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Abstract

Skew-Linked Partitions and a Representation-Theoretic Model for k-Schur Functions

by

Li-Chung Chen

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

In 2001, Lapointe, Lascoux, and Morse discovered a class of symmetric functions s
(k)
λ (z; t)

called k-Schur functions, where k is a positive integer and λ is a k-bounded partition. These
functions have many properties similar to Schur functions and were motivated by a con-
jectured refinement of the Macdonald positivity conjecture. We describe a representation-
theoretic model for k-Schur functions by studying the combinatorics of special pairs of par-
titions called skew-linked partitions. En route we also study nonnegative integer matrices
with specified row and column sums. These data allow us to construct ”small” modules of
C[x1, . . . , xn]∗Sn that are generalizations of Garsia-Procesi modules. We describe properties
of k-Schur functions that can be deduced from these modules.
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Chapter 1

Background

1.1 Partitions and Tableaux

A composition is a sequence α = (α1, α2, . . .) of nonnegative integers whose sum is finite
(denoted |α|, the size of α). A partition λ = (λ1, λ2, . . .) is a composition satisfying λ1 ≥
λ2 ≥ . . .. Thus each composition has a unique rearrangement into a partition. If n = |λ|, we
say that λ is a partition of n, denoted λ ⊢ n. A partition λ is said to be k-bounded if λ1 ≤ k
(so all parts of λ are at most k).

The length of λ, denoted ℓ(λ), is the number of nonzero entries. Note that λ begins with
ℓ(λ) nonzero terms and ends with an infinite sequence of zeroes; the finite subsequence of
nonzero terms is the usual definition of a paritition, but adding infinite zeroes is a convenient
convention. One important statistic of a partition is n(λ) =

∑
i(i− 1)λi.

A partition λ may be represented by a (Ferrers) diagram, consisting of the squares in
the two-dimensional grid at coordinates {(i, j) ∈ N×N : j ≤ λi}. Thus the ith row contains
λi squares and the rows line up on the left. The conjugate partition of λ, denoted λ′, is the
partition whose diagram is the transpose (with respect to the main diagonal) of the diagram
of λ.

A skew shape λ/ν consists of two partitions λ, ν satisfying νi ≤ λi for all i. Equivalently,
the diagram of ν is a subset of the diagram of λ. The diagram of λ/ν is obtained by deleting
the squares of the diagram of ν from the diagram of λ, i.e. the squares (i, j) satisfying i ≥ 1
and νi < j ≤ λi. This is called a skew diagram.

Example 1.1.1

λ = (5, 3, 1) = λ′ = (3, 2, 2, 1, 1) =

ν = (2, 1) = λ/ν = (5, 3, 1)/(2, 1) =

The main hook length of a partition λ is hM(λ) = λ1 + ℓ(λ) − 1. The hook length of a
square in a diagram is one plus the number of squares strictly to its north plus the number
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of squares strictly to its east. In other words, the main hook length is the hook length of
the square at (1, 1). A partition is said to be a k-core if no square of its diagram has hook
length exactly k.

The dominance order is a partial order on partitions of the same size, defined by λ ≥ µ iff
λ1+. . .+λj ≥ µ1+. . .+µj for all j. It can be shown that λ ≥ µ iff µ′ ≥ λ′. A lowering operator
transforms a composition α into the composition (α1, . . . , αi−1, αi−1, αi+1 +1, αi+2, αi+3, . . .)
for some fixed i. It is easy to show that for partitions λ and µ, λ ≥ µ iff there exists a (possibly
empty) sequence of lowering operators transforming λ into µ with intermediate results also
being partitions. The dominance order on compositions is similarly defined.

The lexicographical order is a total order on compositions defined by λ > µ iff there
exists j such that λj > µj and λi = µi for i = 1, . . . , j − 1. However, when we compare two
partitions (or compositions), the notation ≥ will refer to dominance order unless otherwise
specified.

A tableau T of shape λ (resp. λ/ν) is obtained by filling each square of the diagram of λ
(resp. λ/ν) with a positive integer. For a square (i, j) in the diagram of λ, T(i,j) denotes the
letter that occurs in square (i, j) in T .

A tableau T is standard if each of 1, 2, . . . ,(size of T ) occurs once in the fillings, and the
fillings are strictly increasing left to right in each row and bottom to top in each column. A
tableau T is semistandard if its fillings are weakly increasing left to right in each row and
strictly increasing bottom to top in each column. The weight wt(T ) of a tableau T is the
composition (α1, α2, . . .), where αi is the number of occurrences of i in T . Let SSY T (λ, α)
(resp. SSY T (λ/ν, α)) denote the set of semistandard tableaux of shape λ (resp. λ/ν) and
weight α. Also, let SSY T (λ) = ∪αSSY T (λ, α).

Example 1.1.2 Standard tableau:
5
2 6 7
1 3 4 8 9

∈ SY T ((5, 3, 1)), row-reading word 526713489

Semistandard tableau:
6
3 3 4
1 1 1 2 6

∈ SSY T ((5, 3, 1), (3, 1, 2, 1, 0, 2)),

row-reading word 633411126

Semistandard skew tableau:
1

1 3
2 2 4

∈ SSY T ((5, 3, 1)/(2, 1), (2, 2, 1, 1)), row-reading

word 113224, T113224 = 3
1 1 2 2 4

because 113224 ≡ 311224

The Kostka number Kλ,α is the size of SSY T (λ, α). For partition µ with |λ| = |µ|, we
have

• Kλ,µ ≥ 1 if λ ≥ µ

• Kλ,µ = 1 if λ = µ

• Kλ,µ = 0 if λ 6≥ µ.
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A word is a finite sequence of letters taken from the alphabet of positive integers. The
weight of a word is the composition (µ1, µ2, . . .) where µi is the number of occurrences of i
in the word. Two words are related by a Knuth relation in the following scenarios (where
u, v are words and a, b, c are letters):

1. uacbv ≡ ucabv if a ≤ b < c

2. ubacv ≡ ubcav if a < b ≤ c.

The transitive closure of the Knuth relations forms the Knuth equivalence on the set of words.
The row-reading word w(T ) of a tableau T is obtained by reading the entries of T from

left to right and top to bottom. For any word w, it can be shown that there exists a unique
tableau Tw of non-skew shape such that w and w(Tw) are Knuth equivalent. In particular
this is true for the row-reading word of a skew tableau U , yielding the straightening operation
mapping U to the non-skew tableau Tw(U ). See above for examples.

1.2 Charge

For words w whose weights are partitions, there is a unique charge function c satisfying
the following properties:

1. For letter a 6= 1 and word w, c(wa) = c(aw) + 1.

2. If w’s letters are in weakly decreasing order, then c(w) = 0.

3. Charge is invariant under Knuth equivalence.

The charge of a tableau T is defined to be c(w(T )). There is an explicit algorithm to compute
charge.

Algorithm 1.2.1 Given a word whose weight is a partition, label its letters in the following
way.

1. At the beginning, all letters are unlabelled.

2. Set ℓ = 0. Starting from the end of the word and scanning backward, give label ℓ to
the first unlabelled 1, to the first unlabelled 2 following this 1, to the first unlabelled 3
following this 2, and so on.

3. When the next higher letter (say p) is not found, start again at the end of the word
and increment ℓ by 1. Give label ℓ to the first unlabelled p, the first unlabelled p + 1
following this p, and so on.

4. Keep scanning, incrementing ℓ as necessary, until one of each letter has been labelled.

5. Repeat steps (2)-(4) on the unlabelled letters. Repeat this as many times as necessary
(each time resetting ℓ to 0) until all letters have been labelled.
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6. Then the charge is the sum of the labels.

Example 1.2.2 T =
3 6
2 2
1 1 3 4 5

has word w = 362211345. The labelling passes are

306220110345 3062201103415 306222011034152 30622020101034152 306220201010314152

Charge = 0 + 2 + 0 + 0 + 0 + 0 + 1 + 1 + 2 = 6.

1.3 Catabolism

We say that a tableau T is d-catabolizable if for i = 1, 2, . . . , d, the ith smallest letter that
occurs in T all appear in the ith row. (Vacuously every tableau is 0-catabolizable.) Notice
that every nonempty tableau is 1-catabolizable. If T is d-catabolizable, we define Catd(T )
as follows. Let U be the tableau obtained by deleting rows 1, . . . , d from T . Let V be the
(skew-shaped) tableau obtained by deleting rows d + 1, d+ 2, . . . from T and also removing
the squares containing the d smallest letters that occur in T . Then set Catd(T ) = Tw(V )w(U ).
(Vacuously Cat0(T ) = T .)

We can also define multiple-step catabolism recursively. Let d1, d2, . . . , dr ≥ 0. If r > 1,
a tableau T is said to be d1, . . . , dr-catabolizable if T is d1-catabolizable and Catd1(T ) is
d2, . . . , dr-catabolizable. In this case, set Catd1,d2,...,dr(T ) = Catdr Catdr−1 . . .Catd1(T ).

Because 0-catabolism is vacuous, we may define catabolism with respect to a composition:
Suppose composition α has the form (α1, . . . , αr, 0, 0, . . .). Then T is α-catabolizable if T is
α1, . . . , αr-catabolizable, in which case Catα(T ) is defined as Catα1,...,αr(T ).

Finally, for convenience we define a normalized version of catabolism: If T is
d-catabolizable and the smallest letter occurring in Catd(T ) is j, then let Catd(T ) be the
result of subtracting every letter in Catd(T ) by j− 1. (Usually j = d+ 1.) Clearly this does
not affect any catabolizabilities.

Example 1.3.1

d = 2 T =
7
3 5 6
2 2 4 8
1 1 1 3 4

U = 7
3 5 6

V = 4 8
3 4

Cat2(T ) = Tw(V )w(U ) = T48347356 =
8
4 4 7
3 3 5 6

Cat2(T ) =
6
2 2 5
1 1 3 4

Cat2(T ) is 2-catabolizable: U = 8 V = 7
6

Cat2(Cat2(T )) = Tw(V )w(U ) = T768 = 7
6 8

Hence T is 2, 2-catabolizable with Cat2,2(T ) = Cat2(Cat2(T )) = 7
6 8

.

Furthermore, T is 2, 2, 1-catabolizable with Cat2,2,1(T ) = Cat1(Cat2(Cat2(T ))) = 8
7
.
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1.4 Representation Theory of Sn

Proposition 1.4.1 Let R = CSn be the group ring. It is well known that the irreducible
R-modules are naturally indexed by partitions µ of n. This irreducible is denoted Vµ. The
trivial representation 1 and the sign representation ε are V(n) and V(1n), respectively.

Definition 1.4.2 Fix a standard tableau T0 of shape µ ⊢ n. Suppose Ci is the set of letters in
the ith row of T0. For the rest of this paper, fix the Young subgroup Sµ = SC1×SC2× . . .. On
a Young subgroup, let 1 and ε denote the trivial representation and the sign representation,
respectively.

Definition 1.4.3 Let P and Q be the subgroups of R preserving the rows and columns of
T0, respectively. Then P = Sµ. Set aµ =

∑
g∈P g =

∑
g∈Sµ

g, bµ =
∑

g∈Q(−1)gg, cµ = aµbµ,
and c̃µ = bµaµ.

Fulton-Harris [5] uses the Young Symmetrizer cµ, but similar results hold using c̃µ:

Proposition 1.4.4 1. Rc̃µ ∼= Rcµ = Vµ, and c̃2µ = nµc̃µ with nonzero nµ ∈ C.

2. c̃µRc̃µ = Cc̃µ. If λ 6= µ then c̃µVλ = c̃µRc̃λ = 0.

Proof

1. Right multiplication by bµ and aµ maps Rc̃µ and Rcµ into each other. One composite
map acts as right multiplication by cµ on Rcµ, which by [5] Lemma 4.26 is multiplication
by a nonzero scalar nµ. This establishes the isomorphism. The other composite map
must also be multiplication by nµ, establishing the second fact.

2. Let ˆ be the anti-involution of R generated by g 7→ g−1, g ∈ Sn. Then ̂̃cµ = âµb̂µ =

aµbµ = cµ. So for v ∈ R, ̂̃cµvc̃µ = cµv̂cµ ∈ Ccµ by [5] Lemma 4.23(2). Applyingˆto
both sides, we get c̃µvc̃µ ∈ Cc̃µ. But c̃µ · 1 · c̃µ = nµc̃µ 6= 0, so c̃µRc̃µ = Cc̃µ.

If µ > λ in lexicographical order, then c̃µRc̃λ = bµ(aµRbλ)aλ = bµ · 0 · aλ by [5]
Lemma 4.23(1). Suppose now λ > µ in lexicographical order. Then for v ∈ R we have
̂̃cµvc̃λ = aλ(bλv̂aµ)bµ = 0 again by [5] Lemma 4.23(1).

�

Corollary 1.4.5 The multiplicity of Vµ in an R-module M is dimC c̃µM .

Proposition 1.4.6 (Specht module presentation). For a standard tableau T of shape λ,
define Garnir element eT =

∏λ1

i=1

∏
1≤p<q≤λ′

i
yT (i,q)− yT (1,p) ∈ C[y1, . . . , yn], the product of the

Vandermondes of the columns. Let the Specht module be the span of eT over all standard
tableaux T of shape λ. Then the Specht module is an Sn-submodule of C[y] that is isomorphic
to Vλ.
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Then Vλ ⊗C C[x] embeds in C[y] ⊗C C[x] ∼= C[y,x], so it is convenient to drop the ⊗
and regard elements as polynomials. Then Sn acts on Vλ ⊗C C[x] by acting on both sets of
variables simultaneously.

We record some facts about induced modules from Young subgroups.

Proposition 1.4.7 1. Let Sn-module Uµ be the C-span of all monomials xu where u is
a permutation of (0µ11µ22µ3 . . .). Then Uµ

∼= Raµ
∼= 1 ↑Sn

Sµ

∼= ⊕η

(
Vη
⊕Kη,µ

)
. Also by

definition Uµ ⊂ C[x]n(µ). Since Kµ,µ = 1, Uµ contains a unique copy of Vµ.

2. ε ↑Sn

Sλ′

∼= Rbλ ∼= ⊕γ

(
Vγ
⊕Kγ′ ,λ′

)
.

This leads to an alternate presentation of irreducible Sn-modules.

Proposition 1.4.8 Let V = ε ↑Sn

Sλ′
and W = 1 ↑Sn

Sλ
. Then there is a unique (up to a

constant) Sn-homomorphism
V →

φ
W

and the irreducible Vλ is the image of φ.

Proof

From V ∼= ⊕γ

(
Vγ
⊕Kγ′,λ′

)
, the irreducible Vµ occurs in V iff µ′ ≥ λ′ iff λ ≥ µ (because

otherwise Kµ′,λ′ = 0). From W ∼= ⊕η

(
Vη
⊕Kη,λ

)
, the irreducible Vµ occurs in W iff µ ≥ λ

(because otherwise Kµ,λ = 0). Hence for Vµ to occur in both V and W , we must have λ ≥
µ ≥ λ and λ = µ. Now Vµ occurs exactly once in each of V and W because Kλ′,λ′ = 1 = Kλ,λ.
Thus the result follows from Schur’s lemma.

�

1.5 Symmetric Function Theory

In the next several sections, we review facts about symmetric functions as given in Mac-
donald’s book [18].

Let Λ be the space of symmetric functions (strictly speaking, power series) in z1, z2, . . .
with coefficients in Q(q, t). It has several important bases. For a composition α, let zα denote
the monomial z1

α1z2
α2 . . .. For a partition λ, let mλ denote the sum of the monomials zα

for all permutations α of λ. Then mλ is symmetric and {mλ : λ is a partition} forms the
monomial basis of Λ.

The complete homogeneous function hn is the sum of monomials zα over all compositions
α of n. The elementary symmetric function en is the sum of monomials zi1zi2 · · · zin over all
choices of 1 ≤ i1 < i2 < . . . < in. The power sum pn is z1

n + z2
n + z3

n + . . .. For a partition
λ, set hλ = hλ1hλ2 · · · , eλ = eλ1eλ2 · · · , and pλ = pλ1pλ2 · · · . Then {hλ : λ is a partition},
{eλ : λ is a partition}, {pλ : λ is a partition} are bases of Λ.

For a partition λ, the Schur function sλ is defined as
∑

T∈SSY T (λ) z
wt(T ). It has the special

cases s(n) = hn and s(1n) = en (where (1n) denotes the partition with n parts of 1).
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It is not immediately obvious that sλ is symmetric. One way to see this is to define an
action of S∞ on words (and then on SSY T (λ)) as follows. Let σi denote the transposition
(i i+ 1). It shall act on a word w by affecting only w’s subword u consisting of the letters i
and i+ 1. In u, keep deleting occurrences of subwords (i+ 1)i until no longer possible; the
end result is of the form i i . . . i (i+1) (i+1) . . . (i+1) = ir(i+1)s. Replace it with is(i+1)r,
undo the deletions, and reinsert back into w in the corresponding places. Set σiw to be the
final result. It can be checked that the σi actions satisfy the Coxeter relations and preserve
Knuth equivalence, so they induce a well-defined action of S∞ on semistandard tableaux.
But if w is the row-reading word of a tableau of shape λ, then σiw is easily shown to be the
row-reading word of another tableau of shape λ. Hence in fact S∞ acts on SSY T (λ).

Example 1.5.1 Consider applying σ2 to T =
4
3 3 4
2 2 2 3 3 3 4
1 1 1 1 2 2 2 2 3 3 3 3

with

w(T ) = 43342223334111122223333. The occurrences of letters 2,3 form the subword
3322233322223333. Denote the occurrences of 32 by parentheses pairs(
3(32)2

)
2
(
3
(
3(32)2

)
2
)
23333. What remains is 223333, which is replaced with 222233, re-

sulting in
(
3(32)2

)
2
(
3
(
3(32)2

)
2
)
22233. Reinserting into the main word yields

43342223334111122222233, which is the row-reading word of

σ2T =
4
3 3 4
2 2 2 3 3 3 4
1 1 1 1 2 2 2 2 2 2 3 3

.

By construction wt(τ (T )) = τ (wt(T )) for τ ∈ S∞, so τ induces a bijection between
SSY T (λ, α) and SSY T (λ, τ (α)) for any composition α. Thus for a partition µ, the contri-
bution to

∑
T∈SSY T (λ) z

wt(T ) from tableaux whose weights are permutations of µ is exactly

Kλ,µmµ. Hence sλ =
∑

partition µ Kλ,µmµ is symmetric.
The set of Schur functions {sλ : λ is a partition} forms a very important basis of Λ.

Define the Hall inner product on Λ so that the Schur function is an orthonormal basis
with respect to it, i.e. 〈sλ, sµ〉 = δλµ. This inner product makes the monomial symmetric
functions mλ dual to the complete homogeneous functions hµ, i.e. 〈mλ, hµ〉 = δλµ. Thus
sλ =

∑
µKλ,µmµ imples hµ =

∑
λKλ,µsλ.

Because {pλ : λ is a partition} is a basis of Λ, Λ is freely generated by the power sums
pi. Thus a Q(q, t)-algebra homomorphism from Λ to a Q(q, t)-algebra is uniquely definable
by specifying the images of the power sums pi.

Let A be a formal Laurent series with rational coefficients in indeterminates a1, a2, . . .
(possibly including q and t). Define pd[A] to be the result of replacing each indeterminate ai

in A by ai
d. By the above remarks, there is a unique Q(q, t)-algebra homomorphism from

Λ to Q((a1, a2, . . .)) that sends pd to pd[A] for all d. This homomorphism is called plethystic
substitution, and we denote the image of f ∈ Λ by f [A].

Set Z = z1 + z2 + . . .. Then pd[Z] = z1
d + z2

d + . . . is the power-sum pd, so plethystic
substitution by [Z] is the identity map on Λ, i. e. f [Z] = f(z) for all f ∈ Λ. Similarly set
X = x1 + x2 + . . . and Y = y1 + y2 + . . ..
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1.6 Symmetric Functions in the Representation The-

ory of Sn

Schur functions arise naturally from the representation theory of Sn. Let χλ be the
irreducible character corresponding to Vλ. Then sλ = 1

n!

∑
ω∈Sn

χλ(ω)pτ (ω), where τ (ω) is the
partition whose parts are the lengths of the disjoint cycles of the permutation ω.

Definition 1.6.1 The Frobenius characteristic map from class functions on Sn to symmetric
functions is given by Fχ = 1

n!

∑
ω∈Sn

χ(ω)pτ (ω).

Proposition 1.6.2 The Frobenius characteristic map sends the irreducible character χλ to
sλ.

An Sn-representation may be analyzed via its Frobenius characteristic. If FcharA =
∑

λCλsλ

for Cλ ∈ N, then A contains Cλ copies of Vλ for each λ.

Definition 1.6.3 Let A = ⊕rAr be a graded Sn-module with each Ar finite-dimensional.
Then define the Frobenius series of A as FA(z; t) =

∑
r t

rFcharAr . If A = ⊕r,sAr,s is doubly
graded, define its Frobenius series as FA(z; q, t) =

∑
r,s t

rqsFcharAr,s .

Consequently, the Frobenius series of a graded (resp. doubly graded) Sn-module is automat-
ically in N[t]{sλ : λ is a partition of n} (resp. N[t, q]{sλ : λ is a partition of n}).

Lemma 1.6.4 1. Suppose A is an Sn-module and A′ is an Sn′-module. Let

B = (A⊗C A
′) ↑

Sn+n′

Sn×Sn′
. Then FcharB(z) = FcharA(z)FcharA′(z).

2. Suppose A is a graded Sn-module and A′ is a graded Sn′-module. Let

B = (A⊗C A
′) ↑

Sn+n′

Sn×Sn′
. Then FB(z; t) = FA(z; t)FA′(z; t).

Proof

(1) is shown in [5] Exercise 4.41. (2) follows from (1) because

Br = ⊕i+j=r(Ai ⊗C A
′
j) ↑

Sn+n′

Sn×Sn′
and FcharBr(z) =

∑
i+j=r FcharAi

(z)FcharA′
j
(z).

�

1.7 Hall-Littlewood polynomials

For positive integer j, define its t-analog and t-factorial as follows: [j]t = 1−tj

1−t
= tj−1 +

tj−2 + . . .+ 1, [j]t! = [j]t[j − 1]t . . . [1]t.
For partition µ = (1α1, 2α2 , . . .) and d > ℓ(µ), define the Hall-Littlewood polynomial

Pµ(z1, . . . , zd; t) = 1
Q

i≥0[αi]t!

∑
ω∈Sn

(
zµ

Q

i<j(1−tzj/zi)
Q

i<j (1−zj/zi)

)
. This is indeed a polynomial symmetric

in the zi’s. Furthermore, it is stable with respect to changing the number of variables zi’s,
so we may extend to infinitely many zi’s to obtain Pµ(z1, z2, . . . ; t).
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Set Qµ(z; t) = (1 − t)ℓ(µ)Pµ(z; t)
∏

i[αi]t!. Then the transformed Hall-Littlewood polyno-
mial H̃µ is defined as H̃µ(z; t) = Qµ[Z/(1− t); t]. The cocharge transformed Hall-Littlewood
polynomial Hµ is defined as tn(µ)Hµ(z; t−1). It has specialization Hµ(z; 1) = hµ(z).

Define the Kostka-Foulkes polynomials Kλ,µ(t) as the coefficients in the expansion
Hµ(z; t) =

∑
λµKλ,µ(t)sλ(z). Because Hµ(z; 1) = hµ(z), we have Kλ,µ(1) = Kλ,µ, the Kostka

numbers. This has a combinatorial interpretation via the charge formula for Kλ,µ(t) of
Lascoux and Schutzenberger: Kλ,µ(t) =

∑
T∈SSY T (λ,µ) t

n(µ)−c(T ). [18]

We may relate Hµ to the Garsia-Procesi module [6], defined as follows.

Proposition 1.7.1 There is a unique copy of Vµ in C[y]n(µ) and no copy of Vµ in C[y]<n(µ).

Proof

The Specht module presentation of Vµ embeds directly into C[y]n(µ), so there is at least
one copy of Vµ. Conversely, suppose some copy of Vµ is embedded into C[y]≤n(µ). It must
contains a one-dimensional subspace Cf on which the Young subgroup Sµ′ = SC1 ×SC2× . . .
acts as the sign representation, because such subspace exists in the Specht module presen-
tation (e.g. spanned by the appropriate Garnir element). Since f is a polynomial, the sign
representation Sµ′ -action implies that f is divisible by factors yi − yi′ for distinct i, i′ in
some Cj. These factors are coprime, so f must be divisible by their product, which has
degree n(µ). Since f ∈ C[y]≤n(µ), f must be homogeneous of degree n(µ) and is uniquely
determined up to scalar. Hence C[y]n(µ) has at most one copy of Vµ and C[y]<n(µ) has none.

�

Corollary 1.7.2 There exists a unique largest homogeneous Sn-invariant ideal Iµ ⊂ C[y]
having zero intersection with the unique copy of Vµ in C[y]n(µ).

Proof

Due to uniqueness of Vµ in C[y]n(µ), Vµ has a direct summand N (namely the sum of
the other isotypic components) so that for a Sn-submodule M ⊂ C[y], M ∩ Vµ = 0 iff
M ∩ C[y]n(µ) ⊂ N . The set of homogeneous ideals satisfying this condition is closed under
summation, so there is a unique largest ideal with the desired property.

�

Definition 1.7.3 [6] The Garsia-Procesi module Rµ is defined to be C[y]/Iµ. It is naturally
graded by total degree in the yi’s.

Theorem 1.7.4 [1] [6] The Frobenius series of Rµ is FRµ(z; t) = Hµ(z; t).

1.8 Macdonald polynomials

The transformed Macdonald polynomials Hµ(z; q, t) are uniquely characterized by the
conditions [8]
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1. Hµ[(1− q)Z; q; t] ∈ Q(q, t){sλ : λ ≥ µ}

2. Hµ[(1− t)Z; q; t] ∈ Q(q, t){sλ : λ ≥ µ′}

3. Hµ[1; q; t] = 1.

The same notation Hµ is used as for Hall-Littlewood polynomials because Hµ(z; 0, t) =
Hµ(z; t). Define the Kostka-Foulkes polynomialsKλ,µ(q, t) as the coefficients in the expansion
Hµ(z; q, t) =

∑
λµKλ,µ(q, t)sλ(z). Then Kλ,µ(0; t) = Kλ,µ(t), justifying the use of the same

name and notation.
The Macdonald positivity conjecture, which states that Kλ,µ(q; t) ∈ Z[q, t], remained open

for more than a decade until Haiman proved it using algebraic geometry and representation
theory [7]. Let (a1, b1), . . . , (an, bn) be the coordinates of the squares in the diagram of µ. Set
∆µ(x,y) = det(xi

aiyi
bi)n

i,j=1. Let Jµ ⊂ C[x,y] be the homogeneous ideal that contains an

element f iff f( ∂
∂x1
, ∂

∂y1
, . . . , ∂

∂xn
, ∂

∂yn
)∆µ = 0. Then the Frobenius series of Rµ = C[x,y]/Jµ

is the transformed Macdonald polynomial Hµ(z; q, t), proving Macdonald positivity.

1.9 k-Schur functions

In 2001, Lapointe, Lascoux, and Morse discovered a class of symmetric functions s
(k)
λ (z; t)

called k-Schur functions [13], where k is a positive integer and λ is a k-bounded partition
(meaning λ1 ≤ k). The motivation is a conjectured refinement of the Macdonald positivity
conjecture:

1. s
(k)
µ (z; t) = sµ(z) +

∑
λ>µ v

(k)
λµ (t)sλ(z) with v

(k)
λµ (t) ∈ N[t];

2. for k-bounded µ, Hµ(z; q, t) =
∑

λK
(k)
λµ (q, t)s

(k)
λ (z; t) with K

(k)
λµ (q, t) ∈ N[q, t].

The name k-Schur function comes from many similar properties to Schur functions, such
as variants of Pieri rules and Littlewood-Richardson rules. These properties, as well as the
connections to important classes of symmetric polynomials such as Hall-Littlewood polyno-
mials and Macdonald polynomials, suggest that k-Schur functions serve a fundamental role
in the theory of symmetric polynomials. The earliest two attempts to characterize k-Schur
functions will be described below.

1.10 k-Schur functions via catabolism

The k-split of a k-bounded partition λ is the unique sequence of partitions λ→k =
(λ(1), λ(2), . . . , λ(r)) whose concatenation is λ and whose main hook lengths are k except
hM (λ(r)) ≤ k. Pictorally, the diagram of λ is partitioned horizontally to produce as many
subdiagrams with main hook length k as possible. See examples below.

A horizontal r-strip is a skew diagram of size r with at most one cell in each column.
Given a tableau T whose largest letter is m, let RrT be the set of tableaux that can be
obtained by adding a horizontal r-strip of the letter m + 1 to T in all possible ways. (In
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other words, each such tableau U would subsume T , and the additional cells contain letter
m + 1 and form a horizontal r-strip.) Let BrT = σ1σ2 . . . σmRrT . For a set A of tableaux,
set BrA = ∪T∈ABrT . This is the promotion operator.

Given a sequence of partitions S = (λ(1), λ(2), . . . , λ(r)) and a set A of tableaux, define
PSA = {T ∈ A : T is ℓ(λ(1)), ℓ(λ(2)), . . . , ℓ(λ(r))-catabolizable}. This is the filtering operator.

Let A(k)
0 be the set consisting of the empty tableau. The Lapointe-Lascoux-Morse super

atom of a k-bounded partition λ is defined recursively via A
(k)
λ = Pλ→kBλ1A

(k)

(λ2,λ3,...). The

k-Schur function is defined as s
(k)
λ (z; t) =

∑
T∈A

(k)
λ

tc(T )sshape(T )(z). [13]

Example 1.10.1

T = (4, 3, 2, 2, 2, 1, 1, 1) = k = 4

λ→k =

(
, , ,

)
= ((4), (3, 2), (2, 2, 1), (1, 1))

Example 1.10.2 If T = 2
1 1 2

then

R4T =

{
3
2 3 3
1 1 2 3

,
3
2 3
1 1 2 3 3

,
3
2
1 1 2 3 3 3

, 2 3 3
1 1 2 3 3

, 2 3
1 1 2 3 3 3

, 2
1 1 2 3 3 3 3

}

B4T = σ1σ2R4T ={
3
2 2 3
1 1 1 1

,
3
2 3
1 1 1 1 2

,
3
2
1 1 1 1 2 3

, 2 2 3
1 1 1 1 3

, 2 3
1 1 1 1 2 3

, 2
1 1 1 1 2 3 3

}

Example 1.10.3

λ = (2, 2, 1) = k = 3 λ→k =
(

,
)

= ((2, 2), (1))

A
(2)
(1) = P((1))B1A

(2)
0 = { 1 }

A(2)
(2,1) = P((2,1))B2A

(2)
(1) = P((2,1))B2 { 1 } = P((2,1))

{
2
1 1

, 1 1 2
}

=
{

2
1 1

}

A
(2)
(2,2,1) = P((2,2),(1))B2A

(2)
(2,1) = P((2,2),(1))

{
3
2 2
1 1

,
3
2
1 1 2

, 2 2
1 1 3

, 2
1 1 2 3

}
=

{
3
2 2
1 1

, 2 2
1 1 3

}

s
(k)
λ (z; t) = s

(2)

(2,2,1)(z; t) =
∑

T∈A
(2)
(2,2,1)

tc(T )sshape(T )(z) = s(2,2,1)(z) + ts(3,2)(z)
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1.11 k-Schur functions via vertex operators

Define operator Bj =
∑∞

i=0 si+j(z)si[Z(t − 1)]⊥, where ⊥ means adjoint with respect
to the Hall inner product (i. e. 〈si[Z(t − 1)]⊥f, g〉 = 〈f, si[Z(t − 1)]g〉 for all f, g). This
operator has the property of adding an entry to the Hall-Littlewood polynomial: Hλ(z; t) =
Bλ1Hλ2,λ3,...(z; t). For a partition λ of length m, define Bλ =

∏
1≤i<j≤m(1− teij)Bλ1 . . .Bλm,

where eij acts on a product ofB operators by eij(Bµ1 . . . Bµm) = Bµ1 . . . Bµi+1 . . .Bµj−1 . . . Bm.

If λ has k-split λ→k = (λ(1), . . . , λ(r)), define the k-split polynomial to be Gλ(z; t) =
Bλ(1)Bλ(2) . . . Bλ(r)1. It turns out that the k-split polynomials form a basis of ∆(k) =

Q(q, t){Hµ(z; t) : µ1 ≤ k}. Thus we can define a projection operator T
(k)
j on ∆(k) by

T
(k)
j Gλ(z; t) =

{
Gλ(z; t) if λ1 = j

0 otherwise
.

In [14], Lapointe and Morse proposed a second definition of k-Schur functions as s
(k)
λ (z; t) =

T
(k)
λ1
Bλ1T

(k)
λ2
Bλ2 . . . T

(k)
λℓ(λ)

Bλℓ(λ)
1. It is conjectured but not known that this definition coincides

with the definition in the previous section. Both definitions involve promotion and filtering.

1.12 SSY T (λ, µ) and sλ for dominant weights λ, µ

Throughout almost all of this document, λ and µ are assumed to be partitions. But for
Section 5.4, it is convenient to work with dominant weights for GLm, which are m-tuples
(α1, . . . , αm) ∈ Zm with α1 ≥ α2 ≥ . . . ≥ αm. In this section, assume λ and µ are dominant
weights for GLm.

Definition 1.12.1 Let r = max{−λm,−µm, 0}. Then λ̂ = λ + (r, . . . , r) and µ̂ = µ +
(r, . . . , r) are partitions. Define SSY T (λ, µ) = SSY T (λ̂, µ̂). If λ, µ are partitions, then
r = 0 and we recover the original definition of SSY T (λ, µ).

Definition 1.12.2 Let r = max{−λm, 0}. Then λ + (r, . . . , r) is a partition. Define
sλ(z1, . . . , zm) = (x1x2 · · ·xm)−rsλ+(r,...,r)(z1, . . . , zm). If λ is a partition, then r = 0 and
we recover the original definition of Schur functions.

Lemma 1.12.3 The character of the irreducible highest weight representation of GLm with
highest weight λ is sλ(x1, . . . , xm).

Proof

By the Weyl character formula, the desired character is det(zi
λj+m−j)m

i,j=1/det(zi
m−j)m

i,j=1.
By multiplying row i of the numerator by zi

r for all i, we obtain the usual formula for
sλ+(r,...,r)(z1, . . . , zm).

�
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Chapter 2

Combinatorics of Skew-Linked

Partitions

2.1 Definition of Skew-Linked Partitions

Definition 2.1.1 Partitions λ and µ are skew linked, written λ
θ
→ µ, if there exists a skew

diagram θ with the same row lengths (in order) as λ and the same column lengths (in order)
as µ (meaning column lengths µ′1, µ

′
2, . . .). The notation λ → µ means there exists a skew

diagram θ with λ
θ
→ µ. Conversely, a skew diagram with weakly decreasing row and column

lengths is called a skew-linking shape.

Example 2.1.2

λ θ

µ

Lemma 2.1.3 1. Every partition is linked to itself: λ
λ
→ λ.

2. Every λ is linked to the one-row partition (n).

λ

3. If λ
θ
→ µ, then λ ≤ µ in the dominance partial ordering on partitions.
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4. Transpose symmetry: λ
θ
→ µ if and only if µ′

θ′
→ λ′.

The proof of the above lemma is trivial and is omitted.

Lemma 2.1.4 If λ
θ
→ µ, then θ is uniquely determined by λ and µ. Hence skew-linked pairs

of partitions correspond bijectively to skew-linking shapes.

Proof

Suppose λ
θ
→ µ and λ

η
→ µ with θ 6= η, with θ = α/β and η = α̂/β̂. Take the largest

i such that the ith rows of θ and η differ in position. Because the ith rows have the same
length λi, we may assume without loss of generality that βi < β̂i. Let j = βi + 1 ≤ β̂i.

Now the pth row of θ contains a square at position j iff βp < j ≤ αp, and similarly for η.

Thus µj = |{p : βp < j ≤ αp}| = |{p : β̂p < j ≤ α̂p}|. By assumption θ and η have the same
rows i + 1, i + 2, . . . , ℓ(λ), so |{p : p ≤ i, βp < j ≤ αp}| = µj − |{p : p > i, βp < j ≤ αp}| =

µj − |{p : p > i, βp < j ≤ αp}| = |{p : p ≤ i, β̂p < j ≤ α̂p}|.
Now the ith row of θ contains a square at position j. But the ith row of η does not,

so neither do rows 1, 2, . . . , i − 1 of η. Thus {p : p ≤ i, βp < j ≤ αp} is nonempty while

{p : p ≤ i, β̂p < j ≤ α̂p} is empty, a contradiction.

�

We can also give a constructive version of the above argument. Given any two parti-
tions λ, µ of the same size, we try to construct a skew-linking θ by adding rows of lengths
λℓ(λ), . . . , λ2, λ1 in succession. In the base case, row ℓ(λ)’s leftmost square must be in column
1. Suppose by induction that we have built a skew diagram αi/βi from rows of lengths
λℓ(λ), . . . , λi.

We claim that the leftmost square of the (i − 1)th row must be in column j, where j
is the smallest value such that the jth column length of αi/βi is smaller than µ′j . There
can be no other choice: If we place the (i − 1)th row further to the left, then αi−1/βi−1’s
(j − 1)th column will be too long. If we place it further to the right, then the (i− 1)th row
and any future rows will not intersect the jth column, implying that the final skew shape’s
jth column will be too short. Therefore, each row’s placement is strictly determined.

We also see that if there exist i and j such that jth column of αi/βi has length greater than
µ′j , then λ and µ are not skew-linked. Thus the above procedure tests for skew-linkedness
along the way of constructing the skew-linking shape.

2.2 Row Labels

Definition 2.2.1 We say that a row (say the rth row) within a skew-shape θ = α/β begins
at i and ends at i′ if βr = i and αr = i′. In other words, the row’s leftmost square is in
column i + 1 and the row’s rightmost square is in column i′. (By convention the leftmost
column of θ is column 1.)
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Lemma 2.2.2 Let θ be a skew-linking shape. Then for each j > 0, θ has at least as many
rows ending at j as rows beginning at j. The latter rows are all below the former rows, and
the former rows all have the same length. Analogous statements hold if we switch the roles
of rows and columns.

Proof

Suppose p rows end at j and q rows begin at j. The p rows are all the rows that contribute
a square to the jth column of θ but not to the (j+1)th column. The q rows do the opposite.
Therefore, p− q = µ′j − µ

′
j+1 ≥ 0.

The rows beginning at j are below the rows ending at j by the definition of a skew
shape. The latter rows end at the same place, so their lengths are weakly increasing by
the definition of a skew shape. But the lengths are also weakly decreasing because θ is a
skew-linking shape. Hence the lengths are equal.

The same statements for columns follow by transpose symmetry.

�

Definition 2.2.3 Let θ = α/β be a skew-linking shape. The labelling scheme attached to a
skew-linking shape is defined as follows. We will attach a label (i, j) to each row of θ. These
labels will be distinct and we will denote by ri,j the number such that the ri,j-th row has label
(i, j). At the same time we will define positive integers p1, . . . , ps such that the set of labels
is {(1, 1), . . . , (1, p1), (2, 1), . . . , (2, p2), . . . , (s, 1), . . . , (s, ps)}.

We proceed inductively. Give label (1, 1) to row r1,1 = 1. Having assigned labels (1, 1)
through (1, j) inductively, if βr1,j

= 0, then set p1 = j and assign no further labels of
the form (1, ·). Otherwise by Lemma 2.2.2 we may choose the smallest r1,j+1 such that
αr1,j+1 = βr1,j

. In this case, give label (1, j + 1) to row r1,j+1. Thus we have given out labels
(1, 1), (1, 2), . . . , (1, p1) to rows r1,1, . . . , r1,p1.

Next, if any rows remain unlabelled, we ignore the already labelled rows and repeat the
above for labels (2, 1), . . . , (2, p2): Give label (2, 1) to the bottommost unlabelled row, and so
on. Again success is ensured by Lemma 2.2.2. Next, if any rows remain unlabelled, we we
start over with labels (3, 1), . . . , (3, p3) and so on. Eventually all rows will be labelled.

The label (i, j) is really a tuple of two different labels, clumped together for convenience.
The i is the first label, while j is the second label.

If no row has label (i, j), then by convention we set ri,j = ∞ and αri,j
= βri,j

= 0. We
may also label the columns of α/β similarly, using the transposed version of Lemma 2.2.2.
Below we will assume that every skew-linking shape’s rows and columns are labelled as above.

Example 2.2.4

p1 = 3 : r1,1 = 1, r1,2 = 4, r1,3 = 6
p2 = 3 : r2,1 = 2, r2,2 = 5, r2,3 = 8
p3 = 2 : r3,1 = 3, r3,2 = 7
p4 = 1 : r4,1 = 9
p5 = 1 : r5,1 = 10
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ν1 = (5, 5, 4, 1, 1), ν2 = (3, 2, 2), ν3 = (2, 1); γ1 = (5, 3, 2), γ2 = (5, 2, 1), γ3 = (4, 2), γ4 =
(1), γ5 = (1) (ν’s and γ’s are defined in following sections)

If (i1, j1), . . . , (it, jt) are the rows beginning at q > 0, then the labelling procedure implies
that the bottom t rows ending at q are labelled (i1, j1 +1), . . . , (it, jt +1) in some order. The
remaining rows ending at q are not matched up on the right, so they must have 1 as second
label; there are µ′q −µ

′
q+1 such rows (see proof of Lemma 2.2.2). In fact all rows with second

label 1 must arise this way for some q.
What are their first labels? Each row (i, 1) is the lowest among all rows still unlabelled,

which include rows (i′, 1) for all i′ > i. Thus r1,1 < r2,1 < r3,1 < . . .. Now because α is a
partition, rows ending at q are above rows ending at > q. Thus rows with second label 1 are
labelled in the following order: {rows ending at α1}, {rows ending at α1 − 1}, {rows ending
at α1 − 2}, and so on. In particular, before the rows ending at q are labelled, the number
of second labels of 1 already used is

∑
j≥q+1(µ

′
q − µ

′
q+1) = µ′q+1. Thus the µ′q − µ

′
q+1 rows

ending at q with second label 1 receive the first labels µ′q+1 + 1, µ′q+1 + 2, . . . , µ′q.
There is a cleaner way of saying this. To find the row with label (i, 1), find the rightmost

column of length at least i. Then the row containing this column’s ith square (from bottom
to top) has label (i, 1). For instance, if µ′3 = 7 and µ′4 = 5, then the top two squares of the
third column are in rows (7, 1) and (6, 1).

Definition 2.2.5 (Graphical Interpretation) The directed graph representation of the la-
belling scheme of α/β is defined as follows: For each row create a vertex that is labelled by
the label of the row as well the length of the row. If vertices (i, j) and (i, j+1) exist, create a
directed edge from the former to the latter. Then G is a union of directed paths of the form
(i, 1), λri,1 → (i, 2), λri,2 → · · · → (i, pi), λri,pi

.

Lemma 2.2.6 Consider a different labelling scheme where the label (i, j+1) is given to any
row ending at where row (i, j) begins, as opposed to the the first such row (as above). Then
graph G is constant regardless of choices made.

Proof

By Lemma 2.2.2 and induction, at each step the choice is among rows that are vertical
translates. Since the graph only records the length of each row (i, j), we get the same graph
regardless of the choice of the vertical translate each time.

�

We make an important remark that
∑

j λri,j
= µi. In other words, the lengths of the

rows with first label i sum to µi. The proof will be in Lemma 2.3.7.

2.3 Interweaving Property and Definition of ν i

Proposition 2.3.1 (Betweenness) Suppose a < b and row (b, 1) exists.
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1. There exists a unique q such ra,q < rb,1 < ra,q+1 (with our convention that ri,j =∞ for
unused labels (i, j)).

2. For j = 1, . . . , pb, we have ra,q+j−1 < rb,j.

3. For j = 1, . . . , pb − 1, row (a, q+ j) exists and βrb,j
≥ βra,q+j

and αrb,j
≥ αra,q+j

. If row
(a, q + pb) exists, then these inequalities hold for j = pb too.

4. For j = 1, . . . , pb − 1, either rb,j < ra,q+j or the two rows are vertical translates of each
other. This also holds in the case j = pb if row (a, q + pb) exists.

5. pa = pb + q − 1 or pb + q.

6. For j = 1, . . . , pb, λra,q+j
≤ λrb,j

≤ λra,q+j−1 . This also holds for larger j because λ∞ = 0
by convention.

Proof

Row (b, 1) was unlabelled when row (a, 1) was labelled, so rb,1 > ra,1. Since ra,1 < ra,2 <
. . . , < ra,pa, q may (and must) be chosen as the largest value of q such that rb,1 > ra,q. From
this it follows that row (a, q) exists and rb,1 < ra,q+1 (because r values are distinct except at
∞).

We show (2) and (3) by induction in the cases j = 1, . . . , pb − 1. If pb = 1 then there is
nothing to prove. Suppose pb > 1. Then the case j = 1 for (2) follows from (1). Now (1)
and pb > 1 imply βra,q ≥ βrb,1

> 0, so row (a, q + 1) exists. Since rb,1 < ra,q+1, (3) holds for
j = 1 and the base case is proved.

Suppose (2) and (3) hold for some j < pb − 1. Then ra,q+j−1 < rb,j, so αrb,j+1
= βrb,j

≥
βra,q+j−1 = αra,q+j

. If equality holds, then by Lemma 2.2.2, rows (b, j + 1) and (a, q + j) are
vertical translates. Since the label (a, q + j) was given before (b, j + 1), ra,q+j < rb,j+1. If
equality fails, then we also have ra,q+j < rb,j+1 because α is weakly decreasing. This gives
(2).

Now ra,q+j < rb,j+1 and j + 1 < pb imply βra,q+j
≥ βrb,j+1

> 0, so row (a, q + j + 1)
exists. By the inductive hypothesis for (3), αrb,j+1

= βrb,j
≥ βra,q+j

= αra,q+j+1 . If equality
holds, then Lemma 2.2.2 says that rows (b, j + 1) and (a, q + j + 1) are vertical translates,
so βrb,j+1

= βra,q+j+1 . If equality fails, then rb,j+1 < ra,q+j+1 because α is weakly decreasing,
so βrb,j+1

≥ βra,q+j+1 . Thus (3) holds and induction is complete.
In particular, (2) and (3) hold for j = pb − 1. Thus the argument two paragraphs above

also applies to j = pb−1, so (2) also holds for j = pb and is completely proved. The argument
one paragraph above applies to j = pb − 1 except for the first sentence, where the existence
of row (a, q + j + 1) is shown. Thus if row (a, q + pb) exists, then the entire argument is
valid and proves (3) for j = pb. Hence (3) is completely proved too. Now (4) follows from
(3) because α and β are weakly decreasing.

Note that row (a, q + pb − 1) exists by (3). If row (a, q + pb) does not exist, then pa =
q + pb − 1. If row (a, q + pb) exists, then 0 = βrb,pb

≥ βra,q+pb
by (3). Hence βra,q+pb

= 0 and
pa = q + pb, so (5) is proved.
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Lastly, the right inequality of (6) follows from (2) because row lengths are weakly decreas-
ing. For cases j = 1, . . . , pb−1, the left inequality of (6) follows from (4) because row lengths
are weakly decreasing and vertical translates have the same length. For the case j = pb, if
row (a, q + pb) exists, then the left inequality again follows from (4). If row (a, q + pb) does
not exist, by convention λra,q+pb

= λ∞ = 0 and the left inequality still holds.

�

Corollary 2.3.2 Suppose 1 ≤ a < b. Then pa ≥ pb, ra,j < rb,j for j = 1, . . . , pb, and
ra,j ≤ rb,j for j > pb.

Proof

Choose q according to Proposition 2.3.1 (1). Then pa ≥ pb +q−1 ≥ pb. For j = 1, . . . , pb,
ra,j < ra,q+j−1 ≤ rb,j by j ≤ q + j − 1 and by Proposition 2.3.1 (2). If j > pb, then rb,j =∞
and the inequality holds.

�

Proposition 2.3.3 Suppose α/β is a skew-linking shape. Then ν1 = (λr1,1 , λr2,1 , λr3,1 , . . .) is

a partition. If we remove from α/β the rows ri,1 for all i, the resulting skew diagram α̂/β̂ is

once again a skew-linking shape. Furthermore, row (i, j) of α̂/β̂ was originally row (i, j+ 1)
in α/β.

Proof

By Corollary 2.3.2, ri,1 is weakly increasing in i. Thus λri,1 is weakly decreasing and ν1

is a partition.
Because α/β has weakly decreasing row lengths, so does α̂/β̂. Now take j ≥ 1. By the

discussion about rows with second label 1 in the previous section, the number of such rows
ending at j is µ′j − µ

′
j+1. Let p be the number of rows with second label 1 that intersect

both columns j and j + 1. Let q be the number of rows beginning at j with second label 1.
Then α̂/β̂’s column j has length µ′j − (µ′j − µ

′
j+1)− p = µ′j+1 − p and its column j + 1 has

length µ′j+1 − p− q ≤ µ′j+1 − p. Therefore, α̂/β̂ has weakly decreasing column lengths and
is a skew-linking shape.

Let B be the set of rows of α/β with second label ≥ 2, i.e. the rows of α̂/β̂. By
Corollary 2.3.2, for i ≥ 1 and j ≥ 2 we know that ri,j ≥ r1,j ≥ r1,2. Thus row (1, 2) is the

highest remaining row in B and gets the label (1, 1) in α̂/β̂.
Suppose by induction that the original row (1, j) gets label (1, j − 1) for j = 2, . . . , p. B

has a more restricted choice for the next label than does α/β. But the original row (1, j+1)
is still unlabelled and hence the lowest row among all valid choices, so it gets label (i, j).
Thus the rows with original first label 1 get relabelled in the manner claimed.

Now that the original rows (1, j) are removed from B for all j, by the above argument
(with i ≥ 2 instead of i ≥ 1) the highest remaining row is the original row (2, 2), so it gets
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label (2, 1) in α̂/β̂. By a similar induction as above, the original row (2, j + 1) gets label
(2, j) in α̂/β̂ for all j.

Therefore, continuing this argument by induction, all rows in B get labelled in α̂/β̂ in
the manner claimed.

�

Corollary 2.3.4 Let q ≥ 1. By Proposition 2.3.3 and induction, removing rows with orig-
inal second labels ≤ q from a skew-linking shape α/β produces another skew-linking shape
whose row (i, j) is the original row (i, j + q).

Definition 2.3.5 For skew-linking shape α/β, let νj = (λr1,j
, λr2,j

, λr3,j
, . . .), a partition by

Corollary 2.3.2. Define ν = (|ν1|, |ν2|, |ν3|, . . .). We consider νj and ν to be associated with
α/β.

Lemma 2.3.6 ν is a partition of n. The statistic n(ν) =
∑

i(i − 1) νi =
∑

i(i − 1) |νi| is
equal to |β|, the number of “missing boxes.”

Proof

Suppose i < i′. By Corollary 2.3.2, ri,j ≤ ri′,j for all j, so νi =
∑

j λri,j
≥
∑

j λri′ ,j
= νi′.

Now every row in α/β is labelled, so
∑

i νi =
∑

i

∑
j λri,j

=
∑

i λi = n. Thus ν is a partition
of n.

Fix i. By construction, rows ri,j, ri,j+1, . . . combined have exactly one square in each of
columns 1, 2, . . . , βri,j

(and intersect no other column). Hence βri,j
=
∑

j′>j λri,j′
for each

j. Thus
∑

j βri,j
=
∑

j

∑
j′>j λri,j′

=
∑

j′

∑
j<j′ λri,j′

=
∑

j′(j
′ − 1)λri,j′

. Now vary over i

to get |β| =
∑

i

∑
j βri,j

=
∑

i

∑
j′(j

′ − 1)λri,j′
=
∑

j′(j
′ − 1)

∑
i λri,j′

=
∑

j′(j
′ − 1)|νj′| =∑

j′(j
′ − 1)νj′ = n(ν).

�

Lemma 2.3.7 ∪iν
i = λ and

∑
i ν

i = µ.

Proof

The first equality is clear from the construction of νi’s. For the second equality, note
that the rows (i, 1), (i, 2), . . . , (i, pi) combine to contribute one square to each of columns
1, 2, . . . ,

∑
j λri,j

. Thus µ′q = the qth column length of α/β = |{i : q ≤
∑

j λri,j
}|. By

Corollary 2.3.2, (
∑

j λr1,j
,
∑

j λr2,j
, . . .) is a partition, and note it also has qth column length

|{i : q ≤
∑

j λri,j
}|. Therefore µ = (

∑
j λr1,j

,
∑

j λr2,j
, . . .) =

∑
j(λr1,j

, λr2,j
, . . .) =

∑
j ν

j .

�
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2.4 Definitions and Properties of γi and Ā

Definition 2.4.1 Let γi = (λri,1 , λri,2 , . . .), the lengths of rows with first label i. Each γi is
a partition because ri,j weakly increases as j increases. We have containments γ1 ⊃ γ2 ⊃ . . .
by Corollary 2.3.2. Clearly ∪iγ

i = λ. By Lemma 2.3.7, µi = |γi| for all i.

Proposition 2.4.2 Let α̃/β̃ and α̂/β̂ be the results of removing rows with first label 1 and
removing the first row from α/β, respectively, from α/β.

1. α̃/β̃ and α̂/β̂ are skew-linking shapes, so we may label their rows.

2. Row (i, j) in α̃/β̃ corresponds to row (i+ 1, j) in α/β.

3. Suppose p1 > 1 (i.e. β 6= ∅). Let {γ̂i} correspond to α̂/β̂. Then there exists q such
that γ̂i = γi+1 for i = 1, . . . , q − 1, γ̂q = (γ1

2 , γ
1
3 , . . .), and γ̂i = γi for i ≥ q + 1.

Proof

The new skew shapes’ row length sequences are subsequences of α/β’s, so they remain
weakly decreasing. We removed one square from every column of α/β to obtain α̃/β̃, so
the latter still has weakly decreasing column lengths. We removed one square from each of
the α1 − β1 rightmost columns of α/β to obtain α̂/β̂. This also preserves the weakly de-
creasing property of column lengths. Hence (1) holds. (2) follows directly from the labelling
procedure.

For (3), by assumption row (1, 2) exists in α/β. By Lemma 2.2.2 and the remarks about
rows with second label 1 in the previous section, the set of rows (i, 1) in α̂/β̂ correspond to
the set consisting of rows (i, 1) for i ≥ 2 in α/β and another row c that is a vertical translate
of row (1, 2) in α/β. The latter set is in order r2,1 < . . . < rq,1 < c < rq+1,1 < . . . for some
q ≥ 1 (depending on where c inserts into r2,1 < r3,1 < . . .). Hence

• row (i, 1) in α̂/β̂ corresponds to row (i+ 1, 1) in α/β for i = 1, 2, . . . , q − 1;

• row (q, 1) in α̂/β̂ corresponds to row c in α/β;

• row (i, 1) in α̂/β̂ corresponds to row (i, 1) in α/β for i ≥ q + 1.

According to Definition 2.2.5, let G and Ĝ be the graphs for α/β and α̂/β̂ respectively.
We may consider G and Ĝ to be constructed in the way of Lemma 2.2.6 (where we may
choose among vertical translates) and still retain the same graphs, so that instead of row
c we choose row (1, 2) instead. Then deleting the first row preserves much of the graph
structure: To get from G to Ĝ, we delete vertex (1, 1) and relabel the components’ starting
vertices by the above correspondence (and where (1, 2) becomes (q, 1)). As a result, the
other vertices also get relabelled appropriately, and we have for j ≥ 1:

• row (i, j) in α̂/β̂ has the same length as row (i+ 1, j) in α/β for i = 1, 2, . . . , q − 1;

• row (q, j) in α̂/β̂ has the same length as row (1, j + 1) in α/β;
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• row (i, j) in α̂/β̂ has the same length as row (i, j) in α/β for i ≥ q + 1.

This is exactly the condition stated in (3).

�

Proposition 2.4.3 Suppose 1 ≤ a < b and 1 ≤ p < q.

1. If (γb)′q ≥ 1, then (γa)′p − (γa)′q and (γb)′p − (γb)′q differ by no more than 1.

2. If (γb)′q = 0, then (γa)′p − (γa)′q ≥ (γb)′p − (γb)′q − 1.

Proof

In both cases note that (γa)′p − (γa)′q is the number of rows in γa (i.e. first label a) of
lengths p, p+1, . . . , q−1. Also, (γa)′q is the number of rows with first label a and length ≥ q.
Similar is true for b. Choose the unique s such that ra,s < rb,1 < ra,s+1, as in Proposition 2.3.1
(1). Below we repeatedly use Proposition 2.3.1 (6): For all j ≥ 1, λra,s+j

≤ λrb,j
≤ λra,s+j−1 .

1. In this case, row (b, 1) has length ≥ q. Let t,u be the largest values such that rows
(b, t) and (b, u) have lengths ≥ q and ≥ p, respectively. We investigate the value of
λra,i

by considering four cases:

• Use j = t above to get λrb,t
≤ λra,t+s−1 . By construction q ≤ λrb,t

. Thus for
i = 1, . . . , t+ s− 1, q ≤ λra,t+s−1 ≤ λra,i

.

• Use j = t + 1 above and the definition of t to get λra,t+s+1 ≤ λrb,t+1
< q. Use

j = u above and the definition of u to get p ≤ λrb,u
≤ λra,u+s−1 . Thus for

i = t+ s+1, . . . , u+ s−1 (possibly vacuous), p ≤ λra,u+s−1 ≤ λra,i
≤ λra,t+s+1 < q.

• Use j = u + 1 above and the definition of u to get λra,u+s+1 ≤ λrb,u+1
< p. Thus

for i ≥ u+ s+ 1, λra,i
≤ λra,u+s+1 < p.

• The remaining cases are i = t+ s and u+ s.

Hence the values of i where p ≤ λra,i
< q are t+ s+ 1, . . . , u+ s− 1 and possibly t+ s

and/or u+ s. Recall that (γa)′p − (γa)′q is the number of such values i.

Now by construction, p ≤ λrb,i
< q iff t+ 1 ≤ i ≤ u, so (γb)′p − (γb)′q = u− t. If u > t,

then {t+ s+1, . . . , u+ s−1} has size u− t−1, so u− t−1 ≤ (γa)′p− (γa)′q ≤ u− t+1.
If u = t, then {t + s + 1, . . . , u + s − 1} has size 0 and t + s and u + s are the same
case, so (γa)′p − (γa)′q is 0 or 1. In all cases, we see that (γa)′p− (γa)′q and (γb)′p− (γb)′q
differ by no more than 1.

2. In this case, row (b, 1) has length < q. If it has length < p as well, then all rows (b, i)
have length < p, so (γb)′p − (γb)′q − 1 = −1 < (γa)′p − (γa)′q.

Now consider the case row (b, 1) has length ≥ p. Then we may define u to be the largest
value such that row (b, u) has length ≥ p. Use j = 1 above to get λra,s+1 ≤ λrb,1

< q.
Use j = u above and the definition of u to get p ≤ λrb,u

≤ λra,u+s−1 . Thus for
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i = s+1, . . . , u+s−1, p ≤ λra,u+s−1 ≤ λra,i
≤ λra,s+1 < q. The set {s+1, . . . , u+s−1}

has size u − 1 (since u ≥ 1), so (γa)′p − (γa)′q ≥ u − 1. But the values of i where
p ≤ λrb,i

< q are 1, . . . , u, so (γb)′p − (γb)′q = u and the desired inequality holds.

�

Definition 2.4.4 Given λ
θ
→ µ, construct γi as above and associate to θ the N × N matrix

Ā given by Āi,j = (γi)′j.

Lemma 2.4.5 Ā is a plane partition with layers (ν1, ν2, . . .), i.e. νp
i = |{j : Ai,j ≥ p}|.

Proof

The containments γ1 ⊃ γ2 ⊃ . . . imply that (γ1)′ ⊃ (γ2)′ ⊃ . . . and that Ā is a plane
partition. Now Ai,j ≥ p ⇐⇒ (γi)′j ≥ p ⇐⇒ γi

p ≥ j ⇐⇒ row (i, p) has length ≥ j. Thus
|{j : Ai,j ≥ p}| = length of row (i, p) = νp

i .

�

Example 2.4.6

λ

µ

A =





3 3 2 1 1
3 2 1 1 1
2 2 1 1 0
1 0 0 0 0
1 0 0 0 0





10
8
6
1
1

10 7 4 3 2

ν1 ν2 ν3
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Chapter 3

Connections to Nonnegative Integer

Matrices of Specified Row and

Column Sums

3.1 Nonnegative Integer Matrices and Tableaux

Definition 3.1.1 Given compositions α, β, let M(α, β) be the set of finitely-supported N×N
matrices A with nonnegative integer entries and row and column sums according to α, β,
i.e.

∑
j Ai,j = αi and

∑
iAi,j = βj for all i, j. Evidently A is just an ℓ(β)× ℓ(α) matrix, but

the extra zero rows and columns are for convenience.

Definition 3.1.2 (Tableau interpretation) In the case β is a partition, we may regard each
A ∈M(α, β) as a tableau of shape β ′ with Ai,j copies of i in the jth column, disregarding the
order within each column. Then A records the multiplicities, and the letter i occurs αi times
in total (i.e. the tableau has weight α). Note that the tableau in this interpretation needs not
be semistandard.

3.2 Balanced Matrices

Definition 3.2.1 A matrix A is balanced if it is N × N with nonnegative integer entries
such that for any i, i′, j, j′ with i 6= i′ and j 6= j′, if Ai,j 6= 0 6= Ai′,j′ then Ai,j + Ai′,j′ ≤
Ai,j′ + Ai′,j + 1. Let Mb(α, β) denote the set of balanced matrices in M(α, β).

Lemma 3.2.2 If A is balanced, then so is the transpose AT .

Proof

Suppose i, i′, j, j′ with i 6= i′ and j 6= j′ and AT
i,j 6= 0 6= AT

i′,j′. Then Aj,i 6= 0 6= Aj′,i′, so

by balancedness Aj,i + Aj′,i′ ≤ Aj,i′ + Aj′,i + 1. It follows that AT
i,j + AT

i′,j′ = Aj,i + Aj′,i′ ≤

Aj,i′ + Aj′,i + 1 = AT
i,j′ + AT

i′,j + 1, so AT is balanced.
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�

Lemma 3.2.3 If A is balanced, then for i 6= i′, either Ai,j ≥ Ai′,j for all j or Ai′,j ≥ Ai,j

for all j. In other words, every pair of rows are comparable in the product order ≥p. Every
pair of columns are comparable in the product order too.

Proof

Suppose rows i and i′ are incomparable in the product order. Then there exist j, j′ such
that Ai,j > Ai′,j ≥ 0 and 0 ≤ Ai,j′ < Ai′,j′. Then Ai,j 6= 0 6= Ai′,j′ and Ai,j + Ai′,j′ ≥
(Ai,j′ + 1) + (Ai′,j + 1) > Ai,j′ + Ai′,j + 1, contradicting the assumption that A is balanced.
The last statement follows from Lemma 3.2.2 and using the above argument for AT instead
of A.

�

Lemma 3.2.4 Suppose A is balanced and that there exist p and q such that Ap,j ≥ 1 for
j = 1, . . . , q and Ai,j = 0 when j > q. Define matrix B with the same entries as A except
that Bp,j = Ap,j − 1 for j = 1, . . . , q. Then B is balanced.

Proof

By construction B is also an N × N matrix with nonnegative integer entries. Suppose
i, i′, j, j′ with i 6= i′ and j 6= j′ and Bi,j 6= 0 6= Bi′,j′. Then j, j′ ≤ q. The balancedness
inequality for B follows from the inequality for A by either keeping both sides the same (if
i 6= p 6= i′) or subtracting one from each side (if i = p 6= i′ or i′ = p 6= i).

�

Lemma 3.2.5 If λ, µ are partitions and A ∈ Mb(µ, λ
′), then A has weakly decreasing rows

and columns (i.e. is a plane partition).

Proof

Suppose Ai,j < Ai,j′ for some j < j′ and some i. Now
∑

i′(Ai′,j − Ai′,j′) = λ′j − λ
′
j′ ≥ 0

and Ai,j − Ai,j′ < 0, so there exists i′ 6= i such that Ai′,j − Ai′,j′ > 0. Then columns j and
j′ are incomparable in the product order, contradicting Lemma 3.2.3. Hence A has weakly
decreasing rows.

Suppose Ai,j < Ai′,j for some i < i′ and some j. Now
∑

j′(Ai,j′ − Ai′,j′) = µi − µi′ ≥ 0
and Ai,j − Ai′,j < 0, so there exists j′ 6= j such that Ai,j′ − Ai′,j′ > 0. Then rows i and
i′ are incomparable in the product order, contradicting Lemma 3.2.3. Hence A has weakly
decreasing columns.

�
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3.3 Connections Between Balanced Matrices and Skew-

Linked Partitions

Proposition 3.3.1 Let Ā be the matrix associated to λ → µ (see Definition 2.4.4). Then
Ā ∈Mb(µ, λ

′).

Proof

Definition 2.4.1 notes that |γi| = µi, so
∑

j Āi,j =
∑

j(γ
i)′j = |(γi)′| = |γi| = µi. Defini-

tion 2.4.1 also notes that ∪iγ
i = λ, so we can equate column lengths to get λ′j =

∑
i(γ

i)′j =∑
i Āi,j. Thus Ā ∈M(µ, λ′).
Suppose we have i 6= i′ and j 6= j′ and Ai,j 6= 0 6= Ai′,j′. Without loss of generality,

assume i < i′. If j < j′, then the balancedness inequality follows from Proposition 2.4.3 case
1, using a = i, b = i′, p = j, q = j′. If j > j′, then use a = i, b = i′, p = j′, q = j; in either
case of Proposition 2.4.3, we have Āi,j′ − Āi,j ≥ Āi′,j′ − Āi′,j − 1, which implies balancedness.

�

Theorem 3.3.2 Suppose λ, µ are partitions of n.

1. Mb(µ, λ
′) is nonempty iff λ→ µ.

2. Suppose λ
θ
→ µ. Then Mb(µ, λ

′) = {Ā}, where Ā is given in Definition 2.4.4.

Proof

We prove both parts by strong induction on n. The base case n = 1 is clear. Suppose
the claims are true for 1, 2, . . . , n− 1.

Consider the case λ = (n). Note λ
θ
→ µ iff θ = (n) and thus iff µ = (n). Suppose

A ∈ ∪µMb(µ, λ
′). ThenA has column sums (1, 1, . . .) and is a plane partition by Lemma 3.2.5,

so A must have all zeroes except A1,j = 1 for j = 1, . . . , n. Since A is balanced, {A} =
∪µMb(µ, λ

′). This A has row sums (n, 0, . . .), so Mb(µ, λ
′) = {A} if µ = (n) and ∅ if µ 6= (n),

and (1) holds. In the case λ→ µ (i.e. µ = (n)),we have γ(1) = (n) and γ(p) = ∅ for p ≥ 2, so
Ā equals the above A and (2) holds.

Now consider the case ℓ(λ) ≥ 2 and let A ∈ Mb(µ, λ
′). By Lemma 3.2.5 A is a plane

partition, so A1,j ≥ Ai,j for all i. Since
∑

iAi,j = λ′j = 0 iff j > λ1, we must have A1,j > 0
for j = 1, . . . , λ1 and Ai,j = 0 when j > λ1. Define matrix B with the same entries as A
except that B1,j = A1,j − 1 for j = 1, . . . , λ1. Then B is balanced by Lemma 3.2.4.

Let ρ = (µ1 −λ1, µ2, µ3, . . .) and η = (λ2, λ3, . . .). Then η′j = λ′j − 1 for j = 1, . . . , λ1 and
η′j = 0 for j > λ1, so B ∈ Mb(ρ, η

′). There exists unique q such that µq > µ1 − λ1 ≥ µq+1

because µ1−λ1 ∈ [0, µ1) = ⊔q [µq+1, µq). Then µ̂ = (µ2, . . . , µq, µ1−λ1, µq+1, µq+2, . . .) is the
partition that is a permutation of ρ. Define matrix C by Ci,j = Bi+1,j for i = 1, . . . , q − 1,
Cq,j = B1,j, and Ci,j = Bi,j for j ≥ q + 1. Then C ∈M(µ̂, η′) because B ∈M(ρ, η′). Now B
is balanced and C is obtained by permuting the rows of B, so it is clear from the definition
that C is also balanced. Hence C ∈Mb(µ̂, η

′).
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Since |µ̂| = |η| = n − λ1 < n and |η| ≥ λ2 > 0, the inductive hypothesis of (1) implies

that η
α̂/β̂
→ µ̂ for some α̂/β̂. By the inductive hypothesis of (2), C is the matrix produced

from η
α̂/β̂
→ µ̂ via Definition 2.4.4. Since α̂1 is the sum of the lengths of rows with first label

1, α̂1 =
∑

j C1,j. Since β̂1 is the sum of the lengths of rows with first label 1 and second

label > 1, β̂1 =
∑

j max(C1,j − 1, 0).

Define α = (µ1, α̂1, α̂2, . . .) and β = (µ1 − λ1, β̂1, β̂2, . . .). If q = 1, then β̂1 ≤ α̂1 =∑
j C1,j =

∑
j B1,j = ρ1 = µ1 − λ1, so α and β are partitions. If q ≥ 2, then α̂1 =

∑
j C1,j =

∑
j B2,j = ρ2 = µ2 ≤ µ1, so α is a partition. Now β̂1 =

∑
j max(C1,j − 1, 0) =

∑
j max(B2,j − 1, 0) =

∑
j max(A2,j − 1, 0) ≤

∑
j max(A1,j − 1, 0) =

∑λ1

j=1(A1,j − 1) =(∑λ1

j=1 A1,j

)
− λ1 =

(∑
j=1A1,j

)
− λ1 = µ1 − λ1, so β is a partition. Hence in all cases

θ = α/β is a valid skew-shape.
Notice θ is just adding a row to α̂/β̂. The latter has row lengths η, so θ’s row lengths are

(λ1, η1, η2, . . .) = λ. Set δj =

{
1 if µ1 − λ1 < j ≤ µ1

0 otherwise
. Set f(a, j) =

{
1 if a ≥ j

0 otherwise.

Then θ’s jth column length = δj + α̂/β̂’s jth column length = δj + µ̂′j = δj +
∑

i f(µ̂i, j) =
δj + f(µ1 − λ1, j) +

∑
i≥2 f(µi, j) = f(µ1, j) +

∑
i≥2 f(µi, j) =

∑
i≥1 f(µi, j) = µ′j. Therefore

λ
θ
→ µ.
Hence Mb(µ, λ

′) being nonempty implies λ→ µ. Now in the above argument, if λ → µ,
then the inductive hypothesis says that C is uniquely determined. Since B can be recovered
from C by q (which is a function of µ and λ), B is also uniquely determined. Thus A is
uniquely determined and |Mb(µ, λ

′)| ≤ 1 when λ → µ. But Ā ∈ Mb(µ, λ
′) by Proposi-

tion 3.3.1. Therefore (1) and (2) hold and induction is complete.

�

Notice that this theorem gives a bijection between skew-linked pairs and balanced ma-
trices whose row and column sums are partitions. Clearly this bijection is compatible with
transposing both the skew-linking shape and the matrix.

3.4 Duality Between Row and Column Labels

Recall all of the above arguments and definitions have valid dual versions if we exchange
the roles of rows and columns. In particular, we may define partition ν̃j so that its ith
column has the same length as column (i, j). Theorem 3.3.2 has a surprising consequence.

Corollary 3.4.1 ν̃j = νj for all j. Deleting the rows with second label 1 produces the same
skew diagram as deleting the columns with second label 1.

Proof
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By Theorem 3.3.2 and Lemma 2.4.5, the unique matrix in Mµ,λ′ is a plane partition with
sections given by the νj ’s. The transposed versions of Theorem 3.3.2 and Lemma 2.4.5 imply
that the unique matrix in Mµ,λ′ is a plane partition with sections given by the ν̃j ’s. Hence
ν̃j = νj for all j.

By Corollary 2.3.4, deleting the rows with second label 1 produces a skew-linking shape θ̂
whose νi equals the original νi+1 for all i. The transposed version of Corollary 2.3.4 says that
deleting the columns with second label 1 produces a skew-linking shape θ̃ whose ν̃i equals
the original ν̃i+1 for all i. By the first part of this corollary, the νi of θ̃ equals the original
νi+1 for all i. Thus θ̂ and θ̃ have the same νi’s. By Lemma 2.3.7, θ̂ and θ̃ have the same row
and column sums. By Lemma 2.1.4, θ̂ = θ̃.

�

3.5 Minimizing the Degree of Matrices

Definition 3.5.1 Given a matrix A with nonnegative integer entries, define its degree as
d(A) =

∑
i,j

(
Ai,j

2

)
.

Definition 3.5.2 (Swap operation) Given A ∈M(α, β), if i 6= i′ and j 6= j′ and Ai,j 6= 0 6=
Ai′,j′, then in the tableau interpretation of A (see Definition 3.1.2), letter j occurs in column
i and letter j′ occurs in column i′. Define a swap between letter j in column i and letter j′ in
column i′ as the tableau operation changing one copy of j in column i to j′, and changing one
copy of j′ in column i′ to j. The new tableau corresponds to the matrix Â that is identical
to A except that Âi,j = Ai,j − 1, Âi′,j = Ai′,j + 1, Âi,j′ = Ai,j′ + 1, Âi′,j′ = Ai′,j′ − 1.

Lemma 3.5.3 If A is balanced, then any swap increases the degree of A.

Proof

With A and Â as in Definition 3.5.2, a simple calculation shows that d(Â) − d(A) =
Ai′,j + Ai,j′ − Ai,j − Ai′,j′ + 2 ≥ 1 by the definition of balanced.

�

Theorem 3.5.4 Suppose µ, λ are partitions of n. Then minA∈M(µ,λ′) d(A) is achieved by a

unique matrix A iff λ→ µ. In the case λ
α/β
→ µ, the minimum is uniquely achieved by Ā of

Definition 2.4.4, and d(Ā) = |β|.

Proof

Suppose the minimum is achieved by a unique matrix A. Suppose A is not balanced.
Then there exist i 6= i′ and j 6= j′ such that Ai,j 6= 0 6= Ai′,j′ and Ai,j +Ai′,j′ ≥ Ai,j′ +Ai′,j +2.
Define matrix B to be the same as A except Bi,j = Ai,j−1, Bi′,j′ = Ai′,j′−1, Bi,j′ = Ai,j′ +1,
and Bi′,j = Ai′,j + 1. Then B ∈ M(µ, λ′). But d(A) − d(B) =

(
Ai,j

2

)
−
(

Ai,j−1
2

)
+
(

Ai′ ,j′

2

)
−(

Ai′ ,j′−1

2

)
+
(

Ai,j′

2

)
−
(

Ai,j′+1

2

)
+
(

Ai′ ,j

2

)
−
(

Ai′ ,j+1

2

)
= (Ai,j − 1) + (Ai′,j′ − 1) − Ai,j′ − Ai′,j ≥ 0,
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and A 6= B. Thus A cannot uniquely achieve the minimum value for d(·), a contradiction.
Hence A ∈ Mb(µ, λ

′). By Theorem 3.3.2 this implies λ → µ, so the forward implication is
proved.

For the reverse implication, start with any A ∈M(µ, λ′) and regard it (by Definition 3.1.2)
as a tableau W of shape λ and weight µ. We claim that there is a sequence of degree-
nonincreasing swaps on W to transform A into Ā, and we prove this claim by induction on
the number of rows of α/β. In the case of one row, α/β = (n)/∅ and λ = µ = (n), so
M(µ, λ′) = {Ā} and the claim is trivially true.

In the general case, the first step is to show that if some column in W does not contain 1,
then there is a sequence of degree-nonincreasing swaps that reduces the number of columns
in which 1 does not appear. Suppose no such sequence exists. Let B,C,D denote the sets of
(indices of) columns in which 1 appears exactly once, zero times, and at least twice respec-
tively. By assumption C is nonempty. Note that |B∪C ∪D| = total number of columns =
ℓ(λ′) = λ1.

Define C0, C1, . . . and L0, L1, . . . inductively as follows. Set C0 = C and let L0 be the set
of letters (none of them being 1) that appear in the columns of C . Then L0 is nonempty
because C is nonempty. Having defined up through Cp and Lp, let Cp+1 be the columns in
B \ ∪p

j=0Cj that are missing at least one of the letters in ∪p
j=0Lj. Let Lp+1 be the set of

letters in the columns of Cp+1 that are not in {1} ∪ (∪p
j=0Lj).

By construction the Lj ’s are pairwise disjoint and do not contain 1. Also, the set of
letters appearing in the columns of Cp is a subset of {1} ∪ (∪p

j=0Lj). Hence for j > j′ and

letter z ∈ Lj, z 6∈ {1} ∪ (∪j′

j=0Lj) and z does not appear in any of the columns of Cj′.
Because the Cj’s are disjoint, there exists a smallest value of u such that Cu = ∅ (so

u ≥ 1). Then Lu = ∅ too, so B \ ∪u
j=0Cj = B \ ∪u−1

j=0Cj and ∪u
j=0Lj = ∪u−1

j=0Lj . Hence
Cu+1 = ∅ (being the set satisfying the exact same conditions as Cu) and Lu+1 = ∅ and so on.
Thus Cj = ∅ = Lj for all j ≥ u. Let C ′ = ∪u

j=0Cj ⊃ C0 = C , B ′ = B \ C ′, and L = ∪u
j=0Lj.

Then each column in B ′ contains every letter in L, and each column in C ′ contains only 1’s
and letters in L.

Let z ∈ L be arbitrary. Then z ∈ Lt for some t ≤ u, so there exists some column q ∈ Ct

containing z. If t > 0, then column q contains no copy of some letter z′ ∈ ∪t−1
i=0Li. Say

z′ ∈ Lt′ with t′ < t. Then there exists some column q′ ∈ Ct′ containing z′. If t′ > 0, then
column q′ contains no copy of some letter z′′ ∈ ∪t′−1

i=0 Li, so z′′ ∈ Lt′′ for some t′′ < t′. This
continues a finite number of steps. Hence there exist 0 = t0 < t1 < . . . < tm = t and letter
zj ∈ Lj contained in column qj ∈ Cj (j = 0, . . . , m) such that zj does not appear in column
qj−1 for j = 1, . . . , m, and zm = z and qm = q. Because the Lj ’s are disjoint, the zj’s are
distinct. Because the Cj’s are disjoint, the qj’s are distinct.

Let ∆ denote the following sequence of swaps (possibly empty if m = 0):

• z = zm in column q = qm with zm−1 in column qm−1

• z in column qm−1 with zm−2 in column qm−2

• z in column qm−2 with zm−3 in column qm−3

. . .
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• z in column q1 with z0 in column q0

We saw above that the zj’s and qj’s are disjoint, so this sequence of swaps is legal if zj

appears in column qj for j = 0, . . . , m in the original tableau, which is true by construction.
The effect of the swaps is that z goes from column qm to qm−1 to qm−2 to . . . to q0.

We investigate the change in degree caused by each swap. Suppose 0 ≤ j ≤ m−1 and we
are about to swap z in column qj+1 (arrived there via the previous swap) with zj in column
qj. Since z ∈ Lt = Ltm and qj ∈ Ctj and tm > tj, by remarks four paragraphs above, z
does not appear in column qj originally. By construction zj appears in column qj and not
in column qj−1 originally. All these conditions are still true currently because the previous
swaps do not involve column qj or the letter zj. Thus by Lemma 3.5.3 the current swap
causes a degree change of ≤ 0+0−1−1+2 = 0, i.e. these swaps do not increase the degree.

Let p ∈ D be arbitrary. After performing swap sequence ∆, we perform swap Ψ, which
swaps z in column q0 with a 1 in column p. This is legal because column p ∈ D originally
contains at least two 1’s, and no previous swaps involved column p because qj ∈ Lj ⊂ B∪C
for all j and p ∈ D. Note that no previous swaps involved the letter 1 because zj 6= 1 for
all j, so column q0 ∈ C0 = C still has no 1’s. Also note that originally column p has A1,p

copies of 1’s and Az,p copies of z’s. Hence by Lemma 3.5.3, swap Ψ causes a degree change
of ≤ Az,p + 0−A1,p − 1 + 2 = Az,p − A1,p + 1.

But before swap Ψ, column p contains at least two 1’s while column q0 contains no 1’s.
Hence ∆ followed by Ψ reduces the number of columns with no 1’s. By assumption, this
sequence cannot consist entirely of degree-nonincreasing swaps. But the swaps in ∆ are
degree-nonincreasing, so Ψ must increase the degree. Therefore, Az,p ≥ A1,p for arbitrary
p ∈ D and z ∈ L.

Now we string together many observations to derive a contradiction. For any p ∈ B ′ ⊂ B
and z ∈ L, z occurs in column p by the definition of B ′, so Az,p ≥ 1 = A1,p. Thus
Az,p ≥ A1,p ≥ 1 for any p ∈ D ∪ B ′ and z ∈ L. This means that for p ∈ D ∪ B ′,
λ′p =

∑
i Ai,p ≥ A1,p +

∑
z∈L Az,p ≥ 1 + |L|. Note that D ∪B ′ = (B ∪ C ∪D) \ C ′. Hence

i ≤ |L|+ 1 implies λi ≥ |D ∪B
′| = |B ∪ C ∪D| − |C ′| = λ1 − |C

′|.

For any i, ri,1 ≥ i in α/β, so λri,1 ≤ λi. By Corollary 2.3.2 and Definition 2.4.1, µi =∑
j γ

i
j = λri,1 +

∑
j>1 γ

i
j ≤ λi +

∑
j>1 γ

1
j = λi +

∑
j γ

1
j − γ

1
1 = λi + µ1 − λ1, implying

µi − µ1 ≤ λi − λ1 for all i.

By the above facts, for z ∈ L,

∑

j∈C′

Az,j =
∑

j∈B∪C∪D

Az,j −
∑

j∈D∪B′

Az,j = µz −
∑

j∈D∪B′

Az,j ≤ µz −
∑

j∈D∪B′

A1,j

= µz −

(
∑

j∈B∪C∪D

A1,j −
∑

j∈D∪B′

A1,j

)
= µz − µ1 +

∑

j∈C′

A1,j

= µz − µ1 +
∑

j∈C′\C

1 +
∑

j∈C

0 = µz − µ1 + |C ′| − |C| < λz − λ1 + |C ′|.
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Now each column in C ′ contains only 1’s and letters in L, and at most one copy of 1
because C ′ ⊂ B ∪ C . Thus for j ∈ C ′, λ′j =

∑
z Az,j = A1,j +

∑
z∈LAz,j ≤ 1 +

∑
z∈L Az,j.

If q1 > q2 > . . . > q|C′| are the columns of C ′, then q1 ≤ λ1 and qi ≤ λ1 + 1 − i. If
z1 < z2 < . . . < z|L| are the letters in L, then z1 ≥ 2, so zi ≥ i+ 1 for all i. Also note L 6= ∅
because L0 6= ∅.

From the above observations,

∑

j∈C′

λ′j =

|C′|∑

i=1

λ′qi
≥

|C′|∑

i=1

λ′λ1+1−i =

λ1∑

j=λ1+1−|C′|

λ′j =
∑

j≥λ1+1−|C′|

λ′j

=
∑

i

max(λi − (λ1 − |C
′|), 0) ≥

|L|+1∑

i=1

max(λi − λ1 + |C ′|, 0)

= |C ′|+

|L|+1∑

i=2

(λi − λ1 + |C ′|) ≥ |C ′|+

|L|∑

i=1

(λzi
− λ1 + |C ′|)

= |C ′|+
∑

z∈L

(λz − λ1 + |C ′|) > |C ′|+
∑

z∈L

∑

j∈C′

Az,j =
∑

j∈C′

(1 +
∑

z∈L

Az,j) ≥
∑

j∈C′

λ′j .

This is a contradiction. Therefore, starting with any A ∈M(µ, λ′), there exists a sequence of
degree-nonincreasing swaps that reduces the number of columns in which 1 does not appear.
Hence we may perform more swap sequences until this number is reduced to zero. Let W̃
be the new tableau produced, with corresponding matrix Ã ∈ M(µ, λ′). Then 1 appears in
every column of W̃ , and Ã1,j ≥ 1 for all j.

In fact, the above contradiction shows that there exist p ∈ D and z ∈ L such that
Az,p < A1,p. For these p and z, we construct swaps ∆ and Ψ. Then Ψ does not increase the
degree because Az,p < A1,p, so ∆ and Ψ form an explicit degree-nonincreasing swap sequence
that reduces the number of columns in which 1 does not appear.

We may assume that the first row of W̃ consist of ones. Now find q according to Propo-
sition 2.4.2. construct Ẇ from W̃ in the following way:

1. Remove the first row of W̃ .

2. Simultaneously rename the letters so that all original 1’s becomes q’s, and all original
j’s becomes j − 1’s for j = 2, 3, . . . , q.

3. The letters q + 1, q + 2, . . . are unaffected.

Then Ẇ has shape λ̂ = (λ2, λ3, . . .) and weight µ̂ = (µ2, . . . , µq, µ1 − λ1, µq+1, µq+2, . . .).

Let Ȧ ∈M(µ̂, λ̂′) correspond to Ẇ . Let φ : M(µ̂, λ̂′)→ M(µ, λ′) be the operation of moving
the qth row to the first row, sliding the original rows 1 through q− 1 down by one row, and
finally incrementing the matrix entries (1, 1), . . . , (1, λ1) by 1. Then φ(Ȧ) = Ã.

By Proposition 2.4.2, µ̂ and λ̂′ are exactly the row and column lengths of α̂/β̂, the skew-
linking shape obtained by removing the first row of α/β. Per Definition 2.4.4, construct
matrix Â ∈ M(µ̂, λ̂′) associated to α̂/β̂, and let Ŵ be the corresponding tableau. Because
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α̂/β̂ has fewer rows than α/β, by the inductive hypothesis there exists a degree-nonincreasing
swap sequence Ξ to transform Ẇ to Ŵ (and hence Ȧ to Â).

By Proposition 2.4.2(3), φ(Â) = Ā. At the level of tableaux, φ changes letters 1, 2, . . . , q−
1, q to 2, 3, . . . , q, 1 correspondingly and adds a length λ1 row of 1’s. Since Ξ transforms Ẇ to
Ŵ , we may construct swap sequence Υ to transform φ(Ȧ) = Ã to φ(Â) = Ā by performing the
same swap sequence on the larger tableau, but changing the roles of letters 1, 2, . . . , q−1, q to
2, 3, . . . , q, 1 correspondingly. Furthermore, corresponding swaps between Ξ and Υ produce
the same change in degree because the formula given in Lemma 3.5.3 is invariant under
incrementing matrix entries (1, 1), . . . , (1, λ1) by 1. Thus Υ is also degree-nonincreasing.

In summary, the concatenation of swap sequences ∆,Ψ,Υ is a degree-nonincreasing se-
quence Ω that changes the original A to Ã and then to Ā. Therefore, d(A) ≥ d(Ā) and Ā
minimizes degree. Now if A 6= Ā, then Ω is nonempty. Its last swap takes some matrix Ä
to Ā, so the reverse swap takes Ā to Ä. Now Ā is balanced, and by Lemma 3.5.3 any swap
increases the degree. Hence d(A) ≥ d(Ä) > d(Ā) and Ā uniquely minimizes degree.

Now recall Āi,j = (γi)′j. Define χi,j,p =

{
1 if (γi)′j ≥ p

0 otherwise
. Note that (γi)′j ≥ p is

equivalent to λri,p
≥ j (i.e. row (i, p) has length ≥ j). Then from Definition 2.3.5 and

Lemma 2.3.6,

d(Ā) =
∑

i,j≥1

(
(γi)′j

2

)
=
∑

i≥1

∑

j≥1

∑

p≥1

(p− 1)χi,j,p =
∑

i≥1

∑

p≥1

(
(p− 1)

∑

j≥1

χi,j,p

)

=
∑

i≥1

∑

p≥1

(p− 1)λri,p
=
∑

p≥1

(p− 1)

(
∑

i≥1

λri,p

)
=
∑

p≥1

(p− 1)|νp| = |β|.

�

3.6 More on Minimizing the Degree of Matrices

Definition 3.6.1 For partitions λ, µ of n, define d(λ, µ) = minA∈M(µ,λ′) d(A).

Lemma 3.6.2 (Transpose symmetry) d(λ, µ) = d(µ′, λ′).

Proof

By definition d(λ, µ) = minA∈M(µ,λ′) d(A) and d(µ′, λ′) = minA∈M(λ′,µ) d(A). Because tak-
ing transpose is a degree-preserving bijection between M(µ, λ′) and M(λ′, µ), the minimum
degrees are the same.

�

Lemma 3.6.3 If η ≥ µ in dominance order and B ∈ M(η, λ′), then there exists C ∈
M(µ, λ′) with d(B) ≥ d(C). If η > µ and C has weakly decreasing columns, then d(B) >
d(C).
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Proof

Because η ≥ µ, there exists a (possibly empty) sequence of lowering operators R1, . . . , Rm

such that µ = Rm . . . R2R1η and that η(t) = Rt . . . R2R1η is a partition for all t. Then η(0) = η
and η(m) = µ.

We claim that we can inductively construct matrices A(0), A(1), . . . , A(m) with A(t) ∈
M(η(t), λ′) for t = 0, . . . , m and d(A(t−1)) ≥ d(A(t)) for t = 1, . . . , m. For the base case, set
A(0) = B.

Suppose such A(0), A(1), . . . , A(t) have been constructed. Because η(t+1) = Rt+1η
(t), there

exists i such that η
(t+1)
i = η

(t)
i − 1, η

(t+1)
i+1 = η

(t)
i+1 + 1, and η

(t+1)
p = η

(t)
p for p 6= i, i + 1. In

particular it means
∑

j A
(t)
i,j −A

(t)
i+1,j = η

(t)
i −η

(t)
i+1 = 2+η

(t+1)
i −η

(t+1)
i+1 ≥ 2. Thus there exists j

with A
(t)
i,j −A

(t)
i+1,j ≥ 1. Define A(t+1) to be identical to A(t) except that A

(t+1)
i,j = A

(t)
i,j − 1 and

A
(t+1)
i+1,j = A

(t)
i+1,j + 1. Then A(t) ∈ M(η(t), λ′) implies A(t+1) ∈ M(Rt+1η

(t), λ′) = M(η(t+1), λ′).

Furthermore, d(A(t))−d(A(t+1)) =
(A(t)

i,j

2

)
+
(A(t)

i+1,j

2

)
−
(A(t)

i,j−1

2

)
−
(A(t)

i+1,j+1

2

)
= A

(t)
i,j−A

(t)
i+1,j−1 ≥ 0.

Induction is complete.
Now set C = A(m) ∈ M(η(m), λ′) = M(µ, λ′). Then d(B) = d(A(0)) ≥ d(A(1)) ≥ . . . ≥

d(A(m)) = d(C).
Finally, consider the case η > µ and C has weakly decreasing columns. Then m ≥ 1 and

A(m−1) exists. Let i be the index used to construct A(m) from A(m−1). Then d(A(m−1)) −

d(A(m)) =
(A(m)

i,j +1

2

)
+
(A(m)

i+1,j−1

2

)
−
(A(m)

i,j

2

)
−
(A(m)

i+1,j

2

)
= A

(m)
i,j −A

(m)
i+1,j + 1 = Ci,j −Ci+1,j + 1 > 0.

Therefore, d(B) = d(A(0)) ≥ . . . ≥ d(A(m−1)) > d(A(m)) = d(C).

�

Proposition 3.6.4 Suppose λ→ µ and η > µ in dominance order. Then d(λ, η) > d(λ, µ).

Proof

Choose B ∈ M(η, λ′) so that d(B) = d(λ, η). By Lemma 3.6.3, there exists C ∈M(µ, λ′)
with d(B) ≥ d(C). Recall by Theorem 3.5.4 that minA∈M(µ,λ′) d(A) = d(λ, µ) is achieved by

a unique matrix Ā. If C 6= Ã, then d(λ, η) = d(B) ≥ d(C) > d(λ, µ). If C = Ā, then C
has weakly decreasing columns by Lemma 2.4.5, so d(B) > d(C) by Lemma 3.6.3. Hence
d(λ, η) ≥ d(B) > d(C) = d(λ, µ), so d(λ, η) > d(λ, µ) in all cases.

�

Proposition 3.6.5 Let λ → µ. Suppose γ ≤ λ and η ≥ µ in dominance order. Then
d(γ, η) ≥ d(λ, µ), with equality iff γ = λ and η = µ.

Proof

Choose B ∈ M(η, γ′) so that d(B) = d(γ, η). Now BT ∈ M(γ′, η) and γ′ ≥ λ′, so by
Lemma 3.6.3 there exists C ∈ M(λ′, η) such that d(BT ) ≥ d(C). Because CT ∈ M(η, λ′)
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and η ≥ µ, by Lemma 3.6.3 again there exists D ∈M(µ, λ′) such that d(CT ) ≥ d(D). Thus
d(γ, η) = d(B) = d(BT ) ≥ d(C) = d(CT ) ≥ d(D) ≥ d(λ, µ).

Now we show that if (γ, η) 6= (λ, µ), then at least one inequality in the above chain is
strict. Recall by Theorem 3.5.4 that minA∈M(µ,λ′) d(A) = d(λ, µ) is achieved by a unique
matrix Ā. There are several cases.

1. η > µ and D 6= Ā: Then d(D) > d(λ, µ).

2. η > µ and D = Ā: By Lemma 2.4.5, Ā has weakly decreasing columns, so d(CT ) >
d(D) by Lemma 3.6.3.

3. η = µ: Then γ < λ. Since µ′ → λ′ and γ′ > λ′, by Proposition 3.6.4 we have
d(µ′, γ′) > d(µ′, λ′). Thus by transpose symmetry (Lemma 3.6.2), d(γ, η) = d(γ, µ) =
d(µ′, γ′) > d(µ′, λ′) = d(λ, µ).

Therefore, equality occurs iff γ = λ and η = µ.

�
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Chapter 4

Modules Associated with

Skew-Linked Partitions

4.1 Graded Dual, Co-Generation, and Co-Freeness

Definition 4.1.1 For a graded C[x]-module M , let M∗ denote its graded dual, defined as
⊕d(Md)

∗. Note M∗ is also a graded C[x]-module, but with reverse grading: (M∗)j = (M−j)
∗.

Explicitly, if |α| = i and w ∈ (M∗)j = (M−j)
∗, then let xαw ∈ (M∗)i+j = (M−i−j)

∗ be given
by (xαw)(v) = w(xαv).

Note that if each Md is finite-dimensional, then (M∗)∗ ∼= M . In particular, this is true for
C[x] and C[x]∗.

Definition 4.1.2 Suppose we have C[x]-module M , C-module W , and C-homomorphism
M

π
→ W . We say that (W,π) co-generates M if whenever we have a commutative diagram

M ′

π′ ↓ տσ

W
←
π M

with C[x]-module M ′, C-homomorphism π′, and C[x]-homomorphism σ, we also have σ
injective.

The same picture with arrows reversed and “injective” replaced by “surjective” is clearly
a diagrammatic form of the statement that W generates M . Hence in particular a graded
C[x]-module M is co-generated by W iff its graded dual is generated by W ∗.

Typically M and W are spaces of linear functionals and π is a projection. We can also
define co-generation of an C[x]∗Sn-module M by requiring M,M ′, N to have compatible Sn

actions and σ to be Sn-equivariant.

Proposition 4.1.3 A pair (W,π) co-generates M iff no nonzero C[x]-submodule N of M
is contained in Kerπ.
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Proof

Suppose (W,π) co-generates M and N is a C[x]-submodule of M that is contained in

Kerπ. Then we may factor π as W ← M/N
j
← M . By co-generation, j is injective, so

0 = Ker j = N .
Conversely, suppose no nonzero C[x]-submodule N of M is contained in Kerπ, and

suppose we have a commutative diagram as given in Definition 4.1.2. If v ∈ Kerσ, then
πv = π′σv = 0. Thus Kerσ is a C[x]-submodule of M that is contained in Kerπ. By
assumption Kerσ = 0, so σ is injective.

�

Definition 4.1.4 A graded C[x]-module M is co-free if its graded dual M∗ is a free C[x]-
module.

In particular, if W is a finite-dimensional C-module, then W ⊗C C[x]∗ is co-free because its
graded dual is isomorphic to W ∗ ⊗C C[x].

4.2 ModulesMλ,µ Associated to Skew-Linked Partitions

Let C[x] ∗ Sn be the semidirect product. Then a C[x] ∗ Sn module may be regarded
as a C[x1, . . . , xn] module with compatible Sn action. Which C[x] ∗ Sn modules can be
characterized in a similar fashion as Proposition 1.4.8?

Throughout this chapter, we will assume that λ and µ (and other relevant partitions) are
partitions of n.

Proposition 4.2.1 Let V =
(
ε ↑Sn

Sλ′

)
⊗ C[x], the free C[x]-module on our previously con-

sidered induced Sn module. Let W =
(
1 ↑Sn

Sµ

)
⊗ C[x]∗, a co-free C[x]-module on an induced

Sn-module, but we may have µ 6= λ. Let d̄(λ, µ) be the smallest degree d such that there is a
nonzero Sn-module homomorphism

ψ :
(
ε ↑Sn

Sλ′

)
⊗C[x]d→ 1 ↑Sn

Sµ
.

Suppose further that λ and µ are such that ψ is unique up to a constant at d = d̄(λ, µ). Then
up to a constant, there is a unique nonzero C[x]∗Sn homomorphism, homogeneous of degree
zero

φ : V → W [−d̄(λ, µ)].

Its image Mλ,µ is the unique nonzero graded C[x] ∗ Sn module for which there exists the
diagram

V ։ Mλ,µ →֒W [−d̄(λ, µ)]

of homogeneous degree-zero C[x] ∗ Sn homomorphisms.
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Proof

Because V is the free C[x] module generated over its degree zero component ε ↑Sn

Sλ′
, the

uniqueness (up to a constant) of φ is equivalent to the uniqueness (up to a constant) of a

nonzero Sn-homomorphism from ε ↑Sn

Sλ′
toW [−d̄(λ, µ)]0 = W−d̄(λ,µ) =

(
1 ↑Sn

Sµ

)
⊗C[x]∗

−d̄(λ,µ)
∼=

(
1 ↑Sn

Sµ

)
⊗ C[x]d̄(λ,µ).

Now the uniqueness (up to a constant) of nonzero ψ implies 〈
(
ε ↑Sn

Sλ′

)
⊗ C[x]d̄(λ,µ),

1 ↑Sn

Sµ
〉Sn = 1. It follows that 〈ε ↑Sn

Sλ′
,
(
1 ↑Sn

Sµ

)
⊗C[x]d̄(λ,µ)〉Sn = 1. This implies the uniqueness

(up to a constant) of a nonzero Sn-homomorphism from ε ↑Sn

Sλ′
to(

1 ↑Sn

Sµ

)
⊗ C[x]d̄(λ,µ), as desired.

The last statement holds because any module occurring in such a diagram must be the
image of some map V → W [−d̄(λ, µ)], which we just showed is unique up to a constant.

�

Theorem 4.2.2 1. The necessary and sufficient condition for the hypotheses of Proposi-
tion 4.2.1 to hold is that λ be skew-linked to µ (and |λ| = |µ| = n). Hence in this case,
we call Mλ,µ the skew-linked module associated to λ→ µ.

2. In that case, d̄(λ, µ) = top degree of Mλ,µ = n(γ) = |β|, where the skew diagram linking
λ to µ is θ = α/β.

3. Moreover, the degree zero and top degree components of Mλ,µ are irreducible Sn modules
isomorphic to Vλ and Vµ, respectively.

To prove this theorem, we will need several preliminary results. The proof of this theorem
is located after Lemma 4.2.7.

Proposition 4.2.3 We have d̄(λ, µ) = minA∈M(µ,λ′) d(A) = d(λ, µ) (see Definition 3.6.1).
Furthermore,

HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)

has dimension 1 iff the minimizing matrix A is unique, which occurs iff λ is skew-linked to µ.

If λ
α/β
→ µ, then the minimizing matrix is Ā (see Theorem 3.5.4) and d̄(λ, µ) = d(Ā) = |β|.

Proof

Recall Sµ = SC1 × SC2 × . . . from Definition 1.4.2. Fix the Young subgroup Sλ′ =
SB1 × SB2 × . . .. Then the alphabet is partitioned {1, . . . , n} = ⊔jBj = ⊔iCi, and we have
sizes |Bj| = λ′j and |Ci| = µi for all i, j.

Note that
dimC HomSn

( (
ε ↑Sn

Sλ′

)
⊗C[x]d, 1 ↑Sn

Sµ

)
6= 0 ⇐⇒
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0 6= 〈ε ↑Sn

Sλ′
⊗ C[x]d, 1 ↑Sn

Sµ
〉Sn

= 〈
(
ε ↑Sn

Sλ′
⊗ C[x]d

)
↓Sn

Sµ
, 1〉Sµ

= dimC

{
vectors in ε ↑Sn

Sλ′
⊗ C[x]d fixed by Sµ

}

= dimC




∑

h∈Sµ

h




(
ε ↑Sn

Sλ′
⊗ C[x]d

)

The above also holds if “6= 0” is replaced by “= 1”.

We claim that if d < minA∈M(µ,λ′) d(A), then
(∑

h∈Sµ
h
)(

ε ↑Sn

Sλ′
⊗ C[x]d

)
= 0. Note

ε ↑Sn

Sλ′
⊗ C[x]d = CSn·e

〈σe−(−1)σe:σ∈Sλ′ 〉
⊗ C[x]d is spanned by {ge ⊗ xu : g ∈ Sn, |u| = d}. Fix

some g ∈ Sn, |u| = d. Then gSλ′g−1 = Sg(B1) × Sg(B2) × . . .. Note that the matrix A with
entries Ai,j = |g(Bj) ∩ Ci| has row sums µ and column sums λ′.

Suppose for any i, j and any distinct a, b ∈ g(Bj) ∩ Ci we have ua 6= ub. Then∑
a∈g(Bj)∩Ci

ua ≥
(
|g(Bj)∩Ci|

2

)
, so d = |u| ≥

∑
i,j

(
|g(Bj)∩Ci|

2

)
= d(A), a contradiction. Thus

there exist some i, j and some distinct a, b ∈ g(Bj) ∩ Ci such that ua = ub. This means

that the transposition (ab) is in gSλ′g−1 ∩Sµ and fixes xu. But then
(∑

h∈Sµ
h
)

(ge⊗xu) =
(∑

h∈Sµ
h · (ab)

)
(ge⊗ xu) =

(∑
h∈Sµ

h
)

((ab)ge⊗ (ab)xu) = −
(∑

h∈Sµ
h
)

(ge⊗ xu). Thus
(∑

h∈Sµ
h
)

(ge⊗ xu) = 0. But ge⊗ xu was an arbitrary spanning element of ε ↑Sn

Sλ′
⊗ C[x]d.

Hence
(∑

h∈Sµ
h
)(

ε ↑Sn

Sλ′
⊗ C[x]d

)
= 0 and the claim is proved.

Now consider the case d = minA∈M(µ,λ′) d(A). Choose A ∈M(µ, λ′) that minimizes d(A).
Pick an appropriate g ∈ Sn so that |g(Bj) ∩ Ci| = Ai,j for all i, j. Construct monomial xu

so that for each (i, j), {ua : a ∈ g(Bj) ∩ Ci} = {0, 1, . . . , |g(Bj) ∩ Ci| − 1}. Then |u| =∑
i,j

∑
a∈g(Bj)∩Ci

ua =
∑

i,j

(
|g(Bj)∩Ci|

2

)
=
∑

i,j

(
Ai,j

2

)
= d(A). Let Su = {τ ∈ Sn : τu = u}.

Then by construction gSλ′g−1 ∩ Sµ ∩ Su = {1}.

If we write
(∑

h∈Sµ
h
)

(ge⊗ xu) =
∑

w zw ⊗xw with zw ∈ ε ↑
Sn

Sλ′
, then zu =

∑
h∈Sµ∩Su

ge.

Suppose h, h′ ∈ Sµ ∩ Su and h′g ∈ hgSλ′. Then h′ ∈ h(gSλ′g−1), so h−1h′ ∈ gSλ′g−1 ∩
Sµ ∩ Su = {1} and h = h′. This means that

∑
h∈Sµ∩Su

hg consists of elements in different

left cosets of Sn/Sλ′. Thus zu =
∑

h∈Sµ∩Su
ge is a sum of linearly independent elements

in ε ↑Sn

Sλ′
= CSn·e
〈σe−(−1)σe:σ∈Sλ′ 〉

and is nonzero. This implies
(∑

h∈Sµ
h
)

(ge ⊗ xu) 6= 0 too.

Since |u| = d(A) = d, we have
(∑

h∈Sµ
h
)(

ε ↑Sn

Sλ′
⊗ C[x]d

)
6= 0. Therefore, d̄(λ, µ) =

minA∈M(µ,λ′) d(A).

Next we need to show that for d = minA∈M(µ,λ′) d(A), dimC HomSn

( (
ε ↑Sn

Sλ′

)
⊗C[x]d, 1 ↑Sn

Sµ)
= 1 iff the minimizing matrix A is unique. By the second paragraph of this proof, we need

to show that dimC

(∑
h∈Sµ

h
)(

ε ↑Sn

Sλ′
⊗ C[x]d

)
= 1 iff the minimizing matrix A is unique.

First consider the case that there exist distinct matrices A, Ã minimizing d(·). Similar
to above, pick g, g̃ ∈ Sn so that |g(Bj) ∩ Ci| = Ai,j and |g̃(Bj) ∩ Ci| = Ãi,j for all i, j.
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Then gSλ′g−1 = Sg(B1) × Sg(B2) × . . . and g̃Sλ′ g̃−1 = Sg̃(B̃)1
× Sg̃(B̃)2

× . . .. Also similar

to above, construct monomials xu and xũ so that for each (i, j), {ua : a ∈ g(Bj) ∩ Ci} =
{0, 1, . . . , |g(Bj) ∩ Ci| − 1} and {ũa : a ∈ g̃(Bj) ∩ Ci} = {0, 1, . . . , |g̃(Bj) ∩ Ci| − 1}. Then
|u| = d(A) and |ũ| = d(Ã) as before.

By assumption there exist i, j so that Ai,j 6= Ãi,j. Suppose h, h̃ ∈ Su satisfy hg ∈ h̃g̃Sλ′.
Because Sλ′ fixes Bi, the sets Q = hg(Bi) and Q̃ = h̃g̃(Bi) are equal. By construction, g(Bi)
contains Ai,j elements of Cj. Since h ∈ Su, Q also contains Ai,j elements of Cj. Similarly,
Q̃ contains Ãi,j elements of Cj. This contradicts Q = Q̃ because Ai,j 6= Ãi,j. Thus for any
h, h̃ ∈ Su, hg and h̃g̃ are in different left cosets of Sn/Sλ′ .

Since ε ↑Sn

Sλ′
⊗ C[x]d = CSn·e

〈σe−(−1)σe:σ∈Sλ′ 〉
⊗ C[x]d = ⊕left cosets σSλ′ (Cσe ⊗ C[x]d), we see

that
(∑

h∈Sµ
h
)

(ge ⊗ xu) and
(∑

h∈Sµ
h
)

(g̃e ⊗ xũ) belong in different direct summands of

ε ↑Sn

Sλ′
⊗C[x]d. Now the argument four paragraphs above shows that

(∑
h∈Sµ

h
)

(ge⊗xu) 6= 0

and
(∑

h∈Sµ
h
)

(g̃e⊗xũ) 6= 0. Therefore,
(∑

h∈Sµ
h
)

(ge⊗xu) and
(∑

h∈Sµ
h
)

(g̃e⊗xũ) are

linearly independent and dimC

(∑
h∈Sµ

h
) (

ε ↑Sn

Sλ′
⊗ C[x]d

)
≥ 2.

Now consider the case that the minimizing matrix A is unique. We claim that for any

g, g̃ ∈ Sn and u, ũ with |u| = |ũ| = d(A), v =
(∑

h∈Sµ
h
)

(ge⊗xu) and ṽ =
(∑

h∈Sµ
h
)

(g̃e⊗

xũ) are linearly dependent. If either is zero then we are done. We saw above that if there exist
i, j and some distinct a, b ∈ g(Bj)∩ Ci such that ua = ub, then v = 0. Thus we may assume
no such occurrence exists, and also for the ṽ version. In that case, we saw that |u| is at least
the degree of the matrix with (i, j) entry equal to |g(Bj)∩Ci|, and this matrix is in M(µ, λ′).
Since |u| = d(A), by unique minimization this matrix must be A. Hence |g(Bj) ∩ Ci| = Ai,j

for all i, j, and similarly |g̃(Bj) ∩ Ci| = Ai,j. Furthermore, we can only have equality
|u| = d(A) = |ũ| if in fact {ua : a ∈ g(Bj)∩Ci} = {0, 1, . . . , Ai,j−1} = {ũa : a ∈ g̃(Bj)∩Ci}.

This last fact allows us to define τ ∈ Sn as follows: For a ∈ {1, . . . , n}, there exist unique
i, j such that a ∈ g(Bj) ∩ Ci. Set τ (a) to be the unique letter in g̃(Bj) ∩ Ci such that
ũτ (a) = ua. Then τ (xu) = xũ.

Since τ maps g(Bj) ∩ Ci bijectively to g̃(Bj) ∩ Ci, τ permutes within each Ci and is in
Sµ. Furthermore, τg(Bj) = ∪jτ (g(Bj)∩Ci) = ∪j g̃(Bj)∩Ci = g̃(Bj), so τg and g̃ are in the

same left coset of Sn/Sλ′. Thus we have v =
(∑

h∈Sµ
h
)

(ge⊗xu) =
(∑

h∈Sµ
hτ
)

(ge⊗xu) =
(∑

h∈Sµ
h
)

(τge ⊗ τ (xu)) = (−1)g̃−1τg
(∑

h∈Sµ
h
)

(g̃e⊗ xũ) = ±ṽ, and the claim is proved.

It follows that dimC

(∑
h∈Sµ

h
)(

ε ↑Sn

Sλ′
⊗ C[x]d

)
≤ 1. But above we already exhibited a

nonzero element in this space, so the dimension is exactly 1.

Therefore, HomSn

( (
ε ↑Sn

Sλ′

)
⊗C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)
has dimension 1 iff the minimizing matrix

A is unique. By Theorem 3.5.4, this is equivalent to λ being skew-linked to µ.
The last statement comes from Theorem 3.5.4.

�
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Lemma 4.2.4 Suppose λ→ µ. Then

HomSn

(
ε ↑Sn

Sλ′
,
(
1 ↑Sn

Sµ

)
⊗ C[x]d

)

is zero for d < d̄(λ, µ) and has dimension 1 for d = d̄(λ, µ).

Proof

This follows from Proposition 4.2.3 and the following observations for any Sn-modules
M,N, P :

• HomSn(M,N) = 0 iff 〈M,N〉Sn = 0.

• dimC HomSn(M,N) = 1 iff 〈M,N〉Sn = 1.

• 〈M ⊗ P,N〉Sn = 〈M,N ⊗ P 〉Sn .

�

Proposition 4.2.5 Suppose λ → µ. By Proposition 4.2.3, there exists unique (up to

a constant) nonzero ψ ∈ HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)
. By Lemma 4.2.4 and

C[x]d̄(λ,µ)
∼=Sn C[x]∗−d̄(λ,µ), there exists unique (up to a constant) nonzero ξ ∈ HomSn

(
ε ↑Sn

Sλ′

,
(
1 ↑Sn

Sµ

)
⊗ C[x]

∗
−d̄(λ,µ)

)
. By Proposition 1.4.7, ε ↑Sn

Sλ′
contains a unique copy of Vλ, and

1 ↑Sn

Sµ
contains a unique copy of Vµ.

1. With respect to these embeddings, ψ restricted to Vλ⊗C[x]d̄(λ,µ) is nonzero, has the same
image as ψ, and maps into Vµ (and thus onto because Vµ is irreducible). Furthermore,
ψ restricted to Vλ⊗C[x]d̄(λ,µ) is the unique (up to a constant) Sn-homomorphism from
Vλ ⊗ C[x]d̄(λ,µ) to Vµ.

2. With respect to these embeddings, ξ restricted to Vλ is nonzero, has the same image as
ξ, and maps into Vµ ⊗ C[x]d̄(λ,µ). Furthermore, ξ restricted to Vλ is the unique (up to
a constant) Sn-homomorphism from Vλ to Vµ ⊗ C[x]

∗
−d̄(λ,µ).

Proof

Proposition 1.4.7 states that ε ↑Sn

Sλ′

∼= ⊕γ≤λ

(
Vγ
⊕Kγ′,λ′

)
and 1 ↑Sn

Sµ

∼= ⊕η≥µ

(
Vη
⊕Kη,µ

)
. Thus

HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)
∼= ⊕γ≤λ,η≥µ HomSn

(
Vγ ⊗C[x]d̄(λ,µ), Vη

)⊕Kγ′ ,λ′Kη,µ
.

Suppose γ ≤ λ and η ≥ µ with at least one inequality. Then by Proposition 4.2.3 and

Proposition 3.6.5, d̄(γ, η) = d(γ, η) > d(λ, µ). Hence by Proposition 4.2.3, HomSn

( (
ε ↑Sn

Sγ′

)
⊗

C[x]d̄(λ,µ), 1 ↑Sn

Sη

)
= 0. But Vγ ⊗C[x]d̄(λ,µ) embeds into ε ↑Sn

Sγ′
⊗C[x]d̄(λ,µ) and Vη embeds into

1 ↑Sn

Sη
. Thus HomSn

(
Vγ ⊗ C[x]d̄(λ,µ), Vη

)
= 0.

So within HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)
, all components are zero except

HomSn

(
Vλ ⊗C[x]d̄(λ,µ), Vµ

)
(where Kλ′,λ′Kµ,mu = 1). Because
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HomSn

( (
ε ↑Sn

Sλ′

)
⊗C[x]d̄(λ,µ), 1 ↑Sn

Sµ

)
has dimension 1, we have proven the desired statements

about ψ.
For ξ, use the fact C[x]d̄(λ,µ)

∼=Sn C[x]∗−d̄(λ,µ), use the above arguments except with
C[x]d̄(λ,µ) tensored on the other side, and use Lemma 4.2.4 instead of Proposition 4.2.3.

�

Corollary 4.2.6 Suppose λ→ µ.

1. d = d̄(λ, µ) is the smallest degree d such that Vλ⊗C[x]d contains a copy of the irreducible
Vµ. At d = d̄(λ, µ), there is exactly one copy.

2. d = d̄(λ, µ) is the smallest degree d such that Vµ⊗C[x]d contains a copy of the irreducible
Vλ. At d = d̄(λ, µ), there is exactly one copy.

3. Define ν as in Definition 2.3.5. Then 〈Vλ ⊗ Vν , Vµ〉Sn = 1.

Proof

Proposition 4.2.5 shows that there is a unique (up to a constant) Sn-homomorphism
Vλ ⊗C[x]d̄(λ,µ) → Vµ, so Vλ ⊗C[x]d̄(λ,µ) contains exactly one copy of Vµ. If d < d̄(λ, µ), then

HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d, 1 ↑Sn

Sµ

)
= 0. Since Vλ ⊗ C[x]d embeds into ε ↑Sn

Sλ′
⊗C[x]d and Vµ

embeds into 1 ↑Sn

Sµ
, we have HomSn

(
Vλ ⊗C[x]d, Vµ

)
= 0. Thus Vλ ⊗C[x]d contains no copy

of Vµ for d < d̄(λ, µ), and (1) holds.
Now 〈Vλ ⊗ C[x]d, Vµ〉Sn = 〈Vλ, Vµ ⊗ C[x]d〉Sn . If d = d̄(λ, µ), then LHS = 1 by (1), so

RHS = 1 and Vµ ⊗ C[x]d̄(λ,µ) contains exactly one copy of Vλ. If d < d̄(λ, µ), then LHS = 0
by (1), so RHS = 0 and Vµ ⊗ C[x]d̄(λ,µ) contains no copy of Vλ. Thus (2) holds.

For (3), revisit the proof of Proposition 4.2.3. In the case that the minimizingA is unique

(and thus A = Ā by Theorem 3.5.4), we saw that if
(∑

h∈Sµ
h
)

(ge ⊗ xu) is nonzero, then

{ua : a ∈ g(Bj)∩Ci} = {0, 1, . . . , Ai,j−1} for all i, j. Recall Āi,j = (γi)′j. Then for i, j, p ≥ 1,
p − 1 ∈ {0, 1, . . . , Ai,j − 1} ⇐⇒ Āi,j ≥ p ⇐⇒ λri,p

≥ j. So for fixed i and p, the number
of occurrences of p − 1 in the multiset ∪j{0, 1, . . . , Ai,j − 1} is λri,p

. Thus the number of
occurrences of p−1 in the multiset {u1, u2, . . . , un} = ∪i∪j {0, 1, . . . , Ai,j−1} is

∑
i λri,p

= νi.
Therefore, u is a permutation of (0ν11ν22ν3 . . .).

Let W̃ be the span of degree-d(Ā) monomials xu such that u is not a permutation of
(0ν11ν22ν3 . . .). Then the preceding paragraph implies that ε ↑Sn

Sλ′
⊗W̃ is annihilated by(∑

h∈Sµ
h
)

= aµ. Thus, Vλ ⊗ W̃ ⊂ ε ↑Sn

Sλ′
⊗W̃ is also annihilated by c̃µ = bµaµ and

contains no copy of Vµ by Corollary 1.4.5. Now d(Ā) = d̄(λ, µ) and C[x]d̄(λ,µ) = W̃ ⊕Uν (see

Proposition 1.4.7). Thus (1) implies 1 = 〈Vλ ⊗ C[x]d̄(λ,µ), Vµ〉Sn = 〈Vλ ⊗ W̃ , Vµ〉Sn + 〈Vλ ⊗
Uν , Vµ〉Sn = 〈Vλ ⊗ Uν , Vµ〉Sn .

By Proposition 1.4.7, Uν contains irreducible Vη only if η ≥ ν. Take η ≥6= ν. We have
embeddings Vη ⊂ Uη ⊂ C[x]n(η). Now n(η) < n(ν) = d̄(λ, µ), so by (1), Vλ⊗C[x]n(η) contains
no copy of Vµ. Thus neither does Vλ⊗Vη . By Proposition 1.4.7 we have 1 = 〈Vλ⊗Uν, Vµ〉Sn =∑

η≥ν Kη,ν〈Vλ ⊗ Vη, Vµ〉Sn = Kν,ν〈Vλ ⊗ Vν , Vµ〉Sn = 〈Vλ ⊗ Vν , Vµ〉Sn .
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Lemma 4.2.7 1. If κ ∈ C[x]∗ \ {0}, then there exists monomial xu such that xuκ ∈
C[x]∗0 \ {0}.

2. For any Sn-module M , consider M ⊗ C[x]∗ as a graded module over C[x] ∗ Sn. If κ
is a nonzero element in M ⊗ C[x]∗, then there exists monomial xu such that xuκ is a
nonzero element in (M ⊗ C[x]∗)0.

Proof

1. Since κ 6= 0, we may write κ =
∑0

i=d κi for κi ∈ C[x]∗i , d ≤ 0, and κd 6= 0. Since κd

is a nonzero linear functional on C[x]−d, there exists monomial xu ∈ C[x]−d such that
κd(x

u) 6= 0. Then xuκd is a nonzero element in C[x]∗0. Now for i > d, xuκi has degree
i− d > 0 and is thus zero. Therefore, xuκ = xuκd is a nonzero element in C[x]∗0.

2. Let B be a basis of M over C. Then M ⊗ C[x]∗ = ⊕v∈BCv ⊗ C[x]∗, where each
Cv ⊗ C[x]∗ ∼= C[x]∗ as a C[x]-module and we may apply part (1) to it.

Now κ may be written as
∑

v∈B′ zv for zv ∈ (Cv ⊗C[x]∗)\{0} and nonzero finite subset
B′ ⊂ B. For each zv, choose xuv according to part (1). Choose v′ ∈ B′ with |uv′ | =
d = maxv∈B′ |uv|. Then for all v ∈ B′, xuv′zv either has positive degree and is zero, or
has degree zero. Thus xuv′zv ∈ Cv ⊗ C[x]∗0. Now (M ⊗ C[x]∗)0 = ⊕v∈B (Cv ⊗ C[x]∗0),
so the sum xuv′κ =

∑
v∈B′ x

uv′zv is zero iff all summands are zero. But the summand
xuv′zv′ is nonzero, so xuv′κ is a nonzero degree zero element.

�

Now we are ready to prove Theorem 4.2.2.
Proof

Statement (1) follows from Proposition 4.2.3. For the rest of the proof, assume λ
α/β
→ µ.

The argument in Proposition 4.2.1 shows that at degree zero, φ is a nonzero

Sn-homomorphism φ0 from ε ↑Sn

Sλ′
to
(
1 ↑Sn

Sµ

)
⊗C[x]∗

−d̄(λ,µ)
. So φ0 is a nonzero scalar multiple

of the ξ in Proposition 4.2.5. By Proposition 4.2.5 (2), φ0 restricted to Vλ is nonzero and has
the same image as φ0. Now since Vλ is irreducible, Ker(φ0|Vλ

) = 0. Thus Vλ
∼= Im(φ0|Vλ

) =
Im(φ0) = (Mλ,µ)0.

In particular, there exists v ∈ ε ↑Sn

Sλ′
= V0 such that φ0(v) ∈ (Mλ,µ)0 is nonzero. By

Lemma 4.2.7 applied to φ0(v), there exists monomial xu such that φ(xuv) = xuφ0(v) is a

nonzero element of
(
1 ↑Sn

Sµ

)
⊗C[x]∗0 = W [−d̄(λ, µ)]d̄(λ,µ). Thus xuv has degree d̄(λ, µ). Hence

φd̄(λ,µ) : Vd̄(λ,µ) → W0 is nonzero, and it has image isomorphic to Vµ by Proposition 4.2.5.
Since (Mλ,µ)d̄(λ,µ) is the image of φd̄(λ,µ), it is also ismorphic to Vµ.

Now for d > d̄(λ, µ), (Mλ,µ)d ⊂W [−d̄(λ, µ)]d = 0. So Mλ,µ has top degree at d̄(λ, µ) and
statement (3) holds. Statement (2) also holds by Theorem 3.5.4.
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We end by summarizing the relationships between d, d̄, Ā, λ, µ.

Proposition 4.2.8 1. For any partitions λ, µ of size n,

d̄(λ, µ) = d(λ, µ) = min
A∈M(µ,λ′)

d(A)

is the minimum degree d where there exists nonzero Sn-homomorphism

ψ :
(
ε ↑Sn

Sλ′

)
⊗C[x]d→ 1 ↑Sn

Sµ
.

2. If furthermore λ
α/β
→ µ, then d(Ā) = d(λ, µ) = |β| uniquely achieves the minimum

degree, and ψ exists uniquely up to a constant.

4.3 Properties of Skew-Linked Modules

We propose two alternate and closely related formulations of Mλ,µ. The second and third
formulations will be very useful.

Proposition 4.3.1 Suppose λ→ µ. Recall Mλ,µ is defined to be the image of φ in Proposi-
tion 4.2.1.

1. Up to a constant, there is a unique nonzero C[x] ∗ Sn homomorphism, homogeneous of
degree zero

φ̃ : Vλ ⊗C[x]→ (Vµ ⊗ C[x]∗) [−d̄(λ, µ)].

Its image is the previously defined Mλ,µ. Furthermore, Mλ,µ is the unique nonzero
graded C[x] ∗ Sn module for which there exists the diagram

Vλ ⊗ C[x] ։ Mλ,µ →֒ (Vµ ⊗C[x]∗) [−d̄(λ, µ)]

of homogeneous degree-zero C[x] ∗ Sn homomorphisms.

2. By Corollary 4.2.6, Vλ ⊗ C[x]d̄(λ,µ) contains a unique copy of Vµ. Denote this copy by
N . Let Iλ,µ be the largest homogeneous (C[x] ∗ Sn)-submodule of Vλ ⊗ C[x] with zero
intersection with N . Then Iλ,µ = Ker(φ̃), so Mλ,µ = Im(φ̃) ∼= (Vλ ⊗ C[x])/Iλ,µ.

3. Recall that ε ↑Sn

Sλ′
contains a unique copy of Vλ and decomposes as Vλ⊕ L for a unique

Sn-submodule L. Let Jλ,µ be the largest homogeneous (C[x] ∗ Sn)-submodule of V =(
ε ↑Sn

Sλ′

)
⊗C[x] with zero intersection with N . Then Ker(φ) = Jλ,µ = Iλ,µ⊕ (L⊗C[x]),

so Mλ,µ = Im(φ) = V/Jλ,µ.
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Proof

By Corollary 4.2.6 (2), there exists a unique (up to constant) Sn-homomorphism Vλ =
(Vλ ⊗ C[x])0 → (Vµ ⊗C[x]∗) [−d̄(λ, µ)]0 ∼= Vµ⊗C[x]d̄(λ,µ). Since Vλ⊗C[x] is freely generated

over C[x] by Vλ, the desired φ̃ also exists uniquely up to a constant.
By Proposition 4.2.5 and uniquness of φ̃0, φ̃0 is a nonzero scalar multiple of ξ restricted

to Vλ ⊂ ε ↑Sn

Sλ′
. But φ0 is a nonzero scalar multiple of ξ (see the proof of Theorem 4.2.2).

So by Proposition 4.2.5 again, (Mλ,µ)0 = Im(φ0) = Im(ξ) = Im(ξ|Vλ
) = Im(φ̃0). Now

Mλ,µ = Im(φ) is generated by (Mλ,µ)0 = Im(φ0) because the domain of φ is generated by
its degree zero component. For the same reason, Im(φ̃) is generated by Im(φ̃0). Therefore,
Mλ,µ = Im(φ̃) and φ̃ factors through Mλ,µ in the desired diagram. For the uniqueness in the
last statement in (1), note that the middle term in any such diagram is the image of some
map Vλ⊗C[x]→ (Vµ ⊗ C[x]∗) [−d̄(λ, µ)], which we showed above is unique up to a constant.

Now N is the Vµ-isotypic component of Vλ ⊗ C[x]d̄(λ,µ). Let N ′ be the direct sum of all
other isotypic components. Then Vλ⊗C[x]d̄(λ,µ) = N ⊕N ′. Suppose N ′′ is an Sn-submodule
of Vλ ⊗ C[x]d̄(λ,µ). Then N ′′ = (N ∩ N ′′) ⊕ (N ′ ∩ N ′′), so N ∩ N ′′ = 0 iff N ′ ∩ N ′′ = N ′′

iff N ′′ ⊂ N ′. Hence for homogeneous (C[x] ∗ Sn)-submodules I ⊂ Vλ ⊗ C[x], I ∩ N = 0
iff
(
I ∩ (Vλ ⊗ C[x]d̄(λ,µ))

)
∩ N = 0 iff I ∩ (Vλ ⊗ C[x]d̄(λ,µ)) ⊂ N ′. Since the last condition is

preserved under infinite sums of submodules, there exists a largest homogeneous submodule
Iλ,µ satisfying the last condition. Therefore, Iλ,µ is well-defined.

Recall Im(φ̃d̄(λ,µ)) = (Mλ,µ)d̄(λ,µ)
∼= Vµ by Theorem 4.2.2. Since N is the unique copy

of Vµ in Vλ ⊗ C[x]d̄(λ,µ), φ̃ maps N isomorphically onto its image and maps N ′ to 0. Thus

Ker(φ̃) ∩ N = 0 and Ker(φ̃) ⊂ Iλ,µ.
Conversely, suppose Iλ,µ\Ker(φ̃) is nonempty, and pick some v in the set. By homogeneity

of Iλ,µ and Ker(φ̃), we may assume v is homogeneous of say degree d. Since φ̃(v) 6= 0,
d ≤ d̄(λ, µ). By Lemma 4.2.7, there exists monomial xu of degree d̄(λ, µ) − d such that
φ̃(xuv) = xuφ̃(v) is a nonzero element of Vµ ⊗C[x]∗0. Thus xuv 6∈ N ′ (since φ̃(N ′) = 0). But
xuv ∈ Iλ,µ ∩ (Vλ ⊗C[x]d̄(λ,µ)), so Iλ,µ ∩ (Vλ ⊗C[x]d̄(λ,µ)) 6⊂ N ′, contradicting the construction

of Iλ,µ. Therefore, Ker(φ̃) = Iλ,µ and we have proved (2).
For (3), the last two paragraphs in the proof of Proposition 4.2.5 show that

HomSn(L,
(
1 ↑Sn

Sµ

)
⊗ C[x]∗−d̄(λ,µ)) = 0. Thus φ|L = 0 and all parts of (3) follow from (2).

�

Definition 4.3.2 (Skew-linked characters) Given λ
α/β
→ µ, define Pλ,µ(z; t) to be the Frobe-

nius characteristic of Mλ,µ.

Proposition 4.3.3 Suppose λ
α/β
→ µ.

1. We may write

Pλ,µ(z; t) = t|β|sµ(z) +
∑

η 6=λ,µ

fη(t)sη(z) + sλ(z)

where each fη(t) ∈ tN[t] has degree < |β| = d̄(λ, µ).
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2. If λ = µ, then Pλ,µ(z, t) = sλ(z).

3. If µ = (n), then Pλ,µ(z, t) = tn(λ)Hλ(z; t
−1).

4. Pµ′,λ′(z; t) is also defined because µ′
α′/β′

→ λ′ by Lemma 2.1.3. It has the form

Pµ′,λ′(z; t) = t|β|ωPλ,µ(z; t
−1) = sµ′(z) + t|β|

∑

η 6=λ,µ

fη(t
−1)sηt(z) + t|β|sλ′(z).

5. Mλ,µ has a unique (up to a constant) Sλ′-antisymmetric element, which occurs in the
bottom degree and generates Mλ,µ. Mλ,µ also has a unique (up to a constant) Sµ-
invariant linear function, which occurs in the top degree and co-generates Mλ,µ.

Proof

(2) immediately follows from Theorem 4.2.2. Most of (1) is shown by Theorem 4.2.2, but
it remains to show that Vµ and Vλ do not appear in degrees 1, . . . , |β| − 1 of Mλ,µ.

Suppose 1 ≤ d < |β| = d̄(λ, µ). Then V ⊗ C[x]d does not contain Vµ. But (Mλ,µ)d is
an Sn-quotient of V ⊗ C[x]d, so (Mλ,µ)d also does not contain Vµ. Now 〈Vλ,W [−|β|]d〉Sn =
〈Vλ, Vµ⊗C[x]|β|−d〉Sn = 〈Vµ, Vλ⊗C[x]|β|−d〉Sn = 0 since |β|−d < |β|. Thus W [−|β|]d contains
no Vλ. But (Mλ,µ)d is an Sn-submodule of W [−|β|]d, so (Mλ,µ)d also contains no Vλ. Hence
(1) is proved.

Now for any Sn-module M , 〈ε ⊗
(
ε ↑Sn

Sλ′

)
,M〉Sn = 〈ε ↑Sn

Sλ′
, ε ⊗M〉Sn = 〈ε, (ε ⊗M) ↓Sn

Sλ′

〉Sλ′ = 〈ε, ε ⊗
(
M ↓Sn

Sλ′

)
〉Sλ′ = 〈ε ⊗ ε,M ↓Sn

Sλ′
〉Sλ′ = 〈1,M ↓Sn

Sλ′
〉Sλ′ = 〈1 ↑Sn

Sλ′
,M〉Sn . Thus

ε ⊗
(
ε ↑Sn

Sλ′

)
∼= 1 ↑Sn

Sλ′
. Similarly, 〈ε ⊗

(
1 ↑Sn

Sµ

)
,M〉Sn = 〈1 ↑Sn

Sµ
, ε ⊗M〉Sn = 〈1, (ε ⊗M) ↓Sn

Sµ

〉Sµ = 〈1, ε ⊗
(
M ↓Sn

Sµ

)
〉Sµ = 〈ε,M ↓Sn

Sµ
〉Sµ = 〈ε ↑Sn

Sµ
,M〉Sn . Thus ε⊗

(
1 ↑Sn

Sµ

)
∼= ε ↑Sn

Sµ
.

By Proposition 4.2.1, φ factors as V ։ Mλ,µ →֒W [−d̄(λ, µ)], where V =
(
ε ↑Sn

Sλ′

)
⊗C[x]

and W =
(
1 ↑Sn

Sµ

)
⊗ C[x]∗. Suppose we take the graded dual of this diagram, then tensor

with ε, then shift degree by |β|. The result is the diagram

ε⊗W ∗
։ ε⊗M∗

λ,µ[−|β|] →֒ (ε⊗ V ∗)[−|β|].

Now ε⊗W ∗ ∼= ε⊗
(
1 ↑Sn

Sµ

)
⊗C[x] ∼=

(
ε ↑Sn

Sµ

)
⊗C[x]. Also, ε⊗V ∗ ∼= ε⊗

(
ε ↑Sn

Sλ′

)
⊗C[x]∗ ∼=

(
1 ↑Sn

Sλ′

)
⊗ C[x]∗. Hence the above diagram is

(
ε ↑Sn

S(µ′)′

)
⊗ C[x] ։ ε⊗M∗

λ,µ[−|β|] →֒
((

1 ↑Sn

Sλ′

)
⊗ C[x]∗

)
[−|β|].

But µ′
α′/β′

→ λ′ by Lemma 2.1.3. Because |β ′| = |β|, the last statement of Proposition 4.2.1
implies that Mµ′,λ′ ∼= ε ⊗M∗λ,µ[−|β|]. The implies (4) because taking graded dual reverses
the degrees, while tensoring with ε changes each copy of Vη to Vη′.
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Recall that the Garsia-Procesi module Rλ is the quotient C[x]/Iλ, where Iλ is the largest
homogeneous Sn-invariant ideal having zero intersection with the unique copy of Vλ in
C[x]n(λ). By a similar argument as Proposition 4.3.1, Rλ fits into a diagram of nonzero
homogeneous degree-zero C[x] ∗ Sn homomorphisms

C[x] = V(n) ⊗ C[x] ։ Rλ →֒ (Vλ ⊗ C[x]∗) [−n(λ)].

Dualizing this produces the diagram

Vλ ⊗ C[x] ։ R∗λ[−n(λ)] →֒
(
V(n) ⊗C[x]∗

)
[−n(λ)].

Now λ
α̂/β̂
→ (n) with |β̂| = n(λ), so by the last statement of Proposition 4.2.1, we must

have Mλ,(n)
∼= R∗λ[−n(λ)]. Recall from Theorem 1.7.4 that the Frobenius series of Rλ is

Hλ(z; t). Dualizing reverses the degrees, so Mλ,(n) has Frobenius series tn(λ)Hλ(z; t
−1). This

proves (3).
For the first part of (5), note that the Sλ′-antisymmetric subspace of Mλ,µ is bλMλ,µ. Now

the multiplicity of Vλ in an Sn-module W is dimC cλW by [5]. By part (1), this dimension
is 0 except at the bottom degree. Since cλ = aλbλ, bλ kills Mλ,µ above the bottom degree.
The bottom degree consists of a copy of Vλ, which has a one-dimensional Sλ′-antisymmetric
subspace. Therefore, Mλ,µ has a unique (up to a constant) Sλ′-antisymmetric element w,
and it is at the bottom degree.

By Proposition 4.3.1(1), we may choose w̃ ∈ (Vλ ⊗ C[x])0
∼= Vλ so that φ̃(w̃) = w. Then

w̃ 6= 0, so it generates Vλ and thus Vλ⊗C[x]. A generator of the domain maps to a generator
of the image, so w generates Mλ,µ.

For the second part of (5), note that the Sµ-symmetric subspace of Mλ,µ is aµMλ,µ. By
part (1) and Corollary 1.4.5, c̃µ = bµaµ kills Mλ,µ below the top degree, so aµ does too.
The top degree consists of a copy of Vµ, so it has a one-dimensional Sµ-symmetric subspace.
Therefore, Mλ,µ has a unique (up to a constant) Sµ-symmetric element w′. Fix a projection

Mλ,µ

π
։ Cw′.

Let M̃ be a nonzero C[x] ∗ Sn-submodule of Mλ,µ. Choose some nonzero v ∈ M̃ . Since

Mλ,µ ⊂ W =
(
1 ↑Sn

Sµ

)
⊗ C[x]∗, Lemma 4.2.7 implies that for some monomial xu, xuv is a

nonzero element in the top degree of W . But xuv ∈ M̃ too, so M̃ intersects the top degree of
Mλ,µ. Since the top degree is an irreducible Sn-module, w′ ∈ M̃ and M̃ 6⊂ Kerπ. Therefore,
by Definition 4.1.2 Mλ,µ is co-generated by w′ (or more precisely, by Cw′ and π).

�

4.4 Relationship to k-Schur Functions

Proposition 4.4.1 [13] Given a k-bounded partition λ, there exists a unique skew shape
θ = α/β such that

1. θ has the same corresponding row lengths as λ;
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2. α is a (k + 1)-core; and

3. β ⊂ α consists of the set of boxes with hook length > k + 1 in α.

Furthermore, θ has weakly decreasing column lengths that form a k-bounded partition λωk

called the k-conjugate of λ. The operation of taking the k-conjugate is an involution on the
set of k-bounded partitions.

Corollary 4.4.2 If λ is k-bounded, then it is skew-linked to the transpose of its k-conjugate
via the unique skew shape given in Proposition 4.4.1.

Our primary interest in the skew-linked modules is the following:

Conjecture 4.4.3 Suppose λ is k-bounded. Then Pλ,(λωk )′(z; t) equals the k-Schur function

s
(k)
λ (z; t) of Lascoux, Lapointe, and Morse.

The k-Schur functions currently have a number of different definitions, no pair of which
have been proven to coincide. (Two of them were reviewed in Sections 1.10 and 1.11.) But
there is strong computational evidence that they do coincide. Here are some properties of
k-Schur functions that follow from various definitions or are computationally observed:

1. Suppose λ is k-bounded and skew-linked to µ = (λωk)′ by α/β. Then s
(k)
λ (z; t) can be

written in the form
t|β|sµ(z) +

∑

η 6=λ,µ

fη(t)sη(z) + sλ(z)

where each fη(t) ∈ tN[t] has degree < |β|.

2. s
(k)
λωk (z; t) = t|β|ω(s

(k)
λ (z; t−1)), where ω is the involution of Λ exchanging hν with eν and

sν with sν′ .

3. If all hook lengths in λ are at most k, then λωk = λ and s
(k)
λ (z; t) = sλ(z).

These match the properties of the skew-linked characters Pλ,µ(z; t) in the case µ = (λωk)′

(see Proposition 4.3.3). Thus we consider Pλ,µ(z; t) to be a (conjectured) generalization of
k-Schur functions.

4.5 Investigating the Unique Copy of Vµ

Lemma 4.5.1 Let T be a standard tableau of shape λ. Suppose there exist distinct letters
p, q ∈ {1, . . . , n} that appear in the same column of T and the same row of T0. Also suppose
monomial xu satisfies up = uq. Then c̃µeTxu = 0.

Proof

Suppose such p, q exist. Then (p, q) preserves xu. It swaps two elements in the same
column of T and negates eT . Thus (p, q)eTxu = −eTxu. Now {(), (p, q)} is a subgroup of Q,
so we can find left coset representatives g1, . . . , gt. Then c̃µeTxu =

∑
i bµgi(1+(p, q))eTxu = 0.
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Recall Ci is the set of letters in the jth row of T0, and Sµ = SC1 × SC2 × . . . from
Definition 1.4.2 was used to define aµ =

∑
g∈Sµ

g.

Definition 4.5.2 Suppose λ
α/β
→ µ. Consider pairs (T,xu) where T is a standard tableau of

shape λ and xu has degree |β| = d(Ā). Let BT,j be the set of letters in the jth column of T .
Let Ω be the set of pairs (T,xu) satisfying:

1. |BT,j ∩ Ci| = Āi,j for all i, j;

2. {ua : a ∈ BT,j ∩ Ci} = {0, 1, . . . , Āi,j − 1} for all i, j.

Let Ω′ be the set of all other pairs (T,xu).

Proposition 4.5.3 1. If (T,xu) ∈ Ω, then c̃µeTxu 6= 0.

2. If (T,xu) ∈ Ω′, then c̃µeT xu = 0.

Proof

Suppose T is a standard tableau of shape λ and c̃µeTxu 6= 0. By Lemma 4.5.1, for any i, j,
{ua : a ∈ BT,j ∩ Ci} contains distinct elements. The matrix A defined by Ai,j = |BT,j ∩ Ci|

is in Mµ,λ′. So d(Ā) = |u| ≥
∑

i,j

(
|BT,j∩Ci|

2

)
= d(A) ≥ d(Ā), and every step must be an

equality. This implies that A = Ā and {ua : a ∈ BT,j ∩ Ci} = {0, 1, . . . , |BT,j ∩ Ci| − 1} =
{0, 1, . . . , Ai,j − 1} = {0, 1, . . . , Āi,j − 1}. Hence (T,xu) ∈ Ω and (2) holds.

Conversely, suppose (T,xu), (T̃ ,xũ) ∈ Ω. Define τ ∈ Sn as follows: For a ∈ {1, . . . , n},
there exist unique i, j such that a ∈ BT,j ∩ Ci. By Definition 4.5.2(2), there is a unique
letter τ (a) in BT̃i

∩ Ci such that ũτ (a) = ua. Since τ is injective, it is a permutation. By
construction τ (xu) = xũ.

Since τ maps BT,j ∩ Ci bijectively to BT̃ ,j ∩ Ci, τ permutes within each Ci and is in

Sµ. Furthermore, τBT,j = ∪jτ (BT,j ∩ Ci) = ∪j(BT̃ ,j ∩ Ci) = BT̃ ,j. Thus τT and T̃ have
the same sets of letters in corresponding columns. Hence τeT = eτT = ±eT̃ . Thus we have

c̃µeTxu = bµ
(∑

h∈Sµ
hτ
)
eTxu = bµ

(∑
h∈Sµ

h
)

(τ (eT )τ (xu)) = ±bµaµ(eT̃xũ) = ±c̃µeT̃xũ.

By Corollary 4.2.6 and Corollary 1.4.5, dimC c̃µ(Vλ⊗C[x]d(Ā)) = 1. Now Vλ⊗C[x]d(Ā) =
spanC{eTxu : (T, u) ∈ Ω}⊕ spanC{eTxu : (T, u) ∈ Ω′}. By (2), dimC spanC{c̃µeTxu : (T, u) ∈
Ω′} = 0, so we must have dimC spanC{c̃µeTxu : (T, u) ∈ Ω} = 1. Above we showed that
{c̃µeTxu : (T, u) ∈ Ω} consists of terms that are ± of each other. Thus all of them are
nonzero, and (1) holds.

The astute reader will notice that this is very similar to the same argument used in
Proposition 4.2.3.

�
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The following proposition gets us closer to understanding the second formulation of Mλ,µ

in Proposition 4.3.1:

Proposition 4.5.4 Suppose λ→ µ and (T, u) ∈ Ω. Then aµeTxu generates the unique copy
of Vµ in Vλ ⊗C C[x]d(Ā) as an Sn-module.

Proof

By Wedderburn theory, R = CSn is the direct sum of isotypic components Mγ with
MγMσ = 0 if γ 6= σ and MγMγ = Mγ. Now ⊕β≥µ(Vβ

⊕Kβ,µ) ∼= Uµ
∼= Raµ ⊂ R = ⊕γMγ , so

Raµ has isotypic decomposition Raµ = ⊕β≥µWβ with Wβ ⊂Mβ .
The irreducible Vα = Rcα has submodule RaµVα, so RaµVα is either 0 or Vα. Suppose

α 6≥ µ. Then RaµVα
∼= RaµRcα =

∑
β≥µ WβRcα ⊂

∑
β≥µ MβMα = 0. Therefore, RaµVα = 0

for α 6≥ µ, while RaµVα is 0 or Vα if α ≥ µ.
In other words, if Ñ is any Sn-module, then any irreducible Vη ⊂ RaµÑ satisfies η ≥ µ.

For v ∈ Ñ , Raµv is a submodule of RaµÑ , so Raµv can only contain copies of irreducibles
Vη for η ≥ µ.

In particular, take Ñ = Vλ ⊗C C[x]d(Ā) and v = eTxu ∈ Ñ . For η ≥6= µ, we have

d̄(λ, η) = d(λ, η) > d(λ, µ) = d(Ā) (see Proposition 3.6.4, Proposition 4.2.8). So Ñ contains
no copy of Vη , and neither does Ñ ’s submodule RaµeTxu. But we noted earlier that Raµv
can only contain copies of irreducibles Vη for η ≥ µ. Therefore, any irreducible contained in
RaµeT xu must be isomorphic to Vµ.

Now bµ(aµeT xu) = c̃µeTxu 6= 0 by Proposition 4.5.3, so RaµeTxu 6= 0. But RaµeTxu is a
submodule of Ñ , which contains a unique copy of Vµ. Therefore RaµeTxu must equal this
unique copy of Vµ.

�

4.6 Containment Conditions

Proposition 4.6.1 Suppose λ
θ
→ µ and λ

θ̃
→ µ̃. Recall from Proposition 4.3.1 that Mλ,µ

∼=
(Vλ ⊗C C[x])/Iλ,µ

∼= V/Jλ,µ and Mλ,µ̃
∼= (Vλ ⊗C C[x])/Iλ,µ̃

∼= V/Jλ,µ̃. Write Pλ,µ̃(z; t) −
Pλ,µ(z; t) =

∑
η fη(t)sη(z), fη(t) ∈ Z[t]. Then the following are equivalent:

1. There exists a degree-zero surjective C[x] ∗ Sn-homomorphism Mλ,µ̃ ։ Mλ,µ

(i.e. Mλ,µ is a quotient of Mλ,µ̃).

2. fη(t) ∈ N[t] for all η.

3. The coefficient of td(λ,µ) in fµ(t) is 0.

4. Iλ,µ̃ ⊂ Iλ,µ.

5. Jλ,µ̃ ⊂ Jλ,µ.
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Proof

Note that {tjsη(z) : j ≥ 0, partition η} is an N-basis of the set of Frobenius series of
singly-graded Sn-modules. Thus it makes sense to take the coefficient of tjsη(z) in any such
Frobenius series, and this coefficient will be exactly the number of copies of Vη in degree j
of the module.

(1) =⇒ (2): Pλ,µ̃(z; t)− Pλ,µ(z; t) = FKer(Mλ,µ̃։Mλ,µ)(z; t) ∈ N[t]{sη(z)}.

(2) =⇒ (3): The coefficient of td(λ,µ)sµ(z) in Pλ,µ(z; t) is 1 by Proposition 4.3.3. Thus the
coefficient of td(λ,µ)sµ(z) in Pλ,µ̃(z; t) is at least 1.

The latter coefficient is the number of copies of Vµ in degree d(λ, µ) of Mλ,µ̃, which is
a graded Sn-quotient of Vλ ⊗C C[x]. But Vλ ⊗C C[x] has exactly one copy of Vµ in degree
d(λ, µ) by Corollary 4.2.6. Hence the coefficient is exactly 1.

The coefficient of td(λ,µ) in fµ(t) is the difference of the above two coefficients and thus
must be 0.

(3) =⇒ (4): The coefficient of td(λ,µ)sµ(z) in Pλ,µ(z; t) is 1 by Proposition 4.3.3. Thus the
coefficient of td(λ,µ)sµ(z) in Pλ,µ̃(z; t) is also 1.

Now Mλ,µ̃
∼= (Vλ ⊗C C[x])/Iλ,µ̃. Since Vλ ⊗C C[x] has exactly one copy of Vµ (called N)

in degree d(λ, µ) (by Corollary 4.2.6), Iλ,µ̃ must have zero copies of Vµ in degree d(λ, µ). In
other words, Iλ,µ̃ does not intersect N . By the construction in Proposition 4.3.3, Iλ,µ̃ ⊂ Iλ,µ.

(4) =⇒ (1): The inclusion Iλ,µ̃ ⊂ Iλ,µ naturally induces the required

Mλ,µ̃
∼= (Vλ ⊗C C[x])/Iλ,µ̃ ։ (Vλ ⊗C C[x])/Iλ,µ

∼= Mλ,µ.

(4) ⇐⇒ (5): This follows from Jλ,µ = Iλ,µ⊕ (L⊗C[x]) and Jλ,µ̃ = Iλ,µ̃⊕ (L⊗C[x]) (see
the last part of Proposition 4.3.1).

�

Before proving the next theorem, we need a slightly different version of the previous
section. Fix the Young subgroup Sλ′ = SB1 × SB2 × . . . to be used in ε ↑Sn

Sλ′
. Fix the Young

subgroup Sµ = SC1 × SC2 × . . . used to define aµ =
∑

g∈Sµ
g. Note V = ε ↑Sn

Sλ′
⊗C[x] =

CSn·e
〈σe−(−1)σe:σ∈Sλ′ 〉

⊗ C[x]. We will write its elements in the form ge⊗ xu for g ∈ Sn.

Definition 4.6.2 For g ∈ Sn and monomial xu, we define w(g, u, j) to be the composition
whose ith part is the size of {p : p ∈ g(Bj) and up = i− 1}.

Lemma 4.6.3 Suppose g ∈ Sn and u, v are compositions. Then w(g, u, j) ≥ w(g, u + v, j)
in dominance order (of compositions).

Proof

Let r ≥ 1. By definition
∑r

j=1w(g, u, j) is the size of {p : p ∈ g(Bj) and up ≤ r − 1},
while

∑r
j=1 w(g, u+ v, j) is the size of {p : p ∈ g(Bj) and up + vp ≤ r− 1}. The latter set is

a subset of the former set, so
∑r

j=1w(g, u, j) ≥
∑r

j=1 w(g, u+ v, j) for any r.

�
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Definition 4.6.4 Suppose λ
α/β
→ µ with corresponding matrix A as in Definition 2.4.4. For

each j, define η(j) = (A1,j, A2,j, . . .), which is a partition by Lemma 2.4.5.

Definition 4.6.5 Suppose λ
α/β
→ µ with corresponding matrix A as in Definition 2.4.4. Con-

sider pairs (g,xu) where g ∈ Sn and |u| = |β|. Let Π be the set of pairs (g,xu) satisfying:

1. |g(Bj) ∩ Ci| = Ai,j for all i, j;

2. {ua : a ∈ g(Bj) ∩ Ci} = {0, 1, . . . , Ai,j − 1} for all i, j.

Let ∆ be the set of pairs (g,xu) satisfying w(g, u, j) =
(
η(j)
)′

for all j. Then Π ⊂ ∆.

Lemma 4.6.6 For any h ∈ Sλ′ and τ ∈ Sn, (g,xu) ∈ Π =⇒ (gh,xu) ∈ Π and
(g,xu) ∈ ∆ =⇒ (τgh, τ (xu)) ∈ ∆.

Proof

Note that gh(Bj) = g(Bj) for all j, which immediately proves the first statement. Now
τ (xu) = xτu. Observe that [p ∈ τgh(Bj) and (τu)p = i− 1] is equivalent to [τ−1p ∈ g(Bj)
and uτ−1p = i− 1]. Hence the action of τ−1 produces a bijection that shows w(τgh, τu, j) =
w(g, u, j) for all j, and the second statement is proved.

�

Definition 4.6.7 Define the natural projection

π : CSn ⊗ C[x]→ V = ε ↑Sn

Sλ′
⊗C[x] =

CSn · e

〈σe− (−1)σe : σ ∈ Sλ′〉
⊗ C[x].

Note that π is a C[x] ∗ Sn-homomorphism. Let

W = ⊕(g,xu)∈∆C(g ⊗ xu) ⊂ CSn ⊗ C[x].

Lemma 4.6.8 Suppose (g,xu) ∈ ∆. Then π−1(ge⊗ xu) ⊂W .

Proof

Any element of π−1(ge ⊗ xu) is a C-linear combination of vectors of the form gh ⊗ xu

where h ∈ Sλ′. But (gh,xu) ∈ ∆ by Lemma 4.6.6, so such vectors are in W .

�

Proposition 4.6.9 If (g,xu) ∈ Π, then aµ(ge⊗xu) generates the unique copy of Vµ in V|β|.

Proof

Within the proof of Proposition 4.2.3, we showed that aµ(ge ⊗ xu) 6= 0. Now reuse the
proof of Proposition 4.5.4 except with the following replacements:
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• Take Ñ = V|β|, which also has no copy of Vτ for τ ≥6= µ because d̄(λ, τ ) > d̄(λ, µ).

• Take v = ge⊗ xu.

• Raµ(ge⊗ xu) 6= 0 is used in the last paragraph.

�

Theorem 4.6.10 Suppose λ
θ
→ µ and λ

θ̃
→ µ̃. Let A = (ai,j) and Ã = (ãi,j) be the

corresponding integer matrices (Definition 2.4.4). Then the conditions in Proposition 4.6.1
imply that

r∑

i=1

ãi,j ≥
r∑

i=1

ai,j for every j, r ≥ 1.

Proof

Per Definition 4.6.4, let η(j) = (a1,j, a2,j, . . .) and η̃(j) = (ã1,j, ã2,j, . . .). Then the inequal-
ities to be shown are equivalent to η̃(j) ≥ η(j) for all j.

Per Proposition 4.3.1, let N be the unique copy of Vµ in Vd(λ,µ), and let Ñ be the unique
copy of Vµ̃ in Vd(λ,µ̃). Let J be the C[x] ∗ Sn-submodule of V generated by N . Clearly J is
homogeneous. Now J has nonzero intersection with N , so by definition J 6⊂ Jλ,µ.

By assumption Jλ,µ̃ ⊂ Jλ,µ, so J 6⊂ Jλ,µ̃. By definition, J has nonzero intersection with
Ñ . This implies Ñ ⊂ J because Ñ is irreducible. Now J is generated by the degree d(λ, µ)
generator N , while Ñ is at degree d(λ, µ). Hence

• d(λ, µ̃) ≥ d(λ, µ).

• Any element in Ñ ⊂ J can be written in the form
∑

i fi(x)vi for some vi ∈ N and
fi(x) ∈ C[x]d(λ,µ̃)−d(λ,µ).

By Proposition 4.6.9, N is generated as an Sn-module by elements of the form aµ(ge⊗xu),
where (g,xu) ∈ Π. Because Π ⊂ ∆, the second part of Lemma 4.6.6 implies that N ⊂
spanC{ge⊗ xu : (g, u) ∈ ∆}. Therefore, the second bullet above implies

Ñ ⊂ spanC{ge⊗ xuxv : (g, u) ∈ ∆, |v| = d(λ, µ̃)− d(λ, µ)}.

Define the tilde versions of Π, ∆, and W in the analogous way. Pick some (ĝ,xû) ∈
Π̃ ⊂ ∆̃. Then by Proposition 4.6.9, Ñ contains nonzero element w = aµ̃(ĝe ⊗ xû) =∑

h∈Sµ
hĝe⊗ h(xû). By Lemma 4.6.6 and Lemma 4.6.8, π−1(w) ∈ W̃ .

By above remarks, we may write w in the form
∑

pCpg
(p)e ⊗ xu(p)+v(p)

, where Cp ∈ C,

(g(p),xu(p)
) ∈ ∆, |v(p)| = d(λ, µ̃)−d(λ, µ). Let v =

∑
pCpg

(p)⊗xu(p)+v(p)
∈ V . Then π(v) = w,

so v ∈ π−1(w) ∈ W̃ . Because w 6= 0, the definition of W̃ implies that there exists p such

that (g(p),xu(p)+v(p)
) ∈ ∆̃.

By the definitions of ∆ and ∆̃ and by Lemma 4.6.3,
(
η(j)
)′

= w(g(p), u(p), j) ≥ w(g(p), u(p)+

v(p), j) =
(
η̃(j)
)′

in dominance order for all j. Hence η(j) ≤ η̃(j) in dominance order for all j.
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�

Conjecture 4.6.11 The converse of Theorem 4.6.10 also holds.

Since µi =
∑

j ai,j and µ̃i =
∑

j ãi,j for all i, the condition in Theorem 4.6.10 implies
that µ̃ ≥ µ in dominance order. Unfortunately this condition is too weak. Consider λ =
(2, 2, 1, 1, 1), µ = (4, 1, 1, 1), µ̃ = (4, 3). Then λ → µ and λ → µ̃. It can be checked that

conditions 1 and 2 in Proposition 4.6.1 fail. But A =





2 2
1 0
1 0
1 0



 and Ã =

(
3 1
2 1

)
, so the

condition in Theorem 4.6.10 also fails.
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Chapter 5

Conjectures

5.1 Category of k-bounded resolutions

Throughout this section, tensor products are over C unless otherwise noted.

Definition 5.1.1 LetM
(k)
n be the category of graded C[x1, . . . , xn]∗Sn-modules M that have

an Sn-equivariant resolution

Fm → · · · → F1 → F0 → M → 0

so that each Fi has the form Wi ⊗ C[x1, . . . , xn], where Wi is an Sn-module that contains
only irreducible representations Vκ corresponding to k-bounded κ’s. An irreducible module
in M

(k)
n is a nonzero module that has no proper nonzero submodules in M

(k)
n .

Conjecture 5.1.2 The irreducible modules in M
(k)
n are exactly the modules Mλ,(λωk)′ for

k-bounded λ ⊢ n.

Note that M(k)
n is not an Abelian subcategory of the category of C[x1, . . . , xn] ∗ Sn-

modules. But M(k)
n has the property that if it contains two terms of a three-term exact

sequence of C[x1, . . . , xn] ∗ Sn-modules, then it also contains the third term.

Definition 5.1.3 LetMn denote the category of graded C[x1, . . . , xn]∗Sn-modules. If p+q =
n, let Rp,q = (C[x1, . . . , xp]∗Sp)⊗ (C[y1, . . . , yq]∗Sq) = C[x1, . . . , xp, y1, . . . , yq]∗ (Sp×Sq). It
can be regarded as a subring of C[x1, . . . , xn]∗Sn by identifying yi = xi+p. Restricting to this
subring induces a functor Mn →Mp,q, whereMp,q is the category of Rp,q-modules. Denote
this functor as Resp,q.

Definition 5.1.4 Let M(k)
p,q ⊂ Mp,q be the subcategory of modules M with an (Sp × Sq)-

equivariant resolution
Fm → · · · → F1 → F0 → M → 0

so that each Fi has the form ⊕j(Mj ⊗ C[x1, . . . , xp] ⊗ Nj ⊗ C[y1, . . . , yq]), where Mj is an
irreducible Sp-module corresponding to a k-bounded partition and Nj is an irreducible Sq-
module corresponding to a k-bounded partition.
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Lemma 5.1.5 The functor Resp,q sends M
(k)
n into M

(k)
p,q .

Proof

We verify that applying Resp,q to the resolution given in Definition 5.1.1 yields a resolution
of the appropriate form. First of all, restriction is exact, so the new sequence is an (Sp×Sq)-
equivariant resolution. The irreducible (Sp × Sq)-modules are of the form Vτ ⊗ Vη for τ ⊢
p, η ⊢ q. Take the irreducible decomposition Vκ ↓

Sn

Sp×Sq
= ⊕τ⊢p,η⊢q(Vτ ⊗ Vη)

⊕cκ
τ,η . Then it

suffices to check that if κ is k-bounded and cκτ,η is nonzero, then τ, η are k-bounded.

Now cκτ,η = 〈Vκ ↓
Sn

Sp×Sq
, Vτ ⊗ Vη〉Sp×Sq = 〈Vκ, Vτ ⊗ Vη ↑

Sn

Sp×Sq
〉Sn = 〈sκ(z), sτ (z)sη(z)〉.

The second equlity is by Frobenius reciprocity, while the third equality is by Frobenius
characteristic and Lemma 1.6.4. Hence cκτ,η is the Littlewood-Richardson coefficient with the
same notation. By [18]I(5.3) and I(5.7), cκτ,η is zero unless τ ⊂ κ and η ⊂ κ. Thus if κ is
k-bounded and cκτ,η is nonzero, then τ and η are also k-bounded.

�

Conjecture 5.1.6 The irreducible modules inM
(k)
p,q have the form M⊗N , where M ∈M

(k)
p

and N ∈M
(k)
q are irreducible modules in the respective categories.

Proposition 5.1.7 Suppose that Conjecture 5.1.2 and (for (2)) Conjecture 5.1.6 are true.

1. For ℓ > k, s
(k)
λ (z; t) ∈ N[t]{s(ℓ)

µ (z; t) : µ is ℓ-bounded, |µ| = |λ|}.

2. s
(k)
λ [Y + Z; t] ∈ N[t]{s(k)

µ (y; t)s
(k)
γ (z; t) : µ, γ are k-bounded, |µ|+ |γ| = |λ|}.

3. s
(k)
λ (z; t)s

(ℓ)
µ (z; t) ∈ N[t]{s(k+ℓ)

γ (z; t) : γ is (k + ℓ)-bounded, |γ| = |λ|+ |µ|}.

4. For k-bounded µ, Hµ(z; q, t) can be written as
∑

λK
(k)
λµ (q, t)s

(k)
λ (z; t) for

K
(k)
λµ (q, t) ∈ N[q, t]. The coefficients K

(k)
λµ (q, t) are called the k-Kostka-Foulkes polyno-

mials.

Proof

For (1), because Mλ,(λωk)′ ∈ M
(k)
|λ| , by definition Mλ,(λωk )′ ∈ M

(ℓ)
|λ| also. The composition

factors of Mλ,(λωk)′ in M(ℓ)
|λ| are of the form Mµ,(µωℓ )′ for ℓ-bounded µ of the same size as λ,

so the required positivity follows.
For (2), we recall [18]1§7 Example 26: Suppose U is a finite-dimensional Sn-module. For

each pair p, q with p+ q = n, express U ↓Sn

Sp×Sq
as ⊕i(V

(p,i) ⊗W (q,i)), where each V (p,i) is an

Sp-module and each W (q,i) is an Sq-module. (For instance, the irreducible decomposition is
of this form.) Then

FcharU [Y + Z] =
∑

p+q=n

∑

i

FcharV (p,i) [Y ]FcharW (q,i) [Z].
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Take M = Mλ,(λωk )′, which is in M
(k)
n by Conjecture 5.1.2. By Lemma 5.1.5, Resp,q M

has the form ⊕i(M
(p,i) ⊗N (q,i)) for some M (p,i) ∈ Mp and N (q,i) ∈ Mq. We examine what

happens at a particular degree r: As Sn-modules, Mr ↓
Sn

Sp×Sq
= (Resp,q M)r = ⊕d+e=r ⊕i

(M
(p,i)
d ⊗N (q,i)

e ).
Summing over the degrees and applying [18]1§7 Example 26 on each Mr , we get

s
(k)
λ [Y + Z; t] = FM [Y + Z] =

∑

r

trFcharMr [Y + Z]

=
∑

r

tr
∑

p+q=n

∑

d+e=r

∑

i

F
charM

(p,i)
d

[Y ]F
charN

(q,i)
e

[Z]

=
∑

p+q=n

∑

i

∑

d,e

tdF
charM

(p,i)
d

[Y ]teF
charN

(q,i)
e

[Z]

=
∑

p+q=n

∑

i

FM (p,i)[Y ]FN (q,i)[Z].

But M (p,i) ∈ Mp and N (q,i) ∈ Mq, so their Frobenius series are N[t]-linear combinations of
p-Schur functions and q-Schur functions, respectively. Therefore, (2) is proved.

For (3), take M = Mλ,(λωk )′ and N = Mµ,(µωℓ )′. Let p = |λ| and q = |µ|. According to
Conjecture 5.1.2, there exist resolutions

· · ·
e2→ E1

e1→ E0
e0→ M → 0

· · ·
f2→ F1

f1→ F0
f0→ N → 0

with Ei = Ui ⊗ C[x1, . . . , xp], Ui
∼= ⊕k-bounded τ⊢p

(
Vτ
⊕ai,τ

)
, Fj = Wj ⊗ C[y1, . . . , yq], Wj

∼=

⊕ℓ-bounded η⊢q

(
Vη
⊕bj,η

)
, and Ei = 0, Fj = 0 for sufficiently large i, j.

Consider the double complex of Rp,q-modules

· · · → E0 ⊗ F2
id⊗f2→ E0 ⊗ F1

id⊗f1→ E0 ⊗ F0

↑ e1⊗id ↑ e1⊗id ↑ e1⊗id

· · · → E1 ⊗ F2
id⊗f2→ E1 ⊗ F1

id⊗f1→ E1 ⊗ F0

↑ e2⊗id ↑ e2⊗id ↑ e2⊗id

· · · → E2 ⊗ F2
id⊗f2→ E2 ⊗ F1

id⊗f1→ E2 ⊗ F0

↑ ↑ ↑
...

...
...

Its total complex C• =
[
· · ·

d2→ C2
d1→ C1

d1→ C0

]
is given by Cr = ⊕i+j=r(Ei ⊗ Fj) and dr(a⊗

b) = (eia)⊗ b+ (−1)ia⊗ (fjb) for a ∈ Ei, b ∈ Fj.
Note that every C-module is free and hence flat. In particular, every row and every

column of the double complex are exact. It is a standard fact that these properties imply

that the total complex C• is exact. Now we append C0 = E0 ⊗ F0
e0⊗f0→ M ⊗ N → 0

to C•. It is still exact because e0, f0 are surjective (so that e0 ⊗ f0 is also surjective and
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ker(e0 ⊗ f0) = (Ker e0) ⊗ F0 + E0 ⊗ (Kerf0)). Lastly, we apply the exact functor ↑
Sp+q

Sp×Sq
to

produce an exact sequence inMp+q

· · · → C ′2 → C ′1 → C ′0 → (M ⊗N) ↑
Sp+q

Sp×Sq
→ 0

where C ′r = ⊕i+j=r(Ei ⊗ Fj) ↑
Sp+q

Sp×Sq
.

Now (Ei ⊗ Fj) ↑
Sp+q

Sp×Sq
is

L

k-bounded τ⊢p
ℓ-bounded η⊢q

(
(Vτ × Vη) ↑

Sp+q

Sp×Sq

)⊗ai,τ bj,η

⊗ C[x1, . . . , xp, y1, . . . , yq].

By Lemma 1.6.4, the Frobenius characteristic of (Vτ × Vη) ↑
Sp+q

Sp×Sq
is sτ (z)sη(z). Because

τ is k-bounded and η is ℓ-bounded, the Schur expansion of sτ (z)sη(z) only contains sκ(z)
for (k + ℓ)-bounded κ ⊢ p + q by the Littlewood-Richardson rule. Hence C ′r has the form
W ⊗C[x1, . . . , xp, y1, . . . , yq] with W containing only irreducible Sp+q-representations Vκ cor-
responding to k-bounded κ’s.

Because Ei = 0 and Fj = 0 for sufficiently large i, j, C ′r = 0 for sufficiently large r.

Therefore, (M ⊗ N) ↑
Sp+q

Sp×Sq
∈ M

(k+ℓ)
p+q . By Conjecture 5.1.2, its Frobenius series is an N[t]-

linear combination of s
(k+ℓ)
γ (z; t) for (k + ℓ)-bounded γ ⊢ p + q. We are done because by

Lemma 1.6.4, the Frobenius series of (M ⊗N) ↑
Sp+q

Sp×Sq
is FM(z; t)FN(z; t) = s

(k)
λ (z; t)s

(ℓ)
µ (z; t).

For (4), it is known in [18] that the R̃µ in section 1.8, considered as a C[y] ∗ Sn-module

(forgetting the C[x] action), is in M
(k)
|µ| for k-bounded µ. Because R̃µ has Frobenius series

Hµ(z; q, t), the result follows.

�

5.2 Catabolism

Currently not much is understood about catabolism. Here are some conjectural basic
properties about catabolism. Some of them motivate the conjectures in the ensuing sections.

Definition 5.2.1 We say that a composition β is a refinement of a composition α if there
exists an increasing sequence of integers 0 = c0 < c1 < c2 < . . . such that αi =

∑ci

j=ci−1+1 βj

for all i.

Definition 5.2.2 Let T ,U be semistandard tableaux. We say that U is a cyclage of T if
there exist letter a 6= 1 and word w such that T = Twa and U = Taw. Notice the definition
of charge says that c(U) = c(T )− 1.

Conjecture 5.2.3 Let α, β be compositions and let T be a nonempty semistandard tableau.

1. If T is α-catabolizable and β is a refinement of α, then T is β-catabolizable.

2. If U is a cyclage of T and T is α-catabolizable, then U is α-catabolizable.
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3. Suppose m is the largest letter in T and U is the result of deleting the squares with the
letter d from σm−1σm−2 . . . σ1T . Then U is α-catabolizable iff Cat1(T ) is α-catabolizable.

4. The number of α-catabolizable tableaux of weight µ and shape λ is the Littlewood-
Richardson coefficient

cλµ(1) ,µ(2),... = 〈sλ, sµ(1)sµ(2) . . .〉,

where µ(1) consists of the first α1 parts of µ, µ(2) consists of the next α2 parts of µ, and
so on.

5.3 Skew-linked tableau atoms

Let R+ = {(i, j) : 1 ≤ i < j ≤ m}, an upper-triangular shaped set. For a composition
τ of m, let Sτ = {(i, j) ∈ R+ : there exists r such that i ≤ τ1 + τ2 + . . . + τr < j}. The
conceptual way to obtain Sτ is to start with R+ and remove triangular subregions of side
lengths τ1, τ2, . . . along the main diagonal.

A subset S ⊂ R+ is an upper order ideal if (i, j) ∈ S implies {1, 2, . . . , i} × {j, j +
1, . . . , m} ⊂ S. Note that Sτ is an upper order ideal. We say that a tableau T is S-
catabolizable if T is τ -catabolizable for every composition τ of m satisfying S ⊂ Sτ .

Notice that for compositions τ and σ, Sσ ⊂ Sτ iff τ is a refinement of σ. Thus if
Conjecture 5.2.3(1) holds, then Sσ-catabolizability is the same as σ-catabolizability. This
was part of the motivation for the definition of S-catabolizability.

Suppose that λ
α/β
→ µ and m = ℓ(λ). Define a row-chaining function fλ,µ : {1, . . . , m} →

{1, . . . , m} ∪ {∞} as follows. If βi = 0, then set fλ,µ(i) =∞. If βi > 0, suppose r,s are the
largest integers such that βr = βi and αs = βi, respectively. Then set fλ,µ(i) = s − r + i.
Define Qλ,µ = {(i, j) ∈ R+ : j ≥ fλ,µ(i)}. Because f is a weakly increasing function, Qλ,µ is
an upper order ideal.

Definition 5.3.1 The skew-linked tableau atom is defined as

Aλ,µ = ∪τ{T ∈ SSY T (τ, λ) : T is Qλ,µ-catabolizable}.

Conjecture 5.3.2 1. The Frobenius series of Mλ,µ equals
∑

T∈Aλ,µ
tc(T )sshape(T )(z).

2. In the case λ is k-bounded and µ = (λωk)′, Aλ,µ coincides with the A
(k)
λ that Lapointe,

Lascoux, and Morse used to define k-Schur functions originally.

It is easily seen that the skew-linked tableau atoms can be defined recursively.

Proposition 5.3.3 Let λ
α/β
→ µ. By removing the first (bottommost) r rows of α/β, we

obtain a skew-linking shape that links λr = (λr+1, λr+2, . . .) with some partition µr. Then
Aλ,µ is the set of tableaux of weight λ such that for every r = 1, 2, . . . , fλ,µ(1), T is r-
catabolizable and Catr(T ) ∈ Aλr,µr .
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In the case λ is k-bounded and µ = (λωk)′, we have µr = ((λr)ωk)′. Hence if part

2 of Conjecture 5.3.2 holds, then the Lapointe-Lascoux-Morse atoms A(k)
λ can be defined

recursively among themselves using catabolism. This is similar but different from the original
definition of A

(k)
λ .

It appears that the full set of catabolism conditions is not required in defining skew-linked
tableau atoms.

Conjecture 5.3.4 Let λ
α/β
→ µ. Define λr and µr as in Proposition 5.3.3. Let b be the

smallest integer such that αb = β1. Let i be any integer such that b ≤ i ≤ fλ,µ(1). Then
Aλ,µ is the set of tableaux of weight λ such that for r = 1 and r = i, T is r-catabolizable and
Catr(T ) ∈ Aλr,µr .

The part about r = 1 is motivated by the definition of the Lapointe-Lascoux-Morse atoms
because of Conjecture 5.2.3(3), which implies that we can redefine the Lapointe-Lascoux-
Morse atoms purely using catabolism conditions.

5.4 Generalization of Borel-Weil-Bott

Another conjecture relates the skew-linked modules to cohomology and is a generalization
of the Borel-Weil-Bott theorem. Let G be the general linear group GLm and let B be the
subgroup of upper-triangular matrices. Then G/B is the flag variety. Let g = Lie(G) = glm
and b = Lie(B) = {upper-triangular matrices}. Let n be the set of strictly upper-triangular
matrices. Since n is a Lie algebra ideal in b, the adjoint action of B on n induces a B-module
structure on n. For any B-module L, define G×B L as the orbit space (G×L)/B under the
action (g, v)b = (gb, b−1v). Then L is a G-equivariant vector bundle over G/B with bundle
map (g, v)B 7→ gB.

Note that every B-submodule j ⊂ n is generated by an upper order ideal of positive roots,
i.e. there is an upper order ideal S ⊂ R+ such that j = {M ∈ glm : Mij = 0 if (i, j) 6∈ S}.
We say that a tableau T is j-catabolizable if it is S-catabolizable.

Let Cλ be the 1-dimensional B-module with dominant weight λ. Let w0 be the permu-
tation 12 . . . m 7→ m. . . 21. Set Lλ = G×B Cw0(λ), which is a line bundle over G/B. Then
Borel-Weil-Bott says:

Theorem 5.4.1 1. H0(G/B,Lλ) is the irreducible G-module with highest weight λ.

2. Hi(G/B,Lλ) = 0 for i > 0.

Let L̃λ be the pullback of Lλ to G×B j. It can be shown that

Lemma 5.4.2 Hi(G×B j, L̃λ) ∼= Hi(G/B, (G×B Sym(j∗))⊗ Lλ).

Conjecture 5.4.3 1. H0(G×B j, L̃λ) has graded character
∑

dominant τ∈Zm

∑

T∈SSY T (τ,λ)
T is j-catabolizable

tc(T )sτ (z1, . . . , zm).

Here SSY T (τ, λ) and sτ (z1, . . . , zm) are as defined in Section 1.12.
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2. Hi(G×B j, L̃λ) for i > 0.

Borel-Weil-Bott is the special case where j = 0. To see this, note that T ∈ SSY T (τ, λ)
is 0-catabolizable iff the entire tableau can be catabolized, meaning that T must be super-
standard (row i contains only letter i for all i), τ = λ, and c(T ) = 0. Hence the formula
in Conjecture 5.4.3 reduces to sλ(z1, . . . , zm), the graded character of irreducible G-module
with highest weight λ.

In the case j is the Lie algebra of the parabolic subgroup P = Pη ⊂ B for a composition η
of m, we have S = Sη (as defined in the previous section). Conjecturally Sη-catabolizability
is the same as η-catabolizability, so by Lemma 5.4.2, Conjecture 5.4.3 becomes the situation
in [19]. In particular, Conjecture 5.4.3(1) becomes a conjecture of Shimozono-Weyman and
Conjecture 5.4.3(2) becomes a conjecture of Broer [2][3][4].

Corollary 5.4.4 Let ρ = (m− 1, m− 2, . . . , 0). Define operators J and π on C(z1, . . . , zm)

J(f) =
∑

ω∈Sm

(−1)ωωf

π(f) = J(zρf)/J(zρ).

If Conjecture 5.4.3(2) holds, then the graded character of H0(G×B j, L̃λ) = H0(G/B, (G×B

Sym(j∗))⊗ Lλ) is

π




∏

eij∈j

1

1− tzi/zj
zλ



 .

Proof

(Sketch) By Bott’s formula, π
(∏

eij∈j
1

1−tzi/zj
zλ
)

is the character of
∑

i≥0(−1)i[H0(G/B, (G×B Sym(j∗))⊗Lλ)], an element in the Grothendieck group of graded
G-modules. By Lemma 5.4.2 and Conjecture 5.4.3(2), all terms drop out except for the zero
term.

�

Corollary 5.4.5 Let ρ = (m − 1, m − 2, . . . , 0). Define a linear functional Ψ as follows.
For weight α, if α+ ρ is regular, find the unique ω ∈ Sm so that ω(α + ρ) and set Ψ(zα) =
(−1)ℓ(ω)sω(α+ρ)−ρ(z1, . . . , zm). Otherwise set Ψ(zα) = 0. Then π = Ψ. If Conjecture 5.4.3
holds, then

∑

dominant τ∈Zm

∑

T∈SSY T (τ,λ)
T is j-catabolizable

tc(T )sτ(z1, . . . , zm) = Ψ




∏

eij∈j

1

1− tzi/zj
zλ



 .
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Proof

In view of Conjecture 5.4.3 and Corollary 5.4.4, we only need to show π = Ψ. Now
π(xα) = det(zi

αj+ρj )m
i,j=1/det(zi

ρj)m
i,j=1. If α + ρ is not regular, then the numerator is 0. If

α+ρ is regular and ω(α+ρ) is dominant, then ω(α+ρ)−ρ is also dominant. Thus π(xα) =
(−1)ω det(zi

ω(α+ρ)j)m
i,j=1/det(zi

ρj )m
i,j=1 = (−1)ωsω(α+ρ)−ρ by the Weyl character formula and

Lemma 1.12.3.

�

Let Λ̃ = Q(q, t)[z1, z1
−1, . . . , zm, zm

−1]]Sm, the space of symmetric Laurent polynomials
in z1, . . . , zm with coefficients in Q(q, t). Then {sτ (z1, . . . , zm) : dominant weight τ ∈ Zm}
is a basis for Λ̃ (see Section 1.12). Let Λ̃+ be the subspace generated by {sτ(z1, . . . , zm) :
dominant weight τ ∈ Nm}, i.e. partitions τ with at most m parts. For f ∈ Λ̃, the polynomial
part of f is the image of projecting f into Λ̃+ along the Schur basis of Λ̃.

The representation-theoretic interpretation is that a finite-dimensional rational represen-
tation M of GLm has character χ in Λ̃, and taking the polynomial part of χ results in the
character of the polynomial representation component of M .

Corollary 5.4.6 Assuming Conjecture 5.3.2 and Conjecture 5.4.3 hold, if λ
α/β
→ µ, m ≥

ℓ(λ), and j = {M ∈ glm : Mij = 0 if (i, j) 6∈ Qλ,µ} ⊂ n, then the Frobenius series of Mλ,µ

is obtained by extending the polynomial part of the right hand side of Corollary 5.4.5 to
infinitely many variables.

Proof

In view of Conjecture 5.3.2 and Corollary 5.4.5, FMλ,µ
(t; z1, . . . , zm, 0, . . .) is the polyno-

mial part of the right hand side of Corollary 5.4.5. Hence it suffices to check that the Schur
expansion of FMλ,µ

(t; z) contains no sτ(z) with ℓ(τ ) > m. Now if sτ (z) occurs in the expan-
sion, then by Conjecture 5.3.2 there exists some j-catabolizable tableau in SSY T (τ, λ). But
SSY T (τ, λ) nonempty implies that ℓ(τ ) ≤ ℓ(λ) ≤ m, so we are done.

�

Finally, recall the correspondence between B-modules M and G-equivariant vector bun-
dles X on G/B given by M 7→ G ×B M and X 7→ fiber of X at the point B/B ∈ G/B.
Thus G ×B j runs over all G-invariant subbundles of G ×B n. We claim that G ×B n is
the cotangent bundle T ∗(G/B). By the above correspondence, it suffices to show that n is
isomorphic to the fiber of T ∗(G/B) at B/B, which is (glm/b)∗.

By modding out the CIm (Im = identity matrix), we get (glm/b)∗ = (slm/b
′)∗, where

b′ = b ∩ slm. Identify (slm/b
′)∗ as b′

⊥, the space of functionals in slm
∗ that annihilate

b′. Recall the nondegenerate Killing form slm ⊗ slm
K
→ C, which gives an identification of

slm with slm
∗. Under this identification, n corresponds to b′

⊥ because K(n, b′) = 0 and
dim n+ dim b′

⊥ = m2− 1 = dim slm. The correspondence commutes with the adjoint action
of b′ because K(ad(x)y, z) = −K(y, ad(x)z), so n ∼= (glm/b)∗ as modules over B ∩ SLm and
hence over B.
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Chapter 6

Tables for Pλ,µ(z; t) in Terms of Schur

Functions

k-Schur for k = θ λ µ 3 21 13 Matrix A

1 13 3 t3 t2 + t 1
(
3
)

2 13 21 t 1

(
2
1

)

≥ 3 13 13 1




1
1
1





2 21 3 t 1
(
2 1

)

≥ 3 21 21 1

(
1 1
1 0

)

≥ 3 3 3 1
(
1 1 1

)
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k-Schur
for k =

θ λ µ 4 31 22 212 14 Matrix A

1 14 4 t6 t5 + t4 + t3 t4 + t2 t3 + t2 + t 1
(
4
)

14 31 t3 t2 t2 + t 1

(
3
1

)

2 14 22 t2 t 1

(
2
2

)

3 14 212 t 1




2
1
1





≥ 4 14 14 1





1
1
1
1





212 4 t3 t2 + t t 1
(
3 1

)

2, 3 212 31 t 1

(
2 1
1 0

)

≥ 4 212 212 1




1 1
1 0
1 0





2 22 4 t2 t 1
(
2 2

)

≥ 3 22 22 1

(
1 1
1 1

)

3 31 4 t 1
(
2 1 1

)

≥ 4 31 31 1

(
1 1 1
1 0 0

)

≥ 4 4 4 1
(
1 1 1 1

)
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λ µ 5 41 32 312 221 213 15

15 5 t10 t9 + t8

+t7 + t6
t8 + t7 + t6

+t5 + t4
t7 + t6 + 2t5

+t4 + t3
t6 + t5 + t4

+t3 + t2
t4 + t3

+t2 + t
1

15 41 t6 t5 + t4 t5 + t4 + t3 t4 + t3 + t2 t3 + t2 + t 1
15 32 t4 t3 t3 + t2 t2 + t 1
15 312 t3 t2 t2 + t 1
15 221 t2 t 1
15 213 t 1
15 15 1
213 5 t6 t5 + t4 + t3 t4 + t3 + t2 t3 + t2 + t t2 + t 1
213 41 t3 t2 t2 + t t 1
213 32 t2 t t 1
213 312 t 1
213 213 1
221 5 t4 t3 + t2 t2 + t t 1
221 41 t2 t t 1
221 32 t 1
221 221 1
312 5 t3 t2 + t t 1
312 41 t 1
312 312 1
32 5 t2 t 1
32 32 1
41 5 t 1
41 41 1
5 5 1
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