings of the London
Mathematical Society, s3-73(1):1–26, 1996.

[14] David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimiza-
tion. Journal of Computer and System Sciences, 77(1):142–153, 2011.

[15] Jin-Yi Cai. With probability one, a random oracle separates PSPACE from the polynomial-
time hierarchy. Journal of Computer and System Sciences, 38(1):68–85, 1989.

[16] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and
Exact Computation, pages 75–85, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[17] Marco Carmosino, Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and Anton-
ina Kolokolova. Lifting for constant-depth circuits and applications to MCSP. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 44:1–44:20, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[18] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In 31st Conference on Computational Complexity,
CCC, pages 1–24, 2016.

[19] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Agnostic learning from tolerant natural proofs. In Klaus Jansen, José D. P. Rolim, David
Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August
16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[20] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-
to-communication lifting using low-discrepancy gadgets. SIAM Journal on Computing,
50(1):171–210, 2021.

78

[21] Lijie Chen and Hanlin Ren. Strong average-case circuit lower bounds from nontrivial
derandomization. SIAM Journal on Computing, 51(3):STOC20–115–STOC20–173, 2022.

[22] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit
lower bounds for MCSP from local pseudorandom generators. ACM Transactions on
Computation Theory, 12(3), July 2020.

[23] Timothy Y. Chow. Almost-natural proofs. In 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 86–91, 2008.

[24] Alonzo Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58(2):345–363, 1936.

[25] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua Bar-
Hillel, editor, Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (Studies in Logic and the Foundations of Mathematics), pages
24–30. North-Holland Publishing, 1965.

[26] Stephen A. Cook. A hierarchy for nondeterministic time complexity. In Proceedings of the
Fourth Annual ACM Symposium on Theory of Computing, STOC ’72, page 187–192, New
York, NY, USA, 1972. Association for Computing Machinery.

[27] Sebastian Czort. The complexity of minimizing disjunctive normal form formulas. Master’s
thesis, University of Aarhus, 1999.

[28] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere,
and Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof
complexity. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 24–30. IEEE, 2020.

[29] Anant Dhayal. On Limiting & Limited Non-determinism in NEXP Lower Bounds. PhD
thesis, University of California, San Diego, 2021.

[30] Anand K. Dhulipala, Christina Fragouli, and Alon Orlitsky. Silence-based communication.
IEEE Transactions on Information Theory, 56(1):350–366, 2010.

[31] Irit Dinur and Or Meir. Toward the KRW composition conjecture: Cubic formula
lower bounds via communication complexity. Computational Complexity, 27(3):375–462,
September 2018.

[32] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[33] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirı́ Sgall. Communication com-
plexity towards lower bounds on circuit depth. Computational Complexity, 10(3):210–246,
2001.

79

[34] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[35] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: The composition of a function and a universal relation. SIAM Journal on
Computing, 46(1):114–131, January 2017.

[36] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 66:1–66:15,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[37] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. SIAM Journal on Computing, 47(6):2435–2450, 2018.

[38] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for
BPP. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 132–143, 2017.

[39] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. Thresh-
old circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154,
1993.

[40] Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

[41] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 6–20. ACM, 1986.

[42] Johan Håstad. Computational limitations for small-depth circuits. PhD thesis, Mas-
sachusetts Institute of Technology, 1987.

[43] Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case
depth hierarchy theorem for boolean circuits. Journal of the ACM, 64(5):35:1–35:27, 2017.

[44] Johan Håstad and Avi Wigderson. Composition of the universal relation. In Jin-Yi
Cai, editor, Advances In Computational Complexity Theory, Proceedings of a DIMACS
Workshop, New Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 119–134. DIMACS/AMS, 1990.

[45] Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of minimum circuit
size problem for OR-AND-MOD circuits. In 33rd Computational Complexity Conference
(CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

80

[46] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In 31st Conference on Computational Complexity, CCC, pages 18:1–18:20, 2016.

[47] John M. Hitchcock and A. Pavan. On the NP-completeness of the minimum circuit size
problem. In 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS, pages 236–245, 2015.

[48] Kenneth Hoover, Russell Impagliazzo, Ivan Mihajlin, and Alexander V. Smal. Half-duplex
communication complexity. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors,
29th International Symposium on Algorithms and Computation (ISAAC 2018), volume 123
of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:12, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[49] Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional
variant and AC0[p]. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020), volume 151 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 34:1–34:26, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[50] Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
424–433. IEEE, 2020.

[51] Rahul Ilango. The minimum formula size problem is (ETH) hard. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 427–432, 2022.

[52] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-
complexity via pseudorandomness. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, page 1575–1583, New York, NY, USA,
2022. Association for Computing Machinery.

[53] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences, 65(4):672–694, 2002.

[54] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, page 961–972, USA, 2012. Society for Industrial and Applied
Mathematics.

[55] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Structures & Algorithms, 4(2):121–133, 1993.

[56] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Proceedings.
Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in
Complexity Theory Conference) (Cat.No.99CB36317), pages 237–240, 1999.

81

[57] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[58] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, page 220–229, New York, NY, USA, 1997. Association
for Computing Machinery.

[59] Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized
clocks. In 2010 IEEE 25th Annual Conference on Computational Complexity, pages
259–269, 2010.

[60] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236–252, 2001.

[61] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[62] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Computational Complexity, 5(3/4):191–
204, 1995.

[63] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

[64] Gillat Kol and Ran Raz. Interactive channel capacity. In Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, STOC ’13, page 715–724, New York,
NY, USA, 2013. Association for Computing Machinery.

[65] Sajin Koroth and Or Meir. Improved composition theorems for functions and relations.
In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2018), volume 116 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 48:1–48:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[66] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[67] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi
informatsii, 9(3):115–116, 1973.

[68] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. Journal of the ACM, 40(3):607–620, July 1993.

[69] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243–
1254, 2020.

82

[70] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. SIAM Journal on Computing, 47(3):675–702, 2018.

[71] Oleg Lupanov. The synthesis of contact circuits. Doklady Akademii Nauk SSSR, 119(1):23–
26, 1958. (In Russian).

[72] Oleg Lupanov. Implement the algebra of logic functions in terms of constant-depth formulas
in the basis +, *, -. Soviet Physics-Doklady, 6(2), 1961.

[73] William J. Masek. Some NP-complete set covering problems. 1979.

[74] Or Meir. Toward better depth lower bounds: Two results on the multiplexor relation.
Computational Complexity, 29(1), June 2020.

[75] Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime: An easy witness lemma for NP and NQP. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 890–901, New York,
NY, USA, 2018. Association for Computing Machinery.

[76] Cody D. Murray and Ryan R. Williams. On the (non) NP-hardness of computing circuit
complexity. In 30th Conference on Computational Complexity, CCC, pages 365–380, 2015.

[77] Noam Nisan. CREW PRAMS and decision trees. In Proceedings of the Twenty-First
Annual ACM Symposium on Theory of Computing, STOC ’89, page 327–335, New York,
NY, USA, 1989. Association for Computing Machinery.

[78] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

[79] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In Proceedings of the 32nd Computational Com-
plexity Conference, CCC ’17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[80] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. Journal of the ACM, 52(3):337–364, May 2005.

[81] Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for
depth three boolean circuits. Computational Complexity, 9(1):1–15, Jan 2000.

[82] Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs
over any field. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, page 1207–1219, New York, NY, USA, 2018. Association for
Computing Machinery.

[83] Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs
over any field. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1207–1219, 2018.

83

[84] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In Proceedings
38th Annual Symposium on Foundations of Computer Science, pages 234–243. IEEE, 1997.

[85] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity.
In Peter Clote and Jeffrey B. Remmel, editors, Feasible Mathematics II, pages 344–386,
Boston, MA, 1995. Birkhäuser Boston.

[86] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

[87] Henry G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[88] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, page 721–730, New
York, NY, USA, 2008. Association for Computing Machinery.

[89] Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP
under Turing reductions. In 35th Computational Complexity Conference (CCC 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[90] Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020),
volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 68:1–68:26,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[91] Nathan Segerlind, Sam Buss, and Russell Impagliazzo. A switching lemma for small restric-
tions and lower bounds for k-DNF resolution. SIAM Journal on Computing, 33(5):1171–
1200, 2004.

[92] Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949.

[93] Éva Tardos. The gap between monotone and non-monotone circuit complexity is exponen-
tial. Combinatorica, 8(1):141–142, 1988.

[94] Alan Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937.

[95] Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli. Complexity of
two-level logic minimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 25(7):1230–1246, 2006.

[96] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013.

[97] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM, 61(1), January
2014.

84

[98] Andrew C.-C. Yao. Some complexity questions related to distributive computing. In
Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
page 209–213, New York, NY, USA, 1979. Association for Computing Machinery.

85

	Dissertation Approval Page
	Table of Contents
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Switching Lemmas
	Lifting Theorems
	Reductions between MCSP Variants
	Hardness for MCSP Variants
	Meta-algorithms versus Circuit Lower Bounds
	Communication Complexity

	Preliminaries
	General
	Circuits
	Minimum Circuit Size Problem
	Communication Complexity
	Information Theory

	Blockwise Switching Lemma
	Constant-Depth GapMCSP Reductions
	Depth d+1 to d+12
	Depth d+12 to (d+1)+12
	Depth d+12 to d+1
	Combining the steps: Depth d+1 to d+c for any constant c> 1

	Constant-Depth Tolerant GapMCSP Reductions
	Tolerant depth d+1 to d+12 and reverse
	Tolerant depth d+12 to (d+1)+12
	Combining the steps: Tolerant depth d+1 to d+2

	NP-hardness and Approximation Algorithms for bounded fan-in DNF-MCSP
	Barriers to More Efficient Natural Reductions
	Efficient Natural Reductions Between AC0d,AC0d+1-MCSP: Win/Win
	Quantitative Consequences of a Hardness Hypothesis for MCSP

	Half-Duplex Communication
	Trivial bounds
	Rectangles
	Round elimination

	Half-duplex communication with silence
	Half-duplex communication with zero
	Half-duplex communication with adversary
	Upper-bound on internal information

	Conclusions and Open Questions
	Bibliography

