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ABSTRACT OF THE DISSERTATION 

 

Wearable ultrasound systems for operator-free healthcare monitoring 

 

by 

 

Muyang Lin 

 

Doctor of Philosophy in Nanoengineering 

University of California San Diego, 2024 

Professor Sheng Xu, Chair 
 

Medical ultrasound is a powerful tool for diagnosis. However, conventional ultrasound 

devices suffer from operator dependency and do not allow long-term usage. Recent advances 

in wearable ultrasound technologies have demonstrated the potential for hands-free data 

acquisition, but technical barriers remain as these probes require wire connections, can lose 

track of moving targets, and create data-interpretation challenges. Here, I report a fully 



 

xiii 

integrated autonomous wearable ultrasonic-system-on-patch (USoP). A miniaturized flexible 

control circuit is designed to interface with an ultrasound transducer array for signal pre-

conditioning and wireless data communication. Machine learning is used to track moving tissue 

targets and assist the data interpretation. I demonstrate that the USoP allows continuous tracking 

of physiological signals from tissues as deep as 164 mm. On mobile subjects, the USoP can 

continuously monitor physiological signals, including central blood pressure, heart rate, and 

cardiac output, for as long as two hours. This result enables continuous autonomous 

surveillance of deep tissue signals toward internet-of-medical-things.



 

1 

INTRODUCTION 
 

With decades of development in probe fabrication1,2, circuitry design3, and algorithm 

optimization4,5, medical ultrasonography6 can qualitatively and quantitatively acquire a broad 

range of physiological information from the human body7,8, including anatomical structures9, 

tissue motion10, mechanical properties11, and haemodynamics12. Compared with other medical 

imaging methods13, such as X-ray computed tomography14 and magnetic resonance imaging15, 

ultrasonography is safer, less expensive, and more versatile. However, the accessibility and 

accuracy of ultrasonography face several technical challenges. First, common ultrasound probes 

are bulky and wired to large control systems, which limits their usage to centralized facilities. 

Second, those probes need manual placement and maneuvering and require the subjects to remain 

motionless, introducing operator-dependency. Third, the interpretation of sonographic data 

requires medical professionals with specialized training and is labor-intensive and error-prone.  

 

Recent advances in point-of-care ultrasound systems16 have substantially reduced the 

device size. However, they either need manual operations3, or require bulky rigid circuits17 because 

ultrasound hardware typically requires high power and high bandwidth. The use of bulky rigid 

probes and circuits create difficulties to cover a large area and conform to highly-curved body 

surfaces. Emerging wearable ultrasonic probes leveraging soft structural designs can naturally 

conform to the skin and acquire deep tissue signals in a hands-free manner18-20. Alternatively, 

integrating rigid ultrasound chips with soft adhesive materials can achieve a reliable interface on 

the human skin21. However, these wearable probes all require cumbersome cables for power and 

data transmission3,21, which substantially limits the subjects’ mobility, making surveillance 

challenging during dynamic tests or normal daily activities. Developing a fully integrated 
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ultrasonic probe with soft front-end circuits has yet to be demonstrated22,23. Additionally, current 

wearable ultrasound technologies can lose track of a target tissue during subject motion, because 

the device on the skin surface shifts its position relative to deep tissues. Thus, they require frequent 

manual repositioning and only allow point-in-time examinations3,24. Moreover, with the large 

amount of data generated from continuous surveillance, the front-end circuits and back-end 

processing units would be overwhelmed. Therefore, a critical milestone in the development of 

wearable ultrasound technology is to realize a fully integrated wireless system that can track a 

moving target and automate data acquisition and processing. 

 

Here, I report a fully integrated autonomous ultrasonic-system-on-patch (USoP). The 

USoP integrates the ultrasonic probe and miniaturized wireless control electronics in a soft, 

wearable format, which overcomes the above-mentioned limitations. Multiple channels of deep 

tissue signals acquired from the subject are conditioned and preprocessed on-board, then wirelessly 

transferred to a backend receiver, where they are analyzed by a customized machine learning 

algorithm. When the USoP on the skin moves relative to the target tissue, the algorithm classifies 

the data and selects the best channel in real time, yielding a continuous data stream from the target 

tissue. Therefore, this technology allows continuous monitoring of deep tissue signals during 

human motion. The fully integrated autonomous USoP eliminates the operator dependency of 

conventional ultrasonography, standardizes the data interpretation process, and therefore expands 

the accessibility of this powerful diagnostic tool in both inpatient and outpatient settings. 
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Chapter 1 Design of the hardware system 

 

The USoP hardware consists of an ultrasound probe and control electronics which are 

fabricated in a miniaturized, soft format (Fig. 1.1a). The ultrasonic probe is made of piezoelectric 

transducers, backing materials, serpentine interconnects, and contact pads, similar to previously 

reported structures19,20,25. This soft probe design reduced noise coupling by isolating the signal line 

from the skin surface (Fig. 1.2). A silicone elastomer with a low modulus of 69 kPa is used for the 

probe-skin interface, which ensured intimate contact between the transducers and skin, therefore 

enable gel-free acoustic sensing19 (Fig. 1.3).  

 
Figure 1.1: Overview of the fully integrated USoP. a, A photo of the encapsulated USoP worn on 

the chest. The inset shows the folded USoP. b, Design of the USoP, including a stretchable 

ultrasonic probe, a flexible control circuit, and a battery. The ultrasonic probe consists of a 

piezoelectric transducer array, serpentine interconnects, and an anisotropic conductive film 

(ACF) (upper left). The exploded view of the circuit shows two parts: an AFE and a DAQ 

module. The two modules are connected by serpentine electrodes, which allow the entire circuit 

to be folded for a smaller footprint. A smartphone application is designed to host the data stream 

from the USoP. The smartphone can also serve as a relay to transmit the data to a cloud server 

for further analysis (lower right). c, Block diagram of the USoP showing the flow of analog 

impulse, analog echo, and digital signals. The AFE senses pulse-echo to generate ultrasonic 

signals, and the DAQ samples signals and wirelessly transmits the data to a smartphone for 

processing and display. d, B-mode imaging of the carotid artery (CA) and jugular vein (JV), 

while the subject is performing the Valsalva maneuver to dilate the JV (left). M-mode imaging of 

the pulsation pattern of CA walls (right). 
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Figure 1.2: Probe layout designs for reducing noise coupling. a, When the signal electrode faces 

the skin, the parasitic capacitor Cs can directly conduct the in-band noise to the amplifier, 

resulting in a high noise floor. b, When the ground electrode faces the skin, the capacitor Cg will 

short the noise signals to the ground without interfering with the signal line. As a result, the 

received radiofrequency signal will have a cleaner baseline. 

 

 
Figure 1.3: Radiofrequency signals collected from the carotid artery with and without gel. The 

arterial wall echoes acquired with gel (a) and without gel (b) were both strong and 

distinguishable. The results showed the echo amplitude would decrease by less than 15% when 

the gel was not applied. Therefore, gel-free measurements experience minimal signal 

degradation. 
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The probes are degisned with center frequencies from 2 MHz to 6 MHz to achieve the 

desired bandwidth, axial resolution, and penetration. The bandwidth is determined as the -3 dB 

frequency band of the pulse-echo response, spatial resolution as the full width at half maximum of 

the pulse-echo response, and penetration depth as the -3 dB attenuation point in tissues. All soft 

probes can achieve a relative bandwidth of ~50%, which is similar to a commercial probe (Fig. 

1.4). The 2 MHz transducers achieve a depth of ~164 mm with an axial resolution of ~600 μm for 

targeting visceral organs (e.g., heart and diaphragm). The 4 MHz transducers achieve a depth of 

~78 mm with an axial resolution of ~330 μm for targeting major arteries (e.g., aorta, carotid, and 

femoral arteries). The 6 MHz transducers achieve a depth of ~9 mm and an axial resolution of 

~230 μm for targeting smaller peripheral arteries (e.g., radial and brachial arteries). To achieve 

desired beam profiles, three probe layouts are customized: disc, linear array, and two-dimensional 

array, for penetrative, wide, and narrow beam, respectively (Fig. 1.5).  

 
Figure 1.4: Characterizing bandwidth, axial resolution, and penetration of the stretchable 

ultrasonic probes. a, Pulse-echo response and bandwidth of the probes with three frequencies. 

The full width at half maximum (FWHM) is labeled to show the axial resolution of each probe. 

The 2 MHz, 4 MHz, and 6 MHz can achieve 604 μm, 333 μm, and 229 μm resolution, 

respectively. Three probes could achieve a relative bandwidth of ~50% to their center 

frequencies at -3 dB. b, The pulse-echo response of a commercial ultrasound probe with a center 

frequency of 3 MHz, which could achieve a relative bandwidth of 42.3%. 
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Figure 1.5: Layout and beam profile designs of three soft probes. a, A cross-sectional view of the 

stretchable probe design. The transducer and the backing layer are sandwiched by two layers of 

electrodes (ground (GND) and signal layers). A vertical interconnect access (VIA) is used to lead 

the ground electrode to the signal layer for connection. b, The two electrodes for the disc probe. 

The electrodes connect 112 transducers in parallel. c, The two electrodes for the linear array 

probe. The signal layer consists of 32 channels, and each channel has 8 pixels connected in 

parallel. d, The two electrodes for the 2D array probe. 32 transducers are grounded by one 

bottom electrode. The signal layer is distributed into four layers. e, Simulated acoustic 

transmission fields of the three probe designs, where penetrative, wide, and narrow beam profiles 

could be achieved by the disc, linear array, and 2D layouts, respectively. 

 

The three probe layout designs (i.e., a disc, a linear array, and a 2D array) (Fig. 1.5). were 

simulated to confirm their transmission characteristics, where distinct beam patterns and aperture 

coverages were illustrated (Fig. 1.5e). For the disc, 112 piezoelectric transducers at 2 MHz were 

used. All of these transducers were arranged within a circular region and connected in parallel, 

functioning as a single transducer for high transmission intensity. Such a design resulted in a highly 
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penetrative transmission beam (Fig. 1.5e left), which was suitable for sensing deep organs (e.g., 

heart and diaphragm). For the linear array, 256 transducers at 4 MHz were arranged with a bi-axial 

pitch of 0.8 mm. 8 transducers in the same column were connected in parallel to enhance the 

transmission intensity. 32 such columns constituted the linear array, yielding a 25.4 mm 

ultrasonographic aperture at moderate penetration depth (Fig. 1.5e middle), which was suitable for 

sensing central arteries (e.g., carotid artery, femoral artery, and abdominal aorta). For the 2D array, 

32 transducers at 6 MHz were used to constitute the array with a 0.8 mm bi-axial pitch. The overall 

dimension of the 2D array was the smallest in comparison with the other two cases. Such a design 

guaranteed a narrow beam (Fig. 1.5e right), which allowed for high spatial resolution sensing for 

shallow (e.g., radial and brachial) arteries. 

 

 

Besides the soft probe design, the control electronics play an critical role in ultrasonic 

sensing. The control electronics are designed as a flexible printed circuit board (Fig. 1.6 and Table 

1.1) for ultrasonic sensing and wireless communication. The circuitry consists of an analog front-

end (AFE) and a data acquisition (DAQ) module (Fig. 1.1b). The AFE achieves ultrasonic sensing 

through coordinated sequence control of multiple components (Fig. 1.7). First, the sequencer 

initiates sensing by sending trigger signals to the pulse generator and multiplexer. Then, the pulse 

generator reads the trigger signals and outputs high-voltage impulses to activate the ultrasound 

transducers. Meanwhile, the multiplexer drives the arrayed transducers to generate ultrasound and 

receive echoes. Finally, the echoes are collected by the transmit/receive switch, and then amplified 

and filtered by the receiver circuit. After the AFE completes the ultrasonic sensing process, the 

analog echoes are relayed to the DAQ module. The microcontroller unit (MCU) samples the 

echoes with a built-in analog-to-digital converter, and then the Wi-Fi module wirelessly transmits 
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the digitalized echoes to a terminal device (e.g., a smartphone), where an online machine learning 

algorithm and an application program can process and display the signals autonomously (Fig. 

1.1c). 

 

Figure 1.6: Layout designs of the fPCB circuit. a, Layouts of the fPCB with four layers of 

interconnects. b, Photos of the fPCB with key components (Table 1.1) labeled. The analog front-

end is 3 cm × 4 cm in size. The wireless data acquisition module is 3 cm × 3 cm in size. c, The 

circuit being bent and twisted to show its flexibility. 
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Figure 1.7: Schematics and control sequence of ultrasonic sensing. a, Block diagram and signal 

transmission lines between the functional modules. The control circuit includes two functional 

parts: the AFE and the wireless DAQ module. The AFE consists of a multiplexer (Mux), a 

transmit/receive switch (T/R SW), a receiver, a sequencer, and a pulse generator. The DAQ 

module consists of a microcontroller (MCU) with on-chip analog-to-digital convertor (ADC), 

and a Wi-Fi transmitter. The dashed lines are for digital signal transmission and the solid lines 

are for analog signal transmission. b, The simulated control sequence for multiplexing and pulse-

echo sensing, which shows the time sequence of the receive (Rx) enable, trigger, high-voltage 

(HV) pulse, clock (CLK), reset (RES), digital input (Din), and latch enable (LE̅̅ ̅̅ ) signals. c, 

Signals acquired by an oscilloscope showing the control sequence of the pulse-echo sensing and 

transducer multiplexing. d, Signals acquired by an oscilloscope showing the input sequence to 

the shift register for multiplexing and driving the transducer elements. All figure panels share the 

same color encoding scheme. 

 

The AFE and the DAQ modules are interconnected by serpentine wires that allow for 

folding to minimize their footprint (Fig. 1.8). An elastomeric encapsulation mitigates strain 

concentrations and protects the circuit from irreversible deformations. The fully integrated system 

can be bent, stretched, and twisted (Fig. 1.9) and be conformally laminated on the human body 

(Fig. 1.10).  
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Figure 1.8: Foldability of the fPCB. a, The modular design of the circuitry consisting of the 

wireless data acquisition (DAQ) and the analog front-end (AFE) modules. The rigid chips with a 

thickness of more than 0.5 mm are highlighted with colored boxes. b, A zoomed-in view 

showing the serpentine interconnects between the DAQ and the AFE module. The power supply 

wires connect the battery voltage (V+) and the ground (GND) between two modules. The AFE 

outputs radiofrequency (RF) signals, which are received by the DAQ as the input to the analog-

to-digital converter (ADC). Meanwhile, the DAQ module outputs trigger signals, which are 

received by the AFE as the input to initiate pulse-echo sensing. c, The chip layout was designed 

to reduce the thickness of the fPCB when folded. After folding, the board-to-board spacing is 

determined by two components (Pin as battery connectors, and inductor L2) with a thickness of 

1.75 mm. Note that the overlapped chips (UR1 and U1_1) are of the same 1.75 mm thickness. 

Thus, the overlap does not add additional thickness to the folded device. d, Side views of the 

fPCB before and after folding. The folded DAQ and AFE modules have a minimum separation 

of 1.75 mm. The footprint of the entire fPCB is reduced from 3 cm by 8.3 cm to 3 cm by 4 cm 

after folding. 
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Figure 1.9: Deformation of the packaged USoP. a, 90° bending, b, 90° twisting, and c, 20% 

uniaxial stretching of the packaged USoP. d, A zoom-in view of the stretched interconnects. 

 

Table 1.1: Key components used in the control electronics. All of the components are 

commercially off the shelf.  

 

 

Component 

designator 
Description 

Manufacture product 

number 

1,2 Multiplexer MAX14866UTM+T 

3 T/R switch MD0101K6-G-ND 

4 Operational amplifier ADA4895-1ARJZ-R7 

5,6 Operational amplifier ADA4897-1ARJZ-RL 

7 Single-pole double-throw analog switch TS5A3159ADBVR 

8 Voltage inverter MAX829EUK 

9 Zener diode BZD27B18P-M3-08 

10 Zener diode BZX100A 

11,12,13 Schottky diode SB01-15C-TB-E 

14,15 MOSFET-N CPH3459-TL-W 

16 Schmitt-trigger inverter SN74LVC1G14DRLR 

17 Microcontroller ATMEGA328P-ANR 

18 Voltage regulator MIC5205-3.3YM5-TR 

19 Voltage regulator AMS1117 

20 Microcontroller with ADC PIC32MZ1024EFH064-I/MR 

21 Voltage regulator MIC5365-3.3YC5-TR 

22 Wi-Fi module ESP32-S3-WROOM-1 
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Figure 1.10: Skin integration of the conformal USoP device. The soft patch could conform to 

multiple curved body parts, including a, forearm, b, brachium, c, neck, d, lower chest, and e, 

abdomen. f-g, Skin integration of the device before and after exercise. The USoP could maintain 

robust adhesion to the skin after the subject performs intensive exercise and sweats. 
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Achieving high sensing bandwidths and sampling rates is critical for the circuitry design. 

In this work, the DAQ has a sampling rate of 12 Msps corresponding to a sensing bandwidth of 6 

MHz. The Wi-Fi module can transmit such wide-band signals at a distance of ~10 m and a speed 

of 3.4 Mbps with zero data loss26. The USoP system has a power consumption of ~614 mW. A 

standard 3.7 V commercial lithium-polymer battery can enable continuous operation for up to 12 

hours (Fig. 1.11).  

 

Figure 1.11: Power consumption and battery life of the USoP. a, Current consumption of the 

circuit components with a 3.7 V input. The total average current consumption is 166 mA (24 mA 

for the analog front end (AFE) and 142 mA for the wireless data acquisition (DAQ) module). 

Thus, the power of the USoP is ~614 mW. b, Lifetimes (upper panel) and the corresponding 

length (L) width (W), and height (H) (lower panel) of commercial batteries. By increasing the 

battery capacity and size from 400 mAh, 4.76 cm3 to 2 Ah, 20.29 cm3, the USoP can 

continuously operate for 2.4 h ~12.0 h. 

 

The USoP is designed to support multiple ultrasound sensing modes, including amplitude 

mode (A-mode), motion mode (M-mode), and brightness mode (B-mode). A-mode is a 

fundamental sensing mode where the ultrasonic probe interrogates the tissue as a one-dimensional 
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depth recorder and produces a graph of the echo amplitude against the acoustic time-of-flight. An 

ultrasound beam was generated to penetrate the tissue layers, and then the beam was reflected by 

tissue interfaces of mismatched acoustic impedances. The tissue impedance information was then 

encoded in the amplitudes of the ultrasonic reflections, while the depth information was encoded 

in the acoustic time-of-flight. An example of A-mode sensing is shown by the arterial diameter 

measurement using a 4 MHz probe (Fig. 1.12a left). The posterior and anterior wall reflections 

were captured as the local maximums in the echo amplitude. Based on the echo amplitude signal, 

the arterial diameter could be calculated from the acoustic time-of-flight and acoustic speed in 

tissues (Fig. 1.12a right). M-mode can be considered as continuous A-mode sensing. In M-mode, 

the echo amplitude is instead encoded as the brightness of the pixel, freeing up one axis of the 

graph for temporal information. Therefore, M-mode can capture the motion of tissue interfaces 

over time along a one-dimensional scanning line, providing sensing resolution in depth (y-axis) 

and in temporal domains (x-axis). In M-mode, the ultrasonic beams were repetitively transmitted 

to tissues for continuous sampling. During each cycle of transmission, one frame of A-mode signal 

was generated. By converting the A-mode frames into grey-scale pixels columns and plotting these 

columns as a function of time, M-mode images could be generated. An exemplary application 

capturing the carotid artery pulsation suggests that M-mode images can continuously capture the 

arterial distensions using a 4 MHz linear array. Two frames of radiofrequency echo signal show 

the minimum and maximum arterial diameters (Fig. 1.12b left), which correspond to the diastolic 

and systolic phases of the arterial pulsation (Fig. 1.12b right). 

 

Moreover, when a probe with 2D layout is used in M-mode sensing, not only the axial 

resolution but also the spatial distribution of the motion can be acquired. Each transducer in the 
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2D array can generate an independent beam for M-mode sensing, and the amplitude of tissue 

movements was then calculated to locate the position of maximum motion amplitude. Such a 

sensing mode can be used for spatial detection of target arteries or guiding catheterization. As a 

demonstration, I mapped the arterial pulse waveform at the brachium using a 6 MHz 2D layout 

probe. The arterial pulse amplitudes and the mapped location of the brachial artery are shown in 

Fig. 1.12c. 

 

Figure 1.12: Multi-mode sensing with wearable ultrasonic probes. a, Amplitude mode (A-mode) 

for capturing arterial walls. Envelopes of radiofrequency signals indicate the amplitudes and 

positions of the reflection interfaces. The arterial diameter (d) is then the product of one half of 

the acoustic time-of-flight (t2-t1) and acoustic speed (c). b, Motion mode (M-mode) for 

capturing the distensions of arterial walls continuously. Exemplary frames of radiofrequency 

signals (left) with corresponding diastolic and systolic phases in the M-mode image (right). c, 

Motion mapping of the brachial artery using the 6 MHz 2D probe. Based on the distension 

amplitudes (left and middle), the spatial orientation of the brachial artery can be mapped (right). 

d, Brightness mode (B-mode) imaging of an iron wire phantom using a 2 MHz linear array 

probe. Radiofrequency signals (left) illustrate the reflected wavefront of the iron wire. 

Reconstructed images (right) show the imaged iron wire at depths of 1 cm, 2 cm, and 3 cm. The 

axial and lateral full widths at half maximum are labeled on the images showing the imaging 

resolution of the linear array at different depths. 
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In addition, the soft probes that conform to highly curved skin surfaces may experience 

phase distortion. Therefore, The the image stability with array distortions is characterized in both 

elevational and azimuth planes. The elevational distortion is not critical for either A-mode, M-

mode applications, or B-mode imaging when the probe’s elevational aperture is small, because the 

smaller the elevational aperture, the smaller the time delay error caused by array bending (Fig. 

1.13a,b). I simulated the transmission beam patterns at varying bending curvatures (from 6 mm to 

∞) (Fig. 1.13c). Although the beam patterns suggest bending may introduce undesired side lobes, 

the intensity of these lobes is much smaller than the main lobe (Fig. 1.13d). Additionally, when 

the bending curvature radius is >6 mm, the transmission beam pattern would have negligible 

widening (Fig. 1.13e). Considering typical body parts have surface curvature radii much larger 

than 6 mm, the elevational distortion induced by human studies could be neglected.  

 

While the elevational distortion would not affect imaging applications, the azimuth 

distortion may compromise the B-mode imaging if the array deformation exceeds a safety 

threshold. Because beamforming requires accurate positioning of each transducer in the array to 

calculate the delay function, a bent array would cause phase aberration and resolution degradation. 

I simulated the B-mode images of point sources to quantify the effect of bending curvature on the 

images (Fig. 1.14). With the bending curvature radii <6 cm, the B-mode images show artifacts in 

the shallow area (Fig. 1.14b, upper panels). When the bending curvature radii ≥6 cm, the imaging 

quality is acceptable without obvious artifacts (Fig. 1.14b, lower panels). Considering most body 

surfaces have curvature radii larger than 6 cm, the imaging results could be reliable. 
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Figure 1.13: The transmission beam patterns with elevational deformation. a, Schematics 

showing two arrays bent at a curvature of 10 mm-1. Both devices have 8 transducers. The small 

aperture device has a pitch of 0.8 mm, while the large aperture device has a pitch of 1.6 mm. A 

point source is set at 5 cm away from the array center. b, Corresponding time delay errors were 

calculated for each transducer. c, Simulated elevational beam patterns of the 4 MHz linear array. 

The probe was bent elevationally with radii of 5~10 mm and the beam patterns were compared 

with a flat array. d, Beam intensity profiles at a depth of 5 mm showing the side lobe intensities 

are <30% of the main lobe at all bending curvatures. e, -3dB beam width suggesting the bending 

is not generating significant beam widening when the bending radius is >6 mm. 
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Figure 1.14: Simulated B-mode images of point sources with azimuthal bending. a, Schematics 

showing a bent linear array along the azimuthal direction. b, B-mode imaging results of point 

sources at depths of 1 cm, 1.5 cm, 2 cm, 2.5 cm, and 3 cm by a 4 MHz linear array with different 

bent radii. The results suggest artifacts (labeled with red arrows) would appear when the array is 

bent with a radius <6 cm.  
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Chapter 2 Physiological signal recording and validation 

 

In clinical practice, A-mode and B-mode are commonly used for temporary measurements, 

while M-mode is for monitoring signals continuously27. Additionally, M-mode is valuable for 

quantitatively characterizing tissue dynamics28-30. Therefore, in this work, focusd imaging 

modality of the USoP in M-mode. Natural physiological processes, such as circulation and 

respiration, can be manifested in the motion of tissue interfaces, such as myocardial contraction, 

arterial pulsation, and diaphragmic excursion. The USoP can quantify these interfacial motions 

from multiple sensing windows in the human body (Table 2.1 and Fig. 2.1a).  

Table 2.1: The typical depths and motion magnitudes of different tissue interfaces. The interfaces 

in this study include the arterial walls, ventricular wall, and diaphragm dome. 

 

 

 

 

Tissue interface Depth Motion scale 

Radial artery wall 1.00-4.00 mm 0.01-0.06 mm 

Brachial artery wall 3.0-8.1 mm 0.04-0.17 mm 

Common carotid artery wall 4.4-30.4 mm 0.26-0.90 mm 

Common femoral artery wall 10-140 mm 0.15 mm-1.00 mm 

Abdominal aorta wall 40-100 mm 0.57 -2.00 mm 

Ventricular wall 69.9-92.7 mm 12.2-16.2 mm 

Diaphragm 100-181.7 mm 
8.0-42.0 mm (normal breath) 

52.7-92.1 mm (forced breath)  
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Figure 2.1: Monitoring and analysis of tissue interface motions using the USoP. a, Schematics 

and measurement results of seven representative dynamic tissue interfaces. b, Deriving 

physiological parameters from myocardial contraction. From the M-mode waveforms of the 

septum and left ventricular wall, the left ventricular internal diameter at end-diastole (LVIDd) 

and end-systole (LVIDs) can be used to derive the fractional shortening (left). Comparison of 

measurements between the USoP and a commercial ultrasound probe (right). The results are 

averaged from ten independent measurements, and the error bars represent the standard deviation 

(SD). c, Derivation of physiological parameters from the arterial pulse waveforms, including the 

heart rate and blood pressure. d, Bland-Altman plot showing measurement agreement between 

the USoP and a tonometer. For the heart rate, a mean difference of 0.013 beats per minute is 

observed, and 135 of 142 (95.1%) data points are within 95% limits of agreement defined by ±
1.96 SD (left). For the blood pressure, a mean difference of 0.17 mmHg is observed, and 269 of 

280 (96.1%) data points are within 95% limits of agreement defined by ±1.96 SD (right). e, 

Derivation of expiratory volume from the diaphragmatic excursion. Simultaneous measurements 

of diaphragmatic excursion and respiratory volume show a similar pattern (left). The regression 

on expiratory volume (V) with diaphragmatic depth (D) in normal breathing and forced 

breathing. Strong linear relationships, with correlation coefficients (CCs) close to 100%, can be 

found between the diaphragmatic excursion and expiratory volume in both breathing conditions 

(right). 
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The motion of tissue interfaces can be continuously captured using M-mode sensing. By 

transmitting ultrasound beams into tissues at a pulse-repetitive-frequency of 25 Hz~1 kHz, the 

displacement of various dynamic tissue interfaces can be interrogated. Displacement of the tissue 

interfaces is encoded in radiofrequency echo signals.  To decode the tissue motions, an auto-

correlation method was deployed. In consecutively collected radiofrequency data frames, the echo 

from a tissue interface constantly moves within a specific range, shifting along the time axis but 

roughly maintaining its profile (Fig. 2.2a).  To decode the motion amplitude, the ultrasound 

radiofrequency data were first segmented to exclude the signal without motion. Envelopes of the 

segmented signals were then generated. After that, the auto-correlation method was applied to the 

generated envelope to obtain the auto-correlation value between adjacent frames (Fig. 2.2b). The 

lag (t) between two adjacent frames could then be determined by the position of the maximum 

auto-correlation value (Fig. 2.2c). The motion, also known as the displacement between two 

frames, was calculated as half of the acoustic round trip d=c×t/2. Noted that the auto-correlation 

decoding is based on envelope shifting, thus it is not sensitive to the transducer bandwidth or 

ringing in the radiofrequency signals as long as the envelope can roughly maintain its profile 

during shifting. 
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Figure 2.2: Tissue interfacial motion detection using the auto-correlation method. a, Two frames 

of radiofrequency echoes showing the motion of tissue interfaces. b, Segmented radiofrequency 

echoes containing the reflection from a tissue interface. The envelopes are generated from the 

echo segments to define the profile of the interfacial reflection. c, Auto-correlation value 

calculated from the envelopes. A lag of 0.384 μs corresponding to the maximum auto-correlation 

value is determined as the time delay between the two frames. 
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From myocardial contraction, the diameter change of the left ventricle during cardiac 

cycles can be recorded, and therefore fractional shortening can be derived as a measure of left 

ventricular function (Fig. 2b left)31. A comparison of measurements from the USoP and a 

commercial ultrasonic system shows a mean difference of ~1% (Fig. 2.1b right). 

 

In arterial pulse waveforms, the pulse interval reflects the heart rate, and the pulse intensity 

can be correlated to blood pressure (Fig. 2.1c)19. From biomechanics, the measured pulse intensity 

effectively represents the arterial diameter change19, which is a function of two variables: blood 

pressure and arterial stiffness. The blood pressure tends to expand the cross-section of the artery, 

while the arterial wall stiffness resists this expansion. The exponential relationship between the 

diameter and arterial stiffness is independent of the blood pressure at the time of measurement 

within the physiological range (63-200 mmHg)32,33. The equation can be used to derive19,32: 

p(t)=p
d
*e

β(
D(t)
Dd

-1)
 

and 

β=
Dd ln(p

s
/p

d
)

Ds-Dd

 

where 𝑝(𝑡) is the time-dependent blood pressure and 𝐷(𝑡) is the time-dependent arterial 

diameter; 𝐷𝑠 and 𝐷𝑑 are the systolic and diastolic arterial diameters, respectively, derived from the 

measured pulse intensity; 𝑝𝑠 and 𝑝𝑑 are the reference systolic and diastolic pressures, respectively, 

measured using a commercial blood pressure cuff; and 𝛽 is the stiffness index32.  

 

First, 𝐷𝑠, 𝐷𝑑, 𝑝𝑠, and 𝑝𝑑 at the brachial artery of the subject were measured to obtain 𝛽, 

with the subject sitting upright in a chair with the measured arm relaxed on a table. Specifically, 
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𝑝𝑠 and 𝑝𝑑 were measured using a commercial cuff as calibration. The arterial diameter was then 

measured at the same location using the USoP to derive 𝐷𝑠 and 𝐷𝑑. Then, 𝑝(𝑡) was determined 

based on the corresponding 𝐷(𝑡) measured by the USoP. Measurement of 𝑝(𝑡) using the USoP is 

highly stable with little need for recalibration. The initial calibration using the commercial cuff 

only needs to be performed once at the beginning of this process, as 𝑝𝑑 remains relatively stable 

from beat to beat19. The measurement of blood pressure using the USoP at the brachial artery is 

applicable to other arterial sites as well because 𝛽 and 𝑝𝑑 do not change significantly along the 

major branches of the arterial tree19,34. This allows us to equate brachial blood pressure 

measurements to the carotid blood pressure in healthy adults35. Note that 𝛽 and 𝑝𝑑 may change 

substantially on younger subjects34 and patients with vascular diseases, such as carotid 

atherosclerosis36. In these populations, it may require accurate local carotid stiffness index and 

carotid blood pressure using catheterization to minimize the calibration error37-39. In addition, the 

body habitus of the subject may also influence the calibration accuracy. For example, the height 

of subject may influence vascular resistance and further influence blood pressure calibration40. In 

such cases, the vascular resistance could be estimated using nomograms or demographic 

databases41, and then the stiffness index for blood pressure calibration could be corrected for better 

accuracy.  

 

 

The USoP results are validated against a clinical-grade tonometer, the non-invasive gold 

standard for pulse waveform recording42. Bland-Altman analysis was performed to compare the 

waveform-derived heart rate and blood pressure from both devices (Fig. 2.1d). The 95% limits of 

agreement included >95% of differences between the results from the tonometer and USoP, 
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showing measurement consistency between these two devices. Additionally, the time difference 

between myocardial contraction and arterial pulsations can be used to quantify the pulse wave 

velocity, which correlates to the arterial stiffness of specific arterial segments (Fig. 2.3). 

Comparing the results of the USoP with those of the tonometer suggests a mean pulse transit time 

difference of <0.5 ms, which results in <4% error in pulse wave velocity recording, further 

demonstrating the accuracy of the USoP (Fig. 2.3)43.  

 

Figure 2.3: Pulse wave velocity (PWV) measurements. a, Schematic illustration of the pulse 

wave propagation paths in this study. Five paths were investigated, including the heart to the 

abdominal aorta (H-Ao), the heart to the carotid artery (H-CA), the heart to the femoral artery 

(H-FA), the heart to the brachial artery (H-BA), and the brachial artery to the radial artery (BA-

RA). b, Pulse waveforms collected by synchronized USoP pairs. The pulse transit time (PTT) 

was defined as the delay between the diastolic feet of the ventricular contraction and arterial 

pulses. c, The averaged PTT values by the USoP and the tonometer, showing consistency for 

both H-BA and BA-RA. Ten consecutive pulses were recorded to calculate average PTT values. 

The error bars represent the measurement standard deviations. d, PWV calculated across five 

arterial segments using the USoP. e, PWV mapping under normal conditions and cold pressor 

test. The averaged PWV along each path was calculated from five independent measurements. 

The error bars indicate the standard deviations of the measured values. The PWV increases from 

heart-proximal to heart-distal branches. There is a regional increase of PWV in H-BA and BA-

RA segments owing to cold-induced vasoconstriction. 
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The USoP can also measure diaphragmatic excursion as a surrogate for changes in 

respiratory volume due to breathing. The diaphragm depth recorded by the USoP is compared with 

the respiratory volume recorded by a spirometer (Fig. 2.1e left). With a linear regression model, 

the correlation coefficients between the diaphragmatic depth and respiratory volume under normal 

and forced breathing conditions are 99.9% and 99.7%, respectively (Fig. 2.1e right). Furthermore, 

these derived volumes can be used to characterize respiratory performance and identify airway 

obstruction or lung capacity restriction (Fig. 2.4, and Table 2.1), which can potentially be used for 

screening respiratory issues such as chronic obstructive pulmonary disease44 and pulmonary 

fibrosis45.  

 

Figure 2.4: Calculations of expiratory volumes. a, Diaphragm motion during forced expiration 

recorded by the USoP. In the exhaling phase, the total excursion (FVC) and the excursion within 

the first second of exhaling (FEV1) were recorded. b, Based on the measured FEV1 and FVC, 

the respiratory function of a healthy volunteer was evaluated. The volunteer performed the same 

FEV1 and FVC measurements after participating in aerobic training ~5 hours per week for four 

consecutive months. The four-quadrant plot suggests an increased FVC, indicating an enhanced 

expiratory function. Unhealthy respiratory performance, such as obstructive, restrictive, and 

combined conditions, could be diagnosed if the FVC and FEV1/FVC values are below the lower 

limit of normal (LLN). 
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Table 2.1: Summary of typical expiratory volumes and their measurements. Clinical measurements 

of FVC, FEV1, and the derived parameter FEV1/FVC are used for diagnosing different respiratory 

issues. 

Full name Clinical measurements 

Forced vital capacity (FVC) 
Total volume achieved by the quickest possible 

exhalation after a maximal inhalation 

Forced expiratory volume in one 

second (FEV1) 

Volume achieved in the first second by the quickest 

possible exhalation after a maximal inhalation 

FEV1/FVC 
Forced expiratory volume measured in the first second as 

a percentage of forced vital capacity 
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Chapter 3 Machine learning-assisted autonomous data analysis 

 

The USoP with a 4 MHz 32-channel linear array probe is used to autonomously and 

continuously track the position of the carotid artery and sense its pulsations. The linear array has 

an acoustic aperture of ~25.4 mm, which is sufficiently wide to accommodate the misalignment 

between the probe and the carotid artery46. Pulsation is visible in the M-mode images derived from 

the transducer channels directly above the carotid artery, while the M-mode images from the other 

adjacent channels show weaker or no pulsations (Fig. 3.1a). I train machine learning models to 

classify those M-mode images and identify whether salient pulsation patterns are present in the 

image (Fig. 3.2). Specifically, I use a VGG13 model because it outperforms other commonly used 

models for medical image classification in terms of precision, recall, and accuracy. This model can 

even robustly handle compromised ultrasound images and maintain the precision, recall, and 

accuracy higher than 98.4% (Fig. 3.3). Based on the arterial wall patterns in the M-mode images, 

this model predicts probability scores for each of the 32 channels and, therefore, generates a 

probability profile of the position of the artery. The probability profile is generated through 

convolving the raw prediction profile with a one-dimensional Gaussian kernel function. In my 

experiments, this was sufficient to produce a bell-shaped curve that reliably determines the 

position of the arterial center. The channel with the highest probability is determined as the center 

of the artery, and its channel data is used for generating the pulse waveforms (Fig. 3.1b).  
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Figure 3.1: Autonomous and continuous blood pressure recording in a moving subject. a, 

Schematic cross-sectional view of a soft 4 MHz linear array sensing the carotid artery (left). 

Representative M-mode images of channels with beam penetrating or not-penetrating the carotid 

artery, classified as carotid artery (CA) or non-carotid artery (nCA) images, respectively (right). 

b, Flow diagram showing the process of autonomous CA detection and pulse waveform generation. 

c, Recording in a moving subject using the USoP with and without an autonomous algorithm. The 

algorithm can reliably track the CA position with head yawing from -80° to +80°, corresponding 

to a ~19 mm CA displacement. Prediction scores of different transducer channels for tracking the 

CA at each yawing position and corresponding B-mode images collected by a commercial 

ultrasound machine (upper panel). By actively selecting the best channel to follow the CA motion 

(e.g., #5, #8, #16, #23, and #29), continuous pulse waveforms can be recorded. In contrast, without 

the auto-selection algorithm, a fixed channel (#16) results in signal loss during motion (lower 

panel). d, Two representative M-mode images recorded from the training subject (#1) and a new 

subject (#2), showing different image patterns (left). The histograms of the two CA images show 

a substantial difference in luminosity distribution (right). Inset: subject #2 has ~six times more 

white pixels than subject #1, indicating thicker arterial walls. e, Schematic diagram showing the 

workflow of the minimal entropy correlation alignment model, consisting of two encoders with 

five convolutional (Conv.) layers and three fully connected (FC) layers. The classification loss and 

geodesic covariance loss are used to align features extracted from the training image set (source 

domain) and those from a new image set (target domain). f, Model generalizability validation on 

10 subjects. The classification model is trained on each subject and validated on the remaining 

subjects. Without domain adaptation, the matrix plot shows an average classification accuracy of 

only 63.23% on new subjects (left). After domain adaptation, the average classification accuracy 

is boosted to 96.13%, showing the improved generalization of the classification model (right). 
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Figure 3.2: Model training and validation with modified datasets. a, Modifications to the original 

image datasets, including one wall cropped, two walls cropped, and label-shuffled images. b, The 

VGG13 model validation metrics on these modified datasets. The training/validation was 

conducted on a modified dataset of 3826 ultrasound images with a 1:1 training/validation split. 
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Figure 3.3: The validation metrics of four models on ideal and compromised image datasets. a, 

The images used for validation including ideal carotid artery images and compromised images 

(e.g., noise coupled images, artery shifting images, artery missing images). b, The receiver 

operating characteristic curves validated on 460 ideal images, suggesting the best model VGG13 

has an area under the curve value of 100%. c, The precision, recall, and accuracy validated on 

ideal images. d, The receiver operating characteristic curves validated on 460 images with a mix 

of ideal and compromised images, suggesting the best model VGG13 has an area under the curve 

value of 99.4%. e, the precision, recall, and accuracy validated on mixed ideal and compromised 

images. 
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The human head motion is recorded using inertia measurement units (Fig. 3.4) and 

simultaneously image the carotid artery to quantify its displacement. The head can yaw at a larger 

angle than it can roll and pitch, and yawing generates the largest arterial displacement (>10 mm). 

The USoP generates M-mode images from all channels with head yawing. The VGG13 model 

identifies the M-mode images containing arterial pulsations, determines a moving sub-aperture to 

follow the carotid artery, selects the optimal channel from the probability profile, and generates 

continuous pulse waveforms autonomously (Fig. 3.1c). In contrast, without the model, a fixed 

channel with head yawing generates inaccurate pulsation measurements or loses track of the 

pulsation waveform once the artery is outside its sensing aperture (Fig. 3.1c). The model prediction 

remains reliable at a head yawing rate <60°/s. At yawing rates beyond this limit, the pulse 

waveform becomes distorted but is quickly restored when motion stops (Fig. 3.5).  

 

Figure 3.4: Recording head rotation. a, Two separate inertial measurement units (LSM6DS3) 

were mounted on the head and chest of the participant to record head rotation. b, The circuit to 

interface LSM6DS3, which had a memory card to save the recordings for post-processing. c, The 

recorded yawing rates while the participant was performing torso rotation and head rotation. By 

calculating the difference between the head unit and the torso unit, the torso motion could be 

removed and thus, accurate head rotation could be recorded. 
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Figure 3.5: Recorded pulse waveforms under increasing yawing rates from 0°/s to 80°/s. Under 

slow motions, the carotid pulse waveforms show high continuity. When the yawing rate 

increases to 70°/s and 80°/s, the waveforms start to show obvious distortions. 

 

Machine learning algorithms may encounter generalization problems when tested on 

images outside the training pool. For example, images from a new subject may have distinct 
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brightness, contrast, and arterial wall patterns, which would result in different luminosity 

distributions (Fig. 3.1d). The generalization of the VGG13 model is enhanced by using domain 

adaptation with a minimal entropy correlation alignment model47 (Fig. 3.1e) to transfer the 

machine learning network to new image datasets without additional labeling. The use of domain 

adaptation allows the model to generalize to different subjects. A t-distributed stochastic neighbor 

embedding visualization of the subject distributions shows that images from different subjects are 

unified after domain adaptation is applied. Model generalizability is demonstrated through cross-

validation among 10 subjects (Table 3.1). The classification model is trained on each subject and 

then validate it on the nine other subjects. Without domain adaptation, the model only has an 

average accuracy of 63.23% on new subjects (Fig. 3f left). After domain adaptation, this accuracy 

increases to 96.13% (Fig. 3f right). The minimum data required to be collected from a new subject 

for successful domain adaptation is also investigated. The results showed that only 32 unlabeled 

images from a new subject suffice to achieve >90% classification accuracy (Fig. 3.6).  
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Table 3.1: Demographic characteristics of the participants in this study. They vary in gender, race, 

age, height, weight, and body-mass index, which generate diversity in the collected ultrasonic 

images. 

Gender n (percentage) 

Male 6 (60%) 

Female 4 (40%) 

Race n (percentage) 

Asian 5 (50%) 

Hispanic or Latino 3 (30%) 

White 2 (20%) 

At time of study Mean ± Standard deviation 

Age (years) 27.78 ± 4.50 

Height (cm) 171.04 ± 10.88 

Weight (kg) 64.26 ± 10.27 

Body-mass index (kg/m2) 21.78 ± 2.52 

 

 

 
Figure 3.6: Heatmap of the classification accuracy observed after domain adaptation with 

different numbers of images from the target and source domains. The heatmap shows that a high 

accuracy (>90%) can be attained by using as few as 32 unlabeled images from the target domain 

and 67 labeled images from the source domain for domain adaptation training. 
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Chapter 4 Continuous monitoring during exercise 

 

The USoP can continuously track multiple deep tissue signals during human motion. To 

test its performance, the USoP is applied on a participant while performing aerobic exercise, when 

the participant performed 30 min continuous cycling followed by 30 min rest. The carotid blood 

pressure waveform is recorded while the participant moves freely (Fig. 4.1a). Similar 

measurements are made during anaerobic exercise, when the participant performed high-intensity 

interval training (HIIT) comprised of six one-minute training sessions, separated by six one-minute 

periods of resting (Fig. 4.2).  
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Figure 4.1: Continuous monitoring during exercise. a, Photographs showing a subject cycling 

while the carotid pulsation waveform is measured by the USoP with different head positions, 

including (i) forward, (ii) turned, (iii) bowed, and (iv) raised. The USoP can directly transmit data 

to the smartphone mounted on the bicycle for processing and display. Inertia measurement units 

are used to record the head motion. An automated cuff on the upper arm acquires brachial blood 

pressure levels for reference. b, Head motions recorded by the inertia measurement units during 

cycling. The carotid blood pressure waveforms and heart rate are recorded simultaneously using 

the USoP. The maximum increases in diastolic and systolic pressure are 17 mmHg and 45 mmHg, 

respectively. c, Zoomed-in view of the head motion, blood pressure waveforms, and heart rate 

recorded during the (i)-(iv) motion periods in b. The diastolic carotid pressures measured by the 

USoP agree well with the brachial pressures measured by the cuff. The systolic carotid pressures 

measured by the USoP are ~10 mmHg lower than the cuff brachial values, due to lower distal 

reflections. d, Histograms of the diastolic and systolic pressures during cycling and HIIT. During 

cycling, the variations in diastolic and systolic pressures are 20 mmHg and 47 mmHg, respectively. 

During HIIT, the variations in diastolic and systolic pressures are 38 mmHg and 55 mmHg, 

respectively. e, Changes in augmentation indices during cycling and HIIT. The augmentation index 

first increases and then plateaus during cycling, and then recovers during resting (upper). The 

augmentation index fluctuates during HIIT, coinciding with the training-resting cycles (lower). 

Notably, the augmentation index was substantially higher during (ii) and (iv) training sessions, 

indicating greater arterial vasodilation. Average augmentation indices are calculated from fifty 

independent pulse waveforms every minute. The error bars represent the standard deviations of 

the recorded augmentation indices. f, Cardiac response to cycling and HIIT. In both exercise 

scenarios, the stroke volume first increases and then plateaus while the heart rate continues to 

increase. Cycling has a smaller increase in stroke volume compared to HIIT. The maximum cardiac 

output measured during HIIT is 15.6% greater than during cycling. 
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Figure 4.2: Continuous monitoring during high-intensity interval training (HIIT). a, Photographs 

showing the participant performing HIIT. Six training sessions, including (i) touch shoulder 

push-ups, (ii) cycling Russian twist, (iii) push-up rotations, (iv) burpees, (v) side kick through, 

and (vi) hand-release push-ups. b, The head motions are recorded by the inertia measurement 

units, which show the rolling, yawing, and pitching rates during the 12 min training and resting. 

The carotid blood pressure waveforms and heart rate are recorded simultaneously and 

continuously using the USoP. The systolic pressure increased ~25 mmHg between training 

sessions and rest sessions, while the diastolic pressure experienced less fluctuation. c, Zoomed-in 

view of the head motions, continuous blood pressure waveforms, and heart rate recorded during 

the training sessions. 

 

 

Upon the onset of exercising, the substantial increase in the blood pressure and heart rate 

suggests a boost in circulating blood, also known as the stressed volume (Fig. 4.1b-c)48. During 

both cycling and HIIT, the systolic pressure increases more than the diastolic pressure, regulated 
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by increased cardiac output and decreased vascular resistance. The heart rate increases 

monotonically during both exercises and decreases during resting, as anticipated49. As cycling 

progresses, the blood pressure gradually stabilizes at a relatively elevated level, resulting in narrow 

distributions of both systolic and diastolic pressures in the histogram (Fig. 4.1d upper). These 

results imply that the systemic vascular resistance decreases to a physiologically determined steady 

state to support prolonged muscle activity50. This is in stark contrast to HIIT, during which blood 

pressure fluctuates, resulting in wider distributions of both diastolic and systolic blood pressures 

(Fig. 4.1d lower). In both cycling and HIIT, resting allows blood pressure to gradually decrease 

toward the baseline. 

The vascular responses to exercise is derived by calculating the augmentation index51,52 In 

both cycling and HIIT, the blood pressure waveforms have changing profiles, suggesting increased 

differences between the systolic peak and secondary (reflected) peak during exercise (Figs. 4.3). 

This change indicates a reduced reflection from the distal ends of the arterial tree due to flow-

mediated vasodilation53. I used the pulse wave decomposition analysis method54 to analyze the 

pulse profiles and quantify the vasodilation occurring in exercise. Using this method, the pulse 

waveforms measured from central arteries (e.g., aorta and carotid artery) are decomposed into the 

forward and reflection waves. The forward waves are generated by the heart, while the reflection 

waves are considered to be backpropagations from the distal ends of the arterial tree (Fig. 4.4a). 

More constrictive arteries are of higher impedance and tend to have stronger reflection waves and 

faster backpropagation speeds (Fig. 4.4b upper panel). This results in an early and strong reflection 

peak in the arterial pulse waveform. On the contrary, dilated arteries are of lower impedance, which 

have weaker reflections and slower backpropagation speeds, and thus, lead to a late and mild 

reflection peak in the pulse waveform. I used the AIx to quantify vasodilation55. The AIx is defined 
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as the difference between the systolic peak and the reflection peak/inflection point divided by the 

systolic peak. Example waveforms recorded before and after exercise indicate an increase in the 

AIx due to dilated arteries and decreased impedance of pulse wave propagation post-exercise (Fig. 

4.4b lower panel). In practice, the AIx can be calculated in a beat-to-beat manner from the blood 

pressure waveforms. In this work, the beat-to-beat AIx’s were averaged over every minute to 

minimize potential errors associated with accidental waveform distortions. 

 

Figure 4.3: Representative pressure waveforms recorded during cycling and HIIT. Central blood 

pressure waveforms recorded during a, cycling and b, HIIT. The waveform morphologies change 

significantly during exercise sessions. In both exercise scenarios, the difference between the 

systolic pressure peak and reflection pressure peak increases during exercise, indicating reduced 

distal reflection and increased vasodilation during exercise. 
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Figure 4.4: Measurements of the AIx. a, Schematics showing the arterial blood pulse waveform 

formation and the calculation of the AIx. The forward wave (P1) and reflected wave (P2) 

constitute local peaks in a blood pressure waveform. AIx is calculated as the peak difference 

divided by the forward peak. There is an additional local minimum point resulting from the 

closure of the aortic valve (AV). b, Blood pressure waveforms from the carotid artery under 

resting and post-exercise situations. In a resting situation, the distal end of the arterial tree has a 

higher impedance, resulting in an early and strong reflection peak P2. On the contrary, in a post-

exercise situation, the distal end has a lower impedance, resulting in a late and mild reflection 

peak P2. 

 

 

 

In both cycling and HIIT, the augmentation index increases with exercise and recovers with 

resting; when the exercise is sufficiently long, as in the case of cycling, the augmentation index 
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stabilizes (Fig. 4.1e). The increase in the augmentation index during exercise may have two causes: 

vessel stiffening56 and vasodilation52,57. The change in the arterial stiffness index before, during, 

and after exercise are measured. The results suggest a negligible change (<0.34%) in the stiffness 

index58. Therefore, the increase in the augmentation index is primarily driven by vasodilation 

rather than changes in arterial stiffness. The vasodilation takes place mainly in the skeletal muscle 

involved in the exercise to support an elevated demand for oxygen and thus blood flow52,59; 

activating larger muscle groups results in greater vasodilation and increased blood flow, and thus 

a higher augmentation index (Fig. 4.4).  

 

Figure 4.5: Muscle recruitments and corresponding AIx during cycling and HIIT. a, Different 

muscle groups are involved during cycling and HIIT. HIIT (i), (iii), and (vi) share the same least 

muscle activation, during which the pectoralis, deltoids, and triceps are activated. HIIT (v) has 

the second least muscle activation, during which the deltoids and quadriceps are activated. 

Cycling has more muscle activation, during which quadriceps, tibialis, and calve are activated. 

The HIIT (ii) has the second most muscle activation, during which the rectus abdominus, 

abdominal obliques, and quadriceps are activated. The HIIT (iv) has the most muscle activation, 

during which all muscle groups mentioned above are activated. b, The calculated AIx during 

exercise, which increases with increasing the amount of muscles activated during exercise. 
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The stroke volume could be estimated from the pressure waveforms using a pulse contour method 

(Fig. 4.6)60. In the Windkessel model of the circulation61, the blood pressure waveform can be used 

to monitor fluid flow throughout the circulatory system, such as flow velocity, distensibility, 

pressure, and volume, which allows relating the pulse contour waveform to the stroke volume. 

In the Windkessel model, the distensibility c is expressed as61: 

c=
dP

dV
=c  

where 𝑃 is pressure and 𝑉 is the volume of the fluid. The main differential equation describing the 

system is written as61: 

i*dt=
dP

c
+

P*dt

w
  

or 

dt=
dP

c(i-
P

w
)
  

where 𝑖 is the volume of liquid flowing in per unit time; 𝑡 is time; and 𝑤 is the constant 
8𝐿𝜇

𝜋𝑟4
 from 

Poiseuille’s law. 

 

Because the artery is nonrigid, the inflow and outflow at a given time are not equal to each other 

even though the blood is an incompressible fluid. Therefore, 𝑖 should be averaged over the entire 

cardiac cycle. Integrating the main differential equation leads to61:  

t=- [
w

c
(i-

P

w
)] + [

w

c
(i-

P0

w
)]  

for a nonzero initial pressure 𝑃0 at time 𝑡 = 0. The equation then becomes61: 

t=
w

c
(

i-
P0
w

i-
P

w

)  

leading to the pressure equation61: 
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P=w(i-
i-

P0
w

e
tc
w

)  

 

Wesseling and coworkers have used the aforementioned Windkessel model as a basis for 

calculating the stroke volume by integrating the area under the curve of the pulse contour62,63. In 

essence, the pressure increases in proximal large arteries (e.g., aorta or carotid) are determined by 

the systolic blood output from the heart. Therefore the area under the systolic portion is 

proportionally related to the stroke volume60, by a factor representing the characteristic impedance 

of the circulatory system, 𝑍62,63: 

Stroke Volume=
1

Z
∫ [P(t)-Pd]dt

Te

0

 

where 𝑇𝑒  is the end of the ejection period; P(t) is the real-time blood pressure; and 𝑃𝑑  is the 

diastolic pressure. The characteristic impedance 𝑍 may be calibrated to another measure of stroke 

volume such as indicator dilution, or simply estimated using factors such as age, sex, height, and 

weight of the subject63,64. In this study, an estimated value for the participant’s characteristic 

impedance 𝑍=0.056 mmHg·s/ml65 is used.  

 
Figure 4.6: Estimation of the stroke volume by the pulse contour method. Two central blood 

pressure waveforms collected from the carotid artery during rest and exercise. The area under the 

curve (AUC) of the systolic phase is enlarged, indicating an increased stroke volume during 

exercise. 
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The cardiac output is then calculated as the product of stroke volume and heart rate. Similar 

patterns in the stroke volume and heart rate are observed in both cycling and HIIT (Fig. 4.1f). The 

measured cardiac output increases as the exercise intensifies, and the heart rate increases together 

with the cardiac output. Initially, the stroke volume increases before plateauing as end-systolic 

volume approaches the mechanical limits of the heart66 and the increase of end-diastolic volume 

begins to be limited by the shorter filling times at higher heart rates67. In the high cardiac output 

region (e.g., >15 L/min), the stroke volume plateaus, and the increase in cardiac output is mainly 

attributed to the increase in heart rate68. Compared to cycling, HIIT produces a greater increase in 

stroke volume and a higher maximum cardiac output, indicating that HIIT may be a more effective 

training modality for enhancing cardiac functions69,70.  
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Chapter 5 Conclusion 

 

While most existing wearable devices capture signals on or near the skin surface71-74, such 

signals are often manifestations of physiological processes in deep tissues75. Therefore, in many 

clinical applications, it is critical to monitor deep tissue signals directly. More importantly, deep 

tissue physiology is constantly changing. To identify potential risk factors for a disease, capture 

its early onset, or evaluate its progression, obtaining longitudinal data over the course of days, 

weeks, or even months is key. This calls for a tool that enables long-term deep tissue surveillance, 

processes the data stream in real time, and remains accurate during human motion. 

 

Medical ultrasound is one of the most widely used methods for deep tissue sensing, but 

due to the complex equipment and the requirement for an operator, traditional ultrasound exams 

offer point-in-time measurements only. In fact, one of the barriers that prevents traditional 

ultrasound from long-term use is its operator dependency76,77. Even with standardized exam 

procedures, results reported using conventional ultrasonography strongly depend on operator skill. 

When mishandled, manual ultrasonography may generate compromised or even erroneous results. 

 

Recent advances in wearable ultrasonography have shown the promise of capturing deep 

tissue signals over the long term. Soft wearable ultrasonic probes19,20, as well as rigid ultrasound 

chips integrated with soft adhesives21, have demonstrated hands-free ultrasound signal acquisition. 

However, removing the requirement to handhold the probe is only the initial step toward 

continuous operation, and three further technical barriers remain. First, these probes have to be 

wired to a central processing station, which largely limits the wearing subject’s mobility. Second, 

existing wearable ultrasound devices face challenges with measurement continuity and reliability 
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in moving subjects, because the device on the skin shifts in position relative to the target tissue. 

Third, wearables generate new challenges for manual data processing because any clinicians will 

be overwhelmed by the continuous data stream. 

 

The fully integrated USoP addresses these three barriers and makes continuous surveillance 

of deep tissue signals possible. First, the USoP eliminates wire connections by connecting the 

device and the backend processing system wirelessly, which allows for large-range subject 

mobility. Second, the USoP uses machine learning-based algorithms to automate the data 

acquisition and channel selection in real time. To my knowledge, no previously reported wearable 

device can autonomously track a moving target. Third, deep learning-enabled data post-processing 

relieves the human burden and enables potential scale-up. Together, these innovations open up 

many new possibilities. For example, patients can be monitored as they conduct their natural daily 

activities, which can provide rich information that is more clinically relevant78. Responses to high-

risk activities such as during an intense workout can be captured for more rigorous diagnostics79,80. 

Continuous monitoring over days or weeks of the dynamic changes of the cardiovascular system 

in response to stressors can benefit a broad range of populations, from athletes who need training 

optimization, to cardiac rehabilitation patients who require safety measures, and to general high-

risk populations for cardiovascular risk stratification and prediction. 

 

Future developments of this technology can be focused on the following areas. First, the 

soft ultrasonic probes face challenges of unknown transducer locations when conformed to 

dynamic and curvilinear skin surfaces. A-mode and M-mode using single transducers without 

beamforming are not affected, but unknown transducer locations cause phase aberration and 
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compromised beamforming for B-mode imaging. Potential solutions include applying additional 

shape sensors to map the transducer locations in real-time81, or developing iterative contrast 

optimization algorithms to compensate the phase distortion of a deformed array82. Second, the 

long-term wearability of the USoP should be further improved. Integrating highly integrated chips 

with multilayered soft circuitry83 could further enhance the mechanical compliance of the system. 

Combining wearable power harvesting devices84 could extend the battery life of the USoP. 

Replacing silicone adhesives with more durable and permeable adhesives could help enhance skin 

integration under skin deformation and perspiration85. Third, the USoP can potentially be applied 

to other tissue targets, particularly in high-risk populations where continuous monitoring is critical. 

Fourth, the cloud computing resources necessary for machine learning processing limit their 

accessibility in remote and undeveloped regions. On-board data analytics based on power-

performance balance optimization and artificial intelligence-on-a-chip technology may be a 

possibility86. Finally, through strategically tuning the ultrasound controlling parameters such as 

activation frequency and pulse profile, this technology could enable more intriguing wearable 

diagnostic and therapeutic applications, including anatomic imaging21, functional imaging20,87,88, 

and ultrasound stimulation89.  
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