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Abstract

Decentralized Control of Stochastic Dynamic Systems with Applications to
Resource Allocation and Portfolio Management

by

Huaning Cai
Doctor of Philosophy in Engineering - Industrial Engineering & Operations Research

University of California, Berkeley

Professor Andrew E.B. Lim, Chair

Modern engineering and social systems are often too complex to be managed by
a centralized agent. Instead, such systems are commonly structured with multiple
decentralized agents each responsible for managing a subset of the system, but the
resulting system performance depends on the aggregate of the decisions made by
decentralized agents. Local agents’ decision makings often exhibit selfish behavior
as they seek to optimize their own objectives under their localized models, which
if left uncoordinated can lead to substantial loss of efficiency compared with the
system that can be optimized by a single (hypothetical) centralized agent. In this
dissertation, we seek to study the fundamental issues of how to efficiently manage
large-scale and multi-agent stochastic dynamic systems, especially on how to device
efficient coordination mechanisms that would optimize system performance under
various constraints that are unique to decentralized systems.

In the first part of this dissertation we study decentralized control of a general class
of stochastic dynamic resource allocation problems that have many applications. We
consider a stochastic system in which multiple decentralized agents allocate shared
system resources in response to customer requests that arrive stochastically over time.
Each agent is responsible for a subset of the allocation decisions which it makes ac-
cording to a dynamic allocation policy obtained by maximizing his own expected
profit subject to a potentially mis-specified model of the way in which shared re-
sources are consumed by other agents. We introduce the notion of a transfer contract
which specifies how agents compensate one another whenever resources are consumed
and establish the existence of contracts under which the decentralized system has no
efficiency loss relative to centralized optimality. We also show that this property is
insensitive to mis-specification by each agent of the dynamics of resource consumption
by others in the system. An explicit characterization of the optimal transfer contract
and an iterative decentralized algorithm for computing it is also provided. In the lan-
guage of duality, contracts are analogous to shadow prices and the iterative algorithm
has the favor of a dual update method, but strong duality and convergence of the it-
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erative algorithm to the set of optimal contracts are guaranteed without assumptions
of convexity.

In the second part of this dissertation we study a class of related decentralized
control problems but specialize to portfolio and risk management. Many financial in-
stitutions typically trade in multiple correlated markets. While centralized portfolio
optimization over all trading decisions is ideal, it is generally not possible due to the
complexity of each market, and firms typically adopt a decentralized setup in which
trading in each market the responsibility of a particular desk. Decentralized portfolio
optimization, however, is complicated by the fact that different agents are commonly
only well informed about their own investment universe (proprietary research and
forecasts, etc) and prefer to keep this private, and have their own incentives which
they optimize on the basis of their limited models. It is well known, however, that the
aggregate performance of such a system can be extremely inefficient due to the loss
of diversification. In this dissertation, we formulate a multi-agent dynamic portfolio
choice problem and study how to improve its efficiency. We show that an internal
system of swap contracts, which define internal cash transfers between agents, can
be used to facilitate risk sharing and induce agents to choose portfolios that as a
collection are optimal for the firm. Conceptually using swap contracts is similar to
performance benchmarking that is often employed in the finance literature for decen-
tralized portfolio management, but our new approach offers a significant advantage
in that the swap contracts can be constructed in decentralized manner without re-
quiring an all-knowing central agent. We provide an explicit characterization of the
optimal swap contracts and an iterative algorithm for computing them that can be
implemented without compromising proprietary agent level data.

Throughout this dissertation, we also discuss various important issues surrounding
decentralized control of stochastic dynamic systems, including but not limited to
approximation methods, performance attribution, sensitivity analysis, and fairness
issues, etc.
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Chapter 1

Introduction

1.1 Motivation

Optimal control of stochastic dynamic systems have long been the central focus
of the operations research and management science community. To date, much of
the research efforts have taken a centralized perspective, assuming there exists an
centralized agent, who oversees the entire system, and is able to collect all necessary
data and information, to build a complete model, and optimizes all decisions for the
entire system. However, many modern engineering and social systems are too complex
to be managed in such a manner. More commonly, such systems are populated with
multiple decentralized agents, each responsible for a subset of the system, specializing
in different and complex subtasks, and typically only interested in optimizing their
own local objectives that are often not aligned with that of the system. The resulting
system performance depends on the collection of the agent level decisions and the way
they interact with one another. In short, centralized decision making rarely occurs,
and a decentralized control perspective is more consistent with what is being done in
practice.

The main research goal of this dissertation is to study how to optimize the perfor-
mance of complex stochastic dynamic systems that are managed by multiple agents.
Decentralized control is an essential when (i) a system is too complex to be controlled
in a centralized manner, (ii) it is populated with multiple agents who perform spe-
cialized and complex tasks, (iii) agents are selfish and are interested in maximizing
their own objectives which are often not aligned with that of the system, or (iv)
when relevant data or information is distributed amongst multiple agents and can
not be aggregated (as required when formulating a centralized stochastic optimiza-
tion problem) due to privacy issues or the complexity of the aggregating task. Next
we discuss several real-world examples involving complex stochastic dynamic systems
where needs for decentralized control naturally arise. Through these examples we
highlight key questions that we aim to investigate in this dissertation.
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1.2 Examples

Example 1.2.1 (Airline alliance revenue management).
Since the deregulation of US domestic market in 1978, most US airlines have formed
alliance with international carriers to share flights, frequent flyer programs, ground
operation, and etc. In an airline alliance where multiple partner airlines share com-
mon inventory/seats, prices are still typically set in a decentralized manner by each
of the participating airlines. While system-wide profits can be improved (in theory)
by jointly optimizing over all prices offered by all participating airlines, centralized
pricing in an alliance is never done. One reason is that such a joint optimization
problem would be enormous; a second is that the task of integrating demand models
and the IT systems from each of the airlines into a single system would be overwhelm-
ing. A third and more fundamental reason is that demand forecasts and data for the
customers of each of the airlines is typically proprietary and airlines are often reluc-
tant to share this information with their partners in the alliance or with a centralized
decision maker, so the information required to make optimal centralized decisions can
not be collected in one place. The main challenge is to design incentive structures so
that optimal decentralized pricing leads to good performance of the system.

Example 1.2.2 (Optimal pricing and inventory control).
Large firms are typically structured with multiple business units (e.g. one responsible
for pricing and marketing, the other responsible for manufacturing, another respon-
sible for logistics and distribution, and etc) that make decisions dynamically over
time in a uncertain environment. Efficient running of such firms requires effective
coordination among these units. One typical approach that has been well studied in
the OR/MS literature is to model an aggregate system and to jointly optimize over
decisions of all business units: e.g. joint pricing and inventory decisions. Though
interesting and undoubtedly useful in some contexts, the practice of jointly optimiz-
ing over the dynamic decisions of different business units is difficult for a number
of reasons: (i) the tasks performed by each group are complex and require specialized
domain knowledge; (ii) it is difficult to integrate data, information, and IT systems
from the different groups; (iii) groups may be in different countries and speak differ-
ent languages. Instead, we typically see each group optimizing its own performance
measures. The challenge in system design is once again to devise proper incentive
structures so that optimal control policies for the different business units are also
optimal for the firm.

Example 1.2.3 (Portfolio and risk management).
Financial institutions typically trade in multiple correlated markets. One traditional
approach to portfolio and risk management is to optimize over all trading decisions
centrally. However, this is generally not possible due to the uniqueness and complexity
of each markets, and firms typically hire multiple specialized agents to manage differ-
ent markets (e.g. equity, fixed income, commodity, etc). While the firm is concerned
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with the risk-return profile generated by the trading decisions selected firm wide, indi-
vidual agents are often only well-informed about their own market, and optimize their
local risk-return profiles. The trading decisions they make could be far from optimal
given trading decisions from other agents and could lead to over-exposure of the firm
to certain risk factors. The goal is to design incentives for each agents so that firm
wide optimal trading decisions are chosen.

From these examples we can see that the needs for decentralized control arise
naturally. In this dissertation we seek to understand how decentralized stochastic
dynamic systems can be structured and incentives can be set up so that decentralized
agents will make decisions that are good for the system as a whole. More specifically,
we divide this dissertation into two main components: in the first part we study a
general class of decentralized stochastic dynamic resource allocations problems, which
has many real-world applications, such as the above mentioned optimal pricing and
inventory control, airline alliance revenue management, and etc; in the second part
we study a class of related problems but specialize to portfolio and risk management,
where the kind of coordination mechanisms required are quite distinctive from the
ones used for the resource allocation problems. We next provide brief introductions
and literature reviews for these two main components of this dissertation.

1.3 Decentralized Stochastic Dynamic Resource Al-

location

Consider a system made up of multiple decentralized agents sharing a limited
pool of resources. Each agent offers a menu of products (each of which is a bundle of
resources) and receives requests for these items stochastically over time. On receiving
a request, an agent needs to decide whether it should be accepted or rejected. If
rejected, the customer departs; if accepted, the bundle is assembled using resources
from the common pool and delivered to the customer in return for a pre-defined
payment. Consumption of shared resources also comes at a cost which is paid by the
agent accepting the request as compensation to other agents in the system. The cost
of resources and the manner in which it is divided amongst the other agents in the
system is defined by a transfer contract. Every agent earns a profit which is the sum of
income from his own customers whenever a request is accepted and transfer payments
from other agents (whenever they accept a request from one of their customers) minus
the cost of resources used to manufacture allocations to his own customers. For a
given set of transfer contracts, each agent solves a decentralized stochastic control
problem in which he maximizes expected profit subject to his model for the arrival of
customer requests and a possibly mis-specified model for the way in which resources
are allocated by other agents. The solution of this problem determines an allocation
policy for each agent. Clearly, the behavior of each agent (and hence the aggregate
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system) is a function of the chosen transfer contracts as well as the model adopted
by each agent for the evolution of the system. The goal of the first part of this
dissertation is to understand how these contracts should be chosen so as to maximize
the net revenue of the overall system. One example of our system is an airline alliance
where multiple airlines (agents) share fight legs (resources) which are bundled and
sold as itineraries (products) to customers that arrive stochastically over time.

The problem we have just formulated is a decentralized stochastic dynamic re-
source allocation problem. We note, however, that while resource allocation has a
long history (see for example Arrow et al. [21]) there are relatively few papers deal-
ing with this problem in a decentralized stochastic dynamic setting. One related
line of work is the literature on decentralized control dating back to the papers of
Marschak [25], Arrow and Hurwicz [3], and Radner [28] in the economics literature,
and Witsenhausen [42] and Ho [18] in the systems and control literature (see also
[22, 29, 30, 31, 32, 43]). In these papers, agents are cooperative but each sees a differ-
ent function of the aggregate system state, and the primary concern is describing the
aggregate system performance when agent policies are constrained to be functions
of their observations. In contrast, our agents are self-interested and maximize their
own profits subject to a private but mis-specified model of the way in which system
resources are consumed. Specifically, although each agent is assumed to accurately
know the probability of receiving a request for a resource bundle in his menu, his
model for resource consumption by other agents may be mis-specified. Quite surpris-
ingly, we show that transfer contracts can be found under which there is no efficiency
loss relative to an optimal fully knowledgeable centralized agent, even if agent level
models are mis-specified along the lines we have described.

While our analysis of the decentralized allocation problem proves existence of co-
ordinating transfer contracts and provides an explicit construction, one limitation of
this result is that the contract depends on the value function of the centralized prob-
lem (which is not surprising since it does enable the decentralized system to achieve
centralized efficiency). This is problematic because our study of the decentralized
system was motivated by the view that agents with the requisite knowledge to solve
the centralized problem simply can not be found in many applications, so stopping
at a “solution” that can only be computed by such an agent would be disquieting,
to say the least. With this in mind, we address also the problem of computing the
optimal set of contracts in a decentralized manner. We propose an iterative algorithm
that only requires decentralized agents to update and exchange their valuations of
shared resources, which they compute using their private mis-specified models, and
show that it converges to the optimal transfer contract. More generally, transfer con-
tracts can be interpreted as shadow prices in a stochastic dynamic resource allocation
problem, and the iterative procedure as a dual update algorithm, so it is interesting
that existence of optimal contracts (strong duality) and convergence of the update
algorithm can be guaranteed without any assumptions about convexity.

For other related work, decentralized decision making has attracted a lot of at-
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tention in the OR/MS literature, but the primary focus has been on single period
problems. See for example the survey of Cachon [11] and the edited volume by
Simchi-Levi et al. [34]. A key distinction of our study is that we focuses on de-
centralize control of stochastic and dynamic problems, an issue which has received
substantially less attention in the OR/MS literature. Two exceptions are recent pa-
pers by Bertsekas [6] and Adelman and Mersereau [2]. These papers consider weakly
coupled stochastic dynamic optimization problems in which control variables across
agents are coupled by convex separable constraints though state variables for different
agents are otherwise independent. The aggregate system is decoupled by dualizing
the control variables in the dynamic programming equations. A key distinction in our
problem is that the agents in our problem share the same state variable and hence
are strongly coupled.

Another closely related work is a recent paper by Moallemi and van Roy [27].
They study resource allocation in the message passing context, where message-based
incentives similar to our transfer contracts also generalize the notion of Lagrangian
multipliers by allowing them to vary across agents and resource consumption levels.
They describe a distributed and asynchronous message-passing algorithm for comput-
ing equilibrium messages and allocations, and demonstrate its merits in the context
of network resource allocations problem. Though very similar in spirit, their work
differ from ours in two aspects. First it is restricted to static setting; second they
require strong assumptions such as convexity to establish optimality and convergence
results. Our work is more general as we study stochastic dynamic problems, and we
do not require convexity in establishing convergence of our iterative (i.e. dual-update
or message-passing) algorithms.

It is important that we discuss the literature of airline alliance revenue manage-
ment, which we mention earlier and will be used again as an application to illustrate
our methodologies. Again much of the studies from the literature have taken a cen-
tralized perspective (see Talluri and van Ryzin [36] for an extensive survey), but the
industry trends are clearly moving towards more cooperation and alliances formation
[40]. There has been very limited work done for airline alliance, and there are only
two papers that we are aware of by Boyd [9] and Wright et al. [44]. We note how-
ever, that Boyd’s paper [9] is for deterministic problems while the focus of Wrigth
et al. [44] is evaluating the performance of particular transfer contracts, and does
not address the issue of whether it is possible to coordinate a more general system
with transfer contracts, nor the impact of model mis-specification by agents in the
system (every agent is assumed to be perfectly informed about other agents). In a
more recent paper, Hu et al. [20] proposes a two-stage hierarchical game-theory ap-
proach. In the first stage game, airlines negotiate for fixed proration rates as a mean
to share revenue. In the second stage game, airline operate independent inventory
systems to maximize their own expected revenue. Though their analysis is interesting
and clearly has merits, they rely on rather simplified static approximation of the dy-
namic problem, and hence remains largely restricted to the traditional single-period
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framework.
As a final note, we discuss the paper by Li, Lim and Shanthikumar [24] which

studies the problem of decentralized control of an M/M/1 queue (which obviously
involves only two control agents, one for the arrival rate and the other the service
rate). Like the present work transfer contracts that coordinate the system are also
constructed in [24] and a decentralized method for computing them is also proposed.
There are several key differences, however. Firstly, the present work is set in dis-
crete time whereas [24] is continuous. Secondly, the present work involves systems
with more than two decentralized agents. Thirdly, the stochastic system in the present
work applies to a larger class of applications with more complex state spaces, whereas
[24] concerns a particular two-agent single server queue with a one-dimensional state
space. Fourthly, the convergence analysis in [24] exploits the continuous time struc-
ture of the problem it studies whereas the analysis in the present work, aside from
being shorter, also develops techniques that are more easily extended to other discrete
as well as continuous time systems.

1.4 Decentralized Portfolio and Risk management

Consider a financial firm that is interested in trading in multiple correlated fi-
nancial markets. Centralized portfolio and risk management is ideal, but often the
aggregate system is too complex to be managed that way, and multiple agents (port-
folio managers) are hired to manage the decisions in different markets (e.g. equity,
fixed income, commodity, real estate, etc). Each decentralized agent solves a stochas-
tic optimal control problem in which he maximizes his own risk-adjusted expected
return conditional on a private stochastic model of the market in which he is investing
in. The firm’s net positions are the collection of these holdings but the firm is in-
terested in the risk-adjusted return of the aggregate investment. While decentralized
investment management is necessary and the cost to the firm of agents not coordi-
nating can be substantial, little is understood as to how this can be done. In this
dissertation, we formulate this problem as a decentralized stochastic optimal control
problem and study a mechanism, based on the idea of risk transfer, for optimizing
system efficiency.

This dissertation has two main contributions. Firstly, we show that it is possible
to coordinate locally knowledgeable decentralized agents by introducing a system of
swap contracts that define internal cash transfers between them. Intuitively, these
contracts facilitate risk transfer and set a price for risk, which allows agents to be
rewarded for reducing the firm’s exposure to a particular risk source and penalized
for taking it over a desirable level. As such, it is a mechanism for aligning the
incentives of the agents and the aggregate system. Secondly, we introduce an iterative
approach for constructing optimal swap contracts that can be implemented without
any of the agents needing to reveal private model information to other agents or the
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centralized system. The value of this algorithm is that is allows optimal contracts to
be constructed without a centralized agent with knowledge of the integrated system
model.

The importance of coordination in decentralized (or delegated) portfolio manage-
ment has been recognized for many years. In a seminal paper, Sharpe [33] considers
the portfolio choice problem with multiple portfolio managers (agents) who do not
want to share their private information with the central manager. By assuming short
sales are allowed, all parties have a consensus on the covariance matrix, and all agents
follow the same set of securities, Sharpe [33] develops an instruction for each agent so
that he will choose portfolios that are globally optimal for the firm. However, no exact
solution is available when agents follow non-overlapping securities. This open question
is solved by Elton and Gruber [15], who show that global optimum can be achieved
by requiring those portfolio managers to follow a specifically designed portfolio rule.
In both Sharpe [33] and Elton and Gruber [15], the rules designed by the authors
do not require the agents to reveal their private information (e.g. return forecasts).
However, a major drawback of their approaches is that they ignore the incentives of
the agents and disallow them to maximize their personal earnings. In other words,
it will be difficult to enforce such rules in practice. More recently, Binsbergen et al.
[37, 38] propose a different approach that utilize performance benchmarks to align
incentives between decentralized agents and the central manager. Using a relatively
simple framework with two agents managing non-overlapping securities, and a strong
assumption of the existence of an all-knowing central manager, Binsbergen et al.
[37, 38] shows that there exist stochastic benchmarks that could induce local agents
to choose portfolio holdings that in the aggregate are optimal for the firm. While
benchmarks are closely related to the cash transfers studied in this dissertation, the
key difference is how they are constructed. In Binsbergen et al. [37, 38], an central
agent with knowledge of the dependence structure between all assets in all markets
- and hence capable of constructing the optimal contract by solving the centralized
problem - is assumed to be available, which is problematic since the absence of such
an agents is a major motivation for decentralization.

Similar to the decentralized stochastic dynamic resource allocation problems, this
work is also closely related to the literature on decentralized control (see for example
[17, 18, 19, 22, 29, 31, 39, 42]). An essential difference is that agents in these papers are
cooperative and all know the dynamics of the aggregate system, but are constrained to
policies that are functions of their observations (e.g. a subset of the aggregate system
state). In contrast, our agents are interested in optimizing their own objectives and
have partial knowledge of the system dynamics, and the goal is to provide incentives
through risk transfer such that the collection of agent-level optimal policies is optimal
for the aggregate system (see [12, 13, 24] for other applications).

Finally, another line of closely related work is the optimal risk-transfer literature
(Artzner et al. [4], Barrieu and Karoui [5], Li et al. [23]), where the objective is to
minimize system risk according to some risk measure by transferring risk between
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different parts of the system. The focus has been to characterize the structure of
the optimal risk transfer using different notions of convex risk measures, and they
generally take a centralized approach. Our work is different in two major aspects,
first we take on a decentralized perspective, second our goal is to achieve optimal
control of the system while the risk-transfer literature doesn’t explicitly consider
optimal control in the presence of transfer contracts.

1.5 Organization of this Dissertation

The remaining of the this dissertation is organized as follows.

• In Chapter 2 we study the decentralized stochastic dynamic resource allocation
problems. We characterize optimal revenue transfer contracts that can be used
to coordinate local agents’ pricing decisions to achieve central optimality. We
show that this property is robust to possible mis-specification by each agent
of the dynamics of resource consumptions by other agents in the system. We
further provide an iterative algorithm for computing the sharing contracts in
decentralized manner without requiring agents to reveal their private informa-
tions, and we prove convergence.

• In Chapter 3, we study the issue of computational efficiency of our proposed
coordination mechanism in Chapter 2. We propose two different approximation
methods that are more scalable for practical implementation. The first approach
utilizes static linear programming approximation, and by method of inventory
splitting, we show that the resource allocation decisions can be decentralized ef-
ficiently. We further adapt our iterative algorithm and show that at equilibrium
local agents’ pricing policies will also be optimal for the central agent within
the static approximation framework. The second approach utilizes dynamic
affine value function approximation, where we restrict the search of optimal
contracts to affine functions. We show that approximate dynamic contracts can
be computed efficiently within our proposed decentralized framework.

• In Chapter 4, we study the decentralized portfolio and risk management prob-
lems. We devise a internal system of swap contracts, which defines internal
cash transfer between agents that facilitates risk sharing and can induce them
to choose portfolio positions that in aggregate will be optimal for the firm. We
further provide an iterative algorithm that can be used to construct the opti-
mal swap contracts without compromising agent level proprietary data, and we
prove convergence.

• In Chapter 5, we discuss several important issues concerning efficient decentral-
ized portfolio and risk management. First we propose a risk attribution method
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based on principal component analysis, which offers a way for the firm to iden-
tify risk factors that contributes the most to the firm’s aggregate risk, and hence
swap contracts can be prioritized to significantly improve system performance
even with only partial implementation. Second we discuss the sensitivity of the
swap contracts’ efficiency gain to model assumptions, and offer strong argu-
ments supporting the use of swap contracts, especially in the presence of model
uncertainty. Finally, we address the issue of fair allocation of the surplus utility
generated as a result of the efficient coordination among agents, and show that
our swap contracts can be extended easily to ensure agents are provided with
sufficient incentive to participate.

• In Chapter 6, we conclude this dissertation and discuss future research oppor-
tunities.
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Chapter 2

Decentralized Stochastic Dynamic
Resource Allocation

Many problems can be considered as multi-agent stochastic dynamic resource al-
location problems where needs for decentralization arise naturally. Examples include
service pricing and control in an outsourced environment, revenue management for
an airline alliance, smart-grid operation, and etc. In this chapter we formulate a
general class of decentralized stochastic dynamic resource allocation problems. We
consider a system managed by multiple decentralized agents. Each agent manage
a subset of the products (bundles of raw resources) locally but interact with other
agents at the system level where a limiting pool of resources are shared. We consider
stochastic demand where requests for products arrive overtime according to locally
poisson processes. On receiving a request, the selling agent can decide to accept the
request, thus earning a revenue and consumes resource from the system; or reject the
request, and the customer departs the system. Local agents typically seek to maxi-
mize their own revenue without worrying about the cost to the system, therefore if left
uncoordinated can lead to substantial efficiency loss for the system. In light of this
typical selfish behavior exhibited by decentralized agents, we introduce the notion of
transfer contract to coordinate decision making of the decentralized agents. Transfer
contract specifies the amount an agent need to pay to other agents when a request is
received and accepted, which serves as compensation to other agents for their future
opportunity cost of the resources that are being consumed. We investigate in this
chapter how transfer contract should be set up so as to maximize the net revenue of
the overall system.

This chapter is organized as follows. Section 2.1 describes the models for resource,
products, product demands, and how revenue is generated from allocation decisions.
Section 2.2 and 2.3 formulate a centralized and decentralized approach for coming
up with allocation decisions for the system respectively. Section 2.4 characterizes
the optimal transfer contracts, and establish results about existence and optimality.
Section 2.5 provides an iterative algorithm for constructing the optimal contract in
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decentralized manner respecting information sharing constraints and non-existence
of an all-knowing central agent, as well as a case study of airline alliance revenue
management. Section 2.6 proves convergence of the iterative algorithm. Finally
Section 2.7 concludes this chapter.

2.1 General Description

In this section, we describe the overall system, the models for resources, products
(resource bundles), product requests, and how revenues are generated from allocation
decisions. In subsequent sections, we formulate both a centralized as well as decen-
tralized approach for coming up with allocation decisions for the system described
in this section. In the centralized model, allocation decisions are optimal policies
for a single agent who optimizes system revenue under complete knowledge of the
demand statistics for all products. In the decentralized model, allocation decisions
for different products are made by different agents, where each agent only knows the
demand statistics for the products he is managing, and makes allocation decisions by
optimizing profits from his own sales.

Our resource allocation problem can be viewed as a make-to-order system that of-
fers a menu J = {1, · · · , n} of n different products. We denote by L = [L1, · · · , LK ]′ ∈
RK (Li ≥ 0) the initial inventory level of the K different resources stocked in the sys-
tem. The system receives requests for products in J stochastically over time. We
write d̃jt = 1 if a request for product j is received at time t and d̃jt = 0 otherwise,
and denote by

qjt = P(d̃jt = 1, d̃j′t = 0,∀j′ 6= j),∀j ∈ J , (2.1)

the probability that a request for product j is received at time t. Observe in (2.1)
that at most one product can be requested during each time period, so there are n+1
possible events (including the possibility of no arrival) and

∑
j∈J qjt ≤ 1. On receiving

a request, a decision needs to be made as to whether it should be accepted or rejected.
As previously noted, this decision is made by a single agent in the centralized case, and
shared amongst multiple agents in the decentralized case, where the centralized agent
is knowledgeable about all system statistics and optimizes system revenue, whereas
decentralized agents optimize their own profits subject to partial knowledge of the
demand statistics. We denote allocation policies by µt(x) = [µ1t(x), · · · , µnt(x)],
where µjt(x) = 1 if a request for bundle j at time t when inventory xt = x is to be
accepted and µjt(x) = 0 otherwise, and xt = [x1t, · · · , xKt]′ denotes the quantity of
resources available at the start of time t. We denote by Aj = [a1j, · · · , aKj]′ (alj ≥ 0)
the resource requirement for product j and impose the requirement that product j
can only be manufactured at time t if Aj ≤ xt, which constrains the allocation policy
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µt(x) to the set

U(x) =
{

[µ1t(x), · · · , µnt(x)] : H → {0, 1}n
∣∣∣ Ajµjt(x) ≤ x

}
,

where H ⊂ [0, L1]× · · · × [0, LK ] is the set of possible inventory levels. The system
revenue under an allocation policy µt(x) is

E
{ T∑

t=1

∑
j∈J

rjµjt(xt)d̃jt

}
subject to:

xt+1 = xt −
∑
j∈J

Ajµjt(x)d̃jt, x0 = L,

µt(xt) ∈ U(xt).

(2.2)

The key difference between a centralized and a decentralized system is the way in
which the allocation policy µt(x) is obtained. In the centralized case, the policy is
obtained by a single agent optimizing the objective in (2.2) with complete knowl-
edge of request probabilities and revenues for each product. In the decentralized
case, allocation policies for different products (i.e. different components of µt(x)) are
computed by different agents maximizing their own profits subject to mis-specified
private models.

2.2 Centralized Control

We now formulate a centralized version of the resource allocation problem (2.2)
and characterize the value function and optimal policy. The results in this section
serve as a benchmark for the decentralized model that we introduce in Section 2.3.

The centralized decision maker’s objective is to maximize expected revenue subject
to resource constraints (see also [36]). He does so with complete knowledge of request
probabilities and rewards (qjt, rj) for each product bundle j ∈ J :

(C)



max
µ(·)

E
{ T∑

t=1

∑
j∈J

rjµjt(xt)d̃jt

}
subject to:

xt+1 = xt −
∑
j∈J

Ajµjt(x)d̃jt, x0 = L,

µjt(xt) ∈ U(xt).

(2.3)
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The dynamic programming equation for (C) is V (t, x) = max
µ

E
{∑
j∈J

rjµjtd̃jt + V (t+ 1, xt+1)
∣∣∣ xt = x

}
,

V (T + 1, x) = 0.

Defining ∆V (t+ 1, x, Aj) , V (t+ 1, x)−V (t+ 1, x−Aj), the dynamic programming
equation for (2.3) can be written as [36] V (t, x) = max

µ

∑
j∈J

qjtµjt(rj −∆V (t+ 1, x, Aj)
)

+ V (t+ 1, x),

V (T + 1, x) = 0
(2.4)

and the optimal centralized policy is

µ∗jt(x) =

{
1 if rj ≥ ∆V (t+ 1, x, Aj), and x ≥ Aj
0 otherwise.

(2.5)

In particular it is optimal for the centralized agent to accept a request for bundle j
if the generated revenue rj is no less than the value ∆V (t+ 1, x, Aj) of the resources
being consumed and there is sufficient inventory required to satisfy the request.

In formulating problem (2.3), it is implicitly assumed that the centralized decision
maker knows all relevant system parameters including the demand probability for each
bundle. In many applications, such a knowledgeable decision makes does not exist
and it is more common that there are many agents where each manages a subset of
the products/bundles, is knowledgable about the arrival statistics of products in his
own menu but not those of others, and is interested in maximizing his own revenue.
In such situations, it is not possible to formulate the centralized problem (2.3).

2.3 Decentralized Control

Several important elements that distinguish the decentralized version of the re-
source allocation problem from the centralized version (2.3). Firstly, the decentralized
system consists of multiple agents where each is responsible for the accept/reject deci-
sions for a subset of bundles from the pool J . Decentralized agents are tied together,
however, because shared resources are consumed whenever any agent makes an al-
location. Secondly, every agent is better informed about the subset of products he is
managing than those that are managed by others. Specifically, while each agent is as-
sumed to know the probability that each bundle in his menu is requested, we do not
assume that he knows the probability that shared resources are consumed by other
agents, or even the number of other agents in the system. Consequently, while each
agent may attempt to model the consumption of shared inventory, we only assume
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that the part representing requests by his own customers and his associated allocation
decisions is correct, and that the component associated with resource consumption by
other agents is mis-specified. Finally, each agent maximizes his own objective function
conditional on his possibly mis-specified stochastic model for resource consumption by
other agents. Shared system resources are depleted stochastically over time under
the decentralized set of allocation policies, which typically differ from the optimal
allocation policy of an all-knowing centralized agent.

In this section, we formulate agent level dynamics and agent level objectives. In
defining the objective function for each agent, we introduce the notion of transfer
contracts which define revenue sharing between agents in the system whenever re-
sources are consumed. Intuitively, transfer contracts define a price for using shared
inventory whenever an agent accepts a request which is used to compensate other
agents for the loss of resources. We study the impact of transfer contracts and model
mis-specification on efficiency loss of the decentralized system in Section 2.4.

2.3.1 Stochastic Model for Agent i ∈ I
The following is assumed about Agent i:

• Agent i makes accept/reject decisions for a subset of bundles Ji ⊆ J , and we
denote by J−i the set of bundles managed by other agents;

• All agents can observe the remaining inventory xt at time t (e.g. through a
database);

• Inventory is depleted whenever any agent receives and accepts a request;

• Agent i makes accept/reject decisions for items in his/her portfolio Ji. These

decisions are described by a policy ui = {µ(i)
jt (x), j ∈ Ji}, where µ

(i)
jt (x) takes

value 1 if a request for item j ∈ Ji at time t when system inventory x is accepted,
and zero otherwise. The set of admissible policies for Agent i is

U (i)(xt) = {µ(i)
jt (xt) ∈ {0, 1}, j ∈ Ji : Ajµ

(i)
jt (xt) ≤ xt}

meaning that requests can only be accepted if there is sufficient inventory.

• Agent i knows the probability qjt that an item j ∈ Ji in his bundle will be

requested at time t, and hence the probability qjtµ
(i)
jt (xt) that the associated

resources Aj (j ∈ Ji) are used;

• Agent i has a model of the probability that shared resources are consumed by
another agent but it may be mis-specified. Specifically, if η

(i)
jt (xt) denotes the

probability assumed by Agent i that resources Aj (j ∈ J−i) are consumed by
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another agent, then η
(i)
jt is typically not equal to the actual probability that this

event occurs1.

• Every Agent correctly assumes that at most one bundle from any Agent can be
requested in any given period.

Under these assumptions, each agent has a model in which the accept/reject decisions
for bundles in his portfolio is the control variable, the probability that he receives a
request for an item in his/her bundle is accurately specified, but the probability that
resources are consumed by other agents is generally mis-specified. Mathematically,
Agent i adopts the demand model

xt+1 = xt −
∑
j∈Ji

Ajµ
(i)
jt (x)d̃jt −

∑
j∈J−i

Aj d̃
′

jt, t = 1, · · · , T (2.6)

where d̃jt, j ∈ Ji is a binomial random variable which takes the value 1 if item j in

Agent i’s portfolio is requested but is otherwise 0, d̃′jt is also binomial taking value
1 when inventory Aj, j ∈ J−i is requested by another agent but is otherwise 0, and

µ
(i)
jt (xt) is Agent i’s accept/reject policy for items in his inventory. For every bundle
j ∈ Ji ∪ J−i, Agent i specifies probabilities

qjt = P [d̃jt = 1, d̃kt = 0 ∀ k ∈ Ji/{j}, d̃′kt = 0 ∀ k ∈ J−i], if j ∈ Ji,
η

(i)
jt (xt) = P [d̃′jt = 1, d̃kt = 0 ∀ k ∈ Ji], if j ∈ J−i.

We assume that qjt is correctly specified while η
(i)
jt (xt) may be mis-specified.

2.3.2 Transfer Contracts and Revenue Sharing

System inefficiencies caused by the selfish use of shared resources generally occur
if the incentives of decentralized agents are not properly aligned with those of the
system. To address this issue, we introduce the notion of a transfer contract which sets
a price for using shared resources that is paid by the allocating agent and transferred
to others as compensation.

Let Ri(t, x, Aj) denote the payment received by Agent i whenever resources Aj
(j ∈ J−i) are consumed by any other agent. It follows that if Agent i consumes Aj

1For example, if (a) item j ∈ J−i happens to be controlled by Agent k, (b) the probability that
Agent k receives a request is q(k)

jt , and (c) Agent k has policy µ(k)
jt (xt), then the true probability that

resources Aj are consumed is q(k)
jt µ

(k)
jt (xt), which we assume to be known by Agent k. However, there

is typically no reason to assume that Agent i knows any of this information (or even the identity of
the agent(s) who may use Aj), so we allow for the possibility that η(i)

jt (xt) 6= q
(k)
jt µ

(k)
jt (xt) and that

Agent i’s model may be mis-specified.
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(j ∈ Ji), that his net payout to other agents is

R−i(t, x, Aj) ,
∑
i′ 6=i

Ri′(t, x, Aj). (2.7)

For Agent i, all that is relevant is the pair of functions

[R−i(t, x, Aj), Ri(t, x, Ak), j ∈ Ji, k ∈ J−i],

specifying the payment R−i(t, x, Aj) that needs to be made whenever he makes an
allocation, and the payment Ri(t, x, Ak) that is received whenever resources Ak are
consumed by another agent. We say that the set of contracts

R(t, x) =
{

[R−1(t, x, Aj), R1(t, x, Aj)], · · · , [R−|I|(t, x, Aj), R|I|(t, x, Aj)], j ∈ J
}

is admissible if it satisfies the condition (2.7). Transfer contracts change the expected
profits and behavior of each agent. When they are admissible, payments are internal
transfers between agents.

2.3.3 Decentralized Control

For a given set of revenue transfer contracts [R−i(t, x, Aj), Ri(t, x, Aj)], Agent i
maximizes his expected profit conditional on his potentially mis-specified model for
resource consumption

(Ci)



max
µ(i)(·)

E
T∑
t=1

{∑
j∈Ji

[
rj −R−i(t, xt, Aj)

]
µ

(i)
jt (xt)d̃jt +

∑
j∈J−i

Ri(t, xt, Aj)d̃
′

jt

}
subject to:

xt+1 = xt −
∑
j∈Ji

Ajµ
(i)
jt (xt)d̃jt −

∑
j∈J−i

Aj d̃
′

jt, x0 = L,

µ
(i)
jt (xt) ∈ U (i)(x).

(2.8)

The objective consists of two terms. The first rj − R−i(t, xt, Aj) is the net revenue
received by Agent i when he accepts a request for one unit of bundle j ∈ Ji consisting
of income rj from the sale net the cash transfers R−i(t, xt, Aj) to the other agents.
The second Ri(t, xt, Aj) is the cash transfer received by Agent i whenever Aj (j ∈ J−i)
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is consumed by another agent. The dynamic programming equation for Agent i is

Vi(t, x;R) = max
µ(i)

∑
j∈Ji

qjt

[
µ

(i)
jt (rj −R−i(t, x, Aj)) + Vi(t+ 1, x− Ajµ(i)

jt )
]

+
∑
j∈J−i

η
(i)
jt (x)

[
Ri(t, x, Aj) + Vi(t+ 1, x− Aj)

]
+
[
1−

∑
j∈Ji

qjt −
∑
j∈J−i

η
(i)
jt (x)

]
Vi(t+ 1, x),

Vi(T + 1, x;R) = 0.

Defining

∆Vi(t+ 1, x, Aj;R) , Vi(t+ 1, x;R)− Vi(t+ 1, x− Aj;R),

the dynamic programming equations for (2.8) can be written as
Vi(t, x;R) = max

µ(i)

∑
j∈Ji

qjtµ
(i)
jt

[
rj −R−i(t, x, Aj)−∆Vi(t+ 1, x, Aj;R)

]
+
∑
j∈J−i

η
(i)
jt (x)

[
Ri(t, x, Aj)−∆Vi(t+ 1, x, Aj;R)

]
+ Vi(t+ 1, x;R),

Vi(T + 1, x;R) = 0.

(2.9)

We emphasize that Agent i’s model η
(i)
jt (x) for the probability that resources Aj are

consumed by another agent may be mis-specified.

2.3.4 Weak Duality

For every admissible contract R, each agent formulates a potentially mis-specified
stochastic dynamic resource allocation problem (2.8) and solves for an optimal policy

u∗i = {µ(i)∗
jt (x),∀j ∈ Ji}. These policies are then implemented in the real world by

each agent, where requests occur according to the true probabilities qjt (2.1) that
were used when formulating the centralized problem. The expected revenue for the
aggregate system under the set of decentralized policies {u∗1, · · · , u∗|I|} is given by

V̂ (t, x;R) , E
T∑
s=t

∑
i∈I

∑
j∈Ji

rjµ
(i)∗
js (xs)d̃js

subject to:

xs+1 = xs −
∑
i∈I

∑
j∈Ji

Ajµ
(i)∗
js (xs)d̃jt, ∀ t ≤ s ≤ T, xt = x,

(2.10)
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where the distribution of d̃jt is given by (2.1) and coincides with the probability
adopted by the centralized decision maker. Whenever Agent i accepts a request, he is
credited ri and makes payment R−i(t, x, Aj) which, by (2.7), is divided amongst the
other agents in the system with portion Ri′(t, x, Aj) going to Agent i′. Observing
that revenue sharing is nothing but an internal cash transfer, it follows that the
net system profit equals the sum of profits by each agent. Clearly, it is of interest
how the system profit V̂ (t, x; R) under decentralized control relates to the optimal
system profit given by the value function V (t, x) of the centralized problem (2.3).
The following result comes immediately from the observation that the decentralized
policies {u∗1, · · · , u∗|I|} are admissible though not generally optimal for the centralized
problem.

Proposition 2.3.1 (Weak Duality). Let R be an arbitrary transfer contract, {u∗1, · · · , u∗|I|}
the optimal decentralized policies under this contract, V̂ (t, x;R) the resulting expected
system revenue (2.10), and V (t, x) the value function for the centralized agent (2.3).
Then

V̂ (t, x;R) ≤ V (t, x), ∀t, x. (2.11)

Several questions are immediate:

• What choice of contracts “maximize” the efficiency of the decentralized system?
Can contracts R be found under which decentralized agents achieve centralized
efficiency?

• What is the impact of model mis-specification on efficiency of decentralized
allocation?

2.4 Optimal Transfer Contracts

We begin by proposing conditions that optimal contracts should satisfy. Existence
of contracts satisfying these conditions and the optimality of these contracts will then
be established.

2.4.1 Optimality Conditions: Conjecture

Let

R(t, x) =
{

[R−1(t, x, Aj), R1(t, x, Aj)], · · · , [R−|I|(t, x, Aj), R|I|(t, x, Aj)], j ∈ J
}

be an arbitrary admissible transfer contract and

V1(t, x;R), · · · , V|I|(t, x;R) (2.12)



19

denote the value functions for each agent obtained by solving the decentralized prob-
lems (2.8) under R. Vi(t, x; R) is Agent i’s valuation of the shared inventory x at
time t under contract R and Vi(t+ 1, x; R)− Vi(t+ 1, x−Aj; R) is the opportunity
cost to Agent i of losing inventory Aj. Observe that each agent’s value function and
opportunity cost depend on his mis-specified model for resource consumption.

A contract R(t, x) defines cash transfers between agents whenever inventory is
consumed; specifically, R−i(t, x, Aj) is the cost to Agent i of using resources Aj
which is divided amongst other agents with the portion Ri′(t, x, Aj) going to Agent
i′. In this light, contracts define compensation payments and it is natural to expect
that optimal contracts compensate each agent his opportunity cost for the inventory
just consumed. This leads to the conjecture that optimal admissible contracts should
satisfy R−i(t, x, Aj) =

∑
i′ 6=i

[
Vi′(t+ 1, x;R)− Vi′(t+ 1, x− Aj;R)

]
,

Ri(t, x, Aj) = Vi(t+ 1, x;R)− Vi(t+ 1, x− Aj;R).

(2.13)

This condition is a complicated system of implicit equations for the contract R. Sev-
eral issues need to be resolved.

• Does a contract satisfying conditions (2.12)-(2.13) exist?

• What is the efficiency loss relative to centralized optimality when a contract
satisfying (2.12)-(2.13) is implemented?

• What is the impact of model mis-specification? Does it minimize efficiency loss
in some sense, even if the models adopted by each agent are mis-specified?

• Can a solution of (2.12)-(2.13) be computed without decentralized agents having
to share information about their own models (e.g. request probabilities) in order
to solve a centralized problem?

2.4.2 Existence

Let V (t, x) denote the value function for the centralized problem (2.3), Vi(t, x)
the solution of the recursive equation Vi(t, x) = max

µ

∑
j∈Ji

qjtµ
(i)
jt (rj −∆V (t+ 1, x, Aj)) + Vi(t+ 1, x),

Vi(T + 1, x) = 0.
(2.14)
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and  R−i(t, x, Aj) =
∑
i′ 6=i

[
Vi′(t+ 1, x;R)− Vi′(t+ 1, x− Aj;R)

]
Ri(t, x, Aj) = Vi(t+ 1, x;R)− Vi(t+ 1, x− Aj;R).

(2.15)

Observe that V (t, x) appears in the RHS of (2.14). Clearly, the contract (2.15) is
admissible in that it satisfies the condition (2.7), and can be computed (at least in
principle) by solving the centralized problem for V (t, x) and the recursive equations
(2.14) for Vi(t, x). We now show that contract (2.14)-(2.15) satisfies the conjectured
optimality conditions (2.12)-(2.13). The following preliminary result is required.

Proposition 2.4.1. Let V (t, x) denote the value function for the centralized problem
(2.3) and V1(t, x),· · · , V|I|(t, x) be defined in (2.14). Then V (t, x) =

∑
i∈I Vi(t, x).

Proof. We shall prove this by induction. At t = T + 1, the claim holds trivially.
Suppose the claim holds for time period t+ 1, namely

V (t+ 1, x) =
∑
i∈I

Vi(t+ 1, x).

Since V (t, x) solves the dynamic programming equation (2.4), it also solves V (t, x) = max
µ(i)

∑
i∈I

∑
j∈Ji

qjtµ
(i)
jt (rj −∆V (t+ 1, x, Aj)) + V (t+ 1, x),

V (T + 1, x) = 0,
(2.16)

where the RHS of this equation comes from decomposing the RHS of (2.4) over the
bundles managed by different agents. On the other hand, summing (2.14) over i gives∑

i∈I

Vi(t, x) =
∑
i∈I

max
µ(i)

∑
j∈Ji

qjtµ
(i)
jt (rj −∆V (t+ 1, x, Aj)) +

∑
i∈I

Vi(t+ 1, x)

= max
µ(i)

∑
i∈I

∑
j∈Ji

qjtµ
(i)
jt (rj −∆V (t+ 1, x, Aj)) + V (t+ 1, x),

where the second equality follows from the induction hypothesis and the separability
of the terms involving µ

(i)
jt . Comparing with (2.16) it follows that∑

i∈I

Vi(t, x) = V (t, x),

and our result follows.

We show that (2.15) is a solution of the system of equations (2.12)-(2.13) by
showing that the solution Vi(t, x) of (2.14) is the value function for the decentralized
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problem (2.8) under the contract (2.14)-(2.15). To see this, observe (by Proposition
2.4.1) that

∆V (t+ 1, x, Aj) =
∑
i∈I

∆Vi(t+ 1, x, Aj) =
∑
i′ 6=i

∆Vi′(t+ 1, x, Aj) + ∆Vi(t+ 1, x, Aj).

This implies that (2.14) is equivalent to

Vi(t, x) = max
µ

∑
j∈Ji

qjtµ
(i)
jt

[
rj −

∑
i′ 6=i

∆Vi′(t, x, Aj)−∆Vi(t+ 1, x, Aj)
]

+ Vi(t+ 1, x).

When the contract R is given by (2.14)-(2.15), this equation can be written as
Vi(t, x) = max

µ(i)

∑
j∈Ji

qjtµ
(i)
jt

[
rj −R−i(t, x, Aj)−∆Vi(t+ 1, x, Aj)

]
+
∑
j∈J−i

η
(i)
jt (x)

[
Ri(t, x, Aj)−∆Vi(t+ 1, x, Aj)

]
+ Vi(t+ 1, x),

Vi(T + 1, x) = 0.

(2.17)

Observing that this is nothing but the dynamic programming equation for the decen-
tralized problem (2.8) under contract (2.14)-(2.15), we can now say the following:

• The solution Vi(t, x) of (2.14) equals the value function for the decentralized
problem for Agent i under the contract (2.14)-(2.15). It follows that the contract
(2.14)-(2.15) is a solution of the system of equations (2.12)-(2.13).

• The maximizer in the RHS of (2.14) is also the maximizer in the RHS of the
dynamic programming equation (2.17) under contract (2.14)-(2.15). It follows
that the maximizer in (2.14) defines the optimal allocation decision for Agent i
under the contract (2.14)-(2.15).

• Under transfer contract (2.14)-(2.15), the second term in (2.17) is always zero.
It follows that the value function of the decentralized problem (2.8) as well as
the associated optimal allocation policy do not depend on Agent i’s specification
of the probability η

(i)
jt (x) that another agent consumes inventory Aj.

We summarize these observations as follows.

Proposition 2.4.2. Let the transfer contract R be defined by (2.14)-(2.15). Then R
is a solution of the system of equations (2.12)-(2.13). Under this contract, the value
function of Agent i’s problem (2.8) is also the solution of (2.14) and the optimal
allocation policy for Agent i is

µ
(i)∗
jt (x) =

{
1, if rj ≥ R−i(t, x, Aj) + ∆Vi(t+ 1, x, Aj),
0, otherwise.
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Both the value function Vi(t, x) and the optimal policy u∗i = {µ(i)∗
jt (x), j ∈ Ji} are

independent of Agent i’s specification in his model (2.8) of the probability η
(i)
jt (x) that

inventory Aj is consumed by another agent.

2.4.3 Verification of Optimality

Proposition 2.4.2 tells us that the contract defined in (2.14)-(2.15) satisfies the
conjectured optimality conditions (2.12)-(2.13), and that the value functions of the
decentralized agents under this contract are insensitive to mis-specification of the
probability of consumption by other agents. We now show that the contracts (2.14)-
(2.15) are optimal in that they achieve equality in (2.11) and that the decentralized
policies are optimal for the integrated system.

Theorem 2.4.1 (Strong duality). Let (R, (V1(t, x), · · · , V|I|(t, x))) denote the solu-
tion of the system (2.14)-(2.15) and u∗i be the optimal allocation policy for Agent i’s
problem (2.8) under this contract. Then

1. R solves the system of equations (2.12)-(2.13) and Vi(t, x) equals the value
function for Agent i’s problem (2.8) under this contract.

2. The collection of decentralized policies {u∗1, ...,u∗|I|} under contract (2.14)-(2.15)

is optimal for the centralized problem (2.3) and the system profit under these
decentralized policies equals the optimal profit for the centralized agent;

3. The value function and optimal allocation policy u∗i for Agent i are independent

of his specification η
(i)
jt (x) of the probability that resources Aj (j ∈ J−i) are

consumed by other agents in (2.8).

Proof. Properties (1) and (3) were shown in Proposition 2.4.2.
Suppose that the transfer contract is given by (2.14)-(2.15). Then the optimal

allocation policy, by Proposition 2.4.2, is given by

u∗i = arg max
µ(i)

∑
j∈Ji

qjtµ
(i)
jt

[
rj −R−i(t, x, Aj)−∆Vi(t+ 1, x, Aj)

]
= arg max

µ(i)

∑
j∈Ji

qjtµ
(i)
jt

[
rj −∆V (t+ 1, x, Aj)

]
,

where V (t, x) is the value function for the centralized agent which solves the dynamic
programming equation (2.4). This implies that the collection of decentralized policies
under contract (2.14)-(2.15) satisfies

{u∗1, ...,u∗|I|} = arg max
µ(i)

∑
i∈I

∑
j∈Ji

qjtµ
(i)
jt (rj −∆V (t+ 1, x, Aj)).
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Property (2) now follows from the observation that this is precisely the optimal policy
for the centralized problem as defined by (2.4).

Though transfer contracts play a role analogous to shadow prices in classical
resource allocation problems, it is notable that strong duality holds without any
assumptions of convexity.

2.5 Decentralized Computation of Optimal Con-

tracts

Theorem 2.4.1 characterizes transfer contracts under which decentralized agents
optimally choose the centrally optimal policies. We now turn to the question of com-
puting these contracts. One approach is to solve the system of equations (2.14)-(2.15)
directly, but this can only be done if the demand probabilities qjt of all bundles and
the value function of the centralized problem V (t, x) are known. This is disquieting
because our motivation for studying the decentralized problem was the argument that
agents with this information typically do not exist.

2.5.1 Iterative Decentralized Algorithm

The following algorithm is motivated by the above considerations and can be
viewed as an iterative approach for solving the implicit system of equations (2.12)-
(2.13). (Recall from Theorem 2.4.1 that the optimal contract is a solution of this
system). In each iteration, decentralized agents solve their mis-specified optimization
problems (2.8) conditional on some suboptimal transfer contract. These contracts are
then updated locally by each of the agents and exchanged, and the process repeats.
While it is natural to ask whether the algorithm converges and whether the limiting
contract is optimal, which we address in Section 2.6, it is important to recognize that
the algorithm can be implemented without an all knowing centralized agent and does
not require agents to exchange private information about demand probabilities or to
even know how many other agents there are in the system. All that is exchanged
are updated transfer contracts and the algorithm allows for the possibility that the
decentralized problems may be mis-specified.

Algorithm 2.5.1. (Iterative Decentralized Algorithm)

Initialize: Set k = 1, and R1
i (t, x, Aj) = 0, R1

−i(t, x, Aj) = 0.

Step 1: Given k, and Rk
i (t, x, Aj), R

k
−i(t, x, Aj)

• Each agent solves his own decentralized problem (2.8) and computes his value
function V k

i (t, x) = Vi(t, x; Rk) by solving (2.9);
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Figure 2.1: A three-airline alliance with three legs and five itineraries: Airline 1 and
Airline 2 operates both intraline (A and B respectively) and interline itineary (AB
and BC respectively), while Airline 3 only operates intraline itinerary (C).

• Stop if, a satisfactory level of precision has been reached,

sup
i,t,x
|V k
i (t, x)− V k−1

i (t, x)| ≤ ε;

otherwise, each agent updates his transfer contract,

Rk+1
i (t, x, Aj) = V k

i (t+ 1, x)− V k
i (t+ 1, x− Aj).

• Each agent communicates the updated transfer contract Rk+1
i (t, x, Aj) to the

system.

• System synthesize Rk+1
−i (t, x, Aj) =

∑
i′ 6=iR

k+1
i (t, x, Aj), and broadcast them

back to all agents.

Step 2: Set k to k + 1 and return to Step 1.

2.5.2 Numerical Example

We now illustrate our decentralized resource allocation framework with an exam-
ple from airline alliance revenue management. Figure 2.1 shows an airline alliance
consisting of three agents (Airline 1/2/3). The alliance has three resources (flight-leg
A/B/C), and markets five bundles (itinerary A/B/C/AB/BC). The arrival probabil-
ity for itineraries are set such that the network has an overall load factor of 1.33,
where the load factor,

α =

∑
ljt qjtalj∑
l xl1

,

is the ratio of expected resource consumption to the initial inventory level. Lastly
the planning horizon has T = 30 periods.

Convergence

Figure 2.2 shows the convergence of Algorithm 2.5.1 (both in terms of error 1 that
is evaluated under sup-norm over the entire state space, as well as error 2 that is
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Figure 2.2: Convergence of Algorithm 2.5.1 with two types of errors: error 1 =
supt,x ||

∑
i V

k
i (t, x)− V (t, x)||, error 2 = |

∑
i V

k
i (1, 10)− V (1, 10)|.

evaluated only at the initial time and maximum capacity) where the joint value func-
tion converges to the centrally optimal solution (we solve the benchmark centralized
optimal value function separately). If we look at error 1, which is the worst case
error, the convergence is not very smooth. However, if we look at error 2, which is
the error associated with the start of the planning horizon, it converges much faster
and smoother. That is an nice property for practical implementation, as the initial
decisions only depend on the value functions at the initial time, which means we could
run the algorithm dynamically over time and retain only the value functions at the
initial time, and only a small number of iterations is required to achieve good accu-
racy. Figure 2.3 shows the decomposition of the the centrally optimal value function
into the value functions of the three individual airlines, and we see that the value
functions decrease monotonically over time as airline inventory is perishable.

Transfer contracts and the impact of network topology

Note that our example has a special network structure, such that some airlines are
directly connected (e.g. Airline 1 and 2), while some are only indirectly connected
(e.g. Airline 1 and 3 via 2). We would like to examine the dependence of the revenue
transfers on the underlying network topology. We define a first-order transfer as a
payment to a directly connected partner (e.g. Airline 1 to 2), and a second-order
transfer as a payment to an indirectly connected partner (e.g. Airline 1 to 3).

Table 2.1 shows the break-down of the net revenue transfer R into first and second
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Figure 2.3: Central optimal value function V (t, x) vs individual airlines optimal value
function V1(t, x), V2(t, x), V3(t, x): decays monotonically over time as airline inventory
is perishable.
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order transfers from a simulated sample path of the demand and revenue realization.
For example, when Airline 3 makes the first sale, $32 is transferred to Airline 2 (first
order), while -$15 is transferred to Airline 1 (second order). The most surprising
feature is that revenue transfers can take on negative values, meaning that having
less inventory can be sometimes beneficial for some airline. For example, Airline 1 is
always willing to subsidize the sale by taking a negative revenue transfer whenever
Airline 3 makes a sale (which is second order since Airline 1 and -3 are only indirectly
connected). The reason is that when Airline 3 makes a sale of itinerary C, Airline
2 will have less opportunity to sell itinerary BC, thus increasing the opportunity for
Airline 1 to sell itinerary AB. Clearly, network topology can have a strong impact on
the distribution of revenue transfer, and one should exploit such structural properties
in designing practical transfer schemes.

Selling Airline R 1st order R 2nd order R
3 17 32 -15
1 -13 -18 5
2 22 68 -46
3 29 49 -20
3 41 64 -23
3 45 64 -19
2 237 54 183
1 93 120 -27
1 94 129 -35
1 111 151 -40
3 0 16 -16
1 -21 -28 7
3 11 30 -19
1 -29 -33 4

Table 2.1: Decomposed revenue transfers from a simulated sample path.

2.6 Convergence

Transfer contracts R specify prices that are paid by agents when consuming shared re-
sources and as such are related to Lagrange multipliers/shadow prices in classical resource
allocation problems. In this light, Algorithm 2.5.1 is analogous to a dual type approach
for updating prices. We now present results that guarantee convergence of the Algorithm
2.5.1 to the optimal contract. As in Theorem 2.4.1 convexity is not required to guaran-
tee convergence, and convergence is robust to agent-level mis-specification of the demand
probabilities of other agents.
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2.6.1 Statement of Main Results

Theorem 2.6.1. Let Vi(t, x) be the value function for Agent i’s decentralized problem (2.9)
under the optimal contract (2.15), and the sequence of {V k

i (t, x)} be computed by Algorithm
2.5.1. Then {V k

i (t, x)} converges strongly to Vi(t, x), namely

lim
k→∞

‖V k
i (t, x)− Vi(t, x)‖ = 0, ∀i ∈ I.

Suppose uki = {µkjt(x), j ∈ Ji} 2 is the optimal policy for Agent i obtained in the kth

iteration, and let
V̂ k(t, x) , E

T∑
s=t

∑
i∈I

∑
j∈Ji

rjµ
k
js(xs)d̃js

subject to:
xs+1 = xs −

∑
i∈I

∑
j∈Ji

Ajµ
k
js(xs)d̃jt, ∀ t ≤ s ≤ T, xt = x,

(2.18)

denote the system profit under the set of policies {uk1, ...,uk|I|} obtained from the kth iteration

of Algorithm 2.5.1. The following result guarantees convergence of V̂ k(t, x) to the value
function V (t, x) of the centralized agent.

Theorem 2.6.2. There exist constants C,M > 0 such that

‖V̂ k(t, x)− V (t, x)‖ ≤ C(MT )k+1

M(k + 1)!
, ∀k ≥ 1.

It follows that
lim
k→∞

‖V̂ k(t, x)− V (t, x)‖ = 0.

We now turn to a proof of Theorems 2.6.1 and 2.6.2. To ease the notation, we assume
in the proof that {η(i)

jt (x) ≡ 0, ∀j /∈ Ji} in Agent i’s model; i.e. that Agent i (incorrectly)
assumes in his/her model that inventory can not be depleted by other agents. We em-
phasize that this simplification is being made to reduce the length of equations/plethora
of subscripts and to improve the clarity of the proof, and that all results holds for the
more general case when Agent i adopts non-zero values for the demand probabilities of
other agents. We note in particular that each agent’s model is still mis-specified under
this simplification, so we are not assuming away an essential feature of our system/result
in making this assumption. Under these assumptions, the decentralized model of Agent i

2To ease the notation, we use µk
jt(x) instead of µ(i)k

jt (x) in the remaining analysis, with the index
j ∈ Ji indicating that the control policy belongs to Agent i.
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(2.8) simplifies to

(Ĉi)


max
µ(·)

E
T∑
t=1

∑
j∈Ji

[
rj −R−i(t, x,Aj)

]
µjt(xt)d̃jt

subject to:
xt+1 = xt −

∑
j∈Ji Ajµjt(x)d̃jt, x0 = L,

µjt(xt) ∈ U(xt).

(2.19)

For which the dynamic programming equation is Vi(t, x) = max
µ

∑
j∈Ji

qjtµjt

[
rj −R−i(t, x,Aj)−∆Vi(t+ 1, x, Aj)

]
+ Vi(t+ 1, x),

Vi(T + 1, x) = 0.
(2.20)

2.6.2 Preliminaries

The well known inequality

|max
x

f(x)−max
x

g(x)| ≤ max
x
|f(x)− g(x)| (2.21)

is used repeatedly in the proof. The following technical result is also required.

Lemma 2.6.1.
T∑
s=t

(T − s)k−1

(k − 1)!
≤ (T − t+ 1)k

k!
. (2.22)

Proof. This result follows from the observation that

T∑
s=t

(T − s)k−1

(k − 1)!
≤

T∑
s=t

∫ s+1

s

(T − u+ 1)k−1

(k − 1)!
du,

=
T∑
s=t

[(T − s+ 1)k

k!
− (T − s)k

k!

]
,

=
(T − t+ 1)k

k!
,

where the first inequality basically says that the area under the step function in Figure 2.4
is bounded above by the area under the curve.

Proposition 2.6.1. There exists constants B,M > 0 such that for any agent i ∈ I, we
have

max
x
|V k
i (t, x)− V k−1

i (t, x)| ≤ B[M(T − t+ 1)]k

Mk!
, ∀k ≥ 1.
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Figure 2.4: An upper bound for the summation (k = 5, t =1, T = 8)

It follows that

‖V k
i − V k−1

i ‖ = sup
t∈[1,T ]

max
x
|V k
i (t, x)− V k−1

i (t, x)| ≤ B(MT )k

Mk!
,

hence

lim
k→∞

‖V k
i (t, x)− V k−1

i (t, x)‖ = 0.

Proof. Define,
W k
i (t) , max

x
|V k
i (t, x)− V k−1

i (t, x)|, ∀i ∈ I (2.23)

Assuming without loss of generality that V 0
i (t, x) = 0, we have

V 1
i (t, x) , max

µ(·)
E

T∑
s=t

∑
j∈Ji

rjµjs(xs)d̃js

subject to:
xs+1 = xs −

∑
j∈Ji

Ajµjs(xs)d̃jt, ∀ t ≤ s ≤ T,

xt = x,

(2.24)

since R1
−i(t, x,Aj) =

∑
i′ 6=i

∆V 0
i′ (t, x,Aj) = 0. Let B = max

j∈J
{rj}. Then B is an upper bound

to the maximum revenue achievable in any time period by any agent solving (2.24) and it
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follows that

W 1
i (t) = max

x
|V 1
i (t, x)| ≤ B(T − t+ 1), ∀i ∈ I. (2.25)

Suppose now there is a k such that

W k−1
i (t) = max

x
|V k−1
i (t, x)− V k−2

i (t, x)| ≤ B[M(T − t+ 1)]k−1

M(k − 1)!
, (2.26)

where M = 2(|I| − 1) is a constant. (By (2.25) this condition holds when k = 2). Then

|V k
i (t, x)− V k−1

i (t, x)|

=
∣∣∣max
µ(·)

{
E

T∑
s=t

∑
j∈Ji

[
rj −Rk−i(t, x,Aj)

]
µjt(xt)d̃jt

}

−max
µ(·)

{
E

T∑
s=t

∑
j∈Ji

[
rj −Rk−1

−i (t, x,Aj)
]
µjt(xt)d̃jt

}∣∣∣,
≤ max

µ(·)

∣∣∣{E
T∑
s=t

∑
j∈Ji

[
rj −Rk−i(t, x,Aj)

]
µjt(xt)d̃jt

}

−
{

E
T∑
s=t

∑
j∈Ji

[
rj −Rk−1

−i (t, x,Aj)
]
µjt(xt)d̃jt

}∣∣∣,
= max

µ(·)

∣∣∣E T∑
s=t

∑
j∈Ji

∑
i′ 6=i

(−∆V k−1
i′ (s+ 1, xs, Aj) + ∆V k−2

i′ (s+ 1, xs, Aj))µjs(xs)d̃js
∣∣∣,

= max
µ(·)

∣∣∣E T∑
s=t

∑
j∈Ji

∑
i′ 6=i

[(V k−1
i′ (s+ 1, xs −Aj)− V k−2

i′ (s+ 1, xs −Aj))

−(V k−1
i′ (s+ 1, xs)− V k−2

i′ (s+ 1, xs))]µjs(xs)d̃js
∣∣∣,

where the inequality follows from (2.21). It now follows that

W k
i (t) ≤

T∑
s=t

∑
j∈Ji

qjt
∑
i′ 6=i

2W k−1
i′ (s+ 1),

≤
T∑
s=t

M
B[M(T − s)]k−1

M(k − 1)!
,

≤ BMk

M

(T − t+ 1)k

k!
,

=
B[M(T − t+ 1)]k

Mk!
,

where the first inequality follows from the definition of W k−1
i (t) (see (2.26)), the second
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inequality follows from the definition of M = 2(|I|−1) together with the induction hypoth-
esis (2.26) and the third inequality follows from (2.22) in Lemma 2.6.1. Taking supremums
over t ∈ [1, T ] on both sides gives

‖V k
i − V k−1

i ‖ = sup
t∈[1,T ]

W k
i (t) ≤ B(MT )k

Mk!
,

and it follows that

lim
k→∞

‖V k
i − V k−1

i ‖ = 0, ∀i ∈ I,

as claimed.

2.6.3 Proof of Main Results

Proof of Theorem 2.6.1

For any k ∈ Z+ and m ∈ Z+,

‖V k+m
i − V k

i ‖ ≤
m∑
l=1

‖V k+l
i − V k+l−1

i ‖,

≤
m∑
l=1

B(MT )k+l

M(k + l)!
(Proposition 2.6.1),

≤B(MT )k+1

M(k + 1)!

∞∑
l=0

(MT )l

l!
,

=
B(MT )k+1

M(k + 1)!
e−MT , ∀i ∈ I

which goes to zero as k → +∞. Therefore {V k
i , k ≥ 1} is a Cauchy sequence under the

sup-norm, so there exists a function V̂i such that ‖V k
i − V̂i‖ → 0 as k → ∞. On the other

hand, we also know that V k
i is the solution of the dynamic programming equation V k

i (t, x) = max
µ

∑
j∈Ji

qjtµjt

[
rj −

∑
i′ 6=i

∆V k−1
i′ (t+ 1, x, Aj)−∆V k

i (t+ 1, x, Aj)
]

+ V k
i (t+ 1, x),

Vi(T + 1, x) = 0.

Taking limits on both sides gives V̂i(t, x) = max
µ

∑
j∈Ji

qjtµjt

[
rj −

∑
i′ 6=i

∆V̂i′(t+ 1, x, Aj)−∆V̂i(t+ 1, x, Aj)
]

+ V̂ k
i (t+ 1, x),

V̂i(T + 1, x) = 0,

which is exactly the same dynamic programming equation as (2.20) under the optimal
sharing contract (2.15). It follows that the limit V̂i(t, x) equals the value function for Agent
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i under the optimal transfer contract

V̂i(t, x) = Vi(t, x),

and that the value functions of the decentralized agents generated at each step of Algorithm
2.5.1 converges

lim
k→∞

‖V k
i (t, x)− Vi(t, x)‖ =0, ∀i ∈ I.

Proof of Theorem 2.6.2

Since uki = {µkjt(x), j ∈ Ji} is the optimal policy for Agent i obtained at the kth iteration,
we have V k

i (t, x) =
∑
j∈Ji

qjtµ
k
jt(x)

[
rj −Rk−i(t, x,Aj)−∆V k

i (t+ 1, x, Aj)
]

+ V k
i (t+ 1, x),

V k
i (T + 1, x) = 0.

Defining V k(t, x) =
∑

i∈I V
k
i (t, x), we have

V k(t, x) =
∑
i∈I

∑
j∈Ji

qjtµ
k
jt(x)(rj −Rk−i(t, x,Aj)−∆V k

i (t+ 1, x, Aj)) +
∑
i∈I

V k
i (t+ 1, x),

=
∑
i∈I

∑
j∈Ji

qjtµ
k
jt(x)(rj −Rk−i(t, x,Aj) +

∑
i′ 6=i

∆V k
i′ (t+ 1, x, Aj)

−
∑
i∈I

∆V k
i (t+ 1, x, Aj)) + V k(t+ 1, x).

Since
∑

i′ 6=i ∆V k
i′ (t+ 1, x, Aj) = Rk+1

−i (t, x,Aj), the above simplifies to
V k(t, x) =

∑
i∈I

∑
j∈Ji

qjtµ
k
jt(x)

[
rj −Rk−i(t, x,Aj) +Rk+1

−i (t, x,Aj)

−∆V k(t+ 1, x, Aj)
]

+ V k(t+ 1, x),
V k(T + 1, x) = 0.

(2.27)

It is clear that (2.27) is the dynamic programming equation of the stochastic control problem

V k(t, x) , E
T∑
s=t

∑
i∈I

∑
j∈Ji

(rj −Rk−i(t, x,Aj) +Rk+1
−i (t, x,Aj))µjs(xs)kd̃js

subject to:
xs+1 = xs −

∑
i∈I

∑
j∈Ji

Ajµjs(xs)k(xs)d̃jt, ∀ t ≤ s ≤ T,

xt = x.

(2.28)
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From (2.18) and (2.28) we have

∣∣∣V̂ k(t, x)− V k(t, x)
∣∣∣ =

∣∣∣E T∑
s=t

∑
i∈I

∑
j∈Ji

(
−Rk−i(t, x,Aj) +Rk+1

−i (t, x,Aj)
)
µjs(xs)kd̃js

∣∣∣,
=

∣∣∣E T∑
s=t

∑
i∈I

∑
j∈Ji

∑
i′ 6=i

[
−
(
V k−1
i′ (s+ 1, xs)− V k−1

i′ (s+ 1, xs −Aj)
)

+
(
V k
i′ (s+ 1, xs)− V k

i′ (s+ 1, xs −Aj)
)]
µjs(xs)d̃js

∣∣∣,
=

∣∣∣E T∑
s=t

∑
i∈I

∑
j∈Ji

∑
i′ 6=i

[
−
(
V k−1
i′ (s+ 1, xs)− V k

i′ (s+ 1, xs)
)

+
(
V k−1
i′ (s+ 1, xs −Aj)− V k

i′ (s+ 1, xs −Aj)
)]
µjs(xs)d̃js

∣∣∣,
≤

T∑
s=t

∑
i∈I

∑
j∈Ji

qjt
∑
i′ 6=i

[∣∣∣V k−1
i′ (s+ 1, xs)− V k

i′ (s+ 1, xs)
∣∣∣

+
∣∣∣V k−1
i′ (s+ 1, xs −Aj)− V k

i′ (s+ 1, xs −Aj)
∣∣∣],

≤
T∑
s=t

M
B[M(T − s)]k

Mk!
,

≤ B[M(T − t+ 1)](k+1)

M(k + 1)!
,

hence,

‖V̂ k(t, x)− V k(t, x)‖ ≤ B(MT )k+1

M(k + 1)!
.

Also we have,

‖V k(t, x)− V (t, x)‖ ≤
∑
i∈I
‖V k

i (t, x)− Vi(t, x)‖,

≤
∑
i∈I

B(MT )k+1

M(k + 1)!
e−MT ,

= (
1
2
M + 1)

B(MT )k+1

M(k + 1)!
e−MT .

Therefore,

‖V̂ k(t, x)− V (t, x)‖ ≤ ‖V̂ k(t, x)− V k(t, x)‖+ ‖V k(t, x)− V (t, x)‖,

≤ B(MT )k+1

M(k + 1)!
+ (

1
2
M + 1)

B(MT )k+1

M(k + 1)!
e−MT ,

=
C(MT )k+1

M(k + 1)!
,
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where C = B[1 + (1
2M + 1)e−MT ] is a constant. Therefore, we have

lim
k→∞

‖V̂ k(t, x)− V (t, x)‖ = 0.

2.7 Summary

In this chapter we study a general class of stochastic dynamic resource allocation prob-
lems that has many real-world applications. We characterize transfer contracts that coor-
dinate the system and show that centralized optimality is achieved even when the models
adopted by decentralized agents are mis-specified. An iterative algorithm for decentralized
computation of the optimal transfer contract is also proposed and shown to converge to
the optimal transfer contract. Transfer contracts are analogous to shadow prices and the
iterative algorithm to a dual update algorithm, so it is interesting that existence of transfer
contracts that achieve centralized optimality (strong duality) and convergence to the opti-
mal of the iterative algorithm can be guaranteed without assumptions of convexity. This is
actually a special case of a substantially more general result, that will be explored elsewhere,
that comes from our ability to characterize transfer contracts using dynamic programming
arguments. We further illustrate our proposed framework with a case study in airline al-
liance revenue management. We show that the iterative algorithm converges strongly to
the set of optimal transfer contracts, under which individual airlines’ local pricing policies
would maximize system revenue. We demonstrate that the amounts of revenue transfer
can be highly nonlinear, change dynamically over time, and depend strongly on remaining
network inventory and demand realization. Moreover, we observe that network topology
can have a strong impact on the transfer contracts, such as resulting in negative amount of
revenue transfer which is highly counter-intuitive. We believe that these insights could be
exploited in constructing the optimal transfer contracts, such as to define a good initial set
of transfer contracts and speed up convergence of the iterative algorithm.
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Chapter 3

Approximation Methods for
Decentralized Resource Allocation

3.1 Introduction

In the previous chapter we focus on characterizing the optimal contract that would
lead to efficient coordination, such that locally optimal decisions made by decentralized
agents coincide with the centrally optimal decisions that would be made if there exists an
all-knowing central agent. We also show that the optimal contract can be constructed it-
eratively in a decentralized manner such that no private information needs to be revealed
by local agents. Furthermore, optimality and convergence can be guaranteed even in the
presence of agent-level model mis-specification, and no convexity is required. These are
the central theoretical issues concerning decentralized control of stochastic dynamic multi-
agent systems. However, on the practical side, an equally important issue is computational
efficiency of such coordination mechanism. A practical-minded reader would notice in Algo-
rithm 2.5.1, at each iteration each agent has to solve a stochastic dynamic control problem
(2.9), which can quickly become intractable as the size of the problem increases. In this
chapter, we seek to develop approximation methods and algorithms that can solve large-
scale decentralized resource allocation problems fast and efficiently.

The computational issue is not just relevant for decentralized control, it is important
also for centralized control and have previously received a lot of attentions in the literature.
Despite the simple structure of the optimal policy in (2.5), it can be notoriously difficult to
evaluate the value function V (t, x) exactly, due to the well-known curse of dimensionality.
Instead of trying to evaluate V (t, x) directly, a simple but powerful framework has been
proposed that bear the notion of bid-price control (Talluri and van Ryzin [36]). The idea is
to approximate the value function by a (first-order) gradient approximation, and associate
bid-price to each resource that captures its future opportunity cost. In the same spirit of
the optimal policy (2.5), a customer request for a particular bundle is only accepted if there
is enough inventory and the revenue received is greater than the combined bid-price of the
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resource required:

rj ≥ V (t+ 1, x)− V (t+ 1, x−Aj),
≈ (∆V (t+ 1, x))TAj ,

≈
K∑
l=1

πl,t+1alj , (3.1)

where πl,t+1 denotes the bid-price for resource l at time t+1, and alj denotes the l’s compo-
nent of the resource vector Aj . Under the bid-price framework, a number of approximation
methods and algorithms have been proposed as how to efficiently find bid-price πl,t+1 that
can approximate the value function well and thereafter be used to construct good control
policy.

Most of the approximation methods and algorithms have been studied under the cen-
tralized setting, where having full information of the demand forecast and inventory status
allows a central agent to accurately evaluate the bid-price for every resource. In particular,
early work on computing bid-price is largely based on static linear programming approxima-
tions (Simpson [35], Williamson [41]). The static linear programming approach formulates
a very simple one-stage planning problem, denoted as the primal problem. In the primal
problem we decide how much resource to allocate to each and every bundle, subject to its
expected cumulative demand and resource constraints. Note that by taking expected cu-
mulative demand, all time dynamics of the demand forecast are ignored in this formulation.
Subsequently bid-prices are generated by solving the corresponding dual problem, where
the optimal dual prices associated with the resource constraints are used. Given its simplic-
ity and ease of implementation, the static linear programming approximation approach has
been widely used in the practice, particularly for airline revenue management. The linear
programs are resolved frequently over time to account for the static nature of the approx-
imation, and to partially restore the time and capacity dependency of the bid-price. More
recently, Adelman [1] proposes a new dynamic approximation method that tackles bid-price
control directly in the dynamic setting. Adelman reformulates the dynamic programming
equation as a gigantic linear program with exponential number of variables and constraints.
He then proposes to use affine function to approximate the value function (where the coeffi-
cients of the affine function resemble bid-prices), and thus limit the the number of decision
variables and make the problem tractable. Adelman show that the approximation with
affine function can be solved efficiently with constraint generation, and more importantly
provides a better theoretical bound to the true value function than that offered by the static
linear programming approximation. Furthermore, the dynamic approximation also tends
to provide better control policy in his experimental studies.

In this chapter we will show that both the static linear programming approximation
and dynamic affine value function approximation can be easily adapted to the decentralized
setting, and therefore their computational efficiency be exploited.
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3.2 Static Linear Programming Approximation (LP)

3.2.1 Approximate Centralized Control

We first review the approximation method in centralized setting. Ignoring all the time
dynamics, we can model the resource allocation problem as a simple one-stage planning
problem:

(CLP )



ZLP ≡ max
Y

∑
j∈J

rjYj

subject to:

0 ≤ Yj ≤
T∑
t=1

qjt ∀j,∑
j∈J

aljYj ≤ xl1 ∀l,

(3.2)

where Yj is the expected amount of bundle j we would like to sell over the entire horizon, and
xl1 is the starting inventory for resource l at time 1. The objective of the one-stage planning
problem is simply to maximize the expected revenue subject to expected cumulative demand
and resource constraints. The corresponding dual problem is

(DLP )



min
π,θ

K∑
l=1

πlxl1 +
∑
j∈J

θj

T∑
t=1

qjt

subject to:
K∑
l=1

πlalj + θj ≥ rj ∀j,

π, θ ≥ 0,

(3.3)

where πl is dual/shadow price for resource l, and will be used as the bid-price.
Let {π∗l , θ∗j} denote the optimal dual prices, the bid-price control policy following (3.1)

is

µ∗j (x) =

 1 if rj ≥
K∑
l=1

π∗l alj , and x ≥ Aj ,

0 otherwise,

(3.4)

where we accept the request for bundle j only if the revenue is greater than the sum of
the bid-price of the resource required and there is enough inventory to satisfy the demand.
Note that here π∗l is static, but we can re-resolve (3.3) frequently overtime to get the most
up-to-date bid prices and partially account for the time dynamics.

An important theoretical result shows that that the static linear programming approx-
imation yields a upper bound to the optimal value function (Cooper [14]),

ZLP ≥ V (1, x1), (3.5)
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and static policy is asymptotically optimal when the demand, capacity, and time horizon
scales linearly, namely ZLP converges to V (1, x1). Next we show that this approximation
method can be adapted to the decentralized setting easily.

3.2.2 Approximate Decentralized Control

The static linear programming approximation of the centralized problem (3.2)-(3.3) can
be decentralized in a natural way by inventory splitting. Let xl1 = x

(1)
l1 + · · ·+ x

(m)
l1 , where

we split the inventory among the agents, we can rewrite (3.2)-(3.3) as the followings to see
the sharing structure more succinctly

(CLP )



ZLP ≡ max
Y (1),··· ,Y (m)

∑
j∈J1

rjY
(1)
j + · · ·+

∑
j∈Jm

rjY
(m)
j

subject to:

0 ≤ Y (i)
j ≤

T∑
t=1

qjt ∀j ∈ Ji, i ∈ I,∑
j∈J1

aljY
(1)
j + · · ·+

∑
j∈Jm

aljY
(m)
j ≤ x(1)

l1 + · · ·+ x
(m)
l1 ∀l,

(3.6)

where the objective is the sum of the revenues generated by individual agents, and the
resource constraint is where the coupling of the agents occurs. The corresponding dual
problem can be written as

(DLP )



min
π,θ

K∑
l=1

πl(x
(1)
l1 + · · ·+ x

(m)
l1 ) +

∑
i∈I

∑
j∈Ji

θ
(i)
j

T∑
t=1

qjt

subject to:
K∑
l=1

πlalj + θ
(i)
j ≥ rj ∀j ∈ Ji, i ∈ I,

π, θ ≥ 0.

(3.7)

A closer look at (3.6)-(3.7) reveals that the formulation can be decentralized as the
following,

(CLPi )



ZLPi ≡ max
Y (i)

∑
j∈Ji

rjY
(i)
j

subject to:

0 ≤ Y (i)
j ≤

T∑
t=1

qjt ∀j ∈ Ji,∑
j∈Ji

aljY
(i)
j ≤ x(i)

l1 ,

(3.8)

where Agent i maximizes his expected revenue subject to his allocated share of the total
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inventory x(i)
l1 . The corresponding dual problem is

(DLP
i )



min
π(i),θ(i)

K∑
l=1

π
(i)
l x

(i)
l1 +

∑
j∈Ji

θ
(i)
j

T∑
t=1

qjt

subject to:
K∑
l=1

π
(i)
l alj + θ

(i)
j ≥ rj ∀j ∈ Ji,

π(i), θ(i) ≥ 0,

(3.9)

where Agent i can find the bid-price π(i)
l under his own demand forecast and the allocated

inventory x
(i)
l1 . Once the inventory is split among the agents, each becomes independent

and can operate on his own. The key question is that how the inventory should be split
such that no efficiency is lost by decentralizing the decision making to local agents.

A sufficient condition for no efficiency loss is such that over the same resource, all agents
have the same bid-price as the central agent, i.e. π

(1)
l = · · · = π

(m)
l = πl. In such case,

applying the bid-price control at local level is equivalent to doing so at the central level.
Therefore, a simple strategy is to split inventory among agents, such that at equilibrium
all agents’ bid-price over the same resource converges. For example, suppose there are
two agents, and over some resource l, Agent 1 has a bid-price of $100, whereas Agent 2
has a higher bid-price of $200, then it is better off for the overall system to allocate more
inventory from Agent 1 to Agent 2, until their bid-price converge to the same value. If we
can find such a allocation, will the bid-price converges to the one that’s centrally optimal?
The answer is yes, and we shall state this result in the following proposition.

Proposition 3.2.1. If there exists an inventory allocation scheme,{
x

(i)∗
l1 |x

(1)∗
l1 + · · ·+ x

(m)∗
l1 = xl1, ∀l

}
, such that at equilibrium the bid-price of all agents over

the same resource converges,

π
(1)∗
l = · · · = π

(m)∗
l ∀l,

then the bid-price will also be equal to the centrally optimal bid-price,

π
(1)∗
l = · · · = π

(m)∗
l = π∗l ∀l,

where π∗l solves (3.3). Therefore under such allocation scheme, each agent’s decentralized
pricing policy will also maximizes the system’s net revenue.

Proof. We prove the claim by showing that at equilibrium, the optimal bid-prices for the
decentralized problems are also optimal for the centralized problem, by satisfying primal
and dual feasibility, as well as the complementary slackness conditions.

1. Primal and Dual feasibility:
Clearly, any feasible solution set {Y (i)

j , π
(i)
l , θ

(i)
j ,∀i, j, l} obtained from the decentral-

ized problems (3.8)-(3.9) are also feasible for the centralized problem (3.6)-(3.7).
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2. Complementary slackness:
Suppose {Y (i)∗

j , π
(i)∗
l , θ

(i)∗
j ,∀i, j, l} are optimal for (3.8)-(3.9), and we have π

(1)∗
l =

· · · = π
(m)∗
l = π∗l , under some equilibrium allocation scheme x(1)∗

l1 + · · ·+ x
(m)∗
l1 = xl1,

then we have, {
π

(i)∗
l

(
x

(i)∗
l1 −

∑
j∈Ji aljY

(i)∗
j

)
= 0 ∀i ∈ I, l,

π
(1)∗
l = · · · = π

(m)∗
l = π∗l .

⇒ π∗l

(
x

(1)∗
l1 + · · ·+ x

(m)∗
l1 −

∑
j∈J1

aljY
(1)∗
j − · · · −

∑
j∈Jm

aljY
(m)∗
j

)
= 0,

⇒ π∗l

(
xl1 −

∑
i∈I

∑
j∈Ji

aljY
(i)∗
j

)
= 0,

together with,

Y
(i)∗
j

( K∑
l=1

aljπ
∗
l + θ

(i)∗
j − rj

)
= 0 ∀j, i,

we have shown that {Y (i)∗
j , π

(i)∗
l , θ

(i)∗
j , ∀i, j, l} also satisfy the complementary slackness

conditions for the centralized problem.

Note that in (3.8)-(3.9) once the inventory is spit, individual agents’ problems become
independent. They will solve for their own bid-price, and need not worry about other
agents’ models and not even how many other agents exist in the system. Such features are
identical to those in the decentralized framework we proposed in Chapter 2. Furthermore,
we can easily adapt our iterative algorithm to solve for the optimal inventory allocation in
decentralized fashion.

Algorithm 3.2.1. (Approximate Iterative Decentralized Algorithm: LP)

Initialize: Set k = 1, and choose some initial inventory allocation x
(1),1
l1 + · · ·+x

(m),1
l1 = xl1.

Step 1: Given k, and x(i),k
l1

• Each agent solves (3.9) and computes his bid-price π(i),k
l ;

• Stop if, a satisfactory level of precision has been reached,

sup
i 6=j
|π(i),k
l − π(j),k

l | ≤ ε;

otherwise, each agent communicates the updated bid-price π(i),k
l to the system.

• System reallocates the inventory, i.e. increase inventory for agents with higher bid-
price, and decrease inventory for agents with lower bid-price.

Step 2: Set k to k + 1 and return to Step 1.
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Note that in this approximate iterative decentralized algorithm, all is communicated is
the updated bid-price, local agents need not reveal any of his sensitive private information.
In summary, we have shown the static linear programming approximation of the centralized
problem (3.6)-(3.7) can be adapted naturally into the decentralized setting, and lead to de-
centralized formulation for the local agent (3.8)-(3.9). This approach has several attractive
features:

• Locally each agent only need to solve a linear program (i.e. the dual problem (3.9)),
which can be solved efficiently. In practice, this approximation has been used widely
in centralized setting to construct bid-price control policy.

• Decentralized control achieves central optimality under the static approximation frame-
work, such that local bid-price converges to the centrally optimal bid-price, i.e. no
efficiency loss within the static approximation framework.

• The static approximation generates control policy that is asymptotically optimal when
the system parameters scale linearly.

However, the static approximation method is not without pitfalls. In particular the optimal-
ity with reference to the optimal dynamic control policy is only guaranteed asymptotically,
which may not be practical for real-life applications. More generally, static approxima-
tion only provides an upper bound to the optimal value function and correspondingly a
sub-optimal control policy. The main weakness of the approximation is its static nature,
as time dynamics is totally ignored in the formulation (3.2). However, dynamic control is
likely to be critical for real-life applications. For example, demands often change quickly
over time, and exhibit patterns such as seasonality, peak and off-peak periods, and etc. Next
we discuss a more dynamic approximation method, the affine value function approximation
proposed by Adelman [1]. Adelman’s approach is capable of producing a time-trajectory of
the bid-price, which leads to tighter bound for the value function than that offered by the
static linear programming approximation. Furthermore, Adelman’s approach also produce
better control policy as evidenced in his experimental studies.

3.3 Affine Value Function Approximation (AVF)

3.3.1 Approximate Centralized Control

We first review the approximation method in centralized setting. The idea begins with
the observation that the optimal value function for the centralize problem at the initial
value can be computed by a linear program (Adelman [1]),

(C)



min
V (·)

V (1, x1)

subject to:
V (t, x) ≥

∑
i∈J

qjtµjt(x)(rj −∆V (t+ 1, x, Aj)) + V (t+ 1, x) ∀t, x, µ,

V (T + 1, x) = 0.

(3.10)
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However, it is impractical trying to solve (3.10) directly because it has exponential number
of decision variables and constraints. Adelman proposes to approximate the dynamic value
function with affine functions. Let V (t, x) be the optimal value function solving (2.4), we
can approximate V (t, x) as

V (t, x) ≈ V̂ (t, x) = θt +
K∑
l=1

vltxl. (3.11)

Replacing the optimal value function V (t, x) with the affine functional approximation, we
can approximate (3.10) with

(CAV F )



ZAV F ≡ min
θ,v

θ1 +
K∑
l=1

vl1xl1

subject to:

θt +
K∑
l=1

vltxl ≥
∑
i∈J

qjtµjt(x)(rj −
K∑
l=1

vl,t+1alj)

+θt+1 +
K∑
l=1

vl,t+1xl ∀t, x, µ,

θT+1, vl,T+1 = 0.

(3.12)

This formulation reduces the number of variables drastically, and can be solved rather
efficiently with constraint generation (Adelman [1]). Finally let {v∗lt, θ∗t } denote the optimal
values of (3.12), the solutions fall nicely into the the bid-price control framework, with the
policy given as

µ∗jt(x) =

 1 if rj ≥
K∑
l=1

v∗l,t+1alj , and x ≥ Aj ,

0 otherwise,

(3.13)

The key difference between the static and dynamic approximation is that (3.12) computes
a time-trajectory of the bid-price {v∗lt, ∀l, t}, whereas (3.2) only compute static bid price
using a one-stage planning approach. It can be shown that this dynamic approximation
provides a tighter upper bound than that offered by static approximation:

ZLP ≥ ZAV F ≥ V (1, x1). (3.14)

Furthermore, through a number of numerical studies, Adelman demonstrates that the dy-
namic approximation tends to yield better bid-price control policies than that offered by
the static approximation even with frequent resolving.

3.3.2 Approximate Decentralized Control

The affine value function approximation can be easily adapted to the decentralized set-
ting. We apply directly the idea of replacing Agent i’s value function with affine functional
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approximation,

(CAV Fi )



ZAV Fi ≡ min
θ(i),v(i)

θ
(i)
1 +

K∑
l=1

v
(i)
l1 (R)xl1

subject to:

θ
(i)
t +

K∑
l=1

v
(i)
lt (R)xl ≥

∑
j∈Ji

qjtµ
(i)
jt (x)(rj −R−i(t, x,Aj)−

K∑
l=1

v
(i)
l,t+1(R)alj)

∑
j∈J−i

η
(i)
jt (x)

[
Ri(t, x,Aj)−

K∑
l=1

v
(i)
l,t+1(R)alj

]
+ θ

(i)
t+1 +

K∑
l=1

v
(i)
l,t+1(R)xl ∀t, x, µ,

θ
(i)
T+1, v

(i)
l,T+1(R) = 0,

(3.15)

where again we emphasize that Agent i’s model η(i)
jt (x) for the probability that resource Aj

are consumed by other agents may be mis-specified; also v(i)
lt (R) makes explicit that Agent

i’s value function depends on the contract chosen R.
Parallel to the development in Chapter 2, a sensible choice of contract R should be

defined by the agent’s marginal valuation of the inventory, and can be constructed in similar
way as (2.14)-(2.15). Let {vlt} be the set of bid-price of the centralized Agent (3.12), we
can solve for Agent i’s bid-price approximately by solving the following

{θ̂(i), v̂(i)} ≡ argmin θ
(i)
1 +

K∑
l=1

v
(i)
l1 xl1

subject to:

θ
(i)
t +

K∑
l=1

v
(i)
lt xl ≥

∑
j∈Ji

qjtµ
(i)
jt (x)(rj −

K∑
l=1

vl,t+1alj)

+θ(i)
t+1 +

K∑
l=1

v
(i)
l,t+1(R)xl ∀t, x, µ,

θ
(i)
T+1, v

(i)
l,T+1 = 0.

(3.16)

Finally the contract R can be approximately constructed as
R̂−i(t, x,Aj) =

∑
i′ 6=i

K∑
l=1

v̂
(i′)
l,t+1alj ,

R̂i(t, x,Aj) =
K∑
l=1

v̂
(i)
l,t+1alj .

(3.17)
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Given {v̂(i)
lt , R̂−i, R̂i}, Agent i’s local bid-price policy can be defined as,

µ∗jt(x) =

 1 if rj ≥
K∑
l=1

v̂
(i)
l,t+1alj + R̂−i(t, x,Aj) =

∑
i∈I

K∑
l=1

v̂
(i)
l,t+1alj ,

0 otherwise,

(3.18)

Therefore, the role played by the contract R̂ is to ensure local Agent account for other agents’
valuation of the resource that is being consumed, and we are essentially approximating
central Agent’s bid-price by the sum of local agents’ approximate bid prices given by (3.16),

vlt ≈
∑
i∈I

v̂
(i)
lt . (3.19)

Proposition 3.3.1. With contract R̂ given by (3.16)-(3.17), it is easy to show that
∑

i∈I v̂
(i)
lt

is a feasible solution to the centralized problem (3.12), therefore offering a upper bound to
central Agent’s approximate problem∑

i∈I
ZAV Fi ≥ ZAV F ≥ V (1, x1). (3.20)

Note that in (3.16)-(3.17) the approximate R̂ is constructed assuming the set of bid-
price {vlt} of the centralized Agent is given, which is unrealistic and defeating the purpose of
decentralization. Fortunately, the local approximate bid-price {v̂(i)

lt } and contracts {R̂−i, R̂}
can be constructed in decentralized manner using our iterative algorithm:

Algorithm 3.3.1. (Approximate Iterative Decentralized Algorithm: AVF)

Initialize: Set k = 1, and R̂1
i (t, x,Aj) = 0, R̂1

−i(t, x,Aj) = 0.

Step 1: Given k, and R̂ki (t, x,Aj), R̂k−i(t, x,Aj)

• Each agent solves his approximate decentralized problem (3.15) and computes his
approximate bid-price v̂(i),k

lt .

• Stop if, a satisfactory level of precision has been reached,

sup
i,t,l
|v̂(i),k+1
lt − v̂(i),k

lt | ≤ ε;

otherwise, each agent updates his approximate transfer contract,

R̂k+1
i (t, x,Aj) =

K∑
l=1

v̂
(i),k
l,t+1alj .

• Each agent communicates the updated approximate transfer contract R̂k+1
i (t, x,Aj) to

the system.
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• System synthesize R̂k+1
−i (t, x,Aj) =

∑
i′ 6=i R̂

k+1
i (t, x,Aj), and broadcast them back to

all agents.

Step 2: Set k to k + 1 and return to Step 1.

In summary we have shown the affine value function approximation of the centralized
problem (3.12) can be adapted easily into the decentralized setting, leading to decentralized
formulation for the local agent (3.15). The decentralization strategy requires the selling
agent to transfer part of the revenue to other agents as compensation whenever a request is
accepted and system resource gets consumed. Note that this approximation method inherit
the same structure of the coordination mechanism we propose in Chapter 2, as opposed
to the static linear programming approximation where an inventory splitting approach is
used. Moreover, the affine value function approximation is a more dynamic approach, and
computes a time-trajectory of the bid-price. We have shown that by introducing transfer
contracts, local bid-price can be constructed to approximate the optimal bid-price that could
be obtained if there exist a centralized agent. Further, the bid-price and the associated
contracts can be constructed iteratively without requiring local agent to reveal private
information. Therefore, we have inherited all of the operational features we proposed in
Chapter 2. The affine value function approximation is an promising approach as Adelman
has demonstrated that in centralized setting, the bid-price policies tend to out-perform those
offered by the static linear programming approximation. We hope to carry out numerical
studies to evaluate the dynamic approximation in decentralized setting in our future work.

3.4 Summary

We discussed one static and one dynamic approximation methods in this chapter. The
approximation methods are originally developed for centralized problems, but we show that
they can be easily adapted to decentralized setting. For the static approximation using
an one-stage linear programming formulation, we show that a simple inventory splitting
approach can help decentralize the decision making, and the locally optimal bid-prices at
equilibrium will converges to the centrally optimal bid-prices. However, the weakness of this
approach is that the bid-prices computed are static in nature, and the corresponding control
policy could be far from optimal. For the dynamic approximation using affine functional,
we show that the approximation methods can be adapted seamlessly into our decentralized
framework. The approximation basically reduces our solution space to parameterized affine
functionals, and we can still construct contracts and let each agents evaluate their value
functions in a decentralized fashion iteratively. Finally, the various bounds of the two
approximation methods are summarized as follows:

Centralized: ZLP ≥ ZAV F ≥ V (1, x1),
LP:

∑
i∈I

ZLPi = ZLP ≥ V (1, x1),

AVF:
∑
i∈I

ZAV Fi ≥ ZAV F ≥ V (1, x1).
(3.21)
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Chapter 4

Decentralized Portfolio and Risk
Management

In this chapter we formulate a class of related decentralized stochastic dynamic control
problems but specialize to portfolio and risk management. We consider a financial firm that
trade in multiple correlated markets (e.g. fixed income, equity, commodities, real estate,
and etc). The system is in general too complex to be managed by a single centralized
agent, and multiple agents (portfolio managers) are typically hired to manage investment
decisions in the different markets. Given certain risk capitals, each agent solves his own
portfolio selection problem and seeks to optimize his own risk and return profile. The firm’s
investment performance depends on the net holdings of all agents’ individual holdings, and
its optimal risk and return profile can be quite different from those of the individual agents.
Decentralized investment management is necessary here but the system’s efficiency loss due
to the loss of diversification when agents are left uncoordinated can be substantial. In this
chapter we seek to investigate how to set up proper incentive structure so as to induce
decentralized agents to select portfolios that in the aggregate will optimize the risk and
return profile for the overall firm.

This chapter is organized as follows. Section 4.1 describes the investment model for
markets, returns, risk factors, and the firm’s utility function. Section 4.2 and 4.3 formulate
both a centralized as well as decentralized approach for making investment decisions for
this system. Section 4.4 characterizes the optimal incentive structure in the form of swap
contracts, and establish results about existence and optimality. Section 4.5 provides an
iterative algorithm for constructing the set of optimal contracts in decentralized manner,
and proves convergence. Finally Section 4.6 concludes this chapter.

4.1 General Description

We now describe the investment model for markets, returns, risk factors, and the firm’s
utility function. In subsequent sections, we formulate the centralized and decentralized
approaches for making investment decisions for this system.



48

4.1.1 Market Model

Uncertainty is modeled by an n+m dimensional standard Brownian motion

[W1(t), · · · , Wn(t), V1(t), · · · , Vm(t)].

There are i = 1, · · · , m markets. To ease notation, we assume that each market consists of
a single risky asset whose price evolves according to the stochastic differential equation

dSi(t) = αiSi(t)dt+ Si(t)
{ n∑
j=1

σijdWj(t) + εidVi(t)
}
. (4.1)

Our analysis extends with no essential difficulty to the multi-dimensional case. The n
components W1(t), · · · , Wn(t) are common factors and dependence between the assets
S1(t), · · · , Sm(t) comes about due to exposure to these common risk factors. The terms
V1(t), · · · , Vm(t) model idiosyncratic risk for the assets in each of the m markets. For ex-
ample, in the case of the asset Si(t) in market i, {σi1, · · · , σin} are its exposures to the n
common risk factors and εi corresponds to its idiosyncratic risk.

Note that in (4.1) the common risk factors are independent. First this is without loss
of generality. Second it offers a natural and disciplined way of attributing risks into the
different risk factors, and later will be shown to be very nice property that offers investor the
flexibility of trading off optimality for operational efficiency using our proposed coordination
mechanism. Now consider a somewhat more general factor model (which we will show to
reduce to (4.1)), where asset returns can be explained by n correlated factors I1(t), · · · , In(t)

dSi(t) = α̃iSi(t)dt+ Si(t)
{ n∑
k=1

βikdIk(t) + εidVi(t)
}
. (4.2)

The factor Ik(t) can be modeled as

dIk(t) = δkdt+ dBk(t), k = 1, ..., n, (4.3)

where we assume the standard Brownian motion B1(t), ..., Bn(t) are correlated

Cov(dBk(t), dBk(t)) = dt, ∀k,
Cov(dBk(t), dBl(t)) = ρkldt, ∀k 6= l.

Let ρ = [ρkl] denotes the covariance matrix. It is well known that there exist an orthonormal
basis such that the covariance matrix of dB1(t), · · · , dBn(t) expressed in this new basis is
diagonal,

dW (t) = Λ−
1
2Q′dB(t),

Cov(dW (t)) = I,

where Q is the orthonormal basis whose axes (columns) are called the principal components
of ρ, and Λ is a diagonal matrix whose diagonal consists of the eigenvalues of ρ. The
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new variables dW1(t), · · · , dWn(t) are projections of dB1(t), · · · , dBn(t) onto its principal
components, and are uncorrelated, and with proper scaling by the eigenvalues Λ−

1
2 has

covariance matrix equal to the identify matrix I.
Working in the new basis has the advantage that the new risk factors are now uncorre-

lated, and risks are additive and can be easily attributed into individual factors. This fact
motivates us to set up the model in terms of uncorrelated risk factors, which later would
allow us to be able to prioritize implementation of the swap contract among the different
risk factors according to their contribution to the firm’s overall risk (more to follow in the
next chapter).

Now we show that we can re-write (4.2) in terms of the set of independent risk factors
dW (t), it is easy to see that we have

dB(t) = QΛ
1
2dW (t) =

n∑
j=1

Q(j)Λ
1
2
j dWj(t), (4.4)

where Wj(t) is the jth new risk factor by projecting B1(t), · · · , Bn(t) onto its jth princi-

pal component, where Q(j) is the jth principal component, and Λ
1
2
j is the corresponding

eigenvalue. Finally substituting (4.3) and (4.4) into (4.2), we have

dSi(t) = α̃iSi(t)dt+ Si(t)
{ n∑
k=1

βik[δkdt+ dBk(t)] + εidVi(t)
}
,

= [α̃i +
n∑
k=1

βikδk]Si(t)dt+ Si(t)
{ n∑
k=1

βik[
n∑
j=1

QkjΛ
1
2
j dWj(t)] + εidVi(t)

}
,

= [α̃i +
n∑
k=1

βikδk]Si(t)dt+ Si(t)
{ n∑
j=1

[
n∑
k=1

βikQkj ]Λ
1
2
j dWj(t) + εidVi(t)

}
,

= αiSi(t)dt+ Si(t)
{ n∑
j=1

σijdWj(t) + εidVi(t)
}
,

which reduces to (4.1) with

αi = α̃i +
n∑
k=1

βikδk,

and σij = [
n∑
k=1

βikQkj ]Λ
1
2
j ,

where σij is precisely the risk exposure to the ith market on the jth new and uncorrelated
risk factor Wj(t).

In summary, we have shown that we can begin with a general factor model such that
the underlying factors are correlated, and by projecting the risk factors onto its principal
components we can re-express the firm’s risk exposures in terms of a set of uncorrelated risk
factors (4.1). This representation is not only mathematically neat and convenient, but more
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importantly it allows us to generate insight as how the firm’s total risk can be attributed
into different independent sources, and how contracts on different factors can be prioritized
such that we need only focus on a small subset of the critical risk factors to generate the
most improvement to the overall portfolio performance.

4.1.2 Investment Model

The firm has holdings in each market. Let x(t) denote the firm’s net wealth and πi(t)
the dollar value of its portfolio in market i. Then

dx(t) =
m∑
i=1

πi(t)αidt+
m∑
i=1

πi(t)
{ n∑
j=1

σijdWj(t) + εidVi(t)
}
. (4.5)

We assume that the firm evaluates investment policy π(t) using an generalized expo-
nential utility function. Before introducing the generalized exponential utility, we shall first
discuss the standard exponential utility function E[−exp{−x(T )/θ}]. Clearly maximizing
the exponential utility is equivalent to maximizing its log-transform as defined below.

Definition 4.1.1. Standard (log-transformed) exponential utility

−θ ln EP

[
e−

1
θ
x(T )

]
= EP

[
x(T )

]
− θ ln EP

[
e−

1
θ
(x(T )−EP[x(T )])

]
,

= EP

[
x(T )

]
−Rθ(x(T )), (4.6)

where
Rθ(x(T )) ≡ θ ln EP

[
e−

1
θ
(x(T )−EP[x(T )])

]
, (4.7)

is a so-called convex risk measure [16] commonly referred to as the exponential premium.
This allows us to interpret exponential utility as a risk-adjusted expected return.

Exponential utility has a well-known dual representation which we define next.

Definition 4.1.2. Standard (log-transformed) exponential utility in dual represenation

−θ ln EP

[
e−

1
θ
x(T )

]
≡ EP

[
x(T )

]
−Rθ(x(T )),

= min
γ,eγ EQ

{
x(T ) +

θ

2

n∑
j=1

∫ T

0
|γj(t)|2dt

+
θ

2

m∑
i=1

∫ T

0
|γ̃i(t)|2dt

}
. (4.8)
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where under the new measure Q the return dynamic is

dx(t) =
m∑
i=1

πi(t)
{
αi −

n∑
j=1

γj(t)σij − γ̃i(t)εi
}
dt

+
m∑
i=1

πi(t)
{ n∑
j=1

σijdW̃j(t) + εidṼi(t)
}
. (4.9)

Under the dual representation it is natural to generalize the exponential utility such
that the firm can have different risk tolerances toward difference sources of risk, which lead
to our next definition of the generalized exponential utility.

Definition 4.1.3. Generalized (log-transformed) exponential utility in dual representation

EP

[
x(T )

]
−R

(θ,eθ)(x(T ))

≡ min
γ,eγ EQ

{
x(T ) +

n∑
j=1

θj
2

∫ T

0
|γj(t)|2dt+

m∑
i=1

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
, (4.10)

under which the firm can specify different level of risk-tolerances toward different sources of
risks, more specifically

• {θ1, · · · , θn} are risk tolerances toward exposures of common risk factors {W1, · · · ,Wn},

• {θ̃1, · · · , θ̃m} are risk tolerances toward exposure of idiosyncratic risk factors {V1, ..., Vm}.

Finally the firm evaluates investment policy π(t) = {π1(t), · · · , πm(t)} under the gener-
alized (log-transformed) exponential utility and has the following expected terminal utility

EP

[
x(T )

]
−R

(θ,eθ)(x(T ))

≡ min
γ,eγ EQ

{
x(T ) +

n∑
j=1

θj
2

∫ T

0
|γj(t)|2dt+

m∑
i=1

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
subject to:

dx(t) =
m∑
i=1

πi(t)
{
αi −

n∑
j=1

γj(t)σij − γ̃i(t)εi
}
dt

+
m∑
i=1

πi(t)
{ n∑
j=1

σijdW̃j(t) + εidṼi(t)
}
,

x(0) = x0.

(4.11)

The key difference between the centralized and decentralized portfolio choice problem
is the way in which the investment policy π(t) = {π1(t), · · · , πm(t)} is obtained. In the
centralized case, it is obtained by optimizing (4.11) with complete knowledge of all return
forecasts α = [α1, · · · , αm] and the risk model σ = [σij ]i, j , ε = [εi]i connecting all of the
markets. In the decentralized case, investment policies for different markets (i.e. different
components of π(t)) are computed by different agents where each maximizes his own utility
with knowledge only of the dynamics of the assets in his own market.
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4.2 Centralized Agent’s Problem

In this section we formulate a centralized version of the investment problem (4.11) and
characterize the value function and optimal policy. The results in this section serve as a
benchmark for the decentralized model that we introduce in Section 4.3.

The centralized agent’s objective is to maximize terminal expected utility within spec-
ified levels of risk-tolerance {θ, θ̃}. He does so with complete knowledge of the return
forecasts and risk models of all markets {α, σ, ε}:

max
π

EP

[
x(T )

]
−R

(θ,eθ)(x(T ))

≡ max
π

min
γ,eγ EQ

{
x(T ) +

n∑
j=1

θj
2

∫ T

0
|γj(t)|2dt+

m∑
i=1

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
subject to:

dx(t) =
m∑
i=1

πi(t)
{
αi −

n∑
j=1

γj(t)σij − γ̃i(t)εi
}
dt

+
m∑
i=1

πi(t)
{ n∑
j=1

σijdW̃j(t) + εidṼi(t)
}
,

x(0) = x0.

(4.12)

It follows from dynamic programming that the value function is

V (t, x) = x+H(t),
where,

0 = Ḣ(t) + max
π

min
γ,eγ

m∑
i=1

πi

{
αi −

n∑
j=1

γjσij − γ̃iεi
}

+
n∑
j=1

θj
2
|γj |2 +

m∑
i=1

θ̃i
2
|γ̃j |2,

H(T ) = 0.

(4.13)

The optimality equation can be rewritten more succinctly in matrix-vector forms as

0 = Ḣ(t) + max
π

min
γ,eγ π′

{
α− σ · γ − diag(ε) · γ̃

}
+

1
2
γ′ · diag(θ) · γ +

1
2
γ̃′ · diag(θ̃) · γ̃,

First minimizing over γj , γ̃j we have

γ∗(t) = [diag(θ)]−1σ′π,

γ̃∗(t) = [diag(θ̃)]−1diag(ε)π.
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Substituting back into the optimality equation, we have

0 = Ḣ(t) + max
π

{
π′α− 1

2
π′σ · [diag(θ)]−1 · σ′π − 1

2
π′[diag(ε) · [diag(θ̃)]−1 · diag(ε)]π

}
.

Therefore the value function is

V (t, x) = x+H(t),
where,

0 = Ḣ(t) + max
π

{
π′α− 1

2
π′σ · [diag(θ)]−1 · σ′π

−1
2
π′[diag(ε) · [diag(θ̃)]−1 · diag(ε)]π

}
,

H(T ) = 0,

(4.14)

where the optimal portfolio (Merton [26])

π∗(t) = (σ · [diag(θ)]−1 · σ′ + diag(ε) · [diag(θ̃)]−1 · diag(ε))−1α, (4.15)

is the maximizer in (4.14) which solves

α− (σ · [diag(θ)]−1 · σ′ + diag(ε) · [diag(θ̃)]−1 · diag(ε))π = 0. (4.16)

In formulating problem (4.12), it is implicitly assumed that the centralized agent knows
all relevant system parameters including return forecasts for each asset and correlations
between them. In many applications, such a knowledgeable agent does not exist but rather,
that there are many decentralized agents where each specializes in a particular market
sector. In such situations, it is not possible to formulate the centralized problem (4.12).
Finally, observe that the centralized agent’s optimal portfolio (4.15) is static. This conve-
nient property is a consequence of the generalized exponential utility function in (4.12) and
simplifies the analysis of this problem. That said, the main results in this paper can be
generalized to systems where the optimal control depends on the state, albeit with more
complicated contracts (see for example [12, 13, 24]).

4.3 Decentralized Agent’s Problem

Several elements distinguish the centralized and decentralized problems. Firstly, the
decentralized system consists of multiple agents where each is responsible for the investment
decisions in his own market. Secondly, every agent is better informed about the market he
is investing in but less informed about those managed by others and is ignorant about
the correlation structure between them. Finally, each agent maximizes his own objective
function conditional on his information while the firm is concerned about the utility of net
positions over all agents.

In this section, we formulate agent level dynamics and objectives and present an example
showing that the efficiency loss of uncoordinated locally optimizing decentralized control
can be substantial. A key insight from the example is that inefficiencies arise due to an
incorrect pricing of risk, which leads us to introducing swap contracts between agents as a
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coordination mechanism. Swaps are derivative contracts which define cash transfer between
agents. They enable risk transfer between agents and implicitly set a price of risk, which
modifies agent level objectives objectives. We show that swap contracts can be found
under which the decentralized agents achieve centralized optimality and provide an explicit
characterization.

4.3.1 Agent i’s Model

Agent i trades in market i with one risky asset

dSi(t) = Si(t)αidt+ Si(t)
{ n∑
j=1

σijdWj(t) + εidVi(t)
}
.

The return forecast αi, and risk exposures σi1, · · · , σin, εi are known by Agent i, though
not by the others and the risk tolerance {θi1, · · · , θin, θ̃i} is specified by the firm (though
private to Agent i). We assume that the firm’s total risk tolerance is the sum of those for

individual agents θ =
m∑
i=1

n∑
j=1

θij +
m∑
i=1

θ̃i.

Left to his own devices, Agent i solves

max
πi

EP

[
xi(T )

]
−R

(θi,eθi)(xi(T ))

≡ max
πi

min
γ,eγ EQ

{
xi(T ) +

n∑
j=1

θij
2

∫ T

0
|γij(t)|2dt+

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
subject to:

dxi(t) = πi(t)
{
αi −

n∑
j=1

γij(t)σij − γ̃i(t)εi
}
dt

+πi(t)
{ n∑
j=1

σijdW̃j(t) + εidṼi(t)
}
,

xi(0) given.

(4.17)

Asset holdings {π1(t), · · · , πm(t)} in each of the m markets correspond to the optimal
policies for each of the m decentralized agents.

4.3.2 A Running Example: Efficiency Loss

Consider a small portfolio consisting of 8 asset classes, the data (from Brennan et al.
[10]) is based on (annualized) monthly historic statistics from January 1978 to December
1995. Table 4.1 and 4.2 shows the annualized asset returns, standard deviation, and corre-
lation data. The variance-covariance matrix ΣR can be decomposed into two components,
namely the common factor risk component ΣF and the idiosyncratic risk component Σε:

ΣR = ΣF + Σε = σσ′ + diag(ε)2.
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Table 4.3 shows the decomposition of the variance-covariance matrix, where the idiosyn-
cratic part accounts for a typical 30% of the total variance. Under the framework of gener-
alized exponential utility, we choose a profile of risk tolerance that differ by agents and the
sources of risks, the numbers are in the typical range of 7.5 to 0.22, as shown in Table 4.4.
The choice of this particular risk tolerance profile is somewhat arbitrary, we merely want
to reflect that in reality the firm faces a heterogenous set of agents who can have different
level of risk tolerances toward different sources of risk.

Asset Name Asset No. Return Std. Dev.
Canadian Equity 1 11.64 19.05

French Equity 2 17.52 24.35
German Equity 3 13.32 21.55
Japanese Equity 4 17.52 24.39

U.K. Equity 5 16.44 20.82
U.S. Equity 6 15.48 14.90
U.S. Bonds 7 9.96 6.96

European Bonds 8 10.20 5.40

Table 4.1: Average historic return and standard deviation, all numbers in annualized
percentage

1 2 3 4 5 6 7 8
1 1.00 0.41 0.30 0.25 0.58 0.71 0.26 0.33
2 1.00 0.62 0.42 0.54 0.44 0.22 0.26
3 1.00 0.35 0.48 0.34 0.27 0.28
4 1.00 0.40 0.22 0.14 0.16
5 1.00 0.56 0.25 0.29
6 1.00 0.36 0.42
7 1.00 0.92
8 1.00

Table 4.2: Correlation matrix

Finally, after solving (4.12) and (4.17), Table 4.5 compares the optimal holdings chosen
by the centralized agent and un-coordinated decentralized agents. Note the large difference
in portfolio weights between the optimal holdings of the centralized agent relative to the
those of the uncoordinated decentralized agents. The difference in risk-adjusted profit is
also large: 8.64 versus 5.20, i.e. the firm loses around 40% in risk-adjusted profit going from
centralized to un-coordinated decentralized setting.

There are several important lessons:
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ΣF Σε

1 2.54 1.33 0.86 0.81 1.61 1.41 0.24 0.24 1.09
2 1.33 4.15 2.28 1.75 1.92 1.12 0.26 0.24 1.78
3 0.86 2.28 3.25 1.29 1.51 0.76 0.28 0.23 1.39
4 0.81 1.75 1.29 4.16 1.42 0.56 0.17 0.15 1.78
5 1.61 1.92 1.51 1.42 3.03 1.22 0.25 0.23 1.30
6 1.41 1.12 0.76 0.56 1.22 1.55 0.26 0.24 0.67
7 0.24 0.26 0.28 0.17 0.25 0.26 0.34 0.24 0.15
8 0.24 0.24 0.23 0.15 0.23 0.24 0.24 0.20 0.09

Table 4.3: Decomposition of the variance-covariance matrix into the factor component
ΣF and idiosyncratic component Σε, all numbers in annualized percentage

θij θ̃i
1 4.78 3.19 2.39 1.91 1.59 1.37 1.20 1.06 7.50
2 3.19 2.13 1.59 1.28 1.06 0.91 0.80 0.71 5.00
3 2.39 1.59 1.20 0.96 0.80 0.68 0.60 0.53 3.75
4 1.91 1.28 0.96 0.77 0.64 0.55 0.48 0.43 3.00
5 1.59 1.06 0.80 0.64 0.53 0.46 0.40 0.35 2.50
6 1.37 0.91 0.68 0.55 0.46 0.39 0.34 0.30 2.14
7 1.20 0.80 0.60 0.48 0.40 0.34 0.30 0.27 1.88
8 1.06 0.71 0.53 0.43 0.35 0.30 0.27 0.24 1.67

Table 4.4: Risk tolerances towards different source of risk

Agent Centrally Opt. Locally Opt.
1 6.0% 23.9%
2 7.2% 12.7%
3 2.9% 7.9%
4 5.8% 5.4%
5 2.7% 5.2%
6 7.5% 7.6%
7 18.9% 15.1%
8 48.9% 22.3%

Risk-adjusted profit 8.64 5.20

Table 4.5: Centrally optimal vs. local optimal holdings in percentage
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• The firm’s centrally optimal trades are tilt toward U.S. and European bonds due to
their lower volatility which result in a net bond position around 68%. However, after
delegating the portfolio choices to un-coordinated agents, the new portfolio is now
loaded much more heavily with equities, with the net bond positions reduced to a
mere 37%. The overall efficiency loss in terms of risk-adjusted profit is a stunning
-40%.

• Decentralized agents optimizing in isolation are only concerned about their own risk
exposures. In particular, there is (i) no penalty for loading up on risk that the firm
is already exposed to, and (ii) no incentive to hedge exposure that the firm might
already have, due to the holdings of other agents.

• The firm’s risk budget is a scarce commodity which has not been correctly priced.

In summary coordination is difficult due to a misalignment of incentives and lack of infor-
mation, while the cost of not coordinating is substantial for the firm.

4.3.3 Swap Contract

A swap is a contract between two parties that specifies the size and direction of cash pay-
ments between them as a function of some observable factor (which is defined in the contract)
[8]. Motivated by our example, we introduce swap contracts on the factors W1(t), · · · , Wn(t)
as a mechanism for transferring risks between agents in our system. Risk transfer changes
the risk exposure of each of the agents and as a consequence their optimal investment be-
havior. With the introduction of contracts, it is natural to ask whether they can be chosen
such that the resulting set of decentralized decisions is centrally optimal.

For illustration, consider Figure 4.1 where qij corresponds to the amount of cash trans-
ferred from Agent i to Agent j per unit change of the factor Wj(t). For example, for a change
∆Wj(t), Agent 1 transfers q12 ∆Wj(t) to Agent 2 (and Agent 2 transfers −q12 ∆Wj(t) to
Agent 1). In this case q12 defines a swap contract on the factor Wj(t) between agents 1 and
2 and (q12 + q13)∆Wj(t) is the net payment by Agent 1 from its swap positions with Agent
2 and 3. If Rij(t) denotes the net income received by Agent i per unit change in the factor
Wj(t) at time t, it follows that

R1j(t)∆Wj(t) = (−q12 − q13)∆Wj(t),
R2j(t)∆Wj(t) = (q12 − q23)∆Wj(t),
R3j(t)∆Wj(t) = (q13 + q23)∆Wj(t)

where {R1j(t), R2j(t), R3j(t)} satisfies the property

R1j(t) +R2j(t) +R3j(t) = 0.

since payments are internal cash transfers. More formally, we define an admissible system
of cash transfers on factor Wj(t) as follows:

Definition 4.3.1 (Admissible cash transfers).
R(t) ≡ {Rij(t), i = 1, · · · , m, j = 1, · · · , n} is admissible if Rij(t) is adapted to the BM
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Figure 4.1: Swap contract between three agents

filtration {FWt } and the budget balanced condition

m∑
i=1

Rij(t) = 0,

is satisfied for all t ∈ [0, T ] w.p. 1.

Intuitively, Agent i knows Rij(t) (j = 1, · · · , n), and if there is a change ∆Wj(t) in factor
j, he receives a net cash amount of Rij(t)∆Wj(t) from all other agents. Cash transfers is
to modify Agent i’s wealth, changing his instantaneous earnings to

∆xi(t) =

risky asset holdings = πi(t)
∆Si(t)
Si(t)︷ ︸︸ ︷

πi(t)
{
αi∆t+

n∑
j=1

σij∆Wj(t) + εi∆Vi(t)
}

+

swaps︷ ︸︸ ︷
n∑
j=1

Rij(t)∆Wj(t),

= πi(t)αi∆t+
n∑
j=1

{
πi(t)σij +Rij(t)

}
∆Wj(t) + πi(t)εi∆Vi(t). (4.18)

Clearly the swap redistributes exposures to risk factors among the agents. For example,
if σij > 0, then it becomes more expensive for Agent i to increase his holding in asset i if
Rij(t) > 0. Alternatively, if Rij(t) < 0, then exposure to factor j has been transferred to
other agents and there is additional incentive for Agent i to take on a larger position in
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asset i.

4.3.4 Agent i’s Modified Problem

For a given transfer contract {Rij(t)}, Agent i maximizes his expected terminal util-
ity conditional on his own investment model and his assigned transfer payments Ri(t) ,
{Ri1(t), · · · , Rin(t)}:

max
πi

EP

[
xi(T )

]
−R

(θi,eθi)(xi(T ), Rij(t))

≡ max
πi

min
γ,eγ EQ

{
xi(T ) +

n∑
j=1

θij
2

∫ T

0
|γij(t)|2dt+

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
subject to:

dxi(t) =
{
πi(t)

[
αi −

n∑
j=1

γij(t)σij − γ̃i(t)εi
]
−

n∑
j=1

γij(t)R̃ij(t)
}
dt

+
n∑
j=1

{
πi(t)σij + R̃ij(t)

}
dW̃j(t) + πi(t)εidṼi(t),

xi(0) given.

(4.19)

Though Ri(t) is allowed to be any process adapted to the filtration generated by the
factors W1(t), · · · , Wm(t), in the special case when it is only a function of time, dynamic
programming implies that the value function for Agent i is

Vi(t, xi) = xi +Hi(t),
where,

0 = Ḣi(t) + max
πi

{
πiαi −

1

2θ̃i
(πiεi)2

−
n∑
j=1

1
2θij

[
πiσij +Rij(t)

]2}
,

Hi(T ) = 0,

(4.20)

where the optimal portfolio πi(t|Ri(t)) solves

αi −
1

θ̃i
(εi)2πi −

n∑
j=1

σij
θij

(
πiσij +Rij(t)

)
= 0. (4.21)

4.3.5 Weak Duality

For every admissible set of contracts R(t) ≡ [R1(t) · · · , Rm(t)], each agent formulates
and solves his decentralized problem (4.19) for an optimal investment holding πi(· |Ri(t)),
and has end of period wealth xi(T ). Since contracts specify internal cash transfers, it is
easy to show that the firm’s net wealth is

V (R(t)) = x1(T ) + ...+ xm(T ).
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It is clearly of interest how the firm’s net utility under decentralized control relates to the
value function of (4.12) under optimal centralized control. The following result follows im-
mediately from the observation that the decentralized investment policy {π1(· |R1(t)), · · · , πm(· |Rm(t))}
are admissible though not generally optimal for the centralized problem.

Proposition 4.3.1 (Weak Duality).
Let R(t) be an arbitrary admissible swap contract, {π1(· |R1(t)), · · · , πm(· |Rm(t))} the opti-
mal decentralized investment policies under this contract, V (R) the resulting expected utility
for the firm (4.19), and V ∗ the value function for the centralized agent (4.12). Then

V (R(t)) ≤ V ∗. (4.22)

Clearly, it is of interest to characterize the firm’s optimal contract
V (R∗(t)) , max

R
EP

[ m∑
i=1

xi(T )
]
−R

(θ,eθ)
( m∑
i=1

xi(T )
)

subject to:
xi(T ) ≡ optimal wealth of Agent i under contract R(t),

and to determine the efficiency loss relative to centralized optimality of the optimal contract.

4.4 Optimal Transfer Contracts

In this section, we construct an optimal contract using dynamic programming arguments
and show that there is no efficiency loss relative to centralized optimality.

4.4.1 Optimal Contract: Conjecture

Let θij > 0 denote the risk tolerance of Agent i toward factor j, and θj = θ1j + · · ·+θmj
the risk tolerance for the firm toward fact j. Observing that

π(t)′σ · [diag(θ)]−1 · σ′π(t)

=
n∑
j=1

1
θj

[ m∑
i=1

πi(t)σij
]2

=
m∑
i=1

n∑
j=1

1
θij

[θij
θj

m∑
i=1

πi(t)σij
]2

=
m∑
i=1

n∑
j=1

1
θij

[
πi(t)σij +

∑
k 6=i

(θij
θj
πk(t)σkj −

θkj
θj
πi(t)σij

)]2
,
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the dynamic programming equations (4.14) for the centralized problem can be written as

V (t, x) = x+H(t),
where,

0 = Ḣ(t) + max
π

m∑
i=1

{
πiαi −

1

2θ̃i
(πiεi)2

−
n∑
j=1

1
2θij

[
πiσij +

∑
k 6=i

(θij
θj
πkσkj −

θkj
θj
πiσij

)]2}
,

H(T ) = 0.

(4.23)

Let π∗(t) = {π∗1(t), · · · , π∗m(t)} denote the optimal centralized holdings in each of the m
markets (the maximizer in (4.23)) and consider the modified system obtained by replacing
some of the variables in (4.23) with their optimal quantities:

V (t, x) = x+H(t),
where,

0 = Ḣ(t) + max
π

m∑
i=1

{
πiαi −

1

2θ̃i
(πiεi)2

−
n∑
j=1

1
2θij

[
πiσij +

∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)]2}
,

H(T ) = 0.

(4.24)

By comparing the first order conditions, it is easy to show that the original system (4.23)
and the modified system (4.24) are equivalent in that both have the same maximizer
π∗(t) = {π∗1(t), · · · , π∗m(t)} and solution H(t), and hence, both characterize the value func-
tion V (t, x) and the optimal portfolio for the centralized problem (4.12).

The advantage of (4.24) is that it is separable; there is only one decision variable πi(t)
in each term

πiαi −
1

2θ̃i
(πiεi)2 −

n∑
j=1

1
2θij

[
πiσij +

∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)]2
.

The leads us to defining Vi(t, xi) as the solution of
Vi(t, xi) = xi +Hi(t),

0 = Ḣi(t) + max
πi

{
πiαi −

1

2θ̃i
(πiεi)2 −

n∑
j=1

1
2θij

[
πiσij +R∗ij(t)

]2}
,

Hi(T ) = 0,

(4.25)

where

R∗ij(t) =
∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)
, (4.26)
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and allows us to write

V (t, x) = V1(t, x1) + ...+ Vm(t, xm),

for any x1, · · · , xm such that

m∑
i=1

xi = x.

The key observation, however, is that (4.25) is the dynamic programming equation for
Agent i’s problem (4.19) under transfer payments (4.26) and that the maximizer π∗i (t) in
(4.25) equals the ith component of the centralized agent’s optimal allocation policy π∗ =
{π∗1(t), · · · , π∗m(t)}, which suggests that with transfer contracts (4.26), decentralized agents
optimally choose the centralized optimal policy.

4.4.2 Optimal Contract: Verification of Optimality

To establish optimality of (4.26), we need to show that it is admissible (as in Definition
4.3.1) and that the resulting collection of decentralized optimal policies coincides with the
centralized optimal. Admissibility is straightforward, while optimality can be shown using
the first order conditions.

Theorem 4.4.1. Let θij > 0 denote the risk tolerance for Agent i toward factor j, θj =
θ1j+· · ·+θmj the risk tolerance for the firm toward factor j, and π∗(t) = {π∗1(t), · · · , π∗m(t)}
defined by (4.15) denote the optimal policy for the centralized agent. Then the contract

R∗ij(t) =
∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)
(4.27)

is admissible and the optimal investment for Agent i equals the optimal investment π∗(t)i in
market i by the centralized agent. The contract R∗(t) is optimal and there is no efficiency
loss relative to the optimal utility for the centralized agent

max
R

V (R) = V (R∗(t)) = V ∗(t).

Proof. Admissibility of the contract (4.26) follows from the observation that is defines in-
ternal cash transfers between agents. To show that Agent i’s optimal holding under (4.26)
equals the component π∗i (t) of the optimal holding for the centralized agent, we need to
show that π∗i (t) is the optimizer in the dynamic programming equation (4.25) for Agent i

π∗i (t) = arg max
πi

Gi(πi),
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for each i = 1, · · · , m, where

Gi(πi) ,
{
πiαi −

1

2θ̃i
(πiεi)2 −

n∑
j=1

1
2θij

[
πiσij +

∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)]2}
.

Equivalently, we can show G′i(π
∗
i (t)) = 0. To see this, observe (using θj = θij +

∑
k 6=i θkj

and (4.26)) that

G′i(πi) = αi −
1

θ̃i
πiε

2
i −

n∑
j=1

σij
θij

{
πiσij +

[∑
k 6=i

θij
θj
π∗k(t)σkj − π∗i (t)σij

∑
k 6=i

θkj
θj

]}
= αi −

1

θ̃ij
πiε

2
i −

n∑
j=1

σij
θij

{
πiσij +

[∑
k 6=i

θij
θj
π∗k(t)σkj − π∗i (t)σij

1
θj

(θj − θij)
]}

= αi −
1

θ̃i
πiε

2
i −

n∑
j=1

σij
θij

{
πiσij − π∗i (t)σij +

m∑
k=1

θij
θj
π∗k(t)σkj

}
.

It now follows that

G′i(π
∗
i (t)) = αi −

1

θ̃ij
πi(t)ε2i −

1
θj

n∑
j=1

σij

m∑
k=1

π∗k(t)σkj = 0,

where the last equality follows from the observation that π∗(t) = [π∗1(t), · · · , π∗m(t)] is
optimal for the centralized agent and hence satisfies the first order conditions (4.16) for the
centralized problem. We can therefore conclude that the collection of decentralized agents
under the contract (4.26) make portfolio allocations that equal the optimal allocations the
centralized agent. It follows that the firm’s utility under (4.26) equals the optimal utility
of the centralized agent, V (R∗(t)) = V ∗. Weak duality (4.22) implies that (4.27) is the
optimal contract and that there is no efficiency loss relative to the optimal utility for the
centralized agent.

One convenient property of the optimal contract (4.27) is that it is deterministic (a
consequence of the firm’s utility function in (4.12) being exponential), which implies that
the optimal portfolio for each decentralized agent is characterized by (4.21).

Figure 4.2 illustrates the optimal transfer contract between three agents which in the
case of Agent 1 given by

R∗1j(t) =
{θ1j
θj
v∗2j(t)−

θ2j
θj
v∗1j(t)

}
︸ ︷︷ ︸

swap with Agent 2

+
{θ1j
θj
v∗3j(t)−

θ3j
θj
v∗1j(t)

}
︸ ︷︷ ︸

swap with Agent 3

,

where v∗ij(t) = π∗i (t)σij denotes Agent i’s exposure to factor Wj(t). Agent 1’s transfer R1j

is the sum of a payments associated with swap agreements with Agents 2 and 3. In each
swap, both agents transfer a proportion of their exposure to factor j to the other agent,
where proportions are determined by risk tolerances to that factor.
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Figure 4.2: Optimal contracts: intuition

4.5 Decentralized Computation of Optimal Con-

tracts

Theorem 4.4.1 characterizes the swap contracts under which decentralized agents op-
timally choose the centrally optimal holdings. We now turn to the question of computing
these contracts. While one approach would be to solve the centralized problem directly,
this is problematic because a centralized agent with the information required to solve the
centralized problem typically does not exist (a key motivation for this paper), making it
unsatisfying to call on such an agent to compute the optimal transfer contracts. In this
section, we propose an iterative approach for computing optimal contracts that does not
require a centralized agent and can be implemented without decentralized agents having to
reveal private market information to others. Convergence to the optimal transfer contract
will then be established.

The proposed algorithm makes the assumption that each agent is required to report his
exposure to each risk factor to the bank’s risk management system. For example, Agent i
must report his exposure vij(t) = πi(t)σij to each factor Wj(t) (αi and σi1, · · · , σin remain
private). Observing that the optimal contract

R∗ij(t) =
∑
k 6=i

(θij
θj
π∗k(t)σkj −

θkj
θj
π∗i (t)σij

)
=
∑
k 6=i

(θij
θj
v∗kj(t)−

θkj
θj
v∗ij(t)

)
depends on the optimal exposures v∗ij(t) of each agent to each factor, a natural idea is to
iterate on the set of contracts and holdings.

Algorithm 4.5.1 is motivated by these considerations. In each iteration, decentralized
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agents solve their own optimization problems (4.19) conditional on some (suboptimal) trans-
fer contract and report the resulting exposures to the firm. The firm updates the contracts
and passes the relevant pieces to the agents, and the process repeats. It is important to note
that a centralized agent with knowledge of the integrated market model is not required for
implementation and that decentralized agents need not reveal private market information.
Indeed, all each agent needs is the current contract R̃i and his own market information,
while the number of other agents, their models, contracts, risk-tolerances are irrelevant.

Algorithm 4.5.1.
Start with R(t) ≡ 0 and proceed one Agent at a time.

1. Firm computes contract

R̃ij(t) =
∑
k 6=i

{θij
θj
ṽkj(t)−

θkj
θj
ṽij(t)

}
.

using most recently reported exposures ṽ(t) = {ṽij(t)}.

2. If it is Agent i’s turn to update, send him the contract

R̃i(t) ≡ [R̃i1(t), · · · , R̃in(t)].

3. Agent i maximizes his objective

max
πi

EP

[
xi(T )

]
−R

(θi,eθi)(xi(T ), R̃ij(t))

≡ max
πi

min
γ,eγ EQ

{
xi(T ) +

n∑
j=1

θij
2

∫ T

0
|γij(t)|2dt+

θ̃i
2

∫ T

0
|γ̃i(t)|2dt

}
subject to:

dxi(t) =
{
πi(t)

[
αi −

n∑
j=1

γij(t)σij − γ̃i(t)εi
]
−

n∑
j=1

γij(t)R̃ij(t)
}
dt

+
n∑
j=1

{
πi(t)σij + R̃ij(t)

}
dW̃j(t) + πi(t)εidṼi(t),

xi(0) given.

and reports his new exposure ṽ∗ij(t) = π̃∗i (t)σij to the firm.

4. Move on to the next Agent and repeat the process.

Observe that if R̃ij(t) in step 2 is deterministic, then the optimal portfolio for Agent i
in step 3 is also deterministic (and characterized by (4.21)), which leads to a deterministic
transfer contract R̃ij(t) in the subsequent iteration. That is, if we start with a deterministic
contract, they remain deterministic (though time varying) throughout the algorithm. Fi-
nally, observe that the dimension of Agent i’s problem is lower than that of the centralized
agent.
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4.5.1 Convergence

We now present results that guarantee convergence of the Algorithm 4.5.1 to the optimal
set of contracts.

Theorem 4.5.1. Let {πki (t)} be the sequence of optimal holdings computed by Algorithm
4.5.1. The {πki (t)} converges strong to π∗i (t), namely,

lim
k→∞

‖πki (t)− π∗i (t)‖ = 0, ∀i = 1, ...,m.

Correspondingly,

lim
k→∞

‖V (Rk(t))− V ∗‖ = 0.

Proof. Given the contract

R̃ij(t) =
∑
k 6=i

{θij
θj
ṽkj(t)−

θkj
θj
ṽij(t)

}
,

=
∑
k 6=i

{θij
θj
π̃k(t)σkj −

θkj
θj
π̃i(t)σij

}
,

Agent i updates his holding from π̃i(t) to

⇒ π̃∗i (t) =
αi −

∑n
j=1

1
θij
σijR̃ij(t)

1eθi ε2i +
∑n

j=1
1
θij
σ2
ij

,

It can be shown that

π̃∗i (t) =
(

1− λ
)
π̃i(t) + λ

[
αi −

∑
k 6=i π̃k(t)

∑n
j=1

1
θj
σkjσij

1eθi ε2i +
∑n

j=1
1
θij
σ2
ij

]
,

where,

λ =
1eθi ε2i +

∑n
j=1

1
θij

θij
θj
σ2
ij

1eθi ε2i +
∑n

j=1
1
θij
σ2
ij

,

which is a convex combination of the original holding π̃i(t) and the holding obtained by
optimizing the centralized objective function over πi(t) with other holdings kept fixed at
π̃j(t). The key observation is that each agent’s update is equivalent to a so-called successive
over-relaxation step of the firm’s objective function [7], which gives us convergence.

Returning to our running example, Figure 4.3 plots the convergence of Algorithm 4.5.1.
While a large number of iterations is needed to close the gap from -80% to 0%, the sub-
stantial improvement observed after a small number of rounds is promising. Finally Table
4.6 shows the optimal contract.
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Figure 4.3: Deviation from centrally optimal utility converges from -40% to 0%.

R∗

1 -0.41 0.76 0.59 0.63 0.37 0.43 0.91 0.86
2 0.28 -1.26 -0.11 0.12 0.06 0.30 0.59 0.56
3 0.36 0.26 -0.34 0.27 0.23 0.36 0.45 0.44
4 0.21 0.09 0.07 -1.34 0.04 0.27 0.36 0.35
5 0.11 0.17 0.10 0.13 -0.36 0.15 0.30 0.29
6 -0.27 0.01 0.04 0.13 -0.14 -0.92 0.16 0.16
7 0.04 0.11 -0.06 0.10 0.02 -0.07 -1.12 -0.49
8 -0.33 -0.15 -0.29 -0.04 -0.21 -0.50 -1.65 -2.17

Table 4.6: Contracts for each of the 8 agents
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4.6 Summary

In this chapter we study the problem of decentralized dynamic portfolio choice as a de-
centralized stochastic optimal control problem. We show that centralized efficiency can be
achieved by introducing swap contracts between agents and provide an explicit characteriza-
tion of the optimal contract. We also present an iterative algorithm for computing optimal
swap contracts that it can be implemented without any of the agents having to reveal pri-
vate information about their models. Our approach is not only novel, but also it offers a
significant advantage over the benchmarking approach more conventionally employed in the
finance literature. The benchmarking approach makes the unrealistic assumption that an
all knowing centralized agent is available to construct the optimal performance benchmarks,
which is entirely unnecessary in our approach and what we consider a major motivation for
requiring decentralized control in the first place.
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Chapter 5

Risk Attribution, Sensitivity
Analysis, and Fair Allocation

5.1 Introduction

In this chapter we seek to understand the following important issues concerning efficient
implementation and management of the swap contracts we introduce in the previous chapter,

• Risk attribution: we use factor models in the previous chapter to describe a firm’s risk
exposure, as it is commonly done in practice. In real-life applications, the number of
risk factors can be quite large. Therefore, implementing and managing a large number
of swap contracts efficiently can become a challenging issue. In Section 5.2 we discuss
how to utilize risk attribution technique to decompose a firm’s total risk exposure
into different risk factors, and how to utilize such information to differentiate and
prioritize the implementation of the swap contracts among different risk factors.

• Sensitivity analysis: from the case study used in the previous chapter, we see that
the optimal swap contracts can help recover efficiency loss as much as 40%. However,
this gain could be sensitive to certain underlying assumptions, such as the degree of
correlation among the different markets. Moreover, model uncertainty is a prevailing
issue in any quantitative modeling work that can undermine the effectiveness of our
proposed solution. In Section 5.3 we analyze the sensitivity or robustness of the swap
contracts’ efficiency gain to the underlying assumptions as well as the issue of model
uncertainty.

• Fair allocation: the main objective of the swap contracts is to align incentives between
agents and the central manager. However, imposing swap contracts does not auto-
matically guarantee participation. The overall utility gain needs to be redistributed
among the agents in a fair manner and to provide sufficient incentives to the agents
to secure their participation, in the sense that they will take on the swap contracts
willingly. In Section 5.4 we discuss how to extend the swap contracts to include a
participation bonus (or fee) to achieve fairness in allocation and to encourage agent
participation.
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5.2 Risk Attribution

In real-world applications the number of risk factors can be quite large, leading to a large
number of swap contracts, which could be cumbersome to manage. A practical question
would be, is it possible to contract only on a small number of risk factors, but gain most of
the benefits? The key lies in the ability to carry out proper risk attribution. Recall in Section
4.1 that we model a firm’s risk exposure using independent risk factors (plus idiosyncratic
risk), which can be constructed via principal component analysis. More specifically, for the
single period case, the firm’s common risk exposure can be easily decomposed

1
2
π(t)′σ · [diag(θ)]−1 · σ′π(t) =

1
2

n∑
j=1

1
θj

[
m∑
i=1

σijπi(t)]2, (5.1)

where the total common risk exposure can be expressed as a sum of the risk contribution
from each independent risk factors. This provides us with a mean to attribute the total
common risk exposure into the n risk factors. Naturally, after attribution we can rank the
risk factors according to their contributions to the total common risk and prioritize the
implementation of swap contracts accordingly.

Table 5.1 shows that factor 7 and 8 are the top two risk factors, each contributing above
20% of the total common risk exposure. Consequently, if we write only a single contract on
either factor 7 or 8, the amount of utility gain is close to 18%, therefore a large chunk of the
maximum possible gain of 40% can be achieved by writing a single contract. Furthermore,
we can see the ranking of the risk factors according to their risk attribution is very consistent
with the ranking of the utility gain by writing a single contract on each of them.

The fact that we can easily attribute risk into different factors allows us to rank the
relative importance of the risk factors. When the number of risk factors is large, this offers
great flexibility to investors to selectively construct swap contracts to gain most of the
benefits without a full-blown implementation. In other words, investors have the flexibility
to trade off optimality for operational efficiency and to reduce complexity in managing the
swap positions.

5.3 Sensitivity Analysis

In the benchmark case (Table 4.3), we assume the common risk factors account for
70% of the total risk. It is this part of the risk that requires coordination among the
agents to avoid over-concentration of risk, and we show that potential efficiency loss without
coordination can be as high as -40%. It is not surprised that the extent of efficiency loss is
sensitive to the assumption of the proportion of risk that is due to the common risk factors.
When the proportion of common risk is high, the agents’ markets are more dependent (or
correlated), consequently coordination becomes more critical, and vice versa.

Table 5.2 runs a simple sensitivity analysis of the amount of efficiency loss (4th column)
against the proportion of common risk (1st column). When the common risk is at a high
90%, the efficiency loss can reach as high as -48.4%. On the other hand, when the common
risk is at a low 10% (i.e. the different markets have little common exposure), the efficiency
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loss shrinks to a mere -6.2% (though this in financial terms is still a huge amount). Given
the rather wide range of possible efficiency loss, a cautious reader may question the im-
portance of introducing swap contracts. We claim that it is still crucial that a firm with
decentralized management structure adopt our proposed coordination mechanism, and we
offer two supporting arguments:

• Average case: using the simplest term, we see that on average the efficiency loss is
around -30%, considering the proportion of common risk in the range of 10% to 90%.
This by all means is a enormous amount, and in reality it is not untypical to see
very high correlations among seemingly different markets or strategies, such as the
infamous contagion effects evidenced in several recent financial crisis (e.g. sub-prime
meltdown, tech bubble, LTCM, and etc).

• Model uncertainty : the second argument is slightly more subtle. We see that in Table
5.2 the really optimistic case with a 10% common risk has a relatively small efficiency
loss of -6.2%. However, given the complexity and interconnectedness of the different
markets, can one be so sure that the common exposure is only a mere 10%? In
any quantitative work, model uncertainty (or estimation error) is far too common,
and is often one of the most critical aspects affecting the usefulness of any model
in assisting decision making. Here by model uncertainty we specifically refer to the
uncertainty concerning the proportion of the common risk, which can range from 0%
to 100%. There are two simple ways of evaluating the impact of model uncertainty.
First is the maximum loss of assuming the wrong model, which is defined as the
maximum possible loss when the investor picks one model (e.g. a very low 10%
common exposure), but nature turns out to the worst case (e.g. a very high 90%
common exposure). Second is the mean loss of assuming the wrong model, which is
defined as the average loss when the investor picks one model, and the average loss

Factor Risk attribution Single contract gain
8 23.6% 17.6%
7 22.7% 17.9%
6 15.0% 7.0%
5 10.1% 2.1%
2 9.2% 4.2%
4 8.9% 5.7%
3 6.3% 2.0%
1 4.3% 2.0%

Table 5.1: Risk attribution and gain from writing a single contract: risks are at-
tributed into orthogonal factors via principal component analysis, and contract gain
from single contract has consistent ranking with the risk attribution, i.e. the factor
that contribute more risk will tend to provide more utility gain by writing contract
on it.
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when the nature varies across all possible models.

Take a look at Figure 5.1, the red curve (right axis) shows that the maximum or
mean loss has a bell-curve shape, which means that at the two extremes the user in
general suffers heavier loss than assuming moderate cases. Therefore in the presence
of model uncertainty, it is in general safer to assume a moderate level of common risk,
which can protect investor from massive loss that can go as much as -44% simply by
assuming the wrong model. Correspondingly the blue curve (left axis) shows that
by assuming moderate level of common exposure in the region of 40% to 70%, the
amount of possible efficiency loss is in the region of -25% to -40%. This shows that in
the presence of model uncertainty (which is far too common), the amount of potential
efficiency loss remain elevated. It is therefore a more pressing issue to introduce swap
contracts. Similarly, Figure 5.2 plots the entire surface of the possible losses due to
model uncertainty, without taking the max or mean as in Figure 5.1. This allows us
to examine the curvature of the loss due to model uncertainty. Again it is clear that
the curvature is steeper at both extremes and much smoother in the central area,
which implies that the results will tend to more robust to model uncertainty when
we assume moderate level of common risk.

Common Risk (%) Central Opt. Dentral Opt. Efficiency loss (%)
90% 8.73 4.50 -48.4%
80% 8.58 4.82 -43.8%
70% 8.64 5.20 -39.9%
60% 8.79 5.63 -36.0%
50% 9.01 6.16 -31.7%
40% 9.29 6.79 -26.9%
30% 9.62 7.58 -21.2%
20% 10.02 8.58 -14.4%
10% 10.48 9.82 -6.2%

Table 5.2: Sensitivity analysis of the efficient loss with respect to the proportion of
common risk. We vary the proportion of common exposure from a high 90% to low
10%, and the correspond efficiency loss changes from -48.4% to -6.2%.

5.4 Fair Allocation

The final issue we would like to address is fairness in allocation and how to ensure enough
incentives are provided to agents to ensure participation. The swap contracts we introduce
address the fundamental issue of restoring efficiency for the overall system. However, we do
not address utility gain or loss at the individual agent level. In order to achieve maximum
risk-adjusted returns for the firm, individual agents will have to bear different risk and
return profiles according to the overall system characteristics (e.g. correlation structure).
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Figure 5.1: Sensitivity analysis in the presence of model uncertainty: blue curve (left
axis) plots the efficiency loss, and red curve (right axis) plots the loss due to model
uncertainty, against the x-axis where we vary the ratio of common exposure. Top
panel shows the maximum loss (i.e. worst case), while the bottom panel shows the
mean loss (i.e. average case).
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Figure 5.2: Sensitivity analysis in the presence of model uncertainty (curvature): this
plots the entire surface of loss due to model uncertainty, without taking max or mean
as in Figure 5.1.
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Said differently, the added swap positions can cause either gain or loss at individual agent
level. Therefore, the overall gain in efficiency will have to re-allocated to individual agents
in a way that satisfy individual rationality constraints. Furthermore, the re-allocation need
to be done in a fair manner.

Re-allocation of efficiency gain can be done by a simple extension of the swap contracts.
Specifically, we can introduce a participation bonus (or fee) to be added to the swap contract.
Denote this term as δi(t), we require

∑
i δi(t) = 0, which implies that participation bonus

(or fee) is simply a re-allocation of the utility gain. Agent i’s change in wealth now becomes

∆xi(t) =

risky asset holdings = πi(t)
∆Si(t)
Si(t)︷ ︸︸ ︷

πi(t)
{
αi∆t+

n∑
j=1

σij∆Wj(t) + εi∆Vi(t)
}

+

swaps︷ ︸︸ ︷
n∑
j=1

Rij(t)∆Wj(t) +

participation bonus (or fee)︷︸︸︷
δi(t) ,

= πi(t)αi∆t+
n∑
j=1

{
πi(t)σij +Rij(t)

}
∆Wj(t) + πi(t)εi∆Vi(t) + δi(t), (5.2)

where the participation bonus (or fee) δi(t) does not affect the optimal decisions, but act
to provide incentives to the agents to encourage participation.

Table 5.3 shows that without coordination, the system can only achieve risk-adjusted
return of 5.20 (2nd column), with optimal swap contract, the risk-adjusted return can be
improved to 8.64 (3rd column). However, one can see that without fair re-allocation it can
be net gain or loss at the individual agent level. A simple and fair allocation is to split the
system gain equally among the agents, which leads to on average 39.9% gain over all agents
(5th column), with δi(t) the participation bonus (or fee) shown in last column. By adding
this simple participation bonus (or fee), we ensure that we provide sufficient incentive to
each individual agents to secure their participation.

5.5 Summary

In this chapter we discuss several important issues concerning efficient implementation
and management of the swap contracts. First, we show that our choice of using independent
risk factors via principal component analysis allows us to easily attribute the common risk
exposure into individual risk factors. Consequently we can prioritize implementation of the
swap contracts among different risk factors according to their contributions to the total
risk. Risk attribution is particularly useful when there is a large number of common risk
factors, and we show that writing partial contract on important risk factors can achieve a
significant portion of the efficiency gain. This allows investor to easily trade off optimality
for operational efficiency. Second, we discuss the sensitivity of contract gain to underlying
assumptions, in particular the assumption of the proportion of common risk. We show
that thought the contract gain can be rather sensitive to the underlying assumption, on
average the potential gain can be as large as 30%. Furthermore, in the presence of model
uncertainty, it is safer to assume a moderate level of common risk exposure, which provide
further support of our claim that swap contracts can achieve substantial efficiency gain in
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the region of 25% to 40%. Lastly, we discuss the fairness issue. In order to encourage
agents to take on swap contracts and participate in our proposed coordination framework,
sufficient incentives need to be provided. We show that we can easily extend our swap
contracts by adding a participation bonus (or fee), which implements an equal division on
the overall system efficiency gain among the agents. This is a simple and fair re-allocation
of the final wealth, and clearly provides sufficient incentives to secure agents’ participation.

Agent Local Opt. Central Opt. Central Opt. Improvement δi
(no re-allocation) (fair re-allocation)

1 1.01 -0.75 1.44 30.0% 2.19
2 0.87 0.49 1.30 33.0% 0.81
3 0.34 -0.33 0.77 55.7% 1.10
4 0.33 0.58 0.76 56.4% 0.19
5 0.32 0.04 0.75 57.6% 0.71
6 0.50 1.02 0.93 46.2% -0.09
7 0.70 2.03 1.13 38.1% -0.90
8 1.12 5.56 1.55 27.8% -4.01

Sum 5.20 8.64 8.64 39.9% (overall) 0.00

Table 5.3: Local optimal risk-adjusted profit versus central optimal risk-adjusted
profit with and without fair re-allocation: note that the participation bonus (or fee)
δi(t) adds up to zero, also the fair re-allocation ensures all agents receive equal share
of the efficiency gain.
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Chapter 6

Conclusion and Future Work

In this dissertation we study the fundamental issues of how to efficiently manage large-
scale and multi-agent stochastic dynamic systems. In particular, we study how to design
coordination mechanisms that would optimize system performance, and mechanism that
can be implemented in a practical manner that respect agent level private information.

We study two classes of closely related problems. In the first part of this dissertation
we study decentralized control of a general class of stochastic dynamic resource allocation
problems. We model a stochastic system that is managed by multiple decentralized agents,
who allocate system resource to satisfy customer demands that arrive stochastically over
time. We introduce the notion of revenue transfer contract, which generalizes the notion of
dual prices to stochastic and dynamic setting, and show that there exists optimal revenue
transfer contracts that would properly coordinate agents’ control policies to achieve central
optimality. We show that the optimality is robust to potential model mis-specification in the
sense that each agent typically does not know the modeling details of other agents but need
to account for their actions in his own model. We further provide an iterative algorithm that
can be used to construct the optimal revenue transfer contracts in decentralized manner,
which does not require agents to reveal sensitive private information. A nice and somewhat
surprising result is that optimality and convergence of the iterative algorithm does not
require the typical assumption of convexity.

In the second part of the dissertation, we study a class of related problem but specializes
to portfolio and risk management. We model a financial institution that trades in multiple
correlated markets, and have to employ multiple agents to manage investment decision in the
different markets due to the need for specialization. We show that un-coordination of agents
can lead to substantial loss because of the loss of diversification and over-concentration in
certain common risk factors. We design a rather unique coordination mechanism, which
we coin as swap contract. Swap contract conceptually is similar to benchmarking that is
often employed by investment firms, but differs substantially in that it can be constructed
in decentralized manner without requiring an all-knowing central agent. Swap contract
introduces a internal system of revenue transfer (or return sharing) that facilitates internal
risk sharing. We show that optimal swap contract exists and can be constructed again in
decentralized manner to guide individual agents to make investment decisions that would
be optimal for the overall firm. These results offer new insights to decentralized investment
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management and a significant extension to the benchmarking literature in Finance.
We now briefly discuss several important future research directions:

• Approximation methods: we devote the entire chapter 3 discussing approximation
methods for decentralized resource allocations. Computational issues concerning op-
timal control of stochastic dynamic system remain a significant challenge. This is
further complicated by the need of decentralized control, where often iterative algo-
rithms/schemes need to be employed. We discuss several approximations methods
in chapter 3 that are adapted from their centralized counter-part. An interesting
and important future work will be to apply these methods to large-scale systems and
conduct empirical studies.

• Decentralized learning : the models in this dissertation assume that every agent know
their local parameters (e.g. future demands) perfectly well. An important extension is
to allow agents to learn their model parameters using realized data in a decentralized
way. It will be interesting to see whether coordination can still be achieved in this
setting and the impact of learning on the coordination mechanism.

• Incentive issues: in this dissertation we assume agents are price-takers or competitive,
an interesting and important extension is to study different strategic behaviors that
would allow agents to manipulate their reported information. This will extend our
study into the dynamic game-theory territory.
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