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Abstract

LOCAL CORRELATION MODELS AND APPLICATIONS IN ELECTRONIC
STRUCTURE THEORY

by

RICHARD J AZAR

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

Dynamic inter-electronic correlations are exquisitely local effects responsible for many inter-
esting phenomena in molecular physics, including much or all of mutual attractions between
molecules. The main thrust of this work is the development of high-accuracy, low-scaling
models of electron correlation exploiting locality in the context of non-covalent interactions.



i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The correlation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Local correlation methods and intermolecular interactions . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Excited states in anionic acetonitrile clusters 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Computational Details and Methods . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 EDA from orthogonalized ALMOs at the CCSD level 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Discussion and Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Lower-bound intermolecular polarization 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Frugal supermolecular perturbation theories 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



ii

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Local transformed perturbation theory 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 STPT(2) from first-order amplitudes 103
7.1 Introduction and general construction . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Iterative solutions of an effective Hamiltonian 111
8.1 Introduction and general construction . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Outlook and concluding remarks 122

A iSTPT(2) singles and doubles matrix elements 124
A.1 Spin-orbital expressions in the covariant integral representation . . . . . . . 124

B STPT(2) triples and quadruples matrix elements 139

References 155



iii

List of Figures

2.1 Ground-state C2h
1A0

g and 2A−1
g states. Mulliken atomic charges and spin-difference

densities are reported in grey and black, respectively. R denotes the inter-
monomer CαC

′
α inter-monomer distance; Θ denotes the CβCαN bond angle. . . 21

2.2 2A−1
g frontier orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Excitation energy spectrum for vertical excitations from the 2A−1
g state. Bu and

Au-symmetry transitions are colored black and grey, respectively. . . . . . . . . 23
2.4 2B−1

u valence anion excited-state wave function. . . . . . . . . . . . . . . . . . . 24
2.5 VDE (grey),BE(light grey), and EE(black) vs. cluster size n, calculated by

(TD)DFT/ωB97 in the 6-31++G** basis; Inset: percent |Φ4ag
1bu
〉 vs. n. . . . . . 25

2.6 Minimum 2B−1
u structure. Mulliken atomic charges and spin-difference densities

are reported in grey and black, respectively. . . . . . . . . . . . . . . . . . . . . 26
2.7 PES scans along R (abscissa) and Θ (ordinate) for the ground- and excited-states

of the dimer anion, and the neutral dimer, calculated by (TD)DFT/ωB97 in the 6-
31++G** basis. Contours are spaced 0.16, 0.03, and 0.22eV apart, respectively.
Black dots indicate scanning minima. Relative to the neutral minimum, the
ground- and excited-state anion minima are +1.25 and +2.77eV, respectively.
The light and dark lines in the neutral surface represent (roughly) the seams
with the dimer anion excited- and ground-state potentials. . . . . . . . . . . . . 27

2.8 Electronic potentials schematically along the ag-symmetry ”dissociative” mode.
Where there are paired values, those italicized values were obtained by consid-
ering the single point energies derived from the PES scan, whereas the values
in roman script were obtained from single-point calculations wherein all internal
coordinates were relaxed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Binding energy components for Cs-symmetry water dimer along the hydrogen
bond-breaking coordinate performed in the aug-cc-pVDZ basis. . . . . . . . . . 39

4.1 σ∗(OH) and p(O) guess, POLMO, and delocalized orbital pair set plotted at a
contour value of 0.12. Guess and polarized orbitals have mostly local amplitudes
in spite of orthogonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



iv

4.2 The character of the Cs water dimer interaction is basis-set dependent in the SCF
MI scheme, but stable in the minimal-basis scheme. . . . . . . . . . . . . . . . 66

4.3 Component magnitudes in the aug-dz basis scale with e.e. in accordance with
the form of the decomposition term described. The 20% e.e. point corresponds
to optimized B3LYP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 (a) POLMO binding components of B3LYP/aug-cc-pvdz Cs water dimer travers-
ing its H-bond-breaking coordinate have the correct limiting behavior and a com-
plicated binding interaction; (b) log(∆E)-log(r) plot of the frozen and polariza-
tion contributions indicate scaling consistent with appropriate classical inverse
square-power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Acceptance function K over the coupling interval (p0=0.1, p1=1.0). . . . . . . 73
5.2 Properties of Cs water dimer traversing its H-bond coordinate computed at

the B3LYP/aug-cc-pvtz. Models take an ALMO reference and minimal basis
parametrized by infinite-order t1. Top: 〈sfrac〉 as a function of intermonomer
separation computed for a range of acceptance functions. Middle: Interaction
potential and gradient computed for truncation models and the global bound.
Numerical gradients were computed by the central-difference approximation. Bot-
tom: corresponding truncation errors. . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Error/n in kJ/mol computed relative to conventional PBE/6-31G*. . . . . . . . 81
5.4 Left: 〈sfrac〉 as a function of acceptance domains converges by n =∼127. Right:

Integrated radial distribution as a function of center-of-mass displacement in
angstrom for peripheral (red) and interior (blue) monomers in the n =147 cluster. 82

6.1 He2 potential curve computed in aug-cc-pvtz. Energies are in meV. . . . . . . . 99
6.2 Comparison of perturbative and infinite-order recovered singles in the aug-cc-pvtz

basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Through-infinite-order local (two-body dispersion-type) and non-local (two- through

four-body charge-transfer-type) doubles contributions to the correlation binding
energy computed as a function of helium chain length. Local doubles are respon-
sible for the bulk of binding effects. . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Hen clusters optimized at the CCSD/aug-cc-pvtz level. . . . . . . . . . . . . . . 102

7.1 mH errors for H2 bond dissociation (Req = 0.7Å) against CCSD in aug-cc-pvtz.
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Req=0.7Å. The ”(1)” superscript denotes a STPT second-order energy model
computed from a first-order wavefunction, while a ”(i)” implies an infinite-order
energy from an infinite-order wavefunction. . . . . . . . . . . . . . . . . . . . . 119



v

8.2 mH error relative to FCI separating B-H in 6-31G; Req=1.4Å. All electrons were
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Chapter 1

Introduction

1.1 Background

By the middle of the 20th century, it had become clear that classical mechanics represented
the macroscopic limit of a new “quantum” theory[1–9] which could treat matter at all scales
seamlessly, and, ignoring relativistic effects, exactly. All advances in computation since
notwithstanding, however, this exact treatment remains possible for only the smallest ap-
plications. Thus, the bread and butter of modern quantum chemistry is development and
application of tractable, approximate descriptions of the quantum mechanical behavior of the
electrons in atoms and molecules. This thesis is decidedly in that paradigm.

Mathematically, a quantum state is completely specifiable in an inner-product (Hilbert)
space as a “ket” vector and its complex conjugate “bra” vector, collectively, the “wave-
function”. A measurement corresponds to the action of a linear operator “collapsing” this
state to an eigenvector with a probability proportional to the square of its overlap with the
state. In the province of molecular quantum mechanics, the many-body ket describing the
motions of electrons and nuclei in a molecular system |Ψ〉 = |Ψ(r,R)〉, and eigenvalue E of
the Hamiltonian operator, Ĥ(r,R), are obtained by solving the time-independent molecular
Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉.
(1.1)

We begin with the assumption that the nuclei are infinitely slow relative to the electrons[10].
This effectively uncouples the nuclear and electronic degrees of freedom in eq. 1.1, allowing
a solution, Eel, to the electronic Schrödinger equation parametrized by static nuclei which
contribute to the molecular energy via their mutual repulsions. The problem for the electrons
is

Ĥel|Φ(r; R)〉 = Eel|Φ(r; R)〉,
(1.2)
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and we concern ourselves with its solution for the remainder of this work. The electronic
Hamiltonian in atomic units is,

Ĥel = −
n∑
i

1

2
∇2
i −

n,N∑
i,A

ZA
|rA −Ri|

+

n,n′∑
i,j 6=i

1

|ri − rj|
. (1.3)

The first term describes the kinetic energy, the second term describes attractions to the
nuclei, and the third term describes mutual repulsions.

As a first guess at |Φ(r)〉, we might imagine populating a product of one-electron (spin-
orbital) states {|φp(r, σ)〉}, |Φ(r)〉 = Πn

p |φp〉, where, in the absence of spin-orbital coupling,
|φp〉 is a separable product of a spin eigenfunction and a normalizable spatial function,
|φp(r, σ)〉 = |ψp(r)〉|χp(σ)〉, and {|φp〉} are orthogonal. Because this “Hartree-product”[11,
12] ansatz does not obey Fermi statistics[9, 13], we take an antisymmetrized product instead,
equivalently a “Slater” determinant [9, 14],

|Φ〉 = (n!)−
1
2 det

{
|φp〉

}
. (1.4)

By the variational theorem, the “best” one-electron states in eq. 1.4 are those that
minimize the expectation value, E = 〈Φ|Ĥ|Φ〉. The Hartree-Fock (HF)[15, 16] eigenvalue
equations for these {|φp〉} come as a consequence of applying Lagrange’s method to this end,
constraining the spin-orbitals to be orthogonal,

f̂ |φp〉 = εp|φp〉. (1.5)

In the spin-orbital representation using Einstein summation, fpq = hpq +vpiqi where hpq includes
the one-electron components of eq. 1.3, and v describes a kind of averaged or “mean-field”
exchange-repulsion potential experienced by an electron in |φp〉 due to an electron in |φi〉,
vpipi = 〈φpφi|r−1

pi |φpφi〉 − 〈φpφi|r−1
pi |φiφp〉. We’ll see shortly that this one-body potential only

approximately accounts for the explicit two-body repulsions in Ĥ. The HF equations are
typically expanded in a basis of atom-centered Gaussian functions (“atomic orbitals”), or
plane-wave functions, {|µ〉}, |φp〉 = Cµ

p |µ〉, and the molecular orbital coefficients {Cµ
p } are

determined by solving the generalized eigenvalue equation,

fµνC
ν
p = SµνC

ν
pεp. (1.6)

fµν is the Fock operator in the AO basis, Sµν is the overlap metric, and εp is the orbital
eigenvalue. The n eigenvectors corresponding to the lowest eigenvalues, typically denoted by
the indexes {ij...}, are the states occupied in the HF determinant. The rest are unoccupied
or “virtual” states labeled {ab...}. Because the equations are nonlinear in the potential, e.g.,
f = f(C), the HF equations must be solved iteratively until self-consistency is reached. In
this way, we obtain the best single-determinant (HF) wavefunction and variational energy,
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f ii + 0.5vijij .
In the language of second quantization[17, 18], which we use below for its convenience,

the HF wavefunction (or any single reference determinant) is equivalently represented by the
action of a string of “creation” operators {a†p} on a fictitious “vacuum” state denoted “|〉”,

|Φ0〉 = Πpa
†
p|〉, (1.7)

Correspondingly, the action of “annihilation” operators {ap} is to destroy electrons in spin-
orbitals. Like the wavefunction, they are not themselves observable quantities, but represent
a useful short-hand for computing complicated matrix elements. Using antisymmetry and
anti-commutation relations, non-zero matrix elements of second-quantized operators are de-
termined by bringing strings or products[19] of strings to “normal-ordered” form, that is,
permutation until all creation operators sit to left of all annihilation operators. This is
accomplished by successive contractions (denoted by “•”) of operator pairs,

a†p • aq|〉 = a†paq − {a†paq}, (1.8)

where “{}” is a directive to normal-order, and the labels p and q denote any spin-orbital.
For added convenience, we’ll assume a Fermi vacuum, e.g., the occupied one-electron states
labeled {ij...} in the reference determinant are “hole” states and the unoccupied levels {ab...}
are “particle” states, and application of their second-quantized operators implies a reference
determinant. The operators ai and a†a create holes and particles, while a†i and aa destroy
holes and particles. Using these definitions, the contraction rules are,

a†i • aj = a†iaj − {a
†
iaj} = a†iaj + a†jai = δij, and

aa • a†b = aaa
†
b − {aaa

†
b} = aaa

†
b + a†baa = δab, (1.9)

and imply no non-zero contractions between occupied and virtual subspaces.
The second-quantized form of the electronic Hamiltonian of eq. 1.3 in terms of one- and

two-electron operators is

Ĥelec = hpqa
†
paq + gpqrsa

†
pa
†
qasar, (1.10)

where repeated indices imply summation, and general labels run over occupied and virtual
subspaces. In normal-ordered form making use of eq. 1.9, the Hamiltonian is

Ĥelec = [hpq + gpiqi ]{a†paq}+ 0.25gpqrs{a†pa†qasar}+ f ii + 0.5vijij

= Hn + 〈Φ0|Ĥ|Φ0〉, (1.11)

where the first two terms are the normal-ordered one- (Fock) and two-body operators (col-
lected together as “Hn” in in the second line), and the sum of the final two terms is the



CHAPTER 1. INTRODUCTION 4

Fermi vacuum expectation value of the Hamiltonian, or in the case of a HF determinant, the
HF energy. Already, we see HF theory is inexact owing simply to the fact that it doesn’t
depend on the full Hamiltonian. It will become clear in the following section that this is due
to a single-determinant ansatz.

1.2 The correlation problem

A HF solution is only exact in the one-electron case where the approximate two-body po-
tential vanishes. This is because interacting charge distributions are effectively uncoupled
in a mean-field description, e.g., too big for nearby and too small for faraway electrons, and
a single-determinant wavefunction cannot describe these instantaneous fluctuations. The
difference between the HF and Schrödinger energies is called the “correlation” energy, and
is much smaller than the total energy. Owing to the fact that interesting chemistry occurs
on the same scale, it’s no surprise that a satisfactory, manageable description of correlations
remains one of the main goals of modern electronic structure. In what follows, we review
strategies designed to recover it.

Configuration interaction

One solution is to build correlation into the trial wavefunction from the outset, e.g., adding in
configurations which couple electrons across the correlation (normal-ordered) component of
Hamiltonian eq. 1.11 explicitly. In the exact full configuration interaction (FCI) limit[20], one
takes a trial wavefunction of a linear combination of all possible hole-particle substitutions
from the HF reference determinant,

|Ψ〉 = R̂|〉 = {10 + r̂s + r̂d + ...+ r̂n}|〉,
(1.12)

where r̂p = ( 1
p!

)2rii
′...ip

aa′...ap{a
†
apa
†
a′ ...a

†
aaip ...ai′ai}. Projecting the Schrödinger equation of this

trial function into the full n-electron Hilbert space of “excited” configurations {〈h|}, one
obtains the coupled equations for the exact correlation energy and wavefunction,

〈|Hhh′rh′ |〉 = E,

〈h|Hhh′rh′ |〉 = Erh, (1.13)

typically solved by projection or reformulated as a diagonalization. Because the size of Hhh′

grows factorially with n, FCI becomes prohibitively expensive very early on. What’s more,
truncations to R̂ conferring polynomial complexity in 1.13, though they retain variationality,
lose the property of “size-consistency”. That is, the total correlation energy for a truncated
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CI expansion scales incorrectly with n. One has recourse to a host of approximate methods
improving on the mean-field description. Of “single-reference” methods, e.g., those beginning
from a single determinant, many-body perturbation theory and coupled-cluster theory have
enjoyed the most success. These are discussed in detail below.

Approximate correlation methods

In the many-body generalization to Rayleigh-Schrödinger perturbation theory[5], FCI is
approximated by expanding the Schrödinger equation in a power series specifying a “zeroth-
order” Hamiltonian and its eigenfunction, and treating higher-order contributions as small
corrections. Splitting H = H(0) + H(1), r = r(0) + r(1) + r(2) + ..., E = E(0)+E(1)+E(2)+...,
and separating by order, one obtains

H
(0)
hh′r

(0)
h′ |〉 = E(0)|〉,

H
(0)
hh′r

(1)
h′ + H

(1)
hh′r

(0)
h′ |〉 = {E(0)1h′r

(1)
h′ + E(1)1h′r

(0)
h′ }|〉,

H
(0)
hh′r

(2)
h′ + H

(1)
hh′r

(1)
h′ |〉 = {E(0)1h′r

(2)
h′ + E(1)1h′r

(1)
h′ + E(2)1h′r

(0)
h′ }|〉

...

(1.14)

In Møller-Plesset (MP) theory[21], H
(0)
hh′ is taken as the one-body Hamiltonian and r

(0)
h′ |〉

is the reference determinant, viz., r
(0)
h′ = 1. Left projecting eq. 1.14 by 〈| and making

use of these definitions gives 〈|H(0)
hh′r

(0)
h′ |〉 = 〈|E(0)r

(0)
h′ |〉 = EHF at zeroth-order, and leading

corrections

〈|H(1)
hh′r

(0)
h′ |〉 = 〈|E(1)r

(0)
h′ |〉 = 0, and

〈|H(1)
hh′r

(1)
h′ |〉 = 〈|{E(2)r

(0)
h′ }|〉. (1.15)

E(1) vanishes because there are no non-zero contractions. For this reason, HF theory is said
to be “complete” to first-order in perturbation theory. Projection by {〈h|} gives equations
for the first-order wavefunction,

〈h|(E(0) −H
(0)
hh′)r

(1)
h′ |〉 = 〈h|H(1)

hh′r
(0)
h′ |〉, (1.16)

in spin-orbital notation,

D
(0)
ia r

(1)
ia = f

(1)
ia ,

D
(0)
ijabr

(1)
ijab = v

(1)
ijab. (1.17)

For a HF reference, one-body effects are already optimized (fia = 0 by the Lagrangian),
causing single excitations to vanish at first-order. Using these expressions in eq. 1.15,
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we obtain the second-order MP correction (MP2) to HF describing simultaneous two-body
excitations (i→ a) and (j → b) out of the reference,

E(2) = 0.25v
(1)
ijabr

ijab(1). (1.18)

Though the MP2 energy is not variational, it is size-consistent and a sufficient PT trun-
cation when the zeroth-order starting point is “well-behaved”, e.g., when the coefficient of
the reference determinant in the true wavefunction is near unity. This is typically thought
of as the “weak” correlation regime. For cases where two or more configurations approach
unity in the CI expansion, e.g., for a singlet H2 molecule dissociating to two H atoms, the
σ and σ∗ orbitals approach degeneracy causing the MP2 amplitudes to diverge, where for
FCI, the variational {rijab} vector included the degenerate configuration at the outset. Thus,
to account for this “strong” correlation properly, the wavefunction must have the flexibil-
ity to treat potentially degenerate configurations on an equal footing. To this end, many
“multi-reference” approaches, all beyond the scope of this work, have been developed. Their
accuracy notwithstanding, a criticism commonly leveled against them is that a user-side
specification of even basic variables, in general, precludes a “black-box” prescription.

The choice of an exponential ansatz, |Ψ〉 = eT̂ |〉 = (1+T̂+ 1
2!
T̂ 2+ 1

3!
T̂ 3+...)|〉, where T̂ has

the same form as the linear R̂ defined in eq. 1.12, in principle includes all excitations from a
single reference, but in contrast to FCI, guarantees an extensive correlation energy because
of incremental contributions from “disconnected” excitations. This defines the enormously
successful coupled-cluster (CC) ansatz[22–25]. A similarity-transformation of the Hamilto-

nian, Ĥ → H̄ ≡ e−T̂ ĤeT̂ , preserves the FCI spectrum, implying a FCI-equivalent energy
when the rank of T̂ is equal to n, though the non-Hermitian problem is non-variational, viz.,

e−T 6= eT
†
. Projecting the transformed eigenvalue equation by 〈| and {〈h|} gives the CC

energy and amplitude equations,

〈|H̄00|〉 = E = fiat
ia + 0.25vijabt

ijab + 0.5vijabt
iatjb,

〈h|H̄h0|〉 = 0 (1.19)

for arbitrary T̂ . All orders of MP theory are exactly recoverable by a perturbative expansion
of eq. 1.19 treating the fluctuation potential as first-order. T̂ is typically truncated at
double excitations, defining the O(N6)-complexity “CCSD” model, exact for two electrons.
Connected triples and higher are indispensable when CCSD is inadequate, e.g., for double-
bond dissociation where T̂4 dominates the wavefunction, but steep polynomial scaling of the
amplitude equations in the rank of the cluster operator makes high-rank CC prohibitive for
all but the smallest applications. Sophisticated active-space coupled-cluster variants retain
a small subset of higher-order amplitudes describing these static correlations, and owing to
the locality of a pair reference, maintaining modest scaling at the same time. The perfect
quadruples model[26], for instance, includes the ti

? ī?j?j̄?

īijj̄
component of T̂4 and can correctly
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dissociate two bonds. When a single-determinant reference is adequate, dynamic correlations
on top of CCSD are adequately treated by perturbation theory. Such approximations as
CCSD(T)[27] and CCSD(2)[28] are derivable by a Löwdin-type[29] perturbative partitioning
of the similarity-transformed eigenvalue problem whereby triple and higher CC moments
enter as second-order corrections to a zeroth-order CCSD energy. Their accuracy does come
at the cost of non-iterative O(N7) complexity, though certain approximations, some of which
are proposed in this work, have allowed for considerable scalability.

Higher roots of the FCI Hamiltonian matrix describing excited states on top of a coupled
cluster solution can be approximated in the CC framework by projecting the linear equation

[H̄pp′ , r
k
p′ ]|〉 = ωk0r

k
p|〉

(1.20)

into the configuration space where the cluster problem was solved (whereby the ground-state
eigenvector r0 = {10,0s,0d} returns the CC solution and rk = {00, r

k
s , r

k
d} by construction).

This is equivalent to diagonalizing H̄ in the space of singles and doubles. These equation-of-
motion (EOM) methods[30] furnish accurate solutions for k dominated by single excitations,
though non-Hermiticity of the Hamiltonian potentially complicates the implementation and
requires computation of a left-hand problem for expectation values other than the energy.
Approximations to eq. 1.20 furnish many named excited-state theories, a testament to the
versatility of the CC framework. Retaining only the first term in the Hausdorff expansion of
H̄ and projecting in the space of singles, rk = {00, r

k
s }, one obtains CIS, for instance; adding

in the linear term and treating doubles perturbatively, one obtains CIS(D)[31] on top of an
MP2-quality ground-state. Diagonalization after adding in singles amplitudes garners the
“CC2”[32] approximation to CCSD.

Density-functional theory

A parallel development alongside wavefunction-based approaches that deserves mention is
density-functional theory[33, 34] (DFT). It can afford chemical accuracy within an independent-
particle (single Slater determinant) model solvable with low-dimensional linear algebra,
though at the cost of systematic improveability and introduction of empirical parametriza-
tion. For its cubic scaling and basis set convergence properties, it is the de facto quantum
mechanical framework for large-scale applications, and no doubt the most the popular.

DFT has its theoretical foundations in the Hohenberg-Kohn[35] theorems, proving the ex-
act three-space electronic density maps one to one to an external potential, vext, and further-
more, the density minimizing the energy functional E[ρ(r)] = 〈Ψ[ρ(r)]|Ĥ[vext(ρ(r))]Ψ[ρ(r)]〉
is equivalently the exact ground-state density. In the Kohn-Sham[36] formalism, this min-
imization is recast as an eigenvalue problem of determining the eigenstates of a reference
system of non-interacting particles, each moving in an effective (one-body) potential which
maps uniquely to the density of the interacting system. The equations for these states
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are isomorphic to the HF equations eq. 1.5, except the exchange kernel is replaced by an
exchange-correlation (XC) functional, making DFT exact in principle. In practice, this is not
the case, because the XC potential cannot be represented analytically but for toy systems,
and thus, the parametrization of empirical functional forms is the main thrust of modern
density functional theory. The simplest type of XC functional depends only on the local
spin-density and is exact for the idealized uniform electron gas, but fails to describe the
contoured densities of real charge distributions. Introducing a functional dependence on the
gradient of the density, the kinetic energy density, fractional HF exchange, and even unoccu-
pied levels incrementally defines a hierarchy of density functionals called “Jacob’s Ladder”,
though higher-rung functionals aren’t guaranteed to perform better than lower-rung func-
tionals. That being said, wavefunction methods have found worthy competition in many
state-of-the-art density functionals, and in the context of chemical relevance, the promise of
an ab initio single-particle framework which includes inter-electronic correlations implicitly
cannot be overstated.

1.3 Local correlation methods and intermolecular

interactions

For wavefunction-based methods to approach the relevance DFT enjoys in the large-molecule
regime, much emphasis has been placed on the development of approximations reducing the
formal scaling or the associated computational prefactor without degrading the accuracy
relative to the conventional result. In the domain of CC and MP theory, these include
RI/density-fitting[37–42], explicitly-correlated schemes [43–51], spin-component-scaled for-
mulations [52, 53], rank-reducing tensor decompositions[54–62], and domain fragmentation
approximations, the subject of much of this work.

The promise of domain-based (or local correlation) methods is, given the exquisite lo-
cality of dynamic correlations, distant inter-atomic or molecular correlations can be safely
neglected without an accuracy penalty to force lower scaling. In practice, this is achieved by
partitioning a supersystem into a linearly- or quadratically- scaling collection of minimally
or non-interacting subdomains, each defining local correlation problems of manageable size.

Local correlation methods find natural application in the computation of intermolecular
interaction energies, given as the difference between the total energy of a complex AB...Z
and the energy of its vacuum components A,

∆E(AB...Z) = E(AB...Z)−
Z∑
A

E(A). (1.21)

∆E is small on the absolute scale, and typically much weaker than intramolecular bond
energies, e.g., the water dimer interaction energy is some 20kJ/mol, while the O-H bond is
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some 500kJ/mol. Thus, a choice of monomer-centered subdomains is not only chemically-
meaningful, but also a black-box starting point for any approximate treatment of the super-
system E(AB...Z) truncating interactions on the basis of locality.

There are two issues bearing on the quality of a predicted ∆E. The first deals with
the question of the representation parametrizing local approximations to the supermolecular
term. The second concerns the treatment of correlation effects, typically responsible for
much or all of attractive ∆E.

• Representation: A valid local approximation to ∆E depends critically and delicately
on the correspondence between the posited and actual representation of these molec-
ular subdomains, which by their definitions, effectively parametrize the truncation
structure. There is an exact correspondence in the second term of eq. 1.21, triv-
ially, but not in the first term if AB...Z is represented in a basis of delocalized HF
orbitals, especially if the underlying AO basis includes diffuse functions. A poor ap-
proximation to ∆E will reflect this representation imbalance. As such, approaches
seeking to impose locality truncations in the canonical or localized orthogonal rep-
resentation such as divide-expand-consolidate[63–65], natural linear scaling coupled-
cluster[66, 67], the clusters in molecules[68, 69] method, and others[70, 71] must treat
a very large number of overlapping subdomains typically specified by the user or de-
termined empirically at run-time. Absolute locality in the molecule-centered sense is
arguably the best way for a non-redundant local correlation method to guarantee the
representations in eq. 1.21 are commensurate. One realization of this is achieved
by imposing locality constraints on the degrees of freedom entering the cluster SCF
problem, e.g., requiring that molecule-tagged orbitals be linear combinations strictly
of AO functions centered on that molecule alone. Applying the variational theorem
with this constraint, one obtains a set of non-orthogonal SCF MI equations[72, 73]
for non-orthogonal absolutely-localized molecular orbital (ALMO) states[74–76] and a
total energy which is an upper-bound to the unconstrained SCF energy.

As an aside, we note that the structure of the ALMO wavefunction makes it an unambiguous
intermediate wavefunction in the context of energy decomposition analysis (EDA), whereby
the components of ∆E are divided into electrostatic, polarization, charge-transfer and dis-
persion contributions. Much of the early part of this thesis references the ALMOs in this
capacity.

• Correlation: As already discussed, HF theory lacks correlation altogether, causing it
to be invalid when London dispersions dominate interaction energies, e.g., in the case
of clusters of non-polar molecules. Moreover, HF predicts inflated dipole moments and
polarizabilities. MP2 can improve a description of permanent and induced electrostat-
ics, but typically overestimates dispersion. As a consequence, interaction energies of
at least CCSD quality - and preferably CCSD(T) - are desirable.
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Much of the latter part of this work is devoted to the development and application of local
correlation models of a linear and quadratic number of CCSD-level variables within the
ALMO representation.

1.4 Outline

This thesis is organized as follows.

Chapter 2

This “first-year project” was inspired by a then-recent study by the Neumark group of
vibrational autodetachment of an excited acetonitrile anion dimer[77]. Potential energy
surface scans in coordinates specific to a dissociative normal mode common between the
excited and ground states of the valence anion as well as the ground-state neutral dimer
species shed light on the proposed vibrational autodetachment mechanism. This Chapter
was published as a paper in Phys. Chem. Chem. Phys.[78], and was the basis for a follow-up
collaboration investigating electron ejection from THF-solvated iodide[79].

Chapter 3

Here, a CCSD-level an energy decomposition analysis (EDA) from an orthogonalized ALMO
reference was proposed and applied. Stability of the correlated components with respect to
basis set extension hadn’t theretofore been afforded by the Kohn-Sham or MP2 ALMO-EDA.
This Chapter was published in J. Chem. Phys.[80].

Chapter 4

A minimal-basis lower-bound model for SCF-level intermolecular polarization is developed,
which, when considered together with upper-bound ALMO polarization, provides an estimate
of the range of energy-lowering due to induction. This Chapter was published in J. Chem.
Phys.[81].

Chapter 5

Local SCF models extending the variational space of the ALMOs to include compact rep-
resentations of charge-transfer-like excitations are presented here. Quantitative accuracy
against reference interaction energies is demonstrated in linear cost. This Chapter has been
submitted to J. Chem. Phys.
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Chapter 6

ALMO-reference perturbation theories describing non-covalent interactions are developed
employing a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-
order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction)
plus a first-order piece coupling the fragments. Different restrictions on the zeroth- and first-
order amplitudes in the proposed intermolecular similarity transformed perturbation theory
(iSTPT) are explored in the context of large-computation tractability and elucidation of
non-local effects in the space of singles and doubles. This Chapter has been accepted by J.
Chem. Phys.

Chapter 7

Fully-non iterative variants of the local iSTPT models introduced in Chapter 6 are developed
by substituting MP2-level amplitudes for CCSD-level ones at zeroth-order. Applications
show that errors relative to canonical CCSD depend more on rank-reduction in the amplitude
vector than the quality of the amplitudes themselves. A comparison of perturbation theories
derived from Löwdin and MP partitioning follows.

Chapter 8

Finally, a hierarchy of “perturb-then-diagonalize” schemes solving an effective Schrödinger
equation in the space of singles in doubles, but folding in effects from triples and quadruples,
is introduced and compared to conventional post-CCSD corrections.
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Chapter 2

Excited states of anionic acetonitrile
clusters

2.1 Introduction

Molecular clusters of polar molecules accommodating an excess electron have been studied
in great detail, both experimentally and theoretically, with the objective of making sense of
fundamental electron-solvent interactions. Spectroscopic properties, attachment and relax-
ation dynamics, and reactivities of free electrons in host solvents, including water[82–85] and
acetonitrile [86–90], in both the condensed and gas phases have been reported extensively in
the literature.

Clusters harbor an excess electron in one of three ways; either i) the electron interacts
electrostatically with the cluster’s permanent dipole moment, accommodated in a very dif-
fuse ”dipole-bound” orbital, ii) the excess electron is confined within an interior spheroidal
cavity enclosed by solvent molecules, so-called ”solvation-bound,” or most interestingly, iii)
the electron can be fully-localized on one or two solvent molecules, accommodated in a half-
filled valence orbital, leading to geometric distortion of the anion relative to the neutral
species. Electrons trapped in this way are often termed ”valence-bound.” Between i) and
ii), the latter binding motif is preferred in larger clusters where significant geometric reori-
entation of the solvent bonding network to maximize interactions with the excess electron is
viable, while dipole-bound conformations are thought to dominate in smaller clusters. The
valence-bound motif is fundamentally different from i) and ii) in the sense that it represents
the formation of a solvated molecular radical anion state.

That there exist multiple distinct features in the photoelectron spectra of these anionic
clusters lends credence to the conjecture of different solvation motifs, and indeed, the dis-
tinction of these motifs has proved useful in the spectroscopy of anionic acetonitrile clusters,
the focus of the current study. Solute photoionization of excess electrons into bulk ace-
tonitrile produced two distinct absorption bands, one prevalent at low temperatures in the
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visible region between 500 and 600nm (∼2.25eV), and the other at high temperatures in the
infrared region with a maximum near 1400nm[88, 89] (∼0.08eV). The visible-region band
was attributed with the aid of low-level ab initio calculations to photodetachment from a
valence-bound radical anion species, (CH3CN)−1

2 , of C2h point group symmetry, with slipped
anti-parallel geometry and highly-deformed CCN bond angles. The long-wavelength band
was attributed to the absorption of a solvation-bound electronic state [87].

In the gas phase, photoelectron spectra of anionic acetonitrile clusters ranging in size
between ten and one hundred molecules, again, exhibited two prominent peaks, one rela-
tively sharp band of vertical detachment energy (VDE) between 0.4 and 0.7eV, ascribed to
a solvation-bound electron, and the other broader feature of VDE between 2.4 and 2.8eV,
assigned to a valence-bound dimer state [86]. Interestingly, the relative photoelectron intensi-
ties of the two features are a function of cluster size, with the lower-VDE motif more prevalent
in smaller clusters, and vice versa for the larger-VDE motif. Moreover, the higher-energy
feature blue shifts with increasing cluster size, underscoring the importance of solvation on
the stability of, putatively, the valence-bound electron.

Thorough ab initio studies on ground-state anionic clusters of acetonitrile have corrobo-
rated the above assignments [91–94]. Particularly illuminating are VDE calculations on two
(CH3CN)−1

6 isomer types, one an Oh-symmetry, solvation-bound structure with the methyl
functions of the solvent molecules all oriented toward the cavity center (1.27eV), and the
other a C2h dimer core solvated by four acetonitrile molecules (between 3.40 and 3.43eV) [92].
The difference in the calculated VDEs (∼ 2.15eV) as a function of binding motif is similar
to the difference in experimental VDEs, supporting the experimental assignments, and the
fact that the calculated VDEs are about 1eV higher than their experimental counterparts
is not surprising given that the hybrid density functional employed has been observed in
anionic water clusters to systematically overestimates VDEs [95]. Also suggesting legitimate
correspondence is the apparent increase in calculated VDEs with the size of valence-, but
not solvation-bound clusters.

Other interesting variations on the dipole-bound theme explored previously [91, 94] in
dimeric species include the ”head-to-head” isomer, in which the methyl functions of two
solvent molecules bind the excess electron, and the ”head-to-tail” isomer, which binds an
electron in a diffuse orbital with its whopping ∼8.5D dipole moment. Both are lower in
energy than the C2h valence anion, the focus here.

Recent experimental work has explored time-resolved dynamics in anionic clusters be-
tween twenty and fifty acetonitrile molecules in size [77]. Photoelectron kinetic energy spec-
tra on (CH3CN)−1

40 produced distributions of maxima consistent with the previous gas phase
assignments, but a prominent ”slow” (near-zero KE) feature upon irradiation with 1.57eV
photons had not theretofore been observed, and was attributed to an electronically-excited
state of the valence-bound dimer since this photon energy is intermediate between the VDE
of the solvation- and valence-bound isomers. Time-resolved photoelectron imaging (TR-
PEI) [96] in which a similar-sized cluster was pumped and probed with 1.57 and 3.14eV
photons, respectively, lent credence to this speculation, as there was a depletion at small
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positive pump-probe delay intervals of the photoelectron kinetic energy intensity associated
with detachment from the ground-state valence-bound anion, and a concomitant increase in
photoelectron intensity at higher kinetic energies, associated with photoelectrons detached
to the continuum from an electronically-excited state. As the distribution of VDEs of a pho-
toelectron ejected from the valence-bound motif overlaps the 1.57eV electronic-excitation
energy, the ”slow” peak observed in the kinetic energy spectrum was attributed to vibra-
tional autodetachment [97] of the electron from an excited state of valence-bound radical
dimer, with lifetimes ranging between 200 and 270 femtoseconds.

Here, we investigate the electronically-excited state of the C2h radical anion dimer compu-
tationally, surveying the character of the excitation via both wavefunction- and density-based
methods, exploring the effect on this character by explicit solvation with other acetonitrile
molecules, and finally, following the vibrational autodetachment of the dimer along a disso-
ciative harmonic mode connecting the vertically-excited anion to the neutral dimer.

2.2 Computational Details and Methods

All electronic structure calculations were performed with the Q-Chem electronic structure
package [98].

Ground-state geometry optimizations, single-point calculations, and normal-mode anal-
yses were performed at the ωB97/6-311++G** level of theory for the valence anion. The
so-called ”long-range-corrected” ωB97 functional [99] guarantees full Hartree-Fock exchange
at large inter-electronic distances, necessary to treat charge-transfer excited states and ex-
cited states of large molecules and clusters, and so is preferred over the B3LYP functional.

Vertical detachment energies (VDE) from anionic clusters are computed according to

V DE = E(neutral at optimized anion geometry)

−E(anion at optimized anion geometry), (2.1)

and adiabatic binding energies (BE) according to

BE = nE(neutral monomer at optimized neutral geometry)

−E(anion at optimized anion geometry), (2.2)

where n is the number of monomers comprising the cluster.
Symmetry-allowed ground- to excited-state transitions of the C2h-constrained valence an-

ion were calculated by the equation-of-motion coupled-cluster electronic-excitation (EOM-
EE-CCSD)[30, 100–102], correlated configuration interaction singles (CIS(D)) [31], and time-
dependent density functional theory (TDDFT)[103] methods in the 6-311++G** basis. Sub-
sequent calculations on anionic clusters ranging from n=3 to n=10 were performed at the
ωB97/6-31++G** level of theory.
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The 2B−1
u excited state was optimized by SOS-CIS(D0)[104] in the 6-311++G** basis,

and the adiabatic excitation (AE) was calculated according to

AE = E(excited anionic state (2B−1
u ) at optimized excited-state geometry)

−E(ground anionic state (2A−1
g ) at optimized ground-state geometry). (2.3)

Symmetry-adapted orbitals were plotted at a contour value of 0.025 Å−
3
2 . Two-dimensional

potential energy surface scans were constructed from some eleven thousand ω B97/6-31++G**
single-point calculations for each of the 2A−1

g , 2B−1
u , and 1A0

g states, and contour plots were
constructed by polynomial interpolation using Mathematica 7.0.

2.3 Results and Discussion

Valence anion ground-state calculations.

Both the ground-state, valence-bound 2A−1
g and the slipped antiparallel neutral 1A0

g dimer
species (Fig.2.1) were optimized within C2h point group symmetry (the energy of the C1-
optimized structures differed from their higher-symmetry counterparts by a few tenths of
a kcal/mol), the latter only some 21.41kcal/mol more stable, and the lowest-energy ace-
tonitrile dimer species for that matter, and the former only kinetically stable with respect
to autodetachment, as indicated by the negative BE calculated for this species (Fig 2.5).
The constituent acetonitrile molecules of the valence-bound dimer are far from linear, with
Cβ(′)Cα(′)N bond angles of 128.2◦, and the ’inter-monomer’ CαCα′ valence-bond distance con-
tracted almost two-fold relative to the neutral species, from 3.494 to 1.691Å. However, there
are no other gross structural differences between the two species; all other corresponding
bond length and bond and dihedral angle parameters are within a few tenths of 1Å and
between one-half and two degrees from one another, respectively, suggesting a mostly local
(albeit severe) structural effect of accommodating an excess valence electron. This idea will
be important later on when two-dimensional PES scans in the coordinates Θ and R are
considered.

It is interesting to consider how these geometric distortions affect the harmonic vibra-
tional modes of the acetonitrile dimer. Normal mode analysis of the equilibrium struc-
tures reveals a red shifting of the majority of the thirty modes of the dimer in the 2A−1

g

state relative to the 1A0
g state. Most dramatically affected are the asymmetric Cβ(′)N and

Cα(′)Cβ(′) stretching modes (∆ν = -600cm−1 and -200cm−1, respectively), and surprisingly,
the ”hardest” asymmetric and symmetric CH stretching modes (∼-100cm−1). This is read-
ily attributed by NBO analysis[105] to the fractional population of σ* antibonding orbitals,
mediated by donation from the valence σ(CαCα′) inter-monomer bonding orbital occupied by
the excess electron in this basis. MO transformation to the NBO basis gives the Lewis picture



CHAPTER 2. EXCITED STATES OF ANIONIC ACETONITRILE CLUSTERS 16

of bonding, and by second-order perturbation theory [106], NBO donation into antibonding
orbitals lowers the electronic energy according to

∆Ed→a = od
|fda|2

fdd − faa
, (2.4)

where the subscripts d and a correspond to donor and acceptor NBO orbital pairs, respec-
tively, od represents the occupancy of the donor NBO, φd, fda is the matrix element 〈φd|F̂ |φa〉,
and F̂ is the one-particle Fock operator. The predominant contributions to donor-acceptor
stabilization energies are summarized in Table 2.1, and mirror the calculated red shifts in
corresponding normal modes. The featured σ → σ* interaction energies are on the order of
weak hydrogen bonds, interestingly, comparable to the results obtained in similar studies on
anionic water clusters [107].

Despite their limitations, Mulliken populations reveal a lot about the electronic structure
of the valence anion. Analysis of spin difference densities indicates a substantial excess of
α electrons on each of the nitrogen atoms (0.462), suggesting localization of nearly 95% of
the excess electron at those atoms. Moreover, the excess electron decreases the Mulliken
charge on each of Cβ relative to the neutral species by nearly a half-electron. Indeed, the
fractional population of Cβ and nitrogen Rydberg orbitals in the donor-acceptor analysis of
Table 2.1 can be understood in terms of excess negative charge and α-electron spin-density,
respectively. The viability of two resonance hybrids for the valence anion, in both of which
the unpaired electron resides in an atomic p-type orbital conferring a formal charge of −1 on
one or the other nitrogen, suggests potential multi-reference character typically exhibited by
open-shell species. However, inspection of ground-state occupied orbital energy eigenvalues
revealed no near-degeneracies, and the largest single- and double-substitution amplitudes
contributed just 0.042 and 0.18%, respectively, to the CCSD wavefunction, indicating that
the ground-state is adequately described by the HF reference. On the other hand, the
LUMO and LUMO+1 ag and bu MOs are nearly degenerate, some 2mEh apart (Fig. 2.2),
and representing non-bonding orbitals on the nitrogens and Cα(′). The singly-occupied ag
spin-orbital places electron density in the σ(CαCα′) bond along the inter-monomer bond axis
and in lone-pair orbitals on either nitrogen, while the HOMO-1 bu is squarely antibonding
with respect to the inter-monomer σ(CαCα′) bond.

Valence anion excited-state calculations.

The only allowed excited states of the valence-bound anion consist of transitions between
orbitals of symmetry irreducible representations (irreps.) whose direct product transforms
as Au or Bu, given the transformation of the dipole operator in the C2h point group. Ac-
cordingly, the first few low-lying electronic transitions of Au and Bu symmetry were sought
in EOM-EE calculations, and transition strengths versus excitation energies for the first
few low-lying symmetry-allowed transitions are plotted in Fig. 2.3. Only the lowest-energy,
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highest-oscillator strength root of (x, y)-polarized Bu symmetry (2.016eV) is considered sub-
sequently, as the other excitation energies, z- and (x, y)-polarized, are within, or exceed
the spectrum of experimental valence-bound anion VDEs (2.4-2.8eV), and are therefore ir-
relevant. That the calculated excited-state energy is greater than the experimental value
(∼ 1.57eV ) is no huge surprise, since solvation by other acetonitrile molecules, to be consid-
ered later, presumably stabilizes the excited state. On the other hand, that i) the charge of
the ground and excited states of the valence-bound anion are equivalent, and ii) the inver-
sion symmetry of the molecule implies no permanent dipole moment both suggests that any
electronic state of the dimer is not particularly ”wanting” in solvation, and so any further
stabilization is due to higher-order terms in the multipole expansion.

The first Bu symmetry excited state is well-described by a linear combination of singly-
substituted determinants (Fig. 2.4), and is overwhelmingly single-excitation in character, of
norm(R̂1)= 0.94. The major contributions account for a very adequate 75% of the excited-
state character, with the most significant contribution from the 1bu → 4ag transition ( 70%).

The difference in second moment between the EOM-EE and ground-state electron den-
sity, ∆〈R̂2〉, is a useful quantitative gauge to assess the spatial extent of the excited state
[108]. In valence-type transitions, there is little difference between the ground- and excited-
state moments of electron density, whereas in Rydberg transitions, ∆〈R̂2〉 is on the order of
10Å2. Between the 2A−1

g and 2B−1
u , ∆〈R̂2〉 = 6Å2, indicative of quasi-Rydberg character,

and reflected in the comparatively diffuse nature of the 4ag orbital into which the HOMO-1
excites, although one would be hard-pressed to assert with confidence that this orbital in
any way characteristically resembles a hydrogenic orbital. It is curious given the enhanced
density of electronic states of open-shell radicals that there is no sizable doubles amplitude
corresponding to the concomitant promotion of an electron from the singly-occupied orbital
to a valence virtual alongside promotion from a doubly-occupied orbital into the singly-
occupied orbital.

n-mer calculations.

To extend these calculations to the realm of experimental relevance, e.g., by exploring clus-
ter properties by incorporating explicit solvent molecules and scanning potential surfaces,
cheaper electronic structure methods are required, and in light of the single-excitation char-
acter of the 2B−1

u state, CIS(D) and TDDFT calculations on the C2h valence anion were
deemed appropriate. Bu-symmetry transitions are compiled in Table 2.2.

The first CIS root is identical in character to the EOM-EE root of Fig. 2.4, of similar
oscillator strength and incorporating the same orbitals in the excitation, but the correlated
root over-shoots the EOM-EE result. The first ωB97 root also shares the character of the
EOM-EE root, producing a comparable excitation energy, but evening out contributions
from the (1bu → 4ag) and (1bu → 2ag) excitations in the wavefunction. Thus, we pro-
ceed with confidence that explicit inclusion of doubly-substituted configurations does not
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contribute significantly to the description of the excited-state wavefunction, and that the
TDDFT/ωB97 eigenvector is sufficient to adequately describe this excited state.

To best approximate the experimental conditions of the electronic excitation, minimum
acetonitrile n-mer structures ranging from n=3 to 10 were optimized, with the near-C2h-
symmetry valence anion core remaining intact for each n-mer. VDE, excitation energy (EE),
and BE as a function of n, tabulated in Fig. 2.5, were calculated by (TD)DFT/ωB97, reliably
reproducing the dimer EOM-EE 2B−1

u state. That the valence anion dimer VDE is smaller
than the corresponding EE number is a little bit surprising, as it would seem unphysical that
the first electronically-excited anionic state is higher in energy than a vertically-detached
neutral state. At the high-n end, VDEs are overestimated by about 1eV for reasons dis-
cussed earlier. The valence-anion core cluster only becomes thermodynamically stable past
n=4, highlighting the relative importance of solvation in spite of the absence of a perma-
nent dipole moment in the C2h core. The cluster BE quickly stabilizes, hovering around
4kcal/mol beginning at n=6, suggesting that it is primarily stabilized by solvation of the
core by the first few solvent molecules, whose methyl functions are dipole-oriented toward
the core nitrogen atoms (Fig. 2.5, inset), on which the excess α-electron was found to be
localized. It is curious that the 2B−1

u EE remains relatively stationary up to n=6, whereupon
it drops to ∼1.63eV, nearing the experimental value of 1.57eV. At this point, the 1bu →
4ag contribution begins to overtake the 1bu → 2ag substitution in the TDDFT eigenvector,
contributing about three-fifths of the norm. By n=10, the two-configurational 2B−1

u state is
best described by a single configuration (∼ 90%|Φ4ag

1bu
〉), similar to that obtained by EOM-EE

(Fig. 2.4), and the excitation energy has, for the most part, converged on the experimental
quantity.

2B−1u minimum-energy structure.

The character of the optimized minimum-energy structure of the 2B−1
u excited state is marked

by the contraction of the CαCα′ bond by 0.22Å, protraction of the CβN bonds by 0.022Å,
and a decrease in the CβCαN bond angle by nearly 7 degrees (Fig. 2.6.). This is consistent

with the vertical excited-state wavefunction of Fig. 2.4, wherein the high-amplitude |Φ4ag
1bu
〉

contribution has depleted both i) antibonding character with respect to the CαCα′ valence
bond, and ii) bonding character with respect to the Cβ(′)Cα(′)N bonding lobes, and intro-
duced inter-monomer CαCα′ bonding character.

On vertical excitation, the unpaired spin density shifts from the nitrogens to the Cα(′)s,
while the Cβ(′)s, with Mulliken populations approaching zero, lose atomic charge density to
the Cα(′) and Hs. On relaxation to the 2B−1

u minimum, the Cα(′) have each gained about a
quarter of an electron, while the Cβ(′)s have lost about a tenth. Interestingly, the unpaired
density finishes up on the Cα(′)s and Hs. The adiabatic 2A−1

g → 2B−1
u excitation energy is

determined as 1.37eV, some 0.2eV and 0.6eV shy of the vertical experimental and calculated
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excitation energies, respectively.

PES scans and picture of vibrational autodetachment.

To investigate the putative vibrational autodetachment of the excess electron from the ex-
cited state, PES scans along R and Θ, coordinates which most compactly connect the min-
imum 2A−1

g , 2B−1
u , and 1A0

g electronic state geometries (Fig. 2.7a. and b.). The equilibrium
ground- and excited-state anion dimer structures share smaller coordinate values (lower left-
hand corner), the Cαs of near-”sp2” hybridization, double-bonded to the nitrogens, whereas
the neutral dimer minimum is located at higher coordinate values (upper right-hand corner),
with nearly-linear monomers containing ”sp”-hybridized Cαs, oriented in an antiparallel fash-
ion in, as discussed previously, the most stable dimer species. Vertical excitation from the
2A−1

g minimum to the 2B−1
u surface places the wavepacket distal to the seam with the 1A0

g

surface. Thus, the wavepacket can cross over to the 1A0
g surface, the excess electron detach-

ing at the surface-crossing.
One ag-symmetry, blue-shifted 779.9cm−1 harmonic mode of the excited state (hence-

forth referred to as ν∗), featuring both the concerted elongation of the inter-monomer CαCα′
bond (R), and an increase in theCβ(′)Cα(′)N(′) bond angle (Θ), is particularly well-suited
for the discussion of vibrational autodetachment since, to a good approximation, one can
imagine traveling between the minimum geometries of each electronic state along just this
normal-mode coordinate, the ground-state anion minimum intermediate in coordinate values
between the excited-state and neutral dimer species. As such, a single linear slice through
the scan should intersect each of the three minima, with the topology of the energy land-
scape around each of the electronic minima determining the force constants for this mode
for each electronic state. So this mode can be viewed as the bona fide vibrational dissocia-
tion/electron detachment coordinate connecting the excited anion and neutral dimer states.

Vertical excitation from the ground vibrational state with frequency ν on the ground-
state electronic surface in this mode places the wavefunction in a superposition of the ground
and excited vibrational states in the ν∗ mode above the 2B−1

u surface, with contributions
weighted by the Franck-Condon overlaps, and evolving according to the time-dependent
Schrödinger equation with the ”upstairs” Hamiltonian [109]. Within the Franck-Condon
approximation however, the highest-probability (2A−1

g , νn=0) → (2B−1
u , ν∗n) vibronic transi-

tion can be determined by examining the ”upstairs” stationary state of the largest vertical
overlap with the ground state, or in other words, the state whose turning point lies most
closely in the coordinate vertically above the ground-state anion minimum.

The three electronic potentials along the dissociation coordinate are schematically plot-
ted in Fig. 2.8, with the zero-point corrections factored into the reported energies. Not
surprisingly, the minimum-energy structures obtained from scanning are very similar in both
geometry and absolute energy to those obtained when all other internal coordinates are al-
lowed to relax, so validating the approximation.
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If this ”dissociative” mode adequately captures the vibrational autodetachment process,
the oscillator energy above the 2B−1

u minimum places the wavepacket in a superposition of
ν∗ states, with the largest contributions from ν∗n=5, of energy eigenvalue ∼0.53eV. There is
no barrier to curve-crossing, as the Franck-Condon region is beyond the seam with the 1A0

g,
and so the autodetachment process is expected to be very fast. To a rough approximation,
we can interpret the probability density of the ν∗n=5 state integrated from the 2B−1

u -1A0
g seam

to q =∞ as the probability that the excited-state has autodetached, or in other words, that
the (2B−1

u , ν∗n=5) state has vibrated into the (1A0
g, ν

′
n) state, ejecting an electron in the pro-

cess. The rate of autodetachment, then, is given by this probability multiplied by the mode
frequency, calculated to be ∼0.00234/femtosecond. The lifetime, given by the inverse of this
rate, is ∼427 femtoseconds, consistent with ten vibrational periods on the 2B−1

u surface. The
computed value is on the order of experimental value for clusters of n=39, between 200 and
270 femtoseconds [77]. On the other hand, the positive, near-asymptotic BEs at higher n
relative to the negative dimer value from Fig. 2.5 suggest that the valence dimer in the bulk
relative to the neutral dimer is stabilized, and so the set of anionic electronic curves in Fig.
2.8 is expected to shift downward relative to the neutral electronic curve in the field of other
solvating acetonitriles. Such a downard shifting will increase the 2B−1

u -1A0
g seam value in q,

ultimately increasing the calculated excited-state lifetime.

Conclusions and Future Direction.

We have characterized the experimentally-relevant excited state of molecular acetonitrile
anion clusters, determining i) that the 2B−1

u state is single-excitation in character, ii) two-
determinantal at n=2, but iii) is dominated by a single configuration (|Φ4ag

1bu
〉) for n >6,

iv) and the 2A−1
g → 2B−1

u excitation energy approaches the experimental quantity as the
number of explicit solvent molecules is increased; also, we have v) explored the topologies
of the 2A−1

g , 2B−1
u , and 1A0

g potential surfaces in the internal coordinates R and Θ, which
bear most heavily on a ”dissociative” normal mode of the dimer, and vi) examined the
plausibility of vibrational autodetachment from an excited level of the corresponding ν∗

harmonic mode of the excited 2B−1
u state. This is the mechanism of excited-state detachment

posited recently[77] to account for the observation of ”slow” photoelectrons in experimental
spectra. The calculated excited-state lifetime in this work is consistent with experiment.

Future work might include propagating the ν∗-mode vibrational wavepacket on the 2B−1
u

surface and plotting Dyson orbitals by EOM-IP[110] to examine the wavefunction of the
photodetached electron from both the ground and excited states of the anion dimer at the
seam of the 2B−1

u and 1A0
g potentials to corroborate experimental photoelectron angular

distribution data.
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σ(CαCα′)→ ∆Ed→a / kcal/mol
Ry∗(N) 1.89
Ry∗(Cβ) 3.78
σ∗(CH) 2.56
σ∗(CαCβ) 0.76
σ∗(CN) 0.68

Table 2.1: ∆Ed→a stabilization energy analysis.

Figure 2.1: Ground-state C2h
1A0

g and 2A−1
g states. Mulliken atomic charges and spin-

difference densities are reported in grey and black, respectively. R denotes the inter-monomer
CαC

′
α inter-monomer distance; Θ denotes the CβCαN bond angle.

EOM-EE-CCSD CIS CIS(D) TDDFT/B3LYP /ωB97
2.016 0.807 2.589 2.189 2.068
2.438 2.998 3.259 2.196 3.392
2.602 3.994 4.020 2.378 3.604
2.974 4.078 1.541 2.844 3.729

Table 2.2: C2h valence anion excitation energies/eV.
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Figure 2.2: 2A−1
g frontier orbitals.
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Figure 2.3: Excitation energy spectrum for vertical excitations from the 2A−1
g state. Bu and

Au-symmetry transitions are colored black and grey, respectively.
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Figure 2.4: 2B−1
u valence anion excited-state wave function.
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Figure 2.5: VDE (grey),BE(light grey), and EE(black) vs. cluster size n, calculated by
(TD)DFT/ωB97 in the 6-31++G** basis; Inset: percent |Φ4ag

1bu
〉 vs. n.
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Figure 2.6: Minimum 2B−1
u structure. Mulliken atomic charges and spin-difference densities

are reported in grey and black, respectively.
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Figure 2.7: PES scans along R (abscissa) and Θ (ordinate) for the ground- and excited-states
of the dimer anion, and the neutral dimer, calculated by (TD)DFT/ωB97 in the 6-31++G**
basis. Contours are spaced 0.16, 0.03, and 0.22eV apart, respectively. Black dots indicate
scanning minima. Relative to the neutral minimum, the ground- and excited-state anion
minima are +1.25 and +2.77eV, respectively. The light and dark lines in the neutral surface
represent (roughly) the seams with the dimer anion excited- and ground-state potentials.
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Figure 2.8: Electronic potentials schematically along the ag-symmetry ”dissociative” mode.
Where there are paired values, those italicized values were obtained by considering the single
point energies derived from the PES scan, whereas the values in roman script were obtained
from single-point calculations wherein all internal coordinates were relaxed.
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Chapter 3

EDA from orthogonalized ALMOs at
the CCSD level

3.1 Introduction

Intermolecular interactions are ubiquitous, fundamental to processes ranging from biochem-
ical signaling mediated by ligand-receptor interactions[111], to interstellar chemistry and
atmospheric aerosol nucleation[112], to bulk properties. As such, a thorough understanding
of so-called ”soft” potentials and the specific contributions comprising them cast within an
ab initio framework is without a doubt useful, for example, in the training and development
of empirical potentials for molecular dynamics simulations, in rational drug design [113],
where a medicinal chemist might fine-tune physical properties of pharmacophores of interest
as a function of the chemical substituents that bear on the protein docking properties, and in
crystal engineering [114] and polymer synthesis [115], where tweaking secondary interactions
at the molecular level can affect bulk properties.

The components that make up weak interactions have long been well-characterized.
Molecular complexes are stabilized by i) electrostatic forces experienced between charges,
between permanent or induced multipoles, and between charges and permanent or induced
multipoles, by ii) weaker dispersive forces resulting from instantaneous multipole interac-
tions, and by iii) donor-acceptor interactions between intermolecular occupied-virtual orbital
pairs. A slew of energy decomposition analysis (EDA) schemes, of both the wavefunction and
density functional theory-based (DFT) persuasion, have been proposed to unravel the nature
of such weak interactions, and can be broadly organized into two categories, variational and
perturbative. Of the latter category, symmetry-adapted perturbation theory[116] (SAPT),
for wavefunction and density-functional approaches [117, 118], has probably enjoyed the most
acclaim and successful application. It represents a many-body generalization of London’s po-
larization theory treating intermolecular interactions[119], employing a Rayleigh-Schrodinger
perturbative expansion with the fluctuation potential chosen as those coulombic terms cou-
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pling monomers treated at infinite separation in zero-order, the zero-order wavefunction and
energy chosen as the antisymmetrized Hartree product of the non-interacting fragments and
the sum of non-interacting energies, respectively. The SAPT treatment decomposes the en-
ergy correction into ”electrostatic polarization” and ”exchange repulsion” interaction terms,
corresponding to classical repulsion of charge distributions and quantum mechanical elec-
tron tunneling between fragments, respectively, in first-order, and ”multipole induction” and
”dispersion” in second-order, with these contributions separated based on partitioning the
RS resolvent in the second-order expression for the energy. Other high-level dynamically-
correlated approaches have obtained the dispersion contribution from frequency-dependent
density susceptibilities at the coupled-cluster (CC) level [120–122].

Some popular variational approaches block-partition the Fock matrix into diagonal intra-
fragment and off-diagonal inter-fragment occupied-occupied, occupied-virtual, and virtual-
virtual blocks. In the Kitaura-Morokuma (KM) scheme[123], the interaction energy is de-
termined by zeroing certain off-diagonal subspaces of the Fock matrix depending on which
component is sought after, with binding energy elements consisting of an ”electrostatic”
term, which includes inter-fragment, two-particle Coulomb integrals and one-particle contri-
butions and describes classical electrostatics, an occupied-occupied, virtual-virtual mixing
inter-fragment ”exchange” term, an intra-fragment ”polarization” term, which provides for
occupied-virtual mixing within a fragment, and finally, an inter-fragment occupied-virtual
mixing ”charge-transfer” term, accounting for intermolecular delocalization. Despite criti-
cism that the intermediate KM wavefunctions don’t satisfy Pauli antisymmetry [124, 125],
resulting in divergence of the charge transfer and polarization terms as the atomic orbital
(AO) basis set approaches completion, it has been used widely, and with distinction [126–
128].

Other approaches have been developed to remediate the problem of violation of antisym-
metry, including natural energy decomposition analysis (NEDA) [129] within the natural
bond orbital (NBO) framework of Weinhold and coworkers [130], the reduced variational
space self-consistent field (RVS SCF) [131] method, and the restricted constrained space
orbital variations (CSOV) [132] approach. NEDA decomposes the binding energy into a de-
formation term, accounting for geometric differences between isolated monomers and their
complex geometries, an electrostatic term determined as the difference between the complex
wavefunction and the antisymmetrized Hartree product of the deformed monomer wave-
functions, and finally, a charge transfer term defined as the difference between the antisym-
metrized product energy and the full complex SCF energy, accounting for inter-fragmental
electron delocalization. Because the intermediate antisymmetrized product is not variation-
ally determined, the charge transfer contribution to binding is sometimes overestimated.

RVS SCF and CSOV are similar conceptually, obtaining the polarization energy due to a
given molecule in the cluster by solving the variational problem in orthonormalized, reduced
subspaces built from the occupied block of the Fock matrix, with the constraint that off-
diagonal elements coupling to the molecule of interest’s occupied orbitals are zeroed, thus
freezing these orbitals and allowing the other occupied orbitals to relax in a frozen field.
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This process is repeated for the occupied orbitals belonging to other fragments. Charge
transfer terms are computed naturally when the variational subspaces are augmented with
intra- and extra-fragment virtual blocks. One drawback is that the polarization energy is not
determined self-consistently in either of these schemes, but rather piecemeal variationally.

More recently, Head-Gordon and coworkers have proposed a promising EDA for inter-
molecular interactions based on localized molecular orbitals [74, 75, 133], obtained from
a variational description of molecule-labeled MOs in terms of the AO functions belonging
strictly to the molecule itself, determined on solving the nonorthogonal locally-projected
SCF equations for molecular interactions (SCF MI) as first proposed by Stoll [72], and later
recast in slightly different formalisms by others [73, 134, 135], for a basis of nonorthogonal
molecular orbitals. The SCF MI provides for a self-consistent determination of the inter-
molecular polarization term, constraining the MO coefficient matrix to be block-diagonal in
each of the cluster molecules, by definition preventing intermolecular charge transfer, but
at the same time allowing for intra-molecular relaxation of each local MO in the field of all
other molecules. Moreover, this constraint obviates the problem of basis set superposition
error (BSSE)[136] that beleaguers calculations involving complexes. The charge transfer
term is determined subtractively from the full counterpoise[137]-corrected binding energy, or
can be approximated very accurately using a perturbative expansion of the ALMOs, with a
term in the second-order energy term resembling the non-Brilluoin singles in the standard
Møller-Plesset second-order (MP2) energy correction for a set of non-canonical orbitals.

Formally, the binding energy in the ALMO EDA is the sum of i) geometric distortion,
defined as the energy required to deform a free molecule’s internal coordinates to those
consistent with the cluster geometry, and evaluated for each element straightforwardly as
the SCF energy difference between the two structures, ii) frozen orbital (frz) interactions,
accounting for both permanent electrostatic contributions and Pauli repulsion between same-
spin electrons, corresponding to bringing infinitely-separated distorted molecules together to
form an antisymmetrized Hartree product of fragment wavefunctions, and operationally de-
termined from the energy associated with the density matrix formed from the converged
MO matrices of the isolated molecules, iii) polarization (pol), defined as the relaxation of
fragment ALMOs in the field of all other ALMOs, but with the block-diagonal constraint on
the coefficient matrix still in place, and iv) charge transfer (ct), stabilization due to inter-
molecular relaxation of molecular orbitals due to occupied-virtual pair interactions, identical
to the unconstrained SCF solution.

The ALMO EDA has been applied to many studies of various molecular complexes with
merit [76, 138–141], using both the Hartree-Fock (HF) and Kohn-Sham DFT methods and
producing binding components consistent with physical intuition. But total electronic en-
ergies are extensive properties, and within the subtractive supermolecule approach to the
computation of binding energies, the inclusion of explicit inter-electronic correlations is nec-
essary: the magnitude of error in the mean-field intermolecular potential can dwarf the in-
teraction energy itself. Though it includes exchange correlation, DFT has long been known
to furnish inaccurate intermolecular interaction potentials describing van der Waals forces
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[142, 143], charge transfer and Rydberg excited states [144], and strongly-correlated systems,
and so a wavefunction-based correlated supplement to the mean-field potential is desirable.
The simplest post-HF treatment of electron-correlation effects, often touted as the delightful
G-major of quantum chemistry, MP2[145] furnishes very accurate interaction energies for
hydrogen-bonded complexes [146, 147] and donor-acceptor interactions in DNA base-pair
interactions[148, 149], though it can often overestimate dispersive interactions [148, 150].

An EDA for a local approximation of the MP2 correlation energy based on the dimers-
in-molecules (DIM) model[151] has recently been implemented in our group, called the
fragments-in-molecules (FIM) method [152], correlating the ALMO EDA polarized refer-
ence. Among sundry other intermolecular interactions, FIM has successfully described the
water dimer complex, ascribing twenty and twelve percent of the binding energy to mean-
field polarization and correlated dispersion, respectively, and twenty-two percent between
mean-field and correlated charge transfer, with the rest attributed to frozen electrostatics.
Although presently practically limited to large applications, the coupled-cluster[153] meth-
ods represent some of the most accurate many-body approaches to computing experimental
observables, especially if perturbative triples [154] are included. As such, an ALMO EDA
correlated at the coupled-cluster level is desirable, and the development of one at the coupled-
cluster singles and doubles (CCSD) level is the focus of the present work.

Herein, we develop the formalism of the ALMO EDA at the CCSD level, with applica-
tions to the water dimer, rare gas dimers and other van der Waals complexes, and charge
transfer-dominated donor-acceptor interactions in borane adducts. The EDA yields cor-
rect intermediate and asymptotic behavior of each energy component and highly accurate
interaction potentials for weakly interacting systems, all in the language of intermolecular
interactions that is at once intuitive and instructive.

3.2 Theory

We use the following notation: i, j, k, l, ... denote MOs spanning the occupied subspace;
a, b, c, d, ... denote MOs spanning the virtual subspace; p, q, r, s, ... denote any spin-orbital;
µ, ν, σ, λ, ... denote AO basis functions lying in the full one-particle Hilbert space; X, Y, Z, ...,
are fragment labels; we utilize the tensor algebra formalism described previously [155, 156] to
work in the nonorthogonal spin-orbital basis, {|φp〉}, and the Einstein summation convention
applies where a co-/contravariant index pair occurs.

Subspaces and strong orthonormality

In line with general many-electron correlation theory, we first partition the underlying Hilbert
space into two mutually-orthogonal subspaces, the first consisting of levels occupied in the
ALMO reference determinant, and the second of the virtual levels, with the associated



CHAPTER 3. EDA FROM ORTHOGONALIZED ALMOS AT THE CCSD LEVEL 33

projection equation:

1̂ = P̂ + Q̂, (3.1)

in which P̂ and Q̂ are idempotent projectors onto the occupied and virtual spaces, respec-
tively, and for which P̂ Q̂ = 0. Any valid treatment of correlation must guarantee this
condition of so-called strong orthogonality, whereby all functions lying in the virtual space
are orthogonal to functions lying in the occupied space, thus satisfying gia = 0, where gpq is
the matrix of MO overlaps, 〈φp|φq〉. In other words, excited determinants must be strictly
orthogonal to the reference.

The eigenvectors of the converged SCF MI Fock matrix are i) neither generally orthog-
onal within a Hilbert subspace, ii) nor are they orthogonal amongst each other. That is,

gpq 6= δpq. We thus begin by obtaining a new set of virtuals, { ˜|φa〉}, strongly orthogonal to
the set of occupied orbitals, viz., satisfying g̃iã = 0, and related to the old set {|φa〉} by:

˜|φa〉 = Q̂|φa〉 = (1̂− P̂ )|φa〉 = (1̂− |φi〉〈φi•|)|φa〉, (3.2)

and the transformation matrix Q in the AO representation is given by,

Qµν = Sµν − SµλC
†λ
•ig

ijC σ
j• Sσν , (3.3)

where gij is an element of the occupied block of the contravariant metric matrix, gpq, S is
the AO overlap matrix, and C is the MO by AO ALMO coefficient matrix. In projecting
out the occupied from the virtual space, we are left with strongly-orthogonal subspaces.

At this point, we orthonormalize the orbitals within each subspace to simplify the oth-
erwise involved nonorthogonal coupled-cluster projection equations, permissible since the
SCF MI energy is invariant to nonunitary transformations performed within each orbital
subspace separately. We expand the set of new orthonormal functions ˜{|φp〉} in terms of the
nonorthogonal (ALMO) set, {|φp〉}, carrying out the orthonormal transformation for each
subspace separately:

˜|φq〉 = |φp〉Xp
q̃, (3.4)

where the transformation matrix X is determined to guarantee ˜〈φp ˜|φq〉 = δpq, and by symmet-
ric orthogonalization, the matrix equation X†gX = 1 is solved for X = g−1/2. In this orthog-
onalization procedure, a small degree of locality is sacrificed, as the freshly-orthogonalized
functions extend spatially to other fragments’ nuclei, by construction. The story is worse for
the virtual functions, as they are generally more delocalized than the occupied functions to
begin with, and the problem of ”orthogonality tails” is exacerbated by the necessary inclu-
sion of diffuse functions in the AO basis set for applications of interest, whereby resultant
diffuse virtual MOs become no longer imputable to a specific molecular fragment. This is due
to the fact that symmetric orthogonalization treats the AO basis functions democratically,
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viz., a tight s-type MO on one fragment unfavorably mixes in some diffuse character from
an AO centered on a distant fragment.

To remediate this problem, we localize the virtual space by exploiting the automatic lo-
cality of atom-centered AO functions, with the method of Subotnik and Head-Gordon[157].
In their algorithm, the Hilbert space is partitioned into a minimal basis space which includes
the ultimately localized occupied (O), a chemically-meaningful valence virtual spaces (V),
and a ”hard” virtual space (H) that includes all of the diffuse AOs,

A = O ∪ V ∪H. (3.5)

First, a set of so-called ”proto-hard” virtuals specific to each atom is constructed by
projecting the atom’s minimal STO-3G basis {|χq〉} onto the eigenvectors of the atomic
SCF, {|ωq〉},

|γq〉 =

(∑
p

|ωp〉〈ωp|

)
|χq〉, (3.6)

producing a minimal atomic basis space {|γq〉}. The occupied levels are then projected out
of this space. Next, projecting the STO-3G basis onto the ALMO basis, {|φp〉},

|ψq〉 =

(∑
p

|φp〉〈φp|

)
|χq〉, (3.7)

produces a minimal molecular basis space {|ψp〉}, from which the occupied space is then pro-
jected out, and the resulting minimal valence virtual space (as well as the occupied space)
is localized with the Boys[158] procedure. The hard virtual space is constructed by project-
ing each atom’s AOs onto H, and then maximizing the overlap between this set and the
set of proto-hard virtuals constructed earlier. Thus, we expand our ALMO virtuals in a
minimal localized valence virtual space, and an atom-localized (and by extension, fragment-
localized), hard virtual space. We don’t hesitate to mention that the results of the EDA will
depend on both the orthogonalization procedure and the localization scheme, though we feel
we have straightforwardly provided for strongly-orthogonalized, internally orthogonal orbital
subspaces in a natural way.

Coupled-cluster EDA

The above manipulations leave us with a reference determinant |Φo〉 of strongly-orthogonal
subspaces, orthogonal among themselves. We abandon the co- and contravariant distinction
at this point, as orthogonalization removes the biorthogonal character of the equations. We
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employ the standard exponential ansatz for the CC wavefunction, |Ψ〉 = eT̂ |Φo〉, and proceed
to solve the standard CCSD projection equations,

〈Φo| ¯̂H|Φo〉 = ECCSD, (3.8)

〈Φa
i |

¯̂
H|Φo〉 = 0, (3.9)

and

〈Φab
ij |

¯̂
H|Φo〉 = 0, (3.10)

for T̂ and ECCSD , where
¯̂
H = e−T̂ ĤeT̂ and T̂ = T̂1 + T̂2, and the CCSD correlation energy

is given by:

Ecorr
CCSD =

∑
ia

fiat
a
i +

1

4

∑
ijab

IIijabt
ab
ij +

1

2

∑
ijab

IIijabt
a
i t
b
j, (3.11)

where fia represents the fock operator in the orthogonalized ALMO representation, 〈φi|f̂ |φa〉,
and II ijab is the two-electron antisymmetrized integral, 〈φiφj||φaφb〉.

Consider the dimer system X ◦ Y composed of fragments X and Y . The binding energy
is given in the supermolecule approach as

∆Ebind = E(X ◦ Y )− (E(X) + E(Y )), (3.12)

where E(X ◦ Y ) is the energy of the complex, and E(X) and E(Y ) are the energies of the
free fragments, each in its cluster geometry. Each term in eq. 3.12 includes both mean field-
and correlation-level contributions,

∆Ebind = ∆ESCF
bind + ∆Ecorr

bind , (3.13)

and we expand the terms in equation 3.13 by level of theory:

∆Ebind = (E(X ◦ Y )SCF − E(X)SCF − E(Y )SCF )+ (3.14)

(E(X ◦ Y )corrCCSD − E(X)corrCCSD − E(Y )corrCCSD). (3.15)

As in the SCF-level ALMO EDA, we decompose the first (∆ESCF ) term of eq. 3.13 as
∆Efrz + ∆Epol; we don’t include the standard SCF-level charge transfer term, ∆Ect, be-
cause we haven’t allowed for orbital delocalization. Rather, we’re concerned with correlating
a basis of fragment-localized, self-consistently-polarized spin-orbitals, and so charge transfer
effects are thus expected to be captured subsequently as part of the correlation treatment.
Specifically, the Fock singles term of eq. 3.11 represents the infinite-order energetic contribu-
tion due to occupied-virtual mixings, exactly what is sought in the mean-field charge-transfer
term.

As for the correlated portion of the EDA, we take the sum of those terms in eq. 3.11 whose
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orbital indices belong to any one fragment and only that fragment as its intra-fragment cor-
relation, the sum of which not surprisingly dominates the correlation energy, as noncovalent
interactions are generally weak in comparison. We subtract these from the full X ◦ Y cor-
relation energy to give ∆Ecorr

CCSD, the inter-fragmental correlation energy. In our scheme, we
decompose the inter-fragmental correlation into dispersive correlations, ∆Edisp, and charge
transfer components, ∆Ect:

∆ECCSD = ∆Edisp + ∆Ect, (3.16)

and anticipate that these terms tend to zero smoothly at infinite inter-fragmental separation.
We take ∆Edisp as those terms in 3.11 that include I) concerted excitations, where each
fragment promotes an electron to one of its own virtual levels, and II) charge-conserving
inter-fragment exchange, where each fragment promotes an electron to a virtual belonging
to the other fragment. The form of the T̂2 operator allows naturally for a mathematical
rendering of the above delineations:

∆Edisp ←I) {ia} ⊗ {jb}
∣∣ (i, a ε X) ∧ (j, b ε Y )⊕

II) {ia} ⊗ {jb}
∣∣ (i, b ε X) ∧ (j, a ε Y ).

(3.17)

We decompose ∆Ect as those excitations producing an uneven number of particle and
hole excitations on a given fragment. We include, for example, I) ionic charge transfer, where
two occupied orbitals on one fragment are promoted to virtual levels on another fragment,
and II) dispersive charge transfer, where a pair of occupied orbitals on separate fragments
are promoted to occupy virtual levels on either one of the fragments:

∆Ect ←I) {ia} ⊗ {jb}
∣∣ (i, j ε X) ∧ (a, b ε Y )⊕

II) {ia} ⊗ {jb}
∣∣ (i, a, b ε X) ∧ (j ε Y )⊕

III) {ia} ⊗ {jb}
∣∣ (i, j, a ε X) ∧ (b ε Y ).

(3.18)

The reader will note that these statements are symmetric to permutation of fragment
labels, that there is only one particle-hole pair in the case of charge transfer contribution
due to the Fock term in eq. 3.11, and that two hole-particle pairs are realizable with all the
T̂2 terms and the terms quadratic in T̂1. We correct for BSSE in the charge transfer terms
by the counterpoise method [137].

Thus, the total ALMO CCSD interaction energy is decomposed as

∆Ebind = ∆Efrz + ∆Epol + ∆Edisp + ∆Ect. (3.19)

It should be mentioned in passing that the canonical and ALMO CCSD energies are
not formally equivalent, as they are not related by a unitary transformation. The energy
obtained from the cluster ansatz is non-variational, and so we cannot know which is closer
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to the exact answer, even though both the canonical and ALMO references are obtained
self-consistently. Canonical CCSD will generally predict a larger well-depth, but the differ-
ences are small. This is likely because the orbital reference is locally-constrained (though
the effects of the constraint vanishes in the limit where the fragments are non-overlapping).
The logic given here can also be extended to triple substitution - a topic we hope to consider
in the future.

3.3 Results

All calculations were performed using a modified version of Q-Chem[98]. Basis set and
geometry information is given where appropriate.

Water dimer

The water dimer is among the most widely-studied molecular complexes, examined exten-
sively both experimentally and computationally, with a high-level non-zero-point-corrected,
BSSE-corrected binding energy De = 5.03 kcal/mol obtained at the CCSD(T)/CBS-limit
level [159], and with an experimental binding energy estimated as 4.91kcal/mol by regres-
sion analysis of observables determined from microwave, terahertz, and infrared vibration-
rotation-tunneling (VRT) spectroscopy [160].

The global minimum of the dimer is of Cs point-group symmetry, with the intramolecular
covalent O-H bond in line with the intermolecular O-H hydrogen bond, and, interestingly,
with the molecular dipoles not optimally aligned, but rather considerably offset, suggesting
a delicate balance between donor-acceptor orbital interactions and exchange-repulsion. As
such, an accurate description of the rich interplay of elements contributing to the water
dimer hydrogen bond has become, in a sense, the ”holy grail” for researchers developing
EDA methods, and the question of what elements are important is not without considerable
controversy.

The KM EDA at the HF level produced results consistent with a picture that the hydro-
gen bond is dominated by permanent electrostatics [123] (a little larger than the total binding
energy itself), but the calculated binding energy was woefully chemically inaccurate, high-
lighting the importance of explicit correlation. RVS SCF and CSOV produced similar results
[131, 161]. NEDA, on the other hand, though it produced nearly the same overall binding
energy as KM, suggested that the hydrogen bond is fundamentally coordinate-covalent in
character, the prevalent contribution being a n(O) → σ∗(O-H) donor-acceptor interaction,
obtaining a charge transfer term just shy of two times the total binding energy [129]. It
should be mentioned quickly that the DFT/B3LYP flavors of NEDA and CSOV laudably
reproduce the water dimer binding energy to within chemical accuracy [161, 162].

Though the fact that different EDAs produce quantitatively different binding energies and
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basis set ∆Efrz ∆Epol ∆Ect ∆Edisp ∆Ebind
cc-pVDZ -2.36 -0.780 -0.654 -0.704 -4.52

aug-cc-pVDZ -1.51 -1.10 -0.817 -1.24 -4.67
cc-pVTZ -1.98 -0.963 -1.080 -1.043 -5.07

aug-cc-pVTZ -1.34 -1.34 -0.838 -1.26 -4.78

Table 3.1: Tabulated decomposition elements for the Cs water dimer with basis set extension
/ kcal/mol.

interaction components for water dimer is somewhat disconcerting, the ALMO EDA scheme
stands out because it has the advantage of producing intermediate self-consistent energies
that are variationally-optimized, and has enjoyed successful application at the DFT/B3LYP
level to the water dimer, where frozen interactions, polarization, and charge transfer were
shown to contribute nearly evenly to the chemically-accurate binding energy [76], has recently
cleverly been employed to shed light on the effects of charge transfer on vibrational spectra
in model hydrogen bonding systems [141], and to medium- to large-sized water clusters,
where it was determined that two-body terms were contained primarily in the polarization
contribution, whereas charge transfer and frozen interactions were primarily three-body in
nature[163], a logical result given the nature of these contributions, lending credence to the
validity of the ALMO EDA scheme.

We present the counterpoise-corrected results of our ALMO CCSD EDA for the wa-
ter dimer in different basis sets (Table 3.1) to demonstrate the stability of the components
as the basis set approaches completeness. In our most accurate calculation at the aug-cc-
pVTZ basis, the components are fairly balanced, with mean-field level frozen electrostatics
slightly larger, and with a binding energy calculated at 4.78 kcal/mol, recovering 95% of the
counterpoise-corrected CCSD(T)/CBS binding energy [159]. Charge-transfer interactions
are dwarfed by polarization interactions when diffuse functions are included, consistent with
the perturbative FIM results [152], and with the ALMO EDA at the DFT/B3LYP level[76],
but nearly equivalent otherwise. Overall, the results of the decomposition are consistent with
those of the KM and reduced-space methods, emphasizing electrostatics and polarization,
but with the advantage of yielding quantitative agreement with high-level benchmarks.

It is necessary on physical grounds that i) polarization and dispersion fall off as ∼ R−6 in
the intermolecular distance, the lowest-order term in London’s [119] expansion of the fluctua-
tion potential in powers of R−1, and ii) that charge transfer terms fall off exponentially, with
the inter-fragmental orbital-pair overlap. We follow the hydrogen-bond breaking coordinate
to verify their intersection, and the intersection between the mean-field polarization and
CCSD-level charge transfer (Fig. 3.1). As R(O-H) is decreased, squishing the donor H and
acceptor O electron densities together, Pauli and electrostatic repulsions described in ∆Efrz
overwhelm all other contributions, and beyond the equilibrium region, frozen electrostatics
represent the only sizable contribution to the binding energy, as the dipole-dipole potential
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Figure 3.1: Binding energy components for Cs-symmetry water dimer along the hydrogen
bond-breaking coordinate performed in the aug-cc-pVDZ basis.

is more shallow, falling off as ∼ R−3. In the equilibrium region, however, it appears that
the components contribute nearly equally to the stabilization of the dimer, underscoring the
complex structure of the water dimer hydrogen bond.

Rare gas and other dispersion-bound complexes

Unlike ionic or polar interactions, weak dispersion-dominated interactions due to van der
Waals forces can be difficult to characterize, since these forces arise as a direct consequence
of electron correlation and thus require high-level theory. Successful efforts have been made
recently[164–169] to correct the inadequacies inherent in the DFT and MP2 treatments of
long-range dispersion effects. The main source of error in the MP2 interaction energy, for
instance, is that the leading contribution to the description of the long-range interaction
is dependent on an overestimation of the second-order dispersion coefficients, C6R

−6 con-
structed from the uncoupled (static) HF polarizabilities of the isolated systems[170]. The
general strategy employed to repair this has been to add C6R

−6 terms determined self-
consistently at the coupled HF level to the intermolecular binding energy with the hope that
the longe-range C6 coefficients are consistent with dynamic polarizabilities. These correc-
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dimer ∆Efrz ∆Epol ∆Ect ∆Edisp ∆Ebind ∆Ebind, ref [173]
He2 0.0112 -0.000946 -0.00450 -0.0264 -0.0206 -0.022
Ne2 0.0261 -0.0213 -0.0161 -0.0752 -0.0865 -0.084
Ar2 0.126 -0.000466 -0.0775 -0.299 -0.251 -0.285

Table 3.2: counterpoise-corrected binding energy components for rare gas dimers per-
formed in the aug-cc-pVTZ basis / kcal/mol. Minimum-energy geometries were taken from
counterpoise-corrected CCSD/aug-cc-pVTZ benchmark data [174].

tions have been employed successfully[167, 168], producing smooth potential curves for van
der Waals complexes of CCSD(T) quality. Indeed, one could make a case for the immediate
improvement of existing DFT/MP2-based EDA schemes for the treatment of van der Waals
complexes by adding the empirical correction to the dispersion component, as happens when,
e.g., B3LYP-D or ωB97X-D is used.

The coupled-cluster-level wavefunction, which includes disconnected triples, does not suf-
fer as much from these shortcomings, producing more accurate van der Waals potentials, of
course at the expense of being an order more costly computationally in the number of molec-
ular orbitals than canonical MP2 (two orders in the case of DFT).

We present the results of our EDA for rare gas dimers in Table 3.2. Not surprisingly,
dispersion represents the most substantial contribution to the interaction energy in each
case. It should be noted that the mean-field components ∆Efrz and ∆Epol considered alone
fall short of producing a stable complex, and the addition of readily-computed mean-field
charge transfer (not shown), determined subtractively from the full counterpoise-corrected
SCF binding energy, still produces a positive ∆Ebind, in line with the notion that explicit
correlation is required to describe dispersion. Indeed, supplementation with the correlation
components results in complex stability and good agreement with the reference calculations
at the CCSD(T)/aug-cc-pV5Z level, supplemented with inter-atomic floating bond func-
tions[171] (last column of Table 3.2), and the experimental [172] binding energies for He2 ,
Ne2, and Ar2 of 0.021, 0.082, and 0.277 kcal/mol, respectively.

We next consider dimers of single-, double-, and triple-bonded organic van der Waals
complexes of molecules. Weak forces in this context obviously have important implications
in the biochemistry of the lipid bilayer and hydrophobic interactions that bear heavily on
protein folding. Accordingly, there has been much recent interest in the accurate computa-
tion of van der Waals potentials and vibronic structure for small dispersion-bound organic
compounds [175–177]. We decompose the interaction energies of the minimum energy quasi-
D3d methane, C2h ethylene, and C2v acetylene dimers in Table 3.3. As in the case of the rare
gas dimers, these complexes are not bound at the mean-field level, and dispersive correlation
makes up the bulk of the binding energies, competing primarily with the repulsive Pauli con-
tributions. Charge transfer contributions become increasingly important as donor-acceptor
bonding-antibonding interactions become spatially feasible and symmetry-allowed with bond
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dimer ∆Efrz ∆Epol ∆Ect ∆Edisp ∆Ebind ∆Ebind, ref
(CH4)2 0.370 -0.00828 -0.138 -0.726 -0.502 -0.53[159]
(C2H4)2 1.09 -0.065 -0.351 -1.82 -1.15 -1.37[179]
(C2H2)2 0.401 -0.327 -0.403 -1.02 -1.35 -1.54[178]

Table 3.3: counterpoise-corrected binding energy components for van der Waals complexes
performed in the aug-cc-pVDZ basis / kcal/mol. The methane dimer minimum geometry
was taken from counterpoise-corrected CCSD(T)/CBS S22 benchmark set [159]. The ethy-
lene and acetylene dimers were optimized at the RI-MP2[180]/aug-cc-pVDZ level of theory.
∆Ebind,ref values for ethylene and acetylene were computed at the CCSD(T)/aug-cc-pVTZ
level.

unsaturation, demonstrated here in the shrinking ratio of dispersion to charge transfer in the
degree of unsaturation, though dispersion remains, by far, the more important contribution
to binding. Quasi-C2v acetylene represents a very interesting case of T-stacking, whereby
the electron-rich alkyne bond donates electron density to a terminal σ∗(C-H) bond of the
other acetylene, making a ”π-type hydrogen bond”[178], albeit a lot weaker than a more
traditional hydrogen bond. Total binding energies for the methane, ethylene, and acetylene
dimers compare favorably with the reference binding energies in the last column of Table
3.3.

Charge transfer-dominated borane adducts

Dative bonds represent another important class of intermolecular interactions, characterized
by the donation of a Lewis base lone electron pair to a vacant orbital of an acceptor Lewis
acid [181]. Donor-acceptor complexes of borane adducts represent textbook cases of dative
complexes, and have been studied extensively. The promotion of a donor electron pair to to
a vacant 2p orbital of boron stabilizes such complexes considerably, with interaction energies
much stronger than hydrogen bonds, but weaker than formally ionic complexes, and with the
repulsive proximity of the electron pair on complex formation severely distorting the trigonal
planar D3h borane to the trigonal pyramidal C3v orientation. Ammonia-borane (H3NBH3)
is an interesting n(N)→ 2p(B)-stabilized complex, while in the more exotic carbonyl-borane
(OCBH3) interaction, CO serves as both a σ donor and a π∗ acceptor in back-donation from
each of the σ(B-H) bonds. We present the results of our EDA to untangle the binding com-
ponents of these charge transfer complexes and cyanide-borane (BH3CN−) in Table 3.4.

As expected, in all three donor-acceptor complexes, charge transfer is the most substan-
tial component of the correlation-level contribution. Mean-field polarization also represents
a sizable portion, particularly in BH3CN−, as cyanide is negatively-charged, and has a fairly
large dipole moment, and in BH3CO where the dipole moment points toward C in its most
viable resonance form. In line with the previous conclusions regarding these borane adducts
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dimer ∆Efrz ∆Epol ∆Ect ∆Edisp ∆Ebind ∆Ebind,ref
BH3NH3 31.5 -39.5 -14.2 -6.30 -28.5 -28.5[182]
BH3CO 76.0 -49.48 -34.03 -8.71 -16.2 -14.6[183]

BH3CN− 42.1 -70.4 -29.6 -7.98 -65.8 -77.37a

Table 3.4: counterpoise-corrected binding energy components for donor-acceptor borane
adducts performed in the aug-cc-pVDZ basis / kcal/mol. BH3NH3, BH3CO, and BH3CN−

minimum structures were optimized at the RI-MP2/aug-cc-pVDZ level of theory. ∆Ebind,ref
values for BH3NH3 and BH3CO were computed using CCSD(T)/aug-cc-pVDZ and full
CI [184] /general DZ levels, respectively. a ∆Ebind,ref for BH3CN− was calculated at the
CCSD(T)/aug-cc-pVDZ level.

at the ALMO EDA B3LYP/6-31(+,+)G(d,p) level[76], BH3CO is a better π∗ acceptor than
BH3CN− , likely due to the fact that the π∗(C=O) virtual is lower-lying energetically than
π∗(C≡N), and thus closer to the σ(B-H) energy, and so it is a reasonable assertion from the
view of perturbative energy-lowering due to occupied-virtual mixings.

The computed binding energies by ALMO CCSD for BH3NH3 and BH3CO are in im-
pressive agreement with the reference values, while BH3CN− appears to be slightly under-
bound, likely for the reason mentioned above that the reference is constrained. Experi-
mental estimates of the binding energy for BH3CO are highly disparate, ranging between
18.8-27.5kcal/mol[185–188].

3.4 Discussion and Future Direction

We have presented the formalism and applications of the ALMO EDA at the CCSD level,
examining various intermolecular complexes and ascribing to binding well-defined interaction
components, and with reasonable success for the systems considered. Desirable improvements
might include generalization to systems larger than dimers and extension of the correlative
treatment to include perturbative or full triples, though both of these hopes would require
careful consideration in the definitions of the contributions arising from both the T̂3 terms,
and terms in the cluster operator containing indices belonging to more than two fragments,
and finally, generalization of the CCSD-level ALMO EDA to open-shell systems to access
the rich chemistry of radicals and complexes of high-spin multiplicity states.
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Chapter 4

Lower-bound intermolecular
polarization

4.1 Introduction

There is no question that interest in intermolecular interactions with an eye toward eluci-
dating the interplay of forces underlying weak potentials has grown in recent years. With it,
so has the number of so-called energy decomposition analysis (EDA) schemes, designed to
resolve a quantum mechanical (QM) interaction energy into physically-based components.
In addition to direct use for insight or interpretive purposes, EDAs can serve as high-level
QM tools in applications ranging from guiding drug functionalization [189, 190] to designing
force fields for molecular mechanics (MM) simulations [191].

The physical contributions that give rise to weak interactions between distant molecules
whose densities do not overlap have long been well-characterized [192]. At a given separa-
tion, the magnitude of interactions can be directly evaluated from properties of the individual
(isolated) molecules. They include i) long-range permanent electrostatic interactions cou-
pling the monopole, dipole, quadrupole, and higher-order moments of the isolated species;
ii) additional induced electrostatic interactions, which arise from distortions of the charge
densities due to electric fields emanating from nearby molecules. For a given field, induc-
tion is determined by static molecular polarizabilities, e.g., dipole, quadrupole, etc.; and
iii) weaker dispersive forces, or van der Waals interactions, resulting from instantaneous
multipole interactions, of strength governed to leading-order by the C6 coefficients of the
molecules.

When the interacting molecules overlap, additional interactions arise. In qualitative
terms, these effects are well-known, and are usually described in molecular orbital (MO)
language [106]. Specifically, they include iv) Pauli repulsions that distort the density due
to the overlap between occupied levels on neighboring molecules, and v) attractive donor-
acceptor (dative) interactions that arise when there is sufficient overlap between occupied
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and empty levels of neighboring molecules, leading to partial charge transfer. In quantitative
terms, there is no unique prescription for partitioning the observable binding energy in the
overlapping regime. For example, in MO terms, when molecular neighbors overlap, there
are many ways to infer occupied and empty orbitals of each molecule, which affects the
relative values of induction and charge transfer. The task of an EDA is to provide a well-
defined procedure for calculating each contribution. Exploring different definitions of these
components and resolving differences between different EDAs (provided they are physically-
defensible) is a basis for deepening our understanding of intermolecular interactions.

While summarizing the full range of available EDAs is a task for a detailed review,
it is useful to identify some of the most widely-used methods, and to distinguish those
that decompose a given level of calculation (e.g. DFT) from those which also aim to pro-
vide a method for efficiently calculating the interactions. Considering first the constructive
approaches to intermolecular interactions, symmetry-adapted perturbation theory (SAPT)
[193, 194] is a many-body generalization of Heitler-London polarization theory that treats
the inter-monomer coupling as the fluctuation potential. SAPT has become popular, partic-
ularly with the development of inexpensive density functional theory (DFT) approaches for
computing previously demanding terms [195, 196]. Direct use of the many-body expansion
[197] to separate pairwise, three-body, and higher terms is another strategy in approaches
such as the fragment MO method [198, 199]. Finally, it is important to note that results on
the form of intermolecular interactions from decomposition methods such as those discussed
below have been incorporated into efficient computational approaches such as the effective
fragment potential (EFP) method [200, 201], a step towards even more highly-simplified
methods such as polarizable MM potentials [202, 203].

Regarding decompositions, the pioneering variational Kitaura-Morokuma (KM) EDA
[123] partitions the binding energy into (including, but not limited to) geometric distortion,
electrostatic, polarization, and charge-transfer components. The related Ziegler-Rauk proce-
dure was developed essentially at the same time [204, 205]. The natural orbital EDA (NEDA)
[129] scheme is used as part of the widely-employed natural bond orbital analysis [106, 206,
207]. A markedly different ”density-based” EDA[208] has been proposed recently, which
constrains the electrostatic density to remain identical to the superposed density while the
electrostatic interaction energy is determined variationally. Many other EDAs have provided
useful modifications and improvements to the basic KM framework [131, 132, 209–211]. One
class of improvements is the use of block-localized, [212, 213] or, equivalently, absolutely-
localized MOs (ALMOs) [76, 138] to variationally describe polarization. The ALMOs are
determined by solving nonorthogonal, locally-projected SCF equations for molecular inter-
actions (SCF MI) as first proposed by Stoll [72], and later recast in different ways [214, 215],
and then efficiently implemented [75].

The ALMO EDA provides a self-consistent determination of intramolecular polarization
as the energy-lowering upon solving the SCF-MI equations with the MO coefficient matrix
constrained to be block-diagonal in each of the cluster molecules. The molecule-blocking
prevents intermolecular charge transfer while simultaneously allowing for relaxation of each
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MO in the field of all other electrons and nuclei. This natural separation of charge transfer
and self-consistent polarization is a merit of the approach. Formally, the binding energy
in the ALMO EDA is the sum of four terms: i) geometric distortion (gd), defined as the
energy required to deform an isolated molecule’s internal coordinates to those consistent
with the cluster geometry, and evaluated as the energy difference between the complex in its
equilibrium geometry and the sum of its elements’, each taken at its vacuum minimum,

∆Egd = EAB|complex − EA|min. − EB|min.; (4.1)

ii) frozen orbital (frz) interactions, accounting for both permanent electrostatic contribu-
tions and Pauli repulsions, corresponding to bringing infinitely-separated, distorted molecules
together, and operationally determined from the energy associated with the supermolecular
density matrix formed from the converged MO matrices of the isolated molecules, each in
its complex geometry,

∆Efrz = EAB{Pfrz(CA,CB))}|complex − EA(CA)|complex − EB(CB)|complex; (4.2)

iii) polarization (pol), defined as the relaxation of fragment ALMOs in the field of all other
ALMOs, but with the block-diagonal constraint in place,

∆Epol = EAB(Ppol)− EAB(Pfrz); (4.3)

and iv) charge transfer (ct), stabilization due to intermolecular relaxation of ALMOs to
the canonical orbitals,

∆Ect = EAB(Pcan.)− EAB(Ppol). (4.4)

Taken together, these contributions sum to the full binding energy, ∆ESCF
bind ,

∆ESCF
bind = ∆Egd + ∆Efrz + ∆Epol + ∆Ect. (4.5)

Though the ALMO EDA in its current form gives a reasonable decomposition and has
enjoyed much recent success in application [79, 216–220] and extension to explicit correlation
[80], we acknowledge here that the polarization term has no well-defined basis set limit
because there is a point of over-completeness of the underlying basis beyond which relaxation
of the ALMO constraint can no longer improve the fragment-localized orbitals. In other
words, there is enough variational freedom near the basis-set limit in the constrained orbitals
to completely describe their delocalized counterparts, thus invaliding the physical insight of
the orbital constraint and rendering polarization and charge-transfer no longer separable.
While this may seem like a purely formal objection, it has the practical implication that one
cannot converge the polarization and charge-transfer components of the ALMO EDA to a
well-defined basis set limit. While reasonable stability has already been demonstratedin the
aug-cc-pVXZ, X=D,T,Q sequence for the water dimer [221], it is worthwhile to emphasize
that this is at best metastability.
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This paper focuses on exploring several aspects of the definition and stability of the po-
larization and charge-transfer contributions to intermolecular interaction energies. First, we
present a proposal for the definition of polarization that is designed to yield stable contri-
butions across a wide range of basis set sizes by removing near-linear dependencies between
the virtual spaces describing polarization on different fragments. This is accomplished by
defining small numbers of polarization functions for each fragment based on singular value
decomposition (SVD) of the first-order singles amplitudes associated with the frozen MOs,
which are then orthogonalized amongst themselves and relocalized. SVD has been useful in
defining the most important orbitals in applications ranging from analyzing excited states
[222], to donor-acceptor orbitals in EDA [138], to analyzing electron correlation effects [223]
and MP2 [224]. Using the resulting minimal polarization basis, we retain the general struc-
ture and terms of the ALMO approach, notably the feature of self-consistent polarization,
emphasizing that the added benefit of orthogonal MOs allows for trivial extension of the
method beyond a mean-field treatment. This procedure is described in detail in Sec. 4.2.

The second main aspect of the paper consists of numerical results that compare the
new approach to polarization against the existing fragment-blocked SCF-MI method as a
function of basis set size and composition, energy functional, and geometry, for the model
system of the water dimer. These comparisons are undertaken in Sec. 4.3. It is interesting
to assess the dependence of calculated polarization and charge transfer contributions for
different sequences of basis sets: cc-pVXZ, aug-cc-pVXZ and d-aug-cc-pVXZ, as well as to
compare the results obtained at the mean-field Hartree-Fock level against the components
calculated with various density functionals. Additionally, since the difficulty in disentangling
polarization and charge transfer arises directly from the degree of intermolecular overlap, it
is interesting to assess the separation dependence of the differences in results between the
new approach and polarization evaluated by the SCF-MI procedure. Some results are also
given for the Na+CH4 complex, where polarization effects are dominant. We summarize our
main conclusions in Sec. 4.4.

4.2 Theory

The Einstein summation convention applies where a co- or contravariant index pair occurs,
except for fragment labels. OA and VA refer to the number of occupied and virtual spin-
orbitals on molecule A. NA is the number of AO functions centered on A. F is the number of
fragments. The indices i, j, k, l, ... denote MOs spanning the occupied subspace; a, b, c, d, ...
mean virtual MOs; p, q, r, s, ... are any spin-orbitals; and µ, ν, σ, λ, ... are AO basis functions.

We first discuss the behavior of the SCF-MI eigenvectors as the basis approaches com-
pleteness, and then detail a procedure for determining the optimal fragment-tagged varia-
tional subspaces to obtain polarized molecular states in the supermolecular field, taken as
solutions of a set of constrained equations.
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Basis set superposition error (BSSE) and the drawbacks of
SCF-MI as a basis for EDA.

The term taken as intramolecular polarization in the ALMO scheme has no basis set limit.
It is instructive to examine the general BSSE problem [136] to understand why. Consider
computing the binding energy ∆E of the molecular complex X ◦ Y within the subtractive
supermolecule approach, ∆E = E(X ◦Y )−E(X)−E(Y ). Self-consistent diagonalization of
the Hamiltonian operator in the full AO basis will yield a set of orthonormal eigenfunctions,
each with an associated eigenvalue equation:

f̂ |φpX〉 = εpX |φpX〉, (4.6)

While each MO formally has amplitudes on all fragments, the fact that this is a complex
means that, in general, the MOs can be fragment-localized by standard methods such as
Boys [225] or Edmiston-Ruedenberg localization [226]. It is the fact that even after local-
ization f̂ |φpX〉 can be resolved into projections onto the fragment basis and its orthogonal
complement that gives rise to the BSSE that pockmarks such calculations:

f̂ |φpX〉 = f̂ 1̂ |φpX〉 = f̂ P̂X |φpX〉+ f̂(1̂− P̂X)|φpX〉, (4.7)

where P̂X = |ωXµ〉S−1
Xµν〈ωXν |. Specifically, the second term on the right-hand side of eq.

4.7 allows for variational optimization of |φpX〉 via access to functions that are not centered
on that fragment. The consequence is systematic overestimation of binding energies due to
inflation of the E(X ◦ Y ) term.

Of course, at the complete basis set limit, the second term approaches zero, and the
basis functions centered on fragment X span a sufficient space to describe X’s eigenvectors
without any borrowing. Away from this limit, many methods to counteract BSSE have been
developed, of which the most popular is probably the counterpoise method [137], where the
energy-lowering due to borrowing of extra-fragment functions is explicitly subtracted from
the supermolecular result E(X ◦ Y ). Other approaches include forcible elimination of the
BSSE term of eq. 4.7 from the Roothaan equations [227, 228], but at the expense of the
Hermiticity of the matrix representation of the Hamiltonian operator.

Another strategy is that employed by the SCF-MI approach, detailed above, which con-
strains the MO coefficient vectors {CpX} to be block-diagonal (absolutely-localized) in the
interacting fragments,

|φpX〉 = |ωµX〉CµX
• pX , (4.8)

By performing variational optimization with fragment-blocking of the MO coefficients, BSSE
is prohibited by construction: ALMOs tagged to a given fragment cannot employ basis
functions from other fragments.

The use of the SCF-MI procedure within an EDA for describing the energy-lowering
due to polarization relies on the physically-intuitive assumption that fragment-blocking the
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MO coefficient matrix also prohibits charge transfer from a given fragment to any other.
Since an ALMO tagged to a given fragment cannot contain contributions from AOs on other
fragments, dative interactions should be prohibited. Thus polarization is any energy-lowering
where the trace of the on-fragment density matrix operator is preserved, or in other words,
where electrons are not shuttled between molecules. Charge transfer can then be associated
with any remaining energy-lowering that is achieved when the ALMO constraint is lifted.

However, separating the energy-lowering associated with polarization and charge transfer
based on the SCF MI constraint of eq. 4.8 has deficiencies. It can only be used with one-
particle basis sets that are atom- or fragment-tagged, and thus is natural with AO basis
sets, but cannot be used directly with a plane wave expansion. Furthermore, even with AO
basis sets, at or near the complete basis set limit, a given fragment-tagged MO will already
be described optimally and will not benefit from any projection onto the basis functions
of a neighboring fragment. Alternatively put, the second term of eq. 4.7 will be reduced
to zero (as will the associated charge-transfer term, ∆Ect), and it becomes obvious that
the magnitude of the EDA components is basis set-dependent. Thus the success of the
ALMO EDA in practice depends upon using a basis set that is not too small (inaccurate
total interaction energies), but also not too large (as the ct contribution will progressively
be damped away). In practice, the aug-cc-pVTZ basis has appeared to be a reasonable
compromise.

General construction.

Our goal is to obtain a small set of linearly-independent functions that are still local (fragment-
ascribable) which may be used to described the energy-lowering due to polarization in a way
that is stable with respect to basis set extension. Should these functions be non-orthogonal
(like AOs), or orthogonal (like MOs)? While either is possible, we shall employ the orthog-
onal choice here because it ensures zero overlap between the Hilbert spaces associated with
different fragments. Furthermore, orthogonalization will generate a basis of fragment-tagged
linearly-independent orbitals whose shapes and extents are parametrized by all centers, not
just a subset, which is appropriate to properly respect antisymmetry between electrons on
different fragments [229]. For instance, when two fluorine atoms approach each other to form
F2, the electrons occupying the σ∗u orbital avoid collapsing into the nuclei by maintaining
orthogonality to the mostly unperturbed core 1s states, a property that neither of the indi-
vidual atomic 2pz states exhibited with respect to the core of the other nucleus before the
bond was formed. In the same way, the spatial extent and nodal structure of orthogonalized
functions centered on one molecule in the field of another should reflect these intermolecular
exchange interactions. While orthogonalization will produce delocalization tails extending to
other fragments, fragment identity can be maintained via the transformations that we shall
detail below. The functions we shall employ are eigenvectors of the intramolecular response
density, whose number will be equal to the number of electrons on each fragment.

The starting point for treating intra-fragment polarization is the result of calculations
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on individual fragments in the basis of their own AOs, and without any consideration of
neighboring molecules, which is the so-called ”frozen” orbital calculation. The eigenvectors
of the Hamiltonian operator in the frozen orbital representation are i) orthogonal within a
fragment, satisfying {p∪q} ∈ X

∣∣ gX
pq = δpq, where gX

pq is the matrix of MO overlaps belong-
ing to X, and ii) strongly orthogonal, whereby all functions lying in the fragment’s virtual
space are orthogonal to functions lying in its occupied space, {i∪ a} ∈ X

∣∣ gX
ia = 0. These

properties are the direct consequence of solving the SCF equations for each fragment inde-
pendently, guaranteeing a block-diagonal Hamiltonian matrix and idempotent one-particle
frozen density. However, any inter-fragmental MO pair is neither orthogonal within a sub-
space, nor is it orthogonal between subspaces. That is, {(p ε X) ∪ (q ε Y )}

∣∣ gpq 6= 0.
As we’d like to unambiguously determine non-overlapping occupied and virtual sub-

spaces, we construct a new set of ”projected” virtual orbitals, {|φ′a〉}, strongly orthogonal to
the global set of occupied orbitals, and related to the old set {|φa〉} by:

|φ′a〉 = Q̂|φa〉 = (1̂− P̂ )|φa〉 = (1̂− |φi〉gij〈φj|)|φa〉, (4.9)

and the projection matrix Q in the AO representation is given by

Qµ
•ν = δµ•ν −Cµ

•ig
ijC†σj• Sσν , (4.10)

where S is the AO overlap matrix and C is the frozen coefficient matrix. The transformation
C
′µ
•p = Qµ

•νC
ν
•p smoothly guarantees strong orthogonality, gia = 0, as Q̂ → 1̂ in the non-

overlapping limit, preserving the original spaces.
We next seek to orthonormalize the orbitals within each subspace separately, noting

that the frozen density is invariant to such transformations. performed within each orbital
subspace separately. Having already orthogonalized the subspaces, this is sufficient to enforce
〈φp|φq〉 = δpq for all p and q. Generally, we want to transform the nonorthogonal set by

˜|φqY 〉 =
∑
Z

|φpZ〉XpZ
•qY , (4.11)

where X is the orthogonalizer that takes the non-orthogonal set {|φp〉} to the orthogonal

set { ˜|φq〉}. (to keep the notation uncluttered, we have dropped the ” ′ ” that denoted the
frozen, projected set.)

Schemes rooted in symmetric orthogonalization represent a least-squares minimization
of the Hilbert-space distance between a function of the nonorthogonal set {|φp〉} and the

corresponding function of the orthonormal set { ˜|φp〉}. Most generally [230], the sum Z to
be minimized is the difference in the vectors pre- and post-orthogonalization,

Z =
∑
p

wp

∫ ∣∣∣∣ ˜|φp〉 − |φp〉
∣∣∣∣2dτ , (4.12)
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where {|φp〉} is the non-orthogonal vector set, { ˜|φp〉} is the orthogonal set, {wp} is a set of
weighting scalars, and dτ represents infinitesimal Hilbert space.

If each non-orthogonal MO contributes equivalently in the construction of the orthogo-
nal spin-orbital (i.e. the matrix of weighting scalars is chosen as Wp = 1) then eq. 4.12 is

minimized by choosing Xp
•q = (g)

−1
2

pq ≡ gp•q, and we have arrived at the familiar Löwdin (sym-
metric) prescription for orthogonalization [231]. We transform the occupied space according
to

˜|φiA〉 =
∑
B

|φjB〉gjB•iA. (4.13)

The ”absolute” locality in the AO basis afforded by the ALMO scheme is sacrificed at
this point since the freshly orthogonalized functions span the entire occupied space, but
they are still imputable to parent fragments because of the relative compactness of the
occupied subspace and the least-squares connection, eq. 4.12. The orthonormal occupied
set is subsequently tightened by the Boys’ localization scheme [225] which, again, leaves the
frozen density invariant.

The story is more bleak for the virtual functions since they are more delocalized to
begin with, and the problem is only exacerbated by the necessary inclusion of diffuse AOs
for applications of interest. Symmetric orthogonalization of this subspace will treat the
basis too democratically, mixing on equal footing a relatively tight MO on one fragment
with some diffuse MO centered far away, for instance. Consequently, evenly-mixed virtual
MOs become hardly imputable to a specific molecule. The crux of the problem is thus
the careful delineation of a space belonging to each fragment which a least-squares minimal
orthogonalization will not appreciably distort.

More specifically, we want to develop a partitioning of the Hilbert space H into a minimal
valence space (relevant for intramolecular polarization) spanned by the set M and a ”low-
impact” space spanned by the more diffuse, Rydberg-like functions R, H =M⊕R, where

M =
⊕
A

MA and R =
⊕
A

RA, with (4.14)

MA = VA ⊕OA, (4.15)

and where OA and VA are the minimal occupied and virtual spans centered on molecule
A and all subspaces are orthogonal, VA ⊥ VB ⊥ RB. In the subsection below, we develop
an approach to obtain the minimal valence space, M, from a perturbation theory of in-
tramolecular polarization in the supermolecular field. Once M is available, the functions
that span it can be orthogonalized via essentially the same scheme described above for the
frozen occupied space.
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A minimal basis for polarization.

The Fock matrix built from the frozen density will necessarily contain non-zero occupied-
virtual coupling elements f iX•aY that arise in response to the perturbation of each isolated
fragment by the supermolecular environment. A subspace partitioning for the purpose of
variationally determining molecular eigenstates in the supermolecular field can be guided by
this fact. Specifically, we can use perturbation theory to examine the on-fragment polariza-
tion response, and extract a small set of polarization functions (not exceeding the number
of electrons on the fragment) that can exactly represent it. Those functions can be used as
a basis for a variational treatment of polarization after orthogonalization.

Perturbation theory for either DFT or Hartree-Fock is conveniently cast in terms of the
one-particle density matrix, P, and the Fock matrix, F. Given a frozen density, P(0), we
evaluate the Fock matrix as F = F(P(0)). Since we are interested only in the intramolecular
polarization, we shall consider perturbation theory for a single fragment in the orthonormal
space of its frozen occupied orbitals, and its (orthormalized) projected frozen virtuals, defined
in eq. 4.9. In other words, each fragment now has its own perturbation problem, and we
neglect the interfragment coupling on the grounds that it is charge-transfer-related.

The fragment Fock operator is partitioned into zeroth-order pieces (the OO and VV
blocks), and a first-order perturbation (the OV and VO blocks) due solely to the presence
of the supermolecular environment: Thus:

F = (FOO + FV V )(0) + (FOV + FV O)(1). (4.16)

The problem of minimizing the energy for a perturbed Fock matrix in an orthogonalized basis
may be expressed in several equivalent ways: (i) block diagonalization to zero the coupling
between the occupied and virtual blocks in the new basis (ii) finding a valid one-particle
density matrix that commutes with the Fock matrix, FP = PF, or (iii) solving the following
set of quadratic equations [232, 233]:

FV O + FV V XV O −XV OFOO −XV OFOV XV O = 0V O, (4.17)

and then evaluating the energy-lowering (relative to the unperturbed problem) as

δE = Tr (FOV XV O) . (4.18)

This last form is convenient for doing perturbation theory with the partitioning given in
eq. 4.16. To zeroth order, it is immediately clear from eq. 4.17 that X

(0)
V O = 0V O. First-order

perturbation theory applied to eq. 4.17 is straightforward assuming that F
(0)
V V and F

(0)
OO are

initially diagonalized such that F
(0)
ab = ε

(0)
a δab and F

(0)
ij = ε

(0)
i δij. The resulting first-order

perturbed amplitudes, X
(1)
V O, are given as

X
(1)
ai = −F (1)

ai

/(
ε(0)
a − ε

(0)
i

)
(4.19)
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with a corresponding second-order energy-lowering obtained by substituting into eq. 4.18.
Note that these are exactly of the form obtained when doing Hartree-Fock perturbation
theory in the space of single substitutions, but are equally valid for Kohn-Sham DFT.

A solution of the form of eq. 4.19 can be constructed individually for each fragment,
say A, describing the first-order polarization effects on that fragment due to the presence of
the other components of the complex. On an individual fragment, there are OAVA coupling
parameters within X

(1)
V O, so the first-order correction to |ηi〉 will contain VA components in

the orthogonal complement:

|η(1)
iA 〉 = |ηaA〉Xa(1)

•iA . (4.20)

Since typically OA << VA, it is desirable to condense the information encoded in this sum,
by finding a minimal virtual basis sufficient to describe the first-order wavefunction. The
first-order result (on a fragment) can be exactly recaptured in this way by performing a

singular value (SVD) decomposition of X
(1)
V O. The SVD is defined as

LV V X
(1)
V OR†OO = x

(1)
OV . (4.21)

Here x
(1)
V O is a rectangular matrix with only OA non-zero entries lying along the diagonal;

these are the singular values. The left eigenvectors, LV V , describe transformations of the
original virtual functions into a reduced set of essential virtuals whose number is no greater
than OA.

|γa′A〉 = |ηa〉LaA•a′A, a′ = 1, ..., OA. (4.22)

All other virtual orbitals correspond to zero singular values and retaining only the virtuals
above, we are guaranteed to recover the energy-lowering of eq. 4.18 but in a rank-reduced
polarization basis. This is our definition of the minimal virtual space, VA, on fragment A.

This transformation gives an intuitive bond-antibond picture of polarization whereby
relaxations through first-order in perturbation theory on a given fragment can be exactly
expressed via a minimal polarization basis no larger than the occupied space. The presence
of polarization is a direct consequence of violating Brillouin’s theorem, (FV O = 0), in the
intermolecular environment, as the inhomogeneous term of eq. 4.17 is FV O. The null space
of the SVD spanned by the vectors of L with vanishing singular values will naturally include
diffuse molecular states especially as the AO basis set is extended. As the polarization energy
of eq. 4.18 is convergent with the basis set provided the perturbation theory is well-behaved,
so too will the SVD and minimal polarization orbitals.

The minimal set of virtual functions for the complex can now be defined as the union
over fragments of the minimal virtual set, {VA}. However, these functions will not, in
general, be orthogonal between fragments, and so we orthogonalize the minimal set of virtual
vectors amongst themselves via eq. 4.13, then Boys-localize across the orthonormalized
minimal virtual space, paralleling the procedure used for the occupied orbitals to complete
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the specification of the functions spanning the minimal basis set for polarization, M. The
null space spanning R is discarded in the minimal scheme because its vectors are extraneous
to a description of polarization at the level of perturbation theory, as follows from the SVD,
eq. 4.21. However, re-introducing R after polarization is necessary to guarantee recovery of
the full SCF energy and delocalized eigenfunctions.

We note that orthogonalization will reintroduce BSSE into the polarization term, but this
is not before the variational subspaces are determined as the span of the minimal eigenset
of the first-order orbital response. It is thus assumed that mutual frozen interactions in the
approach induce deformations first among a molecule’s own electronic distributions, followed
by inter-fragment distortions in the interest of orthogonality. We also note that, though we
make no explicit reference to the underlying AO basis in the equations determining each
molecule’s variational space, each’s set of response amplitudes {XaA(1)

•iA } remains ultimately
parametrized by fragment-allotted AO functions originating from the frozen set of ALMOs.

Orthogonal SCF for molecular interactions and associated EDA.

We solve the problem of computing the energy-lowering due to intramolecular polarization
in a manner similar to the original SCF-MI approach. The polarization energy is taken
as the energy-lowering on self-consistently solving subspace-projected fragment-labeled SCF
equations constrained to conserve the number of electrons on a fragment, e.g., the trace of
the fragment density projector in the fragmental basis remains constant. The charge-transfer
stabilization is subsequently determined as the difference between the full SCF energy and
the energy of the polarized wavefunction as in the ALMO scheme:

∆Ebind = ∆ESCF
bind = ∆Egd + ∆Efrz + ∆Epol + ∆Ect. (4.23)

The above constraint is realized by demanding that the self-consistently polarized set
{|ψpX〉} – which corresponds to ∆Epol from the energy of the super-system computed with
the frozen density (given in eq. 4.2) – simultaneously be described by OV mixings strictly
among the vectors of the subsystem X,

|ψpX〉 = |γqX〉U qX
•pX , (4.24)

and satisfy the variational eigenvalue equation

f̂ |ψpX〉 = |ψpX〉εpX , (4.25)

where f̂ is the standard mean-field or DFT Hamiltonian, and |ψpX〉 is what we term a
polarized orthogonal local molecular orbital (POLMO) eigenfunction labeled p of the su-
permolecular Hamiltonian matrix projected into the variational space spanned by fragment
X. Developing the working equations, we resolve the identity into properly-idempotent
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projectors onto the individual fragment subspaces, 1̂ =
∑F

X R̂X =
∑

X(P̂X + Q̂X), with

P̂XP̂Y = P̂XδXY and P̂XQ̂Y = 0, and insert above,

F∑
Y

(
|γqY 〉〈γqY• |

)
f̂

F∑
Z

(
|γrZ〉〈γrZ• |

)
|ψpX〉εpX = |ψpX〉εpX . (4.26)

Left-multiplying by 〈ψsW• | and expanding |ψtX〉 in the minimal basis respecting the local
constraint of eq. 4.24, we arrive at

U sX†
•qX f

qX
•rXU

rX
•pX = δspεpX . (4.27)

Thus, we have F projected sets of SCF equations for the polarized eigenvectors and eigen-
values,

UX†
•XfX•XUX

•X = εX. (4.28)

Solving these projected equations is equivalent to block-diagonalizing the Hamiltonian
matrix in the minimal polarization basis. All remaining orbital mixings (either between
fragments in the minimal space, M, or coupling to any member of the Rydberg space,
R) account for the remaining energy-lowering necessary to approach the full SCF calcula-
tion. Within the minimal polarization space, the utility of initially neglecting interfragment
mixings, UX

•Y, is that it serves to cleanly separate intra- and intermolecular effects. The
motivation for neglecting the Rydberg space is that it is not associated with intramolec-
ular polarization to leading-order in perturbation theory. We expect the locally-projected
POLMO wavefunction and energy to approach exactness in the limit that the fragments
make negligible use of charge-transfer rotations to relax their orbitals, for instance, in the
case of very weakly-interacting systems, or for systems near dissociation. We emphasize that
the polarized wavefunction is an exact eigenfunction of F̂ (0) with energy complete through
second-order perturbation theory, as discussed in the previous subsection. Once the
POLMOs are obtained self-consistently for the polarization energy, the vectors spanning R
are re-introduced and the full Hamiltonian matrix is diagonalized to self-consistency. the
energy-lowering due to charge transfer delocalizations connecting to the observable binding
energy. What follows is a sketch of the POLMO-based EDA:

1. Perform F independent self-consistent HF calculations to obtain {CX
• p}.

2. Build P and F(P) and compute ∆Efrz by eq. 4.2.

3. Project off the occupied space from virtual space following eq. 4.9.

4. Symmetrically-orthogonalize across the occupied space following eq. 4.13, then Boys-
localize.
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5. Semi-canonicalize the occupied and virtual subspaces by fragment to make the denom-
inator of eq. 4.19 diagonal.

6. Construct and SVD XV O by eq. 4.21, then transform to the natural polarization basis
M, discarding R.

7. Symmetrically orthogonalize across the minimal virtual set, then Boys-localize.

8. Solve the locally-projected eqs. 4.28 self-consistently, obtaining ∆Epol.

9. Re-introduce R and semi-canonicalize across full occupied and virtual subspaces.

10. Relax the constraint of eq. 4.24 to obtain full-space eigenvectors and ∆Ect.

4.3 Results and Discussion

It will, of course, be essential to inspect the results of the EDA when applied to a wide variety
of molecular complexes, but for the present purpose of uncovering trends particular to the
decomposition methods, we limit our scope to the widely-studied water dimer interaction
potential. The Cs-symmetry global minimum places the molecular dipoles at an appreciable
offset presumably to enhance the p(O)→ σ∗(OH) interaction, hinting at a delicate balance
between dative and electrostatic interactions. So there is no question that a satisfactory
description of the water dimer interaction is difficult, and the question of what elements are
important is not without considerable controversy [221, 234]. We performed all computations
within a development version of Q-Chem [98]. AO basis set parameters for all 5z [235]
and doubly-augmented basis sets [236] were obtained from the EMSL Basis Set Exchange
with h-angular-momentum functions removed. The Cs-symmetry CCSD(T)/cc-pvqz-level
optimized water dimer minimum was taken from the S22 set [159]. The data were not
corrected for BSSE.

Stability with respect to basis set extensions.

It is desirable for any EDA scheme that, in the same way that the binding energy is conver-
gent with respect to basis set extension, its resolved components likewise converge on some
limiting value. If this weren’t the case, there would be no reason to take the components
of the EDA in one AO basis versus another as superior. In general, there is good reason to
prefer larger- to smaller-basis results (if the former are feasible) simply because increasing
the variational degrees of freedom available to the wavefunction leads to a description closer
to the complete basis set limit. For well-posed methods, this corresponds to a more precise
description of the intermolecular interactions themselves. Within Hartree-Fock theory, we
compare the behavior of EDA terms in the minimal POLMO approach and the existing
ALMO scheme with respect to enhancements of the AO basis in Table 4.1. We visualize
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basis frz pol(POLMO) pol(ALMO) ct(POLMO) ct(ALMO) bind
dz 9.88 2.22 3.34 12.11 11.00 24.21
tz 8.30 2.54 4.03 7.57 6.08 18.41
qz 6.82 2.57 4.49 7.05 5.13 16.44
5z 5.72 2.79 4.84 6.89 4.84 15.40

aug-dz 6.32 2.79 4.62 6.86 5.03 15.96
aug-tz 5.61 2.93 5.60 6.62 3.95 15.16
aug-qz 5.29 2.91 5.75 6.93 4.09 15.13
aug-5z 5.21 2.87 6.03 6.94 3.78 15.01

d-aug-dz 6.07 2.83 4.94 7.30 5.19 16.20
d-aug-tz 5.37 2.96 6.05 6.98 3.89 15.31
d-aug-qz 5.24 3.06 6.82 6.91 3.15 15.21

Table 4.1: HF minimal-basis POLMO and ALMO EDA components of the interaction be-
tween equilibrium water dimer in kJ/mol.

the p(O) and σ∗(OH) guess orbitals and their mutually-polarized and delocalized versions
in Fig. 4.1. The data are grouped according to basis diffusivity. Augmented basis sets add
a single diffuse shell of each angular momentum to every atom. For instance, in the case of
aug-cc-pVDZ, an extra set of low-ζ s- and p-type functions on hydrogen, and s-, p-, and d-
type functions on oxygen. Doubly-augmented sets add a second yet more diffuse shell of each
angular momentum. A negative sign in front of a contribution means it will destabilize the
complex. The HF limit for binding is estimated at 15.19 kJ/mol from a CBS extrapolation
within the doubly-augmented series according to a fitted equation B(L) = B(CBS)+Xe−AL,
where L is the quantum number of the highest-angular momentum function in the set, e.g.,
L(dz)=2, L(tz)=3, and L(qz)=4. The magnitude of the favorable frozen contribution
(labeled frz in Table 4.1) decreases as the basis set is extended, converging most slowly in
the non-augmented set and comprising the biggest contribution to the net change in binding
energy beyond the double-zeta level in that series. The frozen interactions include permanent
electrostatics, which in the water dimer primarily reflect favorable dipole-dipole interactions
and unfavorable exchange repulsions. When the local orbitals have access to increasingly
diffuse functions to describe their spatial extents, exchange repulsions are felt more strongly
and must distort their densities to respect Pauli exclusion. We find it quite interesting that
the frozen contribution converges so slowly with respect to basis set size, as it is still chang-
ing slightly when the total binding energy is apparently converged. It follows that if the
frozen contribution is unfavorable, e.g., when the molecules are squeezed together, a diffuse
basis should only increase its magnitude until convergence. Though the sum of charge
transfer and polarization is stable, the individual ALMO quantities are manifestly not, with
unacceptably large ranges of ∼3.5 and ∼8 kJ/mol for, respectively, polarization and charge
transfer. Even if we exclude the small double-zeta results (which suffer walloping BSSE due
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contracted 20% frz pol(ALMO) ct(ALMO) pol(POLMO) ct(POLMO)
dz 0.96 4.91 15.51 2.78 17.64
tz 3.49 6.43 10.12 3.89 12.67
qz 5.60 7.18 9.18 4.21 12.15
5z 7.22 8.09 8.68 4.68 12.09

aug-dz 5.38 7.59 8.18 5.25 10.52
aug-tz 7.24 9.06 7.58 4.39 12.25
aug-qz 7.80 9.47 7.58 4.60 12.45
aug-5z 7.78 9.94 6.96 4.57 12.34

d-aug-dz 5.59 7.74 8.42 4.84 11.32
d-aug-tz 7.43 9.81 7.11 4.45 12.47
d-aug-qz 7.80 10.71 6.41 4.94 12.19

Table 4.2: Behavior of polarization in non-equilibrium H-bonds depends strongly on the AO
basis when overlaps are large.

to incompleteness), and all results obtained without augmented basis sets, the range remains
∼1.2 kJ/mol for polarization and ∼0.8 kJ/mol for charge transfer, while the range in the
total binding energy is only ∼0.1 kJ/mol. The deficiency is especially palpable in the doubly-
augmented trend where the largest number of near-linear dependencies exist. These results
are consistent with the fact that the ALMO polarization contribution will steadily increase
as the basis approaches completeness. The effect becomes larger when the inter-fragment
H-bond length is contracted by about 20%, as given in Table 4.2. In the ALMO scheme,
polarization continues to increase as the lone-pair on the donor oxygen atom’s freedom to
infiltrate the core region of the other oxygen increases with the size of the variational space
allotted to the donor. By contrast, of course, the instability of the individual ALMO terms
diminishes when the bond length is protracted by about 13% (given in Table 4.3). This is
because the molecules overlap only weakly, and therefore the extent to which basis functions
on one water molecule can mimic charge transfer to the other molecule is greatly reduced.
The total interaction energy is similar (∼9kJ/mol) at both displacements. Turning to
the behavior of the POLMO treatment of polarization, it is significantly more stable than
the ALMO polarization for the water dimer at its equilibrium separation, as shown in Table
4.1. The reduction in the spread of results as the basis set improves is about a factor of
four across all basis sets considered. However, if we again exclude the small double-zeta
basis, and the non-augmented calculations (which converge slowly), the resulting range in
the POLMO polarization is less than 0.2 kJ/mol, a roughly 6-fold reduction over the spread
in the corresponding ALMO polarization results. This 0.2 kJ/mol range is very compara-
ble to the range in the total binding energies across the same selection of basis sets. The
converged value of POLMO polarization is ∼3 kJ/mol which gives a roughly 35%:20%:45%
frz:pol:ct decomposition of the interaction energy in these essentially CBS-limit HF calcu-
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protracted 13% frz pol(ALMO) ct(ALMO) pol(POLMO) ct(POLMO)
dz -8.58 0.32 5.57 0.25 5.64
tz -8.74 0.45 2.68 0.34 2.78
qz -8.71 0.51 1.30 0.38 1.43
5z -8.64 0.56 0.48 0.41 0.63

aug-dz -8.55 0.53 0.70 0.38 0.85
aug-tz -8.51 0.59 0.46 0.44 0.61
aug-qz -8.52 0.63 0.28 0.43 0.48
aug-5z -8.51 0.66 0.21 0.43 0.44

d-aug-dz -8.62 0.59 0.71 0.38 0.93
d-aug-tz -8.49 0.64 0.48 0.43 0.70
d-aug-qz -8.50 0.67 0.30 0.42 0.56

Table 4.3: POLMO polarization is slightly smaller than ALMO polarization at intermediate
separation. The ”-” sign reads as repulsive.

lations. If the EDA components are normalized to the binding energy and plotted against
the basis diffusivity (in the same order as above), then the slope will be a measure of basis
set dependence (which we hope will approach zero if the binding energy is converged). Any
intersections will suggest a fundamental change in (the assessment of) the character of the
interaction. We plot the components in Fig. 4.2 and note the minimal-basis polarization and
charge transfer stabilize quickly and never cross, while the ALMO polarization crosses the
frozen and charge-transfer contributions well after the binding energy is converged (by the
aug-tz level by Table 4.1), though the polarization is quasi-stable in the singly-augmented
trend where it is most likely to be used. The impact of the Boys orbital localization steps on
the stability of the polarization term is assessed in Table 4.4. Boys localization of the occu-
pied and virtual spaces serves to attenuate the real-space extent of the individual subspace
spanned by each fragment’s orbitals while, of course, leaving the full span intact. The conse-
quence of this is a considerable improvement in the stability of the method. The dependence
is increasingly noticeable in the doubly-diffuse trend since a larger spatial extent allows the
converged POLMOs a degree of artificial charge-transfer energy-lowering that the ALMOs
enjoy, albeit less dramatic. Both the Boys localization procedure and that the subspaces
associated with different fragments have no overlap serves to attenuate the contributions
to polarization associated with the POLMO description while still providing the variational
flexibility in the full space of virtual functions associated with second-order perturbation
theory.
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basis POLMO(Boys) POLMO(w/o Boys) ALMO
dz 2.22 2.19 2.78
tz 2.54 2.66 3.69
qz 2.57 2.64 4.49
5z 2.79 2.77 4.97

aug-dz 2.79 2.98 4.15
aug-tz 2.93 3.33 6.19
aug-qz 2.91 3.07 6.63
aug-5z 2.87 3.40 7.11

d-aug-dz 2.83 3.24 4.40
d-aug-tz 2.96 3.74 6.93
d-aug-qz 3.06 3.62 7.81

Table 4.4: POLMO polarization contributions in the basis set extension depend slightly on
the localization, increasing gently with diffusivity.

DFT decomposition quantities and exchange effects.

A post-mean-field treatment of intermolecular interactions is vital for any serious application
of the EDA, and DFT represents a parsimonious first thrust in this direction. When the
exchange contribution is adjusted and inter-electronic correlations are included, the results
of the equilibrium decomposition differ from those at the HF level (Table 4.5). Larger polar-
ization and charge transfer effects tend to result from smaller HOMO-LUMO gaps (standard
functionals tend to underestimate the gap [237, 238], while HF overestimates it). Of course
electron correlation effects generally strengthen intermolecular interactions, so the HF val-
ues should not be regarded as true. Frozen interactions are sensitive to the dipole moment,
which is overestimated at the HF level. Thus density functionals may typically exhibit less
favorable frozen interactions than HF, but based on this criterion, the resulting value should
be more reliable. The frozen interactions are also sensitive to the treatment of exchange, but
it is difficult to guess the effect of functional approximations on this term. To test the depen-
dence of all EDA terms on the composition of a density functional more carefully, we vary
the amount of exact exchange (e.e.) in the three-parameter B3LYP exchange-correlation
potential explicitly, keeping Slater exchange at a constant 8% and adjusting %B88 exchange
to allow for the desired %HF exchange. Consistent with the general considerations already
given, the results of Fig. 4.3 suggest roughly linear behavior of frz and shallow inverse de-
pendence of ct with e.e., and weak-to-zero e.e.-dependence of pol in either scheme. Since the
B3LYP functional energy is linear in the HF exchange parameter, we can only expect the
total energy to scale linearly with e.e. a priori, as observed. That frz and ct clearly depend
on e.e. in a way consistent with their definitions demonstrates correspondence between the
terms of our decompositions and a totally independent metric describing exchange forces. In
other words, these terms appear well-suited to describe the physical phenomena for which
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contribution/basis frz pol ct bind
XC/ %e.e. dz tz qz dz tz qz dz tz qz dz tz qz

B3LYP/20 [239] 5.92 5.80 5.53 2.49 2.73 2.85 11.02 10.38 10.60 19.43 18.91 18.99
M06L/0 [240] 5.57 6.45 4.96 2.41 2.60 2.77 10.81 10.90 12.37 18.78 19.95 20.09
M06/27 [241] 7.56 7.16 5.67 2.59 2.72 2.74 10.05 10.24 11.51 20.21 20.11 19.92

M06-2X/54 [241] 10.59 10.50 9.87 2.58 2.95 2.90 8.61 8.11 8.59 21.77 21.56 21.36
PBE/0 [242] 3.22 3.11 3.30 2.50 2.86 2.98 12.54 11.66 11.92 11.82 11.41 11.60

PBE0/25 [243] 8.48 7.92 7.60 2.55 2.71 2.82 10.48 10.15 10.40 21.50 20.78 20.82

Table 4.5: KS-DFT POLMO augmented-series components (kJ/mol) in the basis and exact
exchange (e.e.). Charge transfer decreases with increasing e.e., while frozen interactions
increase.

basis frz pol(POLMO) pol(ALMO) ct(POLMO) ct(ALMO) bind
dz 11.22 2.19 2.78 19.60 19.01 33.01
tz 10.94 2.32 3.69 12.56 11.20 25.83
qz 9.51 2.57 4.49 10.94 9.07 23.02
5z 8.48 2.75 4.97 10.40 8.18 21.63

aug-dz 8.79 2.53 4.15 10.24 8.62 21.56
aug-tz 8.16 2.73 6.19 10.11 6.65 20.99
aug-qz 7.52 2.77 6.63 10.03 6.66 20.81
aug-5z 7.44 2.77 7.11 10.43 6.08 20.64

d-aug-dz 8.61 2.53 4.40 10.11 8.68 21.24
d-aug-tz 7.99 2.72 6.93 10.36 6.15 21.08
d-aug-qz 7.46 2.90 7.81 10.62 5.65 20.98

Table 4.6: ωB97X-D-level decomposition components in kJ/mol. Most of the dispersion is
captured in frozen electrostatics.

they were designed. We note that dispersion is not considered explicitly in the energy
decomposition, and even if a dispersion-corrected functional is employed, the correction will
formally be spread out between the decomposition terms, none of which is alone adequate to
entirely capture this force. We might, however, expect the leading effect of dispersion to be
contained in the frozen interactions, with smaller, density-dependent corrections contained
in the polarization and charge-transfer terms. If the dispersion is not density-dependent
at all, such as for ”-D” functionals, then it will be entirely contained in the frozen term,
As an illustration, we decompose the essentially quantitative interaction energy for water
dimer furnished by the range-separated ωB97X-D [244] hybrid functional in Table 4.6. The
ωB97X-D binding energy approaches the CCSD(T)/CBS extrapolation of 20.8kJ/mol [159].
With density-independent dispersion, it is no surprise that the frozen interaction is some
∼2kJ/mol larger in magnitude than at the B3LYP level. Comparing the most accurate
decompositions at ωB97X-D and B3LYP, the ”-D” augmentation of the frozen interaction
appears to be the principle contributor to the binding energy difference between them.
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Breaking the hydrogen bond of the water dimer.

If one goal of the EDA is that it be a true quantum-mechanical basis for force field pa-
rameters in molecular mechanics simulations, the EDA components should be well-behaved
across the potential energy surface, each weighted in accordance with the true intermolec-
ular force it designates and decaying to zero at the dissociation limit. Thus, when the two
molecules of a dimer are squeezed together along some interaction coordinate, Pauli and
electrostatic repulsions will begin to trump all other forces. Conversely long-range electro-
static forces should exert their effects long before the wavefunction assumes the equilibrium
supermolecular configuration that will be determined on polarization and charge transfer.
Polarization gives a sense in which permanent poles are deformed in the supermolecular field
and should decay classically as the inverse of some (induced) multipole order in the inter-
action coordinate R, while charge transfer is contingent on intermolecular overlaps and dies
off exponentially, and so at the very least these components must cross. Because the PES
is sampled a great deal in the course of thermal fluctuations, an accurate description of the
interaction potential along the entire weak-bond-breaking coordinate is indispensable. We
plot the potential energy across the H-bond-breaking coordinate of the water dimer in Fig.
4.4, showing the contribution of the POLMO terms for B3LYP calculations on the left-hand
side, and a log-log plot showing the R-dependence of the non-ct terms on the right-hand
side. From Fig. 4.4(b), we observe the appropriate distance-dependence of all electrostatic
terms in the long-range limit (at a separation greater than 1.5Req where this asymptotic
analysis becomes valid). Frozen interactions are dominated by dipole-dipole interactions,
while the polarization terms are dominated by dipole-induced dipole contributions. It is
only in the strictly-non-overlapping regime that we should expect slopes of exactly three and
six for frozen and polarization contributions respectively. Inclusion of quantum mechanical
exchange in the Hamiltonian will be responsible for slight deviations away from the correct
curve. The effective power law behavior for decay of the polarization via the ALMO and
POLMO treatments are particularly interesting. Both ALMO and POLMO should be exact
(within the chosen basis) in the non-overlapping regime (as the interaction becomes weak
enough that the perturbative model for minimal virtual functions in the POLMO method
becomes increasingly suitable). At small separations, we have argued that a part of the
ALMO polarization is in fact attributable to charge transfer, and this error will increase as
the basis set is improved. Since this error diminishes with the overlap of the fragments, its
presence should cause the ALMO power law for decay of the polarization contribution to ex-
ceed six. The data show a power law with exponent 6.1 for the ALMO model. On the other
hand, the POLMO model, with polarization described in a minimal orthogonal space, will
likely underestimate the polarization contribution in the strongly-overlapping regime while
approaching exactness in the non-overlapping limit. This will result in a power law exponent
of less than six (5.9 for the POLMO model). We conclude that the data shown in Fig. 4.4(b)
is consistent with POLMO polarization being a lower-limit estimate of the true polarization
in the overlapping regime, while the ALMO polarization should be regarded as an upper
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limit to polarization in the overlapping regime. Armed with the potential surface, we can
read off the story of the gas-phase water dimer interaction from the right in Fig. 4.4(a):
Two approaching water molecules in the appropriate orientation first see each other’s vac-
uum dipoles at a separation greater than 3Req. As they approach closer along the axis that
becomes a hydrogen bond, dipole polarization occurs along the H-bonding axis (in Fig. 4.1,
the POLMO p(O) donor has changed its orientation w.r.t. the symmetry axis of its vacuum
analogue to better respond to the acceptor σ∗(OH) in its field). As separation of the two
water molecules is further decreased, the dative interaction, which decreases the equilibrium
H-bond length for the dimer well within the frozen minimum by some 0.5Å begins to rapidly
increase. At the equilibrium geometry, all three types of contributions (frozen, polarization,
and charge-transfer) are important.

The Na+CH4 monopole-induced-dipole polarization.

The case of the water dimer illustrates what we believe is the most common paradigm in
complex intermolecular interactions: there is a rich distance-dependent admixture of per-
manent (frozen), polarization, and charge transfer interactions. It is also useful to briefly
examine an interaction in which charge transfer effects are expected on chemical grounds to
be negligible, while polarization effects are very important. Such a case will be a potentially
difficult challenge for the POLMO approach, because it generally will underestimate polar-
ization, and therefore overestimate CT. In a case where CT is negligible, such a result would
be spurious. A specific system that is anticipated to have negligible CT is the Na+CH4

interaction, which one may intuitively think of as a problem of describing a Stark-shifted
methane molecule. The positive charge resides on Na+, and its occupied orbitals are very
deep in energy, and therefore donation into σ∗ orbitals on methane is blocked. For CT in
the other direction, methane is a poor donor, and Na+ does not have low-lying affinity or-
bitals, so CT is expected to be very small. The POLMO and ALMO decomposition terms
for the Na+CH4 interaction were obtained from a 6-311++G**/B3LYP-optimized geometry
and are given in Table 4.7 for a wide range of basis sets (without counterpoise correction).
In both schemes, polarization is the chief contribution to binding with a disparity between
the decompositions decreasing steeply on inclusion of higher-angular momentum functions
to ∼5 and ∼6 kJ/mol for 5z and aug-5z calculations, respectively. If it is accepted based on
the arguments above that there is no ”real” charge-transfer in this interaction, then it follows
that ALMO polarization should be stable and an adequate estimate of the true polarization.
The numerical results support this contention, as the ALMO polarization is converging
smoothly in both basis set sequences, and CT is very small. ALMO-based CT is roughly
7% of the polarization value in the largest basis set reported in Table 4.7. The POLMO
results improve significantly in the larger basis sets, in the sense that POLMO polarization
generally increases in magnitude as the basis set is improved. The gap between ALMO
CT and POLMO CT diminishes ranges from 4-12 kJ/mol depending on the basis set, with
somewhat smaller differences for the larger basis sets. Relative to the size of the interaction
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basis frz pol(ALMO) pol(POLMO) ct(ALMO) ct(POLMO) bind
dz 0.72 20.62 15.30 12.75 18.07 34.09
tz 0.74 26.68 19.08 5.17 12.79 32.59
qz 0.82 29.54 24.74 3.34 8.13 33.70
5z 0.62 30.99 25.48 0.76 7.89 33.99

aug-dz -0.18 30.74 21.87 1.77 10.64 32.33
aug-tz 0.54 31.58 19.02 1.19 13.75 33.31
aug-qz 0.64 32.08 27.70 2.63 6.96 35.34
aug-5z* 0.53 32.23 25.84 2.19 8.45 34.83

Table 4.7: B3LYP decomposition components of the polarization-dominated Na+CH4 inter-
action in kJ/mol. *Na was treated at the 5z level.

(35 kJ/mol with this density functional), the gap between ALMO and POLMO CT is only
about 20% in the larger basis sets, so both treatments give a qualitatively similar picture
of a polarization-dominated interaction. These considerations bolster the contention that
POLMO polarization represents a lower-limit estimate, while ALMO polarization represents
an upper limit. This issue will be discussed further in Sec. 4.3.

Bracketing intrinsic polarization effects.

We understand the POLMO minimal-basis polarization as a lower bound to true polariza-
tion since we neglect the vectors in R during polarization, as well as enforce orthogonality
between the variational spaces associated with different fragments. While neglect of R has
zero error at the second-order perturbation level, it must lead to an underestimate relative
to the energy-lowering evaluated with a fragment-based partitioning of the orbital space
that includes all functions. The magnitude of this difference will depend strongly on the
geometry, since the error tends to zero when perturbation theory amplitudes approximate
the space of the true polarized wavefunction well (which will be the case when polarization
is small). Thus in the POLMO scheme, charge-transfer effects are overestimated, or, from
a physical standpoint, they contain some contaminating polarization contributions. By con-
trast, as we discussed in detail in Sec. 4.2, use of ALMO polarization will tend to be an
overestimate, because the non-orthogonal one-particle Hilbert spaces of different fragments
have an intersection, and that intersection increases as the basis set is improved. Thus
ALMO polarization is contaminated with some energy-lowering that is in fact related to
charge transfer. We therefore bracket true polarization as lying between the upper-bound
ALMO polarization and the lower-bound minimal-basis POLMO polarization. How large
or small is the difference between the upper and lower bounds for the water dimer at the
basic Hartree-Fock level of theory, at equilibrium? The tightest upper bound for polariza-
tion by the ALMO approach comes from the smallest value of polarization when the sum
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of polarization and charge transfer energy is converged. Referring back to Table 4.1, the
smallest upper limit might be the cc-pVQZ pol(ALMO), at ∼ 4.6kJ/mol. If we take the
lower-estimate pol(POLMO) quantity as ∼ 3.0kJ/mol, then true polarization is bounded
within a 1.6kJ/mol range, (3.0,4.6). We would obtain an essentially identical result with
the ωB97X-D functional, as can be seen from Table 4.6. For HF at the compressed geome-
try shown in Table 4.2, the corresponding bracket for true polarization is (4.9,8.1) kJ/mol,
which is necessarily wider because of the increased overlap between the fragments. At the
stretched geometry shown in Table 4.3, the estimated bracket for true polarization is nar-
rower, at (0.4,0.6) kJ/mol. Finally, for comparison, we can infer a bracket for polarization of
roughly (26,30) kJ/mol for the polarization-dominated Na+CH4 interaction using the data
from Table 4.7. What are the implications for the overestimation of polarization effects
in the ALMO EDA as it is commonly employed? Let us consider the water dimer at the
equilibrium geometry again, and assume that a standard application of the ALMO EDA
employs the aug-cc-pVTZ basis. In that case, the calculated ALMO polarization is ∼5.6
kJ/mol, while our bracket for true polarization is (3.0,4.6) kJ/mol. We therefore conclude
that polarization is overestimated by at least 1 kJ/mol, and not more than 2.6 kJ/mol in the
ALMO EDA/aug-cc-pVTZ method. Thus the true polarization is no less than 20% smaller
than the ALMO value, and it could be as much as 46% smaller. Since the errors depend on
the identity of the basis it is likely that they are quite systematic, so trends in the ALMO
polarization estimate are likely to be reliable. Nonetheless, it is clear that improved proce-
dures for calculating polarization are important for future work. The POLMO method is
one such candidate.

4.4 Conclusions and outlook

In energy decomposition analysis of intermolecular interactions, one important issue is dis-
entangling the separate contributions associated with intramolecular polarization in the
field of neighboring molecules and intermolecular charge transfer (dative bonding) between
molecules. This issue is challenging because such a separation in all likelihood cannot
be uniquely defined in the important regime where the molecular partners overlap signif-
icantly. We have studied some aspects of this issue with the aim of attempting to under-
stand strengths and weaknesses of existing EDAs, and introduce a new and complementary
approach. Our main results and conclusions are as follows:

1. We have demonstrated that fragment-blocking the molecular orbital coefficient matrix
as employed in the ALMO EDA [76, 138] and the related BLW-EDA [212, 213] overes-
timates the energy-lowering due to polarization effects in intermolecular interactions.
In essence, this arises because the one-particle Hilbert spaces of different fragments
are allowed to have non-zero intersection, and the extent of the intersection increases
with the size of the basis set. Therefore in the ALMO EDA, the energy-lowering due



CHAPTER 4. LOWER-BOUND INTERMOLECULAR POLARIZATION 65

to polarization becomes contaminated with charge-transfer effects as one improves the
basis set.

2. We have developed a new method that uses fragment-blocked variations to obtain a
minimal basis of polarized orthogonal local MOs (POLMOs) describing stabilization
due to polarization. Only one POLMO is provided per occupied MO of the isolated
fragments by SVD of the first-order polarization response on each fragment followed
by symmetric orthogonalization and relocalization.

3. The POLMO approach will underestimate polarization because strict orthogonality
is maintained between variational subspaces that describe polarization on different
fragments, and a large fraction of the virtual orbitals is discarded. Therefore, taken
together, the ALMO and POLMO estimates of polarization are expected to bracket
the true value.

4. Numerical tests of the ALMO and POLMO polarization energies have been carried
out on the water dimer using a large sequence of cc-pVXZ, aug-cc-pVXZ and d-aug-
cc-pVXZ (X=D,T,Q,5) basis sets. The POLMO scheme is stable with respect to basis
set extensions even in the strongly-overlapping regime. By contrast, the ALMO polar-
ization contribution is not stable with respect to basis set extensions. Analysis of the
power law decay of ALMO and POLMO polarization as a function of intermolecular
distance is consistent with ALMO overestimating and POLMO underestimating polar-
ization. Results were also calculated for the Na+CH4 interaction, which is dominated
by polarization in both the ALMO and POLMO approaches.

5. Within the Hartree-Fock method, for the water dimer at the equilibrium geometry,
the estimated range within which the true polarization energy-lowering lies is (3.0,4.6)
kJ/mol. If an aug-cc-pVTZ basis is taken as typical for the ALMO EDA method,
our results suggest that true polarization is at least 20% less than the ALMO result,
though not more than 46% less. Accordingly it is important to use the ALMO po-
larization contributions primarily for comparative purposes, as the absolute values are
demonstrably too large. Further work on better separating polarization from charge
transfer for EDA purposes is clearly desirable.
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σ∗(OH) : [guess] [pol] [del]

p(O) : [guess] [pol] [del]

Figure 4.1: σ∗(OH) and p(O) guess, POLMO, and delocalized orbital pair set plotted at a
contour value of 0.12. Guess and polarized orbitals have mostly local amplitudes in spite of
orthogonality.

aug-vXz d-aug-vXz

Figure 4.2: The character of the Cs water dimer interaction is basis-set dependent in the
SCF MI scheme, but stable in the minimal-basis scheme.
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Figure 4.3: Component magnitudes in the aug-dz basis scale with e.e. in accordance with
the form of the decomposition term described. The 20% e.e. point corresponds to optimized
B3LYP.
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Figure 4.4: (a) POLMO binding components of B3LYP/aug-cc-pvdz Cs water dimer travers-
ing its H-bond-breaking coordinate have the correct limiting behavior and a complicated
binding interaction; (b) log(∆E)-log(r) plot of the frozen and polarization contributions
indicate scaling consistent with appropriate classical inverse square-power.
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Chapter 5

Frugal supermolecular perturbation
theories

5.1 Introduction

Quantum chemistry has undoubtedly emerged as a mature field with considerable predictive
power in the past few decades. Ever-increasing improvements in computing power have ar-
guably served to shift its scope of applied focus to large molecular clusters, surfaces, and the
condensed phase. Much emphasis has been placed on the development of low-scaling approx-
imations to high-level model chemistries, e.g., resolution-of-the-identity/density-fitting[37–
42] for two-electron integrals, explicitly-correlated F12/R12[43, 45–51] formulations for ac-
celerated CBS convergence, spin-component-scaled Laplace-transformed [52, 53], and rank-
reducing tensor decompositions[54–62] in Møller-Plesset (MP) and coupled-cluster (CC)
methodology, hybrid QM/MM[245, 246] embedding approaches, and domain fragmenta-
tion for local correlation methods[63, 68, 247–254]. In view of its lower-order scaling and
quicker basis set convergence than traditional wavefunction approaches, density functional
theory (DFT)[33, 34] is arguably the most qualified quantum mechanical framework currently
available for applications on large systems, and no doubt the most the popular. Modern
sophistications in parametrization techniques, e.g., range-separation of the Coulomb oper-
ator, inclusion of unoccupied levels, non-local correlation, and empirical dispersion, have
produced state-of-the-art functionals competitive with wavefunction methods for a host of
problems, all within an independent-particle (single Slater determinant) model solvable with
low-dimensional linear algebra.

The SCF procedure that underlies DFT (and Hartree-Fock) methodology typically in-
volves iterative diagonalization of a one-body Hamiltonian that is a function of its eigenvec-
tors until self-consistency is achieved, e.g., until neither it nor its solutions change. Efforts
at tractability gains have historically focused on either Hamiltonian construction or diago-
nalization. Perhaps the most ground-breaking achievement in the former was surmounting
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the so-called ”Coulomb problem”, the unavoidable quadratic growth with system size of
the number of important two-center integrals. Linear scaling of Coulomb matrix construc-
tion[255–257] was achieved with the introduction of fast-multipole-method (FMM)[258–260]-
based schemes partitioning the Coulomb interaction into near- and far-field domains and
parametrizing the latter with multipole expansions in tree algorithms. Cost reduction in
the computation of exchange followed from capitalizing on the inherent sparsity of density
matrix elements for finite-band-gap systems, where judicious screening can reduce the com-
putation of the K matrix to linear complexity[261–263]. The error in these linearizations
is machine-double-precision-tunable, and benefits are conferred rigorously in the asymptotic
regime though they’re realized in practice for calculations of intermediate size, whereupon
the crux of the SCF procedure becomes the cubic effort of Hamiltonian diagonalization and
quadratic memory cost, the focus of the current work.

Many alternatives to iterative full-space diagonalization have been proposed. So-called
”direct” methods forgo any explicit diagonalizations, exploiting or enforcing sparsity in the
molecular orbitals[264–266] or density[267–269] and solving constrained optimizations tak-
ing advantage of linear-cost sparse matrix multiplication. Projective diagonalization-free
approaches such as the variational coupled-cluster singles[270] method solve non-linear pro-
jection equations from a Brilluoin-violating guess to obtain corrections to the energy and
orbitals equivalent to those obtained by a single Roothaan-Hall step. Non-iterative projected
atomic orbital (PAO)[271, 272] and dual-basis methods[273–275] solve a reference problem
in an economical basis and compute a second-order correction describing non-Brilluoin cou-
plings in a larger basis from an linearized or untruncated CCS amplitude equation, requiring
a single diagonalization step. An atomic orbital representation leaves the matrices of interest
sparse and thus amenable to fast matrix operations. Fragmentation schemes partition the
large SCF problem into a linearly-growing number of manageable, independent sub-domains,
e.g., atomic or molecular, and solve ”local” Roothaan-Hall equations, patching together sub-
system quantities to approximate the supersystem ones. Used in tandem with the many-
body expansion (MBE), approaches such divide-and-conquer [276–280], fragment molecular
orbital (FMO) [281–284], XPOL+SAPT[285, 286], and many-overlapping-body[287] have
produced encouraging energetics for large systems, and are generally amenable to large-scale
parallelization.

Some characteristics any proposed linear-scaling SCF model should possess beyond the
property of being formally satisfactory include variationality; formal or at least apparent
smoothness on the PES; demonstrated and sustained cost-savings relative to conventional
SCF while remaining accurate for relative energies; intuitive, physically-motivated domain
identification in the case of fractionation; clear limiting behavior; and portability to any
single-particle model. In this work, we propose a novel alternative to full-space diagonaliza-
tion in line with these desiderata, exploiting information garnered from perturbation theory
to project the diagonalization problem into a variational space no larger than twice the num-
ber of electrons. We focus on non-covalent interactions, applying perturbation theory on top
of zeroth-order states taken either as eigenfunctions of the vacuum one-particle Hamiltonian,
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or as absolutely-localized molecular orbitals (ALMOs)[75, 288–291], the variational solutions
to locally-projected non-orthogonal SCF equations[72, 292]. We demonstrate a subsequent
SCF performed in aminimal basis space spanned by the perturbative wavefunction recov-
ers the conventional result nearly exactly, with relative errors virtually insensitive to the
choice of basis or PT order treated. As shall be seen, these conclusions still apply when the
rate-limiting minimal basis construction is linearized by restricting operations to convergent
molecular domains.

5.2 Theory

We use the labels i, j, k, l, ... and a, b, c, d, ... to represent occupied and virtual orbitals, while
p, q, r, s... are general spin-orbital indices and A,B,C, ... represent fragment labels. Repeated
indices imply summation.

Beginning from any guess, |0〉, at the ground-state eigenfunction of a Hartree-Fock or
Kohn-Sham Hamiltonian, one obtains the variational solution by iterative diagonalization of
the Hamiltonian matrix in the guess representation until self-consistency is reached. For our
purposes, we recast this optimization problem in the language of perturbation theory. Taking
H(0) = |0〉H00〈0| + |s〉fss′〈s′|, H(1) = |0〉f0s〈s| + |s〉fs0〈0|, and a perturbative wavefunction

|0(n)〉 = et
s(n) |0〉 where {ts(n)} describes the nth-order perturbative projection onto the singles

manifold, we left-project the Schrödinger equation with 〈0| and expand the energy in orders
of the perturbation obtaining,

E(0) = 〈0|H(0)|0〉 = H00,

E(1) = 〈0|H(1)|0〉 = 0, and

E(n) = 〈0|H(1)|0(n−1)〉 = f
(1)
ia t

ai(n−1),

(5.1)

and amplitude equations complete through (2n− 1)th order in MP partitioning,

tai(n){fii − faa}(0) = f
(1)
ai − tak(n−1)f

(1)
kc t

ci(n−1). (5.2)

Truncating the perturbative wavefunction at first-order gives the familiar non-Bruilloin
correction linear in the amplitudes, tai(1) = f

(1)
ai {f

(0)
ii − f

(0)
aa }−1, while carrying n to infinite-

order guarantees a correction equivalent to the energy-lowering on a single Roothaan-Hall
diagonalization. One can thus imagine obtaining the variational energy and wavefunction
this way by macroiterations, updating the orbitals by the infinite-order solution of eq. 5.2,
and repeating until the correction vanishes. Taking this alternative route, one avoids iterative
diagonalization in the full AO space, but at the expense of cubic contractions in the non-linear
piece of eq. 5.2, and pseudocanonicalization in each subspace to uncouple the denominator
at each macroiteration. The cost of such a procedure thus approaches that of standard SCF
in the relevant limit Nv>>No. To avoid the pitfalls of macroiterative update, then, one has
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to be content that a non-iterative correction to |0〉 will be useful to approximate conventional
SCF. This will, of course, depend critically on the size of the perturbation which is, in turn,
parametrized by the zeroth-order wavefunction. In dual-basis methods, for instance, the
same PT eqs. 5.1 & 5.2 are employed taking |0〉 as the canonical solution in a smaller basis
and solving for infinite-order amplitudes, with the quality of the single Roothaan step in the
larger basis improving with the description in the smaller basis until the correction vanishes
in the limit the reference and target basis sets are identical. Our approach here will be to
remove some dependence on the guess by adding a degree of self-consistency while eschewing
iterative diagonalization in high-rank. A singular value decomposition of ts(n),

La′at
ai(n)R†ii′ = T

(n)
a′i′ , (5.3)

and subsequent transformation of the virtual orbitals by the columns of L with No non-
vanishing singular values assuming Nv>>No,

|a′〉 = |a〉Laa′ , a′ = 1, ..., No, (5.4)

guarantees that the nth order wavefunction and energy are recovered exactly, but in a 2*No-
dimensional basis of the most important occupied-virtual pairs, e.g., eigenvectors of the
response density. We perform a subsequent SCF in this rank-reduced pair basis, expecting
the the variationality of the optimization to afford accuracy gains relative to non-iterative
corrections to SCF.

Though the proposed perturb-then-diagonalize minimal-basis SCF detailed above scales
with the occupied dimension alone, we’ll want to recast the foregoing PT problem in terms of
NA fragmented ones giving rise to NA fragment-optimal minimal basis sets in order to avoid
the full virtual-block diagonalization required at the outset. We nevertheless understand this
full-rank model as the variational lower bound for our minimal-basis schemes, and because
there is no imposed fragmentation of subspaces, we’ll refer to it as the ”proper” model
henceforth. We approach the fractionation problem beginning with a reference of molecule-
tagged states, either optimized (ALMO) or unrelaxed (frozen) in the supermolecular field.
By construction, a perturbative treatment will be complete to infinite- or first- order in
elements of H(1) confined to a given molecular center, respectively, and we should therefore
expect to treat electrostatic and inductive interactions well when higher-order effects are
negligible. The reader will recall that rotations zeroing occupied-virtual Fock elements from
the ALMO or frozen references correspond to energy-lowering due to charge-transfer and (re-
)polarization effects. Accordingly, in the limit that any two fragments are non-interacting,
their shared occupied-virtual block of the Fock matrix will vanish, and as they begin to
interact, their shared contribution to the perturbative wavefunction grows with the elements
in their shared block of fov. We shall make use of this information to economize the minimal
basis construction. Specifically, the rank of a given fragment’s perturbative wavefunction
{ts(n)
A } can be truncated substantially by retaining for each occupied set only those virtual

functions giving rise to strong couplings in fov, e.g., those of magnitude greater than or equal
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Figure 5.1: Acceptance function K over the coupling interval (p0=0.1, p1=1.0).

to some cut-off threshold. Such an approach, though it will guarantee true linear-scaling,
will yield PESs not formally smooth because the number of important virtual orbitals taken
into consideration by a given fragment will vary along the reaction coordinate. We shall
demonstrate, however, that the cut-off can be chosen to cause any discontinuities to vanish.
We describe the selection procedure below.

For a given fragment A wanting a virtual space, we submit its occupied-virtual block
to an acceptance function K centered on a pre-specified coupling interval (p1, p2) which
by its output will help us determine an appropriate rank for the virtual dimension in A’s
amplitude equation. We’ll retain for A the union of all virtual functions giving rise to nonzero
K. Letting the region around p0 correspond to a weak interaction limit and the region around
p1 to a strong limit, the choice of the bump function given in Fig. 5.1 guarantees

|fov| < p0, K[fov] = 0,

|fov| > p1, K[fov] = 1, and

p0 < |fov| < p1, K[fov] < 1.

(5.5)

In the limit p2 = p1 = h, K tends to a Heaviside function centered about h. As h→ p1, then
each fragment will finish up with amplitudes drawn from the full virtual set, and the differ-
ence in error between it and the foregoing ”proper” model shall be imputed to non-locality
in the occupied space. We’ll refer to this case as the ”global” variant henceforth, noting
it will serve as a bound for models where fragments reference subsets of the virtual space
in their PT problems. Considering the other limit where h → p2, the virtual rank of each
fragment-centered problem tends to zero and the error approaches the difference between
the exact and zeroth-order energies with no virtual functions to perturb into. Our task
will thus be to find a reasonable compromise between the sizes of the individual problems
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and the forfeited accuracy against the ”global” bound. Models where the minimal basis is
constructed in this way shall be referred to as ”truncated”. We compile our models in Table
5.1 for quick reference and present our algorithm below.

model / PT dimensions occupied virtual
”proper” No Nv

”global” NA ∗NoA Nv

”truncated” NA ∗NoA NA ∗Nv′A

Table 5.1: Model specifics. Both the ”proper” and ”global” models allow all occupied-virtual
rotations and require semicanonicalization in the full virtual rank Nv for construction of the
2∗No-dimensional minimal space. ”Truncated” models require a linearly-growing number of
O(Nv′A)3-cost diagonalizations, where Nv′A is the number of ”important” virtuals required
in A’s perturbative wavefunction.

1. For {A},
construct K[(p0, p1), foAv{B} ] and accumulate {v{B}} for K > 0, yielding {Nv′A}: O(NoA ∗Nv).

Diagonalize foAoA and fv′Av′A, then transform {CµvA} to the semi-canonical basis: O(NoA)3+O(Nv′A)3.

Construct and SVD local semicanonical toAv′
A , then transform {CµpA}: O(NoA)3+O(NA

vmin
)3.

2. Orthogonalize across the set of minimal basis sets: O(Nvmin)3 + O(No)
3.

3. Diagonalize the Fock matrix in the minimal-basis representation to self-consistency: O(2 ∗No)
3.

The ”global” model requires the same manipulations as above in the occupied space, but
full-rank operations in the virtual space, e.g., without thresholding or fragmentation. For
the ”proper” model, full-rank operations are performed in both subspaces without reference
to fragment labels. The cost of these models will therefore be dominated by the unavoid-
able O(Nv)

3 diagonalization step. Nevertheless, should they show promise, either can be
recommended on the grounds that it asymptotically represents an iteration-number -fold net
speedup relative to conventional SCF. This follows from taking a ratio of their costs in the
limit Nv >> No, e.g., as the basis describing a given center approaches completeness, or as
the number of molecules approaches some large value. If the net cost of the ”proper” model
is O(No)

3 + O(Nv)
3 + miter

min ∗ (2 ∗ No)
3 and the cost of the conventional algorithm goes as

miter
can ∗ O(Nv + No)

3, then the asymptotic ratio is 1 : miter
can . For ”truncated” models, we

replace O(Nv)
3 by O(

∑
A(NvA)3) = NA ∗ O(NvA)3 and obtain sfrac

3 : (NA
2 ∗miter

can), where
sfrac is the ratio of the number of virtuals incorporated in A’s amplitudes to the number na-
tive to A, (or the number of virtual spaces appropriated by A, effectively) the cube of which
is conveniently understood as the prefactor multiplying the linear-effort truncated virtual-
block diagonalizations. We expect formal linear scaling to set in as sfrac converges on some
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n-independent value and the local environment is minimally perturbed on the addition of a
molecule.

In the following section, we benchmark our models on prototypical interactions of dimers
and clusters taking the interaction error relative to conventional SCF as our figure of merit.
We shall hope to demonstrate the quality of our minimal-basis models is largely invariant to
both the choice of basis set and order of the perturbative wavefunction parametrizing them,
and moreover that a judicious choice of K can furnish low-prefactor, linear-effort truncation
models representing attractive alternatives to conventional SCF for intermolecular interac-
tions. All models were implemented in a developmental version of the Q-Chem 4.0 electronic
structure package.

5.3 Applications

We begin by examining the performance of tried-and-true, non-iterative dual basis (DB)
and polarized atomic orbital (PAO) corrections to economical SCF references as a baseline
for comparison. Interaction errors for these methods relative to the conventional scheme
for the Cs-symmetry[293] water dimer interaction are given in Table 5.2. The zeroth-order
DB-SCF energy consistently overshoots the exact result due to BSSE, improving roughly
two-fold with the cardinal number, while the corresponding PAO-SCF number consistently
underbinds and is insensitive to a choice of the underlying basis set. A single Fock ma-
trix construction, and perturbative treatment (infinite-order for DB-SCF and first-order for
PAO-SCF) in the secondary basis improves the former by an order of magnitude and the lat-
ter by two orders, both garnering quantitative binding energies for an iteration-number -fold
reduction in cost over the conventional scheme, a true success story for perturbation theory.

error DB-SCF/racc-pVZ(0) PAO-SCF(0) DB-SCF/racc-pVZt=t(inf) PAO-SCFt=t(1) Ebindexact

aug-cc-pvdz -3.07 1.56 -0.12 0.04 19.52
aug-cc-pvtz -1.18 1.42 -0.08 0.04 19.00
aug-cc-pvqz -0.68 1.70 -0.04 0.05 19.08

Table 5.2: kJ/mol interaction errors for dual-basis and projected atomic-orbital SCF against
vanilla SCF for (H2O)2 in its Cs equilibrium geometry computed with the B3LYP functional.

How does the choice of reference wavefunction affect performance of the perturbation
theory? PAO-SCF and DB-SCF represent opposite extremes of reference localization in a
supermolecular binding energy calculation. The PAO-SCF scheme solves a constrained vari-
ational problem yielding a reference of strictly-atom-centered non-orthogonal states, while
the DB-SCF reference wavefunction is simply the canonical (delocalized) solution in a basis
subsumed by the target one. A reference of ALMOs or unrelaxed (FRZ) orbitals represents,
in some sense, an intermediate node on an imagined scale of orbital locality, since therein,
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molecular orbitals are delocalized on a molecule, but strictly molecule-localized. Not-so-
intermediate errors against the same reference calculations for both zeroth-order references
are presented in the first column of Table 5.3. In stark contrast to DB- or PAO-SCF, the
error from either reference - some fifty and thirty percent - respectively, is large, but not
staggering, as what we’re calling ”error” here has been ascribed in the context of energy
decomposition analysis (where these references serve as intermediate wavefunctions connect-
ing to the canonical energy and wavefunction) as induction plus charge-transfer energy in
the case of the FRZ reference, and charge-transfer energy from an ALMO reference (not to
mention that the DB- and PAO-SCF corrections possibly benefit from error cancellation in
the supermolecular subtraction). Given the significant dative character of this interaction,
we acknowledge perturbation theory from either molecule-centered reference shall thus have
to do a lot of work to compete.

We throw away fragment labels for the moment and perform perturbation theory accord-

error FRZ(0) ALMO(0) FRZt=t(1) FRZt=t(∞) ALMOt=t(1) ALMOt=t(∞)

aug-cc-pvdz 13.04 8.96 0.38 / 0.13 0.40 / 0.13 0.43 / 0.05 0.44 / 0.05
aug-cc-pvtz 12.55 6.93 0.39 / 0.14 0.42 / 0.14 0.30 / 0.04 0.30 / 0.04
aug-cc-pvqz 12.86 6.82 0.41 / 0.15 0.44 / 0.15 0.27 / 0.03 0.28 / 0.03

Table 5.3: interaction error in kJ/mol as as function of basis set against vanilla
B3LYP/(H2O)2 in its Cs equilibrium geometry for non-iterative/iterative ”proper” mod-
els beginning from either FRZ or ALMO reference orbitals and taking first- or infinite-order
ts amplitudes.

ing to the ”proper” PT scheme detailed above which, as the reader will recall, takes the same
expressions as the DB and PAO methods. The corrections are compiled in the second set
of columns of Table 5.3. Glancing at the leading entries there, we conclude the performance
of the non-iterative correction does not seem to depend critically on the order (linearized or
iterated solution to eq. 5.2 of the perturbative wavefunction, choice of basis set, or choice of
reference, though we’re still left with interaction errors larger than the foregoing corrections
by an order of magnitude. This gap is apparently bridged in the subsequent minimal basis
iterations as the trailing columns of Table 5.3 indicate. Again, there’s an insensitivity of the
relaxed-basis error to perturbative order and basis set, though corrections from an ALMO
starting point are slightly better than those from a FRZ reference. Your correspondents
emphasize again that the most computationally-demanding part of the proposed methods
and DB and PAO schemes alike is the full-rank virtual-virtual block diagonalization of the
Fock matrix required to solve the amplitude equations. Because of their isomorphism, we
expect that a similar variational optimization in the rank-reduced eigenspace of t1 obtained
from a DB or PAO reference will likely effect significant accuracy gains for those theories,
for free.

As discussed previously, we must cause the rank of the virtual dimension in Eq. 5.2 to be
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|0〉 FRZ ALMO FRZ ALMO FRZ ALMO
geometry 1*Req 1*Req 1.5*Req 1.5*Req 2*Req 2*Req

error { K[(1,5)*E-3]} 0.44 0.76 0.30 0.15 0.03 0.01
error {K[(1,5)*E-5]} 0.14 0.25 0.01 0.02 0.00 0.00
error{K[(1,5)*E-7]} 0.14 0.04 0.01 0.01 0.00 0.00
error{K[(1,5)*E-8]} 0.14 0.04 0.01 0.00 0.00 0.00

error(global) 0.14 0.04 0.01 0.00 0.00 0.00
error(proper) 0.14 0.04 0.01 0.00 0.00 0.00

〈sfrac〉 { K[(1,5)*E-3]} 0.75 0.32 0.01 0.00 0.00 0.00
〈sfrac〉 { K[(1,5)*E-5]} 1.98 1.46 1.68 0.78 1.18 0.48
〈sfrac〉 { K[(1,5)*E-7]} 2.00 1.98 1.99 1.53 1.95 1.45
〈sfrac〉 { K[(1,5)*E-8]} 2.00 2.00 2.00 1.95 2.00 1.99
〈sfrac〉(global) 2.00 2.00 2.00 2.00 2.00 2.00

Table 5.4: binding error in kJ/mol as as function of acceptance function domain against
conventional B3LYP in aug-cc-pvtz for /(H2O)2 in its Cs equilibrium geometry for iter-
ative models beginning from either FRZ or ALMO taking infinite-order t1 amplitudes to
parametrize minimal basis and corresponding 〈sfrac〉.

independent of cluster size to achieve linear scaling. Our solution will be to fractionate the
full-rank problem into NA molecule-centered problems, each including a convergent fraction
of occupied-virtual excitations in its perturbative wavefunction. In the limit that the accep-
tance function K defined in Fig. 5.1 is centered in a weak coupling domain, no fragment
sees the perturbation and the correction vanishes; In the ”global” limit, each fragment’s
perturbative wavefunction is full-rank and we should expect errors comparable to those of
the ”proper” scheme at a similar cost. Though we anticipate (vide infra) in applications
on large clusters that a given fragment shall automatically utilize most or all of its nearest
neighbors’ virtual functions, we shall investigate in the short-term effects of truncation in the
dimer. Choosing an acceptance function K[p0 = 1.0∗E-X, p1 = 5.0E-X] for X={3, 5, 7, 8},
(e.g., spanning couplings between one and one one-hundred-thousandth kJ/mol), we compile
interaction errors and corresponding 〈sfrac〉 in Table 5.4. We see the FRZ-reference trunca-
tion model errors and 〈sfrac〉 approach the intrinsic ”global” bound more quickly than their
ALMO-reference analogs at all intermonomer separations, though the disparity decreases as
the references approach equivalence in the long range. Because non-zero coupling elements in
the FRZ representation are larger and more numerous than in the ALMO representation, we
should expect 〈sfrac〉 and truncation error to be much less sensitive to the threshold beyond
some coupling regime, albeit larger, e.g., at 2 ∗Req, unrelaxed fragments require half of the
virtual space, while polarized fragments require a quarter.

The adaptive freedom afforded by this approach to truncation implies a varying 〈sfrac〉
along an interaction coordinate, therefore bearing critically on the question of smoothness.
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trunc.(1,5*E-4) (1,5*E-5) (1,5*E-6) (1,5*E-7) global proper DB-SCF PAO-SCF
total 1.37 0.88 0.15 0.10 0.10 0.10 0.28 0.58
hb 1.35 0.66 0.20 0.17 0.17 0.17 0.42 0.81

disp 1.57 1.18 0.11 0.02 0.02 0.02 0.16 0.45
mix 1.11 0.70 0.10 0.02 0.02 0.02 0.17 0.31

Table 5.5: S66 RMSEs relative to ωB97X-D/aug-cc-pvdz in kJ/mol. Local models use ALMO
orbitals and infinite-order t1 for minimal basis parametrization. 〈sfrac〉 for the truncation
models are 0.98, 1.40, 1.89, and 1.99, respectively.

Examining the top panel of Fig. 5.2, we see the slope of 〈sfrac〉 changes more rapidly for
more aggressive thresholds as the dimer traverses its H-bond coordinate, though computed
potentials and gradients in the second row of panels virtually overlay the ”global” plots.
A closer look at the truncation errors in the energy and gradient plotted in the third row,
however, reveals discontinuities across all thresholds, though they never exceed a hundredth
of a kJ/mol (or a tenth of a kJ/mol/Å) for sensible 1- and 0.1-microhartree cut-offs. This
needling issue can be easily side-stepped if one enforces a constant 〈sfrac〉 at all intermolec-
ular distances, but this comes at the expense of the adaptability of the selection scheme to
both economize the calculation and maintain a constant gauge of the perturbation strength,
e.g., we see rapidly decaying 〈sfrac〉 for a stabilized truncation error in the long range. To put
it a different way, a rigid 〈sfrac〉 would make the wavefunction either too sparse or include
too much information. Though we shouldn’t expect any of these acceptance intervals to
guarantee the same smoothness gauge or error margin for other interactions a prior, simple,
automatable scans such as above are instructive for identifying the intrinsically narrow width
of important couplings required to produce a satisfactory level of smoothness.

As our initial analysis showed, the ALMO EDA predicts comparable electrostatic/Pauli
repulsive, inductive, and dative contributions to the ∼20kJ/mol interaction strength between
two waters. Debate about the merits of the decomposition notwithstanding, the interme-
diate wavefunctions there are, as the reader will recall, the zeroth-order references we’ve
employed in our perturbative models. We should thus expect our methods to perform best
for non-dative non-covalent interactions, e.g., those dominated by permanent and/or induced
electrostatics and/or dispersion. To quantify any dependence of performance on interaction
character, we apply our models to the S66[294] dataset of varied interactions comparing
against those obtained from conventional ωB97X-D/aug-cc-pvdz calculations. RMSEs for
all schemes and other non-iterative corrections are compiled in Table 5.5. DB-SCF is seen
to outperform PAO-SCF two-fold in all categories, but its total RMSE is three-fold larger
than the ”global” and ”proper” methods’ from an ALMO starting point. As anticipated,
the most substantial gains are in dispersion and mixed interactions. Tracking total RMSEs
for schemes truncating the virtual space, we conclude that an acceptance domain minimally
in the microhartree regime is required for quantitative accuracy, improving ten-fold over the
most aggressive 100-milihartree-scale model. Computed 〈sfrac〉 provided in the headings of
Table 5.5 indicate nearly the entire virtual set is chosen by each fragment in the case of the
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Figure 5.2: Properties of Cs water dimer traversing its H-bond coordinate computed at the
B3LYP/aug-cc-pvtz. Models take an ALMO reference and minimal basis parametrized by
infinite-order t1. Top: 〈sfrac〉 as a function of intermonomer separation computed for a range
of acceptance functions. Middle: Interaction potential and gradient computed for truncation
models and the global bound. Numerical gradients were computed by the central-difference
approximation. Bottom: corresponding truncation errors.
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n DB-SCF/6-31G trunc(1,5*E-3) (1,5*E-4) (1,5*E-5) aglobal PAO-SCF Ebindexact/kJ*mol−1

2 8.2 1.4 1.1 1.0 0.4 -0.3 25.4
3 8.1 5.5 0.6 0.4 0.4 -0.6 85.0
4 9.3 5.4 0.7 0.6 0.6 -0.2 143.9
5 10.5 5.7 0.7 0.5 0.5 0.0 181.2
6 7.7 5.8 0.7 0.6 0.6 -0.6 246.9
7 8.8 5.8 1.1 0.6 0.6 -0.5 285.8
8 8.8 6.3 1.6 0.6 0.6 -0.3 335.5
9 8.2 6.3 0.9 0.7 0.7 -0.5 387.8
10 7.6 6.8 1.5 0.8 0.8 -0.6 480.8
13 7.7 7.3 1.8 0.8 0.8 -0.7 670.9
17 8.4 7.6 3.1 0.9 0.9 -0.7 880.4
30 9.6 8.1 1.4 1.0 1.0 -0.8 1380.8
46 10.0 8.0 1.2 1.0 1.0 -0.9 2074.1
71 9.8 8.1 1.4 1.0 1.0 -0.9 3428.2
106 13.8 9.2 2.6 1.4 1.4 -4.1 2397.3
127 19.9 13.7 3.3 2.1 2.1 -4.6 2335.3
147 10.6 7.4 1.6 1.1 1.1 -1.8 5946.0

range 12.2 12.3 2.7 1.7 1.7 4.6

Table 5.6: Binding energy percent error against conventional PBE/6-31G* for (H2O)n clus-
ters. Structures were optimized in Avogadro with the MM94 force field. Models use ALMO
orbitals and infinite-order t1 for minimal basis parametrization. aThe ”proper” models pro-
duced identical errors on this scale and were not included for brevity.

latter, while nearly half is chosen in the former. We shall expect in studies on large clusters
that 〈sfrac〉 should exceed, or at the very least be equivalent to, the first coordination num-
ber, and consequently that nearest-neighbor interactions will approach the ”global” quality
automatically.

For its large interaction-strength-to-size ratio, we return to water to uncover proper-
ties of our models when extended to treat clusters. We have chosen a set of seventeen
MM94[295]-optimized complexes up to 147 water molecules in size, and bound up to ∼300
times the strength of the dimer interaction. As before, we shall scan a range of acceptance
domains to uncover general trends, including convergence of per-monomer error to the global
bound as well as saturation onset in 〈sfrac〉. Percent errors in the binding energy relative to
conventional PBE/6-31G* are given in Table 5.6. DB methods surprisingly maintain poor
performance across all cluster sizes, likely due to an exceedingly poor reference. A choice of
the r64G[275] primary basis does nothing to improve its performance (vide infra). PAO-SCF
overbinds consistently, but only slightly, while the ”global” and ”proper” models consistently
err on the other side by a similar amount for small- to medium- sized clusters, but finish up
for clusters larger than n=71 with ∼two-fold smaller percent errors and ranges. At least a
10-microhartree acceptance domain is required to reproduce global model errors, while the
100-microhartree acceptance domain is the most aggressive threshold furnishing acceptable
results.

How do the (automated) domain regime choices affect saturation of intensive properties?
Since coupling amplitudes are implicitly proportional to orbital overlaps, we expect more ag-
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Figure 5.3: Error/n in kJ/mol computed relative to conventional PBE/6-31G*.

gressive thresholds to give rise to more sensitive per-monomer errors, and correspondingly,
that 〈sfrac〉 should asymptote more quickly. Examining per-monomer interaction error versus
n in Figure 5.3, we see larger initial gradients for more aggressive thresholds, and moreover
that the millihartree acceptance domain never reliably compensates the change in local en-
vironment an additional of a peripheral fragment effects.

In addition to its computational significance as the linear prefactor for our truncation
models, 〈sfrac〉 represents, in a sense, a figure of coordination number whose asymptotic value
can not only bear on the error analysis, but also inform acceptance domain selection. We can
interpret from the left panel of Figure 5.4 that each fragment in a truncation scheme taking a
1-millihartree domain appropriates the virtual spaces of some 8 surrounding neighbors (and
this is still insufficient, as we have seen), each monomer in the 100-microhartree domain
requires 18 to produce nearly-converged errors, and 35 per monomer in a 10-microhartree
domain is conservative enough to recover the ”global” bound. Acknowledging full well the
approximate nature of the following analysis, we nevertheless attempt to relate saturated
〈sfrac〉 to coordination numbers computed by integrating center-of-mass radial distributions
over putative solvation shell domains given in the column headings of Table 5.7. Sample
radial distributions for surface and solvated configurations extracted from the n=147 cluster
are plotted in the right panel of Fig. 5.4 for calibration. Average coordination numbers are
compiled in Table 5.7. Focusing on the first coordination shell, we see a rough correspondence
between the average coordination number and the asymptotic 〈sfrac〉 = 8 obtained by the
1-millihartree-domain truncation model above. We conclude that this truncation model has,
on average, included in each monomer’s perturbation problem the virtual spaces of monomers
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|rc.o.m. − r
′| domain / Å 0.00-3.49 3.50-5.49 5.50-7.49 7.50-9.99 10.00-∞

putative solv. shell no. 1 2 3 4 5
〈n〉 7.4 ± 3.7 14.6 ± 5.5 23.1 ± 7.9 35± 8.1 65.5± 21.9

cumulative 7.4 22.0 45.1 80.5 146.0

Table 5.7: Putative coordination numbers by shell for the (H2O)147 cluster. Computed
〈n〉 for the first three shells roughly mirror the number of virtual spaces appropriated per
fragment by truncation models taking the acceptance functions K[(1, 5)E-X] for X={3, 4,
5}, respectively.

in its first solvation shell. That the per-monomer error there is unstable suggests the sec-
ond solvation shell perturbs the core monomer substantially. Summing the first and second
coordinations, we see a correspondence between the total number coordinated through two
shells and the asymptotic 〈sfrac〉 = 18 of the 100-microhartree-domain model, suggesting
that including some two coordination spheres about each center is minimally required to
stabilize the per-monomer error. It follows that the dramatic increase in per-monomer error
at n=17 for the 100-microhartree-domain model seen in Fig. 5.3 is attributable to a yet
unsaturated 〈sfrac〉 ∼ 10. The 10-microhartree-domain model of 〈sfrac〉 = 35 corresponds
to including some fraction of the third shell on top of the first two shells. The most conser-
vative 1-microhartree model yields 〈sfrac〉 = 52 corresponds here to a little more than three
solvation shells of virtual functions per monomer. As we’ve seen, this augmentation mini-
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mally affects the truncation error, suggesting an optimal domain size is somewhere between
the second and third shells.

The above analysis has served to highlight the merits (and attendant complications) in-
herent to a selection algorithm informed by coupling strengths rather than by a real-space
metric such as center-of-mass displacements or van der Waals overlaps. Increased adapt-
ability in domain breadth due to a consideration of No ∗ Nv coupling variables instead of
N2
A inter-fragment distances effectively smears monomeric perturbative wavefunctions over

non-integer coordination domains, allowing for more precise convergence on the optimal
domain size, but at the cost of intuitive appeal the real-space metric affords. That being
said, the generalizability of either metric is questionable at the least. One would have been
hard-pressed to intuit that greater than two solvation shells’ worth of virtual functions per
monomer would be required to reduce the truncation error to noise in the water cluster
interactions above. This number unequivocally depends on the character of the cluster, too,
e.g., less-structured interactions between non-polar solvents are expected to require fewer
solvation shells, while heterogeneous interactions likely require variable domain sizes. The
problem of generalizability notwithstanding, we have demonstrated that truncation accord-
ing to unrelaxed coupling strengths can hierarchically approach the full-rank ”global” bound
at low-prefactor linear cost.

5.4 Conclusions

We have developed and applied a suite of non-Brilluoin perturbation theories from molecule-
centered references to approximate supermolecular interactions. Large-scale accuracy and
tractability gains are obtained by projecting the full-rank SCF problem into a 2*No-rank
representation (which exactly recovers the perturbative wavefunction), and then performing
an SCF optimization in the minimal space. Like DB and PAO corrections to SCF, models
detailed here taking full-virtual-rank perturbative wavefunctions afford an iteration-number -
fold speedup against conventional SCF. In contrast, they benefit from variational relaxation
in a subsequent minimal-basis SCF. Fragmentation of the full-rank perturbative problem
into NA molecule-centered sub-problems provides a tunable trade-off between accuracy and
the onset of linear scaling, but at the cost of formal smoothness in the PES and facile
generalizability in domain selection. (We want to emphasize, however, that generalizability is
the crux of any linear-scaling algorithm forcing sparsity by truncation.) Thus, we recommend
our full-rank models in cases where a single O(N3

v ) diagonalization is affordable. Otherwise,
we recommend truncation minimally in an acceptance regime of the same order as the
calculation’s convergence threshold and caution that more aggressive truncation will require
thorough benchmarking of acceptance domains.
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Chapter 6

Local transformed perturbation
theory

6.1 Introduction

With the formal foundations well-established for the routine computation of a host of molec-
ular properties in density-functional and wavefunction frameworks, quantum chemistry has
undoubtedly emerged as a mature field with considerable predictive power in the past few
decades. These advances coupled to ever-increasing improvements in computing power have
arguably served to shift its scope of applied focus to larger systems of molecular clusters,
extended surfaces, and even solvated biomolecules. To this end, much emphasis has been
placed on the development of low-scaling approximations to high-level model chemistries,
e.g., RI/density-fitting[37–42] for two-electron integrals, explicitly-correlated F12/R12[43–
51] formulations, spin-component-scaled Laplace-transformed [52, 53], and rank-reducing
tensor decompositions[54–62] in Møller-Plesset (MP) and coupled-cluster (CC) methodology,
hybrid QM/MM[245, 246] embedding approaches, and domain fragmentation for low-scaling
local correlation methods.

Chief among the observables for which these efforts at economization have proved es-
sential are binding energies. Perhaps the most popular of non-supermolecular schemes is
symmetry-adapted perturbation theory (SAPT),[296, 297] a many-body generalization of
Heitler-London theory that treats the two-body Hamiltonian as a perturbation to monomer
wavefunctions complete to some order in MP theory, and furnishes decomposable interaction
energies directly, that is, without subtraction. It has seen immense development in wavefunc-
tion and DFT[298, 299] flavors, and even extended to the realm of molecular clusters with the
use of pairwise-additive many-body techniques[286, 300, 301]. Among the most sophisticated
coupled-cluster level variants are the CCD+ST(CCD)[302, 303] and SAPT(CCSD)[304–307]
methods. The former computes dispersion by solving intermonomer ring-CCD equations
on top of CCD monomers and treats singles and triples perturbatively, and has recently
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been treated in a reduced ”natural” orbital representation[308]. The latter computes disper-
sion from frequency-dependent polarizabilities of CCSD-level monomer wavefunctions and
adds non-iterative triples and quadruples. These methods have shown themselves to be
very accurate when applied to two-body interactions, but extending SAPT in its purest
form to non-pairwise-additive interactions has proved far from straightforward[286, 300,
301]. Other direct methods tackle the problem via application of the many-body expansion
(MBE) separating pairwise, three-body, and higher terms. The fragment MO method [281–
284], many-overlapping-body[287], and divide-and-conquer[276–280] approaches have pro-
duced encouraging energetics for calculations on large clusters, and are generally amenable
to large-scale parallelization. Moreover, low-order truncations can furnish surprisingly accu-
rate results while obviously conferring huge computational savings.

Non-constructive/supermolecular techniques generally seek to recover a given level of
canonical treatment of the supersystem by carving out domains defining individual correla-
tion problems, oftentimes in localized orbital representations. Such approaches are motivated
by the inherent locality of dynamical correlations, and thus neglecting distant correlations
should effect lower scaling of the supermolecular computation without forfeiting accuracy.
Pulay[309] and Saebø[247, 248, 310, 311] did the first seminal work in this field, developing an
iterative MP2 scheme retaining only a quadratic number of domain-pair amplitudes but re-
covering of more than 98% of the canonical correlation energy in a basis of localized occupied
orbitals and a non-orthogonal, redundant set of atomic orbitals projected into the virtual
space (termed PAOs). Their approach has since inspired the non-iterative fixed-domain
dimers- (DIM) and triatomics-in-molecules (TRIM)[249] models for MP2-level correlation
and a fourth-order triples model[312], the local coupled cluster methods[250–252, 313–315]
introduced by Werner and Schutz and developed by others, purely AO-based algorithms[253,
254, 316, 317], and mixed CC-MPBT approaches[318–320]. Other local correlation methods
similar in spirit to the MBE approaches eschew non-orthogonality and its attendant com-
plications, e.g., linear-dependence, rank dilation, and retention of overlap integrals in the
spin-orbital equations, opting instead for localized orthogonal orbitals and domain specifi-
cation based on the relative locality of the occupied subspace, allowing straightforward use
of standard-package codes and facile parallelization of completely independent (albeit some-
times overlapping) subdomain calculations. These include the divide-expand-consolidate
approach[63–65], natural linear scaling coupled-cluster[66, 67], the clusters in molecules[68,
69] method, and other higher-order methods [70, 71].

Some qualities a local correlation model should possess beyond the property of being
formally satisfactory arguably include simple, physically-motivated domain identification;
monotonic convergence to the (upper-bound) untruncated/canonical correlation energy as
the model space is augmented to full-rank; consistent treatment of occupied and virtual
subspaces; free of empirical or tunable parameters; demonstrated and sustained cost-savings
relative to the canonical result while remaining accurate for relative energies; extension to
arbitrary correlation rank; well-defined limiting behavior; and guaranteed smoothness on the
potential energy surface. In this work, we introduce a hierarchy of elegant local correlation
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theories which we feel satisfies all of the above criteria. Guided by the ethos of perturba-
tion theory, we assume outright that the interaction energy is substantially smaller than
the total energy. Making use of Löwdin partitioning[29, 321–324], we define a zeroth-order
wavefunction as the solution of truncated, non-orthogonal, molecule-centered coupled clus-
ter equations of at most a quadratic number of variables, and treat non-local excitations at
second-order. Our reference determinant shall be built from absolutely-localized molecular
orbitals (ALMOs)[75, 288–290], determined as the variational solution of locally-projected
(SCF-MI) equations[72, 292] constraining the coefficient matrix to be block-diagonal in the
molecules. Such a reference has treated induction effects to infinite-order (or satisfied Bril-
louin’s condition on-site), but remains an upper bound to canonical Hartree-Fock (HF),
increasingly accurate as inter-site Brillouin matrix elements vanish, e.g., for interactions be-
tween insulators or interactions approaching the long range.

We hope to demonstrate that our models represent attractive non-iterative alternatives to
canonical MP2 where an absence of higher-order terms is responsible for a poor description
of dispersion. Moreover, in the regime where a perturbative treatment is valid, models of
locally-projected solutions with a linear or quadratic number of variables will not only effect
immense tractability gains, but also serve as useful alternatives to the canonical formulation.

6.2 Theory

An exact solution |Rk〉 =
∑

h r
k
h|h〉 of the Schrodinger equation in the full Hilbert space of

n-electron Slater determinants, |h〉 = |0〉+ |s〉+ |d〉+ |t〉+ |q〉+ ... , is obtained by solving

Ĥ|Rk〉 = Ek|Rk〉 (6.1)

for {rkh}, the components of |Rk〉 in |h〉. Similarity transformation of the molecular Hamil-
tonian leaves the eigenvalue spectrum of Ĥ unchanged implying a coupled cluster solution of
rank n will be equivalent to full configuration interaction. Such a limit is obviously infeasible,
so eq. 6.1 is generally treated in a small fraction of |h〉, call it |p〉, where one solves H̄p0 = 0
for tp, neglecting projections onto the complementary space, call it |q〉. Viewing a solution
to a standard low-rank CC problem in |p〉 as a well-defined zeroth-order wavefunction, we
can account for q-space components non-iteratively, couching eq. 6.1 in the language of
perturbation theory.

Shifting to a matrix representation with H̄pq = |p〉〈p|H̄|q〉〈q|, projecting with the left
eigenfunction 〈0|lk and 〈h|, we obtain expressions for the energy Ek and amplitudes {rkh},

〈0|
∑
h h′

lkh′H̄h′hrkh|0〉 = Ek,
{

Ek1− H̄hh

}
rkh|0〉 =

∑
h′ 6=h

H̄hh′r
k
h′ |0〉, (6.2)

Splitting H = H(0) + H(1), r = r(0) + r(1)+..., and l = l(0) + l(1)+..., and expanding eqs. 6.2
and henceforth dropping the state level k for brevity, we obtain corrections to the energy
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through second order:

E(0) = 〈|l(0)H(0)r(0)|〉,
E(1) = 〈|l(0)H(1)r(0)|〉, and

E(2) = 〈|l(0)H(1)r(1)|〉.
(6.3)

Choosing H(0) = H̄pp + Fqq, H(1) = H̄pq + H̄qp + V̄qq + F̄qq − Fqq, r(0) = 1pp, and l(0) =
(1pp + Λpp), where Lambda is the de-excitation operator from the coupled-cluster pseudo-
Lagrangian[325–327], we’re guaranteed i) a zeroth-order eigenfunction of the transformed
Hamiltonian equivalent to the coupled cluster energy,

E(0) = 〈|(1 + Λ)ppH̄(0)
pp1|〉 = ECC, (6.4)

ii) E(1) = 0 since q- and p-space determinants cannot connect across the first-order Hamil-
tonian, and iii) first-order amplitude equations that uncoupled the left-hand side of eq. 6.2
following a transformation of basis that diagonalizes the energy difference. Identifying the
scope of |p〉 determines the correlation model. Taking |p〉 = |0〉+ |s〉+ |d〉, |h〉 = |t〉+ |q〉,
and H

(0)
qq = F̄qq, for example, one obtains the ”(2)” correction to CCSD[328] of Gwaltney

et. al. A choice of bare Fqq instead gives the ”(2)TQ”[329–331] corrections of Hirata and
crew. Neglecting quadruples and approximating Λ = t†, one obtains CCSD(T). Though all
are orbitally-invariant, a transformed one-body operator in the q space requires a fifth-order
transformation to a set of biorthogonal eigenstates to diagonalize the amplitude equations.
We take the untransformed operator in the q-space here.

After a change of basis and expansion of eq. 6.2, the equations for the first-order wave-
function are

D(0)
ss rs(1) = H̄

(1)
s0 + H̄

(1)
ss′ r

s′(0) + H̄
(1)
sd rd(0) + H̄

(1)
st rt(0),

Dddrd(1) = H̄
(1)
d0 + H̄

(1)
ds rs(0) + H̄

(1)
dd′r

d′(0) + H̄
(1)
dt rt(0) + H̄

(1)
dqrq(0),

Dttr
t(1) = H̄

(1)
t0 + H̄

(1)
ts rs(0) + H̄

(1)
td rd(0) + H̄

(1)
tt′ r

t′(0) + H̄
(1)
tq rq(0), and

Dqqr
q(1) = H̄

(1)
q0 + H̄

(1)
qdrd(0) + H̄

(1)
qt rt(0) + H̄

(1)
qq′r

q′(0).

(6.5)

where D
(0)
qq ≡ {E(0)1qq − H̄

(0)
qq}, and repeated indices imply summation. Applying these to

the expression for the second-order energy above, we obtain

E(2) = H̄
(1)
0s rs(1) + H̄

(1)
0s rd(1)+

Λs(0)H̄
(1)
ss′ r

s′(1) + Λd(0)H̄
(1)
ds rs(1) + Λs(0)H̄

(1)
sd rd(1) + Λd′(0)H̄

(1)
dd′r

d′(1)+

Λs(0)H̄
(1)
st rt(1) + Λd(0)H̄

(1)
dt rt(1) + Λd(0)H̄

(1)
dqrq(1).

(6.6)

The generality of a similarity-transformed perturbation theory (STPT) no doubt affords
one a flexible framework within which various correlation models can be dreamt up and, as
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has been discussed, where others can be subsumed under. It has proven itself a natural frame-
work for extending active-space correlation to the external domains of orbital-optimized[332,
333] and pair references[334, 335], excited-state theories [329, 330, 336–338], and other for-
mulations. Below, we couch a description of intermolecular interactions in a (2)-type model
partitioning the configuration space to obtain molecule-centered coupled-cluster states as
zeroth-order wavefunctions.

Beginning with a solution to a locally-projected SCF problem, call it |0〉, we restrict
the primary space to include |0〉 and the set of singly- and doubly-substituted determinants
where excitations are confined to one molecular site,

|p〉 = |0〉+ |s{ia}〉+ |d{iajb}〉, (6.7)

with the braces restricting indices to obtain from one center. Its complement includes two-
center single excitations through four-center double excitations, as well as full-rank triples,
quadruples, etc., though in the present work we choose to restrict our attention singles and
doubles in order to benchmark non-locality error against standard CCSD,

|q〉 = |s{i}{a}〉+ |d{ia}{jb}〉+ |d{i}{a}{jb}〉+ ...+ |d{i}{a}{j}{b}〉. (6.8)

Applying this Hilbert-space partitioning and the same definitions as above for the Hamilto-
nian and the left and right zeroth-order states to eqs. 6.3, we obtain a coupled-cluster-quality
description of local excitations, and a non-iterative treatment of the interaction complete to
fourth order in MP theory. Because the number of p-space variables scales linearly with the
number of molecules, we refer to this theory henceforth as the ”linear” model. Its instruc-
tive value notwithstanding, we shall expect to find this model wanting when higher-order
correlations become significant.

Given free rein to specify |p〉, one can imagine developing a hierarchy of schemes aug-
menting it to completeness in the space of singles and doubles, whereby the zeroth-order
solution would be exact and there would be no perturbative correction to the energy and
wavefunction. A first logical step is to include a quadratic number of dispersion-type con-
figurations confining hole-particle excitations to a given center, e.g., {|d{ia}{jb}〉}, in the
reference space. Such an ansatz is reminiscent of the DIM-MP2 model for atom-centered
local correlations, and an evaluation of the zeroth-order energy with first-order amplitudes
should produce exactly that model. Promoting this class of excitations from a fourth- to
an infinite-order treatment, we should expect to recover the bulk of the truncation error in
dispersion interactions, where inductive and dative and effects are vanishing and repulsions
dominate the mean-field interaction.

Further augmentation of the p space with a quadratic number of non-local singles, e.g.
{|s{i}{a}〉}, is expected to relax the local-orbital reference with respect to inter-site occupied-
virtual rotations, recovering the bulk of the truncation error in cases where charge-transfer
effects - which remain unaddressed at the locally-projected mean-field level - are substantial.

Still better, adding in the remaining non-local doubles defines a quartic model with the
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same number of variables as canonical CCSD and equivalent if |0〉 = |HF〉. This model
shall thus serve as a useful Hylleraas bound to assess the performance of our upper-bound
truncation models. We summarize their properties in Table 6.1.

model |d〉 |s〉
linear {iajb} {ia}

linear+nls {iajb} {i}{a}
quadratic {ia}{jb} {i}{a}
quartic {i}{a}{j}{b} {i}{a}

Table 6.1: Model specifics. Enclosed indices obtain from individual molecular subspaces.

Seeing as our models are defined in a Hilbert space describing excitations from a non-
orthogonal reference, we shall derive fully non-orthogonal spin-orbital equations for matrix
elements of the transformed Hamiltonian for consistency. We emphasize that the following
equations are appropriate in any representation and reduce exactly to the conventional ex-
pressions with orthogonal orbitals diagonalizing the Fock matrix in the occupied and virtual
sub-blocks. We begin in the biorthogonal [339, 340] representation where local quantities
are covariant. Repeated indices imply Einstein summation and contra- and covariant indices
may be inter-converted by multiplication with the overlap gpq or the inverse overlap gpq, e.g.,
Cij
ab = gikgjlCklab. Given any choice of |p〉, the symmetric component of the zeroth-order

energy and amplitude equations in the natural representation are

E(0) = ECCSD = f iat
a
i + 0.25vijabt

ab
ij + 0.5vijabt

a
i t
b
j,

〈ai∈p|H̄|0〉 = fab t
b
i − tajf

j
i + Aai (t1, t2) = 0, and

〈abij∈p|H̄|0〉 = fac t
cb
ij + f bdt

ad
ij − tabkjfki − tabil f lj +Bab

ij (t1, t2) = 0.

(6.9)

A and B in the covariant integral representation in Appendix A.1.
Applying the virtual-block metric to eliminate the left-hand inverses and the occupied

metric to bring the amplitudes to contravariance, we recast the above equations in the
covariant integral representation and regroup terms obtaining,

ECCSD = fiat
ai + 0.5vijabt

aitbj + 0.25vijabt
abij,

{fjigab − fabgij}tbj = Aai(t̄),{
{fljgbd − fbdgjl}gkigac + {fikgac − facgik}gbdgjl

}
tcdkl = Babij(t̄).

(6.10)

With orthogonal orbitals, Kronecker deltas would replace the metrics and we’d need only
pseudocanonicalize the orbitals to uncouple the amplitude equations. In a basis of non-
canonical, non-orthogonal orbitals, our task will thus be to find a transformation that simul-
taneously orthogonalizes and pseudocanonicalizes the orbitals. Exploiting the direct-product
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structure of eq. 6.10, we define G(ia)(jb) = gijgab and D(ia)(jb) = {fijgab − fabgij} for conve-
nience and rewrite the equations combining hole-particle pairs into compound indices ”(ia)”.
This will be useful for thinking about pairwise truncations in our model spaces later on.

D(ia)(jb)t
(jb) = A(ai)(t̄), {D(bj)(ld)G(ia)(kc) +G(bj)(ld)D(ia)(kc)}t(kc)(ld) = B(ai)(jb)(t̄). (6.11)

Applying the transformation T
(ai)
(AI) = G

− 1
2

(ai)

(jb) U
(jb)
(AI) where U

(jb)
(AI) diagonalizes the energy-

difference direct product, the amplitude equations assume a convenient diagonal form, Dpt̄
p =

Rp. Without making use of sparse linear algebra solvers, the diagonalization scales as O(P )3,
where P is the number of correlated occupied-virtual pairs. The amplitudes must be back-
transformed before updating the right-hand side and special care must be taken to ensure
all contractions in RP respect the covariant integral representation, keeping the amplitudes
contravariant. Moreover, consistent formulation of truncated flavors of eq. 6.11 requires
that the two-particle direct product be formed in the same basis at the outset. For example,
consider the quadratic model detailed above. There, the amplitude equations take a two-
body metric composed strictly from overlaps spanning up to two fragments. The scope of
the correlation problem is therefore fixed at the beginning by this designation.

The left-hand problem for Λ̂ is isomorphic to the right-hand projection problem and, as
such, must be consistently framed, e.g., if truncations were made in T̂ , the left-hand equa-
tions must also bear them out. We begin from the natural representation and again seek
to recast these in the more convenient covariant representation. Projecting the left-hand
eigenvalue problem 〈0|L̂H̄ = 〈0|L̂E onto the p-space singles and doubles, we obtain the
linear equations

X i
a ≡ 〈0|H̄|ai 〉+ λjb〈

b
j|H̄|ai 〉+ λjkbc 〈

bc
jk|H̄|ai 〉 = λiaE, and

Y ij
ab ≡ 〈0|H̄|

ab
ij 〉+ λjb〈

b
j|H̄|abij 〉+ λjkbc 〈

bc
jk|H̄|abij 〉 = λabijE.

(6.12)

The spin-orbital equations for the matrix elements in the covariant representation are given
in Appendix A.1. After subtracting the diagonal and applying the virtual block metric
to take λ to the contravariant space and the occupied metric to make the left-hand side
covariant, we obtain the similar form

Xia = λjb{fjigab − fabgij}, and

Yijab = λklcd
{
{fljgbd − fbdgjl}gkigac + {fikgac − facgik}gbdgjl

}
.

(6.13)

The same transformation as before diagonalizes the energy difference. Again, the covariant
representation must be respected when updating the left-hand side and evaluating residuals.

By this point we have detailed the working equations sufficient to solve a non-orthogonal
CCSD problem permitting truncations. Regarding our local infinite-order amplitudes as
zeroth-order quantities, we proceed with a discussion of some features of the perturbation
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theory. As in the case of the zeroth-order amplitude equations, the scope of the perturba-
tion will be fixed by the transformation applied to bring the first-order amplitude eqs. 6.5 to
diagonal form. Thus, a first-order amplitude describing an excitation across fragments, e.g.,
r(1){i}{jab}, can only be consistently determined in a basis where the corresponding direct-
product elements are taken into account, which means either the full-rank two-particle metric
must be constructed and diagonalized as above, or one may equivalently solve for the first-
order amplitudes in the biorthogonal representation. There, the amplitude equations are
uncoupled after pseudocanonicalization of the biorthogonal (non-Hermitian) Fock operator,
at the risk of obtaining complex eigenvalues. Covariant spin-orbital equations for the first-
order amplitudes and intermediates are given in Appendix A.1.

By our applications below, we shall ultimately hope to understand the extent to which
non-local contributions will require an infinite-order treatment for prototypical interactions,
or in other words, which components of the interaction are sufficiently small to be confi-
dently relegated to a fourth-order treatment. We take the truncated and quartic models to
represent upper and Hylleraas bounds to the coupled cluster energy with confidence that
the components interpolating between them are not only well-defined, but contain physical
content that stand to bear on our assessment of orbital reference quality and adequacy of
the correlation treatment. First, we uncover general properties of our intermolecular STPT
models as applied to elementary dispersion interactions, including the convergence behavior
of the binding energy and terms on basis set extension, BSSE effects, and performance on
application to small clusters. A discussion of intra- and intermolecular relaxations due to
the interplay of orbital choice and single excitations entering in the correlation problem will
follow. Next, we discuss potential tractability gains achieved on subspace orthogonalization.
In a final assessment of the generality of our conclusions, we compute statistical errors on
application to the A24[293] data set of various non-covalent interactions.

6.3 Applications

All models were implemented in a hacked version of Q-Chem 4.0 taking spin-orbital ex-
pressions for matrix elements of the transformed Hamiltonian generated by applying Wick’s
theorem in an independent Mathematica code. Scripts are available from your correspon-
dents by request.

We have chosen the helium dimer interaction as our poster-child case to assess the perfor-
mance of the our models. Given that the zeroth-order solution in any truncation scheme is
exact at infinite separation, we may cleanly ascribe any binding to the effects of the pertur-
bation theory. Moreover, the purely dispersive nature of the interaction should, in the limit
of a complete one-particle basis set, remove the confound of orbital reference (any binding
at the SCF level is an artifact of BSSE, while the constrained nature of the SCF-MI solution
necessarily makes it an upper bound to canonical SCF) when appraising candidate models
against conventional CCSD.
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We plot He2 potential curves furnished by iSTPT models with linear and quadratic
doubles plus either linear or quadratic singles in Figure 6.1. Satisfying ourselves that the
difference in binding on the inclusion of non-local singles is relatively small for any truncation
model, we focus for the moment on differences stemming from the level of treatment of the
doubles. Examining the top two curves, it is clear that augmenting the on-site model with
dispersion-type amplitudes binds the complex at zeroth-order, albeit shallowly and more
distantly compared to the quartic model, which overlays canonical CCSD here. Treating
all non-local doubles at fourth-order in MP theory, the second-order correction to the linear
model produces a bound state, but with a protracted, shallow minimum. On the other hand,
an infinite-order treatment of the dispersive doubles and a fourth-order treatment of the rest
propels the quadratic model to near-exactness, with any difference against the Hylleraas
bound due to higher-than-fourth-order non-local effects in the doubles. We conclude that
infinite-order dispersive doubles are critical to describe this interaction, while higher-order
effects due to other non-local doubles are apparently negligible. Other tests shall be required
to demonstrate the generality of these conclusions.

Returning to the non-local singles, it is no real surprise that they’re uninteresting here,
since the canonical and locally-projected SCF solutions are rapidly approaching equivalence
away from the repulsive wall. Nevertheless, we should expect in this incomplete basis that an
infinite-order treatment of singles should recover more of the mean-field locality error than a
perturbative treatment. For this, we fix our doubles p space and compare the second-order
singles contribution to eq. 6.6 garnered by the local model to the infinite-order non-Brilluoin
term of eq. 6.10 garnered by the non-local model. These are plotted alongside the SCF MI
error for He2 dimer in Figure 6.2, where it is confirmed that infinite-order singles recover
more of the ALMO error than their perturbative cousins across the entire coordinate. We
expect this difference to play a more significant role in cases where strong inter-fragment
occupied-virtual interactions and/or inadequacies in the basis set produce a poor local ref-
erence. Indeed, glancing at Table 6.2, we see the largest improvements in error due to
inclusion of non-local singles at zeroth-order occurs in smaller basis sets and more dramati-
cally when augmented functions aren’t included. All errors have converged by the augmented
quadruple-zeta level where non-local singles do not improve binding, irrespective of the rank
of the doubles. We see that including dispersion-type doubles in the p space results in a
ten-fold reduction of error relative to a second-order treatment.

How does a consideration of basis set superposition error affect our conclusions? By
construction, our ALMO reference excludes BSSE, and all of our truncation models exclude
from the p-space determinants coupling inter-site occupied-virtual pairs (see Table 6.1).
BSSE must lurk in the non-local correction to the energy, then. We compute BSSEs by the
standard Boys-Bernardi counterpoise correction[137], compiling them alongside the change
in the error in Table 6.3. Holding the singles constant, we see for our truncation models that
BSSE does not depend on the quality of the doubles, but does depend on the order at which
the non-local singles are treated, with a non-zero contribution due to higher-order relaxation
of t1 even at the quadruple-zeta level. Taking the difference in BSSEs computed between
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basis {ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {i}{j}{a}{b} MP2 Ebind
CCSD

ccpvdz 0.027 0.017 0.012 0.002 0.000 0.004 -0.131
ccpvtz 0.071 0.057 0.019 0.005 0.000 0.017 -0.235
ccpvqz 0.128 0.118 0.019 0.009 0.000 0.044 -0.315
accpvdz 0.424 0.355 0.150 0.081 0.001 0.105 -1.081
accpvtz 0.344 0.340 0.039 0.035 0.000 0.167 -0.749
accpvqz 0.343 0.344 0.032 0.032 0.000 0.165 -0.763

Table 6.2: He2 equilibrium interaction error in meV relative to canonical CCSD on extension
of the basis set.

any model with non-local singles and the quartic model will give the contribution to BSSE
of higher-order non-local doubles. These effects die more steeply with basis than non-local
singles because their contributions are much smaller.

basis {ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {i}{j}{a}{b} HF+CCSD
accpvdz 0.626 / -0.11 0.687 / -0.05 0.626 / -0.11 0.687 / -0.05 0.737 / 0.00 0.737 / -
accpvtz 0.109 / -0.05 0.116 / -0.00 0.109 / -0.05 0.116 / -0.00 0.119 / 0.00 0.119 / -
accpvqz 0.064 / 0.00 0.068 / -0.00 0.064 / 0.00 0.068 / -0.00 0.068 / 0.00 0.068 / -

Table 6.3: BSSE/change in binding error on counterpoise correction. BSSE and favorable
error changes die as the basis set approaches completeness.

It is appropriate at this point to ask whether conclusions we’ve drawn pertaining to the
dimer will hold for small clusters of helium. This application will serve as a test of the
extent to which our local constructions can capture non-local effects coupling more than two
bodies, which may seem daunting at first since, as the reader will recall, neither the linear
nor quadratic model is able to couple more than two molecules explicitly at zeroth-order.
We saw for the dimer that a Hilbert-space partitioning placing on-site and dispersion-type
doubles in the p space and the rest in the q space proved adequate to recover the full-rank
result, or in other words, that a second-order description of non-local doubles between two
bodies sufficiently approximated the infinite-order description. There is no a priori guar-
antee that this should apply to larger interactions simply because the number of non-local
doubles scales quartically with cluster size while the number of zeroth-order variables can
only increase quadratically. Of course, one may argue on the basis of the intrinsic locality of
dynamic correlations that the most important interactions in a cluster of weakly-interacting
subsystems, though they may not be the most numerous, are two-body in nature, and there-
fore expect to have no issue relegating effects entangling more than two fragments to a
perturbative treatment. If one adopts this optimistic outlook, one should expect the cluster
problem to look like a collection of weakly-coupled dimeric ones, and thus expect the error
to be most sensitive to two-body errors.

Our local models, by construction, put us in good position to examine higher-order ef-
fects in clusters. As we have seen, the difference in performance between the linear and
quadratic models reflects higher-order dispersion-like excitations coupling two bodies, while
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the difference between the quadratic and quartic models is a measure of the strength of
higher-order inter-site couplings entangling up to four bodies. For the remainder of this dis-
cussion, we’ll refer to these as higher-order local and non-local doubles. Taking an idealized
linear cluster of helium atoms as our test application, we plot the dependence of higher-order
contributions on cluster size in Fig. 6.3. In the limit of an infinite chain length, the one-
dimensionality forces any two n-body interactions to be identical, and also guarantees the
number of important n-body interactions to grow linearly, eliminating certain confounds in
our benchmark. Examining the plot, we conclude that most of the higher-order contribu-
tion is in the local doubles, and moreover, that at least an infinite-order treatment there is
indispensable.

We turn our attention to a set of more realistic clusters of helium, shown in Figure 6.4.
Examining the models’ binding errors relative to canonical CCSD in Table 6.4, we see in all
cases, again, that the interaction error decreases ten-fold on the inclusion of the quadratic
dispersion amplitudes. A narrow 1-3% error bracket achieved there suggests again that
higher-order non-local effects on binding are small.

{ijab} {ijab}+ {i}{a} {ia}{jb} {ia}{jb}+ {i}{a} {i}{j}{a}{b} MP2 Ebind
CCSD

D3/n = 3 0.93 0.93 0.11 0.10 0.00 0.46 -8.70
Td/n = 4 1.10 1.08 0.12 0.10 0.00 0.55 -11.60
C4v/n = 5 2.68 2.58 0.33 0.24 0.00 1.30 -14.50
D5h/n = 7 5.39 5.17 0.71 0.50 0.00 2.62 -20.30

Table 6.4: kJ/mol binding errors relative to canonical CCSD computed in the aug-cc-pvtz
basis. Higher-order dispersion is required. Structures are pictured in Fig. 6.4.

Studies on clusters invite the important consideration of whether further tractability
gains can be achieved by simplifying the implementation and costly operations required to
diagonalize eq. 6.11 and compute matrix elements, all of which require contraction with
explicit overlap metrics in both subspaces (see the Appendix). Up to this point, we have
taken a reference determinant of fully non-orthogonal ALMOs. It shall be useful to consider
the extent to which orthogonalization of either or both orbital subspaces will distort the
domain definitions implied by the iSTPT and thereby degrade performance. Ideally, we’d
prefer to orthogonalize both subspaces since then we’d only have to diagonalize the occupied
and virtual blocks of the covariant Fock matrix to uncouple the amplitude equations and
forgo dealing with any two-particle metric altogether, not to mention all one-body overlaps
in the matrix elements reduce to Kronecker deltas. This approach is, of course, not expected
to work, especially with the inclusion of more diffuse AO functions, a requirement for these
applications. We return to the helium dimer interaction, computing the change in the inter-
action error going to orthogonal orbitals, compiling the data in the first rows of Table 6.5.
The insensitivity of the change in error to higher-order effects and a proportional increase
with basis set extension reflects difficulty (and foolhardiness) in imputing orthogonalized
orbitals to molecular centers, rendering a domain-definition framework ill-begotten. This
is not to say that a localization technique will do nothing to improve the result insofar as



CHAPTER 6. LOCAL TRANSFORMED PERTURBATION THEORY 95

symmetric orthogonalization will treat all functions on even footing and perhaps represents
limiting-case worst orthogonal functions. Glancing at the second set of rows in Table 6.5
suggests the preliminary application of a localization scheme[341] furnishing atom-centered
orthogonal virtuals and Boys-localized occupieds does not help much.

One nevertheless has recourse in the argument that electing to orthogonalize the occu-
pied space alone should not distort a given domain too much. This position is expected to
be valid in the regime where inter-site overlaps are small, and in cases where it minimally
damages the locality, it will still effect tractability gains. The change in error starting from
this ”half-non-orthogonal” set of ALMOs is given in the final rows of Table 6.5. It is curious
that this procedure has no deleterious effects. Small ”improvements” are likely the con-
sequence of delocalization degrees of freedom the ALMOs enjoy on orthogonalization. We
thus expect improvements conferred this way to increase in proportion to charge-transfer
and BSSE effects. We shall conduct more tests below to assess whether this fortuitous result
is the general case.

orthogonalization {ijab} {ijab}+ {i}{a} {ia}{jb} {ia}{jb}+ {i}{a}
symmetric
accpvdz 1.79 1.82 1.80 1.83
accpvtz 2.15 2.76 2.17 2.77
accpvqz 3.20 4.10 3.23 4.13

symmetric, localized
accpvdz 1.78 1.81 1.79 1.82
accpvtz 2.12 2.72 2.14 2.74
accpvqz 3.15 4.04 3.18 4.06

half-non-orthogonal
accpvdz -0.01 -0.01 -0.01 -0.01
accpvtz -0.01 -0.01 -0.01 -0.01
accpvqz 0.00 -0.01 0.00 -0.01

Table 6.5: Change in He2 equilibrium interaction error on orthogonalization. Energies are in
meV. Orthogonalization of both subspaces destroys domain identification, whereas orthogo-
nalization of the occupied subspace alone preserves accuracy while conferring cost-savings.

We have yet to explore any interplay between local T̂1 and the choice of orbital ref-
erence, e.g., whether there is a synergy or perhaps redundancy in optimizing T̂1 beginning
from a reference of ALMOs for which an intra-fragment Brillouin condition has been satis-
fied, e.g., induction has been treated to infinite-order. One can also imagine beginning from
an un-optimized reference determinant of ”frozen” orbitals - constructed from concatenat-
ing fragment-blocked coefficient matrices determined as the SCF solutions of molecules in
vacuum - and relying on the projective optimization of T̂1 to polarize the orbitals. Surely
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the leading occupied-virtual Fock elements, which unambiguously account for mean-field
polarization, will play a significant role in the optimization, but the extent to which the si-
multaneous optimization of correlations will influence the mean-field induction and vice versa
is, at this point, unclear. The other question is whether neglecting T̂1 altogether is com-
pensated by choosing an ALMO starting point, in which case there can be no T̂1-mediated
mutual interaction of induction and correlation at zeroth-order. We shall have to be careful
when addressing these questions to choose a test system for which the SCF-MI solution is
a good approximation to Hartree-Fock, e.g., where attractions attributed to dative effects
are negligible and polarizations dominate mean-field binding. To this end we have chosen
the interaction of helium with lithium cation. We conclude glancing at the first column of
Table 6.6 that repulsions destabilize the ”frozen” wavefunction but are overridden by induc-
tive effects described nearly perfectly going to the ALMOs, leaving a ”delocalization” error
relative to canonical HF of 0.3 kJ/mol. Beginning from a frozen reference, we shift the onus
onto intramonomer T̂1 to recover mean-field polarization.

SCF model HeLi+ NH3BH3

FRZ 1.24 105.20
ALMO -5.35 -44.30

HF -5.65 -146.54

Table 6.6: Mean-field interaction aug-cc-pvdz energies for textbook inductive and dative
interactions in kJ/mol. The ALMO orbitals are quantitative for the principally-inductive
HeLi+ interaction, but largely inadequate to describe the charge-transfer-dominated NH3BH3

interaction.

We apply our local models to the interaction beginning from both references, with and
without explicit singles in the correlation model. Interaction errors relative to canonical
CCSD are given in the first rows of Table 6.7. In stark constrast to the helium results,
there is virtually no dependence of the error on higher-order doubles. Moreover, it would
seem we arrive at the same error opting either to begin from ALMOs and neglecting singles
altogether, or beginning from frozen orbitals and optimizing intramonomer T̂1. Including
non-local singles in the reference, we recover most of the remaining error, concluding that
infinite-order one-body effects trump infinite-order dispersion-type doubles.

Another important question to consider is the extent to which the perturbation theory
is viable when the SCF-MI orbital reference is decidedly horrendous, e.g., when dative ef-
fects become important. Here, larger-magnitude intermolecular fov elements and smaller
band gaps no doubt elevate intermolecular occupied-virtual rotations to such a significance
that the ALMO error is no longer negligible. The reader will recall that for iSTPTs tak-
ing only on-site singles at zeroth-order, charge-transfer effects first enter at second order,
so a description of dative interactions will likely be poor. We have chosen the canonical
C3v-symmetry ammonia-borane dative interaction to measure the extent. It represents a
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wavefunction CCD CCSD CCSD
truncation model {iajb} {ia}{jb} {iajb} {ia}{jb} {i}{a}{j}{b}

HeLi+(FRZ) 2.25 2.24 0.09 0.08 0.00
HeLi+(FRZ)+{i}{a} - - 0.05 0.04 -

HeLi+(ALMO) 0.10 0.09 0.09 0.08 0.00
HeLi+(ALMO)+{i}{a} - - 0.05 0.04 -

NH3BH3(FRZ) 112.26 102.08 63.17 53.72 14.12
NH3BH3(FRZ)+{i}{a} - - 31.26 23.38 -

NH3BH3(ALMO) 50.71 46.83 51.06 44.94 9.62
NH3BH3(ALMO)+{i}{a} - - 23.19 17.96 -

Table 6.7: Errors relative to the canonical CCSD equilibrium binding energy computed in
aug-cc-pvdz taking various zeroth-order models. ”{i}{a}” indicate the inclusion of non-local
zeroth-order singles amplitudes. ECCSD

bind (NH3BH3)= 177.07 kJ/mol. ECCSD
bind (HeLi+)= 6.65

kJ/mol. Intramolecular T̂1 emulates the effects of ALMO optimization. Accounting for
higher-order effects due to intermolecular T̂1 is required to describe dative interactions.

particularly challenging case for a frozen-orbital reference (see the second column of Table
6.6) where it is unstable by a walloping two-thirds of its canonical binding energy. ALMO
relaxation adds some 150kJ/mol to the interaction, but it’s still missing some 100kJ/mol of
delocalization. Thus, a perturbative treatment taking either local reference will have a lot to
clean up. Examining the second set of rows of Table 6.7, one can see again that augmenting
the local models with (on-site) singles drastically improves the frozen-orbital models while
scarcely affecting the relaxed-reference results. There is a similar improvement going from
unrelaxed to relaxed orbitals neglecting local singles. Adding non-local singles to CCSD on
top of either a frozen or relaxed orbital reference reduces the error against the quartic model
most considerably, with the improvement relatively insensitive to truncation model. In view
of these applications, we anticipate that the inclusion of non-local singles at zeroth-order will
effect substantial accuracy gains when applied to cases where the local reference is wanting.

Until now, we have focused on exposing properties of our local theories by applying them
to model interactions. It remains to be seen how general our conclusions are. To this end,
we apply our standard models and half-non-orthogonal (hno) variants thereof to the A24
dataset of non-covalent interactions which includes a varied set of hydrogen-bonded (HB),
mixed-character (MIX), and dispersion-dominated (DISP) interactions. root-mean-square
errors (RMSE) measured against canonical CCSD are given in Table 6.8. Refer to Appendix
A.1 for individual quantities.

Unsurprisingly, the quartic model furnishes energetics virtually identical to CCSD across
all interactions, so we can safely eliminate any orbital-reference confound from our consid-
erations, viewing truncation model errors as due entirely to the Hilbert space partitioning.
Including all singles in the p space substantially improves the RMSE for any doubles model,
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weighing most heavily on hydrogen-bond and mixed interactions, but minimally affecting
dispersion, as our test cases showed. Quadratic p-space doubles, on the other hand, ben-
efit dispersion the most. To beat MP2, these data suggest quadratic singles and doubles
at zeroth-order are required in the HB and MIX categories, though any truncation model
wins out for dispersion, suggesting steep improvement beyond a first-order MP treatment
there. Our best truncation model incorporates quadratic singles and doubles at zeroth-
order, and is superior to MP2 for all interaction types. Similar conclusions are drawn for the
half-non-orthogonal models, which again show uniform improvement relative to the fully-
non-orthogonal models.

{ijab} {ijab}+{i}{a} {ijab}+{i}{a}hno {ia}{jb} {ia}{jb}+{i}{a} {ia}{jb}+{i}{a}hno {i}{j}{a}{b} MP2
total 0.59 0.38 0.35 0.46 0.24 0.22 0.05 0.36
hb 0.88 0.45 0.39 0.72 0.29 0.25 0.05 0.33

mix 0.60 0.42 0.38 0.46 0.26 0.23 0.06 0.33
disp 0.26 0.27 0.26 0.16 0.17 0.16 0.04 0.41

Table 6.8: A24 statistical errors in kcal/mol relative to CCSD. All calculations were per-
formed in aug-cc-pvdz. The ”hno” designation means the occupied orbitals alone were
symmetrically orthogonalized. Models taking quadratic singles and doubles at zeroth-order
are nearly quantitative.

6.4 Conclusions

We have developed and applied a hierarchy of fully-non-orthogonal coupled cluster corre-
lation models treating intermolecular interactions at second-order in Löwdin perturbation
theory. Having cataloged the importance of various higher-order contributions in a host of
intermolecular interactions, we have determined that non-local singles are indispensable for
dative interactions, while dispersion-type doubles are required for dispersion. Benchmark
computations indicate our quadratic models nearly quantitatively approximate canonical
CCSD, and further cost-reduction is achieved without a loss of accuracy by orthogonalizing
the occupied subspace. Future directions in the way of economization include characteri-
zation of fully-non-iterative models substituting first-order amplitudes for CCSD ones, and
orbital optimization in the field of correlation to remove the singles amplitudes, as well as ex-
tended analyses of n-body effects in clusters and extension of the q space to include non-local
triples and quadruple excitations.
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Figure 6.1: He2 potential curve computed in aug-cc-pvtz. Energies are in meV.
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Chapter 7

STPT(2) from first-order amplitudes

7.1 Introduction and general construction

In this Chapter, we present preliminary follow-on work to the intermolecular second-order
intermolecular similarity-transformed perturbation theory (iSTPT(2)) models for local corre-
lation models proposed in Chapter 6. Therein, we treated intermolecular interactions as per-
turbations to local CCSD-level zeroth-order wavefunctions centered on individual monomers
in a Löwdin-style partitioning[29, 321–324] of the similarity-transformed Hamiltonian. For
considerations of cost tractability and insight into the intrinsic locality of inter-electronic cor-
relations, we enumerated a series of locally-truncated zeroth-order wavefunctions for which
standard CCSD projection equations were solved in a non-orthogonal ALMO[75, 288–290]
representation, and upon which a first-order correction describing non-local correlations en-
tered at second order in the energy. Sundry applications of these upper-bound truncation
models indicated that inclusion of doubles amplitudes coupling fragment-confined particle-
hole excitations at zeroth-order was required to adequately approximate the lower-bound
full-rank result. In other words, excitations coupling three or more bodies, or coupling two
bodies, but where at least one particle-hole pair is shared between them, and no fewer, could
be safely relegated to a perturbative description, which, as it turns out, is complete to lead-
ing order in fourth-order Møller-Plesset (MP) partitioning.

Here, we investigate the merit of a first-order approximation to the infinite-order cluster
amplitudes defining our reference models, e.g., T̂CC = T̂MP2, which, aside from rendering
our formulations completely non-iterative and O(N6)-complex, will serve to clarify whether
errors in the iterative O(N6) iSTPT(2) models developed previously are due to a low-order
treatment of the missing amplitudes by PT, or to severe rank-reduction of the amplitude
vector dressing the first-order Hamiltonian.

We recapitulate our iSTPT models in brief, beginning with the first few terms obtained
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on expanding the expectation value for the energy E = 〈|l†H̄r|〉 in a perturbation series,

E(0) = 〈0|l(0)†hH̄
(0)
hh′r

(0)h′ |0〉,
E(1) = 〈0|l(0)†hH̄

(1)
hh′r

(0)h|0〉, and

E(2) = 〈0|l(0)†hH̄
(1)
hh′r

(1)h|0〉,

(7.1)

where the operators are defined in the matrix representation of a truncated Hilbert space
|h〉 = |0〉+|s〉+ |d〉, H̄hh′ = |h〉H̄hh′〈h′|, rh

′ |0〉 = |h〉rh, and 〈|l† = 〈h|l†h, and where the

Hamiltonian is dressed with first-order amplitudes, H̄ = e−T̂
(1)
HeT̂

(1)
. Partitioning the

Hilbert space |h〉 into a primary space |p〉 = |0〉 and its complement |q〉 = |s〉+ |d〉, and

choosing H̄
(0)
pp = H̄00, H̄

(0)
qq = Fqq, l(0)† = (1p + T†q), and r(0)p = 1p we obtain a zeroth-order

energy complete through second-order in MP partitioning, and identical to MP2 with HF
orbitals,

E(0) = 〈0|l(0)†pH̄
(0)
pp′r

(0)p′ |0〉 = fiat
ai(1) + 0.25vijabt

abij(1) + 0.5vijabt
ai(1)tbj(1). (7.2)

Treating the rest of the Hamiltonian as first order, the de-excitation operator in l(0)†

causes external-space couplings giving rise to the first-order correction to the energy,

E(1) = 〈0|(1p + T†q)H̄(1)
qp1p|0〉 = T†qH̄q0

(1)
. (7.3)

The second-order correction is

E(2) = 〈0|(1p + T†q)H̄(1)
pqr

(1)q|0〉 = H̄
(1)
0qr(1)q + T†qH̄

(1)
qq′r

(1)q′ , (7.4)

and takes first-order amplitudes in the q space,

D(0)
ss rs(1) = H̄

(1)
s0 , and

D
(0)
ddrd(1) = H̄

(1)
d0 ,

(7.5)

where D
(0)
qq ≡ {E(0)1q − H̄

(0)
qq}.

For a Hamiltonian dressed with CCSD-level amplitudes in full rank, E(1) = E(2) = 0 by
the conventional projection equations and E(0) = ECC. This is not true, however, for active-
space models solving a subset of CC equations for a rank-reduced zeroth-order wavefunction
(as in Chapter 6 where truncations were made on the basis of locality), nor is it true in
full rank when first-order amplitudes dress the Hamiltonian. This invites a comparison
of equivalent-rank truncation schemes employing either CC- or MP2- level amplitudes for
direct assessment of intramonomer relaxation effects determining the total supermolecular
correlation energy. Furthermore, the extent to which STPT(2) employing approximate first-
order amplitudes in full-rank can adequately approximate conventional CCSD is interesting,
as is the prospect of a one-to-one comparison of PTs derived from Löwdin- and MP-style
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partitioning.
iSTPT truncation models developed in the previous Chapter and named for the total

scaling in molecules are compiled in Table 7.1. The “linear” model restricts indices labeling
doubles amplitudes to originate from a single center; the “quadratic” model augments that
set with doubles coupling two bodies, but with each hole-particle pair confined to one site;
the “quartic” adds back the rest of the non-local doubles and is equivalent to CCSD if
|0〉 = |HF〉. This model shall serve as a useful Hylleraas bound to assess the performance of
the foregoing upper-bound truncation models. All models take a quadratic number of non-
local singles. General spin-orbital expressions for the PT corrections presented in the body
of Chapter 6 and in full regalia in Appendix A.1 were implemented in a hacked version of
Q-Chem 4.0 and derived from an independent Wick’s theorem code in Mathematica. We’ll
compare the proposed fully-non-iterative local correlation models against their CC-reference
cousins and non-iterative MP-partitioned competitors alike in the following Section. Our
figure of merit will be relative errors against canonical CCSD.

model |d〉 |s〉
linear {iajb} {i}{a}

quadratic {ia}{jb} {i}{a}
quartic {i}{a}{j}{b} {i}{a}

Table 7.1: Model specifics. The braces confine cluster amplitude indices to emanate from
individual molecular subspaces.

7.2 Applications

We begin in full rank, restricting our attention to a single H2 molecule traversing its bond-
breaking coordinate to assess the differences between corrections from MP- and Löwdin-
type-partitioned perturbative approximations to CCSD, which is exact for this application.
Plotted in Figure 7.1 are errors relative to CCSD in the aug-cc-pvtz basis from HF orbitals.
At the equilibrium separation of R(H-H)=0.7Å, the mean-field description is missing some
100mH of correlations. A second-order MP treatment (equivalent to STPT(0)) reduces this
by a factor of ten, while the fourth-order MP correction (and STPT(2), similarly) con-
fers another ten-fold improvement. Up to about R(H-H)=3*Req, STPT(1) tracks MP3 and
STPT(2) tracks MP4SDQ closely, beyond which the MP-partitioned theories diverge, while
STPT(2) is buffered by STPT(1)’s shallow turnabout, remaining stable out to a separation
of about 6*Req, well after the first-order amplitudes give a pathological MP2 energy. The CC
doubles moment, H̄q0, appears in the first-order wavefunction (eq. 7.5) and in the first-order
correction to the STPT energy (eq. 7.3). In addition to being complete through second-order
in the MP-partitioned wavefunction, H̄q0 incorporates leading third-order terms quadratic
in the first-order amplitudes resulting in STPT(1)’s heightened stability relative to MP3.
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The first term in the second-order correction of eq. 7.4 is identical to the first-order correc-
tion when T̂ = T̂ (1) and l† ← T̂ (1)†, making our analysis easier. The second term, which is
quadratic in the CC moment, is generally positive and offsets overcompensation of the linear
terms. Binary contractions in H̄qq′ cause the second-order energy to carry a component of
the sixth-order MP contribution to the doubles space in addition to a host of fifth-order
terms. It is interesting that PT from Löwdin-partitioning produces a more robust correction
by introducing terms both out of order and incomplete at a given order in the MP view.

The trend is similar for the He2 interaction, a simple dispersion model. Still in full-rank
and with HF orbitals, we compile equilibrium and non-parallelity (NP) interaction errors
relative to CCSD across the potential in Table 7.2. Second- and higher-order MP energies
correct the unbound mean field by some ten and one hundred times at equilibrium. STPT(1)
is slightly under-bound relative to MP3 due to quadratic factors in the doubles moment, and
the quadratic moment in STPT(2) tempers the error while MP4SDQ overshoots. The “max”
and “min” rows give a sense of an inherent error displacement, while the NPE is a measure
of the error magnitude. Tracking these in the MP series, we see that the displacement goes
negative, and the magnitude shrinks going to MP3, but then grows slightly at fourth or-
der. In STPT, the displacement hovers about zero and shrinks two-fold between the first-
and second-order errors, again underscoring increased stability of Löwdin-partitioned versus
MP-partitioned PTs.

He2 (in meV) HF MP2 = E(0) MP3 MP4SDQ E(1) E(2)

∆Ebind
error 1.38 0.14 0.00 -0.06 0.04 0.01

max 12.42 0.68 0.01 0.00 0.05 0.02
min 0.08 0.01 -0.47 -0.56 -0.14 -0.07
NPE 6.17 0.33 0.24 0.28 0.09 0.04

Table 7.2: Errors against canonical CCSD/aug-cc-pvtz (∆Ebind = 0.75meV, Req = 3.1Å)
for He2 dissociation (R = 0.5Req-R∞). Superscripts denote STPT order. With first-order
amplitudes, STPT(0)=MP2.

At this point, we shall want to catalog the effects on the STPT corrections due to lo-
cal approximations garnering reduced-rank zeroth-order wavefunctions of both infinite- and
first-order amplitudes. Thus, applications of local models specified above in Table 7.1 employ
ALMO orbitals below, while HF orbitals maintain for competitor theories and the reference
CCSD numbers by which all models are appraised against. Interaction errors as a function
of basis set, truncation rank, and amplitude character for He2 are given in Table 7.3. It is
immediately encouraging that only minor degradation results when first-order amplitudes
are substituted for CCSD ones. The slight difference in the triple-zeta-level error garnered by
the quartic model with first-order amplitudes ({i}{a}{j}{b}(2)

t(1)
) here and the STPT(2) error

from canonical orbitals above reflects effects due entirely to constrained ALMO orbitals.
The same is true for non-zero errors in the {i}{a}{j}{b} field. At the quadruple-zeta level,
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where the errors and CCSD binding energy are arguably converged, we see improvements
due to including more amplitudes at zeroth-order (whether they’re CC- or MP2-level) are
similar. This suggests the bulk of two-body errors depends on the number and not so much
the character of the amplitudes dressing the Hamiltonian.

To see whether this the general case, we apply our models to the A24[293] data set

basis {iajb}(2)
t(1)

inf {ia}{jb}(2)
t(1)

inf {i}{a}{j}{b}(2)
t(1)

inf MP2 MP3 MP4SDQ ∆ECCSD

D 0.32 0.35 0.10 0.07 0.02 -0.01 0.11 -0.01 -0.05 -1.08
T 0.26 0.29 0.04 0.02 -0.01 0.01 0.14 0.00 -0.06 -0.75
Q 0.33 0.33 0.06 0.03 0.03 0.01 0.16 -0.01 -0.08 -0.76

Table 7.3: meV interaction errors against CCSD for He2 from various locality and amplitude
constraints as the basis set (aug-cc-pvXZ) is extended. The “t(1)” subscript denotes first-
order amplitudes were used instead of CCSD-level ones (denoted “inf”) for the zeroth-order
wavefunction.

of hydrogen-bonded, dispersion, and mixed-character dimeric interactions. CP-corrected
errors against canonical CCSD/aug-cc-pvdz are given in Table 7.4 and computed from un-
processed quantities appearing in Table 7.5. In addition to comparing our models on the basis
of truncations and amplitude character, we’ll include figures obtained from a reference of
symmetrically-orthogonalized occupied ALMOs and projected non-orthogonal ALMO vir-
tuals. As discussed in Chapter 6, this so-called “half-non-orthogonal” reference not only
simplifies the equations and reduces FLOPs, but also confers a small error reduction relative
to its fully-non-orthogonal counterpart.

Focusing first on errors for full-rank theories in the right-most columns of Table 7.4, we
remind the reader that finite errors in the {i}{a}{j}{b} column stem from the upper-bound
ALMO reference, and also the small difference between the error there and the preceding
{i}{a}{j}{b}(2)

t(1)
field is due entirely to approximate amplitudes, which apparently weighs

most heavily on the mixed-character subset. Of the non-iterative schemes in full rank, the
STPT(2) model exhibits the smallest MSE in all categories, and the smallest RMSDs in the
hydrogen-bond (HB) and dispersion (DISP) categories, though MP4SDQ achieves the small-
est total RMSD overall. Of course, big improvements are expected from STPT(2) from a HF
reference, viz., on the order of the {i}{a}{j}{b} average error. Moving on to a discussion of
the reduced-rank models toward the left side of Table 7.4, we see from a comparison of the
total RMSDs within any fixed truncation model that substituting first-order amplitudes for
CC-level ones only mildly affects performance. In line with the previous results, we conclude
the error depends primarily on the number of amplitudes entering at zeroth-order, implying
a fully-non-iterative iSTPT(2) is sufficient for a tolerated error margin in the sub-kJ regime.
Moreover, non-iterative iSTPT(2) from a half-non-orthogonal orbitals uniformly reduces er-
ror relative to ALMO-reference results, and most dramatically for interactions dominated
by charge-transfer effects.
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RMSD {iajb}(2)
t(1)

inf {ia}{jb}(2)
t(1)

inf {i}{a}{j}{b}(2)
t(1)

inf MP2 MP3 MP4SDQ

total 1.40 , 1.22 1.34 , 1.19 0.95 , 0.78 0.75 , 0.64 0.21 0.13 1.33 0.54 0.17
hb 1.93 , 1.66 1.60 , 1.36 1.36 , 1.10 0.93 , 0.73 0.17 0.17 1.19 0.55 0.19

mix 1.42 , 1.23 1.34 , 1.21 0.99 , 0.82 0.78 , 0.68 0.30 0.15 1.20 0.58 0.17
disp 0.96 , 0.85 1.18 , 1.06 0.53 , 0.45 0.6 , 0.53 0.07 0.06 1.52 0.49 0.16

MSE {iajb}(2)
t(1)

inf {ia}{jb}(2)
t(1)

inf {i}{a}{j}{b}(2)
t(1)

inf MP2 MP3 MP4SDQ

TOTAL 1.15 , 1.01 1.19 , 1.07 0.71 , 0.58 0.64 , 0.55 -0.06 -0.06 -1.11 -0.48 -0.12
hb 1.86 , 1.61 1.53 , 1.31 1.3 , 1.05 0.88 , 0.7 0.00 -0.17 -1.08 -0.54 -0.08

mix 1.07 , 0.94 1.16 , 1.05 0.63 , 0.5 0.62 , 0.54 -0.12 -0.08 -1.06 -0.51 -0.14
disp 0.83 , 0.75 1.04 , 0.95 0.46 , 0.4 0.53 , 0.47 -0.03 0.02 -1.18 -0.41 -0.14

Table 7.4: kJ/mol root-mean-squared and mean-signed errors for CP-corrected/aug-cc-pvdz
interactions from the A24[293] data set within the frozen core approximation. The second
entry in a given field is the error from a half-non-orthogonal ALMO starting point (orthogonal
occupieds, projected non-orthogonal virtuals). The “inf” heading denotes CCSD-quality
amplitudes.

7.3 Conclusions and outlook

We have developed and applied fully-non-iterative variants of STPT(2) substituting first-
order amplitudes for CC-level counterparts. By a comparison of relative and absolute ener-
gies garnered by Löwdin- and MP-partitioned PTs from canonical references, we attributed
slower deterioration and generally better accuracy in the former to earlier entry of higher-
order components in the latter. STPT(2) in full rank employing first-order amplitudes thus
represents an attractive O(N6) non-iterative alternative to MP-partitioned theories in the
space of singles and doubles. Tests on the A24 data set of intermolecular interactions com-
paring rank-reduced iterative and non-iterative intermolecular STPT(2)s revealed that errors
are due primarily to amplitude truncation, not amplitude character. This is of consequence
in the context of large-scale tractability, where fully-non-iterative models of linearly- or
quadratically-growing variables will effect immense savings without a proportional accuracy
trade-off.
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Figure 7.1: mH errors for H2 bond dissociation (Req = 0.7Å) against CCSD in aug-cc-pvtz.
Superscripts indicate STPT correction order.
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dimer {iajb}(2)
t(1)

inf {ia}{jb}(2)
t(1)

inf {i}{a}{j}{b}(2)
t(1)

inf MP2 MP3 MP4SDQ CCSD

01 -20.3 -20.6 -21.1 -21.5 -22.4 -22.8 -24.4 -23.3 -22.8 -22.6
02 -15.8 -16.3 -16.4 -16.9 -17.6 -17.8 -18.5 -18.2 -17.6 -17.6
03 -16.4 -16.5 -16.9 -16.9 -17.8 -17.6 -19.0 -17.8 -17.9 -17.5
04 -14.6 -15.3 -15.2 -15.8 -16.1 -16.4 -16.5 -16.8 -16.0 -16.2

05 nh3 -9.0 -9.0 -9.5 -9.7 -10.4 -10.5 -11.3 -10.8 -10.4 -10.3
06 -2.8 -2.9 -3.3 -3.4 -3.8 -3.8 -4.4 -4.1 -3.8 -3.7
07 -1.5 -1.5 -1.8 -1.9 -2.1 -2.2 -2.4 -2.4 -2.2 -2.1
08 -1.4 -1.4 -1.6 -1.7 -1.9 -1.9 -2.1 -2.1 -1.9 -1.9
09 -10.5 -11.1 -11.3 -12.0 -13.2 -14.0 -15.4 -13.8 -13.7 -13.7
10 -6.7 -6.3 -7.2 -6.9 -8.2 -7.9 -9.3 -8.4 -7.9 -7.5
11 -3.4 -3.3 -3.9 -3.9 -4.6 -4.4 -5.6 -5.0 -4.6 -4.4
12 -3.9 -3.6 -4.2 -4.0 -4.6 -4.4 -5.6 -5.0 -4.5 -4.4
13 -3.3 -2.9 -3.6 -3.4 -4.0 -3.8 -5.1 -4.5 -4.0 -3.8
14 -1.7 -1.3 -2.2 -1.9 -2.7 -2.5 -4.2 -3.5 -2.8 -2.5
15 -0.9 -0.7 -1.1 -1.0 -1.4 -1.2 -1.8 -1.7 -1.3 -1.2
16 -0.9 -0.6 -1.8 -1.8 -2.6 -2.7 -3.7 -3.5 -3.0 -2.7
17 -1.1 -0.9 -1.6 -1.6 -2.0 -2.0 -2.6 -2.4 -2.1 -2.0
18 -0.7 -0.7 -1.2 -1.2 -1.5 -1.5 -1.8 -1.8 -1.5 -1.5
19 -0.6 -0.6 -1.0 -1.0 -1.4 -1.4 -1.5 -1.5 -1.3 -1.3
20 -0.3 -0.3 -0.5 -0.5 -0.7 -0.7 -1.1 -0.8 -0.7 -0.7
21 -0.2 -0.1 -0.3 -0.2 -0.4 -0.4 -1.0 -0.6 -0.5 -0.4
22 6.6 7.0 6.4 6.6 5.9 6.0 3.4 5.3 5.8 5.9
23 7.3 7.8 7.1 7.3 6.5 6.6 4.3 5.7 6.3 6.6
24 7.7 7.9 7.5 7.6 7.0 7.1 4.3 6.9 6.8 7.0

Table 7.5: kJ/mol A24 binding energies (CP-corrected/aug-cc-pvdz) in the frozen core ap-
proximation. Truncation model numbers reflect a half-non-orthogonal orbital reference.
“inf” means CCSD amplitudes were used at zeroth-order.
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Chapter 8

Iterative solutions of an effective
Hamiltonian

8.1 Introduction and general construction

There has been extensive work in the past few decades[328–338] employing a Löwdin-type[29,
321–324] partitioning of the similarity-transformed Hamiltonian to garner high-accuracy so-
called ”(2)”-type perturbation theories on top of coupled cluster references. Here we propose
to treat higher-order effects in a ”perturb-then-diagonalize” approach solving an effective
Hamiltonian problem defined in the low-dimensional space, but which folds in its Hilbert
complement.

The Schrödinger equation for the wavefunction |R〉 =
∑

h rh|h〉 in the full Hilbert space
of n-electron Slater determinants, |h〉 = |0〉+ |s〉+ |d〉+ ...+ |n〉, is

H̄|R〉 = E|R〉, (8.1)

where H̄ is the t̂p-similarity-transformed Hamiltonian of CC theory, H̄ = e−t̂pHet̂p and {rh}.
R̂ and t̂p are excitation operators of the form,

R̂ = 1 +
∑
ia

riaa
†
aai +

∑
i<j a<b

rijaba
†
aa
†
bajai + ..., and

t̂ =
∑
ia

tiaa
†
aai +

∑
i<j a<b

tijaba
†
aa
†
bajai + ... .

(8.2)
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Projections with the left biorthogonal state 〈0|l† and 〈p′ | give expressions for the energy and
linear amplitudes {rp′},

〈|
∑
pp′

l†
p′

H̄p′prp|〉 = E,

〈p′ |
∑
p 6=p′

H̄p′prp′ |p〉 = {E1p′p′ − H̄p′p′}rp′ .
(8.3)

Equations 8.3 are FCI-exact if, i) taking t̂p = 0, linear equations for rp are solved in |p〉 = |h〉,
or ii) taking rp = 1pp and determining {tp} in |p〉 = |h〉 by the nonlinear equations,

〈p′|H̄p′p1p|0〉 = 0. (8.4)

Treatment in a Hilbert space truncated at rank U < n by the former gives linear, non-
extensive CISD...U, and non-linear, non-variational CCSD...U by the latter.

For their individual merits, we can imagine marrying the two approaches, e.g., inter-
acting configurations across a tU -transformed Hamiltonian already folding in correlations
coupling up to U electrons exactly. This way we account for higher-than-U -fold interac-
tions in linear equations while automatically side-stepping the elephant in the room that is
size-inconsistency. In the language of perturbation theory, this is equivalent to viewing the
matrix elements of H̄pp′ determining the cluster {tp} in a ”primary” space |p〉 as zeroth-
order quantities in a perturbative expansion of eq. 8.3. Identifying its Hilbert complement,
|q〉 = |h〉−|p〉, we split H̄ = H̄

(0)
pp + H̄

(0)
qq + H̄

(1)
pq + H̄

(1)
qp + H̄

(1)
qq , r(0) = 1pp, l†(0) = (1 + Λ)pp

where Λ is the standard de-excitatory CC pseudo-lagrangian, and expand eq. 8.3 obtaining,

E(0) = 〈0|l†(0)H̄(0)r(0)|0〉 = 〈0|(1 + Λpp′)H̄
(0)
p′p1pp| 〉 = H̄00 = Ecc,

E(1) = 〈0|l†(0)H̄(1)r(0)|0〉 = 〈0|(1 + Λpp′)
(
H̄(1)

pq + H̄(1)
qp + H̄(1)

qq

)
1pp| 〉 = 0, and

E(2) = 〈0|(1 + Λpp′)H̄
(1)
pqr(1)

q |0〉,

(8.5)

noting the choice |p〉 = |0〉 + |s〉 + |d〉 + ... + |U〉 returns CCSD...U as the zeroth-order
PT solution, and contributions from the complementary space debut at first-order in the
wavefunction and at second-order in the energy. The solution of the amplitude eq. 8.3
requires inverting the energy difference on the right-hand side, typically approximated as
the first term in a perturbation series,{

E1− H̄qq

}−1
=
{

(E(0)1 + dE1)− (H̄(0)
qq + dH̄)

}−1
={

(E(0)1− H̄(0)
qq ) + (dE1− dH̄)

}−1 ≈
{

(E(0)1− H̄(0)
qq )
}
,

(8.6)

making use of the identity
{
A−B

}−1
= A−1 + A−1B

{
A−B

}−1
. The series is convergent

provided BA−1 < 1. Taking H̄
(0)
qq = Fqq and shoving everything else in H̄

(1)
qq , we define
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D
(0)
qq ≡ {E(0)1qq− H̄

(0)
qq} and proceed to enumerate the q-space amplitudes. Assuming we’ve

solved an active-space CCSD problem treating a subset of the singles and doubles, {|s′〉, |d′〉},
and neglecting an inactive set {|s〉, |d〉} and all higher-rank contributions {|t〉, |q〉}, we have
|p〉 = |0〉 + |s′〉 + |d′〉 and |q〉 = |s〉 + |d〉 + |t〉 + |q〉. Applying eq. 8.3, the amplitude
equations in full regalia are

D(0)
ss r(1)

s = H̄
(1)
s0 + H̄

(1)
ss′ r

(0)
s′ + H̄

(1)
sd r

(0)
d + H̄

(1)
st r

(0)
t ,

D
(0)
ddr

(1)
d = H̄

(1)
d0 + H̄

(1)
ds r(0)

s + H̄
(1)
dd′r

(0)
d′ + H̄

(1)
dt r

(0)
t + H̄

(1)
dqr(0)

q ,

D
(0)
tt r

(1)
t = H̄

(1)
t0 + H̄

(1)
ts r(0)

s + H̄
(1)
td r

(0)
d + H̄

(1)
tt′ r

(0)
t′ + H̄

(1)
tq r(0)

q , and

D(0)
qq r(1)

q = H̄
(1)
q0 + H̄

(1)
qdr

(0)
d + H̄

(1)
qt r

(0)
d .

(8.7)

Various approximations to eqs. 8.7 determining the second-order correction above serve
to define a suite of (2)-type perturbative schemes rivaling conventional CCSD(T). Löwdin
partitioning has also found application in active space methods adding back dynamical cor-
relations to orbital-optimized[332, 333] and pair references[334, 335], excited-state theo-
ries [336–338], and other constructions. Here we propose to treat higher-order effects in
a ”perturb-then-diagonalize” approach solving an effective Hamiltonian problem defined in
the low-dimensional space |p〉, but which folds in its complement |q〉. Left-projecting eq.
8.1 by 〈q| and expanding, we obtain an equation for rq in terms of rp,

rq|0〉 = Dqq
−1H̄qprp|0〉. (8.8)

Projecting eq. 8.1 by 〈p| and applying eq. 8.8, we arrive at an effective eigenvalue equation
in |p〉:

H̃pprp|0〉 = rp|0〉E1pp, with

H̃pp = H̄pp + H̄pqD
−1
qq H̄qp.

(8.9)

Again, the solution of eq. 8.9 is formally exact (and intractable) barring restrictions on tp and
rp that serve to define various coupled-cluster wavefunctions and perturbative corrections
discussed above and employed below. Taking l†pp = 1pp, the model-space expectation value
is

E = 〈0|l†ppH̄pprp|0〉 = H̄0prp, (8.10)

and biorthogonality is preserved without L-R renormalization, which would remove rigor-
ous size-consistency. The amplitude equations for rp are identical to those in eq. 8.7 sans
order superscripts, and shall be self-consistently determined until eq. 8.9 is satisfied. For
the purpose of cataloging differential relaxation effects, we’ll consider various restrictions
on contributions entering the amplitude eqs. 8.7. For one, we should like to examine the
effects of singles and doubles re-coupling to perturbative triples. We accomplish this by
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choosing rp = (1 + rs + rd), and folding H̄
(1)
tp and H̄

(1)
pt r

(1)
t into eq. 8.9. An analogous

effective-Hamiltonian construction is identified when the q space is augmented with quadru-
ple excitations. To reduce the scaling from O(N9) to O(N6) there, we employ the factoriza-

tion approximation introduced by Kucharski and Bartlett[342] for the H̄
(1)
dqr

(1)
q contraction

contributing to rd. These are referred to as the ”rsd(t)” and ”rsd(tqf )” models henceforth.
They are on par with CCSD(T) in cost since the O(N7) triples moment is not iteratively
determined. Inclusion of the triples in rp constitutes the ”rsdt” model, and amounts to
infinite-order PT through triple excitations, making it a useful benchmark against which the
performance of rsd(t) can be measured. The extended ”rsdt(qf )” model includes excitations
through triples in the p space with leading-order, factorized quadruples contributing to the
doubles equation as in rsd(tqf ).

For the sake of completeness, we’ll also want to examine our construction when the
Hilbert space is restricted to singles and doubles. For a transformed Hamiltonian satisfying
the CCSD equations in full rank, rs = rd = 0 trivially, and the CCSD energy is correct to
infinite order in STPT, e.g., we recover the CCSD energy on diagonalization of the effective
Hamiltonian of eq. 8.9 in the space of singles and doubles. If the cluster problem is solved
for only a subset of singles and doubles |s′〉, |d′〉, on the other hand, non-zero r

(1)
s and r

(1)
d

re-couple the active space at second order in PT. It shall thus be instructive to compare the
energy obtained on diagonalization of eq. 8.9 employing a transformed Hamiltonian opti-
mized for a subset of the singles and doubles to that obtained by CCSD in full rank. The
extent to which transforming the Hamiltonian with first-order amplitudes will bear on the
effective eigenvalue problem is a final curiosity to touch on. By Löwdin partitioning, such
a choice returns E(0) = EMP2 in eq. 8.5, and r

(1)
p , aside from being complete through the

leading-order term in fourth-order MP partitioning, resembles the amplitude update in a
typical CC procedure. We’ll refer to these as the ”rsd” and ”rt

(1)

sd ” models below. The models
are summarized in Table 8.1 and general spin-orbital equations for the amplitudes are given
in Appendix B.

model rp first-order in H̃pp′ scaling

rsd |s′〉, |d′〉, |s〉, |d〉 H(s′,d′)p, Hp(s′,d′) O(N6)

rt
(1)

sd |s〉, |d〉 H̄pp′ O(N6)
rsd(t) |s〉, |d〉 H̄t0, H̄ptrt O(N7)

rsd(tqf ) |s〉, |d〉 H̄t0, H̄ptrt, H̄dqrq O(N7)
rsdt |s〉, |d〉, |t〉 H̄tp O(N8)

rsdt(qf ) |s〉, |d〉, |t〉 H̄tp, H̄dqrq O(N8)

Table 8.1: Models. |s′〉 and |d′〉 represent active configurations in the CCSD problem.

We apply our effective-Hamiltonian models in Section 8.2 to measure the extent to
which iterative model-space solutions improve on their perturbative counterparts in situ-
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ations where static correlations trump dynamic correlations and the reverse. Our figure of
merit will be error against FCI or the equivalent.

8.2 Applications

Singles and doubles in the effective Hamiltonian

Confining our attention to the singles and doubles problem first, we compare STPT and
traditional MP perturbation theory for H2 dissociation, where CCSD is exact. Plotted
in Figure 8.1 are errors relative to RHF-CCSD as a function of internuclear separation.
Correcting HF by MP theory incrementally improves the error and non-parallelity around
the equilibrium separation of 0.7Å, but divergence occurs faster with higher orders owing to
compounding orbital degeneracies in the low-order wavefunction. Dressing the Hamiltonian
with first-order amplitudes in the STPT corrections of eqs. 8.5 returns exactly MP2 at
zeroth order. The second-order rt

(1)

sd model and MP4SDQ behave similarly until about 2*Req,
where the latter peaks and crosses zero earlier and more steeply. Diagonalizing the effective
Hamiltonian problem produces near-coincidence with CCSD up to ∼2*Req and gains against
the perturbative wavefunction up to ∼3*Req, where the latter has begun to turn over, thereby
degrading the effective Hamiltonian conditioned on it.

Employing the same application and figure of merit, we choose a CCD reference and ask
how iterative and non-iterative STPT singles and re-coupled doubles approximate CCSD.
Examining Table 8.2, we note the CCD error at and around equilibrium is expectedly modest,
but grows to some 9mH by 5*Req as the reference degrades considerably and t1-mediated
orbital relaxation is missing. Treating this defect by second-order STPT uniformly reduces
the error, but the r

(1)
sd model starts to overcompensate past 3*Req and a low-order treatment

of rp causes the error to run negative. Infinite-order relaxation in the first-order field, on
the other hand, produces an even-keeled, near-zero error and an infinite-order singles norm
comparable to that of CCSD’s t1.

Triples, quadruples and re-coupled singles and doubles in the
effective Hamiltonian

In this section, we examine the performance of our models compared to state-of-the-art
post-CCSD methods for electron correlations. For all applications of STPT below, we trans-
formthe Hamiltonian with CCSD-optimized t amplitudes and extend the Hilbert space to
include triples and quadruples.

We begin by computing errors against FCI for BH bond dissociation, where higher-rank
couplings in {rp} describe correlations on top of the most important bond-breaking dou-
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R(H-H) = x*Req E(0)= CCD r
(1)
sd r

(i)
sd |t1| |r(1)

s | |r(i)
s |

1.0 0.04 0.01 0.00 0.00 0.00 0.00
1.5 0.38 0.06 -0.01 0.03 0.02 0.03
2.0 1.57 0.21 -0.04 0.14 0.09 0.15
2.5 3.80 0.18 -0.07 0.40 0.25 0.41
3.0 5.78 -0.40 -0.12 0.71 0.45 0.71
3.5 7.80 -2.08 -0.16 1.12 0.77 1.13
4.0 8.56 -3.56 -0.17 1.33 0.97 1.35
5.0 8.75 -5.90 -0.13 1.46 1.19 1.48

Table 8.2: mH error against CCSD(exact) and Frobenius norms of singles amplitudes as
a function of internuclear separation. Numbers were computed in 6-31G, and Req=0.7Å.
The ”(1)” superscript denotes a STPT second-order energy model computed from a first-
order wavefunction, while a ”(i)” implies an infinite-order energy from an infinite-order
wavefunction.

bles amplitudes in the reference CCSD wavefunction. Examining Figure 8.2, we conclude
that all methods describing triples non-iteratively perform similarly at equilibrium (R(BH)eq
=1.4Å), with second-order rsd(t) and rsd(tqf ) models straddling CCSD(T) and beginning to
turn over by 1.5*Req, and their infinite-order cousins straddling CCSD(2). Beyond 1.5*Req,
a comparison of iterative and non-iterative rsd(t) and rsd(tqf ) models indicates relaxation of
the singles and doubles in the field of higher-rank contributions confers significant stabil-
ity, furnishing NPEs comparable to the iterative O(N8)-scaling rsdt and rsdt(qf ) models. A
combination of

• including all terms in its triples moment (some of which are opposite in sign to binary
contractions retained in CCSD(T)),

• employing optimized Λ instead of T † in its left-hand eigenfunction,

• including the dressed one-body operator in the zeroth-order q space, resulting in a
larger energy denominator

all cause CCSD(2) to typically underestimate correlations at equilibrium and turn over much
later than CCSD(T). Since non-iterative rsd(t) satisfies i) but not ii) or iii) and represents a
kind of middle ground, we can attribute stability in the long range to a degree of infinite-
order character, be it from Λ or diagonalization of the effective Hamiltonian.

For the double-dissociation of water, the story should be similar, but we expect patholo-
gies to bear out more quickly as the O-H bonds are stretched and four determinants begin
to contribute significantly to the wavefunction. Compiled in Table 8.3 are errors against FCI
for equilibrium and symmetrically-displaced geometries of water adopted from Ref. [329]. As
anticipated, CCSDTQ can separate the two O-H bonds simultaneously without problem, and
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R=xReq r
(1)

sd(t) r
(i)

sd(t) r
(1)

sd(tqf ) r
(i)

sd(tqf ) r
(i)
sdt r

(i)

sdt(qf ) CCSD(T) CCSD(2) CCSDTa CCSDTQa

1 0.62 0.61 0.12 0.10 0.45 -0.06 0.53 0.16 0.45 0.01
1.5 1.56 1.79 -0.16 0.15 1.03 -0.64 1.08 0.74 1.20 0.10
2 -2.42 0.29 -3.76 -0.85 -2.29 -3.41 -6.31 0.39 -1.97 0.10

Table 8.3: mH error figures against FCI/6-31G for double dissociation of H2O; a: Data are
from Reference [329]. All models take R(OH)eq=1.45Å∠(HOH) = 107.6◦. The ”(1)” super-
script denotes a STPT second-order energy model computed from a first-order wavefunction,
while a ”(i)” implies an infinite-order energy from an infinite-order wavefunction.

CCSDT cannot, though partial optimization of disconnected quadruples due to connected
triples causes it to turn over later than CCSD(T). The same can be said of infinite-order

rsd(t) and of rsdt, while the relative stability of r
(1)
sd(t) is due to an inclusion of all terms in the

triples moment. The critical importance of quadruple substitutions is evinced comparing
CCSDT and CCSDTQ, or similarly, rsd(tqf ) to rsd(t). Again, diagonalization of the effective
Hamiltonian in the space of singles and doubles with or without quadruple substitutions
reigns in runaway PTs in the multireference regime.

In a similar test, we measure the ability of the foregoing models to capture static cor-
relations as rectangular H4 passes through a doubly-degenerate square configuration to an
identical rectangular configuration rotated 90◦. We scan along the bisecting angle θ de-
fined on the interval (0◦, 90◦) where 0◦ and 90◦ correspond to two different endpoints for
infinitely-separated H2 molecules, and θ = 45◦ to the FCI-optimized square transition state,
where R(H-H)=1.3Å. We plot errors relative to FCI around the square geometry in Figure
8.3, noting a kink should exist for each of the above single-reference wavefunctions due to
an inability to equally weight the degenerate configurations at the transition state. As in
the symmetric stretch case, CCSD(T) represents the most dramatic failure, while neither
patching with the full triples moment by perturbative rsd(t) nor determining rsdt iteratively
does much to improve the situation. The sd(tqf ) and rsdt(qf ) curves underscore the critical role
of quadruples, but the most significant gains are again borne out by iterative solution of the
effective Hamiltonian in the space of singles and doubles. The infinite-order rsd(t) and rsd(tqf )

models recover variationality and exhibit the smallest NPEs. CCSD(2) performs similarly
due to the infinite-order character conferred by the Λ piece of its left state as well as the
damping effects of a dressed one-body denominator.

8.3 Conclusions

We have compared standard post-CCSD corrections and those from second-order STPT
to those obtained by diagonalizing an effective Hamiltonian in the same primary space,
but which folds in its complement. Preliminary tests indicate that higher-order relaxation
improves upon a first-order description of dynamical correlations near equilibrium, and also
tempers ill-behaved PTs away from equilibrium where static correlations dominate. For
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its infinite-order-character left state, CCSD(2) exhibits similar behavior to the effective-
Hamiltonian theories introduced here.
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Figure 8.1: mH error relative to CCSD (FCI-equivalent) for H2 separation in the 6-31G basis;
Req=0.7Å. The ”(1)” superscript denotes a STPT second-order energy model computed from
a first-order wavefunction, while a ”(i)” implies an infinite-order energy from an infinite-order
wavefunction.
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Figure 8.2: mH error relative to FCI separating B-H in 6-31G; Req=1.4Å. All electrons were
correlated. The ”(1)” superscript denotes a STPT second-order energy model computed from
a first-order wavefunction, while a ”(i)” implies an infinite-order energy from an infinite-order
wavefunction.
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Figure 8.3: mH error relative to FCI as rectangular H4 passes through a doubly-degenerate
square geometry. All calculations were performed in 6-31G. The ”(1)” superscript denotes
a STPT second-order energy model computed from a first-order wavefunction, while a ”(i)”
implies an infinite-order energy from an infinite-order wavefunction.
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Chapter 9

Outlook and concluding remarks

In the latter part of this thesis, local (2)-type correlation models and first-order approxima-
tions in full and reduced rank were considered. A continuation of this line of research might
include

• efficiency in the implementation: While it may or may not be apparent from the Ap-
pendices, the (i)STPT computations presented herein come from a pilot implementa-
tion which enjoys only partial optimization of permutational symmetry, intermediate
definitions, and integral batching. For non-orthogonal triples, this is especially lim-
iting. Implementing more simplification rules in the generation of the spin-orbital
expressions, or a diagrammatic derivation are two routes to prefactor reduction.

• allowing orbital optimization: In this same vein, providing an orbital basis zeroing
T̂1 would reduce the triples prefactor there considerably. While a correct pilot im-
plementation of non-orthogonal Brueckner orbitals determined with or without the
ALMO constraint exists in the iSTPT code and has, indeed, reduced triples wall time
considerably, it is inefficient in the macroiterations and arguably too “hacky”.

• quantiative many-body formulation of iSTPT : As shown in Chapters 6 and 7, iSTPT
truncation error is mostly due to rank-reduction in non-local two-body doubles. In
the context of cluster applications, a formulation including all two-body hole-particle
pairs in the two-particle metric would not only guarantee exactness for dimers by
construction, but also retain quadratic scaling in fragments. It remains to be deter-
mined whether higher-than-two-body effects can be described by PT, though at least
an MP4SD-level treatment there is guaranteed.

• reformulation of existing STPTs : The ability of STPT taking first-order amplitudes
to quantitatively recover CCSD non-iteratively invites the question of whether existing
active-space (2) corrections can be improved by adding back inactive doubles to the
amplitude vector transforming the Hamiltonian before the PT step. This would guar-
antee an MP2-level treatment at zeroth-order instead of at second-order. Of course,
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naive addition would no longer guarantee an active-space coupled-cluster solution at
zeroth-order, so it might be more formally satisfying to parametrize the zeroth-order
problem fixing them at first-order in MP theory. PP(2) is a good first target.

The encouraging results of the minimal basis SCF models presented in Chapter 5 invite
the prospect of improving on dual-basis corrections to SCF. Specifically, a 2Nocc-rank SCF
in a minimal basis determined from Roothaan or approximate Roothaan amplitudes in the
“big” basis, apart from being virtually free, will provide for a variational, more accurate
correction.

In the context of correlated EDAs, a non-orthogonal coupled cluster model from ALMOs
correcting HF electrostatics and induction, and including effects of local triples and factor-
ized quadruples is possible using the iSTPT codes. A comparison of interaction components
predicted this way and by the orthogonal analog developed in Chapter 3 is immediately
interesting.

The effective Hamiltonian models of Chapter 8 generally improve on their PT counter-
parts for static and dynamic correlations, at similar cost. A more efficient implementation
would increase the scope of their application, of course, but these models will likely remain
theoretical curiosities not only because they’re among the most expensive wavefunction meth-
ods considered in modern applications.
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Appendix A

iSTPT(2) singles and doubles matrix
elements

A.1 Spin-orbital expressions in the covariant integral

representation

Occupied and virtual orbitals are indexed (i, j, k, l, I, J,K, L...) and (a, b, c, d, A,B,C,D...),
respectively, with upper-case indices implying external hole/particle excitations and lower-
case (internal) indices implying summation. The operator apq is an antisymmetrizer, e.g.,
apqXpqrs = Xpqrs −Xqprs. The tensors fpq and vpqrs are the Fock and antisymmerized inte-
grals, respectively. t, λ, r are the cluster, left, and first-order right amplitudes. The following
intermediates are used in the expressions below.

XaI
h = XajgjI (A.1)

XAi
p = gAbX

bi (A.2)

XabIJ
h = gIjX

abjJ (A.3)

XABij
pp = gAagBbX

abij (A.4)

XbBiI
hp = gijgbcX

cBjI (A.5)

XbBiI
hp′ = gIjgBcX

bcij (A.6)

Xbcij
hph = gjkX

bcik
hp (A.7)

Xbcij
hpp = gcaX

baij
hp (A.8)
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CCSD amplitude equations

AAI(t̄) =

fAI (A.9)

fait
aAiI
hp (A.10)

−1.fait
aI
h t

Ai
p (A.11)

−0.5gaAvbiIjt
abij (A.12)

−0.5gIjvaAbit
abij (A.13)

−1.taivaAiI (A.14)

−1.tajvaiIjt
Ai
p (A.15)

−0.5gaAvbcijt
acijtbI

h (A.16)

taivabijt
AbIj
hp (A.17)

−0.5gIkvabijt
abjktAi

p (A.18)

−1.tbivaAbit
aI
h (A.19)

−1.tbjvabijt
aI
h t

Ai
p (A.20)
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BAB
IJ (t̄) =

−1.gaBaIJfbit
bJ
h t

aAiI
hp (A.21)

−1.faiaABgjJt
Bi
p t

aAIj
hp (A.22)

vABIJ (A.23)

0.5viIjJt
ABij
pp (A.24)

−1.aABaIJvaAiIt
aBiJ
hp (A.25)

0.5vaAbBt
abIJ
h (A.26)

aABvAiIJt
Bi
p (A.27)

aIJvaABIt
aJ
h (A.28)

−1.aABvabijt
aBiI
hp tAbjJ

hp (A.29)

0.25vabijt
abIJ
h tABij

pp (A.30)

−0.5gaBgJkvbcijt
bcjktaAiI

hp (A.31)

−0.5gaBaABgJkvbcijt
acijtAbIk

hp (A.32)

−0.5gaBgIkvbcijt
bciktaAjJ

hp (A.33)

viIjJt
Ai
p t

Bj
p (A.34)

aABaIJvaiIjt
Bi
p t

aAjJ
hp (A.35)

0.5aIJvaiIjt
aJ
h t

ABij
pp (A.36)

−1.gaBaIJt
bivbiIjt

aAjJ
hp (A.37)

aABaIJvaAiIt
aJ
h t

Bi
p (A.38)

0.5aABvaAbit
Bi
p t

abIJ
h (A.39)

aABaIJvaAbit
aJ
h t

bBiI
hp (A.40)

−1.aABgjJt
aivaAbit

bBIj
hp (A.41)

vaAbBt
aI
h t

bJ
h (A.42)

aIJvaiIjt
aJ
h t

Ai
p t

Bj
p (A.43)

0.5vabijt
Ai
p t

Bj
p t

abIJ
h (A.44)

−1.aABaIJvabijt
aJ
h t

Bi
p t

AbIj
hp (A.45)

−1.aABgJkt
aivabijt

Bj
p t

AbIk
hp (A.46)

0.5vabijt
aI
h t

bJ
h t

ABij
pp (A.47)

gaBaIJt
civbcijt

bJ
h t

aAIj
hp (A.48)

aABvaAbit
aI
h t

bJ
h t

Bi
p (A.49)

vabijt
aI
h t

Ai
p t

bJ
h t

Bj
p (A.50)
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Left-hand singles and doubles equations

λjb〈bj|H̄|AI 〉 =

faAλ
aI
h (A.51)

−1.fiIλ
Ai
p (A.52)

−1.fAiλ
aI
h t

ai
p (A.53)

−1.faIt
ai
h λ

Ai
p (A.54)

−1.raivaAiI (A.55)

−0.5gabvAcijt
acijλbI

h (A.56)

raivAbIjt
abij
hp (A.57)

−0.5gAbvaciIt
acijλbj

h (A.58)

raivAiIjt
aj
p (A.59)

−1.tajvaiIjλ
Ai
p (A.60)

−1.tbivaAbiλ
aI
h (A.61)

raivaAbIt
bi
h (A.62)

−1.tbjvAbijλ
aI
h t

ai
p (A.63)

−1.raivAbIjt
aj
p t

bi
h (A.64)

−1.tbjvabIjt
ai
h λ

Ai
p (A.65)



APPENDIX A. ISTPT(2) SINGLES AND DOUBLES MATRIX ELEMENTS 128

λjkbc 〈bcjk|H̄|AI 〉 =

1.faiλ
aAiI
hp (A.66)

1.fbjλ
aAiI
hp tabij

hp (A.67)

0.5fAjgbcgikt
acjkλabiI

hp (A.68)

0.5gabfcIgjkt
acijλAbik

hp (A.69)

−1.fijt
aj
p λ

aAiI
hp (A.70)

1.fabt
bi
h λ

aAiI
hp (A.71)

−1.fbjt
aj
p t

bi
h λ

aAiI
hp (A.72)

−0.5gAbvaiIjr
abij (A.73)

−0.5giIvaAbjr
abij (A.74)

−0.25gbcvAijkt
acjkλabiI

hp (A.75)

−0.25gabvAiIjt
acjkλbcik

hp′ (A.76)

−0.5gabvcijkt
acjkλAbiI

hp (A.77)

−0.5gAbvciIjt
acjkλabik

hp′ (A.78)

0.25gbcvAiIkt
acijλabjk

hp (A.79)

0.5gabvciIkt
acijλAbjk

hp (A.80)

0.5gikvAbcjt
acjkλabiI

hp (A.81)

−0.5giIvaAcjt
bcjkλabik

hp′ (A.82)

0.25gjkvAbcIt
acijλabik

hp (A.83)

−0.25gijvaAcIt
bcjkλabik

hp′ (A.84)

−0.5gikvabcjt
bcjkλaAiI

hp (A.85)

−0.25gjkvabcIt
bcijλaAik

hp (A.86)
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0.5gaAviIjkr
abiktbj

p (A.87)

0.5tajvAbijλ
abiI
hp (A.88)

−0.5giIvaAjkr
abijtbk

p (A.89)

−1.tbjvabijλ
aAiI
hp (A.90)

−0.5gAbvaciIr
abijtcj

h (A.91)

0.5tbivabIjλ
aAij
hp (A.92)

0.5giIvaAbcr
abijtcj

h (A.93)

−0.5tajvAijkt
bk
p λ

abiI
hp (A.94)

−1.tbkvbijkt
aj
p λ

aAiI
hp (A.95)

0.5gAbt
ajtckvciIjλ

abik
hp′ (A.96)

−0.5tbjvbiIkt
ai
p λ

aAjk
hp (A.97)

0.25gbcvAdjkt
acjktdi

h λ
abiI
hp (A.98)

−0.5gbcgilt
djvAdjkt

acklλabiI
hp (A.99)

−0.25gbcvAdiIt
acijtdk

h λ
abjk
hp (A.100)

0.25gbcgklt
djvAdiIt

acikλabjl
hp (A.101)

0.5gilvAcjkt
ackltbj

p λ
abiI
hp (A.102)

−0.5tajvAcjkλ
abiI
hp t

bcik
hp (A.103)

−0.25gklvAciIt
acjktbi

p λ
abjl
hp (A.104)

0.25gbcgklt
aivAdiIt

cdjkλabjl
hp (A.105)

−0.5gabvcdjkt
adjktci

hλ
AbiI
hp (A.106)

1.tbjvbcjkλ
aAiI
hp tacik

hp (A.107)

0.5gabvcdiIt
adijtck

h λ
Abjk
hp (A.108)

−0.5tbjvbciIλ
aAjk
hp tacik

hp (A.109)

−0.5gilvbcjkt
aj
p t

bcklλaAiI
hp (A.110)

−0.5gabgklt
civcdiIt

adjkλAbjl
hp (A.111)

0.25gklvbciIt
ai
p t

bcjkλaAjl
hp (A.112)

−0.5tajvAbcjt
ci
hλ

abiI
hp (A.113)

0.5giIt
bjtckvaAcjλ

abik
hp′ (A.114)

−1.tcjvabcjt
bi
h λ

aAiI
hp (A.115)

−0.5tbivabcIt
cj
hλ

aAij
hp (A.116)

0.5tajvAcjkt
bk
p t

ci
hλ

abiI
hp (A.117)

−1.tckvbcjkt
aj
p t

bi
h λ

aAiI
hp (A.118)

0.5tbjvbciIt
ai
p t

ck
h λ

aAjk
hp (A.119)
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λjb〈bj|H̄|ABIJ 〉 =

−1.vaABJλ
aI
h (A.120)

vaABIλ
aJ
h (A.121)

vAiIJλ
Bi
p (A.122)

−1.vBiIJλ
Ai
p (A.123)

vABiJλ
aI
h t

ai
p (A.124)

−1.vABiIλ
aJ
h t

ai
p (A.125)

−1.vaAIJt
ai
h λ

Bi
p (A.126)

vaBIJt
ai
h λ

Ai
p (A.127)
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λjkbc 〈bcjk|H̄|ABIJ 〉 =

1.faBgiJλ
aAiI
hp (A.128)

−1.faAgiJλ
aBiI
hp (A.129)

−1.gaBfiJλ
aAiI
hp (A.130)

1.gaBfiIλ
aAiJ
hp (A.131)

−1.fBjgiJt
aj
p λ

aAiI
hp (A.132)

1.fAjgiJt
aj
p λ

aBiI
hp (A.133)

−1.faJgbBt
ai
h λ

AbiI
hp (A.134)

1.faIgbBt
ai
h λ

AbiJ
hp (A.135)

0.5gaAgbBviIjJr
abij (A.136)

1.vaAiJλ
aBiI
hp (A.137)

−1.vaAiIλ
aBiJ
hp (A.138)

−1.vaBiJλ
aAiI
hp (A.139)

1.vaBiIλ
aAiJ
hp (A.140)

0.5giIgjJvaAbBr
abij (A.141)

0.25gbcgiJvABjkt
acjkλabiI

hp (A.142)

−0.5gbcgikvABjJt
acjkλabiI

hp (A.143)

0.5gbcgikvABIjt
acjkλabiJ

hp (A.144)

0.5gabgiJvAcjkt
acjkλbBiI

hp (A.145)

−1.vAbjJt
abij
hp λ

aBiI
hp (A.146)

1.vAbIjt
abij
hp λ

aBiJ
hp (A.147)

0.5gabgjkvAcIJt
acijλbBik

hp (A.148)

−0.5gabgiJvBcjkt
acjkλAbiI

hp (A.149)

1.vbBjJλ
aAiI
hp tabij

hp (A.150)

−1.vbBIjλ
aAiJ
hp tabij

hp (A.151)

−0.5gabgjkvBcIJt
acijλAbik

hp (A.152)

−0.5gbBgikvacjJt
acjkλAbiI

hp (A.153)

0.5gbBgikvacIjt
acjkλAbiJ

hp (A.154)
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0.25gbBgjkvacIJt
acijλAbik

hp (A.155)

−1.vAijJt
aj
p λ

aBiI
hp (A.156)

1.vAiIjt
aj
p λ

aBiJ
hp (A.157)

1.vBijJt
aj
p λ

aAiI
hp (A.158)

−1.vBiIjt
aj
p λ

aAiJ
hp (A.159)

−1.gbBt
ajvaijJλ

AbiI
hp (A.160)

1.gbBt
ajvaiIjλ

AbiJ
hp (A.161)

0.5gAbt
ajvaiIJλ

bBij
hp′ (A.162)

−0.5gbBt
aivaIjJλ

Abij
hp (A.163)

−0.5giJt
ajvAbBjλ

abiI
hp (A.164)

0.5giIt
bjvaABjλ

abiJ
hp′ (A.165)

1.giJt
bjvaAbjλ

aBiI
hp (A.166)

−1.vaAbJt
bi
h λ

aBiI
hp (A.167)

1.vaAbIt
bi
h λ

aBiJ
hp (A.168)

−1.giJt
bjvabBjλ

aAiI
hp (A.169)

1.vabBJt
bi
h λ

aAiI
hp (A.170)

−1.vabBIt
bi
h λ

aAiJ
hp (A.171)

0.5giJt
ajvABjkt

bk
p λ

abiI
hp (A.172)

1.giJt
bkvAbjkt

aj
p λ

aBiI
hp (A.173)

1.vAbjJt
aj
p t

bi
h λ

aBiI
hp (A.174)

−1.vAbIjt
aj
p t

bi
h λ

aBiJ
hp (A.175)

−1.giJt
bkvbBjkt

aj
p λ

aAiI
hp (A.176)

−1.vbBjJt
aj
p t

bi
h λ

aAiI
hp (A.177)

1.vbBIjt
aj
p t

bi
h λ

aAiJ
hp (A.178)

−1.gbBt
cjvacjJt

ai
h λ

AbiI
hp (A.179)

1.gbBt
cjvacIjt

ai
h λ

AbiJ
hp (A.180)

0.5gbBt
aivacIJt

cj
hλ

Abij
hp (A.181)
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r(1) equations and intermediates

Hq0
AI =

fAI (A.182)

fait
aAiI
hp (A.183)

−1.fait
aI
h t

Ai
p (A.184)

−0.5gaAvbiIjt
abij (A.185)

−0.5gIjvaAbit
abij (A.186)

−1.taivaAiI (A.187)

−1.tajvaiIjt
Ai
p (A.188)

−0.5gaAvbcijt
acijtbI

h (A.189)

taivabijt
AbIj
hp (A.190)

−0.5gIkvabijt
abjktAi

p (A.191)

−1.tbivaAbit
aI
h (A.192)

−1.tbjvabijt
aI
h t

Ai
p (A.193)
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Hq0
ABIJ =

−1.gaBaIJfbit
bJ
h t

aAiI
hp (A.194)

−1.faiaABgjJt
Bi
p t

aAIj
hp (A.195)

vABIJ (A.196)

0.5viIjJt
ABij
pp (A.197)

−1.aABaIJvaAiIt
aBiJ
hp (A.198)

0.5vaAbBt
abIJ
h (A.199)

aABvAiIJt
Bi
p (A.200)

aIJvaABIt
aJ
h (A.201)

−1.aABvabijt
aBiI
hp tAbjJ

hp (A.202)

0.25vabijt
abIJ
h tABij

pp (A.203)

−0.5gaBgJkvbcijt
bcjktaAiI

hp (A.204)

−0.5gaBaABgJkvbcijt
acijtAbIk

hp (A.205)

−0.5gaBgIkvbcijt
bciktaAjJ

hp (A.206)

viIjJt
Ai
p t

Bj
p (A.207)

aABaIJvaiIjt
Bi
p t

aAjJ
hp (A.208)

0.5aIJvaiIjt
aJ
h t

ABij
pp (A.209)

−1.gaBaIJt
bivbiIjt

aAjJ
hp (A.210)

aABaIJvaAiIt
aJ
h t

Bi
p (A.211)

0.5aABvaAbit
Bi
p t

abIJ
h (A.212)

aABaIJvaAbit
aJ
h t

bBiI
hp (A.213)

−1.aABgjJt
aivaAbit

bBIj
hp (A.214)

vaAbBt
aI
h t

bJ
h (A.215)

aIJvaiIjt
aJ
h t

Ai
p t

Bj
p (A.216)

0.5vabijt
Ai
p t

Bj
p t

abIJ
h (A.217)

−1.aABaIJvabijt
aJ
h t

Bi
p t

AbIj
hp (A.218)

−1.aABgJkt
aivabijt

Bj
p t

AbIk
hp (A.219)

0.5vabijt
aI
h t

bJ
h t

ABij
pp (A.220)

gaBaIJt
civbcijt

bJ
h t

aAIj
hp (A.221)

aABvaAbit
aI
h t

bJ
h t

Bi
p (A.222)

vabijt
aI
h t

Ai
p t

bJ
h t

Bj
p (A.223)
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〈AI |H̄|ai 〉ria =

faAr
aI
h (A.224)

−1.fiIr
Ai
p (A.225)

−1.fair
aI
h t

Ai
p (A.226)

−1.fait
aI
h r

Ai
p (A.227)

−1.raivaAiI (A.228)

−0.5gaAvbcijt
acijrbI

h (A.229)

raivabijt
AbIj
hp (A.230)

−0.5gIkvabijt
abjkrAi

p (A.231)

raivaiIjt
Aj
p (A.232)

−1.tajvaiIjr
Ai
p (A.233)

−1.tbivaAbir
aI
h (A.234)

raivaAbit
bI
h (A.235)

−1.tbjvabijr
aI
h t

Ai
p (A.236)

−1.tbjvabijt
aI
h r

Ai
p (A.237)

−1.raivabijt
Aj
p t

bI
h (A.238)

〈AI |H̄|bcjk〉r
jk
bc =

1.fair
aAiI
hp (A.239)

−0.5gaAvbiIjr
abij (A.240)

−0.5gIjvaAbir
abij (A.241)

0.5gIkvabijr
abiktAj

p (A.242)

1.tbjvabijr
aAiI
hp (A.243)

0.5gaAvbcijr
abijtcI

h (A.244)
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〈ABIJ |H̄|bj〉r
j
b =

−1.gaBaIJfbir
bJ
h t

aAiI
hp (A.245)

−1.faiaABgjJr
Bi
p t

aAIj
hp (A.246)

aABvAiIJr
Bi
p (A.247)

aIJvaABIr
aJ
h (A.248)

aABaIJvaiIjr
Bi
p t

aAjJ
hp (A.249)

0.5aIJvaiIjr
aJ
h t

ABij
pp (A.250)

−1.gaBaIJr
bivbiIjt

aAjJ
hp (A.251)

0.5aABvaAbir
Bi
p t

abIJ
h (A.252)

aABaIJvaAbir
aJ
h t

bBiI
hp (A.253)

−1.aABgjJr
aivaAbit

bBIj
hp (A.254)

−1.aABviIjJt
Aj
p r

Bi
p (A.255)

aABaIJvaAiIt
aJ
h r

Bi
p (A.256)

aABaIJvaAiIr
aJ
h t

Bi
p (A.257)

−1.aIJvaAbBr
aJ
h t

bI
h (A.258)

−1.aABaIJvaiIjt
aJ
h t

Aj
p r

Bi
p (A.259)

aIJvaiIjr
aJ
h t

Ai
p t

Bj
p (A.260)

−0.5aABvabijt
Aj
p r

Bi
p t

abIJ
h (A.261)

−1.aABaIJvabijt
aJ
h r

Bi
p t

AbIj
hp (A.262)

−1.aABaIJvabijr
aJ
h t

Bi
p t

AbIj
hp (A.263)

aABgJkt
ajvabijr

Bi
p t

AbIk
hp (A.264)

−1.aABgJkr
aivabijt

Bj
p t

AbIk
hp (A.265)

−0.5aIJvabijr
aJ
h t

bI
h t

ABij
pp (A.266)

gaBaIJt
civbcijr

bJ
h t

aAIj
hp (A.267)

−1.gaBaIJr
bivbcijt

cJ
h t

aAIj
hp (A.268)

aABvaAbit
aI
h t

bJ
h r

Bi
p (A.269)

−1.aABaIJvaAbir
aJ
h t

bI
h t

Bi
p (A.270)

−1.aABvabijt
aI
h t

Aj
p t

bJ
h r

Bi
p (A.271)

−1.aIJvabijr
aJ
h t

Ai
p t

bI
h t

Bj
p (A.272)
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〈ABIJ |H̄|bcjk〉r
jk
bc =

−1.gaBaIJfiJr
aAiI
hp (A.273)

1.faBaABgiJr
aAiI
hp (A.274)

1.gaBaIJfbit
bI
h r

aAiJ
hp (A.275)

1.faiaABgjJt
Ai
p r

aBIj
hp (A.276)

0.5gaAgbBviIjJr
abij (A.277)

−1.aABaIJvaAiIr
aBiJ
hp (A.278)

0.5giIgjJvaAbBr
abij (A.279)

1.aABaIJvabijr
aBiJ
hp tAbIj

hp (A.280)

0.25gIkgJlvabijr
abkltABij

pp (A.281)

−0.5gaBaABgJkvbcijt
acijrAbIk

hp (A.282)

−0.5gaBaIJgJkvbcijt
bcjkraAiI

hp (A.283)

0.5gaBaIJgJkvbcijr
bciktaAIj

hp (A.284)

0.5gaBaABgJkvbcijr
abijtAcIk

hp (A.285)

0.25gaAgbBvcdijr
abijtcdIJ

h (A.286)

1.aABaIJvaiIjt
Aj
p r

aBiJ
hp (A.287)

1.gaBaIJt
bjvbiIjr

aAiJ
hp (A.288)

0.5gaAaIJgbBvciIjr
abijtcJ

h (A.289)

1.aABgjJt
bivaAbir

aBIj
hp (A.290)

0.5aABgIjgJkvaAbir
abjktBi

p (A.291)

1.aABaIJvaAbit
bI
h r

aBiJ
hp (A.292)

1.aABgJkt
bjvabijt

Ai
p r

aBIk
hp (A.293)

−1.aABaIJvabijt
Aj
p t

bI
h r

aBiJ
hp (A.294)

0.5gIkgJlvabijr
abkltAi

p t
Bj
p (A.295)

1.gaBaIJt
cjvbcijt

bI
h r

aAiJ
hp (A.296)

0.5gaAgbBvcdijr
abijtcI

h t
dJ
h (A.297)

A24 binding energies
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complex / model {ijab} {ijab}+ {i}{a} {ia}{jb} {ia}{jb}+ {i}{a} {i}{j}{a}{b} MP2 CCSD
01 -5.13 -5.82 -5.34 -6.04 -6.41 -6.95 -6.47
02 -4.12 -4.56 -4.28 -4.71 -4.95 -5.24 -5.00
03 -4.63 -4.85 -4.74 -4.97 -5.16 -5.63 -5.23
04 -3.82 -4.25 -3.94 -4.37 -4.55 -4.61 -4.56
05 -2.50 -2.70 -2.66 -2.86 -3.08 -3.38 -3.09
06 -1.32 -1.40 -1.45 -1.54 -1.65 -1.86 -1.69
07 -0.75 -0.84 -0.84 -0.92 -1.03 -1.14 -1.05
08 -0.64 -0.69 -0.71 -0.75 -0.83 -0.92 -0.84
09 -3.03 -3.58 -3.25 -3.82 -4.38 -4.82 -4.37
10 -2.10 -2.30 -2.26 -2.46 -2.65 -3.21 -2.73
11 -1.42 -1.49 -1.56 -1.63 -1.84 -2.18 -1.86
12 -1.60 -1.70 -1.70 -1.80 -1.90 -2.35 -2.00
13 -1.28 -1.38 -1.40 -1.49 -1.62 -2.05 -1.69
14 -1.02 -1.09 -1.18 -1.25 -1.40 -1.97 -1.49
15 -0.60 -0.63 -0.67 -0.71 -0.82 -1.01 -0.83
16 -0.58 -0.78 -0.87 -1.08 -1.32 -1.73 -1.42
17 -0.87 -0.87 -1.03 -1.03 -1.12 -1.40 -1.20
18 -0.74 -0.74 -0.87 -0.87 -0.96 -1.11 -0.99
19 -0.64 -0.63 -0.74 -0.74 -0.83 -0.95 -0.84
20 -0.31 -0.31 -0.36 -0.37 -0.41 -0.56 -0.47
21 -0.16 -0.17 -0.20 -0.21 -0.26 -0.45 -0.30
22 1.07 1.10 0.97 1.00 0.81 0.13 0.77
23 1.10 1.13 0.97 1.00 0.76 0.14 0.73
24 1.39 1.42 1.31 1.34 1.18 0.46 1.15

Table A.1: A24 binding energies in kJ/mol for fully-non-orthogonal truncation models and
canonical MP2 and CCSD computed in aug-cc-pvdz. The horizontal lines delineate hydrogen-
bonded, mixed-character, and dispersion-dominated interactions.
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Appendix B

STPT(2) triples and quadruples
matrix elements

Occupied and virtual orbitals are indexed (i, j, k, l, I, J,K, L...) and (a, b, c, d, A,B,C,D...),
respectively, with upper-case indices implying external hole/particle excitations and lower-
case (internal) indices implying summation. The operator apq is an antisymmetrizer, e.g.,
apqXpqrs = Xpqrs −Xqprs. The tensors fpq and vpqrs are the Fock and antisymmerized inte-
grals, respectively. t, λ, r are the cluster, left, and first-order right amplitudes. The following
intermediates are used in the expressions below.

XaI
h = XajgjI (B.1)

XAi
p = gAbX

bi (B.2)

XabIJ
h = gIjX

abjJ (B.3)

XABij
pp = gAagBbX

abij (B.4)

XbBiI
hp = gijgbcX

cBjI (B.5)

XbBiI
hp′ = gIjgBcX

bcij (B.6)

Xbcij
hph = gjkX

bcik
hp (B.7)

Xbcij
hpp = gcaX

baij
hp (B.8)

triples

〈AI |H̄r̂
(1)
t |0〉 =

0.25gIkvabijr
aAbijk (B.9)
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〈ABIJ |H̄r̂
(1)
t |0〉 =

1.gaBfbigjJr
aAbiIj
hp (B.10)

1.gaBfbigjJr
aAbiIj
hp (B.11)

0.5gaBaIJvbiIjr
aAbijJ
hp (B.12)

−0.5aABgJkvabijt
Aj
p r

abBiIk
hp (B.13)

1.gaBgJkt
cjvbcijr

aAbiIk
hp (B.14)

−0.5gaBaIJvbcijt
cI
h r

aAbijJ
hp (B.15)

0.5aABgjJvaAbir
abBiIj
hp (B.16)
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〈ABCIJK |H̄|0〉 =

faiaIJt
aCJK
hph tABiI

hpp (B.17)

−1.faiaABaIJt
aBJK
hph tACiI

hpp (B.18)

fait
aCIJ
hph t

ABiK
hpp (B.19)

−1.faiaABt
aBIJ
hph t

ACiK
hpp (B.20)

faiaIJt
aCJK
hph tABiI

hpp (B.21)

−1.faiaABaIJt
aBJK
hph tACiI

hpp (B.22)

fait
aCIJ
hph t

ABiK
hpp (B.23)

−1.faiaABt
aBIJ
hph t

ACiK
hpp (B.24)

−1.viIjJt
Ci
p t

ABjK
hpp (B.25)

aABviIjJt
Bi
p t

ACjK
hpp (B.26)

aIJviIjKt
Ci
p t

ABjJ
hpp (B.27)

−1.aABaIJviIjKt
Bi
p t

ACjJ
hpp (B.28)

−1.aABaIJvaiIjt
Bi
p t

Cj
p t

aAJK
hph (B.29)

−1.aIJvaiIjt
Ai
p t

Bj
p t

aCJK
hph (B.30)

aIJvaiIjt
aCjK
hp tABiJ

hpp (B.31)

−1.aABaIJvaiIjt
aBjK
hp tACiJ

hpp (B.32)

aIJvaiIjt
aK
h tCi

p t
ABjJ
hpp (B.33)

−1.aABaIJvaiIjt
aK
h tBi

p t
ACjJ
hpp (B.34)

−1.aIJvaiIjt
aJ
h t

Ci
p t

ABjK
hpp (B.35)

aIJvaiIjt
aCiJ
hp tABjK

hpp (B.36)

aABaIJvaiIjt
aJ
h t

Bi
p t

ACjK
hpp (B.37)

−1.aABaIJvaiIjt
aBiJ
hp tACjK

hpp (B.38)

−0.5aIJvaiIjt
aCJK
hph tABij

pp (B.39)

0.5aABaIJvaiIjt
aBJK
hph tACij

pp (B.40)

−1.aABvaijKt
Bi
p t

Cj
p t

aAIJ
hph (B.41)

−1.vaijKt
Ai
p t

Bj
p t

aCIJ
hph (B.42)

vaijKt
aCjJ
hp tABiI

hpp (B.43)

−1.aABvaijKt
aBjJ
hp tACiI

hpp (B.44)

aIJvaijKt
aJ
h t

Ci
p t

ABIj
hpp (B.45)

−1.aABaIJvaijKt
aJ
h t

Bi
p t

ACIj
hpp (B.46)
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vaijKt
aCiI
hp tABjJ

hpp (B.47)

−1.aABvaijKt
aBiI
hp tACjJ

hpp (B.48)

−0.5vaijKt
aCIJ
hph t

ABij
pp (B.49)

0.5aABvaijKt
aBIJ
hph t

ACij
pp (B.50)

aABaJKvabijt
Ci
p t

aAIJ
hph t

bBjK
hp (B.51)

−1.aABaJKvabijt
Bi
p t

aAIJ
hph t

bCjK
hp (B.52)

−1.aABvabijt
aK
h tBi

p t
Cj
p t

AbIJ
hph (B.53)

aABaJKvabijt
Bi
p t

aCIJ
hph t

AbjK
hp (B.54)

−1.vabijt
aK
h tAi

p t
Bj
p t

bCIJ
hph (B.55)

aABaIJvabijt
aJ
h t

Bi
p t

Cj
p t

AbIK
hph (B.56)

aIJvabijt
aJ
h t

Ai
p t

Bj
p t

bCIK
hph (B.57)

−1.aABvabijt
Ci
p t

aBIj
hp tAbJK

hph (B.58)

aABvabijt
Bi
p t

aCIj
hp tAbJK

hph (B.59)

−1.aABvabijt
Bi
p t

aAIj
hp tbCJK

hph (B.60)

vabijt
aK
h tABiI

hpp t
bCjJ
hp (B.61)

−1.aIJvabijt
aJ
h t

ABiI
hpp t

bCjK
hp (B.62)

−1.aABvabijt
aK
h tACiI

hpp t
bBjJ
hp (B.63)

aABaIJvabijt
aJ
h t

ACiI
hpp t

bBjK
hp (B.64)

−1.aIJvabijt
aJ
h t

bK
h tCi

p t
ABIj
hpp (B.65)

−0.5aIJvabijt
Ci
p t

abJK
h tABIj

hpp (B.66)

aIJt
aivabijt

ABIj
hpp t

bCJK
hph (B.67)

aABaIJvabijt
aJ
h t

bK
h tBi

p t
ACIj
hpp (B.68)

0.5aABaIJvabijt
Bi
p t

abJK
h tACIj

hpp (B.69)

−1.aABaIJt
aivabijt

ACIj
hpp t

bBJK
hph (B.70)

vabijt
aK
h tABjJ

hpp tbCiI
hp (B.71)

−1.aABvabijt
aK
h tACjJ

hpp tbBiI
hp (B.72)

−1.vabijt
aI
h t

bJ
h t

Ci
p t

ABjK
hpp (B.73)

−0.5vabijt
Ci
p t

abIJ
h tABjK

hpp (B.74)

−1.aIJvabijt
aJ
h t

ABjK
hpp tbCiI

hp (B.75)

taivabijt
ABjK
hpp tbCIJ

hph (B.76)

aABvabijt
aI
h t

bJ
h t

Bi
p t

ACjK
hpp (B.77)
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0.5aABvabijt
Bi
p t

abIJ
h tACjK

hpp (B.78)

aABaIJvabijt
aJ
h t

ACjK
hpp tbBiI

hp (B.79)

−1.aABt
aivabijt

ACjK
hpp tbBIJ

hph (B.80)

−0.5vabijt
aK
h tABij

pp tbCIJ
hph (B.81)

0.5aIJvabijt
aJ
h t

ABij
pp tbCIK

hph (B.82)

0.5aABvabijt
aK
h tACij

pp tbBIJ
hph (B.83)

−0.5aABaIJvabijt
aJ
h t

ACij
pp tbBIK

hph (B.84)

−1.aABvAiIJt
BCiK
hpp (B.85)

aABaIJvAiIKt
BCiJ
hpp (B.86)

aABaIJvaAiIt
Ci
p t

aBJK
hph (B.87)

−1.aABaIJvaAiIt
Bi
p t

aCJK
hph (B.88)

aABaIJvaAiIt
aK
h tBCiJ

hpp (B.89)

−1.aABaIJvaAiIt
aJ
h t

BCiK
hpp (B.90)

aABvaAiKt
Ci
p t

aBIJ
hph (B.91)

−1.aABvaAiKt
Bi
p t

aCIJ
hph (B.92)

aABaIJvaAiKt
aJ
h t

BCiI
hpp (B.93)

aABaJKvaAbit
aBIJ
hph t

bCiK
hp (B.94)

aABvaAbit
aK
h tCi

p t
bBIJ
hph (B.95)

−1.aABaJKvaAbit
aCIJ
hph t

bBiK
hp (B.96)

−1.aABvaAbit
aK
h tBi

p t
bCIJ
hph (B.97)

−1.aABaIJvaAbit
aJ
h t

Ci
p t

bBIK
hph (B.98)

aABaIJvaAbit
aJ
h t

Bi
p t

bCIK
hph (B.99)

−1.aABvaAbit
aCiI
hp tbBJK

hph (B.100)

aABvaAbit
aBiI
hp tbCJK

hph (B.101)

−1.aABaIJvaAbit
aJ
h t

bK
h tBCiI

hpp (B.102)

−0.5aABaIJvaAbit
abJK
h tBCiI

hpp (B.103)

−1.aABvaAbit
aI
h t

bJ
h t

BCiK
hpp (B.104)

−0.5aABvaAbit
abIJ
h tBCiK

hpp (B.105)

−1.vCiIJt
ABiK
hpp (B.106)

aIJvCiIKt
ABiJ
hpp (B.107)
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aABaIJvaCiIt
Bi
p t

aAJK
hph (B.108)

aIJvaCiIt
aK
h tABiJ

hpp (B.109)

−1.aIJvaCiIt
aJ
h t

ABiK
hpp (B.110)

aABvaCiKt
Bi
p t

aAIJ
hph (B.111)

aIJvaCiKt
aJ
h t

ABiI
hpp (B.112)

aABaJKvabCit
aAIJ
hph t

bBiK
hp (B.113)

aABvabCit
aK
h tBi

p t
AbIJ
hph (B.114)

−1.aABaIJvabCit
aJ
h t

Bi
p t

AbIK
hph (B.115)

−1.aABvabCit
aBiI
hp tAbJK

hph (B.116)

−1.aIJvabCit
aJ
h t

bK
h tABiI

hpp (B.117)

−0.5aIJvabCit
abJK
h tABiI

hpp (B.118)

−1.vabCit
aI
h t

bJ
h t

ABiK
hpp (B.119)

−0.5vabCit
abIJ
h tABiK

hpp (B.120)

−1.aIJvaABIt
aCJK
hph (B.121)

−1.vaABKt
aCIJ
hph (B.122)

−1.vaAbBt
aK
h tbCIJ

hph (B.123)

aIJvaAbBt
aJ
h t

bCIK
hph (B.124)

aABaIJvaACIt
aBJK
hph (B.125)

aABvaACKt
aBIJ
hph (B.126)

aABvaAbCt
aK
h tbBIJ

hph (B.127)

−1.aABaIJvaAbCt
aJ
h t

bBIK
hph (B.128)
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〈ABCIJK |H̄r̂
(1)
t |0〉 =

1.gaBfbCgiJgjKr
aAbiIj
hp (B.129)

−1.gaCaABfbBgiJgjKr
aAbiIj
hp (B.130)

−1.gaBgbCfiKgjJr
aAbiIj
hp (B.131)

1.gaBaIJgbCfiJgjKr
aAbiIj
hp (B.132)

−1.gaBaIJgbCfcigjKt
cI
h r

aAbijJ
hp (B.133)

−1.gaBgbCfcigjJt
cK
h r

aAbiIj
hp (B.134)

−1.gaCaABfbigjJgkKt
Ai
p r

abBIjk
hp (B.135)

−1.gaBfbigjJgkKt
Ci
p r

aAbIjk
hp (B.136)

1.gaBfbCgiJgjKr
aAbiIj
hp (B.137)

−1.gaCaABfbBgiJgjKr
aAbiIj
hp (B.138)

−1.gaBgbCfiKgjJr
aAbiIj
hp (B.139)

1.gaBaIJgbCfiJgjKr
aAbiIj
hp (B.140)

−1.gaBaIJgbCfcigjKt
cI
h r

aAbijJ
hp (B.141)

−1.gaBgbCfcigjJt
cK
h r

aAbiIj
hp (B.142)

−1.gaCaABfbigjJgkKt
Ai
p r

abBIjk
hp (B.143)

−1.gaBfbigjJgkKt
Ci
p r

aAbIjk
hp (B.144)

0.5gaBgbCviIjJr
aAbijK
hp (B.145)

−0.5gaBaIJgbCviIjKr
aAbijJ
hp (B.146)

1.gaCaABaIJgkKvbiIjt
Aj
p r

abBiJk
hp (B.147)

1.gaBaIJgkKvbiIjt
Cj
p r

aAbiJk
hp (B.148)

−1.gaBaIJgbCgkKt
cjvciIjr

aAbiJk
hp (B.149)

0.5gaBaIJgbCvciIjt
cJ
h r

aAbijK
hp (B.150)

−0.5gaBaIJgbCvciIjt
cK
h r

aAbijJ
hp (B.151)

1.gaCaABgJkvbijKt
Aj
p r

abBiIk
hp (B.152)

1.gaBgJkvbijKt
Cj
p r

aAbiIk
hp (B.153)

−1.gaBgbCgJkt
cjvcijKr

aAbiIk
hp (B.154)

0.5gaBaIJgbCvcijKt
cI
h r

aAbijJ
hp (B.155)

0.5gJkgKlvabijt
Ai
p t

Bj
p r

abCIkl
hp (B.156)

−0.5aABgJkgKlvabijt
Ai
p t

Cj
p r

abBIkl
hp (B.157)

−0.5aIJgkKvabijt
ABIj
hpp r

abCiJk
hp (B.158)
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0.5aABaIJgkKvabijt
ACIj
hpp r

abBiJk
hp (B.159)

−0.5gJkvabijt
ABjK
hpp rabCiIk

hp (B.160)

0.5aABgJkvabijt
ACjK
hpp rabBiIk

hp (B.161)

0.25gJkgKlvabijt
ABij
pp rabCIkl

hp (B.162)

−0.25aABgJkgKlvabijt
ACij
pp rabBIkl

hp (B.163)

−1.gaCaABgJkgKlt
cjvbcijt

Ai
p r

abBIkl
hp (B.164)

−1.gaCaABaIJgkKvbcijt
Aj
p t

cI
h r

abBiJk
hp (B.165)

−1.gaCaABgJkvbcijt
Aj
p t

cK
h r

abBiIk
hp (B.166)

−1.gaBgJkgKlt
cjvbcijt

Ci
p r

aAbIkl
hp (B.167)

−1.gaBaIJgkKvbcijt
cI
h t

Cj
p r

aAbiJk
hp (B.168)

−1.gaBgJkvbcijt
cK
h t

Cj
p r

aAbiIk
hp (B.169)

1.gaCaABaIJgkKvbcijt
AcIj
hp rabBiJk

hp (B.170)

1.gaBaIJgkKvbcijt
cCIj
hp raAbiJk

hp (B.171)

1.gaCaABgJkvbcijt
AcjK
hp rabBiIk

hp (B.172)

1.gaBgJkvbcijt
cCjK
hp raAbiIk

hp (B.173)

−0.5gaCaABvbcijt
AcIJ
hph r

abBijK
hp (B.174)

−0.5gaBvbcijt
cCIJ
hph r

aAbijK
hp (B.175)

0.5gaCaABaIJvbcijt
AcIK
hph rabBijJ

hp (B.176)

0.5gaBaIJvbcijt
cCIK
hph raAbijJ

hp (B.177)

−1.gaBaIJgbCgkKt
djvcdijt

cI
h r

aAbiJk
hp (B.178)

−1.gaBgbCgJkt
djvcdijt

cK
h r

aAbiIk
hp (B.179)

0.5gaBgbCvcdijt
cI
h t

dJ
h r

aAbijK
hp (B.180)

−0.5gaBaIJgbCvcdijt
cI
h t

dK
h raAbijJ

hp (B.181)

0.5gaBaABgbCgJkgKlvcdijt
adijrAbcIkl

hp (B.182)

−0.5gaBgbCgJkgKlvcdijt
bdijraAcIkl

hp (B.183)

−0.5gaBgbCgJlgkKvcdijt
cdjkraAbiIl

hp (B.184)

0.5gaBaIJgbCgJkgKlvcdijt
cdjkraAbiIl

hp (B.185)

0.25gaBgbCvcdijt
cdIJ
h raAbijK

hp (B.186)

−0.25gaBaIJgbCvcdijt
cdIK
h raAbijJ

hp (B.187)

−1.gaCaABaIJgjKvAbiIr
abBijJ
hp (B.188)

−1.gaCaABgjJvAbiKr
abBiIj
hp (B.189)
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0.5aABgjJgkKvaAbit
Bi
p r

abCIjk
hp (B.190)

−0.5aABgjJgkKvaAbit
Ci
p r

abBIjk
hp (B.191)

−1.gaCaABgjJgkKt
civAbcir

abBIjk
hp (B.192)

1.gaCaABaIJgjKvAbcit
cI
h r

abBijJ
hp (B.193)

1.gaCaABgjJvAbcit
cK
h r

abBiIj
hp (B.194)

−1.gaBaIJgjKvbCiIr
aAbijJ
hp (B.195)

−1.gaBgjJvbCiKr
aAbiIj
hp (B.196)

0.5aABgjJgkKvabCit
Ai
p r

abBIjk
hp (B.197)

−1.gaBgjJgkKt
civbcCir

aAbIjk
hp (B.198)

1.gaBaIJgjKvbcCit
cI
h r

aAbijJ
hp (B.199)

1.gaBgjJvbcCit
cK
h r

aAbiIj
hp (B.200)

0.5giJgjKvaAbBr
abCiIj
hp (B.201)

−0.5aABgiJgjKvaAbCr
abBiIj
hp (B.202)
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factorized quadruples

〈ABIJ |H̄r̂
(1)
q |0〉 =

−0.25vabijvIJklt
abik
hpp t

ABjl
hpp (B.203)

−0.5aABvabijvIJklt
aBik
hpp t

Abjl
hpp (B.204)

−0.25vabijvIJklt
abjl
hppt

ABik
hpp (B.205)

1.aABaIJvabijviIklt
aBJk
hpp tAbjl

hpp (B.206)

−0.5aIJvabijvIjklt
abJk
hpp t

ABil
hpp (B.207)

−0.5aIJvabijvIjklt
abil
hppt

ABJk
hpp (B.208)

−0.5aIJvabijvcIklt
ak
p t

ABJl
hpp tbcij

hph (B.209)

0.5aABaIJvabijvcIklt
Bk
p taAJl

hpp t
bcij
hph (B.210)

0.5aABaIJvabijvcIklt
ak
p t

AbJl
hpp t

Bcij
hph (B.211)

0.25aABaIJvabijvcIklt
Bk
p tabJl

hpp t
Acij
hph (B.212)

−0.5aIJvabijvcIklt
cj
h t

abJk
hpp t

ABil
hpp (B.213)

−1.aABaIJvabijvcIklt
ak
p t

Abil
hpp t

BcjJ
hph (B.214)

−0.5aABaIJvabijvcIklt
Bk
p tabil

hppt
AcjJ
hph (B.215)

−1.aIJvabijvcIklt
ak
p t

ABjl
hpp t

bciJ
hph (B.216)

−0.25aIJvabijvcIklt
cJ
h t

abik
hpp t

ABjl
hpp (B.217)

1.aABaIJvabijvcIklt
Bk
p taAjl

hpp t
bciJ
hph (B.218)

0.5aABaIJvabijvcIklt
cJ
h t

aAjl
hpp t

bBik
hpp (B.219)

1.aABaIJvabijvcIklt
ci
h t

aBJk
hpp tAbjl

hpp (B.220)

0.5aIJvabijvcIklt
ci
h t

abjl
hppt

ABJk
hpp (B.221)

−0.25aIJvabijvcIklt
cJ
h t

abjl
hppt

ABik
hpp (B.222)

−0.25vabijvijklt
abIk
hpp t

ABJl
hpp (B.223)

−0.5aABvabijvijklt
aBIk
hpp t

AbJl
hpp (B.224)

−0.25vabijvijklt
abJl
hpp t

ABIk
hpp (B.225)

1.aABaIJvabijvciklt
Bk
p taAIl

hpp t
bcjJ
hph (B.226)

0.5aABaIJvabijvciklt
Bk
p tabIl

hppt
AcjJ
hph (B.227)

−1.aABvabijvciklt
cj
h t

aBIk
hpp t

AbJl
hpp (B.228)

−1.vabijvciklt
ak
p t

ABjl
hpp t

bcIJ
hph (B.229)
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1.aABvabijvciklt
Bk
p taAjl

hpp t
bcIJ
hph (B.230)

1.aABaIJvabijvciklt
cJ
h t

aBIk
hpp t

Abjl
hpp (B.231)

0.5aIJvabijvciklt
cJ
h t

abjl
hppt

ABIk
hpp (B.232)

1.aIJvabijvcjklt
ak
p t

ABIl
hpp t

bciJ
hph (B.233)

−1.aABaIJvabijvcjklt
ak
p t

AbIl
hpp t

BciJ
hph (B.234)

0.5vabijvcjklt
ci
h t

abIk
hpp t

ABJl
hpp (B.235)

0.5vabijvcjklt
ci
h t

abJl
hpp t

ABIk
hpp (B.236)

−0.5aIJvabijvcjklt
cJ
h t

abIk
hpp t

ABil
hpp (B.237)

−1.aABvabijvcjklt
ak
p t

Abil
hpp t

BcIJ
hph (B.238)

−0.5aABvabijvcjklt
Bk
p tabil

hppt
AcIJ
hph (B.239)

0.25aABvabijvcdklt
ak
p t

bl
p t

AdiJ
hph t

BcIj
hph (B.240)

1.vabijvcdklt
Ak
p tBl

p t
adiJ
hph t

bcIj
hph (B.241)

−0.25aABvabijvcdklt
ak
p t

bl
p t

AdjJ
hph t

BciI
hph (B.242)

−1.aABvabijvcdklt
al
p t

Bk
p tAdjJ

hph t
bciI
hph (B.243)

1.aABvabijvcdklt
al
p t

Bk
p tAciI

hph t
bdjJ
hph (B.244)

0.25aABvabijvcdklt
ak
p t

bl
p t

Adij
hph t

BcIJ
hph (B.245)

0.5aABvabijvcdklt
al
p t

Bk
p tAdij

hph t
bcIJ
hph (B.246)

0.5vabijvcdklt
Ak
p tBl

p t
adij
hpht

bcIJ
hph (B.247)

−0.5aABvabijvcdklt
al
p t

Bk
p tAcIJ

hph t
bdij
hph (B.248)

−1.aIJvabijvcdklt
acjJ
hph t

ABIk
hpp tbdil

hp (B.249)

−0.5vabijvcdklt
adij
hpht

ABIk
hpp tbcJl

hp (B.250)

0.75aABaIJvabijvcdklt
aAIk
hpp t

bdil
hp t

BcjJ
hph (B.251)

0.5aABvabijvcdklt
aAIk
hpp t

bcJl
hp tBdij

hph (B.252)

0.25aABaIJvabijvcdklt
adjl
hp t

AbIk
hpp t

BciJ
hph (B.253)

1.aABaIJvabijvcdklt
acjJ
hph t

AbIk
hpp t

Bdil
hp (B.254)

0.5aABvabijvcdklt
adij
hpht

AbIk
hpp t

BcJl
hp (B.255)

−0.5aABaIJvabijvcdklt
abIk
hpp t

AcjJ
hph t

Bdil
hp (B.256)

−0.25aABvabijvcdklt
abIk
hpp t

Adij
hph t

BcJl
hp (B.257)

−1.aIJvabijvcdklt
ak
p t

ci
h t

ABIl
hpp t

bdjJ
hph (B.258)

0.5aIJvabijvcdklt
ak
p t

cJ
h t

ABIl
hpp t

bdij
hph (B.259)
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1.aABaIJvabijvcdklt
Bk
p tci

h t
aAIl
hpp t

bdjJ
hph (B.260)

−0.5aABaIJvabijvcdklt
Bk
p tcJ

h t
aAIl
hpp t

bdij
hph (B.261)

1.aABaIJvabijvcdklt
ak
p t

ci
h t

AbIl
hpp t

BdjJ
hph (B.262)

−0.5aABaIJvabijvcdklt
ak
p t

cJ
h t

AbIl
hpp t

Bdij
hph (B.263)

0.5aABaIJvabijvcdklt
Bk
p tci

h t
abIl
hppt

AdjJ
hph (B.264)

−0.25aABaIJvabijvcdklt
Bk
p tcJ

h t
abIl
hppt

Adij
hph (B.265)

0.5vabijvcdklt
acIk
hp tABJl

hpp tbdij
hph (B.266)

−0.25vabijvcdklt
ci
h t

dj
h t

abIk
hpp t

ABJl
hpp (B.267)

−0.125vabijvcdklt
abIk
hpp t

ABJl
hpp tcdij

h (B.268)

−0.5aABvabijvcdklt
aAJl
hpp t

bdij
hpht

BcIk
hp (B.269)

0.25aABvabijvcdklt
aAJl
hpp t

bBIk
hpp t

cdij
h (B.270)

−0.5aABvabijvcdklt
acIk
hp tAbJl

hpp t
Bdij
hph (B.271)

−0.5aABvabijvcdklt
ci
h t

dj
h t

aBIk
hpp t

AbJl
hpp (B.272)

−0.25aABvabijvcdklt
abJl
hpp t

Adij
hph t

BcIk
hp (B.273)

−0.25vabijvcdklt
ci
h t

dj
h t

abJl
hpp t

ABIk
hpp (B.274)

−0.125vabijvcdklt
abJl
hpp t

ABIk
hpp tcdij

h (B.275)

−0.5vabijvcdklt
adjl
hp t

ABik
hpp tbcIJ

hph (B.276)

0.5aABvabijvcdklt
aAik
hpp t

bcIJ
hph t

Bdjl
hp (B.277)

0.5aABvabijvcdklt
adjl
hp t

Abik
hpp t

BcIJ
hph (B.278)

0.25aABvabijvcdklt
abik
hpp t

AcIJ
hph t

Bdjl
hp (B.279)

0.5vabijvcdklt
ak
p t

cj
h t

ABil
hpp t

bdIJ
hph (B.280)

0.5aIJvabijvcdklt
bk
p t

cJ
h t

adIj
hpht

ABil
hpp (B.281)

0.5vabijvcdklt
adjJ
hph t

ABil
hpp t

bcIk
hp (B.282)

0.25aIJvabijvcdklt
abIk
hpp t

ABil
hpp t

cdjJ
h (B.283)

−1.aABaIJvabijvcdklt
bk
p t

cJ
h t

aAil
hpp t

BdIj
hph (B.284)

1.aABvabijvcdklt
aAil
hpp t

bdjJ
hph t

BcIk
hp (B.285)

−0.5aABvabijvcdklt
ak
p t

cj
h t

Abil
hpp t

BdIJ
hph (B.286)

−1.aABvabijvcdklt
acIj
hpht

Abil
hpp t

BdJk
hp (B.287)
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1.aABaIJvabijvcdklt
cJ
h t

dj
h t

aBIk
hpp t

Abil
hpp (B.288)

0.5aABvabijvcdklt
abil
hppt

AcIj
hph t

BdJk
hp (B.289)

0.5aABvabijvcdklt
abil
hppt

AdjJ
hph t

BcIk
hp (B.290)

0.25aIJvabijvcdklt
abil
hppt

ABIk
hpp tcdjJ

h (B.291)

0.5vabijvcdklt
bk
p t

ci
h t

adIJ
hph t

ABjl
hpp (B.292)

−0.5vabijvcdklt
adik
hp tABjl

hpp t
bcIJ
hph (B.293)

−0.25vabijvcdklt
aciI
hpht

ABjl
hpp t

bdJk
hp (B.294)

0.75vabijvcdklt
adJk
hp tABjl

hpp t
bciI
hph (B.295)

0.5aIJvabijvcdklt
ak
p t

cJ
h t

ABjl
hpp t

bdiI
hph (B.296)

0.5vabijvcdklt
acIk
hp tABjl

hpp t
bdiJ
hph (B.297)

−0.5aIJvabijvcdklt
cJ
h t

di
h t

abIk
hpp t

ABjl
hpp (B.298)

−0.25vabijvcdklt
cI
h t

dJ
h t

abik
hpp t

ABjl
hpp (B.299)

−0.125vabijvcdklt
abik
hpp t

ABjl
hpp t

cdIJ
h (B.300)

−0.5aABvabijvcdklt
bk
p t

ci
h t

aAjl
hpp t

BdIJ
hph (B.301)

1.aABvabijvcdklt
Bk
p tci

h t
aAjl
hpp t

bdIJ
hph (B.302)

−1.aABaIJvabijvcdklt
Bk
p tcJ

h t
aAjl
hpp t

bdiI
hph (B.303)

0.5aABaIJvabijvcdklt
aAjl
hpp t

bBIk
hpp t

cdiJ
h (B.304)

0.25aABvabijvcdklt
aAjl
hpp t

bBik
hpp t

cdIJ
h (B.305)

0.5aABvabijvcdklt
adik
hp tAbjl

hpp t
BcIJ
hph (B.306)

−0.5aABvabijvcdklt
acIJ
hph t

Abjl
hpp t

Bdik
hp (B.307)

−1.aABvabijvcdklt
adJk
hp tAbjl

hpp t
BciI
hph (B.308)

−1.aABvabijvcdklt
acIk
hp tAbjl

hpp t
BdiJ
hph (B.309)

−0.5aABvabijvcdklt
cI
h t

dJ
h t

aBik
hpp t

Abjl
hpp (B.310)

0.25aABvabijvcdklt
abjl
hppt

AcIJ
hph t

Bdik
hp (B.311)

0.5aABvabijvcdklt
Bk
p tci

h t
abjl
hppt

AdIJ
hph (B.312)

−0.5aABaIJvabijvcdklt
Bk
p tcJ

h t
abjl
hppt

AdiI
hph (B.313)

−0.5aIJvabijvcdklt
cJ
h t

di
h t

abjl
hppt

ABIk
hpp (B.314)

−0.25vabijvcdklt
cI
h t

dJ
h t

abjl
hppt

ABik
hpp (B.315)

−0.125vabijvcdklt
abjl
hppt

ABik
hpp tcdIJ

h (B.316)
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0.5vabijvcdklt
aciI
hpht

ABkl
pp tbdjJ

hph (B.317)

−0.25vabijvcdklt
acIJ
hph t

ABkl
pp tbdij

hph (B.318)

−0.5aABvabijvcdklt
aAkl
pp tbdjJ

hph t
BciI
hph (B.319)

0.25aABvabijvcdklt
aAkl
pp tbdij

hpht
BcIJ
hph (B.320)

−0.5aABvabijvcdklt
aciI
hpht

Abkl
pp tBdjJ

hph (B.321)

0.25aABvabijvcdklt
acIJ
hph t

Abkl
pp tBdij

hph (B.322)

−0.25aABvabijvcdklt
abkl
pp tAdjJ

hph t
BciI
hph (B.323)

0.125aABvabijvcdklt
abkl
pp tAdij

hph t
BcIJ
hph (B.324)

0.5aABaIJvabijvAcIkt
acij
hpht

bBJk
hpp (B.325)

−0.25aABaIJvabijvAcIkt
abJk
hpp t

Bcij
hph (B.326)

0.5aABaIJvabijvAcIkt
abik
hpp t

BcjJ
hph (B.327)

1.aABaIJvabijvAcIkt
aciJ
hpht

bBjk
hpp (B.328)

0.5aABaIJvabijvAcikt
acjJ
hph t

bBIk
hpp (B.329)

1.aABvabijvAcikt
acIJ
hph t

bBjk
hpp (B.330)

−0.5aABaIJvabijvAcjkt
aciJ
hpht

bBIk
hpp (B.331)

0.5aABaIJvabijvAcjkt
abIk
hpp t

BciJ
hph (B.332)

0.5aABvabijvAcjkt
abik
hpp t

BcIJ
hph (B.333)

−0.5aABvabijvAcdkt
ak
p t

bcIj
hpht

BdiJ
hph (B.334)

0.5aABvabijvAcdkt
Bk
p tadiJ

hph t
bcIj
hph (B.335)

−0.5aABvabijvAcdkt
bk
p t

aciI
hpht

BdjJ
hph (B.336)

0.25aABvabijvAcdkt
bk
p t

adjJ
hph t

BciI
hph (B.337)

−0.75aABvabijvAcdkt
ak
p t

bdjJ
hph t

BciI
hph (B.338)

0.5aABvabijvAcdkt
Bk
p taciI

hpht
bdjJ
hph (B.339)

−0.5aABvabijvAcdkt
ak
p t

bcIJ
hph t

Bdij
hph (B.340)

0.5aABvabijvAcdkt
Bk
p tadij

hpht
bcIJ
hph (B.341)

0.5aABvabijvAcdkt
ak
p t

bdij
hpht

BcIJ
hph (B.342)

0.5aABaIJvabijvAcdkt
cj
h t

aBIk
hpp t

bdiJ
hph (B.343)



APPENDIX B. STPT(2) TRIPLES AND QUADRUPLES MATRIX ELEMENTS 153

0.5aABaIJvabijvAcdkt
cJ
h t

aBIk
hpp t

bdij
hph (B.344)

0.5aABaIJvabijvAcdkt
ci
h t

adjJ
hph t

bBIk
hpp (B.345)

−0.5aABaIJvabijvAcdkt
ci
h t

abIk
hpp t

BdjJ
hph (B.346)

0.25aABaIJvabijvAcdkt
cJ
h t

abIk
hpp t

Bdij
hph (B.347)

−1.aABvabijvAcdkt
cj
h t

adIJ
hph t

bBik
hpp (B.348)

−0.5aABaIJvabijvAcdkt
cJ
h t

abik
hpp t

BdIj
hph (B.349)

1.aABaIJvabijvAcdkt
cJ
h t

aBjk
hpp t

bdiI
hph (B.350)

−0.5aABvabijvAcdkt
ci
h t

abjk
hpp t

BdIJ
hph (B.351)

0.5aABaIJvabijvacIkt
AbJk
hpp tBcij

hph (B.352)

1.aABaIJvabijvacIkt
Abjk
hpp t

BciJ
hph (B.353)

1.aABvabijvacikt
Abjk
hpp t

BcIJ
hph (B.354)

−1.aABaIJvabijvacjkt
AbIk
hpp t

BciJ
hph (B.355)

−0.5aABvabijvacdkt
Bk
p tAdiJ

hph t
bcIj
hph (B.356)

−0.5aABvabijvacdkt
bk
p t

AdjJ
hph t

BciI
hph (B.357)

−0.5aABvabijvacdkt
Bk
p tAciI

hph t
bdjJ
hph (B.358)

−0.5aABvabijvacdkt
Bk
p tAdij

hph t
bcIJ
hph (B.359)

0.5aIJvabijvacdkt
cj
h t

ABIk
hpp tbdiJ

hph (B.360)

0.5aIJvabijvacdkt
cJ
h t

ABIk
hpp tbdij

hph (B.361)

0.5aABaIJvabijvacdkt
ci
h t

AbIk
hpp t

BdjJ
hph (B.362)

−1.aABvabijvacdkt
cj
h t

Abik
hpp t

BdIJ
hph (B.363)

−1.vabijvacdkt
ci
h t

ABjk
hpp tbdIJ

hph (B.364)

0.5aIJvabijvbcIkt
acij
hpht

ABJk
hpp (B.365)

1.aIJvabijvbcIkt
aciJ
hpht

ABjk
hpp (B.366)

1.vabijvbcikt
acIJ
hph t

ABjk
hpp (B.367)

−1.aIJvabijvbcjkt
aciJ
hpht

ABIk
hpp (B.368)

−0.5aABvabijvbcdkt
ak
p t

AdiJ
hph t

BcIj
hph (B.369)

−0.5aABvabijvbcdkt
Bk
p tadiJ

hph t
AcIj
hph (B.370)

−0.5aABvabijvbcdkt
Bk
p taciI

hpht
AdjJ
hph (B.371)

−0.5aABvabijvbcdkt
ak
p t

Adij
hph t

BcIJ
hph (B.372)

−0.5aABvabijvbcdkt
Bk
p tadij

hpht
AcIJ
hph (B.373)
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0.5aIJvabijvbcdkt
ci
h t

adjJ
hph t

ABIk
hpp (B.374)

0.5aABaIJvabijvbcdkt
cj
h t

aAIk
hpp t

BdiJ
hph (B.375)

0.5aABaIJvabijvbcdkt
cJ
h t

aAIk
hpp t

Bdij
hph (B.376)

−1.aABaIJvabijvbcdkt
cJ
h t

aAik
hpp t

BdIj
hph (B.377)

−1.aIJvabijvbcdkt
cJ
h t

adiI
hpht

ABjk
hpp (B.378)

−1.vabijvABcdt
acIj
hpht

bdiJ
hph (B.379)

−0.5vabijvABcdt
acIJ
hph t

bdij
hph (B.380)

−1.aABvaAcdvabijt
bdjJ
hph t

BciI
hph (B.381)

0.5aABvaAcdvabijt
bdij
hpht

BcIJ
hph (B.382)

−1.aABvabijvAbcdt
aciI
hpht

BdjJ
hph (B.383)

0.5aABvabijvAbcdt
acIJ
hph t

Bdij
hph (B.384)

−0.5aABvabcdvabijt
AdjJ
hph t

BciI
hph (B.385)

0.25aABvabcdvabijt
Adij
hph t

BcIJ
hph (B.386)
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