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ABSTRACT OF THE DISSERTATION

Study of Zero and Finite Temperature Response

of Discrete Deformable Surfaces

by

Amit Rajnarayan Singh

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2018

Professor Jeffrey D. Eldredge, Chair

We report on the effect of discreteness on mechanical and thermal response of closed de-

formable shells inspired by capsids of biological viruses. Generally, these structures are

analyzed using continuum elasticity theories. The ratio of the in-plane stretching and the

bending energies of the shell, called as the Föppl von Kármán (FvK) number, is an impor-

tant dimensionless number that characterizes the key features of these shells. Through two

new models of shells, we replace the continuum description by their discrete counterparts

in incremental steps. The first model is a hybrid discrete-continuum description. It shows

the presence of competing symmetries at low FvK numbers which are not detected in the

continuum model. The second model shows that the FvK number controls the thermal re-

sponse of these shells. Shells can be melted only at low FvK numbers. At values of FvK

higher than the buckling transition, increase in thermal fluctuations gives rise to a pressure

that crumples the shell and precludes melting.
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CHAPTER 1

Introduction

Simple viruses are organisms of submicroscopic scale that have genetic material (RNA or

DNA) enclosed in a protective shell called the capsid [FER04]. Understanding structural

properties of viruses has played an important role in advancing nanotechnology. Nanotech-

nology relies on different microscopic materials like iron oxide nanoparticles, liposomes, an-

tibodies, dendrimers, nanoshells, quantum dots and viruses [KM10]. Viruses are useful for

nanotechnologists because they form regular structures of homogeneous size. They are me-

chanically and chemically stable and easy to produce in-vitro by self-assembly. Besides,

viruses have dynamic structural properties which can be modified by genetically or chemi-

cally manipulating their capsids. In the nature, viruses are found in a variety of shapes like

helical, quasispherical, prolate, complex and enveloped. In this work, we will restrict our

scope to quasispherical shapes. Quasispherical viruses can either be spherical or polyhedral

as shown in Figure 1.1.

To study the mechanics of quasispherical viral shells we need a systematic description of

their structure. The physical principles of construction of such structures were explained in

a landmark paper by Caspar and Klug [CK62] which we discuss in the next section.

1.1 Caspar-Klug Construction

Crick and Watson [CW56] suggested that viruses have limited genetic material which can be

used to produce only a few types of proteins. To use the limited genomic information effi-

ciently, the shells of viruses must be made up of identical subunits. A subunit can be a single

protein or a group of few proteins. Shells made of identical subunits will be regular in shape

1



(a) Cytomegalovirus. (b) Polyomavirus.

Figure 1.1: Quasispherical viruses can be of polyhedral shape like a Cytomegalovirus [YJJ17]

or of spherical shape like a Polyomavirus [SEN11].

and uniform in size. The environment of a subunit is characterized by the number of neigh-

bors, the number of bonds, bonding sites etc. Their theory suggests that since the subunits

are identical, they should be indistinguishable in terms of their environment. This is called

the theory of strict equivalence. Since all the subunits are in identical environments the over-

all structure should be isometric. Only cubic point-groups viz. tetrahedral, octahedral and

icosahedral can give rise to isometric structures because all the three coordinate directions

for these groups are equivalent. Although the subunits themselves may be asymmetric, they

can be arranged into units which are symmetric. A unit of three asymmetric subunits can be

arranged on triangular faces of a tetrahedron, octahedron or an icosahedron such that each

unit is symmetric to the units on all other faces of the structure. This suggests that tetra-

hedral, octahedral and icosahedral structures should be made up of 12, 24 and 60 subunits

respectively. Such a structure would satisfy the requirement of strict equivalence. Of the

three cubic point-groups, icosahedral structure is the closest to a sphere and hence provides

the maximum volume to surface-area ratio. Thus, one can get maximum enclosed volume

for a fixed number of subunits in an icosahedral structure. Therefore, icosahedral structures

are preferable for forming viral shells over tetrahedral or octahedral structures. Figure 1.2

2



shows an icosahedral structure which satisfies strict equivalence. Several electron microscope

Symmetric Unit

Asymmetric subunit

Figure 1.2: A symmetric unit composed of asymmetric subunits can be arranged into an

icosahedral structure that obeys strict equivalence. The figure was adapted from VIPERdb

(http://viperdb.scripps.edu) [CSB09]

experiments like [WS58] and X-ray diffraction investigations like [FK59] of unrelated viruses

showed that icosahedral symmetry was indeed predominant in viral shells. But the number

of subunits was not found to be 60 or even a multiple of 60. To explain this discrepancy,

Caspar and Klug [CK62] proposed their theory of quasi-equivalence. They relaxed the re-

quirement that each subunit should have exactly equivalent environment. They analyzed

the problem of forming closed shells from triangular units as a topological problem of tiling

a triangular or a hexagonal lattice on the surface of a sphere. Such a closed shell would form

a polyhedral surface. As per Descartes-Euler polyhedral formula [Wei], the Euler-Poincaré

characteristic χ for a polyhedral surface is given as

χ = V − E + F = 2 (1.1)

where V is the number of vertices, E is the number of edges and F is the number of faces.

It can be shown that equation 1.1 cannot be satisfied if each vertex of the closed shell has

exactly 6 neighbors like a flat triangular lattice. We must allow some vertices to have more

or fewer neighbors. It can also be shown that if we allow some vertices to have 5 neighbors

there should be exactly 12 such vertices to satisfy equation 1.1. This is called “geometric

frustration”. Since the triangles forming the polyhedron correspond to a group of subunits

3



of a viral shell, the subunits on triangles associated with a five-fold vertex will have slightly

different environment than the subunits lying on triangles with a six-fold vertex. Thus,

this supports the theory of quasi-equivalence. Subunits associated with five-fold vertices are

called pentamers whereas those associated with six-fold vertices are called hexamers. By

extension, we can also define heptamers.

The arguments presented in the previous paragraph can be used to systematically char-

acterize icosahedral structures of different sizes. Consider a triangular lattice as shown in

Figure 1.3: We can setup a coordinate system setup in a hexagonal lattice using two axes

separated by 60◦. A unit length along either axis measures the distance between neighboring

hexagons. The choice of the axes is not unique.

Figure 1.3. In order to fold this lattice into a closed shell, we need to create exactly 12 five-

fold vertices in this lattice, as discussed before. We can do this by cutting out triangles from

some of the hexagons and joining the newly formed edges to create pentagonal pyramids as

shown in Figure 1.4. To form icosahedral structures, we need to distribute the 12 five-fold

vertices over the lattice in a systematic pattern. Rather, it can be shown that the distance

between any two five-fold vertices as measure along the h and k axes of Figure 1.3 should

be constant. Farther the five-fold sites are situated from one another, bigger will be the size

of the resultant icosahedron. The distance can be expressed as T number where

T = h2 + k2 + hk (1.2)
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Figure 1.4: We can cut-out a triangle from a hexagon and join the new edges to form

a pentagonal pyramid with equilateral triangular faces. If we try to join the edges while

keeping the structure flat instead of forming a pyramid, the faces will no longer remain

equilateral and the edges will be under a lot of strain.

Figure 1.5 shows a template obtained by cutting out appropriate triangles from a hexagonal

lattice such that when we join the edges associated with the cut-out triangles we will get an

icosahedron with 20 faces. The folded structure is same as the one shown in Figure 1.2. In

this case, the distance between any two five-fold sites can be expressed as (h = 1, k = 0) or

(h = 0, k = 1), both of which give T = 1 based on Equation 1.2. So, this structure is called

a T = 1 structure and it is the smallest icosahedron that we can make. Equation 1.2 also

(0, 0) (1, 0)

(0, 1)

h

k

Figure 1.5: The flat hexagonal lattice template with appropriate triangles cut-out so that by

joining the edges of the cut-out triangles we get an icosahedron with T = (1, 0) or T = (0, 1).

This figure was adapted from VIPERdb (http://viperdb.scripps.edu) [CSB09].

contains information about chirality of the resultant icosahedron. If h 6= k and neither of

them is zero, the structure is chiral. On the other hand, if h = k or if one of them is zero,
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the structure is achiral. A chiral structure is right-handed when h > k and it is left-handed

when h < k. The T number of a shell also gives us information about the number of

(a) Template for (h = 1, k = 2) shell. (b) Left-handed T = 7 shell.

Figure 1.6: The h = 1, k = 2 configuration of T = 7 Caspar-Klug shell has been shown. It

is a left-handed chiral structure whose mirror image is shown in Figure 1.7.

(a) Template for (h = 2, k = 1) shell. (b) Right-handed T = 7 shell.

Figure 1.7: The h = 2, k = 1 configuration of T = 7 Caspar-Klug shell has been shown. It

is a right-handed chiral structure whose mirror image is shown in Figure 1.6.

vertices, N , that constitute the shell

N = 10T + 2. (1.3)

The first ten T numbers and the corresponding number of particles/vertices in the shells

have been listed in Table 1.1. It is clear from the table that to form icosahedral shells we
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need a specific number of particles. We cannot take any arbitrary number of particles and

arrange them into a perfectly icosahedral shell. Experimental observations have confirmed

that the number of particles predicted by the Caspar-Klug construction indeed match up

with the number of subunits observed in various icosahedral viral shells.

h k T N Chiral?

1 0 1 12 No

1 1 3 32 No

2 0 4 42 No

2 1 7 72 Yes

2 2 12 122 No

3 0 9 92 No

3 1 13 132 Yes

3 2 19 192 Yes

3 3 27 272 No

4 0 16 162 No

Table 1.1: The 10 smallest values of h and k coordinates of Caspar-Klug construction have

been tabulated. These give the 10 smallest T numbers and the corresponding number of

vertices that form the shells.

Now that we have a systematic way to describe structures of viral shells we can proceed

with studying their mechanical behavior.

1.2 Continuum Theory of Shells

It is found that the structure into which a virus self-assembles in vitro depends on environ-

mental conditions like salt concentration and pH values [AB76, BBW69, LGP09, GLK99,

HBW08]. This implies that their structures are a result of free energy minimization of

the interactions between their subunits [ZRB04, LZR10, Zlo03]. We can, therefore, write
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Hamiltonians for which the structures discussed in Section 1.1 are the minimum energy

configuration.

Intuitively, we can understand that if we try to cut out triangles from a hexagonal lattice

and join the newly formed edges, as discussed in Section 1.1, while constraining the lattice

to remain flat we would induce a large strain in the lattice. The farther we travel radially

away from the five-fold site the strain goes on increasing more and more. But if allow

the lattice to bend out of plane then it can release a lot of the strain around the five-fold

sites. In a hexagonal lattice, a dislocation refers to a pair of a pentamer and a heptamer

situated side by side whereas a disclination indicates an isolated pentamer or a heptamer

in a regular hexagonal lattice. Seung and Nelson [SN88] studied the elasticity theory of

flexible membranes (i.e. membranes that can bend out of plane) in presence of dislocations

and disclinations. They found that a transition from a flat to a buckled structure occurs

when

γ =
Y R2

κ
≥ 154 (1.4)

where Y is the 2D Young’s modulus of the membrane, R is disk radius and κ is the bending

modulus. γ is a dimensionless number, called the Föppl von Kármán (FvK) number, that

measures comparative resistance of the membrane to in-plane stretching versus out-of-plane

bending deformation. For higher values of γ, the membrane prefers to minimize the in-plane

strains induced by the presence of a five-fold site at the cost of bending out of plane, as

indicated in Figure 1.4. The presence of disclinations introduces stress in the lattice.

Lidmar et al [LMN03] investigated the question whether closed shells also exhibit buckling

behavior as found by Seung and Nelson [SN88]. While the answer seems to be obviously

a ‘yes’, we need to consider the increased complexity of the problem due to interactions

between deformations around neighboring five-fold sites. The energy used in this analysis is

given as

H = Hstretching +Hbending

=
1

2

∫
S

dS (2µuijuij + λu2
kk) +

1

2

∫
S

dS
(
4κH2 + 2κGK

)
. (1.5)
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where µ and λ are the Lamé coefficients, κG is the Gaussian modulus, κ is the bending

modulus, H is the mean curvature and K is the Gaussian curvature of the membrane.

The bending energy term is called as the Helfrich bending energy and it is widely used for

modeling lipid bilayer membranes. uij is the strain tensor given by

uij =
1

2
(ui,j + uj,i + f,if,j) (1.6)

where u1 and u2 are in-plane deformations and f is out-of-plane deformation such that a

point that was at (x1, x2, 0) in the reference state goes to (x1 + u1, x2 + u2, f). Thus, the

reference state is a flat hexagonal lattice which can be folded into an icosahedral shell without

incurring any strain as discussed in Section 1.1. So, we can also say that the icosahedral

shell is the stress free configuration. For closed shells, by Gauss-Bonnet theorem,∮
S

dS K = 4π. (1.7)

Therefore, the Gaussian curvature term in Equation 1.8 reduces to a constant and can be

ignored from our calculations for energy minimization. The effective total energy is reduced

to

H =
1

2

∫
S

dS (2µuijuij + λu2
kk) + 2

∫
S

dS κH2. (1.8)

The 2D Young’s modulus and the Poisson’s ratio can be expressed in terms of the Lamé

coefficients as

Y =
4µ(µ+ λ)

2µ+ λ
ν =

λ

2µ+ λ

Rearranging gives

µ =
Y

2(1 + ν)
λ =

Y ν

1− ν2

We can rewrite Equation 1.8 as

H =
1

2

∫
S

dS

(
Y

1 + ν
uijuij +

Y ν

1− ν2
u2
kk

)
+ 2

∫
S

dS κH2. (1.9)

For numerical analysis, the lattice vertices can be treated as being connected with harmonic

springs with spring constant ε. If we let the mean lattice spacing be a, then Equation 1.9
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can be discretized [LMN03] as

H =
ε

2

∑
〈ij〉

(|ri − rj|−a)2 +
κ̃

2

∑
〈IJ〉

(n̂I − n̂J)2 (1.10)

where 〈ij〉 denote bonds between nearest neighbors and 〈IJ〉 represent a pair of unit normals

associated with neighboring triangles in the lattice. Also, the spring constant ε, the Poisson’s

ratio and the discrete bending modulus κ̃ are given as

ε =

√
3

2
Y ν =

1

3
κ̃ =

2√
3
κ (1.11)

It is found that the minimum energy structures depend only on the FvK number.

Lidmar et al introduce a quantitative measure of deviation of a closed shell from a perfect

sphere, called as the asphericity, given by

α =
〈∆R2〉
〈R〉2 =

1

N

N∑
i=1

(Ri − 〈R〉)2

〈R〉2 (1.12)

where the mean radius is

〈R〉 =
1

N

N∑
i=1

Ri

They find that the asphericity of the minimum energy shell changes as a function of the

FvK number as shown in Figure 1.8. There is a sharp but continuous decrease in asphericity

around γ = 200. This is called as the buckling transition. At low values of γ the shell is

spherical whereas at high values of γ it is faceted like a polyhedron. FvK number is directly

proportional to R2 as noted in Equation 1.4. Thus, the continuum theory of shells predicts

that viruses with larger shells should be faceted whereas viruses with smaller shells should

be spherical. Indeed, this is in agreement with experimental observations. For example, the

radius of Cytomegalovirus and Polyomavirus shown in Figure 1.1 are 200 nm and 50 nm and

they have polyhedral and spherical shapes respectively.

1.3 Beyond the Continuum Theory

There are more elaborate versions [Agg18, KRW12] of continuum theory shell models that

consider stress-free reference configuration other than the icosahedral state as done in Sec-
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Buckling Transition

Figure 1.8: The asphericity α of a Caspar-Klug shell varies as a function of the FvK number

γ of the shell. The sharp decrease in the asphericity at γ = 200 is called as the buckling

transition. At low FvK numbers, the shell is spherical whereas at high FvK numbers it

becomes faceted like a polyhedron.

tion 1.2. These theories have been successfully used to explain important results like struc-

tural failure of viral shells [KBM06] and determination of pre-stress [KRW12, Agg18] in

these shells. The continuum description is certainly a very useful tool for studying viruses.

It is even surprising that the continuum description works so well for these structures which

are on the nanoscale. It is natural to expect that considering the molecular details of the

constituent proteins of the shells is important at this scale. This would warrant the use of

all-atom simulations using techniques of molecular dynamics. Such an approach is valuable

because it can provide results for shells of specific viruses made up of specific set of proteins
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though at the expense of computational time and effort. Thus, we have two extremes — a

continuum description and an atomistic description. Taking a balanced approach between

these two extremes, our interest for the next two chapters is to study the general effects of

discreteness of the viral shells without considering any microscopic details. Thus, our aim is

to develop coarse grained models where we will treat protein units (also called as capsomers

which may be a pentamer, a hexamer etc.) as point particles interacting via suitable poten-

tials. We will accomplish this in two steps. In Chapter 2, we will replace only the in-plane

stretching energy of the shell with sum of discrete potential interactions while retaining the

continuum Helfrich model for the bending energy. In Chapter 3 we will replace even the

bending energy with discrete potentials.

Our motivation for studying discrete shells is as follows. In the continuum model, the

minimum energy configuration of the shell always has an icosahedral symmetry in the ab-

sence of any external applied loads. This seems to suggest that the icosahedral structure is

stable at all FvK numbers. But we must take into account that the icosahedral structure

is also the assumed stress-free reference state of the continuum model. Besides, because of

the assumption of isotropy, as there are only two independent constitutive parameters, the

continuum model always gives a structure with icosahedral symmetry as the minimum en-

ergy configuration. So, the stability of icosahedral symmetry may be a little misleading. In

fact, it is well known from a study of close-packing of disks on a sphere (Tammes problem)

and other similar studies [ZRB04] that the icosahedral symmetry is not always stable. For

example, when the number of disks exceeds 72, there are other competing symmetries as

reported in [ZRB04]. Further, we are interested in investigating thermal response of shells

like melting. Melting implies that the particles forming the shell can freely move past each

other like in a fluid. As long as we model the particles as nodes of a finite element mesh

surface, there will be many challenges to modeling such flow like the need to remesh at every

time step. Therefore, to model such behavior, discrete models are certainly better suited.
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CHAPTER 2

Hybrid Shell Model

In this chapter we will set-up a hybrid discrete-continuum model of shells. The key idea is

to replace the harmonic springs of Equation 1.10 with Morse potential which we will discuss

in detail in Section 2.1. The main result is that upon proper choice of Morse potential

parameters the buckling transition coincides with a mathematical singularity which we will

see in Section 2.4. We will explain this behavior by analyzing a toy model of a pentagonal

pyramid in Section 2.3.

2.1 Model

Physically, the hybrid model represents a collection of interacting particles lying on the

surface of a closed shell. The surface resists bending but offers no resistance to in-plane

stretching. The in-plane stretching resistance is entirely due to the interactions between the

particles. The energy equation for this discrete-continuum model is

H =
∑
〈ij〉

V (rij) + 2

∫
S

κH2 dS (2.1)

where 〈ij〉 represents a bond between a pair of nearest neighbors and V (r) is a suitable

potential. κ is bending modulus of the surface and H is the mean curvature of the surface.

The bending energy depends only on the curvature of the surface and is independent of the

parametrization. Physically, this means that it represents a fluid surface where the particles

can move freely in the surface. This surface cannot sustain any stretching or shearing. It

can only resist normal forces and deformation.

There are different choices for V (r) available. Harmonic potential does not allow particles
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to escape the influence of their neighbors. Rather, farther the particles move from each other

stronger the pull they experience towards each other. We need a potential that has long range

attraction but only up to a cut-off distance beyond which the potential decays to zero quickly.

Both Lennard-Jones potential and Morse potential satisfy this requirement. Lennard-Jones

potential is defined as

VLJ(r) = Ve

[(re
r

)12

− 2
(re
r

)6
]

(2.2)

where re is the equilibrium separation and Ve is the equilibrium potential. These are the

two control parameters for this potential. Lennard-Jones potential is a common choice for

modeling viral shells [FCW10, WOB12, BDT16, ZR05]. But we will use Morse potential

because it also allows us to control the width of the potential well independently of re and

Ve. The Morse potential is defined as

V (r) = VM
[
e−2a(r−re) − 2e−a(r−re)] (2.3)

where re is the equilibrium separation and VM is the equilibrium potential. The parameter

a has dimensions of [L]−1 and it controls the width of the potential well. We can define a

non-dimensional width of the Morse potential well as

δ =
ln 2

a re
(2.4)

Figure 2.1 shows the variation of Morse potential with distance and the meaning of the three

parameters that control it. For distances shorter than re there is a strong repulsion and for

distances larger than re there is attraction. At distance re + δre there is an inflection point

beyond which the potential decays to zero. When particles are separated by a distance equal

to that of the inflection point, the strain in the bond is equal to δ. So δ has the physical

significance of being the fracture strain. In order to define a FvK number for the hybrid

model, we need an expression for the 2D Young’s modulus Y . We can substitute the spring

constant ε = V ′′(re) in Equation 1.11 to write

Y =
2√
3
V ′′(re) =

4√
3
VMa

2 (2.5)
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r

V (r)

VM

re
Inflection Point re(1 + δ)

δ = 0.1

δ = 0.2

Figure 2.1: Morse potential parameters have been shown. The dotted lines marks zero

potential. re is the equilibrium separation and VM is the potential at equilibrium separation.

δ controls the position of inflection point which is located at re(1 + δ).

2.2 Discretized Bending Energy

For numerical simulations we need to discretize the bending energy. We start by creating

a mesh by connecting every particle with its nearest neighbors which are identified using

the Voronoi criterion [Vor08]. We used finite element method to discretize the bending

energy following the methodology presented in [FK06]. This work uses C1 conforming Loop

subdivision shell finite elements [COS00] with positions of the particles as the vertices of

the mesh. It is important to note that the shape functions associated with the Loop shell

subdivision finite elements are non-interpolating. This means that the surface defined by the

particles of the closed shell does not pass through the particle positions. This has been shown
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in Figure 2.2. The surface is just a way to capture the bending interactions of capsomers

that form the shell of a virus. It does not represent an actual membrane of the shell. Hence,

the fact that the surface does not interpolate the particle positions is not a flaw in this

model. Fluidity of the Helfrich bending energy, as noted in Section 2.1, creates problems for

the finite-element solver because of the zero-energy stretching and shearing modes. But in

our problem, the nodes of the surface mesh also represent interacting particles which resist

stretching and compression. Thus, we are able to circumvent the degeneracy issue.

Figure 2.2: The discretized setup for the hybrid model has a surface defined by Loop shell

subdivision finite elements shape functions indicated as the grey surface. The green lines

represent the bonds between nearest neighbors. All the vertices of the mesh represent cap-

somers of virus shell. As can be seen here, the surface does not interpolate the vertices of

the mesh.

The pentamers represent a disclination in a flat hexagonal lattice [SN88]. Hence, they

are centers of stress concentration even for the closed shell. We expect the stresses in the

bonds associated with the pentamers to play a key role in determining the minimum energy

configuration. Therefore, in the next section we will analyze the forces associated with edges

of a pentagonal pyramid formed by the six particles of the pentamer.
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Figure 2.3: A pentagonal pyramid with vertices representing interacting particles. The base

edge length is B and the length of edges joining the apex to base vertices is r. H denotes

height of the pyramid and the black arrows are the unit surface normals of the triangular

faces.

2.3 Analysis of Bond Forces of a Pentamer

Figure 2.3 shows a pentamer consisting of six particles — one at the apex and five at the

base of a pentagonal pyramid of height H. Let B be the edge length of the base pentagon

and r be the length of the edges joining the apex to the vertices of the base. The outward

surface normals of the triangular faces will be used to estimate the bending energy of the

structure. The energy of this structure can be approximated using an equation similar to

Equation 1.10.

H '
∑
〈ij〉

V (rij) +
κ̃

2

∑
〈IJ〉

(n̂I − n̂J)2 (2.6)

where κ̃ = 2√
3
κ [SN88].

First assume κ = 0. In that limit, the triangles are equilateral in the minimum energy

state while B and r are equal to the equilibrium spacing re. For non-zero κ, the orientational

energy effectively generates a compression force on the apex of the pyramid of the order of

κ/re. This force stretches the bonds along the base and compresses the bonds linking the apex

particle to the base. As κ increases, the pyramid is progressively flattened (see Figure 2.4).

It follows that in the fully flattened state r = B/(2 sin 36◦). The condition that the net

force on the five base particles is zero in the flattened state is:

2V ′(B) cos 54◦ = −V ′(B/(2 sin 36◦)). (2.7)

The solution of this equation determines the base edge-length B. For the flattened state
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Figure 2.4: The force diagram for vertices of a flattened pentagonal pyramid have been

shown. Blue color represents compression and red color indicates elongation. B is the length

of a side of the basal pentagon. r is the length of an edge connecting the apex to the basal

vertices. The double headed arrows indicate the lowest energy mode of displacement of the

vertices in the azimuthal direction.

to be stable, the energy cost for in-plane displacements must be positive. There are nine

in-plane modes excluding rigid-body rotation. For the lowest energy modes, particles are

displaced in the direction perpendicular to the line joining the base particles and the apex.

Number the five base particles by j = 1 to 5. If θj is the angular displacement of particle j,

then the displacement energy, δE, in the limit of small θ equals

δE =
1

2
V ′′(B)(r sin 36◦)2

5∑
j=1

(θj+1 − θj)2, (2.8)

where θ6 = θ1. The four mode energies have the sign of V ′′(B) so if B exceeds the inflection

point re + (1/a) ln 2, then the flattened pyramid state is mechanically unstable because δE

in Equation 2.8 changes sign. At the point of instability, one of the five bonds linking the

base particles fractures while the remaining bond lengths relax to their equilibrium spacing.

The five triangles once again become equilateral. To determine the value of B at the point
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of instability, let us first write V ′(x) for the Morse potential as

V ′(x) = 2aVM
(
e−a(x−re) − e−2a(x−re)) (2.9)

Substituting x = B = re(1 + δ) in Equation 2.9 and then substituting Equation 2.9 in

Equation 2.7 gives

4aVM cos

(
3π

10

)[
e−a(B−re) − e−2a(B−re)] = −2aVM

{
e−a[

B
2 sin (π/5)

−re] − e−2a[ B
2 sin (π/5)

−re]
}

(2.10)

Let’s substitute 2 cos (3π/10) = 2 sin (π/5) = C and a = ln 2/δre (from Equation 2.4) in

Equation 2.10. On simplifying, we get

C

4
= 2

C−δ−1
Cδ

(
2
C−δ−1
Cδ − 1

)
(2.11)

Equation 2.11 has two solutions

δ1 =
ln
(

2
C−1
C

)
ln
(

2
−C+1
C

(√
C + 1 + 1

)) ≈ 0.12896 (2.12)

and

δ2 =
(C − 1) log (2)

C log
(
−
√
C + 1 + 1

)
− (C − 1) log (2)

≈ −0.00829− 0.0307i (2.13)

Keeping only the real solution, we get B/re ' 1.13 and r ' 0.96re. Therefore, for values of

δ < 0.13, the flattened pentagonal state becomes unstable to in-plane displacements resulting

in a fractured state as shown in Figure 2.5.

Now let us consider the stability of the flattened state to out-of-plane displacements of

the apex. By dimensional argument, the effect of bending energy term in Equation 2.6 is

to apply a compressive force of the order κ/re on the edge joining the apex and the base

particles. This is opposed by an elongating force V ′(r) due to repulsion between the base

and the apex particles. The flattened state is stable when the compressive force exceeds the

elongating force i.e. κ > reV
′(r). Using r ' 0.96re we can approximate

|V ′(r)|' |V ′(re − 0.04re)|= |����V ′(re)− 0.04reV
′′(re)|= 0.04reV

′′(re) (2.14)
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0.13

25

Figure 2.5: Stability diagram of a pentagonal pyramid as a function of dimensionless width

of the Morse potential δ and an effective FvK number γeff = r2eV
′′(re)
κ

. For values of γeff > 25

the pyramid structure is stable whereas for lower values a flattened state is stable. In the

flattened state, there is a fracture for values of δ < 0.13.

Therefore, we can say that for the flattened state is stable against out-of-plane displacements

for

r2
eV
′′(re)

κ
> 25 (2.15)

The full stability diagram for in-plane and out-of-plane displacements has been shown in

Figure 2.5.

In the next section, we will present results obtained by numerical energy minimization

of Equation 2.1 for increasing numbers of particles that form Caspar-Klug structures.
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2.4 Results of Numerical Energy Minimization

In the previous section, we found that the pentagonal flat state develops a fracture when the

dimensionless width δ of the Morse potential falls below a critical value. We validated this

numerically for a T = 7 structure. We calculated the asphericity versus FvK number plots

for various values of δ. It is found that for δ < 0.10, a mathematical singularity appears

near the buckling transition. Figure 2.6 shows the asphericity curves for δ = 0.11, 0.10 and

0.09. If δ is increased from 0.09 to 0.1 then the stability range of the state with icosahedral

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 101 102

×10−4

α

γ

δ = 0.09
δ = 0.10
δ = 0.11

Figure 2.6: Asphericity α as a function of FvK number γ for N = 72 particles for varying

widths of the Morse potential well δ near the buckling transition. There is no instability for

δ = 0.11 but δ = 0.10 marks the onset of instability which becomes aggravated for δ = 0.09.

symmetry is increased while the magnitude of the asphericity jump is reduced. For δ = 0.11

icosahedral symmetry is stable over the whole range of FvK Numbers. Thus, structural

instability is indeed restricted to smaller values of δ. The critical value for dimensionless

well-width, δc, (e.g., 0.10 for N = 72) found in our numerical simulations is below the value

of 0.13 obtained for the toy model of Section 2.3 for isolated pyramids. In addition, the

critical value for γ depends on δ. One reason for the discrepancy is that, even though no
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external forces are exerted on the pyramids just before the onset of instability, the unstressed

bonds linking the pyramids increase the restoring force for the in-plane deformation mode.

As a result, the instabilities of the different pyramids are in fact coupled.

In Section 2.1 we discussed that the dimensionless width of the Morse potential δ can

be interpreted as a fracture strain. If δ is increasingly reduced, the Morse bonds between

neighboring particles fracture at progressively smaller strains, i.e., the particles escape the

influence of their neighbors’ Morse potential at values of r closer to re. Thus, for a value

of δ much lower than the critical value δc the shell becomes brittle and instead of a single

instability we encounter a complex sequence of discontinuities in the asphericity versus FvK

number plot.

To obtain the ground state energy of the shells, we minimize the energy of Equation. 2.1

using the Limited Memory-BFGS algorithm [ZBL97]. This is a steepest-gradient minimiza-

tion method with line search to solve for particle positions at every FvK number. The

triangular network and the associated C1 surface are updated as particles move to new po-

sitions. The dimensionless potential width, δ, and the dimensionless FvK number, γ, —

estimated from the Young’s Modulus of the flat hexagonal lattice — are the only two free

parameters. In our calculations, energies and forces have been non-dimensionalized with re-

spect to the parameters of Morse potential — energies have been non-dimensionalized with

respect to VM , and forces have been non-dimensionalized with respect to VM/re. For a given

N , we always started from isometric Caspar-Klug shells with an FvK number of 105. We

then reduced the FvK number to 1 in 2000 log-scaled steps. Finally, γ was increased back

to its initial value using the same steps.

2.4.1 N = 72

The first shell was constructed from N = 72 particles. The isometric starting structure was

one of the two isomers of the chiral T = 7 icosahedral shell (Figure. 1.6) with 72 particles

located at the centers of 12 pentamers and 60 hexamers. Figure. 2.7 shows the dependence

of the asphericity α on the FvK Number γ for δ = 0.09.
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Figure 2.7: Asphericity α = <(R−R0)2>

R2
0

versus FvK number γ for N = 72 particles. The

arrows indicate the direction of change of γ. Blue line: icosahedral symmetry. Orange line:

D3 symmetry. The dimensionless width of the Morse potential is δ = 0.09.

The icosahedral symmetry of the initial structure was maintained down to γ ' 36.4.

At γ ' 36.4 we encountered an abrupt increase in the asphericity while the symmetry

changed from icosahedral to D3 (with a single 3-fold axis and 3 two-fold axes perpendicular

to the 3-fold axis). The D3 symmetry persisted down to γ ' 2.6 where it reverted back to

icosahedral. The energy differences between competing icosahedral and D3 structures was

of the order of 0.1 VM , which was still significantly larger than our numerical error. When

the FvK number was increased from 1 to 105 in 2000 log-scaled steps, the shell maintained

icosahedral symmetry till γ ' 6.3 where it changed to D3. D3 symmetry was maintained

till γ ' 73.6 when the shell reverted back to icosahedral symmetry. Icosahedral symmetry

was then maintained for larger FvK numbers. Similar but smaller transitions were observed

for δ = 0.10.1 The pattern of the inter-particle forces is shown in Figure 2.8 together with

1We chose to analyze the results obtained for δ = 0.09 as the jumps in asphericity are larger than for the
δ = 0.10 case and the changes in bond stress patterns are easier to observe in Figure. 2.8. This was done as
well for N = 132 and N = 192.
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the shape of the shell for N = 72. The particles are located at the vertices of the triangular

(a) (b)

(c) (d)

Figure 2.8: Shell shapes and inter-particle forces for N = 72, δ = 0.09, and different FvK

Number γ. Bonds shown in blue are under compression. Bonds shown in red are under

tension. Bonds shown as green are under little or no stress. The C1 surfaces spanned by

the particles are shown in gray. The black markers indicate axis of symmetry. A pentagonal

marker indicates a five-fold axis and a triangular marker denotes a three-fold axis.

network of bonds. The C1 surface generated by the triangular network is shown in gray

below the network. Note that the surface does not exactly interpolate between the particle

locations since the Loop shell subdivision method used in this analysis is an approximating

— not an interpolating — scheme. Inter-particle force levels are shown on a scale of −3.85

(tension) to +3.85 (compression) in units of VM/re, which has been set to one. The lower

limit of the tension level (−3.85) corresponds to the bond fracture limit. Figure 2.8 (a)

and 2.8 (b) show two shells with icosahedral symmetry. The first is for large FvK numbers

when the force levels are nearly zero, as expected for an isometric shell. The rounding of

the C1 surface at the 5-fold sites is due to the relative coarseness of a 72 node finite-element

mesh. The FvK number of the shell in Figure 2.8 (b) is just above the instability point

at γ ' 36. The elastic stress is focused at the twelve pentagonal pyramids, as expected
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from continuum theory. Note that the pyramids are connected by stress-free bonds (green)

so the stress pattern breaks up into twelve groups that are not exposed to external stress.

This is what motivated the discussion of single pentagonal pyramids in Section 2.3. As

in Section 2.3, the bonds along the perimeter of the pyramids are under tension while the

bonds linking the central particle are under compression. The perimeter bonds are in fact

practically at the fracture threshold of −3.85. This suggests that the instability of the T = 7

icosahedral state is in essence the soft-mode instability of Section 2.3. Figure 2.8 (c) and 2.8

(d) show two views of the shell with D3 symmetry at γ ' 36, just below the instability point.

Figure 2.8 (c) shows the shell along the single 3-fold axis and Figure 2.8 (d) shows the shell

along the direction of the 5-fold axis of the former icosahedral structure. The new stress

pattern is more uniform than that of the icosahedral shell: only two of the five bonds along

the base of the deformed pyramids remain close to the fracture threshold. Between γ ' 36

and γ ' 74 icosahedral and D3 states are both locally stable, which causes the hysteresis

shown in Figure 2.7.

2.4.2 N = 122

The numerical studies of particle models restricted to spherical surfaces reported that struc-

tural instabilities become more noticeable with increasing shell radius [BGR03]. Figure 2.9

shows the dependence of the shape of a N = 122 shell as a function of γ, starting from a

T = 12 CK icosahedral shell and with δ = 0.10.

Though the N = 122 shell is a larger shell, we did not encounter structural instability.

Figure 2.9 is consistent with continuum model [LMN03] except that the location of the

buckling transition is about half smaller while the maximum amount of asphericity is about

one third smaller. A change in the location of the buckling transition to larger or smaller

γ values has been observed also for other discrete models [MRB10]. The reduction in value

of asphericity is related to the rounding generated by the construction method for the C1

surface with a small number of particles. The inset of Figure 2.9 shows the stress pattern

at low FvK numbers. Note that the stress pattern is achiral, as expected for a T = 12
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Figure 2.9: Asphericity α = <(R−R0)2>

R2
0

versus FvK number for N = 122 particles with

δ = 0.10. The inset shows the achiral bond pattern at a low FvK number viewed along

a five-fold axis. In contrast to chiral shells (e.g., N = 72, 132, and 192), no instability is

observed for N = 122 with δ = 0.10.

shell. There is another distinct difference with the N = 72 stress pattern. The blue bonds

radiating out from the 5-fold symmetry sites form a connected network that appears to be

held in place by the overstretched red bonds along the base of the pyramids. The overall

impression is that the shell is only barely stable. Indeed, when the dimensionless well width

δ is reduced below 0.09 the N = 122 shell develops instability at low FvK numbers.

2.4.3 N = 132

Further increasing the number of particles, we considered next the case of N = 132 particles

distributed on a T = 13 CK icosahedral shell. In this case we observe a discontinuity at

γ ' 71 for decreasing FvK numbers and at γ ' 124 for increasing FvK numbers (Figure 2.10).

There is an instability as well for δ = 0.10 but the jump in asphericity has again a lower

magnitude. Shell shapes and inter-particle forces for N = 132 are shown in Figure 2.11. The
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Figure 2.10: Asphericity versus versus FvK number γ for N = 132 with δ = 0.09.

top row of Figure 2.11 shows two shells with icosahedral symmetry. The bond lengths in

Figure 2.11 (a) with γ = 105 are — as expected — nearly at their equilibrium value. Note

that the shell shape is now a closer approximation to an icosahedron than the corresponding

case for N = 72. That is because a larger number of particles are used to generate the

surface. The shell in Figure 2.11 (b) is poised near the instability at γ ' 71. The stress

pattern of the twelve pyramids is similar to that of the N = 72 shell with the edge bonds of

the pyramids at their fracture threshold. However, the pyramids are now linked by a network

of (weakly) stressed bonds. The bottom row of Figure 2.11 shows the non-icosahedral shell

just below the transition. It has tetrahedral symmetry with four three-fold symmetry axes.

Figure 2.11 (c) shows a view along one of the three-fold axes while Figure 2.11 (d) shows

a view along a former 5-fold symmetry axis. Note the relaxation of the edge bonds of the

pyramids. The pattern of relaxed bonds of the distorted pyramid is different from that of the

D3 state for N = 72. If the FvK number is increased starting from γ = 1, then icosahedral

symmetry is restored at γ ' 124. Similar transitions between icosahedral and tetrahedral

symmetries at low FvK numbers are observed for δ = 0.10.
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(a) (b)

(c) (d)

Figure 2.11: Shell shapes and inter-particle forces for N = 132 and δ = 0.09. Unlike N = 72

case, for N = 132 we see transitions to tetrahedral shapes instead of D3. The arrows in

sub-figure (c) mark the remaining three-fold axis of tetrahedral symmetry, which are not

visible when viewed along the three-fold axis marked with the black triangle.

2.4.4 N = 192

Continuing to increase the number of particles, at N = 192 we encounter an intricate se-

quence of instabilities. Figure 2.12 shows the corresponding asphericity plot, which presents

noticeable discontinuities near γ ' 69 for decreasing FvK numbers and near γ ' 131 for

increasing FvK numbers. The top row of Figure 2.13 shows icosahedral shells for large γ

and for γ ' 69, i.e., just before the instability. At γ ' 69, the pentagonal pyramids are

once again isolated stress units but now they are composed of two rings of bonds stretched

to the fracture threshold. The bottom row in Figure 2.13 shows that just below the γ ' 69

instability, the shell has a D3 structure. Strangely, when the FvK number was reduced fur-

ther, the D3 structure started to resemble the icosahedral structure just above the γ ' 69

instability. The D3 structure transforms to a tetrahedral structure at γ ' 3.5. The sequence
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Figure 2.12: Asphericity α versus FvK number γ for N = 192 and δ = 0.09. Instabilities

at low FvK number result in the formation of shell shapes with D3 as well as tetrahedral

symmetries.

reverses if γ is increased.

2.4.5 Effect of Chirality

At δ = 0.1, the N = 122 shell does not present a structural instability while the N = 72, 132,

and 192 shells show instabilities and discontinuities in the asphericity versus FvK plots. This

finding indicates that an additional factor contributes to determining structural stability

apart from the FvK number and the fracture strain δ. The N = 72, N = 132, and N = 192

shells have indeed an important feature in common — they are chiral — while N = 122 is

not. This suggests that achiral shells are more stable than chiral shells. To investigate this

aspect further we considered two additional achiral structures with N = 92 and N = 162.

Figure 2.14 and Figure 2.15 show the asphericity α versus FvK number γ plots for N = 92

and N = 162 shells obtained with δ = 0.10. For both cases, achiral Caspar-Klug structures

with T = 9 (for N = 92) and T = 16 (N = 162) are formed at γ = 105. This icosahedral
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(c) (d) (e)

Figure 2.13: Shell shapes and inter-particle forces for N = 192 and δ = 0.09. In this case,

we observe transitions to both D3 and tetrahedral states at low FvK numbers. Arrows in

sub-figure (e) mark the three-fold axis of tetrahedral symmetry that are not visible. Similar

structures are found for δ = 0.10 as well.

symmetry is maintained at all values of FvK number, as in the case of N = 122 at δ = 0.10.

Table 2.1 summarizes the critical delta values δc for chiral and achiral shells with different

number of particles. All the achiral structures have a lower, although only slightly, values of

δc.

2.5 Discussion

We have examined a simple model for protein shells assembled from disk-like components

held together by weak bonds. The model combines the bonding description of earlier par-

ticle models with the bending energy of continuum elasticity theory. We used the model

to evaluate the structural stability of icosahedral shells. For large FvK numbers the shells

always have a well-defined icosahedral ground state when the number of particles N equals
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Figure 2.14: Asphericity α = <(R−R0)2>

R2
0

versus FvK number for N = 92 particles with

δ = 0.10. The inset show the N = 92 achiral structure with icosahedral symmetry at

γ = 22.5. Icosahedral symmetry is stable for all values of γ at δ = 0.10.

Table 2.1: Values of δc for different particle numbers N to show the effect of chirality

Number of particles T number at γ = 105 Chirality δc

72 7 Chiral 0.10

92 9 Achiral 0.09

122 12 Achiral 0.09

132 13 Chiral 0.10

162 16 Achiral 0.09

192 19 Chiral 0.10

10T + 2. At large FvK numbers, the nearest-neighbor particle separations are mostly close

to the equilibrium spacing of the pair potential. As the FvK number is reduced, the shell

undergoes a buckling transition consistent with continuum model. However, when the di-

mensionless width of the potential well, or equivalently, the fracture strain, is reduced below
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Figure 2.15: Asphericity α = <(R−R0)2>

R2
0

versus FvK number for N = 162 particles with

δ = 0.10. Inset shows the N = 162 achiral structure with icosahedral symmetry at γ = 55.8.

At δ = 0.10 the structure maintains icosahedral symmetry for all γ values.

a critical value, then the structure of the ground state is marked by a sequence of structural

instabilities and symmetry changes in the region of the buckling transition. Chiral shells are

found to be more prone to this instability. The depth of the Morse potential well represents

the bonding strength between capsid proteins (5–7 kBT [CZ02]). The equilibrium separa-

tion of the potential corresponds to the diameter of a disk (' 10 nm) while the width of the

potential well corresponds to the typical range of the hydrophobic interaction in proteins

(0.4–1.0 nm [OPP14]). The estimated fracture strain of a surface composed of protein shells

is in the range 0.04−0.10 using these values. This is (just) below the critical fracture strain.

That means that large protein shells indeed should be expected to develop structural insta-

bility for FvK numbers below the buckling transition. However, large viral capsids [BOF99]

are observed to be stable. We conclude that the self-assembly of large, structurally stable

protein shell is possible only if the FvK number of the assembled shell is well above the buck-

ling threshold. The observation that large viral shells indeed are buckled [LMN03, BOF99]
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is consistent with this conclusion. Another piece of supporting evidence is that molecular

modeling studies of deformed viral shells [ARW09] indicate that viral capsids deformed by

more than ten percent are subject to rebonding, which means that bonds between capsid

protein have been overstretched. Rebonding is probably the origin of hysteresis observed in

AFM studies of viral shells [RBW10].

A number of caveats in our model should be noted. We treated the capsomers as identical

particles. In actuality, one should distinguish pentamers from hexamers. Fine-tuning of

the pair interaction by distinguishing hexamer-hexamer, hexamer-pentamer, and pentamer-

pentamer interaction is possible. It was found that this does stabilize icosahedral shells

on spherical surfaces [ZRB04]. However, fine-tuning barely stabilizes icosahedral shells for

N = 72 particles and we believe — but have not checked — that fine-tuning cannot stabilize

any larger icosahedral shells. Next, the energy differences between the icosahedral, D3, and

tetrahedral states are small. For example, for N = 72 at γ = 50.9 both icosahedral and

D3 structures co-exist (Figure 2.7). The energies of these two structures differ by 0.16 VM .

In the case of N = 132 at γ = 100.5 the difference between tetrahedral and icosahedral

co-existing structures (Figure 2.11) is 2.2 VM . In the case of N = 192 the difference between

D3 and icosahedral structures at γ = 100.5 (Figure 2.12) is 1.7 VM . These energy differences

are close to, or less than, the energy associated with thermal fluctuations. This means

that thermal fluctuations cannot be neglected and that free energy differences should be

computed instead of differences in elastic energy of these structures. We are in the process

of including thermal fluctuations in our studies of shells using particle models. Given the

quasi-degeneracy of the low-lying energy states it seems likely that for low FvK numbers,

shells might be in a liquid-like state when thermal fluctuations are included.

Finally, as mentioned, the molecular modeling calculations on deformed capsids indicate

a possibly important role for rebonding. The numerical method used in this paper did

not allow for rebonding: the topology of the network pattern of bonds introduced for the

large FvK isometric shells was maintained for smaller FvK numbers, though we did allow

changes in symmetry. In the next chapter, we will extend our numerical methods to include

rebonding, and a fully discrete model where the bending deformations are described using
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discrete angles between outward normals of adjacent capsomers.
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CHAPTER 3

Oriented Particles Shell Model

The continuum and the hybrid models discussed in Chapter 1 and Chapter 2 are both zero

temperature models. In the literature, there are examples of studies of thermal fluctuations

on shells [PKW16, GKH18, KN17, PVG12, PM98]. Paquay et al [PKW16] have reported

that an icosahedral packing on a rigid spherical surface is very susceptible to thermal fluc-

tuations. Pérez-Garrido et al [PM98] have simulated melting of particles on a rigid sphere

whereas Guerra et al [GKH18] investigate freezing on a sphere. All of these works assume

rigid surfaces. Paulose et al and Košmrlj et al [PVG12, KN17] have used a deformable shell

but their model is a continuum model and therefore works only for a large number of parti-

cles and the particles are assumed to be glued to the surface. This model cannot be used to

study melting as it does not allow bond-rearrangements. Further, they assume an amorphous

shell i.e. because of the large number of particles they neglect the effect of disclinations and

dislocations on the shell. Thus, the discrete model that we present in this chapter is unique

because it models a finite deformable shell which allows bond rearrangements.

In next sections we will introduce the model including the discrete bending potentials,

an estimate for a FvK number for this model and a variational form of Brownian dynamics

equation which we will use for numerical simulations. In Section 3.2.3 we will report the

results from numerical simulations.

3.1 The Discrete Model

The continuum and hybrid models have a predefined surface which is discretized to form

a finite element mesh. This poses a challenge for introducing thermal fluctuations because
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we will have to dynamically remesh the surface to accommodate bond-rearrangements. We

circumvent this problem by not using any surface. Instead, we will use a cloud of oriented

particles [ST92] which interact via special potentials that prefer to arrange the particles as a

surface instead of a cluster. Such a point cloud is called an oriented particle system (OPS).

Every oriented particle has six degrees of freedom — three positional degrees of freedom and

three orientational degrees of freedom. Instead of storing the orientations as a unit normal

in a global coordinate system, we will store these as rotation vectors which are products of

the angles and the axis vectors required to rotate the z axis of the global coordinate system

to the orientation of the particles. Figure 3.1 shows a typical OPS for our problem.

Figure 3.1: A typical oriented particle system that we investigate looks like a spherical point

cloud where each point has an associated orientation.

3.1.1 Oriented Particles System Potentials

The OPS potentials consist of two parts. The Morse potential is used to control average

spacing between the particles. The Co-normality and Co-circularity potentials arrange the

particles in the form of a surface rather than a 3D cluster. Thus, these two potentials serve
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as discrete bending potentials. The Morse potential is the same as in Chapter 2

φM = VM
∑
i 6=j

(
e−2a(|rij |−re) − 2e−a(|rij |−re)) (3.1)

The co-normality potential is

φN = K
∑
i 6=j
|ni − nj|2. (3.2)

It tries to align the orientations of two interacting particles such that they are either parallel

or anti-parallel. Figure 3.2 shows the effect of this potential. The co-circularity potential is

Figure 3.2: Co-normality potential has minimum energy when the orientations of the two

interacting particles are parallel or anti-parallel to each other. The solid arrows represent

the original orientations and the dashed arrow indicates the minimizing orientation.

defined as

φC = K
∑
i 6=j

(
(ni + nj) · rij
|rij|

)2

. (3.3)

This potential has a minimum energy when the components of the orientations of two in-

teracting particles along the direction joining the two particles are equal and opposite. Fig-

ure 3.3 shows the effect of co-circularity potential on orientation of a neighboring particle.

Therefore, the total potential energy of a cloud of oriented particles is

E = φM + φN + φC (3.4)

For numerical simulations, we also need to calculate derivatives of these potentials with

respect to r(n+1) and the rotation vectors associated with the particles. These calculations

have been shown in Appendix A.
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6

Figure 3.3: Co-circularity potential has minimum energy when the orientations are mirror

images of each other. The solid lines denote the original orientations and the dashed line

denotes the minimizing orientation.

3.1.2 The Brownian Dynamics Equations

We want to include temperature effects through Brownian motion. On the lines of Ermak-

McCammon [EM78] formulation, we can write Brownian dynamics force balance as

∂E

∂rn+1
i

+
kBT

Dr

r
(n+1)
i − r

(n)
i

∆t
− kBT

√
2

Dr∆t
ξri = 0, (3.5)

∂E

∂nn+1
i

+
����������kBT

Dn

n
(n+1)
i − n

(n)
i

∆t
−

���������
kBT

√
2

Dn∆t
ξni = 0 (3.6)

where Dr and Dn are the diffusion coefficients for position degrees of freedom ri and ori-

entation degrees of freedom ni respectively. ξ’s are random vectors whose components are

drawn from a normal distribution with mean 0 and standard deviation 1. In our model we

assume that Dn >> Dr and Dn → ∞. We can make this assumption because the position

degrees of freedom form part of conservation of mass through∫
ρ (r− ri) dV = N (3.7)

where N is number of particles. Hence, particles cannot ‘teleport’ from one location to

another without passing through all intermediate position values. This makes changes in

position degrees of freedom slower than the orientation degrees of freedom. This helps us

get rid of the last two terms in the force balance for orientation degrees of freedom. Thus

the rate of diffusion for position degrees of freedom is much slower than that for orientation

degrees of freedom.

It is important to note that the Equation 3.6 is not mathematically correct because ni
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and nj are unit normals and the solutions of Equation 3.6 are not guaranteed to be unit

normals. One can add constraint force equations for each orientation in the system that the

sum of their components adds up to unity. But this increases the computational complexity

by a lot. Hence, we store the orientational information as rotation vectors which map the

z-direction of the global coordinate system to the orientations. Rotation vectors do not

require any constraints.

3.1.3 Variational Formulation

We will reformulate Equations 3.5 and 3.6 as a minimization problem. This will enable us

to use the Limited memory BFGS [ZBL97] algorithm that we used for solving the hybrid

model. We do this because the computer program for this solver is already available to us

from our previous work. So will construct a functional whose Euler-Lagrange equations will

give us Equation 3.5 and Equation 3.6.

Consider

I ′[r(n+1),n(n+1)] = VM
∑
i 6=j

(
e−2a(|rij |−re) − 2e−a(|rij |−re))

+K
∑
i 6=j
|ni − nj|2+K

∑
i 6=j

(
(ni + nj) · rij

|rij|

)2

+

(
kBT

Dr∆t

) (
r(n+1) − r(n)

)2

2
− kBT

√
2

Dr∆t
ξr ·

(
r(n+1) − r(n)

)
.

(3.8)

where the superscripts (n + 1) and (n) denote time-steps. The diffusion coefficient Dr is a

function of temperature as

Dr = µ kB T (3.9)

where µ is a temperature independent “mobility”. Using this equation we can rearrange the
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functional into following form

I ′[r(n+1),n(n+1)] = VM
∑
i 6=j

(
e−2a(|rij |−re) − 2e−a(|rij |−re))

+K
∑
i 6=j
|ni − nj|2+K

∑
i 6=j

(
(ni + nj) · rij

|rij|

)2

+

(
1

µ∆t

) (
r(n+1) − r(n)

)2

2
−
√

2kBT

µ∆t
ξr ·

(
r(n+1) − r(n)

)
.

(3.10)

Let us use the following substitutions,

α =
r2
e

VM

1

µ∆t
,

β =
VM
kBT

,

γ =
4a2R2VM√

3K
.

(3.11)

R is the zero temperature radius of the shell. Equation for the FvK number γ will be derived

in Section 3.1.5. β is a non-dimensional measure of temperature expressed relative to the

Morse potential equilibrium energy. α controls the viscosity and size of the time step. In

Section 3.1.6 we will see how to choose the parameters α and β for our analysis. Now we

can write

I ′[r(n+1),n(n+1)] = VM
∑
i 6=j

(
e−2a(|rij |−re) − 2e−a(|rij |−re))

+
4a2R2

√
3

VM
γ

(∑
i 6=j
|ni − nj|2+

∑
i 6=j

(
(ni + nj) · rij

|rij|

)2
)

+
αVM
r2
e

(
r(n+1) − r(n)

)2

2
− VM

re

√
2α

β
ξ̂r ·

(
r(n+1) − r(n)

)
.

(3.12)

We can divide the above equation throughout by VM to get a non-dimensional equation as
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follows:

I[r(n+1),n(n+1)] =
∑
i 6=j

(
e−2a(|rij |−re) − 2e−a(|rij |−re))

+
4a2R2

√
3γ

(∑
i 6=j
|ni − nj|2+

∑
i 6=j

(
(ni + nj) · rij

|rij|

)2
)

+
α

r2
e

(
r(n+1) − r(n)

)2

2
− 1

re

√
2α

β
ξ̂r ·

(
r(n+1) − r(n)

)
.

(3.13)

When we evolve the OPS shell in time, there are rigid body motions due to thermal

fluctuations. We compensate for the rigid body translations by subtracting the mean of all

particle positions from each particle position at every time step. We get rid of the rigid

rotations using Kabsch algorithm [Kab76].

3.1.4 Area Constraint

If we try to minimize Equation 3.13 as it is and evolve the system in time, we will find

that on heating the particles diffuse away from each other and the shell evaporates. This

is unphysical for a viral shell. Further, the proteins that form the shell of a virus do not

stretch much. Hence, it is fair to assume that the total surface area of the shell is fixed. We

will apply the area constraint using Augmented-Lagrangian (AL) technique.

Our optimization problem from Equation 3.13 is

min
r(n+1),n(n+1)

I[r(n+1),n(n+1)]

subject to A
(
r(n+1)

)
− A0 = 0

where A0 is the zero-temperature area and A
(
r(n+1)

)
is the area after n+ 1 time steps. We

can convert this problem into an unconstrained minimization problem by adding a Lagrange

multiplier term and an augmenting penalty term as follows

F [r(n+1),n(n+1)] = I[r(n+1),n(n+1)] +
k(n+1)

2

(
A(n+1) − A0

)2 − λ(n+1)
(
A(n+1) − A0

)
(3.14)

where k(n+1) is a spring constant of the penalty term at time step n + 1 and λ(n+1) is an

41



estimate of the Lagrange multiplier. The algorithm of AL method that we use at each time

step in our numerical simulations is as follows:

1. Set k(n+1) = 1000.0 and λ(n+1) = 10.0.

2. Find r(n+1),n(n+1) = argmin F [r(n+1),n(n+1)]

3. While
(
A(n+1) − A0

)
> 10−8, repeat

(a) λ(n+1) ← λ(n+1) − k(n+1)
(
A(n+1) − A0

)
(b) k(n+1) ← 10× k(n+1)

(c) Find r(n+1),n(n+1) = argmin F [r(n+1),n(n+1)]

At the end of this procedure the area constraint is satisfied to a desired tolerance. The

advantage of Augmented Lagrangian method over penalty method is that k(n+1) does not

need to go to infinity and thus ill-conditioning is avoided. The advantage of Augmented

Lagrangian method over method of Lagrange multipliers is that we do not introduce an

extra degree of freedom in our system because the Augmented Lagrangian parameters k and

λ are solved for iteratively in an external loop.

3.1.5 FvK number of OPS Potentials

The FvK number is an important parameter of our problem. We need to find an expression

for FvK number for the OPS potentials. We need to find an effective bending modulus for

the co-normality and co-circularity potential. We will do this by comparing the bending

energies of a flat plate of hexagonal lattice with that of the same plate rolled into a cylinder.

Let’s consider a flat plate of particles arranged on a triangular lattice interacting via

Morse potential with equilibrium spacing re. Figure 3.4 shows a lattice with W = 20 bonds

along the horizontal direction. We will call the vertical dimension of this strip as H = 1

unit. We can construct longer cylinders by combining multiple such strips along the vertical

direction of the plate. As the point normals are pointing radially outwards, co-circularity
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Figure 3.4: This figure shows formation of a bucky tube from a flat plate with triangular

lattice. There are two types of bonds in the tube – circumferential and transverse.

potential

φC = K
∑
i 6=j

(
(ni + nj) · rij
|rij|

)2

= 0.

Since the lattice spacing of the plate and the tube are equal the Morse potential energies

of both the structures are equal. Thus, the only difference in the energies of these two

structures is due to the co-normality potential

φN = K
∑
i 6=j
|ni − nj|2

There are two types of bonds in the tube as shown in Figure 3.4 – transverse bonds and

circumferential bonds. For a circumferential bond we can show that

|n1 − n2|2= 2

(
1− cos

(
2π

W

))
For a transverse bond, we have

|n1 − n2|2= 2
(

1− cos
( π
W

))
The number of transverse bonds in the tube is W (H + 1). The number of circumferential
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bonds is 2WH. Thus, the total co-normality energy is

(3.15)φN = 2KW

[
3H + 1− 2H cos

( π
W

)
− (H + 1) cos

(
2π

W

)]
.

Bending energy of a cylinder with length L is (κπL)/R. Comparing this with the equation

for φN above, using L = H
√

3/2, and R = W/2π we get

(3.16)κ =
2K√
3H

W 2

π2

[
3H + 1− 2H cos

( π
W

)
− (H + 1) cos

(
2π

W

)]
Assuming small angles, we can use Taylor’s series expansion

cos(x) = 1− x2

2
+ . . .

to simplify the above equation to

κ = K
6H + 4√

3H
(3.17)

From this, we conclude that κ and K differ only by a factor for the case of a cylinder. For

our calculations on a sphere, for simplicity, we will assume K ≈ κ. The two-dimensional

Young’s modulus for Morse potential is

Y2D =
4a2VM√

3
(3.18)

Therefore, the Föppl von Kármán number can be written as

γ =
Y2DR

2

κ
=

4a2VMR
2

√
3K

(3.19)

3.1.6 Choosing Parameters α and β

We can calculate the diffusion coefficient in terms of α and β as

Dr =
r2
e

αβ∆t
.

The diffusion coefficient can also be obtained from slope of a 〈r2〉 versus time plot.

Dr =
〈r2〉2 − 〈r2〉1

t2 − t1
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where 〈r2〉 is the mean squared displacement of particles of the shell and t is simulation time.

Assuming that

〈r2〉2 − 〈r2〉1 = p2 r2
e where p is O(1) and

t2 − t1 = ∆tN

where ∆t is simulation time-step size and N is the number of time steps we can write

α =
N

βp2

As an example, if we are interested in the range of β from 1 to 10, if we use N = 105

time-steps and p = 2 then we should set α in the range 2.5× 104 to 2.5× 103.

3.2 Thermal Response of Finite Deformable Shells

In this section, we discuss two different effects of heating on the shell as a function of the

FvK number. At FvK numbers below the zero temperature buckling transition heating the

shell causes it to melt. At higher FvK numbers heating causes the shell to crumple.

3.2.1 Melting

To identify the melting temperature of the shell, we calculate relative neighbor-neighbor

displacement [BGL85] of every particle at every time step. Then we calculate a mean squared

displacement (MSD) for the entire shell for the current time step. We can plot MSD versus

time for different temperatures at the same FvK number. For a molten shell, MSD will

go on increasing linearly as a function of time. Of course, for very large times MSD will

saturate because the shell has a limited surface area and two particles that were initially

nearest neighbors can be separated by diameter of the shell at maximum. Figure 3.5 shows

a MSD versus time plot for γ = 0.1 and various values of β. We can calculate the slope of

MSD vs time plot for each temperature. Physically, the slope gives the diffusion coefficient.

For a molten structure diffusion coefficient increases linearly with temperature. By finding

the temperature at which the diffusion coefficient versus temperature line intersects the
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Figure 3.5: Mean squared displacement as a function of time for γ = 25.46 for various

temperatures for a T = 7 structure. The dash-dot line marks the Lindemann criterion of

0.12 [BGL85] for a Lennard-Jones crystal. For very low temperatures the MSD fluctuates

about a mean value for all times. For molten structures, the MSD rises quickly, crosses the

Lindemann criterion mark and eventually saturates

temperature axis we can determine the melting temperature. Figure 3.6 shows a sample plot

for γ = 25.46 for T = 7 structure.

Visualizations of the oriented partciles on a shell at a low FvK number but a temperature

above the corresponding melting temperature have been shown in Figure 3.7. In subfigure

(a), the particles at time step 1 have been shown. This structure has its icosahedral symmetry

almost intact as the particles have not diffused very far from their initial positions. In

subfigure (b), the particles have diffused far from their original positions and the icosahedral

symmetry is visibly lost.
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Figure 3.6: Diffusion coefficients have been plotted as a function of temperatures for γ =

25.46. After the melting, diffusion coefficients rise linearly with temperature. The magenta

line is obtained by fitting a straight line through the scatter plot excluding the values which

are almost zero.

3.2.2 Roughening

Paulose et al [PVG12] and Košmrlj et al [KN17] have reported on statistical mechanics of

thin solid shells. They report that thermal fluctuations increase the effective bending rigidity

of the shell and decrease their effective 2D Young’s modulus. They also generate an effective

external pressure on the shell. One of their results that is relevant for us is

Rmax ≈ 160
κ0

kBT

√
κ0

Y0

(3.20)
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(a) t = 1 (b) t = 2000000

Figure 3.7: Visualization of oriented particles for γ = 10.18 and 1/β = 1.995 at different

time steps t. As time progresses the particles flow past each other and the positional order

is lost.

where κ0 and Y0 are zero temperature bending and 2D Young’s modulus and Rmax is the

largest shell which is stable against crumpling by the effective external pressure due to

temperature T . We performed numerical simulations only for the same shell at different

temperatures. Therefore, we can invert Equation 3.20 to write the temperature at which we

can expect a shell of a given radius to buckle due to pressure as

1

β
≈ 640√

3
a2R2γ−3/2 (3.21)

To determine the temperature at which crumpling begins for a particular FvK number,

we look at the volume of the shell as a function of time. For a solid structure the volume

fluctuates about a mean value whereas for a crumpled structure the slope of volume versus

time plot becomes negative. Figure 3.8 shows the volume vs temperature plots for various

temperatures at FvK number 2541.1.

Visualizations of shell at a high FvK number have been shown in Figure 3.9. Initially, the

structure resembles the zero temperature form. But as time progresses due to the effective

thermal pressure, the surface becomes crumpled.
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Figure 3.8: The volume of the shell as a function of time has a negative slope at temperatures

above the crumpling temperature. The plots for γ = 2541.1 for increasing temperatures has

been shown.

In next section we present the thermal response of T = 7 Caspar-Klug shell that has 72

particles as a function of FvK number for fixed α.

3.2.3 Phase Diagram

We heated up a N = 72 Caspar-Klug shell for 2 × 106 time steps for various combinations

of γ and 1/β values. We determined the melting temperatures for γ values below the

buckling transition. For γ values above the buckling transition we determined the crumpling

temperature as per the discussion in Section 3.2.2. The results have been summarized in a

phase diagram shown in Figure 3.10. The key observations are as follows.
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(a) t = 1 (b) t = 2000000

Figure 3.9: Visualization of oriented particles for γ = 101344 and 1/β = 0.079 at different

time steps t. As time progresses, the shell crumples. The edges have been shown only to

highlight the crumpled structure.

1. Melting temperature decreases with increase in FvK number. Shells with higher FvK

number have lower resistance to bending out of plane. The out-of-plane deformations

aid melting.

2. Melting can be reliably detected only for FvK numbers lower than the buckling tran-

sition. For these structures, volume of the shell fluctuates about a steady state value

even after long time. For FvK numbers larger than the buckling transition, increasing

temperature causes a decrease in volume of the shell due to generation of effective

thermal pressure [PVG12, KN17]. This leads the shell to become crumpled and the

particles can no longer flow on the surface which prevents melting.

3. The melting behavior smoothly transitions into a crumpling behavior as we increase

the FvK number across the buckling transition.

4. The theoretical prediction for crumpling temperature given by Equation 3.21 are much

higher than the temperatures obtained in our simulations. This is because Equa-

tion 3.21 is applicable for a continuum model of a shell and requires a large number of
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particles. There is mismatch because finite size effects are substantial.
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Figure 3.10: Thermal response of Caspar-Klug shell with N = 72 particles has been shown

as a function of FvK number. The vertical dashed line marks the zero temperature buckling

transition. For FvK numbers below the buckling transition the structure undergoes melting

when heated. But for FvK numbers higher than the buckling transition, heating results

into an effective external pressure which crumples the shell and thus precludes melting. Blue

dots mark the melting temperatures. Orange dots indicate the onset of crumpling. Blue dots

mark the melting temperatures. Orange dots indicate the onset of crumpling. Green line

is a linear fit across the melting and crumpling points indicating that the two phenomenon

have same slope on a semi-log plot. The red curve is a plot of Equation 3.21. The colored

regions represent the three parts of the phase diagram where the structure is either in a solid

phase or in a crumpled phase or in a molten phase.
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CHAPTER 4

Conclusion and Future Work

4.1 Conclusion

We have explored the effect of discreteness on thermal and mechanical response of closed

deformable shells made up of a small number of particles. Starting with the continuum

elasticity model we introduced discreteness in two steps. In the first step we replaced the in-

plane stretching energy with Morse potentials while retaining the Helfrich energy as it is. In

the second step we replaced even the Helfrich bending energy with special oriented-particle

potentials. Using the hybrid model we found that shells with icosahedral symmetry are stable

only at large FvK numbers. For lower FvK numbers, for a narrow Morse potential, there is

co-existence of structures with different symmetries but comparable energies. The difference

in energies of these structures is of the order of energy of thermal fluctuations. Although the

hybrid model predicts instability of icosahedral symmetry at low FvK numbers, experiments

show the presence of spherical shells in viruses. Spherical shells imply low FvK numbers and

icosahedral symmetry. So there may be additional mechanisms which provide stability for

the icosahedral structure at low FvK numbers.

The fully discrete model showed that the buckling transition has a great significance even

at finite temperature. It controls the thermal response of the shell. At low FvK numbers

we can melt the shell by heating. But at high FvK numbers the shell crumples into a 3D

cluster instead of melting due to generation of an effective external pressure.
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4.2 Future Work

The phase diagram 3.10 shows considerable deviation of the theoretical crumpling tempera-

ture and the crumpling temperature observed in the simulations. The theoretical prediction

is based on the work of Košmrlj et al [KN17] and it uses a continuum model. We hypothe-

sized in Section 3.2.3 that finite size effects are responsible for the discrepancy. To test this

hypothesis, we can repeat the simulations of Chapter 3 for increasing number of particles

and observe whether the crumpling curve approaches the theoretical prediction in the phase

diagram.

Atomic force microscopy is used to image microscopic structures and record their me-

chanical response. Many studies have reported on the use of this technique to investigate the

material properties of viral capsids [ZHD17, CR13]. Certainly, the mechanical response of

the viral capsids depends a lot on the nanoscale structural details of its constituent proteins

and membranes. Nevertheless, coarse-grained models have been successfully used to explain

some of the observed mechanical response of viral shells [KBM06]. It is known that viral

capsids can have different behavior under different loading regimes. Under sufficiently high

loads the shells can undergo plastic deformation. Sometimes, when the indenting force is

removed, the shells gradually recover either partially or fully over a finite relaxation time.

Thus they may have a viscoelastic behavior. Thermal fluctuations play a key role in this

phenomenon. The discrete model includes viscosity. Therefore, studying the indentation

behavior of capsids with this model is one natural extension of the current work.
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APPENDIX A

Derivatives of OPS Potentials

Figure A.1: Two oriented particles A and B having position vectors ~x and ~y, respectively,

with respect to origin O. Their orientations are unit vectors p̂ and q̂, respectively.

Consider two oriented particles A and B as shown in Figure A.1. Their position vectors

are ~x and ~y respectively. Their orientations are represented by unit vectors p̂ and q̂, respec-

tively. The orientations unit vectors are themselves functions of rotation vectors ~u and ~v

respectively. Let

~r = ~y − ~x

r = ||~r||

r̂ =
~r

r

The energy of oriented particle systems (OPS) is calculated as

E = φM(r) +
K

VM
(φN(p̂, q̂) + φP (p̂, q̂, r̂) + φC(p̂, q̂, r̂) ) . (A.1)
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φM is the Morse potential with parameters a and re

φM = e−2a(r−re) − 2e−a(r−re). (A.2)

The co-circularity potential, φP , is

φP =

(
p̂ · r̂
r

)2

. (A.3)

The co-normality potential, φN , is

φN = ||p̂− q̂||2. (A.4)

The co-circularity potential, φC , is

φC =

(
(p̂ + q̂) · r̂

r

)2

. (A.5)

A.1 Derivatives of Morse Potential

Taking derivatives of equation A.2 with respect to xj and yj we get

∂φM
∂xj

= −2arj
r

(
e−a(r−re) − e−2a(r−re)) (A.6)

∂φM
∂yj

=
2arj
r

(
e−a(r−re) − e−2a(r−re)) . (A.7)

A.2 Derivatives of Orientations

The orientations p̂ and q̂ can be obtained by rotating the global z-axis êz by rotation vectors

~u and ~v respectively. Let ui and vi (with i = 0, 1, 2) represent components of the rotation

vector and

u = ||~u||

v = ||~v||.

The angle of rotations are then given by

α =
u

2

β =
v

2
.

55



The components of p̂ are

p0 =
2 sinα

u2
(u1u cosα + u0u2 sinα) (A.8)

p1 =
2 sinα

u2
(−u0u cosα + u1u2 sinα) (A.9)

p2 = cos2 α +
sin2 α

u2

(
u2

2 − u2
1 − u2

0

)
. (A.10)

While calculating derivatives of p̂ and q̂ with respect to components of ~u and ~v, care must

be taken that α and β are also functions of the components of ~u and ~v, respectively.

Let’s denote the derivatives of components of orientations with respect to components of

rotation vectors as

Mij =
∂pj
∂ui

(A.11)

Nij =
∂qj
∂vi

, (A.12)

where i, j = 0, 1, 2. The quaternion representing the z-axis is

Z = (0, 0, 0, 1)

The quaternion representing the rotation by rotation vector p̂ is

Q = (q0, q1, q2, q3)

=
(

cosα,
u0

u
sinα,

u1

u
sinα,

u2

u
sinα

)
The relationship between p̂, Q and Z is

p̂ = Q ∗ Z ∗QT

where ∗ represents Hamilton product. We can calculate Mij as

Mij =
∂pj
∂Qa

∂Qa

∂ui

where a = 0, 1, 2, 3 and i, j = 1, 2, 3. Let

Aaj =
∂pj
∂Qa

Bia =
∂Qa

∂ui

56



where A is a 4× 3 matrix and B is a 3× 4 matrix. Therefore,

Mij = BiaAaj

It can be shown that

Aaj =
∂pj
∂Qa

= 2×


q2 −q1 q0

q3 −q0 −q1

q0 q3 −q2

q1 q2 q3

 (A.13)

Now let’s look at how to calculate ∂Qa
∂ui

. First we will differentiate only Q0. This will give us

the first column of the 3× 4 matrix ∂Qa
∂ui

.

Bi0 =
∂Q0

∂ui
= −sinα

2u
ui (A.14)

The remaining three components of Qa give us the remaining 3 columns,

Bij =
∂Qj

∂ui
=

sinα

u
δij +

(
cosα

2u2
− sinα

u3

)
uiuj (A.15)

This equation will give a 3× 3 matrix. We will stack this matrix to the right of the column

vector obtained from ∂Q0

∂ui
to get the full 3× 4 matrix.

A.3 Derivatives of Co-Planarity Potential

The co-planarity potential (equation A.3) can be written in index notation as

φp =
(piri
r

)2

, (A.16)

where ri = yi − xi. Differentiating with respect to xj and yj, we get

∂φP
∂xj

=
2piri
r4

(
(piri) rj − r2pj

)
(A.17)

∂φP
∂yj

=
2piri
r4

(
r2pj − (piri) rj

)
(A.18)

For derivatives with respect to uj, we can use chain rule as

∂φP
∂ui

=
∂φP
∂pk

∂pk
∂ui

=
2pjrj
r2

Mikrk (A.19)
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A.4 Derivatives of Co-Normality Potential

We can write the co-normality potential (equation A.4) as

φN = pipi + qiqi − 2piqi,

where i = 0, 1, 2 and summation is implied over repeated indices. Therefore, differentiating

with respect to pj and qj gives,

∂φN
∂pj

= 2 (pj − qj) (A.20)

∂φN
∂qj

= −2 (pj − qj) (A.21)

Therefore, derivatives of φN with respect to ui and vi are

∂φN
∂ui

=
∂φN
∂pj

∂pj
∂ui

(A.22)

∂φN
∂vi

=
∂φN
∂qj

∂qj
∂vi

(A.23)

If we let mj = pj − qj then we can write the above equations concisely as,

∂φN
∂ui

= 2Mijmj (A.24)

∂φN
∂vi

= −2Nijmj (A.25)

A.5 Derivatives of Co-circularity Potential

If we let

ni = pi + qi

ri = yi − xi,

then we can write the co-circularity potential (equation A.5) as

φc =
(niri
r

)2
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Differentiating with respect to xj and yj, we get

∂φC
∂xj

=
2niri
r4

(
(niri) rj − r2nj

)
(A.26)

∂φC
∂yj

=
2niri
r4

(
r2nj − (niri) rj

)
(A.27)

To differentiate φC with respect to pk and qk we can write it as

φC =

(
(pi + qi) ri

r

)2

Therefore, we get

∂φC
∂pk

=
∂φC
∂qk

=
2niri
r2

rk (A.28)

We can use chain rule to differentiate φC with respect to ui and vi.

∂φC
∂ui

=
∂φC
∂pk

∂pk
∂ui

=
2njrj
r2

Mikrk (A.29)

∂φC
∂vi

=
∂φC
∂qk

∂qk
∂vi

=
2njrj
r2

Nikrk (A.30)

A.6 Derivatives of Total Energy

The most crucial part of the code implementation is to calculate the matrices Mij and Nij

carefully.

∂E

∂xj
=
∂φM
∂xj

+
K

VM

∂φC
∂xj

(A.31)

∂E

∂yj
= − ∂E

∂xj
(A.32)

∂E

∂uj
=

K

VM

(
∂φN
∂uj

+
∂φC
∂uj

)
(A.33)

∂E

∂vj
=

K

VM

(
∂φN
∂vj

+
∂φC
∂vj

)
(A.34)
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APPENDIX B

Notes on Computer Implementation

B.1 Hybrid Model

The computer program used for simulations presented in Chapter 2 is part of voom pack-

age which is hosted at https://github.com/wsklug/voom. The package is written in

C++. The driver code is in the asphericityMorse.cc file located at https://github.

com/wsklug/voom/blob/master/src/Applications/Capsid/asphericityMorse.cc. Un-

derstanding the code requires familiarity with Finite Element Method. We will give a brief

overview of the code organization next.

The driver reads an input file containing the starting configuration of the hybrid model

shell from a .vtk file. This file contains information about point coordinates and their

connectivity to form a mesh. The Visualization Tool Kit library is used in voom to read

and write .vtk files. The code also reads a sequence of FvK numbers from a file named

fvkSteps.dat present in the same directory as the program. For every FvK number we

solve for the minimum energy configuration of the shell as obtained from an optimization

routine and write out the asphericity and other quantities worth monitoring to an output file.

The code also saves the particle positions for the minimum energy state in a .vtk file. The

input FvK numbers are arranged in increasing or decreasing order and the solution from the

previous FvK number is used as the initial guess for the solution at the next FvK number.

The code has provision to do some pre-processing on the input mesh. It rescales the mesh so

that each edge has unit length. It can optionally project the input points to a sphere. There

is also provision to relax the particle positions using harmonic springs to ensure that all edges

are of equal length. Option flags and input parameters are supplied through a miscellaneous
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input data file named miscInp.dat which should be present in the same directory as the

program executable. The code can also remesh the shell if after energy minimization any

of the triangles of the mesh have aspect ratio higher than an input tolerance value. The

remeshing is done by flipping edges among adjacent triangles. The tolerance limit for the

aspect ratio can be set using miscInp.dat input file.

The driver uses an object of Solver class to perform the optimization. In our case, we

will use a C++ wrapper to the LBFGS [ZBL97] solver available in voom. A Solver object

stores a reference to an object of Model class. A Model represents a collection of objects of

Body class. A Body represents a set of finite elements. It contains information about the

shape functions of the finite elements. The material properties of the finite elements are

supplied as an input to the constructor of the Body object. In our case, we use two child

classes of Body class — LoopShellBody and PotentialBody. LoopShellBody represents the

surface of the hybrid model discretized using Loop subdivision shell [COS00] finite elements.

The implementation is based on the work by Feng and Klug [FK06]. PotentialBody is used

to model the Morse interactions between vertices of the finite element mesh corresponding

to the LoopShellBody. Each child class of Body implements a compute() method which

calculates energy and its Jacobian with respect to the degrees of freedom associated with

all its finite elements. The Model object performs assembly of the energy and the Jacobians

calculated by the set of Body objects it contains. Assembly is a standard step in finite

element analysis.

The Solver solves for the positions of the particles forming the hybrid model shell,

iteratively. At every iteration it calculates the current value for the position coordinates and

asks Model to provide energy and Jacobian for these values. The Model iterates over each

Body object that it stores for these calculations. The optimization loop terminates based

on various configurable criteria like when change in norm of solution vector reaches close to

machine precision etc.
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B.2 OPS Model

The code used for simulations presented in Chapter 3 have been made available publicly

on https://github.com/amit112amit/oriented-particles. This is a C++ package. This

package also follows the Model and Solver format of code organization like for the hy-

brid model as explained in Section B.1. The main driver used for the simulations dis-

cussed in Chapter 3 is HeatOPSModel.cxx located at https://github.com/amit112amit/

oriented-particles/blob/master/src/Drivers/HeatOPSModel.cxx

The simulations reported in Chapter 3 were run for one to two million time steps. These

simulations were run on Hoffman2 cluster as batch jobs. We had facility to run simulations

with a run time of 24 hours in one go. Sometimes this was not sufficient to complete all

the timesteps required. Therefore, the code has provision to save its state periodically so

that if the simulation does not complete within 24 hours we can resume the simulation from

the last saved state in another batch job. The driver first checks for an existing state file in

the working directory to determine if it needs to resume an incomplete simulation or start

a new one. A state file stores the position and orientational degrees of freedom, the state of

random number generator for the Brownian forces and the input parameters. If a state file

is not found, these values are initialized to default values or read from input files. There are

two input files. One input file is provided using a command line argument. It contains the

coordinates of vertices of a Caspar Klug structure. These coordinates are used to calculate

the orientations. The second input file must have name schedule.dat and must be present

in the working directory. It consists of a combination of temperature and FvK numbers and

the number of time steps for which the simulation has to be run for each combination.

For each time step, we generate Brownian forces for each particle of the shell. Then we

solve the Augmented Lagrangian problem to solve Equation 3.14. The Brownian forces may

result in rigid body motion of the shell. We use Kabsch algorithm [Kab76] to cancel the

rigid body motion. Output of the Kabsch algorithm is the final solution of the time step.

Periodically, we print out a .vtk file containing particle positions and orientations. We also

save a state file to facilitate resuming the simulation. The frequency of saving these files can
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be controlled using schedule.dat input file. We calculate the mean-squared displacement,

volume and asphericity at every time step and write it to an output file.
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