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ABSTRACT OF DISSERTATION 

 

Characterize and classify genetic variation in chromatin state in Drosophila 
melanogaster 

by 

Khoi Huynh 

Doctor of Philosophy in Ecology and Evolutionary Biology 

University of California, Irvine, 2023 

Professor Anthony Douglas Long, Chair 

 

There are two types of genetic traits. The first is monogenic traits which are 

caused by rare variants that disrupt the function of a single gene. Monogenic traits 

typically follow the classic Mendelian inheritance, and are rare in nature. In contrast, the 

second type of genetic traits involve heritable traits that do not follow the classic 

Mendelian inheritance. These traits are classified as complex traits, and are thought to 

involve multiple genes. As a result, many studies have spent great efforts to elucidate 

the nature of these complex traits. However, an appreciable fraction of heritable 

variation remains unexplained, and is referred to as "missing heritability" [1]. It is widely 

believed that these missing heritable variations are variations in gene expression due to 

the binding of transcription factors to enhancers [2-4]. These binding events can be 

identified by the local chromatin configuration which should be open in particular tissue 

or timepoint necessary for a trait [5,6]. Therefore, I argue that a genome-wide landscape 

http://paperpile.com/b/tN5avl/2ic7M
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of variation in chromatin accessibility in a large number of tissues would be valuable for 

complex trait studies.  

Thus, my first chapter is to utilize ATAC-seq to assess chromatin accessibility 

across multiple genotypes and tissues from Drosophila melanogaster. In this first 

chapter, I performed ATAC-seq to study chromatin accessibility for four different tissues: 

adult female brain, ovaries, wing and eye-antennal imaginal discs. Each sample is also 

collected from eight different inbred strains. I have identified 44099 ATAC-seq peaks-

regions with high ATAC-seq fragment coverage. Furthermore, since the eight inbred 

founder strains have reference quality genome assemblies, I also performed structural 

variant correction on my ATAC-seq data. These structural variants  contributed to an 

elevated rate (55%) of the identification of false positive differences in chromatin state 

between genotypes. After structural variant correction, I have found 1050, 30383, and 

4508 regions whose peak heights are polymorphic among genotypes, tissues, or for 

genotype by tissue interactions respectively. Finally, I identified 249 SNPs and 3 SVs 

candidate causative variants that explained 100% of the variation at nearby chromatin 

profiles varying among genotypes.  

While having a completely characterized open chromatin landscape is helpful for 

complex trait communities, the question of whether those polymorphic regulatory 

elements are in cis or in trans remain unanswered. Thus, my second chapter aim is to 

elucidate the cis and trans nature of the identified regulatory elements from the first 

study. Therefore, I performed ATAC-seq, utilized our developed quantile normalization of 

ATAC-seq data,SV-correction, ANOVA-based statistical analysis, and haplotype phasing 

to examine chromatin accessibility and its cis, and trans nature in Drosophila 
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melanogaster  ovaries collected from two parental strains (A4, B6) and their F1 

offspring. We identified 3006 ATAC-seq peaks that are significantly different between 

parental genotypes. Out of those ATAC-seq peaks, 106 and 45 peaks are identified to 

be cis and trans regulatory respectively using cis-trans value. 
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INTRODUCTION 

 

I. Complex trait overview: 

All variances in phenotypic traits have genetic components [7,8]. For example, 

according to Online Mendelian Inheritance in Man resource (OMIMR), there are at least 

8930 diseases (traits) that are Mendelian in nature, which are caused by an inheritable 

alteration of one gene or abnormality in the genomes [9]. Despite those 8930 disease 

traits on OMIMR  and another 12279 recruiting and completing clinical studies on 

genetic disease as described on ClinicalTrials.gov, the extent of causal genes' 

contributions to genetic diseases or trait variation remains unclear [10]. In fact, the 

contributions of genetic variances to the complex traits  have been shown to not only be 

linked directly to causal genes but also to be linked to multiple single nucleotide 

polymorphism (SNP) loci which are in linkage disequilibrium to causal genes or 

regulatory elements linked directly to genetic traits [11]. Furthermore, these complex 

traits, which are affected by variations in genetic component-SNPs or variations in 

environmental effect, can be disease traits (cardiovascular disease [12], psychological 

disorders [13], and type 2 diabetes [14] in humans), or non-disease traits (milk yield in 

dairy cattle [15], rice yield [16], and human height [17]). Thus, complex traits are 

undoubtedly important targets for studies in multiple disciplines such as medicine, 

agriculture, and evolution to name a few [18].  

As such, complex traits have been studied rigorously for more than 100 years yet 

the longest-standing question on how the genetic variation contributes to the phenotypic 

variation remains unclear. Historically, there was a debate between Mendelians, who 

https://paperpile.com/c/Rv1CIg/UfUTx+0dxaJ
https://paperpile.com/c/Rv1CIg/FSeIR
https://paperpile.com/c/Rv1CIg/ldDfT
https://paperpile.com/c/Rv1CIg/utwlY
https://paperpile.com/c/Rv1CIg/dp9x2
https://paperpile.com/c/Rv1CIg/sQKcc
https://paperpile.com/c/Rv1CIg/Eu9fN
https://paperpile.com/c/Rv1CIg/h8m55
https://paperpile.com/c/Rv1CIg/BixS8
https://paperpile.com/c/Rv1CIg/y8E5q
https://paperpile.com/c/Rv1CIg/rpvRX
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believed in large effect causal gene contribution to monogenic phenotypes, and 

biometricians, who argued that such contribution couldn't explain the continuous 

variation observed in many phenotypic traits [19]. This was largely resolved by the 

"infinitesimal model" published by Fisher in 1918 [20]. In this model, normal distribution 

variation of each phenotypic trait was attributed to multiple causal genes instead of a 

single causal gene as previously believed by the Mendelians. Thus, the contributions of 

each gene became infinitesimally small [21]. However, while the infinitesimal model had 

been successful in accounting for multiple causal genes contributing to a complex trait 

[22–24], the actual number of causal genes per traits, and their effect size remains 

unclear until now [19].  

 

II. Complex trait study methods and missing heritability: 

In order to study complex traits and to identify the actual number of causal 

genes, there have been two predominant methodologies: Quantitative trait locus (QTL) 

mapping and Genome-Wide Association Studies (GWAS). In principle, QTL mapping 

studies need two isogenic strains which have different alleles at loci affecting the trait of 

interest, and polymorphic marker linkage map. Then, backcross F2, or recombinant 

inbred lines (RILs) are created to identify QTL affecting the complex traits [25]. In 

contrast, GWAS starts with selecting an appropriate outbred population for a complex 

trait of interest. Individuals from a collection of case/control individuals from that 

population are phenotypes and genotypes using whole-genome sequencing for 

SNPchips. Association tests then identify regions of the genome at which alleles differ in 

https://paperpile.com/c/Rv1CIg/8v7Zz
https://paperpile.com/c/Rv1CIg/aR2Ss
https://paperpile.com/c/Rv1CIg/YEyZx
https://paperpile.com/c/Rv1CIg/1IWIu+2GEUT+c1TDx
https://paperpile.com/c/Rv1CIg/8v7Zz
https://paperpile.com/c/Rv1CIg/54cpv
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frequency between cases and controls [26]. GWAS is not limited to case/control panels 

and can also employ a large cohort of individuals with genotypic state regressed on 

phenotype [27,28].  

Given their powerful nature as genetic variation study methods, it is not 

surprising that both GWAS and QTL mapping have been dominating the field of 

complex trait study. However,  both of these methods have employed the view that 

quantitative traits are under additive effect of identified variations. This can be observed 

as GWAS and QTL mapping traditionally identify causative loci by screening the entire 

genome for loci where alternative genotypes differ significantly [51]. Then, the variation 

of a complex trait is ,then, defined by these hundred of identified causative loci. This 

viewpoint, however, completely ignores the multi-allelism nature of genetics. In fact, a 

different way that genetic variants can contribute to the expression of complex traits is 

to have different alleles at the same locus affecting the trait in addition to variations 

found in other loci affecting the same trait. The locus with such polymorphic genotypes 

is said to have genetic variance-heterogeneity and is identified as vQTL [52,53].   

 

III. MPP, and RIL for QTL mapping:  

Despite the contradicting results between QTL mapping and GWAS studies, QTL 

mapping remains a powerful method to identify loci that co-segregate with a varied 

phenotypic traits [54], and has been widely used with improving strategies [49]. 

Throughout the 1990s, QTL mapping was low power with mapping being done on only 

the F2 generation of a pair of inbred parents following the outlined procedures from two 

https://paperpile.com/c/Rv1CIg/oU3MD
https://paperpile.com/c/Rv1CIg/YdLtU+aodth
https://paperpile.com/c/Rv1CIg/4jDRD
https://paperpile.com/c/Rv1CIg/4ZVDh+1hi2e
https://paperpile.com/c/Rv1CIg/lGjAW
https://paperpile.com/c/Rv1CIg/D3Bk9
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landmark papers [55,56]. However, QTL  mapping has some major disadvantages. The 

first is the requirement of a large sample size [57]. The second disadvantage-given how 

QTL mapping was done historically [55,56]- is the fact that QTL mapping can't detect 

segregating alleles if they are not present in the selected parent genomes. As a result, 

many segregating alleles that are not represented in the parents would remain hidden. 

This raises a question as to how relevant the identified QTL is to the actual genotypic 

variance in the population of multiple varied genotypes. The third disadvantage of QTL 

mapping is that it is only accurate to within 2cM or less [58]. While the first disadvantage 

can't be easily solved, the improving high throughput technologies and genomics has 

improved the utility of QTL mapping techniques by providing adequately dense markers 

map [59]. Furthermore, with the improving PCR technique and GWAS, QTL mapping 

studies have improved to include hundreds of crosses instead of just F1, and to 

incorporate GWAS into the mapping studies as well [49]. As a result, QTL mapping 

technique resolution has significantly improved since QTL and GWAS can identify 

linked genes and unlinked genes respectively. As a result, the number of hidden 

segregating alleles can be reduced.   

Among the advanced strategies for QTL mapping studies, there are two major 

recently developed strategies which are the usage of recombinant inbred lines (RIL), 

and the usage of Multi-Parent Population (MPP). Both are extremely valuable for 

different reasons. RIL is formed by crossing two isogenic parents for F1 and F2, and by 

crossing several brother-sister F2 pairs. This inbred crossing of F2 would be continued 

for many generations which would result in RIL that are genetically identical to one or 

the other progenitor's alleles [60]. Thus, RIL has one huge advantage which is the 

https://paperpile.com/c/Rv1CIg/n5zPK+3imHH
https://paperpile.com/c/Rv1CIg/qecQD
https://paperpile.com/c/Rv1CIg/n5zPK+3imHH
https://paperpile.com/c/Rv1CIg/B8iCz
https://paperpile.com/c/Rv1CIg/5kgaw
https://paperpile.com/c/Rv1CIg/D3Bk9
https://paperpile.com/c/Rv1CIg/VcJJz
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greater mapping resolution. This is due to a denser breakpoints compared to any cross 

that has only one meiosis event [61]. On the other hand, MPP starts with k highly-inbred 

founder strains, and creates individuals who are genetic mosaics of the founders after n 

generation cross [49]. As a result, with crossing of multiple founder strains, MPP allows 

for a more complete view of genetic variations as the number of natural haplotypes 

segregating at any given gene is greatly expanded, improving the resolution of QTL 

mapping studies [49]. Thus, MPP has solved the second disadvantage of QTL mapping 

discussed above.  

 Interestingly, Drosophila Synthetic Population Resource (DSPR) mapping panel, 

which is the brainchild of Dr Stuart Macdonald and Dr Anthony Long, have incorporated 

both RIL and MPP [62]. Each of the two synthetic populations of DSPR was created by 

intercrossing 8 founder lines -with 1 founder line shared between two populations- 

through 50 generations [62]. More than 1600 recombinant inbred lines (RIL) were 

created by 25 generation inbred crossing. Such a large number of generations of 

recombinants have no doubt increased mapping resolution due to the average genomic 

segment being 3cM in size [49,63]. Furthermore, the usage of 8 founder lines collected 

from across the world is also a great strength of DSPR. This allows for greater variation 

in segregating alleles to be captured which will lower the chance of missing any alleles 

due to them not being found in founder lines. As a result, the identified QTL using DSPR 

would be more representative for populations instead of just for individuals seen in 

traditional QTL mapping studies. Furthermore, since DSPR contains 8 different founder 

strains, it is also a perfect resource to address the genetic variance-heterogeneity of 

complex traits.  

https://paperpile.com/c/Rv1CIg/1wEGc
https://paperpile.com/c/Rv1CIg/D3Bk9
https://paperpile.com/c/Rv1CIg/D3Bk9
https://paperpile.com/c/Rv1CIg/on2WW
https://paperpile.com/c/Rv1CIg/on2WW
https://paperpile.com/c/Rv1CIg/gHOmI+D3Bk9
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IV. Non-coding regulatory elements contribution to complex traits:  

In addition to causal genes' direct contribution to complex traits variation through 

changing the proteins [64], non-coding genetic variants can also participate in driving 

the variations of these traits as regulatory elements [11,65,66]. In fact, a widely held 

current belief is that variation in complex traits is often due to variation in the gene 

regulation machinery [19,67–71], and especially cis-acting factors that control gene 

expression in specific tissues or developmental time points that determine traits [2]. 

These varied regulatory elements control gene expression by binding transcription 

factors to enhancers, but those binding events can only take place if the local chromatin 

configuration is open in the particular tissue or timepoint important for that trait. Thus, 

we argue that knowing the genome-wide landscape of variation in chromatin 

accessibility in a large number of tissues would be valuable for complex trait studies.  

Until recently, non-coding regions with regulatory function have been difficult to 

identify at scale, but genome-wide profiling of open chromatin regions using 

experimentally straightforward ATAC-seq (Assay for Transposase Accessible 

Chromatin) approach [72] have allowed characterization of chromatin state in large 

panels of genotypes [73,74]. ATAC-seq uses Tn5 transposase to insert sequencing 

adapters , and to cut the DNA at regions of accessible chromatin.  In contrast, if the 

DNA regions are not accessible, steric hindrance would prevent the binding of Tn5. As a 

result, only open chromatin regions are probable allowing for amplification and high-

throughput sequencing of DNA fragments located at open chromatin regions [72]. An 

https://paperpile.com/c/Rv1CIg/kadPr
https://paperpile.com/c/Rv1CIg/3hYPM+utwlY+5Ps5K
https://paperpile.com/c/Rv1CIg/8v7Zz+CX9qD+3oKjd+7iobM+wkxti+Xl9yk
https://paperpile.com/c/Rv1CIg/gqaqb
https://paperpile.com/c/Rv1CIg/EtNom
https://paperpile.com/c/Rv1CIg/8n61n+lAWcu
https://paperpile.com/c/Rv1CIg/EtNom
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example schematic of ATAC-seq is shown in figure intro.1 . Then, ATAC-seq "peaks" 

are called using the ATAC-seq DNA sequence reads pileup. These chromatin 

accessibility “peaks" which vary across tissue and genotypes are of potentially even 

great value, as these polymorphic chromatin configurations could presage variation in 

complex traits. 

 

V. Chromatin accessibility in cis and in trans: 

  Normally, 75-90% of genomic DNA exists as densely compacted nucleosome 

arrays, which are bent sequences of DNA wrapping tightly around histones [75,76]. 

These nucleosome structures act as a barrier to prevent the binding of RNA 

polymerase[77–80], and most transcription factors [81,82]. DNA wrapped in a 

nucleosome also prevents repair, recombination complexes [76]. Furthermore, 

nucleosomes can also recruit other proteins through interaction with the histone tail 

domains [83]. Thus, the nucleosome must be evicted resulting in a nucleosome free 

DNA region (open chromatin regions) so that they can participate in regulation of gene 

expression allowing the binding of polymerase or transcription factors. These open 

chromatin regions are the regulatory elements that I am interested in for the reasons 

discussed in the previous section.  

 Given the importance of nucleosome free DNA regions, great effort has been 

spent to elucidate the mechanism of nucleosome eviction. It has been shown that DNA 

sequences can bend differently depending on their nucleotide sequences [84–86]. 

Consequently, nucleosome stability is greatly dependent on histone affinity to specific 

https://paperpile.com/c/Rv1CIg/XByYa+VPnHo
https://paperpile.com/c/Rv1CIg/0CHr5+kHDS8+hQ245+vToWW
https://paperpile.com/c/Rv1CIg/PJOjN+QbuDV
https://paperpile.com/c/Rv1CIg/VPnHo
https://paperpile.com/c/Rv1CIg/RuYE9
https://paperpile.com/c/Rv1CIg/WmVdu+uDIk7+1BkAT
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DNA sequences [87,88] which can be 1000 fold or greater [89]. Thus, the less affinity 

there is between histone and DNA sequence, the less stable a nucleosome is. 

Therefore, the resulting openness of chromatin due to nucleosome eviction can be in cis 

due to substantial DNA sequence reference. However, others argue that the histone 

DNA sequence reference might not be too meaningful [76]. It has been shown that 

nucleosome positions can be regulated in trans by ATP-dependent nucleosome 

remodeling complexes [90,91]. Thus, it is important to elucidate the cis and trans nature 

of open chromatin regions since they regulate gene expression differently. An example 

for nucleosome eviction in cis and in trans is shown in the figure intro.2 left using an 

allele of isogenic A4 genotype.  

 

VI. Major shortcomings in the field: 

Among the model organisms, Drosophila melanogaster is one of the most widely 

used model organisms in complex trait fields due to their fast life cycle (~2 weeks), well-

characterized reference genome, and a vast-array of specific developed genetic tools. 

Furthermore, given the ease of use of ATAC-seq and the importance of characterizing 

complete complex trait loci, there have been at least 14 papers that utilize the ATAC-

seq to characterize open chromatin regions in Drosophila melanogaster. However, there 

are three major shortcomings of these studies. The first is that they primarily focus on 

embryo samples with only 5 studies utilizing third instar larvae [92–94], adult gut [95], 

and adult testes [96]. Thus, the utility of identified open chromatin regions are limited, 

and may not apply to adult tissues and/or phenotypes.  

https://paperpile.com/c/Rv1CIg/T7Azh+49mBd
https://paperpile.com/c/Rv1CIg/yPble
https://paperpile.com/c/Rv1CIg/VPnHo
https://paperpile.com/c/Rv1CIg/ePiWM+6LNQR
https://paperpile.com/c/Rv1CIg/sOPX3+OPl5u+Fa9oI
https://paperpile.com/c/Rv1CIg/YDEj7
https://paperpile.com/c/Rv1CIg/P16Yx
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One example is the study on distinct expression characteristics found in genes 

with promoters that have a TATA box or pausing elements for RNA polymerase II (Pol 

II)  [97].  Both of these promoters play an active role in regulation of gene expression 

[97–103]. In fact, Pol II pausing has been shown to be involved in regulating 

transcriptional activation [104]. As a result, genes with Pol II pausing elements are 

highly regulated during development [98,99,105], and mediate synchronous gene 

expression between cells [106,107]. In contrast, TATA box is found to be a core player 

in the gene promoter which directly controls transcription [108]. Therefore, genes 

containing TATA promoters are often associated with high expression variability [109–

111], and are highly enriched among effector genes [103,112,113], which have been 

shown to be associated with complex traits [114]. Thus, the study on distinct expression 

characteristics between genes with Pol II pausing and TATA promoters is an important 

first step to further elucidate the mechanisms behind polymorphic gene expression in 

complex traits as both promoters are involved directly with gene expression 

regulation.  However, in the study [115], the authors only utilized embryos to 

characterize differential chromatin accessibility between two promoter groups. 

Furthermore, tissue specificity of chromatin accessibility between two promoter groups 

is inferred using only embryonic tissue (tissue collected from embryo). Thus, such a 

study, while showing valuable polymorphic chromatin accessibility between two 

promoter groups, can't illustrate the complete picture on differential chromatin state 

landscape between these two promoter groups given the differences between embryo 

stage and adult stage, which is skipped.  

https://paperpile.com/c/Rv1CIg/bsTJW
https://paperpile.com/c/Rv1CIg/bsTJW+iLmsn+EEykh+aTS2p+Jlyoc+7wZg3+kD8Rg
https://paperpile.com/c/Rv1CIg/wHnm1
https://paperpile.com/c/Rv1CIg/EEykh+iLmsn+TSKjf
https://paperpile.com/c/Rv1CIg/HAJpX+juCzv
https://paperpile.com/c/Rv1CIg/7y2Mf
https://paperpile.com/c/Rv1CIg/bmWSw+mf1LM+gOO62
https://paperpile.com/c/Rv1CIg/bmWSw+mf1LM+gOO62
https://paperpile.com/c/Rv1CIg/HU2bD+AYShQ+kD8Rg
https://paperpile.com/c/Rv1CIg/Nnvm4
https://paperpile.com/c/Rv1CIg/cfscP
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The second major shortcoming is that the majority of Drosophila studies have 

focused on a single genotype (or cell line), have used different mutant backgrounds, or 

have employed a small number of wildtype strains that lack a high-quality genome 

sequence [92–95,116–118]. Furthermore, none of these genotypes are of the 

Drosophila melanogaster reference strain, against which the resulting ATACseq reads 

are subsequently aligned. As a result, they completely ignore the considerable number 

of SNPs, short insertion/deletion variants, and a wide array of structural variants (SVs) 

distinguishing any pair of Drosophila strains [119]. This has two major issues. The first 

is the possible misalignment caused by the effect of SVs on read coverage which has 

been well-documented leading to incorrect inference of coverage [120]. As outlined in 

Mahmoud et al., structural variants cause complication in read mapping due to their size 

compared to the read size, repeated patterns in copy number variant, or the overlapping 

of multiple SVs in the same regions [120]. All of these may cause the mapped reads to 

be of low quality and to be thrown out subsequently as the result which would cause 

incorrect calculation of read coverage. In fact, this issue was observed with RNAseq 

data [121]. Another issue of using non-reference strains which are aligned only to the 

reference genome is that it is not possible to analyze genetic and phenotypic variation in 

chromatin accessibility (as measured by ATAC-seq). This can be observed in the 

results of hundreds of QTL mapping and GWAS studies which explains a small portion 

of trait heritability [1,122]. One hypothesis for this is that many hidden variants, such as 

SNPs, or SVs, make significant contributions to complex trait variation despite being 

rare in nature [122,123]. Thus, using non-reference strains which don't have known 

genome assemblies will not be as valuable in elucidating the actual genotypic and 

https://paperpile.com/c/Rv1CIg/sOPX3+OPl5u+Fa9oI+YDEj7+KV7N7+rirhW+DUlH2
https://paperpile.com/c/Rv1CIg/3Anam
https://paperpile.com/c/Rv1CIg/h0YG0
https://paperpile.com/c/Rv1CIg/h0YG0
https://paperpile.com/c/Rv1CIg/GlO9Z
https://paperpile.com/c/Rv1CIg/Nht4+8cjWM
https://paperpile.com/c/Rv1CIg/8cjWM+MbRa7
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phenotypic variants observed in complex traits due to missing information on genome 

variations.  

In summary, while those studies do produce ATAC-seq landscapes for their 

respective samples, I would argue that those are not representative and potentially 

incorrect. This is, firstly, due to their lack of representative usage of tissues from 

different developmental cycles. Furthermore, they fail to account for the false positive 

effect of structural variant on inference of open chromatin regions due to SV effect on 

read mapping errors. These false positive rates can sometimes reach 50% or more as 

will be shown in my first paper. Lastly, the lack of consideration toward diploid nature of 

species effectively disallows characterization of trans-acting open chromatin regions. 

Thus, while the current studies which utilizes ATAC-seq to characterize open chromatin 

regions do produce a landscape of TFBS for their respective samples. Such landscapes 

are nowhere near being representative to the species.  

 

VII. Thesis aims and methods: 

 As an effort to elucidate the "missing heritability", the first aim of this thesis is to 

characterize a genome-wide landscape of regulatory elements by identifying open 

chromatin regions using ATAC-seq. Furthermore, we also address the first two major 

shortcomings of the field by performing ATAC-seq on multiple tissue samples collected 

from multiple genotypes from DSPR [119] which have reference genome quality 

assembly and identified structural variants. Here, we carry out a biologically-replicated 

ATACseq experiment to characterize chromatin accessibility in four adult tissues in 

https://paperpile.com/c/Rv1CIg/3Anam
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seven highly-characterized isogenic genotypes of D. melanogaster [119]. Similar to the 

discussion above on how ATAC-seq is used to identify open chromatin regions, we 

expect to identify different open chromatin peaks. Furthermore, inspired by the quantile 

normalization method used in microarray studies, we perform genome wide 

normalization for the ATAC-seq reads. Statistical analysis will be carried out to identify 

polymorphic peaks that differ in coverage by tissue, by genotype, and by 

genotype:tissue interaction. As the seven founder lines that we use are highly isogenic 

and contain fully characterized structural variants [119], we can correct for SVs effect on 

coverage due to mis-mapped read pairs in order to correctly infer open chromatin 

configurations. Lastly, as all seven founder strains also have complete SNP profiles, we 

can also identify a set of causal cis-acting SNPs/SVs that are linked to polymorphic 

peaks. In conclusion, I believe that our results would be valuable representative profiles 

of polymorphic open chromatin regions as we have included tissues from two 

developmental stages of D. melanogaster (embryo imaginal disc and adult tissues), and 

have corrected for SVs effect on reads mapping coverage. 

Furthermore, as the first study fails to include data from F1 hybrid individuals 

which is necessary to characterize trans-acting open chromatin regions, the question of 

whether those polymorphic regulatory elements are in cis- or in trans- remain 

unanswered. As a result, it is not as helpful in elucidating the mechanisms underlying 

transcriptional regulation. Thus, my second aim for the thesis would be to address the 

third shortcomings and to elucidate the cis- and trans- nature of the identified regulatory 

elements from the first study. This is done by fully characterizing cis-acting and trans-

acting open chromatin regions using ATAC-seq for ovary tissues collected from F1 

https://paperpile.com/c/Rv1CIg/3Anam
https://paperpile.com/c/Rv1CIg/3Anam
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hybrid which is the result of a F0 cross between A4 genotype and B6 genotype- both of 

which are founders of the DSPR. This second study is inspired by the alternative 

method to identify trans-acting  elements as described in yeast [126,127], maize [128], 

or fruit fly [128–130]. Inspired by this alternative method, we expect that cis- and trans-

effect variations in chromatin accessibility can be dissected in the same manner using 

our ATAC-seq data. If the ratio of coverage between F1 haplotypes is different from the 

ratio of coverage between the two parents at the same polymorphic open chromatin 

regions, such difference can be attributed to the trans-acting variations. As a result, we 

would expect to identify cis-acting and trans-acting polymorphic open chromatin 

regions. These results can be valuable to the complex trait community despite the 

limited number of tissues and genotypes in use. 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/Rv1CIg/whONN+gG23R
https://paperpile.com/c/Rv1CIg/UY8o1
https://paperpile.com/c/Rv1CIg/UY8o1+g2mfn+HRO8U
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VIII. Figures: 

 

Fig intro.1: Schematic of ATAC-seq showing Tn5 transposome 
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Fig intro.2: Schematic of approach to detect cis and trans effects on chromatin 
accessibility adapted from Connelly et al., 2014 [131]. 

(Left) examples of nucleosome evictions in trans by ATP-dependent nucleosome 
remodeling complexes (shown as a hexagon), and in cis by low affinity histone DNA 
sequence for one allele in A4 isogenic genotype. ( Middle) an example of one allele 
from B6 isogenic genotype without any nucleosome modification.  ( Right ) example of 
open chromatin region in trans and in cis. An open chromatin is in trans when there is a 
difference in chromatin accessibility in parental haploids, but there is no such difference 
between the two alleles in the diploid hybrid. An open chromatin is in cis when there is a 
difference in chromatin accessibility in parental haploids, and the cis effect is shown by 
the same difference in accessibility detected between the two alleles in diploid hybrids.  

 

https://paperpile.com/c/Rv1CIg/SPIRu
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CHAPTER 1 

Genetic Variation in Chromatin State Across Multiple Tissues in Drosophila 

melanogaster 

 

1.1 ABSTRACT  

We use ATAC-seq to examine chromatin accessibility for four different tissues in 

Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal 

imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic 

backgrounds, seven associated with a reference quality genome assembly. We develop 

a method for the quantile normalization of ATAC-seq fragments and test for differences 

in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout 

the euchromatic genome. For the strains with reference quality genome assemblies, we 

correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural 

variants (SVs). Comparing coverage among genotypes without accounting for SVs 

results in a highly elevated rate (55%) of identifying false positive differences in 

chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 

4508 regions whose peak heights are polymorphic among genotypes, among tissues, or 

exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate 

causative variants that explain at least 80% of the variance in chromatin state at nearby 

ATAC-seq peaks. 
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1.2 INTRODUCTION 

Many human complex diseases, such as heart disease and diabetes, are highly 

heritable [1] . Large high-powered Genome-Wide Association Studies (GWAS) have 

dominated the study of such diseases over the last decade, but despite thousands of 

associations between markers and traits, the exact causative variants underlying risk 

typically remain hidden [2,3], and an appreciable fraction of heritable variation remains 

unexplained [4]. Recent papers propose that variation in human complex traits is due to 

thousands of mostly intermediate-frequency, tiny effect variants [5–7]. In contrast, QTL 

mapping studies in yeast [8,9], mouse[10–12] , and Drosophila [13] consistently map 

factors of much larger effect, with mapped QTL collectively explaining a considerable 

fraction of heritability in a cross. Efforts to fully characterize complex trait loci in model 

systems may hold the most promise for “lifting the statistical fog” [14]  associated with 

genetic mapping, and point to causative, functional alleles. 

A promising strategy for identifying causative variants at candidate genes 

identified via GWAS or QTL mapping is to focus on regions near those genes that act 

as cis-regulators of gene expression. There is now a preponderance of evidence that 

the bulk of variation in complex traits is due to regulatory variants [6,15–18] , with little 

evidence that amino acid variants explain human GWAS hits [19] . Yet, so little is 

actually known about complex traits that even this claim is debated   [19,20]. Until 

recently, non-coding regions with cis-regulatory function have been difficult to identify at 

scale, but genome-wide profiling of open chromatin regions using DNase-I HS (DNase-I 

hypersensitive sites) sequencing [21] and/or the more experimentally straightforward 

ATAC-seq (Assay for Transposase Accessible Chromatin) approach [22]  have allowed 

https://paperpile.com/c/rJuvU8/XgSZ
https://paperpile.com/c/rJuvU8/iTbK+RUuT
https://paperpile.com/c/rJuvU8/fcNV
https://paperpile.com/c/rJuvU8/A7af+uqES+6LXz
https://paperpile.com/c/rJuvU8/nOOK+VFTx
https://paperpile.com/c/rJuvU8/8X2I+sZ8W+Z0WG
https://paperpile.com/c/rJuvU8/L7aY
https://paperpile.com/c/rJuvU8/zAau
https://paperpile.com/c/rJuvU8/uqES+yBHm+4qqN+Qpip+kx3y
https://paperpile.com/c/rJuvU8/5knr
https://paperpile.com/c/rJuvU8/t5Op+5knr
https://paperpile.com/c/rJuvU8/JzU5
https://paperpile.com/c/rJuvU8/paJX
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characterization of chromatin state in large panels of genotypes  [23,24]. ATAC-seq 

employs the Tn5 transposase sequencing chemistry to make an Illumina-compatible 

paired-end sequencing library using nucleosome-bound DNA as template for the 

transposition reaction. Regions of DNA bound by transcription factors or nucleosomes 

are protected from Tn5 insertion, whereas more open chromatin regions - likely 

harboring active cis-regulatory features - are associated with higher levels of sequence 

coverage. Much like RNA-seq data, open chromatin regions identified by ATAC-seq can 

vary among tissues, developmental timepoints, and genotypes [23,25–27] . In terms of 

the genetics of complex traits, chromatin features displaying variation among 

genotypes, especially in a tissue-specific manner, are of considerable interest as 

potential contributors to trait variation. 

Multiple DNase1-HS-seq and ATAC-seq studies have been carried out in 

Drosophila melanogaster [26,28–41] as well as other insects such as Anopheles 

gambiae  [42]. The majority of Drosophila studies have focused on a single genotype (or 

cell line), have compared different mutant backgrounds, or have employed a small 

number of wildtype strains that lack a high-quality genome sequence (c.f. 

[26,29,33,35,36,38,39]). In no case has the genotype queried been the Drosophila 

melanogaster reference strain (i.e., Bloomington stock 2057 or “iso1”), the strain ATAC-

seq reads are generally aligned to. There are routinely a considerable number of SNPs, 

short insertion/deletion variants, and a wide array of structural variants (SVs) 

distinguishing any pair of Drosophila strains [43] , and such events – if they are 

effectively “hidden” due to the absence of high-quality genomes for the target strains – 

may complicate the analysis of chromatin state, as has been observed with RNAseq 

https://paperpile.com/c/rJuvU8/Y3WQ+VmSb
https://paperpile.com/c/rJuvU8/Y3WQ+4llK+Wqrb+Lsdi
https://paperpile.com/c/rJuvU8/Wqrb+oZTq+AftL+Psgv+yhWP+AyLP+Vvus+0uu9+wIXW+oLnE+xZHP+6idG+lQPC+7JKc+wHul
https://paperpile.com/c/rJuvU8/xqK7
https://paperpile.com/c/rJuvU8/Wqrb+AftL+Vvus+wIXW+oLnE+6idG+lQPC
https://paperpile.com/c/rJuvU8/2KMo
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data [44] . Furthermore, chromatin accessibility studies in Drosophila have focused 

principally on early embryonic stages [26,30–32,34–37,41], cell lines [28], or whole 

adults, with only five studies examining specific adult tissues or imaginal discs 

[29,33,38–40]. In terms of the complex traits that tend to be studied in the Drosophila 

research community, which are skewed towards traits measured in adults and larvae 

(c.f. Table 3 of [45] ), cis-regulatory elements active in imaginal discs or adult tissues 

are likely of broad interest. 

Here we carry out a biologically-replicated ATAC-seq experiment to characterize 

chromatin accessibility in four adult tissues in several highly-characterized isogenic 

genotypes of D. melanogaster [43] (throughout this paper we use genotype to refer to a 

genome wide genotype or isogenic strain). We identify a set of peaks with evidence for 

an open chromatin configuration in at least one of the tissues. Unlike previous studies, 

and inspired by the quantile normalization method deployed in microarray research [46] 

, we develop a method for normalizing ATAC-seq reads across tissues, genotypes, and 

biological replicates. We carry out statistical tests to identify ATAC-seq peaks that differ 

in coverage as a function of tissue, genotype, or that display a tissue-by-genotype 

interaction. By virtue of studying highly isogenic genotypes with reference quality de 

novo assemblies, we correct for artifacts in peak coverage due to hidden SVs. We show 

that a failure to correct for the impact of SVs can result in a high rate of peaks inferred 

as differing between genotypes, which are in fact due to mis-mapped read pairs. We 

finally identify a set of SNPs near to variable ATAC-seq peaks that potentially represent 

candidate causal cis-acting factors. 

 

https://paperpile.com/c/rJuvU8/cJfX
https://paperpile.com/c/rJuvU8/Wqrb+Psgv+yhWP+AyLP+0uu9+wIXW+oLnE+xZHP+wHul
https://paperpile.com/c/rJuvU8/oZTq
https://paperpile.com/c/rJuvU8/AftL+Vvus+6idG+lQPC+7JKc
https://paperpile.com/c/rJuvU8/HzsJ
https://paperpile.com/c/rJuvU8/2KMo
https://paperpile.com/c/rJuvU8/JEod
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1.3 RESULTS 

 

Workflow and samples: We dissected wing and eye-antennal imaginal discs from 

male third instar larvae, and brains and ovaries from adult females, for eight Drosophila 

Synthetic Population Resource [47] founder strains. All eight have been re-sequenced 

using short-read sequencing [48], while seven have extremely well characterized, 

reference-quality genomes [43]. For each tissue and genotype combination we obtained 

three biological replicates. The eight genotypes chosen are highly inbred and represent 

a world-wide sampling of variation within the species (see S1.1 Fig and S1.1 Table). 

Dissected samples were immediately processed to make indexed ATAC-seq libraries 

[22]  and sequenced to obtain 20-147 million Illumina paired-end reads per sample 

(mean=73M, SD=21M). Reads were aligned to the D. melanogaster reference genome 

(dm6) and pooled across genotypes, but within tissues, to identify open chromatin 

“peaks'' located throughout the euchromatic genome using MACS2 [49]. Individual 

replicate/genotype/tissue samples were separately normalized to obtain a weighted 

coverage at each identified peak. Finally, we utilized reference quality assemblies for 

the seven assembled strains to correct read coverage statistics for the presence of 

nearby polymorphic structural variants (SVs) and carried out statistical tests at peaks to 

identify chromatin structures that varied among the four tissues, the seven genotypes, 

or exhibited a tissue-by-genotype interaction. Our general workflow is depicted in 

Supplementary Figure S1.2 and read mapping statistics for each sample are given in 

Supplementary Table 1.4. 

 

https://paperpile.com/c/rJuvU8/stV8
https://paperpile.com/c/rJuvU8/mP1e
https://paperpile.com/c/rJuvU8/2KMo
https://paperpile.com/c/rJuvU8/paJX
https://paperpile.com/c/rJuvU8/xkPM
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ATAC-seq identifies open chromatin regions across four tissues in the 

Drosophila genome: Peaks were filtered to only include those in euchromatin regions 

(see S1.2 Table) that were also significantly enriched above background at p<0.01 as 

defined by MACS2. After filtering, we identified 25464, 18111, 18496, and 17413 

euchromatic peaks for adult female brain, ovary, eye-antennal imaginal disc and wing 

imaginal disc tissue, respectively. Venn diagrams showing peaks shared among tissues 

for the set of peaks enriched at p<0.01 and at p<0.001 (Fig 1.1A) are qualitatively 

similar, supporting the idea that the significance threshold for enrichment that is 

employed only subtly impacts the collection of peaks we consider. The Venn diagram at 

p<0.01 (Fig 1.1A) shows that although peaks shared among tissues are not uncommon 

– 9.8%, 7.5%, and 17.2% of the total collection of peaks are shared by all four, three, or 

two tissues, respectively – 65.6% of the peaks are private to a single tissue. Brain tissue 

exhibits the highest number of private ATAC-seq peaks, but even the pair of disc 

tissues – which one might naively think would be the most similar of our target tissue 

types – have appreciable numbers of private peaks, highlighting the value of tissue-

specific chromatin characterization. 

For each peak, within each tissue, we characterized fold enrichment (a measure 

of peak “height” based on read count in the peak relative to the local background [49] ) 

to explore whether the properties of the peaks we identify resemble those observed in 

previous studies. Figure 1.1B, depicting fold enrichment for the brain, shows that the 

vast majority of peaks (>90%) have fold enrichments of less than 5. We observed the 

same trends for the four other tissues (see S1.3A, S1.4A, and S1.5A Figs). This 

observation is consistent with results from DNase1-HS-seq experiments [50,51]  and 

https://paperpile.com/c/rJuvU8/xkPM
https://paperpile.com/c/rJuvU8/tSUs+J2RH
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other ATAC-seq datasets [52,53] . We further examined the distribution of fold 

enrichment as a function of distance from transcription start sites (TSSs) for brain 

peaks, as TSSs often exhibit strong enrichment patterns [54,55] . Figure 1.1C shows 

fold-enrichment as a function of distance from the TSS for the female brain (S3B, S4B, 

and S1.5B Figs for the other tissues). The patterns we see largely mirror other studies 

[52,54,55] . We finally examined average fold enrichment as a function of HOMER 

annotation type (Fig 1.1D depicts female brain). Fold enrichments are strongest for 

5’UTR, TSS, and perhaps transcription termination sites (TTS). Enrichments are more 

subtle for other feature types, although for all feature types there was clearly a subset of 

peaks with strong fold enrichment scores. The same trend in peak enrichment with 

regard to feature types can also be observed in other tissues (S1.3C, S1.4C, and S1.5C 

Figs). Overall, properties of the ATAC-seq peaks observed for our four target tissues 

are comparable to those observed in the Drosophila literature [56] , giving us confidence 

that the peaks of this study are robustly inferred. Finally, there is some suggestion that 

more highly enriched peaks (e.g., those near TSSs) tend to be more likely to be shared 

among tissues. Supplementary Figure 1.6 shows the degree of peak sharing among 

tissues as a function of the feature type that peak is located in.  

Our next goal was to obtain a common set of genomic locations (or loci) at which 

statistical tests to evaluate variation in chromatin accessibility over genotypes and/or 

tissues could be carried out. To do this we merged peaks (i.e., the single base position 

where coverage peaked) over all tissues and genotypes that were within 200-bp of one 

another, and whose MACS2-defined boundaries overlapped. In contrast, peaks that 

were separated by more than 200-bp were not merged even if their MACS2 boundaries 

https://paperpile.com/c/rJuvU8/sZXD+EORb
https://paperpile.com/c/rJuvU8/JP6x+yzHA
https://paperpile.com/c/rJuvU8/sZXD+JP6x+yzHA
https://paperpile.com/c/rJuvU8/0Gz2
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overlapped. To illustrate the merging procedure Figure 1.2 (top panel) depicts a 

representative ~30kb region centered on the gene hairy (a gene contributing to 

embryonic segmentation and peripheral neurogenesis) showing peaks called separately 

for each of the four tissues, as well as the consensus set of peaks with adjacent peaks 

merged (the “all tissues” track; see methods). Red hashes show the location of each 

peak, and horizontal black bars depict the entire peak interval from MACS2. The lower 

panel zooms in on a smaller 10kb region with a more detailed depiction of the raw 

coverage data (the y-axis is fold enrichment). As with typical ATAC-seq datasets we 

often see a strong peak near the TSS that is consistently identified across tissues. In 

contrast, for non-TSS peaks, MACS2 boundaries may only sometimes overlap 

depending on the tissue. The lower panel illustrates how our heuristic merges peaks 

close to one another across tissues to define a single peak location (red hashes). The 

heuristic gives a single “all tissues” location for the peak associated with the TSS of 

hairy, despite the peak position varying slightly among tissues. Furthermore, consider 

the region downstream of the 3’ UTR of hairy, the MACS2 boundaries (indicated by the 

black bars) for two peaks overlap for ovaries, but not for the two disc tissues, and the 

six peaks each have different locations. Despite the MACS2 boundaries overlapping in 

ovaries, the raw coverage clearly suggests two peaks. As those peaks are greater than 

200bp apart, the heuristic calls two peaks and further merges the positions of those two 

peaks across tissues. An algorithm that merges peaks based on overlapping 

boundaries, especially when data is collected from multiple tissues, would merge these 

two peaks (since their boundaries overlap), despite evidence they are separate. Based 

on visual inspections of the fold-enrichment profiles for many other regions (not shown) 
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we observe many such instances where merging peaks based on overlapping MACS2 

boundaries, especially those observed only in a subset of tissues, seems misleading, 

whereas keeping the peaks separate appears correct. 

 

Normalizing coverage corrects for sample-to-sample variation and the presence 

of structural variants: Different samples yield different numbers of raw reads. 

Additionally, histograms of ATAC-seq fragment lengths show a characteristic periodicity 

representing nucleosome free DNA, mono-nucleosome bound DNA, di-nucleosome 

bound DNA, and so on (see Figure 1.2 of [22]  and S1.7 Fig for convenience). Figure 

1.3, depicts the distribution of raw fragment lengths for two biological replicates of brain 

tissue ATAC-seq from the A4 strain in red (i.e., independent tissue dissections and 

library preps). It is evident that replicate 2 has more nucleosome bound DNA than 

replicate 1. We hypothesize that such differences might arise from subtle differences in 

sample prep that result in different rates of disassociation of nucleosomes from DNA, 

and this sample-to-sample variation is likely challenging to experimentally control for. To 

allow comparisons across tissues and genotypes we normalized each sample so that 

the genome-wide distribution of fragment sizes are identical (see methods) using an 

approach akin to the quantile normalization technique used extensively in the context of 

gene expression [57]. Our normalization results in a weight being assigned to each 

fragment and by working with those weights, as opposed to raw fragment counts, 

histograms have identical fragment size distributions across all samples (Fig 1.3, blue 

curves). This normalization allows for straightforward statistical testing between tissues 

and genotypes. Supplementary Figure 1.8 depicts the distribution of fragment lengths 

https://paperpile.com/c/rJuvU8/paJX
https://paperpile.com/c/rJuvU8/7ceE
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across the 96 samples of this study prior to normalization and the removal of one 

sample due to low data quality. 

A second concern often ignored in ATAC-seq analysis, that can make it difficult 

to compare samples across genotypes, is the presence of structural variants that could 

masquerade as polymorphisms in chromatin structure. ATAC-seq data obtained from 

different genotypes are generally aligned to a single reference genome, and a 

polymorphic structural variant near an ATAC-seq peak can result in unaligned reads, 

which will present as a local drop in coverage, and lead to the incorrect inference of 

more closed chromatin in that region of the genome. The eight genotypes examined in 

this study are highly isogenic and seven are associated with reference quality de novo 

assemblies, putting us in the unique position of being able to correct for polymorphic 

structural variants. We correct for SVs by excluding all fragments across all samples 

that span a structural variant present in any of the several assembled samples. 

We illustrate the impact of correcting for SVs on wing disc ATAC-seq data for a 

10kb region around the rpr gene (a gene important in programmed cell death) for two 

genotypes (B6 in brown, A4 in green), B6 harbors a ~17kb mdg1 transposable element 

~5kb upstream of the TSS of rpr (Fig 1.4A). In the uncorrected for SVs wing disc 

dataset, there is an apparent difference in chromatin configuration near the mdg1 

insertion. But after correcting for reads mis-mapped due to the mdg1 insertion it 

appears that such an inference is incorrect and the lower coverage in the B6 genotype 

is largely due to mis-mapped reads associated with the mdg1 TE. Although, even after 

correcting for the mdg1 insertion, there does appear that there is a subtle difference in 

chromatin structure to the right of its location. Interestingly, this region contains two 



 

26 
 

other SVs (a 2.8 kb F insertion in A4 and a 111bp deletion in B6) that do not impact 

chromatin structure inferences. 

Figure 1.4B depicts a second example of an ATAC-seq peak in the first intron of 

the Mef2 gene, whose product is crucial in myogenesis [58] . The top panel shows a 

45kb region centered on the Mef2 gene, while the bottom panel zooms in on a 550bp 

region entirely contained within the first intron showing coverage for brain samples with 

and without SV correction. In the SV-uncorrected data, this peak significantly varies by 

genotype with a -log10(FDR p-value) of 3.7. Seven of the genotypes exhibit a relatively 

open chromatin configuration, while A4 (in dark green) exhibits lower coverage in a 

region that contains a TE insertion. In a typical experiment, where the existence of the 

TE insertion would be unknown, and “hidden” from short read callers, the effect on read 

mapping of the TE would not have been corrected for, and we would have incorrectly 

inferred a genetic difference in chromatin accessibility. After SV correction, the ATAC-

seq peak is not identified as being polymorphic. It is important to note that our correction 

acts by masking regions close to SVs in non-SV containing samples, so our proposed 

solution is far from perfect.  But uncharacterized structural variants in non-reference 

genotypes can clearly cloud the interpretation of ATAC-seq datasets (as we show 

below). 

Although both panels of Figure 1.4 illustrate transposable elements, other 

structural variants can impact read mapping. Supplemental Figure 1.9 depicts a 

polymorphic 1.9kb deletion relative to the reference in strain A4 in the first intron of the 

Abl gene. The deletion knocks out two ATACseq peaks, but if only mapping short reads 

to the reference strain, A4 would appear to have a closed chromatin configuration.   

https://paperpile.com/c/rJuvU8/yxsS
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ANOVA identifies polymorphic chromatin structures: For every merged-peak in the 

euchromatic genome we carried out an ANOVA to determine if chromatin accessibility 

varies across Tissues, Genotype, or their interaction (T:G). We carried out this analysis 

for data either corrected or uncorrected for polymorphic structural variants for the seven 

genotypes with reference genomes. As the statistical analysis involved roughly sixty-

eight thousand peaks and three p-values for each peak (Tissue, Genotype, and their 

interaction) we convert p-values to a false discovery rate and consider a test significant 

if the FDR is less than 0.5%. Table 1.1 gives the number of significant chromatin profile 

differences by factor, and Figure 1.5A shows tissue overlap using a Venn diagram. A 

robust observation is that for the SV-corrected data, close to 100% of all peaks display 

differences in chromatin features among the four tissues we examine. Of the peaks 

showing differences between tissues ~84% are not significant for a genotype or tissue 

by genotype interaction (Fig 1.5A). Thus, chromatin features are far more likely to vary 

among tissues than genotypes. Although differences between genotypes are far less 

frequent than differences between tissues, we still identify roughly 1000 such peaks 

(Table 1.1). Interestingly we identify roughly four times as many tissue by genotype 

interactions than simple genotype specific peaks. Finally, we created Manhattan plots 

for all ANOVA tests, and observe that SV-corrected “hits” are largely uniformly 

distributed throughout the euchromatic genome with no evidence for “hotspots” (S1.10 

Fig), although perhaps there is a tendency for an increased rate of significant genotype 

hits nearer centromeric regions (despite aggressive filtering for euchromatin only 

regions). 
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Since we carried out ANOVA on both SV corrected and uncorrected data, we can 

assess the impact of failing to correct for SVs on inference. There is considerable 

overlap in those peaks showing tissue-only effects between the uncorrected and SV-

corrected datasets (Fig 1.5C). In contrast, we observe many fewer ATAC-seq peaks 

following SV correction in the genotype and tissue-by-genotype peak sets (Fig 1.5B & 

1.5D): Of the peaks identified in the uncorrected analysis, 55% for the genotype-only 

set, and 21% for the tissue-by-genotype set are eliminated by correcting for SVs. We 

more carefully examined the peaks eliminated by SV correction (n=1441 genotype-only, 

n=4041 tissue-only, n=1382 interaction) to determine what might be driving their 

disappearance (Table 1.2). The vast majority of these peaks - 89%, 99%, and 90% for 

genotype, tissue, or the interaction, respectively - are either completely contained within 

an SV or are within 800bp of an SV boundary (Table 1.2). The location of these peaks 

suggests that they are purely the result of incorrect mapping of short sequencing reads 

from a non-reference genotype to a common reference genome. The remaining 

genotype- and interaction-only peaks that disappear following SV correction, but that 

are greater than 800bp from an SV, appear to be excluded by just failing to survive 

thresholds. Either they are eliminated by having their average coverage drop just below 

our threshold of 50 following SV-correction, or by just failing to reach our 0.5% FDR 

threshold in the SV corrected dataset (S1.11 Fig).  Failing to correct for SVs during 

ATAC-seq peak calling - as is the norm when de novo genome assemblies are not 

available for the target strains - will generate large numbers of false positive peaks that 

do not, in truth, impact chromatin accessibility. 
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Supplementary Figure 1.12 depicts false positive differences between genotype, 

tissues, or a genotype by tissue interaction as a function of the SV-type corrected for, 

and if the ATACseq peak is inside the SV or instead within 800-bp of an SV. In the case 

of indels, for example, an ATACseq peak could be contained within a deletion present 

only in one of the non-reference strains. In contrast, for a peak to be within a TE, that 

TE would need to be present in the reference strain and absent in the other strains 

examined, due to the way mapping to a reference genome works. Chakraborty et al. 

[43] observed 7347 TE insertions, 1178 duplication CNVs, 4347 indels, and 62 

inversions in the euchromatin genomes of DSPR strains based on de novo sequencing. 

As expected, TEs dominate false positives due to SVs within 800bp of an ATACseq 

peak, whereas INDELs dominate the landscape for peaks contained within an SV. In 

general, the likelihood of a false positive is a complex function of the type of event, its 

population frequency, and how that event presents to short read mappers relative to the 

reference genome. 

 

Examples of polymorphic chromatin structures: Figure 1.6A depicts SV-corrected 

coverage brain and ovary samples centered between the TTS of the Npc2f gene, whose 

human ortholog (NPC2 gene) is implicated in Niemann-Pick disease and Niemann-Pick 

disease type C2 due to its involvement in regulating sterol transport [59] , and the TSS 

of Kal1 gene, whose human ortholog (Anosmin-1 gene) is responsible for the X-linked 

Kallmann's syndrome [60]. We observe a genotype polymorphism in chromatin state 

with the B2 genotype (light green) exhibiting a more closed chromatin state compared to 

the other genotypes for ovary tissue (-log10(FDR p-value) = 3.6). This ATAC-seq peak is 

https://paperpile.com/c/rJuvU8/2KMo
https://paperpile.com/c/rJuvU8/HE2e
https://paperpile.com/c/rJuvU8/E92y
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further polymorphic by tissue with brain tissue exhibiting a generally closed chromatin 

state. We speculate that the B2 genotype has lower expression of Kal1 in ovaries, with 

the chromatin structure impacting its TSS. Figure 1.6B depicts a polymorphic ATAC-seq 

peak located within the intron or near the TSS of the eIF4A gene (depending on 

isoform), with elF4A acting as RNA-dependent ATPase and ATP-dependent RNA 

helicase that facilitates attachment of the 40S ribosomal subunit [61] . Coverages are 

higher for A5, A7, and B3, than the other genotypes in wing disc tissue (-log10(FDR p-

value) = 3.5) with other tissues (not shown) showing similar trends in coverage. The 

location of the peak suggests a role in mediating isoform usage between genotypes via 

an alternative TSS, with the peak heights suggesting an allelic series. Figure 1.6C is an 

example of two adjacent peaks exhibiting a genotype:tissue interaction (-log10(FDR p-

value) = 4.5 and 4.4 respectively) located in intron 1 of the Eip75B gene isoform F, and 

near TSS of Eip75B gene isoform E. This gene has been shown to regulate the 

complex traits of feeding behavior, fat deposition, and developmental timing [62–64]. As 

with the example of EIF4A we speculate that this polymorphism impacts isoform usage 

via alternative TSSs. Figure 1.6D depicts four peaks polymorphic by tissue, or by 

genotype:tissue interaction, for an interesting 14kb region directly upstream of TSS of 

hairy. hairy is well studied in the context of developmental biology [65–67] and the 

genetics of complex traits [68–70] , with several cis-regulatory enhancers in this region 

playing a role in regulating the seven stripes formed in the blastoderm stage [71,72] 

.  The four ATAC-seq peaks exhibit chromatin configurations that vary among tissues (-

log10(FDR p-value) = 14.7, 17.9,10.9, and 14.9 left to right). Finally, the peak at 

https://paperpile.com/c/rJuvU8/Es3t
https://paperpile.com/c/rJuvU8/5lMn+5R1d+LK50
https://paperpile.com/c/rJuvU8/akgi+IIBY+AiwA
https://paperpile.com/c/rJuvU8/5p6G+iyic+GvCF
https://paperpile.com/c/rJuvU8/ZAsT+U1xP
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chr3L:8672906 is polymorphic for a genotype:tissue interaction (-log10(FDR p-value) = 

2.3). 

 

Candidate causative SNP identification: For each of the SV-corrected peaks 

significant for a genotype or genotype:tissue interaction we estimate the proportion of 

variation in peak height explained by each SNP (or marker) within 250bp of the peak 

(Fig 1.7). We speculate that such SNPs are strong candidates for cis-regulatory factors 

that control chromatin configuration. Two caveats are that we are only examining seven 

reference genomes so our models may be over-fitted, and truly implicating events as 

causative would require gene replacement experiments. We identify and test 6707 and 

33570 SNPs located within 250bp of genotype or genotype: tissue interaction specific 

ATAC-seq peaks respectively. Out of those, there are 1253 (18.7%), and 2735 (8.1%) 

SNPs that explain greater than 80% of the variation in peak heights due to Genotype or 

G:T respectively, an average of 6 nearby SNPs per significant peak (Table 1.3). We 

further annotate all SNPs that explain 100% of variance for functional impact. Out of 

687 SNPs that explain 100% of variance in peak height (by genotype or for a genotype: 

tissue interaction), there are a total of 22 SNPs annotated as having a high functional 

impact (i.e., missense, premature start codon, or splice variant), which is odd given that 

there is no reason to think a mutation of high functional impact on a transcribed protein 

is likely to impact a nearby chromatin configuration. The potential functional impact of 

the remaining 665 SNPs is more difficult to discern (S1.13 Fig). 
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Examples of potentially causative SNPs: Figure 1.8A depicts an ATAC-seq peak 

downstream of TTS of Bre1 isoform A and exon 4 of isoform B, a gene involved in 

regulation of Notch signaling [73–75]. Genotypes B2 and B3 are more closed in the eye 

disc and brain compared to all other genotypes (Fig 1.8A). There is a potential causal 

SNP almost centered on the peak explaining 100% and 57% of the variation in eye disc 

and brain respectively. Figure 1.8B depicts a polymorphic peak for brain and ovary in 

which the A6 (purple) genotype appears more open than the others (-log10(FDR p-

values) = 6.1 and 10.2 for genotype and G:T respectively). The peak is located in a 

intron of Ptpmeg (involved in the maintenance of axon projection [76]  and inhibition 

of  EGFR/Ras/mitogen-activated protein kinase signaling pathway during wing 

morphogenesis [77] ), as well as ~400bp downstream of TTS of mthl9 (whose gene 

subfamily plays important role in Drosophila development, stress response, and 

regulation of life span [78]). Two nearby SNPs each explain 100% of variation in 

genotypes, and both are private to the A6. Figure 1.8C depicts a peak polymorphic by 

genotype that appears largely brain specific with A7 (pink) being more closed relative to 

other genotypes, and B2 (light-green) perhaps more open slightly downstream but not 

associated with a called peak. A nearby SNP private to A7 in the 5’-UTR (and 51bp 

downstream of a TSS) of a Nna1 isoform explains 99% variance in genotype in the 

brain. Figure 1.8D depicts potentially causal SNPs exhibiting a genotype:tissue 

interaction located upstream of two TSSs for the gene stv (involved in the chaperone 

pathway essential for muscle maintenance [78,79] ). For both peaks and tissues the A4 

(green) genotype exhibits a more closed configuration especially in the wing disc and to 

https://paperpile.com/c/rJuvU8/JQVw+Ysyl+67Yo
https://paperpile.com/c/rJuvU8/3Mxl
https://paperpile.com/c/rJuvU8/frGC
https://paperpile.com/c/rJuvU8/SAod
https://paperpile.com/c/rJuvU8/SAod+OkMk
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a lesser extent the brain. A SNP private to A4 explains 81%, 95%, 55%, and 97% of the 

variance in coverage for brain and wing disc at left and right peaks respectively. 

 

1.4 DISCUSSION 

Previous ATAC-seq/DNase1-HS-seq experiments in Drosophila have focused 

almost exclusively on embryos, whole adult bodies, or cell lines, and only rarely have 

compared multiple genotypes. We carried out a replicated ATAC-seq experiment on two 

adult tissues (female brains and ovaries) and two imaginal disc tissues (wing and eye-

antennal imaginal discs) from which adult tissues are ultimately derived. It is widely 

believed that the sites that contribute to complex trait variation are likely to be regulatory 

in nature, thus chromatin features expressed in adult tissues are strong candidates to 

harbor such causative sites. Thus, we expect the data collected as part of this 

experiment will be of utility to the Drosophila complex trait community, who tend to study 

traits that manifest in adult or larval flies (c.f. Table 3 of Mackay and Huang 2018)[45], 

and see utility in our distributing coverage as a function of genotype and tissue as a 

series of Santa Cruz Genome Browser tracks (http://goo.gl/LLpoNH). We characterize 

eight highly isogenic strains of Drosophila that are a subset of the strains used to found 

the Drosophila Synthetic Population Resource [48] , with seven of those strains having 

reference quality genome assemblies levels [43] . We largely employ a standard ATAC-

seq peak calling pipeline, apart from our strategy for merging peaks within and between 

tissues, to obtain a union dataset consisting of 44099 open chromatin peaks. 

Our analyses identified approximately thirty thousand peaks that differed in 

coverage between tissues, highlighting the future need for tissue specific chromatin 

https://paperpile.com/c/rJuvU8/mP1e
https://paperpile.com/c/rJuvU8/2KMo
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maps. We further identified on the order of one thousand chromatin peaks that differ 

among genotypes and five thousand that vary among genotypes in a tissue specific 

manner. Chromatin peaks that differ among genotypes associated with candidate genes 

identified via QTL mapping in DSPR [13]  or GWAS using DGRP [80] are strong 

candidates for contributing to differences in gene expression levels. Surprisingly, peaks 

displaying genotype by tissue interaction are more frequent than the genotype specific 

peaks. Such peaks represent candidates for modulating gene expression in a genotype 

dependent manner in a small subset of tissues that gene impacts. It is reasonable to 

speculate that ATACseq peaks displaying tissue by genotype interactions underlie QTL 

that appear to be tissue or complex trait specific and do not show a great deal of 

pleiotropy. 

We carried out statistical testing to identify chromatin states that vary among 

tissues, seven of the eight wild-type genotypes, and/or exhibit a tissue by genotype 

interaction (i.e., differences among genotypes varying in the tissue dependent manner). 

To facilitate statistical testing, we carried out two important data normalization steps 

unique to this study. We first developed a per sample normalization procedure that 

creates per fragment weights that control for differences between samples in the total 

number of reads, and the percentage of read pairs that are nucleosome-free, 

mononucleosomic, binucleosomic, etc. The degree to which normalization impacts 

inference depends on how similar the fragments distributions are between samples. 

Some tissues seem easily amenable to ATACseq preps, especially cell lines, in which 

case perhaps no correction is necessary. On the other hand, more difficult tissues, will 

result in larger differences in fragment size distributions, and the correction is more 

https://paperpile.com/c/rJuvU8/L7aY
https://paperpile.com/c/rJuvU8/ccr4
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likely to be beneficial. Any normalization method is likely to be most useful when 

comparing genotypes within tissue, where subtle differences in ATACseq peak heights 

could be biologically meaningful. There is some risk that differences in fragment size 

distributions between tissues could be biological in origin, a problem shared among all 

between tissue normalization methods. These caveats acknowledged, the observation 

of fragment size distribution differences between biological replicates suggests that 

normalization may be beneficial. 

A second important normalization step attempted to control for false positive 

inferences due to hidden structural variants. By virtue of seven of the eight isogenic 

strains being associated with reference quality de novo assemblies [43], we control for 

the potential artifact of polymorphic structural variants creating read-alignment 

differences that in turn could masquerade as differences in chromatin configuration. We 

accomplish this by masking regions in all strains harboring a nearby SV present in any 

strain. We carried out statistical testing on datasets either ignoring or following 

correction for polymorphic SVs and estimated the potential to identify false positives in 

data sets where SVs are hidden. Failure to account for SVs does not strongly impact 

the inference of differences in coverage between tissues, but it can have a huge impact 

in terms of detecting difference in chromatin accessibility between genotypes or those 

showing a genotype by tissue interaction, where we estimate potential false positive 

rates of 48% and 19% respectively. Our method of correcting for SVs is conservative 

and consists of masking regions associated with polymorphic SVs. 

A shortcoming of our masking SVs is that we cannot perform in depth analyses 

of possible biological effects of the SVs themselves (unless they exert those effects 

https://paperpile.com/c/rJuvU8/2KMo
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over distances longer than ~800bp). A potential solution would be to align reads to a 

genome private to each strain, followed by lifting those alignments over to a universal 

coordinate system to compare genotypes. Although this approach works well for SNP-

based variation in well-behaved genomic regions, we find that lift-overs tend to break 

down when structural variants distinguish strains [81], and this is especially problematic 

for events like duplications where there is not even a 1:1 mapping between genomes. 

While our method of masking SV is not perfect, it is simple to implement and can 

remove upward of 50% of false positive peaks.  

For ATAC-seq peaks that vary significantly in coverage among genotypes or that 

show a tissue by genotype interaction, we attempted to identify nearby SNPs (or 

markers) that may control that variation. It is both reasonable to suggest, and supported 

by experiments (c.f., [24,81–85] ), that alleles that control chromatin accessibility peaks 

are likely to be in cis and physically close to the peak. We identify several thousand 

such SNPs that explain more than 80% of the variation due to genotype or a genotype 

by tissue interaction for coverage, a collection likely enriched for causative 

polymorphisms, despite our over-fitting of the data. It would be of value to extend this 

approach to a much larger collection of genotypes, although such work may necessitate 

focusing on a single tissue and require more de novo genome sequences to control for 

hidden structural variants. As Crispr/Cas9/allele swapping methods continue to come of 

age in Drosophila [86–90] medium-throughput functional assays capable of confirming 

specific allele chromatin peaks interactions could alternatively be used to characterize 

alleles regulating nearby chromatin states and gene expression levels. 

 

https://paperpile.com/c/rJuvU8/LeZV
https://paperpile.com/c/rJuvU8/LeZV+VmSb+VCdy+tc6o+f0FJ+O88a
https://paperpile.com/c/rJuvU8/Oj9b+OQhp+vZ8t+tbzd+qGCg
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1.5 MATERIALS & METHODS  

 

Strains: We employed 8 of the 15 strains that serve as founders of the Drosophila 

Synthetic Population Resource (DSPR), a multiparental, advanced generation QTL 

mapping population consisting of hundreds of recombinant inbred lines [48]. These 

highly-inbred strains - A4, A5, A6, A7, B2, B3, B6, and B7 (S1.1 Table) - are a 

worldwide sample of genotypes (S1.1 Fig), and seven of the eight (excluding B7) have 

reference quality assemblies such that virtually all SVs are known [43,48] . 

 

Tissue dissection and ATAC-seq library preparation: The 8 inbred strains were 

raised and maintained in regular narrow fly vials on a standard cornmeal-yeast-

molasses media in an incubator set to 25°C, 50% relative humidity, and a 12 hour Light 

: 12 hour Dark cycle.  We isolated nuclei from four different tissues for our 8 target 

strains. (1) Adult brains (central brain + optic lobes) were dissected and pooled from ten 

1-4 day old females per replicate. (2) Ovaries were dissected and pooled from five 1-5 

day old females per replicate. (3) Wing imaginal discs were dissected and pooled from 

3-7 male wandering third instar larvae per replicate. (4) Eye-antennal imaginal discs 

were dissected and pooled from 4-7 male wandering third instar larvae per replicate. 

For each strain/tissue combination we generated 3 replicates. All dissections were 

carried out 1-9 hours after lights on, and following dissection all samples were 

immediately subjected to nuclei isolation. 

Our full protocol for ATAC-seq library construction is provided in Supplementary 

Text 1, but in brief: Animals were dissected in nuclei lysis buffer under a standard 

https://paperpile.com/c/rJuvU8/mP1e
https://paperpile.com/c/rJuvU8/mP1e+2KMo
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stereoscope, and dissected tissue for a given replicate pooled into 200-µl of nuclei lysis 

buffer on ice. Each sample was then subjected to manual grinding, passed through 30-

µM filter cloth, spun down, and the supernatant removed. Subsequently, 25-µl of 

tagmentation reaction mix was added to the pellet, and incubated at 37°C for 30-min 

before freezing at −20°C. After thawing, the sample was cleaned using a MinElute PCR 

purification column (Qiagen, 28004), and an aliquot was subjected to PCR to add on 

custom, Illumina-compatible indexing oligos. Finally, samples were cleaned using a 

standard bead-based approach, quantified using a Qubit dsDNA BR kit (ThermoFisher, 

Q32850), and examined via a TapeStation 2200 using genomic DNA ScreenTapes 

(Agilent Technologies, 5067-5365 / 5067-5366). 

All 96 libraries (8 strains × 4 tissues × 3 replicates) were pooled at equal 

amounts - along with a series of other libraries that are not part of the project - and run 

over 16 lanes of an Illumina HiSeq4000 sequencer at the UCI Genomics High-

Throughput Facility collecting PE50 reads. 

 

Read processing: Adapters were trimmed from the raw reads using Trimgalore-0.4.5 

[91,92], and trimmed reads were aligned to the dm6 D. melanogaster reference genome 

[93] using bwa 0.7.8 [94] . Unmapped reads, and reads with unmapped mates were 

removed with samtools 1.3 (option -F 524 -f 2) [95] , and all non-primary reads and 

improperly aligned reads were also removed with samtools 1.3 (option fixmate -r and 

option -F 1084 -f 2). Following this, duplicate reads are removed using picard 2.18.27 

[95,96] via MarkDuplicates and REMOVE_DUPLICATES=TRUE. Only reads aligning to 

the five major chromosome arms - X, 2R, 2L, 3R, and 3L - were retained for analysis. 

https://paperpile.com/c/rJuvU8/ildP+lTzF
https://paperpile.com/c/rJuvU8/B1y9
https://paperpile.com/c/rJuvU8/pTlb
https://paperpile.com/c/rJuvU8/bVpa
https://paperpile.com/c/rJuvU8/d30J+bVpa
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BAM files were corrected to reflect the actual insertion points of the Tn5 transposase 

acting as a dimer by having plus strand reads shifted +4bp and minus strand reads 

shifted −5bp as suggested in [22] . We refer to these as “corrected BAM files”. Paired 

end BED files reflecting mapped fragments were generated using bedtools 2.25.0 [97] . 

The same process was carried out for all 96 samples (8 genotypes, 4 tissues, and 3 

replicates). 

 

ATAC-seq peak calling: Corrected BAM files from all 96 samples were merged by 

tissue across replicates and genotypes, and MACS2 [49] was used to call peaks 

separately on the ovary, brain, wing disc, and eye disc. MACS2 options were -f, -p 0.01 

to set cut-off p-value for peaks to be considered significant, -B --SPMR, --no-model to 

skip any read shifting as we were using corrected BAM files, and -g was set to 

142573017, the summed length of the major chromosome arms in the dm6 genome 

release. The peak calling resulted in four ENCODE “tissue NarrowPeak files”, one for 

each tissue. 

 

Merging of peaks across tissues: Tissue NarrowPeak files were concatenated, sorted 

by chromosome and peak summit, then a custom python script grouped and averaged 

peak summit locations that were within 200 bp of one another, but greater than 200 bp 

from the nearest adjacent peak summit. Each averaged peak summit is associated with 

a minimum left interval boundary and maximum right interval boundary obtained from all 

the summit peaks contributing to an average peak. The resulting file was converted to 

ENCODE NarrowPeak format for viewing using the UCSC genome browser with "peak" 

https://paperpile.com/c/rJuvU8/paJX
https://paperpile.com/c/rJuvU8/YnzU
https://paperpile.com/c/rJuvU8/xkPM
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as peak name,"1000" as peak score, "." as peak strand, "10" as peak enrichment, and "-

1" as q-value and p-value to accommodate the ENCODE NarrowPeak format, referred 

to as the “all tissue” track/peak file. Only the chromosome and the mean peak summit 

columns are used in downstream statistical analysis steps. 

 

Euchromatin peak filter and peak annotation: We choose to focus solely on 

euchromatic regions of the genome since heterochromatic regions are gene poor, 

poorly annotated, and enriched for structural variants and transposable elements. The 

euchromatin region boundaries we employ are given in Supplementary Table 1.2 and 

come from [98]. All peaks in the all tissue peak file, and the four tissue NarrowPeak files 

used in downstream analyses, include only euchromatin located peaks. 

We used HOMER v 4.11.1 [99] and the tissue NarrowPeak files separately for 

each of the four tissues to annotate each peak summit as belonging to one of eight 

exclusive groups based on their location relative to features annotated in the dm6 

reference genome: (1) transcription start site (TSS: −1000 to +100bp from the 

transcription start site), (2) transcription termination site (TTS: −100 to +1000bp from 

transcription termination site), (3) coding exons, (4) 5' UTR exon, (5) 3' UTR exon, (6) 

intronic, (7) intergenic, and (8) non-coding (referring to non-protein-coding, but 

nonetheless transcribed DNA). In the case of a peak belonging to more than one 

feature type it is assigned to a single feature type with priority according to the numeric 

order of the features in the previous sentence (i.e., TSS has priority over 5’ UTR, etc). 

Since we focus in this work on peak summits, whereas HOMER annotates a peak as 

being at the mid-points of an interval, we edited the interval associated with each peak 

https://paperpile.com/c/rJuvU8/gmI3
https://paperpile.com/c/rJuvU8/hq8e
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to be the peak summit +/− 1bp. The percentages of peaks falling into each feature type 

by tissue are given in the Supplementary Table 1.3. These percentages are compared 

to the annotation types associated with one million randomly assigned peak locations. 

Comparing these percentages between tissues and/or to other studies is a measure of 

quality control. 

 

Quality control of ATAC-seq peaks: We carried out manual quality control steps on 

the dataset.  First, we generated Venn diagrams for each tissue to compare the number 

of peaks using two different cut-offs for significance in the MAC2 peak calling.  We 

compared cut-offs of -log(p-value) >= 2 and >=3 (MACS2 p-value cutoff suggestions) 

using R package VennDiagram version 1.6.20. The number of overlapping peaks were 

calculated via the mergePeak function in HOMER with option -venn on the tissue bed 

files. We forced the maximum distance between peak centers to be <=100bp for two 

peaks to be considered "overlapping". We observed the degree of overlap to be 

qualitatively similar for -log(p-value) cutoffs of either 2 or 3, as a result we employ a 

cutoff of 2 for peaks called by MACS2. 

We further created several plots using the peak fold-enrichment profiles obtained 

from MACS2. Peak fold-enrichments are a measure of read counts at peaks relative to 

the local random Poisson distribution of reads [49]. ATAC-seq peaks are typically highly 

enriched in transcription related genomic regions, such as TSS, TTS, 5' UTR, or exons 

[52,100] . We similarly examined fold-enrichment as a function of annotated region type 

to confirm our data is consistent with previous work. We similarly examined fold-

enrichment profiles as a function of distance from the nearest TSS to ensure our peaks 

https://paperpile.com/c/rJuvU8/xkPM
https://paperpile.com/c/rJuvU8/sZXD+moX4
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were consistent with prior work. We also looked at the distribution of fragments lengths 

for each library to make sure libraries were not dominated by naked DNA and exhibited 

peaks associated with nucleosome bound DNA (c.f. S1.7 and S1.8 Figs). Lastly, we 

generated Manhattan plots of peak locations to ensure that they are not spatially 

clustered at a gross genomic scale. 

 

Normalization for differences between tissues and genotypes: For the jth sample 

(i.e., replicate/tissue/genotype combination) we have a “fragment file” generated from 

the corrected BAM file that is a 3-column BED file with the chromosome, corrected start 

and corrected stop base of each fragment defined by a set of paired reads. In order to 

carry out statistical tests at peaks using our replicated ATAC-seq data we normalized 

the 95 different fragment files associated with each tissue/genotype/replicate 

combination (as one sample failed a visual quality control check). Our normalization 

procedure is based on the observation that both the number of reads and the 

distribution of fragment lengths varies between samples (see Fig 1.3A and 1.3B). The 

former just reflects variation in the number of reads obtained per library, and we believe 

the latter is due to subtle differences in sample preparation that inadvertently selects for 

differing fractions of nucleosome free DNA. Our normalization consists of adding a 4th 

column to the fragment file that can be thought of as a “weight” used in all downstream 

analyses, where that weight normalizes the fragment files across the J samples. The 

weight is inspired by the “quantile normalization” method used in the field of gene 

expression [57] and is simply: wij = Ni./Nij , where Nij is the number of fragments of 

length i in the jth sample, and the “.” is the average over samples. As can be seen from 
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the unweighted and weighted histograms of Figure 1.3 these weights result in a 

distribution of fragment lengths that are identical between samples. 

With weights in hand, we calculated the weighted Coverage for each sample at 

any given position in the genome, C, as the sum of the weights of all fragments covering 

that position. We finally averaged coverage over replicates (within tissues and 

genotypes) to generate UCSC Genome browser tracks [101–104] , although the 

biological replicates were retained for statistical testing. 

 

Accounting for structural variants: In a typical ATAC-seq experiment raw reads are 

aligned to a reference genome, fragment files are derived from those alignments, and 

the resulting fragment files are perhaps normalized. However, in the case of the seven 

strains (A4,A5,A6,A7,B2,B3,B6) of this study we have complete de novo reference 

quality genome assemblies [43]. The genomes of these strains are distinguished from 

the dm6 reference by thousands of SVs, such as mobile element insertions, smaller 

insertions or deletions of DNA sequences (large enough to generally not be identified by 

standard pipelines), tandem duplications, and inversions. These “hidden” structural 

variants can impact inferences regarding chromatin structure obtained from ATAC-seq 

data assembled to a standard reference. To illustrate this issue we simulated 50bp PE 

reads from a 30kb or 32.5 kb genomic region using samtools::wgsim, with the two 

sequences being identical aside from a 2.5kb insertion of DNA sequence derived from a 

transposable element. Simulated short reads are then obtained from each region with 

an average fragment length of 400bp (standard deviation of 100 bp), similar to the 

fragment length distribution of ATAC-seq reads. Reads were mapped back to the 

https://paperpile.com/c/rJuvU8/tJZf+J4U9+TVtJ+bio5
https://paperpile.com/c/rJuvU8/2KMo
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shorter region (akin to a “reference genome”) and coverage is depicted in 

Supplementary Figure 1.14. The figure clearly shows the potential for mis-mapped 

reads associated with a polymorphic SV to create a large localized dip in sequence 

coverage (that could be interpreted as a closed chromatin structure), with the footprint 

of this phenomena likely restricted to +/- 800bp (i.e., 2 standard deviation in read length) 

around the SV. 

In the work of this paper, by virtue of seven of the genotypes examined having 

reference quality de novo assemblies, we can control for the effect of unmapped reads 

due to structural variants by removing fragments across all genotypes that span an SV 

in any given genotype. This correction is done using bedtools intersect to remove all 

reads from all fragment files that span insertion or deletion variants. For duplication 

variants, we first calculated duplicated regions by adding and subtracting the total length 

of duplication from the insertion site. Then, all reads spanning duplicated regions are 

removed. We then calculate new weights as described above, and recalculate 

coverage. 

 

Statistical testing: We carry out two ANOVA statistical tests for seven strains with 

reference qualify assemblies (A4, A5, A6, A7, B2, B3, B6) at peaks to identify those that 

differ among genotypes, tissues, or their interaction for weighted log transformed 

Coverage (lnC = ln(C+5)) after peaks with a weighted average coverage < 50 were 

dropped as: lnC  ~ geno + tissue + geno:tissue. Adding 5 to the number of counts 

makes the rare case of counts near zero less extreme relative to other strains. A False 

Discovery Rate (FDR) associated with each p-value was calculated using the p.adjust 
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function in R [105,106]. Tests with FDR adjusted p-values < 0.005 (or -log10(FDR p-

value) > 2.3) are considered significant. QQ plots and Manhattan plots were generated 

for the ANOVA results. 

We carried out statistical tests on both SV corrected and uncorrected fragment 

files. Loci significant in the SV-uncorrected data but not significant in the SV corrected 

data potentially represent false positives. We define hits unique to the SV-uncorrected 

dataset as false positives and estimate the rate of such false positives in experiments 

that do not correct for hidden SVs. Results are also represented as Venn diagrams. We 

further examined each potential false positive to determine if the ATAC-seq peak was 

actually contained within a SV (e.g., a deletion relative to the reference), was within +/- 

800bp of an SV boundary, or was >800bp from an SV (for peaks >800bp from a SV 

both F&R reads are expected to map to the reference genome and thus such peaks are 

not expected to be impacted by the correction). We finally compared the p-values 

between SV-corrected and uncorrected data for peaks >800bp from an SV to determine 

if any remaining differences were due to simple sampling error in p-values near 

significant cut-offs. 

  

Causative SNP and SV identification by random effect model: For peaks significant 

for genotype or genotype:tissue we attempted to identify SNPs within 250bp of the peak 

that could potentially explain the significant result. We accomplished this via the 

following random effects model in R::lme4 (version 1.1-23): lnC ~ (1|marker) + 

(1|marker:tis) + (1|tis) + (1|geno:marker) + (1|tis:geno:marker)  

https://paperpile.com/c/rJuvU8/1k3k+zrBb
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We estimate the proportion of variance explained by a marker as varm/[varm+ varg:m] or 

marker:tissue as varm:t/[varm:t + varg:m:t] respectively. Here marker refers to a state of a 

SNP, thus several genotypes could share the same marker state. Furthermore, since 

the strains of this study are isogenic, markers are either REF or ALT, and never 

heterozygous.  In both cases a ratio close to 100% identifies a SNP that explains all the 

variation associated with a significant peak. We similarly estimate the proportion of 

variation explained for each tissue by dropping terms involve tissue. These SNPs are 

strong candidates for being causative, with the strong caveat that only 7 genotypes are 

examined in this study, so we are almost certainly over-fitting and confirmatory 

experiments are necessary. We examine the distributions of these marker tests and 

maintain a list of polymorphisms explaining 100% of the variation associated with 

peaks. We finally annotate SNPs explaining 100% variance using SnpEff [107]and 

HOMER. In addition, a list of SNPs/SVs which individually explain less than 80% 

variance of polymorphic peaks is also provided. These SNPs/SVs potentially explain 

only a fraction of the variation in peak height, with the remaining due to other cis-acting 

or trans-acting variants. Future confirmatory experiments are even more necessary to 

confirm the causal effect of these SNPs/SVs.  

 

1.6 Data and script availability: The raw fastq files are submitted to NCBI as 

BioProject: PRJNA761571. A github containing the codes used in this work is here: 

https://github.com/Kh0iHuynh/ATAC-seq-Project. Several intermediate data tables 

resulting from different analyses are hosted here: 

https://wfitch.bio.uci.edu/~tdlong/sandvox/publications.html or 

https://paperpile.com/c/rJuvU8/bphU
about:blank
about:blank
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https://doi.org/10.7280/D1FM5F. Many of the results, such as ATAC-seq coverage 

tracks, SNPs/SVs tracks, can also be visualized as Santa Cruz Genome Browser 

(SCGB) tracks here: http://goo.gl/LLpoNH. 
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1.7 FIGURES  

 

Fig 1.1. Summary of open chromatin peaks identified across four tissues. 
(A) Venn diagram showing overlap in peak calls across tissues as a function of the p-
value cut-offs of 0.01 (left) and 0.001 (right). (B) Distribution of peak enrichment scores 
for the brain samples. (C) Peak enrichment scores as a function of distance to the 
nearest transcription start site with a smoothing line for brain samples. Insert focues on 
peaks within 10kb of the TSS showing only the smoothing line. (D) Peak enrichment 
distribution as a function of genomic feature for brain samples (TSS, transcription start 
site; TTS, transcription termination site). 
 
 



 

49 
 

 
 

 
Fig 1.2. An illustrative example of peak calling results near the gene hairy.  
(Top panel) Peaks called separately by tissue as well as a consensus set of peaks calls 
(labeled “all tissues”). Single base peaks are indicated with red hash lines with black 
bars representing uncertainty. (Bottom panel) a zoomed region showing peaks and raw 
read coverage.  
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Fig 1.3. Distribution fragment lengths before and after normalization. 
Representative examples of the raw fragment size distribution for genotype A4 and 
brain tissue for two replicates in red. The same two samples are depicted in blue 
following normalization. 
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Fig 1.4. Examples illustrating the effects of SV correction on coverage. 
(A) After correcting for a large insertion of a mdg1 transposable elements upstream of 
rpr in strain B6 (brown) the apparent difference in coverage between strains B6 and A4 
(green) is largely eliminated. (B) Correcting for the effect of a hopper TE in an intron of 
Mef2 in the A4 genotype largely eliminates an apparent difference in chromatin 
configuration. Tracks are structural variant, ATAC-seq peaks, gene, and coverage 
tracks. 
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Fig 1.5. Venn diagrams showing overlapping peaks by ANOVA categories and SV 
correction status.  
(A) Venn diagram showing overlap of regions significant (FDR < 0.5%) for Genotype 
(blue), Tissue (orange), or G:T (orchid) for the SV-corrected data. (B-D) Venn diagrams 
showing the number of peaks significant G,T, or a G:T interaction, respectively. Green 
are tests carried out without correction for known SVs, and brown after SV-correction.  
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Fig 1.6. Illustrative examples of polymorphic chromatin configuration. 
The images depict regions upstream of the TSS of Kal1 (A), upstream of the TSS of a 
Eip75B isoform (B), upstream of the TSS of a Eip75B isoform (C), and a large region 
known to harbor cis-regulatory element upstream of hairy (D). SV-corrected coverage is 
given for a subset of interesting tissue. Tracks are gene, ATAC-seq peaks, and 
coverage tracks. 
 
 
 
 
 
 
 
 
 
 



 

54 
 

 
Fig 1.7. ATAC-seq peak coverage variation explained by nearby polymorphisms.  
Peaks significant for genotype or genotype by tissue are on the left and right 
respectively. The number of sites are grouped by Minor Allele Count (MAC). 
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Fig 1.8. Illustrative examples of putatively causal SNPs:  
Regions are depicted downstream of the TTS of Bre1 (A) , downstream of the TTS of 
mthl9 (B), the 5’UTR of a Nna1 isoform (C), and upstream of the TSSs of two stv 
isoforms (D). Only shows SNPs explaining > 80% of variation in Genotype of a G:T 
interaction (blue) are depicted. Tracks are gene, SNP location, ATAC-seq peaks, and 
coverage tracks. 
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S1.1 Fig. World map showing the collection locations and color legend for all 
genotypes. 
The color legend for genotypes is also kept constant throughout the paper. This map 
was created using mapchart.net, licensed under This work is licensed under a Creative 
Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). 
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S1.2 Fig. Workflow for ATAC-seq study. 
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S1.3 Fig. Summary statistics for peaks called for ovary samples.  
(A) Distribution of peak enrichment scores for the ovary samples. (B): Peak enrichment 
scores as a function of distance to the nearest transcription start site with a smoothing 
line for the ovary samples. Insert focuses on peaks within 10kb of the TSS and showing 
only the smoothing line. (C): Peak enrichment distribution as a function of genomic 
feature for the ovary samples.  
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S1.4 Fig. Summary statistics for peaks called for eye disc samples. 
(A) Distribution of peak enrichment scores for the eye disc samples. (B): Peak 
enrichment scores as a function of distance to the nearest transcription start site with a 
smoothing line for the eye disc samples. Insert focuses on peaks within 10kb of the TSS 
and showing only the smoothing line. (C): Peak enrichment distribution as a function of 
genomic feature for the ovary samples for the eye disc samples. 
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S1.5 Fig. Summary statistics for peaks called for the wing disc samples. 
(A) Distribution of peak enrichment scores for the wing disc samples. (B): Peak 
enrichment scores as a function of distance to the nearest transcription start site with a 
smoothing line for the wing disc samples. Insert focuses on peaks within 10kb of the 
TSS and showing only the smoothing line. (C): Peak enrichment distribution as a 
function of genomic feature for the wing disc samples. 
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S1.6 Fig. Peak sharing among tissues as a function of feature type. 
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 S1.7 Fig. Fragment length distribution and the nucleosome binding configuration 
depicted by the fragment length. 
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S1.8 Fig. Fragment length distribution for all replicates, tissues, and genotypes.  
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S1.9 Fig. A polymorphic deletion relative to the reference leads to the incorrect 
inference of close chromatin in strain A4. 
Tracks are gene, ATAC-seq peaks (A), and SNP/InDel location, ATAC-seq peaks, and  
coverage tracks (B). 
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S1.10 Fig. Manhattan plots showing that significant (FDR < 0.005) peaks do not 
show strong evidence for spatial clustering throughout the genome.  
(A): Manhattan plot for significant peaks by genotype. (B): Manhattan plot for significant 
peaks by tissue. (C): Manhattan plot for significant peaks by genotype and tissue 
interaction. 
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S1.11 Fig. -log(FDR adjusted p-value) scatterplot comparison between SV-
corrected data and SV-uncorrected data for false positive peaks that falls outside 
of SV affected regions.  
Red dashed lines showing -log(p-value) = 2.3 for SV-uncorrected (horizontal) and SV-
corrected (vertical). Sampling variation likely drives the observed differences, as hits 
tend to be just beyond the significance level in the uncorrected dataset. 
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S1.12 Fig. Number of false positive significant peaks within structural variants 
(left) and within 800bp of the structural variants (right) by statistical test carried 
out (Genotype, Tissue, or Genotype by Tissue).  
Variant types are deletion relative to reference (DEL), insertion due to TE (TE-INS), 
non-TE insertions (Other-INS), inversion (INV), or copy number variant (CNV). The 
categories are non-exclusive as multiple SV events could be close to an ATAC-seq 
peak, especially since we integrate over all strains. 
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S1.13 Fig. SnpEff annotation for causative SNPs that explain 100% variation.  
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S1.14 Fig. Example showing the effect of structural variant on inferred fragment 
coverage.  
The green track depicts the reference 2kb sequence with the pink track depicting a non-
reference 2.5kb transposon insertion (not drawn to scale) at the location of the red 
dash. The bottom plot depicts the coverage of reference (green) or non-reference 
sample aligned to the reference genome. The stars depict short read (forward and 
reverse reads) pairs and dashed lines the fragments created by read pairs. Chimeric 
fragments with one read in the TE insertion are mis-mapped, resulting in strong dips in 
read coverage at locations close to the TE insertion site. 
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1.8 TABLES 

Table 1.1: Number of peaks showing significant variation at an FDR of 0.5% 

Statistical Test SV-corrected SV-uncorrected 

Genotype 1050 2456 

Tissue 30383 34361 

Genotype:Tissue 4508 5792 

Total 31769 36059 
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Table 1.2: Number of peaks that are only significant in SV uncorrected data as a 
function of statistical test and distance from nearest SV. 
 

Statistical Test Number of Peaks 

  within ±800bp > ±800 bp Total 

Genotype 801 481 159 1441 

Tissue 2282 1736 23 4041 

Genotype:Tissue 639 599 144 1382 
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Table 1.3: Number of SNPs within 250 bp and explaining >=80% of the variation in 
coverage for peaks significantly varying by Genotype or G:T. 
 

 

Peaks that vary by: 

Tissue Genotype Genotype:Tissue 

Genotype 1253 NA 

G:T NA 2735 

Brain 1620 6485 

Ovary 1299 5441 

Eye Disc 1401 6780 

Wing Disc 1465 7385 

Total Tests 6707 33570 
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S1.1 Table: Details of the eight strains examined in this study.  
All eight strains are P-element and Wolbachia free, were brother sister mated for up to 
18 generations, and are highly isogenic [48].  Each strain, bar B7, is associated with a 
reference quality de novo genome assembly [43]. The Stock Number is the Bloomington 
(‘b’) or Tucson/San Diego (‘t’) Drosophila Stock Center code, although these strains are 
no longer available from these centers. The stock Full Name, if any, is also given. 
 

Name 
Stock 

Number 
Full 

Name 
Collection details 

A4 b.3852 KSA 2 Koriba Dam, Zimbabwe, 1963 

A5 b.3875 VAG 1 Athens, Greece, 1965 

A6 b.3886 
Wild 
5B 

Red Top Mountain, Georgia, USA, 1966 

A7 
t.14021-
0231.7 

- Ken-ting,Taiwan, 1968 

B2 b. 3846 CA 1 Cape town, South Africa, 1954 

B3 b.3864 QI 2 Israel, 1954 

B6 
t.14021-
0231.1 

- Ica, Peru, 1956 

B7 
t.14021-
0231.4 

- Kuala Lumpur, Malaysia, 1962 
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S1.2 Table: Euchromatin boundaries employed in this work (dm6 coordinates). 

Chromosome 
Euchromatin 

Start 
Euchromatin End 

2L 82455 22011009 

2R 5398184 24684540 

3L 158639 22962476 

3R 4552934 31845060 

X 277911 22628490 
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S1.3 Table: Raw euchromatin peak count by tissue for each feature type. The 
Genome column is the percent of each feature type in the genome. 
 

Feature Brain Ovary Eye Disc Wing Disc Genome 

Total count 25464 18111 18496 17413 na 

TSS 27.90% 39% 37.50% 38.20% 16.20% 

TTS 8.60% 10.50% 10.30% 10.20% 11.30% 

Exon 2.90% 3.70% 3.10% 3.30% 12.90% 

5' UTR 1.60% 1.70% 2.10% 2.20% 1.30% 

3' UTR 0.80% 1.00% 1.00% 1.00% 2.00% 

Intron 39.50% 30.90% 30.50% 30.00% 36.70% 

Intergenic 17.70% 12.30% 14.40% 14.10% 18.80% 

non-coding 
RNA 

1.00% 0.80% 1.10% 1.10% 0.90% 
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S1.4 Table: Mapping statistics 

Genotype tissue replicate N map read pairs 
N Q30 

mapped 
Pass 
QC 

N 
euchromatin 

Q30 

N 
euchromatin 

Q30 SV 
correct 

 

 

 

 
A4 BR 1 71771158 52274422 pass 44045024 39906836  

A4 BR 2 62368290 48936438 pass 39888632 35951940  

A4 BR 3 75783419 53540250 pass 46957102 42648788  

A5 BR 1 93960376 66682740 pass 60104462 54641732  

A5 BR 2 104946756 78893144 pass 69588914 63294036  

A5 BR 3 74716529 61709316 pass 54206298 49143044  

A6 BR 1 60036748 35474110 pass 30280784 27372406  

A6 BR 2 50750255 39838160 pass 34505018 31120250  

A6 BR 3 69539697 47686952 pass 41529350 37706314  

A7 BR 1 81170471 65444566 pass 56952234 51674972  

A7 BR 2 95112122 76447960 pass 64960418 59009104  

A7 BR 3 81603713 56964342 pass 51014078 46486386  

B2 BR 1 98211903 81500160 pass 71810664 65186390  

B2 BR 2 59244102 50617958 pass 44335324 40220006  

B2 BR 3 61223391 52463710 pass 45736186 41560158  

B3 BR 1 48140599 34596332 pass 30134474 27262448  

B3 BR 2 47302786 30924424 pass 26149100 23611046  

B3 BR 3 58958036 36076368 pass 31083868 28169286  

B6 BR 1 75492051 58128380 pass 51409164 46875760  

B6 BR 2 53692598 45076220 pass 39648610 35912142  

B6 BR 3 66214673 43063540 pass 36645936 33227368  

B7 BR 1 100137834 64327562 pass 55669962 49994944  

B7 BR 2 43326751 34532064 pass 30298136 27062024  

B7 BR 3 40448122 31455402 pass 27907736 25190998  

A4 ED 1 80656000 59815788 pass 52992504 48309038  

A4 ED 2 61685334 49750814 pass 44107418 40239934  

A4 ED 3 91787435 73777002 pass 64862128 59050680  

A5 ED 1 96264676 77976884 pass 68514152 62077086  

A5 ED 2 56723122 32797120 pass 28439586 25709724  

A5 ED 3 22048156 18520246 pass 16160534 14711476  

A6 ED 1 98103076 79547840 pass 69447044 62939648  

A6 ED 2 80190328 68546420 pass 60569824 54744804  

A6 ED 3 112075924 92510282 pass 81750116 73876196  

A7 ED 1 76871348 63396382 pass 55405028 50246964  

A7 ED 2 87796280 70520590 pass 61553424 55931196  

A7 ED 3 99631145 70239416 pass 61033526 55545294  

B2 ED 1 75581524 55412894 pass 47953644 43423182  

B2 ED 2 69879775 60423182 pass 52980234 47985102  

B2 ED 3 67310535 57811538 pass 50663066 45951628  

B3 ED 1 50705365 39819642 pass 34722654 31549212  
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B3 ED 2 83872346 69014394 pass 60078854 54296438  

B3 ED 3 70051686 58709896 pass 51575088 46676514  

B6 ED 1 80196358 66764068 pass 58238558 52980476  

B6 ED 2 81189648 66477162 pass 57788830 52440592  

B6 ED 3 69560875 56079856 pass 49220370 44807844  

B7 ED 1 70660653 59552736 pass 51445154 45967382  

B7 ED 2 46142279 39290060 pass 34717954 31347758  

B7 ED 3 76766961 59126162 pass 51841356 46522222  

A4 OV 1 81532698 62735178 pass 52623390 47337012  

A4 OV 2 58997754 45029450 pass 37189040 33327282  

A4 OV 3 103428127 81046954 pass 68790262 61811300  

A5 OV 1 77113758 63529554 pass 54558530 49299252  

A5 OV 2 59234650 46582400 pass 38048650 34327612  

A5 OV 3 76530838 55396006 pass 44949670 40410692  

A6 OV 1 75719086 62022436 pass 52350264 47158736  

A6 OV 2 109355567 81718154 pass 68233836 61612174  

A6 OV 3 89618699 68649814 pass 57097412 51406606  

A7 OV 1 89598938 71171406 pass 60046320 54176252  

A7 OV 2 105624957 80165870 pass 66653750 59823442  

A7 OV 3 91350105 76028296 pass 63641408 57227690  

B2 OV 1 66225646 54281112 pass 45318216 40545374  

B2 OV 2 87852534 72597616 pass 61582210 55398620  

B2 OV 3 110184396 89180084 pass 75773800 68275370  

B3 OV 1 68449030 50788994 pass 41882250 37674094  

B3 OV 2 71617172 56847672 pass 47878182 42987852  

B3 OV 3 71205534 56702676 pass 48197708 43278522  

B6 OV 1 121770614 99565362 pass 86695036 78192806  

B6 OV 2 85845549 71108898 pass 60337072 54305822  

B6 OV 3 91793419 69257402 pass 57245346 51556746  

B7 OV 1 147722618 89146168 pass 73717892 65795130  

B7 OV 2 79761516 60599588 pass 50038230 44409656  

B7 OV 3 42962580 33720300 pass 27556906 24587532  

A4 WD 1 60515151 49738892 pass 44243336 40315938  

A4 WD 2 56078307 45685146 pass 40602590 37064638  

A4 WD 3 51314785 32872384 pass 28625726 26134694  

A5 WD 1 50354595 43154900 pass 38044562 34770630  

A5 WD 2 45469759 35994894 pass 31439700 28660300  

A5 WD 3 65988568 52040818 pass 45442736 41354866  

A6 WD 1 64728252 47195092 pass 41612180 37933684  

A6 WD 2 82221797 70455610 pass 62819410 57102528  

A6 WD 3 93572161 78823382 pass 69735446 63243370  

A7 WD 1 61092104 52066686 pass 45519698 41418234  

A7 WD 2 84757693 71119418 pass 62719728 57210128  

A7 WD 3 86537558 70314768 pass 61882494 56504754  

B2 WD 1 83582025 66927970 pass 58428114 52995220  

B2 WD 2 85742323 73722046 pass 65226462 59299268  

B2 WD 3 52279250 45647482 pass 39921550 36149674  

B3 WD 1 20539457 7216490 fail NA NA  

B3 WD 2 68864938 58342154 pass 51721966 47097194  

B3 WD 3 53466204 44496162 pass 38890938 35325288  

B6 WD 1 93000699 77663020 pass 68424846 62396890  
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B6 WD 2 71531414 57303772 pass 50990114 46560980  

B6 WD 3 59763212 50287802 pass 44357814 40478002  

B7 WD 1 54458465 46577628 pass 40953970 36921480  

B7 WD 2 42220164 36215608 pass 31970698 28937010  

B7 WD 3 57232749 49048528 pass 43086702 38768168  
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Chapter 2 

Cis and trans nature of genetic variation in chromatin state in Drosophila melanogaster 

 

2.1 ABSTRACT 

We use ATAC-seq to examine chromatin accessibility in Drosophila 

melanogaster  ovaries. The tissues are collected from two isogenic strains (A4,B6), 

which have a reference quality genome assembly, and their F1 hybrid offspring. We 

utilize our developed quantile normalization of ATAC-seq data,SV-correction, and 

ANOVA-based statistical analysis on 44099 ATAC-seq peaks identified in Huynh et al. 

2022 [1].We also performed read phasing for our F1 hybrid samples to separate ATAC-

seq reads in F1 hybrid samples into A4 genome or B6 genomes using SNPs. We 

identified 3006 ATAC-seq peaks that are significantly different between parental 

genotypes. Out of those ATAC-seq peaks, 106 and 45 peaks are identified to be cis and 

trans regulatory respectively using cis-trans value.   

 

2.2 INTRODUCTION 

Historically, complex trait community has been using Genome-Wide Association 

Studies (GWAS) (GWAS study 14000 cases of seven common diseases [2] ), and QTL 

mapping (QTL mapping studies in yeast [3,4], mouse [5–7], and Drosophila [8]) to 

identify causal loci linked to a particular trait. Despite the fact that both methods are well 

developed and powerful, the exact causative variants underlying risk remain hidden 

https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/6hjBH
https://paperpile.com/c/tN5avl/19sOB+xA8cW
https://paperpile.com/c/tN5avl/mKVzA+7Pyao+qZaXz
https://paperpile.com/c/tN5avl/DlH87
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[2,9], and an appreciable fraction of heritable variation remains unexplained [10]. New 

emerging evidence, however, gave rise to the idea that variations found in complex 

traits are due to regulatory variants  [11–15]. Thus,a new strategy in studying complex 

traits is to identify polymorphic non-coding regions with regulatory function. This is done 

utilizing DNase-I HS (DNase-I hypersensitive site) sequencing [16] and/or the more 

recent and experimentally straightforward ATAC-seq (Assay for Transposase 

Accessible Chromatin) approach [17]. Among the two methods, ATAC-seq is especially 

beneficial due to its low requirement of sample concentration. It employs Tn5 

transposon (Nextera) sequencing chemistry to make an Illumina paired end library using 

nucleosome bound DNA as template for the transposition reaction. As a result, only 

open chromatin regions, which likely function as regulatory features, are cut by the Tn5 

and result in high sequence coverage.  Both easy to use and straightforward natures of 

ATAC-seq  allows for regulatory elements characterization of large panels of genotypes 

[18,19]. 

Given the importance of nucleosome free DNA regions, great effort has been 

spent to elucidate the mechanism of nucleosome eviction. DNA sequences are known 

to bend differently depending on their nucleotide sequences [20–22]. Thus, nucleosome 

stability is dependent on histone affinity to specific DNA sequences [23,24]. As a result, 

the less affinity there is between histone and DNA sequence, the less stable a 

nucleosome is. In this case, the resulting openness of chromatin due to nucleosome 

eviction can be in cis due to substantial DNA sequence reference. This can be observed 

for the example of A4 genotype in supplementary figure 2.1. In addition, it has also been 

shown that nucleosome positions can be regulated in trans by ATP-dependent 

https://paperpile.com/c/tN5avl/6hjBH+rLo4O
https://paperpile.com/c/tN5avl/2ic7M
https://paperpile.com/c/tN5avl/1xgKq+rEGWU+5q3RJ+vG5eT+8fjvZ
https://paperpile.com/c/tN5avl/p04Bi
https://paperpile.com/c/tN5avl/36FIi
https://paperpile.com/c/tN5avl/ojmOK+xT64e
https://paperpile.com/c/tN5avl/4oP3+bBSf+uqAC
https://paperpile.com/c/tN5avl/XifEu+UIeby
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nucleosome remodeling complexes [25,26]. In this case, the nucleosomes are being 

evicted by these complexes resulting in the observed chromatin accessibility for A4 

genotype in supplementary figure 2.1.  

In order to elucidate the cis and trans nature of open chromatin regions, creating 

a F1 cross between two isogenic F0 parents is a viable option. This is due to F1 

samples carrying both alleles of the parents while being under effect of the same 

transcription factor. Open chromatin regions that are in trans would manifest as an 

intermediate expression for both alleles in F1 hybrid regardless of the level of 

expression of the same gene from parental genotypes [27]. This can be observed in the 

example in supplementary figure 2.1 top. In this example, the nucleosome modification 

complex from the A4 genotype exerts the same effect on the B6 allele resulting in the 

same chromatin accessibility for both hybrid alleles. The observed ratio of ATAC-seq 

coverage (chromatin accessibility) between the two hybrid alleles would be different 

compared to the ratio of ATAC-seq peak coverage between the two parental genotypes. 

In contrast, open chromatin regions that are in cis would manifest as an imbalanced 

coverage between the two alleles in F1 hybrid with each allele having the same 

coverage as their parents of origin (S2.1 bottom). This is due to allele specific DNA 

property instead of diffusible nucleosome modification complexes.   

However, as most ATAC-seq studies don't  perform haplotype phasing for 

heterozygous diploid samples, it is difficult to verify the cis or trans nature of any 

identified variations in regulatory elements since it isn't possible to observe which of the 

two parent chromosomes a variant allele is acting on [28]. Furthermore, haplotype 

phasing doesn't appear to be a standard for the ATAC-seq studies in complex trait 

https://paperpile.com/c/tN5avl/STtMZ+UydLw
https://paperpile.com/c/tN5avl/C54Y
https://paperpile.com/c/tN5avl/sXUxK
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community since a quick search on pubmed.gov prior to March 30,2023 with three 

keywords "ATAC-seq","phase", and "haplotype" yielded a single paper discussing the 

diploid nature of species and sequencing method for haplotype phasing utilizing human 

data [29]. As a result, while characterizing polymorphic transcription factor binding sites 

(TFBS) with ATAC-seq is helpful in elucidating the variations in regulation for complex 

traits, the cis and trans nature of those open chromatin regions remain poorly 

understood.  

Another concern raised by the ATAC-seq studies mentioned above is the lack of 

controls for structural variant impact on alignment failure. None of the Drosophila ATAC-

seq studies mentioned above have used a strain containing the Drosophila reference 

genome, against which their ATAC-seq data are aligned. In fact, they all use different 

mutant strains and wildtype strains that lack a reference quality genome de novo 

assemblies. This presents an issue as any pair of Drosophila strains have been shown 

to contain a plethora of differential structural variants, short insertion/deletion, and SNPs 

[30]. These events can have artificial effects on the alignment of data as demonstrated 

in RNAseq data [31]. 

Here we carry out a biologically replicated ATAC-seq experiment in two of highly-

characterized isogenic genotypes of D. melanogaster [30], and their F1 hybrid 

offsprings. Then, statistical tests are done using a set of open chromatin peaks 

identified in Huynh et al. 2022 [1] to identify peaks that are polymorphic in open 

chromatin configuration between two parents. As both isogenic parental strains in use 

are highly-characterized with reference quality de novo assemblies [30], we can also 

correct for SV impacts on alignment artifacts which can produce a false positive rate 

https://paperpile.com/c/tN5avl/65WVg
https://paperpile.com/c/tN5avl/HQWJO
https://paperpile.com/c/tN5avl/6cD7x
https://paperpile.com/c/tN5avl/HQWJO
https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/HQWJO
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higher than 50% [1]. Furthermore, we also have a complete list of SNP differences in 

both F0 (parental) strains compared to the dm6 reference genome. Thus, we finally 

perform haplotype phasing on a F1 (child) offspring from the two parental strains A4 and 

B6 for statistical analysis to distinguish between cis and trans natures of identified 

variants.  

 

2.3 RESULT 

Workflow and quality control: We dissected ovaries from adult A4 and B6 strains 

from Drosophila Synthetic Population Resource [3], whose founder strain genomes 

have been extremely well characterized [49], and the F1 offspring of those two strains. 

For each genotype (strain), we obtained seven biological replicates. Both A4 and B6 are 

highly inbred strains and are collected from two different geographic locations shown in 

Supplementary Table 1. Dissected samples were immediately processed to make 

indexed ATAC-seq libraries [19], and sequenced to obtain 206-493 million Illumina PE 

reads per sample (mean=393M, sd=70M). Reads were aligned to the dm6 Drosophila 

reference genome.  

After alignment, ATACseqQC is used to generate mononucleosome and 

nucleosome read density against distance to TSS as a means to quantify tagmentation. 

Figure 2.1 shows an example of an expected pattern (Fig 2.1 top) and an over-

tagmented pattern (Fig 2.1 bottom) using two replicates from B6 genotype samples. 

Thus, we only kept samples that have the pattern as similarly to the expected pattern as 

possible. Supplementary figures 2.1,2.2,2.3 show the mononucleosome density against 

nucleosome-free patterns for all selected samples from A4,B6,and Hybrid genotypes 

https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/0sRox
https://paperpile.com/c/tN5avl/HQWJO
https://paperpile.com/c/tN5avl/36FIi
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since the pattern matched with the expected pattern. These samples are kept for 

downstream analysis with replicate numbers being renumbered from 1 to 5.  

Samples were then normalized to obtain weighted coverage at each ATAC-seq 

peak identified in Huynh et al. 2022 [1]. We finally corrected read coverage statistics 

using the identified polymorphic structural variants (SVs) for A4 and B6 genotypes, and 

carried out statistical tests at peaks to identify chromatin structures that varied among 

the two parental genotypes (A4 and B6). Supplementary figure 2.4 and 2.5 shows the 

fragment length distribution for each sample before and after normalization 

respectively.  For each peak that is significantly different between two parental strains, 

their parental coverage ratios are then compared to the phased coverage ratios from 

the Hybrid data. Our general workflow is depicted in Supplementary Figure 2.6. 

 

ATAC-seq identifies polymorphic open chromatin regions between A4 and B6 

parental genotypes: Out of 44099 peaks identified in Huynh et al. 2022 [1], only 36863 

peaks that have coverage higher than the cut-off of 50 for both A4 and B6 genotypes. 

Among these, only 3006 peaks are significantly different between A4 and B6 samples 

with the FDR adjusted p-value < 0.1 (-log10(FDR p-value) > 1). Figure 2.2A shows the 

histogram of the FDR adjusted p-value (FDR p-value) for all peaks. Figure 2.2B shows 

the distribution of FDR adjusted p-value by chromosome position with the significant 

peaks highlighted in red. Since both A4 and B6 are only different strains of the same 

species, it is as expected that 91.85% of the ATAC-seq peaks are not significantly 

different between the two genotypes. However, the 3006 significant peaks are of great 

interest as they represent the potential differences in gene expression regulation 

https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/wksZs
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between the two genotypes due to the differences in open chromatin regions. 

Interestingly, all of the significant peaks appear to be randomly distributed (Fig 2.2B).  

 

Example of significantly different open chromatin regions between A4 and B6 

parental genotypes:  Figure 2.3A depicts a peak at chr3R:31444502 on the intron 3, 

and 2 of isoforms A, and B respectively of the gene Gprk2 (G-protein-coupled receptor 

kinase) which encodes a family of serine/threonine kinases. This gene is interesting as 

it has been shown to regulate female fertility [51], egg shape [52], and egg cAMP level 

[53]. Gprk2 is also involved in regulation of Hedgehog signaling [54] , and in regulation 

of rhythmic olfactory response [55].  However, our data are only collected from ovary 

samples, no implication can be made regarding the Gprk2 functions in Hedgehog 

signaling and olfactory response regulation. Regardless, the importance of Gprk2 in 

regulation of female fertility and egg related aspects would still be interesting for the 

developmental biological community. This peak is specific by genotype with a FDR p-

value of 0.0020. This can be observed as B6 parent (brown ) appears to be more open 

compared to A4 parent (green). The result suggests that this region is being regulated 

in a genotype dependent manner. Thus, given the functions of Gprk2 gene, this peak 

should be an interesting future study target.   

The second example is the ATAC-seq peak at chrX:2299228 located on intron 2 

of Raf gene which is involved with proliferation of stem cells [56], and cell differentiation 

[57] (Fig 2.3B). This ATAC-seq peak has a FDR p-value of 0.098 suggesting that there 

is significant difference in the openness of chromatin at this region between the two 

parental genotypes A4, and B6. This can be observed as the B6 (brown) genotype has 

https://paperpile.com/c/tN5avl/HRStv
https://paperpile.com/c/tN5avl/VMpL9
https://paperpile.com/c/tN5avl/Syaru
https://paperpile.com/c/tN5avl/RBo55
https://paperpile.com/c/tN5avl/iR71G
https://paperpile.com/c/tN5avl/d7jds
https://paperpile.com/c/tN5avl/t6FoO
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a higher coverage compared to the A4 (green) genotype. This result implies that the Raf 

gene is being regulated in a genotype dependent manner in this region. Given the 

location of the peak inside the intron 2 of Raf gene, this differential in regulation might 

be due to an alternative splicing process since alternative splicing has been shown to 

be regulated by transcriptional factor [58]. In addition, intronic enhancers have also 

been shown to be involved in fine-tuning developmental specific gene expression in 

plants [59], and in humans [60]. Thus, this enhancer would be an interesting target for 

future functional study related to stem cell proliferation or differentiation since our 

experiment is not sufficient to test its function.  

Figure 2.3C depicts another example of a polymorphic open chromatin region at 

chr2L:2959038, which is associated with the gene Rbp9, with a FDR p-value of 0.027. 

Rbp9 gene encodes a putative RNA binding protein which has been shown to be 

involved in establishment of blood brain barrier [61],regulation of germ cell proliferation 

[62] by inducing apoptosis in egg chambers [63], and maintenance of germline sexuality 

[64]. Furthermore, Rbp9 gene, which is also homologous to human Hu gene, has been 

shown to be involved in causing ovarian cancer in flies if it is mutated [65]. Since the 

FDR p-value of this peak is 0.027, this peak is highly specific by genotype with A4 

parent (green) having more open configuration compared to the B6 parent (brown) 

suggesting that the gene Rbp9 is being regulated in a genotype dependent manner at 

this location. Due to Rbp9's important functions, this peak would be an interesting study 

target for future studies. However, as our samples are collected solely from adult ovary, 

the implication from our data can only be associated with the function of Rbp9 gene on 

germ cell regulation. Furthermore, this peak is located 109 bp upstream from TSS of 

https://paperpile.com/c/tN5avl/M6P4I
https://paperpile.com/c/tN5avl/MhU9D
https://paperpile.com/c/tN5avl/SBaKH
https://paperpile.com/c/tN5avl/uaMX9
https://paperpile.com/c/tN5avl/IUOZH
https://paperpile.com/c/tN5avl/bPNBD
https://paperpile.com/c/tN5avl/dXNd3
https://paperpile.com/c/tN5avl/5XbcY
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isoforms C,F,K, located on intron 2 of the isoforms H,I, and located on intron 1 

of  isoform B,E,J,G. This suggests that the genotype specificity at this peak potentially 

affects gene expression through intron [66] or through transcription starting site which is 

a more canonical regulator of gene expression [67,68].  

Figure 2.3D shows an open chromatin region at chr3L:3428317 which is located 

downstream of the eIF5B gene known to enable translational factor ability through 

interaction with Vasa during development [69,70]. This peak is located 341 bp 

downstream of TTS of isoform D, E, and 348 bp downstream of TTS of isoform B,C,F. 

Since the region is located directly downstream of TTS of all isoforms, it is implied that 

this open chromatin region is regulating gene expression of eIF5B through interaction 

with TTS. Thus, the polymorphism observed in open chromatin configuration at this 

location with FDR p-value of 0.092 suggests that the region is being regulated in a 

genotype dependent manner with B6 parent (brown) appearing to be more open with 

higher coverage compared to A4 parent (green) 

 

Phasing quality control: SNP count after each step of filtering is provided in table 1. 

After identifying peaks that are significantly different between parental A4 and  B6 

genotypes, the next step is to classify those peaks into cis- or trans- regulatory 

elements categories to further elucidate their functions in gene regulation. However, 

since this task involves comparing differences in coverage between parental genotypes 

and phased hybrid genotypes, it is essential to ensure that all the phasing is done 

correctly, and to have a cut-off value for phase percentage. Since both A4 and B6 

genotypes are isogenic genotypes from the Drosophila Synthetic Population Resource 

https://paperpile.com/c/tN5avl/dLgXc
https://paperpile.com/c/tN5avl/rZoI8+taGLk
https://paperpile.com/c/tN5avl/VFndc+dmvGT
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DSPR [3], we expected that most of the  fragments from A4 genotype,or B6 genotype 

should be phased into genome 2 (A4), or genome1 (B6) respectively. Thus, we have 

used the data from these two genotypes to control for the quality of our custom phasing 

script. Figure 2.4A depicts the fragment counts for the fragments that are phased into 

genome A4 versus B6 for each peak using samples from A4 and B6 genotypes. Each 

dot in figure 2.4A represents a peak with the peak being phased correctly (if it is sample 

A4/B6, most fragments should be phased into A4/B6 respectively) colored as red. Due 

to our rigorous selection of SNPs, all of the peaks are phased correctly as expected (Fig 

2.4A).  In addition to quality control of custom phasing script using SNP phase 

percentage, we also select a cut-off value for phase percentage for the phased 

coverage from Hybrid samples.  We have decided to pick a cut-off at 33% phased for 

phase percentage. This is due to the 36863 peaks used in parental ANOVA having the 

50th percentile phase percentage as 24.5% (Fig 2.4B). 

 

Cis-trans value quality control:  Out of 3006 peaks that have been identified to be 

polymorphic by genotype between two A4 and B6 parental genotypes, only 1398 peaks 

can pass our FDR p-value cut-off at 0.1 and our phase percentage cut-off at 33% 

(supplementary data 1).  However, Loess smoothing curves for the plots of cis-trans 

value as a function of mean phase percentage (Fig 2.5A), parent FDR p-value (Fig 

2.5B), and mean parent coverage (Fig 2.5C) reveal potential association between them 

and the cis-trans value. This is a potential problem as the cis-trans value could be under 

the effect of technical reasons rather than biological reason. For example, the increase 

in the phase percentage appears to drive the cis-trans classification toward cis whereas 

https://paperpile.com/c/tN5avl/0sRox
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the increase in parental FDR p-value and parental coverage appears to drive the cis-

trans classification toward trans. Therefore, this reinforces the need of an additional 

stringent quality control -as described in method section- by comparing alignments to 

three different genomes in order to completely remove potential artifacts due to 

unknown SVs, or SNPs effect on alignment rate (coverage).  

Surprisingly, 4 peak regions have multiple duplications when they are matched to 

A4 and B6 genomes using Blastn [71–75]. Thus, these four peaks are removed since it 

is impossible to make a comparison for alignment rate. Then, the first criteria that we 

looked at is whether the peaks are near any known SVs at all.  Supplementary figure 

2.7 depicts the average percentage error in alignment to A4 or B6 genome compared to 

alignment to dm6 genome across replicates for A4 samples and B6 samples. As 

expected, 22.17% of the 1394 peaks have 1 or more SVs located within 800bp of the 

peak. While our procedure includes correction for SVs using dm6 genome coordinates, 

we decide that it is better to remove these peaks. This is due to the difficulty in obtaining 

the correct A4 and B6 genome coordinates for all of our known SVs. As a result, only 

1085 peaks remain. Supplementary figure 2.8 shows that by removing these peaks, the 

majority of the peaks -which are in the two extreme parental coverage difference 

quantile bins (bottom 10% (S2.8 Fig left) and top 10% (S2.8 Fig right)) of parental 

difference -have an absolute value of percentage error in alignment at peak being less 

than 5% with only a few outliers.  

The next criteria that we look at is the average percentage difference at peak. As 

stated in the material and method section, we decide on the cut-off being 5%. This 

means that the difference in fragment counts have to be less than 5% for both 

https://paperpile.com/c/tN5avl/PDsK3+582Kt+wBEtj+BJMFc+lQ89w


 

90 
 

alignment to dm6 versus A4 and alignment to dm6 versus B6.  Supplementary figure 

2.9 shows the cis-trans value for the remaining 965 peaks after applying this filter for all 

three quantile bins of parental coverage difference: bottom 10% [-3.7,0.88], middle 80% 

(-0.88,0.753], and top 10% (0.753,3.34].  Most peaks have a percentage error less than 

3% regardless of difference between parents. Thus, we are confident that the cis-trans 

values for these remaining 965 peaks are truly representative of biological factors and 

not of technical factors due to stringent cut-off for SNP phase percentage, SVs 

locations, and percentage error in alignment rate between 3 genomes.   

 

Allele ratio comparison: In addition to the mentioned criteria, we also fit a linear 

regression line to each quantile bins of parental coverage difference for all 3006 original 

peaks. Figure 2.6A depicts the three linear regression lines (black line shows the slopes 

for these lines) and loess smoothing curve (gray) by parental coverage difference 

quantile bins. Surprisingly, the slope of the linear regression line for the (-0.88,0.753] 

quantile bin has a slope, and R2 of only 0.52 and 0.5 respectively. The R2 indicates that 

the linear regression line wasn't a good fit and that the peaks are more scattered. 

Furthermore, the slope of only 0.52 suggests that there isn't a strong relationship 

between the parental coverage ratio and the phased hybrid coverage ratio. Thus, it is 

very difficult to discern whether these open chromatin regions are in cis or in trans 

because cis and trans open chromatin regions should be clustered on diagonal line, and 

horizontal y=0 line respectively.  In contrast, for the two extreme quantile bins of [-3.7,-

0.88], and (0.753, 3.34], the R2 and the slope values are 0.901, 1.01, and 0.86, 1.06 

respectively. Both R2 suggest that all the peaks in these two quantile bins fit really well 
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on the linear regression models, and have a strong cis- pattern. Furthermore, both slope 

values suggest that there is a strong relationship between the parental coverage ratio 

and the phased hybrid coverage ratio Similar results can be observed in the 965 peaks 

that pass all of our quality control steps (Fig 2.6B) implying that the observed trends are 

due to biological reasons. Thus, we would have the best ability to detect coverage ratio 

change between parents and phased hybrid genotypes. Therefore, we only classify cis 

and trans for peaks with log2(A4/B6) > 0.753 and < -0.88. 

Figure 2.6C depicts the ratio in coverage between parental genotypes and the 

phased hybrid genotypes. As expected, cis nature open chromatin regions are 

distributed along the diagonal line whereas trans nature open chromatin regions are 

distributed along the horizontal zero line. This trend is in line to the result published in 

McManus et al., 2010 [58]. Out of 965 peaks that pass our quality control.10.98% of 

peaks, and 4.66% of peaks are assigned as cis and trans respectively (Table 2). The 

count for cis and trans classification for peaks before the alignment comparison quality 

control step is also provided in table 2.  

 

Illustrative examples of cis- and trans- open chromatin regions: Figure 2.7A 

depicts one example of a cis open chromatin region at chr2L:3346050  located on intron 

2 of the E23 gene which has been shown to be involved in ATPase-coupled 

transmembrane transporter activity [77] and to be capable of repressing ecdysone-

mediated gene activation [77]. Since ecdysone is a major steroid hormone which is 

known for its role in coordinating developmental processes, such as metamorphosis 

[78], E23 gene ,thus, is implied to be a newly elucidated regulator for hormone 

https://paperpile.com/c/tN5avl/zZMbH
https://paperpile.com/c/tN5avl/BUgQe
https://paperpile.com/c/tN5avl/BUgQe
https://paperpile.com/c/tN5avl/J7Ckf
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signaling. Given its important role, This ATAC-seq peak is an interesting future study 

target for the developmental community. The chr2L:3346050  ATAC-seq peak can be 

observed to be significant by genotype with A4 genotype (green) has a lower coverage 

compared to B6 genotype (brown). This suggests that the B6 genotype is more open 

than A4 genotype in this region. This is also supported by the FDR p-value of 0.00196. 

Beside being regulated in a genotype dependent manner, the region also appears to be 

regulated in a cis-manner. This can be observed as the coverage for H_A4 (light green) 

and A4 (green) is similar to each other. Similarly, the coverage for H_B6 (light brown) 

and B6 (brown) is also relatively similar to each other. Thus, this suggests that the ratio 

of H_A4_coverage/H_B6_coverage is the same as A4_coverage/B6_coverage. This 

result is also supported by a cis-tran value of 1.44. Due to E23 function and intron open 

chromatin region's ability to regulate gene expression [59], or regulate alternative 

splicing [79], these results imply that ATPase-coupled transmembrane transporter 

activity, or even ecdysone-mediated gene activation is being regulated in a cis- acting 

and genotype dependent manner.  

Figure 2.7B depicts another ATAC-seq peak example at chr2R:6110252 located 

on intron 2 of EcR isoform B,G, intron 1 of EcR isoform C, intron 3 of EcR isoform A, 

and intron 4 of EcR isoform E,D. EcR encodes a receptor for ecdysone which has been 

shown to involve in regulation of normal oogenesis [62], metamorphosis [63,64], sleep 

[60],and early germline differentiation [65]. Given EcR important function, it is interesting 

to see polymorphism in open chromatin at this chr2R:6110252 loci. This ATAC-seq 

peak chr2R:6110252 has FDR p-value and cis-tran value at 0.0167 and 0.24 

respectively. The p-value suggests that there is a genotype dependent polymorphism in 

https://paperpile.com/c/tN5avl/MhU9D
https://paperpile.com/c/tN5avl/DqJao
https://paperpile.com/c/tN5avl/jXoah
https://paperpile.com/c/tN5avl/VMejx+HgO0m
https://paperpile.com/c/tN5avl/J7Ckf
https://paperpile.com/c/tN5avl/23rw9
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open chromatin configuration between the two parental A4 and B6 genotypes. This can 

be observed as B6 (brown) appears to be more open than A4 (green) with higher 

coverage. This region also appears to be regulated in a trans manner with a cis-trans 

value at 0.24. This is an indication that the H_A4 (light green) and H_B6 (light brown) 

coverage ratio from hybrid samples is different compared to A4 (green) and B6 (brown) 

parental genotypes. These ratios can be observed in figure 2.7B. Thus, the results imply 

that the EcR gene is being regulated in a trans manner in this region. Due to EcR 

functions, our results imply that early germline differentiation, metamorphosis,sleep, and 

oogenesis are being regulated in a genotype and cis manner at this open chromatin 

region. However, figure 2.7B has shown a potential issue. Instead of being a trans peak 

as supported by our analysis, this peak can be classified as cis if it is moved 100 bp 

upstream.  

  

2.4 DISCUSSION 

Previous ATAC-seq studies only aligned their data to either dm3 or dm6 

reference genome without any haplotype phasing despite the heterozygous diploid 

nature of the data [22–37]. Furthermore, haplotype phasing doesn't appear to be a 

standard for the ATAC-seq studies in complex trait community since a quick search on 

pubmed.gov with three keywords "ATAC-seq","phase", and "haplotype" yielded a single 

paper discussing the diploid nature of species and sequencing method for haplotype 

phasing utilizing human data [42]. This presents an issue as gene expression has been 

shown to be regulated in both cis- and trans- manner  [38–40]. Here, we carried out 

ATAC-seq experiment on adult ovary samples due to its ease of collection and its 

https://paperpile.com/c/tN5avl/NSbtP+Mj39u+aICaw+AR7V7+m4SOt+vvUwG+maHxR+iyQSN+B9t4a+ucM8W+83ZLo+Uorcp+J7ahH+lqCP8+fOKgR+IVQbd
https://paperpile.com/c/tN5avl/65WVg
https://paperpile.com/c/tN5avl/3hFJA+S974c+N2YW6
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important function as a model for study on the maintenance and regrowth of new organs 

by stem cell units, germline, and somatic follicle stem cells [84]. Furthermore, our data 

consists of ATAC-seq on two founder genotypes A4, B6, and their F1 offsprings from 

the established Drosophila Synthetic Population Resource [10]. This allows us to 

perform haplotype phasing using the known SNPs from both parental genotypes. As a 

result, we can classify the polymorphic open chromatin regions between parental 

genotypes -identified through statistical test- as cis-acting or trans-acting by comparing 

their coverage ratio with the phased coverage ratio from the hybrid sample. We expect 

that our data would be of great utility for developmental biology and complex trait 

communities. 

In this work we performed ANOVA statistical test to characterize polymorphic 

chromatin profiles using obtained nuclei from two founder genotypes and their F1 

heterozygous offsprings. Both founder genotypes are collected from Drosophila 

Synthetic Population Resource [10], are highly isogenic, and have de novo assemblies 

to reference quality [49]. Thus, this allows us to correct for alignment artifacts caused by 

structural variants which can cause an upward of 50% false positive rate to the 

statistical test [1]. After correcting for SVs and ANOVA tests, 3006 ATAC-seq peaks 

have been identified to be significantly different between two parental genotypes.  

After identifying polymorphic open chromatin regions, we also perform haplotype 

phasing on hybrid samples using known SNPs from the two founder genotypes. 

Furthermore, we also performed quality control tests and only kept SNPs that could 

phase 90% of read spanning the loci correctly. This removes 76.40% of SNPs that can 

be considered bad SNPs ensuring a robust and accurate haplotype phasing. Next, we 

https://paperpile.com/c/tN5avl/DV3nQ
https://paperpile.com/c/tN5avl/DlH87
https://paperpile.com/c/tN5avl/DlH87
https://paperpile.com/c/tN5avl/HQWJO
https://paperpile.com/c/tN5avl/wksZs


 

95 
 

attempted to classify polymorphic open chromatin regions as cis-acting or trans-acting 

using our simple cis-trans value calculated using the parental (A4,B6) genotype 

coverage and the phased haplotype coverage (H_A4,H_B6) from hybrid samples. Out 

of 3006 polymorphic peaks, only 1398 peaks that have FDR p-value less than 0.1 and 

have more than 33% fragment spanning the peaks phased correctly.  

However, Loess smoothing curves for the plots of cis-trans value as a function of 

mean phase percentage (Fig 2.5A), parent FDR p-value (Fig 2.5B), and mean parent 

coverage (Fig 2.5C) reveal potential association between them and the cis-trans value. 

This is a potential problem as the cis-trans value could be under the effect of technical 

reasons rather than biological reason. Thus, we performed additional quality control 

rounds using A4 and B6 samples which are aligned to dm6, A4, and B6 genomes in 

order to calculate the percentage of correct alignment by comparing all three genome 

alignments. Only peaks with more than 95% correct alignment between all three 

genomes are kept. However, since it is near impossible to lift-over the dm6 coordinate 

of known SVs to the coordinate of A4 genome or B6 genome, we also decide to remove 

all peaks that have any known SVs within 800bp to ensure much more restricted but 

robust results. As a result, only 965 peaks remain that pass all quality controls steps , 

and are significantly different between two parental genotypes.  

We also attempt to classify ATAC-peak by cis and trans nature using cis-trans 

value. However, three separate linear regression lines applied to each parental 

coverage difference quantile bin suggests that we would have the best ability to detect 

coverage ratio change between parents and phased hybrid genotypes, and to classify 

cis or trans for only peaks with log2(A4/B6) > 0.753 and < -0.88. The cis and trans 
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regulatory classification distribution is 10.98% and 4.66% respectively out of the 965 

peaks. These cis-trans classified ATAC-seq peaks would no doubt be interesting targets 

for future functional studies using the Crispr/Cas9/allele swapping methods [86–90] to 

further understand gene regulations-especially for important genes associated with 

these cis and trans polymorphic open chromatin regions. However, there is still a 

potential quality control step or a hidden error being missed. This can be seen in the 

example shown in figure 2.7B. The ATAC-seq peak in figure 2.7B can be classified 

differently if it is moved 100 bp upstream. This indicates that there are still hidden issues 

that need to be resolved. Once this final hurdle is solved, the chapter will be ready for 

publication, and will provide interesting targets for future functional studies on complex 

traits and variants in regulatory elements.  

 

2.5 MATERIALS AND METHODS  

Strains: All the strains used are founder strains A4 and B6 from DSPR, and their F1 

offspring (S1 Table). 

 

Tissue dissection and ATAC-seq library prep:  Our procedure for tissue dissection 

and ATAC-seq prep is the same as described in Huynh et al. 2022 [1]. The 2 inbred 

parent strains (A4, and B6), and F1 offspring were raised and maintained in regular 

narrow fly vials on a standard cornmeal-yeast-molasses media in an incubator set to 

25°C, 50% relative humidity, and a 12 hour Light : 12 hour Dark cycle. Ovaries were 

dissected and pooled from five 2 day old females per replicate.  All dissections were 

carried out 1-9 hours after lights on, and following dissection all samples were 

https://paperpile.com/c/tN5avl/4ECIG+d38nY+UXoiV+0nQbc+PBNrP
https://paperpile.com/c/tN5avl/wksZs
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immediately subjected to nuclei isolation. The full protocol for ATAC-seq library 

construction can be found in Huynh et al. 2022 [1].   

 

Read processing and normalization: Adapters were trimmed from the raw reads 

using Trimgalore-0.4.5 [90,91], and  were aligned to dm6 D. melanogaster reference 

genome with bwa-0.7.17 [92]. Only primary reads and their mates that were properly 

mapped were kept using samtools 1.15.1 [93]. All duplicated reads were removed using 

picard 2.18.7 [93,94] via MarkDuplicates. Only reads aligning to the five major 

chromosome arms - X, 2R, 2L, 3R, and 3L - were retained for analysis. Density plots by 

distance to TSS of nucleosome-free fragments and mononucleosome fragments 

produced by ATACseqQC 1.18.1 [95] were used for quality control for each sample.  

After processing sequencing data, we also performed normalization by assigning 

"weight" to each fragment length by samples. This method is inspired by “quantile 

normalization” methods used in the field of gene expression [96]. Detailed read 

processing and normalization are described in our previous paper [1]. After 

normalization, we calculated the weighted Coverage (C )  at peak loci , which is the set 

of peaks identified in our previous paper  [1], by summing all the weights at said loci. 

Result files contain coverage for all five replicates from A4 genotype, B6 genotype, and 

Hybrid genotypes. Additional standard quantile normalization is also applied to data 

prior to ANOVA step. 

 

Accounting for hidden structural variants: Typical ATAC-seq experiment reads are 

aligned to reference genomes. However, the results are then normalized without 

https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/Un3q4+KzRjm
https://paperpile.com/c/tN5avl/xBCuQ
https://paperpile.com/c/tN5avl/r6v2P
https://paperpile.com/c/tN5avl/r6v2P+OiNxk
https://paperpile.com/c/tN5avl/iUGDz
https://paperpile.com/c/tN5avl/3zqKw
https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/wksZs
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correcting for any potential artifacts in alignment errors due to structural variants. Thus, 

as both A4 and B6 strains in use for this study have complete de novo reference quality 

genome assemblies [49], we are able to correct the structural variant -found in both 

strains- effect on read alignments.  Both the reasons for such correction and the 

correction process are described in full in our previous paper [1]. 

 

Statistical testing: We carry out ANOVA statistical test for the two parental strains 

(A4,B6) at peaks to identify loci with polymorphic weighted log transformed Coverage 

(lnC = ln(C+5)) after peaks with a weighted average coverage < 50 were dropped as: 

 

lnC  ~ geno 

 

A False Discovery Rate (FDR) was calculated using the p.adjust function in R 

(Benjamini and Hochberg 1995; Yekutieli and Benjamini 1999) [97,98]. Tests with FDR 

adjusted p-values < 0.1 (or -log10(FDR p-value) > 1) are considered significant. 

 

Peak annotation for significant peaks: For peaks identified to be significantly different 

between A4 and B6 genotypes, peak positions are converted to a pseudo bed file with 

columns as: chromosome, peak position -1 , peak position +1, p-value, "+". HOMER v 

4.11.1 [99] is then used to annotate each peak as belonging to eight feature type groups 

based on the peak locations. The eight feature types are 3' UTR, 5' UTR, promoter-TSS 

(TSS), transcription termination site (TTS), intron, exon, intergenic, and non-coding. The 

https://paperpile.com/c/tN5avl/HQWJO
https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/INeZC+HfVRK
https://paperpile.com/c/tN5avl/U8kEm
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detailed description of each feature type is shown on HOMER main website or in our 

previous paper Huynh et al. 2022 [1]. The peak count for each feature type is shown in 

supplementary table 2.  

 

Haplotype phasing: Since all of our SNPs are provided by Drosophila Synthetic 

Population Resource, we can remove any SNPs that have heterozygous genotypes (1/0 

or 0/1 instead of 0/0 or 1/1) for any of the eight isogenic strains. Furthermore, only 

SNPs that are heterozygous between parental strains A4 and B6 genotype (1/1 and 0/0 

for A4, B6 or vice versa) will be kept. Then, haplotype phasing is performed using bam 

files and a custom script utilizing pysam [2] which is a wrapper around htslib [100] and 

samtools [93,101]. The custom pysam script takes in heterozygous SNPs between the 

two parental strains A4 (genome 2) and B6 (genome 1) to separate reads into genome 

1 or genome 2 by comparing the DNA bases at SNP positions to the A4 and B6 specific 

bases found at said SNPs. If reads do not span any SNPs, or have mates phased into 

incorrect genomes, they will be assigned as unassigned. Afterward, SNPs are further 

filtered by using the SNP phase percentage correctly (the percentage of reads that are 

phased into the correct genome out of the total reads spanning said SNP). Only SNPs 

that can phase correctly for all five replicates in both genotypes A4 and B6 will be kept. 

The cut-off SNP phase percentage correctly used for this step is set at higher than 90% 

since we will lose close to or higher than 50% of total SNPs with higher 

percentage.  Hybrid data that are phased into the A4 genome and into the B6 genome 

are labeled as H_A4 and H_B6 respectively. Then, weight from the same Hybrid 

samples are transferred to the phased data from the same sample using fragment 

https://paperpile.com/c/tN5avl/wksZs
https://paperpile.com/c/tN5avl/JbAuG
https://paperpile.com/c/tN5avl/Gc0Lz
https://paperpile.com/c/tN5avl/r6v2P+tqVPt
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length. Phased coverage at peak loci was calculated similarly to the procedure 

described above. However, the phased coverage is also up-scaled by  multiplying to a 

factor 2/(phase percentage at peak) (phase percentage at peak is (H_A4_coverage + 

H_B6_coverage)/H_coverage) to account for the haploid nature of phased data.  Any 

mention of phased coverage for H_A4 and H_B6 for the rest of this paper will be the up-

scaled coverage if not mentioned otherwise.  

 

Haplotype phasing quality control: As a means to control the quality of our phasing 

scripts, we have used the data from A4 and B6 genotypes as controls. Since they are 

both isogenic strains from DSPR, we expect that the fragments belonging to A4 or B6 

genotypes will be phased into the same genotypes. Thus, we have calculated the actual 

raw count of fragments that span each peak that has coverage > 50. If the samples 

belong to A4 genotypes, most fragments should be phased into genotype A4 with a 

negligible count of fragments phased into genotype B6. The same can be expected of 

samples belonging to B6 genotype with most fragments phased into genotype B6. In 

addition to ensuring the phasing to be correct, we also select a cut-off phase 

percentage -which is simply 100*(un-scaled H_A4 coverage + unscaled H_B6 

coverage) / (H_coverage) , and is not the same as the SNP phase percentage 

mentioned above-. Only peaks that have phase percentage for all Hybrid samples 

higher than this cut-off will remain for downstream analysis.  

 

Allele ratio comparisons: As stated in the introduction, we expect that the openness of 

these regions would manifest similarly to the gene expression observed in the 
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comparison study between the F1 hybrid and the F0 isogenic parents [44]. Therefore, if 

the open chromatin regions are regulated in a trans-manner, H_A4_coverage/ 

H_B6_coverage would be different from A4_coverage/B6_coverage. In contrast, if the 

open chromatin regions are regulated in cis-manner, H_A4_coverage/ H_B6_coverage 

would be the same as A4_coverage/B6_coverage. Therefore, in order to assign cis- or 

trans- to identified open chromatin regions, we would attempt to calculate cis-trans 

value. For each peak that was significant between parents, we extracted all peak loci 

that had fragments phased into two haplotypes (genome 1 (B6), genome 2 (A4)).  Then, 

we calculated a cis-tran value which is simply: 

 

cis-trans = log2(mean_H_A4_coverage/ mean_H_B6_coverage) – 

log2(mean_A4_coverage/ mean_B6_coverage) 

 

We assigned any peaks- that pass all additional filters mentioned in the cis-trans 

value quality control section below with cis-trans value- within (-∞,-0.5] or [0.5,∞) as cis 

as this indicates the difference in coverage ratio between hybrid and parental samples. 

Any peak with cis-trans value within (-0.5,0.5) is assigned as trans since this indicates 

that there is no difference in coverage ratio between hybrid and parental samples. Then, 

for each peak, we plotted log2(mean_H_A4_coverage/ mean_H_B6_coverage) of the 

child samples against log2(mean_A4_coverage/ mean_B6_coverage) from the two 

parental pairs. This plot is inspired by the paper Wang et al., 2019 [102].  

 

https://paperpile.com/c/tN5avl/q8wEG
https://paperpile.com/c/tN5avl/2ibYO
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Cis-trans value quality control: Since the cis-trans value is highly dependent on the 

difference between A4_coverage and B6_coverage, or between H_A4_coverage and 

H_B6_coverage, we feel that it is necessary to apply more stringent quality control tests 

to ensure accurate cis-trans value representation. Therefore, we look at the cis-trans 

value as a function of mean phase percentage from the Hybrid samples, as a function of 

parental FDR p-value, and as a function of the mean parental coverage.  These 

functions will highlight any obvious bias in cis-trans value calculation due to those three 

factors.  

Furthermore, we also separate peaks by difference between parental coverage 

into three quantile bins at [0%,10%],(10%,90%],and (90%,100%] (which are [-3.7,0.88], 

(-0.88,0.753], and (0.753,3.34] respectively). Next, we extracted 100bp, 2kb, and 20kb 

nucleotide sequences centered on each peak. Blastn is then used to match those 

regions from the dm6 genome to A4 and B6 genomes to get the A4 and B6 genomes 

coordinates for the same regions. Only regions with the greatest number of nucleotides 

being matched will be kept. Afterward, we align A4 and B6 samples to both A4 and B6 

genomes. Fragments are then extracted from each genome alignment using 

appropriate coordinates. As a result, we are able to compare the actual fragment count 

spanning 100 bp regions (peak loci ±50bp) centered on each peak between alignments 

to three reference genomes (dm6, A4, and B6). This allows us to remove any peaks 

that have the absolute percentage error (in alignment) at peak > 5% between alignment 

to dm6 reference genome and alignment to both A4, B6 genomes. The discrepancy at 

peak is simply calculated as follows: 

 



 

103 
 

Percentage error at peak =100% (NX -Ndm6)/Ndm6 

 

NX is the total fragment count mapped to the X genome being A4 or B6 for the 

100bp peak region. Ndm6  is the total fragment count mapped to dm6 for the 100bp peak 

region. Furthermore, if any peak has structural variant(s) within 800bp upstream and 

downstream of the peak, it will be removed from downstream analysis. This is because 

it is extremely difficult to acquire the correct A4 or B6 genome coordinates for any of the 

known structural variants which are identified using dm6 coordinates. Last but not least, 

we also fitted three different linear regression models to each of the three parental 

coverage difference quantile bins  [-3.7,-0.88], (-0.88,0.753], and (0.753,3.34] to select a 

cut-off for parental coverage difference to avoid misclassification due to subtle 

difference in parental coverage.  However, despite best effort, figure 2.7B has indicated 

that there is a missing quality control step or a hidden error in my method. This can be 

seen with the completely different possible nature of cis- and trans- of this ATAC-seq 

peak if its location is moved 100 bp upstream. Once this final hurdle is cleared, the 

second chapter would be ready for publication.  
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2.6 FIGURES 

 

Fig 2.1. ATACseqQC mononucleosome and nucleosomes-free read density 
against distance to TSS.  
(A) Plot showing expected pattern for correct tagmentation. (B) Plot showing density 
pattern for over-tagmentation 
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Fig 2.2. Distribution of FDR p-value for ANOVA statistical test of parental 
coverage.  

(A) Histogram of FDR p-value. (B) Distribution of FDR p-value by chromosome locations 
with red color being FDR p-value < 0.1 
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Fig 2.3.  Illustrative examples of polymorphic chromatin configurations. 
The images depict a region on intron of Gprk2 (A), on intron of Raf (B), on intron and upstream 

of the TSS of a Rbp9 isoform (C), and downstream of TTS of eIF5B (D). Tracks are gene, 
ATAC-seq peaks, and coverage tracks. 
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Fig 2.4. Quality control plots for phasing.  

(A) Count of fragments phased into genome 1 and genome 2 for A4, B6 samples. (B) 
distribution of phase percentage from Hybrid sample. 
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Fig 2.5. Cis-trans value quality control. 
(A): cis-trans value against mean phase percentage before (left) and after (right) 
alignment QC. (B): cis-trans value against parent FDR p-value before (left) and after 
(right) alignment QC.  (C ): cis-trans value against mean parent coverage before (left) 
and after (right) alignment QC.  
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Fig 2.6. Parents log2(A4/B6) vs F1 log2(H_A4/H_B6). 
(A):  All 3006 ATAC-seq peaks that are significantly different between parental 
genotypes. The lines are the slopes of three fitted linear regression. (B): All classified 
ATAC-seq peaks colored by classification. 
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Fig 2.7.  Illustrative examples of cis- and trans- chromatin configurations.  
The images depict a region on intron of E23 (A), on intron of EcR (B). SNPs are colored 
by the genotypes that have alternate base at SNPs. Brown, light brown are B6, H_B6 
respectively. Green, light green are A4, H_A4 respectively. Tracks are gene, ATAC-seq 
peaks, SNP location, and coverage tracks. 
 

 

 



 

111 
 

 

S2.1 Fig. ATACseqQC mononucleosome and nucleosomes-free read density 
against distance to TSS from A4 genotypes.  
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S2.2 Fig. ATACseqQC mononucleosome and nucleosomes-free read density 
against distance to TSS from B6 genotypes.  
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S2.3 Fig. ATACseqQC mononucleosome and nucleosomes-free read density 
against distance to TSS from Hybrid genotypes.  
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S2.4 Fig. Raw fragment distribution of ATAC-seq samples.  
Replicates are shown by columns. Samples are from A4,B6, and Hybrid genotypes from 
top to bottom.  
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S2.5 Fig. Normalized fragment distribution of ATAC-seq samples.  
Replicates are shown by columns. Samples are from A4,B6, and Hybrid genotypes from 
top to bottom.  
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S2.6 Fig. ATAC-seq and phasing workflow 
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S2.7 Fig. Count of SVs distance to ATAC-seq peaks by average percentage 
difference in fragment count mapped to A4/B6 vs dm6 genomes. 
(Left): comparison between alignment mapped to A4 and dm6. (Right): comparison 
between alignment mapped to B6 and dm6 
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S2.8 Fig. Genome distribution of average percentage difference in fragment count 
mapped to A4/B6 compared to dm6 genomes. 
(Left): comparison between alignment mapped to A4 and dm6. (Right): comparison 
between alignment mapped to B6 and dm6 
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S2.9 Fig. Cis-trans value by average percentage difference in fragment count 
mapped to A4/B6 vs dm6 genomes. 
(Left): comparison between alignment mapped to A4 and dm6. (Right): comparison 
between alignment mapped to B6 and dm6 
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2.7 TABLES 

Table 2.1: SNP counts after filtering steps. 

SNP genotypes 
that are not 0/1 

or 1/0 

Heterozygous 
between A4 and 

B6 

Biallelic SNP with 
SNP phase 

percentage > 90% 

Euchromatin biallelic SNP 
with SNP phase percentage 

> 90% 

1565413 438470 372844 369353 
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Table 2.2: Peak count by cis-trans classification before and after quality control 
using three genome alignment comparison. 

QC status Cis Trans Total 

Before 212 (15.16%) 70 (5.00%) 1398 

After 106 (10.98%) 45 (4.66%) 965 
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S2.1 Table: Details of all strains examined in this study.   
The A4,B6 parental   strains are P-element and Wolbachia free, were brother and sister 
mated for at least 18 generations, and are highly isogenic ([49]).  Each parental strain is 
associated with a reference quality de novo genome assembly ([46]). The Hybrid strain 
is the heterozygous offspring of the A4 and B6 strains 
 

Name Stock Number1 Full Name2 Collection details 

A4 b.3852 KSA 2 Koriba Dam, Zimbabwe, 1963 

B6 t.14021-0231.1 - Ica, Peru, 1956 

Hybrid - - Heterozygous offspring of A4 and B6 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/jpXgBA/JztN
https://paperpile.com/c/jpXgBA/EXdUb
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S2 Table: Feature type annotation for polymorphic peaks. 

Feature type Polymorphic peak count (percentage of total count) 

Total 3006 (100%) 

TSS 764 (25.41%) 

TTS 296 (9.85%) 

3' UTR 28 (0.93%) 

5' UTR 46 (1.53%) 

intron 1188 (39.52%) 

exon 94 (3.13%) 

intergenic 558 (18.56%) 

non-coding 32 (1.06%) 
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Chapter 3  

Dissertation conclusion 

 

Historically, complex traits were considered to be monogenic phenotypes 

contributed by large effect causal genes despite the biometricians' argument that such 

contribution couldn't explain the continuous variation observed in many phenotypic traits 

[1]. This argument was only resolved with the discovery of the "infinitesimal model" 

published by Fisher in 1918 [2]. However, the number of causal genes per traits, and 

their effect size remains unclear until now [1]. As a result, great effort from the complex 

trait community has been made to identify these statistics with GWAS, and QTL-

mapping. Furthermore, causal genes have been found to directly contribute to complex 

traits variation through changing the proteins [3], non-coding genetic variants can also 

participate in driving the variations of these traits as regulatory elements [4–6]. 

Thus,  DNase-I HS [7]  and ATAC-seq  [8] have been used to great success in 

identifying these regulatory elements by characterizing open chromatin state in large 

panels of genotypes [9,10].   

However, there are three shortcomings in the field of ATAC-seq as discussed in 

this work. The first shortcoming is the usage of primarily embryo samples. This would 

limit the utility of any identified genome-wide chromatin state landscape since they 

would not be applicable to adult tissues. The second shortcoming is the lack of 

reference quality genome sequence for the genotypes used in ATAC-seq studies. This 

shortcoming would limit the utility of those ATAC-seq studies because we can't address 

https://paperpile.com/c/qTF5Me/zjNZc
https://paperpile.com/c/qTF5Me/d4xIB
https://paperpile.com/c/qTF5Me/zjNZc
https://paperpile.com/c/qTF5Me/gs32x
https://paperpile.com/c/qTF5Me/p3GN6+TwELr+ngyD5
https://paperpile.com/c/qTF5Me/tAbZl
https://paperpile.com/c/qTF5Me/jyxgN
https://paperpile.com/c/qTF5Me/EeoRl+l8OFa
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the possible mis-alignment caused by the effect of SVs on read coverage which has 

been well-documented leading to incorrect inference of coverage [11], and significant 

contributions to complex trait variation by hidden variants, such as SNPs or SVs [12,13]. 

The last shortcoming is the lack of haplotype phasing. Without haplotype phasing, it is 

impossible to associate identified variants in open chromatin states to alleles resulting in 

extreme difficulty in characterizing cis-acting or trans-acting nature of  open chromatin 

regions. Therefore, the first chapter of this work aims at addressing first two 

shortcomings by characterizing genome-wide chromatin state landscape using ATAC-

seq samples from eight different genotypes and four different tissues (adult brain, adult 

ovary, and embryo imaginary wing disc, and eye disc). Then, the second chapter aims 

at addressing the third shortcoming by performing haplotype phasing using the 

identified ATAC-seq peaks in chapter one, and ATAC-seq samples from two different 

parental genotypes (A4, and B6), and their F1 offspring (hybrid).  

In chapter one, I have performed ATAC-seq on eight genotypes from DSPR 

which all have complete de novo reference quality genome. Thus, I can address the 

lack of adult tissue studies and the lack of reference quality genome sequences in the 

ATAC-seq field. With complete de novo reference quality genome, correction for SV 

effect on coverage can be corrected. The SV effect can be seen as B6 genotype 

(brown) coverage is significantly affected in figure 1.4. After correcting for SVs effect on 

coverage, 9.5%, 50.8%, and 34.3% peaks are identified to be false positive in inference 

of differences in coverage between tissue, genotype, and genotype:tissue interaction 

respectively. This further reinforces the need of reference quality genome sequences for 

all genotypes used for ATAC-seq studies. Without such sequences, it is near impossible 

https://paperpile.com/c/qTF5Me/OVXWW
https://paperpile.com/c/qTF5Me/NMcpO+Vh3kj
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to correct for SVs which lead to incorrect inference of polymorphism in any identified 

open chromatin regions.  

As the goal of the first chapter is to characterize a genome-wide chromatin state 

landscape, we have identified a total of 44099 ATAC-seq peaks using mostly standard 

ATAC-seq pipeline.  Out of these, 30383, 1050, and 4508 peaks are identified to be 

polymorphic for coverage by tissue, by genotype, and by genotype:tissue respectively 

following rigorous statistical testing. The polymorphic peaks by tissue, and by genotype 

will absolutely be of use for complex trait communities. Furthermore, the polymorphic 

peaks by genotype:tissue interaction are even of greater interest since they are regions 

that are regulated in a genotype dependent manner for some tissues. These likely 

represent QTL that are tissue or complex trait specific with less pleiotropy. Following the 

identification of polymorphic ATACseq peaks in coverage, we also test all SNPs and 

SVs within 250 bp or within 800 bp of each significant peak by genotype and by 

genotype:tissue interaction. 597 SNPs and 55 SVs were identified to explain 100% of 

the variation. However, as these SNPs/SVs are collected from only 8 genotypes, a 

much larger set of genotypes would be necessary for association studies to avoid over-

fitting. In conclusion, the identified ATAC-seq peaks in chapter 1 would have great utility 

for the complex trait community since we have performed SV correction to eliminate 

false positive inference of polymorphic open chromatin states, and have included data 

from multiple genotypes and tissues.  

After the first chapter, my next goal is to address the lack of haplotype phasing in 

the field by attempting to perform haplotype phasing and to classify the identified 

polymorphic ATAC-seq peak in first chapter by their cis- or trans- acting natures. In 
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chapter two, I carried out an ATAC-seq experiment on adult ovary samples collected 

from two DSPR founder genotypes A4, B6, and their F1 offsprings [14]. The first step in 

chapter two is to identify ATAC-seq peaks that are different between the two parental 

genotypes (A4,B6) among the 44099 peaks from chapter one. 

Since both A4 and B6 have known SNP lists, I was able to perform haplotype 

phasing. However, the first step was to filter SNPs to only keep the best SNPs that are 

heterozygous between the two parental genotypes. After correcting for SVs and ANOVA 

tests, I identified 3006 ATAC-seq peaks that are significantly different between two 

parental genotypes with FDR p-value < 0.1. Similar to the values of identified 

polymorphic ATAC-seq peaks in chapter one, these peaks would be interesting targets 

for future complex trait studies, albeit with less utility since only two genotypes and one 

tissue were used.   

Then, we performed haplotype phasing in order to address the third shortcoming 

of the field. The first step is to filter SNPs for A4 and B6 genotypes in order to select 

only the best possible SNPs that are heterozygous for the two parental genotypes. Only 

369353 SNPs remain to ensure robust and accurate haplotype phasing. After SNPs 

selection, haplotype phasing was carried out. Phasing percentage was also calculated. 

Only 1398 peaks remain out of 3006 peaks due to FDR p-value cutoff of < 0.1, and 

phasing percentage cutoff of > 33%. Then, we calculated cis-trans values for cis- and 

trans- classification. However, Loess smoothing curves for the plots of cis-trans value 

as a function of mean phase percentage (Figure 2.5A), parent FDR p-value (Figure 

2.5B), and mean parent coverage (Figure 2.5C) reveal potential association between 

them and the cis-trans value. Thus, we applied an additional filter step to ensure that 

https://paperpile.com/c/qTF5Me/s7UrN
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only peaks correctly aligned are chosen. After aligning our A4, and B6 data to dm6, A4, 

and B6 genomes, only 965 peaks remain after removing those with SVs within 800 bp 

and percentage of correct alignment between all three genomes being > 95%. 

Furthermore, three separate linear regression lines applied to each parental coverage 

difference quantile bin suggests that we would have the best ability to detect coverage 

ratio change between parents and phased hybrid genotypes, and to classify cis- or 

trans- for only peaks with  log2(A4/B6) > 0.753 and < -0.88. We have identified 106, and 

45 ATAC-seq to be cis- and trans- acting respectively. However, despite best effort, 

figure 2.7B has indicated that there is a missing quality control step or a hidden error in 

my method. This can be seen with the completely different possible nature of cis- and 

trans of this ATAC-seq peak if its location is moved 100 bp upstream. Once this final 

hurdle is cleared, these cis-trans classified ATAC-seq peaks would no doubt be 

interesting targets for future functional studies using the Crispr/Cas9/allele swapping 

methods [15–19] to further understand gene regulations-especially for important genes 

associated with these cis- and trans-acting polymorphic open chromatin regions.   

 

 

 

  

 

  

 

https://paperpile.com/c/qTF5Me/Y8GLB+sSOin+zHAjs+ZMbvp+HT4oq


 

129 
 

Reference 

I. Abstract and Introduction reference: 

1.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding 

the missing heritability of complex diseases. Nature. 2009;461: 747–753. 

2.  Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. 

Nat Rev Genet. 2015;16: 197–212. 

3.  Floc’hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, et al. Cis-

acting variation is common across regulatory layers but is often buffered during 

embryonic development. Genome Res. 2021;31: 211. 

4.  Hill MS, Vande Zande P, Wittkopp PJ. Molecular and evolutionary processes generating 

variation in gene expression. Nat Rev Genet. 2020;22: 203–215. 

5.  Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-

Ferreres R, et al. The cis-regulatory dynamics of embryonic development at single-cell 

resolution. Nature. 2018;555: 538–542. 

6.  Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, et al. A Single-Cell 

Transcriptome Atlas of the Aging Drosophila Brain. Cell. 2018;174: 982. 

7.  Falconer DS, Mackay TFC. Introduction to quantitative genetics, Longman. Essex, 

England. 1996. 

http://paperpile.com/b/Rv1CIg/Nht4
http://paperpile.com/b/Rv1CIg/Nht4
http://paperpile.com/b/Rv1CIg/gqaqb
http://paperpile.com/b/Rv1CIg/gqaqb
http://paperpile.com/b/Rv1CIg/E5mP2
http://paperpile.com/b/Rv1CIg/E5mP2
http://paperpile.com/b/Rv1CIg/E5mP2
http://paperpile.com/b/Rv1CIg/2AOHW
http://paperpile.com/b/Rv1CIg/2AOHW
http://paperpile.com/b/Rv1CIg/eUlJy
http://paperpile.com/b/Rv1CIg/eUlJy
http://paperpile.com/b/Rv1CIg/eUlJy
http://paperpile.com/b/Rv1CIg/7c0VD
http://paperpile.com/b/Rv1CIg/7c0VD
http://paperpile.com/b/Rv1CIg/UfUTx
http://paperpile.com/b/Rv1CIg/UfUTx


 

130 
 

8.  Lynch M, Walsh B, Others. Genetics and analysis of quantitative traits. 1998. Available: 

http://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/2011/febrero/AG_

8.pdf 

9.  Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian 

Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. 

Nucleic Acids Res. 2005;33: D514–7. 

10.  Genetic Alliance, District of Columbia Department of Health. Diagnosis of a Genetic 

Disease. Genetic Alliance; 2010. 

11.  Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI 

GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 

2014;42: D1001–6. 

12.  Abbate R, Sticchi E, Fatini C. Genetics of cardiovascular disease. Clin Cases Miner 

Bone Metab. 2008;5: 63. 

13.  Gelernter J. Genetics of complex traits in psychiatry. Biol Psychiatry. 2015;77: 36. 

14.  Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, et al. Using Extended 

Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous 

Traits. PLoS Genet. 2013;9. doi:10.1371/journal.pgen.1003520 

15.  Kadri NK, Guldbrandtsen B, Lund MS, Sahana G. Genetic dissection of milk yield traits 

and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle. J Dairy 

Sci. 2015;98: 9015–9025. 

http://paperpile.com/b/Rv1CIg/0dxaJ
http://paperpile.com/b/Rv1CIg/0dxaJ
http://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/2011/febrero/AG_8.pdf
http://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/2011/febrero/AG_8.pdf
http://paperpile.com/b/Rv1CIg/FSeIR
http://paperpile.com/b/Rv1CIg/FSeIR
http://paperpile.com/b/Rv1CIg/FSeIR
http://paperpile.com/b/Rv1CIg/ldDfT
http://paperpile.com/b/Rv1CIg/ldDfT
http://paperpile.com/b/Rv1CIg/utwlY
http://paperpile.com/b/Rv1CIg/utwlY
http://paperpile.com/b/Rv1CIg/utwlY
http://paperpile.com/b/Rv1CIg/dp9x2
http://paperpile.com/b/Rv1CIg/dp9x2
http://paperpile.com/b/Rv1CIg/sQKcc
http://paperpile.com/b/Rv1CIg/Eu9fN
http://paperpile.com/b/Rv1CIg/Eu9fN
http://paperpile.com/b/Rv1CIg/Eu9fN
http://dx.doi.org/10.1371/journal.pgen.1003520
http://paperpile.com/b/Rv1CIg/h8m55
http://paperpile.com/b/Rv1CIg/h8m55
http://paperpile.com/b/Rv1CIg/h8m55


 

131 
 

16.  Su J, Xu K, Li Z, Hu Y, Hu Z, Zheng X, et al. Genome-wide association study and 

Mendelian randomization analysis provide insights for improving rice yield potential. Sci 

Rep. 2021;11: 6894. 

17.  Shadan S. Genomics: The long and the short of it. Nature. 2010;467: 539. 

18.  Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes BJ. Genetics of 

complex traits: prediction of phenotype, identification of causal polymorphisms and 

genetic architecture. Proceedings of the Royal Society B: Biological Sciences. 2016 

[cited 31 Mar 2022]. doi:10.1098/rspb.2016.0569 

19.  Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to 

Omnigenic. Cell. 2017;169: 1177–1186. 

20.  Fisher RA. XV.—The Correlation between Relatives on the Supposition of Mendelian 

Inheritance. Transactions of the Royal Society of Edinburgh. 1919. pp. 399–433. 

doi:10.1017/s0080456800012163 

21.  Barton NH, Etheridge AM, Véber A. The infinitesimal model. bioRxiv. 2016. p. 039768. 

doi:10.1101/039768 

22.  Barton NH. What role does natural selection play in speciation? Philos Trans R Soc 

Lond B Biol Sci. 2010;365: 1825–1840. 

23.  Weissman DB, Barton NH. Limits to the rate of adaptive substitution in sexual 

populations. PLoS Genet. 2012;8: e1002740. 

http://paperpile.com/b/Rv1CIg/BixS8
http://paperpile.com/b/Rv1CIg/BixS8
http://paperpile.com/b/Rv1CIg/BixS8
http://paperpile.com/b/Rv1CIg/y8E5q
http://paperpile.com/b/Rv1CIg/rpvRX
http://paperpile.com/b/Rv1CIg/rpvRX
http://paperpile.com/b/Rv1CIg/rpvRX
http://paperpile.com/b/Rv1CIg/rpvRX
http://dx.doi.org/10.1098/rspb.2016.0569
http://paperpile.com/b/Rv1CIg/8v7Zz
http://paperpile.com/b/Rv1CIg/8v7Zz
http://paperpile.com/b/Rv1CIg/aR2Ss
http://paperpile.com/b/Rv1CIg/aR2Ss
http://paperpile.com/b/Rv1CIg/aR2Ss
http://dx.doi.org/10.1017/s0080456800012163
http://paperpile.com/b/Rv1CIg/YEyZx
http://paperpile.com/b/Rv1CIg/YEyZx
http://dx.doi.org/10.1101/039768
http://paperpile.com/b/Rv1CIg/1IWIu
http://paperpile.com/b/Rv1CIg/1IWIu
http://paperpile.com/b/Rv1CIg/2GEUT
http://paperpile.com/b/Rv1CIg/2GEUT


 

132 
 

24.  Barton NH, Etheridge AM. The relation between reproductive value and genetic 

contribution. Genetics. 2011;188: 953–973. 

25.  Mackay TFC. Quantitative trait loci in Drosophila. Nat Rev Genet. 2001;2: 11–20. 

26.  Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of 

genome-wide association studies. Nat Rev Genet. 2019;20: 467–484. 

27.  Long AD, Grote MN, Langley CH. Genetic analysis of complex diseases. Science. 1997. 

p. 1328; author reply 1329–30. 

28.  Risch N, Merikangas K. The future of genetic studies of complex human diseases. 

Science. 1996;273: 1516–1517. 

29.  Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust 

associations of four new chromosome regions from genome-wide analyses of type 1 

diabetes. Nat Genet. 2007;39: 857–864. 

30.  Hakonarson H, Grant SFA, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al. A 

genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 

2007;448: 591–594. 

31.  Leahy JL. A genome-wide association study identifies novel risk loci for type 2 diabetes. 

Yearbook of Endocrinology. 2008. pp. 36–37. doi:10.1016/s0084-3741(08)79221-7 

32.  Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. 

Replication of genome-wide association signals in UK samples reveals risk loci for type 

2 diabetes. Science. 2007;316: 1336–1341. 

http://paperpile.com/b/Rv1CIg/c1TDx
http://paperpile.com/b/Rv1CIg/c1TDx
http://paperpile.com/b/Rv1CIg/54cpv
http://paperpile.com/b/Rv1CIg/oU3MD
http://paperpile.com/b/Rv1CIg/oU3MD
http://paperpile.com/b/Rv1CIg/YdLtU
http://paperpile.com/b/Rv1CIg/YdLtU
http://paperpile.com/b/Rv1CIg/aodth
http://paperpile.com/b/Rv1CIg/aodth
http://paperpile.com/b/Rv1CIg/KxoIN
http://paperpile.com/b/Rv1CIg/KxoIN
http://paperpile.com/b/Rv1CIg/KxoIN
http://paperpile.com/b/Rv1CIg/0tnR0
http://paperpile.com/b/Rv1CIg/0tnR0
http://paperpile.com/b/Rv1CIg/0tnR0
http://paperpile.com/b/Rv1CIg/grCS8
http://paperpile.com/b/Rv1CIg/grCS8
http://dx.doi.org/10.1016/s0084-3741(08)79221-7
http://paperpile.com/b/Rv1CIg/nkDlV
http://paperpile.com/b/Rv1CIg/nkDlV
http://paperpile.com/b/Rv1CIg/nkDlV


 

133 
 

33.  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide 

association study of type 2 diabetes in Finns detects multiple susceptibility variants. 

Science. 2007;316: 1341–1345. 

34.  Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and 

Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt 

NP, de Bakker PIW, et al. Genome-wide association analysis identifies loci for type 2 

diabetes and triglyceride levels. Science. 2007;316: 1331–1336. 

35.  Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters 

GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. 

Nat Genet. 2007;39: 770–775. 

36.  Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason 

A, et al. Genome-wide association study identifies a second prostate cancer 

susceptibility variant at 8q24. Nat Genet. 2007;39: 631–637. 

37.  Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide 

association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 

2007;39: 645–649. 

38.  Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Thompson D, Ballinger DG, et al. 

Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 

2007;447: 1087–1093. 

http://paperpile.com/b/Rv1CIg/3Y1Ex
http://paperpile.com/b/Rv1CIg/3Y1Ex
http://paperpile.com/b/Rv1CIg/3Y1Ex
http://paperpile.com/b/Rv1CIg/PmWTg
http://paperpile.com/b/Rv1CIg/PmWTg
http://paperpile.com/b/Rv1CIg/PmWTg
http://paperpile.com/b/Rv1CIg/PmWTg
http://paperpile.com/b/Rv1CIg/ElgJo
http://paperpile.com/b/Rv1CIg/ElgJo
http://paperpile.com/b/Rv1CIg/ElgJo
http://paperpile.com/b/Rv1CIg/rhkzm
http://paperpile.com/b/Rv1CIg/rhkzm
http://paperpile.com/b/Rv1CIg/rhkzm
http://paperpile.com/b/Rv1CIg/RCo05
http://paperpile.com/b/Rv1CIg/RCo05
http://paperpile.com/b/Rv1CIg/RCo05
http://paperpile.com/b/Rv1CIg/byGo1
http://paperpile.com/b/Rv1CIg/byGo1
http://paperpile.com/b/Rv1CIg/byGo1


 

134 
 

39.  Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-

wide association study identifies alleles in FGFR2 associated with risk of sporadic 

postmenopausal breast cancer. Nat Genet. 2007;39: 870–874. 

40.  Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature. 2007;447: 661–

678. 

41.  Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association 

studies for human complex trait genetics. Genetics. 2011;187: 367–383. 

42.  Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common 

SNPs explain a large proportion of the heritability for human height. Nat Genet. 

2010;42: 565–569. 

43.  Shi H, Kichaev G, Pasaniuc B. Contrasting the Genetic Architecture of 30 Complex 

Traits from Summary Association Data. Am J Hum Genet. 2016;99: 139–153. 

44.  Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions 

contribute less than additive effects to quantitative trait variation in yeast. Nature 

Communications. 2015. doi:10.1038/ncomms9712 

45.  Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, et al. Rare 

variants contribute disproportionately to quantitative trait variation in yeast. Elife. 2019;8. 

doi:10.7554/eLife.49212 

http://paperpile.com/b/Rv1CIg/AFW0I
http://paperpile.com/b/Rv1CIg/AFW0I
http://paperpile.com/b/Rv1CIg/AFW0I
http://paperpile.com/b/Rv1CIg/9NpYs
http://paperpile.com/b/Rv1CIg/9NpYs
http://paperpile.com/b/Rv1CIg/9NpYs
http://paperpile.com/b/Rv1CIg/JcGHo
http://paperpile.com/b/Rv1CIg/JcGHo
http://paperpile.com/b/Rv1CIg/JHacd
http://paperpile.com/b/Rv1CIg/JHacd
http://paperpile.com/b/Rv1CIg/JHacd
http://paperpile.com/b/Rv1CIg/IlarU
http://paperpile.com/b/Rv1CIg/IlarU
http://paperpile.com/b/Rv1CIg/XrbtD
http://paperpile.com/b/Rv1CIg/XrbtD
http://paperpile.com/b/Rv1CIg/XrbtD
http://dx.doi.org/10.1038/ncomms9712
http://paperpile.com/b/Rv1CIg/XHxEK
http://paperpile.com/b/Rv1CIg/XHxEK
http://paperpile.com/b/Rv1CIg/XHxEK
http://dx.doi.org/10.7554/eLife.49212


 

135 
 

46.  Chesler EJ. Out of the bottleneck: the Diversity Outcross and Collaborative Cross 

mouse populations in behavioral genetics research. Mamm Genome. 2014;25: 3–11. 

47.  Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, et al. Genetic 

cartography of longevity in humans and mice: Current landscape and horizons. Biochim 

Biophys Acta Mol Basis Dis. 2018;1864: 2718–2732. 

48.  Saul MC, Philip VM, Reinholdt LG, Center for Systems Neurogenetics of Addiction, 

Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet. 

2019;35: 501–514. 

49.  Long AD, Macdonald SJ, King EG. Dissecting complex traits using the Drosophila 

Synthetic Population Resource. Trends Genet. 2014;30: 488–495. 

50.  Mackay T. Trudy Mackay. Current Biology. 2006. pp. R659–R661. 

doi:10.1016/j.cub.2006.08.016 

51.  Nelson RM, Pettersson ME, Carlborg Ö. A century after Fisher: time for a new paradigm 

in quantitative genetics. Trends Genet. 2013;29: 669–676. 

52.  Rönnegård L, Valdar W. Detecting major genetic loci controlling phenotypic variability in 

experimental crosses. Genetics. 2011;188: 435–447. 

53.  Forsberg SKG, Andreatta ME, Huang X-Y, Danku J, Salt DE, Carlborg Ö. The Multi-

allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum 

Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance. 

PLoS Genet. 2015;11: e1005648. 

http://paperpile.com/b/Rv1CIg/1jcwo
http://paperpile.com/b/Rv1CIg/1jcwo
http://paperpile.com/b/Rv1CIg/NALjz
http://paperpile.com/b/Rv1CIg/NALjz
http://paperpile.com/b/Rv1CIg/NALjz
http://paperpile.com/b/Rv1CIg/fXqr9
http://paperpile.com/b/Rv1CIg/fXqr9
http://paperpile.com/b/Rv1CIg/fXqr9
http://paperpile.com/b/Rv1CIg/D3Bk9
http://paperpile.com/b/Rv1CIg/D3Bk9
http://paperpile.com/b/Rv1CIg/ulrVk
http://paperpile.com/b/Rv1CIg/ulrVk
http://dx.doi.org/10.1016/j.cub.2006.08.016
http://paperpile.com/b/Rv1CIg/4jDRD
http://paperpile.com/b/Rv1CIg/4jDRD
http://paperpile.com/b/Rv1CIg/4ZVDh
http://paperpile.com/b/Rv1CIg/4ZVDh
http://paperpile.com/b/Rv1CIg/1hi2e
http://paperpile.com/b/Rv1CIg/1hi2e
http://paperpile.com/b/Rv1CIg/1hi2e
http://paperpile.com/b/Rv1CIg/1hi2e


 

136 
 

54.  Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a 

review. Plant Methods. 2013;9: 29. 

55.  Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution 

of quantitative traits into Mendelian factors by using a complete linkage map of 

restriction fragment length polymorphisms. Nature. 1988;335: 721–726. 

56.  Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using 

RFLP linkage maps. Genetics. 1989;121: 185–199. 

57.  Chitre AS, Polesskaya O, Munro D, Cheng R, Mohammadi P, Holl K, et al. Exponential 

increase in QTL detection with increased sample size. Genetics. 2023. 

doi:10.1093/genetics/iyad054 

58.  Price AH. Believe it or not, QTLs are accurate! Trends Plant Sci. 2006;11: 213–216. 

59.  Smith R, Sheppard K, DiPetrillo K, Churchill G. Quantitative trait locus analysis using 

J/qtl. Methods Mol Biol. 2009;573: 175–188. 

60.  Grisel JE, Crabbe JC. Quantitative Trait Loci Mapping. Alcohol Health Res World. 

1995;19: 220–227. 

61.  Broman KW. The genomes of recombinant inbred lines. Genetics. 2005;169: 1133–

1146. 

62.  King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, et al. Genetic 

dissection of a model complex trait using the Drosophila Synthetic Population Resource. 

Genome Res. 2012;22: 1558–1566. 

http://paperpile.com/b/Rv1CIg/lGjAW
http://paperpile.com/b/Rv1CIg/lGjAW
http://paperpile.com/b/Rv1CIg/n5zPK
http://paperpile.com/b/Rv1CIg/n5zPK
http://paperpile.com/b/Rv1CIg/n5zPK
http://paperpile.com/b/Rv1CIg/3imHH
http://paperpile.com/b/Rv1CIg/3imHH
http://paperpile.com/b/Rv1CIg/qecQD
http://paperpile.com/b/Rv1CIg/qecQD
http://paperpile.com/b/Rv1CIg/qecQD
http://dx.doi.org/10.1093/genetics/iyad054
http://paperpile.com/b/Rv1CIg/B8iCz
http://paperpile.com/b/Rv1CIg/5kgaw
http://paperpile.com/b/Rv1CIg/5kgaw
http://paperpile.com/b/Rv1CIg/VcJJz
http://paperpile.com/b/Rv1CIg/VcJJz
http://paperpile.com/b/Rv1CIg/1wEGc
http://paperpile.com/b/Rv1CIg/1wEGc
http://paperpile.com/b/Rv1CIg/on2WW
http://paperpile.com/b/Rv1CIg/on2WW
http://paperpile.com/b/Rv1CIg/on2WW


 

137 
 

63.  King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila Synthetic 

Population Resource for the routine dissection of complex traits. Genetics. 2012;191: 

935–949. 

64.  Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past 

successes for mendelian disease, future approaches for complex disease. Nat Genet. 

2003;33 Suppl: 228–237. 

65.  Pickrell JK. Joint analysis of functional genomic data and genome-wide association 

studies of 18 human traits. Am J Hum Genet. 2014;94: 559–573. 

66.  Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a 

primary link between genetic variation and disease. Science. 2016;352: 600–604. 

67.  Torres JM, Gamazon ER, Parra EJ, Below JE, Valladares-Salgado A, Wacher N, et al. 

Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. 

Am J Hum Genet. 2014;95: 521–534. 

68.  Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and 

epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518: 

337–343. 

69.  Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs 

are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS 

Genet. 2010;6: e1000888. 

http://paperpile.com/b/Rv1CIg/gHOmI
http://paperpile.com/b/Rv1CIg/gHOmI
http://paperpile.com/b/Rv1CIg/gHOmI
http://paperpile.com/b/Rv1CIg/kadPr
http://paperpile.com/b/Rv1CIg/kadPr
http://paperpile.com/b/Rv1CIg/kadPr
http://paperpile.com/b/Rv1CIg/3hYPM
http://paperpile.com/b/Rv1CIg/3hYPM
http://paperpile.com/b/Rv1CIg/5Ps5K
http://paperpile.com/b/Rv1CIg/5Ps5K
http://paperpile.com/b/Rv1CIg/CX9qD
http://paperpile.com/b/Rv1CIg/CX9qD
http://paperpile.com/b/Rv1CIg/CX9qD
http://paperpile.com/b/Rv1CIg/3oKjd
http://paperpile.com/b/Rv1CIg/3oKjd
http://paperpile.com/b/Rv1CIg/3oKjd
http://paperpile.com/b/Rv1CIg/7iobM
http://paperpile.com/b/Rv1CIg/7iobM
http://paperpile.com/b/Rv1CIg/7iobM


 

138 
 

70.  Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 

localization of common disease-associated variation in regulatory DNA. Science. 

2012;337: 1190–1195. 

71.  Pai AA, Pritchard JK, Gilad Y. The Genetic and Mechanistic Basis for Variation in Gene 

Regulation. PLoS Genet. 2015;11. doi:10.1371/journal.pgen.1004857 

72.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native 

chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding 

proteins and nucleosome position. Nat Methods. 2013;10: 1213–1218. 

73.  Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and 

ATAC-seq. Nat Genet. 2016;48: 206–213. 

74.  Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D, et al. Genetic 

determinants of co-accessible chromatin regions in activated T cells across humans. 

Nature Genetics. 2018. pp. 1140–1150. doi:10.1038/s41588-018-0156-2 

75.  Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 

2003;423: 145–150. 

76.  Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore IK, et al. A genomic 

code for nucleosome positioning. Nature. 2006;442: 772–778. 

77.  Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, et al. Synergistic action 

of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol. 

2010;17: 745–752. 

http://paperpile.com/b/Rv1CIg/wkxti
http://paperpile.com/b/Rv1CIg/wkxti
http://paperpile.com/b/Rv1CIg/wkxti
http://paperpile.com/b/Rv1CIg/Xl9yk
http://paperpile.com/b/Rv1CIg/Xl9yk
http://dx.doi.org/10.1371/journal.pgen.1004857
http://paperpile.com/b/Rv1CIg/EtNom
http://paperpile.com/b/Rv1CIg/EtNom
http://paperpile.com/b/Rv1CIg/EtNom
http://paperpile.com/b/Rv1CIg/8n61n
http://paperpile.com/b/Rv1CIg/8n61n
http://paperpile.com/b/Rv1CIg/lAWcu
http://paperpile.com/b/Rv1CIg/lAWcu
http://paperpile.com/b/Rv1CIg/lAWcu
http://dx.doi.org/10.1038/s41588-018-0156-2
http://paperpile.com/b/Rv1CIg/XByYa
http://paperpile.com/b/Rv1CIg/XByYa
http://paperpile.com/b/Rv1CIg/VPnHo
http://paperpile.com/b/Rv1CIg/VPnHo
http://paperpile.com/b/Rv1CIg/0CHr5
http://paperpile.com/b/Rv1CIg/0CHr5
http://paperpile.com/b/Rv1CIg/0CHr5


 

139 
 

78.  Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L, Lotan-Pompan M, et al. 

Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene 

expression in yeast. Nat Genet. 2012;44: 743–750. 

79.  Teves SS, Weber CM, Henikoff S. Transcribing through the nucleosome. Trends 

Biochem Sci. 2014;39: 577–586. 

80.  Hartzog GA. Transcription elongation by RNA polymerase II. Curr Opin Genet Dev. 

2003;13: 119–126. 

81.  Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The 

accessible chromatin landscape of the human genome. Nature. 2012;489: 75–82. 

82.  Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, et al. An 

expansive human regulatory lexicon encoded in transcription factor footprints. Nature. 

2012;489: 83–90. 

83.  Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293: 1074–1080. 

84.  Satchwell SC, Drew HR, Travers AA. Sequence periodicities in chicken nucleosome 

core DNA. J Mol Biol. 1986;191: 659–675. 

85.  Widom J. Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys. 

2001;34: 269–324. 

86.  Trifonov EN. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic 

Acids Res. 1980;8: 4041–4053. 

http://paperpile.com/b/Rv1CIg/kHDS8
http://paperpile.com/b/Rv1CIg/kHDS8
http://paperpile.com/b/Rv1CIg/kHDS8
http://paperpile.com/b/Rv1CIg/hQ245
http://paperpile.com/b/Rv1CIg/hQ245
http://paperpile.com/b/Rv1CIg/vToWW
http://paperpile.com/b/Rv1CIg/vToWW
http://paperpile.com/b/Rv1CIg/PJOjN
http://paperpile.com/b/Rv1CIg/PJOjN
http://paperpile.com/b/Rv1CIg/QbuDV
http://paperpile.com/b/Rv1CIg/QbuDV
http://paperpile.com/b/Rv1CIg/QbuDV
http://paperpile.com/b/Rv1CIg/RuYE9
http://paperpile.com/b/Rv1CIg/WmVdu
http://paperpile.com/b/Rv1CIg/WmVdu
http://paperpile.com/b/Rv1CIg/uDIk7
http://paperpile.com/b/Rv1CIg/uDIk7
http://paperpile.com/b/Rv1CIg/1BkAT
http://paperpile.com/b/Rv1CIg/1BkAT


 

140 
 

87.  Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic histone-DNA interactions and low 

nucleosome density are important for preferential accessibility of promoter regions in 

yeast. Mol Cell. 2005;18: 735–748. 

88.  Anderson JD, Widom J. Poly(dA-dT) promoter elements increase the equilibrium 

accessibility of nucleosomal DNA target sites. Mol Cell Biol. 2001;21: 3830–3839. 

89.  Thåström A, Lowary PT, Widlund HR, Cao H, Kubista M, Widom J. Sequence motifs 

and free energies of selected natural and non-natural nucleosome positioning DNA 

sequences. J Mol Biol. 1999;288: 213–229. 

90.  Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, et al. Global 

analysis of protein expression in yeast. Nature. 2003;425: 737–741. 

91.  Cairns BR. Chromatin remodeling complexes: strength in diversity, precision through 

specialization. Curr Opin Genet Dev. 2005;15: 185–190. 

92.  Bravo González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D, Davie K, 

et al. Identification of genomic enhancers through spatial integration of single-cell 

transcriptomics and epigenomics. Mol Syst Biol. 2020;16: e9438. 

93.  Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, et al. The 

transcription factor Grainy head primes epithelial enhancers for spatiotemporal 

activation by displacing nucleosomes. Nat Genet. 2018;50: 1011–1020. 

http://paperpile.com/b/Rv1CIg/T7Azh
http://paperpile.com/b/Rv1CIg/T7Azh
http://paperpile.com/b/Rv1CIg/T7Azh
http://paperpile.com/b/Rv1CIg/49mBd
http://paperpile.com/b/Rv1CIg/49mBd
http://paperpile.com/b/Rv1CIg/yPble
http://paperpile.com/b/Rv1CIg/yPble
http://paperpile.com/b/Rv1CIg/yPble
http://paperpile.com/b/Rv1CIg/ePiWM
http://paperpile.com/b/Rv1CIg/ePiWM
http://paperpile.com/b/Rv1CIg/6LNQR
http://paperpile.com/b/Rv1CIg/6LNQR
http://paperpile.com/b/Rv1CIg/sOPX3
http://paperpile.com/b/Rv1CIg/sOPX3
http://paperpile.com/b/Rv1CIg/sOPX3
http://paperpile.com/b/Rv1CIg/OPl5u
http://paperpile.com/b/Rv1CIg/OPl5u
http://paperpile.com/b/Rv1CIg/OPl5u


 

141 
 

94.  Davie K, Jacobs J, Atkins M, Potier D, Christiaens V, Halder G, et al. Discovery of 

transcription factors and regulatory regions driving in vivo tumor development by ATAC-

seq and FAIRE-seq open chromatin profiling. PLoS Genet. 2015;11: e1004994. 

95.  Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable 

elements contribute to the genomic response to insecticides in Drosophila 

melanogaster. Philos Trans R Soc Lond B Biol Sci. 2020;375: 20190341. 

96.  Witt E, Svetec N, Benjamin S, Zhao L. Transcription Factors Drive Opposite 

Relationships between Gene Age and Tissue Specificity in Male and Female Drosophila 

Gonads. Mol Biol Evol. 2021;38: 2104–2115. 

97.  Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters 

active in differentiated tissues have distinct expression characteristics. Mol Syst Biol. 

2021;17: e9866. 

98.  Zeitlinger J, Stark A, Kellis M, Hong J-W, Nechaev S, Adelman K, et al. RNA 

polymerase stalling at developmental control genes in the Drosophila melanogaster 

embryo. Nat Genet. 2007;39: 1512–1516. 

99.  Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, et al. RNA 

polymerase is poised for activation across the genome. Nat Genet. 2007;39: 1507–

1511. 

100. Engström PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B. Genomic regulatory 

blocks underlie extensive microsynteny conservation in insects. Genome Res. 2007;17: 

1898–1908. 

http://paperpile.com/b/Rv1CIg/Fa9oI
http://paperpile.com/b/Rv1CIg/Fa9oI
http://paperpile.com/b/Rv1CIg/Fa9oI
http://paperpile.com/b/Rv1CIg/YDEj7
http://paperpile.com/b/Rv1CIg/YDEj7
http://paperpile.com/b/Rv1CIg/YDEj7
http://paperpile.com/b/Rv1CIg/P16Yx
http://paperpile.com/b/Rv1CIg/P16Yx
http://paperpile.com/b/Rv1CIg/P16Yx
http://paperpile.com/b/Rv1CIg/bsTJW
http://paperpile.com/b/Rv1CIg/bsTJW
http://paperpile.com/b/Rv1CIg/bsTJW
http://paperpile.com/b/Rv1CIg/iLmsn
http://paperpile.com/b/Rv1CIg/iLmsn
http://paperpile.com/b/Rv1CIg/iLmsn
http://paperpile.com/b/Rv1CIg/EEykh
http://paperpile.com/b/Rv1CIg/EEykh
http://paperpile.com/b/Rv1CIg/EEykh
http://paperpile.com/b/Rv1CIg/aTS2p
http://paperpile.com/b/Rv1CIg/aTS2p
http://paperpile.com/b/Rv1CIg/aTS2p


 

142 
 

101. Lenhard B, Sandelin A, Carninci P. Metazoan promoters: emerging characteristics and 

insights into transcriptional regulation. Nat Rev Genet. 2012;13: 233–245. 

102. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest ARR, Kawaji H, 

Rehli M, Baillie JK, de Hoon MJL, et al. A promoter-level mammalian expression atlas. 

Nature. 2014;507: 462–470. 

103. FitzGerald PC, Sturgill D, Shyakhtenko A, Oliver B, Vinson C. Comparative genomics 

of Drosophila and human core promoters. Genome Biol. 2006;7: R53. 

104. Day DS, Zhang B, Stevens SM, Ferrari F, Larschan EN, Park PJ, et al. Comprehensive 

analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. 

Genome Biol. 2016;17: 120. 

105. Gaertner B, Johnston J, Chen K, Wallaschek N, Paulson A, Garruss AS, et al. Poised 

RNA polymerase II changes over developmental time and prepares genes for future 

expression. Cell Rep. 2012;2: 1670–1683. 

106. Boettiger AN, Levine M. Synchronous and stochastic patterns of gene activation in the 

Drosophila embryo. Science. 2009;325: 471–473. 

107. Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, et al. Paused Pol II 

coordinates tissue morphogenesis in the Drosophila embryo. Cell. 2013;153: 976–987. 

108. Lifton RP, Goldberg ML, Karp RW, Hogness DS. The organization of the histone genes 

in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harb 

Symp Quant Biol. 1978;42 Pt 2: 1047–1051. 

http://paperpile.com/b/Rv1CIg/Jlyoc
http://paperpile.com/b/Rv1CIg/Jlyoc
http://paperpile.com/b/Rv1CIg/7wZg3
http://paperpile.com/b/Rv1CIg/7wZg3
http://paperpile.com/b/Rv1CIg/7wZg3
http://paperpile.com/b/Rv1CIg/kD8Rg
http://paperpile.com/b/Rv1CIg/kD8Rg
http://paperpile.com/b/Rv1CIg/wHnm1
http://paperpile.com/b/Rv1CIg/wHnm1
http://paperpile.com/b/Rv1CIg/wHnm1
http://paperpile.com/b/Rv1CIg/TSKjf
http://paperpile.com/b/Rv1CIg/TSKjf
http://paperpile.com/b/Rv1CIg/TSKjf
http://paperpile.com/b/Rv1CIg/HAJpX
http://paperpile.com/b/Rv1CIg/HAJpX
http://paperpile.com/b/Rv1CIg/juCzv
http://paperpile.com/b/Rv1CIg/juCzv
http://paperpile.com/b/Rv1CIg/7y2Mf
http://paperpile.com/b/Rv1CIg/7y2Mf
http://paperpile.com/b/Rv1CIg/7y2Mf


 

143 
 

109. Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 

2004;304: 1811–1814. 

110. Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, et al. Phenotypic 

consequences of promoter-mediated transcriptional noise. Mol Cell. 2006;24: 853–865. 

111. Tirosh I, Weinberger A, Carmi M, Barkai N. A genetic signature of interspecies 

variations in gene expression. Nat Genet. 2006;38: 830–834. 

112. Schug J, Schuller W-P, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr. Promoter 

features related to tissue specificity as measured by Shannon entropy. Genome Biol. 

2005;6: R33. 

113. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. 

Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 

2006;38: 626–635. 

114. Dong C, Simonett SP, Shin S, Stapleton DS, Schueler KL, Churchill GA, et al. INFIMA 

leverages multi-omics model organism data to identify effector genes of human GWAS 

variants. Genome Biol. 2021;22: 241. 

115. Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, et al. Differentially 

expressed genes reflect disease-induced rather than disease-causing changes in the 

transcriptome. Nat Commun. 2021;12: 5647. 

http://paperpile.com/b/Rv1CIg/bmWSw
http://paperpile.com/b/Rv1CIg/bmWSw
http://paperpile.com/b/Rv1CIg/mf1LM
http://paperpile.com/b/Rv1CIg/mf1LM
http://paperpile.com/b/Rv1CIg/gOO62
http://paperpile.com/b/Rv1CIg/gOO62
http://paperpile.com/b/Rv1CIg/HU2bD
http://paperpile.com/b/Rv1CIg/HU2bD
http://paperpile.com/b/Rv1CIg/HU2bD
http://paperpile.com/b/Rv1CIg/AYShQ
http://paperpile.com/b/Rv1CIg/AYShQ
http://paperpile.com/b/Rv1CIg/AYShQ
http://paperpile.com/b/Rv1CIg/Nnvm4
http://paperpile.com/b/Rv1CIg/Nnvm4
http://paperpile.com/b/Rv1CIg/Nnvm4
http://paperpile.com/b/Rv1CIg/cfscP
http://paperpile.com/b/Rv1CIg/cfscP
http://paperpile.com/b/Rv1CIg/cfscP


 

144 
 

116. Bozek M, Cortini R, Storti AE, Unnerstall U, Gaul U, Gompel N. ATAC-seq reveals 

regional differences in enhancer accessibility during the establishment of spatial 

coordinates in the Drosophila blastoderm. Genome Res. 2019;29: 771–783. 

117. Koromila T, Gao F, Iwasaki Y, He P, Pachter L, Gergen JP, et al. Odd-paired is a 

pioneer-like factor that coordinates with Zelda to control gene expression in embryos. 

eLife. 2020. doi:10.7554/eLife.59610 

118. Soluri IV, Zumerling LM, Payan Parra OA, Clark EG, Blythe SA. Zygotic pioneer factor 

activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation 

network. eLife. 2020. doi:10.7554/elife.53916 

119. Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit 

widespread allelic heterogeneity and shape variation in complex traits. Nat Commun. 

2019;10: 4872. 

120. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. 

Structural variant calling: the long and the short of it. Genome Biol. 2019;20: 246. 

121. Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, et al. RNA-

Seq alignment to individualized genomes improves transcript abundance estimates in 

multiparent populations. Genetics. 2014;198: 59–73. 

122. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and 

strategies for finding the underlying causes of complex disease. Nat Rev Genet. 

2010;11: 446–450. 

http://paperpile.com/b/Rv1CIg/KV7N7
http://paperpile.com/b/Rv1CIg/KV7N7
http://paperpile.com/b/Rv1CIg/KV7N7
http://paperpile.com/b/Rv1CIg/rirhW
http://paperpile.com/b/Rv1CIg/rirhW
http://paperpile.com/b/Rv1CIg/rirhW
http://dx.doi.org/10.7554/eLife.59610
http://paperpile.com/b/Rv1CIg/DUlH2
http://paperpile.com/b/Rv1CIg/DUlH2
http://paperpile.com/b/Rv1CIg/DUlH2
http://dx.doi.org/10.7554/elife.53916
http://paperpile.com/b/Rv1CIg/3Anam
http://paperpile.com/b/Rv1CIg/3Anam
http://paperpile.com/b/Rv1CIg/3Anam
http://paperpile.com/b/Rv1CIg/h0YG0
http://paperpile.com/b/Rv1CIg/h0YG0
http://paperpile.com/b/Rv1CIg/GlO9Z
http://paperpile.com/b/Rv1CIg/GlO9Z
http://paperpile.com/b/Rv1CIg/GlO9Z
http://paperpile.com/b/Rv1CIg/8cjWM
http://paperpile.com/b/Rv1CIg/8cjWM
http://paperpile.com/b/Rv1CIg/8cjWM


 

145 
 

123. Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its 

contribution to complex traits. Nat Rev Genet. 2009;10: 241–251. 

124. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent formation 

of transcription factor pairs alters their binding specificity. Nature. 2015;527. 

doi:10.1038/nature15518 

125. Wong ES, Schmitt BM, Kazachenka A, Thybert D, Redmond A, Connor F, et al. 

Interplay of cis and trans mechanisms driving transcription factor binding and gene 

expression evolution. Nat Commun. 2017;8. doi:10.1038/s41467-017-01037-x 

126. Tirosh I, Reikhav S, Levy AA, Barkai N. A yeast hybrid provides insight into the 

evolution of gene expression regulation. Science. 2009;324: 659–662. 

127. Wang D, Sung H-M, Wang T-Y, Huang C-J, Yang P, Chang T, et al. Expression 

evolution in yeast genes of single-input modules is mainly due to changes in trans-

acting factors. Genome Res. 2007;17: 1161–1169. 

128. Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-

specific parent-of-origin effects in hybrid maize. Plant Cell. 2007;19: 2391–2402. 

129. Lemos B, Araripe LO, Fontanillas P, Hartl DL. Dominance and the evolutionary 

accumulation of cis- and trans-effects on gene expression. Proc Natl Acad Sci U S A. 

2008;105: 14471–14476. 

130. Wittkopp PJ, Haerum BK, Clark AG. Regulatory changes underlying expression 

differences within and between Drosophila species. Nat Genet. 2008;40: 346–350. 

http://paperpile.com/b/Rv1CIg/MbRa7
http://paperpile.com/b/Rv1CIg/MbRa7
http://paperpile.com/b/Rv1CIg/alyd9
http://paperpile.com/b/Rv1CIg/alyd9
http://paperpile.com/b/Rv1CIg/alyd9
http://dx.doi.org/10.1038/nature15518
http://paperpile.com/b/Rv1CIg/aoIvA
http://paperpile.com/b/Rv1CIg/aoIvA
http://paperpile.com/b/Rv1CIg/aoIvA
http://dx.doi.org/10.1038/s41467-017-01037-x
http://paperpile.com/b/Rv1CIg/whONN
http://paperpile.com/b/Rv1CIg/whONN
http://paperpile.com/b/Rv1CIg/gG23R
http://paperpile.com/b/Rv1CIg/gG23R
http://paperpile.com/b/Rv1CIg/gG23R
http://paperpile.com/b/Rv1CIg/UY8o1
http://paperpile.com/b/Rv1CIg/UY8o1
http://paperpile.com/b/Rv1CIg/g2mfn
http://paperpile.com/b/Rv1CIg/g2mfn
http://paperpile.com/b/Rv1CIg/g2mfn
http://paperpile.com/b/Rv1CIg/HRO8U
http://paperpile.com/b/Rv1CIg/HRO8U


 

146 
 

131. Connelly CF, Wakefield J, Akey JM. Evolution and genetic architecture of chromatin 

accessibility and function in yeast. PLoS Genet. 2014;10: e1004427. 

 

II. Chapter 1 reference: 

1.  Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, et al. Using extended 

genealogy to estimate components of heritability for 23 quantitative and dichotomous 

traits. PLoS Genet. 2013;9: e1003520. 

2.  Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature. 2007;447: 661–

678. 

3.  Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association 

studies for human complex trait genetics. Genetics. 2011;187: 367–383. 

4.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding 

the missing heritability of complex diseases. Nature. 2009;461: 747–753. 

5.  Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common 

SNPs explain a large proportion of the heritability for human height. Nat Genet. 

2010;42: 565–569. 

6.  Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to 

Omnigenic. Cell. 2017;169: 1177–1186. 

http://paperpile.com/b/Rv1CIg/SPIRu
http://paperpile.com/b/Rv1CIg/SPIRu


 

147 
 

7.  Shi H, Kichaev G, Pasaniuc B. Contrasting the Genetic Architecture of 30 Complex 

Traits from Summary Association Data. Am J Hum Genet. 2016;99: 139–153. 

8.  Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions 

contribute less than additive effects to quantitative trait variation in yeast. Nature 

Communications. 2015. doi:10.1038/ncomms9712 

9.  Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, et al. Rare 

variants contribute disproportionately to quantitative trait variation in yeast. Elife. 2019;8. 

doi:10.7554/eLife.49212 

10.  Chesler EJ. Out of the bottleneck: the Diversity Outcross and Collaborative Cross 

mouse populations in behavioral genetics research. Mamm Genome. 2014;25: 3–11. 

11.  Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, et al. Genetic 

cartography of longevity in humans and mice: Current landscape and horizons. Biochim 

Biophys Acta Mol Basis Dis. 2018;1864: 2718–2732. 

12.  Saul MC, Philip VM, Reinholdt LG, Center for Systems Neurogenetics of Addiction, 

Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet. 

2019;35: 501–514. 

13.  Long AD, Macdonald SJ, King EG. Dissecting complex traits using the Drosophila 

Synthetic Population Resource. Trends Genet. 2014;30: 488–495. 

14.  Mackay T. Trudy Mackay. Current Biology. 2006. pp. R659–R661. 

doi:10.1016/j.cub.2006.08.016 



 

148 
 

15.  Torres JM, Gamazon ER, Parra EJ, Below JE, Valladares-Salgado A, Wacher N, et al. 

Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. 

Am J Hum Genet. 2014;95: 521–534. 

16.  Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and 

epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518: 

337–343. 

17.  Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs 

are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS 

Genet. 2010;6: e1000888. 

18.  Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 

localization of common disease-associated variation in regulatory DNA. Science. 

2012;337: 1190–1195. 

19.  Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. 

Am J Hum Genet. 2018;102: 717–730. 

20.  Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of 

adaptation. Evolution. 2007;61: 995–1016. 

21.  Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution 

mapping and characterization of open chromatin across the genome. Cell. 2008;132: 

311–322. 



 

149 
 

22.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native 

chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding 

proteins and nucleosome position. Nat Methods. 2013;10: 1213–1218. 

23.  Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and 

ATAC-seq. Nat Genet. 2016;48: 206–213. 

24.  Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D, et al. Genetic 

determinants of co-accessible chromatin regions in activated T cells across humans. 

Nature Genetics. 2018. pp. 1140–1150. doi:10.1038/s41588-018-0156-2 

25.  Gorkin DU, Barozzi I, Zhao Y, Zhang Y, Huang H, Lee AY, et al. An atlas of dynamic 

chromatin landscapes in mouse fetal development. Nature. 2020;583: 744–751. 

26.  Bozek M, Cortini R, Storti AE, Unnerstall U, Gaul U, Gompel N. ATAC-seq reveals 

regional differences in enhancer accessibility during the establishment of spatial 

coordinates in the Drosophila blastoderm. Genome Res. 2019;29: 771–783. 

27.  Calderon D, Nguyen MLT, Mezger A, Kathiria A, Müller F, Nguyen V, et al. Landscape 

of stimulation-responsive chromatin across diverse human immune cells. Nat Genet. 

2019;51: 1494–1505. 

28.  Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, et al. 

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. 

Nature. 2011;471: 480–485. 



 

150 
 

29.  Davie K, Jacobs J, Atkins M, Potier D, Christiaens V, Halder G, et al. Discovery of 

transcription factors and regulatory regions driving in vivo tumor development by ATAC-

seq and FAIRE-seq open chromatin profiling. PLoS Genet. 2015;11: e1004994. 

30.  Koenecke N, Johnston J, Gaertner B, Natarajan M, Zeitlinger J. Genome-wide 

identification of Drosophila dorso-ventral enhancers by differential histone acetylation 

analysis. Genome Biol. 2016;17: 196. 

31.  Hannon CE, Blythe SA, Wieschaus EF. Concentration dependent chromatin states 

induced by the bicoid morphogen gradient. Elife. 2017;6. doi:10.7554/eLife.28275 

32.  Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-

Ferreres R, et al. The cis-regulatory dynamics of embryonic development at single-cell 

resolution. Nature. 2018;555: 538–542. 

33.  Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, et al. The 

transcription factor Grainy head primes epithelial enhancers for spatiotemporal 

activation by displacing nucleosomes. Nat Genet. 2018;50: 1011–1020. 

34.  Haines JE, Eisen MB. Patterns of chromatin accessibility along the anterior-posterior 

axis in the early Drosophila embryo. PLoS Genet. 2018;14: e1007367. 

35.  Soluri IV, Zumerling LM, Payan Parra OA, Clark EG, Blythe SA. Zygotic pioneer factor 

activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation 

network. eLife. 2020. doi:10.7554/elife.53916 



 

151 
 

36.  Koromila T, Gao F, Iwasaki Y, He P, Pachter L, Gergen JP, et al. Odd-paired is a 

pioneer-like factor that coordinates with Zelda to control gene expression in embryos. 

eLife. 2020. doi:10.7554/eLife.59610 

37.  Reddington JP, Garfield DA, Sigalova OM, Karabacak Calviello A, Marco-Ferreres R, 

Girardot C, et al. Lineage-Resolved Enhancer and Promoter Usage during a Time 

Course of Embryogenesis. Dev Cell. 2020;55: 648-664.e9. 

38.  Bravo González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D, Davie K, 

et al. Identification of genomic enhancers through spatial integration of single-cell 

transcriptomics and epigenomics. Mol Syst Biol. 2020;16: e9438. 

39.  Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable 

elements contribute to the genomic response to insecticides in Drosophila 

melanogaster. Philos Trans R Soc Lond B Biol Sci. 2020;375: 20190341. 

40.  Witt E, Svetec N, Benjamin S, Zhao L. Transcription Factors Drive Opposite 

Relationships between Gene Age and Tissue Specificity in Male and Female Drosophila 

Gonads. Mol Biol Evol. 2021;38: 2104–2115. 

41.  Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters 

active in differentiated tissues have distinct expression characteristics. Mol Syst Biol. 

2021;17: e9866. 

42.  Ruiz JL, Ranford-Cartwright LC, Gómez-Díaz E. The regulatory genome of the malaria 

vector Anopheles gambiae: integrating chromatin accessibility and gene expression. 



 

152 
 

Cold Spring Harbor Laboratory. 2020. p. 2020.06.22.164228. 

doi:10.1101/2020.06.22.164228 

43.  Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit 

widespread allelic heterogeneity and shape variation in complex traits. Nat Commun. 

2019;10: 4872. 

44.  Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, et al. RNA-

Seq alignment to individualized genomes improves transcript abundance estimates in 

multiparent populations. Genetics. 2014;198: 59–73. 

45.  Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the 

Drosophila melanogaster Genetic Reference Panel. Wiley Interdiscip Rev Dev Biol. 

2018;7: e289. 

46.  Qiu X, Wu H, Hu R. The impact of quantile and rank normalization procedures on the 

testing power of gene differential expression analysis. BMC Bioinformatics. 2013;14: 

124. 

47.  King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila Synthetic 

Population Resource for the routine dissection of complex traits. Genetics. 2012;191: 

935–949. 

48.  King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, et al. Genetic 

dissection of a model complex trait using the Drosophila Synthetic Population Resource. 

Genome Res. 2012;22: 1558–1566. 



 

153 
 

49.  Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based 

analysis of ChIP-Seq (MACS). Genome Biol. 2008;9: R137. 

50.  Koohy H, Down TA, Spivakov M, Hubbard T. A comparison of peak callers used for 

DNase-Seq data. PLoS One. 2014;9: e96303. 

51.  Pickrell JK. Joint analysis of functional genomic data and genome-wide association 

studies of 18 human traits. Am J Hum Genet. 2014;94: 559–573. 

52.  Lu RJ-H, Liu Y-T, Huang CW, Yen M-R, Lin C-Y, Chen P-Y. ATACgraph: Profiling 

Genome-Wide Chromatin Accessibility From ATAC-seq. Front Genet. 2020;11: 618478. 

53.  Jenull S, Tscherner M, Mair T, Kuchler K. ATAC-Seq Identifies Chromatin Landscapes 

Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida 

albicans. J Fungi (Basel). 2020;6. doi:10.3390/jof6030182 

54.  Bysani M, Agren R, Davegårdh C, Volkov P, Rönn T, Unneberg P, et al. ATAC-seq 

reveals alterations in open chromatin in pancreatic islets from subjects with type 2 

diabetes. Sci Rep. 2019;9: 7785. 

55.  Orchard P, Kyono Y, Hensley J, Kitzman JO, Parker SCJ. Quantification, Dynamic 

Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. Cell Syst. 2020;10: 

298-306.e4. 

56.  Meers MP, Adelman K, Duronio RJ, Strahl BD, McKay DJ, Matera AG. Transcription 

start site profiling uncovers divergent transcription and enhancer-associated RNAs in 

Drosophila melanogaster. BMC Genomics. 2018;19: 157. 



 

154 
 

57.  Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods 

for high density oligonucleotide array data based on variance and bias. Bioinformatics. 

2003;19: 185–193. 

58.  Bour BA, O’Brien MA, Lockwood WL, Goldstein ES, Bodmer R, Taghert PH, et al. 

Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes & 

Development. 1995. pp. 730–741. doi:10.1101/gad.9.6.730 

59.  Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. Drosophila Niemann-Pick type 

C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human 

neurodegenerative disease. Development. 2007;134. doi:10.1242/dev.004572 

60.  Andrenacci D, Grimaldi MR, Panetta V, Riano E, Rugarli EI, Graziani F. Functional 

dissection of the Drosophila Kallmann’s syndrome protein DmKal-1. BMC Genet. 

2006;7: 47. 

61.  Li Q, Imataka H, Morino S, Rogers GW, Jr, Richter-Cook NJ, et al. Eukaryotic 

Translation Initiation Factor 4AIII (eIF4AIII) Is Functionally Distinct from eIF4AI and 

eIF4AII. Mol Cell Biol. 1999;19: 7336. 

62.  Cáceres L, Necakov AS, Schwartz C, Kimber S, Roberts IJH, Krause HM. Nitric oxide 

coordinates metabolism, growth, and development via the nuclear receptor E75. Genes 

Dev. 2011;25: 1476–1485. 

63.  Schleinitz D, Böttcher Y, Blüher M, Kovacs P. The genetics of fat distribution. 

Diabetologia. 2014;57: 1276–1286. 



 

155 
 

64.  Eleanor R. Grimm NIS. Genetics of Eating Behavior: Established and Emerging 

Concepts. Nutr Rev. 2011;69: 52. 

65.  Brown NL, Sattler CA, Markey DR, Carroll SB. hairy gene function in the Drosophila 

eye: normal expression is dispensable but ectopic expression alters cell fates. 

Development. 1991;113: 1245–1256. 

66.  Carroll SB, Laughon A, Thalley BS. Expression, function, and regulation of the hairy 

segmentation protein in the Drosophila embryo. Genes Dev. 1988;2: 883–890. 

67.  Carroll SB and Whyte JS. The role of the hairy gene during Drosophila morphogenesis: 

stripes in imaginal discs. Genes Dev. 1989;3: 905–916. 

68.  Robin C, Lyman RF, Long AD, Langley CH, Mackay TFC. hairy: A quantitative trait 

locus for drosophila sensory bristle number. Genetics. 2002;162: 155–164. 

69.  Macdonald SJ, Long AD. A potential regulatory polymorphism upstream of hairy is not 

associated with bristle number variation in wild-caught Drosophila. Genetics. 2004;167: 

2127–2131. 

70.  Long AD, Mullaney SL, Reid LA, Fry JD, Langley CH, Mackay TF. High resolution 

mapping of genetic factors affecting abdominal bristle number in Drosophila 

melanogaster. Genetics. 1995;139: 1273–1291. 

71.  Riddihough G, Ish-Horowicz D. Individual stripe regulatory elements in the Drosophila 

hairy promoter respond to maternal, gap, and pair-rule genes. Genes Dev. 1991;5: 840–

854. 



 

156 
 

72.  Small S, Arnosti DN. Transcriptional Enhancers in Drosophila. Genetics. 2020;216: 1–

26. 

73.  Bray S, Musisi H, Bienz M. Bre1 is required for Notch signaling and histone 

modification. Dev Cell. 2005;8: 279–286. 

74.  Urbanek K, Lesiak M, Krakowian D, Koryciak-Komarska H, Likus W, Czekaj P, et al. 

Notch signaling pathway and gene expression profiles during early in vitro differentiation 

of liver-derived mesenchymal stromal cells to osteoblasts. Lab Invest. 2017;97: 1225–

1234. 

75.  Yu X, Zou J, Ye Z, Hammond H, Chen G, Tokunaga A, et al. Notch signaling activation 

in human embryonic stem cells is required for embryonic but not trophoblastic lineage 

commitment. Cell Stem Cell. 2008;2: 461. 

76.  Whited JL, Robichaux MB, Yang JC, Garrity PA. Ptpmeg is required for the proper 

establishment and maintenance of axon projections in the central brain of Drosophila. 

Development. 2007;134: 43–53. 

77.  Li M-Y, Lai P-L, Chou Y-T, Chi A-P, Mi Y-Z, Khoo K-H, et al. Protein tyrosine 

phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting 

EGFR endocytic degradation. Oncogene. 2015;34: 3791–3803. 

78.  Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila 

mutant methuselah. Science. 1998;282: 943–946. 



 

157 
 

79.  Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, et al. Chaperone-assisted 

selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20. 

doi:10.1016/j.cub.2009.11.022 

80.  Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The 

Drosophila melanogaster Genetic Reference Panel. Nature. 2012;482: 173–178. 

81.  Gao B, Huang Q, Baudis M. segment_liftover : a Python tool to convert segments 

between genome assemblies. F1000Res. 2018;7: 319. 

82.  Vinkhuyzen AAE, Pedersen NL, Yang J, Lee SH, Magnusson PKE, Iacono WG, et al. 

Common SNPs explain some of the variation in the personality dimensions of 

neuroticism and extraversion. Transl Psychiatry. 2012;2: e102. 

83.  Caballero A, Tenesa A, Keightley PD. The Nature of Genetic Variation for Complex 

Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Genetics. 

2015;201: 1601–1613. 

84.  O’Connor LJ, Schoech AP, Hormozdiari F, Gazal S, Patterson N, Price AL. Extreme 

Polygenicity of Complex Traits Is Explained by Negative Selection. Am J Hum Genet. 

2019;105: 456–476. 

85.  Fournier T, Abou Saada O, Hou J, Peter J, Caudal E, Schacherer J. Extensive impact of 

low-frequency variants on the phenotypic landscape at population-scale. Elife. 2019;8. 

doi:10.7554/eLife.49258 

86.  Lamb AM, Walker EA, Wittkopp PJ. Tools and strategies for scarless allele replacement 

in Drosophila using CRISPR/Cas9. Fly . 2017;11: 53–64. 



 

158 
 

87.  Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient 

germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A. 

2014;111: E2967-76. 

88.  Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, et al. 

Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in 

Drosophila. Genetics. 2014;196: 961–971. 

89.  Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. 

Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. 

Genetics. 2013;194: 1029–1035. 

90.  Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, et al. Optimized gene editing 

technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad 

Sci U S A. 2013;110: 19012–19017. 

91.  Martin M. Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet.journal. 2011;17: 10–12. 

92.  Krueger F. TrimGalore. A wrapper around Cutadapt and FastQC to consistently apply 

adapter and quality trimming to FastQ files, with extra functionality for RRBS data. 

TrimGalore (accessed on 27 August 2019). 2016. 

93.  Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, et al. The Release 6 

reference sequence of the Drosophila melanogaster genome. Genome Res. 2015;25: 

445–458. 



 

159 
 

94.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics. 2009. pp. 1754–1760. doi:10.1093/bioinformatics/btp324 

95.  Li H, Bob H, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map (SAM) Format and. 2009 [cited 12 Jan 2021]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.1516 

96.  Broad Institute. Picard version 2.18.27. In: Broad Institute: Picard [Internet]. [cited 2019]. 

Available: http://broadinstitute.github.io/picard/ 

97.  Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics. 2010;26: 841–842. 

98.  Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, 

et al. Plasticity in patterns of histone modifications and chromosomal proteins in 

Drosophila heterochromatin. Genome Res. 2011;21: 147–163. 

99.  Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of 

lineage-determining transcription factors prime cis-regulatory elements required for 

macrophage and B cell identities. Mol Cell. 2010;38: 576–589. 

100. Zhou C, Yuan Z, Ma X, Yang H, Wang P, Zheng L, et al. Accessible chromatin regions 

and their functional interrelations with gene transcription and epigenetic modifications in 

sorghum genome. Plant Commun. 2021;2: 100140. 

101. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human 

genome browser at UCSC. Genome Res. 2002;12: 996–1006. 



 

160 
 

102. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The 

UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32: D493-6. 

103. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling 

browsing of large distributed datasets. Bioinformatics. 2010;26: 2204–2207. 

104. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al. Track data 

hubs enable visualization of user-defined genome-wide annotations on the UCSC 

Genome Browser. Bioinformatics. 2014;30: 1003–1005. 

105. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. J R Stat Soc. 1995;57: 289–300. 

106. Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple 

test procedures for correlated test statistics. J Stat Plan Inference. 1999;82: 171–196. 

107. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for 

annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs 

in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly . 2012;6: 80–

92. 

 

III. Chapter 2 reference: 

1.  Huynh K, Smith BR, Macdonald SJ, Long AD. Genetic Variation in Chromatin State 

Across Multiple Tissues in Drosophila melanogaster. bioRxiv. 2022. p. 

2022.09.26.509449. doi:10.1101/2022.09.26.509449 

about:blank
about:blank
about:blank
about:blank
http://paperpile.com/b/tN5avl/wksZs
http://paperpile.com/b/tN5avl/wksZs
http://paperpile.com/b/tN5avl/wksZs
http://dx.doi.org/10.1101/2022.09.26.509449


 

161 
 

2.  pysam: Pysam is a Python module for reading and manipulating SAM/BAM/VCF/BCF 

files. It’s a lightweight wrapper of the htslib C-API, the same one that powers samtools, 

bcftools, and tabix. Github; Available: https://github.com/pysam-developers/pysam 

3.  King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila Synthetic 

Population Resource for the routine dissection of complex traits. Genetics. 2012;191: 

935–949. 

4.  Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature. 2007;447: 661–

678. 

5.  Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions 

contribute less than additive effects to quantitative trait variation in yeast. Nature 

Communications. 2015. doi:10.1038/ncomms9712 

6.  Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, et al. Rare 

variants contribute disproportionately to quantitative trait variation in yeast. Elife. 2019;8. 

doi:10.7554/eLife.49212 

7.  Chesler EJ. Out of the bottleneck: the Diversity Outcross and Collaborative Cross 

mouse populations in behavioral genetics research. Mamm Genome. 2014;25: 3–11. 

8.  Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, et al. Genetic 

cartography of longevity in humans and mice: Current landscape and horizons. Biochim 

Biophys Acta Mol Basis Dis. 2018;1864: 2718–2732. 

http://paperpile.com/b/tN5avl/JbAuG
http://paperpile.com/b/tN5avl/JbAuG
http://paperpile.com/b/tN5avl/JbAuG
https://github.com/pysam-developers/pysam
http://paperpile.com/b/tN5avl/0sRox
http://paperpile.com/b/tN5avl/0sRox
http://paperpile.com/b/tN5avl/0sRox
http://paperpile.com/b/tN5avl/6hjBH
http://paperpile.com/b/tN5avl/6hjBH
http://paperpile.com/b/tN5avl/6hjBH
http://paperpile.com/b/tN5avl/19sOB
http://paperpile.com/b/tN5avl/19sOB
http://paperpile.com/b/tN5avl/19sOB
http://dx.doi.org/10.1038/ncomms9712
http://paperpile.com/b/tN5avl/xA8cW
http://paperpile.com/b/tN5avl/xA8cW
http://paperpile.com/b/tN5avl/xA8cW
http://dx.doi.org/10.7554/eLife.49212
http://paperpile.com/b/tN5avl/mKVzA
http://paperpile.com/b/tN5avl/mKVzA
http://paperpile.com/b/tN5avl/7Pyao
http://paperpile.com/b/tN5avl/7Pyao
http://paperpile.com/b/tN5avl/7Pyao


 

162 
 

9.  Saul MC, Philip VM, Reinholdt LG, Center for Systems Neurogenetics of Addiction, 

Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet. 

2019;35: 501–514. 

10.  Long AD, Macdonald SJ, King EG. Dissecting complex traits using the Drosophila 

Synthetic Population Resource. Trends Genet. 2014;30: 488–495. 

11.  Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association 

studies for human complex trait genetics. Genetics. 2011;187: 367–383. 

12.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding 

the missing heritability of complex diseases. Nature. 2009;461: 747–753. 

13.  Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to 

Omnigenic. Cell. 2017;169: 1177–1186. 

14.  Torres JM, Gamazon ER, Parra EJ, Below JE, Valladares-Salgado A, Wacher N, et al. 

Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. 

Am J Hum Genet. 2014;95: 521–534. 

15.  Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and 

epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518: 

337–343. 

16.  Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs 

are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS 

Genet. 2010;6: e1000888. 

http://paperpile.com/b/tN5avl/qZaXz
http://paperpile.com/b/tN5avl/qZaXz
http://paperpile.com/b/tN5avl/qZaXz
http://paperpile.com/b/tN5avl/DlH87
http://paperpile.com/b/tN5avl/DlH87
http://paperpile.com/b/tN5avl/rLo4O
http://paperpile.com/b/tN5avl/rLo4O
http://paperpile.com/b/tN5avl/2ic7M
http://paperpile.com/b/tN5avl/2ic7M
http://paperpile.com/b/tN5avl/1xgKq
http://paperpile.com/b/tN5avl/1xgKq
http://paperpile.com/b/tN5avl/rEGWU
http://paperpile.com/b/tN5avl/rEGWU
http://paperpile.com/b/tN5avl/rEGWU
http://paperpile.com/b/tN5avl/5q3RJ
http://paperpile.com/b/tN5avl/5q3RJ
http://paperpile.com/b/tN5avl/5q3RJ
http://paperpile.com/b/tN5avl/vG5eT
http://paperpile.com/b/tN5avl/vG5eT
http://paperpile.com/b/tN5avl/vG5eT


 

163 
 

17.  Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 

localization of common disease-associated variation in regulatory DNA. Science. 

2012;337: 1190–1195. 

18.  Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution 

mapping and characterization of open chromatin across the genome. Cell. 2008;132: 

311–322. 

19.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native 

chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding 

proteins and nucleosome position. Nat Methods. 2013;10: 1213–1218. 

20.  Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and 

ATAC-seq. Nat Genet. 2016;48: 206–213. 

21.  Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D, et al. Genetic 

determinants of co-accessible chromatin regions in activated T cells across humans. 

Nature Genetics. 2018. pp. 1140–1150. doi:10.1038/s41588-018-0156-2 

22.  Koenecke N, Johnston J, Gaertner B, Natarajan M, Zeitlinger J. Genome-wide 

identification of Drosophila dorso-ventral enhancers by differential histone acetylation 

analysis. Genome Biol. 2016;17: 196. 

23.  Hannon CE, Blythe SA, Wieschaus EF. Concentration dependent chromatin states 

induced by the bicoid morphogen gradient. Elife. 2017;6. doi:10.7554/eLife.28275 

http://paperpile.com/b/tN5avl/8fjvZ
http://paperpile.com/b/tN5avl/8fjvZ
http://paperpile.com/b/tN5avl/8fjvZ
http://paperpile.com/b/tN5avl/p04Bi
http://paperpile.com/b/tN5avl/p04Bi
http://paperpile.com/b/tN5avl/p04Bi
http://paperpile.com/b/tN5avl/36FIi
http://paperpile.com/b/tN5avl/36FIi
http://paperpile.com/b/tN5avl/36FIi
http://paperpile.com/b/tN5avl/ojmOK
http://paperpile.com/b/tN5avl/ojmOK
http://paperpile.com/b/tN5avl/xT64e
http://paperpile.com/b/tN5avl/xT64e
http://paperpile.com/b/tN5avl/xT64e
http://dx.doi.org/10.1038/s41588-018-0156-2
http://paperpile.com/b/tN5avl/NSbtP
http://paperpile.com/b/tN5avl/NSbtP
http://paperpile.com/b/tN5avl/NSbtP
http://paperpile.com/b/tN5avl/Mj39u
http://paperpile.com/b/tN5avl/Mj39u
http://dx.doi.org/10.7554/eLife.28275


 

164 
 

24.  Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-

Ferreres R, et al. The cis-regulatory dynamics of embryonic development at single-cell 

resolution. Nature. 2018;555: 538–542. 

25.  Haines JE, Eisen MB. Patterns of chromatin accessibility along the anterior-posterior 

axis in the early Drosophila embryo. PLoS Genet. 2018;14: e1007367. 

26.  Bozek M, Cortini R, Storti AE, Unnerstall U, Gaul U, Gompel N. ATAC-seq reveals 

regional differences in enhancer accessibility during the establishment of spatial 

coordinates in the Drosophila blastoderm. Genome Res. 2019;29: 771–783. 

27.  Soluri IV, Zumerling LM, Payan Parra OA, Clark EG, Blythe SA. Zygotic pioneer factor 

activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation 

network. eLife. 2020. doi:10.7554/elife.53916 

28.  Koromila T, Gao F, Iwasaki Y, He P, Pachter L, Gergen JP, et al. Odd-paired is a 

pioneer-like factor that coordinates with Zelda to control gene expression in embryos. 

eLife. 2020. doi:10.7554/eLife.59610 

29.  Reddington JP, Garfield DA, Sigalova OM, Karabacak Calviello A, Marco-Ferreres R, 

Girardot C, et al. Lineage-Resolved Enhancer and Promoter Usage during a Time 

Course of Embryogenesis. Dev Cell. 2020;55: 648–664.e9. 

30.  Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters 

active in differentiated tissues have distinct expression characteristics. Mol Syst Biol. 

2021;17: e9866. 

http://paperpile.com/b/tN5avl/aICaw
http://paperpile.com/b/tN5avl/aICaw
http://paperpile.com/b/tN5avl/aICaw
http://paperpile.com/b/tN5avl/AR7V7
http://paperpile.com/b/tN5avl/AR7V7
http://paperpile.com/b/tN5avl/m4SOt
http://paperpile.com/b/tN5avl/m4SOt
http://paperpile.com/b/tN5avl/m4SOt
http://paperpile.com/b/tN5avl/vvUwG
http://paperpile.com/b/tN5avl/vvUwG
http://paperpile.com/b/tN5avl/vvUwG
http://dx.doi.org/10.7554/elife.53916
http://paperpile.com/b/tN5avl/maHxR
http://paperpile.com/b/tN5avl/maHxR
http://paperpile.com/b/tN5avl/maHxR
http://dx.doi.org/10.7554/eLife.59610
http://paperpile.com/b/tN5avl/iyQSN
http://paperpile.com/b/tN5avl/iyQSN
http://paperpile.com/b/tN5avl/iyQSN
http://paperpile.com/b/tN5avl/B9t4a
http://paperpile.com/b/tN5avl/B9t4a
http://paperpile.com/b/tN5avl/B9t4a


 

165 
 

31.  Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, et al. 

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. 

Nature. 2011;471: 480–485. 

32.  Merrill CB, Montgomery AB, Pabon MA, Shabalin AA, Rodan AR, Rothenfluh A. 

Harnessing changes in open chromatin determined by ATAC-seq to generate insulin-

responsive reporter constructs. BMC Genomics. 2022;23: 399. 

33.  Bravo González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D, Davie K, 

et al. Identification of genomic enhancers through spatial integration of single-cell 

transcriptomics and epigenomics. Mol Syst Biol. 2020;16: e9438. 

34.  Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, et al. The 

transcription factor Grainy head primes epithelial enhancers for spatiotemporal 

activation by displacing nucleosomes. Nat Genet. 2018;50: 1011–1020. 

35.  Davie K, Jacobs J, Atkins M, Potier D, Christiaens V, Halder G, et al. Discovery of 

transcription factors and regulatory regions driving in vivo tumor development by ATAC-

seq and FAIRE-seq open chromatin profiling. PLoS Genet. 2015;11: e1004994. 

36.  Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable 

elements contribute to the genomic response to insecticides in Drosophila 

melanogaster. Philos Trans R Soc Lond B Biol Sci. 2020;375: 20190341. 

37.  Witt E, Svetec N, Benjamin S, Zhao L. Transcription Factors Drive Opposite 

Relationships between Gene Age and Tissue Specificity in Male and Female Drosophila 

Gonads. Mol Biol Evol. 2021;38: 2104–2115. 

http://paperpile.com/b/tN5avl/fOKgR
http://paperpile.com/b/tN5avl/fOKgR
http://paperpile.com/b/tN5avl/fOKgR
http://paperpile.com/b/tN5avl/IVQbd
http://paperpile.com/b/tN5avl/IVQbd
http://paperpile.com/b/tN5avl/IVQbd
http://paperpile.com/b/tN5avl/ucM8W
http://paperpile.com/b/tN5avl/ucM8W
http://paperpile.com/b/tN5avl/ucM8W
http://paperpile.com/b/tN5avl/83ZLo
http://paperpile.com/b/tN5avl/83ZLo
http://paperpile.com/b/tN5avl/83ZLo
http://paperpile.com/b/tN5avl/Uorcp
http://paperpile.com/b/tN5avl/Uorcp
http://paperpile.com/b/tN5avl/Uorcp
http://paperpile.com/b/tN5avl/J7ahH
http://paperpile.com/b/tN5avl/J7ahH
http://paperpile.com/b/tN5avl/J7ahH
http://paperpile.com/b/tN5avl/lqCP8
http://paperpile.com/b/tN5avl/lqCP8
http://paperpile.com/b/tN5avl/lqCP8


 

166 
 

38.  Arnold M, Ellwanger DC, Hartsperger ML, Pfeufer A, Stümpflen V. Cis-acting 

polymorphisms affect complex traits through modifications of microRNA regulation 

pathways. PLoS One. 2012;7: e36694. 

39.  Liu X, Li YI, Pritchard JK. Trans Effects on Gene Expression Can Drive Omnigenic 

Inheritance. Cell. 2019;177: 1022–1034.e6. 

40.  Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. Large-scale 

cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores 

that regulate blood gene expression. Nat Genet. 2021;53: 1300–1310. 

41.  Browning SR, Browning BL. Haplotype phasing: existing methods and new 

developments. Nat Rev Genet. 2011;12: 703–714. 

42.  Christiansen L, Amini S, Zhang F, Ronaghi M, Gunderson KL, Steemers FJ. Contiguity-

Preserving Transposition Sequencing (CPT-Seq) for Genome-Wide Haplotyping, 

Assembly, and Single-Cell ATAC-Seq. In: Tiemann-Boege I, Betancourt A, editors. 

Haplotyping: Methods and Protocols. New York, NY: Springer New York; 2017. pp. 

207–221. 

43.  Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent formation 

of transcription factor pairs alters their binding specificity. Nature. 2015;527. 

doi:10.1038/nature15518 

44.  Shen SQ, Turro E, Corbo JC. Hybrid mice reveal parent-of-origin and Cis- and trans-

regulatory effects in the retina. PLoS One. 2014;9: e109382. 

http://paperpile.com/b/tN5avl/3hFJA
http://paperpile.com/b/tN5avl/3hFJA
http://paperpile.com/b/tN5avl/3hFJA
http://paperpile.com/b/tN5avl/S974c
http://paperpile.com/b/tN5avl/S974c
http://paperpile.com/b/tN5avl/N2YW6
http://paperpile.com/b/tN5avl/N2YW6
http://paperpile.com/b/tN5avl/N2YW6
http://paperpile.com/b/tN5avl/sXUxK
http://paperpile.com/b/tN5avl/sXUxK
http://paperpile.com/b/tN5avl/65WVg
http://paperpile.com/b/tN5avl/65WVg
http://paperpile.com/b/tN5avl/65WVg
http://paperpile.com/b/tN5avl/65WVg
http://paperpile.com/b/tN5avl/65WVg
http://paperpile.com/b/tN5avl/SbQHf
http://paperpile.com/b/tN5avl/SbQHf
http://paperpile.com/b/tN5avl/SbQHf
http://dx.doi.org/10.1038/nature15518
http://paperpile.com/b/tN5avl/q8wEG
http://paperpile.com/b/tN5avl/q8wEG


 

167 
 

45.  Russell ND, Chow CY. The dynamic effect of genetic variation on the in vivo ER stress 

transcriptional response in different tissues. G3 . 2022;12. 

doi:10.1093/g3journal/jkac104 

46.  Zhao N, Ding X, Lian T, Wang M, Tong Y, Liang D, et al. The Effects of Gene 

Duplication Modes on the Evolution of Regulatory Divergence in Wild and Cultivated 

Soybean. Front Genet. 2020;11: 601003. 

47.  Suvorov A, Nolte V, Pandey RV, Franssen SU, Futschik A, Schlötterer C. Intra-specific 

regulatory variation in Drosophila pseudoobscura. PLoS One. 2013;8: e83547. 

48.  Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-

specific enhancers. Nat Rev Mol Cell Biol. 2015;16: 144–154. 

49.  Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit 

widespread allelic heterogeneity and shape variation in complex traits. Nat Commun. 

2019;10: 4872. 

50.  Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, et al. RNA-

Seq alignment to individualized genomes improves transcript abundance estimates in 

multiparent populations. Genetics. 2014;198: 59–73. 

51.  Fan S, Schneider LE. The role of maternal and zygotic Gprk2 expression in Drosophila 

development. Biochem Biophys Res Commun. 2003;301: 127–135. 

52.  Schneider LE, Spradling AC. The Drosophila G-protein-coupled receptor kinase 

homologue Gprk2 is required for egg morphogenesis. Development. 1997;124: 2591–

2602. 

http://paperpile.com/b/tN5avl/Vrkil
http://paperpile.com/b/tN5avl/Vrkil
http://paperpile.com/b/tN5avl/Vrkil
http://dx.doi.org/10.1093/g3journal/jkac104
http://paperpile.com/b/tN5avl/fCR01
http://paperpile.com/b/tN5avl/fCR01
http://paperpile.com/b/tN5avl/fCR01
http://paperpile.com/b/tN5avl/9CCw3
http://paperpile.com/b/tN5avl/9CCw3
http://paperpile.com/b/tN5avl/hp54x
http://paperpile.com/b/tN5avl/hp54x
http://paperpile.com/b/tN5avl/HQWJO
http://paperpile.com/b/tN5avl/HQWJO
http://paperpile.com/b/tN5avl/HQWJO
http://paperpile.com/b/tN5avl/6cD7x
http://paperpile.com/b/tN5avl/6cD7x
http://paperpile.com/b/tN5avl/6cD7x
http://paperpile.com/b/tN5avl/HRStv
http://paperpile.com/b/tN5avl/HRStv
http://paperpile.com/b/tN5avl/VMpL9
http://paperpile.com/b/tN5avl/VMpL9
http://paperpile.com/b/tN5avl/VMpL9


 

168 
 

53.  Lannutti BJ, Schneider LE. Gprk2 controls cAMP levels in Drosophila development. Dev 

Biol. 2001;233: 174–185. 

54.  Chen Y, Li S, Tong C, Zhao Y, Wang B, Liu Y, et al. G protein-coupled receptor kinase 

2 promotes high-level Hedgehog signaling by regulating the active state of Smo through 

kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev. 

2010;24: 2054–2067. 

55.  Tanoue S, Krishnan P, Chatterjee A, Hardin PE. G protein-coupled receptor kinase 2 is 

required for rhythmic olfactory responses in Drosophila. Curr Biol. 2008;18: 787–794. 

56.  Nishida Y, Hata M, Ayaki T, Ryo H, Yamagata M, Shimizu K, et al. Proliferation of both 

somatic and germ cells is affected in the Drosophila mutants of raf proto-oncogene. 

EMBO J. 1988;7: 775–781. 

57.  Luo H, Rose PE, Roberts TM, Dearolf CR. The Hopscotch Jak kinase requires the Raf 

pathway to promote blood cell activation and differentiation in Drosophila. Mol Genet 

Genomics. 2002;267: 57–63. 

58.  Kadener S, Fededa JP, Rosbash M, Kornblihtt AR. Regulation of alternative splicing by 

a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci U S A. 

2002;99: 8185–8190. 

59.  Meng F, Zhao H, Zhu B, Zhang T, Yang M, Li Y, et al. Genomic editing of intronic 

enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis 

thaliana. Plant Cell. 2021;33: 1997–2014. 

http://paperpile.com/b/tN5avl/Syaru
http://paperpile.com/b/tN5avl/Syaru
http://paperpile.com/b/tN5avl/RBo55
http://paperpile.com/b/tN5avl/RBo55
http://paperpile.com/b/tN5avl/RBo55
http://paperpile.com/b/tN5avl/RBo55
http://paperpile.com/b/tN5avl/iR71G
http://paperpile.com/b/tN5avl/iR71G
http://paperpile.com/b/tN5avl/d7jds
http://paperpile.com/b/tN5avl/d7jds
http://paperpile.com/b/tN5avl/d7jds
http://paperpile.com/b/tN5avl/t6FoO
http://paperpile.com/b/tN5avl/t6FoO
http://paperpile.com/b/tN5avl/t6FoO
http://paperpile.com/b/tN5avl/M6P4I
http://paperpile.com/b/tN5avl/M6P4I
http://paperpile.com/b/tN5avl/M6P4I
http://paperpile.com/b/tN5avl/MhU9D
http://paperpile.com/b/tN5avl/MhU9D
http://paperpile.com/b/tN5avl/MhU9D


 

169 
 

60.  Cheng F, Zheng W, Liu C, Barbuti PA, Yu-Taeger L, Casadei N, et al. Intronic 

enhancers of the human SNCA gene predominantly regulate its expression in brain in 

vivo. Sci Adv. 2022;8: eabq6324. 

61.  Kim J, Kim Y-J, Kim-Ha J. Blood-brain barrier defects associated with Rbp9 mutation. 

Mol Cells. 2010;29: 93–98. 

62.  Jeong K, Kim-Ha J. Precocious expression of Drosophila Rbp9 inhibits ovarian germ 

cell proliferation. Mol Cells. 2004;18: 230–236. 

63.  Jeong K, Kim-Ha J. Expression of Rbp9 during mid-oogenesis induces apoptosis in egg 

chambers. Mol Cells. 2003;16: 392–396. 

64.  Lee SH, Kim Y, Kim-Ha J. Requirement of Rbp9 in the maintenance of Drosophila 

germline sexual identity. FEBS Lett. 2000;465: 165–168. 

65.  Kim J, Kim-Ha J. Ovarian tumors in Rbp9 mutants of Drosophila induce an immune 

response. Mol Cells. 2006;22: 228–232. 

66.  Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017;91: 145–

155. 

67.  Li H, Bai L, Li H, Li X, Kang Y, Zhang N, et al. Selective translational usage of TSS and 

core promoters revealed by translatome sequencing. BMC Genomics. 2019;20: 282. 

68.  Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM. Comprehensive analysis of 

transcriptional promoter structure and function in 1% of the human genome. Genome 

Res. 2006;16: 1–10. 

http://paperpile.com/b/tN5avl/SBaKH
http://paperpile.com/b/tN5avl/SBaKH
http://paperpile.com/b/tN5avl/SBaKH
http://paperpile.com/b/tN5avl/uaMX9
http://paperpile.com/b/tN5avl/uaMX9
http://paperpile.com/b/tN5avl/IUOZH
http://paperpile.com/b/tN5avl/IUOZH
http://paperpile.com/b/tN5avl/bPNBD
http://paperpile.com/b/tN5avl/bPNBD
http://paperpile.com/b/tN5avl/dXNd3
http://paperpile.com/b/tN5avl/dXNd3
http://paperpile.com/b/tN5avl/5XbcY
http://paperpile.com/b/tN5avl/5XbcY
http://paperpile.com/b/tN5avl/dLgXc
http://paperpile.com/b/tN5avl/dLgXc
http://paperpile.com/b/tN5avl/rZoI8
http://paperpile.com/b/tN5avl/rZoI8
http://paperpile.com/b/tN5avl/taGLk
http://paperpile.com/b/tN5avl/taGLk
http://paperpile.com/b/tN5avl/taGLk


 

170 
 

69.  Johnstone O, Lasko P. Interaction with eIF5B is essential for Vasa function during 

development. Development. 2004;131: 4167–4178. 

70.  Carrera P, Johnstone O, Nakamura A, Casanova J, Jäckle H, Lasko P. VASA mediates 

translation through interaction with a Drosophila yIF2 homolog. Mol Cell. 2000;5: 181–

187. 

71.  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. 

J Mol Biol. 1990;215: 403–410. 

72.  Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods 

Enzymol. 1996;266: 131–141. 

73.  Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA 

sequences. J Comput Biol. 2000;7: 203–214. 

74.  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: 

architecture and applications. BMC Bioinformatics. 2009;10: 421. 

75.  Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database 

indexing for production MegaBLAST searches. Bioinformatics. 2008;24: 1757–1764. 

76.  McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ. 

Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res. 2010;20: 

816–825. 

http://paperpile.com/b/tN5avl/VFndc
http://paperpile.com/b/tN5avl/VFndc
http://paperpile.com/b/tN5avl/dmvGT
http://paperpile.com/b/tN5avl/dmvGT
http://paperpile.com/b/tN5avl/dmvGT
http://paperpile.com/b/tN5avl/PDsK3
http://paperpile.com/b/tN5avl/PDsK3
http://paperpile.com/b/tN5avl/582Kt
http://paperpile.com/b/tN5avl/582Kt
http://paperpile.com/b/tN5avl/wBEtj
http://paperpile.com/b/tN5avl/wBEtj
http://paperpile.com/b/tN5avl/BJMFc
http://paperpile.com/b/tN5avl/BJMFc
http://paperpile.com/b/tN5avl/lQ89w
http://paperpile.com/b/tN5avl/lQ89w
http://paperpile.com/b/tN5avl/zZMbH
http://paperpile.com/b/tN5avl/zZMbH
http://paperpile.com/b/tN5avl/zZMbH


 

171 
 

77.  Hock T, Cottrill T, Keegan J, Garza D. The E23 early gene of Drosophila encodes an 

ecdysone-inducible ATP-binding cassette transporter capable of repressing ecdysone-

mediated gene activation. Proc Natl Acad Sci U S A. 2000;97: 9519–9524. 

78.  Ishimoto H, Kitamoto T. The steroid molting hormone Ecdysone regulates sleep in adult 

Drosophila melanogaster. Genetics. 2010;185: 269–281. 

79.  Ullah F, Hamilton M, Reddy ASN, Ben-Hur A. Exploring the relationship between intron 

retention and chromatin accessibility in plants. BMC Genomics. 2018;19: 21. 

80.  Carney GE, Bender M. The Drosophila ecdysone receptor (EcR) gene is required 

maternally for normal oogenesis. Genetics. 2000;154: 1203–1211. 

81.  Li T, Bender M. A conditional rescue system reveals essential functions for the 

ecdysone receptor (EcR) gene during molting and metamorphosis in Drosophila. 

Development. 2000;127: 2897–2905. 

82.  D’Avino PP, Thummel CS. The ecdysone regulatory pathway controls wing 

morphogenesis and integrin expression during Drosophila metamorphosis. Dev Biol. 

2000;220: 211–224. 

83.  König A, Yatsenko AS, Weiss M, Shcherbata HR. Ecdysteroids affect Drosophila 

ovarian stem cell niche formation and early germline differentiation. EMBO J. 2011;30: 

1549–1562. 

84.  Slaidina M, Banisch TU, Gupta S, Lehmann R. A single-cell atlas of the developing 

Drosophila ovary identifies follicle stem cell progenitors. Genes Dev. 2020;34: 239–249. 

http://paperpile.com/b/tN5avl/BUgQe
http://paperpile.com/b/tN5avl/BUgQe
http://paperpile.com/b/tN5avl/BUgQe
http://paperpile.com/b/tN5avl/J7Ckf
http://paperpile.com/b/tN5avl/J7Ckf
http://paperpile.com/b/tN5avl/DqJao
http://paperpile.com/b/tN5avl/DqJao
http://paperpile.com/b/tN5avl/jXoah
http://paperpile.com/b/tN5avl/jXoah
http://paperpile.com/b/tN5avl/VMejx
http://paperpile.com/b/tN5avl/VMejx
http://paperpile.com/b/tN5avl/VMejx
http://paperpile.com/b/tN5avl/HgO0m
http://paperpile.com/b/tN5avl/HgO0m
http://paperpile.com/b/tN5avl/HgO0m
http://paperpile.com/b/tN5avl/23rw9
http://paperpile.com/b/tN5avl/23rw9
http://paperpile.com/b/tN5avl/23rw9
http://paperpile.com/b/tN5avl/DV3nQ
http://paperpile.com/b/tN5avl/DV3nQ


 

172 
 

85.  Lamb AM, Walker EA, Wittkopp PJ. Tools and strategies for scarless allele replacement 

in Drosophila using CRISPR/Cas9. Fly . 2017;11: 53–64. 

86.  Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient 

germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A. 

2014;111: E2967–76. 

87.  Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, et al. 

Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in 

Drosophila. Genetics. 2014;196: 961–971. 

88.  Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. 

Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. 

Genetics. 2013;194: 1029–1035. 

89.  Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, et al. Optimized gene editing 

technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad 

Sci U S A. 2013;110: 19012–19017. 

90.  Martin M. Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet.journal. 2011;17: 10–12. 

91.  Krueger F. TrimGalore. A wrapper around Cutadapt and FastQC to consistently apply 

adapter and quality trimming to FastQ files, with extra functionality for RRBS data. 

TrimGalore (accessed on 27 August 2019). 2016. 

92.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics. 2009. pp. 1754–1760. doi:10.1093/bioinformatics/btp324 

http://paperpile.com/b/tN5avl/4ECIG
http://paperpile.com/b/tN5avl/4ECIG
http://paperpile.com/b/tN5avl/d38nY
http://paperpile.com/b/tN5avl/d38nY
http://paperpile.com/b/tN5avl/d38nY
http://paperpile.com/b/tN5avl/UXoiV
http://paperpile.com/b/tN5avl/UXoiV
http://paperpile.com/b/tN5avl/UXoiV
http://paperpile.com/b/tN5avl/0nQbc
http://paperpile.com/b/tN5avl/0nQbc
http://paperpile.com/b/tN5avl/0nQbc
http://paperpile.com/b/tN5avl/PBNrP
http://paperpile.com/b/tN5avl/PBNrP
http://paperpile.com/b/tN5avl/PBNrP
http://paperpile.com/b/tN5avl/Un3q4
http://paperpile.com/b/tN5avl/Un3q4
http://paperpile.com/b/tN5avl/KzRjm
http://paperpile.com/b/tN5avl/KzRjm
http://paperpile.com/b/tN5avl/KzRjm
http://paperpile.com/b/tN5avl/xBCuQ
http://paperpile.com/b/tN5avl/xBCuQ
http://dx.doi.org/10.1093/bioinformatics/btp324


 

173 
 

93.  Li H, Bob H, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map (SAM) Format and. 2009 [cited 12 Jan 2021]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.1516 

94.  Broad Institute. Picard version 2.18.27. In: Broad Institute: Picard [Internet]. [cited 2019]. 

Available: http://broadinstitute.github.io/picard/ 

95.  Ou J, Liu H, Yu J, Kelliher MA, Castilla LH, Lawson ND, et al. ATACseqQC: a 

Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC 

Genomics. 2018;19: 169. 

96.  Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods 

for high density oligonucleotide array data based on variance and bias. Bioinformatics. 

2003;19: 185–193. 

97.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995;57: 

289–300. 

98.  Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test 

procedures for correlated test statistics. J Stat Plan Inference. 1999;82: 171–196. 

99.  Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of 

lineage-determining transcription factors prime cis-regulatory elements required for 

macrophage and B cell identities. Mol Cell. 2010;38: 576–589. 

http://paperpile.com/b/tN5avl/r6v2P
http://paperpile.com/b/tN5avl/r6v2P
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.1516
http://paperpile.com/b/tN5avl/OiNxk
http://paperpile.com/b/tN5avl/OiNxk
http://broadinstitute.github.io/picard/
http://paperpile.com/b/tN5avl/iUGDz
http://paperpile.com/b/tN5avl/iUGDz
http://paperpile.com/b/tN5avl/iUGDz
http://paperpile.com/b/tN5avl/3zqKw
http://paperpile.com/b/tN5avl/3zqKw
http://paperpile.com/b/tN5avl/3zqKw
http://paperpile.com/b/tN5avl/INeZC
http://paperpile.com/b/tN5avl/INeZC
http://paperpile.com/b/tN5avl/INeZC
http://paperpile.com/b/tN5avl/HfVRK
http://paperpile.com/b/tN5avl/HfVRK
http://paperpile.com/b/tN5avl/U8kEm
http://paperpile.com/b/tN5avl/U8kEm
http://paperpile.com/b/tN5avl/U8kEm


 

174 
 

100. Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, et al. HTSlib: C library 

for reading/writing high-throughput sequencing data. Gigascience. 2021;10. 

doi:10.1093/gigascience/giab007 

101. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years 

of SAMtools and BCFtools. Gigascience. 2021;10. doi:10.1093/gigascience/giab008 

102. Wang Q, Jia Y, Wang Y, Jiang Z, Zhou X, Zhang Z, et al. Evolution of cis- and trans-

regulatory divergence in the chicken genome between two contrasting breeds analyzed 

using three tissue types at one-day-old. BMC Genomics. 2019;20: 933. 

 

IV. Chapter 3 reference:  

1.  Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to 

Omnigenic. Cell. 2017;169: 1177–1186. 

2.  Fisher RA. XV.—The Correlation between Relatives on the Supposition of Mendelian 

Inheritance. Transactions of the Royal Society of Edinburgh. 1919. pp. 399–433. 

doi:10.1017/s0080456800012163 

3.  Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past 

successes for mendelian disease, future approaches for complex disease. Nat Genet. 

2003;33 Suppl: 228–237. 

4.  Pickrell JK. Joint analysis of functional genomic data and genome-wide association 

studies of 18 human traits. Am J Hum Genet. 2014;94: 559–573. 

http://paperpile.com/b/tN5avl/Gc0Lz
http://paperpile.com/b/tN5avl/Gc0Lz
http://paperpile.com/b/tN5avl/Gc0Lz
http://dx.doi.org/10.1093/gigascience/giab007
http://paperpile.com/b/tN5avl/tqVPt
http://paperpile.com/b/tN5avl/tqVPt
http://dx.doi.org/10.1093/gigascience/giab008
http://paperpile.com/b/tN5avl/2ibYO
http://paperpile.com/b/tN5avl/2ibYO
http://paperpile.com/b/tN5avl/2ibYO
http://paperpile.com/b/qTF5Me/zjNZc
http://paperpile.com/b/qTF5Me/zjNZc
http://paperpile.com/b/qTF5Me/d4xIB
http://paperpile.com/b/qTF5Me/d4xIB
http://paperpile.com/b/qTF5Me/d4xIB
http://dx.doi.org/10.1017/s0080456800012163
http://paperpile.com/b/qTF5Me/gs32x
http://paperpile.com/b/qTF5Me/gs32x
http://paperpile.com/b/qTF5Me/gs32x
http://paperpile.com/b/qTF5Me/p3GN6
http://paperpile.com/b/qTF5Me/p3GN6


 

175 
 

5.  Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI 

GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 

2014;42: D1001–6. 

6.  Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a 

primary link between genetic variation and disease. Science. 2016;352: 600–604. 

7.  Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution 

mapping and characterization of open chromatin across the genome. Cell. 2008;132: 

311–322. 

8.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native 

chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding 

proteins and nucleosome position. Nat Methods. 2013;10: 1213–1218. 

9.  Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and 

ATAC-seq. Nat Genet. 2016;48: 206–213. 

10.  Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D, et al. Genetic 

determinants of co-accessible chromatin regions in activated T cells across humans. 

Nature Genetics. 2018. pp. 1140–1150. doi:10.1038/s41588-018-0156-2 

11.  Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. 

Structural variant calling: the long and the short of it. Genome Biol. 2019;20: 246. 

http://paperpile.com/b/qTF5Me/TwELr
http://paperpile.com/b/qTF5Me/TwELr
http://paperpile.com/b/qTF5Me/TwELr
http://paperpile.com/b/qTF5Me/ngyD5
http://paperpile.com/b/qTF5Me/ngyD5
http://paperpile.com/b/qTF5Me/tAbZl
http://paperpile.com/b/qTF5Me/tAbZl
http://paperpile.com/b/qTF5Me/tAbZl
http://paperpile.com/b/qTF5Me/jyxgN
http://paperpile.com/b/qTF5Me/jyxgN
http://paperpile.com/b/qTF5Me/jyxgN
http://paperpile.com/b/qTF5Me/EeoRl
http://paperpile.com/b/qTF5Me/EeoRl
http://paperpile.com/b/qTF5Me/l8OFa
http://paperpile.com/b/qTF5Me/l8OFa
http://paperpile.com/b/qTF5Me/l8OFa
http://dx.doi.org/10.1038/s41588-018-0156-2
http://paperpile.com/b/qTF5Me/OVXWW
http://paperpile.com/b/qTF5Me/OVXWW


 

176 
 

12.  Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and 

strategies for finding the underlying causes of complex disease. Nat Rev Genet. 

2010;11: 446–450. 

13.  Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its 

contribution to complex traits. Nat Rev Genet. 2009;10: 241–251. 

14.  Long AD, Macdonald SJ, King EG. Dissecting complex traits using the Drosophila 

Synthetic Population Resource. Trends Genet. 2014;30: 488–495. 

15.  Lamb AM, Walker EA, Wittkopp PJ. Tools and strategies for scarless allele replacement 

in Drosophila using CRISPR/Cas9. Fly . 2017;11: 53–64. 

16.  Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient 

germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A. 

2014;111: E2967–76. 

17.  Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, et al. 

Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in 

Drosophila. Genetics. 2014;196: 961–971. 

18.  Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. 

Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. 

Genetics. 2013;194: 1029–1035. 

http://paperpile.com/b/qTF5Me/NMcpO
http://paperpile.com/b/qTF5Me/NMcpO
http://paperpile.com/b/qTF5Me/NMcpO
http://paperpile.com/b/qTF5Me/Vh3kj
http://paperpile.com/b/qTF5Me/Vh3kj
http://paperpile.com/b/qTF5Me/s7UrN
http://paperpile.com/b/qTF5Me/s7UrN
http://paperpile.com/b/qTF5Me/Y8GLB
http://paperpile.com/b/qTF5Me/Y8GLB
http://paperpile.com/b/qTF5Me/sSOin
http://paperpile.com/b/qTF5Me/sSOin
http://paperpile.com/b/qTF5Me/sSOin
http://paperpile.com/b/qTF5Me/zHAjs
http://paperpile.com/b/qTF5Me/zHAjs
http://paperpile.com/b/qTF5Me/zHAjs
http://paperpile.com/b/qTF5Me/ZMbvp
http://paperpile.com/b/qTF5Me/ZMbvp
http://paperpile.com/b/qTF5Me/ZMbvp


 

177 
 

19.  Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, et al. Optimized gene editing 

technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad 

Sci U S A. 2013;110: 19012–19017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://paperpile.com/b/qTF5Me/HT4oq
http://paperpile.com/b/qTF5Me/HT4oq
http://paperpile.com/b/qTF5Me/HT4oq


 

178 
 

APPENDIX A  

Chapter 1: supplementary text 1 

 

Brittny Smith 
Stuart Macdonald 

Nuclei Isolation 
 

1. Dissect tissue of interest in lysis buffer. 
 

 We have successfully started the protocol with: 
  i. Ovaries from 5 adult, mated females, 
  ii. Eye-antennal discs from 5 male third-instar larvae, 
  iii. Wing discs from 5 male third-instar larvae, 
  iv. Brains from 10 adult, mated females. 

 
 Ideally you want to keep everything cold and/or rapidly dissect your tissue out. 

 
 The lysis buffer is: 
  10 mM Tris-HCl, pH 7.4 
  10 mM NaCl 
  3 mM MgCl2 
  0.1% IGEPAL CA-630 

 
2. Place into 200-μl lysis buffer on ice in 1.7-ml tube. 
3. Manually grind 25 times using a blue plastic pestle (Fisher, K749521-1500). 

 
 A "grind" in this case being loosely defined as a single turn of the pestle with your 

fingers. 
 

4. Let sample sit on ice for ~1-min. 
5. Repeat steps 3 and 4 twice each (a total of 75 grinds). 
6. Spin sample at 100-g for 10-min at 4ºC. 
7. Remove supernatant. Resuspend sample in 200-μl lysis buffer. 
8. Run sample through 30-μm filter cloth. 

 
 The cloth is Nitex Nylon Mesh (30μm) from Genesee Scientific (Cat # 57-105). After it 

arrives you will want to wash it in water, rinse with ethanol, dry, and cut into ~1-inch 
squares. 
 

 You'll start this step with a fresh 1.7ml tube in a rack. Remove the pointy end from a 
standard 1000-μl tip so its got a nice wide bore, and drop into the destination tube. Then 
on top of the barrel of the tip you can lay a piece of the cloth. Take up your sample from 
step #7 in a pipette, jam the tip into the cloth (making a little sieve with the barrel of the 
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tip that's in the destination tube) and fire the resuspended cells through the mesh. In 
step #9 below you're simply ensuring everything went through by adding more lysis 
buffer to the "sieve". 
 

9. Wash through cloth with 200-μl lysis buffer. 
10. Spin sample at 1000-g for 10-min at 4ºC. 
11. Pipette off supernatant. 

 
Tagmentation Reaction 
 
1. To the cell pellet add 25-μl of tagmentation reaction mix: 
 
  12.5μl 2X TD Buffer 
  1.25μl Tn5 Transposase 
  11.25μl H2O 
 

 The TD Buffer and Tn5 Transposase are from the Illumina Nextera DNA Sample 
Preparation Kit (Cat # FC-121-1030). Now (mid-2021) you can purchase them 
separately from Illumina. 
 
2. Pipette to resuspend pellet in the tagmentation mix. 
3. Incubate for 30-min at 37ºC. 
4. Place sample on ice (if moving forward to purification) or freeze at −20ºC. 
 
Qiagen MinElute Purification 
 
1. Add 125-μl (5 volumes) of PB buffer to the 25-μl (1 volume) tagmentation 
reaction, and mix. 
 

 Use Qiagen MinElute PCR Purification Kit (Cat # 28004). Ensure that the correct 
volume of 100% ethanol is added to buffer PE concentrate before use. 
 
2. Place MinElute column in a 2-ml collection tube. 
3. Add sample to column, and centrifuge at 18,000-g for 1-min at RT. 
4. Discard flow-through and place column back in collection tube. 
5. Add 750-μl PE buffer to column, and centrifuge at 18,000-g for 1-min at RT. 
6. Discard flow-through and place column back in collection tube. 
7. Centrifuge at 18,000-g for 1-min at RT. 
8. Place column in new 1.7-ml tube. 
9. Add 20-μl EB buffer to the center of the column. 
10. Let column stand for 1-min, and centrifuge at 18,000-g for 1-min at RT. 
11. Place sample on ice (if moving forward to PCR) or freeze at −20ºC. 
 
PCR Amplification 
 
Reaction 
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1 × 25μl reaction 
 5-μl Purified, tagmented DNA 
 2.5-μl H2O 
 2.5-μl SJM 7## Indexed primer (@ 12.5-μM) 
 2.5-μl SJM 5## Indexed primer (@ 12.5-μM) 
 12.5-μl Kapa Master Mix 
 

 For ovary samples we used 5-μl of purified tagmented DNA. For discs and brain 
samples we used 7.5-μl of purified tagmented DNA and eliminated the water from the 
reaction. 
 

 The Kapa Master Mix comes from Cat # KK2612. 
 

 The "SJM 7## Indexed primer" (and the 5## version) are custom versions of Illumina 
Nextera index primers. (You can obviously use those described in the original ATACseq 
protocol.) 
 

 SJM 7## Indexed primer: 
 xxxxxxx = 7-base i7 index 
 5'- CAAGCAGAAGACGGCATACGAGATxxxxxxxGTCTCGTGGGCTCGG -3' 

 
 SJM 5## Indexed primer: 
 yyyyyyyy = 8-base i5 index 
 5'- AATGATACGGCGACCACCGAGATCTACACyyyyyyyyTCGTCGGCAGCGTC -3' 

 
Thermocycling 
 
72ºC 5-min 
98ºC 30-sec 
12 cycles of: 
 98ºC 10-sec 
 63ºC 30-sec 
 72ºC 1-min 
4ºC hold 
 
Bead Cleanup 
 
1. Add 25-μl of beads to sample. 
 

 This is a 1X bead cleanup. So provides limited size selection. Beads are Agencourt 
AMPure XP beads (A63881). 

 
2. Mix and incubate at RT for 5-min. 
3. Place sample on magnetic plate for 1-min. 
4. Remove and discard supernatant. 
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5. Wash with 50-μl of 70% ethanol. Repeat the wash. 
6. Air dry for 5-min. 
7. Resuspend in 20-μl of Qiagen EB buffer. 
8. Incubate at RT for 2-min. 
9. Place sample on magnetic plate for 1-min. 
10. Transfer 20-μl to new 1.7-ml tube. 
 
Quality Control 
 
1. Qubit sample using BR (broad range) dsDNA kit (ThermoFisher Q32850). 
 

 Not totally clear to what extent the Qubit value informs you about sample quality. We 
have seen nice ATACseq peaks from samples that had <10 ng/μl values, and similar 
peak profiles from samples that had >40 ng/μl values. 
 
2. Run on Agilent TapeStation instrument using a Genomic DNA ScreenTape. 
 

 The TapeStation is similar to the Agilent BioAnalyzer, but a little lower resolution. 
Example good pictures (meaning that if you see this, and then sequence that library, the 
sample has peaks and isn't simply an over-digested mess) are below. You want to see 
the periodicity at the low molecular weight end of the TapeStation profile. 
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