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Abstract

Market Design and Analysis for Uncertain, Flexible, and Decentralized Power Systems

by

Jonathan Mather

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Contemporary power systems are characterized by increasing penetrations of renewable and
distributed energy resources (DERs), which present both opportunities and challenges for
reliable system operation. Uncertainty in renewable generation must be managed over both
shorter and longer timescales, necessitating greater flexibility in the supply and demand
of electricity. Fortunately, this rise in renewables has been accompanied by the growth of
flexible energy resources such as energy storage and aggregated demand flexibility. However,
these assets are generally not adequately integrated into existing electricity market structures
leading to many benefits of their flexibility going unrealized. Additionally, distributed energy
resources, such as rooftop solar and electric vehicles, present a challenge to the traditional
top-down management of power systems, requiring new decentralized control and market
architectures to ensure their safe operation and to maximize their value.

This dissertation tackles a range of questions relating to the integration of flexible and
distributed resources into electricity markets in the presence of uncertainty, using techniques
from control theory, game theory, multiparametric programming, and distributed optimiza-
tion.

The main contributions of this dissertation encompass novel analysis and design of mar-
kets, both centralized and decentralized, that explicitly integrate distributed and flexible
resources, numerical methods providing exact solutions to multi-leader follower equilibrium
problems among strategic bidders, and insights into the role of virtual bidders in managing
demand uncertainty in two-stage markets.

• Chapter 1 introduces the context for the dissertation, describing trends driving the
energy industry and the challenges and opportunities they pose. Current practice and
existing literature are described with regard to uncertainty, flexibility, and decentralized
markets and control.

• Chapter 2 lays out the mathematical background for the dissertation, describing models
for power flow, electricity markets, and market participants, in addition to the theory
of multiparametric programming.
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• Chapter 3 demonstrates the equivalence of virtual bidding and stochastic optimization
in two-stage markets under certain conditions. It also characterizes the equilibrium
of a crowd of virtual bidders with heterogeneous beliefs and explores simple learning
strategies for virtual bidders to reach equilibrium.

• Chapter 4 studies robust Cournot-Bertrand equilibria among generation firms. Firms
anticipate demand and renewable uncertainty and optimize their actions to ensure their
profits are robust to this uncertainty. The chapter concludes by discussing the effects
on market outcomes of this behavior.

• Chapter 5 addresses the more general topic of strategic bidding by generation firms
in electricity markets. This question involves solving non-convex bilevel optimization
problems, which form part of the wider class of multi-leader follower problems. Both
the single firm problem, constituting an MPEC, and the multi-firm equilibrium prob-
lem, constituting an EPEC, are solved exactly using techniques from multiparametric
programming. This latter contribution, in particular, represents a significant advance
over current methods, generalizing the solution of supply function equilibrium problems
to cases with asymmetric players and transmission constraints.

• Chapter 6 analyzes a number of regulatory models for the integration of energy storage
into wholesale electricity markets, including Open Access Storage, and investigates the
implications and incentives of a variety of storage ownership structures under each
model.

• Chapter 7 demonstrates the potential of load flexibility for congestion relief, defining
the notion of a congestion-free dispatch.

• Chapter 8 describes the design of a decentralized coordination mechanism for DERs
in a microgrid using blockchain technology. The implementation uses ADMM with a
smart contract on the blockchain serving as the ADMM coordinator.

• Chapter 9 illustrates the design of an open-gate forward market with specific flexibility
products for DERs, allowing users to hedge better against uncertainty and correctly ex-
press and maximize the value of their flexibility. A number of algorithms are presented
to address the combinatorial scheduling and pricing problem involved with flexible
loads.
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Chapter 1

Introduction

The world’s energy infrastructure is transforming, characterised by four major trends com-
monly referred to as the four D’s of power systems: Decarbonization, Decentralization,
Digitalization, and Democratization.1 These trends are being driven by technological ad-
vancement and social necessity, and present distinct opportunities and challenges to the
status quo.

Decarbonization
Mitigating the risks of dangerous climate change requires a significant reduction in the con-
tribution of the energy sector to global greenhouse gas emissions. In a recent special report
published by the IPCC on the impacts of global warming of 1.5◦C they state that the world
must reduce its carbon emissions by 45% by 2030 from 2010 levels to limit warming to no
more than 1.5 degrees above pre-industrial levels [3]. As can be seen in Figure 1.1, electricity
and heat production is the largest sectoral contributor to global GHG emissions, making up
25% of total emissions in 2010. Consequently, decarbonizing electricity and heat production
is a crucial step towards reducing emissions and mitigating climate change. Making this
more difficult is a predicted growth in global energy demand of 28% by 2040 [4], due to
increasing global population and developing countries seeking to grow their economies and
improve their quality of life. Additionally, the majority of proposals for the decarboniza-
tion of transport, which makes up 14% of global emissions, involve significant electrification,
whether directly through electric vehicles or indirectly through the production of hydrogen,
which will further increase the demand for electricity.

Initial decarbonization efforts were led by climate policies such as feed-in-tariffs, renew-
able portfolio standards, and carbon markets, causing the closure of large thermal power
plants, and encouraging the development of low-carbon generation technologies such as solar
and wind power. However, in recent years the shift is being driven more and more by pure
economics as wind and solar now represent the cheapest form of new power anywhere in

1A fifth D might be deregulation, although this has mostly been superceded by decentralization and
democratization.
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Figure 1.1: Global GHG emissions by sector in 2010. Figure from IPCC AR5 [1]

the world, beating out even natural gas turbines on a cost per watt basis. While they may
provide cheap energy, renewables present serious grid integration issues as the power they
generate is intermittent and uncertain. For grids with high penetrations of renewable gener-
ation, uncertain fluctuations must be smoothed, and intermittent capacity must be firmed
to ensure the lights stay on.

Decentralization
Traditionally, power systems have been operated in a top-down fashion with centralized con-
trol of large, transmission-connected, thermal power plants, pushing power out to consumers
on the grid edge. This paradigm is being called into question by both an increase in em-
bedded generation connected to the distribution network, and the rise of distributed energy
resources (DERs) such as residential solar PV, storage, and electric vehicles (EVs). Markets
and control strategies that were designed for hundreds or thousands of resources now face
having to scale to tens or hundreds of thousands of active, controllable resources. Distribu-
tion networks and protection systems that were designed for one-way power flow with passive
consumption and control now face bidirectional power flows, active consumption, and the
need for more dynamic control to ensure power quality.

Proposals to overcome these challenges generally involve hierarchies of decentralised mar-
kets and control strategies, managing balancing and constraints at multiple levels of the
power system, in addition to developing new mechanisms to enable DER participation. This



CHAPTER 1. INTRODUCTION 3

set of ideas is commonly referred to as Transactive Energy, opening up existing markets to
DERs where possible and creating new markets and control schemes more suited to the char-
acteristics and capabilities of DERs where not [5]. This includes discussions around dynamic
pricing, aggregation, and new business models for utilities, such as the role of a Distribution
system operator (DSO). A DSO is similar in function to the ISO at the transmission level,
administering new markets for local energy and services and managing distribution system
operation.2

Digitalization
Designed in an age before the internet and smartphones, the communications and control
infrastructure underpinning the power grid has not kept pace with current technology and
is now being pushed to its limits. In today’s world, information and computing are both
ubiquitous and cheap. Vast quantities of data can now be processed, communicated, and
stored, at speed and scale. The potential applications of this technology to the power system
have been termed the Smart Grid, a physical power system combined with a cyber layer of
communication, control, and automation, heralded to deliver improvements in operations,
higher efficiency, and lower costs for consumers. Digital technology enables sensing and
control at far more granular levels in terms of both location and time.

An unfortunate consequence of greater reliance on digital technology is an increased
vulnerability to cyber attacks that can compromise grid reliability and lead to blackouts
and component damage. Attack vectors can include false data injections which lead control
systems to take unnecessary and potentially damaging actions, all the way to direct override
of power plant or system control. Such an attack in Ukraine in 2015 took out 30 substations
leaving over 230,000 residents in the dark [6]. Additionally, the vast proliferation of data
emerging from the smart grid associated with energy resources and energy usage has led to
concerns over privacy and data breaches. For example, the occupancy of a home can easily
be inferred from its energy consumption profile [7].

Democratization
Power systems have come a long way from natural monopolies and large vertically integrated
utilities, with the energy industry now opening up to a wide variety of new players and en-
trants. Homes and businesses can now own DERs such as solar PV, storage and EVs, allowing
them to export power as well as consume it. New business models such as aggregation and
energy management3 have emerged to enable consumers to make the most efficient use of

2The idea of a DSO as an alternative Utility business model arose predominantly in response to the
so-called ‘utility death spiral’ where a Utility’s ratebase shrinks as more customers self-generate and defect
from the grid, but the Utility remains on the hook for existing sunk costs and new investments required to
upgrade network infrastructure to deal with the impacts of DERs.

3This includes both residential and commercial energy management, generally using DERs to minimize
energy bills.
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their energy assets, in addition to coordinating the actions of many small resources to provide
services to grid and distribution operators. Growing awareness of climate change and the
ubiquity of DERs has also led to a rise in Community energy, encompassing everything from
crowd-funded community solar projects, self-consumption communities [8], local microgrids,
to community choice aggregators (CCAs). Community energy often focuses on consumer
choice in the provenance of energy, with a general preference for local, low-carbon sources of
energy. An extreme of both community energy and the aforementioned transactive energy,
and perhaps the ultimate form of retail choice, is peer-to-peer energy (P2P). In theory, P2P
enables all energy actors (homes, businesses, retailers, suppliers, generators) to buy and sell
energy and services as necessary, rather than relying on traditional gatekeepers. It remains
to be seen whether energy customers have the desire to engage on such an active level with
their energy usage and become traders in their own right, but the principle certainly makes
sense for larger participants and aggregations.

In this dissertation, I seek to address aspects of three technical challenges that must
be solved to address the industry transformation described by these four D’s. These are
Uncertainty, Flexibility, and Decentralized Markets and Control.

1.1 Uncertainty
As we have seen, higher penetrations of renewable energy entail much greater uncertainty
on our power systems. Uncertainty is indeed nothing new to the grid, and a variety of mech-
anisms already exist for both physical and financial risk management. However, it remains
to be seen if these will hold up to scrutiny at ever higher levels of renewable penetration.

Today, physical risk management is required in power systems to handle load forecast
error and deviations arising from unanticipated faults and contingencies on the grid. Sys-
tem operators have typically taken a robust approach to this uncertainty, ensuring the grid
remains secure and stable in the face of any failure. The first line of defence is the N-1
security criterion, which broadly states that the power system should remain in a feasible
and stable state following the loss of any single generator, transmission line, or transformer.
In practice, operators ensure the system is robust to a set of credible contingencies, which
leads to additional constraints being included in commitment and dispatch optimization
problems. Moving to real-time operation, system operators procure both frequency response
and reserve capacity to manage minor imbalances and more substantial contingencies re-
spectively.4 Frequency response regulates small imbalances between generation and demand
and operates via automatic control systems which respond proportionally to frequency de-
viations. Reserve capacity is usually sized to at least the largest generator on the system
or a given fraction of the peak load and is generally split into spinning and non-spinning

4Frequency response and reserves are generally split into Primary, Secondary, and Tertiary frequency
response, differentiated by their response time, and capacity. In control theory parlance, primary response
can be thought of as a proportional control, and secondary and tertiary response can be thought of as integral
control, where secondary response is automatic and tertiary response is manual.
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reserve. Spinning reserves are typically triggered by automatic generation control (AGC),
and non-spinning reserves are typically called up manually by system operators.

Financial risk management mitigates uncertainty and variance in returns or costs to elec-
tricity market participants, both in investments and operations. The electricity spot price
is volatile due to uncertainty in a range of factors, both short and longer term. In the
short-term, this includes load forecasts, renewable generation, fuel costs, and transmission
congestion. In the long term, this includes demand growth, impacts of new market entrants,
development of new technologies, and regulatory risk. Since the majority of market par-
ticipants are risk averse, this leads participants to hedge against this uncertainty, generally
paying some risk premium for more predictable cash flows. For example, many electricity
distributors and retailers sign long-term power purchase agreements (PPAs) with suppliers
for some or all of their energy needs, formulated as contracts for difference settled against
the market spot price. This insulates both buyers and sellers from the volatility of the spot
price. Participants can also purchase financial transmission rights (FTRs), which provide a
perfect hedge against transmission congestion and associated congestion rents.5

Closer to delivery, multi-stage markets enable participants to further hedge and limit their
exposure to the spot price. In North America, this typically takes the form of a two-stage
market, with Day-Ahead (DA) and Real-Time (RT) energy markets. In the DA market,
participants submit bids and offers to the system operator for each hour of the coming
day, and the market is cleared by the system operator, incorporating system and resource
constraints in the optimization. The outcome of the DA market is a schedule of physical
dispatch commitments and a set of DA clearing prices, producing one financial settlement.
The RT market, unsurprisingly, is run closer to real time, generally at five- or fifteen-minute
intervals. The RT Market balances the differences between DA commitments and actual
RT demand and supply of electricity. The RT market produces a separate, second financial
settlement, and establishes the RT locational marginal price (LMP) that is either paid or
charged to participants in the DA market for demand or supply that deviates from their DA
commitments [9]. The DA market can be thought of as a forward market which is settled
against the RT price. An additional mechanism for participants to hedge against the spread
between DA and RT, and for financial speculators to profit, is known as virtual bidding (VB).
A detailed discussion of VB is given in Chapter 3, but briefly it allows participants to take
virtual supply or demand positions in the DA market, which are cleared on equal footing
with physical bids, and must be entirely liquidated in the RT market, allowing participants
to arbitrage the price spread between DA and RT markets.

Following the DA market, the system operator will generally run a second optimization
after the DA market has closed, known as reserve adequacy analysis (RAA), in which re-
sources will be committed or decommitted based on the operator’s forecast of system load,
rather than what loads have bid in to the DA market, and to satisfy reliability constraints.
In this way the DA and RAA also represent a form of physical risk management for the
system operator, having an idea of system state and resource output ahead of time, rather

5A more detailed discussion can be found in Chapter 6
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than just relying on whatever is available in real-time.
Uncertainty in power systems then presents three issues. First is the ability to feasibly

mitigate this uncertainty through appropriate control and planning with sufficient resource
availability and capability to deliver all reliability services that are required. The second
is, assuming feasibility, to mitigate this uncertainty at the lowest cost. System operators
often value reliability at the value of lost load (VOLL), representing the cost incurred by all
consumers if they were to lose power. However, this number is incredibly difficult to calculate
accurately, and current estimations are generally thought to be far too high. On this basis,
system operators ensure that the lights stay on at almost any cost and have little incentive
to economize as costs are usually socialised among all participants, or indeed only energy
consumers. Third is the ability of market participants to hedge against this uncertainty
appropriately.

The first and second issues can be addressed in part by flexibility, which we will discuss in
the subsequent section. The second issue of mitigating uncertainty at the lowest cost can be
addressed through changes in market design and the current philosophy of system operation.
System operators currently think of uncertainty robustly, managing the system and procuring
reserves to be resistant to the worst thing that could happen at any single time. However, this
approach fails to recognize that the worst thing that could happen is generally improbable,
and is thus extremely conservative. An approach to managing the degree of conservatism
for a unit commitment problem is proposed in [10], and for multi-period economic dispatch
in [11] using adaptive uncertainty sets. An alternative approach that takes into account
the likelihood of any given event or contingency, explicitly accounting for the distribution of
uncertainty, is referred to as Stochastic. In this way, the expected system cost is minimized,
and the likelihood of a constraint violation or system failure can be explicitly parametrized
through chance constraints. Such a method is used to solve a stochastic security constrained
unit commitment problem in [12]. Anecdotally, such stochastic approaches, despite being
well understood, have not been taken forward or implemented by ISOs, as they remain very
opaque to actual system operators in ISO control rooms. It seems they prefer to retain full
control of system reliability, rather than let an algorithm decide which reserves are unlikely
to be needed on a given day.

The second and third issues can also be dealt with by introducing additional multi-stage
markets or continual rolling (forward-gate) markets, in contrast to the two-stage markets
of today. Uncertainty generally decreases as delivery approaches and introducing additional
market stages allows participants to adjust their positions based on any new information that
has emerged since the previous market stage, i.e. an updated forecast. System operators
can also better plan resource commitment based on new information at each market stage
to minimize the cost of providing reliability. While this brings benefits in the management
of uncertainty, there is, however, always an inherent trade-off between the complexity and
usability of a given market design. Introducing additional market stages or rolling markets
increases the burden on traders and participants to process more information, make complex
computations to inform their bidding strategy, and interact with the market more actively
and regularly. The additional benefits of multi-stage markets are of no use if no one par-
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ticipates! It could be argued that the success of the current two-stage market structure lies
in its simplicity. With the advent of automation and machine learning, such rapid trader
interactions may no longer be so far-fetched, and we address such a rolling market structure
in Chapter 9 in the context of decentralized market design.

In the literature, one method, referred to as Risk-Limiting Dispatch, combines the two
approaches of multi-stage markets and stochastic optimization to characterize the optimal
decision for a system operator at each market stage [13]. Again, despite being well under-
stood, perhaps for reasons of complexity or operator resistance, this method has not yet
made its way into industry practice.

In this dissertation, we consider uncertainty from a range of angles and participant per-
spectives. In Chapter 3 we show that an existing mechanism, Virtual Bidding, can under
certain conditions implicitly capture many of the same benefits of explicit stochastic opti-
mization. In Chapter 4 we demonstrate the impacts to participants and equilibrium mar-
ket outcomes of generation resources robustly accounting for demand uncertainty in their
bidding. In Chapter 5 we take this a step further and directly address strategic bidding,
considering the single-firm and multi-firm problems, presenting methods for handling un-
certainty in the single-firm case. In Chapter 9 we propose a forward-gate market design
for a distribution-level flexibility market, which allows participants to best hedge against
uncertainty.

1.2 Flexibility
To manage ever-increasing penetrations of renewable generation, power system operators re-
quire a higher capacity of flexible energy resources and significant volumes of energy storage.
Flexibility can be broadly characterised as the ability of an energy resource to increase or
decrease its net power injection in response to a control or price signal. Ramping capability
and speed of response are usually implicit in this definition, with resources that can ramp
up or down more quickly being more flexible.

One striking real-life example of the need for additional flexibility is the Duck Curve
observed in the CAISO net demand profile and shown in Figure 1.2. California leads the US
in both residential and grid-scale solar installations, and capacity is only predicted to grow
leading to the huge dip in the net demand curve seen in the middle of the day. The evening
ramp along the neck of the duck requires a rapid increase in power generation of roughly 4
GW/hour in the CAISO 2020 forecast [14]. This is expected to exceed the ramping abilities
of the existing generation fleet, resulting in significant overgeneration during the mid-day
hours in order to ensure that evening peak load can be served. Assuming no additional
flexibility the only solution to this problem would be to significantly curtail solar generation,
resulting in additional carbon emissions and energy costs.

All types of resources, with perhaps the exception of nuclear power, can provide flexibil-
ity, but this is always at some cost, and in the case of generation at the expense of providing
energy and often additional emissions. Thermal generation can provide flexibility both up
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Figure 1.2: Forecasts for a ‘duck curve’ with high renewable penetrations [2].

and down by leaving some headroom between their setpoint and their capacity, allowing
them to ramp up to their capacity, or ramp down to zero. Renewable generation, while
uncontrollable, can provide a similar service by pre-curtailing their output, allowing them to
ramp up to their maximum available output, or ramp down by curtailing further [15]. On
the demand side, load flexibility comes in two general forms: temporal load flexibility6 and
demand response. Temporal load flexibility refers to the ability of a load to shift their con-
sumption in time: controlling the start time of a deferrable load, controlling the power profile
of a shapeable load, or reducing consumption in one period and increasing consumption in a
later period.7 Demand response is a loose term but habitually refers to loads reducing their
consumption for some period, either for economic reasons or in a system emergency, with no
explicit anticipation that consumption will be recovered in a later period.

Energy storage has been described as a swiss army knife for the future grid with the
ability to provide instantaneous flexibility up and down for both short and long durations
dependent on its state of charge, making it suitable for many applications, including ar-
bitrage, congestion relief, voltage support, frequency regulation, firming renewable power,
and deferring infrastructure investment costs. Developments in telecommunications, per-
sonal electronics, and most recently electric transportation, have dramatically improved the
quality and reduced the cost of electric energy storage, with the cost of lithium-ion batteries

6Spatial load flexibility is also possible, for example deciding to charge electric vehicles at one location
rather than another, or assigning computing jobs to one data center rather than another. However, this
remains a far more limited application than temporal load flexibility, so we do not address it further in this
dissertation.

7Full technical definitions of these terms are provided in Chapters 8 and 9.
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falling from $490/kWh in 2014 to $225/kWh in 2018 [16]. Grid-scale storage, once restricted
to large, geographically dependent pumped hydro installations, can now be provided by
modular installations of lithium-ion batteries. In 2017 the US exceeded 1GWh of installed
capacity of grid-scale energy storage [17]. Such deployments have for the most part been
driven by state and federal mandates, recognizing the critical system benefits of energy stor-
age. In particular, the California Storage Mandate requires the three large investor-owned
utility companies in California to install 1.3GW of energy storage by 2020, in addition to
procuring 500MW of behind-the-meter storage [17]. Recent examples of significant energy
storage deployments include the 100MW/129MWh battery in South Australia, developed
by Tesla, brought online at the end of 2017, and three projects totalling 70MW in Southern
California to mitigate the Aliso Canyon gas leak, brought online in January 2017 by AES
and Tesla.8 Larger developments are planned across the world with a 200MW/800MWh
Vanadium Flow battery under construction in Dalian, China, and two projects under de-
velopment by PG&E near the Bay Area, 300MW/1200MWh and 182.5MW/730MWh by
Vistra and Tesla respectively. [18]

While much development has been in front-of-the-meter, behind-the-meter and residen-
tial energy storage represent a growing fraction of new installations in the US, with 180MW
expected to be installed in 2018, and over 1.5GW forecast to be installed by 2023 [16]. Com-
mercial and industrial customers can often save on demand charges by installing batteries to
smooth their loads, with project developers additionally using the battery to provide services
to grid operators when feasible. With offerings such as the Tesla Powerwall, residential cus-
tomers are increasingly being sold on energy storage as a source of backup power, in addition
to maximizing the value of solar installations.

In addition to behind-the-meter storage, flexible and controllable loads also represent a
growing class of flexible resources. Demand response programs have existed for many years,
but have generally been limited to load shedding in an emergency, rather than anything
more controlled or market-based. Aggregations of flexible loads, such as electric vehicles,
smart thermostats, and pool pumps can provide both reductions and increases in load,
either scheduled or in response to prices, in addition to providing ancillary services to grid
operators. In this way, these assets can be coordinated to act as virtual storage mimicking
the operation of a battery [19], or combined with behind-the-meter storage and distributed
generation to create virtual power plants (VPPs) [20].

The need for flexibility is driven first by a feasibility argument, as discussed in the previous
subsection and illustrated by the duck curve in Figure 1.2. Ever greater capacity of flexible
resources will be required to manage renewable variability and intermittency and associated
ramping requirements. It is also desirable that this flexibility should be low-carbon or at
least carbon-neutral, not detract from the operation of existing firm power plants, and avoid
the curtailment of renewable generation. In this way, grid-scale storage and distributed
energy resources present the only viable future-proof solutions for energy storage. As we

8The author developed bidding and storage optimization algorithms for the Tesla Hornsdale Power
Reserve battery in South Australia.
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have seen, volumes of these assets are predicted to proliferate in the coming years. However,
these assets currently face a lack of appropriate integration into existing energy markets, and
in many cases, markets are missing altogether to capture and maximize the value of DERs,
leading to flexible resources being underutilized.

At the transmission level, many system operators have minimum capacity requirements,
typically on the order of 1MW, to access wholesale markets, limiting the ability of smaller
assets to participate. Additionally, assets typically require a single meter, making it challeng-
ing to integrate aggregations of smaller resources. Furthermore, very few if any ISO dispatch
optimizations include explicit time coupling between time periods, meaning that loads with
flexible schedules cannot appropriately express their flexibility to the system operator. On a
similar note, there is often no accounting for the specific characteristics of energy storage in
these optimizations, with storage being forced to enter the market alternatively as a demand
resource, then a generation resource. This means that a storage module must plan its charge
and discharge schedule ahead of time, before knowing energy and service prices, to avoid
making infeasible bids, rather than merely expressing its capability and availability. Finally,
very few markets offer the opportunity to revenue-stack, a key piece of the business case
for building flexible resources, in particular, energy storage. Flexible resources can often
provide multiple services simultaneously in a ‘non-rival‘ manner, although system operators
frequently only permit a resource to provide a single service at a given time. In summary,
flexible resources face a market integration issue, where their capabilities are not fully recog-
nised by existing market structures, and their access to markets is limited, leaving system
benefits and private value unrealized.

Some progress has been made in recent years on this integration issue. In terms of
new products targeted at flexible resources, in 2016 CAISO introduced a flexible ramping
product to ensure they have sufficient capacity to combat the duck curve. Also in 2016, the
UK TSO National Grid introduced an additional frequency response product targeted at
batteries called Enhanced Frequency Response (EFR) with 1-second response time. They
are also currently consulting on opening access to their frequency products and the balancing
mechanism to non-traditional providers. Regarding participation and access, in 2016 CAISO
introduced a new class of market participant aimed at aggregations, a distributed energy
resource provider (DER). This allows a DERP to aggregate individual DERs in order to
meet the CAISO minimum size requirement, but they are restricted geographically due to
concerns around congestion management. DERP aggregations within a single pricing node
may be heterogeneous, i.e. a mix of DER types, and are not restricted in maximum capacity,
whereas DERP aggregations spanning multiple pricing nodes must be homogenous, i.e. the
same type of DER, and are restricted to 20 MW in capacity. This potentially limits the
feasibility of spatially diverse VPPs. At the national level, in 2017 FERC issued order
841 which “directs RTOs/ISOs to establish a participation model consisting of market rules
that, recognizing the physical and operational characteristics of electric storage resources
(ESRs), facilitates their participation in the regional transmission organisation (RTO) and
independent system operator (ISO) markets.” [17] This has led to a discussion around the
best method of integrating energy storage into energy markets, including how they should



CHAPTER 1. INTRODUCTION 11

be optimized, controlled, and remunerated.
We address the issue of storage integration in Chapter 6, where we analyse private

incentives, system benefits, and the impacts of storage ownership, comparing a proposed
mechanism, Open Access Storage (OAS), to the status quo of merchant storage operation.
Regarding addressing markets that appropriately incorporate the characteristics of flexible
resources, in Chapter 9 we present the design of an explicit flexibility market with prod-
ucts that enable resources to express their availability and capabilities fully. This market is
designed for local and decentralised assets, the context for which will be addressed in the
following section, however, a similar design could just as easily apply at the transmission
level.

A final application of flexibility lies in constraint management and deferred transmission
and distribution investment costs, so-called non-wires alternatives (NWA). When faced with
upgrading a section of the distribution network due to constraints, utilities employ demand
management and flexibility to resolve the constraint at a lower cost than installing new
components. This idea has received much attention as part of the New York ‘Reforming the
Energy Vision’ REV process, and California’s Distribution Resource Plan proceeding. As of
mid-2017, New York had 956MW of NWA projects in the pipeline and is home to the largest
distributed NWA project to date, the Brooklyn Queens Demand Management project, which
encompassed 46MW as of the fourth quarter of 2016 [21]. In Chapter 7 we describe how
load flexibility can be used to manage and avoid constraints at both the transmission and
distribution level.

1.3 Decentralized Markets and Control
The problem of decentralization can broadly be thought of as how to determine the right
price for a given product or service at any given time and location.9. The right price, in this
case, is the economically efficient one, which is, in general, the marginal cost of providing
a given product or service at a given time and location. It should be noted that the right
price takes into account the preferences of participants (their willingness to pay or sell),
all operational (participant capacities and capabilities) and system constraints (network
capacities, security constraints), and should technically include all externalities. One could
imagine that if this right price were communicated to all participants by some oracle, and
assuming all participants were rational, then all participants would behave efficiently and
the greatest social welfare would be generated by those actions. Of course, despite the fact
that the right price does exist, in reality, no such oracle exists, so a mechanism must be
created for discovering this price and communicating it to participants. Usually, this role is
left to markets, where participants communicate their willingness to pay or sell through bids
and offers, which are cleared either through a central limit-order book as in stock markets,
or through centralized clearing and welfare maximization as is performed by ISOs. There

9One could also add to this determining the correct futures or forward price at any given time and
location for a given product or service
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are a number of issues in both price-discovery and communication of price in power systems
populated by vast numbers of DERs.

The first obstruction to the right price in power systems, not specific to DERs, is the
decoupling of electricity markets and power system operation. Power systems must balance
supply and demand instantaneously, however running a market on the same time scale would
place an insurmountable informational and computational burden on traders and market
operators. The solution is to discretize, with energy being sold in blocks (5 minutes, 15
minutes, 1 hour), and then contracting capacity to deliver ancillary services such as frequency
response, with automatic control systems managing deviations within this capacity. It is
interesting to note that a hypothetical instantaneous power price would obviate the need for
both energy and capacity markets. Some recent work has demonstrated a way to break the
economic and physical hierarchy using innovative control design limited to smart inverters
[22]. However, this work is far from the mainstream in terms of current practice. For this
dissertation, we will assume the hierarchy has not been broken and that we have both energy
and ancillary service markets.

The second obstruction, again not specific to DERs, is strategic behavior in markets, in-
cluding the exercise of market power and strategic bidding. In these scenarios, participants
do not reveal their genuine willingness to pay and use monopolistic or oligopolistic positions
to increase their profits at the expense of other participants and social welfare. This can
be mitigated in the first place through antitrust legislation, and penalizing any attempts
at market manipulation, as is already done by FERC. Second, it is an issue of mechanism
design, creating markets that are incentive-compatible encouraging participants to reveal
their actual preferences. There is always a trade-off in mechanism design, perhaps in welfare
maximization vs obtaining truthfulness, but electricity market designs have remained rela-
tively unchanged in the last twenty years, and the advent of smaller decentralized markets
offers an opportunity for innovation in this area. We do not specifically address mechanism
design in this dissertation, although it remains an interesting avenue of research.

The third is one of full participation and market integration. If a market does not include
all participants, who have some willingness to pay or sell then it is missing information
and cannot discover the right price. This issue was mentioned in the previous section in
that DERs often do not have access to wholesale markets, and thus cannot add additional
capability to these markets or maximize their value. Including all distributed assets in a
single centralized clearing is unlikely to be the answer as this would present a significant
computational, communication and control challenge to the system operator due to the
sheer number of assets that would have to be considered. On a related note, the fourth
obstruction is that markets often do not account for the specific characteristics, availability
or capabilities of DERs. Again, as mentioned in the previous section a lack of time coupling
in market optimization prevents resources with temporal load flexibility from revealing their
true capability, willingness to pay, and maximizing their value. The fifth is that smaller
DERs are frequently behind-the-meter and face flat retail rates that do not account for time
of use or correlate in any way with wholesale prices. This means that DER owners have no
incentive to optimize their consumption and generation in ways which would provide value
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both to utilities, system operators, and the DER owner themselves.10

A number of solutions present themselves to these latter two issues, all falling under the
umbrella of transactive energy. The first, and least extreme, is retail rate design. Time-
of-Use (TOU) and dynamic pricing expose retail customers to the time-varying value of
electricity, allowing them to optimize the operation of their DERs against meaningful price
signals. The second is aggregation, coordinating the actions of a large number of smaller
DERs so that they appear as a single asset, either a virtual battery or VPP, to the system
operator at the wholesale level. The third is the creation of microgrids, small subsections
of the distribution grid containing DERs which can island themselves from the main grid.
Management and control of DERs are either handled centrally by a microgrid operator
or through some market mechanism. The fourth involves decentralizing some or all of the
dispatch and system operation functions of the ISO to distribution system operators (DSOs).
DSOs would be responsible for active management of distribution systems and potentially
facilitating decentralized local marketplaces for energy, balancing, and local services.

All of these solutions involve the coordination and control of DERs in some fashion, but
the exact mechanism and exactly who has control can differ by application. In one mecha-
nism, an aggregator or utility can offer a rebate or regular payment for voluntary customer
action or direct control of DERs. OhmConnect is an example of an aggregator providing de-
mand response services to the ISO through rebates to customers who voluntarily participate
during Ohm hours by reducing their consumption [23]. Some utilities, and potentially future
DSOs, want to retain tight control over distribution systems and may require direct control
over DERs [24]. The DSO can then optimize and control DERs centrally, but it is unclear
how this aligns with the private incentives of the DER owners. Rather than send control
signals a DSO or utility may send price signals, similar to the concept of dynamic pricing.
Under this mechanism, DER owners retain control of their devices and optimize against a
price signal delivered by their utility or a DSO, minimizing the control and communication
overhead. However, it is unclear exactly how a dynamic price should be derived and how
to ensure that this is the ‘right price’. This price-discovery question can be resolved by
introducing decentralized local markets for DERs to buy and sell energy and services. How
these decentralized markets should interact with one another, and intermediate or wholesale
markets above them, remains to be seen. Some degree of integration or coordination must
be required to ensure meaningful price signals being passed up and down the hierarchy.

Focusing on decentralized markets, these can function at a number of levels, with some
propositions being more mature and others more speculative. One missing market that
would be feasible to implement today would involve local balancing and constraint man-
agement, connecting embedded generation, microgrids, aggregators, retailers, suppliers, and
DSOs. The market addresses a current need, and these entities would all be of sufficient size
that managing trading operations would not be an issue. Also, they all, with perhaps the

10An issue related to retail rates is the ability or lack thereof of consumers to self-generate or being forced
to sell their power to the utility at below-market rates. Policies such as net energy metering (NEM) which
overvalue DERs by paying them a retail rate are good for encouraging the initial uptake of DERs but are
not desirable in the long term as they distort the market.
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exception of aggregators, would possess revenue grade meters that would enable settlement
and billing.

A more speculative application of decentralized markets is peer-to-peer (P2P) energy,
where end customers are free to buy and sell both energy and services to utilities and one
another. P2P receives the most press of all decentralized market applications but likely
remains the furthest off in terms of technological feasibility and consumer acceptance. The
most common design, which we will term ‘active P2P’, involves participants trading energy
with one another in advance of delivery and places a significant burden on homes and DER
owners to actively ‘trade’ their energy. It is indeed unclear whether every household wants
to become an energy trader, but automation and trading bots may offer an answer to this
problem. However, this does not resolve the need for significant communication and compu-
tational market architecture, in addition to how final settlement is handled. In most DR and
aggregation programs, consumers are remunerated based on actions relative to a baseline,
calculated from prior consumption patterns using a given methodology. It is unclear how
such baselining could work in a market context, notwithstanding a host of issues around
baselining methodologies in general. The best baseline is a baseline of zero with participants
being charged for exactly what they have consumed or generated at a given time. This
would, of course, mean that a participant’s full energy usage would have to be transacted
through such a P2P platform, although this would not preclude third parties from offering
hedging services to those who want them, i.e. flat rate bills, much as utilities effectively do
today for all consumers.

An alternative implementation, which we will term ‘passive P2P’, involves participants,
beneath a single energy retailer or provider, consuming energy and operating their DERs
as they see fit. After delivery, each participant has a net energy position, long or short,
dependent on their usage. These positions are matched and netted off against one another
based on prices and preferences submitted in advance by participants, and any outstanding
energy balance is settled with the backstop energy provider. In this way, participants can
prioritise locally generated energy or energy from renewable sources, without the adminis-
trative burden of active trading. The downside to this approach is that energy consumption
behavior is not led in any direct way by price, rather there is a longer feedback loop between
an energy bill, the prices and preferences the participant will set for the next pricing ’round’
and then how they will behave. This approach represents a far simpler implementation than
active P2P, since it is effectively an accounting problem, and could be feasibly implemented
given existing smart meter and basic cloud technology.

A concept that often comes up in discussions around P2P energy is that of blockchain.
A more detailed definition is given in Chapter 8, but in short, a blockchain is a distributed
ledger that can securely execute and transactions between parties in an immutable and
verifiable way without the need for a trusted third party. The most famous implementation
of blockchain technology is the Bitcoin protocol, which as of November 2018 has a market
capitalization of 78Bn USD. A more interesting evolution of Bitcoin is the Ethereum protocol
which enables ‘smart contracts’, effectively computer code or logic, to be executed on the
blockchain, turning the network into a vast distributed virtual machine. This has provoked
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excitement for the potential of managing decentralized marketplaces and even the power
system itself on blockchain, doing away with the need for utilities and system operators.
This vision, while laudable, is fanciful for a number of reasons.

On a purely technical level, for what is gained in terms of cybersecurity and trustlessness
using blockchain, a considerable cost is paid in terms of performance and speed relative to
centralized databases and cloud systems. At the current maturity of the technology, it is a
terrible idea to attempt to run any large-scale computation on blockchain. Additionally, the
ability to store data on-chain is extremely limited, especially if the use case is large-scale time
series datasets on energy production and consumption from smart meters. From an energy
perspective, the power system has two inherent centralizations which make it unsuitable to
be managed by a decentralized system. First, someone has to own, maintain, and manage
the wires. Introducing blockchain does not remove the need for a system operator to monitor
the grid and ensure stability and reliability. Second, each smart meter represents an oracle
data source for the blockchain, meaning it is the sole source of truth for a participant’s
energy position. This presents two issues, how to verify the identity of a smart meter, and
how to ensure the data coming from the smart meter is correct. The first issue can be
dealt with via whitelisting; however, this requires an external regulator or verifier to approve
smart-meters. Similarly, for the second issue, automatic data quality checks can be put in
place, but ultimately a party outside of the blockchain has to guarantee the trustworthiness
of a smart meter. The reliance on a system operator (at the least maintainer), and external
validators defeat the premise of the removal of third parties. Just because a power system
is decentralized, does not mean it has to be managed using a decentralized system such as
blockchain.

All that said, blockchain is good at managing identity, atomic transactions of currency
and data, and enforcing rules, which perhaps makes it suitable for managing the permissions
of off-chain data stores and markets among untrusting parties. It is also a suitable use case
for replacing the back-office and accounting functionality of utilities, automating billing and
settlement processes. In general, for energy, blockchain should be thought of as a potential
implementation layer for other applications with specific desirable and undesirable properties,
in comparison to implementation layers such as Amazon Web Services. Blockchain is not
a panacea in itself. In Chapter 8 we explore the potential of blockchain in serving as the
coordinator for a distributed optimization to manage DERs in a microgrid. In reference to
the earlier point, very little computation is handled on-chain.

As mentioned in the previous section, in Chapter 9 we address the design of an explicit
flexibility market, aimed at distribution networks with the goal of increased integration
of DERs. Flexible loads such as smart thermostats or EVs can specify their exact time-
dependent availability, either as a shapeable load, or a deferrable load. The platform is also
agnostic to the level in the hierarchy at which is implemented, coordinating transactions
between microgrids as easily as transactions between homes.

A final note on decentralization is that the future seems to be heading in a far more
market-driven direction for the provision of energy. The role of energy as a public good
should not be lost in this discussion, and those who cannot afford to be flexible should not
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be unduly left out or penalised as a result. Potential scenarios include residential customers
with no flexibility becoming a higher risk segment for utilities and suppliers, leading to
higher energy rates. Low-income customers who have benefited from subsidy schemes under
regulated utilities may lose out in a more market-based system. On this point, any social
program or redistribution, in deference to the ‘right price’, should ideally be handled outside
of any market system rather than through the market system itself, as direct discounts or
subsidies could cause market distortions.
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Chapter 2

Mathematical Background

In this section we will review general notation, background theory, and relevant models which
lay the groundwork for the rest of the dissertation.

2.1 General Notation
We denote by R, C, and R+ the sets of real, complex, and nonnegative real numbers,
respectively. We denote the transpose of a vector x ∈ Cn by x>, and its complex conjugate
transpose by x?. Let x−i = (x1, .., xi−1, xi+1, .., xn) ∈ Rn−1 be the vector including all but
the ith element of x.

For any Euclidean vector space Rn, we use 1 ∈ Rn to denote the vector of ones, and
1k ∈ Rn to denote the kth elementary vector, i.e. the vector with all zeros except for its kth
element which is 1. We denote by E := 11> a square matrix of all ones.

For a matrix x ∈ Rm×n with any given positive integers m and n, we use xi,j to
denote its (i, j)th entry, xj := (x1,j, . . . , xm,j)> ∈ Rm×1 to denote its jth column, and
x>i := (xi,1, . . . , xi,n) ∈ R1×n to denote its ith row. Denote by diag(x1, . . . , xn) the diagonal
matrix with diagonal elements {xi}ni=1.

For any real number z, we use (z)+ := max(z, 0) to denote the positive part of z, and
(z)− := −min(z, 0) to denote the negative part of z such that z = (z)+ − (z)−.

Every effort has been made to maintain consistent notation of similar variables between
chapters, however in some cases symbols have been reused and redefined. Any new definitions
or usages are always defined in the text.

2.2 Power Flow Models
Modelling power flow is a crucial part of power systems analysis and optimization, forming
the backbone of transmission expansion planning, contingency analysis, optimal power flow,
and unit commitment, and will be required in all but one of the chapters of this dissertation.
Power flow analysis can be used to determine the steady operating state of a power system,
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where given certain known quantities, typically the amount of power generated and consumed
at different locations, the remaining quantities of interest, such as the power flow on each
line, can be calculated. Alternatively the power flow equations can be used to determine the
feasible injection region of a given power system. System operators determine safe operating
limits for the power network to avoid component damage and voltage collapse, usually in
the form of capacity limits for transmission lines and operating ranges for nodal voltages.
Additionally operators may further constrain the system using contingency constraints to
ensure the network operating state is feasible in the event of a contingency such as a generator
or component failure. Combining these limits with the power flow equations yields a feasible
constraint set for the power system variables, which can then be used as the constraint set
for an optimization problem. This latter application will be the focus in this dissertation.

Power flow is completely described by physical laws that are well understood, however
there often exists no analytical solution due to the nonlinear and underdetermined nature
of the full problem, and the non-convexity of its solution set. As such, a variety of approx-
imations are frequently employed to make power flow more amenable to calculation and
analysis. Each approximation uses a different set of assumptions that make them more or
less appropriate to a given scenario.

AC Power Flow
The full AC power flow equations can be written as both a branch-flow model, involving
only branch variables, and a bus-injection model, involving only nodal variables. Their
equivalence has been shown in [25], and both have different properties that are useful in
different contexts. Approximations of both models will be used throughout this dissertation,
so both are included for completeness. In each case we consider a power network that is
represented by a set of nodes connected by lines. The nodes are indexed by i = 1, . . . , n, and
the lines are indexed by l = 1, . . . ,m. The voltage of node 1 is assumed known and serves
as a reference.1 The complex nodal power injection is denoted as s ∈ Cn. We assume that
each line between buses i and j is a 3-phase AC line with balanced phases, meaning it can
be modelled as a single line characterized by a complex impedance zij; we let its admittance
be yij := 1/zij. The following is adapted from [25].

Branch-Flow Model

The power network is modeled by a connected directed graph with an arbitrary orientation,
G(N , E), where N := {1, . . . , n} , and E ⊆ N ×N such that if (i, j) ∈ E then (j, i) /∈ E , and
(i, j) denotes a directed link from i to j. The network topology is described by the incidence

1The units in power systems are typically specified in the per-unit system where a base power and voltage
are specified, and all quantities are specified relative to these base quantities. This means the reference voltage
is typically equal to 1. The advantage of this system is that per-unit quantities do not change when referred
from one side of a transformer to the other.
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matrix M ∈ Rn×m defined as

Mil =


1, if link l ∈ E leaves node i
−1, if link l ∈ E enters node i
0 otherwise

(2.1)

Let ∆y := diag(yl) ∈ Rm×m, l ∈ E . Let V ∈ Cn be the complex nodal voltage vector. For
each (i, j) ∈ E , let Iij be the complex current and Sij be the sending-end complex power
from buses i to j. The branch flow model consists of the set of variables (S, I, V, s) and the
following three sets of equations:

Kirchoff’s Law: I = ∆yM
>V (2.2a)

Power Definition: Sij = ViI
?
ij, (i, j) ∈ E (2.2b)

Power Balance: si =
∑
j:i→j

Sij −
∑
k:k→i

(
Ski − zij|Iij|2

)
, i ∈ N (2.2c)

Eliminating phase angles from the complex voltages V and currents I, the branch-flow
model can be more simply reformulated as

vj = vi − 2Re(z?ijSij) + |zij|2lij, (i, j) ∈ E (2.3a)

lij = |Sij|
2

vi
, (i, j) ∈ E (2.3b)

where vi := |Vi|2, and lij := |Iij|2.2

Bus-Injection Model

The power network is modeled by a connected undirected graph G̃(N , Ẽ), where N :=
{1, . . . , n}, and and Ẽ ⊆ N×N , such that (i, j) ∈ Ẽ if and only if (j, i) ∈ Ẽ . LetM ∈ Rn×m be
the network incidence matrix, with arbitrary orientation, as defined in (2.1). Let Y ∈ Cn×n

be the network admittance matrix, which can be represented as Y = M∆yM
>, where

∆y := diag(yl) ∈ Rm×m, l ∈ E . The network admittance matrix has the following structure

Yij =



∑
(i,k)∈E

yik, if i = j

−yij, if i 6= j and (i, j) ∈ Ẽ
0 otherwise

(2.4)

Y is symmetric but not necessarily Hermitian, and represents the weighted graph Laplacian
matrix of the power network. Let Ĩ ∈ Cn, S̃ ∈ Cn be the complex nodal current and power

2We abuse notation for l as the squared magnitude of the complex current here, to be consistent with
the literature.



CHAPTER 2. MATHEMATICAL BACKGROUND 20

injection vectors respectively. The bus-injection model consists of the set of nodal variables
(S̃, Ĩ , V, s) and the following three sets of equations

Kirchoff’s Law: Ĩ = Y V (2.5a)
Power Definition: S̃i = ViĨ

?
i , i ∈ N (2.5b)

Power Balance: s = S̃ (2.5c)

Substituting for S̃ and Ĩ, one can derive a more familiar form the AC power flow equations
as

pi =
n∑
j=1
|Vi||Vj| [gij cos(θi − θj) + bij sin(θi − θj)] , i ∈ N (2.6)

qi =
n∑
j=1
|Vi||Vj| [gij sin(θi − θj)− bij cos(θi − θj)] , i ∈ N (2.7)

where si = pi + iqi, and pi, qi denote the real and reactive components of the complex nodal
power injection respectively, yij = gij + ibij, ∀(i, j) ∈ Ẽ , where gij, bij are the conductance
and susceptance of the line respectively, and θi is the voltage phase angle at bus i, [26].

DC Power Flow

The DC power flow model is an approximation of the bus-injection model, most commonly
used to model transmission networks. It makes the following simplifying assumptions:

• Transmission lines are lossless, gij ' 0, (i, j) ∈ Ẽ .

• Voltage angle differences are small, sin(θi − θk) ' (θi − θk).

• Voltage magnitudes are close to 1, |Vi| ' 1, i ∈ N .

• Real power flows are much larger than reactive power flows, pij � qij, (i, j) ∈ Ẽ .

Applying these assumptions to equations 2.6 and 2.7, we obtain

pi =
n∑
j=1

bij(θi − θj), i ∈ N (2.8)

qi = 0, i ∈ N (2.9)

and it can also be shown that

pij = bij(θi − θj), (i, j) ∈ E (2.10)
qij = 0, (i, j) ∈ E (2.11)

We see that reactive power flow on the network is zero, and the real power flow on a line
is proportional to the difference in voltage angle at the sending and receiving nodes. The DC
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power flow assumptions are generally true of transmission networks, and this approximation
is used widely in practice forming the basis of the power flow model for economic dispatch
and unit commitment in Day-Ahead markets in the majority of North-American ISOs.

To specify the feasible injection region, we denote the real power flow capacity of lines in
the network as ĉ ∈ Rm. To express the feasible injection region compactly, it is also useful
here to introduce the idea of the shift-factor matrix or power transfer distribution factor
matrix, which relates line flows to nodal power injections, eliminating voltage angles. To
form the shift factor matrix, we note that rank(Y ) = n−1. Taking bus 1 to be the reference
bus, we let Y ∈ R(n−1)×(n−1) be the sub-matrix of Y which contains all entries of Y except its

first row and column. Define a generalized inverse of Y to be Y † :=
[
0 0
0 Y

−1

]
. We can then

relate line flows f ∈ Rm to the nodal power injections p ∈ Rn, using a linear map Ĥ ∈ Rm×n

f = Ĥp, with Ĥ := ∆yM
>Y †, (2.12)

where Ĥ is the shift factor matrix. Let H :=
[

I
−I

]
Ĥ ∈ R2m×n and c :=

[
ĉ
ĉ

]
∈ R2m. We

state the following properties of H

H11 = 0, 1>H = 0, rank(H) = n− 1 (2.13)

and the columns of H> are linearly independent of 1.
The feasible injection region, denoted P , can be represented as

P := {p : 1>p = 0, Hp ≤ c} (2.14)

where the first equation enforces net power balance in the network, since power flows are
assumed lossless, and the second equation limits the line flows induced by the net injection
vector within transmission line capacities. The DC Power Flow equations will be used in
Chapters 4, 5, 6, and 7.

Distflow

The Distflow equations represent a recursive reformulation of the branch-flow equations in
(2.3) for radial networks, and were first proposed in [27, 28]. In a radial network each node
in the network has a unique parent node, allowing for spatial recursion. We use notation
from [29].

An additional node is introduced, indexed at 0, to be the feeder or root node of the tree,
such that N = {0, 1, . . . , n}. Each line in E is denoted by the directed pair (i, j), where j is
the node closer to the feeder, i.e. every line points towards node 0. We call j the parent of i,
denoted by π(i), and call i the child of j. Denote the child set of j as δ(j) := {i : (i, j) ∈ E}.
Thus a link (i, j) can be denoted as (i, π(i)). Each line is now associated to its unique child
node i, such that for each line (i, π(i)) ∈ E , let zi = ri + ixi be the impedance of the line,
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let Ii be the complex current flowing from node i to π(i), and Si = Pi + iQi be the complex
power flowing from node i to π(i). As defined previously, for each node i ∈ N , let Vi be the
complex voltage, and si = pi + iqi be the net complex power injection. The complex voltage
V0 at the root node is assumed given and fixed, and define li := |Ii|2, vi := |Vi|2.

Reformulating (2.3) using this notation, the Distflow equations can then be written as

pi = Pi −
∑
k∈δ(i)

(Pk − rili) , i = 0, . . . , n (2.15a)

qi = Qi −
∑
k∈δ(i)

(Qk − xili) , i = 0, . . . , n (2.15b)

vi = vπ(i) + 2(riPi + xiQi)− (r2
i + x2

i )li, i = 1, . . . , n (2.15c)

li = P 2
i +Q2

i

vi
, i = 1, . . . , n (2.15d)

where S0 = 0 + i0 at the root node. Given (P,Q, l, v), phase angles can be uniquely deter-
mined for radial networks [30].

To specify the feasible injection region, we let v ∈ Rn, v ∈ Rn, be the upper and lower
bounds on squared voltage magnitude, respectively, such that v ≤ v ≤ v.3 We also assume
real power flow constraints on the lines, ĉ ∈ Rm, as in the DC power flow model, such that
−ĉ ≤ P ≤ ĉ. This leaves us with the Distflow equations, however the final equation (2.15d)
would give a non-convex set as it is a quadratic equality. This constraint is typically relaxed
to an inequality, which yields a second-order cone constraint:

li ≥
P 2
i +Q2

i

vi
⇐⇒

∥∥∥∥∥∥∥
2Pi
2Qi

li − vi

∥∥∥∥∥∥∥
2

≤ li + vi (2.16)

This gives the feasible injection region as

P := {P,Q, l, v : v ≤ v ≤ v, −ĉ ≤ P ≤ ĉ, (2.15c), (2.16)} (2.17)

The Distflow equations are primarily applicable to distribution networks, which are typ-
ically radial in topology. For Optimal Power Flow (OPF) problems (the primary type of
problem considered in this Dissertation), the SOCP relaxation in (2.16) is exact, i.e. the
constraint holds with equality, if the upper voltage constraints are non-binding [31]. The
Distflow equations will be used in Chapter 8.

Simplified/Linear Distflow

Real distribution network lines usually have very small r, x, i.e. r, x� 1, while v ' 1. Thus
real and reactive power losses are typically much smaller than power flows Pi, Qi. Following

3Distribution network power quality standards usually require the voltage at each node to be within
±5% of the nominal voltage.
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this insight, higher order real and reactive power terms are neglected by setting li = 0, ∀i,
to give this linear approximation to the Distflow equations, known as Simplified Distflow,
again introduced in [27,28].

pi = Pi −
∑
k∈δ(i)

Pk, i = 0, . . . , n (2.18a)

qi = Qi −
∑
k∈δ(i)

Qk, i = 0, . . . , n (2.18b)

vi = vπ(i) + 2(riPi + xiQi), i = 1, . . . , n (2.18c)

From (2.18) it can be derived that the voltages and net power injections satisfy the
following equation

vk =
n∑
i=1

Rkipi +
n∑
i=1

Xkiqi + v0, k = 1, . . . , n (2.19)

where Rki := 2∑h∈Wk

⋂
Wi
rh, Xki := 2∑h∈Wk

⋂
Wi
xh, and Wi is the unique path from node

0 to node i, i.e. Wi := {k : k is on the path from node 0 to node i}.
To specify the feasible injection region of Simplified Distflow, we assume voltage and line

capacity constraints as described and notated previously. It is also common to assume that
reactive power injections, q, are fixed and known, defining v̂k := ∑n

i=1Xkiqi + v0, such that

vk =
n∑
i=1

Rkipi + v̂k, k = 1, . . . , n (2.20)

The feasible injection region is then compactly expressed as

P := {p : 1>p = 0, v ≤ Rp+ v̂ ≤ v, Hp ≤ c} (2.21)

where R ∈ Rn×n is defined appropriately from (2.20), and H ∈ R(n−1)×n is the shift fac-
tor matrix defined previously. Clearly the Simplified Distflow equations are similar to the
DC Power Flow equations, enabling the inclusion of voltage constraints, but limiting their
application to radial networks. The Simplified Distflow equations will be used in Chapter 9.

2.3 Optimal Power Flow, Economic Dispatch, and
Electricity Market Models

The Optimal Power Flow (OPF) problem finds the optimal solution to an objective function
subject to power flow and operational constraints, and is the basis for much of power systems
operation and optimization [32]. It typically refers to the market clearing and dispatch
problems solved by ISOs in day-ahead (DA) and real-time (RT) markets, but tranmission
expansion planning and general network investment problems are also examples of OPF
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problems. The most general formulation of OPF is as follows

min
p,z

f(p, z) (2.22)

s.t. p ∈ P (2.23)
z ∈ Z (2.24)
g(p, z) ≤ 0 (2.25)

where p is the vector of power flow variables (real and reactive power injections or flows, cur-
rents, voltages), z is the vector of operational variables (generation dispatch, storage controls,
system component settings), P is the feasible injection region of the power flow equations,
as decribed in the previous section, Z is the feasible set of the operational variables, f(p, z)
is a general objective function (dispatch or social cost, power flow losses, investment cost),
and g(p, z) is a general constraint function that links power flow and operational variables.

There are many variants of OPF, generally named for the power flow approximation which
they use, including ACOPF, DCOPF, Decoupled OPF, among others. In this dissertation
we will be focused on the dispatch problem faced by ISOs which is sometimes referred
to as Security-Constrained Economic Dispatch (SCED), an OPF variant which consists of
minimizing the social cost of resource dispatch (maximizing social welfare) subject to power
flow and operational constraints. Depending on the application, SCED can employ either
AC or DC power flow models, and include varying levels of constraints and approximations
thereof. From here on we will use the general term Economic Dispatch (ED) to refer to this
family of SCED problems.4 Before describing more specific formulations of the economic
dispatch problem and the exact market structures they relate to, we detail the classes of
market participants and how we model their preferences and operational constraints.

Market Participants
Here we address market participants that own physical assets, i.e. that intend to actually
take or make delivery of energy in the market. Purely financial participants, such as virtual
bidders, also exist but are only relevant to Chapter 3 in this dissertation, so we leave further
discussion of this class of participants until then. We consider the costs and constraints of
each participant in a general multi-period setting (not to be confused with a multi-stage
setting) over T periods, with the set of periods denoted by T := {1, . . . , T}, and indexed by
t ∈ T .

Producers

Producers generate energy and inject it into the grid. This can be produced by thermal
generation such as coal plants or natural gas turbines, or renewable generation such as solar

4In the literature, economic dispatch historically referred to the minimization of generation cost to meet
a given demand, generally neglecting power flow constraints. In recent years however it has come to be a
shorthand for the SCED problem
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PV or wind turbines. We consider a generation vector gt ∈ Rn, with nodal generation gi,t,
i = 1, . . . , n, representing the aggregate of all generation resources at that node in the tth
period. The notion of generation firms and strategic behavior is only relevant to Chapters
4 and 5, so we leave further discussion of these ideas until then. For now, the generation at
each node can be assumed to be independent and to behave competitively.

Generation is assumed to have variable and fixed costs of production, but faces no startup,
shutdown or no-load costs, nor ramping constraints. The aggregate cost of generation in each
period is measured by a non-decreasing convex function Ct(gt), t ∈ T taking the general form

Ct(gt) = 1
2g
>
t Qtgt + a>t gt, t ∈ T (2.26)

where at ∈ Rn, Qt ∈ Rn×n, at ≥ 0, Qt � 0, ∀t ∈ T . Qt, t ∈ T is generally assumed to be
diagonal, i.e. there is no cross-cost of generation. In the case of purely linear generation
costs, Qt is omitted. It should be noted that this cost function is the integral of the producer’s
inverse supply function, the latter being commonly used in microeconomic theory.

The feasible generation set is

Gt = {gt : 0 ≤ gt ≤ gt}, t ∈ T (2.27)

where gt ∈ Rn, t ∈ T is the vector of upper generation limits.5

Load Serving Entities

Load Serving Entities (LSEs) represent end-customer loads which withdraw or consume en-
ergy from the grid. These can typically be thought of as utility companies or load aggregators
who purchase energy on the wholesale market and then retail this energy to their customers.
We consider a demand6 vector dt ∈ Rn, t ∈ T , with nodal demand di,t, i = 1, . . . , n, repre-
senting the aggregate of all demand at that node in the tth period.

Demand can be modeled in two ways, either as elastic or inelastic, where elasticity refers
to the sensitivity of demand to changes in price. Elastic demand is assumed to have an
aggregate concave benefit function in each period, denoted Bt(dt), t ∈ T taking the general
form

Bt(dt) = −1
2d
>
t Mtdt + b>t dt + rt, t ∈ T (2.28)

where M ∈ Rn×n, M � 0, bt ∈ Rn, and rt ∈ R. Similarly to above, Mt, t ∈ T is also generally
assumed to be diagonal. It should be noted that this benefit function is the integral of the
load’s inverse demand function, the latter being commonly used in microeconomic theory.
Inelastic demand is modeled as having some fixed demand profile, dt ∈ Rn, t ∈ T , and as

5One could also include lower generation limits g
t
, but we omit them here for simplicity and assume that

g
t

= 0, for all generators.
6Load and demand are used interchangeably throughout the dissertation
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willing to pay any price to have this demand satisfied. This preference is represented as a
finite and constant benefit function Bt(dt) = rt, rt ≤ ∞, t ∈ T .7

We model demand dt, t ∈ T as a variable in the ISO’s problem. For elastic load the
feasible load set is

Dt = {dt : dt ≥ 0}, t ∈ T (2.29)

which formalizes the general concept that demand cannot be negative.8 For inelastic load
the feasible load set is

Dt = {dt : dt = dt} t ∈ T (2.30)

Clearly rather than a variable, inelastic demand is a parameter of the ISO’s problem, i.e. a
constant. For convenience here, we maintain the formalism as if it were a variable, however in
all future chapters involving inelastic demand it will be treated as a parameter. It should also
be noted that inelastic demand can be treated as net demand, which is the nominal demand
less any zero marginal cost renewable generation. Assuming renewables are must-take and
uncontrollable, this is a convenient way to model these assets.

Energy Storage and Load Flexibility

We use load flexibility to refer to temporal load flexibility, in other words the ability of a
load to shift its consumption in time9. We make the distinction from demand response,
which usually refers to loads reducing their consumption for some period of time, either for
economic reasons or in a system emergency.10 Demand response can be seen as a subset of
load flexibility, although here we generally assume that loads want to recover any foregone
consumption. Flexible loads can also increase their consumption in a given period, which is
a novel concept in the current paradigm of demand response.

We use energy storage to refer to assets that can withdraw energy from the grid at one
time, store it, and then inject this energy back into the grid at a later time. This encompasses
assets such as batteries and pumped hydro storage. Additionally, aggregations of flexible
loads can be modeled and controlled as virtual batteries or virtual power plants [19,20]. This
enables a consistent mathematical modeling framework for both batteries and aggregations
of flexible loads, with the difference that virtual batteries generally require some kind of

7Technically the benefit of inelastic loads is infinite, however in practice this is not true due to finite
measures such as the value of lost load.

8If loads make use of storage then it is possible that some loads could be negative but we preclude this
for now.

9Spatial load flexibility is also possible, for example deciding to charge electric vehicles at one location
rather than another, or assigning computing jobs to one data center rather than another. However, this
remains a far more limited application than temporal load flexibility so we do not address it further in this
dissertation.

10Economic demand response is actually an example of elastic load, as described previously.
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baseline, whereas real batteries do not. Load flexibility in the absence of baselines will be
discussed in Chapters 8 and 9.

With regard to asset ownership, we assume that load flexibility can only be owned by
LSEs. Energy storage can be owned either by producers, LSEs, or as a standalone asset
which we refer to as merchant storage.

To model energy storage, we present the ideal storage model used in Chapter 6. A
simpler model of pure load flexibility is used in Chapter 7, and a more realistic storage
model involving charge/discharge efficiencies and charge leakage is used in Chapter 8. The
properties and models of distinct classes of flexible load is presented in Chapter 9.

We adopt a similar storage model to that of [33] and [34]. For each bus i, the storage’s
state of charge (SOC) xi(t) evolves as

xi,t+1 = xi,t − ui,t, t = 1, . . . , T − 1 (2.31)

where ui,t is the amount of energy discharged (if ui,t > 0) or charged (if ui,t < 0) in time
period t, and the initial SOC is assumed to be xi,t = 0. Each storage device has an energy
capacity si ≥ 0, such that

0 ≤ xi,t ≤ si, t ∈ T (2.32)
where si = 0 if there is no storage connected to bus i. Equations (2.31) and (2.32) can be
compactly expressed in the following vector form

0 ≤ Lui ≤ si1, i = 1, . . . , n (2.33)

where ui ∈ RT is the vector of storage controls over T periods at bus i, and L ∈ RT×T is a
lower triangular matrix with entries Lij = −1 for i ≥ j. We denote the general set of feasible
storage controls given a storage capacity s as

U(s) := {u ∈ Rn×T : 0 ≤ Lui ≤ si1, ∀i} (2.34)

Market Mechanism and Formulation
Pricing, Social Welfare, and Participant Surplus

Before solving the ED problem, the ISO collects bids and offers from market participants
to supply or consume a given amount of energy at a certain price. The exact bidding
mechanism differs by ISO, but this can generally thought of as each participant specifying
the parameters of its cost or benefit function in (2.26) and (2.28) respectively. Assuming that
participants’ bids reflect their true costs and benefits, i.e. they bid competitively, then if
the ISO maximizes social welfare, subject to sytem and operational constraints, and adopts
Locational Marginal Pricing (LMP), then the resulting dispatch and prices represent an
efficient market equilibrium. This formulation, sometimes known as bid-cost minimization
(BCM) with a market-clearing price (MCP) mechanism, is an extension of the basic concept
of the equilibrium price and quantity obtained by intersecting supply and demand curves
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from classical microeconomics, and was first introduced in [35]. Social welfare is defined as the
sum of producer and consumer surplus, and it can be shown that maximizing this objective is
equivalent to maximizing the consumer benefit function less the generation cost function as
will be seen in (2.35a). In a sufficiently competitive market, the locational marginal pricing
mechanism is designed to incentivize participants to bid truthfully, however participants
may not reveal their true cost and benefit functions and behave strategically, marking up
(or down) their bids or witholding capacity from the market in an effort to increase their
profits or surplus. In this case the market outcome will deviate from the social optimum.

Assumptions

Single, two, and multi-stage markets are considered throughout the dissertation. Assump-
tions that apply to the whole dissertation can be categorized as:

• Energy only markets - no ancillary services or co-optimization

• Do not consider reserve provision or any kind of recourse

• No unit commitment, units assumed either to be pre-committed by the ISO, or gener-
ators internalize these commitment decisions and costs.

Multi-Period Economic Dispatch Formulation

The economic dispatch problem is solved by the ISO to determine the most efficient generation
dispatch to meet an apparent demand, dt ∈ Rn, t ∈ T , subject to network constraints.
When there are storage devices connected to the network, energy can be moved across time
periods, coupling T -single period economic dispatch problems. This results in the multi-
period economic dispatch problem (MPED):

min
p,g,d,u

T∑
t=1

Ct(gt)−Bt(dt) (2.35a)

s.t. γt : 1>p = 0, t ∈ T (2.35b)
βt : Hp ≤ c, t ∈ T (2.35c)
λt : pt = gt + ut − dt, t ∈ T (2.35d)
µi : Lui ≤ si1, i ∈ N (2.35e)
νi : Lui ≥ 0, i ∈ N (2.35f)

gt ∈ Gt, t ∈ T (2.35g)
dt ∈ Dt, t ∈ T (2.35h)

where, gt ∈ Rn is the generation vector in each time period t ∈ T , J?(s, d) is the total
optimal system cost, and Ct(gt), Bt(dt) are as defined above.

In general we will consider MPED as being parametrized by the storage vector, s, and
the apparent demand, d = {dt}t∈T , hence the notation for the optimal cost, J?(s, d). We
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also distinguish between notation for the storage capacity optimized by the ISO, s, and
the apparent demand, d, and the storage capacity owned by market participants, and the
nominal demand, denoted s, d, respectively.

Key Market Concepts

We now review the following useful market concepts related to economic dispatch:

Locational Marginal Prices The dual variables, λt ∈ Rn, t ∈ T associated with the net
injection constraint in (2.35d) are known as Locational Marginal Prices (LMPs). If bus i is a
net demander, λt,i equals the marginal benefit to consumers, and if bus i is a net supplier, λt,i
equals the marginal cost of generation. Since generation costs are assumed to be increasing
functions, it must follow that λt,i > 0. The LMP can be decomposed into three components:
a pure energy term, whose value is the same at each node, a loss term, and a congestion
term [36]. Since the DC formulation is lossless, the loss term of the LMP does not appear
in our analysis. It can be shown that the Locational Marginal Prices (LMPs) are equal to

λ?t (s, d) = γ?t (s, d)1−H>β?t (s, d), t ∈ T (2.36)

Merchandising Surplus The merchandising surplus (MS) is defined as

MS =
T∑
t=1

λ?>t (s, d)(dt − g?t (s, d)) (2.37)

This is the money that is left over after the system operator has paid all generators and
collected all revenue from loads. It can be shown that this is always nonnegative for an
economic dispatch [37]. The merchandising surplus will be discussed further in Chapter 6,
where it will be shown that the MS is only non-zero in the presence of transmission or storage
congestion.

2.4 Multiparametric Programming
In Chapters 4, 5, and 6, multiparametric programming will be used to examine equilibria
among market participants and analytically characterize market outcomes under different
regulatory frameworks for energy storage. The following theory is condensed from [38].

General Formulation of Multiparametric Program (MP)
We consider an optimization problem of the form

J?(x) = inf
z
J(z, x) (2.38)

s.t. g(z, x) ≤ 0 : u (2.39)
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where z ∈ Z ⊆ Rs is the optimization vector, x ∈ K ⊆ Rn is the parameter vector,
J : Rs × Rn → R is the value function, g : Rs × Rn → Rm are the constraints, and
u ∈ U ⊆ Rm are the dual variables. We wish to study the behavior of the value function
J?(x), the optimizer z?(x), and the dual variables u?(x) as we vary x.

Results on general MPPs of this type require the concepts and theory of point-to-set
mappings. We restrict our attention to two important classes of MP with linear constraints,
mpLP and mpQP.

Multiparametric Programs with Linear Constraints
We consider the multiparametric program with linear constraints

J?(x) = min
z

J(z, x) (2.40)

s.t. Gz ≤ w + Sx : u (2.41)

where G ∈ Rm×s, w ∈ Rm, and S ∈ Rm×n. Given a closed and bounded polyhedral set
K ⊆ Rn of parameters, denote by K? ⊆ K the region of parameters x ∈ K such that (2.41)
is feasible

K? = {x ∈ K : ∃z s.t. Gz ≤ w + Sx} (2.42)
If the domain of J(z, x) is Rs+n then K? is a polytope, which can be proved by projection.
i.e. K? is the intersection of the feasible parameter set K with the projection of the constraint
set {x, z : Gz ≤ w+Sx} onto the parameter space. We assume that K is fully dimensional,
and S has full column rank, otherwise a smaller set of parameters can be used.

We now define a critical region of the MPP. Let J = {1, ...,m} be the set of constraint
indices. For any A ⊆ J , GA and SA are the submatrices of G and S, with the rows indexed
by A. Gj, Sj and wj are the j-th row of G, S and w, respectively.

Definition 1 (Critical Region). We define CRA as the set of parameters x for which the set
A of constraints is active at the optimum.

At x define:

A(x) = {j ∈ J : Gjz
?(x)− Sjx− wj = 0} (2.43)

NA(x) = {j ∈ J : Gjz
?(x)− Sjx− wj < 0} (2.44)

(A(x), NA(x)) are disjoint and their union is J .11 For a given x ∈ K? let (A,NA) =
(A(x), NA(x)), and let

CRA = {x ∈ K? : A(x) = A} (2.45)
To find these critical regions, the general procedure is to begin with a single parameter

vector x ∈ K?, solve the optimization problem and find the set of constraints A(x) active
11This formulation assumes a unique optimizer z?(x) for a given x. To extend to the case of multiple

optimizers we have that z?(x) ∈ Z?(x).
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at the optimum. This allows the calculation of CRA from the KKT conditions of the opti-
mization problem. The parameter space is then iteratively partitioned into critical regions.
We note that the set of critical regions forms a polyhedral partition of the feasible parameter
set, as defined in [38]. Each critical region is full-dimensional, and an open set as seen in
(2.44). The boundaries of full-dimensional critical regions are in fact lower-dimensional of
zero measure.

We now examine the specific cases of mpLP and mpQP.

mpLP

We consider the mpLP

J?(x) = min
z

c>z (2.46)

s.t. Gz ≤ w + Sx : u (2.47)

We wish to compute the set of critical regions {CRA}nCR
A=1, and closed form expressions

for the value function, optimizers, and dual variables. We first form the Lagrangian

L(z, x, u) = c>z + u>(Gz − Sx− w) (2.48)

From the Lagrangian we derive the KKT conditions

c+G>u = 0 (2.49)
u>(Gz − Sx− w) = 0 (2.50)

Gz − Sx− w ≤ 0 (2.51)
u ≥ 0 (2.52)

We consider a point x0 ∈ K?. A possible choice for x0 is the Chebyshev center of the
polytope K, which is the center of the largest Chebyshev ball contained within K. Let z?0
and u?0 be the solutions of the Primal Problem (PP) and the dual variables, respectively, at
x0, which can be found using a standard LP solver. Determine (A,NA) = (A(x0), NA(x0))
for the PP at the optimum. From the primal feasibility conditions

GAz
?
0(x) = wA + SAx (2.53)

GNAz
?
0(x) < wNA + SNAx (2.54)

for all x ∈ CRA.
We assume that GA is square and invertible.12 From (2.53), the optimizer z?0(x) is

z?0(x) = G−1
A SAx+G−1

A wA = F0x+ g0 (2.55)
12The general case where this assumption does not hold is addressed using QR decomposition in [38].
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We note that z?0(x) is an affine function of x. From (2.54) and (2.55), the critical region
CRA is

CRA = {x ∈ K? : (GNAF0 − SNA)x < wNA −GNAg0} (2.56)
We note that for an LP, u?0(x) = u?0, ∀x ∈ CRA. That is the vector of dual variables is a
constant within each critical region. Then, using equations (2.49), (2.50), we can compute
the value function as

J?0 (x) = c>z?0(x) (2.57)
= −u?0

>Gz?0(x) (2.58)
= −u?0

>(SAx+ wA) (2.59)

To summarize these results, the critical region is an open polyhedral set, defined by strict
inequalities. Within this critical region the value function and optimizers are affine functions
of the parameter x, and the dual variables are constant.

Once we have found the critical region CR0, containing x0, we wish to explore the parame-
ter space and discover all other critical regions. Two prevailing methods exist for approaching
this problem in a principled manner.

1. Reversing Inequalities This method involves partitioning the set K? \ CR0, based
on the constituent inequalities describing CR0. Each inequality of CR0 is sequentially
reversed such that a new set Ri is generated for each inequality.13 The reader is
referred to Theorem 5.2 and Figure 5.10 of [38] for further details. This produces a
strict polyhedral partition of K? \ CR0, such that K? \ CR0 = ⋃

iRi. For each new set
Ri, the above procedure is repeated recursively. Generate a new point xi using the
Chebyshev center of Ri, check if the problem is feasible in this set, and if so, discover a
new critical region and partition the remainder of the set. The full algorithm is given
in Algorithm 7.1 of [38] This algorithm guarantees that the set K? is explored in a
finite number of iterations, and that all critical regions are discovered. A problem with
this algorithm is that critical regions can be artificially divided between multiple Ri,
implying that they can be ‘discovered’ multiple times. A simple solution to this is to
keep track of critical regions already discovered.

2. Crossing the Facets For each facet of CR0 a point outside the region but close to
the facet is selected and the above procedure is repeated. This guarantees that critical
regions are computed in one piece, with no artificial splitting. However this requires
heuristics to decide how far to step over the facet, and there is no guarantee that the
whole of K? is covered. In practice however this method typically outperforms the
reversing inequalities strategy.

Both of these algorithms provide a principled way to discover all critical regions of an
mpLP problem.

13It should be noted that these Ri are not critical regions.
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It is also relevant to discuss the propagation of the set of active constraints between
critical regions. i.e. What happens to the set of active constraints when we cross from one
critical region to another? Under no primal or dual degeneracy, the following hold:

i Full critical regions are described by a set of active constraints of dimension n.

ii Two neighbouring full-dimensional critical regions CRAi
and CRAj

have Ai and Aj dif-
fering only in one constraint. i.e. As one constraint becomes inactive, another new
constraint becomes active.

iii CRAi
and CRAj

will share a facet which is a primal degenerate critical region CRAp of
dimension n− 1 with Ap = Ai ∪ Aj.

iv Full dimensional critical regions are described by a number of constraints s.14 In the case
of primal degeneracy, critical regions may be described by more than s constraints, and
vice versa for dual degeneracy.

Now that we have described how to discover all critical regions, we can describe and
summarize the global properties of the mpLP solution. The proofs are detailed in [38].

Theorem 1. Global Properties of the mpLP Solution

i The feasible set K? is a polyhedron.

ii If the optimal solution z? is unique ∀x ∈ K?, the optimizer function z?(x) : K? → Rs is:

• continuous
• polyhedral piecewise affine (PPWA) over K?. In particular it is affine in each critical

region CRi, and every CRi is a polyhedron.

Otherwise it is always possible to choose such a continuous and PPWA optimizer function
z?(x).

iii The value function J?(x) : K? → R is:

• continuous
• convex
• PPWA over K?, in particular affine in each CRi.

iv The dual variable function u?(x) : K? → Rm is:

• discontinuous
• PPWA over K?, in particular constant in each CRi.

14The polyhedral representation of critical regions will typically be described by more than s constraints,
since they are intersected with the feasible parameter set K?.
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mpQP

We consider the mpQP

J?(x) = min
z

1
2z
>Hz (2.60)

s.t. Gz ≤ w + Sx : u (2.61)

We assume that H � 0, to avoid primal degeneracy. It should be noted that quadratic
cost functions of the form 1

2z
>Hz + x>Fz, can be transformed to the above form by the

change of variables z̃ = z +H−1F>x.
We wish to compute the set of critical regions {CRA}nCR

A=1, and closed form expressions for
the value function, optimizers, and dual variables. The algorithm is conceptually identical
to that for mpLP. We first form the Lagrangian

L(z, x, u) = 1
2z
>Hz + u>(Gz − Sx− w) (2.62)

From the Lagrangian we derive the KKT conditions

Hz +G>u = 0 (2.63)
u>(Gz − Sx− w) = 0 (2.64)

Gz − Sx− w ≤ 0 (2.65)
u ≥ 0 (2.66)

We consider a point x0 ∈ K?. A possible choice for x0 is the Chebyshev center of the
polytope K, which is the center of the largest Chebyshev ball contained within K. Let z?0
and u?0 be the solutions of the Primal Problem (PP) and the dual variables, respectively, at
x0, which can be found using a standard QP solver. Determine (A,NA) = (A(x0), NA(x0))
for the PP at the optimum. From the primal feasibility conditions

GAz
?
0(x) = wA + SAx (2.67)

GNAz
?
0(x) < wNA + SNAx (2.68)

for all x ∈ CRA.
From (2.63) we have that

z?0 = −H−1G>u?0 (2.69)
Substituting z?0 into the complementary slackness condition (2.64)

u?0
>(−GH−1G>u?0 − w − Sx0) = 0 (2.70)

Let u?A and u?NA be the dual variables corresponding to inactive and active constraints.
For inactive constraints u?NA = 0. For active constraints

(−GH−1G>)u?0 − w − Sx0 = 0 (2.71)
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If the set of active constraints A is empty, then u?0 = u?NA = 0, and therefore z? = 0, which
implies that the critical region CRA is

CRA = {x : Sx+ w > 0} (2.72)

Otherwise we have the following. We assume that LICQ holds, i.e. the rows of GA are
linearly independent, implying that (GAHG

>
A) is square, full rank, and thus invertible.15

Then we have
u?A = −(GAHG

>
A)−1(wA + SAx) (2.73)

We note that u?A is an affine function of x. Substituting uA? into the equation for the
optimizer we have that

z?0 = H−1G>A(GAHG
>
A)−1(wA + SAx) (2.74)

We note that z?0 is also an affine function of x. J?(x) = 1
2z

?(x)>Hz?(x) and is therefore a
quadratic function of x. The critical region CRA is computed as the intersection of Pp and
Pd.

CRA = {x : x ∈ Pp, x ∈ Pd} = Pp ∩ Pd (2.75)

where Pp is found by by substituting z?0 into (2.65)

Pp = {x : GH−1G>A(GAHG
>
A)−1(wA + SAx) < w + Sx} (2.76)

and Pd is found by substituting the dual variables into (2.66)

Pd = {x : −(GAHG
>
A)−1(wA + SAx) ≥ 0} (2.77)

To summarize these results, within the critical region the optimizers and dual variables
are affine functions, and the value function is a quadratic function, of the parameter x. The
process of computing the other critical regions after the first has been discovered is identical
to that for mpLP, and an algorithm is given in Algorithm 7.2 of [38].

In terms of the propagation of the set of active constraints between critical regions, for
any two neighboring full-dimensional critical regions CRAi

and CRAj
we have Ai ⊂ Aj and

|Ai| = |Aj| − 1 or Aj ⊂ Ai and |Ai| = |Aj|+ 1. i.e. As one moves from one full-dimensional
region to a neighboring full-dimensional region, one constraint is either added to the list of
active constraints or removed from it.

We now describe and summarize the global properties of the mpQP solution, assuming
H � 0.

Theorem 2. Global Properties of the mpQP Solution

i The feasible set K? is a polyhedron.
15Again, [38] has a full treatment for the case when LICQ does not hold involving QR decomposition.
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ii The optimizer function z?(x) : K? → Rs is:

• continuous
• polyhedral piecewise affine (PPWA) over K?. In particular it is affine in each critical

region CRi, and every CRi is a polyhedron.

iii The value function J?(x) : K? → R is:

• continuous
• convex
• polyhedral piecewise quadratic (PPWQ) over K?, in particular quadratic in each
CRi.

iv The dual variable function u?(x) : K? → Rm is:

• continuous
• PPWA over K?, in particular affine in each CRi.
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Chapter 3

Virtual Bidding - Equilibrium,
Learning, and the Wisdom of Crowds

We begin by considering the role and impact of uncertainty in the context of multi-stage
electricity markets, and ways in which this uncertainty can be mitigated or addressed. Specif-
ically we examine the mechanism of Virtual Bidding (VB), and how a population of virtual
bidders with heterogeneous beliefs at equilibrium approach the stochastically optimal mar-
ket outcome. This chapter is the result of joint work with Prof. Eilyan Bitar and Prof.
Kameshwar Poolla, and the majority of the results were first published in [39] by the author.

3.1 Introduction
In electricity markets, VB allows market participants to buy and sell electricity without
the obligation to physically produce or consume it. This opens up market participation
to financial entities or third parties without generation or load assets, allowing them to
take advantage of arbitrage opportunities and promote market liquidity. VB is similar in
nature to futures trading in more traditional commodity markets, where contracts are settled
financially and no physical delivery takes place.

Deregulated electricity markets are typically characterized by centralized multi-settlement
markets administered by an independent system operator (ISO). More specifically these mar-
kets have both a day-ahead (DA) and real-time (RT) market. In the DA market, the ISO
collects demand bids and supply offers from participants and, based on the expected trans-
mission network conditions, determines an economic unit commitment and dispatch with
associated locational marginal prices (LMPs) for each hour of the next day. A similar eco-
nomic dispatch procedure is conducted in the RT market, but in response to real-time system
conditions, typically at five to fifteen minute intervals. The important distinction between
the two markets is that cleared DA schedules are just financial contracts that can be settled
at real-time prices, whereas the RT market represents physical delivery of energy i.e. no
power flows in the DA market. It is this fact that enables the inclusion of VB that is not
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backed by physical assets in electricity markets.1 A more complete discussion of these issues
can be found in [40].

A virtual bid in such a market structure is comprised of a buy (sell) bid in the DA market,
matched by a sell (buy) offer in the RT market, such that any position taken up in the DA is
completely liquidated in the RT market, with no obligation to physically produce or consume
electricity. This allows virtual bidders to arbitrage the price difference between the DA and
RT markets. This should in general cause the DA and RT prices to converge in expectation,
as any price gap can be exploited by a risk neutral speculator. This is why VB is sometimes
referred to as convergence bidding. It is also important here to highlight the difference
between explicit and implicit VB. In the absence of an explicit VB mechanism, participants
backed by physical assets can still make implicit virtual bids, for example bidding more
capacity than they have available into the DA market and then purchasing the shortfall on
the spot market in real time. Implicit VB can cause market power issues, and compromise
the integrity of load and generation forecasts. Allowing a mechanism for explicit VB, as
described above, goes some way to mitigating these issues. More broadly, whenever we
discuss VB in this chapter, we are referring to explicit VB.

Prior Literature

The benefits of virtual bidding are discussed at length in [40–42], and are generally charac-
terized as: improved liquidity, mitigation of market power, improved market efficiency and
price formation, reduced price volatility, and providing market participants with the ability
to hedge price risk. A potential downside of virtual bidding highlighted in the above works is
the incentive for a virtual bidder in possession of a bilateral or external position to influence
the profitability of this position through virtual trades. This is of particular relevance to
those traders in possession of financial transmission rights (FTRs), as described in [43], to
the effect that both ISO-NE and PJM enforce revenue capping when a participant makes a
virtual bid which affects its own FTR revenue stream. [44] also suggest that virtual traders
can exploit approximations in market designs to make profits without improving system
operation, for example real-time ramping requirements that are not considered in the DA
market. Some attempts have been made to quantify the efficiency effects of virtual bidding
through empirical studies testing for the existence of profitable bidding strategies [45–48].

In this chapter we focus on the ability of virtual bidding to improve outcomes in electricity
markets with uncertainty. [40] emphasizes this as one of the most valuable aspects of VB, yet
also highlights the lack of rigorous work or analysis in this area, mainly due to the complexity
involved. Modern electricity markets face increasing uncertainty in both supply and demand
with a growing penetration of renewable and distributed generation. ISOs typically take
a conservative approach to uncertainty, scheduling supply myopically in the DA market to
meet expected demand, and neglecting the subsequent cost of recourse required to correct
imbalances in the real-time (RT) market. They also hold significant reserve margins to

1VB is implemented in the majority of North-American ISOs, including PJM, NYISO, ISO-NE, MISO,
and CAISO.
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manage large deviations or deal with contingencies. This deterministic approach to power
markets provides reliable and secure system operation, but it can be costly. Recent advances
in stochastic and robust optimization have shown that significant cost reductions can be
achieved by more explicitly incorporating uncertainty into market clearing algorithms [10,
12, 49]. Such approaches are tractable for real, large-scale, power systems; however, they
face resistance from ISOs and system operators due to their perceived complexity, opacity,
and reduction in system reliability.

Novel Contributions

We propose the novel thesis that, under certain assumptions, deterministic system operation
with virtual bidding approximates the results of stochastic system operation, obviating the
need for implementing new market algorithms. We demonstrate this result on a stylized
model of a single bus, two-settlement electricity market. While a simple model, the results
are instructive and point the way to models that more closely approximate the true operation
of real power systems in future work. The model presented here is similar in nature to that
proposed by [50], although the equilibrium analysis, welfare analysis, and learning dynamics
presented here are novel. All of these analyses are shown to depend on the accuracy of the
aggregate beliefs of the population of virtual bidders. In short, the wisdom of the crowd.
The contributions are as follows:

• Characterization of the unique, pure strategy Nash equilibrium of a population of
profit-maximizing virtual bidders with heterogeneous beliefs about the market in which
they participate.

• We demonstrate that as the number of virtual bidders increases, the DA ISO schedule
approaches the socially optimal schedule, and prices converge in expectation between
the DA and RT markets.

• We investigate simple learning strategies for individual speculators and characterize
conditions under which they converge to the unique Nash equilibrium.

Organization

The remainder of the chapter is organized as follows. In Section 3.2, we formulate a model of
the two-settlement market and the virtual bidding mechanism. In Section 3.3 we characterize
the pure Nash equilibrium among virtual bidders, and discuss its effect on social welfare. In
Section 3.4 we propose simple learning dynamics under which virtual bidders reach the Nash
equilibrium, and Section 3.5 concludes.
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3.2 Market Model
We consider a simplified model of a two-settlement electricity market administered by an
independent system operator (ISO) for a copper plate power system.2 The electricity market
is cleared in two stages: day-ahead (DA) and real-time (RT). In the DA market, the ISO
must determine an initial dispatch of supply subject to uncertainty in the eventual realization
of demand, which we assume to be perfectly inelastic and denote by D ∈ R+. We describe
uncertainty in the ISO’s prior belief about demand by modeling D as a random variable
with mean µ := E[D] and variance σ2 := Var(D).

The ability to schedule supply in the DA market is essential, as certain generation re-
sources (e.g., coal and nuclear) have limited ramping capability, and must therefore be
scheduled well in advance of the required delivery time. We define the production cost in
the DA market according to a convex quadratic function of the form

CDA(x) := 1
2αx

2 (3.1)

for all production levels x ≥ 0, and where α > 0 is assumed to be fixed and known by the
ISO.

In the RT market, demand is realized, and any mismatch between supply scheduled in the
DA market, say x, and the realized demand D must be compensated through an adjustment
of supply in the amount of D−x. The subsequent balancing cost incurred in the RT market
is assumed to be a convex quadratic function of the form

CRT(D − x) := 1
2β(D − x)2 + γ(D − x), (3.2)

where β > 0, γ, are assumed fixed and known by the ISO.3 The inclusion of the affine term in
the RT cost is an approximation of the fact that in reality the DA and RT cost functions will
be coupled. Fast-ramping generators that have not been dispatched in the DA market may
bid their spare capacity into the RT market.γ may be interpreted as the minimum marginal
cost of fast-ramping generators in the RT market, such that γ = αx, where x is the total
capacity available in the DA market.

We define the total expected cost of supply incurred under a DA schedule x ≥ 0 as

J(x) := CDA(x) + E[CRT(D − x)]. (3.3)

Finally, the price at which energy is traded in each of the DA and RT markets is set by
the ISO according to the marginal cost of supply in each market. Accordingly, given a DA
dispatch of supply in the amount of x ≥ 0, the DA and RT prices of energy are determined
according to

PDA(x) := αx and PRT(D − x) := β(D − x) + γ, (3.4)
2We use the term copper plate here to imply a lossless, unconstrained transmission system.
3No assumption is made on the relative values of α and β, although generally in practice β > α, reflecting

the fact that it is more expensive to procure power in real-time than schedule it forward.
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respectively, and the RT-DA price spread is defined as

∆(x) := PRT(D − x)− PDA(x). (3.5)

Naturally, a priori uncertainty in demand will manifest itself as uncertainty in the RT price.

Remark 1. Implicit in our assumption of quadratic cost functions, in both the DA and RT
markets, is the assumption that the underlying aggregate supply function in each market is
linear and affine respectively. This is a common assumption in the power system economics
literature, see for example [51]. Throughout this chapter, we interpret these supply functions
as representing the true marginal cost of generation in each market. The treatment of more
sophisticated models, which capture the effect of generator strategic behavior on the determi-
nation of these supply functions (in combination with strategic virtual bidding) represents an
interesting and open direction for future research.

Conventional Market Clearing
The approach to market clearing practiced by the majority of North-American ISOs today
is inherently myopic in nature. That is to say, the ISO schedules supply in the DA market to
minimize the immediate system cost based on a point estimate (forecast) of demand, which
we denote by D̂. In doing so, the ISO neglects the subsequent cost of recourse required to
compensate imbalances that might arise between supply scheduled in the DA market and
realized demand. Needless to say, the cost incurred by a myopic approach to scheduling such
as this may far exceed the minimum expected cost of supply, which we formally define as

J(x?) := min{J(x) : x ∈ R+}. (3.6)

A straightforward calculation shows the optimal DA schedule to satisfy4

x? := arg min{J(x) : x ∈ R+} = βµ+ γ

α + β
. (3.7)

This optimal DA schedule results in an ex-ante no-arbitrage condition, such that

PDA(x?) = E[PRT(D − x?)]. (3.8)

This is equivalent to stating that the expected price spread is equal to zero, E[∆(x?)] = 0.
Myopic scheduling on the part of the ISO will result in a non-zero price spread in expectation

E[∆(D̂)] = (α + β)
(
x? − D̂

)
, (3.9)

which can be exploited by speculators for profit. In what follows, we investigate the extent
to which the speculative behavior of virtual bidders might drive the procurement of supply
in the DA market towards the optimal procurement level x?.

4Finding this solution in the more general network case with constraints amounts to solving a two-stage
stochastic optimization problem.
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Virtual Bidding
Consider a two-settlement electricity market in which a set of virtual bidders,N = {1, . . . , N},
participate. We assume that each virtual bidder is risk-neutral and seeks to maximize the ex-
pected profit they derive through price arbitrage between the DA and RT markets. Moreover,
we assume that all virtual bids are quantity bids5, such that the total supply x scheduled by
the ISO in the DA market takes the form

x = D̂ +
N∑
i=1

vi, (3.10)

where vi ∈ R denotes the quantity bid of the ith virtual bidder. We adopt the sign convention
that vi > 0 (vi < 0) corresponds to a demand bid (supply offer) in the DA market. We denote
by v = (v1, . . . , vN) the virtual bid profile, and by V := ∑N

i=1 vi the aggregate virtual bid. It
follows that the DA and RT prices induced under a virtual bid profile v are given by

PDA(x) = α(D̂ + V ), (3.11)
PRT(D − x) = β(D − D̂ − V ) + γ, (3.12)

respectively, and the RT-DA price spread is equal to

∆(D̂ + V ) = (α + β)
(
βD + γ

α + β
−
(
D̂ + V

))
(3.13)

These price functions are illustrated in Figure 3.1. In Figure 3.1a we see that the ISO
schedules supply myopically to meet expected demand. In Figure 3.1b, the RT price is
determined by the realization of demand. In Figure 3.1c the DA schedule is adjusted due
to virtual bidding. In Figure 3.1d, we see that the RT price is still determined by the
realization of demand, but is impacted by the virtual bids. In the model we consider, we
allow for asymmetry in the beliefs held by individual virtual bidders regarding the market
in which they participate. Namely, we assign to each virtual bidder i ∈ N a belief defined
according to the tuple (αi, βi, γi, µi), representing what virtual bidder i believes the DA and
RT cost coefficients and mean value of demand to be.6 The expected payoff to virtual bidder
i ∈ N , under a virtual bid profile v, is therefore defined according to

πi(vi, v−i) : = E
[
∆i(D̂ + V )vi

]
,

= (αi + βi)
(
x?i −

(
D̂ + V

))
vi

(3.14)

where ∆i(·) is the RT-DA price spread calculated using the beliefs of virtual bidder i, and
x?i := (µiβi + γi)/(αi +βi) represents the implicit estimate of the optimal DA schedule x? by

5In practice, virtual bids allow for the specification of both price and quantity, thereby allowing virtual
bidders to reveal their willingness to pay (accept) in addition to their quantity bid (offer).

6For now it is assumed that the ISO forecast of demand D̂ is common knowledge, although this will not
be necessary for the learning dynamics presented in Section 3.4.
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x

PDA(x)

D̂ = µ

(a) DA Market, No VB

(D − x)

PRT(D − x)

0 D̂ = µ

(b) RT Market, No VB

x

PDA(x)

D̂ + V

(c) DA Market, With VB

(D − x)

PRT(D − x)

−V D̂ = µ

(d) RT Market, With VB

Figure 3.1: DA and RT Markets, with and without virtual bidding

virtual bidder i. The collection of payoffs π = (π1, . . . , πN) together give rise to a normal-
form (Cournot) game between the virtual bidders, which we refer to as the virtual bidding
game. We define its equilibrium as follows.

Definition 2 (Nash equilibrium). The bid profile v ∈ RN defines a pure strategy Nash
equilibrium of the virtual bidding game if for each i ∈ N , it holds that

πi(vi, v−i) ≥ πi(vi, v−i) for all vi ∈ R. (3.15)

3.3 Equilibrium Analysis
We proceed with an explicit characterization and analysis of the equilibrium of the virtual
bidding game defined in Section 3.2. Before proceeding, it will be convenient to measure the
quality of the belief that each virtual bidder i ∈ N holds about the market in which they
participate according to the quantity

ηi := x?i /x
?, (3.16)

Naturally, the closer ηi is to one, the more accurate is the belief held by virtual bidder
i. We say that virtual bidder i has perfect belief if ηi = 1. We define the market belief
profile according to the vector η := (η1, . . . , ηN). With this notation in hand, we present the
following characterization of the equilibrium of the virtual bidding game.
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Theorem 3. The virtual bidding game admits a unique pure strategy Nash equilibrium v? ∈
RN satisfying

v?i =
(
ηi −

∑N
j=1 ηj

N + 1

)
x? −

( 1
N + 1

)
D̂, (3.17)

for each i ∈ N .

Proof. We begin by considering the payoff-maximizing action v?i of virtual bidder i, given
the actions of all other virtual bidders v−i.

v?i = arg max{πi(vi, v−i) : vi ∈ R} (3.18)

Since πi(vi, v−i) is a strongly concave function of vi, we have that ∇πi(v?i , v−i) = 0 is a
neccesary and sufficient condition for optimality. Solving we find that

v?i =
x?i −

D̂ +
N∑
j 6=i

vj + v?i

 (3.19)

We now assume that an equilibrium v? = (v?1, . . . , v?N) exists, and will show that this is
indeed the case. Summing over v?j , we see that

N∑
j=1

v?j =
x? N∑

j=1
ηj −ND̂ −N

N∑
i=1

v?j


= x?

∑N
i=1 ηi

N + 1 −
N

N + 1D̂

(3.20)

Substituting (3.20) into (3.19), we see that

v?i =
(
ηi −

∑N
j=1 ηj

N + 1

)
x? −

( 1
N + 1

)
D̂ (3.21)

Since ∇πi(v?i , v?−i) = 0, ∀i, this is an equilibrium of the virtual bidding game, and is unique
due to the strong concavity of the payoff function.

It is immediate to see that under perfect beliefs (i.e., ηi = 1 for all i ∈ N ), this unique
pure strategy Nash equilibrium v? is symmetric, and reduces to

v?i = x? − D̂
N + 1 , (3.22)

for all i ∈ N . All further discussion in this Section refers to the unique pure strategy Nash
equilibrium under heterogeneous beliefs in (3.17). We see that the equilibrium action of each
virtual bidder is to fill some fraction of the quantity gap between the optimal DA schedule
and the myopic ISO schedule. This equilibrium action of each virtual bidder is a function of
the quality of their own belief, and the average quality of the beliefs of all virtual bidders.
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The Wisdom of Crowds
We wish to consider the effect of virtual bidding on the physical DA schedule at equilibrium,
which is given by

xN := D̂ +
N∑
i=1

v?i . (3.23)

It is first useful to characterize the belief quality of the ‘crowd’ of virtual bidders. One way
to model this is to assume that the individual beliefs of virtual bidders are drawn in an in-
dependent and identically distributed (IID) fashion from a common probability distribution.
That is to say, we model the belief profile η = (η1, . . . , ηN) as a collection of IID random
variables having mean and variance

µη := E[ηi] and σ2
η := Var(ηi),

for all i ∈ N . In addition, we assume the belief profile η to be independent of the demand
D.7

Definition 3 (Wisdom of the crowd). We define the crowd of virtual bidders to be wise if
µη = 1, i.e., their belief is correct on average.

It is straightforward to show that the DA schedule and price spread which emerge at
equilibrium satisfy

xN =
(

1
N + 1

N∑
i=1

ηi

)
x? +

( 1
N + 1

)
D̂ (3.24)

and
∆(xN) = (α + β)

(
βD + γ

α + β
− xN

)
. (3.25)

We have the following Corollary to Theorem 3, which characterizes their asymptotic values
as the the number of virtual bidders grows large.

Corollary 1 (Asympotic Market Efficiency). Assume that the virtual bidders collectively be-
have according to the Nash equilibrium (3.17). As the number of virtual bidders participating
in the market grows large, it holds that

lim
N→∞

xN = µηx
? (3.26)

and

lim
N→∞

E [∆(xN)] = (α + β)(1− µη)x?. (3.27)
7This assumption may be strong, as it is not unreasonable to expect that the quality of private estimates

and demand may be correlated in some fashion.
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Namely, if the crowd is wise (i.e., µη = 1), the DA schedule, which emerges at the Nash
equilibrium, converges to the optimal DA schedule as the number of virtual bidders tends
to infinity. As a result, the expected price spread between the RT and DA markets also
converges to zero. Such asymptotic market behavior is to be expected, as a large number of
virtual bidders will naturally compete away any ex-ante arbitrage opportunity.

We draw the following conclusions from this result, assuming that the desired outcome
of implementing virtual bidding is improved market efficiency. First, it is important to
have a crowd. The larger the number of virtual bidders, the smaller the expected arbitrage
opportunity available to each bidder at equilibrium, and the closer one gets to the optimal
DA schedule at equilibrium. In reality, the number of participants is likely to be determined
by transaction costs associated with virtual bidding, and the risk premia that risk-seeking
or risk-averse virtual bidders will demand or are willing to pay. It is not in the interests of
an ISO to restrict access to virtual bidding markets in any way, for example through uplift
payments associated with virtual bids as described in [40].

Second, it is important that the crowd is wise. This is not something that can be
prescribed per se, but is a phenomenon that has been observed in many contexts. From esti-
mating the weight of an ox, [52], to modern day prediction markets, [53], the crowd average
generally outperforms individual estimates. One might also surmise that if participants have
skin in the game, they are more likely to be invested in the quality of their own estimate,
thus improving the crowd estimate.

Third, Corollary 1 holds for an arbitrary ISO forecast of demand D̂. Of course, the closer
D̂ is to x?, the closer xN will be to x?. It remains to be seen whether an aggregate crowd
estimate of x?, could outperform one generated by a central ISO.

Given our distributional interpretation of beliefs, it is also possible to explicitly charac-
terize the variance of the price spread, which results at the Nash equilibrium. Recalling that
Var(D) = σ2, the spread variance in the absence of virtual bidding is easily calculated as

Var(∆(D̂)) = β2σ2. (3.28)

In the presence of virtual bidders, we have

Corollary 2. The spread variance at the virtual bidding Nash equilibrium is equal to

Var(∆(xN)) = β2σ2 + (α + β)
(
κ2σ

2
η

N
(x?)2

)
. (3.29)

where κ := N
N+1 is a nondimensional parameter measuring the size of the crowd.

It follows directly that
Var(∆(xN)) ≥ Var(∆(D̂)) (3.30)

for any number of virtual bidders N . It can also be seen that as the number of virtual
bidders grows large, it holds that

lim
N→∞

Var(∆(xN)) = Var(∆(D̂)) (3.31)
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This result is independent of the wisdom of the crowd, and states that at equilibrium the
variance of the price spread under virtual bidding is lower bounded by the variance of the
price spread under the myopic ISO schedule. Under these assumptions, the spread variance
never decreases after the introduction of virtual bidding. This is due to the underlying
variance in demand, that is not addressed at all by virtual bidding. Additionally, a large
variance in the distribution of beliefs among virtual bidders only serves to worsen the variance
of the spread, although this effect is mitigated as the number of virtual bidders increases.

This theoretical result would seem to be at odds with empirical results presented by [48],
which demonstrate that spread variances decreased after the introduction of virtual bidding
in the CAISO market. However, it should be noted that they attribute this reduction in
variance to the reduction of implicit virtual bidding by physical assets, and the fact that
DA physical generation schedules should be closer to their real-time outputs under explicit
virtual bidding, thereby reducing the need for costly purchases by the ISO to account for
deviations in real-time. In our analysis we have not considered implicit virtual bidding by
physical participants, but this would present an interesting avenue for further study. One
could conjecture that under implicit virtual bidding the spread variance might increase due
to both the false reporting of true physical production schedules, and heterogeneity of beliefs
among implicit virtual bidders.

Welfare Analysis
We now investigate the social welfare properties of the virtual bidding Nash equilibrium.
As demand is assumed to be inelastic, social welfare is naturally defined according to the
expected cost of generation J(x), which we previously defined in (3.3). To simplify the
analysis we assume that a myopic ISO takes as its demand forecast D̂ = µ, although the
results hold for arbitrary forecasts D̂.

We first see that under a myopic ISO dispatch, D̂ = µ, in the absence of virtual bidding,
the generation cost takes the form

J(µ) = 1
2
(
αµ2 + βσ2

)
. (3.32)

If the ISO adopts the socially optimal dispatch x?, then the generation cost is

J(x?) = J(µ)− 1
2

(γ − αµ)2

(α + β) . (3.33)

As expected, we see that J(x?) ≤ J(µ). We note the following identity

x? − µ = γ − αµ
α + β

, (3.34)

such that
J(x?) = J(µ)− 1

2(α + β)(x? − µ)2. (3.35)
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We now consider the generation cost at the equilibrium of virtual bidders. Since we assume
that the individual beliefs of virtual bidders are drawn in an IID fashion from a common
probability distribution we have that

J(xN) = Eη [CDA(xN) + ED [CRT(D − xN)]] (3.36)

where we must take expectations with respect to the random belief profile η = (η1, . . . , ηN).
Assuming that the crowd is wise (i.e., µη = 1), it can be shown that

J(xN) = 1
2
(
αµ2 + βσ2

)
(3.37)

+ 1
2(α + β)

(
κ2σ

2
η

N
(x?)2 + κ(κ− 2)(x? − µ)2

)
, (3.38)

We see that J(xN=0) = J(µ), and that J(xN→∞) = J(x?), as expected. In general, however,
virtual bidding may actually increase the generation cost due to the positive contribution
from the variance of virtual bidders’ beliefs. This can generally be characterized as occuring
for a low number of virtual bidders, with high variance in beliefs. For a given variance, this
positive term will be offset by a sufficiently large population of virtual bidders, since the
final term is a strictly decreasing function of N , on the interval N ∈ [0,∞). We can in
fact explicitly characterize the number of bidders after which the generation cost is strictly
decreasing and less than or equal to the cost under a myopic ISO dispatch, denoted Ndec.
For a fixed set of parameters (α, β, γ, µ, ση), we have

Ndec = σ2
η

(x?)2

(x? − µ)2 − 2. (3.39)

For the generation cost to be strictly decreasing for all N ≥ 1, we require that

σ2
η ≤

3(x? − µ)2

(x?)2 (3.40)

At equilibrium, for N ≥ Ndec, virtual bidders never profit at the expense of loads. The
expected cost of generation decreases in the presence of virtual bidders, and the marginal
cost reduction associated with the addition of a new virtual bidder is always positive.

The exact impact of virtual bidders on social welfare will be a function of the specific
market parameters, however these results highlight again the importance of a crowd of virtual
bidders. Even the effect of a high variance in beliefs can be mitigated by the presence of a
large number of virtual bidders.

3.4 Reaching Equilibrium
While the above results hold at the unique Nash equilibrium of the virtual bidders, actually
reaching this equilibrium is a more subtle question. We consider simple learning dynamics
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for each virtual bidder, assuming that the two-settlement market is a repeated game in a
homogeneous environment. In practice this might represent one hour of a day across many
weeks, assuming similar patterns of weather and demand.

The best response of virtual bidder i is defined as

vBRi := arg max{πi(vi, v−i) : vi ∈ R} (3.41)

assuming that the actions of the other virtual bidders v−i are given. It can be shown that
this is equal to

vBRi = 1
2
(
x?i −

(
D̂ + V−i

))
(3.42)

where V−i = ∑
j 6=i vj. At equilibrium vBRi is equivalent to v?i in (3.17).

We consider a smoothed best-response learning dynamic, where at each iteration virtual
bidder i plays a weighted sum of their previous action and their best response to the previous
actions of all other bidders, with smoothing parameter θi, where 0 ≤ θi ≤ 1. See [54, 55].
The learning dynamic then takes the form

vi(k + 1) = θivi(k) + (1− θi)vBRi (k)

= θivi(k) + (1− θi)
2

(
x?i −

(
D̂ + V−i(k)

)) (3.43)

where vi(k), V−i(k) represents the value of vi, V−i, respectively at the kth iteration, and
vBRi (k) represents the best response of player i to the actions of all other players at iteration
k. We note that virtual bidder i will observe the quantity (D̂ + V−i(k)), assuming that the
DA ISO dispatch x(k) is published. We also note that x?i is only dependent on the beliefs
of virtual bidder i. Thus (3.43) represents a valid learning dynamic, dependent only on the
available information at each iteration. We also assume that the myopic ISO dispatch D̂
does not change, and that each virtual bidder does not change their beliefs (αi, βi, γi, µi).

If θi = 0, then this learning dynamic would constitute naive best response, where the
virtual bidder plays their optimal action at each iteration assuming other virtual bidders
do not change their actions. It is interesting to note that this same naive best response
strategy is obtained if one attempts to solve (3.14) using gradient descent with exact line
search, suggesting that a repeated virtual bidding game could in fact represent a form of
gradient-descent algorithm that approximates the solution of the ISO problem.

Remark 2. An alternate interpretation of the learning dynamic in (3.43) is as the expected
trajectory under a randomized update policy. At each iteration the virtual bidder i adopts
their previous action with probability θi, and their best response to the previous actions of
all other bidders with probability (1 − θi). All the following results hold for this stochastic
learning dynamic; however, the concept of asymptotic stability is replaced with convergence
in expectation.
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Stability and Convergence Analysis
We assume that all virtual bidders adopt the learning dynamic in (3.43). Considering the
collective learning dynamics of all virtual bidders it can be shown that

(v(k + 1)− v?) = AΘ(v(k)− v?) (3.44)

where AΘ is defined as

AΘ := 1
2 ((I + Θ)− (I−Θ)E) (3.45)

where Θ = diag(θ1, . . . , θN).
We have the following result

Theorem 4. As k →∞, v(k)→ v?, under the learning dynamics in (3.43), if
N − 3
N + 1 < θi < 1, ∀i = 1, . . . , N (3.46)

Proof. We assume that all virtual bidders adopt the learning dynamic in (3.43), and denoting
η = [η1, . . . , ηN ]>, and χ =

(
ηx? − D̂1

)
, we have the full system update as

v(k + 1) = Θv(k) + (I−Θ)
2 (χ− (E− I)v(k))

= (I + Θ)− (I−Θ)E
2 v(k) + (I−Θ)

2 χ

(3.47)

It is straightforward to show that v? in (3.17) is a unique fixed point of this iteration. It can
also be shown that

(v(k + 1)− v?) = AΘ(v(k)− v?) (3.48)

where AΘ and Θ are as defined in the text. To show asymptotic stability of the unique
pure Nash equilibrium v? under these learning dynamics, we require that |ρ(AΘ)| < 1.
We cannot characterize λ(AΘ) analytically, but we simply require that λmax(AΘ) < 1, and
λmin(AΘ) > −1. We have that

λmax(AΘ) = λmax

(
(I + Θ) + (Θ− I)E

2

)

≤ λmax

(
I + Θ

2

)
+ λmax

(
(Θ− I)E

2

)

= 1 + θmax

2 − λmin

(
(I−Θ)E

2

)

≤ 1 + θmax

2 − λmin

(
(I−Θ)

2

)
λmin (E)

= 1 + θmax

2

(3.49)
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and using a similar analysis it can be shown that

λmin(AΘ) ≥ 1 + θmin

2 − (1− θmin)
2 N (3.50)

Solving the following simple inequalities completes the proof.

1 + θmax

2 < 1, 1 + θmin

2 − (1− θmin)
2 N > −1 (3.51)

Theorem 4 is equivalent to stating that the unique pure Nash equilibrium is globally
asymptotically stable under the learning dynamics in (3.43), if condition (3.46) is satisfied.

We note that naive best response, i.e. θi = 0, is only asymptotically stable for N < 3. As
N grows larger, the feasible range of θi, over which the learning dynamics are asymptotically
stable, shrinks. As to whether real virtual bidders would adopt smoothing parameters which
satisfy (3.46) is unclear.

We now consider the speed of convergence of the learning dynamics. We have that

(v(k + 1)− v?) = AΘ (v(k)− v?)
= (AΘ)k (v(0)− v?)

‖(v(k + 1)− v?)‖ = ‖ (AΘ)k (v(0)− v?) ‖
≤ ‖AΘ‖k‖ (v(0)− v?) ‖
= ρ (AΘ)k ‖ (v(0)− v?) ‖,

(3.52)

where ρ(AΘ) denotes the spectral radius of AΘ. We see that the virtual bidders converge
linearly to the Nash equilibrium at the rate of the spectral radius of AΘ. It can be shown
that

ρ (AΘ) = max
(

1 + θmax

2 ,
(1− θmin)

2 N − 1 + θmin

2

)
(3.53)

For fast convergence we want ρ (AΘ) as small as possible. This minimum is achieved if all
virtual bidders adopt the same smoothing parameter θi = N−2

N+2 , ∀i = 1, . . . , N . For large
N , this convergence will be slow. More generally, the speed of convergence is limited by
the fact that the only information each virtual bidder receives on the actions of the other
players is the sum of their bids. This means that if we allowed virtual bidders to update and
improve their estimates (αi, βi, γi, µi), at each iteration this would not necessarily improve the
speed of convergence. In fact it would only serve to shift the Nash equilibrium towards the
equilibrium under perfect beliefs. If we assume that the crowd is wise, µη = 1, and remains
wise as virtual bidders improve their private estimates, then the quality of the information
received by each virtual bidder, namely the sum of the bids of other bidders, is not improved
by updated private beliefs.
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3.5 Conclusions
We have analysed a simple model of a two-settlement market under a myopic ISO dispatch,
which provides insight into the equilibrium behavior of virtual bidders. The key results are
as follows. At equilibrium, if the crowd of virtual bidders is wise, the DA schedule tends to
the social optimum, and the expected price spread tends to zero, as the number of virtual
bidders grows large. Additionally the variance of the price spread under virtual bidding is
always greater than or equal to the variance in the case where there is no virtual bidding,
explicit or implicit. We have also proposed simple learning dynamics, which have as their
asymptotically stable equilibrium the Nash equilibrium of the virtual bidding game.

It is important to acknowledge the differences between this simplified model and real-
world two-settlement power markets. One problem, highlighted by [44], is that typically the
DA and RT clearing algorithms are run in different ways. Namely that the DA dispatch
must consider commitment costs, and the RT dispatch must consider constraints such as
ramping limits of generation. Another issue is that virtual bids are settled at DA hourly
prices, but the RT market is typically run every 5-15 minutes. The ‘RT price’ that is used to
settle virtual bids is often the average hourly RT price. These concerns distort the incentives
of virtual bidders, and can lead to undesirable behavior. Furthermore, real power markets
are run on networks, with generation and load varying from node to node, in addition to
requiring DA schedules to satisfy transmission constraints and contingency scenarios. We
hope to address this general network problem in future work.

Finally, the environment in which real virtual bidders are speculating and learning is
far from homogeneous. It is in fact highly heterogeneous, with network conditions, gener-
ation costs, and parameter distributions changing from day to day. This makes learning
very difficult, and it is questionable whether virtual bidders can ever reach the equilibrium
solutions presented in this chapter. An interesting piece of work for future study would be
to understand how far away the actions of real bidders are from equilibrium and the effect
that this has on social welfare and price convergence.
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Chapter 4

Robust Cournot-Bertrand Equilibria
on Power Networks

The previous chapter discussed how uncertainty is addressed in the structure and operation
of electricity markets, and the actions of virtual bidders backed by no physical assets. In
this chapter we will focus on the actions of real market participants backed by physical
assets and how they respond to and manage uncertainty. Specifically we examine how the
classical concept of Nash-Cournot equilibrium among generators changes in the presence of
uncertainty. This chapter is the result of joint work with Dr. Eric Munsing and the majority
of the results were first published in [56] by the author.

4.1 Introduction
As we have seen, electricity is unique among commodities, having highly inelastic demand,
very limited storage, network flows determined by Kirchoff’s laws, and transmission con-
straints which can isolate consumers from low-cost suppliers. The deregulation of electricity
generation in many regions has left the operation of the power grid in the hands of Indepen-
dent System Operators (ISOs), who are tasked with collecting bids for supply and demand,
clearing the market in such a way as to meet transmission and security constraints, and mit-
igating the use of market power. However, the characteristics which make electricity unique
also make energy markets prone to manipulation, and empirical studies have shown that
these markets often operate as oligopolies in which participants affect outcomes by adjust-
ing their bid curves to maximize profits [57, 58]. By modeling strategic equilibria in energy
markets, researchers hope to measure social welfare impacts, design regulatory or technical
changes which can promote more competitive markets, or identify noncompetitive behavior
by comparing models with ex-post market outcomes.

A key decision for producers in energy markets is how to respond to uncertainty in
supply, demand, and the actions of other producers. Risk-averse producers may hedge
their production through long-term contracts, or submit their generation capacity as ”must-
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take” (accepting any price). There have been a number of studies examining the impact
of uncertainty on strategic equilibria in energy spot markets, particularly in two-settlement
markets, for example [59–61]. However, these approaches can be intractable due to the
computational burden required to model uncertainty on a large network using stochastic
models [62,63].

This work advances prior literature by showing how robust optimization can be used
to integrate uncertainty into a convex model of strategic equilibrium in a single-settlement
Poolco electricity market with network constraints, allowing us to scale our results to large
networks while representing the most common form of spot market operation.

Prior Literature
A number of game theoretic models of strategic competition have been used to model
oligopoly behavior in electricity networks, and are reviewed in [62–65]. We highlight four
game theoretic models used to identify strategic equilibria in electricity markets: Cournot
competition assumes that producers adjust their output to maximize profits [66–68], Bertrand
competition assumes producers adjust prices [62], Stackelberg leader-follower games assume
that some firms may have greater decision-making power and serve as market leaders [69,70],
and Supply Function Equilibria models combine features of Cournot and Bertrand mod-
els, using differential equations to model the bidding behavior of firms [51]. Of these,
Cournot models have gained particular attention for modeling electricity markets due to
their mathematical and computational simplicity, as well as their ability to forecast market
outcomes [64,68,71].

However, since electricity markets are coupled with complex engineered systems these
game-theoretic models are not a panacea. Unlike most commodities, electricity markets
are built on a transmission network with thousands of nodes [66], have temporal output
constraints on generation equipment [72], and are typically structured as a series of sequential
markets [73]. To address these issues, a parallel body of literature has sprung up in which
engineering models are used to reflect the technical decisions faced by individual producers
[74]. These models are often nonlinear, nonconvex, and computationally intractable for
modeling the decisions of more than a single producer with a small fleet of generators.

Both game-theoretic and engineering models are challenged by the uncertainty inherent
in electricity provisioning: demand is dependent on weather, generation plants may have
unplanned outages, and increased penetration of renewable energy sources makes supply
uncertain. A variety of techniques from stochastic optimization have been used to model
the generators’ decision process under these uncertainties [75, 76]: historical energy prices
can be used to construct Monte Carlo simulations [77, 78] or to fit parametric probability
distribution models to sources of uncertainty [79].

These stochastic approaches can optimize expected profits, but struggle to deal with
modeling uncertainty in the hundreds or thousands of nodes which characterize electricity
grids. Robust optimization theory [80] and robust game theory [81] provide an alternative
approach to integrating uncertainty, by seeking a solution which still performs well under
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a ‘worst case’ scenario. While this approach is anticipated to reduce the expected profits
for the operators relative to their non-robust actions [82], it can be attractive for risk-averse
players as it guarantees profits against uncertainty. These models are also mathematically
appealing as they do not require any distributional assumptions on random variables and
can preserve the convexity of the optimization problem, allowing the application of efficient
solvers which can scale up to handle uncertainty across thousands of nodes.

Robust optimization has previously been applied to game theoretic problems, allowing the
modeling of uncertainty in payoff matrices or competitors’ strategies [83,84]. However, robust
optimization has only been applied to specific sub-problems in electricity market operation,
e.g. the unit commitment problem of the system operator [10, 85–87], nonstrategic bidding
as a price-taker [78], strategic equilibrium in a Stackelberg leader-follower game [88], and
strategic equilibrium without congestion costs [89].

Novel Contributions
We propose a convex formulation, computing the robust strategic equilibrium in an elec-
tricity network with congestion and demand uncertainty, and demonstrate it using a sample
network. The contributions are:

• Convex formulation of robust Cournot-Bertrand equilibrium in a single-settlement
nodal Poolco electricity market

• Demonstration of the impact of congestion on robust strategic equilibria

• Demonstration of the impact of robust strategies on social welfare outcomes in elec-
tricity markets.

To the author’s knowledge this is the first attempt to characterize robust Cournot-
Bertrand equilibria in electricity markets on transmission networks, extending the work
of [90–92] to incorporate uncertainty and risk-averse producers.

Organization
In Section 4.2 we present the ISO and producer problems as Cournot-Bertrand competition
on electricity networks. We formulate the resulting equilibrium as a monotone linear com-
plementarity problem (LCP), which can be solved as a convex QP. We apply the results
of [93,94] to develop a robust LCP and formulate the robust counterpart of the correspond-
ing convex QP. In Section 4.3 we present results for a simple example problem. The impact
on producer profits, consumer surplus, and net social benefit is discussed, and Section 4.4
concludes.
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4.2 Problem Formulation
This formulation builds on the work of [90] and [92], obtaining the equilibrium as the solution
of a linear complementarity problem, for which a convex robust counterpart is developed.
Background on modeling energy markets with complementarity problems is provided in [62]
and background on robust optimization theory can be found in [80].

Network Modeling
We adopt the DC power flow model, its relevant notation, and its associated feasible injection
region detailed in (2.14). To be consistent with the literature, for this chapter alone, we
adopt the convention that net power withdrawals are positive, and net power injections
are negative. We will denote these as nodal imports, ri > 0, and nodal exports, ri < 0,
i = 1, . . . , n, respectively. This convention change means that the sign of the shift matrix is

flipped, and for this chapter alone we define H :=
[
−I
I

]
Ĥ ∈ R2m×n, such that we have the

following feasible injection region

R :=
{
r ∈ Rn |Hr ≤ c, 1>r = 0

}
(4.1)

We assume there are |F| firms, owning generation units at nodes i ∈ Nf ⊂ N , f ∈ F .
Each firm f makes production quantity decisions for its generators ({qi}i∈Nf

), where 0 ≤
qi ≤ qi. For simplicity, we assume that there is at most one generation unit per node.1
Generation costs C(qi) are assumed to be convex.

At each node, we assume a (steeply) decreasing affine inverse demand function D(xi),
where xi is the quantity demanded at node i. This is a common assumption for relatively
inelastic electricity markets [57], and can represent a linearization of a more complicated
inverse demand function. It is worth noting that in general xi is endogenous, and is calculated
as xi = ri + qi.

The ISO Problem
The ISO controls the import (export) ri > 0 (ri < 0) at each node i ∈ N and sets the
corresponding locational marginal prices (LMPs). These quantities must satisfy the network
feasibility constraints, determined by the set R. The ISO’s objective is to maximize social
welfare, taken as the aggregated area under the nodal inverse demand functions Di(·), less
the sum of all generation costs Ci(·). Mathematically, the ISO solves the following problem,
parametric on the firms’ production decisions ({qi}i∈N ):

1This can be achieved in practice by introducing dummy nodes into the network.
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maximize
ri

∑
i∈N

(∫ ri+qi

0
Di(τi)dτi − Ci(qi)

)
subject to 1>r = 0, : γ

−Hr ≤ c, : β

(4.2)

where τi, i = 1, . . . , n, is a dummy variable of integration. As in [92], we have excluded the
nonnegativity constraints ri+qi ≥ 0, i ∈ N , by implicitly assuming an interior solution with
respect to these constraints. The KKT conditions are as follows

0 = Di(qi + ri)− γ − ψi, i ∈ N (4.3a)
0 = ψ −H>β (4.3b)
0 = 1>r (4.3c)
0 ≤ β ⊥ T −Hr ≥ 0 (4.3d)

where ψ is included for convenience, and is defined according to (4.3b). The first KKT
condition implies that

qi + ri = (Di)−1(γ + ψi), i ∈ N (4.4)
And consequently, ∑

i∈N
qi =

∑
i∈N

(Di)−1(γ + ψi) (4.5)

This equation represents the aggregate demand function in the network relating the total
consumption quantity to the reference node price γ and the nodal price premiums {ψi}i∈N ,
which determine the relative value of LMPs. We denote the LMP vector λ as

λ = γ1 + ψ (4.6)

To prevent arbitrage between nodes i and j, the corresponding congestion charge must be
ψj − ψi.

The Firm’s Problem
We assume that generation firms do not anticipate the impact of their production on the
congestion prices set by the ISO. We model this ‘bounded rationality’ as a game where the
ISO and generation firms move simultaneously. Similar to [92] we use a mixed Cournot-
Bertrand model, where the ISO behaves a la Bertrand, setting locational price differences,
while the generation firms are Cournot players with respect to each other (i.e. set quantities),
but treat the ISO as a price setter. The reasons for choosing the ISO as a Bertrand player
are well discussed in [92].

Each firm chooses its production quantities to maximize profits with respect to the resid-
ual demand defined implicitly by (4.5). In this formulation, the reference bus price γ is
determined implicitly by the aggregate production decisions of all the generation firms, just
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as in a regular Cournot game. However, these production decisions and the implied reference
node price also depend on the nodal premiums {ψi} set by the ISO. The resulting problem
solved by each firm f ∈ F is

maximize
qi:i∈Nf ,γ

∑
i∈Nf

(γ + ψi)qi − Ci(qi)

subject to 0 ≤ qi ≤ qi, : ν−i , ν+
i , i ∈ Nf ,∑

i∈N
qi =

∑
i∈N

(Di)−1(γ + ψi), : µf

(4.7)

The KKT conditions are as follows

0 = γ + ψi −
∂Ci(qi)
∂qi

+ v−i − v+
i − µf , i ∈ Nf

0 =
∑
i∈Nf

qi + µf
∑
i∈N

∂(Di)−1(γ + ψi)
∂γ

0 =
∑
i∈N

(Di)−1(γ + ψi)−
∑
i∈N

qi

0 ≤ ν−i ⊥ qi ≥ 0, i ∈ Nf
0 ≤ ν+

i ⊥ qi − qi ≥ 0, i ∈ Nf

(4.8)

We only consider a single market (e.g. spot market) and do not consider optimization
across different energy markets (e.g. forward markets or ancillary services), however we will
show that it is possible to represent uncertainty with respect to the outcomes of different
energy markets.

These assumptions are consistent with other literature [73, 90] and with the approaches
used by most ISOs for scheduling hour-ahead and real-time markets, where the computational
benefits of the (convex) lossless DC power flow model are important.

Equilibrium Conditions of the Deterministic Game
Aggregating the KKT conditions for the firms’ and the ISO’s programs yields the equilibrium
conditions, which in general form a mixed nonlinear complementarity problem. It becomes
a mixed LCP when both the nodal demand functions and the marginal cost functions are
linear, as is assumed henceforth.

Let the inverse demand functions and the cost functions be, respectively

Di(xi) = ai − bixi, i ∈ N (4.9)

Ci(qi) = diqi + 1
2siq

2
i , i ∈ N (4.10)

where ai, bi, di, si ≥ 0. We denote a = vec(ai), B = diag(bi), d = vec(di), S = diag(si).
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We denote L ∈ R|N |×|F| as the firm-node assignment matrix, where Lij = 1 if node i
is owned by firm j, and Lij = 0 otherwise. We also denote µ ∈ R|F|, where µi is the dual
variable associated with firm i. Also denoting ∑

i∈N
1
bi

= 1>B−11 = ρ, the equilibrium
conditions are then

0 = γ1 +H>β − d− Sq + v− − v+ − Lµ (4.11)
0 = L>q − µρ (4.12)

0 = γ + 1>q
ρ
− 1>B−1H>µ

ρ
− 1>B−1a

ρ
(4.13)

0 ≤ ν− ⊥ q ≥ 0 (4.14)
0 ≤ ν+ ⊥ q − q ≥ 0 (4.15)
0 = 1>r (4.16)
0 = a−B(q + r)− γ1−H>β (4.17)
0 ≤ β ⊥ c−Hr ≥ 0 (4.18)

Here, (4.11)-(4.15) are the aggregated KKT conditions for the firms’ problems, and (4.16)-
(4.18) are the aggregated KKT conditions for the ISO’s problem. Under the assumption of
linear demand functions and quadratic convex cost functions, the firms’ and the ISO’s pro-
grams are strictly concave-maximization problems, so (4.11)-(4.18) are also sufficient. Note
that (4.13) can be excluded from the preceding market equilibrium conditions because it is
implied by (4.16) and (4.17). This set of equations constitutes a mixed linear complemen-
tarity program (mLCP).

We wish to turn these set of conditions into a compact LCP. This derivation closely
follows that in [92]. We first write out equations (4.16) and (4.17) as follows[

a
0

]
−
[
B
0

]
q −

[
B 1
1> 0

] [
r
γ

]
−
[
H>

0

]
β =

[
0
0

]
(4.19)

Rearranging and solving for γ and r yields

r = Qa−QBq −QH>β (4.20)

γ = 1>B−1

ρ
a− 1>

ρ
q − 1>B−1

ρ
H>β (4.21)

where, denoting E = 11>

Q = B−1 − B−1EB−1

1>B−11
(4.22)

We note that
QB = I − B−1E

ρ
, BQ = I − EB−1

ρ
(4.23)
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We now consider equations (4.11) and (4.12). We have that µ = L>q
ρ

, and that LL> = Λ,
where Λij = 1 if either i = j, or if i 6= j but node i and j are owned by the same firm,
Λij = 0 otherwise. Using substitution we rewrite equation (4.11) as

0 = 1(1>B−1

ρ
a− 1>

ρ
q − 1>B−1

ρ
H>β) +H>β

−d− Sq + ν− − ν+ − Λq
ρ

(4.24)

Collecting terms, using (4.23), and solving for ν− we get

ν− = (BQ− I)a+ d+ (S + Y

ρ
+ E
ρ

)q −BQH>β + ν+ (4.25)

We denote N = (S+ Y
ρ

+ E
ρ

), where N ∈ S+ is positive semi-definite, and has the following
properties

Nij =



2
ρ

+ si, if i = j,

2
ρ
,

if i 6= j, and the units at nodes i and j

belong to the same firm,
1
ρ
, otherwise

(4.26)

We can now write out the following LCP

w =

 q − q
ν−

c−Hr

 , z =

ν
+

q
β

 ,

t =

 q
(BQ− I)a+ d
c−HQa

 , M =

0 −I 0
I N −BQH>
0 HQB HQH>


where w = t+Mz, w ≥ 0, z ≥ 0, w>z = 0. We notice that M is square but not symmetric.
Since it is square we can write M as the sum of a symmetric matrix P and a skew symmetric
matrix K, such that M = P +K, where P � 0.

M =

0 0 0
0 N 0
0 0 HQH>

+

0 −I 0
I 0 −BQH>
0 HQB 0

 (4.27)

Due to the fact that z>Mz = 1
2z
>(M +M>)z = z>Pz, we can solve the LCP by solving

the following convex QP
minimize

z≥0
h(z) = z>Pz + t>z

subject to Mz + t ≥ 0
(4.28)

with any solution z∗ solving the LCP(M, t), iff h(z?) = 0 [62].
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Formulating a Robust Counterpart
We wish to identify strategies for the producers that are robust to uncertainty. Three
potential sources of uncertainty for a generator are: the parameters of the inverse demand
function, the quantity of zero marginal cost renewable generation in the network, and the
volume of forward contracts signed by other generation firms. All of these sources can be
represented as aggregate uncertainty in the residual demand curve faced by a producers,
however we will see that this formulation can additionally capture more general sources of
uncertainty.

We seek a robust equilibrium where producers maximize their profits, robust to uncer-
tainty in the residual demand curve, while assuming that other producers are adopting robust
strategies. A robust optimization problem takes the form

min
x∈X

max
u∈U

f(x;u) (4.29)

which determines the best possible action x? under a worst case realization of uncertainty
u ∈ U . As seen in (4.28), the equilibrium solution of the deterministic problem is an
LCP which can be formulated as a convex QP. We obtain a robust equilibrium solution by
considering a robust LCP, and formulating the robust counterpart to the equivalent convex
QP.

A nominal LCP(M, t) has the form

0 ≤ z ⊥Mz + t ≥ 0 (4.30)

The function h(z) = z>(Mz + t) is known as the residual of LCP(M, t), with h(z) = 0 iff z
solves LCP(M, t). Applying the results of [93] we define an uncertain LCP(u) as

0 ≤ z ⊥M(u)z + t(u) ≥ 0 (4.31)

where M(u), t(u) are parametric on the realization of a random variable u ∈ U . A robust
solution to the LCP seeks to find a feasible solution z∗ which minimizes the residual function
h(z;u) under a worst case uncertainty realization u∗. This takes the form

min
z≥0

max
u∈U

z>(M(u)z + t(u))

subject to min
u∈U

M(u)iz + ti(u) ≥ 0, ∀i
(4.32)

In [94], the authors show that this problem is tractable for affine uncertainty sets of the
form

t(u) = t0 +
L∑
l=1

ultl

M(u) = M0 +
K∑
k=1

ukMk, M0 � 0, Mk � 0, ∀k

u ∈ U ⊆ RL+K

(4.33)
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where L and K are general scalars defining the affine uncertainty set, and U can take any
of the following forms2

U1 = {u : ‖u‖1 ≤ 1}, U2 = {u : ‖u‖2 ≤ 1}
U∞ = {u : ‖u‖∞ ≤ 1}

(4.34)

While the formulation is general, for exposition we restrict our attention to uncertainty
in t(u), such that M(u) = M , ∀u ∈ U . If U = U∞, then (4.32) takes the form

min
z≥0

z>(Mz + t0) +
L∑
l=1
‖z>tl‖1

subject to Miz + t0 −
L∑
l=1
‖(tl)i‖1 ≥ 0, ∀i

(4.35)

As stated previously we consider uncertainty in the residual demand function, which we
treat as interval uncertainty in the intercept of the inverse demand functions at each node.
We consider functions of the form

Di(xi; ζi) = ai(ζi)− bixi, i ∈ N
ai(ζi) = a0 + ζiail, ‖ζi‖∞ ≤ 1

(4.36)

Where ail ≥ 0 is a common belief among producers regarding the bounds of the uncertainty
interval at node i. We implicitly assume that all firms have the same belief regarding the
uncertainty in the inverse demand function at each node. This assumption is required for the
robust LCP model we have used here. Incorporating different beliefs regarding uncertainty
to capture the presence of firms with different risk preferences should be possible, although
will require a much closer treatment of the individual robust optimization that each firm
faces.

Since a only appears in t in the deterministic LCP, it is straightforward to translate
uncertainty in a to uncertainty in t, with the resulting robust LCP having the form of
(4.35). This is a convex optimization problem, and thus a robust equilibrium solution exists
but may not be unique. The problem can be solved using standard convex optimization
solvers.

4.3 Example and Results
The model is demonstrated on an example network, and outcomes are compared with con-
ventional (non-robust) Nash-Cournot equilibrium. Networks with up to 300 buses were
simulated and were all found to demonstrate qualitatively similar behavior, thus for expo-
sitional clarity the simple 3-node network shown in Fig. 4.1 is used here, similar to the
network modeled in [95].

2For the case when U = U2, the M0, Mk are restricted to be symmetric matrices.



CHAPTER 4. ROBUST COURNOT-BERTRAND EQUILIBRIA ON POWER
NETWORKS 63

Figure 4.1: 3 Node Network

Example Network
The three buses i = 1, 2, 3 have customers with inverse demand functionsDi(xi) = 40−0.08qi,
i = 1, 2, and D3(x3) = 35−0.05q3 $/MWh (node 3 has greater demand elasticity). Each pair
of buses is connected by a single transmission line, and all three lines have equal impedance.
The market has two firms f = 1, 2 each with a single generator in its fleet; Firm 1’s generator
is sited at i = 1, while Firm 2’s generator is at i = 2. Both generators have a maximum
capacity of qi = 1000MW. Each generator has a constant marginal cost: d1 = $15/MWh
for firm 1, and d2 = $20/MWh for firm 2. We simulate a congested scenario by imposing
a 20MW constraint on the line between nodes 1 and 2, and a 35MW constraint on the line
between nodes 1 and 3.

In the examples that follow, we assume that ail = al, ∀i. That is the uncertainty at each
node is independent but lies in the same interval. The uncertainty al is swept over a range
of $0-15/MWh.

For comparison, the non-robust quantity decisions (i.e. classic Nash-Cournot equilib-
rium) are also modeled. For each scenario, the non-robust quantity is intercepted with the
realized demand curve to produce the price at each node. This simulates the scenario where
uncertainty is present, but firms behave as if there is no uncertainty. The system is modeled
within Matlab using CVX and the Gurobi solver.

Results and Discussion
The profits for the two generation firms are shown in Fig. 4.2 for the case when the transmis-
sion lines are unconstrained and there is no congestion in the network. We plot the results
for the range of potential uncertainty realizations as a shaded region. These shaded regions
are bounded by the profits achieved at the maximum and minimum limits of the uncertainty
interval, plotted as thick lines. The results for the nominal value of the uncertainty are
plotted as a third solid line through each shaded region. By construction, the uncertainty
interval spans all potential realizations of demand and thus all possible market outcomes.

Compared with classic Nash-Cournot equilibrium, we see that the primary goal of the
robust optimization is met: the robust strategy always results in higher profits for the worst
case realization of demand. For small ranges of uncertainty, we see that the firms actually
make greater profits at the robust equilibrium than at the non-robust equilibrium, regardless
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Figure 4.2: Profits of generation firms under a range of uncertainty intervals, with no network
congestion. Both robust and non-robust strategies are shown, and the three lines indicate
high, nominal, and low realizations of demand.

of the level of demand. This can be explained by observing that each firm restricts its output
in order to protect itself from low prices, contracting the net supply curve and driving up
prices.

Eventually the reduction in demand due to the higher prices offsets the initial gain in
profits, and we see that the Nash-Cournot equilibrium results in higher profits in nominal
and high demand scenarios. At low demand the robust scenario still guarantees that the
generators will not incur a loss, whereas a Nash-Cournot equilibrium can actually result in
a net loss for generators as realized prices fall below the marginal cost of generation.

It is important to emphasize that these results assume that all firms follow the same
robust optimization behavior, i.e. that they have the same belief about uncertainty and
the same sensitivity to risk. However, for a less risk-sensitive firm, there is an incentive to
increase production in order to increase expected profits. The final equilibrium would be
dependent on the firms’ risk acceptance, with greater risk aversion driving firms towards the
robust optimization, and lower risk sensitivity driving them towards Cournot optimization.
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Figure 4.3: Profits of each generating firm when congestion is present on the network. Note
that the shape of the curves changes over distinct domains, dictated by the congestion on
the network: in domain a line 1-3 is congested; in domain b lines 1-3 and 1-2 are congested,
and in domain c only line 1-2 is congested.

This is explored in greater detail in [81].

Network Effects
As firms restrict their production in response to uncertainty, network flows change and can
shift the congestion patterns on the network. We can divide the uncertainty range into
distinct domains with unique congestion patterns, highlighted in Figure 4.3. Within each
domain the residual demand curves for each generator stay constant, and equilibrium follows
the principles outlined above for the uncongested case. However as uncertainty increases and
the congestion pattern changes, there is a discontinuous shift in the residual demand curve
each firm faces, seen as a change of curvature in Figure 4.3.

In our example, comparing Figures 4.2 and 4.3 shows that congestion reduces the profits
of Firm 1, but also makes a robust strategy more attractive for low and moderate uncertainty.
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Firm 2 benefits from congestion rents, but sees profits more threatened by uncertainty in
domain a. As uncertainty increases and the line between nodes 1 and 2 becomes congested in
domain b, Firm 2 sees greater benefit from uncertainty and the profits of Firm 1 are eroded.
This effect is repeated more dramatically as uncertainty increases into domain c. These
effects are dependent on the exact network structure, and were found to be particularly
complex for larger networks. We will not delve further into these here, but as we will see in
later chapters, this effect is indicative of critical regions, defined by the network congestion
pattern, with the equilibrium behavior of producers following a different closed form equation
in each region.

Welfare Effects
The impact of the robust strategy on consumers is less nuanced. The consumer surplus
is calculated as the area above the market clearing price and below the demand curve,
representing the surplus value which consumers would have been willing to pay for electricity
[96]:

CS = 1
2(a− λ)>x (4.37)

The total consumer surplus for the market is shown in Figure 4.4 for competitive, Nash-
Cournot, and robust equilibria. As we assume that producers offer a fixed quantity of
power into the market, the consumer surplus is invariant to the realized inverse demand
function for a given uncertainty interval. When firms restrict their output to be robust
to low realizations of demand, prices rise above competitive levels, demand decreases, and
consumer surplus drops below the Cournot oligopoly level.

The total efficiency of the market can be measured by its net social benefit: the sum
of consumer surplus, producer profits, and merchandising surplus3 [96]. Building on (4.37),
this can be written as

NSB = CS + (λ>q − C(q)) + β>c (4.38)

Since robust behavior restricts supply below Nash-Cournot equilibrium levels, the net
social benefit decreases monotonically [96] as shown in Figure 4.5.

4.4 Conclusion
Electricity markets are particularly susceptible to non-competitive behavior, making it im-
portant to understand strategic equilibria in order to inform better market design and poli-
cies. The unique structure of electricity networks, and the many sources of uncertainty in

3This is the rent collected by the system operator in the presence of congestion, and can be shown to be
equal to µ>T .
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Figure 4.4: Consumer surplus under a number of equilibrium models: perfect competition,
Nash-Cournot equilibrium, and Nash-Cournot robust equilibrium. When producers restrict
production to be robust to uncertainty, consumers are clearly impacted. Congestion further
reduces consumer surplus by introducing congestion charges.

Figure 4.5: Net Social Benefit (sum of consumer surplus, producer profits, and merchandising
surplus) under both robust and non-robust equilibrium.
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supply and demand, also make it important to have scalable tools for studying the impact
of uncertainty on energy markets.

We extend a model of strategic equilibria in electricity networks to include robustness
to uncertain demand, reflecting the behavior of risk-averse generation firms. The robust
optimization model remains convex, allowing it to be scaled to large power networks. The
model is not intended to describe the optimal bidding strategies or bid curves of individual
producers, however it provides an efficient way of simulating the impact of uncertainty on
market outcomes.

Whereas robust optimization in competitive markets may reduce profits for producers,
we see that robustness with small uncertainty intervals uniformly increases profits for the
generating firms relative to Nash-Cournot equilibrium. The impact of the robust equilibrium
on consumers is uniformly negative, as firms restrict their output leading to an increase in
prices, similar to that which would be seen under collusive behavior. Thus the ”price of
robustness” is seen in a reduction of the net social benefit of the market.

Congestion affects different firms unevenly, as it simultaneously creates congestion rents
and increases market power for some generators. We show that uncertainty can affect con-
gestion patterns in robust equilibrium, with the exact relationship between generator profits
and congestion being dependent on network topology.

These results can be applied to reflect uncertainty in supply due to intermittent renew-
able electricity generation, by modeling the uncertainty in net load (demand less must-take
renewables). The results can also represent uncertainty in the forward contracts signed by
other firms, which will contract the residual supply curve in the spot market. By incorpo-
rating robustness into the strategic equilibrium, we offer additional insight that producers,
utilities, and regulators can use to understand outcomes in real markets.
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Chapter 5

Bilevel Problems in Electricity
Markets

In the previous chapter we examined the impacts on market outcomes of participants robustly
anticipating the effects of uncertainty on their profits. While useful for examining market
outcomes, Cournot models in general are not intended to tell us about the way a participant
would actually bid into the market. This question will be the focus of this next chapter,
where we consider the strategic bidding problem of private participants in transmission-
constrained electricity markets. We will describe a new solution approach to the bilevel single
firm problem using multiparametric programming. Moreover, we will use this methodology
to explicitly characterize and compute equilibria in the multi-firm problem. The techniques
and methods from multiparametric programming used in this chapter will inform the work
in the following two chapters.

5.1 Introduction

Multi-Leader-Follower Games and Bilevel Optimization Problems
The Multi-Leader-Follower game is an extension of the concept of the Stackelberg game
described in the previous chapter. In a classical Stackelberg game (single-leader-follower),
there is a leader who maximizes their payoff subject to all other players, the followers,
being in a competitive equilibrium [97]. This model is typically applied to markets or games
where there is a single dominant firm and a competitive fringe, where the dominant firm
can be modeled as choosing their action first, and the competitive fringe then responds to
this action. The multi-leader-follower game generalizes this idea to the case with multiple
dominant firms or leaders.

This concept proves to be extremely useful in analyzing electricity markets, as the bid-
ding and market clearing processes fit the structure of a multi-leader-follower game. In a
single-stage Poolco market, the payoffs of market participants depend on their own and
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other participants’ actions (bids), and the market clearing outcomes determined by the ISO
(cleared quantities and prices). The market participants (leaders) decide their bids simulta-
neously in advance, moving first, and submit these to the ISO (single follower) which moves
second, determining cleared quantities and prices from participants’ bids. For participants
to maximize their payoffs, this leads to a set of bilevel optimization problems, where the
first level is a participant’s private payoff maximization, subject to a second level which is
the ISO’s market clearing optimization. In other words the participants anticipate their and
other participants’ impact on the market outcome, and optimize their bids accordingly.

Typically the second level of a bilevel problem is substituted for the equilibrium condi-
tions of the follower’s problem, and, assuming the actions of other participants are fixed, this
leads to the formulation of the private participant payoff maximization problem as a mathe-
matical problem with equilibrium constraints (MPEC). The multi-firm problem requires the
simultaenous solution of a number of MPECs, and is commonly referred to in the literature
as an Equilibrium Problem with Equilibrium Constraints EPEC. In this chapter we will use
the theory of multiparametric programming to provide new solution methods to particular
subclasses of these problem types in the context of strategic behavior in elextricity markets.

Prior Literature
Solution methodologies for MPEC and EPEC problems are discussed in [98]. For MPECs
these include solving sequential non-linear programs (NLPs), the most widely used of which
is the PATH algorithm. An alternative solution method is to reformulate the MPEC as
an MILP using the big-M method to transform the complementarity constraints to integer
constraints. Finally some work has been done on SDP relaxations of the complementary
constraints, and for some problem instances these compare favorably to the MILP reformu-
lation. As to EPECs, these are effectively a set of coupled MPECs, and inherit all of their
‘bad’ properities. In general no global solution exists for an EPEC, so methods tend to find
local optima. The most popular approach is the Diagonalization method, which involves
iteratively solving the MPEC of each player sequentially, while holding the strategies of the
other players fixed. As will be discussed in Section 5.5, this method offers no convergence
or solution guarantees, is very sensitive to initial conditions, and may be a poor choice of
solution method given the structure of the problem. Another approach is the Simultaneous
solution method, which involves simultaneously solving for the strong stationarity conditions
of all MPECs at once. Finally, given the non-convex nature of EPECs, a variety of approxi-
mate and exotic algorithms have been proposed to find solutions, including: a predator-prey
model [99], genetic algorithm [100, 101], particle swarm optimization [61, 102], bacteria for-
aging optimization [103], and a bat-inspired algorithm [104]. These algorithms provide no
solution or convergence guarantees in general, but can be useful in modelling situations with
nonlinear costs and constraints.

The more specific strategic bidding problem is very well studied in the literature, par-
ticularly around the turn of the millenium as deregulation became a prominent feature of
US power markets. As discussed in the previous chapter many equilibrium models exist
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to describe this kind of strategic behavior: Competitive, Cournot, Bertrand, Stackelberg,
Conjectured Supply Function, and Supply Function Equilibrium (SFE). An excellent refer-
ence describing the salient features of each model, and examples in the literature of such
approaches can be found in [64], and [105] provides a comprehensive review of equilibrium
models and solution methodologies.

The SFE model is closest to that studied in this Chapter. The SFE model was first
introduced in [106], and applied by [107], where each firm bids a ‘supply function’, relating
its quantity to its price, and the equilibrium is found by solving a set of first-order differential
equations. The SFE model has since been expanded to include capacity constraints [108],
but suffers from an inability to deal with transmission constraints in any systematic way. [51]
provides an overview of the advantages and shortcomings of the SFE method. The use of
this approach was generally used to model market outcomes and market power, rather than
true bidding strategies of generation firms. In recent years, the ‘SFE’ designation has come
to include the class of multi-leader follower strategic bidding problems, where firms bid
supply functions to an ISO. These approaches typically only consider the supply function
parameters, whereas we shall also consider capacity witholding of generation.

For the case of the single-firm, a parametric approach to this problem was studied in
[109], where a single markup parameter was introduced for each generator. The authors
observed that the parameter space could be partitioned, and proposed an iterative scheme
to discover the optimal markup parameter, rather than pre-specifying the critical regions of
the problem, as we shall see later in this Chapter. In [110], the MPEC of the single-firm
problem is reformulated as an MILP and then use a convex relaxation to improve solution
times. In this Chapter we propose an alternative reformulation of the MPEC problem using
multiparametric programming.

The general multi-leader follower problem is comprehensively discussed in [111] and [112],
both providing examples of problem formulations, existence results, its relation to varia-
tional inequalites, and solution methodologies. For the specific case of strategic generation,
the most complete work is [113], which uses EPECs to model bilevel games in restructured
electricity markets, providing existence results in more simple cases without transmission
constraints. In the more complex case they solve for local Nash equilibria, a weaker concept
than the global generalized Nash equilibria we will study in this Chapter, using a diago-
nalization approach. In [114], an EPEC formulation is used, with a novel methodology to
discover multiple equilibria by sequentially inserting ‘holes’ into the feasible set around pre-
viously discovered equilibria. Our methodology also finds all pure strategy generalized Nash
equilibria of the problem.

The work in this Chapter is closest in spirit to [115], and to [116]. In [115] a single markup
parameter for both the affine and quadratic bid parameters is proposed, and shown that this
is sufficient to capture the optimal space of bid functions of this type. The authors propose
an Individual Welfare Maximization Algorithm to solve both the single and multi-firm prob-
lems, which resembles diagonalization. The authors also demonstrate that the best repsonse
function of a firm is not continuous in geeneral, meaning that the problem can have zero,
one, or many equilibria. In [116] an analytical solution method to the multi-firm problem
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is proposed, using similar parametric ideas to those proposed in this Chapter. However this
approach involves complete enumeration of every active constraint set of the ISO problem,
and only finds local Nash equilibria, with no solution of this approach guaranteed to be
a global equilibrium. Our approach provides more structural insight into the problem and
guarantees finding all pure strategy generalized Nash equilibria for a given problem instance.
We additionally consider the witholding of generation capacity by strategic firms.

Novel Contributions
In this chapter we present the following novel contributions. In all cases for all classes of
problem instance the methods detailed below can handle both strategic affine parameter
bidding (a-bidding) and strategic capacity witholding, in the presence of transmission and
generation capacity constraints.

• Multiparametric solution approach to the single-firm MPEC problem.

• Algorithm to exactly compute all pure strategy generalized Nash equilibria of the
multi-firm EPEC problem, if any exist.

• A conjecture on the existence of mixed strategy equilibria along discontinuities of the
multi-firm problem.

Organization
In Section 5.2 we present the problem formulation, Section 5.3 demonstrates the solution
methodology for the single firm problem, Section 5.4 describes the multi-firm problem and
an algorithm to compute its equilibria, Section 5.5 discusses some other interesting features
of this class of problems, and Section 5.6 concludes.

5.2 Problem Formulation
We focus here on the strategic bidding problem of generation firms. This formulation builds
off that described in Section 2.3. We consider a single period problem, i.e. T = 1, and
as such we drop the subscript t for the rest of this chapter. We also assume there is no
storage on the network. We begin by describing the participant model, then formulate the
ED problem, and finally describe the participants’ private optimization problems.

Generation Firms
We assume a set of generation firms F := {1, . . . , N} firms, indexed by f ∈ F , owning
generation units at nodes i ∈ Nf ⊂ N , f ∈ F . For simplicity, we assume that there is
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at most one generation unit per node,1, and that this unit is owned by a single firm, i.e.
Nj ∩ Nk = ∅, ∀j, k ∈ F , ⋃f∈F Nf = N . We denote a firm’s generation vector g ∈ Rnf ,
where nf is the number of generating units owned by firm f , and denote a generator-node
assignment matrix for each firm as Λf ∈ Rn×nf , where

[Λf ]ij :=
{

1, if the jth generating unit of firm f is located at node i
0 otherwise

, f ∈ F (5.1)

The nodal generation vector for the whole network, g ∈ Rn is recovered as g = ∑
f∈F Λfgf ,

and the firm generation vector can be recovered from the nodal generation vector as gf = Λ>f g
We now distinguish between the true cost function of a generation firm, and the cost

function that they actually bid to the ISO. We denote the true cost function of a generation
firm as Cf (gf ) as notated previously, and the bid cost function as Ĉf (gf ), where

Cf (gf ) = 1
2g
>
f Qfgf + a>f gf , f ∈ F (5.2)

Ĉf (gf ) = 1
2g
>
f Q̂fgf + â>f gf , f ∈ F (5.3)

where Qf ∈ Rnf×nf , Q̂f ∈ Rnf×nf , Qf , Q̂f � 0, af ∈ Rn
f , âf ∈ Rn

f , af , âf ≥ 0. In the case of
linear generation costs, i.e. constant marginal cost, the quadratic term is omitted in both
functions. In general there are no exogenous constraints on bid parameters, however many
markets enforce price caps, which make sense in the case of purely linear costs, however are
more difficult to characterise in the quadratic case. Additionally it is unlikely that generators
would ever want to bid below their marginal cost as they would be losing money by default.
As such, we define the following constraints on bid parameters

Qf � Q̂f � Qf , f ∈ F (5.4)
af ≤ âf ≤ af , f ∈ F (5.5)

where Qf ∈ Rnf×nf , af ∈ Rnf are arbitrary, finite, upper limits on the quadratic and
affine bid cost parameters respectively. In the case of purely linear costs af would have the
interpretation as the market price cap, and would be common across all firms, i.e. af = a,
f ∈ F .

The aggregate bid cost function for the network Ĉ(g) is recovered as

Ĉ(g) = 1
2g
>Q̂g + â>g (5.6)

where

Q̂ =
∑
f∈F

ΛfQ̂fΛ>f (5.7)

â =
∑
f∈F

Λf âf (5.8)

1This can be achieved in practice by introducing dummy nodes into the network.
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We assume that each firms generation is bounded by a convex generation set Gf , where

Gf := {gf : 0 ≤ gf ≤ gf}, f ∈ F (5.9)

where gf ∈ Rnf is the true vector of upper capacity limits of firm f ’s generating units. We
also assume that generators may not truthfully reveal their actual capacity to the ISO, and
may strategically withold some capacity from the market. We define the vector of upper
capacity limits that is bid to the ISO by firm f as ĝf ∈ Rnf , where 0 ≤ ĝf ≤ gf . The
nodal generation upper capacity limit, ĝ, is recovered as ĝ = ∑

f∈F Λf ĝf . We denote the bid
feasible set of generation as Ĝ, where

G := {g : 0 ≤ g ≤ ĝ} (5.10)

ED Problem
We consider a single period economic dispatch problem with elastic demand, employing
the DC power flow model, parameterized by the bid parameters of generation, denoted
ED(â, Q̂, ĝ).

ED(â, Q̂, ĝ) : min
g,d

J(g, d, â, Q̂) (5.11a)

s.t. γ : 1>p = 0 (5.11b)
β : Hp ≤ c (5.11c)
λ : p = g − d (5.11d)

g ∈ Ĝ (5.11e)
d ≥ 0 (5.11f)

where J(g, d, â, Q̂) = Ĉ(g) − B(d), and B(d) is defined as in (2.28). Since the objective is
convex, and constraints are continuously differentiable and affine, the KKT or equilibrium
conditions of the problem are necessary and sufficient for optimality. We denote the optimal
objective function, generation optimizers and LMPs as J?(â, Q̂, ĝ), g?(â, Q̂, ĝ), λ?(â, Q̂, ĝ),
respectively. We represent that these optimal solutions satisfy the equilibrium conditions of
the problem as

g?(â, Q̂, ĝ) ∈ EQBM(ED(â, Q̂, ĝ)) (5.12)
λ?(â, Q̂, ĝ) ∈ EQBM(ED(â, Q̂, ĝ)) (5.13)

Private Profit Maximization of the Firm
Each generation firm seeks to maximize its payoff, the first level, subject to the equilibrium
conditions of the ISO’s ED problem, the second level. We will use x as a shorthand to
represent all the decision parameters of all firms, i.e. x = (â, Q̂, ĝ), and as a generic parameter
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vector x ∈ Rnp , where np is the number of parameters. We represent the actions that relate
to firm f , as xf , and the actions that relate to all other firms as x−f , such that x = [xf , x−f ],
where this representation does not indicate any reordering of the vector x. We denote the
payoff of a firm f as πf (xf , x−f ), and the private problem of a firm f is written as

π?f (x−f ) = max
λ,g,xf

λ>f gf − Cf (gf ) (5.14a)

s.t. λf = Λ>f λ (5.14b)
gf = Λ>f g (5.14c)
g ∈ EQBM(ED(xf , x−f ) (5.14d)
λ ∈ EQBM(ED(xf , x−f ) (5.14e)
xf ∈ Xf (5.14f)

where Xf is a general feasible set representing (5.4), (5.5), and (5.10) for the firm f . As
can be seen this problem is non-convex due to the inclusion of the equilibrium constraints,
which would manifest as complementarity constraints if written out in full. In the subsequent
sections we will address how to solve this problem for a single firm, and how to compute
equilibria of the multi-firm problem, using techiques from multiparametric programming.

We will additionally make the assumption that each firm only optimizes one of its cost
function parameters, i.e. only â, or Q̂. This is due to the fact, as we shall see in (6.38),
that both the generation optimizers and LMPs have a bilinear dependence on â, or Q̂, which
further complicates the problem. As such we will assume that each firm f optimizes only
the affine term in its bid function âf , and the quadratic term is fixed, with Q̂f = Qf . This
means that, from here out x = (â, ĝ). This is in contrast to [115] and [116], which use a
single parameter for each firm multiplying both the affine and quadratic bid terms, but in
line with [113], where this approach is reffered to as a-bidding.

5.3 Optimal Action of the Single Firm
We first consider the case where a single firm is attempting to optimize its actions, subject
to the anticipated actions of other firms. We assume that these actions x−f are constant and
fixed. This problem is non-convex as stated above, and belongs to the MPEC class for which
solution methods exist, discussed in [117]. We propose an alternative solution framework
using multiparametric programming, and will show how these non-convex problems can be
reduced to a finite set of QPs, or a single tractable MIQP, using similar concepts to those
presented in [118]. The approach has both advantages and disadvantages relative to MPEC
solution methods, but will also help us address the multi-firm equilibrium problem exactly
in the next section. Using the analytical formulae, we will

From the results in Section 2.4, we can make the following deductions about the ED
problem in (5.11), using the notation of that Section.
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Theorem 5. Solution properties of ED parametric on affine bid coefficients and generation
capacities

i The feasible parameter set K? is a polyhedron.

ii The optimizer function z?(x) : K? → R2n is:

• continuous, if the bid function is quadratic, i.e. Q̂ � 0.
• discontinuous, if the bid function is affine, i.e. Q̂ = 0.
• polyhedral piecewise affine (PPWA) over K?. In particular it is affine in each critical

region CRj, and every CRj is a polyhedron.

iii The value function J?(x) : K? → R is:

• continuous
• polyhedral piecewise affine (PPWA) over K?, in particular affine in each CRj, if the

bid function is affine and demand is inelastic.
• polyhedral piecewise quadratic (PPWQ) over K?, in particular quadratic in each
CRj, if the bid function is quadratic and demand is elastic or inelastic, or if the bid
function is affine and demand is elastic.

iv The LMP vector λ is a PPWA function over K?, since it is an affine function of the dual
variable function u?(x) : K? → Rm which is:

• discontinuous, if the bid function is affine, and demand is inelastic
• continuous, if the bid function is quadratic and demand is elastic or inelastic, or if

the bid function is affine and demand is elastic.
• PPWA over L?, in particular affine in each CRj.

It should be noted that these results diverge slightly from those in Section 2.4, in par-
ticular with regard to the optimizer function, due to the fact here that we have the product
of the parameter and the optimization variable in the objective function. The intuition for
this difference is that one can imagine varying the affine cost coefficient of a generic LP, and
at some point the optimal solution will jump to a different vertex of the feasible set. This
results in the discontinous optimizer function in the case of affine costs.

These insights allow us to reformulate the generation optimizers and LMPs as PPWA
functions over a set of critical regions. We assume that the ED problem has been solved
parametrically, using the methods described in Section 2.4, over a feasible parameter set K?,
resulting in a set of full dimensional polyhedral critical regions, CRj, j = 1, . . . , NCR. We
define the H representation of the jth critical region as

CRj := {x : Pj,xx < Pj,c}, j = 1, . . . , nCR (5.15)
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where Pj,x and Pj,c are a matrix and vector respectively, of appropriate dimension, defin-
ing the bounding halfspaces of the polyhedral region CRj. Each critical region CRj has
associated optimizer and dual variable functions such that

λ = Fjx+ hj, if x ∈ CRj, ∀j (5.16)
g = Rjx+ vj, if x ∈ CRj, ∀j (5.17)

where Fj, Rj ∈ Rn×np , ∀j, and hj, vj ∈ Rn.
We can substitute these functions into (5.14) to obtain

π?f (x−f ) = max
xf

λ>f gf − Cf (gf ) (5.18a)

s.t. λf = Λ>f λ (5.18b)
gf = Λ>f g (5.18c)
λ = Fjx+ hj, if x ∈ CRj, ∀j (5.18d)
g = Rjx+ vj, if x ∈ CRj, ∀j (5.18e)
xf ∈ Xf (5.18f)

We can substitute these expressions in and reformulate the profit function of firm f in
the jth critical region as

πf,j(x) = λ>f gf −
1
2g
>
f Qfgf − a>f gf (5.19)

= λ>ΛfΛ>f g −
1
2g
>ΛfQfΛ>f g − a>f Λ>f g (5.20)

= x>
(
F>j ΛfΛ>f Rj −

1
2R
>
j ΛfQfΛ>f Rj

)
x

+
(
h>j ΛfΛ>f Rj + v>j ΛfΛ>f Fj − v>j ΛfQfΛ>f Rj − a>f Λ>f Rj

)
x

+
(
h>j ΛfΛ>f vj −

1
2v
>
j ΛfQfΛ>f vj − a>f Λ>f vj

) (5.21)

It can be shown using a similar analysis to that in Section ?? that the quadratic term in
(5.21) is negative semi-definite, and thus that πj(x) is concave, ∀j. We now observe that
(5.18) can be recast as the solution of NCR QPs.

π?f (x−f ) = max
j=1,...,NCR

(
max
xf

πj(xf , x−f ) : x ∈ CRj

)
(5.22a)

Each QP is concave over a critical region of the ED problem, and the solution corresponds
to the maximum payoff obtained among these QPs, with the optimal action being the corre-
sponding optimal solution of the maximum payoff. Each QP can be solved individually and
then compared, or the entire problem can be solved in a single optimization using epigraph
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form and slack variables, or alternatively using integer variables and the big-M method to
represent set membership, as will be seen in (5.28). Since each QP is concave, a maximum
exists, however this may not be unique, meaning that the optimizer or optimal action is
not necessarily unique. Additionally, since the critical regions are open sets, care must be
taken if a solution is found which lies on a region boundary where the payoff function is
discontinuous. We will see this in the following example.

Example

g1 g2c

d1 d2
λ1 λ2

Bus 1 Bus 2

Figure 5.1: Two bus network

We consider a simple two bus network with a generator and load at each bus, as shown
in Figure 5.1, with line capacity c = 5MW, and upper generation limits g1 = 20MW,
g2 = 10MW. We assume that generators bid affine demand functions, such that Q1 = Q2 = 0.
We will refer to this as price-quantity bidding or (P,Q) bidding. The true affine cost of
generator 1 is a1 = 10$/MW. We assume that generator 2 bids a fixed quantity at a fixed
price, such that â2 = 20$/MW, ĝ2 = 10MW. We also assume that demand is equally elastic
at both nodes, such that B(di) = 40di − d2

i . This is a sufficiently general case displaying
all the typical behaviors of other examples. For illustration we let the market price cap
a1 = 30$/MW.

We first illustrate the multiparametric solution of ED for this example. The plots are
in 3D and some have been rotated to better visualize the results, so refer to the axes when
comparing across plots. In Figure 5.2 we observe the critical regions of the problem over the
feasible parameter space, and the active constraints in each region are listed in Table 5.1.
We also illustrate the generation optimizers in Figure 5.4, the demand optimizers in Figure
5.5, the line flow in the 1→ 2 direction in Figure 5.6, and the LMPs in Figure ??.

Critical Region g1 = ĝ1 g2 = ĝ2 p12 = c
1 1 0 0
2 1 1 0
3 1 0 1
4 0 1 0
5 0 0 1

Table 5.1: Active Constraints of Congestion Regions in the ED Problem
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Figure 5.2: Critical Regions of ED for
(P,Q) bidding

Figure 5.3: Value Function of ED over the
feasible parameter space for (P,Q) bid-
ding

We now consider the profit surface of generator 1 over the parameter space, (5.21), shown
in Figure 5.8. We see that the function is PPWQ and discontinuous. We also observe that
the optimal parameters are not unique and generator 1 maximizes its profit for â1 ∈ [10, 20],
ĝ1 = 15. This maximum is attained on the boundary of critical regions 1 and 3, however
the maximum is valid as the profit function is equal on both sides of the boundary. This
boundary represents degeneracy in the transmission line constraint and does not affect the
profits of the generator. This behavior where it is in the interest of generators to marginally
congest transmission lines has been observed previously in [119]. It would appear that a
maximum is also attained on â1 = 20, ĝ1 ∈ [15, 20], however this falls on the boundary
between critical regions 4 and 5 where the profit function is discontinuous. This represents
primal degeneracy where both generators bid the same marginal cost. If this occurs then
in practice either demand would be split equally between generators, or a tie-breaking rule
would be used. An acceptable bid for generator 1 would be â1 = 20−ε, ĝ1 ∈ [15, 20], however
this results in a lower payoff than the maximum described previously. It is also interesting
to compare Figure 5.8 to Figures 5.3 and 5.5, and see how the private incentives of the
generator compare to the social optima. A set of profit maxima among which the generator
is indifferent results in vastly different social costs and demand optimizers.

Tractability and Scalability
In the worst case, the number of critical regions is equal to the number of possible combi-
nations of active sets of the optimization problem. However, in many problems only a few
active constraints sets generate full-dimensional critical regions inside the feasible parameter
set. To keep the number of critical regions low and computable within a reasonable time, it
is desirable to keep the dimension of the parameter space as small as possible. Alternatively
the volume of the parameter space can be kept ’small’ by restricting the range of feasible
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ĝ1â1

1020

20

525

030

(a) g1

5
0

30

6

7

5
25

g
2

8

ĝ1
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Figure 5.5: Demand optimizers of ED over the feasible parameter space for (P,Q) bidding

parameters in each dimension.
Relative to simply solving an MPEC, this parametric methodology has some advantages

and disadvantages. It requires an intensive offline computation to calculate critical regions
and associated functions, with a lightweight online computation to solve a relevant bilevel
problem. This makes it useful for situations in which many instances of the problems need to
be solved in quick succession, or in offline planning situations where computation time is less
important. An advantage is that one automatically has the sensitivity functions dictating
how the solution will change in response to deviations of the parameters. This is useful for
real-time prediction and planning. This also enables the single firm to anticipate a range of
actions from its competitiors and maximize their own profit in either a stochastic or robust
manner. A shortcoming of this approach is that is somewhat ‘brittle’, requiring complete
recomputation of all parametric solutions if any major changes occur on the system that
are not modelled parametrically. For example, the generation cost function, or the network
topology. These variables can be modelled parametrically but will result in an increase in
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the dimension of the parameter set, incurring the scaling problems described previously.
Depending on the intended use of the bilevel problems, operational or planning, a design
tradeoff must be made between the set of variables that are modelled parametrically and the
dimension and size of the parameter set.

5.4 Solving the Multi-Firm Problem
We have addressed the problem of a single firm’s strategic bid, which can be thought of
as the action of a monopolist. We now turn to the case of multiple strategic firms, which
is a multi-leader follower game as described previously. The multi-leader follower game is
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Figure 5.8: Profit surface for generator 1 over the feasible parameter space from two angles.

an example of a Generalized Nash Game [111], which extends the notion of a Nash Game
by allowing the strategy sets of each player to depend on the actions of other players. For
completeness we first state the definition of a Nash game and an existence theorem for its
equilibrium, and then the definition of a generalized Nash game and an existence theorem
for its equilibrium.

We will maintain the notation used heresofar in this Chapter, which deviates a little from
the literature, referring interchangably between firms and players.2. We follow the definitions
in [120]. Let N be the number of players. The strategy set of player f is denoted by Xf ⊂ Rnf

and their payoff function by πf : X → R (to be maximized), where X = X1 × · · · × XN .
Player f ’s (pure) strategy is denoted by xf ∈ Xf while x−f ∈ X−f denotes the other players’
action, i.e. x−f = (x1, . . . , xf−1, xf+1, . . . , xN) and X−f = X1×· · ·×Xf−1×Xf+1×· · ·×XN .
A game is thus described by (N,Xf , πf (·)).

Definition 4. A Nash equilibrium is a strategy point x? ∈ X such that no player has an
incentive to deviate, i.e. for all f ∈ {1, . . . , N},

∀xf ∈ Xf , πf (xf , x?−f ) ≤ πf (x?f , x?−f ) (5.23)

An existence theorem for infinite games from [121], reported in [120] is presented here.

Theorem 6. Let N agents be characterized by an action space Xf and an objective function
πf . If ∀f ∈ {1, . . . , N}, Xf is nonempty, convex and compact; πf : X → R is continuous
with X = X1 × · · · × XN and ∀x−f ∈ X−f , xf → πf (xf , x−f ) is concave on Xf , then there
exists a Nash equilibrium.

Turning to the generalized Nash game, we let 2Xf be the family of subsets of Xf . We
let Cf : X−f → 2Xf be a constraint correspondence of player f , i.e. a function mapping a
point in X−f to a subset of Xf . Thus, Cf (x−f ) defines the fth player’s action space given

2In the literature players are generally indexed with i, and the payoff function of player i is generally
denoted θi(·).
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other players’ actions x−f . A generalized game is described by (N,Xf , Cf (·), πf (·)). where
N is the number of players, Xf the strategy set of player f , and πf (·) the payoff function of
player f .3

Definition 5. The generalized Nash equilibrium (GNE) for a generalized game (N,Xf , Cf (·), πf (·)),
is defined as a point x? solving for all f ∈ {1, . . . , N}

x?f ∈ arg max
xf∈Cf (x?

−f
)
πf (xf , x−f ) (5.24)

We present an existence theorem for a GNE from [122], reported in [120].

Theorem 7. Let N players be characterized by an action space Xf , a constraint correspon-
dence Cf , and an objective function πf : X → R. Assume for all players, we have

i Xf is nonempty, convex and compact subset of a Euclidean space,

ii Cf is both upper-semi continuous and lower-semi continuous in X−f ,

iii ∀x−f ∈ X−f , Cf (x−f ) is nonempty, closed, convex,

iv πf is continuous on the graph Gr(Cf ),

v ∀x ∈ X , xf → πf (xf , x−f ) is quasiconcave on Cf (x−f ),

Then there exists a generalized Nash equilibrium.

Further existence theorems for generalized Nash Equilibria can be found in [120] using
alternative formulations of the generalized game.

In our case, this dependence of the action set of a player on the actions of the other
players, while not immediately obvious from the single-firm problem in (5.18), arises due to
the complementarity constraints introduced in (5.14). As noted previously, the single-firm
problem is an example of an MPEC. To find the equilibrium among all firms, one must
simultaneously solve a number of MPECs, leading to an instance of an Equilibrium Problem
with Equilibrium Constraints (EPEC). This is noted in [111] as ”a class of mathematical
programs of significant difficulty in general”. The authors of [111] note that this results in
a Nash problem with nonconvex subgame equilibria. This means that the resulting Nash
equilibrium may not exist, due to the nonconvexity in each player’s problem; and that often
such a nonconvex Nash game is computationally intractable.

We present a methodology to compute all pure equilibria of the multi-firm problem, and
identify if no pure equilibria exist. We cannot say as much for mixed equilibria, however we
will point to a specific example of a mixed equilibria which gives an interesting direction for
further study.

3This is also referred to as an abstract economy in reference to Debreu’s work in Economics.
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Optimal Reaction Set
We denote the optimal reaction set of a firm f , as rf (x−f ) : X−f → Xf , which constitutes
the optimal action of player f for a given action x−f of the other players. An alternative
characterization of the generalized Nash equilibrium is given as a point x?, solving for all
f ∈ {1, . . . , N}

x?f ∈ rf (x?−f ) (5.25)

We can compute the optimal reaction set for a firm by solving its corresponding single-
firm problem parametrically on the actions of other players. As we shall see this consitutes
solving a Multiparametric Mixed-Integer Quadratic Program (mpMIQP), arguably one of the
most challenging classes of multiparametric program.

We also note here that a necessary but insufficient condition for a GNE is the first order
optimality condition of the single-firm problems. That is for x? to be a GNE in pure strategies

∂πf
∂xf

(x?) = 0, ∀f = 1, . . . , N (5.26)

Additionally, we note a necessary but insufficient condition for the GNE to be stable. x? is
a stable GNE in pure strategies if

∂2πf
∂x2

f

(x?) ≤ 0, ∀f = 1, . . . , N (5.27)

We formulate the problem of a single strategic bidder as a Mixed-Integer Quadratic Pro-
gram (MIQP). We assume that its bid function is quadratic, and thus its payoff function
is PPWQ over NCR critical regions in X , and continuous. This can be seen by considering
Theorem 5, and seeing that its payoff function is the composition of a continous function
and the product of two continuous functions.4 The following MIQP problem has the bids
of other participants x−f as a parameter, and the optimal solution is the rational response
x?f = rf (x−f ) for participant f and the optimal payoff is π?f (x−f ). We use the big-M method

4In the case of linear generation costs and bids, and inelastic demand, the problem forms an MILP and
can be solved using techniques from Section 7.4 of [38]. The case of linear bids and elastic demand is more
complicated as this is an MIQP with a discontinuous cost. It cannot be assumed to be lower-semi continuous
and thus a maximum does not necessarily exist. We can get around this if we ignore solutions on critical
region boundaries for now, and say that a maximum exists almost everywhere. We will pursue this idea
further in Section 5.5.
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to reformulate set membership constraints with integer variables.

π?f (x−f ) = max
xf ,w,u

1>w (5.28a)

s.t. xf ∈ Xf (5.28b)
πf,j(xf , x−f ) +M(1− uj) ≥ wj, ∀j (5.28c)
Pj,x[x>f x>−f ]> −M(1− uj) ≤ Pj,c, ∀j, (5.28d)
0 ≤ w ≤Mu (5.28e)
1>u = 1 (5.28f)
uj ∈ {0, 1}, ∀j (5.28g)

where w ∈ RNCR is a vector of slack variables, u ∈ RNCR is a vector of binary variables, and
M ∈ R is a large scalar. Each slack and binary variable is associated with a critical region,
and this formulation ensures that only one critical region and its associated payoff function
is feasible at the optimal solution.

This MIQP is then solved parametrically on x−f over X−f , giving an mpMIQP. The mp-
MIQP can be solved using techniques described in Chapter 18 of [38], in particular Theorem
18.1, Section 18.6.1, Example 18.4, and Lemma 18.4. This problem instance is an example
of a (one-to-r problem), as described in Lemma 18.4 of [38], where r refers to the number of
critical regions over which the original problem (5.28) is defined. In other words (5.28) can
be reformulated as

π?f (x−f ) = max



max
xf

πf,1(xf , x−f )

s.t. x ∈ CR1
...,
max
xf

πf,NCR
(xf , x−f )

s.t. x ∈ CRNCR


(5.29)

As stated in this Lemma, the mpMIQP can be solved by NCR mpQPs. This involves
solving a separate mpQP for each critical region j of the original single-firm problem of
firm f , which will result in a new set of critical regions CRf,j,k ⊂ CRj, k = 1, . . . , NCRf,j

,
and CRf,j,k ⊂ X−f . From the results on mpQPs in Section 2.4, we see that the objective
function πf,j is PPWQ, in particular quadratic in each CRf,j,k, and the optimizer function
x?f is PPWA, in particular affine in each CRf,j,k. Having solved all NCR mpQPs for firm f ,
it may be the case that some of the resulting critical regions intersect, so that is not clear
which optimizer function to use in this intersection. This conflict is resolved by examining
the respective objective functions of each intersecting critical region over the intersection. In
the region where one objective function is greater, its associated optimizer function is used
in this region. This can be done in a principled way for any number of intersecting critical
regions to create an ordered region single valued function, as per Definition 18.1 of [38]. This
can of course result in regions which are non-euclidean, for example with boundaries defined
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by the intersections of quadratic functions. In practice this is not an issue as Section (iii)
of Example 18.4 in [38] details a way to avoid the storage of non-convex and non-euclidean
regions. The presence of non-euclidean regions means that the optimal reaction function is
not PPWA, merely piecewise-affine (PWA). In addition the optimal reaction function is not
continuous in general, as was observed in [115].

Following this procedure we are left with a new set of critical regions associated with
the parametric solution of the single-firm problem of firm f , which we will denote Rf,j,
j = 1, . . . , Nf . Associated with each region is an affine optimal reaction function

x?f = Ff,jx−f + hf,j, x−f ∈ Rf,j, j = 1, . . . , Nf (5.30)

where Ff,j ∈ Rnf×n−f , ∀j, and hf,j ∈ Rnf , ∀j. We repeat this procedure for all firms f ∈ F ,
and have the following Theorem

Theorem 8. If πf (xf , x−f ) is a continuous PPWQ function ∀f = 1, . . . , N , then the optimal
reaction function, x?f = rf (x−f ), is a PWA function over X−f , in particular affine within
each region Rf,j, j = 1, . . . , Nf . That is

x?f = Ff,jx−f + hf,j, if x−f ∈ Rf,j, ∀j = 1, . . . , Nf , ∀f = 1, . . . , N (5.31)

Then, a necessary condition for a GNE in pure strategies, x? is that

x? = Fx? + h (5.32)

or, solving for x?,
x? = (I− F)−1h (5.33)

where

F =


F1
F2
...
FN

 ∈ R
∑

f
nf×

∑
f
nf , h =


h1
h2
...
hN

 ∈ R
∑

f
nf (5.34)

where for x?−f ∈ Rf,j, Ff = [0f , Ff,j], where 0f ∈ Rnf×nf , represents a matrix of zeros in the
f th position, and hf = hf,j.

Proof. This follows from the results detailed above for mpQPs from multiparametric pro-
gramming. We need to find a point x? that is a fixed point of the equations

x?f = Ff,jx−f + hj,f , if x−f ∈ Rf,j, ∀j = 1, . . . , Nf , ∀f = 1, . . . , N (5.35)

This is satisfied if (5.33) holds for x?. Such a fixed point is a GNE since it constitutes the
optimal response of any player to the vector of actions played by the other players.
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Computing Equilibria
For each firm f we now have a look-up table of affine functions (5.30), associated to a set of
regions, defined over X−f . Rather than as affine functions, we can think of these functions
as defining lower-dimensional regions in X space. We denote these regions as Rf,j, and they
are defined as

Rf,j := {x : xf = Ff,jx−f + hf,j, x−f ∈ Rf,j}, j = 1, . . . , Nf , f = 1, . . . , N (5.36)

It can be seen that a fixed point, as defined in Theorem 8, if it exists, constitutes the
intersection of N of these regions, one from each of f = 1, . . . , N . Clearly then computing
any and all equilibria of the multi-firm problem consists of finding any and all intersections
of the sets Rf,j, f = 1, . . . , N , j = 1, . . . , nf .

In the worst case, if we assume that for each firm nf = r, then this computation would
involve checking rN intersections of these sets. Being exponential in the number of firms is
clearly undesirable! However, in general, many of these combinations can be discarded, as
they are disproved as potential equilibria by checking the intersections of other sets. This
can be seen by considering the fact that if N sets have non-zero intersection, then all subsets
of these N sets consisting of at least two or more sets must also have non-zero intersection.
This motivates the recursive algorithm, Algorithm 1, to calculate any and all equilibria in
pure strategies of the multi-firm problem, where Intersect(A,B) is a function computing
the intersection of two sets A,B.

A potential improvement to this algorithm comes from noticing that each Rf,j is a subset
of at most one critical region of the original ED problem CRk. We therefore need only
check intersections of sets which belong to the same original critical region, or of sets which
belong to neighboring original critical regions, i.e. they could intersect at the boundary of
the original critical regions. Each critical region and its neighbors could be processed in
a principled and sequential manner to minimize the number of intersections that would be
necessary to consider.

The algorithm as stated will find all pure strategy GNEs for the multi-firm problem.
These intersections may be singletons, representing a unique equilibrium, or indeed a set,
representing an infinity of equilibria.

Examples
We now provide two examples employing this approach. For ease of visualization, we restrict
our attention to the two bus example, with two strategic firms, a duopoly. We observe that in
both the symmetric and asymmetric case, for elastic demand, both problems exhibit a unique
pure strategy Nash equilibrium. In these examples we will demonstrate the asymmetric case.

We consider a two bus network with a single generating firm at each bus, each with
a single unit, as shown in Figure 5.1. We assume symmetric elastic loads at each bus,
with B(d1) = B(d2) = 40di − d2

i . We assume assymetric generation cost functions, with
Q1 = Q2 = 1$/MWh2, a1 = 10$/MWh, and a2 = 20$/MWh. We assume equal generation
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Data: N firms, with {Nf}Nf=1 regions
Result: Istore, is the set of all intersections of the sets Rf,j , ∀j, forallf .
Initialization: I = ∅, Istore = ∅, f = 1;
MFE(I, f)
begin

for j = 1, . . . , Nf do
if f = 1 then
I = Rf,j

end
A = Intersect(I,Rf,j)
if A = ∅ then

break
else

if f = N then
Istore = Istore ∪ {A}

else
MFE(A, f + 1)

end
end

end
end

Algorithm 1: Computation of Multi-Firm Equilibria

capacity, such that g1 = g2 = 20MW. The transmission line has a capacity constraint
c = 5MW, and we set an arbitrary price cap of ai = 50$/MW.

Duopoly Price Competition

We first examine the case when both firms compete on price with an equal fixed capacity
bid. The fixed quantity bids were set at ĝ1 = ĝ2 = 20MW.

We first show the set of critical regions and objective function over the feasible parameter
set, in Figures 5.9 and 5.10 respectively. We now examine the profit function surface for
each producer in Figure 5.11, and observe as expected, that it is continuous, and concave
in each critical region. Note that some figures have been rotated for a better angle of the
3D surface, so refer to axes when comparing across figures. Following the analysis of the
previous section we can compute the optimal payoff functions and best response functions
of each firm, parametric on the action of the other firm, seen in Figures 5.12 and 5.13
respectively. In this case we see that the best response functions are discontinuous, and
intersect at x? = (15.5, 22.5), meaning that we have a GNE in pure strategies.
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Figure 5.9: Critical Regions of ED for
asymmetric price competition

Figure 5.10: Value Function of ED for
asymmetric price competition

(a) π1 (b) π2

Figure 5.11: Profit functions of individual producers for asymmetric price competition

Duopoly Quantity Competition

We now consider the case where the firms compete on quantity with fixed price bids. The
situation is eactly the same as before, except now ĝf is the decision parameter of firm f . We
let â1 = 10$/MWh, and â2 = 20$/MW, equal to the generators’ marginal cost.

We first show the set of critical regions and objective function over the feasible parameter
set, in Figures 5.14 and 5.15 respectively. We now examine the profit function surface for
each producer in Figure 5.16, and observe as expected, that it is continuous, and concave in
each critical region. Note that some figures have been rotated for a better angle of the 3D
surface, so refer to axes when comparing across figures. Following the analysis of the previous
section we can compute the optimal payoff functions and best repsonse functions of each firm,
parametric on the action of the other firm, seen in Figures 5.17 and 5.18 respectively. In this
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Figure 5.12: Optimal (negative) payoff of each firm, in blue, parametric on the action of the
other firm. Payoffs in other critical regions shown in red and green.

(a) r1(â2) (b) r2(â1)

Figure 5.13: Best response function of each firm in blue. Sub-optimal actions from other
critical regions shown in red and green.

case we see that the best response function of Firm 1 is continuous, and the best response
function of Firm 2 is discontinuous. The two functions intersect at x? = (8.8, 3.6), meaning
that we have a GNE in pure strategies.
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Figure 5.14: Critical Regions of ED for
asymmetric capacity competition

Figure 5.15: Value Function of ED for
asymmetric capacity competition

(a) π1 (b) π2

Figure 5.16: Profit functions of individual producers for asymmetric capacity competition

5.5 Additional System and Equilibrium Phenomena

Best Response as a Hybrid Linear System
We consider the dynamical system defined by the best response functions of each firm,
where we index each iteration by k, and the initial action of all agents is given by x(0). This
represents the situation where firms play a repeated game, using their best reponse to the
previous action of the other firms as their action at the next iteration.

xf (k + 1) = rf (x−f (k)), ∀f (5.37)

By examining (5.30) and (5.36) we see that the best response dynamics form a hybrid
linear system, more specifically a PWA system, and equilibria of this system correspond to
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(a) π?1(â2) (b) π?2(â1)

Figure 5.17: Optimal (negative) payoff of each firm, in blue, parametric on the action of the
other firm. Payoffs in other critical regions shown in red and green.

(a) r1(â2) (b) r2(â1)

Figure 5.18: Best response function of each firm in blue. Sub-optimal actions from other
critical regions shown in red and green.

generalized Nash equilibria of the multi-firm problem. More explicitly

xf (k + 1) = Ff,jx−f (k) + hf,j, if x−f (k) ∈ Rf,j, ∀f (5.38)

This is interesting as an aside, but it also has implications for the computation of equilibria
in the literature. As mentioned previously, diagonalization is a very common technique for
computing equilibria in the literature, where the computation effectively follows the best
response dynamics. For diagonalization to be successful, it requires that the best response
dynamics be stable. This will generally not be the case, as the stability of PWA systems is
notoriously difficult to guarantee. Even the interconnection of two stable systems is not stable
in general. The best that can be hoped for in general is a characterization of ‘local stability’
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in some region of the state space. This casts doubt on the effectiveness and usefulness of
diagonalization as a technique for computing equilibria.

Discontinuities and Mixed Equilibria
We finish with a final example that illustrates an interesting phenomenon in the case of
affine bid functions. From Theorem 5, we see that if the bid function is affine, the optimizer
function will be discontinuous in general, and thus the payoff function of each generation
firm will also be discontinuous in general. We present an example of this scenario here. We
assume symmetric generation, with identical affine costs and affine bids. Here Q1 = Q2 = 0,
a1 = a2 = 10$/MWh, g1 = g2 = 20MW. We assume symmetric elastic demand with the same
demand function as the previous two examples. We assume that generators strategically bid
only their affine costs, and submit fixed capacity bids equal to their true capacities.

We first show the set of critical regions and objective function over the feasible parameter
set, in Figures 5.19 and 5.20 respectively. We now examine the profit function surface for
each firm in Figure 5.21, and observe as expected, that it is discontinuous, concave in each
critical region, and symmetric for each firm. The discontinuity lies along the line â1 = â2,
and reflects primal degeneracy in the ISO problem. We now assume that the critical regions
are in fact closed, so we allow the region boundary to be part of the best response calculation,
and we see these in Figure 5.23. We see that the best response functions track and intersect
along the discontinuity, i.e. if there was a tie-breaking rule which favored one generator over
the other in the case of primal degeneracy, then this would in fact be their optimal action.

Following the work of [123] and [124], we observe that this problem resembles a Bertrand-
Edgeworth game, i.e. a game of Bertrand price competition with finite supply capacity and
elastic demand. In [123], and extended to a weaker set of conditions in [124], it is proved
that a mixed strategy Nash equilibria exists in these games along the discontinuity where
â1 = â2, if a well defined payoff is introduced along the discontinuity. For example, the ISO
could split demand evenly between firms if such primal degeneracy were to occur. More work
is needed to verify this conclusion in this specific case, but we make the following conjecture.

Conjecture If πf (xf ,x−f ) is a discontinuous PPWQ function over a set of critical re-
gions, ∀f , and the discontinuity is identical ∀f , then a mixed strategy generalized nash equi-
librium of the multi-firm game exists along the discontinuity.

This conjecture says nothing about actually calculating what the mixed strategy would
be, and [123] and [124] only address existence results in their papers. Proving this existence
conjecture for the specific case of affine bid functions with elastic demands remains the
preserve of future work.

5.6 Conclusions
In this Chapter we have examined the strategic generation bidding problem on constrained
transmission networks. We have used techniques from multiparametric programming to pro-
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Figure 5.19: Critical Regions of ED for
symmetric linear price competition

Figure 5.20: Value Function of ED for
symmetric linear price competition

(a) π1 (b) π2

Figure 5.21: Profit functions of individual producers for symmetric linear price competition

vide solution methodologies for the single-firm MPEC problem, and the exact computation
of equilibria in the multi-firm problem. While the mathematical techniques presented here
are sound, further computational studies on larger problem instances are required to vali-
date the effectiveness and scalability of this approach. Of particular interest would be the
computation of robust solutions to the single and multi-firm problems using this style of ap-
proach, as the multiparametric method is a natural fit for handling uncertainty or variation
in some parameters of the problem. Further work on the stability and properties of the PWA
system defined by the best response dynamics would be of interest, characterizing when we
can expect diagonalization techniques to succeed. Additionally examining the dynamical
system produced by smoothed best response dynamics as presented in Chapter 3 would be
an interesting direction of future work.
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(a) π?1(â2) (b) π?2(â1)

Figure 5.22: Optimal (negative) payoff of each firm, in blue, parametric on the action of the
other firm. Payoffs in other critical regions shown in red and green.

(a) r1(â2) (b) r2(â1)

Figure 5.23: Best response function of each firm in blue. Sub-optimal actions from other
critical regions shown in red and green.
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Chapter 6

Open Access Storage: Should I Stay
or Should I Go?

In the previous Chapter we addressed the question of strategic generation bidding in
transmission-constrained electricity markets using techniques from multiparametric pro-
gramming. In this Chapter we will extend these ideas to a new resource class, energy
storage. In particular we are interested in the optimal operation of a given storage capacity,
under a variety of regulatory frameworks and ownership models, and its consequences for
private and social outcomes. This is a timely discussion in the context of the integration
of flexible resources into existing electricity market structures. Throughout this chapter we
will refer only to energy storage, but this should be taken to encompass both physical energy
storage and virtual energy storage in the form of aggregations of flexible loads, in the sense
of Section 2.3.

6.1 Introduction
Given its increasing penetration, the integration, operation and ownership of energy storage
has been the subject of much debate. Two schools of thought predominate and can be
broadly characterized as 1). Market-Based Operation (MBO), and 2). Open Access Storage
(OAS). MBO would see energy storage independently owned and operated, and treated
much like existing supply and demand side market participants are today, bidding into
wholesale markets to maximize profits. OAS refers to the treatment of energy storage on
a network as a transmission asset. That is, similar to transmission lines, energy storage is
treated as part of the open access transport network, whose operation is optimized by the
ISO to maximize social welfare. Transmission lines move energy through space, and energy
storage moves energy through time, albeit in a single forward direction. In practice storage
owners would submit their storage capability to the ISO, who would optimize the storage
operation as part of MPED, and create a storage dispatch schedule, as is currently done for
generators. The storage owners are then remunerated through some mechanism for adhering
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to this dispatch schedule. Potential models for OAS have been proposed in [125–128]. These
models all involve variations on Financial Storage Rights (FSRs), financially binding rights
that entitle the owner to some portion of the revenue or surplus created by the storage.
Storage owners are compensated in much the same way that transmission owners are though
Financial Transmission Rights (FTRs) and Flowgate Rights (FGRs), through the proceeds
of centralized auctions run by the ISO. It should be noted that these models are typically
energy-only models, in that they do not consider ancillary services or alternative uses of
storage other than energy arbitrage. Concerns also remain as to whether this mechanism
provides suitable incentives for appropriate investment in energy storage, much as congestion
revenue from FTRs is generally insufficient to cover the capital and investment costs of
transmission.

The benefits of having storage operation optimized centrally is that storage can provide
economic and system benefits to the whole market beyond the private owner, which might
not materialize in the event of private strategic operation of storage. Centrally optimized
storage also allows the ISO to take advantage of all the private information it has at its
disposal, which in general is not available to market participants. In markets with ancillary
services, the ISO could also potentially better co-optimize storage capacity across multiple
applications.

In this chapter we shall study the incentives faced by storage owners under different
regulatory frameworks for storage operation, the optimal operation of storage under each of
these frameworks, and its impact on social welfare. We accomplish this through an analytical
multiparametric solution of the MPED problem, and the solution of bilevel problems in a
similar manner to the previous chapter. In particular we examine two variants of OAS, one
in which storage owners must relinquish all storage capacity to the ISO, and one in which
storage owners are allowed to strategically withold some capacity from the market. We also
examine a case of MBO where the full storage capacity is operated and optimized privately
by its owner, and appears in the market as a deviation in the net demand. This could
alternatively be considered as storage discharge being bid into the market as zero marginal
cost generation, and storage charging being bid as inelastic demand. We consider three
ownership structures, merchant storage, generation-owned storage, and load-owned storage.
We only consider each ownership structure in isolation, modelled as a single firm acting as
a monopoly, and do not consider the multi-firm equilibrium problem.

Prior Literature
The concept of OAS was introduced in [125] where storage owners sell physically binding
rights to their storage capacity through sequential auctions coordinated by the ISO. This
notion was extended in [126] to financially binding rights to storage capacity, which represent
entitlements to portions of the merchandising surplus collected by the ISO, analagous to
existing FGRs for transmission lines. This work was in some sense completed by [127],
broadening the applicability of financially binding rights to FSRs, which can take a form
analagous to either FTRs or FGRs. These FSRs can be used in combination with FTRs
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as a perfect hedge in a contract for difference when the buyer and seller exhibit differing
intertemporal and spatial demand and supply characteristics. FSRs are defined formally
in Section 6.2. In [128], the regulatory issue of competitively priced vs. unpriced services
for the use of energy storage is discussed in the context of ratebased cost-recovery, and
it is demonstrated how a storage capacity rights auction model with FSR style rights can
overcome this issue.

Existing work on the integration of energy storage into transmission networks falls broadly
into two categories. The first focuses on the optimal siting, sizing, and operation of energy
storage. The second focuses on the welfare impacts of storage ownership. In this chapter
we do not address the sizing or placement problem, assuming an existing installation of
storage. We will however, consider questions of optimal operation under different regulatory
frameworks and the subsequent welfare impacts. To the author’s knowledge this is the first
work to examine such concepts under different regulatory frameworks and indeed in networks
with transmission constraints.

For the optimal siting and sizing problem, [129] introduced the concept of the locational
marginal value of storage, using sensitivity analysis of the MPED problem, and showed how
the optimal location and marginal value for the next increment of storage capacity could
be determined from empirical price data for a given network. In [130], the infinite horizon
investment and control problem for energy storage with a capacity budget was studied, and
for convex and non-decreasing generation costs the optimal storage capacity allocation is
found to assign zero capacity to generation-only buses that connect to the rest of the network
via single links. In [34], the optimal storage placement problem is formulated as a discrete
optimization problem, and a (1 − 1

e
)-optimal placement algorithm is presented when the

placement value function is submodular. The authors use a multiparametric programming
approach to characterize sufficient conditions for submodularity and to develop the placement
algorithm. We use many similar concepts in this chapter, in particular the parametric
solution of MPED obtained by the authors, however we use these results to analytically
characterize savings for participants under different regulatory frameworks. Additionally it
should be noted that all of these papers consider the optimal storage placement problem
in the context of social value, rather than from the perspective of a private participant.
This is a perfectly reasonable formulation, however the private problem certainly merits
further study. The results in this chapter give some insight as to this question and how the
preferences of a private participant would vary under different regulatory frameworks. We
also note the work of [131] which uses the MILP reformulation of the single-firm MPEC
problem, detailed in the previous Chapter, in the context of price-maker storage bidding in
electricity markets. This is an alternative methodology that is valid for computing solutions
to the private problems described in this Chapter.

In [132] the authors estimate the value of energy storage in PJM over a six year period,
and identify different drivers of value as well as the welfare impacts of storage. They also
briefly discuss the implications of ownership and suggest that a regulated storage owner may
have greater incentive than a private owner to invest and own storage due to its valuing the
external social benefits of energy storage. The question of ownership is addressed more fully
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in [133], where a single bus network with a linear price model is used to compute typical
behavior for isolated ownership classes, and to compute equilibria among heterogeneous
storage owners, for private storage operation. The author finds that if storage is owned by
a finite number of symmetric generation or symmetric merchant storage firms, then storage
will be underused relative to the social optimum, and if storage is owned by a finite number
of symmetric consumers then storage will be overused relative to the social optimum. In
the heterogenous ownership case, it is found that a combination of merchant and consumer
ownership of storage maximizes potential welfare gains from storage. We will see that these
results are echoed in the work in this chapter. In contrast, in [134] using a dynamic market
model, the authors demonstrate that load-owned storage and merchant storage have an
incentive to under-dimension their capacity relative to the social optimum, but suppliers
do not. In [135], using a similar model to [133], the author examines when energy storage
reduces social welfare, demonstrating that generator-owned storage or standalone storage in
a market with strategic generating firms can reduce welfare compared to the no-storage case.
We again see that these results are echoed using the more detailed model of this chapter.
In all the papers here, network constraints are not considered allowing a great simplification
of the problem and the easy computation of private and equilibrium solutions. Here we
attempt to advance this analysis to the case of real networks, uniting the insights from these
simpler models with the analytical framework of the placement problem in [34].

Other relevant work includes [136] who examine the effect of strategic bidding by load
aggregators on the market equilibrium using a bilevel model, and a diagonalization approach
to calculate the equilibrium. The authors demonstrate that this strategic bidding may
mitigate the market power of generation firms, but also lead to reductions in social welfare.
In [137] the authors use an MPEC formulation to numerically simulate the impact of different
storage ownership structures on system welfare and the price of anarchy. They conclude that
even when operated strategically, storage generally leads to welfare gains relative to the no-
storage case, and that network congestion increases the lost welfare from strategic storage
operation. In this chapter we provide an analytical method of treating this problem and
characterize results exactly. Our conclusions echo the numerical simulations of [137].

Novel Contributions
The contributions of this chapter are as follows:

• We derive analytic expressions for the parametric solution of MPED.

• We present a methodology for solving the non-convex bilevel problem of strategic
storage using parametric programming.

• We characterize participant savings both within and outside the small storage set.

• We demonstrate that loads can lose money with socially optimal storage, even within
the small storage set.
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• We demonstrate that the socially optimal storage control is not necessarily optimal for
merchant storage, even within the small storage set.

• We provide conditions for the nonnegativity of load saving, and nonpositivity of gen-
erator savings.

• We provide conditions under which social and private optima are equal for loads.

We note that we address the strategic operation of storage, but not the strategic bidding
of storage, i.e. if storage is forced to act alternatively as a generator or a load in the market,
what price would they bid, in a problem more akin to the previous Chapter. This question
of strategic price bidding, while important, is only relevant when storage is a price-maker in
the market. This represents an interesting avenue of future work but we do not address it
here.

Organization
The remainder of the chapter is organized as follows. In Section 6.2 we define ownership and
regulatory models for storage operation, and mathematically formulate the storage model
and MPED problem. In Section 6.3 we characterize the solution of MPED parametrically
and provide explicit formulae for LMPs, generation optimizers, storage controls, and optimal
cost. In Section 6.4 we demonstrate how the private storage optimization problem can be
formulated as an MPEC and solved using multiparametric techniques in a similar fashion to
the previous chapter. In Section 6.5 we characterize system and participant savings under
different regulatory models both within and outside the small storage set. We additionally
provide a counterexample to prove that load-owning storage can lose money, even within the
small storage set. Section 6.6 concludes.

6.2 Problem Formulation

Network Modelling
We adopt the DC power flow model described in Section 2.2, and consider the operation of
the system over a finite horizon of time periods, T := {1, . . . , T}, indexed by t. This gives
the feasible injection region of the power network as

P = {p : 1>pt = 0, Hpt ≤ c, t ∈ T } (6.1)

Storage Modelling
We adopt the storage model presented in Section 2.3, similar to that of [33] and [34]. For
each bus i, the storage’s state of charge (SOC) xi(t) evolves as

xi,t+1 = xi,t − ui,t, t = 1, . . . , T − 1 (6.2)
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where ui,t is the amount of energy discharged (if ui,t > 0) or charged (if ui,t < 0) in time
period t, and the initial SOC is assumed to be xi,t = 0. Each storage device has an energy
capacity si ≥ 0, such that

0 ≤ xi,t ≤ si, t ∈ T (6.3)
where si = 0 if there is no storage connected to bus i. Equations (6.2) and (6.3) can be
compactly expressed in the following vector form

0 ≤ Lui ≤ si1, i = 1, . . . , n (6.4)

where ui ∈ RT is the vector of storage controls over T periods at bus i, and L ∈ RT×T is
a lower triangular matrix with entries Lij = −1 for i ≥ j.1 We denote the general set of
feasible storage controls given a storage capacity s as

U(s) := {u ∈ Rn×T : 0 ≤ Lui ≤ si1, ∀i} (6.5)

Multiperiod Economic Dispatch
We consider the MPED problem presented in Section 2.3, with inelastic demand and no
generation constraints.2

J?(s, d) = min
g,p,u

T∑
t=1

Ct(gt) (6.6a)

s.t. γt : 1>p = 0, t ∈ T (6.6b)
βt : Hp ≤ c, t ∈ T (6.6c)
λt : pt = gt + ut − dt, t ∈ T (6.6d)
µi : Lui ≤ si1, i ∈ N (6.6e)
νi : Lui ≥ 0, i ∈ N (6.6f)

where all notation is identical to that of Section 2.3.
In this chapter we will consider MPED as being parametrized by the storage vector, s,

and the apparent demand, d = {dt}t∈T , hence the notation for the optimal cost, J?(s, d). We
also distinguish between notation for the storage optimized by the ISO, s, and the apparent
demand, d, and the storage capacity owned by market participants, and the nominal demand,
denoted s, d, respectively.

We recall that the Locational Marginal Prices (LMPs) are the dual variables, λt ∈ Rn, t ∈
T associated with the net injection constraint in (6.6d), and are equal to

λ?t (s, d) = γ?t (s, d)1−H>β?t (s, d), t ∈ T (6.7)
1This model can easily be extended using a more detailed storage model with ramping constraints,

charging efficiency, and SOC decay. For the sake of simplicity, we use the idealized model.
2Generation constraints can be included without changing any of the results of this Chapter, however

they complicate the presentation of an already difficult formulation.
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Regulatory Frameworks for Storage Integration
This formulation can capture a number of operational and regulatory models for storage:

1. Open Access Storage (OAS): Under OAS, storage is treated as a transmission asset.
Storage owners submit relevant operational parameters such as SOC and storage capac-
ity s to the ISO, and then relinquish control of their devices, allowing their operation
to be optimized by the ISO for maximal social benefit. Storage owners can be re-
munerated through the auction of financial storage rights, described in the following
subsection. Within OAS there are two regulatory frameworks possible:

a) Capacity Withholding is Illegal: In today’s markets with open access transmission,
transmission line owners are generally not permitted to withhold line capacity
as this would give them a degree of market power and allow them to extract
greater congestion rents. Similarly, treating storage as a transmission asset, one
could envision a regulatory framework where storage owners are not allowed to
withhold available capacity from the market, barring maintenance or fault. This
would result in storage owners submitting their full capacity, s, to the ISO under
OAS, such that s = s. We will denote this framework as competitive open access
storage (COAS).

b) Capacity Withholding is Legal: An alternative point of view holds that storage
owners are welcome to decide the level of capacity they wish to release to the ISO
under OAS, with any additional capacity remaining unusable. This would result
in storage owners submitting a capacity sp ∈ Rn, 0 ≤ sp ≤ s, to the ISO under
OAS, such that s = sp. We will denote this framework as strategic open access
storage (SOAS).

2. Private Storage Operation (PSO): Under private operation, storage owners retain con-
trol of their devices, operating them as they see fit. In this context, the ISO has no
storage to optimize, s = 0, u = 0, and the effect of storage enters through a modifed
apparent demand vector dt = dt − upt , where dt represents the nominal inelastic de-
mand at time t, and upt represents the storage injection by a private participant, and
is defined identically to ut. The constraints (6.6e), (6.6f), are incorporated into the
private optimization of the storage owner. Depending on the regulatory regime, up
can be treated as must-take generation or load, or treated as its own specific storage
asset class. In the case of load flexibility, up can show up behind the meter in the load
vector submitted by the LSE to the ISO.

For some given storage capacity s, each framework will result in some feasible set of storage
controls, defined as follows

UCOAS(s) := {u ∈ Rn×T : u = u?(s, d)} (6.8a)
USOAS(s) := {u ∈ Rn×T : u = u?(sp, d), 0 ≤ sp ≤ s} (6.8b)
UPSO(s) := U(s) (6.8c)
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Assuming some non-zero storage capacity, the feasible sets have the following relation:

UCOAS(s) ⊆ USOAS(s) ⊆ UPSO(s) (6.9)

where equality holds only when s = 0.
A third potential framework would include features of all of the above paradigms, where

OAS and PSO are allowed to exist in parallel. A storage owner could submit a private
capacity 0 ≤ sp ≤ s of their choice to the ISO, and additionally operate any remaining
capacity with a private storage control up ∈ U(s − sp). While it is interesting to consider
how a storage owner might allocate their capacity between OAS and PSO, this framework
has the same feasible set of storage controls as PSO, UPSO. This is because any superposition
of storage controls resulting from the capacity released to the ISO and the storage owner’s
private operation, could also be chosen as a purely private storage control. Given this fact,
we focus on the pure PSO case and assume that OAS and PSO are mutually exclusive, such
that either a participant submits a storage capacity to the ISO for OAS, or they operate the
storage privately.

Merchandising Surplus and Financial Storage Rights
We recall that the Merchandising Surplus (MS) is the surplus collected by the ISO after
receiving payments from all loads and disbursing payments to all generators, and is equal to

MS(s, d) =
T∑
t=1
−λ?t (s, d)>(g?t (s, d)− dt) (6.10)

Following the derivation in [33], the merchandising surplus can be decomposed into the sum
of a transmission congestion surplus (TCS) and storage congestion surplus (SCS).

MS = TCS + SCS (6.11)

where

TCS =
T∑
t=1
−λ?t (s, d)>p?t (s, d) (6.12a)

=
T∑
t=1

β?t (s, d)>c (6.12b)

SCS =
T∑
t=1

λ?t (s, d)>u?t (s, d) (6.12c)

=
T∑
t=1

µ?t (s, d)>s (6.12d)

It is clear to see that the MS is nonnegative, and positive when any congestion occurs in
transmission lines or energy storage.
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In many current power markets, shares of the merchandising surplus associated with
transmission congestion are auctioned off through financial transmission rights. These can
take either the form of point-to-point financial transmission rights (FTRs), entitling the
holder to the price difference between two nodes in a given time interval, or of flowgate
rights (FGRs), entitling the holder to the congestion rent associated with a given line in a
given time interval. FTRs represent a perfect hedge for participants engaged in bilateral
contracts that are left out of the money due to transmission congestion. The revenue paid
out to a set of simultaneously feasible FTRs is always less than or equal to the TCS, and it
can be shown that there is always a set of simultaneously feasible FTRs that exactly recovers
the TCS.

For the case of OAS, [33, 126] define financial storage rights, entitling the holders to a
share of the MS associated with storage congestion. These can take either the form of a
Financial Storage Right (FSR), composed of an hourly power profile at a node entitling the
holder to the hourly price profile at that node, or the form of an Energy Capacity Right
(ECR), composed of a storage capacity at a given node entitling the holder to the storage
congestion rent associated with the storage unit at that node. FSRs and ECRs for storage
are analogous to FTRs and FGRs for transmission lines, respectively. Similarly the revenue
paid out to a set of simultaneously feasible FSRs is always less than or equal to the SCS,
and it can be shown that there is always a set of simultaneously feasible FSRs that exactly
recovers the SCS.3

In our case we will assume that under OAS, a simultaneously feasible set of FTRs and
FSRs that fully recover the MS has been auctioned off at their true value, and the resulting
share of auction revenue equal to the SCS is returned to storage owners.4

Storage Ownership Structures and Payoffs
We consider three classes of market participants: merchant storage, load serving entities
(LSEs), and generation. For reasons that will subsequently become clear we consider each
class of participant as a collective, modelling the aggregate payoff of each class. An alterna-
tive interpretation is that there are only three firms in the market: one firm that owns all
merchant storage, one firm that owns all LSEs, and one firm that owns all generation.

We then consider three scenarios for storage ownership, with each participant collective
owning storage in isolation e.g. one firm owns all load and storage on the network, one
firm owns all generation and no storage. Merchant storage only exists when storage is not

3For a more rigorous treatment of FSRs, the reader is referred to [33], where simultaneous feasibility of
financial rights is defined, and an example is presented showing the perfect hedge provided to a bilateral
contract between a generator and a load using a collection of FTRs and FSRs.

4In current markets FTRs are auctioned off months in advance, so generally recoup their expected value
at auction, which may be higher or lower than the true merchandising surplus which results at delivery.
Additionally the auction revenue from FTRs is not necessarily returned to transmission owners, in some
cases being distributed among market participants.



CHAPTER 6. OPEN ACCESS STORAGE: SHOULD I STAY OR SHOULD I GO? 105

owned by either LSEs or generation. We will then consider the payoff to each storage-owning
collective under each of the regulatory frameworks described previously, COAS, SOAS, PSO.

We also assume that only storage is ever operated strategically, and all other participants
behave competitively. In practice this means generators bid their true cost functions to the
ISO, and do not mark up their bids in any way.

The specific payoffs to participant collectives, when owning storage in isolation, under
any of the regulatory frameworks are defined as follows:

MP (s, d, u) =
T∑
t=1

λ?t (s, d)>ut (6.13a)

LP (s, d, u) =
T∑
t=1
−λ?t (s, d)>(dt − ut) (6.13b)

GP (s, d, u) =
T∑
t=1

λ?t (s, d)>(g?t (s, d) + ut)− Ct(g?t (s, d)) (6.13c)

whereMP (s, d, u) is the profit made by merchant storage, LP (s, d, u) is the negative payment
made by storage-owning load5, GP (s, d, u) is the profit made by storage-owning generation,
s ∈ Rn is the storage capacity released to the ISO under OAS, d ∈ Rn×T is the apparent
demand seen by the ISO, and u ∈ Rn×T is the storage control under any of the regulatory
frameworks. We can write the payoffs in this way, since we assume that the storage congestion
surplus is completely returned to storage owners and recalling that

SCS =
T∑
t=1

µ?t (s, d)>s =
T∑
t=1

λ?t (s, d)>ut (6.14)

We assume that each storage-owning participant collective wishes to maximize this payoff.
We denote a general participant collective payoff function π(s, d, u), where π can refer to any
of MP , LP , or GP . Thus the payoffs will take the following forms under each regulatory
framework

πCOAS(s, d, u?(s, d)), (6.15a)
πSOAS(sp, d, u?(sp, d)), (6.15b)
πPSO(0, d− up, up) (6.15c)

Denoting the set of primal and dual variables of MPED as z := (g, p, u, λ, γ, β, µ, ν), and
given the feasible sets of storage controls described in (6.9), the optimization to calculate
the optimal payoff under each regulatory framework takes the following general form:

π?x = max
s,u

πx(s, d, u) (6.16a)

s.t. u ∈ Ux(s) (6.16b)
z ∈ EQBM (MPED(s, d)) (6.16c)

5Since loads are inelastic, their ‘payoff’ here is the just the negative payment they make to consume
energy.



CHAPTER 6. OPEN ACCESS STORAGE: SHOULD I STAY OR SHOULD I GO? 106

where EQBM (MPED(s, d)) is the equilibrium solution of MPED, and x is a dummy sub-
script representing one of COAS, SOAS, or PSO. Given the relation described in (6.9), it is
trivial to see that for all participant collectives

π?COAS ≤ π?SOAS ≤ π?PSO (6.17)

Following from participant payoffs, the main quantity of interest in this chapter will
be the savings to participants from storage, alternatively the improvement in their payoff.
These savings are the increase in payoff a participant will achieve using storage relative to a
base case with no storage, and take the general form

π̂x(s, d, u) = πx(s, d, u)− π(0, d, 0) (6.18)

where π̂x(s, d, u) is the saving under a regulatory regime, x, calculated relative to a base case
of MPED with no storage. For a participant, maximizing payoff is the same as maximizing
savings, since π(0, d, 0) is a constant, and we will generally refer to participants maximizing
their payoff throughout this chapter. We note that

0 ≤ π̂?SOAS (6.19a)
0 ≤ π̂?PSO (6.19b)

since if there is no utilization of storage that yields a positive saving, participants can choose
to simply leave their storage unused, i.e. completely withold all their capacity. Similarly, we
denote the system savings from storage, alternatively the welfare improvement, as

Ĵ(s, d, u) = J?(0, d, 0)− J?(s, d, u) (6.20)

Note this is defined inversely to participant savings, as a lower social cost represents a positive
saving to the system.

Aside from the COAS case which is not optimized by the participant, the other regula-
tory cases present a non-convex bilevel optimization program for the participant in (6.16),
where the second level is the equilibrium conditions of MPED. As discussed previously, these
problems represent MPECs and can be solved by existing solution methods discussed in this
Chapter and the previous Chapter. However these solution methods provide little analytical
or structural insight. We seek to understand the conditions under which participants will
increase their payoff (make savings) with storage, and under what conditions they might
prefer one regulatory regime over another.

To further understand the structure of these problems, we will use multiparametric pro-
gramming to analytically characterize the solution of MPED, parametric on the OAS storage
capacity s, and the apparent demand d.

6.3 Multiparametric Approach to MPED
Recalling the theory of multiparametric programming, for a multiparametric quadratic pro-
gram with linear constraints (mpQP), as we have in (6.6), the value function, optimizers,
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and dual variables can be characterized explicitly as functions of the parameters over a finite
set of polyhedral critical regions in the parameter space. For every value of the parame-
ters within each critical region the binding constraints at the optimum of the optimization
problem do not change.

Solving MPED parametrically is useful as it allows structural insight into the savings
that participants make with the addition of storage under each regulatory regime. It also
offers an alternative method of solving bilevel problems of the kind described in (6.16), using
similar methods to those discussed in the previous Chapter.

Multiparametric Solution of MPED
MPED was previously analyzed using multiparametric programming in [34], however the
solution is incomplete in that it implicitly assumes that no two consecutive LMPs are equal.
This condition corresponds to the case where the storage control equalizes the load and
consequently the price between a number of consecutive periods. This condition is difficult
to resolve as it means the reduced dual function in (6.24) cannot be decoupled across time as
claimed in [34]. This was amended in the Journal version of this paper, following discussions
with the author, [138], where a full solution of MPED was derived. However this solution
does not lend itself to compact analytic formulae, as the time-decoupling of the solution
is lost. Here we extend the original formulation of [34], to the case where any number
of consecutive periods can have identical LMPs at each node across time. This limits the
applicability of the following analytic work to cases satisfying this condition, however from
extensive simulation and the author’s experience, this will cover the vast majority of real
world cases. Additionally, it should be noted that the full parametric solution, applying in
all cases, is only analytically problematic, and not numerically intractable, and can be found
recursively for any instance of MPED using techniques described in [38].

We aim to find the parametric solution of the mpQP MPED(s, d) using multiparametric
programming. We begin by considering the dual of (2.35) as in [34].

max
λ,γ,β,µ,ν

φ(λ, γ, β, µ, ν) (6.21a)

s.t. λt = γt1−H>βt, t ∈ T (6.21b)
λi = L>(µi − νi), i ∈ N (6.21c)
β, µ, ν ≥ 0 (6.21d)

where the Lagrange dual function is given by

φ(λ, γ, β, µ, ν) =
T∑
t=1
−1

2(λt − at)>Q−1
t (λt − at)

+d>t λt − c>t βt − s>µt
(6.22)

As observed in [34], due to complementary slackness and the structure of the matrix L,

µt = (λt+1 − λt)+, and νt = (λt+1 − λt)−, t ∈ T (6.23)



CHAPTER 6. OPEN ACCESS STORAGE: SHOULD I STAY OR SHOULD I GO? 108

where for convenience λT+1 := 0 ∈ Rn. This allows the dual to be reduced to the following
form

max
λ,γ,β

φ̃(λ, β) (6.24a)

s.t. λt = γt1−H>βt, t ∈ T (6.24b)
β ≥ 0 (6.24c)

where

φ̃(λ, β) =
T∑
t=1
−1

2(λt − at)>Q−1
t (λt − at)

+d>t λt − c>βt − s>(λt+1 − λt)+
(6.25)

Within a critical region of the problem, the dual becomes an equality constrained QP that
under certain conditions can be solved analytically. To define the critical regions, the power
balance equalities in (6.6b), (6.6d) always hold, and for different values of s, d, different
transmission limits (6.6c), and storage constraints (6.6e), (6.6f), will bind at the optimum.
Similarly to [34] we characterize the network and storage congestion patterns as follows.

For each (i, t) ∈ N × T , let χi,t(s, d) = 1 if the constraint (Lui)t ≤ si is binding at the
optimum and χi,t(s, d) = 0 otherwise. In other words, χ represents the storage congestion
pattern. From (6.23) we can write

χi,t := χi,t(s, d)
{1 if λ?i,t+1(s, d)− λ?i,t(s, d) > 0

0 otherwise
(6.26)

We also define ∆χt as the diagonal matrix with vector χt on the diagonal, with χ0 := 0.
We let ECt ⊆ {1, . . . , 2m} denote the set of oriented lines that are congested at the

solution in period t, and mt := |ECt| denote the number of congested lines. We define a
selection matrix Wt ∈ Rmt×2m such that for l = 1, . . . ,mt and l′ = 1, . . . , 2m,

(Wt)l,l′ := (Wt(s, d))l,l′
{

1 if the lth element in ECt is l′

0 otherwise
(6.27)

and the shift factor matrix for congested lines as

Ht := WtH (6.28)

We assume the following constraint qualification

Assumption 1. (Flow LICQ): For each t ∈ T , Ht, as defined in (6.28), is of full row rank
for all t ∈ T .
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We now diverge from the proof in [34]. Analagous to χt, we define σt as follows: For
each (i, t) ∈ N × T , let σi,t(s, d) = 1 if both (Lui)t < si, and (Lui)t > 0, (i.e. µi,t = 0, and
νi,t = 0), and σi,t(s, d) = 0 otherwise. In other words, σ represents the times when LMPs
are equal across time periods. In summary:

σi,t := σi,t(s, d)
{1 if λ?i,t+1(s, d) = λ?i,t(s, d)

0 otherwise
(6.29)

We also define ∆σt ∈ Rn×n as the diagonal matrix with σt on the diagonal. The inclusion of
this congestion pattern for the cases when LMPs were equal across time periods was omitted
from [34], and is the substantive difference between the two derivations.

We can now confine the reduced dual to a critical region, where the congestion patterns
are given by Wt, χt and σt giving an equality constrained QP.

max
λ,γ,β̃

ψ(λ, γ, β̃) (6.30a)

s.t. λt = γt1−H>t β̃t, t ∈ T (6.30b)
∆σt(λt+1 − λt) = 0, t ∈ T (6.30c)

where

ψ(λ, γ, β̃) =
T∑
t=1
−1

2(λt − at)>Q−1
t (λt − at) + d>t λt

− c>t β̃t − s>(∆χt −∆χt−1)λt (6.31)

Unfortunately, we see that this problem is not separable across time in general, which makes
the analytic solution more difficult. The key idea is that λt which are coupled by (6.30c)
must be optimized simultaneously. We examine a number of special cases below.

For situtations where ∆σt = 0 and ∆σt−1 = 0, the analytic solution for λ?t (s, d) is the
same as that described in [34]. In this case λ?t (s, d) is not coupled across time to any other
LMPs.

For situations where ∆σt = I, for some t, the solution can be derived analytically. This
corresponds to the case where λt+1 = λt, arising when the LMPs are identical across periods
when there is no line congestion, or very special cases when there is line congestion. This can
in general extend over a number of consecutive time periods, which we will denote T̃ , such
that λt = λt+1 = · · · = λt+T̃−1. We also define σ(t) := {t1, . . . , tT̃} as the set of consecutive
time periods for which ∆σj

= I, j ∈ {t1, . . . , tT̃−1}, and ∆σt
T̃

= 0. It is always true that
t ∈ σ(t). As an example, say there are three periods, and that ∆σ1 = I, ∆σ2 = ∆σ3 = 0.
implying that λ2 = λ1, and λ3 is distinct. Then σ(1) = σ(2) = {1, 2}, and σ(3) = {3}.

This condition allows the problem to decouple in time across segments where λ?t is distinct,
amd can be solved analytically, the derivation of which is given in Appendix A.1.

For convenience we also define a reduced time index set K, which is assumed to have
distinct elements, and K ⊆ T .

K := {k : k = max(σ(t)), ∀t ∈ T } (6.32)
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K corresponds to a set of time indices that have non-identical consecutive LMPs, where for
any set of time indices with consecutively identical LMPs, σ(t), the final time index of that
set is chosen to represent that sequence. In the brief example given above, T = {1, 2, 3},
and K = {2, 3}. K is a surjective map of T , with each t ∈ K associated with a unique k ∈ K,
and each k ∈ K associated to the set σ(k) ∈ T . In the event that there are no consecutive
identical LMPs, then K = T .

We now have the following characterizations of the value function, optimizers, and dual
variables of (6.6). If K = T , then these results reduce to those derived in [34].

Theorem 9. In the critical region where the storage and network congestion patterns are
represented by χt and Wt, t ∈ T , and ∆σj

= I or ∆σj
= 0, ∀j ∈ σ(t), ∀t ∈ T , the generation

dispatch g?, and locational marginal prices λ? are unique and affine in s and d, and can be
written as

λ?t (s, d) = At(Wt)
(
∆ts+ dσ(t)

)
+ λt(Wt) (6.33)

g?t (s, d) = Q−1
t (λ?t (s, d)− at) (6.34)

where

At(Wt) := Qσ(t)MtRtMtQσ(t) + ρt11>, (6.35)
∆t :=

∑
j∈σ(t)

(∆χj
−∆χj−1) (6.36)

dσ(t) :=
∑
j∈σ(t)

dj (6.37)

λt(Wt) := At(Wt)
 ∑
j∈σ(t)

Q−1
j aj

+ |σ(t)|Bt(Wt)Wtc, (6.38)

Bt(Wt) := Qσ(t)MtH
>
t K

−1
t (6.39)

and

Qσ(t) :=
 ∑
j∈σ(t)

Q−1
j

−1

(6.40)

ρt := 1
1>Q−1

σ(t)1
, (6.41)

Mt := Q−1
σ(t) −

Q−1
σ(t)11>Q−1

σ(t)

1>Q−1
σ(t)1

, (6.42)

Kt := HtMtH
>
t , (6.43)

Rt := H>t K
−1
t Ht (6.44)

When there is no line congested in period t, all the expressions above hold with Rt := 0
and Bt(Wt) := 0.
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Proof. The proof is included in Appendix A.1. The expressions for µ?(s, d) and ν?(s, d) are
uniquely defined by the expression for λ?(s, d).

We observe the following useful lemmas:

Lemma 1. The matrix At(Wt) is positive semi-definite. That is At(Wt) � 0. Additionally,
Mt � 0, Kt � 0.

Proof. The proof is included in Appendix A.2.

Lemma 2. The matrix Mt � 0 has exactly one eigenvalue at 0, associated with the eigen-
vector 1.

Proof. The proof is included in Appendix A.3.

We make additional remarks on properties of the analytical solution of MPED, and some
useful identities involving the matrices of Theorem 9 in Appendix A.4.

We now turn to the storage control optimizers u?(s, d), and observe that in general
they are non-unique. This will occur when there are multiple storage units located at the
same bus, or at different buses connected by an uncongested line. For the purpose of solving
MPED any optimal set of storage controls is good enough, however in the event that multiple
parties own storage on the network, the allocation of storage control will have an effect on
the distribution of storage revenues among participants.

To characterize the optimal solution set for the storage controls we determine the binding
constraints related to storage at the optimum. We introduce the matrix ξ(s, d), defined
similarly to χ(s, d), such that for each (i, t) ∈ N × T , let ξi,t(s, d) = 1 if the constraint
(Lui)t ≥ 0 is binding at the optimum and ξi,t(s, d) = 0 otherwise. In other words, ξ
represents the congestion pattern of the lower limit of storage. From (6.23) we can write

ξi,t := ξi,t(s, d)
{1 if λ?i,t+1(s, d)− λ?i,t(s, d) < 0

0 otherwise
(6.45)

The binding storage constraints at the optimum can then be written as

1>(g?t + u?t − dt) = 0, t ∈ T (6.46)
Ht(g?t + u?t − dt) = ct, t ∈ T (6.47)

∆χi
Lu?i = ∆χi

si, i ∈ N (6.48)
∆ξi

Lu?i = 0, i ∈ N (6.49)

where ∆ξi
∈ RT×T is the diagonal matrix with vector ξi on the diagonal. Any u? that satisfies

these equations is a valid storage control profile that satisfies the optimality conditions of
MPED within a given critical region.

While the storage control optimizers might not be unique, the storage congestion surplus
is in fact unique. As proved in [34] the LMPs, λ?(s, d), are unique, and consequently the
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upper storage congestion multiplier, µ?(s, d), is unique. Therefore the SCS defined in (6.12d)
is unique. This allows us to demonstrate a candidate solution for the storage control which
attains the unique SCS, and thus corresponds to a vaild optimal storage control.

Theorem 10. u?t (s, d) = −∆ts, t ∈ T , is a valid optimal storage control in a given critical
region as characterized in Theorem 9.

Proof. We show that the candidate storage control attains the unique SCS and is therefore
optimal. Let u?t = −∆ts. From (6.12c) and (6.12d)

SCS =
T∑
t=1

λ?t (s, d)>u?t (s, d) (6.50)

=
T∑
t=1
−λ?t (s, d)>∆ts (6.51)

=
T∑
t=1

(λ?t+1 − λ?t )+>s (6.52)

=
T∑
t=1

µ?t (s, d)>s (6.53)

Finally the optimal cost can be characterized analytically as

J?(s, d) =
∑
k∈K

Jk(s, dσ(k)) (6.54)

where

Jk(s, dσ(k)) = 1
2s
>∆kAk(Wk)∆ks+ 1

2d
>
σ(k)Ak(Wk)dσ(k)

+λ>k (∆ks+ dσ(k)) + d>σ(k)Ak(Wk)∆ks+ Jk

(6.55)

and

Jk = 1
2λ
>
kQ
−1
σ(k)λk −

∑
j∈σ(k)

1
2a
>
j Q
−1
j aj (6.56)

We have now analytically characterized the value function, optimizers and dual variables
of MPED within a critical region, under the condition where only entire consecutive LMP
vectors are permitted to be identical.6 The critical regions of the problem can be calculated
using the methods described in Section 2.4. We denote a general feasible parameter set Θ,

6As noted previously, the numerical computation of the parametric solution of MPED is not limited by
the conditions described here.
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and the associated finite set of critical regions asRj(Wt, χt, σt, ξt,∀t ∈ T ), j = 0, . . . , NCR−1,
where there are NCR critical regions. We have that⋃

j

Rj = Θ (6.57)

We also define the small storage set, R0, which is the critical region containing the parameter
values (s = 0, d = d). This corresponds to the base case of MPED with no storage, either
OAS or private. The notion of small storage refers to the fact that for some s = ε, the set
of active constraints from the case with s = 0. Thus the critical region would not change
and the same set of analytic functions would describe the solution in both cases. This idea
will come in useful when trying to make statements about participant savings with storage
in Section 6.5.

6.4 Solving Bilevel Problems
Having analytic formulae for the LMP, λ?, and the generation optimizer, g?, contingent on
being within a given critical region, we can now return to solve the private optimization
problems described in (6.16). Using the analytical formulae, we will show how these non-
convex problems can be reduced to a finite set of QPs, or a single tractable MIQP, using
similar concepts to those presented in the previous Chapter. We will take the LSE’s negative
load payment maximization problem as an example to illustrate these ideas.

LSE - SOAS

The original problem is written as

max
sp

T∑
t=1
−λ?t (sp, d)>dt + µ?t (sp, d)>sp (6.58a)

s.t. 0 ≤ sp ≤ s (6.58b)
λ?, µ? ∈ EQBM

(
MPED(sp, d)

)
(6.58c)

We assume that we have found the multiparametric solution of MPED over the finite pa-
rameter set Θ, where

Θ = {s ∈ Rn, d ∈ Rn×T : 0 ≤ s ≤ s, d = d} (6.59)

resulting in a finite set of critical regions, denotedRj(Wt, χt, σt, ξt, ∀t ∈ T ), j = 0, . . . , NCR−
1. We can now recast the above problem as follows

max
sp

T∑
t=1
−λ?t (sp, d)>dt − λ?t (sp, d)>∆ts

p (6.60a)

s.t. 0 ≤ sp ≤ s (6.60b)
λ?t = At(Wt)(∆ts

p + dt) + λt(Wt), if (sp, d) ∈ Rj, ∀j,∀t (6.60c)
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The solution to this problem can be found by converting the set membership if condition to a
binary constraint using the Big-M method, and solving the full MILP problem. Alternatively
the optimal solution corresponds to the largest value over a finite set of convex LPs, defined
as follows

LP ?
COAS = max

j

(
max

(sp,d)∈Rj

T∑
t=1

ft(sp,Rj)
)

(6.61)

where
ft(sp,Rj) = −(∆ts

p + dt)>At(Wt)(∆ts
p + dt)− λt(Wt)>(∆ts

p + dt) (6.62)
The function ft(·) is obtained by substituting the expression for λ?t in (6.60c) into the ob-
jective in (6.60a).

LSE - PSO

The original problem is written as

max
up

T∑
t=1
−λ?t (0, d− up)>(dt − upt ) (6.63a)

s.t. up ∈ U(s) (6.63b)
λ? ∈ EQBM

(
MPED(0, d− up)

)
(6.63c)

Abusing notation, we assume that we have found the multiparametric solution of MPED
over the finite parameter set Θ, where

Θ = {s ∈ Rn, d ∈ Rn×T : s = 0, d− s ≤ d ≤ d+ s} (6.64)

resulting in a finite set of critical regions, denotedRj(Wt, χt, σt, ξt, ∀t ∈ T ), j = 0, . . . , NCR−
1. We can recast it using the analytic solution for the LMPs as

max
up

T∑
t=1
−λ?t (0, d− up)>(dt − upt ) (6.65a)

s.t. up ∈ U(s) (6.65b)
λ?t = At(Wt)(dt − upt ) + λt(Wt), if (0, d− up) ∈ Rj,∀j,∀t (6.65c)

Similarly to the COAS problem described above, the problem can be solved as an MIQP
using the Big-M method to convert the set membership constraint using a binary variable.
Alternatively the optimal solution corresponds to the largest value over a finite set of convex
QPs, defined as follows

LP ?
PSO = max

j

(
max

(0,d−up)∈Rj

T∑
t=1

ft(up,Rj)
)

s.t. up ∈ U(s)
(6.66)
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where
ft(up,Rj) = −(dt − upt )>At(Wt)(dt − upt )− λt(Wt)>(dt − upt ) (6.67)

We note the similarity between equations (6.62) and (6.67), where if one substitutes upt =
−∆ts, we obtain the same objective function. This relates to the results in Theorem 10,
where in the COAS case, the optimal storage control is restricted to be a feasible optimal
primal solution of the ISO’s optimization, whereas in the PSO case the private operator has
a free choice of storage control within their feasible storage set. It can also be shown that
the SOAS and PSO problems for merchant storage and storage-owning generation are also
a finite set of convex QPs, and can be derived and solved in a similar manner.

A Note on Dimensionality and Tractability

In the worst case, the number of critical regions is equal to the number of possible combi-
nations of active sets of the optimization problem. However, in many problems only a few
active constraints sets generate full-dimensional critical regions inside the feasible parameter
set. To keep the number of critical regions low and computable within a reasonable time,
it is desirable to keep the dimension of the parameter space as small as possible. This can
be achieved through judicious choice of which parameters to include, or ‘parameterization
of the parameters’.

For the previous examples the parameter sets are intentionally kept as small as possible.
For SOAS, the parameter set is of dimension n, and restricted to the set 0 ≤ s ≤ s.
Depending on the volume of storage capacity to be analyzed for the network, the number of
resulting critical regions should be reasonable to compute. If further restriction is needed,
the location of storage can be confined to fewer buses, reducing the dimensionality of the
parameter set.

For PSO, at first glance the parameter set appears to be of dimension nT , however it
is in fact only of dimension n. This is due to the fact that since s = 0, the individual
problems of MPED are now decoupled in time, and represent different instances of the same
single period economic dispatch problem. One could solve this problem parametrically with
different values of nominal demand, however this may duplicate effort. Another alternative
is to further ‘parameterize the parameters’ to obtain a single problem, assuming the system
cost function is not time-varying. In the majority of power systems the demand vector is
correlated across time, such that demand can be represented using a constant distribution
vector, θ, and deviation vector, v.

dt = αtθ + vt (6.68)
where αt > 0 ∈ R, α ≤ αt ≤ α, θ ∈ Rn, θ ≥ 0, ‖θ‖1 = 1, and vt ∈ Rn, −v ≤ vt ≤ v. This
results in a single multiparametric program for the single period economic dispatch problem,
with parameters α, v, and a parameter set of dimension n+ 1, defined as

Θ = {d ∈ Rn : d = αθ + v, α ≤ α ≤ α, −v ≤ v ≤ v} (6.69)

where for the example in 6.4, α = mint{dt}, α = maxt{dt}, v = s.
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As diccused in the previous chapter, relative to simply solving an MPEC, this paramet-
ric methodology has some advantages and disadvantages. It requires an intensive offline
computation to calculate critical regions and associated functions, with a lightweight online
computation to solve a relevant bilevel problem. This makes it useful for situations in which
many instances of the problems need to be solved in quick succession, or in offline planning
situations where computation time is less important. An advantage is that one automatically
has the sensitivity functions dictating how the solution will change in response to deviations
of the parameters. This is useful for real-time prediction and planning. A shortcoming of this
approach is that is somewhat ‘brittle’, requiring complete recomputation of all parametric
solutions if any major changes occur on the system that are not modelled parametrically.
For example, the generation cost function, or the network topology. These variables can be
modelled parametrically but will result in an increase in the dimension of the parameter set,
incurring the scaling problems described previously. Depending on the intended use of the
bilevel problems, operational or planning, a design tradeoff must be made between the set
of variables that are modelled parametrically and the dimension and size of the parameter
set.

6.5 Main Results
To analyze the payoffs and savings of participants, it is necessary to split the results into
two sections:

1. Parameters (s, d) that remain within the small storage set R0.

2. Parameters (s, d) that lie in a different critical region than R0.

This distinction is necessary as it turns out that making general statements about participant
savings is only possible in the first case.

Within the Small Storage Set R0

Savings Under OAS

We begin by considering savings under OAS, where for brevity we denote π̂(s, d, u?(s, d)) =
π̂(s), and s ∈ R0 implies that (s, d) ∈ R0. These results apply to both COAS and SOAS,
where the saving under COAS is equal to π̂(s), and the saving under SOAS is equal to
maxsp(π̂(sp)), where sp ∈ R0, 0 ≤ sp ≤ s.
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Theorem 11. For all s ∈ R0, the system savings and savings to participants under OAS
are as follows

Ĵ(s) =
∑
k∈K

µ?k(s, d)>s+ 1
2s
>∆kAk(Wk)∆ks (6.70a)

M̂P (s) =
∑
k∈K

µ?k(s, d)>s (6.70b)

L̂P (s) =
∑
k∈K

2µ?k(s, d)>s+ s>∆kAk(Wk)∆ks

+ s>∆kλk(Wk)
(6.70c)

ĜP (s) =
∑
k∈K
−1

2s
>∆kAk(Wk)∆ks

+ s>∆kAk(Wk)
 ∑
j∈σ(k)

Q−1
j aj

 (6.70d)

Ĵ(s) and M̂P (s) are both nonnegative and concave in s, ∀s ∈ R0. In general, both L̂P (s)
and ĜP (s) are indefinite, and can take both positive and negative values. We also have that
Ĵ(s) is a non-decreasing in s, ∀s ∈ R0, in particular that

∂Ĵ(s)
∂s

=
∑
k∈K

µ?k(s, d), (6.71)

and that M̂P (s) is initially non-decreasing in s, in particular that

∂M̂P (0)
∂s

=
∑
k∈K

µ?k(0, d), (6.72)

We have the following theorem under stricter conditions.

Theorem 12. If the generation cost is not time varying, such that Qt = Q, at = a, there
are no consecutive identical LMPs, such that K = T , and the line congestion Wt is identical
in each period t, then

L̂P (s) ≥ 0, ∀s ∈ R0 (6.73)
L̂P (s) = 2Ĵ(s), ∀s ∈ R0 (6.74)
L̂P (s) ≥ 2M̂P (s), ∀s ∈ R0 (6.75)
ĜP (s) ≤ 0, ∀s ∈ R0 (6.76)

Additionally L̂P (s) is a non-decreasing, concave function of s, and L̂P (s) is a non-increasing,
concave function of s, ∀s ∈ R0.
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To digest these results, we first note that unsurprisingly both system savings and mer-
chant storage savings7 are nonnegative, and positive assuming a non-zero storage capacity
and that there are at least two consecutive periods with an LMP difference. This could be
deduced a priori, since a non-zero storage capacity enlarges the feasible set of MPED, leading
to a nonnegative reduction in system cost, and the merchant storage savings are equal to
the storage congestion surplus which we have seen is nonnegative.

A more counterintuitive result is that loads can lose money when their storage (or indeed
any storage) is operated to maximize social welfare. A close examination of expression
(6.70c), reveals that the only term which is not nonnegative is the final term, which relates
to the constant term in the affine expression for the LMP, λk(Wk), and consequently the
congestion pattern {Wk}k∈K. We will see in a later counterexample that this term can
indeed be negative, resulting in negative load savings.

Similarly for the generation savings in (6.70d), we see that the only term which is not
nonpositive is the final term, which relates to the coefficients of the generation cost function.
We note that if at = 0, ∀t ∈ T , then ĜP (s) ≤ 0, ∀s ∈ R0.

Savings Under SOAS and PSO

Restricting ourselves to the small storage setR0, and recalling the bilevel problems of Section
6.4, we see that both SOAS and PSO correspond to a single convex QP over the small storage
set. The objectives for both SOAS and PSO, are the payoff functions in (6.13), rederived
as functions of sp and up respectively, as in the bilevel subsection. To put the following
discussion in context, the reader should refer to the load-owned storage payoff maximization
problems formulated in Section 6.4.

We first note that while the problems are convex, they are not strongly convex since
Ak(Wk) � 0, so they will have an optimal solution but the solution may not be unique.
Also, since the feasible set of both of these problems is the small storage set R0, which
is some arbitary polytope, there are no general closed form solutions to these problems.
However, the inequality in (6.17) always holds, and additionally the welfare savings under
either SOAS or PSO are always less than or equal to the welfare savings under COAS. In
other words,

Ĵ(sp) ≤ Ĵ(s), ∀sp, s ∈ R0, 0 ≤ sp ≤ s (6.77a)
Ĵ(up) ≤ Ĵ(s), ∀(0, d− up), s ∈ R0, u

p ∈ U(s) (6.77b)

We will see from the counterexample in the following section, that neither the inequalities
in (6.17) or (6.77) are tight in general. However, an interesting corollorary of Theorem 12 is
that, under the conditions in Theorem 12, the COAS and optimal SOAS savings are identical
for LSEs, that is sp? = s. This can be seen from the fact that the system maximizes welfare
savings under COAS using all available storage s, and the load savings are a linear function

7Merchant storage savings are simply equal to the merchant storage payoff, since in the base case with
no storage, their payoff is necessarily zero.
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of the system savings and so will be maximized by the same use of storage, implying sp? = s.
Additionally if there is no line congestion in any period, then the optimal savings under PSO
are identical to those under COAS and SOAS for LSEs, leading to the following Lemma.

Lemma 3. If the conditions of Theorem 12 are satisfied, then

L̂P
?

COAS = L̂P
?

SOAS = 2Ĵ (6.78)

If additionally there is no line congestion in any period, then

L̂P
?

COAS = L̂P
?

SOAS = L̂P
?

PSO = 2Ĵ (6.79)

and

sp? = s sp?, s ∈ R0 (6.80)
up? = u?(s, d) (0, d− up?), s ∈ R0 (6.81)

where sp? and up? are the optimal solutions of LPSOAS and LPPSO respectively. So in
this special case, the load savings are identical under each regulatory regime and the private
operation of storage is welfare maximizing. A general takeaway would be that in networks
with very little congestion and small amounts of storage operated privately by LSEs, the
storage is likely to be operated in a similar way to its ideal operation under OAS, and
will result in welfare gains that are close to optimal. Additionally, from the final results of
Theorem 11, we see that the merchant savings which are equal to the storage congestion
surplus are initially increasing in s. Given that welfare savings are a non-decreasing function
of s, this implies that the private operation of storage under SOAS will always be welfare
maximizing up to some value of storage capacity.

Counterexample

This example demonstrates that even in a simple case, load savings can be negative, gen-
eration savings can be greater than load savings, and merchant storage can make a greater
profit privately than its profit under OAS. We consider a two bus network, over two periods,
with the following cost and network data.

Qt =
[
1 0
0 10

]
, ∀t at =

[
0
0

]
, ∀t (6.82a)

H =
[
0 −1
0 −1

]
, c =

[
5
5

]
, (6.82b)

d =
[
3 5
5 15

]
, s =

[
1
0

]
(6.82c)



CHAPTER 6. OPEN ACCESS STORAGE: SHOULD I STAY OR SHOULD I GO? 120

We first want to find the properties of the small storage set for this problem, so we solve
MPED(0, d) numerically using cvx in Matlab with the SDPT3 solver, and obtain the optimal
solution, and the line and storage congestion patterns.

λ?(0, d) =
[
7.27 10
7.27 100

]
, g?(0, d) =

[
7.27 10
0.73 10

]
, (6.83)

p?(0, d) =
[

4.27 5
−4.27 −5

]
, u?(0, d) =

[
0 0
0 0

]
, (6.84)

W1 =
[ ]

, W2 =
[
1 0

]
, (6.85)

χ =
[
1 0
1 0

]
, ξ =

[
0 1
0 1

]
, (6.86)

σ =
[
0 0
0 0

]
(6.87)

We see that there is no line congestion in the first period, and line congestion in the direction
of bus 1 to bus 2 in the second period. This solution results in the following social cost,
which we refer to as the system payoff, and set of payoffs to participant collectives, assuming
that there is no storage on the network, listed in Table 6.1.

Table 6.1: Payoffs in the absence of storage

Payoff
System 579.1

Merchant Storage 0
Loads -1608.2

Generation 579.1

We now solve MPED(s, d) to find the COAS solution.

λ?(0, d) =
[
8.18 9
8.18 100

]
, g?(0, d) =

[
8.18 9
0.82 10

]
, (6.88)

p?(0, d) =
[

4.18 5
−4.18 −5

]
, u?(0, d) =

[
−1 1
0 0

]
, (6.89)

W1 =
[ ]

, W2 =
[
1 0

]
, (6.90)

χ =
[
1 0
1 0

]
, ξ =

[
0 1
0 1

]
, (6.91)

σ =
[
0 0
0 0

]
(6.92)

We observe that the congestion states are identical for both problem instances, so (s, d) ∈ R0.
Since we assume storage capacity at only one bus, this implies that the line segment 0 ≤ s ≤ s
is also contained in the small storage set.
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We then solve the SOAS and PSO problems for each participant collective, resulting
in the following optimal storage controls. In this example for each participant collective,
although not in general, the optimal storage controls were the same under SOAS and PSO.

u?MP =
[
−0.71 0.71

0 0

]
(6.93)

u?LP =
[
−0.12 0.12

0 0

]
(6.94)

u?GP =
[
0 0
0 0

]
(6.95)

We see that all private storage controls differ from those obtained under COAS in (6.89).
Each set of storage controls result in savings to participants, listed in Table 6.2.

Table 6.2: Participant savings when owning a capacity of storage, s, under each regulatory
regime.

COAS SOAS PSO
Merchant Storage 0.82 0.97 0.97

Loads -1.45 0.03 0.03
Generation -0.95 0 0

We also obtain the welfare savings under each regime when storage is owned by each
participant collective, listed in Table 6.3. To gain more insight we plot the private participant

Table 6.3: Welfare savings

COAS SOAS PSO
Merchant Storage 1.77 1.46 1.46

Loads 1.77 0.31 0.31
Generation 1.77 0 0

savings as a function of the storage capacity at bus 1, s1. We assume that the storage obeys
‘water-filling’ behaviour over the two periods, such that −u1 = u2 = s1. The crosses on
the figure correspond to the optimal savings under private operation (either SOAS or PSO
here), listed in Table 6.2, and we see the savings made by each participant under COAS on
the right of the figure when s1 = s1.

The generators can never make any savings using any level of storage, so it is in their
interest to leave the storage unused. The loads only make a small positive saving at a small
level of storage capacity. Merchant storage makes a saving over the full range of storage
capacity, but their optimal action is still to withold some capacity relative to the social
optimum.
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Figure 6.1: Participant savings with varying storage capacity.

For brevity we do not present it here, but a counterexample where generators make
savings (additional profits) using storage, which reduces system welfare, has been found for
the IEEE 14 bus case, completing the proof of Theorem 11.

Outside the Small Storage Set R0

The operation of storage, either by the ISO under OAS or by private participants under
PSO, can result in a change in the set of active constraints from the base case. This means
that the parameters now lie in a different critical region, and the system cost, optimizers,
and dual variables are governed by a different set of analytic expressions. As an illustration,
in Figure 6.2 we show the critical regions of MPED in s space for the previous example in
(6.82), with d = d as a constant. Here the small storage set, R0, corresponds to critical
region 2, and we see that s = s does indeed lie within this set. To summarize Table 6.4,
regions 2, 5 each have the same line congestion pattern, in the direction of bus 1 to bus 2
in the second period. Regions 1, 3, 4, 6 each have the same line congestion pattern, in the
direction of bus 1 to bus 2 in both periods. What distinguishes each of the regions with the
same line congestion pattern is their storage congestion pattern. With this in mind, only
regions 1, 2 are ‘interesting’, in that regions 3, 4, 5, 6 correspond to cases where the storage
capacity is only partially used in the first period, implying that there is some excess storage
capacity whose usage would not improve system welfare.8

Transmission congestion relief is often touted as a potential benefit of energy storage.
However in this case, if additional storage capacity was placed at bus 2, such that the
critical region changed from 2 to 1, this would result in an increase in line congestion. In this

8This does not necessarily mean that the excess capacity could not be used by a private participant to
improve their payoff, however in this example it turns out not to be the case.
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Figure 6.2: Critical regions of Two Bus Example

Table 6.4: Critical Regions

Region W χ ξ

1
[
1 1
0 0

] [
1 0
1 0

] [
0 1
0 1

]

2
[
0 1
0 0

] [
1 0
1 0

] [
0 1
0 1

]

3
[
1 1
0 0

] [
0 0
1 0

] [
0 1
0 1

]

4
[
1 1
0 0

] [
1 0
0 0

] [
0 1
0 1

]

5
[
0 1
0 0

] [
0 0
1 0

] [
0 1
0 1

]

6
[
1 1
0 0

] [
0 0
0 0

] [
0 1
0 1

]

example there is no amount of storage ever able to eliminate line congestion on the network.
In general, adding some amount of storage to a network, can both increase or decrease line
congestion, depending on the nominal demand profile, network topology, generation cost
function, and of course the location of the additional storage. A key insight is that storage
operated to maximize social welfare can increase line congestion, so transmission congestion
relief and welfare maximization are not necessarily compatible aims for storage development.

Changing critical region will clearly have an impact on participants’ payoffs. If we assume
that the ISO manages storage under OAS, a change in critical region can result in either
savings or losses to a participant, depending on the properties of the new critical region,
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other than merchant storage which always makes a nonnegative saving. This result echose
that of Theorem 11, where even in the small storage set load and generation savings are
indefinite

Theorem 13. For s ∈ R, where R is an arbitrary critical region of MPED, the system
savings and savings to participants have the following properties

Ĵ(s) ≥ 0, s ∈ R (6.96a)
M̂P (s) ≥ 0, s ∈ R (6.96b)

Both L̂P (s) and ĜP (s) are indefinite, and can take both positive and negative values.

Proof. It is clear that Ĵ(s) ≥ 0, ∀s, since the feasible set of MPED is enlarged. M̂P (s) ≥ 0,
∀s, since the merchant storage saving is equal to the merchant storage profit, which has been
shown to be nonnegative ∀s.

For load and generation savings we see similar properties to Theorem 11, with additional
complications. We examine the load savings under OAS for a storage capacity s /∈ R0,
assuming it lies in some other critical region s ∈ R,

L̂P (s) =
T∑
t=1
−λ?t (s, d)>d+ µ?t (s, d)>s− (−λ?t (0, d)>d) (6.97a)

=
T∑
t=1

d
>
t (At,R0(Wt,R0)− At,R(Wt,R)) dt

+
(
λt,R0(Wt,R0)− λt,R(Wt,R)

)>
dt

+ µ?t (s, d)>s− dtAt,R(Wt,R)∆t,Rs

(6.97b)

where we have introduced the additional subscripts R0, R to indicate which critical region
each At(Wt), λt(Wt), ∆t come from. Given that At,R(Wt,R) � 0 and λt,R(Wt,R) are arbitrary
in relation to At,R0(Wt,R0) � 0 and λt,R0(Wt,R0), the first two terms in (6.97b) are indefinite
constants, meaning L̂P (s) is indefinite in general. A similar result applies to the generation
savings.

In the private case, participants can control their storage and consequently control which
critical region will apply to MPED. This allows them to ensure nonnegative savings from
storage, satisfying the inequality in (6.19b). The private problem can be solved by the
participant as described in Section 6.4. In general it can be beneficial to participants to
either decrease or increase the line congestion on the network, as is true for the welfare
maximizing ISO. An interesting case arises when participants actively congest lines for their
own benefit when the ISO would not have done so (the converse can also occur). This could
in general put the power network closer to its limits than it would otherwise need to be, and
could also be welfare decreasing.
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6.6 Conclusions
In answer to the title of this chapter, in general, for small installations of storage capacity,
merchant storage owners and load-owned storage would be wise to stay, and allow the ISO
to operate their storage capacity under a regime such as OAS. Generators would be very
unwise to invest in storage as they lose money in almost all cases. This advice changes if
there are large amounts of installed storage, if the network faces consistent high congestion,
or if storage is consistently a price-maker. It is unclear, however whether a private storage
operator would have enough information to solve the MPECs described in this chapter, or
to consistently take advantage of network congestion to increase its profits, relative to OAS.

We have not addressed other use cases for storage in this chapter, including ancillary
services and local load shaping and balancing. For grid services, the ISO could co-optimize
the operation of storage across its markets, remaining within an OAS framework. However
storage is often much more likely to be a price-maker in ancillary service markets as there is
less competition, however, this may change as greater volumes of grid storage are installed. It
is less clear how OAS can co-exist with private constraints and objectives, such as commercial
load shaping. More work is needed in understanding how the many applications and full
value stack of storage can be realized, and their integration with existing wholesale energy
markets. Additionally In this chapter we have only addressed cases where a single collective
owns storage, and not the more general case of heterogenous storage ownership. To go
beyond work such as that in [133, 139] and use the models presented in this chapter would
involve solving equilibrium problems of the kind described in Chapter 5. This presents an
avenue for numerical study but analytical results will almost certainly not be obtainable.
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Chapter 7

Load Flexibility for Congestion Relief

In the previous chapter we addressed the integration of energy storage into electricity markets
using OAS, with a focus on energy arbitrage. Here we broaden the application to congestion
relief, concentrating just on load flexibility. We will use similar ideas from multiparametric
programming, as in the previous section, but here employ them more abstractly using the
concept of critical regions without delving into the analytical functions associated with them.
We demonstrate in this chapter the set of loads which can be met congestion free, given some
amount of load flexibility. This chapter is the result of joint work with Prof. Enrique Baeyens,
Prof. Kameshwar Poolla, and Prof. Pravin Varaiya, and was first published in [140]. The
initial focus of the paper was congestion-free dispatch, i.e. can a particular load be met in
such a way as to cause no congestion on the network. It is now the opinion of the author
that congestion reduction should not be a goal in itself, only welfare maximization or profit
maximization should be the goal of the ISO or market participant respectively. That is, it
may well be in the interest of the ISO or participant to increase network congestion, or indeed
reduce it, so as to maximize welfare or their own payoff. No congestion state is arbitrarily any
better or worse than another, and should be a safe operating point of the system, assuming
security constraints have been set appropriately. That said, the work presents interesting
mathematical results as to the set of loads which can be met with a congestion free dispatch,
and those that would save under such a dispatch. There is, however, a secondary application
of flexibility to congestion relief, in mitigating constraints and component overloads, when
the alternative would be curtailing or disconnecting a resource, or investing further in the
transmission or distribution network. This is more common to systems without centralized
dispatch, as in Europe, where participants self-schedule and balancing is left to a TSO. In the
ISO model, constraints are implicitly respected in the a priori optimization of dispatch. This
problem represents an interesting avenue of further research, but we do not pursue it here.
The two Chapters following this describe mechanisms for transacting flexibility, which could
easily be adapted for such a situation where flexibility is contracted to resolve constraints in
the distribution network.
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7.1 Introduction
Why pay rent? Congestion rents in transmission networks are a real economic expense to
participants. We argue that load flexibility can mitigate congestion in electricity grids, whilst
generating value for market participants.

Congestion occurs in a network when actual or scheduled flows of electricity over a line
are constrained below desired levels. This results in out of merit order generation dispatch.
There is firstly a physical capacity constraint due to thermal limits on each transmission
line. Additionally line capacity is constrained to ensure continued service under contingency.
The latter are usually characterised as stability or security constraints and are determined
by system operators to assure an acceptable level of grid reliability. Low-level transmission
congestion is very common, however “in more severe congestion conditions, transmission
constraints can impair grid reliability by reducing the diversity of available electricity supplies
and rendering the grid more vulnerable to unanticipated outages of major generators or
transmission lines” [141].

Due to out of merit order generation dispatch, congestion causes prices to vary and typ-
ically increase across a network, usually resulting in higher costs for end consumers. For
context, from 2008-2013, between 2 and 6% of PJM’s total annual billing was attributable
to congestion, representing an average annual cost of approximately $1bn [142]. There are
several ways to mitigate congestion, for example: reducing electricity demand in the con-
gested area through demand management programs, building additional generation capacity,
or building additional transmission capacity. The latter options are highly expensive and de-
cisions are made on very long timescales. The first option is typically much simpler, however
little research exists with regards to load flexibility in mitigating congestion.

We propose the idea of a congestion-free dispatch, where the resulting network flows
cause no transmission constraints to bind. While we refer to a dispatch, the necessary
control could be undertaken by the ISO or private participants. The value proposition of
a congestion-free dispatch is fourfold. First, it has the potential to generate savings for
consumers by eliminating the congestion component of LMPs. However, the issue of savings
is nuanced and a congestion free dispatch does not necessarily imply a reduction in total cost
to consumers, as the energy component of the locational marginal prices (LMPs) may rise
due to the need for dispatching more expensive generators. The effect of a congestion free
dispatch on generator revenue must also be considered. Second, price risk would be greatly
reduced, either reducing or eliminating altogether the need for financial transmission rights
(FTRs), generating savings for parties engaged in bilateral or multilateral contracts [143].
Third, it is perhaps desirable that the grid be operated in a congestion free manner (or even
in a reduced flow state) as it increases safety margins in the event of a contingency. Finally, a
congestion free dispatch may avoid or delay the need for expensive upgrades to transmission
system infrastructure.

In this chapter we investigate the potential of load flexibility in enabling a congestion free
dispatch, and examine nuances of the value proposition that can subsequently be derived.
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7.2 Problem Formulation

Load Flexibility
In this chapter we take a more specific definition of load flexibility as the ability to shift
power consumption in time whilst enforcing a constant energy constraint. That is, any
power consumption that is curtailed in one time period is recovered in some other time
period, such that total energy consumption remains constant. In practice this represents
traditional demand response, where load is shifted in time, typically to periods of lower
demand or lower cost.1

We adopt the same power system and power flow model as in previous chapters. Rather
than consider a discrete, multi-period problem, here we will consider the operation of the
power system over some time duration of length T , and assume that the generation dispatch
is optimized continuously by the ISO. We note the difference between the usage of T here
as a length of time, and in previous chapters as the number of multi-period intervals. This
is unrealistic as the ISO can only dispatch power in discrete time intervals, however this is
a convenience for the presentation of later results, and we will see that all examples and
results can be reformulated in a discrete time framework. We have an inelastic nominal
demand d(t) ∈ Rn, and flexibility v(t) ∈ Rn, such that apparent demand d ∈ Rn×T , is equal
to d = d− v. We will generally assume that nominal demand is constant over the duration
T . We assume that there is some ramping constraint v ∈ Rn on the flexibility, and enforce
the zero total net energy constraint, such that the feasible set of flexibility V , is written as

V := {v(t) : −v ≤ v(t) ≤ v,
∫ T

0
v(t) = 0, 0 ≤ t ≤ T} (7.1)

In this chapter we will be attempting to find the set of loads for which a congestion
free dispatch can be achieved for any ramping capacity of load flexibility. As such, for
convenience, we will generally consider v =∞, even though flexibility will clearly be bounded
below by the nominal demand in any period i.e. flexibility cannot generate any power, only
reduce or increase consumption. We will return to the issue of ramping constraints in Remark
6.

Economic Dispatch and Congestion
We adopt a single-period economic dispatch model with zero storage capacity described in
(2.35), where in the notation of that model, T = 1. We assume that this ‘single-period’
optimization is performed continuously over t ∈ [0, T ]. For convenience we now drop the
t index, and assume that each quantity referred to below is the result of the continuous

1If suitable conditions are met on the ordering of the load curtailment and recovered consumption, then
energy storage can also be considered as load flexibility under this definition. i.e. The storage must be
charged before it can discharge. This ordering constraint can be neglected if we assume some initial state of
charge on the storage.
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economic dispatch optimization. We denote the generation cost function at each node as
Ci(·), such that

C(g) =
n∑
i=1

Ci(gi) (7.2)

We recall the following concepts:

Locational Marginal Prices

The Lagrange multipliers λi are known as locational marginal prices (LMPs). If bus i is a
net demander, λi equals the marginal benefit to consumers, and if bus i is a net supplier, λi
equals the marginal cost of generation. Since generation costs are assumed to be increasing
functions, it must follow that λi > 0. The LMP can be decomposed into three components:
a pure energy term, whose value is the same at each node, a loss term, and a congestion
term [36]. Since the DC formulation is lossless, the loss term of the LMP does not appear
in our analysis. We recall that

λ = γ1−H>β (7.3)

Merchandising Surplus

The merchandising surplus is defined as

MS = −λ>p = β>c (7.4)

This is the money that is left over after the system operator has paid all generators and
collected all revenue from loads. It can be shown that this is always nonnegative for an
economic dispatch [37].

Congestion Rent

Since MS = β>c and βij is only non-zero when the line constraint on (i, j) is active, it can
be concluded that only congested lines contribute revenue to the merchandising surplus2.
The quantity β>c is known as the congestion rent, and βij is known as the congestion price
for the associated line flow constraint. The congestion price has a standard interpretation
as the marginal value of increased thermal capacity.

Conclusions from Analysis of Economic Dispatch

It can be seen from (2.35c) that in the absence of congestion, βij = 0 ∀ (i, j), and thus all
LMPs in the network will be equal, λ = γ1. This global price will be set by the marginal

2This is not strictly true. The total sum of the merchandising surplus is determined solely by congested
lines, however congestion causes prices to vary everywhere in the network. Thus there will be uncongested
lines which contribute to the MS due to a positive price difference across them, equally balanced by ‘negative’
contributions from other uncongested lines with a negative price difference across them.
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generation in the network.3 Thus for a congestion free dispatch, generators are dispatched
in merit order: least expensive first up to its capacity, then the second least expensive up to
its capacity, and so on. For a given set of generators this merit order determines generation
selection and cost for a given total load. This dispatch is equivalent to the dispatch for the
hypothetical case where the network transmission capacities are unconstrained.

Additionally the absence of congestion also implies that MS = 0. Any nonnegative MS
represents additional costs to consumers, so a congestion free dispatch should in general
be beneficial to consumers. This begs the question then, under what circumstances is a
congestion free dispatch possible?

7.3 Feasible Set of Loads for Congestion Free
Dispatch

We wish to define the feasible set of loads for which a congestion free dispatch is possible.
We first define the economic generation set GE, then the feasible set of nodal injections P ,
and finally the congestion free load set DF . We consider a

Definition 6. The generation vector g ∈ Rn is called feasible if 0 ≤ g ≤ g. The total power
supplied by g is 1>g, and the total cost is C(g) = ∑n

i=1Ci(gi). A generation vector ĝ is called
a substitute for g if 1>g = 1>ĝ, and ĝ is feasible.

Definition 7. The economic generation set is defined as

GE := {g : g is feasible, C(g) ≤ C(ĝ) ∀ substitutes ĝ}

Theorem 14. We have the following:

• Assume linear generator cost functions of the form Ci(gi) = πigi + constant. Let the
generators be ordered by increasing marginal cost ai. Let g0 = 0 and Gk = ∑k

i=0 gi.
Then, g =

[
g1 g2 · · · gn

]T
∈ GE if and only if

gk =


0 if 1>g ≤ Gk−1
1>g −Gk−1 if Gk−1 ≤ 1>g ≤ Gk

Gk if Gk ≤ 1>g
(7.5)

• Assume generation costs Ci(·) are convex and continuously differentiable, then

GE =
{
g : g is feasible, ∂Ci

∂gi
= ∂Cj
∂gj

,∀i, j ∈ N
}

3In the case of linear generation costs, assuming no primal degeneracy, there will be a unique marginal
generator. In the case of nonlinear generation costs, multiple generators may be marginal.
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Remark 3. The economic generation set is generally non-convex. It is a curve in Rn. The
construction of GE in Theorem 14(a) is easily extended to piecewise linear cost functions.
It suffices to consider each piecewise linear segment k of Ci(·), defined as Cik(gi) = πikgi +
constant, as a separate generator, located at bus i. Then merit ordering is applied based on
increasing aik, and GE is constructed accordingly.

Definition 8. The feasible set of nodal injections is the feasible injection region P, defined
in (2.14), and restated here

P := {p : 1>p = 0, Hp ≤ c} (7.6)

This set is constrained only by linear inequalities, and is a convex polytope in a subspace
of dimension (n−1). It should also be noted that for any p ∈ P , it is also true that −p ∈ P .

Definition 9. The congestion free load set DF is the set of all feasible loads l ∈ Rn for which
congestion does not occur.

Theorem 15. DF is characterised as the Minkowski sum of the economic generation set GE
and the feasible nodal injection set P.

DF = GE + P := {d : d = g + (−p), g ∈ GE,−p ∈ P}

The set DF is generally non-convex, due to the nonconvexity of GE. It should also be
noted that DF is not restricted to purely positive loads. Momentarily negative loads can
be realised through storage. If we preclude this possibility we must restrict DF to the
nonnegative orthant. For simplicity we will consider elements on the boundary of this set to
be congestion free, i.e. DF is a closed set.4.

Remark 4. The set of feasible loads achievable under both congested and uncongested dis-
patch is D = G + P, where G := {g : 0 ≤ g ≤ G} is the set of feasible generation. This
is due to the fact that a congested dispatch will result in generators being dispatched out of
merit order and can require any dispatch in G. The set of feasible loads under congestion is
defined as DC = D/DF . That is D = DF ∪ DC.

7.4 Two Bus Example
We illustrate these feasible sets using a simple two bus example, shown in Fig. 7.1. We will
then consider what economic benefits can be derived using flexibility to achieve a congestion
free dispatch.

We have loads, d1, d2, generators g1, g2, and line capacity C. We assume linear generation
costs, and that π1 < π2, where π1, π2 are the constant marginal costs of generation of g1 and
g2 respectively. We also define g1, g2 as the upper generation limits of g1 and g2 respectively.
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Figure 7.1: Two bus network
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nodal injections, P .
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Figure 7.4: DF = GE + P in
light blue fill, DC in light red
hatching.

For the purposes of analysis here we will assume that C ≤ gi. We have LMPs λ1 and λ2 at
bus 1 and 2 respectively, and a price of congestion β12 when the line is congested.

Feasible Sets
Using the analysis of the previous section we find the economic generation set GE shown in
Fig. 7.2, and the feasible set of nodal injections P shown in Fig. 7.3.

The feasible set of loads DF is the Minkowski sum of these two sets, GE and P . This set
is non-convex and is shown in light blue fill in Fig. 7.4. We also show the set of feasible loads
that entail congestion DC in light red hatching. For illustration, in this diagram g1

2 < C < g1,
and g2

2 < C < g2, although this need not be the case in general.
We see that the non convexity of DF arises from the non-convexity of GE. If GE were

convex, then DF would also be convex, since convexity is preserved under Minkowski addi-
tion.

4Technically points on the boundary are primal degenerate, where the line is just congested but incurs
no congestion rent
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Figure 7.5: Nonnegative congestion free load set D+
F = D1 ∪ D2

The Economic Structure of D+

We now examine the economic effects of a congestion free dispatch enabled by flexibility. We
restrict our analysis to nonnegative loads, and denote the nonnegative subset of DF as D+

F .
Similarly the nonnegative congested set of loads is denoted D+

C , and the total nonnegative
feasible load set is denoted D+. This is shown in Fig. 7.5 for some arbitrary C, g1, g2.

We consider five sets, S1, S2, S3, S4, and S5, where D+
F = S1 ∪ S2, D+

C = S3, and
D+ = S1 ∪ S2 ∪ S3, as shown in Fig. 7.5.

First, if the transmission line capacity was unconstrained, i.e. C =∞, thenD+ = ⋃5
i=1 Si.

In this case D+ = {d : 0 ≤ d1+d2 ≤ g1+g2}. i.e. We cannot supply a total load greater than
total generation capacity. In the case where C < gi, as illustrated, S4 and S5 are infeasible,
since they lie outside the full nonnegative feasible load set D+.
S1 contains all load pairs (d1, d2) that can be served without the intervention of generator

g2 (g2 = 0), and without congesting the transmission line. The generation structure is
(d1 + d2, 0). The LMPs are equal to the constant marginal cost of the first generator.
That is λ1 = λ2 = π1. Since the line is uncongested, the merchandising surplus is zero.
Remembering the definition MS = −λ>p = λ>(d− g), MS = π1(d1 − g1) + π1d2 = 0.
S2 contains all load pairs (d1, d2) that require the intervention of generator g2 (g2 > 0) to

be served but do not result in congestion of the transmission line. The joint demand d1 + d2
exceeds the capacity of generator g1. The generation structure is (g1, d1 + d2 − g1). The
LMPs are equal to the constant marginal cost of the second generator. That is λ1 = λ2 =
π2. Once again, since the line is uncongested, the merchandising surplus is zero. That is
MS = π2(d1 − g1) + π2(d2 − (d1 + d2 − g1)) = 0.
S3 contains all load pairs (d1, d2) that are feasible but result in congestion of the trans-

mission line. The generation structure is (g1, g2) where the generation levels are restricted
by the binding transmission constraint. The LMPs are no longer equal as the two markets
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Figure 7.6: d(3) = (1− α)d(1) + αd(2)

are effectively decoupled by the congested line, so λ1 = π1, λ2 = π2. The merchandising
surplus is now non-zero. MS = π1(d1 − g1) + π2(d2 − g2) = β12C > 0.

The astute reader will notice that S1, S2, and S3 are critical regions of the Economic
dispatch problem, with load d as a parameter, as described in the previous chapters. Here
in this simple case we have analytically characterized their structure, but for a more general
problem the critical regions can be calculated recursively.

The Value of Flexibility
To illustrate the value of flexibility we will define three loads, shown in Fig. 7.6. The red
triangular area in Fig. 7.6 is the set S3 ∩ conv(D+

F ), shown by the upper dotted line in Fig.
7.5, where conv(D+

F ) denotes the convex hull of D+
F . We also

d(1) =
(
X − α(g1 − C)

(1− α) , C

)
∈ bd(S1)

d(2) =
(
g1 − C,

Y − (1− α)C
α

)
∈ bd(S2)

d(3) = (X, Y ) ∈ S3 ∩ conv(L+
F )

= (1− α)d(1) + αd(2)

where α ∈ (0, 1), and bd(S) denotes the boundary of the set S. d(3) is an arbitrary point
in the congested load set D+

C , with coordinates (X, Y ). d(3) also lies on the line segment
connecting d(1) and d(2). This suggests that if d(3) is constant over some time period, it
can be met congestion free using flexibility. In other words suppose we need to serve a
constant load d(3) over some time period T . Since d(3) cannot be served without congesting
the network, suppose the loads admit flexibility and we dispatch d(1) over a time period
(1− α)T and d(2) over a time period αT .
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Scenario (1− α)T αT Congestion free
Non-flexible d(3) d(3) No

Flexible d(1) d(2) Yes

To demonstrate the economic effects of a flexible and congestion free dispatch, we consider
each class of market participants as a collective and calculate the system cost (SC),5 the
generation revenue (GR), the load payment (LP ), and the merchandising surplus (MS)
resulting from each load pair. This is shown in Table 7.1. It should be noted that MS =
LP −GR.

Table 7.1: Data for uncongested and congested load pairs

d(1) d(2)

SC π1
(1−α)(X − αg1 + C) 1

α
(π1αg1 + π2(Y − C))

GR π1
(1−α)(X − αg1 + C) π2

α
(αg1 + Y − C)

LP π1
(1−α)(X − αg1 + C) π2

α
(αg1 + Y − C)

MS 0 0

d(3), Non-flexible Scenario
SC(n) π1X + π2Y − (π2 − π1)C
GR(n) π1X + π2Y − (π2 − π1)C
LP (n) π1X + π2Y
MS(n) (π2 − π1)C

We now consider the two scenarios described above, denoting the non-flexible scenario
(n), and the flexible scenario (f). Let us assume without loss of generality that T = 1, in
which case the results for (n) are the same as for d(3) above. For (f) we dispatch d(1) over a
time period (1−α) and d(2) over a time period α. The results for this scenario are shown in
Table 7.2.

Table 7.2: Data for Flexible Scenario

Flexible Scenario
SC(f) π1X + π2Y − (π2 − π1)C
GR(f) π1X + π2Y + (π2 − π1)(αg1 − C)
LP (f) π1X + π2Y + (π2 − π1)(αg1 − C)
MS(f) 0

5This is the value of the objective function solved by the system operator i.e. the fuel cost of the
generators.
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Examining the differences between the two scenarios, we see that

SC(f)− SC(n) = 0

GR(f)−GR(n) = (π2 − π1)αg1

LP (f)− LP (n) = (π2 − π1)(αg1 − C)

Some Conclusions
1. The loads receive the same total energy in both cases, since d(3) = (1− α)d(1) + αd(2).

2. The system cost is identical in both cases.

3. Under flexibility, the generator collective receives a nonnegative profit (π2 − π1)αg1.

4. Under flexibility, the load collective makes savings if LP (f) < LP (n). This only occurs
if α < C/g1.

Referring to Fig. 7.6, it is clear that the choice of α is non-unique. Varying α will change
the relative location of d(1) and d(2), however the line segment between them will always
pass through d(3).6 It is also clear that for any arbitrary load d(3) ∈ S3 ∩ conv(D+

F ) there
exists a minimum and maximum allowable α, such that d(1) ∈ bd(S1) and d(2) ∈ bd(S2).
This, combined with the condition that α < C/g1 for the load collective to make savings,
defines a set, shown in green in Fig. 7.7. Any load in this set can pick a valid α such
that d(1) ∈ bd(S1), d(2) ∈ bd(S2), α < C/g1, and the load collective makes savings under
flexibility. Thus in general, the proportion of congested loads that can make savings using
flexibility will be determined by a subset of the network parameters, in this case the line
capacity C and the upper limit of the cheapest generator g1.

These economic transfers to loads and generators represent a redistribution of the original
merchandising surplus. This can be seen from

MS(n)−MS(f) = (LP (n)−GR(n))− (LP (f)−GR(f))
= (LP (n)− LP (f)) + (GR(f)−GR(n))
= LS +GP

where LS denotes load savings, and GP denotes generator profits. This redistribution of
the merchandising surplus is shown in Fig. 7.8, with varying α. This also clearly illustrates
the transition point at which the load collective begins losing money under flexibility. The
generator collective in constrast, only ever makes a profit under flexibility.

We thus claim that in the general case, if the network topology and line capacity con-
straints result in savings for the load collective under a flexible uncongested dispatch (i.e. in
the two bus case α < C/G1), then this dispatch does not disadvantage any class of market
participants, and will result in benefits for all collective classes of market participants.

6One can imagine the points d(1) and d(2) sliding along the boundaries of sets S1 and S2 respectively.
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7.5 General Network Results
We have shown that, under certain network conditions, flexibility has value by enabling
congestion free dispatch. It now makes sense to ask what set of nominal loads can be met
congestion free, using flexibility? The following results apply to any general network.

Constant Nominal Load
Theorem 16. By allowing flexibility at each node, the feasible set of nominal loads for a
congestion free dispatch DF is enlarged to its convex hull, conv(DF ), as the number of time
intervals of flexibility tends to infinity.

To prove this theorem, we shall make use of the Shapley-Folkman Theorem, which states
that the Minkowski sum of an increasing number of subsets of a metric space converges to
its convex hull.
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Theorem 17 (The Shapley-Folkman Theorem [144]). For some set S ⊂ Rn

lim
N→∞

1
N

N∑
k=1

S = conv(S) (7.7)

Proof Consider a nominal load vector d ∈ Rn that is constant over some time period T .
Divide T into N equal time intervals tk, where tk = T/N , k = 1, . . . , N .

t1 t2 · · · tN
d d · · · d

Now consider load flexibility in each time interval, denoted vk, such that the load vector in
time interval tk is equal to d− vk = dk. We now have

t1 t2 · · · tN
d1 d2 · · · dN

The net zero energy constraint requires that ∑N
k=1 vk = 0. Thus,

1
N

N∑
k=1

dk = 1
N

N∑
k=1

(d− vk) = d (7.8)

Assume that |vk| is large enough such that dk ∈ DF , ∀k. Thus d ∈ 1
N

∑N
k=1DF , where the

summation is a Minkowski addition.
By the Shapley-Folkman Theorem, if d ∈ 1

N

∑N
k=1DF , as N → ∞, d ∈ conv(DF ).

Consequently, the congestion free load set DF is enlarged to the convex hull of DF using
flexibility.

Remark 5. This general result can perhaps be more easily seen by considering Carathéodory’s
Theorem, which states that any point d in the convex hull of the set DF can be written as
the convex combination of at most l + 1 points in DF where l = dim(DF ) = n.

d =
l+1∑
j=1

αjdj, d ∈ conv(DF ), dj ∈ DF ,

l+1∑
j=1

αj = 1, αj ≥ 0, ∀j
(7.9)

Intuitively the constants αj represent the fraction of time that must be spent at each load
vector dj to meet the nominal load vector d over some time period T .

α1T α2T · · · αd+1T
d1 d2 · · · dl+1

The αj are equal to either a finite or infinite sum of time intervals tk. This correspondence
between the two results is stated in the following theorem.
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Theorem 18. If all αj are rational numbers (αj ∈ Q, ∀j), then any constant load vector
d can be met in a finite number of time intervals of flexibility. If any αj is an irrational
number, then n can only be met by an infinite number of time intervals of flexibility.

Proof If αj ∈ Q, ∀j, then we can write αj = m
n

, where 0 ≤ m <∞, 0 < n <∞, m,n ∈ Z.
Knowing that αj ≤ 1, necessarily m ≤ n, and we can write αj = mj

N
, where 0 ≤ mj < N ,

0 < N < ∞. N is the total number of time intervals tk, and mj is the number of time
intervals tk spent at point dj. It follows that ∑l+1

j=1mj = N . To prove for irrational numbers,
following a similar argument it suffices to see that there does not exist a finite N , such that
αj can be written as the quotient of a number of time intervals mj and a total number of
time intervals N .

Remark 6. For Theorem 16 to hold in general, the minimum amount of flexibility vi required
at each node i = 1, . . . , n is

|vi| = sup{d(eTi v, eTi w) : v, w ∈ conv(DF )/DF} (7.10)

where d(·, ·) is the Euclidean distance function, and ei is the standard basis vector with a 1
in the ith coordinate and 0 elsewhere.

Varying Nominal Load Profile
Consider a varying nominal load profile for a network over some time period T . Divide T into
N equal time intervals tk, where tk = T/N , k = 1, . . . , N . We assume a constant nominal
load in each time interval tk, denoted dk ∈ Rn, k = 1, . . . , N .7

t1 t2 · · · tN
d1 d2 · · · dN

(7.11)

There exists some average nominal load for the time period d, where d = 1
N

∑N
k=1 dk.

Lemma 4. If d ∈ LF then, by allowing flexibility at each node, the nominal load profile can
always be met for the whole time period under a congestion free dispatch.

Proof The proof follows by checking that vk = d−dk is a flexibility sequence satisfying the
total energy constraint ∑N

k=1 vk = 0. The load in each time interval tk is now dk−vk = d, and
since d ∈ DF , the load sequence dk can be satisfied using a flexibility sequence vk, congestion
free.

Theorem 19. If d ∈ conv(DF ) then, by allowing flexibility at each node, the nominal load
profile can always be met for the whole time period under a congestion free dispatch, as the
number of time intervals of flexibility tends to infinity.

7To represent a continuous load profile we would need N →∞, however it is not unreasonable to assume
a constant load in a finite time period. For example most ISOs forecast constant loads in fixed time periods.
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Proof This proof follows directly from Theorem 16 and Lemma 4. Using an initial flexi-
bility sequence v[1]

k , we transform the nominal load profile dk into a constant load sequence,
having value d, ∀k. We now have the same case as in Theorem 16, where we have a constant
nominal load vector at each time interval tk. Thus the congestion free load set DF can be
enlarged to the convex hull of DF using some flexibility sequence v[2]

k , over an infinite number
of time intervals. Thus if d ∈ conv(DF ), then the nominal load sequence dk can be met using
the flexibility sequence v[1]

k + v
[2]
k , congestion free.

7.6 Conclusions
We have proved that flexibility enables congestion free dispatch by enlarging the feasible set of
congestion free loads. We have shown that flexibility has value since under certain network
conditions a congestion free dispatch brings economic benefits to the market participants
(loads and generators). If participant classes are considered as collectives, then no class of
participants is economically disadvantaged. Any merchandising surplus that existed under a
congested dispatch is fully recovered by market participants under a congestion free dispatch.

To summarise, the loads are effectively arbitraging on LMPs to redistribute the mer-
chandising surplus in a beneficial way, using flexibility. This raises several questions. Firstly,
would this be considered market manipulation? Indeed in these schemes market participants
are actively influencing prices. However, we have shown that if the participant classes are
considered as collectives then no market participant is economically disadvantaged, and the
system cost is identical in both cases. Potential losers who are not active market participants
are transmission line owners. Since there is no merchandising surplus under a congestion
free dispatch, transmission lines no longer generate any revenue. A new mechanism to com-
pensate transmission line owners must be designed.

There is also the question of incentives and coordination. Assuming this new paradigm,
what are the incentives for loads and generators to act in an optimal manner? Is total coordi-
nation of loads needed to achieve a congestion free dispatch, or is only partial participation
necessary? What are the effects of a congestion free dispatch on market power? Clearly
the economics of flexibility are nuanced and more comprehensive study is required in this
direction.
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Chapter 8

Blockchains for Decentralized
Optimization of Energy Resources in
Microgrid Networks

In previous chapters we have addressed strategic behavior and the integration of flexible
resources in transmission networks. In the following two chapters we turn to the distribu-
tion network, and specifically the question of market design for distributed energy resources
(DERs). In this chapter we consider the emerging role of blockchain technology in the man-
agement and coordination of DERs, and, crucially, what a valid use case for the technology
might be. The work also has implications beyond energy management, suggesting how dis-
tributed optimization could be secured using a blockchain. This chapter is the result of joint
work with Dr. Eric Munsing, and Prof. Scott Moura, and was first published in [145]. It
was acknowledged as the first published work to examine the use of blockchains to facilitate
distributed optimization and control of DERs in [146].

8.1 Introduction
The energy production landscape is being reshaped by DERs — photovoltaic panels, electric
vehicles, smart appliances, and battery storage systems, which provide low-voltage energy
services and are often remotely controllable as part of the Internet of Things. When used in-
telligently, these DERs can reduce cost, improve reliability, and integrate renewable resources
in the electric grid — features which have led regulators to introduce policies promoting their
adoption [147,148].

However, payments for DER services must be negotiated with electric utilities, monop-
olies who may be invested in preserving conventional generation systems. As a result, the
deployment of DERs has often been met with animosity by utilities, which may bar the
participation of DERs or seek monopoly rents in return for access to the distribution infras-
tructure [149,150].
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Local distribution markets for energy services have been proposed as a means of efficiently
incentivizing and dispatching DERs, much as is done at the transmission scale [5, 151].
However, such a local distribution market would need to address both the monopoly incentive
issues highlighted above, and also the abuses of market power observed in wholesale energy
markets [152, 153]. These issues would be particularly pertinent in microgrid operation,
which may not benefit from the scrutiny given to a larger utility [154].

Engineering literature has examined control schemes for providing energy services with
DERs in distribution grids and microgrids [155], but has typically assumed operation is
managed by a benevolent aggregator or cooperative utility. It is unclear how these proposed
control systems would work in the face of incentive issues or regulatory shortcomings.

To address these issues, we leverage an emerging technology which has been developed to
allow decentralized consensus between non-trusting agents: blockchains and smart contracts.
Despite extensive use in financial applications for addressing trust issues [156], blockchains
have seen limited deployment in the energy space [157] and have not been considered for
coordinating DERs to manage network constraints [158].

We examine how a blockchain architecture can be used to distribute the aggregator’s role
across all devices on a microgrid network. This integrated architecture is demonstrated on
a blockchain platform controlling a microgrid simulation, and demonstrates how to address
incentive issues while respecting operational constraints.

The remainder of the chapter is structured as follows: Section 8.2 provides a brief overview
of blockchains and smart contracts. Section 8.3 provides a survey of previous literature on
dispatch of DERs in microgrids, decentralized optimization techniques, and blockchain use in
energy applications. Section 8.4 presents the formulation of the optimal power flow problem
with DERs and its ADMM equivalent, Section 8.5 describes the algorithm for utilizing
a blockchain for securing the decentralized problem, Section 8.6 presents results from a
simulation network, and Section 8.8 concludes.

8.2 Blockchains and smart contracts
Blockchains are an emerging technology for decentralized computation and data storage,
secured by a combination of cryptographic signatures and a distributed consensus mecha-
nism. Participants on the blockchain network are able to come to universal agreement on
the system state σt at each time step t, even in the presence of cyberattacks, communica-
tion dropouts, and participants joining/departing the network. This is in stark contrast to
conventional architectures where a central coordinator defines the state of the system, but
may be subject to attack or malfeasance.

The general architecture of blockchains is described in [159] and illustrated in Fig. 8.1.
Participants on the peer-to-peer network broadcast messages M t

i , i ∈ (1, . . . ,Nm). These
messages contain commands which affect the state of the system (control actions, account
withdrawals, etc), and the feasibility of each message can be checked by each node using a
validation function π(σt−1,M t

i ).
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Figure 8.1: Symbolic representation of the data in a blockchain, showing blocks B0 to Bt+1

with detail of block Bt. Blocks are linked by their cryptographic hashes Υ(Bt), securing the
contents from alteration and allowing transparent auditing of system history. Messages M t

i

contain information about changes to the system state, such as energy transfers or payments.

Participants listen to the network and collect a set of messages into the contents of the
next block Bt. A block header H is formed which contains the timestamp, a concise crypto-
graphic hash Υ(Bt−1) of the contents of the previous block, and the results of a verification
test that is computationally or economically difficult to forge. The new block is broadcast to
the network, where its validity is checked and nodes reach consensus on the updated state of
the system σt = Π(σt−1, Bt). The utility of blockchains can be significantly expanded when
the state transition function Π(·) can execute computer code embedded in the transmissions
Mi. These smart contracts can be transparently inspected and audited, and are guaranteed
to be faithfully executed on the network.

Recursively linking the contents of blocks, verifying new blocks with peer-to-peer consen-
sus, and using cryptographic signatures to verify communication are the pillars of blockchain
architecture. Together, they provide an immutable and robust representation of system state-
without requiring the intervention of a trusted central authority. While this architecture in-
troduces some computational overhead, it offers immutability, transparency, and verifiability
which can make the system well suited for coordination between parties who do not trust
each other. The reader is referred to [156, 158, 160] for additional details on the security,
architecture, and applications of blockchains and smart contracts.

8.3 Prior Literature
This work draws on three bodies of research: control of distributed energy resources, the
economics and regulation of microgrids, and research on blockchains and smart contracts.
We provide a brief summary of relevant literature from each domain.
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Figure 8.2: Comparison of an efficient market in which the optimal quantity Q∗ is cleared at
price P (Q∗), and a market operated by a monopoly who is able to charge separate prices for
generation and consumption. In this model, the monopoly restricts output toQM , purchasing
energy at C(QM) and charging consumers P (QM).

DER Control
Microgrids are electricity networks which can be controlled autonomously, and may operate
in both grid-connected and self-sufficient modes [161]. Without the benefit of a large bal-
ancing territory, loads and generation must be coordinated carefully and the role of DERs
becomes particularly important. Surveys of approaches to microgrid management can be
found in [155,162].

Conventionally, generation resources have been centrally controlled by a utility or system
operator — but these centralized approaches do not scale well to large numbers of DERs, and
recent research has focused on decentralized algorithms with low computational overhead.
Decentralized algorithms have been explored for coordinating electric vehicles [163, 164],
smart inverters [165], and for fleets of diverse DERs [166–168].

Constraints on network voltage and power power flows can become significant at high
DER penetrations, and decentralized models for power flow in distribution systems have
been explored in [169–171]. As the underlying AC optimal power flow problem (OPF)
problem is nonconvex, each of these examines different assumptions or relaxations which
grant computational tractability.

Microgrids and Monopoly Economics
In prior literature, DERs are compensated for providing energy services by an aggregator or
a utility: a central authority who is trusted to act fairly in scheduling generators, satisfying
loads, and rendering payments.

Like conventional electrical utilities, a microgrid operator faces a set of competing de-
mands: minimizing consumer costs, investing in reliability and long-term capacity, and pro-
viding a return for shareholders [172]. Even without owning any assets, such a monopoly
aggregator can have strong incentives to shift the market away from a cost-minimizing equi-
librium and towards a profit-maximizing monopoly outcome, as shown in Figure 8.2. These
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conflicts of interest are typically controlled through regulatory intervention, where auditors
scrutinize market outcomes and regulate customer fees [173].

However, when regulatory efforts are expensive, a small degree of market inefficiency
may be less burdensome than regulatory costs [174]. This can create distrust between the
microgrid operator and producers/consumers, who cannot assess whether their bills reflect
monopoly profits or justified costs [147,154].

This trust issue is already visible in the integration of rooftop photovoltaic systems in
distribution networks [149,150], and can be expected to be a greater problem in microgrids
if regulatory scrutiny cannot be efficiently implemented for small systems — for example, if
regulation has a high fixed cost (such as for retaining auditors) [174].

Blockchains and Energy
Blockchain research is still a new field, with most existing work focused on security and
scalability [156,158] and few applications for controlling physical devices [160,175]. Although
blockchains rely on a distributed consensus mechanism to provide security, the parallels with
decentralized consensus algorithms in engineering control and optimization research have not
yet been explored.

While blockchains have been discussed for use in coordinating DERs in transactive energy
markets [176, 177], these works have not considered physical constraints on DER operation
– instead treating DERs as idealized financial assets [178–180]. In reality, any coordination
system must consider the DER’s own constraints as well as the constraints of the distribution
network. Prior literature has not considered methods for addressing these constraints in
blockchain applications.

Novel Contributions
With this background, blockchains and smart contracts hold unexplored potential for elim-
inating trust issues with microgrid operators, and as a natural platform for coordinating
the decentralized optimization schemes described above. The following contributions extend
prior literature:

• Distributed optimal power flow algorithm with batteries, shapable loads, and deferrable
loads

• Recovery of distributed locational marginal prices from a decentralized OPF problem

• Use of a blockchain for coordinating devices with operational constraints

• Use of a blockchain to facilitate the aggregator step of a decentralized optimization
algorithm
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8.4 Problem Formulation
We consider a microgrid with a dispatchable central generator, uncontrolled plug loads, non-
dispatchable renewable energy resources, shapable loads (e.g. electric vehicles), deferrable
loads (e.g. appliances), and batteries. We consider a day-ahead scheduling problem, with
the objective of minimizing cost of energy provision subject to the operational constraints
of the DERs and of the distribution network.

Network and Power Flow Model
We adopt the Distflow model described in 2.2, using the SOCP relaxation. This gives the
feasible injection region as

P := {P,Q, l, v : v ≤ v ≤ v, −ĉ ≤ P ≤ ĉ} (8.1)

Controllable DERs
We consider a set of energy resources with complex injections/withdrawals s placed at nodes
i throughout the microgrid network, denoted as follows:

sgi Dispatchable generators sui Uncontrollable loads
sri Renewable generators sdi Deferrable loads
sbi Stationary batteries ssi Shapable loads

The net complex injection at a node i in period t is

si(t) = sgi (t)− sli(t), i = 0, . . . , n (8.2)

where
sli(t) = sui (t) + sdi (t) + ssi (t)− sbi(t)− sri (t) (8.3)

Dispatchable Generation

Dispatchable generators (e.g. microturbines, diesel generators, fuel cells) are considered to
have quadratic increasing cost, which may be time-varying:

Ci,t(sgi (t)) = αi,ts
g
i (t)

2 + βi,ts
g
i (t) + γi,t (8.4)

We assume that each dispatchable generator has capacity limits, described as

sgi ≤ sgi (t) ≤ sgi ], i = 0, . . . , n, t = 1, . . . , T (8.5)

Power injection from renewable generators is considered to be deterministic and have no
marginal cost Ci,t(sri (t)) = 0.
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Uncontrollable Loads

Power withdrawals due to uncontrollable loads (lights, plug loads) are considered deter-
ministic, inflexible, and inelastic. We do not model thermostatically controlled loads or
smart inverters, though those can be added to the formulation using the approaches in [181]
and [171] respectively.

Stationary batteries are modeled as dispatchable loads which can be controlled to with-
draw power (sbi < 0) or inject power (sbi > 0). We assume charging efficiency ηi,in, and
discharging efficiency ηi,out. We assume that the battery should not undergo a net discharge
of more than ε over the course of the dispatch period.

∀t = 1 . . . T :
sbi(t) = dbi(t)− cbi(t) (8.6a)
0 ≤ cbi(t) ≤ cbi (8.6b)

0 ≤ dbi(t) ≤ d
b

i (8.6c)
Eb ≤ Eb(t) ≤ E

b (8.6d)
Eb
i (t) = Eb

i (t− 1) + cbi(t)∆tηi,in − dbi(t)∆t/ηi,out (8.6e)
(1− ε)Eb

i (1) ≤ Eb
i (T ) ≤ (1 + ε)Eb

i (1) (8.6f)

Shapable loads (e.g. electric vehicles with continuous charging levels, continuously vari-
able fans) are modeled as having net energy demand Es

i , and must be charged between times
ti,startby and ti,endby:

ssi ≤ ss(t) ≤ ssi ∀t = 1 . . . T (8.7a)
T∑
t=1

ss(t) = Es
i (8.7b)

ssi (t) = 0 ∀t = 1, . . . , ti,startby (8.7c)
ssi (t) = 0 ∀t = ti,endby, . . . , T (8.7d)

Deferrable loads are considered to have some flexibility in their start time, but a defined
load profile l(τ) ∀ τ = 1, . . . , L once started (e.g. appliances, manufacturing equipment).
Following on the work in [167], we model the minimal starting time of the load as an arrival
process a(t), and the actual starting time as a departure process d(t), where each of these
variables takes the value 0 until the time of the request arrival/departure, at which point it
takes the value 1. If the device can be started at most ζ time steps after the arrival request,
we can formulate the constraints on our decision variable d(t) as

∀t = 1 . . . T :
0 ≤ di(t− 1) ≤ di(t) ≤ ai(t) (8.8a)
ai(t− ζ) ≤ d(t) (8.8b)
di(t) ∈ (0, 1) (8.8c)
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Following [167] to formulate a matrix Φ which convolves the departure process d(t) into
a power consumption profile sd = Φd, we can relax the binary constraint to allow scheduling
to be expressed as a linear problem. We note from experience that this relaxation works
well in practice, but offers no guarantees on exactness. Further work is required to assess
the tightness of this relaxation.

Optimal Power Flow
We consider the problem of maximizing social welfare in the network over a day, which
amounts to scheduling the controllable loads to minimize generation cost, while respecting
network constraints. It is formulated as follows:

min
T∑
t=1

n∑
i=1

Ci,t(sgi (t)) (8.9a)

s.t. (2.15a), (2.15b), (2.15c), (2.16), (8.1), (8.2), t = 1, . . . , T (8.9b)
(8.5)i, (8.6)i, (8.7)i, (8.8)i, i = 1, . . . , n (8.9c)

over sg(t), sd(t), ss(t), sb(t), t = 1, . . . , T
(P,Q, l, v)(t), t = 1, . . . , T

where constraints (8.5)i, (8.6)i, (8.7)i, (8.8)i, are specific to each node i = 1, . . . , n, depending
on the resources at that node.

In order to compensate the DER operators for their services and charge consumers for
withdrawals, we want to compute nodal clearing prices, known as distributed locational
marginal prices (DLMPs). The DLMP at a node represents the marginal cost to supply
an additional unit of real power at that node. We denote the DLMP at node i as λi, and
they can be found as the dual variables associated with the real power balance constraint
(2.15a). As described in [29], the DLMP can be decomposed into contributions from energy,
line losses, and voltage congestion.

Decomposition with ADMM
The Alternating Direction Method of Multipliers (ADMM) has gained popularity as a tool
for decomposing difficult convex optimization problems into a set of simpler subproblems,
coordinated through an aggregator step [182]. While convergence may be slow, the simplicity
of the aggregator step and the guarantee of global optimality make the algorithm compelling
for DER coordination. For examples of ADMM applications in various models of optimal
dispatch problems, see [168,170,171,183].

In the canonical ADMM problem, we consider a minimization problem with separable
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objectives and constraints in vectors x and z:

min
x,z

f(x) + g(z)

s. to: x ∈ Kx, z ∈ Kz
Ax+Bz = c

We can form the augmented Lagrangian:

Lρ(x, z, ξ) := f(x) + g(z) + ξ>(Ax+Bz − c) + ρ

2‖Ax+Bz − c‖2

This then decomposes into the general form of ADMM:

xk+1 = arg min
x∈Kx

Lρ(x, zk, ξk) (8.10a)

zk+1 = arg min
z∈Kz

Lρ(xk+1, z, ξk) (8.10b)

ξk+1 = ξk + ρ(Axk+1 +Bzk+1 − c) (8.10c)

When decomposing a problem into subproblems for solution with ADMM, it is useful
to think of x and z in the above as local and global variables respectively. Local variables
only pertain to their respective subproblems, whereas global variables couple subproblems
together and must be agreed upon at the global optimum, reaching a distributed consensus
among subproblems. An intuitive way to formulate this is to give each subproblem its own
copy of any coupling variables, and then try and make these copies agree.

The economic dispatch problem of (8.9) can be reformulated in this way by forming an
individual subproblem at each node, whose solutions are made to coincide at the global
optimum through copied local coupling variables. Each subproblem has its own copy of the
relevant global coupling variable, and consensus on their value is achieved among subprob-
lems through the ADMM algorithm. The subproblem of node i takes the following form,
where for clarity we have omitted the time index from each nodal variable.

min
T∑
t=1

Ci,t(sgi (t)) (8.11a)

s.t. pi = Pi −
∑
k∈δ(i)

Pk + rili, t = 1, . . . , T (8.11b)

qi = Qi −
∑
k∈δ(i)

Qk + xili, t = 1, . . . , T (8.11c)

vi = vπ(i) + 2(riPi + xiQi)− (r2
i + x2

i )li, t = 1, . . . , T (8.11d)

li ≥
P 2
i +Q2

i

vi
(8.11e)

(8.5)i, (8.6)i, (8.7)i, (8.8)i (8.11f)
over sgi , sbi , sdi , ssi

(Pi, Qi, li, vi), (Pδ(i), Qδ(i), vπ(i))
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We first define a set of global variables z := [P>, Q>, v>]> ∈ R3n, a set of private local
variables xi := [sgi , sbi , sdi , ssi , li]>, and a set of coupling local variables:

x̃i = [P>i , Q>i , v>i , P>δ(i), Q>δ(i), v>π(i)]>. (8.12)

We see that each subproblem i is coupled to other subproblems through the coupling local
variables x̃i, each of which is a selection of the components of the global variable z. Using
notation from [182], the mapping from local variable indices into the global variable index
can be written as g = G(i, j), which means that local variable component (x̃i)j corresponds
to global variable component zg. Achieving consensus between the local variables and the
global variable means that

(x̃i)j = zG(i,j),∀i, j (8.13)
We can equivalently define a selection matrix Bi, such that, z̃i = Biz, and at the optimum

x̃i −Biz = x̃i − z̃i = 0 (8.14)

At each iteration k, each node i, receives z̃ki from the central aggregator, and solves

min
T∑
t=1

Ci,t(si,t) + ξ>i (x̃i − z̃ki ) + ρ

2‖x̃i − z̃
k
i ‖2

2

s.t. (8.11)
over xi, x̃i

(8.15)

The node then sends its new x̃k+1
i to the central aggregator, who computes the following

update for each individual global variable zk+1
g

zk+1
g := 1

kg

∑
G(i,j)=g

(x̃k+1
i )j + (ξki )j

ρ
(8.16)

where kg is the number of local variable entries that correspond to global variable entry zg.
The update can be thought of as taking the average of all local copies of the global variable.
The central aggregator then updates ξi as

ξk+1
i = ξki + ρ(x̃k+1

i − z̃k+1
i ) (8.17)

We define the stopping criteria using the following residuals

rki = x̃ki − z̃ki , sk = zk − zk−1 (8.18)

Defining rk := [rk1 , . . . , rkn], the algorithm is determined to have converged when the both the
following conditions are met

‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual (8.19)

where εpri, εdual are suitably defined tolerances, and can be set using methods described
in [182].
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8.5 Blockchain and ADMM
We have formulated an optimal scheduling program for distributed energy resources through
a decentralized algorithm. However, this only addresses part of the microgrid operation
problem, and still has notable weaknesses:

• The aggregation step is not guaranteed against cyberattack or tampering by partici-
pants

• Individual DERs/consumers cannot verify that they are being paid/billed at fair prices

• Payments for actual generation/consumption will still be handled by a central utility

As an alternative, we propose to leverage the benefits of a blockchain architecture to
create a fully peer-to-peer system which guarantees both operational feasibility and fair
payments to all parties while taking full advantage of the decentralized structure of the
problem.

repeat
Pi: Private Optimization, compute locally

Gather private constraints
Compute x̃i and send to smart contract S1

S1: ADMM Aggregator, on blockchain
Update z
if ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual then

Compute final schedule and clearing prices
Send schedule to S2

end
until ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual

Mi: Each Smart Meter
Record energy consumption
Send time-stamped & signed consumption to S2

...time progresses
S2: Billing contract, on blockchain

Compare schedule from S1 with meter readings
Compute penalties, payments, and charges
Transfer payments between accounts

Algorithm 2: Computational elements in the microgrid control system. Function Pi is executed locally
by each device participating in the market. The results are passed to the smart contract S1, which serves
as publicly verifiable ADMM aggregation step. Pi and S1 iterate back and forth until ADMM converges,
at which point the schedule is saved to the billing smart contract S2. Smart meters send trusted meter
readings to S2, which computes payments and automatically transfers funds from consumers to generators.
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Figure 8.3: The 55-bus sample microgrid test feeder used in the simulation, with a micro-
turbine placed at Bus 1 and DERs randomly distributed throughout the network.

As discussed in Section 8.2, blockchains provide a method for providing a transparent,
trustless platform for data storage and computation. This makes a blockchain the perfect
platform for conducting the aggregation step of ADMM, allowing all participants to audit the
progress of the algorithm, the accuracy of the solution, and the veracity of their scheduled
commitments. Further, ADMM is a natural fit for implementation on a blockchain, as it
guarantees convergence yet has a computationally cheap aggregation step (minimizing the
burden of verification).

Algorithm 2 provides an outline of the sequence of events in our proposed blockchain-
based system. In it, we use the blockchain to (i) provide a fair computation of the ADMM
aggregator update step from (8.16), (ii) store the resulting schedule, and (iii) compute pay-
ments and penalties for actual generation/consumption. Any participant can verify that
the schedule maximizes social benefit while respecting network constraints, removing the
possibility of monopolistic price manipulation.

This immutable record can also become the basis for reckoning payments if smart meters
send consumption data to a billing contract S2 which computes credits and debits for each
node in the network and securely saves the updated account balance to the blockchain. Paired
with a cryptocurrency as discussed in [156], this can form a complete payment system —
removing the need for a utility or microgrid operator to handle scheduling and billing.
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8.6 Implementation: Test network
We implement the proposed algorithm on a simulated SCE 55-bus test network shown in
Fig. 8.3 with parameters described in [184]. Bus 1 is used as the reference bus, and is
equipped with a large microturbine generator with quadratic cost function (this could also
represent a connection to a utility grid). Each node has a deterministic load profile, created
by adding a uniform random variable to the average uncontrollable load signal seen in Figure
8.4. We randomly place solar arrays at 60% of the buses, and assume a deterministic solar
generation profile. We place deferrable loads at 70% of the buses, with earliest start times
randomly distributed between hours 7:00-11:00; these represent appliances and industrial
equipment. Shapable loads are also randomly placed at 70% of the buses, with net energy
demand generated from a uniform random variable that is up to 10 times the peak power
consumption of the uncontrollable loads; these are intended to represent electric vehicle
loads. The time constraints are randomly generated such that the shapable loads begin self-
scheduling as early as 10:00, and can continue to draw power as late as hour 24:00. Batteries
are placed at each bus, with a power capacity of 50% of the peak controllable load at the
bus, and with a 4 hour energy storage capacity.

We use a private Ethereum Homestead blockchain test network [185], and Python/CVXpy
[186] to run the private optimization problems. Remote procedure calls through EthJsonRpc
allow the Python scripts to communicate with the smart contracts.

Results
The ADMM algorithm converged in 204 iterations, using ρ = 100, εpri = 10−3, εdual = 0.1,
with each iteration taking at most 1.2s to compute. The optimal cost of the distributed
solution was 0.4% larger than the welfare-maximizing centralized OPF solution.

The average power consumption across all nodes is shown in Fig. 8.4. The power con-
sumption profiles of individual nodes primarily differ in the temporal constraints, size of sha-
pable load, and presence or absence of solar. The deferrable and shapable loads self-schedule
to coincide with solar generation, while the battery charges and discharges to smooth net
load.

The impacts of network topology can be seen in the voltage of each bus, shown in Figure
8.5. Since there are no current flow constraints, at optimality the upper voltage limit at the
generator bus (#1) becomes the binding constraint; the voltages at each of the other buses
decrease with distance from the feeder due to line effects (the critical link between bus 4 and
20 can be clearly seen). General trends in voltage over the course of the day are visible, with
a significant drop in hour 18 when the setting sun and peaking uncontrollable load leads to
a spike in net load throughout the network. Upon closer inspection, the impacts of DER
scheduling are also visible at some buses (e.g. 38, 48.49) as appliances and EVs switch on
and off.

The distributed marginal prices are not shown here for brevity, but can be easily calcu-
lated from the net load supplied by the central generator (other resources are inframarginal).
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Figure 8.4: Schedule of commitments generated by the ADMM algorithm and stored to
the smart contract. Positive values of power indicate real power consumption, and negative
values indicate generation/injections.
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Figure 8.5: Voltage magnitude at each of the buses on the test network, for each hour in the
simulation. Voltages vary based on local injections, and variations in time can be seen due
to the impacts of local DER scheduling.

We found very little variation in DLMPs between buses (variance of <1% of hourly DLMP),
reflecting a lack of binding line constraints on this small network.

8.7 Limitations
The communication overhead required for ADMM and the verification delay required for a
blockchain may limit this approach to use for day-ahead scheduling, while secondary and
tertiary control is served by conventional approaches. We envision a blockchain-based eco-
nomic scheduling layer (described here) operating in tandem with a real-time control layer
operating at much faster time scales to address real-time imbalances.
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While here we envision each building’s smart meter acting as a computational node in
the blockchain network, alternate configurations may use devices, feeders, or substations as
nodes. In each of these implementations, we assume that the network topology is fully known
by all parties, and have not considered changes in line impedances (e.g. due to temperature
changes) or in topology (e.g. due to outages).

This chapter relies on previous work for proofs of the security, transparency, and ro-
bustness of blockchain-based systems (see e.g. [159, 187]), and future work will explore the
specific security concerns of the microgrid system outlined here.

8.8 Conclusions
We have shown how decentralized consensus techniques and blockchains can be used both
to coordinate the scheduling of distributed energy resources on a microgrid, and to guaran-
tee fair payments without requiring a utility or centralized microgrid aggregator. By using
ADMM, we decompose our problem into a structure that naturally lends itself to a blockchain
implementation, and show how blockchains and smart contracts can provide a natural solu-
tion for the trust, security, reliability, and immutability requirements of microgrid operation.
We show the results are equivalent to a welfare-maximizing centralized dispatch with per-
fect insight into device constraints, yet avoid the risk of monopoly price manipulation and
privacy concerns.

The proposed architecture can be improved with contributions from active areas of con-
trol research: addressing stochastic/uncertain data through model predictive control and
robust optimization, examining resilience to network interruptions, utilizing fully distributed
ADMM between nodes to reduce communication overhead, and developing fault detection
algorithms to identify fraud and changes in system architecture.

While this work examines the integration of blockchain with distributed optimization
of energy systems, we expect that many other applications are possible, both within the
energy sector and in other engineering realms. Blockchain’s distributed consensus mechanism
has proven itself in the finance world by guaranteeing robust, trustless, and transparent
execution; we highlight similar benefits for controlling physical devices. We see blockchains
and smart contracts as a key technology that enables distributed optimization amongst non-
trusting entities, at all scales of operation.
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Chapter 9

APEX: The Automatic Power
Exchange

In the previous chapter a blockchain-based implementation of ADMM was used to enable se-
cure and trustless decentralized coordination among DERs in a distribution network. The co-
ordination represents a market of a sort, but we assume that participants are self-scheduling
against a utility price signal or local generation costs, rather than bidding in for their de-
mand, excess generation or any potential flexibility. In this chapter we address the design of
a marketplace for DERs and flexible resources that includes explicit products for different
types of flexibility, and ensures that system constraints are respected. We also provide a va-
riety of solution methods for matching orders and clearing the market in both a continuous
and discrete manner. The implementation of the market is platform agnostic, and could be
run using traditional cloud infrastructure or a blockchain based infrastructure.

This chapter is the result of joint work with Dr. Junjie Qin, Prof. Ram Rajagopal, Prof.
Kameshwar Poolla, and Prof. Pravin Varaiya, and a selection of these results were first
published in [138].

9.1 Introduction

Background
Wholesale electricity markets have long enabled efficient trading of bulk energy and services
at the transmission scale. But there are many significant resources and assets connected to
the distribution network that have not been fully monetized [188]. Novel distribution system
markets that match the local intermittent supply with flexible demand can potentially greatly
increase the utilization of these assets.

However, designing such markets is challenging for a number of reasons. First, many
distributed energy resources are variable resulting in intermittent and uncertain power gen-
eration that introduces both quantity risk (e.g., not enough supply to meet demand) and
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price risk (e.g., consumers may be charged highly volatile prices) into the market. Manag-
ing such risks require a sophisticated distribution system operator (DSO) solving stochastic
dispatch programs, or forward markets in which the market participants can trade to hedge
against uncertainty [189–191]. Second, although demand flexibility is ubiquitous, unlocking
it usually requires upfront capital investments from users (e.g. for installing smart appliances
and/or building energy management systems [192, 193]) that need to be justified by a clear
expectation of (financial) benefits. Existing proposals around real time pricing could poten-
tially provide such an expectation, but it may be blurred by difficulties in forecasting prices
driven by both exogenous uncertainty (e.g. renewable generation) and endogenous uncer-
tainty (e.g. other market participants’ behaviors). Explicit flexibility markets that schedule
flexible demand on behalf of the users could significantly reduce the burden on users and
provide clear incentives for users to engage, reveal and trade their flexibility. Finally, as the
market outcomes induce physical power flow on the distribution network, physical network
constraints need to be managed to ensure the reliability of the distribution network.

Contributions
In this chapter, we propose a scalable market platform, referred to as Automatic Power Ex-
change (APEX), that enables monetization of these underutilized distribution system assets.
The APEX platform allows distribution system participants to trade energy and services.
It incorporates variable distributed energy resources through an open-gate forward market
design. That is, for each delivery period, users can submit orders anytime inside of a trading
time window, which if possible will be cleared as submitted. Effectively, this introduces a con-
tinuum of forward markets, where users can hedge against uncertainty through adjustment
orders based on the most recent information. APEX also arranges an explicit flexibility mar-
ket. Distribution system participants can submit the availability information of their flexible
loads, and APEX will schedule these flexible loads on behalf of the participants. APEX will
respect distribution network constraints on the flow of electricity either by directly managing
the distribution network or by following a coordinated trading protocol [194, 195] operated
by a third-party distribution system operator.

This chapter makes the following contributions:

(i) We propose a novel design for a distribution system market that addresses uncertainty
from DERs using an open-gate forward market design and solicits demand flexibility
by efficient in-market flexible demand scheduling, while managing distribution network
constraints.

(ii) We study the non-convex problem for scheduling non-preemptive flexible loads and
propose provably efficient algorithms to ensure the scalability of the APEX platform.

(iii) We analyze the properties of a natural marginal pricing mechanism in the APEX con-
text, establishing that it is revenue adequate but may lead to inadmissible prices for
flexible orders. We then suggest a simple alternative that is guaranteed to produce
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admissible prices for users and adequate revenue for APEX when used together with
the proposed scheduling algorithms.

(iv) We introduce a novel extension of the traditional continuous double auction to the case
of coupled multiple periods and constraints, which enables continuous trading of orders
in the context of APEX. The advantage of such an approach is that can be implemented
purely using computational logic, and does not require any explicit optimization.

Literature
Forward markets have been implemented in many wholesale electricity markets. It is known
that forward markets help manage uncertainty and incorporate generation technologies with
different lead times [189]. When a sequence of forward markets are available, risk sensitive
consumers (suppliers) may limit their risks by procuring from (offering to) multiple forward
markets [196, 197]. Although many of these studies have focused on the wholesale market,
empirical studies demonstrate that for smaller consumers having the option of participating
in forward markets helps them to hedge their bill volatility [190]. Open-gate forward markets,
compared to fixed-time forward markets such as day-ahead and hour-ahead markets, are not
common for electricity. Yet, they are widely implemented in financial industries [198].

The utilization of flexible energy resources in distribution networks has been studied in
a number of papers. Existing studies usually exploit the flexibility in restrictive settings
where only one attribute of the flexible resources is allowed to vary. Such treatments lead
to interesting control and pricing problems for electricity services that are differentiated
according to that particular attribute [199–201]. It is usually assumed in these papers that
these services are organized and provided by aggregators instead of a flexibility market that
matches flexible resources with other resources. Furthermore, in our flexibility market, the
flexible orders are allowed to simultaneously have many different attributes, thus bridging a
gap between prior studies and practical implementations.

As a whole package, APEX provides a novel design for a distribution system electricity
market with significant DER penetration. Existing alternative proposals for distribution
system markets can be roughly categorized into centralized and transactive. Centralized de-
signs seek to modify or augment existing utility companies’ rate structures to align DERs’
power consumption/production with wholesale price signals. Notable examples include real
time pricing (RTP) and its variants (cf. [202–205] and references therein). The benefits
of centralized design include tight management of the distribution network through utility
companies and the fact that they are relatively easy to implement given the current institu-
tional structure of retail electricity markets. Such designs, nevertheless, are inflexible as it
is difficult to incorporate differentiated electricity services. In contrast, transactive designs
rely on bilateral or multilateral transactions (or contracts) among individual participants
(cf. [206, 207] and references therein). As the terms and conditions in the contracts can
be tailored according to individual needs, it is very easy to incorporate various flexible re-
sources in transactive market designs. However, these designs represent a large structural
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departure from today’s utility-managed distribution markets, requiring coordination to en-
sure reliability of the distribution network, [194] and may impose significant search costs on
the participants. Compared to these two classes of distinct designs, we view APEX as a mid-
dle ground where flexible resources are incorporated through an explicit flexibility market
with an expressive alphabet of standard commodities, and distribution network constraints
are tightly managed (possibly by a coordinated trading protocol). Participants’ search costs
are also largely reduced in APEX.

Many of our technical results extend the growing literature on scheduling non-preemptive
deferrable loads [208–210]. Most of these prior studies focus on an aggregator setting while we
consider scheduling in a two-sided market. Furthermore, the fluid relaxation based scheduling
algorithm that we propose is novel and well-suited for the region where there is a large
number of flexible loads. As the scheduling problem is non-convex, the problem of pricing
these flexible loads with distribution network constraints is challenging and understudied in
the literature. Our results on understanding the properties of marginal pricing with sub-
optimal scheduling algorithms may pave the way for future development on this topic.

Organization
The rest of the chapter is organized as follows. Section 9.2 describes the APEX market
platform and states the order matching problem in APEX. Section 9.3 proposes efficient
algorithms for the combinatorial optimization of scheduling non-preemptive flexible orders
and establishes their performance guarantees. The associated pricing problem for APEX
order matching is then considered in Section 9.3. Section 9.5 concludes the chapter.

9.2 APEX Platform
In a nutshell, APEX receives orders (Section 9.2) from users (Section 9.2), forms and main-
tains an orderbook (Section 9.2), and solves an order matching problem (Section 9.2) that
fulfills standing orders in the orderbook by matching supply with demand respecting distri-
bution network constraints (Section 9.2). The schematic of the trading process in APEX is
demonstrated in Figure 9.1.

Order Book

Matching Engine

• Economic efficiency

• Power flow constraints

Users

Orders

Orders

Orders

Order execution information

Figure 9.1: Trading process in APEX.
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Trading in APEX happens within the following temporal structure. Time is slotted into
time intervals of ∆t length (e.g., ∆t can be 5 minutes). Power delivery in each of these time
intervals is traded. We thus work with a discrete time model, using t ∈ Z to denote each time
period. At any time t1, users can submit orders regarding power delivery in any future time
intervals belonging to a trading time window Tt that includes T time intervals. The trading
time window may start with the next time interval t + 1 and ends with 24 hours after the
next time interval, i.e., in this case T is 24 hours/∆t. As a result, orders regarding the power
delivery in any time interval t′ can be submitted at any t such that t′ ∈ Tt. This implements
an open-gate forward market. Figure 9.2 gives an example of the open-gate forward markets
and trading windows for two delivery intervals.

Time 8:00 

of day 1
7:55 

of day 1

8:00 

of day 0

8:05 

of day 1

(Gate 

open)

(Gate 

closure)

8:10 

of day 1

8:05 

of day 0

(Gate 

open)
(Gate 

closure)

Figure 9.2: Example of APEX trading windows

We proceed to introduce individual components of the APEX platform.

Distribution network model
We adopt the Simplified DistFlow model, described in Section 2.2 and use notation from that
Section. We additionally adopt the notation that vectors are written in lower case bold font,
to differentiate from scalars. We reiterate the feasible injection region of the distribution
network:

P := {p ∈ RN : 1>p = 0, v ≤ v̂ +Rp ≤ v, Hp ≤ c},

As is common in practice, we assume v ≤ v̂ ≤ v and 0 ≤ c, and therefore 0 ∈ P .

User model
We denote the set of users by I := {1, . . . , I}. Let the bus that user i ∈ I resides be denoted
by ni and the set of users located at bus n be denoted by In. Each user may model an
individual home, a commercial building, or an aggregation of many buildings coordinated by
an aggregator or as a micro-grid. In this paper, APEX is agnostic to the level of aggregation
inside of each user.

1In general this will in fact be within the time window [t, t + ∆t], where the window may be curtailed
by some necessary computation time for the market ahead of delivery
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Order formats
At any instance in time, referred to as t = 0, a participant located at bus n (i.e. i ∈ In) can
submit buy or sell orders for a trading window of time periods t ∈ T := Tt = {1, . . . , T}.
Considering typical supply-side and demand-side characteristics, we allow buy and sell orders
in the formats specified as follows.

Definition 10 (Simple sell order). A simple sell order from participant i ∈ In is a tuple
s = (n, t, q, π),

where n is the bus index, t ∈ T is time of electricity delivery, q ∈ R+ is the maximum
amount of electricity to be sold and π ∈ R is the minimum acceptable price of electricity for
the sell order.

Symmetrically, we have simple buy order defined.

Definition 11 (Simple buy order). A simple buy order from participant i ∈ In is a tuple
b = (n, t, q, π),

where n is the bus index, t ∈ T is time of electricity delivery, q ∈ R+ is the maximum
amount of electricity to be bought and π ∈ R is the maximum acceptable price of electricity
for the buy order.

Simple orders may not be expressive enough to incorporate certain flexible loads such as
non-preemptive deferrable and shapeable loads. Deferrable loads consume pre-defined load
shapes but are indifferent to the time at which the loads are served as long as they are served
in a certain time window. Shapeable loads consume a pre-defined quantity of energy over a
period of time, but are indifferent, within pre-defined limits, to the rate at which this energy
is delivered. For simplicity, for the remainder of the chapter we will focus on deferrable loads
only. The results and definitions in this chapter are straightforwardly extended to include
shapeable loads.

This motivates us to incorporate a flexible buy order as follows.

Definition 12 (Flexible buy order). A flexible buy order from participant i ∈ In is a tuple
f = (n, tES, tLC, τD, q̂, π),

where n is the bus index, tES ∈ T , tLC ∈ T and τD ∈ T denote the earliest starting time,
latest completion time and duration of the flexible load, respectively, q̂ ∈ RτD

+ is the load
shape to be consumed, and π ∈ R is the maximum acceptable price of electricity2 for the buy
order.3

Figure 9.3 depicts the parameters used to define a flexible buy order.
2The maximum amount of payment associated with the order is π1>q̂.
3For a flexible shapeable order, τD represents the duration over which power is delivered to the load,

and rather than a load profile q̂ ∈ RτD

+ we would require a minimum and maximum power profile over the
duration of the interval, denoted q ∈ RτD and q ∈ RτD respectively.
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Time tES

Duration τD

tLC

Earliest starting
time
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T1
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Trading window

Figure 9.3: Parameters of a flexible buy order

Orderbook
In practice, buy and sell orders arrive continuously in time. There are three processes which
can be used to manage the clearing of these orders. In the first process, whenever a new
order arrives, APEX runs an efficient matching algorithm with all the standing orders and
the newly arrived order, which determines the fulfillment of a subset of these orders. In
the second process, the matching algorithm is run at short periodic intervals, incorporating
all orders recieved since the matching algorithm was previously run. In the third process,
the matching algorithm is run exactly once per market interval, clearing all orders in one
go. Depending on the rate of arrival of orders, and the number of outstanding unfulfilled
orders at any one time, each process may be more or less appropriate for a given instance of
the market. Additionally the choice of process has an impact on the economic efficiency or
global optimality of the set of matched orders. One can imagine clearing an order as soon as
it arrives, however, had we waited another order may have arrived, which if matched with
the original order would have generated a higher surplus or utility. This has relevance to
the choice of utility function for the platform, discussed in (9.3), (9.4). It also illustrates
the difficulty of assessing the economic efficiency of a multi-period open-gate market such as
this.4

All unfulfilled orders, which cannot be matched due to (i) lack of supply for a buy order
or lack of demand for a sell order, (ii) lack of a mutually acceptable price, and (iii) network
constraints, remain standing and are recorded into an orderbook.

Definition 13 (Orderbook). The orderbook at time t is defined to be the triple (B,S,F),
where B is the collection of standing simple buy orders, S is the collection of standing simple
sell orders, and F is the collection of standing flexible buy orders.

In addition to the information supplied in the order formats described previously, an
order may have an expiry time. If the order remains unfulfilled at this time it is removed
from the orderbook. Additionally if an order remains unfulfilled after its specified delivery

4An appropriate benchmark may be solving the market with perfect foresight in terms of orders, and
finding what the optimal matching would have been. However given the dynamics of the market it is unclear
how meaningful this is, as the clearing of one order may impact whether a second order is made or not.
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time has passed, it is also removed from the orderbook. This can be thought of as a default
expiry time.

Furthermore, when making an order, there are a number of order types which may be
specified. We describe these below.

Order Types

We define three types of orders:

Definition 14 (Limit Order). A limit order represents an order that may be partially fulfilled
in the order matching process. These orders remain in orderbook with the desirable quantities
(qb or qs) updated by subtracting the fulfilled amounts.

Definition 15 (Fill-or-Kill Order). A fill-or-killl order must be fulfilled in its entirety, or
not at all.

Definition 16 (Market Order). A market order is an order that is willing to be fulfilled
at any price, i.e. the market price. It specifies no order price when the order is made. A
market order can be thought of as a limit order with a maximum (minimum) acceptable price
of the market cap (floor), since, assuming there is sufficient quantity on the other side of the
market, a market order will always be fulfilled in its entirety.

For simplicity, from hereon we assume that all orders are limit orders, which may be
partially fufilled. Market orders are included as limit orders, using market price caps as the
order prices. Including fill-or-kill orders requires more complex combinatorial logic which
will be the subject of future work.

Order matching problem
To fulfill the orders in the orderbook (B,S,F), the order matching process aims to determine
an admissible schedule and an admissible price for each (partially) fulfilled order in the
orderbook.

We denote the set of power profiles representing all admissible fulfillment of simple buy
order b and simple sell order s by Qb ⊂ RT and Qs ⊂ RT , respectively. Similarly, the set of
power profiles representing all admissible fulfillment (including q = 0) of the flexible load f
is denoted by Qf ⊂ RT .

Definition 17 (Admissible schedule). A power production or consumption schedule q ∈ RT

over the trading window T is deemed admissible, if the following conditions hold.

• For simple sell order s = (n, t, q, π):

q = qs ∈ Qs := {q1t ∈ RT : 0 ≤ q ≤ q},

where 1t ∈ RT is the elementary vector with a 1 at t-th element and 0’s elsewhere.
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• For simple buy order b = (n, t, q, π):

q = qb ∈ Qb := {q1t ∈ RT : 0 ≤ q ≤ q}.

• For flexible buy order f = (n, tES, tLC, τD, q̂, π):

q = qf ∈ Qf ,

where Qf is defined as the set of power profiles q ∈ RT such that there exists a starting
time tS so (q, tS) satisfies

tS ∈ {tES, . . . , tLC − τD + 1}, (9.1a)

q(t) =

q̂(t− tS + 1), if tS ≤ t < tS + τD,

0, otherwise.
(9.1b)

If the order is not to be scheduled, we denote tS = 0 and so 0 ∈ Qf by definition.

Definition 18 (Admissible price). For a (partially) scheduled order (i.e., q 6= 0), a clearing
price π ∈ R is deemed admissible, if the following conditions hold.

• For simple sell order s = (n, t, q, π): π ≥ π.

• For simple buy order b = (n, t, q, π): π ≤ π.

• For flexible buy order f = (n, tES, tLC, τD, q̂, π): π ≤ π.

In the order matching problem, we try to identify admissible fulfillment of all orders
({qs}, {qb}, {qf}) := ({qs}s∈S , {qb}b∈B, {qf}f∈F) in a way that maximizes certain criteria
designed by the operator of APEX, denoted by U({qs}, {qb}, {qf}), while respecting the
distribution network constraints5. This can be written as the following optimization problem

max
{qs},{qb},{qf}

U
(
{qs}, {qb}, {qf}

)
(9.2a)

s.t. qs ∈ Qs, s ∈ S, (9.2b)
qb ∈ Qb, b ∈ B, (9.2c)
qf ∈ Qf , f ∈ F , (9.2d)
pn =

∑
s∈Sn

qs −
∑
b∈Bn

qb −
∑
f∈Fn

qf , n ∈ N , (9.2e)

p(t) ∈ PD, t ∈ T . (9.2f)

5In view of the equivalence between the setup where APEX directly manages distribution network con-
straints, and the setup where network constraints are managed by a minDSO and APEX communicates with
the minDSO through a coordinated trading process [194,195], we assume the first setup in this chapter.
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where (9.2e) is the local power balance equation at each node n, with Sn, Bn and Fn denoting
the set of simple sell orders, simple buy order and flexible buy order submitted by users at
bus n, respectively. We will refer to these collectively as nodal orderbooks.

APEX may optimize different criteria in the order matching problem depending on its
real-world implementation (e.g., whether it is implemented by a for-profit platform company
or by a regulated utility company). Here we list two possible objective function to optimize.

• Total surplus:

U({qs}, {qb}, {qf}) (9.3)
=
∑
b∈B

πb1>qb +
∑
f∈F

πf1>qf −
∑
s∈S

πs1>qs.

• Total volume:

U({qs}, {qb}, {qf}) =
∑
b∈B

1>qb +
∑
f∈F

1>qf . (9.4)

We note that with criteria (9.3) or (9.4), the order matching problem has a linear ob-
jective function. Meanwhile, constraints (9.2b), (9.2c), (9.2e) and (9.2f) are all linear in-
equality or equality constraints. However, (9.2) is challenging to solve due to non-convex
constraint (9.2d). In fact, the combinatorial nature is evident if we return to the character-
ization of Qf using the starting times (9.1).

While solving (9.2) gives an admissible schedule for each order in the orderbook, it
does not provide admissible prices. Thus the second part of the order matching problem
is to identify an admissible price for each fulfilled order. Given the non-convex nature of
(9.2) and the fact that in some cases can only obtain approximate solutions of (9.2) in
practice, the pricing problem for APEX is challenging. In particular, the natural application
of the marginal pricing idea to this context requires a re-examination because its properties
established for convex settings may no longer hold (see Section 9.3).

We now present two methodologies for solving (9.2), one using optimization, the other
using logic. In Section 9.3 we describe the optimization approach, introducing two algo-
rithms that solve (9.2) approximately, and in Section 9.3 we address pricing under these two
algorithms. In Section 9.4 we describe the logic-based approach, and introduce an algorithm
that solves the problem exactly in a continuous manner without optimization, and how pric-
ing is addressed under such an algorithm. This latter approach more closely resembles the
operation of a stock market rather than a centralized ISO clearning mechanism.
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9.3 Optimization-Based Solution Methodology

Scheduling Algorithms
Fixing the schedule of flexible buy orders, the order matching problem is a linear program
thus efficiently solvable. We therefore denote

J({qf}) :=
max
{qs},{qb}

U({qs}, {qb}, {qf}) (9.5a)

s.t. qs ∈ Qs, s ∈ S, (9.5b)
qb ∈ Qb, b ∈ B, (9.5c)
pn =

∑
s∈Sn

qs −
∑
b∈Bn

qb −
∑
f∈Fn

qf , n ∈ N , (9.5d)

p(t) ∈ PD, t ∈ T . (9.5e)

and focus on the optimization for scheduling flexible orders:

max
{qf}

J({qf}) (9.6a)

s.t. qf ∈ Qf , f ∈ F . (9.6b)

We proceed to describe a way to solve this problem based on a greedy heuristic.

Greedy scheduling

We start by reformulating (9.6) to a set function maximization. Let tS ∈ T |F| be the vector
of starting times of all flexible buy orders which uniquely determines the schedule of all
flexible buy orders {qf}. Denote the value of (9.6) with some fixed tS by V (tS), i.e.,

V (tS) =

J({qf (tSf )}), if qf (tSf ) ∈ Qf , f ∈ F ,
−∞, otherwise,

where qf (tSf ) is the power consumption profile induced by starting time tSf . Consider the
pairs of flexible buy orders and their starting times in the set

Ω = {(f, tSf ) : f ∈ F , tSf ∈ T ∪ {0}}. (9.7)

Notice that any feasible scheduling can be represented by a subset of Ω; conversely, subsets
of Ω that select no more than one starting time for each flexible buy order f can represent
all feasible scheduling decisions. Define set-to-matrix mapping I : 2Ω 7→ R|F|×T

[I(X)]f,t =

1, if (f, t) ∈ X,
0, otherwise,

(9.8)
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and normalized objective function

g(X) = V (I(X)δ)− V (I(∅)δ), (9.9)

where δ ∈ RT×1 is such that δt = t, and the matrix vector product I(X)δ converts a subset
X ⊂ Ω into the corresponding starting time vector tS. With these definitions, problem (9.6)
is equivalent to the following subset selection problem:

max
X⊂Ω

g(X), (9.10a)

s.t.
T∑
t=1

[I(X)]f,t ≤ 1, f ∈ F , (9.10b)

where the constraint ensures that X selects at most one starting time for each flexible buy
order. The problem in general is NP hard as the number of subsets is 2|Ω|.

The greedy approach for solving (9.10) amounts to scheduling flexible orders one-by-
one according to the incremental benefit that scheduling a new order brings as measured
by function g(X). Algorithm 3 lists the steps for greedy scheduling. After this algorithm
terminates, admissible schedules for flexible buy orders are obtained. We can then obtain
admissible schedules for simple orders by solving (9.5) with the resulting {qf} from the
greedy algorithm.

FS = ∅, FTBS = F ;
X ← ∅;
while FTBS 6= ∅ do
C ← {(f, tS) : f ∈ FTBS, tS ∈ {tES

f , . . . , tLC
f + 1− τD

f }};
(f̂ , t̂S)← arg max(f,tS)∈C g(X ∪ {(f, tS)})− g(X);
if g(X ∪ {(f̂ , t̂S)}) > g(X) then

X ← X ∪ {(f̂ , t̂S)};
FS ← FS ∪ {f̂}, FTBS ← FTBS\{f̂}

else
break;

end
end

Algorithm 3: Greedy scheduling

Fluid relaxation

Although the complexity of greedy scheduling is polynomial in the number of flexible orders,
it becomes relatively slow when there are a large number of orders because it needs to loop
over the remaining orders and their feasible starting times in each step. In this section, we
consider an alternative scheduling algorithm based on relaxing the non-convex constraint
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qf ∈ Qf . In particular, it first relaxes the requirement that each load shape needs to follow
the exact load shape q̂f submitted by the user, solves a convex optimization to determine
the schedule q̃f , and then “projects” the schedule q̃f to a feasible schedule ΠQf

(q̃f ) ∈ Qf .
As the key step in this algorithm is to remove the load shape requirement by allowing any
profile to be scheduled in the time window {tES

f , . . . , tLC
f }, we refer to this algorithm as fluid

relaxation. Similar ideas have been used to develop approximation algorithms for job shop
scheduling problems (cf. [211]).

In fluid relaxation, we replace the constraint qf ∈ Qf by qf ∈ Q̃f , with Q̃f defined as
the set of power consumption profiles qf ∈ RT satisfying the following constraints

1>qf ≤ 1>q̂f , (9.11a)
TV(qf ) ≤ TV(q̂f ), (9.11b)
qf (t) ≥ 0, t ∈ {tES

f , . . . , tLC
f }, (9.11c)

qf (t) = 0, t 6∈ {tES
f , . . . , tLC

f }, (9.11d)
where the total variation of a vector x ∈ Rd is defined as

TV(x) =
d+1∑
t=0
|x(d+ 1)− x(t)|, x(0) = x(d+ 1) := 0.

In the definition of Q̃f , constraint (9.11a) requires that the total energy of the scheduled
consumption profile is no larger than the total energy of the submitted consumption profile;
constraints (9.11c) and (9.11d) impose the non-negativity requirement for the consumption
profile and restrict the profile can only have positive consumption in time periods specified
by the time window submitted by the user; constraint (9.11b) controls the flexibility of the
scheduled profile, by limiting the total variation of the scheduled profile with that of the
submitted profile. It is easy to see that Qf ⊂ Q̃f .

As Q̃f is a convex polytope for each f , the resulting convex relaxation for scheduling
flexible orders is

max
{qf}

J({qf}) (9.12a)

s.t. qf ∈ Q̃f , f ∈ F , (9.12b)
whose solution is denoted by {q̃f}.

The solution of the convex relaxation may be infeasible with respect to the original
constraint qf ∈ Qf . One possibility is that for some f , constraint (9.11a) may not hold with
equality at the solution q̃f . In this case, we simply round down such that qf (t) = 0 for all t.
If constraint (9.11a) holds with equality at the solution and so the energy requirement of the
flexible load is satisfied, we identify a feasible starting time tSf for each f ∈ F by finding the
time window with τD

f periods that contains the maximum total power consumption according
to q̃f , i.e.,

tSf = arg max
tS
f
∈{tES

f
,...,tLC

f
−τD

f
+1}

tSf +τD
f −1∑

t=tS
f

q̃f (t). (9.13)
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The “projected” power consumption schedule is thus the power consumption profile induced
by this starting time, denoted by qf (tSf ):

ΠQf
(q̃f ) :=

qf (tSf ), if 1>q̃f = 1>q̂f ,
0, otherwise.

(9.14)

with tSf defined in (9.13).

Performance guarantees
In this section, we provide a stylized analysis of the proposed scheduling algorithms for solv-
ing the non-convex (combinatorial) optimization (9.6) with the following two assumptions.

A1 The network can be represented as a single-bus network.

A2 The maximization criteria is the total surplus (9.3).

Assumption A1 allows us to focus on the combinatorial nature of the problem rather
than the network constraints. We stress, however, both of the proposed algorithms result
in admissible schedules that respect distribution network constraints for general networks.
Analyzing the performance of approximation algorithms with network constraints represents
a major challenge and is left for future work. Assumption A2 is introduced without loss of
generality. In fact, the total volume objective function (9.4) can be thought of as a special
case of the total surplus objective, with prices suitably modified.

We start with the performance guarantee for the greedy algorithm6. As is often the
case, the greedy algorithm is (1− 1/e)-optimal if the underlying problem is submodular. For
our problem of scheduling flexible orders, by extending the analysis in [209], we can show
submodularity indeed holds and therefore we have the following performance guarantee for
the greedy algorithm. Proofs are omitted and may be found in [214].

Lemma 5 (Greedy performance). Under Assumptions A1 and A2, the greedy scheduling
algorithm is (1− 1/e)-optimal:

J({qg
f})

J({q?f )}
≥ 1− 1

e
, (9.15)

where {qg
f} is the greedy schedule and {q?f} is the optimal schedule.

6A slight modification (i.e., using a specific initialization of FS instead of FS = ∅) of the greedy algorithm
presented in (3) may be needed due to the knapsack constraint (9.10b). The modified greedy algorithm is
still polynomial time but is much slower due to the time-consuming initialization step. We stated the simple
greedy algorithm in Algorithm 3 because we have been observing similar performances with and without the
modification. See [212] and [213] for more discussions.
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One important feature of the performance bound (9.15) is that it is independent of the
problem instance. It is thus referred to as an a priori bound as it can be stated before seeing
the actual problem data.

For the fluid heuristic, we can derive general a posteriori bounds based on the following
observation:

Proposition 1. Let {q̃f} and {ΠQf
(q̃f )} be the solutions of fluid relaxation (9.12) and its

projected solution, respectively. Then

J({ΠQf
(q̃f )}) ≤ J({q?f}) ≤ J({q̃f}). (9.16)

This result bounds the unknown quantity J({q?f}) by quantities that are computable
in the fluid relaxation steps. This bound is general in that it holds without assuming A1
and A2. As such, given any problem instance and having computed J({ΠQf

(q̃f )}) and
J({q̃f}), we can gauge the (sub-)optimality of the solution by comparing these two quan-
tities. If they are close, we can assert a posteriori that the fluid algorithm has produced a
J({ΠQf

(q̃f )})/J({q̃f}) optimal solution.
We can in fact show that the fluid heuristic is asymptotically optimal, with the following

additional assumption:

A3 For all f ∈ F , q̂f (t) ≡ q̄f does not change with t, t = 1, . . . , τD
f . Furthermore, q̄min ≤

q̄f ≤ q̄max for all f ∈ F , where 0 < q̄min < q̄max <∞.

A4 The supply is sufficient as for each period t ∈ T there is a supply order with unbounded
q̄ and a large acceptable price πu ≥ maxs∈S πs. Furthermore, among |F| flexible orders,
there are at least α|F| flexible orders such that πf ≥ πu, where α ∈ (0, 1).

Assumption A3 replaces possibly time-varying load shapes by rectangles. This certainly
limits the practicality of our next result. Removing it is possible as any time-varying load
shapes can be approximated, with any desired level of accuracy, by rectangles. Assump-
tion A4 focuses our analysis on the case where there is enough supply for each future delivery
interval. This can be the case when a utility company (or load serving entity) participates
in the platform and offers to sell sufficient amount of energy at a relatively high price πu.
Under these assumptions, we can establish the (weak) asymptotic optimality of the proposed
fluid heuristic, in the following sense.

Theorem 20 (Asymptotic optimality of fluid heuristic). Under Assumptions A1-A4, con-
sider a set of flexible orders with increasing size |F| → ∞. For each F , there exists an
optimal schedule {q̃f} for the fluid relaxation (9.12) such that

J({ΠQf
(q̃f )})

J({q?f})
→ 1, as |F| → ∞, (9.17)

where {q?f} is an optimal schedule for the original problem (9.6).
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The key intuition behind this theorem is that when the number of flexible orders becomes
large, individual load shapes no longer play a significant role in the quality of the solution
because (with a single-bus network) it is the aggregate load shape of all the flexible loads
that matters in the optimization (9.6).

Pricing
Algorithms presented in Section 9.3 only provides admissible schedules for orders in the
orderbook, with clearing prices to be determined. Denote the collection of prices for orders
by {πs}, {πb}, {πf}. Basic requirements for these prices include (i) admissible, as defined in
Definition 18, and (ii) revenue adequate so that the merchandising surplus of the platform,
denoted by MS, is non-negative:

MS =
∑
b∈B

πb1>qb +
∑
f∈F

πf1>qf −
∑
s∈S

πs1>qs ≥ 0. (9.18)

Without flexible orders, it can be shown that both requirements above can be met with a
generalization of the simple idea of marginal pricing. In the rest of this section, we first state
this generalization and then exam its properties when used with the scheduling algorithms
proposed in Section 9.3.

Marginal pricing
Given any schedule of the flexible orders {qf}, we consider the optimization for scheduling
the remaining simple orders (9.5). Denote the optimal dual variable associated with con-
straint (9.5d) of the linear program by λn ∈ RT , n ∈ N . This is a collection of N × T
prices, one for each (bus, future delivery time) pair. Thus these prices may be referred to as
temporal and locational marginal prices [215], which are functions of the schedules of flexible
orders in our setting.

In particular, for orders with non-zero cleared quantities, we define a marginal pricing
rule as

πs = λn(t), s = (n, t, q, π), (9.19a)
πb = λn(t), b = (n, t, q, π), (9.19b)

πf = λ>nqf
1>qf

, f = (n, tES, tLC, τD, q̂, π). (9.19c)

Thus under the marginal pricing rule, simple orders are paid or charged the locational
marginal price for the future delivery time interval. As flexible orders usually span multiple
delivery time intervals, they are charged the average locational marginal prices weighted by
the amount of power they consume in different time intervals.
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Properties of marginal pricing
We analyze properties of the marginal pricing rule based on Assumption A2, otherwise the
dual variables of optimization (9.5) may not have a clear economic meaning.

Using the KKT condition of the linear program (9.5) and strong duality, we can establish
the following property of the marginal pricing rule, given any schedules for the flexible orders
{qf}:

Lemma 6 (Properties of marginal pricing). Under Assumption A2, the marginal pricing
rule is revenue adequate and leads to admissible prices for simple buy orders and simple sell
orders.

As the schedules of flexible orders {qf} are not decision variables of the optimization (9.5),
little can be said about whether the marginal prices will be admissible for flexible orders
without considering the actual algorithms used to determine these schedules. Considering
the algorithms proposed in Section 9.3, we have the following negative results established
using counter examples:

Lemma 7 (Inadmissibility for flexible orders). Under Assumption A2, the marginal pricing
rule with greedy or fluid schedule is not guaranteed to produce admissible prices for flexible
buy orders.

The observation above stems from the fundamental difficulties in non-convex pricing
problems and the fact that the proposed algorithms use more than the marginal information
to determine the schedules of flexible orders. To be precise, in each step of the greedy
algorithm, it determines whether to schedule a flexible order based on the total benefit about
which it brings measured by the change of function value J({qf}) with and without the
newly scheduled order. Charging it with the marginal cost, which corresponds to the cost of
producing the last ε > 0 amount of power, may result in a price higher than πf . For the fluid
algorithm, the projection step does not use price information and may result in inadmissible
prices.

While marginal pricing has many desirable properties as studied in the transmission
market literature (cf. [216] and references therein), modifying it to extend some of these
properties to the non-convex setting here require much additional work. Instead, in the next
subsection, we provide a simple mechanism that will ensure price admissibility and budget
adequacy.

Name-your-own-price mechanism
In the name-your-own-price mechanism, alternatively a pay-as-bid mechanism, we simply
pay or charge users based on the prices they submit with their order

πs = πs, πb = πb, πf = πf , (9.20)
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for all (partially) fulfilled orders. By definition, this pricing mechanism produces admissible
prices for all orders. We can also show that revenue adequacy is achieved if we use greedy
scheduling algorithm with the total surplus objective:

Lemma 8. Under Assumption A2, the name-your-own-price mechanism is revenue adequate
with greedy scheduling.

It is an easy consequence of Theorem 20 that if we use the fluid scheduling algorithm we
are guaranteed revenue adequacy in an asymptotic sense.

Corollary 3. Under the same assumptions of Theorem 20 and with the name-your-own-price
mechanism, consider a set of flexible orders with increasing size |F| → ∞. For each F , there
exists an optimal schedule {q̃f} for the fluid relaxation (9.12) such that the merchandizing
surplus induced by the resulting schedule {ΠQ(q̃f )} satisfies

lim
|F|→∞

MS > 0.

In summary, both proposed scheduling algorithms result in admissible and revenue-
adequate prices if the name-your-own-price mechanism is used.

9.4 Logic-Based Solution Methodology

The Constrained, Coupled, Continuous Double Auction (C3DA)
We introduce an alternate matching algorithm, The Constrained, Coupled, Continuous Dou-
ble Auction (C3DA), which in contrast to the greedy and fluid algorithms requires no opti-
mization, and more closely resembles the operation of a traditional stock market. The lack
of optimization means the algorithm can be much faster and has the potential for greater
scalability.

In a classic continuous double auction (CDA), buyers and sellers continuously submit
bids (an offer to buy at price πb) and asks (an offer to sell at price πa) respectively for
homogeneous, single-attribute goods, and the market clears whenever a bid exceeds an ask
(i.e. when πb ≥ πa). Bids and asks are typically listed on a bulletin board, and the auction
runs throughout a ‘trading day’ with a deadline, after which no more orders are accepted.
Various order matching protocols exist to tiebreak among orders made at the same price, such
as FiFo (First in, First out) and Pro-Rata. CDAs are generally unconstrained, in that there
are no external limits on which trades may be made. They are also generally uncoupled,
both in time and space. In time, each trading day is considered to be independent, and
one may not make bids in one trading day for a subsequent trading day.7 In space, the
price among geographically separate commodity markets is rarely explicity coupled, perhaps

7In commodity markets, there is typically both a spot and futures market, with the latter partially
fulfilling this coupling role, allowing parties to transact for delivery of the commodity at a future date.
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with the exception of nodal electricity markets. There may of course be an implicit price
coupling, reflecting the cost of transport of the commodity between different markets. There
is no central optimization in a CDA, or any kind of welfare maximization.

The C3DA consists of a set of nodal CDAs connected by a constrained transport network,
employing an open-gate forward market structure. Participants can make orders at any
instance in time for a future market t ∈ T , and the matching algorithm is triggered whenever
a new order arrives. To determine which nodes can trade with which other nodes, there is a
computational step that is triggered every time a new bid clears, to determine the amount
of power that can be safely sent between nodes. Flexible bids are represented in the simple
orderbooks by the lowest priced equivalent simple order that would clear the flexible bid if it
were met.

Additional Orderbooks

We refer to the orderbooks described in Definition 13, S, B, F as the Global Orderbook. To
recap, the nodal orderbooks, Sn, Bn, Fn, defined in Section 9.2, detail all offers made at a
give node. For the C3DA it is necessary to introduce the concept of the Local Orderbook.
We will first provide an informal definition, and then a more technical definition after some
preliminaries. The local orderbook at node n, contains all orders made at nodes which can
make feasible trades with node n. For example, in an unconstrained network, every local
orderbook at each node would correspond to the global orderbook, since every node can
make trades with every other node. We denote the local orderbooks as Ŝn, B̂n, F̂n, and we
have the following relation between orderbooks

Bn ⊆ B̂n ⊆ B (9.21a)
Sn ⊆ Ŝn ⊆ S (9.21b)
Fn ⊆ F̂n ⊆ F (9.21c)

The local orderbook is a function of the network constraints and previously cleared orders
whose delivery falls within T . It must be recalculated whenever a new set of orders is cleared.
We denote the resulting net injection from previously cleared orders as pc(t) ∈ RN , t ∈ T .
We say that two nodes m,n can make a feasible trade in the direction m → n at time t, if
∃ αm,n > 0, such that

αm,nem,n + pc(t) ∈ PD (9.22)
where αm,n ∈ R, and em,n denotes the unit injection vector between m, n, defined to have
1 in the mth position, −1 in the nth position, and 0 elsewhere. We can in fact calculate
the maximum amount of power that can be transferred between nodes m, n, denoted αm,n.
We assume the linear constraint set is defined in the H representation, such that PD = {p :
Ap ≤ b}8. We can then see that

(9.22)⇒ αm,nAem,n ≤ b− Apc(t) (9.23)
8Equality constraints of the form a>p = b, are included in the H representation through a>p ≤ b,

a>p ≥ b
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and that
αm,n = min

k

(
max

(
bk − Akpc(t)
Akem,n

, 0
))

(9.24)

where Ak is the kth row of A, and bk is the kth element of b. We are effectively attempting to
find the first constraint that would bind if we move in the direction em,n from pc(t). Since the
power balance constraint is trivially satisfied by em,n, it can be shown that 2N(N−1)(2N−1)
operations are required in this case to compute the feasible power transfer between each
pair of nodes on the network. Additionally it can be shown that for each pair m,n, only
constraints k where Akem,n > 0 need be considered in (9.24), since these will always bind
before constraints where Akem,n ≤ 0. This calculation can be performed offline, reducing
the online computational burden. Assuming that vectors A>k are uniformly distributed in
space, this would reduce the number of computations required in expectation by a factor of
two.

We can now formally define the local orderbook.

Definition 19 (Local Orderbook). The local orderbook at node n at time t is defined to be
the triple (B̂n, Ŝn, F̂n), where B̂n is the collection of standing simple buy orders, Ŝn is the
collection of standing simple sell orders, and F̂n is the collection of standing flexible buy
orders, each of which correspond to power supply/demand delivered at nodes which can make
feasible trades with node n.

Formally,

B̂n =
⋃
m

Bm, ∀αm,n > 0 (9.25)

Ŝn =
⋃
m

Sm, ∀αn,m > 0 (9.26)

F̂n =
⋃
m

Fm, ∀αm,n > 0 (9.27)

Treatment of Simple and Flexible Bids

It is now useful to define the outstanding local bid and ask.

Definition 20 (Local Outstanding Bid). The local outstanding bid at node n at time t,
denoted b?n is the highest priced buy order in the local buy orderbook9:

b?n = arg max
b∈B̂n

πb. (9.28)

Definition 21 (Local Outstanding Ask). The local outstanding ask at node n at time t,
denoted s?n is the lowest priced sell order in the local sell orderbook:

s?n = arg min
s∈Ŝn

πs (9.29)

9Tiebreaking between orders with same price can be achieved using the FIFO protocol
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The outstanding local bid and ask are the prices that are communicated to market
participants as ‘market prices’ in real time. i.e. the price a buyer (seller) would have to bid
(ask) at to clear their order.

Each time a new simple buy (sell) order arrives from node n, it is immediately matched
against the local outstanding ask (bid) at node n, and if π ≥ π, then the order is cleared. If
the order can only be partially cleared, it is repeatedly matched with other orders in order
of increasing (decreasing) price in the local orderbook, until it is completely cleared, or there
is no further matching order. Any uncleared quantity remaining on the order is added to
the standing orderbook.

This framework is straightforward enough for simple orders, but it is less obvious how
to integrate flexible orders. At node n, there will be a sequence of local orderbooks Ŝn(t),
∀t ∈ T . To match a flexible order f we check each candidate start time for the deferrable bid
and find its average price over the duration of the demand, matching it to the lowest priced
simple sell orders in the local orderbook in each period. If the lowest among these average
prices is less than the bid price of the deferrable load, then the order is cleared. Otherwise
the order is added to the collection of standing flexible orders.

In the event that the order is not cleared, we want to reflect the flexible order in the
standing orderbook, such that it can impact the outstanding local bid and ask. One approach
is to find the implied simple, single-period order that would clear the flexible bid if matched.
From the above candidate start times, we take the start time with the lowest average price.
For each period k of the demand duration, we find the quantity weighted price that would
have cleared the deferrable load, which we denote π̃k. For each time period in the duration
of the flexible order k = 1, . . . , τD, we have

π
τD∑
l=1

ql = π̃kqk +
τD∑
l 6=k

πlql (9.30)

π̃k =
π
∑τD

l=1 ql −
∑τD

l 6=t πlql

qk
(9.31)

π̃k = π +
∑τD

l 6=t(π − πl)ql
qk

(9.32)

where πl is the average price for quantity ql to be cleared in period l from the outstanding
local orderbook. The deferrable load makes the implied bid

b = (n, t, qt, π̃t), t = 1, . . . , τD (9.33)

The purpose of this implied bid is to provide an appropriate signal to sellers to show, in the
same way as for simple orders, what ask price would be needed to match with the deferrable
load order. The benefit of this approach is that we need only check if the implied bid clears
to check the clearing of the entire deferrable load. The implied bids for flexible orders should
be recalculated every time a new order clears. Alternatively they could be recalculated
periodically. It remains to be seen what the most computationally efficient way to handle
this might be.
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Pricing

In general we adopt the κ-pricing protocol. In the case of simple orders the clearing price
πc, both paid by the buyer and received by the seller, takes the following form.

πc = π + κ(π − λ) (9.34)
= κπ + (1− κ)π (9.35)

where κ ∈ [0, 1] is a constant determining the surplus allocation. κ = 0.5 is a common choice
where this protocol is adopted.

For the case of multi-period orders, we adopt the following protocol. The maximum
payment that the buyer is willing to make is equal to π1>q̂, and the required minimum
payment to matched sellers is equal to ∑s πsqs, where s is the index of matched sell orders.
A revenue adequate pricing scheme might take the following form. The buyer pays

πc = κπ + (1− κ)
∑
s πsqs
1>q̂

(9.36)

It can be shown that the surplus (in $) to sellers is equal to

κ(π1>q̂ −
∑
s

πsqs) ≥ 0 (9.37)

Each seller receives a quantity weighted allocation of this surplus, which represents a constant
price adder to all sellers’ bid prices. The price paid to each seller s is denoted πc,s and can
be calculated as

πc,s = πs + 1
qs

qs
1>q̂

κ

(
π1>q̂ −

∑
s

πsqs

)
(9.38)

= πs + κ

(
π −

∑
s πsqs
1>q̂

)
(9.39)

This pricing scheme is revenue adequate since πc ≤ π and πc,s ≥ πs, ∀s.

9.5 Conclusion
In this chapter, we propose APEX, a market platform that enables monetization of under-
utilized distribution system assets. It features an open-gate forward market design and an
explicit flexibility market. The forward markets help to incorporate variable distributed en-
ergy resources and reduce risks of market participants. In the flexibility market, resources
submit their flexibility information with a simple yet expressive order format and APEX
schedule these resources on behalf of the users efficiently. All functionalities of APEX are
executed while ensuring the reliability of the distribution network, either by directly man-
aging the distribution system constraints, or by communicating with a minDSO through a
coordinated trading protocol.
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For the proposed market platform, we study the non-convex problem of scheduling non-
preemptive flexible resources and propose two optimization-based polynomial time algo-
rithms that have finite or asymptotic performance guarantees. We analyze the properties of
marginal pricing together with the proposed algorithms and suggest a simple alternative that
leads to admissible prices for all users and guarantees adequate revenue for the platform. We
also propose a logic-based market clearing methodology, termed the C3DA, which extends
the classic notion of CDAs to the case of coupled time-periods and constrained transport
networks. We demonstrate how feasible trades are identified and propose a revenue adequate
pricing scheme.
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Appendix A

A.1
Analytic derivation of the solution of MPED.

Proof. For situations where ∆σt = I, the solution can be derived analytically. This corre-
sponds to the case where λt+1 = λt, arising when the LMPs are the same across periods
when there is no line congestion, or very special cases when there is line congestion. This
can in general extend over a number of consecutive time periods, which we will denote T̃ ,
such that λt = λt+1 = · · · = λ

t+T̃ . We also define σ(t) := {t1, . . . , tT̃} as the set of consec-
utive time periods for which ∆σj

= I, j ∈ {t1, . . . , tT̃−1}, and ∆σt
T̃

= 0. It is always true
that t ∈ σ(t). As an example, say that ∆σ1 = I, ∆σ2 = 0, implying that λ2 = λ1. Then
σ(1) = σ(2) = {1, 2}.

This allows the problem to decouple in time across segments where λ?t is distinct, giving
the following form

max
λt,γ,β̃

ψt(λ, γ, β̃) (A.1a)

s.t. λt = γj1−H>t β̃j, j ∈ σ(t) (A.1b)
where

ψt(λt, γ, β̃) =
∑
j∈σ(t)

−1
2(λt − aj)>Q−1

j (λt − aj) + d>j λt − c>j β̃j − s>(∆χj
−∆χj−1)λt (A.2)

Given that the columns of H>t are linearly independent of 1, it can be shown that γj, β̃j are
identical for all j ∈ σ(t), simplifying the analytical solution considerably. The proof then
closely follows the proof detailed in [34]. The results in this case are very similar to the
original, but with some subtle differences relating to Qσ(t).

A.2
The matrix At(Wt) is positive semi-definite. That is At(Wt) � 0. Additionally, Mt � 0,
Kt � 0.
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Proof. We first show that Mt � 0. We observe that Mt has the form of a Schur complement.

Mt = Q−1
t −Q−1

t 1(1>Q−1
t 1)−11>Q−1

t (A.3)

We form the associated symmetric block matrix, denoted Xt, where A,B,C represent general
notation for its blocks

Xt =
[
A B
B> C

]
=
[
Q−1
t Q−1

t 1
1>Q−1

t 1>Q−1
t 1

]
(A.4)

We see that Mt = A − BC−1B> = Xt/C, that is the Schur complement of C in Xt. We
have that if C � 0, then Xt � 0 ⇔ Xt/C � 0. Since C = 1>Q−1

t 1 � 0, due to the fact
that Q−1

t � 0, to show that Mt � 0, it suffices to show that Xt � 0. This can be seen by
observing that Xt can be decomposed as

Xt =
[

I
1>

]
Q−1
t

[
I 1

]
(A.5)

= N>Q−1
t N (A.6)

� 0 (A.7)

where N = [I 1]. This follows from a result in [217], which states that: for Q ∈ Sn×n, and
N ∈ Cn×m,
Remark 7. Suppose Q � 0, then N∗QN � 0.
Remark 8. Suppose Q � 0, then N∗QN � 0 if and only if rank(N) = m

In our case above we observe that the condition in Remark 7 is satisfied, but that N ∈
Rn×n+1, and rank(N) = n, so the condition in Remark 8 is not satisfied. Thus Xt � 0.

We can additionally show that Mt has exactly one eigenvalue at 0, associated with the
eigenvector 1. This is proved in Appendix A.3.

We now show that Kt � 0. We begin by writing out the full expansion of Kt, observing
that it also has the form of a Schur complement.

Kt = HtMtH
>
t (A.8)

= HtQ
−1
t H>t −HtQ

−1
t 1(1>Q−1

t 1)−11>Q−1
t H>t (A.9)

Again we form the associated symmetric block matrix, denoted Zt. We abuse notation
and use A,B,C to refer to the blocks of Zt.

Zt =
[
A B
B> C

]
=
[
HtQ

−1
t H>t HtQ

−1
t 1

1>Q−1
t H>t 1>Q−1

t 1

]
(A.10)
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We note that Kt = Zt/C, and that Zt � 0 ⇔ C � 0, Zt/C � 0. We show that Zt � 0, by
decomposing it as

Zt =
[
Ht

1>

]
Q−1
t

[
H>t 1

]
(A.11)

= F>t Q
−1
t Ft (A.12)

� 0 (A.13)

where Ft = [H>t 1]. We see that Zt satisfies the stricter condition in Remark 8. We observe
that Ft ∈ Rn×mt+1, Ht is assumed to have full row rank by Flow LICQ, and 1 is linearly
independent of the columns of H>t , thus rank(Ft) = mt + 1, and Zt � 0. This implies that
Zt/C = Kt � 0.

It follows that Rt � 0 from Remark 7. It can then be seen that At(Wt) � 0 by Weyl’s
inequality, or alternately forming a Schur complement construction similar to those above.

The proof of Pt � 0 follows from a similar Schur complement construction as that used
to prove Mt � 0.

A.3
Mt � 0, with exactly one eigenvalue at 0, with corresponding eigenvector 1.

Proof. For clarity we drop the subscript t in this proof. We begin by considering the ma-
trix (−M). We denote the vector of eigenvalues of (−M) as ϕ, and denote the vector of
eigenvalues (the diagonal entries) of (−Q−1) as z. We see that (−M) can be rewritten as a
rank-one modification of a diagonal matrix

−M = −Q−1 + Q−111>Q−1

1>Q−11
(A.14)

= −Q−1 + ρzz> (A.15)

Where ρ = 1
1>Q−11 = − 1

1>z is defined as in (6.41). The eigenvalues of such a diagonal-plus-
rank-one matrix are the zeros of the secular function [218]

f(ϕ) = 1 + ρz>(−Q−1 − ϕI)−1z (A.16)

We show that 0 is an eigenvalue of −M . Noting that z>Q = −1>

f(0) = 1 + ρz>(−Q−1)−1z (A.17)
= 1− ρz>Qz (A.18)

= 1− 1>z
1>z

(A.19)

= 0 (A.20)
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Following the proof in [218], the eigenvalues of −M and −Q−1 follow the strict interlacing
property,

ϕ1 > z1 > ϕ2 > z2 > · · · > ϕn > zn (A.21)

where the elements of ϕ and z are decreasingly ordered, ϕ1 > ϕ2 > · · · > ϕn, z1 > z2 > · · · >
zn. Since zi < 0,∀i = 1, . . . , n, we must have that ϕ1 = 0, which is the largest eigenvalue
of (−M), and that ϕi ≤ 0, ∀i = 1, . . . , n. Since M is symmetric and its eigenvalues are just
−ϕ then M must be positive semi-definite, with exactly one eigenvalue at 0.

To show that the corresponding eigenvector of the 0 eigenvalue is 1, it suffices to observe
that Mt1 = 0.

A.4
Additional remarks and identities for the analytic solution of MPED.

Remark 9. It has been observed, but remains to be proved that rank(At(Wt)) = mt+1. It is
clear that rank(Kt) = mt, and it can be shown that rank(Rt) = mt, using rank identities of full
column and row rank matrix products. It is still unclear how to prove rank(At(Wt)) = mt+1.
Weyl’s inequality could be used to show that the eigenvalues don’t interfere with each other,
i.e. that the (mt + 1)th eigenvalue is > 0.

Additionally we observe that At(Wt) = QtPtQt + Qt, and that Q−1
t At(Wt) = PtQt + I,

where the second term is the affine gain matrix for the generation optimizers. It has been
observed that λ(PtQt + I) = {1, . . . , 1, 0, . . . , 0}, where the unit eigenvalue has multiplicity
mt + 1, and rank(PtQt + I) = mt + 1. Clearly, rank(PtQt + I) = rank(At(Wt)), by Sylvester’s
inequality, but it is interesting that the matrix has unit eigenvalues. We also note that
λ(PtQt) = {−1, . . . ,−1, 0, . . . , 0}, where the negative unit eigenvalue has multiplicity mt.
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The following identites are stated:

At(Wt)Q−1
t At(Wt) = At(Wt), (A.22)

B>t (Wt)Q−1
t Bt(Wt) = K−1

t , (A.23)
At(Wt)Q−1

t Bt(Wt) = Bt(Wt), (A.24)
At(Wt)Q−1

t λt(Wt) = λt(Wt) (A.25)
At(Wt)MtH

>
t K

−1
t = Bt(Wt) (A.26)

MtQtMt = Mt, (A.27)
RtMtRt = Rt, (A.28)

QtPt(Wt)Qt +Qt = At(Wt), (A.29)
Q−1
t At(Wt)Q−1

t −Q−1
t = Pt(Wt), (A.30)

RtPt(Wt)Rt = 0, (A.31)
QtMtRtMtQtMt = At(Wt)Mt, (A.32)

QtMtRtMt = At(Wt)Mt, (A.33)
HtPt(Wt) = 0, (A.34)

Pt(Wt)At(Wt)Q−1
t = 0, (A.35)

Pt(Wt)Bt(Wt) = 0, (A.36)
Pt(Wt)λt(Wt) = 0, (A.37)

HtMtRt = Ht (A.38)
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[191] K. Alshehri, S. Bose, and T. Başar, “Cash-settled options for wholesale electricity
markets,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13605–13611, 2017.
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