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Extremal graph theory is a branch of discrete mathematics and also the central theme of

extremal combinatorics. It studies graphs which are extremal with respect to some parameter

under certain restrictions. A typical result in extremal graph theory is Mantel’s theorem.

It states that the complete bipartite graph with equitable parts is the graph the maximizes

the number of edges among all triangle-free graphs. One can say that extremal graph theory

studies how local properties of a graph influence its global structure.

Another fundamental topic in the field of combinatorics is the probabilistic method,

which is a nonconstructive method pioneered by Paul Erdős for proving the existence of

a prescribed kind of mathematical object. One particular application of the probabilistic

method lies in the field of positional games, more specifically Maker-Breaker games.

My dissertation focus mainly on various Turán-type questions and their applications to

other related areas as well as the employment of the probabilistic method to study extremal

problems and positional games.
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CHAPTER 1

Introduction

Extremal graph theory is one of the central areas of extremal combinatorics. It studies

graphs which are extremal with respect to some parameter (e.g., number of edges, triangle

density, number of proper colorings) under certain restrictions. A typical result in extremal

graph theory is Mantel’s theorem. It states that the complete bipartite graph with equal

parts maximizes the number of edges among all triangle-free graphs. The problems in this

field are often related to other areas including number theory, analysis, geometry, computer

science and information theory.

Another fundamental topic is the probabilistic method, which is a nonconstructive method

pioneered by Paul Erdős for proving the existence of a prescribed kind of mathematical ob-

ject. This branch of mathematics has developed spectacularly in the past decades. Several

hundred papers employ probabilistic ideas, and many interesting open problems arose from

what has become one of the most indispensable tools in modern combinatorics.

One particular application of the probabilistic method lies in the field of positional games.

These are combinatorial games described by a finite set of positions (the board) and by a

family of subsets of the board (the winning sets). Two players alternatively claim previously

unclaimed positions until they fully occupy the board. The variety of games that falls in

this category ranges from recreationally popular games such as Tic-Tac-Toe and Hex to

abstract games played on graphs and hypergraphs. The different types of positional games

are characterized by the rules used to select the winner. For instance, in a Maker-Breaker

game, the first player (Maker) has to occupy a winning set to win, while the second player

(Breaker) has to stop Maker from doing so. If Breaker successfully prevents Maker from

occupying a winning set to the end of the game, then Breaker wins.
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My thesis focuses on various aspects of extremal combinatorics, including Turán-type

questions and their applications to related areas, as well as the employment of the proba-

bilistic method to study extremal graph problems and positional games. The following is a

brief list of the topics that will be covered in this thesis.

On the densities of cliques and independent sets in graphs

A variety of problems in extremal combinatorics can be stated as the following general

question: For two given graphs H1 and H2, if the number of induced copies of H1 in a

n-vertex graph G is known, what is the maximum or minimum number of induced copies

of H2 in G? In its full generality, this question seems currently out of reach, but several

special cases already have important implications in combinatorics, as well as other branches

of mathematics and computer science. For instance, Turán proved that the maximal edge

density in any graph with no cliques of size r is attained by an r− 1 partite graph. Kruskal

and Katona found that cliques, among all graphs, maximize the number of induced copies

of Ks when r < s and the number of induced copies of Kr is fixed.

In Chapter 2, we study the following analogue of the Kruskal-Katona theorem: Suppose

that the number of blue r-cliques in a red/blue coloring of the edges of the complete graph

Kn is known and fixed. What is the largest possible number of red s-cliques under this

assumption? Using the shifting technique from extremal set theory together with some pow-

erful analytical methods, we resolve this problem in general and prove that in the extremal

coloring either the blue edges or the red edges form a clique. As a corollary, our result also

gives a simple description of the extremal red/blue coloring of Kn that maximizes the min-

imum number of red r-cliques and the number blue r-cliques. This fact is quite surprising,

since little is known about the extremal red/blue coloring of Kn that minimizes the number

of monochromatic r-cliques (blue and red altogether).

Discrepancy of graphs and hypergraphs

The discrepancy of an n-vertex k-uniform hypergraphH with edge density ρH = e(H)/
(
n
k

)
is disc(H) = maxS⊆V (H)

∣∣∣e(S)− ρH
(|S|
k

)∣∣∣, where e(S) = e(H[S]) is the number of edges in
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the sub-hypergraph induced by S. This important concept appears naturally in various

branches of combinatorics and was studied by many researchers in recent years. The dis-

crepancy can be viewed as a measure of how uniformly the edges of H are distributed among

the vertices, and it is closely related to the theory of quasi-random graphs, as the property

disc(G) = o(|V (G)|2) implies the quasi-randomness of the graph G. A natural generalization

is the relative discrepancy of two hypergraphs. Let G and H be two k-uniform hypergraphs

over the same vertex set V , with |V | = n. The relative discrepancy of G with respect to H is

disc(G,H) = maxπ
∣∣e(Gπ ∩H)− ρGρH

(
n
k

)∣∣, over all bijections π : V → V . Thus disc(G,H)

measures by how much the overlap e(Gπ ∩ H) can deviate from its average. Bollobás and

Scott introduced and studied this notion, and showed that for any two n-vertex graphs G

and H, if 16
n
≤ ρG, ρH ≤ 1− 16

n
, then disc(G,H) ≥ c · f(ρG, ρH) · n 3

2 , where c is an absolute

constant and f(x, y) = x2(1− x)2y2(1− y)2. In addition, they asked the following question.

For two random n-vertex graphs G,H with constant edge probability p, what is the expected

value of disc(G,H)?

Answering this question in a strong form, we determine in Chapter 3 the discrepancy

between two random k-uniform hypergraphs, up to a constant factor depending solely on k.

In particular, we show that Bollobás and Scott’s lower bound on the relative discrepancy is

not tight if G and H are both random with constant edge probability.

Generating random graphs in biased Maker-Breaker games

There is a striking relation between the theory of biased Maker-Breaker games and the

theory of random graphs, frequently referred to as the random graph intuition. Roughly

speaking, it suggests that on a Maker-Breaker game played on the edges of a complete graph,

claiming edges at random often yields a good strategy for Maker. For instance, Bednarska

and  Luczak proved that this “random strategy” guarantees Maker’s victory in the game

whose winning sets consist of all copies of a prescribed target graph H. In their proof, the

graph obtained by Maker at the end of the game is not exactly a random graph, since Maker

occasionally attempts to pick an edge which already belongs to Breaker. Thus, in order

to prove their result, Bednarska and  Luczak showed that with a positive probability, even

3



after removing a small fraction of the total number of edges, a random graph still contains

many copies of the target graph H. This particular statement relates to the global resilience

of random graphs with respect to the property “containing a copy of H”. The systematic

study of resilience of random and pseudorandom graphs was initiated by Sudakov and Vu,

and since then, this field has attracted substantial research interest.

In Chapter 4 we develop a refined version of Bednarska and  Luczak’s approach, connecting

biased Maker-Breaker games and problems about local resilience in random graphs. For a

monotone increasing graph property P , the local resilience of G with respect to P is the

minimum number r such that by deleting an r proportion of the edges incident to v, for

each vertex v in G, one can obtain a subgraph of G not satisfying the property P . Since one

can destroy many natural properties by making local changes (for example, by isolating a

vertex), it is natural to limit the number of edges touching any vertex that Breaker is allowed

to claim. By studying the local resilience of some relevant graph properties, we show that if

Breaker’s bias is b = Θ( n
lnn

), Maker can build a graph that contains copies of all spanning

trees having maximum degree ∆ = O(1) with a bare path of linear length (a bare path in a

tree T is a path with all interior vertices of degree exactly two in T ).

Each subsequent chapter will contain their own introduction where backgrounds and

motivations of the problems are discussed in more details.
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CHAPTER 2

Cliques and independent sets

2.1 Introduction

As usual we denote by Ks the complete graph on s vertices and by Ks its complement, the

edgeless graph on s vertices. By the celebrated Ramsey’s theorem, for every two integers

r, s every sufficiently large graph must contain Kr or Ks. Turán’s theorem can be viewed as

a quantitative version of the case s = 2. Namely, it shows that among all Kr-free n-vertex

graphs, the graph with the least number of K2 (edges) is a disjoint union of r − 1 cliques

of nearly equal size. More generally, one can ask the following question. Fix two graphs

H1 and H2, and suppose that we know the number of induced copies of H1 in an n-vertex

graph G. What is the maximum (or minimum) number of induced copies of H2 in G? In

its full generality, this problem seems currently out of reach, but some special cases already

have important implications in combinatorics, as well as other branches of mathematics and

computer science.

To state these classic results, we introduce some notation. Adjacency between vertices

u and v is denoted by u ∼ v, and the neighbor set of v is denoted by N(v). If necessary,

we add a subscript G to indicate the relevant graph. The collection of induced copies of a

k-vertex graph H in an n-vertex graph G is denoted by Ind(H;G), i.e.

Ind(H;G) := {X ⊆ V (G) : G[X] ' H}

and the induced H-density is defined as

d(H;G) :=
|Ind(H;G)|(

n
k

) .
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In this language, Turán’s theorem says that if d(Kr;G) = 0 then d(K2;G) ≤ 1− 1
r−1

and this

bound is tight. For a general graph H, Erdős and Stone [ES46] determined max d(K2;G)

when d(H;G) = 0 and showed that the answer depends only on the chromatic number of H.

Zykov [Zyk49] extended Turán’s theorem in a different direction. Given integers 2 ≤ r < s,

he proved that if d(Ks;G) = 0 then d(Kr;G) ≤ (s−1)···(s−r)
(s−1)r

. The balanced complete (s− 1)-

partite graphs shows that this bound is also sharp.

For fixed integers r < s, the Kruskal-Katona theorem [Kat87, Kru63] states that if

d(Kr;G) = α then d(Ks;G) ≤ αs/r. Again, the bound is tight and is attained when G is a

clique on some subset of the vertices. On the other hand, the problem of minimizing d(Ks;G)

under the same conditions is much more difficult. Even the case r = 2 and s = 3 has remained

unsolved for many years until it was recently answered by Razborov [Raz08] using his newly-

developed flag algebra method. Subsequently, Nikiforov [Nik11] and Reiher [Rei12] applied

complicated analytical techniques to solve the cases (r, s) = (2, 4), and (r = 2, arbitrary s),

respectively.

In this chapter, we study the following natural analogue of the Kruskal-Katona theorem.

Given d(Kr;G), how large can d(Ks;G) be? For integers a ≥ b > 0 we let Qa,b be the

a-vertex graph whose edge set is a clique on some b vertices. The complement of this graph

is denoted by Qa,b. Let Qa denote the family of all graphs Qa,b and its complement Qa,b

for 0 < b ≤ a. Note that for r = 2 or s = 2, the Kruskal-Katona theorem implies that the

extremal graph comes from Qn. Our first theorem shows that a similar statement holds for

all r and s.

Theorem 2.1.1. Let r, s ≥ 2 be integers and suppose that d(Kr;G) ≥ p where G is an

n-vertex graph and 0 ≤ p ≤ 1. Let q be the unique root of qr + rqr−1(1 − q) = p in [0, 1].

Then d(Ks;G) ≤Mr,s,p + o(1), where

Mr,s,p := max
{

(1− p1/r)s + sp1/r(1− p1/r)s−1, (1− q)s
}
.

Namely, given d(Kr;G), the maximum of d(Ks;G) (up to ±on(1)) is attained in one of two

graphs, (or both), one of the form Qn,t and another Qn,t′.
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We obtain as well a stability version of Theorem 2.1.1. Two n-vertex graphs H and G

are ε-close if it is possible to obtain H from G by adding or deleting at most εn2 edges.

As the next theorem shows, every near-extremal graph G for Theorem 2.1.1 is ε-close to a

specific member of Qn.

Theorem 2.1.2. Let r, s ≥ 2 be integers and let p ∈ [0, 1]. For every ε > 0, there exists

δ > 0 and an integer N such that every n-vertex graph G with n > N satisfying d(Kr;G) ≥ p

and |d(Ks;G)−Mr,s,p| ≤ δ, is ε-close to some graph in Qn.

For instance, the green curve in Figure 2.1 is (d(K3;Qn,θn), d(K3;Qn,θn)) for θ ∈ [0, 1],

and the red curve defined the same with Qn,θn. The maximum between the curves is the

extremal function in Theorem 2.1.1. The intersection of the curves represents the solution

of the max-min problem in Theorem 2.1.3.

Figure 2.1: Illustration for the case r = s = 3.

Rather than talking about an n-vertex graph and its complement, we can consider a

two-edge-coloring of Kn. A quantitative version of Ramsey Theorem asks for the minimum

number of monochromatic s-cliques over all such colorings. Goodman [Goo59] showed that

for r = s = 3, the optimal answer is essentially given by a random two-coloring of E(Kn).

In other words, minG d(K3;G) + d(K3;G) = 1/4 − o(1). Erdős [Erd62] conjectured that

the same random coloring also minimizes d(Kr;G) + d(Kr;G) for all r, but this was re-

futed by Thomason [Tho89] for all r ≥ 4. A simple consequence of Goodman’s inequality

7



is that minG max{d(K3;G), d(K3;G)} = 1/8. The following construction by Franek and

Rödl [FR93] shows that the analogous statement for r ≥ 4 is again false. Let H be a graph

with vertex set [2]13, the collection of all 8192 binary vectors of length 13. Two vertices are

adjacent if the Hamming distance between the corresponding binary vectors is a number in

{1, 4, 5, 8, 9, 11}. Let G be obtained from H by replacing each vertex with a clique of size

n, and every edge with a complete bipartite graph. The number of K4 and K4 in G can be

easily expressed in terms of the parameters of H (see [FR93]), for large enough n one can

show that d(K4;G) < 0.99 · 1
64

and d(K4;G) < 0.993 · 1
64

.

While the min-max question remains at present very poorly understood, we succeeded

to completely answer the max-min version of this problem.

Theorem 2.1.3.

max
G

min{d(Kr;G), d(Kr;G)} = ρr + o(1),

where ρ is the unique root in [0, 1] of the equation ρr = (1− ρ)r + rρ(1− ρ)r−1.

This theorem follows easily from Theorem 2.1.1. Moreover, using Theorem 2.1.2, we can

also show that for every ε > 0 there is a δ > 0 such that every n-vertex graph G with

min{d(Kr;G), d(Kr;G)} > ρr − δ is ε-close to a clique of size ρn or to the complement of

this graph.

Here we prove these theorems using the method of shifting. In the next section we describe

this well-known and useful technique in extremal set theory. Using shifting, we show how

to reduce the problem to threshold graphs. Section 2.3 contains the proof of our main result

for threshold graphs and Section 2.4 contains the proof of the stability result. In Section 2.5

we sketch a second proof for the case r = s, based on a different representation of threshold

graphs. We make a number of comments on the analogous problems for hypergraphs in

Section 2.6. In the final section of this chapter we discuss some open problems and further

research directions.

8



2.2 Shifting

Shifting is one of the most important and widely-used tools in extremal set theory. This

method allows one to reduce many problems to more structured instances which are usually

easier to analyze. Our treatment is rather shallow and we refer the reader to Frankl’s survey

article [Fra87] for a fuller account.

Let F be a family of subsets of a finite set V , and let u, v be two distinct elements of V .

We define the (u, v)-shift map Su→v as follows: for every F ∈ F , let

Su→v(F,F) :=

 (F ∪ {v}) \ {u} if u ∈ F, v 6∈ F and (F ∪ {v}) \ {u} 6∈ F ,

F otherwise.

We define the (u, v)-shift of F , to be the following family of subsets of V : Su→v(F) :=

{Su→v(F,F) : F ∈ F}. We observe that |Su→v(F)| = |F|. In this context, one may think of

F as a hypergraph over V . When all sets in F have cardinality 2, this is a graph with vertex

set V . Figure 2.2 shows what happens to the neighborhoods of u and v when the shifting is

applied to a graph.

u v u v

Figure 2.2: Graph shifting

As the next lemma shows, shifting of graph does not reduce the number of l-cliques in

it, for every l. Recall that Ind(Kl;G) denotes the collection of all cliques of size l in G.

Lemma 2.2.1. For every integer l > 0, every graph G, and every u 6= v ∈ V (G) there holds

Su→v(Ind(Kl;G)) ⊆ Ind(Kl;Su→v(G)).

Proof. Let A = Su→v(B,G), where B is an l-clique in G. First, consider the cases when

u /∈ B or both u, v ∈ B or B \ {u} ∪ {v} is also a clique in G. Then A = B and we need

to show that B remains a clique after shifting. Which edge in B can be lost by shifting? It

9



must be some edge uw in B that gets replaced by the non-edge vw (otherwise we can not

shift uw). Note that vw is not in B, since B is a clique. Hence u,w ∈ B and v 6∈ B. But

then B \ {u} ∪ {v} is not a clique, contrary to our assumption.

In the remaining case when u ∈ B, v /∈ B and B \{u}∪{v} is not a clique in G, we need

to show that A = B \ {u} ∪ {v} is a clique after shifting Su→v(G). Every pair of vertices

in A \ {v} belongs to B and the edge they span is not affected by the shifting. So consider

v 6= w ∈ A. If vw ∈ E(G), this edge remains after shifting. If, however, vw /∈ E(G), note

that uw ∈ E(G) since both vertices belong to the clique B. In this case vw = Su→v(uw,G)

and the claim is proved.

Since shifting edges from u to v is equivalent to shifting non-edges from v to u, it is

immediate that Su→v(Ind(Kl;G)) ⊆ Ind(Kl;Su→v(G)). Therefore we obtain the following

corollary.

Corollary 2.2.2. Let G be a graph, let H = Su→v(G) and let l be a positive integer. Then

d(Kl;H) ≥ d(Kl;G) and d(K l;H) ≥ d(K l;G).

We say that vertex u dominates vertex v if Sv→u(F) = F . In the case when F is a set

of edges of G, this implies that every w 6= u which is adjacent to v is also adjacent to u. If

V = [n], we say that a family F is shifted if i dominates j for every i < j. Every family

can be made shifted by repeated applications of shifting operations Sj→i with i < j. To

see this note that a shifting operation that changes F reduces the following non-negative

potential function
∑

A∈F
∑

i∈A i. As Corollary 2.2.2 shows, it suffices to prove Theorem 2.1.1

for shifted graphs.

In Section 2.3 we use the notion of threshold graphs. There are several equivalent ways

to define threshold graph (see, e.g., [CH77]), and we adopt the following definition.

Definition 2.2.3. We say that G = (V,E) is a threshold graph if there is an ordering of V

so that every vertex is adjacent to either all or none of the preceding vertices.

Lemma 2.2.4. A graph is shifted if and only if it is a threshold graph.

10



Proof. Let G be a shifted graph. We may assume that V = [n], and i dominates j in G for

every i < j. Consider the following order of vertices,

. . . , 3, NG(2) \NG(3), 2, NG(1) \NG(2), 1, V \NG(1) ,

where the vertices inside the sets that appear here are ordered arbitrarily. We claim that this

order satisfies Definition 2.2.3. First, every vertex v /∈ NG(1) is isolated. Indeed, if u ∼ v,

then necessarily v ∼ 1, since 1 dominates u. Therefore, vertex 1 and its non-neighbors satisfy

the condition in the definition. The proof that G is threshold proceeds by induction applied

to G[NG(1)].

Conversely, let G be a threshold graph. Let v1, v2, . . . , vn be an ordering of V as in

Definition 2.2.3. We say that a vertex is good (resp. bad) if it is adjacent to all (none) of

its preceding vertices. Consider two vertices vi and vj. It is straightforward to show that vi

dominates vj if either (1) vi is good and vj is bad, (2) they are both good and i > j or (3)

they are both bad and i < j. Therefore we can reorder the vertices by first placing the good

vertices in reverse order followed by the bad vertices in the regular order. This new ordering

demonstrates that G is shifted.

2.3 Main result

In this section, we prove Theorem 2.1.1. It will be convenient to reformulate the theorem,

in a way that is analogous to the Kruskal-Katona theorem.

Theorem 2.3.1. Let r, s ≥ 3 be integers and let a, b > 0 be real numbers. The maximum

(up to lower order terms) of the function

f(G) := min{a · d(Ks;G), b · d(Kr;G)}

over all n-vertex graphs is attained in one of two graphs, (or both), one of the form Qn,t

and another Qn,t′. In particular, f(G) ≤ max{a · αs, b · βr} + o(1), where α is the unique

root in [0, 1] of a · αs = b · [(1 − α)r + rα(1 − α)r−1] and β is the unique root in [0, 1] of

b · βr = a · [(1− β)s + sβ(1− β)s−1].

11



We turn to show how to deduce Theorem 2.1.1 from Theorem 2.3.1. We assume that

r, s ≥ 3, since the other cases follow from Kruskal-Katona theorem.

Proof of Theorem 2.1.1. Let M be the maximum of d(Ks;G) over all graphs G on n vertices

with d(Kr;G) ≥ p. Fix such an extremal G with d(Kr;G) = p′ ≥ p and d(Ks;G) = M .

Now apply Theorem 2.3.1 with a = p and b = M and the same n, r and s. The extremal

graph G′ that Theorem 2.3.1 yields, satisfies

f(G′) ≥ f(G) = min{a · d(Ks;G), b · d(Kr;G)} = p ·M,

hence d(Ks;G
′) ≥ M and d(Kr;G

′) ≥ p. Therefore, the same G′ is extremal for Theo-

rem 2.1.1 as well and we know that the maximum in this theorem is achieved asymptotically

by a graph of Qn.

Note that we can always assume that in the extremal graph d(Kr;G
′) = p since otherwise

we can add edges to G′ without decreasing d(Ks;G
′) until d(Kr;G

′) = p is obtained. There-

fore the maximum is attained either by a graph of the form Qn,p1/rn or by Qn,(1−q)n, where

qr + rqr−1(1 − q) = p. This implies that asymptotically the maximum in Theorem 2.1.1 is

indeed

Mr,s,p = max{(1− p1/r)s + sp1/r(1− p1/r)s−1, (1− q)s}.

By Corollary 2.2.2 and Lemma 2.2.4, f(G) is maximized by a threshold graph. We turn to

prove Theorem 2.3.1 for threshold graphs. Let G be a threshold graph on an ordered vertex

set V , as in Definition 2.2.3. There exists an integer k > 0, and a partition A1, . . . , A2k of V

such that

1. If v ∈ Ai and u ∈ Aj for i < j, then v < u.

2. Every vertex in A2i−1 (respectively A2i) is adjacent to all (none) of its preceding ver-

tices.
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Let xi = |A2i−1|
|V | and yi = |A2i|

|V | . Clearly
∑k

i=1(xi + yi) = 1. Up to a negligible error-term,

d(Ks;G) = p(x,y) :=

(
k∑
i=1

xi

)s

+ s ·
k−1∑
i=1

yi ·( k∑
j=i+1

xj

)s−1
 ,

d(Kr;G) = q(x,y) :=

(
k∑
i=1

yi

)r

+ r ·
k∑
i=1

xi ·( k∑
j=i

yj

)r−1
 .

Where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk). Occasionally, p will be denoted by ps

and q by qr to specify the parameter of these functions.

Our problem can therefore be reformulated as follows. For given integers k ≥ 2, r, s ≥ 3

and real a, b > 0, let Wk ⊆ R2k be the set

Wk :=

{
(x1, x2, . . . , xk, y1, y2, . . . , yk) ∈ R2k : xi, yi ≥ 0 for all i and

k∑
i=1

(xi + yi) = 1

}
.

Let p, q : Wk → R be the two homogeneous polynomials defined above, We are interested in

maximizing the real function

ϕ(x,y) := min{a · p(x,y), b · q(x,y)}.

This problem is well defined since Wk is compact and ϕ is continuous.

We say that (x,y) ∈ Wk is non-degenerate if the set of zeros in the sequence (y1, x2, y2, . . . , xk, yk),

with x1 omitted, forms a suffix. If (x,y) ∈ Wk is degenerate, then there is a non-degenerate

(x′,y′) ∈ Wk with ϕ(x,y) = ϕ(x′,y′). Indeed, if yi = 0 and xi+1 6= 0 for some 1 ≤ i < k, let

(x′,y′) ∈ Wk−1 be defined by

x′ = (x1, . . . , xi−1, xi + xi+1, xi+2, . . . , xk)

y′ = (y1, . . . , yi−1, yi+1, . . . , yk)

It is easy to verify that p(x,y) = p(x′,y′) and q(x,y) = q(x′,y′). By induction on k, we

assume that (x′,y′) is non-degenerate, and by padding x′ and y′ with a zero, the claim is

proved. The case xi = 0 and yi 6= 0 is proved similarly. In particular, ϕ has a non-degenerate

maximum in Wk.
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Our purpose is to show that the original problem is optimized by graphs from Qn. This

translates to the claim that a non-degenerate (x,y) that maximizes ϕ is supported only on

either x1, y1 or y1, x2, which corresponds to either a clique Qn,t or a complement of a clique

Qn,t, respectively.

Lemma 2.3.2. Let (x,y) ∈ Wk be a non-degenerate maximum of ϕ. If x1 > 0, then for

every i ≥ 2, xi = yi = 0. On the other hand, if x1 = 0 then yi = 0 for every i ≥ 2, and

xi = 0 for every i ≥ 3.

Proof. We note first that the second part of the lemma is implied by the first part. Define

x′ by

x′i :=

 xi+1 if i < k,

0 if i = k.

Clearly, if x1 = 0, then ps(x, y) = qs(y, x
′), qr(x, y) = pr(y, x

′), and

ϕ′(y,x′) := min{b · pr(y,x′), a · qs(y,x′)} = ϕ(x,y).

Since ϕ attains its maximum when x1 = 0, maximizing it is equivalent to maximizing

ϕ′(y, x′). Since (x,y) is non-degenerate, y1 > 0, and applying the first part of Lemma 2.3.2

for ϕ′(y,x′) finishes the proof, by obtaining that for every i ≥ 2, yi = x′i = 0.

The first part of Lemma 2.3.2 is proved in the following lemmas. We successively show

that x3 = 0, then y2 = 0 and finally x2 = 0.

Here is a local condition that maximum points of ϕ satisfy.

Lemma 2.3.3. If ϕ takes its maximum at a non-degenerate (x,y) ∈ Wk, then a · p(x,y) =

b · q(x,y).

Proof. Note that 0 < y1 < 1, since (x,y) ∈ W is non-degenerate. We consider two pertur-

bations of the input, one of which increases p(x,y), and the other increases q(x,y). Con-

sequently, if a · p(x,y) 6= b · q(x,y), by applying the appropriate perturbation, we increase

the smallest between a · p(x,y) and b · q(x,y), thus increasing min{a · p(x,y), b · q(x,y)},

contrary to the maximality assumption.
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To define the perturbation that increases p, let x′ = x + te1 and y′ = y − te1, where

0 < t < y1, and e1 is the first unit vector in Rk. Then, (x′,y′) ∈ W and

∂p(x′,y′)

∂t
= s

(
t+

k∑
i=1

xi

)s−1

− s ·

(
k∑
j=2

xj

)s−1

> 0

as claimed.

In order to increase q, consider two cases. If x1 = 0, let x′ = x − te2 and y′ = y + te1,

where 0 < t < x2. Then, (x′,y′) ∈ W and

∂q(x′,y′)

∂t
= r

(
t+

k∑
i=1

yi

)r−1

− r ·

(
n∑
j=k

yj

)r−1

> 0.

If x1 > 0, we let x′ = x− te1 and y′ = y + te1, where 0 < t < x1. Then,

∂q(x′,y′)

∂t
= r(x1 − t)(r − 1)

(
t+

k∑
i=1

yi

)r−2

> 0.

Lemma 2.3.4. If (x,y) ∈ Wk is a non-degenerate maximum of ϕ with x1 > 0, then x3 = 0.

Proof. Suppose, that x3 > 0 and let 1 ≤ l ≤ m ≤ k. Then

∂p

∂xl
= s ·

(
k∑
i=1

xi

)s−1

+ s(s− 1) ·
l−1∑
i=1

yi ·( k∑
j=i+1

xj

)s−2
 ,

∂q

∂xl
= r ·

(
k∑
j=l

yj

)r−1

,

and

∂2p

∂xl∂xm
= s(s− 1) ·

(
k∑
i=1

xi

)s−2

+ s(s− 1)(s− 2) ·
l−1∑
i=1

yi ·( k∑
j=i+1

xj

)s−3
 ,

∂2q

∂xl∂xm
≡ 0.

Clearly ∂2p
∂xl∂xm

= ∂2p
∂x2
l
, for l ≤ m. We define two matrices A and B as following.

A =


1 1 1

∂p
∂x1

frac∂p∂x2
∂p
∂x3

∂q
∂x1

∂q
∂x2

∂q
∂x3

 , B =


∂2p
∂x2

1

∂2p
∂x1∂x2

∂2p
∂x1∂x3

∂2p
∂x1∂x2

∂2p
∂x2

2

∂2p
∂x2∂x3

∂2p
∂x1∂x3

∂2p
∂x2∂x3

∂2p
∂x2

3

 =


∂2p
∂x2

1

∂2p
∂x2

1

∂2p
∂x2

1

∂2p
∂x2

1

∂2p
∂x2

2

∂2p
∂x2

2

∂2p
∂x2

1

∂2p
∂x2

2

∂2p
∂x2

3

 .
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It is easy to see that if (x,y) is non-degenerate with x3 > 0, then ∂2p
∂x2

3
> ∂2p

∂x2
2
> ∂2p

∂x2
1
> 0. This

implies that B is positive definite.

For a vector v ∈ R3 and ε > 0, we define x′ by

x′i =

 xi + εvi if i ≤ 3,

xi if i > 3,

If A is invertible, let v be the (unique) vector for which

A · vT =


0

1

1

 .
In particular

∑
i x
′
i =

∑
i xi. For ε sufficiently small,

p(x′,y) = p(x,y) + ε+O(ε2) > p(x,y)

q(x′,y) = q(x,y) + ε > q(x,y)

contrary to the maximality of (x,y).

If A is singular, pick some v 6= 0 with A · vT = 0. Again
∑

i x
′
i =

∑
i xi. Since B is

positive definite, for a sufficiently small ε,

p(x′,y) = p(x,y) +
ε2

2
· v ·B · vT +O(ε3) > p(x,y)

q(x′,y) = q(x,y),

Contradicting Lemma 2.3.3.

Lemma 2.3.5. If (x,y) ∈ Wk is a non-degenerate maximum of ϕ with x1 > 0, then y2 = 0.

Proof. Suppose, towards contradiction, that y2 6= 0. Let

M =

a1 a2

b1 b2

 ,
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where

a1 =
∂p

∂x1

− ∂p

∂x2

= −s(s− 1) · y1 · xs−2
2 , b1 =

∂q

∂x1

− ∂q

∂x2

= r · ((y1 + y2)r−1 − yr−1
2 ),

a2 =
∂p

∂y1

− ∂p

∂y2

= s · xs−1
2 , b2 =

∂q

∂y1

− ∂q

∂y2

= −r(r − 1) · x2 · yr−2
2 ,

If rank(M) = 2, then there is a vector v =

v1

v2

 such that M · v =

1

1

. Define

x′1 = x1 + εv1, x
′
2 = x2 − εv1 and y′1 = y1 + εv2, y

′
2 = y2 − εv2. Then x′1 + x′2 + y′1 + y′2 = 1

and for sufficiently small ε > 0

p(x′,y′) = p(x,y) + ε

(
∂p

∂x1

v1 −
∂p

∂x2

v1 +
∂p

∂y1

v2 −
∂p

∂y2

v2

)
+O(ε2)

= p(x,y) + ε (a1v1 + a2v2) +O(ε2) = p(x,y) + ε+O(ε2) > p(x,y).

Similarly q(x′,y′) = q(x,y) + ε+ O(ε2) > q(x,y). Thus (x,y) cannot be a maximum of ϕ.

Hence, rank(M) ≤ 1, and in particular

det

a1 b1

a2 b2

 = 0,

which implies that

0 = xs−1
2 yr−1

2

(
(r − 1)(s− 1)

y1

y2

−
(
y1

y2

+ 1

)r−1

+ 1

)
,

The function

g(α) = (r − 1)(s− 1)α− (α + 1)r−1 + 1

is strictly concave for α > 0 and vanishes at 0. Since α = 0 is not a maximum of g, the

equation g
(
y1

y2

)
= 0 determines y1

y2
uniquely.

Denote α = y1

y2
, and consider the following change of variables.

x′1 = x1 +
1

1 + (r − 1)(s− 1)α
· x2, x′2 =

(r − 1)(s− 1)α

1 + (r − 1)(s− 1)α
· x2

y′1 = y1 + y2 = (α + 1)y2, y′2 = 0

17



Clearly, x′1 + x′2 = x1 + x2 and y′1 + y′2 = y1 + y2. Moreover,

q(x′,y′) = (y′1)r + r · x′1 · (y′1)r−1

= (y1 + y2)r + r · x1 · (y1 + y2)r−1 +
r · x2 · (y1 + y2)r−1

1 + (r − 1)(s− 1)α

= (y1 + y2)r + r · x1 · (y1 + y2)r−1 +
r · (1 + α)r−1 · x2 · yr−1

2

(1 + α)r−1
= q(x,y)

p(x′,y′) = (x′1 + x′2)s + s · y′1 · (x′2)s−1

= (x1 + x2)s + s · (α + 1) ·
(

(r − 1)(s− 1)α

1 + (r − 1)(s− 1)α

)s−1

· y2 · xs−1
2

> (x1 + x2)s + s · α · y2 · xs−1
2 = p(x,y),

Where the last inequality is a consequence of Lemma 2.3.6 below. This contradicts Lemma 2.3.3.

Lemma 2.3.6. Let r, s ≥ 3 be integers. Let α > 0 be the unique positive root of

(α + 1)r−1 − 1 = (r − 1)(s− 1)α.

Then (
1 +

1

(r − 1)(s− 1)α

)s−1

< 1 +
1

α
.

Proof. First, we show that (r − 1)α > 1. Let t = (r − 1)α and assume, by contradiction,

that t ≤ 1. For 0 < t ≤ 1, we have et < 1 + 2t. On the other hand, e ≥ (1 + α)1/α, implying

et ≥ (1 + α)t/α = (1 +α)r−1. Thus we have 2t > (1 +α)r−1− 1 = (r− 1)(s− 1)α = (s− 1)t,

which implies 2 > s−1, a contradiction. Therefore (r−1)α > 1. Also, since 1+x < ex for all

x > 0, we have that
(
1 + 1

(r−1)(s−1)α

)s−1
< e

1
(r−1)α . So it suffices to show that e

1
(r−1)α ≤ 1 + 1

α
.

But since (r − 1)α > 1, we have(
1 +

1

α

)(r−1)α

> 1 +
(r − 1)α

α
= r ≥ 3 > e,

which finishes the proof of the lemma.

Lemma 2.3.7. If (x,y) ∈ Wk is a non-degenerate maximum of ϕ with x1 > 0, then x2 = 0.
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Proof. This proof is very similar to the proof of Lemma 2.3.5. Now x1, x2, y1 > 0 and

x1 + x2 + y1 = 1. Also

p(x,y) = (x1 + x2)s + s · y1 · xs−1
2 ,

q(x,y) = yr1 + r · x1 · yr−1
1 .

Let

M =

a1 a2

b1 b2

 ,
where

a1 =
∂p

∂x1

− ∂p

∂x2

= −s(s− 1) · y1 · xs−2
2 , b1 =

∂q

∂x1

− ∂q

∂x2

= r · yr−1
1 ,

a2 =
∂p

∂y1

− ∂p

∂x1

= −s · ((x1 + x2)s−1 − xs−1
2 ), b2 =

∂q

∂y1

− ∂q

∂x1

= r(r − 1) · x1 · yr−2
1 ,

If M is nonsingular, then there is a vector v =

v1

v2

 such that M · v =

1

1

. Define

x′1 = x1 + ε(v1 − v2), x′2 = x2 − εv1 and y′1 = y1 + εv2. Then x′1 + x′2 + y′1 = 1 and for

sufficiently small ε > 0

p(x′,y′) = p(x,y) + ε

(
∂p

∂x1

(v1 − v2)− ∂p

∂x2

v1 +
∂p

∂y1

v2

)
+O(ε2)

= p(x,y) + ε (a1v1 + a2v2) +O(ε2) = p(x,y) + ε+O(ε2) > p(x,y).

Similarly q(x′,y′) = q(x,y) + ε+O(ε2) > q(x,y) and therefore (x,y) cannot be a maximum

of ϕ. Hence,

det

a1 b1

a2 b2

 = 0,

which implies

0 = yr−1
1 xs−1

2

(
(r − 1) · (s− 1) · x1

x2

−
(
x1

x2

+ 1

)s−1

+ 1

)
.
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Let γ = x1

x2
> 0. Then 1 + (r−1)(s−1)γ− (1 +γ)s−1 = 0 and concavity of the left hand side

shows that γ is determined uniquely by this equation. Now make the following substitution:

x′1 = 0

x′2 = x1 + x2 = (1 + γ) · x2

y′1 =
1

1 + (r − 1)(s− 1)γ
· y1

y′2 =
(r − 1)(s− 1)γ

1 + (r − 1)(s− 1)γ
· y1

Clearly x′1 + x′2 = x1 + x2 and y′1 + y′2 = y1. Moreover

p(x′,y′) = (x′2)s + s · y′1 · (x′2)s−1

= (x1 + x2)s + s · y1 · xs−1
2 = p(x,y)

q(x′,y′) = (y′1 + y′2)r + r · x′2 · (y′2)r−1

= yr1 + r · (1 + γ)

γ
·
(

(r − 1)(s− 1)γ

1 + (r − 1)(s− 1)γ

)r−1

· x1 · yr−1
1

> yr1 + r · x1 · yr−1
1 = q(x,y),

Where the last inequality follows from Lemma 2.3.6, with r and s switched. Again, this

contradicts Lemma 2.3.3.

By combining Lemma 2.3.3 and Lemma 2.3.7, we obtain a proof of Lemma 2.3.2, which

states that the maximum of ϕ is attained by a non-degenerate (x,y) supported only on

either x1, y1 or y1, x2. In the first case, let x1 = α and y1 = 1 − α. Then by Lemma 2.3.3,

a ·p(x,y) = a ·αs = b ·q(x,y) = b
[
(1−α)r+rα(1−α)r−1

]
and ϕ(x,y) = a ·αs. In the second

case, let y1 = β and x2 = 1−β. Then b·q(x,y) = b·βr = a·p(x,y) = a
[
(1−β)s+s(1−β)s−1

]
and ϕ(x,y) = b · βr. This shows that the maximum of ϕ is max{a · αs, b · βr} with α, β

satisfying the above equations. In terms of the original graph, this proves that ϕ is maximized

by a graph of the form Qn,t or Qn,t, respectively. In particular, our problem has at most two

extremal configurations (in some cases a clique and the complement of a clique can give the

same value of ϕ).
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2.4 Stability analysis

In this section we discuss the proof of Theorem 2.1.2. In essentially the same way that

Theorem 2.3.1 implies Theorem 2.1.1, this theorem follows from a stability version of Theo-

rem 2.3.1:

Theorem 2.4.1. Let r, s ≥ 3 be integers and let a, b > 0 be real. For every ε > 0, there

exists δ > 0 and an integer N such that every n-vertex G with n > N for which

f(G) ≥ max{a · αs, b · βr} − δ

is ε-close to some graph in Qn. Here f, α and β are as in Theorem 2.3.1.

Proof. If G is a threshold graph, the claim follows easily from Lemma 2.3.2. Since G is a

threshold graph, f(G) = ϕ(x,y) + o(1) for some (x,y) ∈ Wk and some integer k. As this

lemma shows, the continuous function ϕ attains its maximum on the compact set Wk at

most twice, and this in points that correspond to graphs from Qn. Since f(G) is δ-close to

the maximum, it follows that (x,y) must be ε′-close to at least one of the two optimal points

in Wk. This, in turn implies ε-proximity of the corresponding graphs.

For the general case, we use the stability version of the Kruskal-Katona theorem due

to Keevash [Kee08]. Suppose G is a large graph such that f(G) ≥ max{a · αs, b · βr} − δ.

Let G1 be the shifted graph obtained from G. Thus G1 is a threshold graph with the same

edge density as G, and f(G1) ≥ f(G) by Corollary 2.2.2. Pick a small ε′ > 0. We just saw

that for δ sufficiently small, G1 is ε′-close to Gmax ∈ Qn. As we know, either Gmax = Qn,t

or Gmax = Q̄n,t for some 0 < t ≤ n. We deal with the former case, and the second case

can be done similarly. Now |d(K2;G) − d(K2;Gmax)| ≤ ε′, since G and G1 have the same

edge density. Moreover, d(Ks;G) ≥ d(Ks;Gmax)− δ/a, because f(G) ≥ f(Gmax)− δ. Since

Gmax is a clique, it satisfies the Kruskal-Katona inequality with equality. Consequently G

has nearly the maximum possible Ks-density for a given number of edges. By choosing ε′

and δ small enough and applying Keevash’s stability version of Kruskal-Katona inequality,

we conclude that G and Gmax are ε-close.

21



2.5 Second proof

In this section we briefly present the main ingredients for an alternative approach to The-

orem 2.1.1. We restrict ourselves to the case r = s. This proof reduces the problem to a

question in the calculus of variations. Such calculations occur often in the context of shifted

graphs.

Let G be a shifted graph with vertex set [n] with the standard order. Then, there is

some n ≥ i ≥ 1 such that A = {1, ..., i} spans a clique, whereas B = {i + 1, ..., n} spans an

independent set. In addition, there is some non-increasing function F : A → B such that

for every j ∈ A the highest index neighbor of j in B is F (j). Let x be a relative size of A

and 1− x relative size of B. In this case we can express (up to a negligible error term)

d(Kk;G) =

(
n

k

)−1
[(

(1− x)n

k

)
+
∑

1≤j≤xn

(
n− F (j)

k − 1

)]
= (1− x)k +

k

n

∑
1≤j≤xn

(
n− F (j)

n

)k−1

= (1− x)k + kx(1− x)k−1
∑

1≤j≤xn

1

nx

(
1− F (j)− xn

(1− x)n

)k−1

.

Let f be a non-increasing function f : [0, 1] → [0, 1] such that f(t) = F (j)−xn
(1−x)n

for every

j−1
xn
≤ t ≤ j

xn
(Think of f as a relative version of F both on its domain with respect to A

and its codomain with respect to B). Then we can express d(Kk;G) in terms of x and f

d(Kk;G) = (1− x)k + kx(1− x)k−1

∫ 1

0

(1− f(t))k−1dt = d(Kk;Gx,f ).

Similarly one can show that

d(Kk;G) = xk + kxk−1(1− x)

∫ 1

0

(k − 1)tk−2f(t)dt = d(Kk;Gx,f ).

Note that in this notation, x = θ, f = 0 (resp. x = 1 − θ, f = 1) corresponds to Qn,θ·n,

(resp. Qn,θ·n).

To prove Theorem 2.1.1 for the case r = s = k, we show that assuming d(Kk;Gx,f ) ≥ α,

the maximum of d(Kk;Gx,f ) is attained for either f = 0 or f = 1. For this purpose, we

prove upper bounds on the integrals.
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Lemma 2.5.1. If f : [0, 1]→ [0, 1] is a non-increasing function, then∫ 1

0

(1−f(t))k−1dt ≤ max

{
1−

(∫ 1

0

(k − 1)tk−2f(t)dt

) 1
k−1

,

(
1−

∫ 1

0

(k − 1)tk−2f(t)dt

)k−1
}
.

The bounds in Lemma 2.5.1 are tight. Equality with the first term holds for f that takes

only the values 1 and 0, and equality with the second term occurs for f a constant function.

Proving Theorem 2.1.1 for such functions is done using rather standard (if somehow tedious)

calculations. Lemma 2.5.1 itself is reduced to the following lemma through a simple affine

transformation and normalization.

What non-decreasing function in [0, 1] minimizes the inner product with a given mono-

mial?

Lemma 2.5.2. Let g : [0, 1]→ [0, B] be a non-decreasing function with B ≥ 1 and ‖g‖k−1 =

1. Then

〈(k − 1)tk−2, g〉 =

∫ 1

0

(k − 1)tk−2g(t)dt ≥ min

{
B

(
1−

(
1− 1

Bk−1

)k−1
)
, 1

}
.

Equality with the first term holds for

g(t) =

 0 if t < 1− 1
Bk−1

B if t ≥ 1− 1
Bk−1

The second equality holds for g = 1.

We omit the proof which is based on standard calculations and convexity arguments.

2.6 Shifting in hypergraphs

In this section, we will discuss a possible extension of Lemma 2.2.1 to hypergraphs. Consider

two set systems F1 and F2 with vertex sets V1 and V2 respectively. A (not necessarily induced)

labeled copy of F1 in F2 is an injection I : V1 → V2 such that I(F ) ∈ F2 for every F ∈ F1.

We denote by Cop(F1;F2) the set of all labeled copies of F1 in F2 and let

t(F1;F2) := |Cop(F1;F2)|.
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Recall that a vertex u dominates vertex v if Sv→u(F) = F . If either u dominates v or v

dominates u in a family F , we call the pair {u, v} stable in F . If every pair is stable in F ,

then we call F a stable set system.

Theorem 2.6.1. Let H be a stable set system and let F be a set system. For every two

vertices u, v of F there holds

t(H;Su→v(F)) ≥ t(H;F).

Corollary 2.6.2. Let G be an arbitrary graph and let H be a threshold graph H. Then

t(H;Su→v(G)) ≥ t(H;G),

for every two vertices u, v of G.

Proof of Theorem 2.6.1 (sketch). We define a new shifting operator S̃u→v for sets of labeled

copies. First, for every u, v ∈ V , and a labeled copy I : U → V , define Iu↔v : U → V by

Iu↔v(w) =


I(w) if I(w) 6= u, v,

v if I(w) = u,

u if I(w) = v

For I a set of labeled copies, I ∈ I, we let

S̃u→v(I, I) =


Iu↔v if Iu↔v 6∈ I and Im(I) ∩ {u, v} = {u},

Iu↔v if Iu↔v 6∈ I, {u, v} ⊂ Im(I), and I−1(u) dominates I−1(v) in H,

I otherwise.

Finally, let S̃u→v(I) := {S̃u→v(I, I) : I ∈ I}. Clearly, |S̃u→v(I)| = |I|, and we prove that

S̃u→v(Cop(H;F)) ⊆ Cop(H;Su→v(F))

thereby proving that t(H;Su→v(F)) ≥ t(H;F). As often in shifting, the proof is done by

careful case analysis which is omitted.
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2.7 Final remarks

In this chapter, we studied the relation between the densities of cliques and independent sets

in a graph. We showed that if the density of independent sets of size r is fixed, the maximum

density of s-cliques is achieved when the graph itself is either a clique on a subset of the

vertices, or a complement of a clique. On the other hand, the problem of minimizing the

clique density seems much harder and has quite different extremal graphs for various values

of r and s (at least when α = 0, see [DHM13, PV13]).

Question 2.7.1. Given that d(Kr;G) = α for some integer r ≥ 2 and real α ∈ [0, 1], which

graphs minimize d(Ks;G)?

In particular, when α = 0 we ask for the least possible density of s-cliques in graphs

with independence number r − 1. This is a fifty years old question of Erdős, which is still

widely open. Das et al [DHM13], and independently Pikhurko [PV13], solved this problem

for certain values of r and s. It would be interesting if one can describe how the extremal

graph changes as α goes from 0 to 1 in these cases. As mentioned in Section 2.1, the problem

of minimizing d(Ks;G) in graphs with fixed density of r-cliques for r < s is also open and

so far solved only when r = 2.
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CHAPTER 3

Discrepancy of random graphs and hypergraphs

3.1 Introduction

A hypergraph H is an ordered pair H = (V,E), where V is a finite set (the vertex set),

and E is a family of distinct subsets of V (the edge set). The hypergraph H is k-uniform

if all its edges are of size k. In this chapter we consider only k-uniform hypergraphs. The

edge density of a k-uniform hypergraph H with n vertices is ρH = e(H)/
(
n
k

)
. We define the

discrepancy of H to be

disc(H) = max
S⊆V (H)

∣∣∣∣e(S)− ρH
(
|S|
k

)∣∣∣∣ , (3.1.1)

where e(S) = e(H[S]) is the number of edges in the sub-hypergraph induced by S. The dis-

crepancy can be viewed as a measure of how uniformly the edges of H are distributed among

the vertices. This important concept appears naturally in various branches of Combinatorics

and has been studied by many researchers in recent years. The discrepancy is closely related

to the theory of quasi-random graphs (see [CGW89]), as the property disc(G) = o(|V (G)|2)

implies the quasi-randomness of the graph G.

Erdős and Spencer [ES71] proved that for k ≥ 2, any k-uniform hypergraph H with

n vertices has a subset S satisfying
∣∣∣e(S)− 1

2

(|S|
k

)∣∣∣ ≥ cn
k+1

2 , which implies the bound

disc(H) ≥ cn
k+1

2 for k-uniform hypergraphs H of edge density 1
2
. Erdős, Goldberg, Pach and

Spencer [EGP88] obtained a similar lower bound for graphs of edge density smaller than 1
2
.

These results were later generalized by Bollobás and Scott in [BS06], who proved the inequal-

ity disc(H) ≥ ck
√
rn

k+1
2 for k-uniform hypergraphs H, whenever r = ρH(1 − ρH) ≥ 1/n.

The random hypergraphs show that all the aforementioned lower bounds are optimal up

to constant factors. For more discussion and general accounts of discrepancy, we refer the
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interested reader to Beck and Sós [BS96], Bollobás and Scott [BS06], Chazelle [Cha00],

Matoušek [Mat99] and Sós [S83].

A similar notion is the relative discrepancy of two hypergraphs. Let G and H be two

k-uniform hypergraphs over the same vertex set V , with |V | = n. For a bijection π : V → V ,

let Gπ be obtained from G by permuting all edges according to π, i.e., E(Gπ) = π(E(G)).

The overlap of G and H with respect to π, denoted by Gπ ∩ H, is a hypergraph with the

same vertex set V and with edge set E(Gπ) ∩ E(H). The discrepancy of G with respect to

H is

disc(G,H) = max
π

∣∣∣∣e(Gπ ∩H)− ρGρH
(
n

k

)∣∣∣∣ , (3.1.2)

where the maximum is taken over all bijections π : V → V . For random bijections π, the

expected size of E(Gπ)∩E(H) is ρGρH
(
n
k

)
; thus disc(G,H) measures how much the overlap

can deviate from its average. In a certain sense, the definition (3.1.2) is more general than

(3.1.1), because one can write disc(H) = max1≤i≤n disc(Gi, H), where Gi is obtained from

the complete i-vertex k-uniform hypergraph by adding n− i isolated vertices.

Bollobás and Scott introduced the notion of relative discrepancy in [BS11] and showed

that for any two n-vertex graphs G and H, if 16
n
≤ ρG, ρH ≤ 1 − 16

n
, then disc(G,H) ≥

c · f(ρG, ρH) · n 3
2 , where c is an absolute constant and f(x, y) = x2(1 − x)2y2(1 − y)2.

As a corollary, they proved a conjecture in [EGP88] regarding the bipartite discrepancy

disc(G,Kbn
2
c,dn

2
e). Moreover, they also conjectured that a similar bound holds for k-uniform

hypergraphs, namely, there exists c = c(k, ρG, ρH) for which disc(G,H) ≥ cn
k+1

2 holds for

any k-uniform hypergraphs G and H satisfying 1
n
≤ ρG, ρH ≤ 1− 1

n
.

In their paper, Bollobás and Scott also asked the following question (see Problem 12 in

[BS11]). Given two random n-vertex graphs G and H with constant edge probability p, what

is the expected value of disc(G,H)? In this chapter, we solve this question completely for

general k-uniform hypergraphs. Let Hk(n, p) denote the random k-uniform hypergraph on

n vertices, in which every edge is included independently with probability p. We say that an

event happens with high probability, or w.h.p. for brevity, if it happens with probability at

least 1− n−ω(1), where here and later ω(1) denotes an arbitrary function tending to infinity
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together with n.

Theorem 3.1.1. For positive integers n and k, let N =
(
n−n

k
k−1

)
. Let G and H be two random

hypergraphs distributed according to Hk(n, p) and Hk(n, q) respectively, where ω(1)
N
≤ p ≤

q ≤ 1
2
.

(1) dense case – If pqN > 1
30

log n, then w.h.p. disc(G,H) = Θk

(√
pq
(
n
k

)
n log n

)
;

(2) sparse case – If pqN ≤ 1
30

log n, let γ = logn
pqN

; then

(2.1) if pN ≥ logn
5 log γ

, then w.h.p. disc(G,H) = Θk

(
n logn
log γ

)
.

(2.2) if pN < logn
5 log γ

, then w.h.p. disc(G,H) = Θk

(
p
(
n
k

))
.

The previous theorem also provides tight bounds when p and/or q ≥ 1
2
, as we shall

see in the concluding remarks. The result of Theorem 3.1.1 in the sparse range is closely

related to the recent work of the third author with Lee and Loh [LLS13]. Among other

results, the authors of [LLS13] show that two independent copies G,H of the random graph

G(n, p) with p�
√

log n/n w.h.p. have overlap of order Θ
(
n logn

log γ

)
, where γ = logn

p2n
. Hence

disc(G,H) = Θ
(
n logn

log γ

)
holds, since in this range of edge probability, n logn

log γ
is larger than

the average overlap p2
(
n
2

)
. Our proof in the sparse case borrows some ideas from [LLS13].

On the other hand, one can not use their approach for all cases; hence some new ideas were

needed to prove Theorem 3.1.1.

We would like to remark that Bollobás and Scott [BS] independently obtained similar

results as in Theorem 3.1.1.

It will become evident from our proof that the problem of determining the discrepancy

can be essentially reduced to the following question. Let K > 0, and let X be a binomial

random variable with parameters m and ρ. What is the maximum value of Λ = Λ(m, ρ,K)

satisfying P
[
X −mρ > Λ

]
≥ e−K? This question is related to the rate function of binomial

distribution. In all cases, the discrepancy in the statement of Theorem 3.1.1 is w.h.p.

disc(G,H) = Θk

(
n · Λ

(
p

(
n− 1

k − 1

)
, q, log n

))
. (3.1.3)
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Note that p
(
n−1
k−1

)
is roughly the size of the neighborhood of a vertex in the hypergraph G.

The rest of this chapter is organized as follows. Section 3.2 contains a high level outline

of our proof. It also includes the definition of the probabilistic discrepancy discP (G,H).

Section 3.3 contains a list of inequalities and technical lemmas used throughout the chapter.

In particular, we demonstrate that discP (G,H) w.h.p. does not deviate too much from

disc(G,H). In Section 3.4, we establish the upper bound for disc(G,H) based on a similar

bound for discP (G,H). In Section 3.5, we give a detailed proof of the lower bound for

disc(G,H). The final section contains some concluding remarks. In this chapter, the function

log refers to the natural logarithm and all asymptotic notation symbols (Ω, O, o and Θ) are

with respect to the variable n. Furthermore, the k-subscripts in these symbols indicate the

dependence on k in the relevant constants.

3.2 Outline of the proof

In this section, we describe the main ideas in the proof of Theorem 3.1.1. In order to deter-

mine disc(G,H), we introduce a related quantity, the probabilistic discrepancy discP (G,H).

Let G and H be two random hypergraphs over the same vertex set V , distributed according

to Hk(n, p) and Hk(n, q), respectively. The probabilistic discrepancy of G with respect to H

is defined by

discP (G,H) = max
π

∣∣∣∣e(Gπ ∩H)− pq
(
n

k

)∣∣∣∣ ,
where the maximum is taken over all bijections π : V → V . In Section 3.4, we show that

discP (G,H) is w.h.p. very close to disc(G,H), hence, to bound disc(G,H), it suffices to show

corresponding bounds for discP (G,H).

The proof of the upper bound for discP (G,H) is fairly standard. In case (2.2) of the main

theorem, the proof is trivial, as w.h.p. e(G) < 2p
(
n
k

)
. For the remaining cases, we remark that

for any fixed permutation π : V → V , the overlap Gπ∩H is a random hypergraph distributed

according to Hk(n, pq). The upper bound then follows from a straightforward union bound

argument over all possible permutations π, together with the application of concentration

inequalities for the binomial distribution. The remaining details of this particular argument
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are presented in Section 3.4.

In Section 3.5, we show that w.h.p. there exists a permutation π such that the corre-

sponding overlap e(Gπ ∩H) is much bigger than pq
(
n
k

)
. Note that e(Gπ ∩H) > pq

(
n
k

)
, so the

discrepancy is “positive” here. In the proof, we fix an arbitrary set L ⊆ V of size |L| = n
k
,

and restrict the set of possible permutations to bijections permuting only the elements of L.

Then, we gradually expose the edges (belonging to both G and H) in two rounds. In the

first round, we expose the edges having exactly one vertex in L, while keeping unexposed

the edges having zero or at least two vertices in L. This way, the overall contribution to the

discrepancy from the edges exposed in the first round is exactly the sum of the contributions

from each individual choice of π(x). To be more precise, let R be the set of all (k−1)-subsets

of V \ L; for each u ∈ L, let NG(u) be the collection of all (k − 1)-sets T ∈ R such that

{u} ∪ T is an edge of G, and let NH(u) be defined similarly; finally, for each pair u, v ∈ L,

let codeg(u, v) denote the size of NG(u) ∩NH(v). The total number of edges in the overlap

Gπ ∩H having exactly one vertex in L is precisely the sum∑
x∈L

codeg(x, π(x)). (3.2.1)

See Figure 3.1 for more details. The size |L| = n
k

was appropriately chosen to maximize the

number of edges having precisely one vertex in L. Additionally, we remark that |R| =
(
n−n

k
k−1

)
,

which is exactly the value of N in the statement of Theorem 3.1.1. The following inequality

will be used extensively later in the chapter. It relates N and the binomial coefficient
(
n
k

)
for large enough n, as

1

3

(
n

k

)
≤ N

n

k
≤ 1

2

(
n

k

)
.

Having found the bijection π with big overlap in the exposed edges (we have not yet

explained how to obtain such bijection), the final step would be to expose the remaining

edges of both hypergraphs (second round exposure) and compute the overall discrepancy.

The potential “loss” in this final step will be w.h.p. much smaller than the “gain” we already

obtained in the previous steps.

It remains to explain how to obtain the bijection π. We define the connection graph

Γ = Γ(G,H) as follows. The set of vertices of Γ is the union of two disjoint copies of L,
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L ⊆ V (G)

R

L ⊆ V (H)

u v

p q

NG(u)

NH(v)

Figure 3.1: Edges of G and H having one vertex in L.

which we will refer to as LG and LH , respectively. We will add an edge between u ∈ LG

and v ∈ LH in Γ when codeg(u, v) is sufficiently large. The notion of large here will vary,

depending on which case (dense or sparse) we are trying to prove. Because of (3.2.1), in

order to maximize the overlap, it will suffice to show the existence of a large matching in

auxiliary graph Γ.

In the dense case, we prove that we can find a nearly regular subgraph of Γ (i.e., all the

degrees are roughly the same) and thus the existence of the desired bijection π easily follows

from well-known theorem of Vizing. For more details, see Section 3.5.1. In the sparse case,

the proof is slightly different. To find the matching in Γ, we divide LG into chunks, each

having size n2/5. Then, for each chunk in LG, we expose the neighborhoods of its vertices

to R and w.h.p. we show that these neighborhoods can be made disjoint by removing very

few edges. Finally, we start matching the vertices in LH with the vertices in LG. This is

done by exposing the neighborhood of a vertex in LH (one by one, according to an arbitrary

predetermined order), and matching it with a high codegree vertex in LG. The details of

this construction are contained in Section 3.5.2.

3.3 Auxiliary results

In this section we list and prove some useful concentration inequalities about the binomial

and hypergeometric distributions. In addition, we prove that discP (G,H) (defined in the
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previous section) is w.h.p. very close to disc(G,H). Lastly, we prove a corollary from the

well-known Vizing’s Theorem which asserts the existence of a linear-size matching in nearly

regular graphs (i.e., the maximum degree is close to the average degree). We will not

attempt to optimize our constants, preferring rather to choose values which provide a simpler

presentation. Let us start with classical Chernoff-type estimates for the tail of the binomial

distribution (see, e.g., [AS08]).

Lemma 3.3.1. Let X =
∑l

i=1 Xi be the sum of independent zero-one random variables with

average µ = E[X]. Then for all non-negative λ ≤ µ, we have P[|X − µ| > λ] ≤ 2e−
λ2

4µ .

The following lower tail inequality (see [AS08]) is due to Janson.

Lemma 3.3.2. Let A1, A2, . . . , Al be subsets of a finite set Ω, and let R be a random subset

of Ω for which the events r ∈ R are mutually independent over r ∈ Ω. Define Xj to be the

indicator random variable of Aj ⊂ R. Let X =
∑l

j=1Xj, µ = E[X], and ∆ =
∑

i∼j E[Xi·Xj],

where i ∼ j means that Xi and Xj are dependent (i.e., Ai intersects Aj). Then for any λ > 0,

P[X ≤ µ− λ] < e−
λ2

2µ+∆ .

Next, we establish that the difference between disc(G,H) and discP (G,H) is w.h.p.

very small. This difference is, in fact, much smaller than any bound stated in Theo-

rem 3.1.1. Thus, to prove bounds for disc(G,H), it suffices to show corresponding bounds

for discP (G,H).

Lemma 3.3.3. Let G and H be two random hypergraphs over the same vertex set V , dis-

tributed according to Hk(n, p) and Hk(n, q), respectively. With probability at least 1−4e−
√
n,

the inequality |disc(G,H)− discP (G,H)| ≤ 2ε holds, where ε = 4n
1
4

√
pq
(
n
k

)
.

Proof. Since p
(
n
k

)
= Ω(n), applying Lemma 3.3.1 to the random variable e(G) for λ =

2n
1
4

√
p
(
n
k

)
≤ p
(
n
k

)
yields

P

[∣∣∣e(G)− p
(
n

k

)∣∣∣ ≤ 2n
1
4

√
p

(
n

k

)]
≥ 1− 2e−

√
n.
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Similarly, we have P
[
|e(H)− q

(
n
k

)
| ≤ 2n

1
4

√
q
(
n
k

) ]
≥ 1−2e−

√
n. Therefore, with probability

at least 1 − 4e−
√
n, |ρG − p| ≤ 2n

1
4

(
p/
(
n
k

))1/2
and |ρH − q| ≤ 2n

1
4

(
q/
(
n
k

))1/2
. But if |AB −

A0B0| ≥ ε1ε2 + |A0|ε2 + |B0|ε1, then either |A− A0| ≥ ε1 or |B − B0| ≥ ε2. Together, these

inequalities imply∣∣∣∣ρGρH(nk
)
− pq

(
n

k

)∣∣∣∣ ≤ 4
√
pqn+ 2pn

1
4

√
q

(
n

k

)
+ 2qn

1
4

√
p

(
n

k

)
≤ 2ε,

completing the proof of the lemma.

In the proof of the dense case of the main theorem we will need a lower bound for the tail

of the hypergeometric distribution. To prove it we use the following well-known estimates

for the binomial coefficient.

Proposition 3.3.4. Let H(p) = −p log p− (1− p) log(1− p) (the binary entropy), then for

any integer m > 0 and real p ∈ (0, 1) satisfying pm ∈ Z we have
√

2π

e2
≤
(
m

pm

)√
mp(1− p)e−mH(p) ≤ e

2π
.

Proof. This can be derived from Stirling’s formula
√

2πm
(
m
e

)m ≤ m! ≤ e
√
m
(
m
e

)m
.

Lemma 3.3.5. Let d1, d2, ∆ and N be integers and K be a real parameter such that 1 ≤

d1, d2 ≤ 2N
3

, 1 ≤ K ≤ d1d2

100N
and ∆ =

√
d1d2K
N

. Then

∑
t≥ d1d2

N
+∆

(
d1

t

)(
N−d1

d2−t

)(
N
d2

) ≥ e−40K .

Proof. For convenience, we write f(t) =
(
d1

t

)(
N−d1

d2−t

)
/
(
N
d2

)
. In order to show the desired lower

bound of the hypergeometric sum, it suffices to prove that

f(t) ≥ 4e−40K√
d1d2

N
+ ∆

,

for every integer t = d1d2

N
+ θ∆ with 1 ≤ θ ≤ 2. Indeed, to see this, note that there are at

least b∆c ≥ ∆
2

integers between d1d2

N
+ ∆ and d1d2

N
+ 2∆ and

∆ >
1

2

√
∆2 + ∆ ≥ 1

2

√
d1d2

N
+ ∆.
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Next we prove the bound for f(t). For our choice of ∆, the inequality ∆ ≤ d1

15
is true since

∆ =

√
d1d2K

N
= d1

√
d2

N
· K
d1

≤ d1

√
d2

N
· d2

100N
=
d1

10
· d2

N
≤ d1

15
.

Similarly ∆ ≤ d2

15
. Let x = d2

N
, y = θ∆

d1
and z = θ∆

N−d1
. Then t = (x + y)d1 and d2 − t =

(x− z)(N − d1). But 0 < x+ y < 1, because 0 < x ≤ 2
3

and 0 < y ≤ 2∆
d1
< 1

3
. Furthermore,

0 < x− z < 1, because z
x

= θ∆N
d2(N−d1)

≤ 3θ∆
d2
≤ 2

5
and x ≤ 2

3
. By Proposition 3.3.4, we have

f(t) =

(
d1

(x+y)d1

)(
N−d1

(x−z)(N−d1)

)(
N
xN

) ≥ 4π2

e5

√
Re−L,

where L = −d1 ·H(x+ y)− (N − d1) ·H(x− z) +N ·H(x) and

R =
x(1− x)N

(x− z)(1− x+ z)(x+ y)(1− x− y)d1(N − d1)
≥ 1

(x+ y)d1

≥ 1

2
· 1
d1d2

N
+ ∆

.

Here we used z ≤ x for the first the inequality; and we used θ ≤ 2 and the identity

(x + y)d1 = t = d1d2

N
+ θ∆ for the second inequality. Because d1y = (N − d1)z = θ∆

and log(1 + s) ≤ s, we obtain

L = d1

[
(x+ y) log

(
1 +

y

x

)
+ (1− x− y) log

(
1− y

1− x

)]
+ (N − d1)

[
(x− z) log

(
1− z

x

)
+ (1− x+ z) log

(
1 +

z

1− x

)]
≤ d1

[
(x+ y)y

x
− (1− x− y)y

1− x

]
+ (N − d1)

[
−(x− z)z

x
+

(1− x+ z)z

1− x

]
= θ∆ · (y + z) ·

(
1

x
+

1

1− x

)
=

θ2∆2N3

d1(N − d1)d2(N − d2)
≤ 36K.

Thus we always have f(t) ≥ 4π2
√

2e5
· e−36K√

d1d2
N

+∆
≥ 4e−40K√

d1d2
N

+∆
, completing the proof.

The next lemma will be used to prove the lower bound in the sparse case of Theorem 3.1.1

and was inspired by an analogous result in [LLS13].

Lemma 3.3.6. For positive integers n and k, let N =
(
n−n

k
k−1

)
, ω(1)

N
≤ p ≤ q ≤ 1

2
and suppose

that pqN ≤ 1
30

log n. Define γ = logn
pqN

. Let N1, . . . , Ns ⊆ B be s ≥ n1/3 disjoint sets of

size (1 + o(1))Np, and consider the random set Bq, obtained by taking each element of B

independently with probability q. Then w.h.p., there is an index i for which
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(1) |Bq ∩Ni| ≥ logn
6 log γ

if pN ≥ logn
5 log γ

;

(2) Ni ⊆ Bq if pN < logn
5 log γ

.

Proof. If pN ≥ logn
5 log γ

, let t = logn
6 log γ

. Clearly 1− q ≥ e−3q/2 when q ≤ 1/2. For a fixed index i,

the probability that |Bq∩Ni| ≥ t is at least
(|Ni|

t

)
qt(1−q)|Ni|−t. Using the bounds

(
a
n

)
≥ (a

b
)b

for a ≥ b, and 1
30

log n ≥ Npq = logn
γ

, we obtain(
|Ni|
t

)
qt(1− q)|Ni|−t ≥

(
(1 + o(1))Npq

t

)t
e−2pqN ≥

(
5 log γ

γ

) logn
6 log γ

n−1/15

≥ n−1/6 · n−1/15 ≥ n−0.3.

Hence the expected number of indices i such that |Bq∩Ni| ≥ t is at least sn−0.3 ≥ n1/30. Since

the sets Ni are disjoint, these events are independent for different choices of i. Therefore by

Lemma 3.3.1 w.h.p. we can find such an index (actually many).

If pN < logn
5 log γ

, then q = logn
γpN

> 5 log γ
γ
≥ γ−1. Therefore the probability that some Ni ⊆ Bq

is

q|Ni| ≥ γ−(1+o(1))Np ≥ γ−
logn

4 log γ = n−1/4,

and we can complete the proof as in the first case.

The last lemma in this section, which can be easily derived from Vizing’s Theorem, will

be used to find a linear-size matching in nearly regular graphs.

Lemma 3.3.7. Every graph G with maximum degree ∆(G), contains a matching of size at

least e(G)
∆(G)+1

.

Proof. By Vizing’s Theorem, the graphG has a proper edge coloring f : E(G)→ {1, 2, . . . , 1+

∆(G)}. For each color 1 ≤ c ≤ ∆(G) + 1, the edges f−1(c) form a matching in G. By the

pigeonhole principle, there is a color c such that f−1(c) has at least e(G)
∆(G)+1

edges.

3.4 Upper bounds

In this section we prove the upper bound for the discrepancy in Theorem 3.1.1. By Lemma 3.3.3,

it suffices to prove the corresponding bounds for discP (G,H) instead.
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Lemma 3.4.1. Let G and H be as in Theorem 3.1.1. Then w.h.p. discP (G,H) satisfies the

stated upper bounds of Theorem 3.1.1.

Proof. Since the number of edges of G is distributed binomially and p
(
n
k

)
= Ω(n), by

Lemma 3.3.1, we have e(G) < 2p
(
n
k

)
with probability at least 1−e−Θ(n). Since discP (G,H) is

bounded by max
{
e(G), pq

(
n
k

)}
, this implies the assertion in the case (2.2) of Theorem 3.1.1.

For any fixed bijection π : V → V , the number of edges in Gπ∩H is distributed binomially

with parameters
(
n
k

)
and pq. If pq

(
n
k

)
> 4n log n let λ = 2

√
pq
(
n
k

)
n log n ≤ pq

(
n
k

)
. Then by

Lemma 3.3.1, the probability that
∣∣e(Gπ ∩H)− pq

(
n
k

)∣∣ > λ is at most 2e−n logn. On the other

hand, if pq
(
n
k

)
≤ 4n log n, let γ′ = 4en logn

pq(nk)
≥ e > 1 and λ = 4e2n logn

log γ′
≥ 4e2n logn

γ′
= epq

(
n
k

)
.

Since
(
a
b

)
≤
(
ea
b

)b
, the probability that e(Gπ ∩H) > λ is at most((n

k

)
λ

)
(pq)λ ≤

(
e
(
n
k

)
pq

λ

)λ

=

(
4e2n log n

γ′λ

)λ
=

(
γ′

log γ′

)− 4e2n logn
log γ′

< e−n logn.

In either case, since there are n! possible bijections π : V → V , by the union bound

P [discP (G,H) > λ ] ≤ n! · 2e−n logn ≤ e−n/2,

which finishes the proof of the upper bound in case (1). Since γ (defined in Theorem 3.1.1)

satisfies γ = Θk(γ
′), this implies upper bound in case (2.1) as well. Finally, observe that

we divided the dense and sparse cases in this proof, according to whether pq
(
n
k

)
is bigger

(or smaller) than 4n log n, a threshold slightly different than the one used in Theorem 3.1.1.

This difference is not essential though, as for p, q satisfying both pq
(
n
k

)
≤ 4n log n and

pqN ≥ 1
30

log n, we have
√
pq
(
n
k

)
n log n = Θk

(
4e2n logn

log γ′

)
.

3.5 Lower bounds

In this section we prove the lower bounds in Theorem 3.1.1. As we previously explained, it

is enough to obtain these bounds for discP (G,H). We divide the proof into two cases. The

first (dense case) will be discussed in the next subsection. The second (sparse case) will be

discussed in subsection 3.5.2. Throughout the proofs, we assume that k is fixed and n is

tending to infinity.
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3.5.1 Dense Case

Let N =
(
n−n

k
k−1

)
and let p, q be such that pqN > 1

30
log n. Select an arbitrary set L ⊆ V of

size |L| = n
k
. We prove that w.h.p. there exists an L-bijection π : V → V with overlap

e(Gπ ∩H) ≥ pq

(
n

k

)
+ Θk

(
n ·
√
pqN log n

)
= pq

(
n

k

)
+ Θk

(√
pq

(
n

k

)
n log n

)
, (3.5.1)

where an L-bijection π : V → V is a bijection from V to V which only permutes the elements

of L, i.e., π(x) = x for all x 6∈ L.

We start by describing the construction outlined in Section 3.2 in more details. From

the random hypergraph G we construct a random bipartite graph G̃ with vertex set LG∪R,

where LG = L and R is the set of all (k − 1)-tuples in V \ L. Note that |R| = N . The

vertices v1 ∈ LG and {v2, v3, . . . , vk} ∈ R are adjacent if {v1, v2, . . . , vk} forms an edge in

the hypergraph G. With slight abuse of notation, we view G̃ as a sub-hypergraph of G,

containing all edges e having exactly one vertex in L, i.e. |e ∩ L| = 1. Similarly, from the

random hypergraph H we construct a random bipartite graph H̃ with vertex set LH ∪ R.

Figure 3.1 shows the resulting bipartite graphs.

Given an L-bijection π : V → V , we divide the edge set of Gπ ∩ H into two subsets:

the edge set of G̃π ∩ H̃ and its complement. To prove our result we first expose the ran-

dom edges in G̃ and H̃, and show how to find an L-bijection π having overlap at least

Θk

(
n ·
√
pqN log n

)
more than the expectation. Then we fix such π and expose all the re-

maining edges in G and H showing that the contribution of these edges to Gπ ∩ H does

not deviate much from the expected contribution. More precisely, let eπ = |E((G− G̃)π) ∩

E(H − H̃)|, then e(Gπ ∩ H) = e(G̃π ∩ H̃) + eπ. Moreover, eπ is distributed according to

Bin(m, pq), where 1
2

(
n
k

)
≤ m =

(
n
k

)
−N n

k
≤
(
n
k

)
. Thus w.h.p. |eπ − pqm| <

√
pqm · log n, as

Lemma 3.3.1 shows. Also,
√
pqm · log n �

√
pq
(
n
k

)
n log n = Θk

(
n
√
pqN log n

)
. To obtain

(3.5.1), it is therefore enough to show that w.h.p. there exists an L-bijection π such that

e(G̃π ∩ H̃) ≥ n

k
·
(
pqN + Θk

(√
pqN log n

))
. (3.5.2)
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since then w.h.p.,

e(Gπ ∩H) = e(G̃π ∩ H̃) + eπ

≥ n

k
(pqN + Θk(

√
pqN log n)) + pqm−√pqm log n

=
n

k
Θk(
√
pqN log n) + pq

(
n

k

)
−√pqm log n

= pq

(
n

k

)
+ Θk

(√
pq

(
n

k

)
n log n

)
.

We define an auxiliary bipartite graph Γ = Γ(G̃, H̃) as follows. A vertex u ∈ LG survives

if | degG̃(u) − pN | ≤ 2
√

2pN and similarly, a vertex v ∈ LH survives if | degH̃(v) − qN | ≤

2
√

2qN . Let SG and SH be the sets of all surviving vertices of G̃ and H̃, respectively. Let

sG = |SG| and sH = |SH |. The set of vertices of Γ is the union of SG and SH . The edges of

Γ are defined by the property

u ∼Γ v ⇐⇒ codeg(u, v) ≥
degG̃(u) degH̃(v)

N
+ 10−2

√
pqN log n,

where codeg(u, v) denotes the codegree of u ∈ LG and v ∈ LH , i.e. codeg(u, v) = |NG̃(u) ∩

NH̃(v)|. The graph Γ has many vertices in both parts, as the following simple lemma

demonstrates

Lemma 3.5.1. W.h.p. each part of Γ has size at least n
4k

.

Proof. Let α be the probability that some vertex u survives in LG. Since pN ≥ 8, we have

that 2
√

2pN ≤ pN . Thus Lemma 3.3.1 applied to degG̃(u) implies α ≥ 1−2e−2 ≥ 1/2. Since

the events that vertices survive are independent, sG stochastically dominates the binomial

distribution with parameters n/k and 1/2. Thus, again by Lemma 3.3.1, w.h.p. sG ≥ n/(4k)

and a similar estimate holds for sH .

To prove (3.5.2), we will show that the following two statements hold w.h.p.

(a) Γ has a matching M = {(u1, v1), . . . , (ul, vl)} of size l = n
50k

;

(b) there exists an L-bijection π such that π(ui) = vi for all i = 1, 2, . . . , l, and,∑
u∈LG\{u1,u2,...,ul}

codeg(u, π(u)) ≥
(n
k
− l
)
pqN − 2

n

k

√
pqN.
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Indeed, for any two adjacent vertices u, v in Γ, we have

degG̃(u) degH̃(v)

N
≥ (pN −

√
8pN)(qN −

√
8qN)

N
≥ pqN − 6

√
pqN.

Thus using (a), (b) and l = n
50k

we obtain

e(G̃π ∩ H̃) =
∑
u∈LG

codeg(u, π(u)) ≥
l∑

i=1

codeg(ui, vi) +
(n
k
− l
)
pqN − 2

n

k

√
pqN

≥
l∑

i=1

[
degG̃(ui) degH̃(vi)

N
+ 10−2

√
pqN log n

]
+
(n
k
− l
)
pqN − 2

n

k

√
pqN

≥
l∑

i=1

[
pqN − 6

√
pqN

]
+

n

50k
10−2

√
pqN log n+

(n
k
− l
)
pqN − 2

n

k
·
√
pqN

≥ n

k

(
pqN + 10−4

√
pqN log n

)
We need the following lemma in order to prove that (b) holds.

Lemma 3.5.2. Let 0 < α < 1 be any absolute constant. Then with probability at least

1− e−nk , any two subsets A ⊆ LG and B ⊆ LH with |A| = |B| = αn
k

satisfy

XA,B :=
∑

u∈A,v∈B

codeg(u, v) ≥
(αn
k

)2

pqN − 2α
(n
k

)2√
pqN.

Proof. Let Xw,u,v be the indicator of wu ∈ E(G̃) and wv ∈ E(H̃) for w ∈ R, u ∈ A, v ∈ B.

So XA,B =
∑

w∈R,u∈A,v∈BXw,u,v and E[Xw,u,v] = pq. Moreover, Xw,u,v and Xw′,u′,v′ are

dependent if and only if wu = w′u′ or wv = w′v′. Thus, µ = E[XA,B] =
(
αn
k

)2
Npq and

∆ =
∑

w∈R,u∈A

∑
v,v′∈B

E[Xw,u,v ·Xw,u,v′ ]+
∑

w∈R,v∈B

∑
u,u′∈A

E[Xw,u,v ·Xw,u′,v] =
αn

k

(
αn
k

2

)
Npq (p+ q) ,

where µ and ∆ are defined as in Lemma 3.3.2. Let F be the event that there exists at least

one pair of subsets A ⊆ LG, B ⊆ LH with |A| = |B| = αn
k

satisfying XA,B < (αn
k

)2Npq −

2α(n
k
)2
√
Npq. By the union bound and by Lemma 3.3.2, we have

P[F ] ≤
∑

A∈(LGαn),B∈(LHαn)

P
[
XA,B < µ− 2α

(n
k

)2√
Npq

]
≤
(

n
k
αn
k

)2

e−
(2α(n

k
)2
√
Npq)

2

2µ+∆

≤
( e
α

) 2αn
k
e−3n

k ≤ e−
n
k ,

since 2µ+ ∆ ≤ 4
3

(
αn
k

)3
Npq, α < 1 and α log(e/α) ≤ 1 for all such α.

39



LetM = {(u1, v1), . . . , (ul, vl)} be a matching satisfying (a) and letA = LG\{u1, u2, . . . , ul}

and B = LH \ {v1, v2, . . . , vl}. Write |A| = |B| = n
k
− l = αn

k
, where α = 49

50
. Consider

XA,B =
∑

u∈A,v∈B codeg(u, v). Then, by Lemma 3.5.2, with probability at least 1− e−nk , we

have ∑
u∈A,v∈B

codeg(u, v) ≥
(n
k
− l
)2

pqN − 2
n

k

(n
k
− l
)√

pqN.

Since the complete bipartite graph with parts A,B is a disjoint union of n
k
− l perfect

matchings, by the pigeonhole principle, there exists a matching M ′ between A and B such

that ∑
(u,v)∈M ′

codeg(u, v) ≥
∑

u∈A,v∈B codeg(u, v)
n
k
− l

≥
(n
k
− l
)
pqN − 2n

k

√
pqN.

Then the matching M ∪M ′ between LG and LH gives the desired L-bijection π and proves

(b).

To finish the proof we need to establish (a). If Γ is nearly regular, then by Lemma 3.3.7,

Γ would contain a linear-size matching. Unfortunately, it is not clear that this is the case.

However, we will show that it is possible to delete some edges of Γ at random and obtain a

pruned graph Γ′, which is nearly regular. Let

f(d1, d2) := P
[
u ∼Γ v| degG̃(u) = d1, degH̃(v) = d2

]
,

where |d1−pN | ≤ 2
√

2pN and |d2−qN | ≤ 2
√

2qN . Let f0 be the minimum of f(d1, d2) over

all pairs (d1, d2) in the domain of f . Suppose that f0 ≥ n−
1
2 , which we shall prove later. We

keep each edge uv of Γ in Γ′ independently with probability f0

f(d1,d2)
, where d1 = degG̃(u) and

d2 = degH̃(v). Then, we claim that for any vertex u ∈ SG, degΓ′(u) is binomially distributed

with parameters sH and f0. Indeed, by definition, P
[
u ∼Γ′ v| degG̃(u) = d1, degH̃(v) = d2

]
=

f0 for all possible d1, d2. Moreover, conditioning on the neighbors of u in G̃ and on the

values of the degrees degH̃(v1), degH̃(v2), . . . , degH̃(vm), the events u ∼Γ v1, u ∼Γ v2, . . . ,

and u ∼Γ vm are all independent. Therefore, by definition of Γ′, it is easy to see that

u ∼Γ′ v1, u ∼Γ′ v2, . . ., and u ∼Γ′ vm are independent as well. Thus for any u ∈ SG,

degΓ′(u) ∼ Bin(sH , f0) and similarly, degΓ′(v) ∼ Bin(sG, f0) for all v ∈ SH .
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Conditioning on the degrees of all vertices in G̃, H̃, we obtain sets SG and SH , which

w.h.p. satisfy the assertion of Lemma 3.5.1, i.e., |SG| = sG ≥ n
4k

and |SH | = sH ≥ n
4k

.

Thus both sGf0 and sHf0 are Ωk(
√
n). Since all degrees in Γ′ are binomially distributed,

Lemma 3.5.1 together with the union bound imply that w.h.p. all vertices u ∈ SG, v ∈ SH

satisfy
sHf0

2
≤ degΓ′(u) ≤ 3sHf0

2
and

sGf0

2
≤ degΓ′(v) ≤ 3sGf0

2
.

Therefore, the max-degree ∆(Γ′) ≤ max
{

3sHf0

2
, 3sGf0

2

}
≤ 3nf0

2k
and e(Γ′) ≥ sGsHf0

2
≥ n2f0

32k2 .

Thus by Lemma 3.3.7, Γ′ has a matching of size at least e(Γ′)
∆(Γ′)+1

≥ n
50k

, completing the proof

of (a).

It remains to prove the bound f0 ≥ n−
1
2 . Let K = logn

5000
≥ 1. Since pN tends to infinity,

p ≤ q ≤ 1/2 and |d1 − pN | ≤ 2
√

2pN , we have 1 ≤ d1 = (1 + o(1))pN ≤ 2N
3

. Similarly

1 ≤ d2 = (1 + o(1))qN ≤ 2N
3

. Also recall that pqN ≥ 1
30

log n, which implies

d1d2

100N
= (1 + o(1))

pqN

100
≥ (1 + o(1))

log n

3000
> K.

Therefore we can apply Lemma 3.3.5 with ∆ =
√

d1d2K
N

>
√
pqN logn

100
. By the definition of

f(d1, d2), we have

f(d1, d2) =
∑

t≥ d1d2
N

+
√
pqN logn

100

(
d1

t

)(
N−d1

d2−t

)(
N
d2

) ≥
∑

t≥ d1d2
N

+∆

(
d1

t

)(
N−d1

d2−t

)(
N
d2

) ≥ e−40K > n−
1
2 .

This completes the proof.

3.5.2 Sparse case

In this subsection, we prove the lower bound in the sparse case pqN ≤ 1
30

log n. Note

that, since p ≤ q and
(
n
k

)
≤ 3N n

k
in this case, we have p ≤ N−1/2+o(1) and pq

(
n
k

)
<

n log n. The proof runs along the same lines as that of the dense case differing only

in the application of Lemma 3.3.6 to obtain an L-bijection π : V → V whose sum of

codegrees
∑

u∈LG codeg(u, π(u)) is large. Suppose first that pN ≥ logn
5 log γ

. Recall that

γ = logn
pqN

≥ 30 and thus logn
6 log γ

≥ logn
42 log γ

+ logn
γ

= logn
42 log γ

+ pqN . Also,
√
pqm log n ≤√

pq
(
n
k

)
log n � logn

42 log γ
n
k
. Therefore it is enough to find a bijection π between LG and
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LH such that
∑

u∈LG codeg(u, π(u)) ≥ (1+o(1))n
k
· logn

6 log γ
. Using such bijection, together with

above inequalities and m+N n
k

=
(
n
k

)
, we obtain that

e(Gπ ∩H) =
∑

codeg(u, π(u)) + eπ

≥ (1 + o(1))
n

k

log n

6 log γ
+ pqm−√pqm log n

≥ (1 + o(1))
log n

42 log γ

n

k
+ pq

(
n

k

)
.

Analogous to the dense case, we define the connection graph Γ = Γ(G̃, H̃) for the sparse

case. But the criterion to add edges to Γ is different – u and v are joined if and only if

codeg(u, v) ≥ logn
6 log γ

. Again, our goal is to find a large matching in Γ, but the strategy will

be slightly different this time.

Partition the vertices of LG into r = n
ks

disjoint sets S1, . . . , Sr each of size s = n2/5.

We will construct π by applying the following greedy algorithm to each set. Let us start

with S1. The algorithm will reveal the edges emanating from S1 to R in G̃ by repeatedly

exposing the neighborhood of a vertex in S1, one at a time. Throughout this process, we

construct a subset S ′1 ⊆ S1 of size (1 + o(1))|S1| and a family of disjoint sets Nu ⊆ R,

such that each Nu has size (1 + o(1))Np and is contained in the neighborhood of u, for all

u ∈ S ′1. At each step, we pick a fresh vertex u in S1 and expose its neighborhood. If u

has a set of (1 + o(1))Np neighbors which is disjoint from Nw for all w in the current S ′1,

denote this particular set by Nu and put u in the set S ′1; otherwise move to the next fresh

vertex in S1, until there are none left. The union X = ∪w∈S′1Nw always has size at most

O(pN · s) ≤ N0.9+o(1). Moreover, every vertex in R \X is adjacent to u independently with

probability p. Since pN ≥ ω(1) tends to infinity with n, the set of neighbors of u outside

X has size (1 + o(1))|R \X|p = (1 + o(1))Np with probability 1 + o(1). Thus, there exists

an absolute lower bound p0 = 1 + o(1) such that the event “S ′1 contains u” occurs with

probability at least p0, for all u. Furthermore, conditioned on the sizes of R \ X, these

events are independent for different vertices u. A straightforward coupling argument shows

that the number of elements in S ′1 can be bounded below by a binomial random variable

with s trials and probability p0. Therefore, by Lemma 3.3.1, w.h.p. |S ′1| = (1 + o(1))|S1|.

Next, we construct the partial matching for S1. Consider the disjoint sets Nu, for u ∈ S ′1,
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each of size (1 + o(1))Np. Pick an arbitrary vertex v in LH and expose its neighbors in

H̃. This is a random subset Nv of R, obtained by taking each element independently with

probability q. Therefore by case (1) of Lemma 3.3.6, w.h.p there is a vertex u ∈ S ′1 such

that codeg(u, v) ≥ |Nu∩Nv| ≥ logn
6 log γ

. Define π(u) = v, remove u from S ′1, remove v from LH

and continue. Note that, as long as there are at least n1/3 vertices remaining in S ′1, we can

match one of them with a newly exposed vertex from LH such that the codegree of this pair

is at least logn
6 log γ

. Once the number of vertices in S ′1 drops below n1/3, leave the remaining

vertices unmatched. W.h.p. we can match a 1 + o(1) fraction of the vertices in S1.

Continue the above procedure for S2, . . . , Sr as well. At the end of the process, we will

have matched a 1 + o(1) fraction of all the vertices in LG with distinct vertices in LH such

that codegree of every matched pair is at least logn
6 log γ

. Therefore the sum of the codegrees of

this partial matching is at least (1 + o(1))n
k
· logn

6 log γ
. To obtain the bijection π, one can match

the remaining vertices in LG and LH arbitrarily.

When pN < logn
5 log γ

the same proof as above together with case (2) of Lemma 3.3.6 yields

a bijection π such that
∑

u∈LG codeg(u, π(u)) ≥ (1 + o(1))n
k
· pN . Since q ≤ 1

2
, p ≥ ω(1)

N
and

m =
(
n
k

)
−N n

k
, this implies

e(Gπ ∩H) ≥ (1 + o(1))
n

k
pN + pqm−√pqm log n

= Θk

(
p

(
n

k

))
+ pq

(
n

k

)
.

finishing the analysis of the sparse case.

3.6 Concluding remarks

As we stated in Section 3.1, Theorem 3.1.1 also yields tight bounds when p and/or q > 1
2
.

For any G and H, one can check that disc(G,H) = disc(G,H), where H is the complement

of H. Moreover, H is distributed according to Hk(n, 1− q), hence we can reduce the case

q > 1
2

to the case q′ = 1− q ≤ 1
2
; the same holds when we take the complement of G instead.

We remark that one can determine the discrepancy when p is smaller than ω(1)
N

, but we chose

not to discuss this range here, since the proof is similar to the sparse case and it wouldn’t
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provide any new insight.

The definition of discrepancy can be rephrased as

disc(G,H) = max {disc+(G,H), disc−(G,H)},

where disc+(G,H) = maxπ e(Gπ∩H)−ρGρH
(
n
k

)
and disc−(G,H) = ρGρH

(
n
k

)
−minπ e(Gπ∩

H) are the one-sided relative discrepancies. In fact, all the lower bounds we obtained are for

disc+(G,H), and some of them are not true for disc−(G,H). This is because disc−(G,H) ≤

ρGρH
(
n
k

)
' pq

(
n
k

)
and in the sparse case, pq

(
n
k

)
could be much smaller than disc(G,H).

Under the same hypothesis and using similar ideas as in Theorem 3.1.1, one can show that

disc−(G,H) =

 Θk

(√
pq
(
n
k

)
n log n

)
if pqN > 1

30
log n;

Θk

(
pq
(
n
k

))
otherwise.

The last equation is related to the lower tail of the binomial distribution.

It would be interesting to determine the exact dependence on k of the relative discrep-

ancy. It also worth mentioning that there are a substantial number of open problems about

disc(G,H) and its related topics in [BS11].
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CHAPTER 4

Generating random graphs in biased Maker-Breaker

games

4.1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the (a : b) Maker-Breaker

game F , two players, called Maker and Breaker, take turns in claiming previously unclaimed

elements of X, with Breaker going first. The set X is called the board of the game and the

members of F are referred to as the winning sets. Maker claims a board elements per turn,

whereas Breaker claims b elements. The parameters a and b are called the bias of Maker

and of Breaker, respectively. Maker wins the game as soon as he occupies all elements of

some winning set. If Maker does not fully occupy any winning set by the time every board

element is claimed by either of the players, then Breaker wins the game. We say that the

(a : b) game F is Maker’s win if Maker has a strategy that ensures his victory against any

strategy of Breaker, otherwise the game is Breaker’s win. The most basic case is a = b = 1,

the so-called unbiased game, while for all other choices of a and b the game is called a biased

game. Note that being the first player is never a disadvantage in a Maker-Breaker game.

Therefore, in order to prove that Maker can win some Maker-Breaker game as the first or

the second player it is enough to prove that he can win this game as a second player. Hence,

we will always assume that Maker is the second player to move.

It is natural to play Maker-Breaker games on the edge set of a graph G = (V,E). In

this case, X = E and the winning sets are all the edge sets of subgraphs of G which possess

some given monotone increasing graph property P . In this case, we refer to this game as

the (a : b) game P(G). In the special case where G = Kn we denote Pn := P(Kn). In the
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connectivity game, Maker wins if and only if his edges contain a spanning tree. In the perfect

matching game M(G) the winning sets are all sets of b|V (G)|/2c independent edges of G.

Note that if |V (G)| is odd, then such a matching covers all vertices of G but one. In the

Hamiltonicity game H(G) the winning sets are all edge sets of Hamilton cycles of G. Given

a positive integer k, in the k-connectivity game Ck(G) the winning sets are all edge sets of

k-vertex-connected spanning subgraphs of G. Given a graph H, in the H-game played on

G, the winning sets are all the edge sets of copies of H in G.

Playing unbiased Maker-Breaker games on the edge set of Kn is frequently in favor of

Maker. For example, it is easy to see (and also follows from [Leh64]) that for every n ≥ 4,

Maker can win the unbiased connectivity game in n − 1 moves (which is clearly also the

fastest possible strategy). Other unbiased games played on E(Kn) like the perfect matching

game, the Hamiltonicity game, the k-vertex-connectivity game and the T -game where T is

a spanning tree with bounded maximum degree, are also known to be easy win for Maker

(see e.g, [HKS09], [FH14], [CFG13]). It thus natural to give Breaker more power by allowing

him to claim b > 1 elements in each turn.

Note that Maker-Breaker games are known to be bias monotone. That means that none

of the players can be harmed by claiming more elements. Therefore, it makes sense to study

(1 : b) games and the parameter b∗ which is the critical bias of the game, that is, b∗ is the

maximal bias b for which Maker wins the corresponding (1 : b) game F .

There is a striking relation between the theory of biased Maker-Breaker games and the

theory of random graphs, frequently referred to as the Erdős paradigm. Roughly speak-

ing, it suggests that the critical bias for the game played by two “clever players” and the

appropriately defined critical bias for the game played by two “random players” are asymp-

totically the same. In this “random players” version of the game, both players use the

random strategy, i.e., Maker claims one random unclaimed element, while Breaker claims b

random unclaimed elements from the board E(Kn), per move. Note that the resulting graph

occupied by Maker at the end of the game is the random graph G(n,m) with n vertices and

m = b 1
1+b

(
n
2

)
c edges. Therefore, if the winning sets consist of all the edge sets of subgraphs

of Kn which possess some monotone graph property P , a natural guess for the critical bias
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is b∗ for which m∗ = 1
1+b∗

is the threshold for the property that G(n,m) typically possesses

P . For this reason, the Erdős paradigm is also known as the random graph intuition.

Chvátal and Erdős were the first to indicate this phenomenon in their seminal paper

[CE78]. They showed that Breaker, playing with bias b = (1+ε)n
logn

, can isolate a vertex in

Maker’s graph while playing on the board E(Kn). It thus follows that Breaker wins every

game for which the winning sets consist of subgraphs of Kn with positive minimum degree.

What is most surprising about their result is that at the end of the game, Maker’s graph

consists of roughly m = 1
2
n log n edges which is (asymptotically) the threshold for a random

graph G(n,m) to stop “having isolated vertices” (for more details on properties’ thresholds

for random graphs, the reader is referred to [Bol98] and [JLR11]). In this spirit, the results

of Chvátal and Erdős in [CE78] hint that b∗ = n
logn

is actually the critical bias for many

games whose target sets consist of graphs having some property P , for which the threshold

probability is p = logn
n

(such as the connectivity game, the perfect matching game and

the Hamiltonicity game). Gebauer and Szabó showed in [GS09] that the critical bias for

the connectivity game played on E(Kn) is asymptotically equal to n/ log n. In a relevant

development, Krivelevich proved in [Kri11] that the critical bias to build a Hamilton cycle

is indeed (1 + o(1))n/ log n.

Another striking result exploring the relation between results in Maker-Breaker games

played on graphs and threshold probabilities for properties of random graphs is due to

Bednarska and  Luczak in [BL00]. Given a graph G on at least three vertices we define

m(G) = max

{
|E(H)| − 1

|V (H)| − 2
: H ⊆ Gand|V (H)| ≥ 3

}
.

Bednarska and  Luczak proved that the threshold bias for the H-game is of order Θ
(
n1/m(H)

)
.

The most surprising part in their proof is the side of Maker, where for this part they proved

the following:

Theorem 4.1.1 (Theorem 2 in [BL00]). For every graph H which contains a cycle there

exists a constant c0 such that for every sufficiently large integer n and q ≤ c0n
1/m(H) Maker

has a random strategy for the H-game that succeeds with probability 1 − o(1) against any

strategy of Breaker.
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Stating it intuitively, they proved that an “optimal” strategy for Maker is just to claim

edges at random without caring about Breaker’s moves! Note that since a Maker-Breaker

game is a deterministic game, it follows that if Maker has a random strategy that works

with non-zero probability against any given strategy of Breaker, then the game is Maker’s

win (otherwise Maker’s strategy should work with probability zero against Breaker’s winning

strategy).

In the proof of Theorem 4.1.1, the graph obtained by Maker at the end of the game is not

exactly a random graph, since some failure edges might exist (that is, it might happen that

by choosing random edges, Maker attempts occasionally to pick an edge e which already

belongs to Breaker). Thus, in order to prove their result, Bednarska and  Luczak not only

proved that random graphs typically contain copies of the target graph H, but they also

showed that with a positive probability, even after removing a small fraction of the total

number of edges, these graphs still contain many copies of H. This particular statement

relates to the resilience of random graphs with respect to the property “containing a copy

of H”.

Given a monotone increasing graph property P and a graph G which satisfies P , the

resilience of G with respect to P measures how much one should change G in order to destroy

P . There are two natural ways to define it quantitatively. The first one is the following:

Definition 4.1.2. For a monotone increasing graph property P, the global resilience of G

with respect to P is the minimum number r such that by deleting r · e(G) edges from G one

can obtain a graph G′ not having P.

Since one can destroy many natural properties by small changes (for example, by isolating

a vertex), it is natural to limit the number of edges touching any vertex that one is allowed

to delete. This leads to the following definition of local resilience.

Definition 4.1.3. For a monotone increasing graph property P, the local resilience of G

with respect to P is the minimum number r such that by deleting at each vertex v at most

r · dG(v) edges one can obtain a graph not having P.
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Sudakov and Vu initiated the systematic study of resilience of random and pseudorandom

graphs in [SV08]. Since then, this field has attracted substantial research interest (see, e.g.

[BCS11, BKS11a, BKS11b, BKT09, FK08, KLS10, LS12]).

Going back to Theorem 4.1.1, Bednarska and  Luczak actually proved that playing ac-

cording the random strategy, Maker can typically build a graph G ∼ G(n,m) minus some

ε-fraction of its edges. They then showed that for a given graph H and an appropriate m,

the global resilience of a typical G ∼ G(n,m) with respect to the property “containing a

copy of H” is at least ε. It thus natural to seek an alternative theorem which provides the

analogous local resilience argument.

The main result in this chapter uses a sophisticated version of the argument in [BL00].

Let G be a graph and let 0 < p < 1. The model G(G, p) is a random subgraph G′ of G,

obtained by retaining each edge of G in G′ independently at random with probability p.

For the special case where G = Kn, we denote G(n, p) = G(Kn, p), which is the well-known

Erdős-Rényi model of random graphs. In the same manner we define D(D, p) in case that

D is a directed graph. We also denote by D(n, p) the special case where each pair of the

n(n − 1) oriented pairs of {1, . . . , n} is being chosen with probability p independently at

random. Our main result is the following.

Theorem 4.1.4. For every positive constant 0 < ε < 1/2 and a sufficiently large integer n

the following holds. Suppose that

(i) 0 ≤ p = p(n) ≤ 1, and

(ii) G is a graph with |V (G)| = n, and

(iii) δ(G) ≥ 11 logn
εp

,

then in the (1 : ε
40p

) game played on E(G), Maker a.a.s can build a graph M = G′ \F , where

G′ ∼ G(G, p) and F is a graph which satisfies dF (v) ≤ εdG(v)p, for each v ∈ V (G).

As an easy corollary to Theorem 4.1.4 we establish the following directed analog.
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Theorem 4.1.5. For every positive constant 0 < ε < 1/2 and a sufficiently large integer n

the following holds. Suppose that

(i) 0 ≤ p = p(n) ≤ 1, and

(ii) D is a directed graph with |V (D)| = n, and

(iii) δ0(D) ≥ 11 logn
εp

,

then in the (1 : ε
40p

) game played on E(D), Maker a.a.s can build a graph M = D′ \F , where

D′ ∼ D(D, p) and F is a graph which satisfies d+
F (v) ≤ εd+

D(v)p and d−F (v) ≤ εd−D(v)p, for

each v ∈ V (D), where d+
F (v) and d−F (v) denote the out- and in-degrees of v in F , respectively,

and δ0(D) is the minimum of all out- and in-degrees in D.

Proof. For a directed graph D one can define the following bipartite graph GD: the parts of

GD are two disjoint copies of V (D), denoted by A and B. For any a ∈ A and b ∈ B, the

(undirected) edge ab belongs to E(GD) if and only if the directed edge ab belongs to E(D).

Note that the mapping D → GD is a bijection between all the directed graphs on n vertices

(self loops and double edges are allowed!) to the set of bipartite graphs with two parts of

size n each, and apply Theorem 4.1.4 to GD in the obvious way.

Theorems 4.1.4 and 4.1.5 connect between Maker’s side in biased Maker-Breaker games

on graphs or directed graphs and local resilience; it thus allows to use (known) results

about local resilience to give a lower estimate for the critical bias in biased Maker-Breaker

games. We now present our concrete results for biased games, all of them are applications

of Theorems 4.1.4 and 4.1.5 and corresponding local resilience results for random graphs.

First, as a warm up we prove the following theorem which shows that the critical bias

for the Hamiltonicity game played on E(Kn) is Θ( n
logn

).

Theorem 4.1.6. There exists a constant δ > 0 for which for every sufficiently large integer

n the following holds. Suppose that b ≤ δn/ log n, then Maker has a winning strategy in the

(1 : b) Hamiltonicity game played on E(Kn).
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The proof of Theorem 4.1.6 is just a warm up since the critical bias for the Hamiltonicity

game played on E(Kn) is known to be (1+o(1))n
logn

(for details, see [Kri11]).

As a second application, by obtaining a directed version of Theorem 4.1.4 we prove the

following theorem which shows that playing against a bias b = o(
√
n), Maker can build an

oriented Hamilton cycle while playing on the complete directed graph on n vertices (that is,

between every pair of vertices there is an edge in either direction).

Theorem 4.1.7. Let b = o(
√
n). Then in the (1 : b) game played on the edge set of the

complete directed graph on n vertices, Maker has strategy to build an oriented Hamilton cycle.

Asaf, Hefetz, and Krivelevich showed in [HFK11] that if T is a tree on n vertices and

∆(T ) ≤ n0.05, then in the (1 : b) game, Maker has a strategy to win the T -game, for every

b ≤ n0.005, in n + o(n) moves. They also asked for improvements of the parameter b. In

this chapter, as a third application of our main result, we show how to obtain such an

improvement for a large family of trees. Those are trees T with ∆(T ) = O(1) containing a

bare path of length Θ(n), where a bare path is a path for which all the interior vertices are

of degree exactly two in T . In fact we prove the following much stronger result:

Theorem 4.1.8. For every α > 0 and D > 0 there exists a δ := δ(α,D) > 0 such that

for every sufficiently large integer n the following holds. For b ≤ δn
logn

, in the (1 : b) Maker-

Breaker game played on E(Kn), Maker has a strategy to build a graph which contains copies

of all the spanning trees T such that:

(i) ∆(T ) ≤ D, and

(ii) T admits a bare path of length αn.

Remark. Note that the bias b in Theorem 4.1.8 is best possible up to a constant factor, as

Chvátal and Erdős showed [CE78] that for b = (1+ε)n
logn

Breaker can isolate a vertex in Maker’s

graph.

The rest of the chapter is organized as follows: In Section 4.2 we present some auxiliary

results. In Section 4.3 we prove Theorem 4.1.4, and in Section 4.4 we show how to apply
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Theorem 4.1.4 combined with local resilience statements (introduced in Subsection 4.2.3)

to various games. In this chapter, the function log refers to the natural logarithm and all

asymptotic notation symbols (Ω, O, o and Θ) are with respect to the variable n.

4.2 Auxiliary results

In this section we present some auxiliary results that will be used throughout the chapter.

4.2.1 Binomial distribution bounds

We use extensively the following well-known bounds on the lower and upper tails of the Bi-

nomial distribution due to Chernoff (see, e.g., [AS08, Theorems A.1.11, A.1.13, and A.1.12]).

Lemma 4.2.1. If X ∼ Bin(n, p), then

• P [X < (1− a)np] < exp
(
−a2np

2

)
for every a > 0.

• P [X > (1 + a)np] < exp
(
−a2np

3

)
for every 0 < a < 1.

Lemma 4.2.2. Let X ∼ Bin(n, p) and k ∈ N.Then

P[X ≥ k] ≤
(enp
k

)k
.

4.2.2 The MinBox game

Consider the following variant of the classical Box Game introduced by Chvátal and Erdős

in [CE78], which we refer to as the MinBox game. The game MinBox(n,D, α, b) is a (1 : b)

Maker-Breaker game played on a family of n disjoint sets (boxes), each having size at least

D. Maker’s goal is to claim at least α|F | elements from each box F . In the proof of our main

result, we make use of a specific strategy S for Maker in the MinBox game. This strategy

not only ensures his victory, but also allows Maker to maintain a reasonable proportion of

elements in all boxes throughout the game.

Before describing the strategy, we need to introduce some notation. Assume that a

MinBox game is in progress, let wM(F ) and wB(F ) denote the number of Maker’s and
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Breaker’s current elements in box F , respectively. Furthermore, let dang(F ) := wB(F ) −

b · wM(F ) be the danger value of F . Finally, we say that a box F is free if it contains an

element not yet claimed by either player, and it is active if wM(F ) < α|F |. Maker’s strategy

is as follows:

Strategy S: In any move of the game, Maker identifies one free active box having

maximal danger value (breaking ties arbitrarily), and claims one arbitrary free element from

it.

We are ready to state the following theorem.

Theorem 4.2.3. Let n, b, and D be positive integers, and 0 < α < 1. Assume that Maker

plays the game MinBox(n,D, α, b) according to the strategy S described above. Then he

ensures that, throughout the game, every active box F satisfies

dang(F ) ≤ b(log n+ 1).

In particular, if α < 1
1+b

and D ≥ b(logn+1)
1−α(b+1)

, then S is a winning strategy for Maker in this

game.

The proof of this result can be found in the Appendix. We remark that it is very similar

to the proof of Theorem 1.2 in [GS09].

4.2.3 Local resilience

In this subsection we describe several results related to local resilience of monotone graph

properties. The main result of this chapter (Theorem 4.1.4) shows a connection between

local resilience of graphs and Maker-Breaker games, therefore, in order to be able to apply

it, we first need to present some results related to local resilience of various properties of

random graphs.

The first statement of this section is a theorem from [LS12] providing a good bound on

the local resilience of a random graph with respect to the property “being Hamiltonian”.

This result will be used in the proof of Theorem 4.1.6 for the Hamiltonicity game. We remark
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that for our purposes, prior (and weaker) results on the local resilience of a random graph

with respect to Hamiltonicity (for example those in [FK08]) would suffice.

Theorem 4.2.4 (Theorem 1.1, [LS12]). For every positive ε > 0, there exists a constant

C = C(ε) such that for p ≥ C logn
n

, a graph G ∼ G(n, p) is a.a.s such that the following

holds. Suppose that H is a subgraph of G for which G′ = G \H has minimum degree at least

(1/2 + ε)np, then G′ is Hamiltonian.

The following result from [FNN14] is related to the local resilience of a typicalD ∼ D(n, p)

with edge probability p = ω
(

1√
n

)
, with respect to the property “being Hamiltonian” (where

a Hamilton cycle in a directed graph is an oriented cycle passing through all the vertices).

Theorem 4.2.5 (Theorem 1.4, [FNN14]). Let n be a sufficiently large integer and let p =

ω (1/
√
n). Then D ∼ D(n, p) is a.a.s such that the following holds. Suppose that H ⊆ D

is any subgraph of D, and d+
H(v), d−H(v) ≤ np/16 for every v ∈ V (D), then D′ := D \H is

Hamiltonian.

The following theorem shows that a sparse random graph G ∼ G(n, p) typically contains

a copy of every tree T having a bare path of linear length and having bounded maximum

degree, even if one delete a small fixed fraction of edges from each vertex v ∈ V (G). This

result relates to the local resilience of the property of being universal for this particular class

of trees, and it is an essential component in the proof of Theorem 4.1.8.

Theorem 4.2.6. For every α > 0 and D > 0, there exist ε > 0 and C0 such that for

every p ≥ C0 log n/n, G ∼ G(n, p) is a.a.s such that the following holds. For every subgraph

H ⊆ G with ∆(H) ≤ εnp, the graph G′ = G \H contains copies of all spanning trees T such

that:

(i) ∆(T ) ≤ D, and

(ii) T contains a bare path of length at least αn.

In order to prove Theorem 4.2.6 we need the following theorem due to Balogh, Csaba and

Samotij [BCS11] about the local resilience of random graphs with respect to the property

“containing all the almost spanning trees with bounded degree”.
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Theorem 4.2.7 (Theorem 2, [BCS11]). Let β and γ be positive constants, and assume that

D ≥ 2. There exists a constant C0 = C0(β, γ,D) such that for every p ≥ C0/n, a graph

G ∼ G(n, p) is a.a.s such that the following holds. For every subgraph H of G for which

dH(v) ≤ (1/2−γ)dG(v) for every v ∈ V (G), the graph G′ = G\H contains all trees of order

at most (1− β)n and maximum degree at most D.

Proof of Theorem 4.2.6. Let α > 0 and D > 0 be two positive constants. Let ε� α and let

C0 = C0(ε) > 0 be a sufficiently large constant. Let G ∼ G(n, p) be a typical random graph,

H ⊆ G be any subgraph with ∆(H) ≤ εnp and denote G′ = G \H. We wish to show that

G′ contains a copy of every spanning tree T which satisfies (i) and (ii). This can be done as

follows:

(1) Assume that G has been generated by a two-round-exposure and is presented as G =

G1 ∪ G2, where G1, G2 ∼ G(n, q), with q > p/2 (because of the monotonicity of all the

properties we mention, we treat q as p/2).

(2) Let V0 be a random subset of V (G) of size |V0| = αn/2 and denote G′1 = G1[V (G) \ V0].

Note that G′1 ∼ G((1− α/2)n, p/2) and that a.a.s dG′1(v) ≥ (1− α/2− ε)np/2 for every

v ∈ V (G′1) (this can be easily shown using Lemma 4.2.1 and choosing C0 appropriately).

(3) Let T be a tree which satisfies (i) and (ii), and let P = v0v1 . . . vt be a bare path of T

with t = αn. Let T ′ be the tree obtained from T by deleting v1, . . . , vt−1 and adding the

edge v0vt. Note that |V (T ′)| = (1− α)n+ 1.

(4) Applying Theorem 4.2.7 to G′1, using the fact that ε� α we conclude that there exists

a copy T ′′ of T ′ in G′1 \H. Let x and y denote the images (in T ′′) of v0 and vt (from T ′),

respectively.

(5) Let V ′ = (V (G) \ V (T ′)) ∪ {x, y}. In order to complete the proof, we should be able to

show that (G\H)[V ′] contains a Hamilton path with x and y as its endpoints. Note that

V0 ⊆ V ′ and that V ′ \ V0 and the two designated vertices x and y heavily depend on the

tree T which we are trying to embed. Therefore, we wish to show that G is a.a.s such

that for every possible option for V ′ (with two designated vertices x and y), (G \H)[V ′]
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contains a Hamilton path with x and y as its endpoints. For this, first note that since

V0 is a random subset of vertices, V0 ⊆ V ′ and G1 ∼ G(n, p/2), using Lemma 4.2.1 we

conclude that δ ((G1 \H) [V ′]) ≥ (α/4−ε)np−εnp = (α/4−2ε)np (here we assume that

C0 is large enough). Next, we show that a graph G1 ∼ G(n, p/2) is a.a.s such that any

subgraph D ⊆ G1 on αn + 1 vertices with δ(D) ≥ (α/4 − 2ε)np has “good” expansion

properties (our candidate for D will be (G1 \H) [V ′]).

Claim 4.2.8. A graph G1 ∼ G(n, p/2) is a.a.s such that for any subgraph D ⊂ G1 with

|V (D)| = αn+ 1 and with δ(D) ≥ (α/4− 2ε)np, the following holds:

|ND(X) \X| ≥ 2|X|+ 2

for every X ⊆ V (D) with |X| ≤ |V (D)|/5.

Proof. Using Lemma 4.2.2, it easy to show that for every subset S ⊆ V (G) of size

at most (say) αn√
logn

, the number of edges of G with both endpoints in S is at most

|EG(S)| ≤ |S|np/ log log n. Therefore, using the fact that δ(D) = Θ(np) we conclude

that |ND(X) \ X| ≥ 2|X| + 2 holds for every subset X ⊆ V (D) of size at most αn
3
√

logn

(otherwise, the average degree of X ∪ N(X) is Θ(np), contradiction). In addition,

since ε � α and since δ(D) ≥ (α/4 − 2ε)np, it follows (again, using Lemma 4.2.1)

that |ED(X, Y )| 6= 0 for every two disjoint subsets of vertices X and Y of sizes |X| =

αn
3
√

logn
and |Y | = αn/10 (for example by showing that |EG(X, Y )| ≥ α2n2p/31

√
log n for

each such X, Y and therefore the average degree of the vertices of X into Y is at least

30/31 · αnp and it cannot be that in D all of them are gone). Therefore, we conclude

that |ND(X) \X| ≥ 2|X| + 2 holds for every |X| ≤ |V (D)|/5 as well (otherwise, there

exist a subset X ′ ⊆ X of size exactly n
3

√
log n and a subset Y ⊆ V (D) \ (X ∪ ND(X))

of size exactly αn/10 with ED(X, Y ) = ∅).

A routine way to turn a non-Hamiltonian graph D that satisfies some expansion proper-

ties (as in Claim 4.2.8) into a Hamiltonian graph is by using boosters. Roughly speaking,

a booster is a non-edge e of D such that the addition of e to D creates a path which
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is longer than a longest path of D, or turns D into a Hamiltonian graph. In order to

turn D into a Hamiltonian graph, we start by adding a booster e of D. If the new

graph D ∪ {e} is not Hamiltonian then one can continue by adding a booster of the

new graph. Note that after at most |V (D)| successive steps the process must terminate

and we end up with a Hamiltonian graph. The main point using this method is that it

is well-known (for example, see [Bol98]) that a non-Hamiltonian graph D with “good”

expansion properties has many boosters. However, our goal is a bit different. We wish

to turn D into a graph that contains a Hamilton path with x and y as its endpoints.

In order to do so, we add one (possibly) fake edge xy to D and try to find a Hamilton

cycle that contains the edge xy. Then, the path obtained by deleting this edge from

the Hamilton cycle will be the desired path. For that we need to define the notion of

e-boosters.

Given a graph D and any edge e ∈
(
V (D)

2

)
(e might be a non-edge of D), consider a

path P of D ∪ {e} of maximal length which contains the edge e. A non-edge e′ of

D is called an e-booster if D ∪ {e, e′} contains a path P ′ which passes through e and

which is longer than P , or that D ∪ {e, e′} contains a Hamilton cycle that uses e. The

following lemma shows that every connected and non-Hamiltonian graph D with “good”

expansion properties has many e-boosters for every possible e.

Lemma 4.2.9. Let D be a connected graph for which |ND(X) \ X| ≥ 2|X| + 2 holds

for every subset X ⊆ V (D) of size |X| ≤ k. Then, for every pair e ∈
(
V (D)

2

)
such

that D ∪ {e} does not contains a Hamilton cycle which uses the edge e, the number of

e-boosters for D is at least (k + 1)2/2.

The proof of the previous lemma is very similar to the proof of the well-known Pósa’s

lemma using the ordinary boosters and hence we omit it (it can be found for example

in [FK08], Lemma 4). The only difference is that in the proof of Lemma 4.2.9 we forbid

rotations that destroy the edge e; and so the number of possible rotations with a given

fixed endpoint drops by at most two.

Lastly, we complete the proof of Theorem 4.2.6 by showing that G2 ∼ G(n, p/2) is a.a.s
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such that for every subgraph H ⊂ G with ∆(H) ≤ εnp, for every subset V ′ ⊆ V (G) of

size |V ′| = αn+1 for which δ((G1 \H)[V ′]) ≥ (α/4−2ε)np, for every pair e = xy ∈
(
V ′

2

)
and for every subset E of at most αn pairs of V (D), G2 contains at least α2n2/100

e-boosters for (G1 \H)[V ′] ∪ E ∪ {e}.

Lemma 4.2.10. G2 ∼ G(n, p/2) is a.a.s such that for every subgraph H ⊂ G with

∆(H) ≤ εnp, for every subset V ′ ⊆ V (G) of size |V ′| = αn+1 for which δ((G1\H)[V ′]) ≥

(α/4− 2ε)np, for every pair e = xy ∈
(
V ′

2

)
and for every subset E0 of at most αn pairs

of V ′, G2 contains at least α2n2/100 e-boosters for (G1 \H)[V ′] ∪ E0 ∪ {e}.

Proof. Combining Claim 4.2.8 with Lemma 4.2.9 we conclude that for every such V ′, e ∈(
V ′

2

)
, and for every subset E0 of at most αn pairs of V ′, GE0,e,V ′ = (G1 \H)[V ′]∪E0∪{e}

has at least α2n2/3 e-boosters. For a fixed choice of such V ′, e and E0, using Lemma 4.2.1

it follows that the probability that G2 will have at most α2n2p/100 e-boosters for GE0,e,V ′

is at most exp(−Cn2p), where C is a constant which depends only in α. Applying the

union bound, running over all the options for choosing H, e and E0 we obtain that the

probability that there exist such V ′, e, and E0 such that G2 contains at most α2n2p/100

e-boosters is at most

εn2p∑
t=1

(
e(G1)

t

)
n2

(
α2n2

αn

)
exp(−Cn2p) ≤

εn2p

(
e(G1)

εn2p

)
n2

(
α2n2

αn

)
exp(−Cn2p) ≤

εn4p

(
eα2n2p

εn2p

)εn2p

(eαn)αn exp(−Cn2p) ≤

εn4p

(
eα2

ε

)εn2p

(eαn)αn exp(−C · C0n log n) = o(1),

where the last inequality holds since ε� α and since C0 is large enough.

This completes the proof of Theorem 4.2.6.
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4.3 Proof of the main result

Proof of Theorem 4.1.4. We first present a strategy for Maker, and then prove that by play-

ing according to this strategy, Maker a.a.s achieves his goal. In this strategy, Maker will

gradually generate a random graph G′ ∼ G(G, p), by tossing a biased coin on each edge of

G, and declaring that it belongs to G′ independently with probability p. Each edge which

Maker has tossed a coin for is called exposed, and we say that Maker is exposing an edge

e ∈ E(G) whenever he tosses a coin to decide about the appearance of e in G′. To keep

track of the unexposed edges, Maker maintains a set Uv ⊆ NG(v) of the unexposed neighbors

of v, for each vertex v in G; i.e. u ∈ Uv if and only if the edge vu remains to be exposed.

Initially, Uv = NG(v) for all v ∈ V (G). We remark that Maker will expose all edges of G,

even those that belong to Breaker.

In every turn, Maker chooses an exposure vertex v (we will later discuss the choice of the

exposure vertex) and starts to expose edges connecting v to vertices in Uv, one by one in an

arbitrary order, until one edge in G′ is found (that is, until he has a first success). If this

exposure happens to reveal an edge vu ∈ E(G′) not yet claimed by Breaker, Maker claims

it and completes his move. Otherwise, either the exposure failed to reveal a new edge in G′

(failure of type I ), or the newly found edge already belongs to Breaker (failure of type II ).

In either case, Maker skips his move. Let fI(v) and fII(v) denote the number of failures of

type I and II, respectively, for the exposure vertex v. To complete the proof, it suffices to

show that a.a.s Maker can ensure that fII(v) ≤ εdG(v)p for all vertices v ∈ V (G) at the end

of the game (note that if a failure of type I occurs, it does harm Maker in claiming edges of

the generated random graph G′).

To keep the failures of type II under control, concurrently to the game played on G, we

simulate a game MinBox(n, 4δ(G), p/2, 2b). In this simulated game, there is one box Fv for

each v ∈ V (G) which helps us to keep track on the exposure of edges touching v. Initially,

we set the sizes of the boxes as |Fv| = 4dG(v). Now, we describe Maker’s strategy.

Maker’s strategy SM : Maker’s strategy is divided into the following two stages.

Stage 1: Before Maker’s move, he updates the status of the simulated game by pretend-
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ing that Breaker claimed one free element from both Fv and Fu, for each edge vu occupied in

Breaker’s last move. Maker then identifies a free active box Fv having highest danger value

in the simulated game (breaking ties arbitrarily). If there is no such box, Maker proceeds

to the second stage of the strategy. Otherwise, let Fv be such a box. Maker claims one free

element from Fv, and selects v as the exposure vertex. Let σ : [m] → Uv be an arbitrary

permutation on Uv, where m := |Uv|. Maker starts tossing a biased coin for vertices in Uv,

independently at random, according to the ordering of σ.

(a) If there were no successes, then Maker declares this turn as a failure of type I, thereby

incrementing fI(v), and skips his move in the original game. Maker then claims p
2
·|Fv|−1

additional free elements from Fv in the simulated game, and updates Uv := ∅, and

Uσ(i) := Uσ(i) \ {v} for each i ≤ m.

(b) Assume that Maker’s first success has happened at the kth coin tossing. If the edge vσ(k)

is not free, then Maker declares vσ(k) as a failure of type II, increments fII(v) by one,

and skips his move in the original game. Maker then updates Uv := Uv \ {σ(i) : i ≤ k},

and Uσ(i) := Uσ(i) \ {v} for each i ≤ k.

(c) Otherwise, Maker claims the edge vσ(k). In this case Maker also claims a free element

from box Fσ(k) and then updates Uv := Uv \ {σ(i) : i ≤ k}, and Uσ(i) := Uσ(i) \ {v} for

each i ≤ k.

Stage 2: In this stage, there are no free active boxes. Let U := {vu : v ∈ V (G), u ∈ Uv}.

For each e = vu ∈ U , Maker declares a failure of type II on both u and v (i.e., increments

both fII(u) and fII(v) by one) with probability p, independently at random. After the end

of this stage, Maker stops playing the game altogether, and skips all his subsequent moves.

We now prove that by following SM , Maker typically achieves his goal. For the sake of

notation, at any point during the game, we denote by dM(v) and dB(v) the degrees of v in

the subgraphs currently occupied by Maker and Breaker, respectively. The proof will follow

from the next four claims.

Claim 4.3.1. At any point during the first stage, we have wM(Fv) ≤ (1 + 2p)dG(v) and
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wB(Fv) ≤ dG(v) for every box Fv in the simulated game. In particular, no box is ever

exhausted of free elements.

Proof. Clearly wB(Fv) = dB(v) ≤ dG(v). Moreover, wM(Fv) = dM(v) + p
2
|Fv|fI(v) + fII(v).

Since dM(v) + fII(v) ≤ dG(v) and fI(v) ≤ 1, as Fv becomes inactive after a failure of type I

on v, we have wM(Fv) ≤ dG(v) + p
2
· |Fv| ≤ (1 + 2p)dG(v), as required.

Claim 4.3.2. For every v ∈ V (G), Fv becomes inactive before dB(v) ≥ εdG(v)/5.

Proof. Let v ∈ V (G) be any vertex of V (G). Since in the simulated game Maker follows the

strategy described in Theorem 4.2.3, we must have

dang(Fv) = wB(Fv)− 2b · wM(Fv) ≤ 2b(log n+ 1) (4.3.1)

for every active box Fv. Assume that there exists a vertex v ∈ V (G) for which Fv is still

active and wB(Fv) = dB(v) ≥ εdG(v)/5. Recall that b = ε
40p

, and by (4.3.1) it follows that

2
ε

40p
(log n+ 1) ≥ wB(Fv)− 2

ε

40p
· wM(Fv)

≥ εdG(v)/5− ε

20p
· wM(Fv).

Therefore, we obtain that wM(Fv) ≥ 4dG(v)p− (log n + 1), and by the assumption that

δ(G) ≥ 11 logn
εp

, we conclude that wM(Fv) > 3.8dG(v)p ≥ p
2
|Fv| = 2dG(v)p, a contradiction.

Claim 4.3.3. All edges of G′ are a.a.s exposed before the beginning of Stage 2.

Proof. Suppose there exists a vertex v at the beginning of the second stage, such that Uv 6= ∅.

Since Uv 6= ∅, we must have fI(v) = 0. Moreover, because Fv is not active, we must also have

wM(Fv) = dM(v) + fII(v) ≥ p
2
|Fv| = 2dG(v)p. This implies that dG′(v) ≥ dM(v) + fII(v) ≥

2dG(v)p. Now, since dG′(v) ∼ Bin(dG(v), p), using Lemma 4.2.1, it follows that

P [Bin(dG(v), p) ≥ 2dG(v)p] < e−dG(v)p/3 = o

(
1

n

)
.

Applying the union bound, it thus follows that with probability 1−o(1), there exists no such

vertex, proving the claim.
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Claim 4.3.4. For every v ∈ V (G) a.a.s fII(v) ≤ εdG(v)p.

Proof. Let v ∈ V (G) be any vertex. By Claim 4.3.2, during Stage 1 Breaker can touch

v at most εdG(v)/5 times before Fv becomes inactive. Since a failure of type II occurs if

Maker has a success on one of Breaker’s edges, it follows that fII(v) ∼ Bin(m, p), where

m ≤ εdG(v)/5. Applying Lemma 4.2.2 to fII(v) we conclude that the probability for having

more than εdG(v)p edges vu which are failures of type II is at most

P [Bin(εdG(v)/5, p) ≥ εdG(v)p] ≤
(
eεdG(v)p/5

εdG(v)p

)εdG(v)p

= o

(
1

n

)
.

Applying the union bound we obtain that the probability that there is such a vertex is o(1).

Moreover, by Claim 4.3.3, with probability 1− o(1) all the edges of G′ were exposed before

the beginning of Stage 2. Therefore, a.a.s. fII(v) ≤ εdG(v)p for all v ∈ V (G).

This completes the proof of Theorem 4.1.4.

4.4 Applications

In this section we show how to apply Theorems 4.1.4 and 4.1.5 in order to prove Theorems

4.1.6, 4.1.7 and 4.1.8. We start with proving Theorem 4.1.6, which states that Maker can

win the Hamiltonicity game played on E(Kn) against an asymptotically optimal (up to a

constant factor) bias of Breaker.

Proof of Theorem 4.1.6. Fix ε = 1
6
. Let C1 = C(1

6
) be as in Theorem 4.2.4, and let C2 be a

constant for which G ∼ G(n, p) is a.a.s. such δ(G) ≥ 5
6
np for every p ≥ C logn

n
. Denote by

C := max{C1, C2}. Now, let δ = ε
40C

and note that δn
logn

= ε
40p

, where p = C logn
n

. Therefore,

applying Theorem 4.1.4 we obtain that for sufficiently large integer n, in the (1 : δn
logn

)

game played on E(Kn) Maker can build a subgraph G′ = G \ H where G ∼ G(n, p) and

∆(H) ≤ εnp. Now, since a.a.s. we have that δ(G) ≥ 5
6
np, it follows that δ(G′) ≥ (1

2
+ 1

6
)np.

Applying Theorem 4.2.4 we conclude that G′ is a.a.s. Hamiltonian. This completes the

proof.
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Next, we prove Theorem 4.1.7

Proof of Theorem 4.1.7. Let b = o(
√
n) and 0 < ε < 1/20. Let 0 < p < 1 be such that

the following two properties hold: b ≤ ε
40p

and p = ω (1/
√
n). Applying Theorem 4.1.5 we

conclude that for sufficiently large integer n, in the (1 : b) game played on the complete

directed graph on n vertices, Maker can build a subgraph D′ = D \H for which D ∼ D(n, p)

and ∆±(H) ≤ εnp, where ∆±(H) = max{d+
H(v), d−H(v)} and the maximum runs over all

v ∈ V (H). Since p � 1/
√
n, an easy application of the Chernoff bounds (Lemma 4.2.1)

shows that d+
D(v), d−D(v) = (1 + o(1))np for each v ∈ V (D). Combining it with the fact that

ε < 1/20, we obtain that ∆±(H) ≤ np/16. Therefore, applying Theorem 4.2.5 to D we

conclude that D′ contains an oriented Hamilton cycle. This completes the proof.

Finally, we prove Theorem 4.1.8.

Proof of Theorem 4.1.8. Let α > 0 and D > 0 be two positive constants. Let ε > 0 and C

be as in Theorem 4.2.6 (applied to α and D). Now, let δ = ε
40C

and note that δn
logn

= ε
40p

,

where p = C logn
n

. Therefore, by applying Theorem 4.1.4 we obtain that for sufficiently large

integer n, in the (1 : δn
logn

) game played on E(Kn) Maker can build a subgraph G′ = G \H

where G ∼ G(n, p) and ∆(H) ≤ εnp. Now, using Theorem 4.2.4 we conclude that G′ a.a.s.

contains a copy of every tree T on n vertices with ∆(T ) ≤ D and with a bare path of length

at least αn. This completes the proof.
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APPENDIX A

Detailed proofs

A.1 Second proof in details

We turn to desribe in details the second proof of Theorem 2.1.1 for k-cliques and k-anticliques,

which was sketched in Section 2.5. Some of the purely technical parts of this proof are col-

lected together in Lemma A.1.2. First, we derive the proof of the theorem from Lemma 2.5.1.

Proof. Let p ∈ [0, 1], and q be the unique root of qk + kqk−1(1− q) = p in [0, 1]. We need to

show that every x ∈ [0, 1] and non-increasing f : [0, 1] → [0, 1] with d(Kk;Gx,f ) ≥ p satisfy

that d(Kk;Gx,f ) ≤ Φk(p), where

Φk(p) := Mk,k,p = max{(1− p1/k)k + kp1/k(1− p1/k)k−1, (1− q)k}.

Namely, that d(Kk;Gx,f ) is maximized when either f = 0 or f = 1.

By Lemma 2.5.1, we can assume that f is either constant or that it only takes the values

1 and 0. Consider the latter, and for some y ∈ [0, 1], let

f(t) =

 1 if t ≤ 1− y

0 if t > 1− y

For convenience, we prove the statement for G1−x,f , thus we need to prove that

max (1− x)k + kx(1− x)k−1(1− y)k−1 s.t.

xk + kxk−1(1− x)y ≥ p

is attained when either x = q, y = 1 or x = p1/k, y = 0. By monotonicity of d(Kk;Gx,f ) and

d(Kk;Gx,f ), we assume that xk + kxk−1(1− x)y = p, hence x ∈ [q, p1/k] and

y =
p− xk

kxk−1(1− x)
.
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We rewrite the objective function as

K(x) = (1− x)k + kx(1− x)k−1

(
1− p− xk

kxk−1(1− x)

)k−1

.

This part of the proof is completed in Lemma A.1.2 below, where it is shown (among other

things) that the maximum of this function in the interval [q, p1/k] occurs at an endpoint.

We can now deal with the case of a constant f . First, note that Φk(Φk(p)) = p for every

p ∈ [0, 1]. Indeed, the curves (p, (1−p1/k)k+kp1/k(1−p1/k)k−1) and (p, (1−q)k) are reflections

of each other with respect to the line y = x. Therefore Φk is symmertic with respect to this

line. Let f = y be a constant function, and suppose that d(Kk;Gx,f ) = xk +kxk−1(1−x)y >

Φk(p). Then, as we have just shown,

d(Kk;Gx,f ) = (1− x)k + kx(1− x)k−1(1− y)k−1 < Φk(Φk(p)) = p

and the proof is completed.

We now turn to deduce Lemma 2.5.1 from Lemma 2.5.2

Proof of Lemma 2.5.1. Let f : [0, 1]→ [0, 1] be non-increasing and let h(t) = 1−f(t). Then

g(t) := h(t)/‖h‖k−1 is lk−1-normalized and non-decreasing. We apply Lemma 2.5.2 with

B = 1/‖h‖k−1 to conclude that

〈(k − 1)tk−2, h〉
‖h‖k−1

≥ min

{
1

‖h‖k−1

(
1− (1− ‖h‖k−1

k−1)k−1
)
, 1

}
.

which we rewrite as

〈(k − 1)tk−2, h〉 ≥ min
{

1− (1− ‖h‖k−1
k−1)k−1, ‖h‖k−1

}
.

In the first case, (
1− ‖h‖k−1

k−1

)k−1 ≥ 1− 〈(k − 1)tk−2, h〉

Since h = 1− f this becomes(
1−

∫ 1

0

(1− f(t))k−1dt

)k−1

≥ 1−
∫ 1

0

(k − 1)tk−2(1− f(t))dt =

∫ 1

0

(k − 1)tk−2f(t)dt
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which implies, ∫ 1

0

(1− f(t))k−1dt ≤ 1−
(∫ 1

0

(k − 1)tk−2f(t)dt

) 1
k−1

.

Otherwise,

〈(k − 1)tk−2, h〉k−1 ≥ ‖h‖k−1
k−1,

which implies, (
1−

∫ 1

0

(k − 1)tk−2f(t)dt

)k−1

≥
∫ 1

0

(1− f(t))k−1dt.

It only remains to prove Lemma 2.5.2. By a standard density argument it suffices to

prove it for step functions, which we do in the following claim by induction on the number

of steps.

Claim A.1.1. Let g : [0, 1] → [0, B] be an non-decreasing step function with n ≥ 2 steps.

Namely, there is a partition X = (x0 = 0 < x1 < . . . < xn−1 < xn = 1) and real numbers

0 = T0 ≤ T1 ≤ . . . ≤ Tn ≤ Tn+1 = B such that

g |[xi−1,xi]= Ti for all 1 ≤ i ≤ n.

Suppose further that ‖g‖k−1 = 1. Let 1 ≤ i ≤ n − 1. Fix the partition X and all the Tj,

except possibly Ti, Ti+1 subject to the condition that the modified function is non-decreasing

and has lk−1 norm 1. Then 〈g, (k − 1)tk−2〉 is minimized when either Ti−1 = Ti, Ti = Ti+1

or Ti+1 = Ti+2.

Proof. We need to solve the following optimization problem.

Minimize (xk−1
i − xk−1

i−1 )ti + (xk−1
i+1 − xk−1

i )ti+1, subject to (A.1.1)

Ti−1 ≤ ti ≤ ti+1 ≤ Ti+2 (A.1.2)

µit
k−1
i + µi+1t

k−1
i+1 = µiT

k−1
i + µi+1T

k−1
i+1 , (A.1.3)

where µi = xi − xi−1. By Equation (A.1.3)

ti+1 =

(
T k−1
i+1 +

µi
µi+1

(T k−1
i − tk−1

i )

) 1
k−1

. (A.1.4)
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The inequalities ti ≤ ti+1 ≤ Ti+2 in (A.1.2) yield

ti ≤

(
µiT

k−1
i + µi+1T

k−1
i+1

µi + µi+1

) 1
k−1

. (A.1.5)

and

ti ≥

(
max{0, µiT k−1

i + µi+1T
k−1
i+1 − µi+1T

k−1
i+2 }

µi

) 1
k−1

. (A.1.6)

Therefore, we can restate our problem as the following optimization problem

Minimize (xk−1
i − xk−1

i−1 )ti + (xk−1
i+1 − xk−1

i )

(
T k−1
i+1 +

µi
µi+1

(T k−1
i − tk−1

i )

) 1
k−1

subject to (A.1.5), (A.1.6) and ti ≥ Ti−1

This problem is feasible since ti = Ti is a valid solution, and therefore the domain is an

interval. The objective function is well defined in this segment due to (A.1.5) and is concave.

This is because it is a positive linear combination of a linear function and a concave function

of the form (a − bxn)
1
n . Therefore, it is minimized at an endpoint of the interval, which

corresponds precisely to ti = Ti−1, ti = ti+1 or ti+1 = Ti+2.

We now turn to the proof of Lemma 2.5.2.

Proof of Lemma 2.5.2. Let g : [0, 1] → [0, B], with lk−1-norm 1, be a non-decreasing n-step

function.

Case 1. If n = 1 then g is constant, therefore g = 1 and 〈g, (k − 1)tk−2〉 = 1.

Case 2. If n = 2, we use Claim A.1.1 for i = 1 to conclude that T1 = 0 or T2 = B.

Case 2.1. If T1 = 0, then

T k−1
2 · (1− x1) = 1 =⇒ x1 = 1− 1

T k−1
2

,

and therefore

〈g, (k − 1)tk−2〉 = T2

(
1−

(
1− 1

T k−1
2

)k−1
)

≥ min

{
B

(
1−

(
1− 1

Bk−1

)k−1
)
, 1

}
.
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The last concavity inequality is shown in Lemma A.1.2.

Case 2.2. If T2 = B, then

x1T
k−1
1 + (1− x1)Bk−1 = 1 =⇒ T1 =

(
Bk−1x1 −Bk−1 + 1

x1

) 1
k−1

.

hence 1− 1
Bk−1 ≤ x1 ≤ 1, and

〈g, (k − 1)tk−2〉 = xk−1
1 T1 + (1− xk−1

1 )B

= x
k−1− 1

k−1

1

(
Bk−1x1 −Bk−1 + 1

) 1
k−1 −Bxk−1

1 +B.

By Lemma A.1.2, this is a concave function of x1, and is therefore minimized either for

x1 = 1, where g is a 1-step function, or for x1 = 1− 1
Bk−1 , where T1 = 0 which returns us to

the Case 2.1.

Case 3. If n = 3, we use Claim A.1.1 for i = 1, 2, and obtain a 3-step function with T1 = 0

and T3 = B. Therefore,

(x2 − x1)T k−1
1 + (1− x2)Bk−1 = 1 =⇒ T2 =

(
Bk−1x2 −Bk−1 + 1

x2 − x1

) 1
k−1

Since 0 ≤ T2 ≤ B we conclude that 0 ≤ x1 ≤ 1− 1
Bk−1 and 1− 1

Bk−1 ≤ x2 ≤ 1. Furthermore,

〈g, (k − 1)tk−2〉 = (xk−1
2 − xk−1

1 )T2 + (1− xk−1
2 )B

=
xk−1

2 − xk−1
1

(x2 − x1)
1

k−1

(
Bk−1x2 −Bk−1 + 1

) 1
k−1 +B −Bxk−1

2

By Lemma A.1.2, for fixed x2 ≥ 1 − 1
Bk−1 , this is minimized when either x1 = 0, which is

precisely Case (2.2), or when x1 = 1 − 1
Bk−1 , implying that T2 = T3 = B, which brings us

back to Case 2.

Case 4. If n ≥ 4, we apply Claim A.1.1 for i = 2 and reduce the number of steps without

increasing 〈g, (k − 1)tk−2〉. This completes the proof by induction.

We finally provide a proof for the following technical lemma.

Lemma A.1.2. The following statements hold.

1. Let α ∈ [0, 1] and ck(α) the root of xk + kxk−1(1− x) = α in [0, 1]. The function

K(x) = (1− x)k + k(1− x)k−1x

(
1− αk − xk

k(1− x)xk−1

)k−1

has no local maximum in (ck(α), α).
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2. Let f(x) = x(1− (1− 1
xr

)r), r ≥ 2 an integer, B ≥ 1 and x ∈ [1, B], then

f(x) ≥ min{f(1), f(B)}.

3. The function

g(x) = xr−
1
r (Brx−Br + 1)

1
r −Bxr +B

is concave in (1− 1
Br
, 1), where r ≥ 2 an integer.

4. The function h(x) = ar−xr

(a−x)
1
r

has no local minimum in (0, a). Hence, for fixed x2 ≥

1− 1
Bk−1

xk−1
2 − xk−1

1

(x2 − x1)
1

k−1

(
Bk−1x2 −Bk−1 + 1

) 1
k−1 +B −Bxk−1

2

is minimized at an endpoint of the interval 0 ≤ x1 ≤ 1− 1
Bk−1 .

Proof. 1. We define

Z = Z(x) = 1− αk − xk

kxk−1(1− x)
=
xk + kxk−1(1− x)− αk

kxk−1(1− x)
.

Note that Z varies between 0 and 1 as x ranges over the interval [ck(α), α] and in particular

Z(ck(α)) = 0 and Z(α) = 1. Also,

logZ = log(xk + kxk−1(1− x)− αk)− log k − (k − 1) log x− log(1− x).

Therefore,

Z ′

Z
=

k(k − 1)xk−2(1− x)

xk + kxk−1(1− x)− αk
− k − 1

x
+

1

1− x
=
k − 1

xZ
− k − 1

x
+

1

1− x

and

Z ′ =
k − 1

x
(1− Z) +

Z

1− x
=

(kx− k + 1)Z + (k − 1)(1− x)

x(1− x)
.

We need to show that K(x) = (1 − x)k + kx(1 − x)k−1Zk−1 has no local maximum in the

interval [c(α), α].

K ′(x) = −k(1− x)k−1 + k(1− x)k−1Zk−1 − k(k − 1)x(1− x)k−2Zk−1+

k(k − 1)x(1− x)k−1Zk−2Z ′ =
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−k(1− x)k−2
(
1− x+ (kx− 1)Zk−1 − (k − 1)Zk−2((kx− k + 1)Z + (k − 1)(1− x))

)
=

−k(1− x)k−1
(
k(k − 2)Zk−1 − (k − 1)2Zk−2 + 1

)
.

Suppose x0 ∈ (c(α), α) is a critical point, we claim that Z(x0) < 1 − 1
k
. Indeed, Z(x0) is a

root of the polynomial q(z) = k(k − 2)zk−1 − (k − 1)2zk−2 + 1. Since

q′(z) = (k − 2)(k − 1)zk−3(kz − k + 1),

q is increasing in [1 − 1
k
, 1] and therefore for every z ∈ [1 − 1

k
, 1), q(z) < q(1) = 0. Hence q

has no roots in this interval, which therefore does not contain Z(x0).

Now, we compute the second derivative of K2 in x0,

K ′′2 (x0) = −k(1− x0)k−1 · (k − 1)(k − 2)Zk−3(x0)Z ′(x0)(kZ(x0)− k + 1) ≥ 0

since Z ≥ 0, Z ′ ≥ 0, and (kZ(x0)− k+ 1) < 0. This proves that x0 is not a local maximum.

2. It is sufficient to see that f1(x) = f( 1
x
) has no local minimum in (0, 1). Indeed,

f1(x) =
1− (1− xr)r

x
.

Therefore,

f ′1(x) =
r2xr(1− xr)r−1 + (1− xr)r − 1

x2

Denote y(x) = 1− xr and q(y) = r2(1− y)yr−1 + yr − 1. Note that

q′(y) = −r(r − 1)yr−2((1 + r)y − r),

which implies that q is decreasing if y ∈ [ r
r+1

, 1], therefore q has no roots in this interval as

q(y) > q(1) = 0. Consequently, if x0 < 1 is a critical point of f1, then y(x0) < r
r+1

. The

numerator of the second derivative of f1 in x0 is

q′(y(x0)) · y′(x0) = r2(r − 1)xr−1
0 y(x0)r−2((1 + r)y − r) < 0,

and f1 does not have a local minimum.
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3. Consider the change of variables y = Brx−Br + 1 and denote a = Br − 1. Then,

g(x) =
(y + a)

r2−1
r y

1
r

Br2−1
− (y + a)r

Br2−1
+B, y ∈ (0, 1), a ≥ 0

We need to show that for every a ≥ 0, the function

G(y) = (y + a)
r2−1
r y

1
r − (y + a)r

is concave in (0, 1). Indeed,

G′′(y) =
(r2 − 1)(r2 − r − 1)

r2
(y + a)

r2−2r−1
r y

1
r

+ 2
r2 − 1

r2
(y + a)

r2−r−1
r y

1−r
r +

1− r
r2

(y + a)
r2−1
r y

1−2r
r − r(r − 1)(y + a)r−2.

We need to prove that G′′ ≤ 0. At a = 0,

G′′(y) =
yr−2

r2

(
(r2 − 1)(r2 − r − 1) + 2(r2 − 1) + 1− r − r3(r − 1)

)
= 0.

If a > 0, let c = y
a
> 0. G′′(y) can be written as

ar−2

r2
(c+ 1)

r2−2r−1
r c

1−2r
r (r − 1)

(
r3c2 + 2rc− 1− r3(1 + c)

1
r c

2r−1
r

)
.

We need to prove that

r3c2 + 2rc− 1 ≤ r3c2

(
1 +

1

c

) 1
r

We multiply by 1
c2

and let z = 1
c

to rewrite this as

r3 + 2rz − z2 ≤ r3(1 + z)
1
r

For z = 0 this holds as equality, so it is sufficient to prove the inequality for the derivatives,

2r − 2z ≤ r2(1 + z)
1−r
r .

For z ≥ r, this inequality holds as 2r − 2z ≤ 0 ≤ r2(1 + z)
1−r
r . For 0 ≤ z ≤ r we can raise

both sides to the r-th power,

2r(r − z)r(1 + z)r−1 ≤ r2r
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This holds for z = 0 and z = r, so we only need to check that it holds for critical points. If

z ∈ (0, r), then,
d ((r − z)r(1 + z)r−1)

dz
= 0 =⇒ z =

r2 − 2r

2r − 1
,

hence, for 0 ≤ z ≤ r,

2r(r − z)r(1 + z)r−1 ≤ 2r
(
r2 + r

2r − 1

)r (
r2 − 1

2r − 1

)r−1

.

Consequently, it is enough prove that

2r
(
r2 + r

2r − 1

)r (
r2 − 1

2r − 1

)r−1

≤ r2r

which we write as

1 ≤
(

2r − 1

2r − 2

)r−1(
2r2 − r
(r + 1)2

)r− 1
2
(√

2r2 − r
2

)
For r ≥ 4, each of these three terms is greater than 1, and for r = 2, 3 it can be verified by

assignment.

4. Let

h(x) =
ar − xr

(a− x)
1
r

.

Then,

h′(x) =
(r2 − 1)xr − r2axr−1 + ar

r(a− x)
r+2
r

.

If 0 ≤ x0 < a is a critical point, then it is a root of the polynomial q(x) = (r2 − 1)xr −

r2axr−1 + ar. Note that q′(x) = r(r − 1)xr−2((r + 1)x − ra), and therefore positive for

x ∈ [ r
r+1

a, a]. Hence, for such x, q(x) > q(a) = 0, and therefore x0 <
r
r+1

a. The numerator

of the second derivative of h in x0 equals to q′(x0) which is thereby negative. Hence, x0 is

not a local minimum.

A.2 Hypergraph theorem in details

In this section we describe the detailed proof of Theorem 2.6.1 which was sketched in Sec-

tion 2.6. Theorem 2.6.1 states that the number of labeled copies of a stable set system H in

72



an arbitrary set system F does not decrease after the shifting, i.e.,

t(H;Su→v(F)) ≥ t(H;F).

Proof of Theorem 2.6.1. Let us recall the definition of the shifting operator S̃u→v for sets of

labeled copies. For I a set of labeled copies, we defined S̃u→v(I) = {S̃u→v(I, I) : I ∈ I},

where

S̃u→v(I, I) =


Iu↔v if Iu↔v 6∈ I and Im(I) ∩ {u, v} = {u},

Iu↔v if Iu↔v 6∈ I, {u, v} ⊂ Im(I), and I−1(u) dominates I−1(v) in H,

I otherwise,

and Iu↔v : U → V was defined by

Iu↔v(w) =


I(w) if I(w) 6= u, v,

v if I(w) = u,

u if I(w) = v.

Henceforth, let I := Cop(H;F) be the family of all labeled copies of H in F , let F ′ =

Su→v(F) be the shifted set system and let I ′ = S̃u→v(I) := {S̃u→v(I, I) : I ∈ I} be

the set of all labeled copies after the shifting. Clearly |I ′| = |I|, thus in order to show

t(H;F ′) ≥ t(H;F), it suffices to prove that

S̃u→v(I) ⊆ Cop(H;F ′).

Let I ∈ I be an arbitrary labeled copy of H, and let I ′ = S̃u→v(I, I). For any H ∈ H, it

is true that I(H) ∈ F . Let us now show, by careful case analysis, that I ′(H) ∈ F ′ for all

H ∈ H, thereby proving that I ′ ∈ Cop(H;F ′). One of the following is true

Case (i): Im(I ′) ∩ {u, v} = ∅. Clearly I = I ′. On the other hand, since I(H) ∩ {u, v} = ∅,

it is true that Su→v(I(H);F) = I(H), hence I(H) ∈ F ′. Thus I ′(H) ∈ F ′.

Case (ii): Im(I ′) ∩ {u, v} = {u}. In this case, the equality I ′ = I holds. But S̃u→v(I, I) =

I implies that Iu↔v ∈ I, and thus it is true that Iu↔v(H) ∈ F . It becomes clear that

Su→v(I(H);F) = I(H) since Iu↔v(H) ∈ F , hence I(H) ∈ F ′. Thus I ′(H) ∈ F ′.

Case (iii) Im(I ′) ∩ {u, v} = {v}: Let us now analyze two subcases:
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1. I = I ′: This is the straightforward subcase. Since u 6∈ I(H), it is true that Su→v(I(H);F) =

I(H), hence I(H) ∈ F ′. We conclude that I ′(H) ∈ F ′.

2. I = Iu↔v: Let X = Su→v(I(H),F). If X = Iu↔v(H) then clearly I ′(H) = Iu↔v(H) ∈

F ′. If X 6= Iu↔v(H), it must be true that X = I(H) and I(H) ∩ {u, v} = {u}. But

Su→v(I(H),F) = I(H) only if Iu↔v(H) ∈ F . Hence Iu↔v(H) = Su→v(Iu↔v(H),F) ∈

F ′, because v ∈ Iu↔v(H).

Case (iv): Im(I ′) ∩ {u, v} = {u, v}. Dividing into three more subcases:

1. Iu↔v ∈ I: We have I ′ = I. Clearly Su→v(I(H),F) = I(H) because Iu↔v(H) ∈ F ,

hence I ′(H) = I(H) ∈ F ′.

2. Iu↔v 6∈ I but I−1(u) does not dominate I−1(v) in H: Again, it is true that I ′ = I.

Moreover I−1(v) must dominate I−1(u) in H, because H is stable. We will now show

that Su→v(I(H),F) = I(H). Suppose, towards contradiction, that Su→v(I(H),F) 6=

I(H). This can only happen when I(H) ∩ {u, v} = {u} and Iu↔v(H) 6∈ F . Let

H ′ = (H ∪ {I−1(v)}) \ {I−1(u)}. Because I−1(v) dominates I−1(u) in H, we must

have SI−1(u)→I−1(v)(H,H) = H, hence H ′ ∈ H. But this is a contradiction because

Iu↔v(H) = I(H ′) and I(H ′) ∈ F since H ′ ∈ H. Therefore I(H) = Su→v(I(H),F) ∈

F ′.

3. Iu↔v 6∈ I and I−1(u) dominates I−1(v) in H: The identity I ′ = Iu↔v holds. If

Su→v(I(H),F) = Iu↔v(H), then clearly I ′(H) ∈ F . If Su→v(I(H),F) 6= Iu↔v(H),

then it is either because

(a) I(H)∩{u, v} = {u} and Iu↔v(H) ∈ F : It is true that Iu↔v(H) = Su→v(Iu↔v(H),F) ∈

F ′; or because

(b) I(H)∩{u, v} = {v}: Let H ′ = (H∪{I−1(u)})\{I−1(v)}. Since I−1(u) dominates

I−1(v) in H, clearly H ′ ∈ H. Thus I(H ′) ∈ F , hence Iu↔v(H) = I(H ′) ∈ F .

Therefore Iu↔v(H) = Su→v(Iu↔v(H),F) ∈ F ′;
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In all cases we have I ′(H) ∈ F ′, therefore I ′ ∈ Cop(H;F ′), which implies t(H;F ′) ≥

t(H;F).

A.3 Proof of the MinBox game

Proof of Theorem 4.2.3. The proof of this theorem is very similar to the proof of Theorem 1.2

in [GS09]. Since claiming an extra element is never a disadvantage for any of the players,

we can assume that Breaker is the first player to move. For a subset X ⊆ E(H), let

dang(X) =
∑
F∈X dang(F )

|X| denote the average danger of the boxes in X. The game ends when

there are no more free elements left.

Suppose, towards a contradiction, that there exists a strategy for Breaker that ensures

the existence of an active box F satisfying dang(F ) > b(log n + 1) at some point during

the game. Denote the first time when this happens by g. Let I = {F1, . . . , Fg} be the set

which defines Maker’s game, i.e, in his ith move, Maker plays at Fi for 1 ≤ i ≤ g − 1 and

Fg is the first active box satisfying dang(Fg) > b(log n + 1). For every 0 ≤ i ≤ g − 1, let

Ii = {Fg−i, . . . , Fg}. Following the notation of [GS09], let dangBi(F ) and dangMi
(F ) denote

the danger value of a box F , directly before Breaker’s and Maker’s ith move, respectively.

Notice that in his gth move, Breaker increases the danger value of Fg to at least b(log n+ 1).

This is only possible if dangBg(Fg) > b(log n+ 1)− b = b log n.

Analogously to the proof of Theorem 1.2 in [GS09], we state the following lemmas which

estimate the change of the average danger after a particular move (by either player). In the

first lemma we estimate the changes after Maker’s moves.

Lemma A.3.1. Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i(Ii)− dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i(Ii)− dangBg−i+1
(Ii−1) ≥ b

|Ii| .

In the second lemma we estimate the changes after Breaker’s moves.

Lemma A.3.2. Let i be an integer, 1 ≤ i ≤ g − 1. Then,
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dangMg−i(Ii)− dangBg−i(Ii) ≤
b

|Ii|
.

Combining Lemmas A.3.1 and A.3.2, we get the following corollary which estimates the

change of the average danger after a full round.

Corollary A.3.3. Let i be an integer, 1 ≤ i ≤ g − 1.

(i) if Ii = Ii−1, then dangBg−i(Ii)− dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii 6= Ii−1, then dangBg−i(Ii)− dangBg−i+1
(Ii−1) ≥ − b

|Ii|

In order to complete the proof, we prove that before Breaker’s first move, dangB1
(Ig−1) >

0, thus obtaining a contradiction. To that end, let |Ig| = r and let i1 < . . . < ir−1 be those

indices for which Iij 6= Iij−1. Note that |Iij | = j + 1. Recall that dangBg(Fg) > b log n,

therefore

dangB1
(Ig−1) = dangBg(I0) +

g−1∑
i=1

(
dangBg−i(Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg(I0) +
r−1∑
j=1

(
dangBg−ij (Iij)− dangBg−ij+1

(Iij−1)
)

[by Corollary A.3.3 (i)]

≥ dangBg(I0)−
r−1∑
j=1

b

j + 1
[by Corollary A.3.3 (ii)]

≥ dangBg(I0)− b log n > 0,

finishing the proof.
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