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ABSTRACT OF THE DISSERTATION

Functional Clone Detection in Intelligent Software Components

By

Farima Farmahinifarahani

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2022

Professor Cristina V. Lopes, Chair

Similarity detection in software systems, also known as clone detection, has been a focus of

software engineering in the past years. Cloning can be defined based on simple similarity

concepts, such as similarity in pure syntactic features, or based on more sophisticated notions

of similarity, where the ultimate functionality (or behavior), with less or no syntactic signals,

is the focus. The latter type of clones are known as functional clones.

A special case of functional clones, which is becoming more prevalent with the advances in

artificial intelligence, is concerned with the behavioral similarity among deep neural network

(DNN) models. DNN models are functions as they define a portion of a software system’s

functionality. The wide adoption of these components in software brings new challenges

to similarity detection techniques. DNN models are black boxes containing matrices of

numbers learned from a training dataset. The training code contains little knowledge about

the ultimate model’s behavior, and similar training scripts and network architectures may

end up producing completely different models. Model comparison, therefore, cannot rely on

the structural properties of the models or their training scripts. Instead, it must compare

the models’ outputs on canonical inputs which generally are the training or testing datasets.

However, such datasets may not always be available due to reasons such as the independence

of models’ deployment from their datasets, and privacy or security concerns. These issues
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motivate the need for an approach that can automatically detect functional similarity among

DNN models in the absence of canonical inputs.

This dissertation starts by looking into the problem of functional clone detection by present-

ing Oreo, a code clone detection tool focused on clones with diminished syntactic but high

semantic similarity. It then presents a systematic study on precision of code clone detec-

tion tools, highlighting the importance of looking into clone types (and more importantly,

types with decreased syntactic similarity) when measuring the precision. The dissertation

continues by formulating the problem of DNN functional similarity detection in the absence

of canonical inputs. To solve this problem, it then introduces RICA, a technique that works

by generating random inputs to be used instead of canonical inputs for the purpose of sim-

ilarity detection. Three similarity metrics that can be used with RICA are presented and

their strengths and weaknesses are highlighted.

The evaluation of RICA is done by performing extensive experiments using a dataset of

more than 56K classifiers collected from GitHub. RICA’s evaluation shows that it has

high precision and recall, and highlights the effectiveness of the similarity metrics used

by it. Running RICA on the entire dataset of 56K classifiers results in performing more

than 7 million comparisons and finding a cloning percentage of 26% among the analyzed

models. This is followed by showing how RICA’s applicability can be extended beyond

classifiers: applying RICA on a regression task demonstrates its effectiveness in finding

clones of regression models. Furthermore, a sensitivity analysis reveals how certain model

and training properties affect the performance of RICA. Finally, a taxonomy of DNN clone

types is proposed which helps in specifying the ultimate capabilities and limitations of RICA,

as well as being helpful in future studies of DNN similarity detection.

xiv



Chapter 1

Introduction

1.1 Background

Software similarity, or clone, detection is the process of finding similar software pieces, and

it has been an active research area in the past years [105, 115, 35]. Clones exist in a variety

of software artifacts including the associated software documents [57, 71], software data [45],

and the most common form of clones: code clones [107, 111, 104, 124]. Code clone detection

has various applications including refactoring and rearchitecting [149], code reduction by

elimination of unintentional duplicates [78, 113], plagiarism detection [23], copyright and

license violation detection [132, 47], and detecting similar software systems, for example,

similar malicious mobile applications [132, 25, 97]. The target similarity can be based on

simple syntactic features, or based on semantic (or functional) characteristics, or both. In

order to classify clones based on the level of syntactic or semantic similarity they exhibit,

there have been four types of clone types defined in the literature [18, 102]:

Type I: Identical code fragments except for differences in white space, layout, and comments.

1



Type II: Identical code fragments except for differences in identifiers and literal values, in

addition to Type I variations.

Type III: Similar code fragments with modifications at statement level. Statements can be

changed, added or removed, in addition to Type I and Type II differences.

Type IV: Code fragments that perform the same functionality but are different in syntax.

Among the clone types defined, Type I and Type II are the most straight-forward types to

detect as they are concerned with syntactical similarities that can be distinguished by simple

static analysis of code (using methods such as text or token matching). Starting from Type

III, and towards Type IV clones, as the syntactic similarity fades and semantic similarity is

emphasized, detection of clones becomes more and more complicated. This class of clones are

also often called functional or behavioral clones. Functional clone detection is crucial to the

process of software engineering and maintenance due to its important application scenarios:

code optimization and refactoring based on code functionality, detection of similar malicious

software agents, and copy-right or plagiarism detection when syntactic signals are omitted.

A more recent type of functional clones are deep neural network (DNN) functional clones.

The prevalence of DNN models in a diverse set of application domains and their promising

results, have made them a suitable choice for many problems and have subsequently, resulted

in them being employed in a wide range software systems [22, 30, 101, 70, 141, 135, 140].

DNN models are considered functions, as they define a portion of the functionality of the

software systems that include them. Functional clone detection, concerned with detecting

similarity in the functions of software systems at different granularity levels, hence, needs

to take these models into account. This introduces the concept of DNN functional clone

detection.

2



1.2 Motivation

Motivating factors to perform functional clone detection for DNN models are in many ways

similar to those of the conventional functional clone detection. Here, I detail some of the

main motivating factors to perform functional clone detection for DNN models.

• Model Theft. As reported in the literature [17, 137], software theft is a pervasive

problem that costs billions of dollars each year. One common scenario of software theft

is when employees leave companies and take copies of the proprietary software code

or data with them, a scenario that is on the rise at an alarming rate [4]. With recent

advances in AI and machine learning, and the replacement of traditional software

components with DNN models, software is not just computer instructions anymore.

Models trained on proprietary data are considered intellectual property of companies

and similar to code, if stolen, can impose serious costs. Reports indicate that model

theft is starting to occur, too, both by direct copy of the model file that may be

slightly modified later [5] and by duplication of the model’s functionality using model

extraction attacks [130, 100, 58].

In any of the above cases, theft investigation requires the examination and comparison

of models, since those may be the only artifacts available for comparison – the training

data most of the times is not packaged for deployment, and may not even be available

for analysis for a variety of reasons (such as privacy or security concerns, or simply,

the size of data). In fact, when presented with two large systems for comparison, or a

comparison of one system against a large base of software artifacts, an investigator of

software theft may not even know what kind of functions the included machine learning

models implement, and would need to perform the comparison without relying on any

extra information. Automatic DNN model clone detection is an important asset in

these scenarios.
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• Malware in App Stores. Another application of DNN model clone detection is in

app stores that scan and monitor the submitted apps for malicious components (or

agents). The number of mobile apps that use DNN models to support their main fea-

tures is on the rise: a study in 2019 [146] showed that 81% of the apps that included

DNN models, used these models to support their core features. With the ongoing

advances in neural networks and the offering of several light-weight machine learning

frameworks suitable for mobile apps, it is expected that this trend continues. Tra-

ditional program analysis will soon be insufficient to detect malicious behavior as it

cannot analyze models’ functions. Model comparison needs to be performed to reveal

the functional similarities among DNN functions of the submitted apps.

• Model Search. Another use-case of DNN models comparisons is in model search. An

example of this is in searching for a model that performs the same or a similar func-

tionality as to the model at hand, but has a better accuracy or generalization ability.

This scenario can, for example, happen when searching for a pre-trained model and

customizing it to one’s specific needs by performing further training over it (similar to

transfer learning). The benefits of training an already trained model (instead of start-

ing from scratch) are easing the development and training of machine learning models

in the development of AI-enabled software, reducing the time and computational costs

of model development and training, improving the performance and capabilities of the

final model, and overcoming insufficient training data.

1.3 Problem Statement

DNN models are created as the result of a training process where a training script defines

the model’s structure and training parameters. This process consists of running the training

script on a training dataset, which is often provided as a separate file. The result of this
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process is the model, consisting of a set of weight and bias parameters, in the form of

matrices, learned from the training data. These matrices define what the model does given

input data. The function of a model, therefore, comes largely from its training data [11];

given different data, similar setup scripts and network architectures may end up producing

completely different models [128]. The training code (which may or may not be accompanied

with the deployed model) does not include much knowledge about the model’s functionality,

and cannot be used for comparing models’ functions. The ultimate functionality learned by

the model is encapsulated in the model itself, making it the suitable target for any model

analysis or comparison.

DNN models, however, are often considered to be inscrutable black boxes, due to them being

matrices of numbers: their structure does not disclose any insights on the functions being

implemented, and identical training runs can result in producing very different numbers. A

static analysis of these matrices, therefore, does not reveal much knowledge about models’

behavior. As a result, instead of analyzing the internals of DNN models, models’ functional

clone detection must compare the models’ outputs on canonical inputs which generally are

the training or testing datasets. Given a canonical set of test inputs, when the outputs

of two models are sufficiently similar, then they are similar. However, such datasets may

not always be available due to reasons such as the independence of models’ deployment

from their datasets, and privacy or security issues. This arises the need for finding suitable

substitutes to canonical inputs that can be be used for the purpose of similarity detection

of DNN models.

1.4 Thesis

The problem formulated above motivates the need for an approach that can detect functional

similarity among DNN models in the absence of canonical inputs. To address this need, in
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this dissertation, I present RICA (Random Inputs and Correlation Analysis), an automated

technique to detect functional clones of DNN models with no need to have access to models’

training/testing data or training scripts. RICA is inspired by research on finding functional

clones of software code with input/output analysis [52] as well as research on fuzz testing

of neural networks [88, 144, 92] in that it uses random inputs (i.e. white noise) as test sets

to assess functional similarity. RICA generates random inputs as a substitute for canonical

inputs and performs correlation analysis on models’ outputs over these inputs to reason

about the degree of similarity. The correlation analysis methods serve as RICA’s similarity

metrics and there are three metrics that can be used with RICA: Spearman rank correlation,

CCA (Canonical Correlation Analysis), and Overlap. The latter is only applicable in the

case of classifiers since it counts the number of overlaps in predictions.

To show the effectiveness of RICA, I present systematic experiments using a dataset of 56,355

classifiers collected from GitHub. The findings of these experiments indicate that random

inputs are perfectly suitable for similarity detection. The three metrics used by RICA pro-

duce very good results, all of them above 76% accuracy in the detection of similar/dissimilar

models. Spearman rank correlation stands out as the most accurate within the scope of

this study, with 94% accuracy. CCA is the most general metric, even more than Spearman

correlation, as it can be used to compare any two models with any number of outputs; but

within our study, CCA has the highest number of erroneous similarity classifications. The

simple overlap metric has the highest uncertainty, but it is able to detect similar models that

the other two metrics failed to detect. Based on this, my thesis statement is as follows:

RICA is the first approach capable of finding functional similarities among DNN models in

the absence of canonical test inputs and without any knowledge about these models’ training

datasets and training scripts or parameters. The three similarity metrics used by RICA are

highly accurate as attested by extensive empirical results.
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1.5 Contributions

The key contributions of this dissertion are as follows:

• Presenting Oreo, a joint work with Vaibhav Saini, as a method to detect code clones

with decreased syntactic similarity (first part of Chapter 3).

• Presenting a systematic study on precision of code clone detection tools, highlight-

ing the importance of type-based precision studies and asserting the significance of

Type III and beyond clones in studying code clone detectors’ precision (second part of

Chapter 3).

• Formulating the problem of finding functional clones of DNN models, and operational-

izing model similarity detection (Chapter 4).

• Presenting RICA as an approach for detecting functional clones of DNN models in the

absence of canonical inputs. RICA generates random inputs that can be used in lieu

of meaningful canonical inputs for the purposes of finding similar models. We also

present a method for generating balance random inputs for classifiers to be used with

the Overlap metric (Chapter 4).

• Curating a dataset of more than 56,000 compiled Keras classifiers from GitHub, clus-

tered based on their input and output shapes. This dataset can be used not just for

reproducing this work but also for further studies of DNN models (Chapter 5).

• Presenting systematic experiments to evaluate RICA and showing its effectiveness in

finding functionally similar DNN classifiers. These experiments unveil the strengths

and weaknesses of three similarity metrics used by RICA, being that the Spearman rank

correlation is the most accurate metric for detecting functional similarity of classifiers

(Chapter 5).
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• Applying RICA on a regression task and presenting its similarity detection results

which demonstrates how RICA’s effectiveness can go beyond classification problems

(Chapter 5).

• Presenting a set of sensitivity analysis experiments aimed at showing how various

models’ characteristics can affect the similarity predictions made by RICA (Chapter 6).
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Chapter 2

Related Work

The contributions of this dissertation are related to and inspired by the prior work in code

clone detection and similarity detection for neural network models, as well as the work in

fuzz testing neural network models. Here, I overview the related work in each of these three

areas.

2.1 Code Clone Detection

There has been a large body of work on code clone detection, focused on different ranges

of syntactic and semantic clones. Based on the main approach followed by these tools, they

can be categorized into text-based, token-based, tree-based, metrics-based, graph-based,

learning-based, and dynamic approaches. Here I review some of the prominent tools in each

of these categories. A more detailed review is available in [106].

• Text-based. Johnson’s 1993 work [54] is an approach for identifying exact repeti-

tions in source code using fingerprints, and their 1994 work [55] is an approach for
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detecting the text shared among source files using substring matching. Ducasse et

al. [33] proposed a language independent approach for code clone detection. Another

notable work is NiCad [104] which works by extracting clone blocks, deriving pretty

printed and normalized versions of blocks, and then filtering them. Next, potential

clones are compared using Longest Common Subsequence algorithm, and clone pairs

are identified.

• Token-based. Baker [12, 13] proposed dup as an approach for finding duplicate

and near-duplicate code in large software systems. CCFinder [61] performs source

transformation accompanied by token-based comparison to located clones in a variety

of languages. SourcererCC [111] and CloneWorks [126] are two more recent approaches

that have shown a good accuracy in detecting Type 1 to Type 3 clones. They both

use a hybrid of Token and Index based techniques to find clone pairs.

• Tree-based. Yang’s work [148] makes use of languages’ grammar to pinpoint to

compare source codes. Baxter et al. [16] propose an approach for the detection of both

exact and near-miss clones using abstract syntax trees applied on C code. Koschke

et al. [69] use suffix trees to find syntactic clones with linear time complexity and

using linear space. Deckard [51] works by computing characteristic vectors that can

approximate the structural information of AST, and then clustering similar vectors

using Locality Sensitive Hashing.

• Metrics-based. Techniques in this group calculate several metrics for code-blocks,

and instead of comparing code blocks directly, use these metrics for the purpose of

clone detection. Keivanloo et al. [63] introduced a hybrid metric-based approach to

detect semantic clones from Java Bytecode. This approach utilizes four metrics: two

numerical metrics which are Java type Jaccard similarity, and Method similarity; and

two ordinal metrics which are Java type pattern and Java method pattern. Mayrand

et al. [83] used Datrix tool to calculate 21 metrics for functions. They compare these
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metric values, and then, functions with similar metric values are identified as clones.

The similarity threshold was manually decided. A similar technique is used by Pate-

naude et al. [91] to find method level clones in Java projects. Kontogiannis et al. [67]

used five modified versions of well known metrics that capture data and control flow

properties of programs to detect clones in the granularity of begin – end blocks. They

experimented with two techniques. The first one is based on the pairwise Euclidean

distance comparison of begin-end blocks. The second technique uses clustering. Each

metric is seen as an axis and clustering is performed per metric axis. Intersection of

clusters results into the clone fragments.

• Graph-based. Krinke [72] proposed an approach for identifying similar code by find-

ing similar subgraphs in the program dependency graph of code. Komondoor and

Horwitz’s approach [66] performs clone detection by finding isomorphic program de-

pendency subgraphs with the use of program slicing. Gabel et al. [37] augmented

Deckard [51] with with semantic information derived from Program Dependence Graphs

(PDGs) to find semantic clones on C code. GPLAG [81] is a plagiarism detection tool

that works by mining program dependency graphs. The reason for using PDGs in this

context is listed as the invariance of PDGs through plagarism. Chen et al. [26] propose

an approach for similarity detection among Android apps. They use centroid, a geom-

etry characteristic of program dependency graphs, to detect the similarities between

code fragments of Android apps.

• Learning-based. White et al. [140] present a deep learning-based approach to detect

clones at method and file levels. This is done by automatic learning of discriminating

features of source code. Wei and Li [138] propose an end-to-end learning approach using

Long-Short-Term-Memory (LSTM) network to learn representations of Sheneamer and

Kalita [114] use features extracted from programs’ ASTs to detect syntactic clones and

features extracted from PDGs are to detect semantic clones. These features are then
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used in classification to find the clones. CCLearner [79] extracts tokens from cloned

and non-cloned methods, and then trains a classifier using this information that can

distinguish cloned methods.

• Dynamic. Jiang et al. [52] proposed a method to detect semantic clones by generating

random inputs for extracted code each fragment based on the input variables used in the

fragment. Then, each code fragment is executed with same input values, and whenever

the outputs of two code fragments on the same input differs from each other, they are

separated into two different clusters. At last, clusters of functionally equivalent code

fragments are remained.

2.2 Similarity Detection of DNN Models

Another very related line of work is the study of similarities of neural networks. A large

body of work focuses on finding similarities in the representations that these models learn

in different layers.

Laakso et al. [76] propose to compare the neural networks’ representation by comparing

the distances among neural activations. Using this method, they demonstrate that different

neural networks trained by back-propagation on the same categorization task, even with

different representational encodings of the input patterns and different numbers of hidden

units, reach states in which representations at the hidden units are similar.

Raghu et al. [94] propose to use Canonical Correlation Analysis (CCA) for measuring the

similarity between neural network representations, and based on that, propose a technique

call Singular Vector CCA (SVCCA). Morcos et al. [86] argue that CCA cannot distinguish

between noise and signal in the representations and propose projection weighted CCA to

mitigate this. They also discuss a number of related findings including that networks that
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generalize tend to converge to more similar solutions compared to those that do not gener-

alize, and that wide networks converge to more similar solutions compared to the narrower

ones. Kornblith et al. [68] discuss that a method like CCA which is invariant to invertible

linear transformation cannot measure meaningful similarities between the representations of

higher than the number of datapoints. They propose a similarity index, named CKA, that

can be used to measure and compare the similarities of representations within and across

neural networks and does not suffer from CCA’s problems. They also show that models

learned from different datasets can have similar representations at their early layers.

Li et al. [80] study the question of whether separately trained DNNs learn features that

converge to similar spaces. One of their findings is that there are some features that are

always learned by multiple networks while others are not. Wang et al. [133] study whether

neural networks that have identical architectures but are trained using different initializations

learn similar representations, and their conclusion is that the representations learned by the

same layers of these network are not as similar as it is widely believed. Unlike all of these

works, we seek to find DNN similarities from a functional perspective, and therefore, we only

consider the ultimate behaviour of the model.

The work by Yellapragada [119] studies whether similarities in the representations learned

by DNN models in their final layers (the layer after the last convolutional layer in their ex-

periments) can be related to similarity in these models’ functionalities. They study this by

feeding meaningful canonical inputs to models, applying CKA to measure representational

similarity, and applying Spearman rank correlation and Jensen-Shannon divergence to mea-

sure functional similarity. Their results show that there is not a strict correlation between

these two.
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2.3 Fuzz Testing Neural Networks

This work is also highly inspired by the work on generating inputs for fuzz testing DNNs.

We briefly review this research area here.

DeepXplore [92] is a white-box differential testing approach to find incorrect behaviors among

DNN models. The term differential here refers to relying on observing incosistencies in

behavior of similar DNNs for finding erroneous behavior among them. It proposes neuron

coverage as a test coverage metric and solves a joint optimization problem to maximize

both neuron coverage and detecting the behavioral differences among similar models. Later

research [42], however, finds neuron coverage to be suffering from problems such as generating

unnatural inputs and being biased towards certain labels.

TensorFuzz [88] is a coverage-guided fuzzing technique for neural networks. Initialized by at

least one valid seed, it mutates its list of seeds and adds the mutated point to the seeds list

if new coverage is exercised, and to the test-cases if a user-defined property is satisfied. It

measures coverage by looking at the activations that are activated (typically logits or one

layer before): a new coverage is found if the distance between the vectors of activations is

greater than a specified threshold and approximate nearest neighbor algorithm is used in

this step to measure the distances.

DeepHunter [144] is a coverage guided fuzz testing framework for DNNs that proposes a

metamorphic mutation strategy that needs domain knowledge to perform the mutation (in

the paper, the strategy has been implemented for image recognition domain). It leverages

a combination of paying attention to recently generated seeds as well as how many times a

seed has been mutated for its seed selection. Their results show that coverage-guided fuzzing

is more effective than random testing both in terms of improving the coverage and finding

defects.
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DiffChaser [145] is a black-box testing tool for DNNs focused on finding the disagreements

among multiple models (mainly a model and its variants, for example, the compressed version

of the model) to help in model debugging. They argue that the decision boundary of a

model and its compressed version are mostly similar; thus, finding inputs that are near this

boundary will help in finding the disagreements between these models.
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Chapter 3

Code Clone Detection

In the first part of this chapter (Section 3.1), I discuss Oreo [108], a clone detection tool

aimed at detecting a category of clones that lie in the spectrum of Type-3 to Type-4 clones,

referred to as Twilight Zone clones. This is a joint work with Vaibhav Saini where Vaibhav

was the lead author. I contributed to this work by doing the reproduction study experiments,

assisting in developing the metrics calculator, preparing the training and testing datasets,

collecting and running previous clone detectors and collecting their recall values using Big-

CloneEval, being a judge throughout the precision evaluation experiments, and packaging

the Oreo artifact. A major part of the material covered in Section 3.1 is from the following

paper, and is included here with the permission of the ACM:

• Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P., Lopes, C., “Oreo: Detection of

Clones in the Twilight Zone”, in Proceedings of the 26th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE’18), 2018, pp. 354-365. DOI: https://doi.org/10.1145/3236024.3236026

I then (Section 3.2) discuss a study of precision of clone detection tools [35], which highlights
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the importance of studying these tools’ precision by considering various clone types as well as

the significance of Type III and beyond clones in precision studies. The material presented

in Section 3.2 is from the following paper and is included here with the permission of IEEE.

• ©2019 IEEE. Reprinted, with permission, from Farmahinifarahani, F., Saini, V., Yang,

D., Sajnani, H., Lopes, C., “On Precision of Code Clone Detection Tools”, in Proceed-

ings of the 26th IEEE International Conference on Software Analysis, Evolution, and

Reengineering (SANER’19), 2019, pp. 84-94. DOI: 10.1109/SANER.2019.8668015

3.1 Detecting Clones with Oreo

3.1.1 Introduction

Although there have been several clone detector proposed in the literature with different

goals and following various approaches, there are very few ones that attempt at detecting

code clones that have little or no syntactic similarity, but demonstrate functional (behavioral)

similarity. Such clones start to appear at Type III and onwards (to Type IV). To better

classify and recognize these clones, the popular clone benchmark BigCloneBench [125, 121]

has specified subcategories between Type III and Type IV clones: Very Strongly Type III

(syntactic similarity in the range of [90%, 100%)), Strongly Type III (syntactic similarity in

the range of [70%, 90%)), Moderately Type III (syntactic similarity in the range of [50%,

70%)), and Weakly Type III which merges with Type IV (syntactic similarity in the range of

[0%-50%)). As the similarity percentages show, starting from Very Strongly Type III towards

Type IV, the syntactic similarity fades. A more detailed explanation of these subcategories

can be found elsewhere [125, 121]).

To better illustrate clone types, Listing 3.1 shows one example method and Listing 3.2
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Listing 3.1: Sequence Between Two Numbers: Original Method

1 // Original method
2 String sequence(int start , int stop) {
3 StringBuilder builder = new StringBuilder();
4 int i = start;
5 while ( i <= stop) {
6 if ( i > start) builder .append(’,’) ;
7 builder .append(i);
8 i++;
9 }

10 return builder .toString() ;
11 }

shows several clones of this method, from Type II to Weakly Type III. The original method

takes two numbers and returns a comma-separated sequence of integers in between the two

numbers, as a string. The Type II clone (starting from line #2 of Listing 3.2) is syntactically

identical to the original method, and differs only in the identifiers used (e.g. begin instead

of start). It is very easy for clone detectors to identify this type of clones. The very strong

Type III clone (starting from line #14) has some lexical as well as syntactic differences,

namely the use of a for-loop instead of a while-loop. Although harder than Type II, this

subcategory of Type III is still relatively easy to detect. The moderate Type III clone

(starting at line #24) differs even more from the original method: the name of the method is

different (seq vs. sequence), the comma is stored in a local variable, and the type String is

used instead of StringBuilder. This subcategory of Type III clones is much harder to detect

than the previous ones. The weakly Type III clone (starting from line #35) differs from the

original method by a combination of lexical and syntactic changes: String vs. StringBuilder,

a conditional whose logic has changed (< vs >), and it takes one additional input parameter

that allows for different separators. The similarities here are weak and very hard to detect.

Clones that are moderately Type III and onward fall in the Twilight Zone of clone detection.

Not many clone detectors are capable of operating on this zone, mainly due to the difficulty

in detecting them. Oreo’s goal is to improve the performance of clone detection for these

hard-to-detect clones.
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Listing 3.2: Sequence Between Two Numbers: Clones

1 // Type−2 clone
2 String sequence(int begin, int end) {
3 StringBuilder builder = new StringBuilder();
4 int n = begin;
5 while (n <= end) {
6 if (n > begin) builder.append(’,’) ;
7 builder .append(n);
8 n++;
9 }

10 return builder .toString() ;
11 }
12

13 // Very strongly Type−3 clone
14 String sequence(short start , short stop) {
15 StringBuilder builder = new StringBuilder();
16 for (short i = start; i <= stop; i++) {
17 if ( i > start) builder .append(’,’) ;
18 builder .append(i);
19 }
20 return builder .toString() ;
21 }
22

23 // Moderately Type−3 clone
24 String seq(int start , int stop){
25 String sep = ”,”;
26 String result = Integer.toString(start ) ;
27 for ( int i = start + 1; ; i++) {
28 if ( i > stop) break;
29 result = String.join(sep, result , Integer .toString( i )) ;
30 }
31 return result ;
32 }
33

34 // Weakly Type−3 clone
35 String seq(int begin, int end, String sep){
36 String result = Integer.toString(begin);
37 for ( int n = begin + 1; ;n++) {
38 if (end < n) break;
39 result = String.join(sep, result , Integer .toString(n));
40 }
41 return result ;
42 }
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Oreo is a scalable method-level clone detector that is capable of detecting not just Type I

through strong Type III clones, but also clones in the Twilight Zone. In our experiments,

the recall values for Oreo are similar to other state of the art tools in detecting Type I to

strong Type III clones. However, Oreo performs much better on clones where the syntactic

similarity reduces below 70% – the area of clone detection where the vast majority of clone

detectors do not operate. The number of these harder-to-detect clones detected by Oreo is

one to two orders of magnitude higher than the other tools. Moreover, Oreo is scalable to

very large datasets.

There are two main insights based on which Oreo operates: (1) functionally similar pieces of

code tend to do similar more fine-grained actions, which can be captured by the functions

they call and the state they access; and (2) it is possible to learn, by examples, a combination

of metric weights that can predict whether two pieces of code that do the same actions are

clones of each other. For the first part, Oreo uses a novel concept called Action Filter to

filter out a large number of method pairs that don’t seem to be doing the same fine-grained

actions, focusing only on the candidates that do. For those potential clones, we pass them

through a supervised machine learning model that predicts whether they are clones or not

(the second insight). To this aim, a machine learning model is trained based on a set of

metrics derived from source code.

To curate the dataset of clone and non-clones, serving as the training dataset for the machine

learning model, we used SourcererCC [111], a state of the art clone detector that has been

shown to have fairly good precision and recall up to Type III clones (but not Type IV).

The contributions of this section are as follows:

(i) Detection of clones in the Twilight Zone. Compared to reported results of other

clone detectors in the literature, Oreo’s performance on harder-to-detect clones is the best

so far;
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(ii) Analysis of clones in the Twilight Zone. Besides quantitative results, we present

analysis of examples of harder-to-detect clones – a difficult task, even for humans, of deciding

whether they are clones, and the reasons why Oreo succeeds where other clone detectors fail;

(iii) Process-pipeline to learn from slow but accurate clone detector tools and

scale to large datasets. The clone detection techniques which are accurate but hard to

scale can used to train a model and predict clones in a scalable manner using the concepts

introduced in this paper;

(iv) Deep Neural network with Siamese architecture. We propose Siamese architec-

ture [14] to detect clone pairs. An important characteristic of this architecture is that it can

handle the symmetry [85] of its input vector (presenting the pair (a, b) to the model will be

the same as presenting the pair (b, a), a desirable property in clone detection).

The remainder of this chapter is organized as follows. First in Section 3.1.2 I discuss a

reproduction study that we did as a preliminary phase of building Oreo. Next, Section 3.1.3

discusses the Oreo clone detector and concepts integral to it, and Section 3.1.4 explains the

deep neural network model used in Oreo. Section 3.1.5 elaborates on the evaluation of Oreo

followed by a manual analysis of clone pairs in Section 3.1.6. Section 3.1.7 presents the

limitations of this study, and finally, Section 3.1.8 discusses conclusions and future work.

3.1.2 Reproduction Study

In [114], Sheneamer and Kalita describe a metrics-based supervised machine learning ap-

proach to detect Type IV clones. We started the design of Oreo by reproducing a similar

version of that work in order to verify whether, indeed, it was fruitful to train a model on

metrics for purposes of clone detection. The results of our reproduction study were encour-

aging. Most importantly, this study provided us with valuable lessons as to the strengths
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and pitfalls of this approach, which were critical to the development of Oreo.

The reproduction study was done on a sample dataset and consisted of three steps: Feature

Generation, Model Training, and Prediction. Details of this process are explained throughout

the rest of this section.

Dataset

For the purpose of this study, we used the dataset of 3,562 Java projects made available by

Saini et al [109]. The dataset consists of 3,562 Java projects hosted on Maven [82]. The

comprehensive list of projects with their version information is available at http://mondego.

ics.uci.edu/projects/clone-metrics/.

Using this dataset we obtained the training dataset as described below:

1. Clone-pairs. The list of clone and non-clone pairs were collected by gathering the

intra-project method-level clone detection results for the 3,562 Java projects. The

clone detection was carried out using SourcererCC. Overall, 412,705 cloned and 616,604

non-cloned methods were identified by SourcererCC in this dataset.

2. Method-level metrics. In order to create the feature vector to be fed to the machine

learning model for both training and inference, we calculated a set of method-level

software metrics for each of the methods in this dataset. These metrics were calcu-

lated the using version 6 of the JHawk tool [50]. JHawk has been widely used in

academic studies on Java metrics [41, 6, 20, 9, 10]. Table 3.1 shows the 25 metrics

used for building the feature vectors. Many of these metrics are standard metrics.

A set of metrics are derived from the Software Quality Observatory for Open Source

Software (SQO-OSS) [112]. SQO-OSS is composed of well-established and validated

software quality metrics, which can be computed either from source code or from sur-
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rounding community data. More details on these metrics and the dataset can be found

elsewhere [109].

Experiments

The experiments carried out to implement the whole process of our idea are as follows.

• Feature Preparation. In order to leverage the method-level software metrics de-

scribed above and calculated by JHawk in to train a classifier that can distinguish

clones and non-clones, a new dataset needed to be created such that these features can

capture the relationship between the two methods in each method pair and how they

differ. To this aim, we calculated the percentage that two methods differ in terms of

each metric in a method pair. Having a clone pair with two methods named M1 and

M2, if metric f calculated for M1 is f1 and the same metric calculated for M2 is f2,

the percentage difference between f1 and f2 is calculated by the formula in 3.1. The

set of 25 features created for a method pair based on this forms a Feature Vector.

Percentage− diff(f1, f2) =
|f1− f2|

Max(f1, f2)
∗ 100 (3.1)

• Training and Testing Data Creation We separated the whole dataset at hand

randomly to two parts: 60% for training, and the rest for testing. For the training

dataset, each Feature Vector was accompanied with its corresponding is clone label

calculated using SourcererCC. To have a manageable sized dataset, we filtered out

pairs for which the percentage difference in NOS was more than 30%.

• Model Selection To select a target model, we performed 10-fold cross validation, (a

common form of N-fold cross validation [99]), with various algorithms. To speed-up the

process, we did the training using three different samples taken from our dataset (which
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Table 3.1: Software Quality Metrics

Name Description

XMET External methods called by the method

VREF Number of variables referenced

VDEC Number of variables declared

TDN Total depth of nesting

NOS Number of statements

NOPR Total number of operators

NOA Number of arguments

NLOC Number of lines of code

NEXP Number of expressions

NAND Total number of operands

MOD Number of modifiers

MDN Method, Maximum Depth of Nesting

LOOP Number of loops (for, while)

LMET Local methods called by the method

HVOL Halstead volume

HVOC Halstead vocabulary of method

HLTH Halstead length of method

HEFF Halstead effort to implement a method

HDIF Halstead difficulty to implement a method

HBUG Halstead prediction of number of bugs

EXCT Number of exceptions thrown by the method

EXCR Number of exceptions referenced by the method

CREF Number of classes referenced

COMP McCabes cyclomatic complexity

CAST Number of class casts
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was 45GB in size): a sample with 10 thousand rows, a sample with 50 thousand rows,

and another with 100 thousand rows. Having three different samples could help us get

assured that the model selection process is generic and independent of characteristics

of a single dataset sample. Each of the three sampled datasets were split into 70%

training and 30% testing sets.

We experimented with various classification algorithms: K-Nearest Neighbors (KNN)

[142], Naive Bayes [142] , Classification and Regression Trees (CART) [142], Support

Vector Machine (SVM) [142], Logistic Regression (LR) [31], Linear Discriminant

Analysis (LDA) [49], Random Forest [127], and AdaBoost [142]. For models trained

using each algorithm, we measured their relative precision and recall with respect to

SourcererCC , and the time each of them took to complete the experiments (in seconds).

Table 3.2 shows the results of 10-fold cross validation experiments with a model trained

using each algorithm. Here, T shows the total time spent on 10-fold cross validation.

In addition, Table 3.3 shows the results of training and testing the same algorithms on

the training and the hold-out testing datasets. Here, we show the time to train models

(TT ) and the time taken to perform the prediction using each model (TP ).

As the tables show, overall, the results were promising showing that it is possible to

detect clone pairs using the selected software metrics. Although all algorithms showed

promising results, Random Forest stood out both in terms of accuracy and the time

it took to perform the training and the inference (prediction). Therefore, we further

experimented with the Random Forest algorithm using different configurations of this

algorithm using on 100-K rows dataset. The results of these experiments are shown in

Table 3.4. As this table shows, the configurations on the first two rows show the best

results while spending the less amount of time. We chose the configuration on the first

row as our final selected model as it needed the least amount of time for both training

and prediction.
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Table 3.2: Results of 10-fold Cross Validation on the Sampled Rows of the Training Dataset

Algorithm
10 Thousand Rows 50 Thousand Rows 100 Thousand Rows

Prec Rec F1 T Prec. Rec F1 T Prec Rec F1 T

KNN K=5 91 94 93 1.5 92 97 94 30.3 93.4 97 95 135.3

KNN K=10 92 92 92 1.6 92 96 94 33.6 93 97 95 145.3

Naive Bayes 89 93 90 0.2 90 92 91 1.5 90 92 91 2.6

CART 89 95 91 0.6 92 96 94 3.2 93 97 95 7.2

SVM 96 89 93 31.7 96 93 94 1632 95 95 95 12771

LR 92 94 93 1.1 91 93 92 7.4 92 93 92 18.1

LDA 87 94 90 0.3 88 94 91 1.9 88 94 91 4.6

Rand Forest 93 94 94 0.5 94 96 95 2.7 95 97 96 5.7

AdaBoost 93 934 94 2.9 94 96 95 11.7 95 97 96 24.4

Table 3.3: Results of Models Training and Prediction on the Hold-out Testing Part of the
Sampled Rows of Dataset

Algorithm
10 Thousand Rows 50 Thousand Rows 100 Thousand Rows

Prec Rec F1 TT TP Prec Rec F1 TT TP Prec Rec F1 TT TP

KNN K=5 91 94 93 0.02 0.71 93 98 95 0.23 17 94 97 96 0.82 58

KNN K=10 90 92 91 0.03 0.67 93 97 95 0.23 21 94 97 95 0.7 69

Naive Bayes 86 92 89 0.02 0.01 92 92 92 0.1 0.05 90 91 91 0.2 0.08

CART 88 95 91 0.1 0.01 92 97 94 0.32 0.03 93 96 95 0.71 0.05

SVM 93 89 91 3.6 1.4 97 93 95 211 35 96 94 95 2079 143

LR 89 93 91 0.13 0.01 92 93 93 0.7 0.03 91 92 92 1.6 0.05

LDA 87 94 90 0.03 0.01 89 94 92 0.2 0.04 87 93 90 0.3 0.06

Rand Forest 91 93 92 0.04 0.01 94 96 95 0.2 0.03 95 96 95 0.5 0.09

AdaBoost 89 94 91 0.2 0.01 95 96 95 0.9 0.04 94 96 95 2.92 0.09
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Table 3.4: Different Configurations of Random Forest Classifier on 100 Thousand Rows
Sample

#Est.
Max

Depth

Min Samp.

Split

Min Samp.

Leaf

Max

Features

10- Fold Cross Validation 30% Hold-out Test Set

Prec Rec F1 T Prec Rec F1 TT TP

5 20 10 5
√

#Feat. 95 96 95 5.6 94 96 95 0.43 0.06

5 Default Default Default Default 95 97 96 5.7 95 96 95 0.49 0.09

10 10 20 5
√

#Feat. 94 95 95 8.1 95 95 95 0.82 0.084

50 5 Default Default
√

#Feat. 95 86 90 26.1 95 85 90 2.81 0.18

25 10 Default Default
√

#Feat. 95 96 96 17.5 95 95 95 1.83 0.126

• Evaluation. To measure the performance of the selected model on large-scale and

unseen data, we trained a final model on the whole training dataset. Since this dataset

had an unbalanced distribution of clones and non-clones (there were approximately 7

times more clone pairs compared to non-clone pairs), we performed sampling over this

data to have a balanced distribution of labels. Training the model on 60% training

data and testing it using the 40% unseen testing data, resulted in 88% Precision and

97% Recall with respect to SourcererCC’s results. Model training took 570 seconds

and prediction took 345 seconds over this dataset.

Lessons Learned

This reproduction study provided us with insights that an approach based on a combination

of software metrics and machine learning is effective in detection clone pairs. It also helped us

detect the main issues that need to be tackled when implementing a tool using this approach.

A summary of the lessons learned include:

• Software metrics have a high potential for being used in the context of code clone

detection. They, however, need to be engineered so that they can capture meaningful

properties pertaining to the pair of methods being analyzed. A manual inspection of

false negative pairs in this study revealed that when two features have a small value,
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Figure 3.1: Overview of Oreo.

even with a very small difference, their Percentage Difference becomes large. Consider

1 and 2 which have 50% percentage difference; this value equals to the percentage

difference between 10 and 20, but these two cases should be treated differently. It is

important to pay attention to such cases.

• Random Forest algorithm has a better performance compared to other algorithms for

this problem using the analyzed metrics.

• A manual analysis of false positives revealed many code fragments that are not actual

clone pairs, but have identical structures. Hence, we need additional mechanisms that

can recognize semantic similarity beside the structural similarity, .

• This approach is susceptible to the problem of Candidate Explosion as every possible

method pair is being generated (O(n2)). In this study, the problem was tackled by

limiting the number of clone pairs based on their differences in terms of number of

statements. However, a more robust approach is needed in order for this approach to

be able to scale to larger datasets.
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3.1.3 The Oreo Clone Detector

Oreo builds upon the lessons learned from presented in the previous chapter. It utilizes

software metrics learned by a machine learning component to detect clones with low syntactic

but high semantic similarity (twilight zone clones). In order to overcome two problems of the

existence of several false positives and candidate explosion, faced through the reproduction

study, we add a semantic signature concept that works based on the fine-grained actions

performed by methods. The concept of semantic signature helps in making Oreo’s approach

scalable to large repositories. This is accompanied by a simple size-based heuristic that

eliminates a large number of unlikely clone pairs. Using these two, Oreo becomes able to

process very large datasets consisting of hundreds of millions of methods. Figure 3.1 gives

an overview of Oreo.

Size Similarity Sharding

A general strategy for speeding up clone detection is to aggressively eliminate unlikely clone

pairs upfront based on very simple heuristics. We call the pairs which survive this aggressive

elimination as candidate pairs. Any method for which we are detecting clones is a query and

the methods which form a candidate pair with a query are called candidate clones of that

query.

The first, and simplest, heuristic used by Oreo is size. The intuition is that two methods

with considerably different sizes are very unlikely to implement the same, or even similar,

functionality. This heuristic can lead to some false negatives, specifically in the case of Type

IV clones. However, in all our experiments, we observed little to no impact on the recall of

other clone types.

This is implemented by counting the number of language tokens present in two methods and
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do the filtering as follows: Given a similarity threshold T between 0 and 1, and a method

M1 with x tokens, if a method M2 is a clone of M1, then its number of tokens, y, should

satisfy the inequation x× T ≤ y ≤ x

T
.

Semantic Similarity: The Action Filter

We capture the semantics of methods using a semantic signature consisting of what we call

Action tokens. The Action tokens of a method are the tokens corresponding to methods

called and fields accessed by that method. Additionally, we capture array accesses (e.g.

filename[i] and filename[i+1]) as ArrayAccess and ArrayAccessBinary actions, respectively.

This is to capture this important semantic information that Java encodes as syntax.

As an example of Action tokens, consider the code in Listing 3.3, which converts its input ar-

gument to an encrypted format. The resulting Action tokens are: getBytes(), getInstance(),

update(), digest(), length, append(), toString(), traslate(), ArrayAccess, and toString().1

These Action tokens, more than the identifiers chosen by the developer, or the types used,

are a semantic signature of the method. The intuition is that if two methods perform the

same function, they likely call the same library methods and refer the same object attributes,

even if the methods are lexically and syntactically different. Hence, we utilize these tokens

to compare semantic similarity between methods. This is done in the first dynamic filter of

Oreo, the Action filter. We use overlap-similarity, calculated as Sim(A1, A2) = |A1 ∩A2|, to

measure the similarity between the Action tokens of two methods. Here, A1 and A2 are sets

of Action Tokens in methods M1 and M2 respectively. Each element in these sets is defined

as < t, freq >, where t is the Action Token and freq is the number of times this token

appears in the method.

In order to speed up comparisons, we create an inverted index of all the methods in a given

1The ArrayAccess action token stands for hashedPasswd[i].

30



shard using Action tokens. To detect clones for any method, say M, in the shard, we query

this inverted index for the Action tokens of M. Any method, say N, returned by this query

becomes a candidate clone of M provided the overlap-similarity between M and N is greater

than a preset threshold. We call M the query method, N a candidate of M, and the pair

< M,N > is called candidate pair.

Using the notion of method calls to find code similarity has been previously explored by

Goffi et al. [39], where method invocation sequences in a code fragment are used to represent

a method. We are not interested in the sequence; instead, we use method invocations in a

bag of words model, which has been shown to be robust in detecting Type III clones [111].

Listing 3.3: Action Filter Example

1 public static String getEncryptedPassword(String password) throws InfoException {

2 StringBuffer buffer = new StringBuffer();

3 try {

4 byte [] encrypt = password.getBytes(”UTF−8”);

5 MessageDigest md = MessageDigest.getInstance(”SHA”);

6 md.update(encrypt);

7 byte [] hashedPasswd = md.digest();

8 for ( int i = 0; i < hashedPasswd.length; i++) {

9 buffer .append(Byte.toString(hashedPasswd[i]));

10 }

11 } catch (Exception e) {

12 throw new InfoException(LanguageTraslator.traslate(”474”), e);

13 }

14 return buffer .toString() ;

15 }
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Metrics Similarity

Method pairs that survive the size filter and the Action filter are analyzed for their similarity

based on a set of software metrics. This is done using a machine learning classifier whose

feature vectors are these metrics calculated for both methods. The intuition for using metrics

as the final comparison after size and actions similarity is that methods that are of about the

same size and that do similar actions, but have quite different software metrics characteristics

are unlikely to be clones.

The set of software metrics used here are a subset of metrics used during the reproduction

study plus a set of metrics added after analyzing the pairs predicted by the final model of

reproduction study. Table 3.5 shows the final 24 method level metrics used. The decision

of which of the software metrics from the reproduction study to include was based on one

simple condition: a metric’s correlation with the other metrics should not be higher than

a certain threshold. This was done because two highly correlated metrics will convey very

similar information, making the presence of one of them redundant. From a pair of two

correlated metrics, we retain the metric that is faster to calculate.

The metrics added to the metrics from the reproduction study are marked with ∗ in the table.

They are aimed at capturing the information on how many times various types of literal are

used by a method and were derived after noticing that there many Twilight Zone clone pairs

where both methods are using the same type of literals even though the literals themselves

are different. For example, there are many cases where both the methods are using either

Boolean literals, or String literals. Capturing the types of these literals is important as they

contain information that can be used to differentiate methods that operate on different types

– a signal that they may be implementing different functionality.
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Table 3.5: Final Method-Level Software Metrics Used in Oreo

Name Description Name Description

XMET # external methods called HEFF Halstead effort to implement

VREF # variables referenced HDIF Halstead difficulty to implement

VDEC # variables declared EXCT # exceptions thrown

NOS # statements EXCR # exceptions referenced

NOPR # operators CREF # classes referenced

NOA # arguments COMP McCabes cyclomatic complexity

NEXP # expressions CAST # class casts

NAND # operands NBLTRL∗ # Boolean literals

MDN maximum depth of nesting NCLTRL∗ # Character literals

LOOP # loops (for,while) NSLTRL∗ # String literals

LMET # local methods called NNLTRL∗ # Numerical literals

HVOC Halstead vocabulary NNULLTRL∗ # Null literals

3.1.4 Learning Metrics

In this section, we describe the dataset used to train the machine learning model, and also,

the trained model itself and its selection process.

Dataset Curation

To prepare the dataset, we downloaded 50k random Java projects from GitHub. We then

extract methods with 50 or more tokens from these projects; this ensures we do not have

empty methods in the dataset. Also, it is the standard minimum clone size for benchmark-

ing [122]. To get isClone labels, similar to the reproduction study, we used SourcererCC.

From this dataset, we randomly sampled a labeled dataset of 50M feature vectors, where

25M vectors correspond to clone pairs and other 25M to non clone pairs. Each feature vector

has the isClone label and 48 metrics (24 for each method).

For model selection purposes, we randomly divide the dataset into 80% pairs for training,
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and 20% pairs for testing. One million pairs from the training set are kept aside for validation

and hyper-parameter tuning.

Deep Learning Model

While there exists many machine learning techniques, here we are using deep learning to

detect clone pairs. Neural networks, or deep learning methods are among the most prominent

machine learning methods that utilize multiple layers of neurons (units) in a network to

achieve automatic learning. Each unit applies a nonlinear transformation to its inputs.

These methods provide effective solutions due to their powerful feature learning ability and

universal approximation properties. This eliminates the need for features engineering to

compute the relationship between two methods in terms of the 24 software metrics. The

relationships are automatically derived throughout the training process, therefore tackling

another issue that we encountered during the reproduction study.

Here we use a Siamese architecture neural network [14] to detect clone pairs. Siamese archi-

tectures are best suited for problems where two objects must be compared in order to assess

their similarity, for example comparing fingerprints [14]. Another important characteristic

of this architecture is that it can handle the symmetry [85] of its input vector. Which means,

presenting the pair (m1,m2) to the model will be the same as presenting the pair (m2,m1).

This ability is achieved by applying the same operation to each component of the pair by

using two identical sub neural networks. This is crucial in clone detection, the equality of

clone pair (m1,m2) with (m2,m1) is an issue that should be addressed while detecting or

reporting clone pairs. The other benefit brought by Siamese architectures is a reduction in

the number of parameters; the weight parameters are shared within two identical sub neural

networks making it require fewer number of parameters than a plain architecture with the

same number of layers.
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Figure 3.2: The Trained Siamese Architecture Model

Figure 3.2 shows the Siamese architecture model trained for Oreo. Here, the input to the

model is a 48 dimensional vector created using the selected 24 metrics described.This input

vector is split into two input instances corresponding to two feature vectors associated with

two methods. The two identical subnetworks then apply the same transformations on both

of these input vectors. Both have 4 hidden layers of size 200, with full connectivity.The

outputs of the two subnetworks are then concatenated and fed to the comparator network

which has four layers of sizes 200-100-50-25, with full connectivity between the layers. The

output of this comparator network is then fed to the Classification Unit which consists of

a logistic unit mathematically represented as f(
∑25

i=1wi · xi) = 1

1+e−
∑25

i=1
wi·xi

. Where, xi is

the i-th input of the final classification unit, and wi is the weight parameter corresponding

to xi. The product wi · xi, is summed over i ranging from 1 to 25 since we have 25 units in

Layer 8 (the layer before the Classification unit). The output of this unit is a value between

0 and 1, and can be interpreted as the probability of the input pair being a clone. A value

above 0.5 is interpreted as a clone pair has been detected.

In this model, to prevent overfitting, dropout regularization technique [15] is applied to every

other layer. In our experiment, we achieved the best performance with 20% dropout. The
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loss function is the relative entropy [75] between the distributions of the predicted output

values and the binary target values for each training example. Training was carried out by

stochastic gradient descent with the learning rate of 0.0001. The learning rate is reduced by

3% after each epoch to improve the convergence of learning. The parameters are initialized

randomly using ‘he normal’[44], a common initialization technique in deep learning. Training

is done in minibatches where the parameters are updated after training on each minibatch.

Since the training set is large, we use a relative large minibatch size of 1,000.

3.1.5 Evaluation of Oreo

We compare Oreo’s detection performance against the latest versions of the four publicly

available clone detection tools: SourcererCC [111], NiCad [104], CloneWorks [126], and

Deckard [51].

We also wanted to include tools such as SeByte [64], Kamino [87], JSCTracker [34], Agec [59],

and approaches presented in [140, 138, 114, 129], which claim to detect Type IV clones. On

approaching the authors of these tools, we were communicated that the tool implementation

of their techniques currently does not exist and with some authors, we failed to receive a

response. Authors of [37] and [52] said that they do not have implementations for detecting

Java clones (They work either on C or C++ clones).

As Type I and Type II clones are relatively easy to detect, we focused primarily on Type

III clone detectors. The configurations of these tools, shown in Table 3.6, are based on our

discussions with their developers, and also the configurations suggested in [122]. For Oreo,

we carried out a sensitivity analysis of Action filter threshold ranging from 50% to 100% at

a step interval of 5%. We observed a good balance between recall and precision at the 55%

threshold. In the table, MIT stands for minimum tokens, Θ stands for similarity threshold

(for NiCad, it is difference threshold, and for Oreo it is Action filter threshold), Γ stands

36



for threshold for input partition used in Oreo, and BIN and IA, respectively stand for blind

identifier normalization and literal abstraction used in NiCad.

Recall

The recall of these tools is measured using Big-CloneEval [124], which performs clone de-

tection tool evaluation experiments using BigCloneBench [122], a benchmark of real clones.

Big-CloneEval reports recall numbers for Type I (T1), Type II (T2), Type III, and Type

IV clones. For this experiment, we consider all clones in BigCloneBench that are 6 lines

and 50 tokens in length or greater. This is the standard minimum clone size for measuring

recall [18, 122].

To report numbers for Type III and Type IV clones, the tool further categorizes these types

into four subcategories based on the syntactical similarity of the members in the clone pairs,

as follows: i) Very Strongly Type III (VST3), where the similarity is between 90-100%, ii)

Strongly Type III (ST3), where the similarity is between 70-90%, iii) Moderately Type III

(MT3), where the similarity is between 50-70%, and iv) Weakly Type III/Type IV (WT3/4),

where the similarity is between 0-50%. Syntactical similarity is measured by line and by

language token after Type I and Type II normalizations.

Table 3.6 summarizes the recall number for all tools. The recall numbers are summarized per

clone category. The numbers in the parenthesis after each category title show the number

of manually tagged clone pairs for that category in the benchmark dataset. Each clone

category has two columns under it, titled ”%”, where we show the recall percentage and

”#”, where we show the number of manually tagged clones detected for that category by

each tool. The best recall numbers are presented in bold typeface. We note that we couldn’t

run Deckard on the BigCloneEval as Deckard produced more than 400G of clone pairs and

BigCloneEval failed to process this huge amount of data. The recall numbers shown for
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Table 3.6: Recall and Precision Measurements on BigCloneBench

Tool

Recall

Prec. Tool config.T1

(35,802)

T2

(4,577)

VST3

(4,156)

ST3

(15,031)

MT3

(80,023)

WT3/T4

(7,804,868)

% # % # % # % # % # % #

Oreo 100 35,798 99 4,547 100 4,139 89 13,391 30 23,834 0.7 57,273 89.5
MIT=15,

Θ = 55%,Γ = 60%

SourcererCC 100 35,797 97 4,462 93 3,871 60 9,099 5 4,187 0 2,005 97.8
MIT=1,

Θ = 70%

CloneWorks 100 35,777 99 4,544 98 4,090 93 13,976 3 2,700 0 35 98.7
MIT=1,

Θ = 70%,Mode=Agg.

Nicad 100 35,769 99 4,541 98 4,091 93 13,910 0.8 671 0 12 99
MIL=6,BIN=True,

IA=True,Θ = 30%

Deckard 60 21,481 58 2,655 62 2,577 31 4,660 12 9,603 1 780,487 34.8
MIT=50,

Stride=2,Θ = 85%

Deckard are taken from SourcererCC’s paper [111], where the authors evaluated Deckard’s

recall on BigCloneBench. The total number of clone pairs are not available for Deckard, and

for this reason, we calculated them based on the reported percentage values.

As Table 3.6 shows, Oreo performs better than every other tool on most of the clone cate-

gories, except for ST3 and WT3/T4. CloneWorks performs the best on ST3 and Deckard

performs the best on WT3/T4. Performance of Oreo is significantly better than other tools

on the harder-to-detect clone categories like MT3 and WT3/T4, where Oreo detects one

to two orders of magnitude more clone pairs than SourcererCC, CloneWorks, and NiCad.

This is expected as these tools are not designed to detect harder-to-get clones in the Twilight

Zone. In the ST3 category SourcererCC’s recall (60%) is significantly lower than CloneWorks

(93%) and NiCad (93%). This could explain why Oreo, which is trained using SourcererCC,

did not perform as well as CloneWorks and NiCad in this category. SourcererCC filters out

many pairs when it cannot find enough shared tokens in them. Since in harder-to-detect

clone categories the overlap similarity in tokens is low, SourcererCC eliminates many pairs

in these categories. However, software metrics, used by Oreo are resilient to changes in iden-
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tifiers and literals which makes Oreo perform much better than SourcererCC in the twilight

zone.

The recall numbers are encouraging as they show that besides detecting easier to find clones

such as T1, T2, and VST3, Oreo detects clones that are hardly detected by other tools.

Compared to the other tools, where the maximum recall is 12% by Deckard, 30% of recall

in MT3 category is a great improvement. Given that SourcererCC has only 5% recall in

MT3 category and 60% recall in ST3, we believe recall of Oreo can be increased further by

training the DNN model with more samples of MT3 and ST3 categories.

Precision

In the absence of any standard benchmark or tool, we compare precision of these tools

manually – a common practice to measure precision of clone detectors [111].

Methodology. For each tool we randomly selected 400 clone pairs, a statistically significant

sample with 95% confidence level and 5% confidence interval, from the clone pairs detected

by each tool in the recall experiment. The validation of clones were done by two judges, who

are also the authors of this work. The judges were kept blind from the source of each clone

pair. Unlike many classification tasks that require fuzzy human judgment, this task required

following very strict definitions of what constitutes Type I, Type II, Type III, and Type IV

clones. Out of the 2,000 pairs manually inspected, both judges gave the same judgment for

1,846 pairs making the inter rater agreement as 92.3%. The conflicts in the judgments were

then resolved by discussions, which always ended up in consensus simply by invoking the

definitions.

Table 3.6 shows precision results for all tools. We found that the precision of Oreo is 89.5%.

All other tools except Deckard performed better than Oreo. Deckard’s precision is the lowest

at 34.8% and Nicad’s precision is the highest at 99%. While the precision of Oreo is lower
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than the other three state of the art tools, it is important to note that Oreo pushes the

boundaries of clone detection to the categories where other tools have almost negligible

performance.

The recall and precision experiments demonstrate that Oreo is an accurate clone detector

capable of detecting clones in Type I, Type II, Type III and in the Twilight Zone. Also, note

that Oreo is trained using the clone pairs produced by SourcererCC. As SourcererCC does

not perform well on harder-to-detect categories like ST3, MT3, and WT3/T4, our current

training dataset lacked such examples. To address this issue, in future we will train Oreo

with an ensemble of state of the art clone detectors.

3.1.6 Manual Analysis of Semantic Clones

During the precision study, we saw pairs which were hard to classify into a specific class.

We also observed some examples where the code snippets had high syntactic similarity but

semantically they were implementing different functionality and vice-versa.

Here, we present two examples of clone pairs with high semantic similarity and low syntactic

similarity. Listing 3.4 shows one of the classical examples of Type IV clone pairs reported

by Oreo. As it can be observed, both of these methods aim to do sorting. The first one

implements Insertion Sort, and the second one implements Bubble Sort. The Action filter

finds many common Action tokens like three instances of ArrayAccess action tokens, and 2

instances of ArrayAccessBinary action tokens, leading to a high semantic match. Further,

the trained model finds high structural match as both models have two loops where one is

nested inside another; first method declares three variables whereas the second declares four.

Oreo does not know that both functions are implementing different sorting algorithms, and

hence catching a Type IV clone here can be attributed to chance. Nevertheless, these two

implementations share enough semantic and structural similarities to be classified as a clone
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Listing 3.4: Clone Pair Example: 1

1 private void sortByName() {
2 int i , j ;
3 String v;
4 for ( i = 0; i < count; i++) {
5 ChannelItem ch = chans[i];
6 v = ch.getTag();
7 j = i;
8 while (( j > 0) && (collator.compare(chans[j − 1].getTag(), v) > 0)) {
9 chans[j ] = chans[j − 1];

10 j−−;
11 }
12 chans[j ] = ch;
13 }
14 }
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 public void bubblesort(String filenames []) {
17 for ( int i = filenames.length − 1; i > 0; i−−) {
18 for ( int j = 0; j < i; j++) {
19 String temp;
20 if (filenames[ j ]. compareTo(filenames[j + 1]) > 0) {
21 temp = filenames[j ];
22 filenames[ j ] = filenames[j + 1];
23 filenames[ j + 1] = temp;
24 }
25 }
26 }
27 }

Listing 3.5: Clone Pair Example: 2

1 public static String getExtension(final String filename) {
2 if (filename == null || filename.trim().length() == 0 || !filename.contains(”.”))

return null ;
3 int pos = filename.lastIndexOf(”.”);
4 return filename.substring(pos + 1);
5 }
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 private static String getFormatByName(String name) {
8 if (name != null) {
9 final int j = name.lastIndexOf(’.’) + 1, k = name.lastIndexOf(’/’) + 1;

10 if ( j > k && j < name.length()) return name.substring(j);
11 }
12 return null ;
13 }
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Listing 3.6: False Positive Example

1 public static String getHexString(byte[] bytes) {
2 if (bytes == null) return null ;
3 StringBuilder hex = new StringBuilder(2 ∗ bytes.length);
4 for (byte b : bytes) {
5 hex.append(HEX CHARS[(b & 0xF0) >> 4]).append(HEX CHARS[(b & 0x0F)]);
6 }
7 return hex.toString() ;
8 }
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 String sequenceUsingFor(int start, int stop) {
11 StringBuilder builder = new StringBuilder();
12 for ( int i = start; i <= stop; i++) {
13 if ( i > start) builder .append(’,’) ;
14 builder .append(i);
15 }
16 return builder .toString() ;
17 }

pair by Oreo.

Another example is illustrated in Listing 3.5 where both methods attempt to extract the

extension of a file name passed to them. The functionality implemented by both methods is

the same, however, the second method does an extra check for the presence of the character

‘/’ in its input string (line 9). We were unsure whether to classify this example as a WT3/T4

or a MT3 since, although some statements are common in both, they are placed in different

positions. Moreover, the syntactic similarity of tokens is also low as both methods are using

different variable names. These examples demonstrate that Oreo is capable of detecting

semantically similar clone pairs that share little syntactical information.

Besides true positives, we found some false positives too. An example is shown in Listing 3.6.

Action filter captures similar occurrences of toString() and append() in both methods and

finds a high semantic match. The DNN model also finds the structures of both of these

methods to be similar as both contain a loop, an if statement, and both declare same number

of variables, leading to the false prediction. Having a list of stop words for Action tokens

repeated in many code fragments may help filter out such methods.
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3.1.7 Limitations of this Study

The training and evaluation of models is done only on Java methods. Adaptation to other

languages is possible, but requires careful consideration of the heuristics and the software

metrics described here. The Action filter we propose may not work for small methods, that

are very simple and neither make a call to other methods nor do they refer to any class

properties. In this study, the minimum threshold of 50 tokens removes the simpler methods,

making Action filter work well. If we decide to pursue clone detection in small methods, we

will explore the option of adding method names or their derivatives to mitigate this concern.

The clone detection studies are affected by the configuration of the tools [136]. We mitigated

this risk by contacting the authors of different tools and using the configurations suggested

by them. The precision study could be affected by human bias. We mitigated it by involving

two judges. This bias, however, can be further reduced by involving more judges.

3.1.8 Conclusions and Future Work

In this section, I discussed a novel approach for code clone detection. Oreo is a combination

of information-retrieval, machine-learning, and metric-based approaches. We introduced a

novel Action Filter and an input partitioning strategy, which reduces the number of candi-

dates while maintaining good recall. We also introduced a deep neural network with Siamese

architecture, which can handle the symmetry of its input vector; A desired characteristic for

clone detection. We compared Oreo with four other state of the art tools on a standard

benchmark and demonstrated that Oreo is scalable, accurate, and it significantly pushes the

boundaries of clone detection to harder-to-detect clones in the Twilight Zone. In future, we

will explore the possibilities and impacts of training more models at finer granularities, and

training using the clones detected by an ensemble of clone detection tools to improve both

the recall and the precision of harder-to-detect semantic clones.
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3.2 On Precision of Clone Detectors

3.2.1 Introduction

While code clone detection techniques for traditional use cases have been documented in

the literature since the early 90s [148, 56, 29], the recent advent of freely-accessible massive

source code repositories created opportunities for new use cases, including mining library

candidates [48], license violation detection [8], code refactoring [139], code quality analy-

sis [96, 105], detecting similar mobile applications [27], aspect mining [24], and analyzing

programmers’ behavior [147]. These applications further motivate researchers to devise novel

clone detection tools and techniques. These tools have not only enabled the practical dis-

covery and management of clones, but also assisted researchers in conducting studies to gain

insight into the practice of code cloning.

A survey in 2013 noted the presence of more than 70 clone detection tools and techniques

in the literature [98]. More have been developed since then. While these tools exist, our

knowledge of their correctness is fairly limited, as their evaluations tend to be done on diverse

datasets. There are some efforts to simplify evaluating the performance of clone detection

tools [19], [120, 121], [73]. As the field advances and the number of tools grow, the need to

develop benchmarks and frameworks for assessing these tools is growing as well.

There are three main dimensions to assess clone detection tools and techniques: how good

the classification is (correctness), the tool’s scalability, and its execution time [110]. Of

these, correctness is the most important and is usually measured by two important metrics:

Precision and Recall. Precision is the percentage of reported clones that are true clones;

recall is the percentage of true clones in the corpus that are identified as such. To estimate

recall of a clone detection tool, the tool is generally run on a dataset with a set of tagged clone

pairs, and then, recall is estimated by measuring the fraction of true clone pairs retrieved.
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The popular BigCloneEval [125] facilitates the measurement of recall by providing a curated

dataset of manually tagged clone pairs. However, BigCloneEval, and the methodology used

to produce it, cannot be followed for measuring precision, because not all possible clone

pairs are tagged, a required condition to measure precision. In fact, evaluating precision

of clone detection tools is particularly challenging because it requires each of the candidate

clone pairs retrieved by a tool to be manually labeled as a true clone or not. This task is

largely manual, extremely time consuming, and often requires expertise in reviewing clone

candidates. Therefore, precision of clone detection tools is often not reported. When it is

reported, it is estimated by manually inspecting a statistically significant random sample of

clone pairs reported by the tool [111, 108, 134].

Goals and Contributions of This Work

The established practice in the literature of sampling clone pairs for manual inspection is

agnostic to clone type: the estimated precision does not differentiate among different types

of clones. However, different clone detectors focus on different types of clones: some target

only easy-to-detect clones, while others attempt to use more sophisticated notions of sim-

ilarity, therefore broadening the scope of what they are looking for. Two clone detectors

can have the same precision while detecting very different types of clones. This means that

the measured precision of tools may not be directly comparable without further considera-

tions. Comparative results can be made more fair and enlightening by including clone type

information in precision measurements, and/or ignoring types I and II entirely.

This chapter presents the result of systematic experiments to measure the precision of eight

code clone detection tools. These experiments were conducted in two parts: the first set of

experiments was done to measure the undifferentiated precision of each tool, which is the

established practice in the literature; the second set of experiments measured each tool’s

precision separately for different types of clones. A challenge in measuring precision per
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clone type is that clone detectors do not include type information when reporting clone

pairs. In order to overcome this, we used algorithms, based on clone types definitions,

to identify different clone types. Through the experiments, this work attempts to raise

appreciation and motivation for measuring and reporting type-based precision in conjunction

with undifferentiated precision for improving the evaluation of clone detection tools in the

future.

The key contributions of this study are as follows: (i) Benchmarking undifferentiated and

type-based precision measurements for eight clone detection tools; our work shows that the

detection of types I and II is essentially a solved problem, as several tools have almost perfect

precision and recall on these types; (ii) Experiment-driven analysis revealing the importance

of type-based precision evaluation for comparing clone detection tools; specifically, given the

previous point, we show that it is important that the tools report on their precision for Type

III and beyond.

In the experiments reported here, three judges spent a total of 115 person hours to inde-

pendently review 12,800 candidate clone pairs (i.e. the output of eight code clone detection

tools) and manually classify them as true or false positives. We encourage researchers to

reproduce, replicate, and reuse the dataset constructed in this study. To this end, we have

made publicly available the dataset of manually tagged clone pairs. The dataset can be

downloaded from http://mondego.ics.uci.edu/projects/precision-study/.

The remainder of this chapter is structured as follows. In Section 3.2.2, we explain the

design of our study and the components of it. Section 3.2.3 presents the undifferentiated

experiments, and Section 3.2.4 elaborates on the type-based experiments. In Section 3.2.5

we discuss about some qualitative aspects of the experiments. Related work is described in

Section 3.2.6, and the threats to validity are presented in Section 3.2.7. Finally, conclusions

and future work are discussed in Section 3.2.8.
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3.2.2 Study Design
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Figure 3.3: Overview of the Precision Study

Figure 3.4: Voting on a Clone Pair

Figure 3.3 shows an overview of the process we followed to carry out the precision exper-

iments. The process starts with running eight clone detection tools on the source code

dataset, and detecting clones with each tool. After having the clone pairs detected by each

tool, we conduct the two sets of precision experiments. In the undifferentiated study, illus-

trated at the upper part of the figure, first, for each tool, a random sample of 400 pairs is

selected from its clone pairs. Then, these samples are presented to three judges, and each

judge, independently, goes through all pairs, tagging them as either True Positive (TP) or
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False Positive (FP). To facilitate code comprehension and the voting process, judges were

presented with code fragments in a side by side manner as shown in Figure 3.4. Finally,

votes for each tool are aggregated, and precision numbers for the eight tools are calculated.

Aggregation of votes can be done in a number of ways. One of them is by taking the majority

vote, which means that a clone pair is declared as true positive when at least two of judges

vote as such. Precision numbers reported in Section 3.2.3 and Section 3.2.4 are calculated

using this approach. We revisit and discuss this approach in Section 3.2.5.

To conduct the type-based experiments, after getting the tools’ clone pairs, we follow the

process shown on the bottom part of Figure 3.3. First, we classify the clone pairs into three

clone types (Type I, Type II, and Type III). Then, from the clone pairs in each set of clone

types for each tool, a sample of 400 pairs is made, and presented to three judges. Hence, each

judge is presented with 1200 pairs for each tool. Finally, votes are recorded and aggregated

to estimate the precision of each tool in each of the clone types.

Through the rest of this section, we first introduce the clone detection tools that we used in

this study, and then, we describe the dataset used to run the tools on.

Clone Detection Tools

The set of tools targeted by this study are clone detectors that are capable of detecting

Type III clones. To select these tools, we followed the following process: (i) we looked for

the tools that are used by researchers in recent studies to compare different clone detec-

tors: NiCad [104], SourcererCC [111], SimCad [131], iClones [38], CPD [1], CCFinder [62],

CloneWorks [126], Deckard [51]; (ii) we searched for the tools that are recently proposed:

Oreo [108], CCAligner [134]; (iii) we also looked for the tools that dive deeper into Type

III category: SeByte [65], Kamino [87], Agec [60], JSCTracker [34], EqMiner [53], and

CCCD [74]; (iv) we tried to get a stable version of these tools. We contacted the au-
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Table 3.7: Clone Detection Tools’ Characteristics and Configurations

Tool Name Year Approach Clone Type Configuration

NiCad 2008 Text based 1,2,3
Min lines=6, Blind identifier

normalization =True, Literal

abstraction=True,

Difference threshold=30%

SourcererCC 2016 Token and Index based 1,2,3
Min tokens=1, Similarity

threshold= 70%

SimCad 2013
Simhash based on

Fingerprinting
1,2,3

Min lines=6, Greedy

transformation=True,

Unicode support=True

iClones 2009 Suffix Trees based 1,2,3 Min tokens=50, Min block=20

CloneWorks (A) 2017 Token and Index based 1,2,3

Min tokens=1, Similarity

threshold = 70%, Mode=

Aggressive

CloneWorks (C) 2017 Token and Index based 1,2,3

Min tokens=1, Similarity

threshold = 70%, Mode=

Conservative

Oreo 2018
Metrics and Machine

learning based
1,2,3

Min tokens=15, Action filter

threshold= 55%, Input

partition threshold= 60%

CCAligner 2018 Token based 1,2,3

Min lines=6, Similarity

threshold = 60%, Edit

distance=1, Window size=6

thors of the tools for which we could not find an executable version. In correspondence with

some of these tools’ authors we either did not receive any response, or were told that they

do not have a packaged tool available, or were informed that their tool does not work on

Java (the language of our dataset), or that they no longer are maintaining the tool. (v)

Finally, we discarded any tool for which we could not find an executable version or any tool

that was not capable of being run on Java. At this point, we were left with nine tools:

Nicad, SourcererCC, SimCad, iClones, CPD, CloneWorks, Deckard, CCAligner, and Oreo.

We excluded Deckard and CPD, because they both report clones in clusters, and to generate

clone pairs, every code fragment needs to be pared with others in the cluster. This process
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produced more than 175GB of data (for each tool) that was hard to manage.

After following the process, we were left with seven tools. One of the tools (CloneWorks)

comes in two different modes (aggressive (A) for higher recall and conservative (C) for higher

precision), and we used both modes. Hence, in the final list, we had eight tools. These tools

are described in Table 3.7. The first column of this table shows the tool name, the second

column denotes the year the tool was proposed, and the third column presents the overall

approach followed by the tool to detect clones. The fourth column shows what types of clones

the tool tries to find; the information for this column was either obtained by referring to tools’

papers, or by consulting with Svajlenko et al. study [121]. Finally, the last column shows the

configurations used to run each tool. These configurations were obtained by consulting the

tools’ authors, or by referring to the configurations reported in their corresponding papers,

or the ones reported by Svajlenko et al. [121].

Dataset

The dataset of this study is the dataset curated for BigCloneEval, a tool for conducting

recall studies on clone detectors [125]. This dataset has been developed using IJaDataset-

2.0 [7]. IJaDataset-2.0 is a large Java repository consisting of 2.3 million Java source files

(365MLOC) from 25,000 open-source software projects [125]. Each of the target tools of this

study has been run on this dataset, and precision analyses have been conducted on their

reported clone pairs.

3.2.3 Undifferentiated Precision Experiments

This section describes the results for precision of the tools, ignoring the existence of different

types of clones.
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Experiment Setup. We randomly sampled 400 method-level pairs from the clone pairs

reported by each tool, a statistically significant sample size used in precision studies [134, 111,

108]. We ensured that the methods in each pair have greater than or equal to 50 language

tokens which is a standard size in clone studies [111, 108]; to this aim, we used the number of

language tokens provided by BigCloneBench [121]. Then, three judges independently went

through each sample, and marked the pairs in these samples as either false or true positive.

Judges were kept blind from the source (the tool that generated the clone pairs) of each

sample to avoid any bias in judgments. Judges were also asked to keep track of time that

they spent on experiments. Together, they spent around 35 person hours to complete these

experiments. We note that all three judges are experts in software clones and are aware of

clone and clone types definitions.

Results. The precision results are presented in the second column of Table 3.8. As we see

from the table, iClones has a perfect precision score; SourcererCC, CloneWorks (C), and

NiCad show very high precision (> 90%); Oreo, CloneWorks (A), and CCAligner show a

decent precision (> 70%), whereas SimCad at 5.5% scored very poorly.

These experiments, however, do not give us information on how each tool performs in differ-

ent clone types. Does iClones perform perfectly in detecting all clone types? Does SimCad

have a poor precision in all clone types? One may argue that these undifferentiated num-

bers, if studied with differentiated (type-based) recall numbers, can give such information.

However, while these two metrics together give a good idea about the performance of tools,

they still do not convey on which category a given tool did or did not perform well in terms

of precision.

To elaborate on this, we present the recall results for these tools in Table 3.8 as well (columns

under the Recall header), and discuss one example case. Recall numbers are calculated using

BigCloneEval [125], a tool that estimates clone detectors’ recall for various clone categories

using BigCloneBench.
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Table 3.8: Undifferentiated Precision and Differentiated Recall

Tool Name
Precision Recall

(400 Pairs) Type I Type II VST3 ST3 MT3 WT3/T4

NiCad 94% 100% 99% 98% 93% 0% 0%

SourcererCC 98.5% 100% 97% 93% 60% 5% 0%

SimCad 5.5% 100% 98% 91% 48% 7% 0%

iClones 100% 100% 77% 34% 9% 0% 0%

CloneWorks (A) 77.25% 100% 99% 98% 93% 3% 0%

CloneWorks (C) 95.75% 100% 97% 92% 60% 5% 0%

Oreo 82.5% 100% 99% 100% 89% 30% 0%

CCAligner 71.25% 100% 99% 97% 70% 10% 0%

By looking at Table 3.8, we observe that the recall numbers for SourcererCC and SimCad

are similar for most clone categories, but the undifferentiated precision numbers for these

two tools are very different. With these two sets of numbers, we cannot tell on which clone

categories SimCad’s precision is worse than SourcererCC’s. A type-based precision analysis

is required to show where these two tools are different in terms of precision.

3.2.4 Type-based Precision Experiments

Table 3.9: Number of Clone Pairs Reported by Each Tool Per Type

Tool name Total Total Parsed
Type I Type II Type III

# % # % # %

NiCad 7,144,918 7,138,729 1,516,232 21% 317,371 5% 5,305,126 74%

SourcererCC 15,689,823 15,689,823 1,835,510 12% 8,317,571 53% 5,536,742 35%

SimCad 33,720,051 33,650,471 808,226 2% 235,480 1% 32,606,765 97%

iClones 6,991,429 3,951,090 3,601,213 91% 131,920 3% 217,957 6%

CloneWorks (A) 653,053,676 651,739,063 1,902,706 0.3% 576,764,902 88.5% 73,071,455 11.2%

CloneWorks (C) 13,296,023 13,286,980 1,873,445 14% 7,364,762 55% 4,048,773 31%

Oreo 4,186,474 4,186,474 942,078 22% 198,691 5% 3,045,705 73%

CCAligner 4,253,798 4,252,328 938,421 22% 178,766 4% 3,135,141 74%

The results presented earlier in Section 3.2.3 can be used to give an overall view on the
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precision of the tools, however, they miss out on one important information: If a tool’s

undifferentiated precision is low/high, does it mean that its precision is low/high on all types

of clones? Also, different tools have different detection capabilities across clone types that

can affect the undifferentiated precision numbers. For example, consider a case where a tool

detects a large number of Type I and Type II clones and a significantly fewer number of Type

III clones. A statistically significant sample will therefore contain more instances of Type I

and Type II clone pairs in comparison to the Type III clones. Since inherently, it is relatively

less error prone to detect Type I and Type II clone pairs, the undifferentiated precision of

this tool will be high. Now consider an example of a tool that detects significantly larger

number of Type III clones than Type I and Type II clones. A statistically significant sample

of its output, when analyzed, will have more number of Type III clones. Since detecting

Type III clone pairs is more complicated and error prone than detecting Type I and Type

II clones, the undifferentiated precision of this tool may be low. However, it is possible that

this tool has near perfect precision for Type I and Type II clone pairs; an information which

is missing in the results of undifferentiated precision experiments. To study these concerns,

we classify the clone pairs reported by each tool into Type I, Type II, and Type III clone

types. The rest of this section elaborates on how we did this classification.

Table 3.9 presents the results of this classification exercise. The first column of this table

shows the tools’ names, and the second column shows the total number of clone pairs detected

by each tool. Some of the clone pairs reported by the tools included code fragments that

were not parseable; hence, we removed those pairs from our study (we explain the reason

for parsing the clone pairs in the rest of this section). The third column shows the number

of pairs that were parseable and were used in our experiments. Then, for each clone type,

there are two columns: the column with # header shows the total number of pairs in the

corresponding clone type, and the column with %, shows the percentage of clone pairs in

that type. We also present Figure 3.5 to aid the visualization of these numbers.
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Figure 3.5: Distribution of Tools’ Clone Pairs Per Clone Type

As we can see from the table, these tools detect different types of clones in different pro-

portions and these proportions differ for all tools. For example, most of the clone pairs

reported by iClones are of Type I (91% of all its reported pairs), and for other tools, the

set of reported Type I pairs is less than 25%. In studying the Type II pairs statistics, we

see that a majority of the pairs reported by Aggressive mode of CloneWorks are of Type II

(88.5%). About half of the pairs reported by SourcererCC (53%) and CloneWorks(C) (55%)

are categorized into Type II category. For other tools, most of their predicted pairs are in

Type III category: the percentage of Type III pairs in SimCad is the greatest among others

(97%), and then the largest numbers are for NiCad and CCAligner being 74%, and Oreo

being 73%.

This classification gives insight into the detection behavior of different tools, and also, on

what to expect from the undifferentiated precision experiment of each of these tools. For

example, 97% of the total clone pairs detected by SimCad are categorized into Type III. It is
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natural that a random sample of SimCad’s clone pairs will contain a large number of Type

III pairs, and the precision experiment conducted on this sample will more or less tell us

about the performance of SimCad on Type III clone category. Hence, the undifferentiated

experiment alone is not sufficient to understand the performance of SimCad on Type I and

Type II categories.

In the rest of this section, we first introduce the methods that we developed to classify tools’

clone pairs into types, and then, present the results of type-based analysis and discuss how

these results are different from undifferentiated results.

Classification of Clone Pairs

One of the reasons why doing type-based precision studies is a hard task, is that most tools

do not report clone type information along with their clone pairs. Hence, there needs to be

mechanisms for classifying the reported clone pairs per type. We operationalized algorithms

to classify the code transformations that underly the definitions of types I and II. Using

these algorithms, we follow the following process to classify the pairs: first, we identify Type

I pairs in the reported clone pairs of a tool. The identified Type I pairs are then kept aside.

Then, from the remaining pairs, we identify Type II pairs and keep them aside. The clone

detectors used in this study do not aim to detect Type IV clones, and therefore we can tag

the leftover pairs as Type III pairs.

We verified our algorithms by manually validating 2,800 clone pairs, a random sample of

1,400 pairs taken from each of the Type I and Type II pairs classified by our algorithms.

Two judges went through all these pairs independently and reported the algorithms to have

perfect precision.

It should be noted that the judges were not verifying if a pair is a clone or not. The judges

simply verified if a pair fits the definitions of clone types I and II or not (see definitions in
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Listing 3.7: Example of a Type II False Positive Pair

1 public GBrowseGFFBuilder(String build, String dbHost, String dbUser, String
dbPassword, String dbPort, String outputFile) {

2 this .build = build;
3 this .dbHost = dbHost;
4 this .dbUser = dbUser;
5 this .dbPassword = dbPassword;
6 this .dbPort = dbPort;
7 this .outputFile = outputFile;
8 }
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 public TopicProfile(String id , String name, String siteid , String sitename, String
unitid , String unitname) {

11 this . id = id;
12 this .name = name;
13 this . siteid = siteid ;
14 this .sitename = sitename;
15 this .unitid = unitid;
16 this .unitname = unitname;
17 }

Section ??). For instance, the two code fragments illustrated in Listing 3.7 fit the Type II

definition: they are identical code fragments except for variations in identifier names and

literal values. However, a human judge may not classify them as a true clone pair because

she may argue that they are not performing the same functionality. If they were identified

as clones, they would be Type II.

Algorithm 1 Algorithmic implementation of Type I classification

INPUT: C1 and C2 are two string variables storing the bodies of two code fragments.
OUTPUT: Boolean

1: procedure isTypeOne(C1, C2)
2: C1← RemoveComments(C1)
3: C2← RemoveComments(C2)
4: C1← RemoveWhitespacesAndNewLines(C1)
5: C2← RemoveWhitespacesAndNewLines(C2)
6: return MD5(C1) == MD5(C2)
7: end procedure

We discuss the algorithms in the rest of this section.

Type I Transformations. Type I definition implies that a clone pair can be classified as
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a Type I if the two code fragments are exact replicas, except for differences in white spaces,

comments, and layout. Hence, in order to identify Type I transformations, we parsed each

code fragment and removed the white spaces and comments from it 2. Then we treated the

resulting fragment as a string, and calculated the MD-5 hash code of this string, which we

call Type I hash. If the Type I hash of two code fragments in a reported clone pair are equal,

this pair is marked as a Type I pair. The pseudocode for implementation of these rules is

shown in Algorithm 1.

Type II Transformations. Type II definition indicates that two code fragments are clas-

sified as Type II if, in addition to Type I differences, they only differ in identifier names

and literal values. Hence, we implemented code normalizations on identifiers and literals to

identify Type II transformations. That is, after removing the set of Type I pairs from the

clone pairs reported by each tool, we applied normalizations to code fragments of each clone

pair. These normalizations include replacing all identifiers with a fixed value, and then,

replacing all literal values with fixed values according to literal types (String, Character,

Boolean, Integer, Long, Float, Double). This process removes the differences pertaining to

Type II cloning, and hence, resulting normalized code fragments can be compared using

Type I rules: if two normalized code fragments in a clone pair satisfy Type I transformation

rules, they are categorized as a Type II pair. In order to identify the literals and identifiers

for the normalization process, we used an AST parser. The parser failed in parsing some

code fragments, and the clone pairs with those code fragments were discarded. The third

column of Table 3.9 shows the number of clone pairs that were parseable and were used in

this study. The pseudocode for implementing Type II rules is shown in Algorithm 2.

2Since Java syntax is not sensitive to layout, we ignored layout differences.
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Algorithm 2 Algorithmic implementation of Type II classification

INPUT: C1 and C2 are two string variables storing the bodies of two code fragments.
OUTPUT: Boolean

1: procedure isTypeTwo(C1, C2)
2: C1← ReplaceIdentifiers(C1)
3: C2← ReplaceIdentifiers(C2)
4: C1← ReplaceLiterals(C1)
5: C2← ReplaceLiterals(C2)
6: return isTypeOne(C1, C2)
7: end procedure

Type-based Precision Results

In this section, we first describe the process of setting up the type-based experiments. Then,

we elaborate on the results we got from these experiments, and discuss how they are different

from the undifferentiated results.

Experiment Setup. The setup is similar to undifferentiated precision experiments. With

this difference that after separating each tool’s clone pairs by type, we made 400 method-

level samples from each tool, each type. Then, we aggregated and shuffled the type-based

samples of each tool, and showed a set of 1200 pairs (400 pairs from each clone type) for

each tool to the same three judges. The judges were kept blind from the source (the tool

generating clone pairs) and the type of the clone pairs to remove any bias towards knowing

the tools or clone types. Combining the time spent by each judge, in total 80 person hours

were spent to complete these experiments.

Results. The results of these experiments are presented in the columns under Type-based

in Table 3.10. For the sake of comparison, the undifferentiated numbers are also presented.

Moreover, to provide an overview of this table, all numbers are also illustrated in Figure 3.6.

The results help us to answer the question – if a tool’s undifferentiated precision is low or

high, on which type of clones is its precision low or high? The earlier precision experiment
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Table 3.10: Type-Based Precision

Tool Name Undifferentiated

Type-based (1200 Pairs Totally)

Type I Type II Type III

(400 Pairs) (400 Pairs) (400 Pairs)

NiCad 94% 100% 99.25% 93%

SourcererCC 98.5% 100% 100% 98.5%

SimCad 5.5% 100% 100% 6%

iClones 100% 100% 100% 100%

CloneWorks (A) 77.25% 100% 99.25% 74.75%

CloneWorks (C) 95.75% 100% 100% 99.5%

Oreo 82.5% 100% 99.75% 88%

CCAligner 71.25% 100% 100% 67.75%
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Figure 3.6: Tools’ Precision: Undifferentiated and Type-based

results (column Undifferentiated) do not represent the performance of tools across all clone

types. However, the type-based results show that all tools performed near perfect on Type I

and Type II categories. The difference is mostly in the precision of Type III clone category.

For example, consider SimCad. The undifferentiated experiments showed a precision of 5.5%

for this tool. This number is pretty low compared to the numbers we got for other tools.

However, a closer look at the type-based results shows that SimCad is doing perfect in Type

I and Type II clones, and the low precision it gets is only in Type III category. By only

looking at undifferentiated results, one cannot gain such an insight, and she/he may argue
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that SimCad’s results are not as precise as other tools. However, this tool is comparable to

others in Type I and Type II, and if one is interested in these types, can safely trust SimCad

with respect to precision.

The same fact can be observed for CCAligner, Oreo, and CloneWorks (A). Their undiffer-

entiated precision is not perfect; however, the type-based experiment shows that they have

perfect (or near perfect) precision in Type I and Type II categories, and the category that

lowers their precision is Type III. These observations raise the need to conduct a type-based

precision analysis to gain deeper insight on detection capabilities of clone detectors.

This pattern is not observed for NiCad, SourcererCC, iClones, and CloneWorks (C). As a

result, one cannot make a reasoning on the undifferentiated precision numbers and extend it

to the precision per type. The type-based precision analysis is needed when the knowledge

about the tool’s correctness across different types is needed.

Also, with the advent of modern clone detectors such as Oreo and CCAligner that focus

on retrieving the harder to get Type III clones (mostly MT3 subcategory), the demand for

measuring precision at Type III category is increased. Because the focus of these tools is not

retrieving Type I and Type II clones, and they attempt to dive deep into Type III clones, it

is important to measure their precision at Type III category.

It is worth mentioning that despite having perfect or near perfect precision and recall for

most of the tools in Type I and Type II categories (except for iClones’ Type II recall), the

number of clone pairs reported by each tool in these types (Table 3.9) is different because of

the tools’ different settings for clone pairs’ sizes; however, in recall and precision experiments,

only methods with more than 50 tokens were considered.
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3.2.5 Qualitative Analysis

In this section, we provide some qualitative analyses pertaining to the study we conducted.

We first discuss how the precision numbers vary between two votes aggregation methods:

majority vote and unanimous vote. We provide some qualitative data about these differences,

and discuss what can be learned from it. Then, we provide some interesting and harder to

judge clone pairs, and argue how precision evaluation task can be affected by the presence

of such pairs.

Analysis of Majority Vote and Unanimous Vote

As discussed earlier, the aggregation of judges’ votes was done by taking the majority vote.

In addition to this method, we also calculated the precision results by taking unanimous

voting; that is, judges should be in full agreement about a pair to be true positive for it

to be considered as true positive. By comparing the results of the two vote-aggregation

methods, we noticed that the numbers do not vary much for Type I and Type II categories,

however, they have considerable difference in Type III category. The Type III results using

both methods are presented in Table 3.11.

Table 3.11: Precision: Majority Vote vs. Unanimous Vote

Tool Name
Type III

Majority Vote Unanimous Vote

NiCad 93% 78.25%

SourcererCC 98.5% 59.5%

SimCad 6% 3%

iClones 100% 100%

CloneWorks (A) 74.75% 58.5%

CloneWorks (C) 99.5% 83.5%

Oreo 88% 78%

CCAligner 67.75% 55.5%
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As it is observed from the table, iClones is the only tool that has gained a perfect score

in both methods; this means that the judges did not disagree for any Type III pair of this

tool. This pattern, however, does not hold true for the other tools. For instance, using the

majority vote, CloneWorks (C) shows a precision of 99.5%. However, with the unanimous

vote method, its precision drops by 16%. This gap shows that the judges had dispute in

judging some of its pairs. The largest gap belongs to SourcererCC: this tool’s precision

using the majority vote method is 98.5%, but when using the unanimous vote method, this

number drops by 39%. These observations drove us to look deeper into the tools’ pairs and

understand the disputes among judges. We looked at SourcererCC pairs for which there were

disagreements among judges and found out that most of those pairs are testcases written

to test other methods. These test methods have many occurrences of assert statements

that cause confusion for judges. One of these pairs is demonstrated in Listing 3.8. One

judge argued that: It is a false positive because most of the arguments given to ’assertEqual’

statements are different. So different things are being tested. The other judge believed this

pair to be a true positive and argued that: both methods are testing based on ’String data’.

Despite that two strings are different, yet they are still testing a similar functionality. Also,

both methods are making similar method calls on a CsvReader object, indicating they are

trying to achieve similar tasks. The third judge also voted this pair to be a true positive and

explained that: They are both test cases, and key points of them are: assertions, and the

input format (both read from csv). If I write a test case for a functionality, I can copy from

the first and generate the second. These reasonings demonstrate the different views that

judges have when deciding on a pair, and raise the need to address these kinds of disputes

when doing precision studies.

We also looked at a pair from Oreo where judges did not have consensus. This pair is

presented in Listing 3.9. Two of the judges marked this as true positive and one judge

marked it as false positive. One judge argued that it is a true positive because both methods

iterate through a list and copy the content of the list to another data structure. The other
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Listing 3.8: Clone Pair Reported by SourcererCC

1 public void test52() throws Exception {
2 String data = ”\\xfa\\u0afa\\xFA\\u0AFA”;
3 CsvReader reader = CsvReader.parse(data);
4 reader.setUseTextQualifier( false ) ;
5 reader.setEscapeMode(CsvReader.ESCAPE MODE BACKSLASH);
6 Assert.assertTrue(reader.readRecord());
7 Assert.assertEquals(”u u ”, reader.get(0)) ;
8 Assert.assertEquals(”\\xfa\\u0afa\\xFA\\u0AFA”, reader.getRawRecord());
9 Assert.assertEquals(0L, reader.getCurrentRecord());

10 Assert.assertEquals(1, reader.getColumnCount());
11 Assert. assertFalse (reader.readRecord());
12 reader. close () ;
13 }
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 public void test3 () throws Exception {
16 String data = ”,”;
17 CsvReader reader = CsvReader.parse(data);
18 Assert.assertTrue(reader.readRecord());
19 Assert.assertEquals(””, reader.get(0)) ;
20 Assert.assertEquals(””, reader.get(1)) ;
21 Assert.assertEquals(’ , ’ , reader.getDelimiter()) ;
22 Assert.assertEquals(0L, reader.getCurrentRecord());
23 Assert.assertEquals(2, reader.getColumnCount());
24 Assert.assertEquals(”,”, reader.getRawRecord());
25 Assert. assertFalse (reader.readRecord());
26 Assert.assertEquals(””, reader.getRawRecord());
27 reader. close () ;
28 }
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Listing 3.9: Clone Pair Reported by Oreo

1 private void createSnippetIDs(List<TreeNode> snippets) {
2 int currentID = 0;
3 Iterator<TreeNode> iterator = snippets.iterator();
4 while ( iterator .hasNext()) {
5 TreeNode snippet = iterator.next();
6 String snippetID = ”snippet ” + currentID;
7 snippetIDs.put(snippet, snippetID);
8 ++currentID;
9 }

10 }
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 protected void setExportElmClassPath(ArrayList<String> cp) {
13 String cps [] = new String[cp.size() ];
14 Iterator<String> i = cp.iterator() ;
15 int j = 0;
16 while ( i .hasNext()) {
17 cps[ j ] = i.next();
18 j++;
19 }
20 exportElmClassPath = cps;
21 }

judge said: both methods iterate on the input parameter. The top one uses currentId to

create a [key,value] pair for each item in the iterator. It then puts the pair into a HashMap

and increases currentId. The second method also does the same, increases j and uses j as a

key (index) to store items in an array. Hence, I vote for true positive. However, the third

judge argued that: The only common part of the two methods is that both iterate over a

list and store the contents of this list into another. However, the upper one builds a special

’snippetID’ and stores that in a HashMap, whereas the bottom one stores the content of input

list, as it is, in another array. I vote for false positive here.

These examples, and the gaps between the majority vote and unanimous vote methods, show

that precision experiments are greatly dependent on human judges’ perception of clones, and

that judges can have different opinions when judging the same pair. Hence, there is a need for

these precision studies to be accompanied by a report on inter-rater agreement [2, 117]. Such

a measurement would give us information as to the percentage of pairs for which judges had
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consensus in their judgments. This measurement is an indicative of the confidence we can

have on judgments. A conservative measurement of inter-rater agreement can be calculated

by taking the proportion of times judges have the same vote. In our experiments, the

proportion of times the judges had the same votes (all true positive or all false positive) for

undifferentiated experiments is ≈86% (2,745 pairs out of the total of 3,200 validated pairs),

and for type-based experiments is ≈92% (8,794 pairs out of the total of 9,600 validated

pairs).

Analysis of Interesting True Positives

While conducting the precision experiments, judges noticed that there exist some pairs that

are true positives, but, at the first sight, they looked like a false positive to them. A closer

look was needed to understand that these pairs are true clone pairs. We present and analyze

two of those pairs here. The first instance is presented in Listing 3.10. Both methods in

this example first make sure that their input parameter is not null. The upper one, then,

looks for the index of dot in the input string; if dot is not found (the returned index is -1),

then the method returns null. Otherwise, it returns a substring of the input string from its

beginning until the location of the found dot. A close look at the bottom method shows that

this method is also performing the same functionality, except that instead of dot, it operates

on a character that is stored in URI SEPARATION CHAR.

Another example of this kind is illustrated in Listing 3.11. The upper method in this example

receives an array of int as input, and then converts it to an array of double. The bottom

one also implements the similar functionality: instead of an int array, it receives an array of

BigDecimal values, and then stores its values into an array of double. The upper method

does not have any explicit type casting. The bottom method, however, includes class cast

operation to convert to double. This casting is done by invoking the doubleValue() method.
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Listing 3.10: True Positive Clone Pair: Example1

1 public static String getGroupId(String layoutId) {
2 if (layoutId == null) {
3 return null ;
4 }
5 int pos = layoutId.indexOf(”.”);
6 if (pos == −1) {
7 return null ;
8 } else {
9 return layoutId.substring(0, pos);

10 }
11 }
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 public static String parseFullTargetObjectURI(String fullTargetObjectURI) {
14 if (fullTargetObjectURI == null) return null;
15 int delimIndex = fullTargetObjectURI.indexOf(URI SEPARATION CHAR);
16 if ((fullTargetObjectURI != null) && (delimIndex != −1)) return

fullTargetObjectURI.substring(0, delimIndex); else return fullTargetObjectURI;
17 }

The two discussed examples are instances where clone pairs do not share much of syntactic

similarity, but semantically are very similar. Presence of such clone pairs indicates that

precision studies are more complicated than comparing two program texts. They need deep

analysis of program behavior and understanding the goal of each code fragment in a pair.

Hence, precision analyses need careful consideration of judges, and researchers should be

aware of this.

3.2.6 Related Work

Several studies have been done with the aim of analyzing and evaluating clone detection

tools. In this section, I explain the ones that are most related to ours, and discuss how our

work is different from them.

Svajlenko et al. evaluate ten clone detection tools proposed until 2015 with respect to

their recall [121]. The dataset used in this study is the portion of IJa dataset 2.0 used by
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Listing 3.11: True Positive Clone Pair: Example2

1 public static double[] int2double(int [] v) {
2 double[] ia = new double[v.length];
3 for ( int i = 0; i < v.length; i++) {
4 ia [ i ] = v[i ];
5 }
6 return ia ;
7 }
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 public static double[] bigDecimalArrayToDoubleArray(BigDecimal[] bigDecimalArray) {

10 double[] doubleArray = new double[bigDecimalArray.length];
11 for ( int i = 0; i < bigDecimalArray.length; i++) {
12 doubleArray[i] = bigDecimalArray[i].doubleValue();
13 }
14 return doubleArray;
15 }

BigCloneBench, the same dataset as the one used in our study. BigCloneBench has more

than 8 million clone pairs tagged. However, not all possible clone pairs are tagged in this

dataset, and there exists many untagged clone pairs. In another work, Svajlenko et al.

state that BigCloneBench can be used to measure an upper bound and a lower bound for

precision [120]; however, as stated by them, this range can be quite wide. They also propose a

formula that estimates the precision, only based on the known clone pairs in BigCloneBench

and ignoring the unknown clone pairs. However, ignoring the many clone pairs that are not

tagged in BigCloneBench cannot provide a realistic estimation for tools’ precision.

The other study focused on evaluating clone detection tools is the one conducted by Bellon

et al. [19]. They have evaluated six clone detectors, proposed until 2002, on eight C and Java

programs (altogether 850 KLOC). One author of the paper, Stephen Bellon, has created a

dataset of known clone pairs by going through 2 percent of the 325,935 pairs reported by the

six tools, and manually validating this set of pairs. Then, precision and recall of tools have

been estimated against the validated clone pairs in the dataset. There are some limitations

with this study; first, although manually validated, the tagged clone pairs are reported by

the same set of six tools. This may impose some bias in numbers. Second, precision is
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estimated based on the validated pairs, and as stated by the authors, their numbers are

relative and should be used with caution.

A more recent study is the one carried out by Ragkhitwetsagul et al. [95]. They have

evaluated 30 code similarity detection techniques and tools using five experimental scenarios.

This study is aimed at similarity detection tools, and hence includes a wider spectrum of

tools than clone detectors. 5 of the target tools are clone detection tools, and others fall in

other categories: Obfuscutors, compilers and decompilers, plagiarism detectors, compression

tools, and one category named as other.

Another work on studying clone detection tools has been done by Roy et al. [105]. They

provide a qualitative comparison on the state of the art tools presented until article’s publish

date (2009). They define a taxonomy for clone detection tools, based on the level of analysis

that clone detectors apply to the source code. The state of the art tools are categorized

based on this taxonomy, and they are also compared based on a number of facets such as

language facet, clone facet, and code representation facet. Finally, tools are analyzed based

on four different scenarios.

In addition to the studies dedicated to evaluating clone detection tools, these tools have

been compared in studies where a new clone detection tool is proposed. Oreo [108] and

SourecerCC [111] are two examples that have conducted manual analyses to measure the

precision of their tools, and other state of the art tools. Both of these have estimated

precision by taking a statistically significant sample of clone pairs. However, these studies

do not provide a type-based precision study, and are limited to providing undifferentiated

numbers.

Our study is different from the mentioned studies in that it focuses on precision. Also,

while other work that has reported precision, have followed the undifferentiated method,

we did both undifferentiated and type-based analysis. We manually validated statistically
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significant samples of the tools’ clone pairs for both methods. We presented results of both

experiments, compared the results, discovered the issues, and provided insights to help the

future work. Also, apart from using the state of the art near miss Type III clone detectors,

we include two recently published clone detectors, Oreo and CCAligner, which detect harder

to get Type III clones.

3.2.7 Threats to Validity

The separation of clone pairs based on types was done using certain algorithms. Although

it was done by following the definitions of clone types, there maybe errors in the results.

We managed this issue by evaluating sets of sampled clone pairs by two judges. The results

demonstrated a 100% precision for the algorithms.

The target tools of this study have various configurations, and each can result in different set

of detected clone pairs. We studied the tools’ papers, related literature, and also, contacted

the tools’ authors to configure the tools so that we can match the recall numbers reported

by corresponding papers as much as possible. The results presented in this study are valid

for the tools’ configuration provided here, and they may not hold true if other configurations

are used.

Precision evaluation is a manual task that can be subject to human bias. We reduced this

bias by anonymizing the tools’ clone pairs when presenting to judges. Also, in the type-

based experiments, we merged and shuffled all types’ clone pairs, and presented a single set

of clone pairs for each tool to users. This alleviates the bias pertaining to being aware of

clone types.
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3.2.8 Conclusions and Future Work

In this study, we presented systematic experiments to measure the precision of eight clone de-

tection tools using two methods: undifferentiated and type-based. Both ways of conducting

precision experiments involve a large amount of manual work. The undifferentiated experi-

ment is faster than the type-based one because there are less number of pairs to validate. The

undifferentiated experiment gives an idea of the overall precision of the tool, without consid-

ering clone types. This precision is useful to understand how many true positives one could

expect to see on an average for every 100 pairs in the output of a clone detector. The type

based precision experiment, however, reveals information about the effectiveness of a given

tool for different clone types. This experiment, along with the undifferentiated experiment,

gives a better understanding of the effectiveness of target clone detectors and therefore, both

experiments should be conducted if one wants to compare different clone detectors. This is

particularly important now that the detection of simpler types of clones (types I and II) is

essentially a solved problem, as attested by our results. Cutting edge research is moving on

to harder-to-detect Type III clones, and even Type IV. Comparative results can be made

more fair and enlightening by including clone type information in precision measurements,

and/or ignoring types I and II entirely.

Evaluating clone pairs is a subjective task, and the degree of agreements on judgments is

an important factor to consider. Hence, measuring inter-rate agreement is a factor that if

accompanied by precision numbers, can shed lights on the reliability of precision results.

Finally, clone pair validation is a complex task that needs knowledge and expertise. A

person in charge of conducting such experiment needs to be careful of cases where syntactic

similarity is not the basis for clone evaluation; rather, it is the semantic, or functional,

similarity that needs to be analyzed.

We aim to continue this work by diving deeper into analyzing the precision in clone categories;
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that is, to separate the Type III clones into their subcategories (VST3, ST3, MT3, and

WT3/T4), and then analyze the precision in each of these subcategories. Such an analysis

would give us a broader view of the effectiveness of the tools. Moreover, in future, we

will analyze the precision of tools that work on languages other than Java, and conduct

comparative studies on those tools.
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Chapter 4

Similarity Detection of Neural

Network Models with RICA

4.1 Introduction

This chapter formulates the problem of DNN functional similarity detection and presents

RICA (Random Inputs and Correlation Analysis), as a method for detecting functional

similarities among DNN models. The key point about RICA is that it works without having

any knowledge about the DNN models being analyzed, and does not need to have access to

models’ training/testing data or training scripts; it works by only accessing the models’ files.

RICA works based on the insight that given two models, their similarity can be measured

by comparing their outputs on the same set of inputs using an appropriate similarity metric.

This intuitive statement about model similarity, however, needs to be operationalized in two

fronts: (1) what inputs should be used to assess similarity, and (2) how can we quantify

“sufficiently similar”? With respect to (1), test sets are the obvious candidates, but they

may not always be available. In fact, in some cases we may not even know what the models

72



are supposed to do, much less what data was used to train and test them. With respect to

(2), methods and metrics that have been used for comparing traditional code, for example

in assessing functional equivalence [52], fall short of capturing similarity of DNNs. Recent

work in this area focuses on statistical methods and metrics to compare the representations

learned by DNNs at various layers, using meaningful inputs. One promising family of meth-

ods are based on the Canonical Correlation Analysis (CCA) [46], which has been recently

applied to neural networks [94, 86]. Another promising, but more constrained, metric is

the Spearman rank correlation, which has been applied in a small study using meaningful

canonical inputs [119]. Finally, for classifiers in particular, we can use a simple overlap metric

that quantifies how many times two different models agree on the classification of the same

inputs.

RICA uses random inputs in lieu of canonical inputs to perform models’ input/output anal-

ysis and is capable of detecting functionally similar DNN models using three metrics: CCA,

Spearman, and Overlap; the latter only being applicable to classification models. In the rest

of this chapter, I will elaborate on the problem of DNN functional similarity detection and

will also explain how RICA uses random inputs with the three similarity metrics discussed

above to detect DNN clones.

4.2 Problem Definition

Here, I first define the concept of models’ functional similarity, and how it can be quantified.

This is followed by a discussion of challenges of DNN models clone detection.
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4.2.1 Functional Similarity

Functional similarity measures the extent to which the functions performed by two models

are similar. Unlike traditional code, comparing the training and testing scripts of models is

useless for the purposes of model similarity since the functionality of DNN models is mostly

based on the data that is used for training them; it is common to have identical training

scripts that produce entirely different DNN models. Therefore, detecting model similarity

requires actual input/output analysis.

Before defining model similarity, we define model equivalence. In traditional code, functional

equivalence has previously been defined as the equivalence of output given the same input

accounting for permutations of inputs and outputs [52]. We generalize that definition for

DNNs. Let m1 and m2 be two DNN models; let I be a set of inputs for m1. We say that

m2 is functionally equivalent to m1 if m2(φ(i)) = m1(i),∀i ∈ I, where φ(i) is a geometric

transformation [21] of the input, which could be the identity map, but also scaling, reflection,

projection and other such transformations.

Functional equivalence, however, is of limited interest. Models can be very similar without

producing the exact same outputs for the same (or transformed) inputs. Consider, for

example, two models, each with one single numerical output, which, for the same inputs

produce outputs such that o2 = 2o1,∀o ∈ O – i.e. the second model’s output values are

always double the first model’s output values; clearly, these models are doing something

very similar even if the values are scaled by a factor of 2. As a second example, consider

two models which, for the same 10,000 inputs, produce the exact same outputs in 9,000

cases, and different outputs in 1,000 cases; again, these two models are similar, even if their

outputs differ 10% of the time.

Given this, similarity of DNN models is best captured by measuring correlation between the

outputs [119, 94, 86]. If for the same (or transformed) inputs, the outputs of two models

74



are correlated, then the two models are functionally similar. Formally, m1 and m2 are

functionally similar if

Corr(m1(i),m2(φ(i))) > θ,∀i ∈ I (4.1)

where Corr is a correlation metric, φ is a geometric transformation, and θ is a similarity

threshold.

In the case of models with more than one output, and even with different number or or-

dering of outputs, the correlation metric must reflect an aggregation of the several outputs

using some aggregation method. In this general definition, Corr stands for the aggregated

correlation of the outputs.

4.2.2 Challenges of DNN Clone Detection

Consider the two functions in Listing 4.1. The first function, spanning from lines 2 to 10,

creates and trains a model on the MNIST dataset [77], and the second function, from line

12 to 21, creates a model and trains it on the Fashion-MNIST (FMNIST) dataset [143].

In terms of code, they only have one token difference: on the second line of each method

where the training data is loaded, one uses the token mnist and the other uses the token

fashion mnist to load the training data. Other than this subtle difference, the two functions

are identical, and set up the exact same network architecture. A traditional code clone

detector would signal these functions as clones (specifically, Type-2 clones [105]). However,

the models trained by these functions address entirely different tasks since each is trained

on a different dataset: one classifies hand-written digits and the other one classifies pieces of

clothing. By only analyzing the code that sets up the models, or the network architecture

itself, one cannot reason about the functional similarities and differences between the models

themselves.
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1 def train my model1():#train on mnist
2 import keras
3 (X train,Y train),(X test,Y test)= mnist.load data()

4 X train=(X train.reshape((60000,28∗28))).astype(’float32’)/255
5 Y train=keras.utils.to categorical(Y train)

6 dnn=keras.models.Sequential()

7 dnn.add(keras.layers.Dense(512,activation=’relu’,input shape=(28∗28,)))
8 dnn.add(keras.layers.Dense(10,activation=’softmax’))

9 dnn.compile(optimizer=’rmsprop’,loss=’categorical crossentropy’,metrics=[’accuracy’])
10 dnn.fit(X train,Y train,epochs=10,batch size=128)

11

12 def train my model2():#train on fashion mnist
13 import keras
14 (X train,Y train),(X test,Y test)= fashion mnist.load data()

15 X train=(X train.reshape((60000,28∗28))).astype(’float32’)/255
16 Y train=keras.utils.to categorical(Y train)

17 dnn=keras.models.Sequential()

18 dnn.add(keras.layers.Dense(512,activation=’relu’,input shape=(28∗28,)))
19 dnn.add(keras.layers.Dense(10,activation=’softmax’))

20 dnn.compile(optimizer=’rmsprop’,loss=’categorical crossentropy’,metrics=[’accuracy’])
21 dnn.fit(X train,Y train,epochs=10,batch size=128)

Listing 4.1: Two almost identical training scripts

As this example shows, the behavior of a DNN model is heavily reliant on the dataset it was

trained on. Therefore, models’ functional similarity cannot be inferred from analyzing the

training code. Functional similarity assessment demands an analysis of training data itself,

or analyzing models’ behavior using canonical datasets (typically training or testing data).

Such data, as mentioned earlier as well, might not be available as a part of automatic clone

detection (for instance, due to security or privacy reasons [89] or simply due to the size of

the data). All these issues make models clone detection a challenging process that cannot be

carried out using traditional clone detection techniques; therefore, needing special methods

built specifically for this purpose.

4.3 Goals and Scope

The definition of functional similarity given in Equation 4.1 requires the existence of inputs

for the purpose of input/output analysis. In general, meaningful canonical inputs, such as

training or testing data, may not be available. Therefore, we need to have suitable inputs

76



at hand in order to perform the analysis. RICA utilizes random inputs for this purpose.

The other aspect of this comparison is the selection of an appropriate metric to quantify

the similarity. That is to define how to compare the outputs of two models over random

inputs and how to decide if two models are functionally similar. To this aim, we study a set

of previous metrics that were used in the literature for the purpose of similarity assessment

when canonical inputs are available. We investigate the applicability of these metrics when

random inputs are used and the implications of using each of these metrics.

As such, with proposing RICA, we address two primary goals: (1) we investigate whether

random inputs can be used, instead of canonical ones, to detect model similarity; and (2) we

study the trade-offs of different similarity metrics when using random inputs. Our findings

shed light on the process of model similarity detection and on the applicability of individual

metrics in different scenarios.

Equation 4.1 is generic, in the sense that it can be used to compare any two DNN models

independent of their nature and input/output shapes and dimensions. In this work, we limit

our attention to models that have compatible input shapes and the same output shapes. This

helps us limit the scope of our work and define the scope of models’ comparison. Therefore,

RICA, as it currently stands, can be used in such scenarios only.

Compatible input shapes here means that the input shapes of two models m1 and m2 can

be derived from each other by simple reshape transformations. The reason for considering

compatible input shapes in this way is that developers oftentimes reshape their inputs and

create models based on the resulting input shape. For example, in case of the MNIST dataset,

the raw data consists of images sized 28 × 28. A developer may choose to create a model

that receives its input in this shape, or may flatten the input into a vector of 784 numbers,

or may decide to add the channel information to the input by reshaping it to 28 × 28 × 1

and create a convolutional neural network (CNN). All these models perform MNIST image

classification, so we need to be able to compare them. The same can happen when a model

77



has more than one input layer, and, for example, receives two vectors as input; it is possible

to train a similar model on the same dataset by passing one input that includes the contents

of the two vectors concatenated in one. For this reason, input shape compatibility needs

to go beyond exact shapes: given two models, we check whether their input shapes can be

converted to one another.

Furthermore, we limit our primary attention to classifiers. Since we limit our scope to models

that have the same output shapes, in case of classifiers that are the main focus of our work,

classifiers with different number of output classes, such as one with 10 classes and another

with 11, are out of scope. In our evaluations, we narrow the scope of this study to single-

label multi-class DNN classifiers with compatible input shapes and the same number, and

ordering, of output classes. However, later in Chapter 5, we show that the approach followed

by RICA can also be used to assess the similarity of regression models.

These constraints were followed simply to tame the complexity of the analysis, as trying to

compare any two models would not only increase the dataset considerably but would also

substantially expand the results and analysis.

4.4 Design of RICA

4.4.1 Similarity Inspection Pipeline

The pipeline designed to perform similarity detection with RICA is shown in Figure 4.1.

The pipeline consists of two high-level modules: (i) a compatibility verification module

and, (ii) a functional similarity module. The compatibility verification module investigates

whether the two models being analyzed satisfy the assumptions of our approach regarding

input and output shapes compatibility. Functional Similarity module, then, performs the
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Figure 4.1: Overview of the similarity detection pipeline by RICA

main comparison producing a similarity score that can be interpreted using a set of defined

thresholds depending on the similarity metric being used (explained later). The details of

each of the modules are described below.

Compatibility Verification

In order for two models to be considered comparable with RICA, they need to be compatible

in terms of the input and output shapes. The compatibility of two models is verified as

explained below:

Output Compatibility. Two models have output compatibility if their output shapes

(including the activation function of the last layer) are the same. In case of classifiers, which

are the main focus of this work, models have output compatibility iff nr == nc and they

have the same activation function in their output layers. In this definition, nr is the number

of output labels of the reference model and nc is the number of output labels of the candidate

model. The algorithm followed to investigate output compatibility is shown in Algorithm 3.
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First (lines 2 and 3), the activation function of the output layer of both models is retrieved,

followed by extracting the number of output labels for both models (lines 4 and 5). The

algorithm returns true if both the activation functions of the output layers and the number

of output labels for the two models are equal; otherwise, it returns false.

Algorithm 3 Output compatibility

1: procedure isOutputCompatible(modelReference,modelCandidate)
2: activReference ← getOutputActivation(modelReference)
3: activCandidate ← getOutputActivation(modelCandidate)
4: numLblReference ← getNumberOfLabels(modelReference)
5: numLblCandidate ← getNumberOfLabels(modelCandidate)
6: if numLblReference == numLblCandidate and activReference == activCandidate then
7: return True
8: else
9: return False

10: end if
11: end procedure

Input Compatibility. Input shape compatibility verifies whether the input shapes of two

models can be derived from one another. To perform this investigation, we flatten both input

shapes into a single-dimension vector. In case of models with more than one input, each

input is first flattened, and then they are all concatenated. Two models have compatible

input iff length(flat(ir)) == length(flat(ic)) where ir is the reference model’s input shape

and ic is the candidate model’s input shape. Algorithm 4 shows the detailed steps of input

compatibility verification.

Algorithm 4 Input compatibility

1: procedure isInputCompatible(modelReference,modelCandidate)
2: flatInputShapeReference ← getF latInputShape(modelReference)
3: flatInputShapeCandidate ← getF latInputShape(modelCandidate)
4: if flatInputShapeReference == flatInputShapeCandidate then
5: return True
6: else
7: return False
8: end if
9: end procedure
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Functional Similarity

As Figure 4.1 shows, functional similarity is investigated by first generating a set of input

data. The mechanics of data generation step can be different depending on the similarity

metric being used, which will be detailed later. Regardless of the similarity metric, however,

the input data contains float values between -1 and +1. This step is followed by getting

both models’ predictions on the generated inputs, and then measuring the similarity on the

generated inputs using each metric. The details of the similarity metrics that can be used

here, along with the details of the usage of each of them and their thresholds for deciding

about models’ similarity/dissimilarity is explained through the rest of this section.

4.4.2 Functional Similarity Metrics

To assess the functional similarity between two models, we analyze their predictions on the

same random inputs. Since the main focus of this work is on classifiers, we will focus our ex-

planation on the case of classifiers. In order to quantify similarity, we consider three metrics:

Canonical Correlation Analysis (CCA), Spearman rank correlation (ρ), and a simple overlap

metric. The choice of these metrics is based on previous similarity studies: CCA has been

used for measuring the similarity between the representations learned by neural networks in

their intermediate layers [94, 86], and Spearman correlation is a suitable similarity metric [3]

that has been used in assessing models’ functional similarity when canonical inputs are avail-

able [119]. The overlap metric is inspired by the study of code functional equivalence by

Jiang et al. [52], adapted to measure similarity; here we assume that the order of the outputs

is the same, and simply measure the degree of overlap on models’ outputs given the same

inputs. Details of each of these metrics are explained below.

CCA: CCA is a statistical method for inferring the relationship between two sets of vari-

ables, by finding linear relationships between them such that the correlation between the
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linear relationships is maximized [119, 86]. CCA has previously been used in measuring the

similarity between the learned representations of different layers of different neural networks

by feeding canonical datasets to the networks and measuring CCA on the activations of these

layers [94, 86]. CCA is very generic, and is capable of finding the relationship between two

sets of variables with different cardinalities, making it a viable choice in assessing the func-

tional similarity where the models’ output dimensions are different [119].1 The correlation

coefficient in CCA ranges from 0 to 1 [116]. In order to use CCA to measure the similarities

among classifiers, RICA calculates the CCA correlation coefficients over the output predic-

tion probability vectors of the two models over the m inputs fed to them. This produces n

correlation values {Corr1, Corr2, .., Corrn} where n is the number of output labels and Corr

is the computed correlation value using CCA. The results are then aggregated by calculating

the mean value over the n correlation values, similar to the method explained in [86]. This

mean value serves as the final similarity value used to assess the degree of similarity between

two models.

Spearman: Spearman correlation [119] is a non-parametric correlation metric (unlike Pear-

son correlation, for example) [3]. It has been used in previous studies of neural network

functional similarity using canonical inputs [119]2. Spearman correlation coefficient ranges

between -1 and 1, where positive values denote a direct correlation, negative values denote

an inverse correlation, and values close to zero (typically between -0.1 and 0.1) denote the

absence of correlation. To use Spearman correlation as a similarity metric, RICA consid-

ers the probability values reported for each output label by each of the two models as one

variable and calculates the correlation values between the corresponding outputs of the two

models across all m samples. In other words, if model m1 has n output classes {c11, c21, .., cn1}
1In the case of our work, and as explained before, the output dimensions of comparable models are never

different.
2We also considered using Kendall’s Tau correlation, which is also non-parametric [3]. However, we did

not observe much difference between the correlation values calculated with these two metrics, and therefore,
chose to use the Spearman correlation, as it is computationally faster (O(mlog(m)) compared to Kendall’s
Tau (O(m2)) [3].
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and model m2 also has n output classes {c12, c22, .., cn2}, RICA calculates n correlation values

{ρ1, ρ2, .., ρn} such that ρi = Correlation(ci1, c
i
2). To aggregate the results, RICA computes

the mean of these n correlation values and uses this mean value as the final similarity value.

Using this metric, therefore, requires the two models to have the same output shapes and

dimensions, and to interpret them in the same order, which, as explained before, is a sim-

plifying assumption of our study.,

Overlap: Finally, the last and the simplest similarity metric that is used by RICA is a

simple overlap, i.e. the number of times the two models agree on the classification of the

random inputs. Given its categorical nature, this metric is only applicable to classifiers.

In summary: CCA is the most generic metric, as it can be used to compare any two models;

our use of Spearman correlation assumes models with the same number and order of outputs;

and the simple overlap metric assumes that models are classifiers.

4.4.3 Similarity Thresholds

The similarity metrics need to have a threshold at which we classify models as similar or

dissimilar. Here, we explain the thresholds used for each of the metrics by RICA.

CCA and Spearman

For CCA and Spearman correlation, we can tune the threshold empirically using the general

and accepted guidelines for correlation ranges: a value between 0 and 0.1 is generally con-

sidered no correlation, a value between 0.1 and 0.2 is considered weak positive correlation,

between 0.2 and 0.5 is moderate and positive, and more than 0.5 is a high positive corre-

lation. For the purpose of similarity, we consider moderate and above correlation values

(values >= 0.2) as similar, weak correlation values (0.1 < values < 0.2) as uncertain, and
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values <= 0.1 as dissimilar. For Spearman metric that reports inverse correlations with neg-

ative values, we consider those as dissimilar as well, since an inverse relationship also shows

differences between the predictions. The similarity and dissimilarity regions are summarized

below. Here, S shows the final similarity value calculated using either CCA or Spearman.

Regions :


Dissimilarity Region, if S ≤ 0.1

Uncertainty Region, if 0.1 < S < 0.2

Similarity Region, if S ≥ 0.2

Overlap

For the overlap metric, the calculated similarity values show the fraction of times the two

models predict the same label over the same input. This metric is similar to accuracy where

the number of times the predicted labels match the ground truth labels is counted; in our

case, the ground truth is the reference model’s predictions and we count the number of times

the candidate model’s predicted labels match those of the reference model. One important

note here is that accuracy has been shown to be negatively affected if the underlying input

dataset has an unbalanced distribution of labels [84]. This problem is extended to the

Overlap metric as well: when the reference model’s predicted labels over the inputs have

an unbalanced distribution, the calculated Overlap values become unreliable and it will be

impossible to specify a similarity/dissimilarity threshold that works for all kinds of classifiers,

with any number of labels.

The aforementioned issue is illustrated in the two plots of Figure 4.2. These plots show

the overlap similarity predictions (y-axis) for two similar MNIST digit recognition models

against many others using the same set of unbalanced random inputs. The x-axis here
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shows the candidate models’ accuracy on the reference model’s testing dataset, therefore,

being the ground truth of similarity (the intuition here is that if the candidate model has a

high accuracy on the testing dataset of the reference model, then the two models have a high

chance of being functionally similar). As we see in the plots, in spite of the two reference

models being similar with each other, the similarity predictions calculated for them with the

other models are very different, and, even worse, they are scattered. This makes it difficult

to decide where to draw the threshold line to decide about the similarity. The situation is

even worse with Model2 where the similarity measurements for both similar and dissimilar

models reach ≈ 40%. Any chosen line can result in several false positives.

This issue is mainly caused by the unbalanced distribution of labels by the two models. It is

possible that the generated unconstrained random inputs result in a major coverage of one

(or more) of the labels by the reference model, while the rest of the labels are covered only

a few times (due to models’ biases for example). Similar to the case of accuracy, this makes

the overlap values unstable and unreliable.

In practice, we observed that with unconstrained generation of random inputs, these inputs

end up being biased towards a set of labels, therefore, endangering the specification of

similarity thresholds for the Overlap metric. Figure 4.3, for example, shows the label coverage

that a model trained on the MNIST dataset achieves on an unconstrained set of random

inputs. In this case, label 5 dominates the label coverage, and labels 0 and 8 appear very

few times. This motivates the next option for the input generation process: to impose some

constraints to the input generation process so that the reference model’s predicted labels on

the generated random inputs have a balanced distribution.

The two plots shown in Figure 4.4 show the similarities for the same two models discussed

in Figure 4.2 on balanced inputs. Here, the similarity values are clustered, and it is possible

to establish a threshold that fits both cases without false positives (the similar models have

predicted similarity values above ≈ 20%).
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(a) Model1: Random Inputs
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(b) Model2: Random Inputs

Figure 4.2: Overlap metric: random unconstrained inputs
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Figure 4.3: Frequency of labels with Unconstrained Random Inputs

In particular, if the input dataset d has m rows and is balanced with respect to the reference

model mr which has nr output classes (that is mr predicting each output class for m
nr

times

on d), then any arbitrary model, just by pure chance, can agree with mr for 1/nr times.

Therefore, when the level of agreements between mr and another model using the dataset

d is at the level of chance (/ 1/nr), the two models cannot be classified as similar. If the

agreements level is much higher than 1/nr, for example twice the level of chance (2/nr), then

something other than chance is at play and is a strong indicator that the models are doing

something similar. The upper threshold of 2/nr, however, can be too strict given model’s

imperfect accuracies. In the case of binary classifiers, for example, this threshold translates

to 100% similarity which does not happen in practice. Even the most similar models do not

agree with each other 100% of times, and their accuracies affect their agreements level. In

general, we do not know the models’ accuracies, but we know that a 100% accuracy is rare.

Therefore, the similarity threshold 2/nr should be multiplied by an empirical factor α, and

become 2α/nr. For most good models, an accuracy above 90% is expected and therefore,
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(a) Model1: Balanced Inputs
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(b) Model2: Balanced Inputs

Figure 4.4: Overlap metric: balanced inputs
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depending on whether both models’ accuracies are taken into account or only one of them, α

can have a value between 0.81 and 0.9. In our experiments, we observed that α = 0.9 works

well while still eliminating the false positives.

Based on this, when using the Overlap metric, we generate balanced random inputs, where

with n number of output classes, a similarity <= 1/n is considered dissimilar, a similarity

>= 2α/n is considered similar, and between these two is uncertain where we cannot comment

on models’ similarity with confidence. The similarity and dissimilarity ranges for this case

are summarized below. Here, S demonstrates the final similarity value calculated with the

overlap metric.

Regions :


Dissimilarity Region, if S ≤ 1/n

Uncertainty Region, if 1/n < S < 2α/n

Similarity Region, if S ≥ 2α/n

We explain how to generate balanced random inputs in Section 4.5.

4.5 Balanced Random Inputs

We generate balanced random inputs using an algorithm that we call BRINC (Balanced

Random Inputs for Neural Classifiers). The generated inputs are balanced with respect to

the reference model’s predictions, and therefore, can be used with the overlap metric to

estimate models’ similarity. Figure 4.5 shows the frequency of predicted labels for a MNIST

classification model on BRINC generated random inputs. As the plot shows, the model has

a perfectly balanced distribution of labels over this data. The workflow of BRINC algorithm
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Figure 4.5: Frequency of labels with Balanced Inputs by BRINC

is inspired by the research in fuzz testing neural network models [88, 92] and is detailed in

the rest of this section.

The process starts by generating a few seed inputs that cover the output labels in a balanced

format. DNN fuzzing techniques [88, 92] generally start with a set of seed inputs from the

model’s dataset, or generate seed inputs based on some knowledge that they have regarding

the valid inputs. In our case, in the absence of any knowledge about the model’s inputs, not

even the range of the input values, we randomly generate input vectors with values within a

given range, e.g. between -1 and 1. After generating the seed inputs, at each step, an input

is selected and its values are mutated by some percentage to generate new inputs with values

in the same range. For example, if an input vector has 784 values, a mutation percentage

of 10% results in changing 78 values. A new input is only added to the input corpus if it

satisfies two conditions: (i) it adds new coverage to the network, measured by the distance

that this input’s prediction probability vector has with the prediction probability vectors of

the inputs already in the corpus; and (ii) it maintains the balance of output labels. The first
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condition is an adaptation of measuring coverage as proposed by Odena et al. [88] where

distances among logits are calculated to keep track of the coverage. The second condition

is specific to the goal of generating balanced random inputs and therefore, being able to

use similarity thresholds that are immune to models’ biases. The details of BRINC’s input

generation procedure are detailed in the rest of this section.

4.5.1 Algorithm

• Seed inputs. The process of input generation, starts with generating a few seed inputs

and mutating them to generate new inputs. To this aim, starting with a set of initial

inputs (we included one with zero values, and one with random float values between

-1 and 1), we repeatedly mutate the seed inputs by various mutation percentages to

generate inputs that cover all the output labels.

• Next input to mutate. At each step, selecting the next input to get mutated is

done randomly from the set of inputs that predict the least frequent label at that

point. Mutating an input that predicts the least frequent label, increases the chances

that the mutant also predicts the same least frequent label, ensuring the balance of

the input dataset.

Algorithm 5 Mutate an input

1: procedure Mutate(input, range,mutPer,model)
2: inputF lat← getF latShape(input)
3: randIndexes← randomSample(inputF lat,mutPer)
4: for each index ∈ randIndexes do
5: valueAtIndex← randomFloatInRange(range)
6: input[index]← valueAtIndex
7: end for
8: return transformInputShapeToModelShape(input,model)
9: end procedure

• Mutation. Algorithm 5 shows the steps of the mutation process. First, the input is

flattened (reshaped to a vector). This is to ease the process of selecting the indexes to
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the values that are going to be changed, and having a uniform process for mutation

of inputs at any shape. Then, mutPer% of this flattened input’s values are selected

and changed to random float values. Parameter range is a tuple containing the range

for generating these values. For example, the tuple (-1,1) results in generating values

between -1 and 1. Finally, input (which now contains the mutated input) is transformed

to its original shape, which is the input shape of the corresponding model, and returned.

• Mutant acceptance. The mutant is added to the input corpus if (i) its prediction

vector’s distance to its nearest neighbor (based on the euclidean distance among the

prediction probability vectors) is more than a distance threshold, and, (ii) it predicts

the least frequently predicted label (to ensure the balance of inputs). If any of these

conditions is false, the mutant is discarded, and a new mutation is performed. There-

fore, while we try to mutate each input in a way that the mutated version also predicts

the same label, at the same time, it is ensured that the new input’s prediction proba-

bility vector is far from this input’s and all other inputs’ prediction probability vectors.

This prevents the inputs to be biased towards a specific set of prediction vectors.

• BRINC driver and parameters. Algorithm 6 shows BRINC’s input generation

procedure and its parameters. Here, distance is the threshold for the minimum Eu-

clidean distance among valid mutants. ranges contains a set of range tuples that are

used to constrain the random number generation: rather than operating on only one

range (e.g. (-1,1)), the algorithm also operates on some subranges (e.g. (-1,1), (-1,0),

(0,1)); empirically, we observed that certain models react better to inputs in certain

subranges. maxMut limits the number of mutations made in each range. maxV alid

specifies the maximum number of valid mutants to be generated in each range. These

last two parameters control the algorithm so that it changes ranges (maxMut) and

that it eventually ends (maxV alid). In the algorithm, the variable generatedCount

keeps a tally of the number of inputs generated in each range, and noNewNum tracks
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Algorithm 6 Generate balanced random inputs

1: procedure genInput(model, distance,mutPer, ranges,maxMut,maxV alid)
2: seeds← generateSeeds(model, ranges)
3: for each range ∈ ranges do
4: generatedCount← 0
5: noNewNum← 0
6: while noNewNum ≤ maxMut and generatedCount ≤ maxV alid do
7: nextToMutate, leastFreqLbl← findLeastFreqLbl(seeds)
8: mutant← mutate(nextToMutate, range,mutPer,model)
9: mutantLbl← getLabel(model,mutant)

10: distToNearest← findNearestNeighByPred(mutant, seeds)
11: if distToNearest > distance and mutantLbl == leastFreqLbl then
12: seeds.add(mutant)
13: generatedCount← generatedCount + 1
14: noNewNum← 0
15: else
16: noNewNum← noNewNum + 1
17: end if
18: end while
19: end for
20: return seeds
21: end procedure

for how many consecutive steps in a range, no new input has been generated that

satisfies the conditions. For each range, as the condition of the while loop at line 6

shows, the mutation process continues while noNewNum has not passed maxMut and

generatedCount ≤ maxV al.

4.5.2 Parameter Tuning

We tune the parameters of BRINC based on the number of inputs that we would like to

generate and the desired diversity in predictions. We found the parameter values to be

dependent on the number of labels, and in some case, the model itself. Therefore, parameter

tuning for BRINC is necessary, manual or automatic.

Generally, a large distance results in more diverse predictions but can hamper the input

generation process by preventing the mutant from covering the least frequent label. Similarly,
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Table 4.1: Summary of BRINC’s parameters.

Param Definition Suggested Value

mutPer % of the input’s values changed at each step 5% or 10%

distance Min. Euclidean distance threshold among mutants 0.001

ranges Set of ranges to constrain the numbers generation (-1,0),(0,1),(-1,1)

maxMut Limit for the num. of mutations made in each range 300

maxV alid Max. num. of valid mutants generated in each range 500 or 1000

a large mutPer results in more diverse inputs but can change the inputs drastically, hindering

the least frequent label generation. A very small mutPer, on the other hand, may result

in not satisfying the distance condition. In our experiments, we found the values 5% and

10% (and in one case, 30%) to be working acceptably. Finally, a larger maxV alid results in

generating more inputs at the expense of taking longer for the process to finish. We tried with

values of 500 and 1000, depending on the number of labels (for large number of labels, larger

maxV alid should be used since this parameter eventually defines the maximum number of

rows that are generated). For the ranges, we chose the list {(−1, 0), (0, 1), (−1, 1)}. We

experimented with other ranges as well, but did not observe major differences (even for

models trained on different ranges) so we used these ranges for the sake of simplicity. We

also tried different values for maxMut and found the value 300 to work well.

For all input generation processes with started with parameters distance = 0.001,mutPer =

5%,maxMut = 300, ranges = {(−1, 0), (0, 1), (−1, 1)} and maxV alid of either 500 or 1000

(depending on the number of output labels), and further tuned the parameters if necessary.

Therefore, we suggest starting with this set of parameters as well.

The suggested parameter values to start with are summarized in Table 4.1.
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Chapter 5

Experimental Evaluation of RICA

The evaluation of RICA is done by answering four research questions. We study if random

inputs, which are the primary choice of inputs in RICA, are suitable for DNNs functional

similarity detection (Goal 1), and what are the trade-offs in using different similarity metrics

available with RICA (Goal 2). We do this by comparing a set of models’ accuracy on 5 well-

known classification problems (i.e. their ground truth of functionality) against their RICA

similarity with reference models. We also study if RICA is capable of detecting similarity

within models for which we have no information. In addition to these two goals, we study if

RICA is capable of operating on DNN models that perform a task other than classification.

To this aim, we apply RICA on a regression task. Specifically, we investigate the following

research questions:

• RQ1: Is RICA capable of detecting similar and dissimilar models using random inputs?

• RQ2: How do various similarity metrics used by RICA compare?

• RQ3: Can RICA detect similarities within unknown models?

• RQ4: Can RICA’s effectiveness go beyond classifiers?
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5.1 D56K Evaluation Dataset

This dataset consists of 56,355 classifiers collected in the following manner. We used the

GitHub code search API 1 to look for files with .h5 extension, a widely used extension

for saved Keras [28] models2, in GitHub public repositories. In total, we obtained a list

of 340,933 h5 files, of which we were able to download 335,789. Next, we attempted to

load these models into the Keras environment to separate DNN models from other possible

objects saved in h5 files, and we identified 102,602 DNN models. After loading the models, we

recorded their input and output shapes, by analyzing them using Keras. We then clustered

the models based on their input and output shapes. Finally, since the focus of our work

is mostly on classifiers, we filtered the clustered models based on the activation function

of their last layer: we only retained models whose output layer has either a sigmoid or a

softmax function. This resulted in a total of 56,355 models clustered into 6,431 groups.

5.2 Accuracy vs. Models’ Similarity

Here we answer RQ1 and RQ2.

5.2.1 Methodology

We selected 5 known datasets – MNIST, Fashion MNIST, MNIST Reverse Color, Iris [36],

and Sonar [40, 32] – and trained classifiers on them to serve as our reference models. MNIST

is a 10 class hand-written digit classification (black digits on white background) dataset and

FMNIST is a 10 class pieces of clothing classification dataset. They both are two popular and

publicly available datasets that have extensively been used in previous research [145, 90, 93].

1https://docs.github.com/en/rest/reference/search#search-code
2There are other external storage formats as well, but we limited our search to h5, because of its simplicity.
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MNIST Reverse Color is a dataset curated by us by reversing the coloring of the background

and foreground in the MNIST dataset. Iris is a dataset that classifies types of Iris plant

into 3 classes (based on 4 features), and Sonar is a dataset that classifies sonar signals into

bouncing off either Rock or Mine, based on 60 features

We then identified the clusters within our D56K dataset whose input and output shapes

match, or are input compatible with, those of these models, and measured the accuracy of

the models fetched from the clusters on the corresponding canonical test datasets. By using

the canonical test sets, we are able to have the ground truth of the functionality of the mod-

els through their accuracy values. Empirically, we consider that when models have accuracy

above 65% on the canonical test sets, they implement a good-enough classification of those

inputs. When the accuracy falls below 50%, we consider the models to be classifying some-

thing different. In between 50% and 65% accuracy, we consider the models to be undecided,

with just a vague functional similarity. To make sure we calculate the correct accuracy for

the models, where applicable, we applied various common feature scaling techniques to the

inputs, measured the accuracy of each model on all the scaled and non-scaled datasets, and

considered the maximum accuracy value among these as the true accuracy of the model. In

the end, 16 cases fell in the undecided region of ground-truth of functionality (between 50%

and 60% accuracy on the testing dataset); we excluded those from the final calculations of

the results.

Having established the ground truth of whether the models perform the classification for the

chosen test sets or not, we then fed random inputs to both the reference models and these

models, and measured the similarities using the three metrics described in Section 4.4.2. For

generating the BRINC inputs for each reference model to be used with the overlap metric, we

tuned BRINC’s parameters as follows: for ranges andmaxMut we used {(−1, 0), (0, 1), (1, 1)},

and 300 respectively. For the rest of the parameters, we started with values recommended

in Section 4.5.2 and made small changes with the goal of generating at least 150 inputs per
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Figure 5.1: BRINC Generated Image Example

label. For the other two metrics, we generated unconstrained random inputs in range of -1

and 1. In order to show an example of what the random inputs look like in cases of image

recognition tasks, Figure 5.1 shows an example of an input generated by BRINC for a model

trained on the MNIST dataset.

5.2.2 Results

In total, 1, 039 comparisons were done per metric.

For each reference model and each metric, we show scatter plots that depict the relationship

between the models’ accuracy (x-axis), taken as the ground truth, and their similarity score

with the reference model (y-axis). These plots are shown in plots depicted in Figure 5.2

through Figure 5.9. Here, “same shape” means that the reference and its candidates have

the exact same input shapes, and “compatible shape“ means that input shapes are not

exactly the same, but compatible. The green dashed horizontal lines on each plot show

the dissimilarity and similarity thresholds for the corresponding similarity metric (in case of
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Figure 5.2: Similarity vs. Accuracy: MN Ver1 same shape as reference model
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Figure 5.3: Similarity vs. Accuracy: MN Rev Clr same shape as reference model
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Figure 5.4: Similarity vs. Accuracy: FMN same shape as reference model
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Figure 5.5: Similarity vs. Accuracy: Iris same shape as reference model

102



0 20 40 60 80 100
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

CCA

0 20 40 60 80 100
Accuracy

1.0

0.6

0.2

0.2

0.6

1.0

Si
m

ila
rit

y

Spearman

0 20 40 60 80 100
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Overlap

Figure 5.6: Similarity vs. Accuracy: Sonar same shape as reference model
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Figure 5.7: Similarity vs. Accuracy: MN Ver1 compatible shape as reference model
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Figure 5.8: Similarity vs. Accuracy: FMN compatible shape as reference model
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Figure 5.9: Similarity vs. Accuracy: CNN compatible shape as reference model
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overlap metric, the thresholds vary based on the number of output classes n). For example,

Figure 5.5 shows the accuracy vs. similarity between our trained Iris model and 376 models

we found with the exact same input shape (a vector of size 4) and output shape (a vector

of size 3); the accuracy values come from testing those real-world models with the canonical

Iris dataset, and the similarity values for each plot come from comparing these models using

the corresponding metric and random inputs. The green threshold lines are at 0.1 and 0.2

for CCA and Spearman, and at 1/3 (chance) and 2× 0.9/3 (not chance) for Overlap, given

3 output classes.

Additionally, Table 5.1 quantifies RICA’s successes and errors per metric for all of these

comparisons. The columns below ”Similarity Range” show the number of predictions that

are classified as similar according to each metric’s thresholds, therefore, showing the number

of true positives and false positives per metric. The columns below ”Dissimilarity Range”

follow a same protocol for the dissimilar predictions and list the number of true negatives and

false negatives per metric. The ”Uncertainty Range” part shows the predictions classified as

”uncertain’ according to each metric’s thresholds.

Furthermore, Table 5.2 shows the values of precision, recall, and accuracy using each of the

metrics based on the results from Table 5.1. Here, we considered any value below the simi-

larity threshold (including the uncertainty region) to be a negative (dissimilar) prediction.

RQ1: Is RICA capable of detecting similar and dissimilar models using random

inputs? As the results show, the similarities and dissimilarities are pretty much distinguish-

able using all the three metrics. Visually, that can be seen in the large clusters of each plot

on the right above the similarity threshold, and on the left below the dissimilarity threshold.

The strong precision (over 96%), recall (over 76%), and accuracy (over 76%) numbers from

Table 5.2 also attest this observation. Thus, we conclude that RICA is able to detect DNN

models’ functional similarity using random inputs.
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Table 5.1: RICA’s successes and errors per similarity metric

Reference Model

Similarity Range Dissimilarity Range Uncertain. Range

#TP #FP #TN #FN #Total

CCA Spr Ovl CCA Spr Ovl CCA Spr Ovl CCA Spr Ovl CCA Spr Ovl

MN same shp 60 72 68 0 0 0 23 23 21 4 2 2 12 2 8

MN RevClr same shp 1 1 1 6 0 0 40 99 97 0 0 0 53 0 2

FMN same shp 11 15 15 0 0 0 82 82 41 0 0 0 4 0 41

Iris 339 336 272 13 2 0 12 27 23 0 1 1 7 5 75

Sonar 60 60 25 0 0 0 1 1 1 0 0 0 1 1 36

MN compat shp 34 39 37 0 0 1 59 58 49 3 1 2 4 2 11

FMN compat shp 20 39 38 0 1 2 52 51 29 2 1 1 20 2 24

CNN compat shp 0 0 12 0 0 1 59 59 48 41 38 5 0 3 34

Total 525 562 468 19 3 4 328 400 309 50 43 11 101 15 231

Table 5.2: RICA’s Precision, recall, accuracy per similarity metric

Precision Recall Accuracy

CCA Spr Ovl CCA Spr Ovl CCA Spr Ovl

96% 99% 99% 85% 91% 76% 83% 94% 76%

RQ2: How do various similarity metrics used by RICA compare? We look at

the last row of Table 5.1 to answer this question. We see that Spearman metric has the

maximum number of true positive and true negative cases, and the least number of false

positive and uncertain cases compared to the other two metrics. The overlap metric, on the

other hand, has the least number of false negatives. These results, along with the precision,

recall and accuracy numbers from Table 5.2 show that in general, Spearman is a powerful

metric for detecting functional similarities among the DNN models.

Looking at the individual cases, however, we see that there are scenarios where the met-

rics have different behaviors. One case is the CNN vs. compat shape: the CCA and the

Spearman metrics were not able to detect any true positives in this case, while the Overlap

metric detected 12 true positive cases. A distinguishing feature of this model is that it is

a convolutional neural network model, that includes convolutional layers, while none of the
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models being compared to it (except for one) have a convolutional architecture. This shows

that architectural differences between the models being compared may pose challenges for

the similarity metrics used by RICA and can prevent them from making accurate predic-

tions. This issue is something that we will fully investigate in Section 6.1. For now, however,

the results show that the Overlap metric, is still able to detect a few true positive cases in

such scenarios, as opposed to the other two metrics that predicted almost all cases to be

dissimilar.

These results show that in general, Spearman is a suitable metric for detecting models’

similarity. In certain situations, for example where there is substantial differences between

models’ architectures (which can be checked given the model file), the overlap metric (used

with BRINC random inputs) is a more suitable choice. When compared with Spearman,

CCA is not showing superior results. It, however, has a better recall and accuracy compared

to the Overlap metric, while Overlap has a better precision.

We also discuss some interesting cases that we observed during these comparisons.

MN Rev Clr vs. same shape: One interesting observation here pertains to the Spearman

metric that has identified MN Rev Clr to have an inverse relationship with several models

(negative correlation values), reflecting the inverse coloring of the training datasets. The

other observation is one model with accuracy > 90% on MN Rev Color’s dataset and a high

similarity value with this model using all three metrics. This case is circled in all scatter

plots of Figure 5.3. Since MN Rev Color’s training data was curated by us, we did not expect

to find any similar models. So we investigated this case’s GitHub repository and its training

code, and it turned out that the same transformation that we applied to the MNIST dataset

is applied on this model’s dataset. This model is also circled in the Spearman scatter plot of

Figure 5.2: the Spearman metric calculated a similarity of ≈ −0.25 between this model and

the MN Ver1 reference model, showing a moderate inverse relationship between these two.
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CNN vs. compatible shape: The odd case in this group is a model with very low

accuracy (less than 20%) that scored above the similarity threshold only with the overlap

metric, circled in the Overlap scatter plot of Figure 5.9. This could be evidence of a Type-1

error (false positive), so we analyzed this model’s GitHub repository: the analysis revealed

that this is a case of a model that performs digit recognition with digits similar to what

exist in the MNIST dataset, but trained on a different dataset created by the author of that

project. As such, the overlap metric with the use of BRINC generated input was able to flag

it as similar to our CNN model. The other two metrics did not detect this case.

5.3 Unknown Models

Here we answer RQ3 about the possibility of finding similarities among unknown models us-

ing RICA. To this aim, we performed a set of experiments to find the similarity scores among

the 56,355 classification models that we collected from GitHub (D56K dataset). Details of

these experiments are described below.

5.3.1 Overall Similarity Results

Methodology

The analysis was done in an intra-cluster manner, meaning that all models inside a cluster

(each cluster includes models with the same input and output shapes) were paired together

and their similarity with each other was computed. This limited the scope of the experiments

to only comparing the models that have the same input and output shapes, and therefore,

helping in managing the scale of the experiments. As a result of this, clusters that only

included one model were skipped. It should be noted that models not in the same cluster
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can also be candidates of similarity, but those cases were not considered here to manage the

scope of the experiments.

The primary similarity metric used in these experiments was Spearman since as attested by

the presented experiment results, it is the most precise metric among the metrics used with

RICA. In cases were Spearman correlation produced a NaN value (cases where the standard

deviation of one of the prediction probability vectors of the models being analyzed is zero

for all given inputs), we used CCA as the similarity metric. If CCA also returned NaN ,

then such cases were discarded.

Results

Through the course of these experiments, there were models for which we could not get

their predictions (it either took a long time to get their predictions or there were errors with

models). Such cases were removed from the experiments. In total, in the end, 7, 368, 065

comparisons were done. After removing the rows with NaN similarity values, 6, 963, 916

rows were left. Among these, 6, 696, 213 similarity values were computed with the Spearman

metric and the rest of them (267, 703) were computed with CCA. Table 5.3 shows a statistical

overview of these comparisons. As the table shows, 26% of the comparisons resulted in

detecting similar models, 63% detected dissimilar models, and only 11% of the comparisons

resulted in cases falling into the uncertain region of similarity. These results show that in

89% of cases RICA was able to make a decision about the models’ similarity with high

certainty, which is very promising result, attesting the applicability of this method in real

world scenarios when no information about the models being analyzed is available.

Figure 5.10 shows the distribution of the calculated similarity values. The two dotted vertical

lines show the dissimilarity and similarity threshold lines. As the plot in this figure shows,

most of the similarity values lie between 0 and 0.25. We also found cases where the similarity
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Table 5.3: Similarity Statistics for GitHub Models

Similarity Status Number Percentage

Similar 1,815,671 26%

Not similar 4,393,832 63%

Uncertain 754,413 11%

Total 6,963,916 100%
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Figure 5.10: Similarity values for GitHub models

values were equal to one (100% similarity) attributing to models that are duplicates of each

other in terms of their ultimate functionality. In total, 67, 548 of such exact clone cases

where found which accounts for ≈ 0.01% of total comparisons (after removing NaN values).

5.3.2 Manual Analysis

To further understand how RICA works in detecting similarities among the models that we

have no or little knowledge about and dive deeper into the reported similarity values, we

randomly selected two clusters from our D56K dataset and one classifier from each cluster as
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the reference model. We then calculated similarities between each reference model and other

models in the cluster, using the two metrics that have the highest precision: Spearman and

Overlap. For one reference model, a raw dataset file with string and categorical variables

was found in its GitHub repository along with code transforming these feature values to

numerical values appropriate for the model. Therefore, although a dataset is available, using

it needs unknown processing steps and human effort that are hard to automate. In the

case of the other reference model, we did not find any related dataset files in the repository.

Figure 5.11 shows the similarity values calculated (x-axis) and their frequencies (y-axis) for

the model with Raw data available, per metric. The dashed vertical lines show each metric’s

dissimilarity and similarity thresholds. Figure 5.12 shows the same information for the model

with no available data. Parameter tuning for BRINC (for generating inputs suitable for the

Overlap metric) was done similar to Section 5.2.

Raw Data Available: The cluster includes 34 models, where the input is a vector of 26

and the output is binary. The reference model’s repository is aimed at “telecommunication

customer churn detection”. Based on Figure 5.11, Spearman detected 7 similar cases. From

these, the Overlap metric detected one as similar, and placed the rest in the uncertainty

region, two with a high similarity (over 0.8) and the other four with ≈ 0.61 similarity. For

the three models with highest similarities by both metrics, their repositories indicate churn

prediction, hence, we considered them to be true similar cases. The repositories for the

other four models describe them as aimed at people’s distress recognition or analysis, and

therefore, we did not consider them to be true positives reported by Spearman.

No Data Available: The cluster has 56 models with input shape of 48×48×1 and output

shape of 6. The reference model’s repository describes it as a “facial emotion recognition”

project. As the plots in Figure 5.12 show, both metrics detected five exact matches (100%

similarity): in three cases, the repository’s description mentions face or emotion recognition,

and in two cases, no information is given. The Overlap metric detected other similar cases
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Figure 5.11: Similarity values for Raw Data Model
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Figure 5.12: Similarity values for No Data Model
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too: one with ≈ 0.42 similarity where the repository’s description is emotion recognition

and six cases with similarities > 0.3. In three cases, the repository mentions either face

or emotion recognition, and in the rest, no description was found. These cases were not

detected as similar by the Spearman metric.

Based on the results from the experiments conducted on unknown models in this section,

we can answer RQ3: Can RICA detect similarities within unknown models? As

attested by the results, RICA is able to detect similarities among the models for which we

do not have any (or have little) information, with the use of random inputs.

5.3.3 Discussion

As the results presented in this section show, random inputs are a viable replacement of

canonical test inputs for purposes of similarity detection of neural classifiers. The three

metrics studied and used by RICA are capable of detecting similarity/dissimilarity quite

accurately. Spearman correlation shows the best results in most experiments. Spearman is

also easy to use, as it needs simple unconstrained random inputs, and produces results bound

to the range of [-1,+1] with well established dissimilarity/similarity thresholds. This metric

is also able to detect inverse relationships between the models. CCA is also easy to apply,

and it is similar to Spearman correlation in terms of inputs and thresholds, and produces

similarity results in the range of [0,1]. The overlap metric is more complicated to apply, as

it requires the generation of balanced random inputs. However, this metric was shown to

perform better than the others in the comparison of models with substantial architectural

differences.

All in all, as the results show, the three metrics complement each other; there are cases where

one metric detects similarity and the others report values that fall within uncertainty ranges.

Therefore, for the most accurate results, using a combination of the metrics is recommended,
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and the final conclusion can be derived based on the results of all.

5.4 Similarity Analysis of Regression Models

As the experiments presented in this chapter demonstrated, RICA is very effective in finding

the functional clones of DNN classifiers. Since the two metrics of Spearman and CCA used

with RICA are generic enough to be applied to other types of DNN models as well, we

ran another series of experiments to measure the effectiveness of RICA for other types of

DNNs. We selected a regression problem for this purpose and since Spearman metric was

shown to be the most precise metric, we experimented with this metric. The results of these

experiments, which are presented in this section, help us answer RQ4 about the capability

of RICA on working beyond classifiers.

5.4.1 Dataset

We used the Boston housing prices dataset [43] to test RICA on a regression problem. This

is a problem to predict housing prices in Boston based on a set of 13 features. The target

price variable in this dataset ranges from 5 to 50. We loaded this dataset from the Keras

library.

5.4.2 Experiments

Methodology

To perform the experiments, we trained a feed forward fully-connected network on the Boston

housing prices dataset to serve as our reference model. We then queried the initial models
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dataset that we downloaded from GitHub (before filtering out the models to only keep the

classifiers for creating the D56K dataset) for models that fit the input and output shapes of

this dataset, and we were able to find 88 models to serve as our candidate models.

Similar to the experiments presented for the classification models, we need to establish a

ground truth of similarity to compare the similarity predictions with. The accuracy metric

is not applicable here since the target y values are continuous integer values, and accuracy

is best fitted for problems where the target value is of categorical format. A suitable metric

for regression problems is R2 which measures the amount of variability in the dependent

variable that can be explained by the model [118]. In other words, it explains the quality

of predictions by measuring the amount of variability observed in them. To this aim, it

divides the sum of the squared of the prediction error by the total sum of the square where

the calculated prediction is replaced with mean [118]. R2 is calculated using the following

formula.

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳi)2

(5.1)

R2 values typically range from 0 to 1 with values closer to 1 showing a better fit between

the predicted and the actual value. It can, however, assume negative values as well if the

model fits the data very poorly. We calculated R2 for all the candidate models using the

testing portion of the Boston housing prices data and used this value as the ground truth of

similarity. In calculation of R2, similar to previous experiments, we applied various common

feature scaling and normalizations to the data and calculated R2 using all of the resulting

datasets, and used the maximum value among all these as the final value. In cases where the

R2 became negative, we substituted the calculated value with zero for easing the visualization

and interpretation of results.
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Results

Figure 5.13 shows the similarity values calculated between the reference model and all the

candidate models with RICA using the Spearman metric (y-axis) versus the ground truth

R2 values (x-axis). As the plot shows, in majority of cases, the similarity values agree with

the calculated R2 values. For larger similarity values, we see that the majority of R2 values

are more than 0.6, and for similarity values less than 0.1 (the threshold of dissimilarity), the

R2 values are mostly zero.

There are, however, two cases with similarity values higher than 0.2 (the threshold of sim-

ilarity) where the calculated R2 values are zero. In one case, the calculated similarity is

≈ 0.76 and in the other one, it is ≈ 0.37. We investigated both of these cases by looking at

their GitHub repositories. In the case of the model with similarity value ≈ 0.76, the GitHub

repository showed that the model is aimed at predicting Boston housing prices; however, the

data was loaded from an external source and the separation of training and testing sets was

done through a randomized process of shuffling and selecting row indexes to be included in

training/testing sets. In addition, the ranges of numbers (both for features and the target

y value) were different from our dataset and all its rescaled versions. Therefore, in this

case, we concluded that RICA correctly predicted the model to be similar to our reference

model (as they both are aimed at the Boston housing prices problem), but due to differences

between the training data used for this model and our reference model, the R2 value is not

representative of the ground truth of similarity. This is similar to the case of the CNN model

aimed at MNIST classification which was discussed in Section 5.2.

In the case of the other model in Figure 5.13 with similarity value ≈ 0.37, we were not able

to find any information from the model’s GitHub repository that could explain the low R2

value.

The results presented here us answer the following research question: RQ4: Can RICA’s
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Figure 5.13: Similarity values vs. R2 for Boston housing prices models

effectiveness go beyond classifiers? The results demonstrate that in addition to clas-

sification which was extensively studied in this dissertation, RICA has the potential to be

applied to other tasks targeted by DNN models. Specifically, we presented experiments that

confirm its applicability in regression problems.

5.5 Threats to Validity

In all the experiments with the classification models, we assumed that the ordering of output

labels is the same for the reference and the candidate models. Although it is unlikely to have

different orderings, specifically for well-known datasets, the existence of such cases can affect

our results, both the calculated accuracy of the models and the similarity predictions.
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Chapter 6

Analytical Discussions on RICA

In this chapter, I present a set of experiments aimed at diving deeper into the capabilities

of RICA.

In Section 6.1, I detail a set of sensitivity analysis experiments whose goal is to understand

how the randomized nature of inputs and the models’ various properties, which are mostly

related to their training, affect RICA’s similarity results. As such, the following research

questions will be investigated:

• RQ5: What is the effect of RICA’s input generation randomization on models’ response

to similarity detection?

• RQ6: What is the effect of the models’ characteristics (training randomization, training

parameters, accuracy, architectures, training datasets) on their response to RICA?

Next, I present a taxonomy for DNN clone types that we derived based on our observations

from the experiments that we did with RICA, and discuss what clone types RICA is capable

of detecting. These clone type categories are inspired by the clone types presented in the

literature for code clones, which were discussed in Chapter 3 of this dissertation.
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6.1 Sensitivity Analysis

6.1.1 Sensitivity Analysis Dataset (D14)

We carry out a set of sensitivity analysis experiments where we study models’ functional

similarity with respect to various independent variables related to models’ training and input

randomization, to answer RQ5 and RQ6. For these experiments, we trained 14 models using

MNIST (10 class hand-written black digit classification on white background) and FMNIST

(10 class pieces of clothing classification) datasets. These models are presented in Table 6.1,

and are grouped in clusters in a way that the models in each cluster have one varying

property with respect to the first model, MN Ver1, which we consider to be the reference

model. The group “Instances” consists of two identical models in all aspects, except for

being trained separately, therefore being subjected to the randomness of the training process.

The next group, “Train Params”, consists of models with different training parameters as

to the reference model, the “Architectures” group includes models that have architectural

differences with respect to the reference model, and the “Datasets” group consists of models

that have been trained on different datasets, with varying levels of similarity with the training

data of the reference model. The column “Acc” shows the accuracy of models on their own

test data, and the column “X-Acc” is the accuracy of the models on the reference model’s

test data. X-Acc, therefore, serves as the ground truth for similarity of the models with

respect to the reference model. Therefore, MN Rev Color (which has a reverse coloring

of background and foreground as to the reference model) and FMN are considered to be

dissimilar to the reference model as they both have a very low X-acc. All of these models

classify 28× 28 gray-scale images, reshaped to vectors of 784, into one of 10 possible classes.
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Table 6.1: Sensitivity analysis: trained models (D14 dataset)

Group Name Description Acc X-Acc

Instances
MN Ver1 (Ref)

2 layers fully connected with ReLU in 1st layer,

#epochs=10, learning rate =0.001,

MNIST training data scaled to (0,1)

98.16% 98.16%

MN Ver2
Same architecture, training params,

and training data as Ref model, trained separately
98.15% 98.15%

Train Params

MN Long Tr
Same architecture, training data, and learning rate

as Ref model, trained for 50 epochs
98.35% 98.35%

MN LR01
Same architecture, training data, and epochs as

Ref model, learning rate=0.01
97.80% 97.80%

MN LR18
Same architecture, training data, and epochs as

Ref model, learning rate=0.18
75.92% 75.92%

Architectures

MN Sig

2 layers fully connected with Sigmoid in 1st layer,

training parameters and training data same as

Ref model

97.68% 97.68%

MN Deep NN

4 layer fully connected with ReLU in the 1st 3

layers, training parameters and training data

same as Ref model

98.21% 98.21%

MN CNN

CNN with 2 convolution, 2 pooling, and 2

fully-connected layers, training params and

training data similar to Ref model

99.18% 99.18%

MN CNN2
Same architecture, training params, training

data as MN CNN, trained separately
99.06% 99.06%

Datasets

MN 1st Batch

Same architecture and training params as Ref

model, trained on MNIST training data’s 1st 30K

rows in the scale of (0,1)

97.55% 97.55%

MN 2nd Batch

Same architecture and training params as Ref

model, trained on MNIST training data’s 2nd

30K rows in the scale of (0,1)

98.39% 98.39%

MN No-scale

Same architecture and training params as Ref

model, trained on MNIST training data in

range of (0,255)

97.21% 90.74%

MN Rev Color

Same Architecture and training params as Ref

model, trained on MNIST black background

& white digit scaled to (0,1)

95.27% 1.67%

FMN Model

Same architecture and training params as Ref

model, trained on Fashion MNIST training

data scaled to (0,1)

88.88% 8.35%
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6.1.2 Sensitivity Analysis Results

In this section, I present a set of experiments using Dataset D14 to answer RQ5 and RQ6.

To answer these research questions, we present Figure 6.1 and Table 6.2. Figure 6.1 shows

the box&whiskers plot of the similarity (for each metric) between the reference model (MN

Ver1) and all the other models of dataset D14. Each box corresponds to similarity val-

ues computed using 10 different random input datasets (unconstrained inputs for CCA and

Spearman, and BRINC inputs for Overlap). The parameter values to generate BRINC in-

puts were: distance = 0.001,mutPer = 5%, ranges = {(−1, 0), (0, 1), (−1, 1)},maxMut =

300,maxV alid = 1000.

Table 6.2 shows the results of additional per metric similarity measurements when taking

each of the models under study as the reference model. Black cells are 100% similarity;

grey cells are values above the similarity threshold of each metric, white cells are values

below the dissimilarity threshold, and red cells fall in the uncertainty zone between these

two thresholds. Except for the values below ”MN Ver1” column, which corresponds to the

medians in Figure 6.1, all numbers are single-run experiments.1 In explaining our findings,

we will refer to both Figure 6.1 and Table 6.2.

RQ5: What is the effect of RICA’s input generation randomization on the mod-

els’ response to similarity detection? We look at the variations of similarity results

when computed using 10 separately generated random inputs to answer this question. Fig-

ure 6.1 shows that the effect of randomization is negligible for CCA and Spearman metrics.

The boxes corresponding to these two metrics are small with minimum, maximum, and me-

dian being almost the same. For Overlap metric, we see some variability within the boxes,

which is, however, bound to relatively narrow bands. That can be seen in the values of the

1st and 3rd quartiles, as well as in the min and max values for each box. In particular, we

1Some of the red cells may escape the uncertainty zone with further measurements.
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notice that the variability is lower for lower values of similarity, and that, for the higher

values of similarity, the minimum is very far from the thresholds. This is a good finding

from an engineering point of view, as it shows that one single run of input generation will

often be enough to determine models’ similarity. When the first measurement falls close to

the thresholds, it may be necessary to repeat the measurements and take the median as the

best approximation.

RQ6: What is the effect of the models’ characteristics (training randomization,

accuracy, architectures, training datasets) on their response to RICA?

Training randomization: We look at the “Instances” group, MN Ver1 and MN Ver2,

two virtually identical models with virtually identical accuracies to investigate this. As

Figure 6.1 shows, Spearman and Overlap predicted the highest median of similarity for

these two models, and CCA predicted one of the highest, as we expected. Therefore, training

randomization does not show to have affected the results. Additional evidence of the low

sensitivity of this independent variable can be seen in Table 6.2 for MN CNN and MN CNN2:

the similarity between them and the other models is low, but between the two of them it is

well above the similarity threshold for all three metrics.

Training parameters: Looking at the models in “Train Params” group in Figure 6.1, we

see that increasing the number of epochs (MN Long Tr) doesn’t seem to have a strong effect

on the measured similarity. The min, median, 1st quartile, and 3rd quartile are very close to

the those observed for MN Ver2 for all three metrics. The learning rate (MN LR01 and MN

LR18), however, seems to have a measurable effect. For MN LR01, the similarity values in

are still well above the similarity threshold, but for MN LR18, the numbers are much lower.

The reason may be that increasing the learning rate makes the models converge faster and

this may hurt their generalization abilities.

Models’ accuracy: Most of the studied models have accuracies > 95%, with two excep-
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tions: MN LR18 (≈ 76% accuracy), and FMN (≈ 89% accuracy). Figure 6.1 shows that

the median value of MN LR18’s similarity with the reference model is either close (Spear-

man) or inside (CCA and Overlap) the uncertainty region. For FMN model that has a

better accuracy, we see that the median values are correctly below the dissimilarity thresh-

old. Looking at column FMN in Table 6.2, we see that CCA and Spearman have always

predicted the expected similarity results for this model and overlap has uncertain results in

some cases, which are, however, mostly close to the dissimilarity threshold. This means that

the predicted similarity values can be sensitive to the accuracy of the models if the accuracy

is sufficiently low. The reason can be related to the fact that low accuracies hurt models’

prediction capabilities.

Architectures: The Architectures group includes two models (MN Sig and MN Deep)

with minor architectural differences with the reference model, and two models (MN CNN

and MN CNN2) with substantially different architectures with the reference model, as they

include convolutional layers. Figure 6.1 shows that for the models with minor differences

(MN Sig and MN Deep), the medians of similarity are well above the similarity threshold.

The similarity values for CNN models, however, are barely above the chance threshold for the

overlap metric, and always in the dissimilarity region for the other two metrics. When the

CNN models are used as queries (columns MN CNN and MN CNN2 in Table 6.2), similarity

predictions are still mostly wrong, except between the two CNN instances and some cases

of overlap metric. This shows that similarity detection with RICA using random inputs can

fail to compute accurate similarity measurements when the architectures are substantially

different. The Overlap metric might be able to detect some similar cases in these situations.

Training datasets: Looking at the Datasets group in Figure 6.1 (MN 1st B onward), we

see that similarity calculations are relatively robust with respect to functionality-preserving

training data changes (MN 1st B, MN 2nd B, MN No-scl), and are correct in classifying as

dissimilar the models trained on data that produces functionally different classifiers (MN
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Rev Clr and FMN). This can also be seen in Table 6.2: for the first three models of the

Datasets group, the cells are most gray (except for when comparisons are made with CNN

models), and for the the last two models, the cells are mostly white.

6.2 Taxonomy of DNN Clones

In developing source code clone detectors, a widely accepted taxonomy of clones [103, 123]

has been quite helpful. Neural network models are different from human-written code, and

do not fit that taxonomy. However, the study of similarity of models can benefit from the

classification of types of neural clones. Here, we suggest a taxonomy that helps us explain

our targets and limitations.

Type-CC : Type-CC clones are models whose outputs agree 100% on any and all compatible

inputs. This scenario happens when the models’ networks, weights and biases are exactly

the same, or differ only in dead neurons. In other words, “carbon copies.”

Type-S : Type-S clones are structural clones, where the architecture of the models is similar,

but the models can perform different functions due to significant differences in training

datasets. Type-S clones can be checked by inspecting the structure of the networks.

Type-SF : Type-SF clones have similar architectures (Type-S) and also perform similar func-

tions. With black boxes such as DNNs, Type-SF clone detection requires an input dataset

for testing functions.

Type-F : Type-F clones perform similar functions, but have considerably different architec-

tures – different number of layers, different activation functions, different types of layers,

etc.

Type-S detection is trivial; the target of our work is the detection of the other types of

129



clones. RICA (with its use of three studied metrics along with random inputs) was shown to

perform well for Type-CC and Type-SF. It was also shown to be capable of detecting Type-F

clones in cases when the architectural differences are not substantial. As the architectural

differences become significant, it becomes harder for RICA to detect similar functionality,

and it starts reporting false negatives, as we observed in comparing fully-connected neural

network models with CNN models. Further research is necessary in the realm of Type-F

clones.
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Chapter 7

Conclusions

7.1 Dissertation Summary

There has been an increasing amount of interest in software clone detection in recent years,

for the many applications that clone detection brings. Recent work in this area has focused

on proposing novel techniques that can detect clones that have no or low syntactic similarity

but are semantically similar. Such clones are often called functional clones.

On the other hand, we are also observing a continuous growth in AI and machine learning

areas. This unprecedented advancement in artificial intelligence has resulted in the integra-

tion of machine learning, and majorly, neural network models in different kinds of software,

ranging from simple mobile apps to more sophisticated systems such as self-driving cars. As

neural network models are more and more being integrated in software systems, and sub-

sequently, specifying various functions of these systems, the need has arisen for functional

clone detection techniques to consider these models in their analyses.

In this dissertation, I first reviewed previous work in the area of code clone detection and
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DNN similarity measurement. I then briefly reviewed Oreo, a tool to find clones in the

twilight zone, which is the area of clone types where syntactic similarity decreases while

semantic (or functional) similarity is preserved. I also presented a study on the precision of

code clone detection tools which highlighted the impact of considering various clone types

when doing precision measurements. This study revealed the significance of performing

precision studies on Type III to Type IV clone types.

I also formulated and discussed the problem of finding functional similarities among neural

network models in the absence of canonical inputs, and proposed a method named RICA for

this purpose. RICA generates random inputs to be used in lieu of canonical inputs for the

purpose of similarity detection, and measures models’ similarity by analyzing their outputs

on this input. I extensively studied three similarity metrics, namely Spearman, CCA, and

Overlap, that can be used with RICA for the purpose of quantifying the similarity of models

based on their outputs on random inputs. To the best of our knowledge, this is the first

large-scale study aimed at this problem. I also introduced a method, named BRINC, for

generating balanced random inputs for classifiers to be used with the Overlap metric.

I presented several experiments that showed the effectiveness of RICA. As a part of these

experiments, I curated a dataset of over 56K DNN classifiers from GitHub and clustered

them based on their input and output shapes. Results of the experiments performed using

this dataset demonstrated that similarity detection of DNN models using random inputs

is possible, and that all three studied metrics can provide promising results, the Spearman

metric, however, stood out, both in terms of ease of use and the overall results. Furthermore,

I presented additional experiments to show how RICA can be applied to problems other than

classification. To this aim, I applied RICA on a regression problem. As the results of all

the conducted experiments, RICA was shown to be an effective method for DNN models

clone detection. Finally, I presented a sensitivity analysis and a taxonomy of clone types

that highlighted RICA’s scope and limitations.
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7.2 Future Work

DNN functional clone detection is a novel research area that can be studied in numerous ways.

The work presented here, specifically, can be extended by applying the approach followed by

RICA on other types of DNN models and investigate any adaptations that might be needed

in those scenarios. These adaptations can range from different ways of generating inputs

to using other similarity metrics. Another line of future work is to investigate how RICA

can be improved to increase its accuracy for cases where there is substantial architectural

differences between the models being analyzed. This would ease the detection of Type-F

neural clones. Possible solutions range from other ways of generating inputs to using other

suitable similarity metrics.

As mentioned earlier, one use-case of RICA is in model search. An interesting line of future

work is to build a model search tool using RICA and study the effectiveness of this tool in

various scenarios, such as transfer learning. Furthermore, going forward, DNN model clone

detection will need to be combined with conventional clone detection tools. This will expand

the applicability of these tools so that they can be applied on AI-enabled software.
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