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ABSTRACT OF THE DISSERTATION

Algorithms and Software for PCR Primer Design

by

Yu-Ting Huang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2015

Professor Marek Chrobak, Chairperson

Polymerase Chain Reaction (PCR) is a widely used technology in molecular biology for

DNA amplification. To generate multiple copies of a DNA molecule, a pair of primers (two

synthesized DNA sequences with a total length of 15-30 bases) are annealed to the bound-

aries of the targeted DNA molecule. Then, the new replicated DNA fragment elongates

from one primer to the other.

Though primers always hybridize to their respective complements within DNA

sequences, primer pairs for targeted DNA sequences can also anneal non-targeted DNA

fragments containing common DNA sub-sequences also found in targeted DNA molecules.

During the PCR process, primer pairs that offer high specificity and coverage rates for

targeted fragments among all the copies are preferred.

To provide primer pairs with high selectivity, several computational algorithms

have been proposed. Most state-of-the-art algorithms take into account signature primers,

or common short DNA fragments in the targeted DNA molecules. However, these algorithms

do not account for the fact that during the PCR process in which primer pairs designed

using signature primers are used, DNA fragments that do not have signature primers will

not become amplified. These algorithms are, then, limited in various ways.

Predicting primers’ respective binding affinities is crucial in primer design be-

cause, during the PCR process, the annealing between the targeted DNA fragments and

the primers with low binding affinity degenerates during the PCR process’s thermal cycles.

Because of this degeneration, targeted fragments expected to be reproduced by the primer

pairs go missing during DNA amplification.
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It is important to note that a particular primer’s nucleic acids do not contribute

equally to the binding affinity. Specifically, this binding affinity is determined by the nucleic

acids in the 3’ end of the primer more than the nucleic acids in the 5’ end. Existing

algorithms typically oversimplify their predictions by either ignoring primers with high

binding affinity or including primers with low binding affinity.

To address current algorithms’ limitations, we created PRISE2, a robust computa-

tional tool for sequence-selective PCR primer design. This innovative tool considers all sub-

sequences of potential primer pairs to increase the coverage rate of the targeted fragments.

This tool also provides a flexible mechanism with which to formulate positional bias when

estimating primers’ binding affinity. Importantly, the execution time of locating binding

sites for all potential primers is positively proportion to the number of the subsequences. To

accelerate searching for the binding sites, this tool clusters subsequences according to their

sequence prefices to reduce the searching space. PRISE2 not only provides a user-friendly

interface, but also offers full functionality for primer-design tasks. It was implemented using

C++ and Qt frameworks to guarantee efficiency and achieve a cross-platform requirement.

In applications where a collection of similar sequences need to be amplified using

PCR, degenerate primers can be used to improve the efficiency and accuracy of ampli-

fication, since they can hybridize into multiple, unique DNA fragments. Conceptually,

degenerate primers allow multiple bases at various positions. However, in reality, they are

mixtures of regular primers that differ on certain bases. Specific degenerate primers’ de-

generacy refers to the number of regular primers in a mixture. Higher degeneracy allows a

primer to amplify more targeted sequences simultaneously and also leads to low specificity

for targeted sequences that adversely affect the quality and quantity of amplification. It is

essential to find a good balance between high coverage and low degeneracy, a balance that

a tool like PRISE2 helps achieve.

For degenerate primer design, we proposed a new heuristic algorithm, RRD2P , to

compute degenerate primer pairs with near-optimal coverage to targets under the specified

degeneracy threshold. RRD2P runs in polynomial time and is confirmed to produce primer

pairs with good coverage on three biological data sets. This production compares favorably

with a similar tool called HYDEN. The fundamental goal driving RRD2P : to represent

computing optimal primers as an integer linear program, solve their fractional relaxation,

and then apply randomized rounding to obtain an integral solution.
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Primer Design Problem
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Chapter 1

Introduction

1.1 PCR and Primers

Polymerase Chain Reaction (PCR) is an amplification technique widely used in

molecular biology to generate multiple copies of a desired region of a given DNA sequence.

PCR process uses two small pieces of synthetic DNA sequences called primers, which are

typically of length 15-30 bases. This process requires the primer pair to identify the bound-

ary of amplification. This pair of primers, comprised of what are known as forward and

reverse primers, can be obtained from 5’ ends of each individual strand in a target sequence.

These ends and their primers are complementary to the 3’ ends of another strand.

Generally speaking, a PCR procedure entails a series of cycles. These cycles consist

of following 3 phases:

1. Denaturation: The denaturation step entails using a double-stranded DNA target

sequence. In this step, the reaction is heated to cause the DNA to melt, yielding two

single-stranded DNA molecules.

2. Annealing: In the annealing step, the temperature is lowered and two primers anneal

to each of the single-stranded DNA templates. Stable DNA-DNA hydrogen bounds

are formed between primers and templates.

3. Extension: In the extension step, starting from the primer binding sites, the DNA

polymerase synthesizes a new DNA strand complementary to the template strand

toward 5’ end.
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Each cycle doubles the number of the desired regions in the target sequence. The PCR

procedure repeats this cycle until obtaining enough duplication (see Figure 1.1). If a primer

is able to hybridize to a sequence and continue the PCR process, we say that it ”covers”

this sequence.

5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’

|||||||||||||||||||||||||||||||||

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

(a) Target sequence

5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

(b) Denaturation

Reverse Primer

5’--AGAAAAGTCC--3’

||||||||||
5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

||||||||||

5’-- TGGACTGATT --3’

Forward Primer

(c) Annealing

5’--AGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’
||||||||||||||||||||||||||||||||

5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

|||||||||||||||||||||||||||||||

5’--TGGACTGATTACCGATGACTGGACTTTTCTG--3’

(d) Extension

Figure 1.1: PCR cycle

In fields like genetics, environmental sciences, and medicine, selective PCR is
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widely used, a process in which amplification selectivity is required. For example, in appli-

cations like single-nucleotide polymorphism (SNP) analyses [23, 43, 45, 54] or monitoring of

environmental microorganism populations [33, 39, 47], both the isolation and amplification

of specific DNA fragments - referred to as target sequences - from environmental samples

is essential. These samples are often complex mixtures of DNA fragments that may also

include non-target sequences, which are pieces of DNA similar to target sequences that rep-

resent genes or organisms that are not the subject of the study. Naturally, such non-target

sequences should not appear in the amplified product. A critical step in achieving such

high-resolution amplification is the design of sequence-selective PCR primers, or primers

that amplify only the target sequences.

Designing such PCR primers manually is tedious and time consuming. Impor-

tantly, though, this process can be both streamlined and greatly simplified with the aid of

appropriate software. Such software tools can be used to accomplish following - as well as

various other - key tasks:

1. Identify target and non-target sequences or quickly evaluate the quality of a large

number of primer candidates by computing their alignment with these sequences.

2. Compute primers’ biological parameters, such as GC-content or melting temperature,

which could be essential for evaluating whether or not primers will produce specific

amplification and high yield.

4



3. Identify primers with appropriate complementarity properties, preventing undesirable

PCR side effects where primers bind to themselves by forming hairpin or primer-dimer

structures.

1.2 Degenerate Primers

In some applications that typically involve many very similar but not identical

sequences, such as studying the composition of microbial communities or analyzing specific

gene in different organisms, a modification of PCR called Multiplex PCR (MP-PCR) [19]

is usually applied. This modification of PCR amplifies multiple target sequences simultane-

ously in single procedure by using multiple primers along with temperature-mediated DNA

polymerase. In such applications, degenerate primers can be used to improve the efficiency

and accuracy of amplification.

Degenerate primers [37] can be thought of, on a conceptual level, as having am-

biguous bases at certain positions, that is, bases that represent several different nucleotides.

This ambiguity enables degenerate primers to bind to several different sequences, thus allow-

ing for the amplification of multiple sequences during a single PCR experiment. Degenerate

primers are represented as strings formed from IUPAC codes. Each code represents multi-

ple possible alternatives for each position in a primer sequence (see Table 1.1). In reality,

degenerate primers are simply appropriate mixtures of regular primers that are as cheap

and easy-to-produce as regular primers. This simplicity and low cost makes them widely

used in MP-PCR.

IUPAC nucleotide code M R W S Y K V H D B N

represented bases A A A A A A A

C C C C C C C

G G G G G G G

T T T T T T T

Table 1.1: IUPAC nucleotide code table for ambiguous bases.

Given a target template GATGGACTGATTACCGATGACTGGACTTTTCTG, the degenerate

primer TRGASTGATY matches the substring TGGACTGATT of the target sequence perfectly,

since bases R, S, and Y represent bases G, C, and Y respectively. The degeneracy deg(p)

of a primer p equals the number of distinct non-degenerate primers it represents. For

5



example, the degeneracy of primer p = ACMCM is 4 because it represents the following four

non-degenerate primers: ACACA, ACACC, ACCCA, and ACCCC.

Although primers with higher degeneracy can cover more target sequences, high

degeneracy can also negatively impact the quality and quantity of amplification. For ex-

ample, including too many primers in the mixture could lead to problems like mis-priming

(i.e., unrelated sequences may be amplified) or primer cross-hybridization (i.e., primers may

hybridize to each other). Thus, when designing degenerate primers, it is essential to find a

good balance between high coverage and low degeneracy.

1.3 Contribution

Depending on the application, primer design may involve designing either regular

(non-degenerate) primers or degenerate primers. In this thesis, and as stated below, we

contribute to both problems:

Regular Primer Design. Regular primer design is simpler since we do not need to

consider the trade-off between the degeneracy and other constraints; it essentially reduces

to finding most common substrings among target sequences.

For regular primer design, we created a robust tool called PRISE2 that pipelines

and speeds up the primer design process. PRISE2 aims to find sequence-selective PCR

primers and probes. To achieve high level of selectivity, PRISE2 users can specify target

sequences that are supposed to be amplified as well as non-target sequences that should be

avoided. The program emphasizes primer selectivity on the 3’ end, which is crucial for the

selective amplification of conserved sequences, such as rRNA genes.

PRISE2 offers users a graphical wizard that guides users as they specifying their

parameters for hybridization and the desired properties of primers, including length and

GC content. After obtaining a list of possible primer pairs using the user-friendly interface,

users can further interactively manipulate the list of parameters and choose primer pairs

that are best suited for their needs. More advanced features include, for example, the

capability to define a custom mismatch penalty function.

Degenerate Primer Design. We also worked on the degenerate primer design tasks.

Degenerate primer design is more complicated than regular primer design. There are several

6



ways to formalize the problem of degenerate primer design in the language of combinatorial

optimization.

In this paper, we focus on the Maximum Coverage Degenerate Primer Design

problem (MCDPD) in which we optimize the coverage of the primer. MCDPD has been

proven to be NP-hard and we are interested in designing approximation algorithms for

MCDPD and establishing lower bounds on its approximation ratio.

MCDPD can be formulated in terms of computing bi-cliques in certain bipar-

tite graphs. Motivated by this application, in addition to MCDPD, we studied several

other versions of the maximum bi-clique problem. Specifically, we introduced and studied

problems that we called ThrPairBiClique, ThrBiClique, and MaxBiClique.

MaxBiClique can be solved in polynomial time, either by the reduction to

matching or using total unimodularity. However, MCDPD, ThrPairBiClique, and

ThrBiClique are NP-hard. We show that the natural integer linear programs for these

three problems have large integrality gaps. Using the PCP theorem, we prove that ThrPair-

BiClique does not have an nε-approximation algorithm, unless P=NP. We also articulate

some relations between approximation ratios of these three problems.

Our main objective is to establish tight upper or lower bounds on the approxima-

tion ratio for MCDPD. Although, as of now, we have not been able to accomplish this

objective, studying other versions of the maximum bi-clique problem will shed some light

on the computational complexity of MCDPD.

MCDPD has been proven to be NP-hard; thus there is no polynomial time algo-

rithm to solve this problem. However, much effort has been put forth to develop heuristic

algorithms. For example, degenerate primer design can be accomplished by iteratively find-

ing some primers with high coverage. In this thesis, we propose a new heuristic algorithm,

RRD2P , to compute degenerate primer pairs with near-optimal coverage to targets under

the specified degeneracy threshold. RRD2P runs in polynomial time and is confirmed to

produce primer pairs with good coverage on three biological data sets. This algorithm pro-

duces results that compare favorably with a similar tool called HYDEN. The fundamental

idea behind RRD2P is to represent computing optimal primers as an integer linear pro-

gram, solve their fractional relaxation, and then apply randomized rounding to obtain an

integral solution.

The above randomized rounding algorithm represents MCDPD as a linear pro-

gram. Computing a fractional solution of this linear program is the most time consuming

7



module in RRD2P . In an effort to speed up this process, we propose a polynomial-time

combinatorial algorithm for solving this linear program, for the restricted case of MCDPD

with binary alphabet and no mismatches.
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Part II

Automation Tools for Primer

Design
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Chapter 2

Tool for Primer/Probe Design

2.1 PRISE2

To help in the primer design process, we created a new software package for de-

signing sequence-selective PCR primers and probes called PRISE2 (PRImer SElector 2).

PRISE2 is the successor of an existing tool, PRISE [25]. PRISE2 preserves PRISE’s main

design process strategy and core algorithms. PRISE2 also provides a number of extensions

and new features, including platform independence, performance enhancements, and the

ability to add probes to selected primer pairs,.

In a nutshell, PRISE2 is an interactive software package for designing primers

and probes for PCR experiments that accepts sets of target and non-target sequences on

input. It produces primer pairs that will typically selectively amplify the target sequences.

PRISE2 includes customizable features and settings to ensure that computed primers will

be useful during various applications.

One distinctive feature of PRISE2 is that it allows users to emphasize primer

selectivity at the 3’ end. This feature is essential for selective amplification of conserved

sequences, such as rRNA genes. This features also allows users to accurately differentiate

between target and non-target sequences during the actual laboratory PCR process [38, 29,

11]. The need for such precise selectivity arises when amplifying sequences from mixtures of

DNA. Examples of such applications include subtype analyses, in which very similar groups

of genes need to be distinguished, or rRNA gene studies that monitor population levels of

specific microorganisms in environmental samples containing millions of different organisms

[33, 39, 47]. In fact, PRISE2 - as well as its predecessor, PRISE - was specifically designed

10



to support studies of microbial communities [57, 56, 46, 17, 60, 16]. These studies often

involve analyzing environmental samples containing mixtures of both target and non-target

sequences.

Another application where such high selectivity is useful: genomic walking [11, 44,

5, 10]. During this application, the focus on the 3’ end selectivity is implemented through a

detailed and customizable per-position mismatch allowance matrix that sets more stringent

mismatch criteria at the 3’ end than for the rest of the primer. We are not aware of any

other software that provides such sophisticated selectivity settings.

When searching for candidate primers, PRISE2 uses a custom algorithm that

assigns appropriate mismatch weights to different positions when aligning candidate primers

against their potential binding regions.

Other programs typically use local alignment tools, such as BLAST, to do simi-

larity searches used to identify the binding position of primers. Such searches may result in

the loss of some match information over the entire primer range, especially when the match

is not perfect at the primer ends.

Another distinctive feature of PRISE2 is the probe design function, which is useful

during quantitative analyses to measure the amplification of target sequences. For example,

this function enables the design of Taqman and other primer-probe based assays as well

as probes for FISH and other hybridization-based assays. The probe design feature is

integrated with the primer design process in the sense that users can add probes to selected

primer pairs. This feature allows for triples consisting of a forward primer, reverse primer,

and a probe to be evaluated in tandem in terms of coverage and other quality criteria.

When designing probes, users can specify biological parameters that may be differ-

ent than those for primers. For example, setting the melting temperature ranges for probes

and primers at different levels helps to ensure proper functioning of probes during the Taq-

man PCR process. The mechanism for defining mismatch criteria for probes is different

than that used for primers and mismatches near the middle of the probe given more weight

than at the ends. For this reason, the algorithm for selecting probes is also quite different

than that used for primers.

Unlike some other programs [9, 12, 24, 34, 26], PRISE2 does not require signature

primers, or short pieces of DNA that are only conserved in target sequences. Using signature

primers reduces computational cost. However, not all groups have unique signatures [26].

PRISE2 considers all combinations of forward/reverse primers and probes so that, for such
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groups, it can find individually non-specific but group-specific primer sets, for which the

methods using signature primers are not likely to be effective.

PRISE2 also differs from existing tools in terms of its fundamental approach to

the design process - a process that emphasizes interaction with the user to take advantage

of human expertise. Rather than simply computing a primer-probe set that optimizes user-

specified criteria, at several stages of the process, PRISE2 produces a list of candidate

primers or probes. For each of these candidate primers or probes, a list of quality indicators

- like coverage, length, GC-content - is generated. The user can then manipulate these lists,

sorting them according to different criteria to choose a subset of candidates. This interactive

approach also allows users to backtrack through the process to fine-tune the program’s

parameters. For example, if an insufficient number of primer candidates are produced due

to excessively stringent biological settings, users can go back through previous steps and

experiment with different parameters that may increase the number of candidate primers.

More extensive comparison between PRISE2 and other primer design tools can be found in

the ”Comparison” section later in this paper.

PRISE2 is written in C++ with the graphical user interface implemented with the

Qt toolkit. It is free for non-commercial usage and can be downloaded from

http://alglab1.cs.ucr.edu/OFRG/PRISE2.php directly or from the OFRG website,

http://algorithms.cs.ucr.edu/OFRG (users must simply follow the link to PRISE2). The

software can run on the following systems and is distributed as an executable file that can

be executed once downloaded (no additional installation is required):

• Windows 2000/NT/XP/7/8

• Ubuntu 9.04 or higher

• Mac OS 10.5 or higher

Activated Internet connectivity is needed for full functionality to connect to the NCBI

website. For users who have target and non-target sequences already selected - or, those

who have a local installation of BLAST - no Internet connection is required. PRISE2

requires a minimum of 512 MB of RAM (1 GB of RAM or more is recommended).

12



2.2 Comparison

In this section, we compare PRISE2 with four existing tools for primer design to

emphasize PRISE2’s unique characteristics.

PRISE When compared to its predecessor, PRISE, PRISE2’s most significant new feature

is its probe design option, which can be useful for Taqman and other primer-probe assays. In

quantitative analyses like Taqman assays, probes can be used to measure the amplification

of target sequences along with a pair of primers. Probes can also be designed for FISH and

other hybridization-based assays.

Unlike PRISE, which is only available on Windows, PRISE2 is a cross-platform

software, not restricted to a specific operating system. We created PRISE2 installations

for Windows, Macintosh and Linux machines. Another new PRISE2 feature: the option

to communicate with a local BLAST application, which provides a more convenient way

to identify target and non-target sequences without the need for connecting to the NCBI

website.
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Although PRISE2’s core algorithms for sequence similarity and identifying primer

candidates remain the same as those in the original PRISE, several performance improve-

ments were made to speed up tool’s computation abilities for large data sets. For instance,

the module for computing primer candidates is roughly 4 times faster in PRISE2 than in

PRISE. When run on a data set of 123 target and 319 non-target sequences from the NCBI

flu database (each of length approximately 1000bps, with most parameters at default val-

ues), PRISE2 completed the task in 12 minutes. When confronted with the same task,

PRISE clocked in at 48 minutes on a Windows 8 machine with 8GB memory and 2.4GHz

CPU. PRISE2 completed the same task, in other words, 36 minutes faster than PRISE.

PrimerProspector One other tool that allows users to differentiate selectivity properties

for the 3’ and 5’ ends is PrimerProspector [53]. This tool allows different weights to be

applied to the 3’ and 5’ ends of primers to estimate the likelihood of binding. To consider

a primer candidate as functional to a specific template, PrimerProspector requires this

candidate to have a user-specified number of continuous base matches starting at the 3’

end.

This requirement feature can be thought of as a restricted case of PRISE2’s 3’ end

selectivity mechanism. PRISE2 gives the user more control than PrimerProspector, then,

to cover scenarios in which primer-template binding is likely to occur even in the absence

of continuous matches at the 3’ end. Additionally, unlike PRISE2, PrimerProspector does

not use non-target sequences. PRISE2, however, allows users to interactively design probes

for selected primer pairs.

PRIMER3 Primer3 [51] is a widely used web-based program for primer design that

provides similar options to those in PRISE2. In Primer3, users can design a primer set

consisting of a forward primer, a reverse primer, and a probe. Much like in PRISE2, they

can also choose a number of settings for controlling the quality of the primers.

Primer3 focuses, however, on designing primer sets targeting single sequences and

it does not take into consideration non-target sequences. This program also does not allow

mismatches to be placed on the 3’ ends of the primers. In Primer3, the design emphasizes

a single-shot process without the flexibility and convenience of the interactive procedure

available in PRISE2.
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Primer-BLAST Primer-BLAST [59] is an integrated tool for primer design provided by

NCBI. This tool combines Primer3 and BLAST functionalities along with the Needleman-

Wunsch (NW) global alignment algorithm - an algorithm that overcomes the shortcomings

of local alignment for primer design purpose.

Primer-BLAST first utilizes Primer3 to generate the candidate primer pairs, then

applies the specific BLAST to check for specificity. Since the program consists of two

separate modules, users can check the specificity of existing primer candidates. However,

Primer-BLAST inherits Primer3’s limitations, as it does not have the feature to design a

desired set of non-target sequences and has limited abilities to control mismatched positions.

Primer-BLAST achieves identifying primers’ specificity in a specific region at 3’ end by

forcing the number of mismatches between primers and unintended targets from a user-

specified database.

QuantPrime and PRIMEGENS QuantPrime [8] and PRIMEGENS [55, 50] are two

other software packages used for primer design. Neither of these tools include options to

specify non-target sequences. They also do not allow for users to design probes. For the 3’

end selectivity, QuantPrime provides only a rudimentary mechanism of limiting the number

of mismatches near the 3’ end, a feature that PRIMEGENS does not implement.

2.3 Workflow

As explained in chapter 2.1, the primer design process in PRISE2 is essentially

the same as in its predecessor, PRISE. The module for probe design, however, is new. We

describe the complete process in this section.

Designing primers and probes in PRISE2 is accomplished in three stages:

1. Identification of target and non-target sequences. Here, the user can download a

collection of sequences from GenBank and use the provided interactive tools to choose

from them - or, from other collections of sequences - the desired sets of target and

non-target sequences.

2. Generation of candidate primer pairs. In this step, the program computes a set of

primer candidates, according to the specified parameters, and groups them into primer
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pairs. Then the user can use a variety of sorting tools to manipulate the list of these

primer pairs to choose a smaller collection of high quality pairings.

3. Adding probes. Once these desired primer pairs have been selected, the next module of

PRISE2 allows probes to be added to each primer pair. For each primer pair, PRISE2

determines a list of candidate probes. This module produces a collection of primer-

probe sets that can be sorted according to multiple criteria, ultimately allowing the

user to choose the final collection of primer-probe sets best suited for their individual

PCR experiments.

Below we give a detailed description of these steps.

2.3.1 Identifying Target / Non-target Sequences

In this step, users first need to identify the seed sequences and create the hit table.

The seed sequences are DNA sequences that the user aims to amplify. The hit table is a

file created by subjecting the seed sequences to an analysis using BLAST (blastn) [4]. This

file contains summary information (e.g., species name, etc.) for similar or related sequences

from all species or organisms in specified databases. Users can either run BLAST remotely

through the NCBI website (following the instructions provided in PRISE2) or locally (if

they have an installation of BLAST on their machine). In the latter case, PRISE2 provides

an interface to integrate sequence identification with a locally installed BLAST application

and database.

Once the seed sequences and the hit table are identified and saved, PRISE2 will

download associated records from GenBank and perform pairwise similarity (percentage

identity) analyses of sequences. These sequences are then displayed as a list, and can be

interactively manipulated and sorted according to specified properties, similarity to seed

sequences, or various other attributes. This sorting feature allows users to identify the

desired target and non-target sequences, which then can be saved for future use. In a

typical application, the sequences most similar to seed sequences can be designated as

target sequences, while non-target sequences can be selected from the remaining set. Other

sequence attributes provided by PRISE2, like sequence length, may be useful in this task.
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2.3.2 Designing Primers

To design primers, users first need to specify the sets of target and non-target

sequences. In most situations, these sequences are those identified in the previous step, but

this is not a requirement. Some users may wish to use their own collections of target or

non-target sequences - sequences obtained earlier from either PRISE2 itself or from some

other source. PRISE2 will accept any collections of sequences as long as they are in the

FASTA format.

Next, users can specify desired properties of both individual primers and pairs of

primers. These properties include, for example, primer length, GC content, and melting

temperature. Among other options, users can also restrict the complementarity properties

of primers to assure that chosen primer candidates do not bind to themselves and that, in

selected primer pairs, the forward primer does not bind to the reverse primer.

For convenience, all parameters have pre-tested default choices that are likely to

work well in most typical applications. The following step examines how to navigate the

primer selectivity settings. The purpose of the selectivity settings is to identify highly

selective primers, namely those that will bind both to most target sequences and to as few

as possible non-target sequences. These settings allow users to define what constitutes a

match between a primer and a sequence and can be controlled separately for target and

non-target sequences. Put simply, stringent settings correspond with near-perfect matches,

while more flexible settings correspond with inexact matches. In essence, and worth noting

here: more stringent settings produce fewer primer candidates than relaxed settings. As in

the previous steps, typical users will use the default settings only. However, PRISE2 also

allows users to customize these parameters, either through a basic interface in which they

choose stringency levels or with more advanced options in which they can manually adjust

the values of all parameters.

There are two categories of selectivity settings: mismatch allowance mechanism

and mismatch cost matrix. The purpose of this mismatch-allowance mechanism is to em-

phasize primer selectivity on the 3’ end, which is crucial for functional primers, as explained

earlier. This allowance can be accomplished by setting limits on the accumulated number

of mismatches, starting at the 3’ end and ending at any position. For example, one can

specify 0 mismatches on the first 3 positions, at most 1 mismatch on the first 5 positions,

and at most 2 mismatches on the first 7 positions.
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The mismatch cost matrix is a nucleotide-to-nucleotide dissimilarity function that

reflects the likelihood of binding to occur, with smaller values representing higher likelihood.

For example, in its simplest form, this matrix’s entries could be 0 for equal bases (matches)

and 1 for different bases (mismatches). Users can adjust these values to distinguish different

types of mismatches. For example A/G and A/C mismatches may be assigned different

costs.

Consider a primer candidate p and a template string t (that is, t is either a target

or a non-target sequence). For a fixed location l in t, let t denote the substring of t, of the

same length as p, starting at location l. For all locations in p, and using the mismatch cost

matrix, PRISE2 computes the accumulated costs of mismatches, starting from the 3’ end

of p. If any of these values exceeds the corresponding mismatch allowance, the program

determines that there is no match at location l. Otherwise, it considers position l as a

potential match and it stores the total accumulated mismatch cost as the cost of aligning p

and t′ at location l. After computing such alignment costs for all potential match locations

l, PRISE2 then chooses the most likely location in t for this primer p to bind simply by

choosing the location with minimum cost. This computation is accomplished in PRISE2

with a custom string similarity algorithm specially designed for this purpose. In cases when

no potential match locations in t are found, PRISE2 determines that p does not hybridize

to t. PRISE2 has also an option to allow gaps in alignments. This option is implemented

by assigning costs to gaps and putting a limit on the number of gaps. In the computation

described above, these costs are included as costs of either nucleotide insertions or deletions.

By repeating the above process for all primer candidates p and target/non-target sequences

t, PRISE2 will determine which primers bind to which sequences and at which positions.

At this point in this process, PRISE2 will match all primer candidates into pairs. These

pairs are then presented to the user, sorted according to their selectivity measure, that is

computed as follows: consider a pair f , r of primers. Let covt(f, r) denote the coverage of

this primer pair in target sequences, and let covn(f) and covn(r) denote the coverage of f

and r, respectively, in non-target sequences. These values are normalized so that they are

in the range [0,1]. The selectivity of this primer pair is then computed as below:

1− (1− covt(f, r))2 − (
1

2
covn(f))2 − (

1

2
covn(r))2

Note that this computation produces high values for pairs f, r that jointly match
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many target sequences, but where each of f and r, individually, matches few non-target

sequences. It is especially important to emphasize here that this value is used only to sort

the primer pairs in the display window so as to give the user a rough estimate of the primer

pairs’ quality.

The number of candidate primer pairs depends on the stringency of all settings.

If too few or too many pairs are produced, PRISE2 allows the user to backtrack and adjust

these settings to re-compute new candidate pairs.

After users are satisfied with the list of candidate pairs, they can review their

quality criteria. Next, they can either select a small number of primer pairs to be used in

an experiment or proceed to the probe design stage. To assist users with this review task, the

list of primer pairs is displayed in a tabular format that shows all quality indicators for each.

This format indicates the percentages of target and non-target sequences that the primers

are predicted to bind to, the product length, GC-content, complementarity properties, as

well as other pieces of information that can help users make decisions. For each primer

pair, users can even display and examine the alignments between this pair and all target

or non-target sequences. An easy-to-use graphical interface allows users to manipulate this

list in an interactive fashion. Using this interface, users can remove primer pairs, manually

add new primer pairs, and sort the list according to a wide variety of criteria.

2.3.3 Designing Probes

Once the user identifies and selects a collection of primer pairs of interest, PRISE2

provides an option to add probes to these pairs. This module can be also used for designing

probes for FISH and other hybridization-based assays. In quantitative PCR (qPCR) analy-

ses like Taqman assays, probes play an essential role in monitoring the amount of sequence

amplification.

The process of probe design is similar to that for primers; it involves selecting probe

properties, such as the probe length and GC content. One probe attribute that assures

that the probes will function properly during the qPCR process is the difference of melting

temperatures between the primer pair and its associated probe. For example, for Taqman

assays, setting the melting temperature for probes higher than for primers ensures that the

probes will bind to the target before the primers. This sequential binding is essential for

consistent quantification in such assays because measurement of amplification events occurs
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when DNA synthesis from the primer leads to the polymerase enzyme contacting and then

cleaving the quencher located on the end of the probe. This contacting and cleaving results

in a detectable fluorescent signal.

As in the primer design process, users can specify their own scoring scheme for

probes, the cost function, and the mismatch allowance matrix to obtain the desired selec-

tivity for target sequences. Unlike for primers, where matches on the 3’ end are considered

more important, in the case of probes, PRISE2 focuses on the middle section of the probe

by allowing the user to specify the number of continuous matches near its center. Such

continuous matches increase the likelihood of binding, even when some mismatches occur

near the ends of the probe. These mismatch criteria can be specified separately for target

and non-target sequences.

Once probe properties and selectivity settings are defined, PRISE2 will compute,

for each pair of selected primers, the list of probes that match all the criteria. The final

result is a list of primer-probe sets in which each of these sets consist of a pair of primers and

a probe that meet all criteria. PRISE2 displays the results for this specific computation in

a window with separate tabs for each primer pair that is sorted according to the selectivity

function:

1− (1− covt(f, r, p))2 − (covn(f, r, p))2 −
(

1

2

(
1− covt(p)

))2

−
(

1

2
covn(p)

)2

In this formula, f , r, and p denote the forward primer, the reverse primer, and

the probe in a probe set. covt() and covn() represent the normalized coverage values in

target and non-target sequences, respectively. For each primer pair, the program creates

a tabulated list with rows corresponding to probes and columns, showing properties of

the corresponding primer-probe set. As for primers, these lists can be manipulated and

sorted by the user, according to a number of different criteria. Ultimately, by using these

tools, users can determine a small number of primer-probe sets to be used in specific PCR

experiments.

A more detailed description of the primer/probe design process can be found in

the PRISE2 manual and tutorial provided on PRISE2’s web page.
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2.4 Experiments

To demonstrate that PRISE2 finds highly selective, functional primer-probe sets,

we used this program to design two Taqman real-time qPCR assays, which were subse-

quently tested in a laboratory experiment. Primer and probe sets were designed to differen-

tiate the rRNA ITS region of two closely related strains of the fungus Dactylella oviparasit-

ica (DO50 and DO60). Sequence-selective primers and probes were designed using PRISE2

with the default settings.

qPCR was performed using a Bio-Rad iCycler MyiQTM Real-Time Detection

System (Bio-Rad Laboratories, Hercules, CA, USA). The selective primers for the DO50 and

DO60 assays are DO-50 F1 (ATCGGCCTCACAAA) and DO-50R1 (TAACCAATTCCTTGTTGTT) as

well as DO-60 F2 (AGCGAAACCCTCTCA) and DO-60R2 (TACGAGTTGTCGCAATAC), respectively.

The selective probes for the DO50 and DO60 assays are as follows:

DO-50Probe-1, [6-FAM]AACAGCACAGTGGACCTGCC[BHQ1a-6FAM] and

DO-60Probe-2, [6-FAM]AAAGCTAGCGGGCACAGGC[BHQ1a-6FAM] , respectively, where BHQ1a

is Black Hole Quencher 1 (Eurofins MWG Operon, Huntsville, AL, USA). The targets

are fragments of the ITS rRNA gene with sizes of 94-bp and 75-bp for DO50 and DO60,

respectively.

The non-target sequence used for the design of the DO50 assay was DO60, while

the non-target sequence used for the DO60 assay was DO50. The assay for DO50 produced

a robust amplification signal from DO50 DNA, but no signal from DO60 DNA. A similar,

but opposite, result was obtained for the DO60 assay. These results demonstrate the ability

of PRISE2 to create useful primers and probes for sequence-selective assays as in Figure 2.1.

Primers designed with PRISE and PRISE2 have been used in multiple investiga-

tions of microbial community composition studies. These studies typically require ampli-

fying targeted sequences from DNA mixtures extracted from environmental samples con-

taining hundreds to thousands of non-target sequences. The high resolution of the primers

produced by PRISE and PRISE2 tools that have the abilities to distinguish between tar-

get and non-target sequences played critical role in these studies. For example, in a study

examining the role of microorganisms in inflammatory bowel disease, the use of PRISE

enabled measurements of specific bacterial rRNA gene sequences in a habitat harboring

hundreds or thousands of different microorganisms. These measurements provided putative
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Figure 2.1: Experimental results for DO50 and DO60 assays

links between specific host-microbe interactions and disease causation.
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Part III

Degenerate Primer Design
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Chapter 3

Overview of Degenerate Primer

Design Problems

3.1 Notations and Problem Definitions

In this chapter, we introduce notations to represent target sequences and primers,

then give formal definitions to primer design problems with these notations.

Let Σ denote the alphabet of input target sequences and, in the case of DNA

sequences, Σ = {A, C, G, T}. A degenerate primer is a string composed of subsets of Σ. Let

p = p1p2 . . . pk be a degenerate primer of length k and pj be the jth position in p, pj ⊆ Σ

and pj 6= ∅ for each position j. The degeneracy of p, represented as deg(p), is calculated by

multiplying the number of possible bases at each position (i.e., deg(p) =
∏k
j=1 |pj | where

|pj | is the size of the set pj). For example, if p = ACMCM where M = {AC}, deg(p) = 2×2 = 4.

Given two degenerate primers p and q with the same length k, they can be merged

into a new degenerate primer p′ = p ∪ q of length k, where p′i = pi ∪ qi for all i =

1, . . . , k. For example, if p = AGATT[CT] and q = AG[AC]CT[CG], then p′ = p ∪ q =

AG[AC][CT]T[CGT]. Merging will increases the degeneracy (i.e., deg(p′) ≥ deg(p) and

deg(p′) ≥ deg(q)). However, deg(p′) is not a function of deg(p) and deg(q), as the increase

of degeneracy depends on the number of degenerate positions, the number of bases at each

position, and the relationship between them.

We say that a degenerate primer p covers a target sequences s if at least one of

the regular primer represented by p occurs in s as a substring, so that p can hybridize to
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the reverse-complementary strand of s. Formally, we say that a primer p of length k covers

a string s of length l if there exists a position r such that sr+j ∈ pj for all j = 1 · · · k. In

practice, a primer can still hybridize to target sequences and be functional even if it only

approximately matches the template. We will say that p covers s with at most λ mismatches

if there exists a substring s′ of s of length |p|, such that p matches s′ on at least |p| − λ
positions. We refer to λ as mismatch allowance since we allow up to λ mismatches and

still consider as p covers s. The coverage of p, denoted by cov(p), is the number of target

sequences that p covers.

From noted earlier, primer design can be optimized toward 3 criteria: (1) high

coverage, (2) low degeneracy, and (3) small number of primers. Here, we focus on maxi-

mizing the coverage, restricting the number of primers to be 1, and binding the degeneracy

with a specified threshold d. Generally speaking, we aim to find a primer p that covers the

maximum number of target sequences and with the degeneracy deg(p) ≤ d.

The Degenerate Primer Design problem (DPD) is defined in Problem 1.

Problem 1 (DPD) Given a set of n target strings S =
{
a1, a2, . . . , an

}
over alphabet Σ of

arbitrary lengths, integers m and d, find a degenerate primer p of length m and degeneracy

at most d that covers the maximum number of strings in S.

Finding a maximum-coverage degenerate primer is a variant of the degenerate

primer design problem in which we fix the degeneracy to maximize the coverage. The

MDPD problem can be solved by finding each primer with maximum coverage, one at

a time, until all sequences are covered. Thus, the maximum-coverage DPD problem is

extremely useful in practical primer design.

Intuitively, a primer will bind to conserved regions among target sequences and

these regions can be identified in advance as expected primer binding sites. Therefore, we

can design primers based only on these regions and assume that all input sequences are of

the same length m when designing degenerate primers of length m for simplification.

The corresponding problem, maximum coverage degenerate primer design(MCDPD),

is defined as in Problem 2.
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Problem 2 (MCDPD) Given a set of n target strings A =
{
a1, a2, . . . , an

}
over alphabet

Σ each of length m, and an integer d, find a degenerate primer p of length m and degeneracy

at most d that covers the maximum number of strings in A.

The following is an instance of MCDPD over binary alphabet:

Given A = {11000, 10100,10010, 01010} and the degeneracy threshold d = 8, the best

degenerate primer will be NN0N0 that covers a1, a3 and a4, where N denotes the only am-

biguous base {0, 1}.
As mentioned previously, primers can be functional with a small number of mis-

matches in the template. Thus, the MCDPD with mismatch (MCDPDmis) problem is a

variant of MCDPD, which takes mismatch allowance into consideration as in Problem 3.

Problem 3 (MCDPDmis) Given a set of n target strings A =
{
a1, a2, . . . , an

}
over al-

phabet Σ each of length m, integers d and λ, find a degenerate primer p of length m and

degeneracy at most d that covers the maximum number of strings in A with up to λ mis-

matches.

In real MP-PCR experiments, it may not be possible to cover sufficiently many

sequences with one primer. In practice, we want to design a minimum set of primers with a

threshold on the degeneracy, to cover all target sequences. This problem is called Multiple

Degenerate Primer Design( MDPD). In MDPD, we can put the degeneracy threshold on

either each single primer or the summation of whole set, called Primer-Threshold MDPD

(PT-MDPD) and Total-Threshold MDPD(TT-MDPD), respectively. These two prob-

lems are defined as in Problem 4 and Problem 5. These problems have been studied and

proved to be NP-hard by Souvenir.

Problem 4 (PT-MDPD) Given a set of n target strings A =
{
a1, a2, . . . , an

}
over al-

phabet Σ each of length m, and an integer d, find a minimum set of degenerate primers of

length m and each primer is of degeneracy at most d that covers all strings in A.

Problem 5 (TT-MDPD) Given a set of n target strings A =
{
a1, a2, . . . , an

}
over al-

phabet Σ each of length m, and an integer d, find a minimum set of degenerate primers of

length m and the total degeneracy is at most d that covers all strings in A.

26



All degenerate primer design problems above can be reduced to regular primer

design problems by setting the degeneracy threshold d to 0.

3.2 Previous Work

MDPD is closely related to the practical primer design process and has been thor-

oughly studied. Since it is NP-hard, it has no polynomial-time exact algorithm. However,

several heuristic algorithms - such as HYDEN [41], MIPS [49], DPS [15] and DPS-HD [14]

- were proposed.

HYDEN Proposed by Linhart and Shamir, this algorithm solves MDPD by repeatedly

running beam search. Beam search is a heuristic search algorithm that explores a graph

of partial solutions by expanding the most promising vertices. Here, the algorithm uses a

beam to store a sufficient number of best primer candidates and then extends from this set

of candidates.

MIPS and DPS follow the iterative beam search concept in HYDEN, but use

different criteria to either choose or extend the “good” candidates so the performance of

these algorithms depends on the beam size. DPS-HD tried to get rid of the dependency on

the beam size by using Hamming distances and randomization.

MIPS Let a c-primer be a degenerate primer that covers c target sequences. Given n

sequences of length l to design a set of primers of length m with maximum degeneracy

d, MIPS runs the following process repeatedly until all sequences are covered: it starts

with a set of 2-primers. In each iteration, each primer candidate extends its coverage by 1,

introducing more degeneracy if necessary. In other words, in each iteration, MIPS generates

(c+ 1)-primers from c-primers. A subset of primers is chosen as the new primer candidate

set for next iteration.

MIPS scores these candidate primers by degeneracy and keeps b best candidates

in a beam. It takes O(bln) time to update the beam and check the coverage of b candidates

against all O(ln) substrings of length m of target sequences, which are also called m-mers.

In a worst case scenario, the beam will be updated O(n) times since there are n sequences

to cover. So, the time complexity for updating the beam is O(bln2).
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If the best primer set contains t primers, the beam-search process will repeat O(tn)

times. The total time complexity of MIPS is O(bln2 × nt) = O(bln3t).

DPS The DPS algorithm was proposed by Balla et al.. They adopt the beam search

concept from MIPS, but use different scoring criteria and extension rules.

Much like MIPS, DPS starts with a set of 2-primers. In each iteration, b best

primes are extended to a new candidate set by merging them with all possible m-mers in

uncovered sequences. This new candidate set is used to start the next iteration. Once

the degeneracy of the best candidate reaches the threshold d, we start a new round from

2-primers and repeat this until all sequences are covered. In each round, one best candidate

is added into the final output set.

In each iteration, and much like in MIPS, DPS takes O(bln2) time to sort and

identify unique primers in the candidate set. The obvious difference between DPS and

MIPS is that DPS’s degeneracies are strictly and carefully increased in each iteration. If

the threshold of degeneracy is d, the number of degenerate positions in primers is between

log|Σ| d and log2 d, and it takes log2 d ∼ (|Σ|−1) log|Σ| d iterations to reach this threshold. It

takes O(|Σ| log|Σ| d× bln2) to finish a round and pick one primer to the output set. If there

are t primers in the output set, the total time complexity of DPS is O(t×|Σ| log|Σ| d×bln2) =

O(b|Σ| log|Σ| dln
2t).

Compared to MIPS, DPS offers two important improvements. First, MIPS uses

degeneracy as a scoring function. DPS, however, considers degeneracy and the coverage

at the same time. Second, in DPS, the degeneracy of each primer candidate is strictly

increased in each iteration, while, in MIPS, it may remain unchanged. This DPS property

reduces the number of iterations from O(n) to O(|Σ| logΣ d).

DPS-HD and DPS-DIP Since MIPS and DPS use beam searches, their respective

performances depend on the beam size b (i.e., the number of candidates in each iteration).

Choosing b is very important for this kind of algorithm.

DPS-HD removes this kind of dependency on beam size by using randomization

and Hamming distance. At first, it randomly chooses a sequence and uses all m-mers in this

selected sequence as the candidate set. The Hamming distances between each candidate

and all m-mers in other sequences are calculated. Each candidate merges with a randomly

selected closest m-mer. Next, the distances from the new candidate to m-mers in uncovered
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sequences are re-calculated until the degeneracy of the new candidate reaches threshold d

or all sequences are covered. Then, the best candidate is added into the final output set.

The size of the candidate set remains unchanged, so there is no need to set the beam size

b to keep the best b candidates.

In one iteration, it takes O(nl2) time to calculate the Hamming distances between

each candidate and all other m-mers. Just like in DPS, in DPS-HD, the degeneracy is

strictly increased so the total number of iterations is O(|Σ| log|Σ| d). The process can repeat

O(t) times where t is the number of primers in the output set so that the overall time

complexity for DPS-HD is O(|Σ| log|Σ| dnl
2t).

DPS-HD has a variant called DPS-DIP. The algorithms are basically the same,

except that DPS-DIP uses degenerate increase potential (DIP) as the ranking criterion

instead of the Hamming distance. The DIP between a primer candidate, p, and a m-mer,

q, indicates how much the degeneracy will increase if p merges with q. For example, the

DIP for the new degenerate primer candidate p′ = p ∪ q is f = deg(p′)
deg(p) .

DIP is based on the concept that when two m-mers have the same Hamming

distance to a current candidate, we want to minimize the increasing of degeneracy. Take

regular DNA sequences (Σ = {A, C, G, T}), for example. When we add one extra symbol at

a specific position, the Hamming distance is always changed by 1, while the DIP value may

change by 2, 3
2 , or 4

3 , depending on how many symbols are originally at this position.

Let n be the number of target sequences, l be the length of each sequence, and

suppose that we design t primers of length m with beam size b. Given the threshold d on the

degeneracy, the following table compares both the time complexity and space complexity

of the above three algorithms for MDPD:

time complexity space complexity

MIPS O(bln3t) O(n2 + lmn)
DPS O(|Σ| log|Σ| dbln

2t) O(bln(n+ |Σ|m))

DPS-HD O(|Σ| log|Σ| dl
2nt) O(l2n)

Experimental results show that DPS can cover input sequences with fewer primers

than MIPS. About the running time: since DPS and MIPS algorithms are not implemented

in the same programming language, the running time cannot be compared directly.

DPS-HD replaces the beam-search by randomization and users do not need to set

the beam size. Although DPS can find a smaller set of primers, the result from DPS-HD
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is very close, and DPS-HD takes much less time than DPS, especially when the number of

input sequences is large.

3.3 Degenerate Primer Design and Bi-clique

As mentioned before, in this thesis, we focus on maximizing the coverage of a

single degenerate primer (the MCDPD problem). To simplify the problem, we start from

the binary case (i.e., Σ = {0, 1}; all target sequences and primers are binary strings). We

can easily extend the binary case to more general case, such that |Σ| = 4, which is what

we really need. In the binary case, we use the symbol ’*’ to indicate degenerate positions

where both bit 0 and 1 are acceptable. MCDPD is an NP-hard problem, which can be

proved by reducing the clique problem to it [41] . We notice that MCDPD is related

highly to the bi-clique problem, as stated below. Thus, to analyze the approximability, we

can interpret it in terms of bi-clique.

A bipartite graph B = (U, V,E) is called a bi-clique, or a complete bipartite graph

if E = {(u, v) : ∀u ∈ U, v ∈ V }. It can be denoted by U × V without explicitly specifying

E. MCDPD can be formulated in terms of computing bi-cliques in bipartite graphs, as

stated below. Consider an MCDPD instance that consists of a set A of n target sequences

of length m and degeneracy threshold d. For a target sequence ai ∈ A, let aij be the jth bit

of ai. We can construct a bipartite graph G = (U, V,E) from A as follows:

• For each position j = 1, . . . ,m, we construct two corresponding vertices u0
i and u1

i

in V1, representing bit 0 or 1 at the ith position of the primer. By this construction,

|U | = 2m.

• For each target sequence ai ∈ A, we construct a corresponding vertex vi in V . Thus,

|V | = n.

• If aij = 0 then (u0
j , v

i) ∈ E but (u1
j , v

i) /∈ E, and vice versa if aij = 1.

We give an example for m = 3 and n = 4:

S = {101, 110, 001, 100}

We construct vertex v1 for sequence 101, v2 for 110, v3 for 001 and v4 for 100. The
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Figure 3.1: Bipartite graph G constructed from S.

corresponding bipartite graph is shown in Figure 3.1. The bold red lines show a bi-clique

{u0
2, u

1
3} × {v1, v3}.

By this reduction, G contains a bi-clique Û × V̂ with |Û | = δ and |V̂ | = c if, and

only if, there exists a primer p with degeneracy deg(p) ≤ 2(m−δ) and p covers at least c

target sequences. In other words, p has δ non-degenerate bits and can hybridize to at least

c sequences. In Figure 3.1, the bi-clique {u0
2, u

1
3}×{v1, v3} corresponds to a primer p = ∗01

of degeneracy 23−2 = 2.

This transformation shows that we can express MCDPD as a problem of com-

puting a bi-clique Û × V̂ with |Û | ≥ m− log d and maximum |V̂ | in the constructed graph.

Notice that the reduced bi-clique problem has the following property below:

(1) The set U is partitioned into pairs {u0
i , u

1
i }. For each pair, every vertex in V is

adjacent to exactly one vertex.

(2) For any bi-clique Û × V̂ , it picks at most one vertex from each pair {u0
i , u

1
i }. This

property is actually implied by property (1).

MCDPD is a maximization problem which has been proven to be NP-hard [41].

We are interested in designing approximation algorithms for it or proving lower bounds

on the approximation ratio. Given an approximation algorithm Alg for a maximization

problem Π, for an instance X, let Opt(X) be the optimal solution of X and Alg(X) be the

solution obtained by Alg. We call Alg an α-approximation algorithm if for any instance X,

Alg guarantees that Opt(X)/Alg(X) ≤ α where α ≥ 1. In other words, algorithm Alg has
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approximation ratio α. When α is smaller, the solutions computed by Alg are closer to the

optimum.

Combining two different methods, a 2m/2-approximation algorithm for MCDPD

has been proposed in [41]. When δ < m
2 , they designed the degenerate primer using the

following algorithm: from the 1st to the δth position, one by one, we pick the bit 0 or 1

that gives higher coverage. The remaining positions are degenerate. This way, the first bit

of the primer matches at least 1
2 of target sequences and the second bit matches at least

half of these matched sequences, which is a fraction 1
4 of the target sequences. Overall, we

can obtain a primer that covers at least the fraction 1
2δ

of target sequences. The optimal

coverage is at most the number of target sequences, thus this algorithm has approximation

ratio 2δ ≤ 2
m
2 .

When δ ≥ m
2 , we can simply examine all target strings and pick the one with

maximum number of occurrences. Assume that the optimal solution q can cover c target

sequences with degeneracy d. Since q is composed of at most d regular primers, at least

one of them covers the fraction c
d of the target sequences. We know that p has the highest

coverage among all regular primers, so p also covers at least c
d of the target sequences. This

algorithm has approximation ratio d = 2m−δ ≤ 2
m
2 .

So far, we have not been able to design an approximation algorithm for MCDPD

with a significantly better ratio than the one in [41], nor to prove any lower bound. To

gain more insight, we have examined other versions of the bi-clique problem obtained by

relaxing some constraints in MCDPD.

• The threshold paired bi-clique problem (ThrPairBiClique) drops the property (1)

of bipartite graph G in MCDPD. In ThrPairBiClique problem, the G can have

arbitrary edges.

• Besides removing property (1), the paired bi-clique problem (PairBiClique) further

puts the constraint on the size of |Û |. We can choose as much vertices as Û unless at

most one vertex is chosen from each pair.

• In threshold bi-clique (ThrBiClique), both properties are dropped. G can have

arbitrary edges and we simply find a bi-clique with |Û | ≥ δ and maximum V̂ .

• The maximum bi-clique (MaxBiClique) problem drops both properties and also the

constraint on |Û |. We simply maximized the size of bi-clique(i.e., |Û |+ |V̂ |).
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These relationships are shown in Figure 3.2. In the following sections, we will give

the formal definition and discuss the MaxBiClique, ThrBiClique and ThrPairBiClique

problems. We have not yet investigated the PairBiClique problem and we do not know if

it can be solved in polynomial time.

MaxBiClique

ThrBiClique PairBiClique

ThrPairBiClique

MCDPD

Figure 3.2: Relationships between bi-clique problems and MCDPD

3.3.1 MaxBiClique

In the MaxBiClique problem, we are given a bipartite graph G = (U, V,E) and

the objective is to find a complete bipartite subgraph B = Û × V̂ in G such that Û ⊆ U ,

V̂ ⊆ V , and |Û |+|V̂ | is maximized. MaxBiClique has a trivial 2-approximation algorithm:

we pick the vertex v with maximum degree z in G and all its adjacent vertices as a bi-clique

of 1 + z vertices. Since v has the maximum degree, we know that |Û | ≤ z and |V̂ | ≤ z and,

thus, 2(z + 1) ≥ |Û |+ |V̂ |.
MaxBiClique is closely related to two other well-known optimization problems:

Independent Set and Vertex Cover. Consider the complementary graph G = (U, V,E)

of G. If Û × V̂ is a bi-clique in G, then Û ∪ V̂ will form an independent set in G. This

implies that (U ∪ V )− (Û ∪ V̂ ) is a vertex cover of G because no edge exists within Û ∪ V̂
w.r.t. G.

From the above, we can obtain a maximum bi-clique in G from a minimum vertex

cover C in G. Minimum Vertex cover and Maximum matching are dual problems. In

a bipartite graph, they have the same cardinality and we can convert a maximum matching

to a minimum vertex cover.
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We can examine the relationship between these problems to design a polynomial

time algorithm for MaxBiClique.

Algorithm 6 (MaximumBiclique
(
G = (U, V,E)

)
)

Construct the complementary graph G = (U, V,E)

Find a maximum matching M in G

Let L be the set of nodes reachable from U −M by alternating paths with respect to M

Let C = (U − L) ∪ (V ∩ L) . C is a minimum vertex cover

return (U ∪ V )− C

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Execution of Algorithm 5: (3.3a) Input graph G. (3.3b) Complementary graph

G. (3.3c) A matching M in G. (3.3d) Dark-shaded vertices are the set L w.r.t M . (3.3e)

Minimum vertex cover C in G : (U − L) ∪ (V ∩ L). (3.3f) Maximum bi-clique B in G :

(U ∪ V )− C.
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Figure 3.3 gives an example demonstrating how Algorithm 5 works. Given the

bipartite graph G in Figure 3.3a, it shows the result of each step and the bi-clique obtained

by this algorithm.

Assume the input graph G contains n vertices and m edges. A maximum matching

M in G can be computed in time O(
√
n · |E|) = O(n2.5) by the HopcroftKarp algorithm

[28]. This algorithm will also compute the set L. In step 4, we convert the maximum match-

ing M into a minimum vertex cover C. This step takes time O(n), since we already have

the set L from the previous step. The overall time complexity of Algorithm 5 is thus O(n2.5).

Instead of using a reduction to the maximum matching problem, we can also for-

mulate MaxBiClique as an integer linear program and solve it directly. Given a bipartite

graph G = (U, V,E), for each vertex v ∈ U ∪ V , we introduce a variable xv. If v is chosen

in the maximum bi-clique then xv = 1, else xv = 0. The constraints are that if two vertices

u, v are both chosen in the bi-clique, then the edge (u, v) must exist in G. The integral

linear program ILP1 for MaxBiClique is as follows:

max
∑

v∈U∪V
xv (ILP1)

subject to xu + xv ≤ 1 ∀u ∈ U, v ∈ V, and (u, v) /∈ E

xi ∈ {0, 1} ∀i = 1, . . . , n

The constraint matrix A of ILP1 is the incidence matrix of the complementary

graph G in which rows correspond to edges in G and columns correspond to vertices.

For example, the incidence matrix A of the graph G in Figure 3.3a is

A =



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 0

0 0 0 1 0 0 0 1


G is also a bipartite graph, so its incidence matrix A is totally unimodular [58]. To-

tal unimodularity allows us to drop integral constraints because ILP1’s relaxation - a linear
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program - has an integral optimal solution, which is also a solution for the original integral

linear program ILP1. Thus, the MaxBiClique problem can be solved in polynomial time.

3.3.2 PairBiClique

Problem Definition A paired bi-clique B is a restricted bi-clique in a bipartite graph

G = (U, V,E) that has special structures. Vertices in U must be paired and B can contains

at most one vertex from each pair. The Max Paired Bi-clique problem (PairBiClique) is

defined as follows:

Problem 7 (MaxPairBiClique) Given a bipartite graph G = (U, V,E) in which vertices

in U are partitioned into |U |2 disjoint pairs ci = {ui, ui}, for i = 1, . . . , |U |2 . Find a bi-clique

Û × V̂ in G such that |Û |+ |V̂ | is maximum and Û contains at most one vertex from each

pair.

The decision version of MaxPairBiClique decides if there is a paired bi-clique

B = Û × V̂ of specific size δ in the given graph G, the definition of which is as follows:

Problem 8 (PairBiClique) Given a bipartite graph G = (U, V,E) in which vertices in

U are partitioned into |U |
2 disjoint pairs ci = {ui, ui} for i = 1, . . . , |U |2 and an integer δ.

Decide if there is G contains a bi-clique Û × V̂ in G such that |Û |+ |V̂ | = δ and Û contains

at most one vertex from each pair.

NP-completeness The PairBiClique problem is NP-complete. It is easy to see that

PairBiClique ∈ NP, since a non-deterministic algorithm can guess a δ-element subset of

vertices that contains at most one vertex from each pair in V1, can check in polynomial time

if that subset is a bi-clique or not. The NP-hardness can be proved by the reduction from

the Clique problem.

Theorem 9 PairBiClique is NP-hard.

Proof. Given an instance 〈G, k〉 of Clique where G = (V,E) and |V | = n, we can construct

an instance of PairBiClique 〈G′, n + k〉 from it such that G contains a clique of size k

⇐⇒ G′ and contains a paired bi-clique of size |Û | + |V̂ | ≥ n + k. The bipartite graph

G′ = (U ′, V ′, E′) is constructed as follows:

• We construct a pair of vertices {ux, ux} in U ′ and a vertex vx in V ′ for each x ∈ V .
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• The set of edges E′ is defined as follows:

1. If (x, y) ∈ E or x = y, then (ux, vy) ∈ E′ and (uy, vx) ∈ E′.

2. For any x 6= y, (ux, vy) ∈ E′ .

In this construction, we have |U | = 2n and |V | = n. The vertices in U are paired.

We now prove that the following statement is true:

G contains a clique of size k ⇐⇒ G′ contains a paired bi-clique of size n+ k.

(⇒) Suppose there is a clique C of size k in the graph G. We can choose the bi-clique Û× V̂
in G′ as follows: Û = {ux|x ∈ C} ∪ {ux|x /∈ C}, and V̂ = {vy|y ∈ C}. This way we have

|Û | = n and |V̂ | = k.

For vertices ux ∈ Û and vy ∈ V̂ , since x, y ∈ C, we know that it is either x = y

or (x, y) ∈ E. Thus, (ux, vy) ∈ E′. For ux ∈ Û , since vx is not chosen in V̂ , it connects to

every vertex vy ∈ V̂ . Ultimately, then, Û × V̂ is a bi-clique.

(⇐) Let B1 = U1 × V1 be a bi-clique in G′ of size n+ k. We show that B1 can be adjusted

to a bi-cliqueB2 = U2 × V2 with |U2| = n and |V2| = k. We can further obtain a clique C

in the graph G from this bi-clique B2.

Assume that the bi-clique B has |U1| < n. Because U is composed of n pairs of

vertices, there must exist some pair {ux, ux} such that ux, ux /∈ U1. We can obtain a new

bi-clique B′ = U ′1 × V ′1 such that |U ′1| = |U1| + 1 and |V ′1 | = |V1| − 1 by modifying B as

below. For a pair {ux, ux} /∈ U1, if vx is in V1, then let V ′1 = V1−vx, otherwise, we choose an

arbitrary vertex like vy and let V ′1 = V1−vy. Since ux connects to every vertex vy ∈ V1−vx
and now vx is not in V ′1 , we can add ux into U1, i.e., U ′1 = U1 ∪ ux, and U ′1 × V ′1 is still

a bi-clique. We repeat this process until obtaining a bi-clique B2 such that |U2| = n and

|V2| = k.

After obtaining B2, we can further obtain a clique C in G of size k from it. Since

|U2| = n, we know that U2 contains exactly one vertex from each pair {ux, ux}. If vx ∈ V2,

then it is always true that ux /∈ U2 and ux ∈ U2 , since (ux, vx) /∈ E′. Or, if vx /∈ V2 and

ux ∈ U2, then we can remove ux and add ux to obtain a new bi-clique of the same size.

Now, we have a bi-clique in which ux ∈ U2 if, and only if, vx ∈ V2. Let C be the set of all
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x which ux ∈ U2 and vx ∈ V2, then C forms a clique of size k in G. To complete the proof,

it is sufficient to show that the above statement is true.

It is trivial that MaxPairBiClique and PairBiClique are equivalent, thus, from

above, we know both problems are NP-complete.

Approximability In this section, we prove that MaxPairBiClique ∈ APX by providing

a 1.5 approximation algorithm for MaxThrBiClique.

Given a instance of MaxPairBiClique , G = (U, V,E), where U is paired. We

know that U can be present as U = X ∪X. For each ux ∈ X, there exists a vertex ux ∈ X,

where {ux, ux} is a pair.

Also, E = E′ ∪E′ where E′ is the set of edges between X and V , and E
′

is the set of edges

between X and V .

The following is an approximation algorithm for the PairBiClique problem:

Algorithm 10 (PairedBiclique
(
G = (U, V,E)

)
)

1: AX ×BX ←MaximumBiclique
(
(X,V,E′)

)
.

2: AX ×BX ←MaximumBiclique
(
(X,V,E

′
)
)
.

3: return max {AX ×BX , AX ×BX}

Now we proof the approximation ratio:

Theorem 11 Algorithm 10 is a 1.5-approximation algorithm for MaxPairBiClique prob-

lem.

Proof. In G, let U∗ × V ∗ be the real optimal solution for MaxPairBiClique,

where |U∗| = a and |V ∗| = b, U∗ may contain vertices from both X and X. Let a′ = |U∗∩X|
and a′′ = |U∗ ∩X| so we have a = a′ + a′′.

The maximum bi-clique in any bipartite graph can be computed in polynomial

time as stated in section 3.3.1. In step 1 and 2, we will obtain two bi-cliques, AX×BX and

AX ×BX , by calculating maximum bi-cliques that containing only X and X, respectively.

Let |AX | = a1, |BX | = b1, |AX | = a2, and |BX | = b2.

Since AX ×BX is the maximum bi-clique using only X, we have a′ + b ≤ a1 + b1,

also, a′′ + b ≤ a2 + b2. From above two inequalities, we know that

(a1 + b1) + (a2 + b2) ≥ a′ + b+ a′′ + b = a+ 2b.
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So, max(a1 + b1, a2 + b2) ≥ 1
2(a + 2b) = 1

2a + b.. Thus, the solution returned by above

algorithm has size at least 1
2a+ b. Also, since we can always use X or X as a bi-clique, we

have a1 + b1 ≥ |U |2 and a2 + b2 ≥ |U |2 .

Assume that the solution from the above algorithm has size AppSol. Our goal is

to find, then, the upper bound of a+b
AppSol . Now we consider the relationship between 1

2a and

b. If 1
2a ≤ b, then we have

a+ b

AppSol
≤ a+ b

1
2a+ b

≤ 3

2
.

We then have 1
2a < b. Since |V1|2 ≥ a, we know that AppSol ≥ a. Thus,

a+ b

AppSol
≤ a+ b

a
≤ 3

2
.

1.5 is an upper bound for a+b
AppSol . Therefore, the above approximation algorithm

has approximation ratio 1.5.

Currently, we know that the MaxPairBiClique problem doesn’t have FPTAS

since the size of paired bi-clique is an integer bounded by the size of input graph. However,

we do not yet have a lower bound for the approximation ratio.

3.3.3 ThrBiClique

Definition The Max Threshold Bi-clique problem (MaxThrBiClique) is defined as

follows:

Problem 12 (MaxThrBiClique) Given a bipartite graph G = (U, V,E) and a positive

integer δ ≤ |U |. Find a bi-clique Û × V̂ such that |Û | = δ and |V̂ | is maximum.

The decision version of MaxThrBiClique is to find if there is a bi-clique of

specific size δ × l in a given graph G:

Problem 13 (ThrBiClique) Given a bipartite graph G = (U, V,E) and two positive in-

tegers δ ≤ |U | and l ≤ |V |. Decide if G contains a bi-clique Û × V̂ such that |Û | = δ and

|V̂ | = l.
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NP-completeness The MaxThrBiClique problem can be formulated as the Maximum

Fixed Set Intersection problem, which is known as a NP-complete problem [21].

Given an instance of ThrBiClique, we can construct a set Su for each vertex

u ∈ U and an element ev for each vertex v ∈ V . If (u, v) ∈ E, then ev ∈ Su. Therefore,

computing a bi-clique Û × V̂ with |Û | = δ and maximum |V̂ | is equivalent to finding δ

sets whose intersection is maximized. From above, it is clear that MaxThrBiClique and

ThrBiClique are NP-complete problems.

Threshold bi-clique and Balanced bi-clique We note that threshold bi-clique prob-

lems are highly related to balanced bi-clique problems, which are well-studied. The Bal-

ancedBiclique problem and its optimization version are defined as follows, in which it is

a known NP-hard problem [27].

Problem 14 (BalancedBiclique) Given a bipartite graph G = (U, V,E) and a positive

integer δ ≤ |U |, decide if G contains a bi-clique Û × V̂ in G such that |Û | = |V̂ | = δ.

Problem 15 (MaxBalancedBiclique) Given a bipartite graph G = (U, V,E), find a bi-

clique Û × V̂ in G such that |Û | = |V̂ | and |Û |+ |V̂ | is maximum.

The ThrBiClique problem and the BalancedBiclique problem are equivalent

in that if we can solve one, we can solve the other. It is obvious, then, that solving

ThrBiClique implies solving BalancedBiclique. Likewise, we can always reduce a ThrBiClique

instance to a BalancedBiclique instance by adding extra vertices.

The optimization versions, MaxBalancedBiclique and MaxThrBiClique, also

have the same approximation ratio (i.e., if we have an algorithm to solve one problem within

ratio α, then we can solve another with ratio α, too).

Theorem 16 For any α > 1, MaxThrBiClique has an α approximation algorithm ⇐⇒
MaxBalancedBiclique has an α approximation algorithm.

Proof. (⇒) Suppose we have an α approximation algorithm, A(G, δ), for Max-

ThrBiClique. Given a graph G = (U, V,E), we can find a balanced bi-clique by running

A iteratively as in Algorithm 17.
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Algorithm 17 (Approximate MaxBalancedBiclique
(
G = (U, V,E)

)
)

δ ← 0, l← 0, B = ∅, B∗ ← B.

while δ ≤ l do
B∗ ← B

δ ← δ + 1

B = Û × V̂ ← A(G, δ).

l← |V̂ |
return B∗

Assume that the optimal balanced bi-clique in G is of size t on both sides. Since

there is a t × t bi-clique in G, for any parameter δ ≤ t, the optimal solution for Max-

ThrBiClique will be at least t. Thus, when δ = t
α , we will have A(G, δ) ≥ t× 1

α = t
α = δ.

According to Algorithm 17, it will return a value at least t
α , so it is an α-approximation

algorithm for MaxBalancedBiclique.

(⇐) W.l.o.g, we assume that the optimal bi-clique for MaxThrBiClique is of

size δ × l where l ≥ δ.
Suppose that we have an α approximation algorithm, B(G), for MaxBalanced-

Biclique. Given a graph G = (U, V,E) and a positive integer δ, we can find a bi-clique

that contains exactly δ vertices in U by running B iteratively as in Algorithm 18.

Algorithm 18 (Approximate MaxThrBiClique
(
G = (U, V,E), δ

)
)

k = δ, W ← ∅, B ← ∅.
while 1 do

B = Û × V̂ ← B(G)

if |V̂ | < k
α then

return B −W

create a new vertex u

U ← U ∪ u, W ←W ∪ u
for v ∈ V do

E ← E ∪ (u, v)

k + +

Without loss of generality, assume that the optimal threshold bi-clique is of size

δ × l such that δ ≤ l. When Algorithm 18 terminates, let the optimal balanced bi-clique
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have size t× t so we can obtain a balanced bi-clique of size |Û | = |V̂ | ≥ t
α . At this time, we

have k
α > |V̂ |, so, it is clear that k > t. This result implies l ≤ t, otherwise it contradicts

that the maximum balanced bi-clique has size t× t, so we have |V̂ | ≥ l
α .

After removing the newly-added vertices from Û , we can obtain a bi-clique, (Û −
W )× V̂ , where |Û −W | = δ and |V̂ | ≥ l

α .

From above, the complexity result for MaxBalancedBiclique is extremely help-

ful for MaxThrBiClique. The inapproximability of MaxBalancedBiclique is well-

studied and the following theorem has been proven [35] :

Theorem 19 Let ε > 0 be an arbitrarily small constant. If SAT does not have a proba-

bilistic algorithm that runs in time 2n
ε

on an instance of size n, then there is no polynomial

time algorithm for MaxBalancedBiclique with approximation ratio N ε′ on graphs of size

N where ε′ = 1
2O(1/ε log(1/ε)) .

Therefore, we know that, for any small ε, if SAT does not have a probabilistic

algorithm that runs in time 2n
ε
, there is no N

(
1

2O(1/ε log(1/ε))

)
approximation algorithm for

MaxThrBiClique.

Linear Program and Integrality Gaps Intuitively, MaxThrBiClique can be for-

mulated as an integer linear program. Given a bipartite graph (U, V,E), we introduce a

variable xu for each vertex u ∈ U , and yv for v ∈ V . The linear program is as follows:

max
∑
v∈V2

yv (ILP2)

subject to
∑
u∈V1

xu = δ

xu + yv ≤ 1 ∀u ∈ U, v ∈ V, and (u, v) /∈ E

xu, yv ∈ {0, 1} ∀i = 1, . . . , n

Let |U | = m and |V | = n. Without loss of generality, we can assume that m > δ.

In the relaxation of ILP2, we can assign xu = δ
m for all u ∈ U and yv = 1− δ

m for all v ∈ V ,

so the fractional solution is (1 − δ
m) · n. Consider an empty graph G (e.g., E = ∅). The

optimal integral solution will be |Û | = 0, so the integrality gap is infinite.
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Since |Û | is requi red to be at least δ, every vertex v ∈ V̂ has degree deg(v) ≥ δ.

Thus, vertices in V with degree smaller than δ will never be chosen for V̂ . So, we are only

interested in graphs in which all vertices in V have degrees at least δ. With this constraint,

we can construct a bipartite graph G as follows: let m = δ · n, and G consists of n disjoint

stars of degree δ with centers in V . In this construction, the optimal solution in G is

|V̂ | = 1. The integrality gap is (1− δ
n·δ ) ·n = n− 1. Therefore, for the bipartite graph with

deg(v) ≥ δ, for every v ∈ V , the integrality gap is at least n− 1.

3.3.4 PairThrBiClique

Problem Definition and approximability Threshold and Paired Bi-clique problems

have constraints on both the number of vertices and the paired property. The Max-

ThrPairBiClique problem is defined as follows:

Problem 20 (MaxThrPairBiClique) Given a bipartite graph G = (U, V,E) where ver-

tices in U are partitioned into |U |
2 disjoint pairs ci = {ui, ui} for i = 1, · · · , |U |2 , and a

positive integers δ ≤ |U |
2 , decide if G contains a paired bi-clique Û × V̂ such that |Û | = δ

and at most one vertex is chosen from each pair.

The MaxThrPairBiClique problem can be easily reduced to the MaxThrBiClique

problem. This reduction not only proves the NP-completeness, but also provides some clue

of the approximability of MaxThrPairBiClique. The reduction and the summary are as

follows:

Theorem 21 MaxThrPairBiClique is NP-complete and for any α > 1, if ThrPair-

BiClique has an α-approximation algorithm, then ThrBiClique has an α-approximation

algorithm.

Proof. Given an instance (G, δ) of ThrBiClique, we can reduce it to an instance

(G′, δ) of ThrPairBiClique as follows: let G = (U, V,E). We construct G′ as (U ∪
U, V,E) in which U is a set of independent vertices of size |U |. For each u ∈ U , there is

a corresponding vertex u ∈ U . This way, one vertex, at most, in each pair {u, u} can be

chosen for Û .

This reduction makes clear the following relationship: G contains a bi-clique Û×V̂
with |Û | = δ and |V̂ | = k if and only if G′ contains a bi-clique Û ′ × V̂ ′ with |Û ′| = δ and

|V̂ ′| = k, and in Û ′ one, at most, is chosen from each pair {u, u}.
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(⇒) Consider that there is a bi-clique Û × V̂ in G, G′ that contains the same

bi-clique. u is not chosen for all u ∈ U .

(⇐) Assume there is a bi-clique Û ′ × V̂ ′ in G′. Û ′ will not contain any vertex

u ∈ U , since they are independent vertices and will cause V̂ ′ = ∅. Therefore, Û ′ ⊆ U and

Û ′ × V̂ ′ is also a bi-clique in G.

If there is an α-approximation algorithm A for ThrPairBiClique, then we can

construct an α-approximation algorithm for ThrBiClique by running A on the graph G′.

Thus, the inapproximability of ThrBiClique is an lower bound of the approximation ratio

of ThrPairBiClique.

From the previous section, we know that for any small ε, if SAT does not have

a probabilistic algorithm that runs in time 2n
ε
, there is no N

(
1

2O(1/ε log(1/ε))

)
approxima-

tion algorithm for MaxThrBiClique, andMaxThrPairBiClique also does not have any

N

(
1

2O(1/ε log(1/ε))

)
approximation algorithm.
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Chapter 4

Randomized Rounding Algorithm

for Solving MCDPDmis
tmpl

Problems MCDPD and MCDPDmis are NP-complete (see Chapter 1.3). There-

fore, polynomial time algorithms are not available unless P = NP . Here, we propose a

heuristic algorithm to solve MCDPDmis, utilizing randomized rounding approach. Recall

that in the MCDPDmisproblem, we are given a collection A of strings over some alphabet

Σ, in which each is the same length m, and an integral degeneracy threshold d as well as

an integral mismatch allowance λ. The objective is to compute a degenerate primer p of

length m and degeneracy at most d that covers the maximum number of strings in A with

at most λ mismatches.

MCDPD is a special case of MCDPDmis in which mismatches are not allowed

(i.e., λ = 0). In this special case, an optimal primer p is guaranteed to cover at least one

target string ai ∈ A. Hence, p can be obtained by changing a target sequence ai, adding

possible bases at some positions to make them ambiguous bases without exceeding the

degeneracy limit d.

From above, the MCDPD problem can be solved using the reduced problem 22,

MCDPD with template(MCDPDtmpl), trying each input sequence ai as the template p̂

and obtain the optimal result.
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Problem 22 (MCDPDtmpl) Given a set of n target strings A = {a1, a2, . . . , an} over

alphabet Σ each of length m, an integer d, and a template string p̂, find a degenerate primer

p of length m with deg(p) at most d that covers p̂ and covers the maximum number of strings

in A.

Similarly, with mismatch allowance, MCDPDmis can also reduced to the prob-

lem 23, MCDPDmis with template(MCDPDmis
tmpl). When mismatches are allowed to guar-

antee the optimal solution, not only the target strings ai need to be tested as template. Let

Tmplλ(A) denote the set of strings over Σ of length m, which has Hamming distance smaller

than λ to any target sequence. All strings in Tmplλ are potential templates to obtain the

optimal p.

We remark here that our algorithm for MCDPDmis will not actually try all pos-

sible templates from Tmplλ(A) - there are simply too many of these if λ is large. Instead,

we randomly sample templates from Tmplλ(A) and apply the algorithm for MCDPDmis
tmpl

only to those sampled. The number of samples will affect the running time and accuracy.

See Chapter 4.4 for more details.

Problem 23 (MCDPDmis
tmpl) Given A set of n target strings A = {a1, a2, . . . , an} over

alphabet Σ each of length m, integers d and λ, and a template string p̂, find a degenerate

primer p of length m with deg(p) at most d that covers p̂ and covers the maximum number

of strings in A with up to λ mismatches.

We present our algorithm for MCDPDmis
tmpl in 3 steps. In Section 4.1, we explain

the fundamental idea of our approach by presenting the linear program and our randomized

rounding algorithm for the case of binary strings, where Σ = {0, 1}. The extension to

DNA strings is somewhat complicated due to the presence of several ambiguous bases. We

present the algorithm for DNA strings in Section 4.2. At last the complete design process

is described in Section 4.3

4.1 for Binary Case

In this section, we use binary alphabet to show the integer linear program represen-

tation of the MCDPDmis
tmpl problem and demonstrate the randomized rounding algorithm.

The binary alphabet set is Σ = {0, 1} and we only have one ambiguous base, denoted by
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N, which can represent either 0 or 1. The purpose of the randomized rounding algorithm,

called SRRbin, is to compute an optimal fractional solution of the linear program then

gradually round it to a feasible integral solution.

Let p̂ = p̂1p̂2 · · · p̂k be the template string from the given instance of MCDPDmis
tmpl.

It is convenient to think of the objective of MCDPDmis
tmpl as converting p̂ into a degenerate

primer p by changing up to δ symbols in p̂ to N, where δ = log2 d.

For each target string ai = ai1a
i
2 · · · aik, we use a binary variable xi to indicate if ai

is covered by p. For each position j, a binary variable nj is used to indicate if p̂j will be

changed to N. To take mismatch allowance into consideration, we also use binary variables

µij , which indicate if we allow a mismatch between p and ai on position j, that is, whether

or not aij 6⊆ pj .
By using the above variables, the objective is to maximize the sum of all xi. Next,

we need to specify the constraints. One constraint involves the mismatch allowance λ. For

a string ai, the number of mismatches
∑

j µ
i
j should not exceed λ. Next, we have the bound

on the degeneracy. In the binary case, the degeneracy of p can be written as deg(p) =
∏
j 2nj

and we require that deg(p) ≤ d. To convert this inequality into a linear constraint, we take

the logarithms of both sides. The last group of constraints are the covering constraints.

For each j, if p covers ai and p̂j 6= aij , then either pj = N or pj contributes to the number

of mismatches. These constraints can be expressed by inequalities xi ≤ nj + µij , for all i, j

such that aij 6= p̂j . The complete linear program is as such:

max
∑
i

xi (ILP3)

subject to
∑
j

µij ≤ λ ∀i

∑
j

nj ≤ δ

xi − nj ≤ µij , ∀i, j : p̂j 6= N ∧ aij 6= p̂j

xi, nj , µ
i
j ∈ {0, 1} ∀i, j

The pseudo-code of our Algorithm SRRbin is given below in Algorithm 24. The

algorithm starts with p = p̂ and gradually changes some symbols in p to N, solving a linear

program at each step. At each iteration, the size of the linear program can be reduced by
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discarding strings that are too different from the current p as well as by ignoring strings

that are already matched by p. More precisely, any ai which differs from the current p on

more than λ+ δ positions cannot be covered by any degenerate primer obtained from p, so

this ai can be discarded.

It it important to note that, if ai differs from p with at most λ positions, then it

will be covered, in which case we can both set xi = 1 and remove it from A. This pruning

process in Algorithm SRRbin is implemented by function FilterOut.

Algorithm 24 (SRRbin)

p← p̂

while deg(p) < d do

FilterOut(p,A, d, λ) . updates A

if A = ∅ then
break

LP←GenLinProgram(p,A, d, λ)

FracSol←SolveLinProgram(LP)

RandRoundingbin(p,FracSol, d) . updates p

return p

If no sequences are left in A, then we are done and we can output p. Otherwise, we construct

the linear program for the remaining strings. This linear program is essentially the same as

Program ILP3, with p̂ replaced by p,and with new constraints nj = 1 for positions j such

that pj 6= N.

Additional constraints are added to take into account the rounded positions in p.

Namely, we add the constraint nj = 1 for all pj already replaced by N.

We then consider the relaxation of the above integer program in which all in-

tegral constraints xi, nj , µ
i
j ∈ {0, 1} are replaced by xi, nj , µ

i
j ∈ [0, 1], that is, all vari-

ables are allowed to take fractional values. After solving this relaxation, we call Proce-

dure RandRoundingbin, which chooses one fractional variable nj with probability propor-

tional to its value and that rounds it up to 1. It is sufficient to round only the nj variables,

since all other variables are uniquely determined from the nj ’s. To complete this task, let

J be the set of all j for which nj 6= 1 and π =
∑

j∈J nj . The interval [0, π] can be split into

consecutive |J | intervals, with the interval corresponding to j ∈ J having length nj . Thus,
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we can randomly - but, uniformly - choose a value c from [0, π]. And, if c is in the interval

corresponding to j ∈ J , then we round nj to 1.

If the degeneracy of p is still below the threshold, Algorithm SRRbin executes

the next iteration. It correspondingly adjusts the constraints of the linear program, which

produces a new linear program. The process stops either when the degeneracy allowance is

exhausted or when no target string can be further covered.

4.2 for DNA Sequences

The randomized rounding algorithm, SRRbin, can be extended to apply on DNA

sequences (i.e., when the alphabet is Σ = {A, C, G, T}).
We start with the description of the integer linear program for MCDPDmis

tmpl with

Σ = {A, C, G, T}. Degenerate primers for DNA sequences - in addition to four nucleotide

symbols A, C, G and T - can use eleven symbols corresponding to ambiguous positions

described by the IUPAC codes M, R, W, S, Y, K, V, H, D, B, and N. The interpretation of these

codes was given in Table 1.1 in Chapter 1.1. Let Ω denote the set of these fifteen symbols.

Each symbol ω ∈ Ω corresponds to a subset of Σ and |ω| is the for the cardinality of this

subset. For example, we have |C| = 1, |H| = 3, and |N| = 4. The complete linear program is

given in program ILP4.

As for binary sequences, xi indicates if the i-th target sequence ai is covered.

The objective of the linear program is to maximize the primer coverage, that is
∑

i x
i. To

specify the constraints, we now have eleven variables representing the presence of ambiguous

bases in the degenerate primer, namely mj , rj , wj , sj , yj , kj , vj , hj , dj , bj , and nj , which

are denoted using letters corresponding to the ambiguous symbols. Specifically, for each

position j and for each symbol ω ∈ Ω, the corresponding variable ωj indicates if p̂j is

changed to this symbol in the computed degenerate primer p. For example, rj represents

the absence or presence of R in position j. For each j, at most one of these variables can

be 1, which can be represented by the constraint that their sum is at most 1.

49



Variables µij indicate if there is a mismatch between p and ai on position j. The

bound on the number of mismatches can be written as
∑

j µ
i
j ≤ λ for each i. The bound

on the degeneracy of the primer p can be written as such

deg(p) =
∏
j

2(mj+rj+wj+sj+yj+kj) × 3(vj+hj+dj+bj) × 4nj ≤ d,

which, after taking logarithms of both sides, gives us another linear constraint.

maximize
∑

i x
i (ILP4)

subject to
∑

j µ
i
j ≤ λ ∀i∑

j

[
(mj + rj + wj + sj + yj + kj)

+ log2 3 · (vj + hj + dj + bj)

+ 2 · nj ] ≤ δ = log2 d

xi ≤ mj + vj + hj + nj + µij ∀i, j :(p̂j = A, aij = C) ∨ (p̂j = C, aij = A)

xi ≤ rj + vj + dj + nj + µij ∀i, j :(p̂j = A, aij = G) ∨ (p̂j = G, aij = A)

xi ≤ wj + hj + dj + nj + µij ∀i, j :(p̂j = A, aij = T) ∨ (p̂j = T, aij = A)

xi ≤ sj + vj + bj + nj + µij ∀i, j :(p̂j = C, aij = G) ∨ (p̂j = G, aij = C)

xi ≤ yj + hj + bj + nj + µij ∀i, j :(p̂j = C, aij = T) ∨ (p̂j = T, aij = C)

xi ≤ kj + dj + bj + nj + µij ∀i, j :(p̂j = G, aij = T) ∨ (p̂j = T, aij = G)

xi,mj , rj , wj , sj , yj , kj ,

vj , hj , dj , bj , nj , µ
i
j ∈ {0, 1} ∀i, j

mj + rj + wj + sj + yj + kj

+ vj + hj + dj + bj + nj ≤ 1 ∀j

For ai to be covered (that is, when xi = 1) in each position j for which aij 6= p̂j , we

must either have a mismatch at position j or we need aij ⊆ pj . Expressing this with linear

constraints can be accomplished by considering cases corresponding to different values of

p̂j and aij . For example, when p̂j = A and aij = C (or, vice versa), then either we have

a mismatch at position j (that is, µij = 1) or pj must be one of ambiguous symbols that

match A and C (that is, M, V, H, or N). This scenario can be expressed by the constraint
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xi ≤ mj + vj + hj + nj + µij . We will have one such case for any two different choices of p̂j

and aij , giving us six groups of such constraints.

We then extend our randomized rounding approach from the previous section to

this new linear program. In this linear program, we can see that the integral solution can

be determined based on the values of all variables ωj , for ω ∈ Ω. In the fractional solution,

a higher value of ωj indicates that pj is more likely to be the ambiguous symbol ω. We

determine, therefore, ambiguous bases in p one at a time by rounding the corresponding

variables.

As for binary strings Algorithm SRRdna, will start with p = p̂ and gradually

change some bases in p to ambiguous bases, solving a linear program at each step. At each

iteration we first call function FilterOut that filters out target sequences that are either

too different from the template p̂ (so that they cannot be matched), or too similar (in which

case they are guaranteed to be matched).

Algorithm 25 (SRRdna)

p← p̂

while deg(p) < d do

FilterOut(p,A, d, λ) . updates A

if A = ∅ then
break

LP←GenLinProgram(p,A, d, λ)

FracSol←SolveLinProgram(LP)

RandRoundingdna(p,FracSol, d) . updates p and d

return p

If no sequences are left in A, then we output p and halt. Otherwise, we construct

a linear program for the remaining sequences. This linear program is a slight modification

of the one in Program ILP4, with p̂ replaced by p. Each base pj that was rounded to

an ambiguous symbol is essentially removed from consideration and will not be changed

in the future. Specifically, the constraints on xi associated with this position j will be

dropped from the linear program because these constraints apply only to positions where

pj ∈ {A, C, G, T}. For each position j that was already rounded, we appropriately modify the

corresponding variables. If pj = ω for some ω ∈ Ω− Σ, then the corresponding variable ωj
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is set to 1 and all other variables ω′j are set to 0. If aij ∈ pj , that is, aij is already matched,

then we set µij = 0. And, if aij /∈ pj , then we set µij = 1, which effectively reduces the

mismatch allowance for ai in the remaining linear program.

Next, Algorithm SRRdna solves the fractional relaxation of such constructed inte-

ger program, obtaining a fractional solution FracSol.

Finally, the algorithm calls function RandRoundingdna that will round one frac-

tional variable ωj to 1. This represents setting pj to ω. To choose j and the symbol ω

for pj , we randomly choose a fractional variable ωj proportionally to its values among un-

determined positions. This choosing is done similarly as in the binary case, by summing

up fractional values that correspond to different symbols and positions and then choosing -

uniformly - a random number c between 0 and this sum. This c determines which variable

should be rounded up to 1.

4.3 Complete Algorithm

To assess the effectiveness of our randomized rounding approach, we extended

Algorithm SRRdna to a complete primer design algorithm - called RRD2P - and tested

it experimentally on real data sets. In this section, we describe Algorithm RRD2P. The

experimental evaluation is given in Chapter 4.4.

A flowchart of Algorithm RRD2P is given in Figure 4.1. The algorithm (see

Algorithm 26) has two parameters: Sfvd and Srev, which are, respectively, two sets of

target sequences, one for forward and the other for reverse primers. The sets of sequences

are provided by the user and represent desired binding regions for the two primers. The

algorithm first finds candidates for forward primers and reverse primers separately. Then,

from among these candidates, it iterates over all primer pairs to choose primer pairs with

the best joint coverage.
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Target Sequences

forward primer binding regions reverse primer binding regions

find conserved regions

(FindAlignments)

alignments A1, A2, · · ·AN

Run DesignPrimers for each Ah

For each template run SRRdna to

solve corresponding MCDPDmis
tmpl

forward primer candidates f1, f2, · · · reverse primer candidates r1, r2, · · ·

Run ChooseBestPairs

to find best primer pairs

primer pairs (fx1 , ry1), (fx2 , ry2) · · ·

Sort according to entropy scores

Figure 4.1: Complete Algorithm RRD2P

Algorithm 26 (RRD2P(Sfvd = {s1
f , · · · , snf}, Srev = {s1

r , · · · , snr }, k, d,m))

PrimerListfvd ← DesignPrimers(Sfvd, k, d, λ)

PrimerListrev ← DesignPrimers(Srev, k, d, λ)

ChooseBestPairs(PrimerListfvd,PrimerListrev) . Find best primer pairs (f, r)

For both types of primers, the actual primer design process - or, the Design-

Primers procedure that appears in Algorithm 27 - consists of two parts. In the first part,

the algorithm identifies conserved regions within target sequences (Line 1). Much as before,

these regions are also called alignments and they are denoted Ah. In the second part, we

designed primers for these regions (Lines 2-7).
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Algorithm 27 (DesignPrimers(S = {s1, s2, · · · , sn}, k, d, λ))

1: A1, A2, · · ·AN ← FindAlignments(S,m)

2: for all alignments Ah, h = 1, · · ·N do

3: PLh ← ∅
4: Th ← set of templates . see explanation in text

5: for all p̂ ∈ Th do

6: p← SRRdna(p̂, Ah, d, λ)

7: Add p to PLh

8: PrimerList← PL1 ∪ PL2 · · · ∪ PLN

9: return PrimerList (sorted according to coverage)

Finding alignments. Algorithm FindAlignments for locating conserved regions (see Al-

gorithm 28) follows the strategy from HYDEN. It enumerates over all sub-strings of length

m of the target sequences. For each m-mer, M , we aligned it against every target sequence

si without gaps to find the best match ai of length m (i.e., ai has the smallest Hamming

distance with M). The resulting set A = {a1, a2, · · · , an} of the n best matches, one for

each target string, is a conserved region (or, alignment).

Intuitively, more conserved alignments are preferred, since they are more likely to

generate low-degeneracy primers. To identify how well-conserved an alignment A is, the

entropy score was applied. That is, we sorted alignments according to their entropy scores.

Algorithm 28 (FindAlign(S = {s1, s2 · · · , sn},m))

1: AlignmentList← ∅
2: for all m-mers, M , in S do

3: A← ∅
4: for all si ∈ S do

5: ai ← substring of si that is the best match for M

6: Add ai to A

7: Add A to AlignmentList

8: return AlignmentList (sorted according to entropy)

Computing primers. In the second part (Lines 2-7) of Algorithm 27, the algorithm considers

all alignments A1, ..., AN computed by Algorithm FindAlignments. For each Ah, we used

the list Th of template strings (see below). For each p̂ ∈ Th we call SRRdna(p̂, Ah, d, λ) that
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will compute a primer p, we added them to the list of primers PLh. All lists PLh are then

combined into the final list of candidate primers. What remains now is an explanation about

how to choose the set Th of templates. If the set Tmplm(Ah) of all candidate templates

is small, then one can take Th to be the whole set Tmplλ(Ah). For instance, when λ = 0

then Tmpl0(Ah) = Ah. In general, we take Th to be a random sample of r strings from

Tmplm(Ah), where the value of r is a parameter of the program that can be used to optimize

the tradeoff between the accuracy and the running time. Each p̂ ∈ Th is constructed as

follows: (i) choose uniformly a random ai ∈ Ah, (ii) choose uniformly a set of exactly m

random positions in ai, and (iii) for each chosen position j in ai, set aij to a randomly chosen

base, where this base is selected with probability proportional to its frequency in position

j in all sequences from Ah.

4.4 Results

We tested Algorithm RRD2P on three biological data sets and then compared

our results to those from Algorithm HYDEN.

1. The first data set is a set of 50 sequences of human olfactory receptor (OR) gene [41],

with a length around 1Kbps, provided via the HYDEN program.

2. The second data set is from the NCBI flu database [1] from which we chose human

flu sequences of lengths 900-1000 bps (dated from November 2013). This set contains

229 flu sequences.

3. The third set contains 160 fungal ITS genes of lengths varying from 400-2000 bps that

were obtained from NCBI-INSD [2].

For each of these datasets, we ran Algorithm RRD2P with the following parame-

ters:

• Primer length m= 25.

• Primer degeneracy threshold (forward, reverse) : (625,3750), (1250,7500), (1875,

11250), (2500, 15000), (3750, 22500), (5000,30000), (7500,45000), (10000,60000). Note

that the degeneracy values increase roughly exponentially, which corresponds to a lin-

ear increase in the number of ambiguous bases. We set the degeneracy of the reverse

primer to be six times larger than that of the forward primer (the default in HYDEN).
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• Forward primer binding range : 0 ∼ 300, reverse primer binding range : −1 ∼ −350.

• Mismatch allowance : λ = 0, 1, 2. The value of λ represents the mismatch allowance

for each primer separately.

• Number of alignments: N = 50.

• Number of template samples: r = 5.

For each choice, we compared our algorithm to HYDEN in terms of the coverage of com-

puted primers. To make this comparison meaningful, we designed our algorithm to have

similar workflow and used similar input formats and parameters, which allowed us to run

HYDEN with exactly the same settings. For the purpose of these experiments, we used

the best primer pair from the list computed by Algorithm RRD2P (see Algorithm 26).

For each dataset, the results are shown in Figures 4.2, 4.3 and 4.4, respectively. In

each figure, the x-axis represents the degeneracy of the forward primer and the degeneracy

of the reverse primer is six times larger. The y-axis is the coverage of the computed primer

pair. From these graphs, we see that HYDEN produces some unstable results. Specifically,

in some case, higher degeneracy threshold produces lower coverage when other parameters

keep unchanged. The results show that RRD2P is capable of finding better degenerate

primers than HYDEN for different choices of parameters.
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Figure 4.2: Comparison of RRD2P and HYDEN on human OR genes.
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Figure 4.3: Comparison of RRD2P and HYDEN on flu sequences.
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Figure 4.4: Comparison of RRD2P and HYDEN on fungal sequences.

Running time. The running time of Algorithm RRD2P is dominated by the module running

Cplex to solve the linear program, which depends, roughly linearly, on the number of times

the LP solver runs. The above experiments were performed for r = 5. For the third dataset

above and δ = 0, the running times of Algorithm RRD2P varied from 110s for d = 625

to 164s for d = 10000 (on Windows 8 2.4 GHz CPU, 8.0 G memory). The respective run

times of HYDEN were lower: between 25s and 28s. The run time of Algorithm RRD2P

can be adjusted by using smaller values of r. For example, for r = 1, 2, RRD2P is actually

faster than HYDEN for small to moderate degeneracy values and the loss of accuracy is

not significant.
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Chapter 5

Polynomial Algorithm for the

Relaxation of Binary MCDPDtmpl

5.1 Linear Program Representation and Dual Problem

In the previous section, the algorithm requires fractional solution of MCDPDmis
tmpl

for randomized rounding and solvers such as CPLEX are needed. To get rid of solvers, we

attempted to develop a heuristic algorithm to compute the fractional solution.

In this section, we propose a heuristic algorithm for solving the restricted case of

MCDPDtmpl that λ = 0 (problem (22)) with binary alphabet. All strings are binary (i.e.,

aij , p̂j ∈ {0, 1} for all i, j, where index j indicates the jth position in a string). We introduce

two sets of binary variables:

nj , 1 ≤ j ≤ m

xi, 1 ≤ i ≤ n.

xj indicates if pj = N and yi indicates if the input string ai is covered by p. The MCDPDtmpl

can then be represented as a linear program as follows:
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max
∑
i

xi

subject to
∑
j

nj ≤ δ (5.1)

xi − nj ≤ 0 ∀i, j : p̂j 6= aij (5.2)

nj , x
i ∈ [0, 1] ∀i, j (5.3)

If there exists some sequence ai that is equal to the template p̂, since the computed

primer p covers p̂, then ai is also guaranteed to be covered. Therefore, such sequences do not

affect the choice of degenerate primer p and can be ignored in the MCDPDtmpl problem.

After we remove such sequences, each variable yi must appear in some constraints (5.2).

Therefore, all constraints xi ≤ 1 can be eliminated and the constraints (5.3) can

be rewritten as

nj ≤ 1 ∀j (5.4)

nj , x
i ≥ 0 ∀i, j (5.5)

To solve the linear program using combinatorial methods, we attempted to find

clues from its dual problem. We introduced dual variables α, βij and γj that correspond to

constraints (5.1), (5.2) and (5.4), respectively. The dual linear program is given below:

min δ · α+
∑
j

γj

subject to α+ γj −
∑

i:p̂j 6=aij

βij ≥ 0 ∀j (5.6)

∑
j:p̂j 6=aij

βij ≥ 1 ∀i (5.7)

α, βij , γj ≥ 0 ∀j, i : p̂j 6= aij (5.8)

5.2 Special case: δ = 1

5.2.1 Linear Program

We first considered the simplified case when δ = 1. In this case, we claim that we

can obtain the optimal solution by setting γj = 0 for all j and maximizing α. To justify this
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claim, we showed that, given a feasible solution (α, β, γ) which has at least one positive γj ,

we can construct another feasible solution (α̂, β̂, γ̂) with fewer positive γj s and with equal

or smaller objective value.

Let γmin be the smallest positive γj . We can modify the current feasible solution

as follows: α̂ = α+γmin, β̂ = β, and γ̂ = γ−γmin. Then, (α̂, β̂, γ̂) is also a feasible solution.

In the objective function, the value of α increases by γmin and the value of
∑

j γj decreases

by γmin. Thus, the objective value will not increase.

We can repeat this process until all γj are zero, proving our claim. Therefore,

when δ = 1, the dual linear program can be simplified as such:

min α

subject to α−
∑

i:p̂j 6=aij

βij ≥ 0 ∀j (5.9)

∑
j:p̂j 6=aij

βij ≥ 1 ∀i (5.10)

α, βij ≥ 0 ∀i, j (5.11)

This linear program can be thought of as a flow problem on a bipartite graph

G = (U, V,E). Specifically, U has one vertex uj for each position j, V has one vertex vi for

each sequences ai, and E is the set of directed edges (vi, uj) between any pair of vertices vi

and uj such that p̂j 6= aij .

In the corresponding flow problem, each vertex vi ∈ V is a source into which we

inject a flow with value 1. Each edge e = (vi, uj) has infinite capacity and some flow βij .

(Note: we sometimes use notation β(e) or β(i, j) instead.) Each vertex uj ∈ U is a sink

with outflow αj =
∑

i:(i,j)∈E β
i
j . Then, the objective is to minimize α = max(α1, · · ·αm).

Given a feasible solution (α, β), a sink uj is called a maximizer if αj = α. Typically, we use

notation J for the set of maximizers.

The bipartite graph G described above and the flow (α, β) on it is depicted in

Figure 5.1.
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Figure 5.1: Dual Problem

5.2.2 Characterization of Optimal Solutions

Let (α∗, β∗) be the optimal solution of the dual problem and N(R) ⊆ U denote

the set of neighbors of a set R ∈ V . We can then prove the following theorem:

Theorem 29

α∗ = max
W⊆V

|R|
|N(R)|

Proof.

(≥) For any subset of sources R ⊆ V , the total flow out of R is |R|, since each vertex v ∈ R
has outflow 1. This flow can only go to N(R). Therefore, there must exist at least one

vertex uj ∈ N(R), which has outflow αj ≥ |R|
|N(R)| . Hence, the optimal solution α∗ will be

at least |R|
|N(R)| .

(≤) Take an optimal solution (α∗, β∗) in which the number of maximizers is minimized (i.e.,

with minimum |J |). Let Q be the set of sources which send flow to J (i.e., Q = {vi : βij >

0 for some uj ∈ J}).
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According to the definition, flow to J is only contributed by R. Therefore,

α∗ ≤ |R|
|J |

.

Next, we proved that N(R) ⊆ J . Each source vi ∈ R must contribute to some

sink uj ∈ J , that is βij > 0. Suppose that (vi, uk) ∈ E for some uk ∈ U − J . Using edge

(vi, uk), we can reduce βij by a small amount ε > 0 and increase βik by the same amount ε.

If J = {uj}, this contradicts the optimality of α∗. And, if J contains any sinks other than

uj , then this contradicts the minimality of |J |.

α∗ ≤ |R|
|N(R)|

From the above proof, Lemma 30 below is also true.

Lemma 30 A feasible solution (α∗, β∗) is optimal if, and only if, there is a non-empty set

X of maximizers, such that sources sending positive flow to X do not have any edge to

U −X.

5.2.3 Augmenting Paths and Augmentation

Let p = (ut0 , v
t0 , ut1 , v

t1 , vtr−1 , utr) be an undirected path in G between two sinks

ut0 and utr . We call (uta , v
ta) a backward edge and (vta , uta+1) a forward edge for all a.

An undirected path p is an augmenting path if all its backward edges have positive

flow (i.e., β(ta, ta) > 0 for all a = 0, · · · , r − 1, as shown in Fig 5.2).

ut0 ut1 ut2 · · · utr

vt0 vt1 · · ·

β
t 0 t 0
>

0

β
t 1 t 1
>

0

β
t 2
t 2
>

0

Figure 5.2: Augmenting path
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Now we define an augmentation of an augmenting path. To augment an augment-

ing path p = (ut0 , v
t0 , ut1 , v

t1 , · · · , vtr−1 , utr) with a certain flow amount ε > 0, β(ta, ta) is

reduced by ε and β(ta, ta+1) is increased by ε for all a = 1, · · · , r − 1. Since negative flow

is not allowed, the value ε can be at most mina{β(ta, ta)}. After the augmentation on p,

the updated flow β′ still satisfies all linear program constraints and forms a new feasible

solution, (α′, β′).

Procedure Augment(J, P, ε). Let J ⊆ U be the set of current maximizers for some flow

(α, β). From now on, we consider augmenting paths starting in J and ending in U − J
only. Given a set of augmenting paths P from J to U − J , we can do augmentation on

them simultaneously. We define Procedure Augment(J, P, ε) as augmenting all paths p ∈ P
starting from J with the amount ε. We attempt to choose the largest α for which the

updated flow (α′, β′) will remain feasible and such that all maximizers for (α, β) will remain

as maximizers for (α′, β′).

The value of ε is bound by two constraints:

1. Since all sinks in J must remain maximizers, the outflow of each uk ∈ U − J cannot

exceed the new maximum α− ε.

2. For edges on which the augmentation decreases flow values, we need to ensure that ε

is small enough so that their values remain non-negative.

For each uk ∈ U − J , let CendP (uk) be the total number of paths pj ∈ P that end

at uk. After we augment P , αk will increase by CendP (uk) · ε (i.e., α′k = αk + CendP (uk) · ε).
The new outflow α′k must be smaller than α− ε. Therefore, we need that ε ≤ ε1(uk), where

ε1(uk) =
|α− αk|

CendP (uk) + 1

Now we consider the second constraint. An edge e can be either forward or back-

ward edge in each augmenting path p ∈ P . Let CfwdP (e) and CbkdP (e) denote the number of

paths p ∈ P that use e as both the forward edge and backward edge, respectively. After

the augmentation, the updated flow will be β′(e) = β(e) +
(
−CbkdP (e) +CfwdP (e)

)
· ε. When

CbkdP (e) ≤ CfwdP (e), it is guaranteed that β′(e) ≥ β(e) ≥ 0. Therefore, we only need to

consider edges for which CbkdP (e) > CfwdP (e). For those edges, the corresponding bound is
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ε ≥ ε2(e), where

ε2(e) =
β(e)

CbkdP (e)− CfwdP (e)
.

Letting ε1 = min{ε1(uk) | uk ∈ U−I} and ε2 = min{ε2(e) | e : CbkdP (e) > CfwdP (e)},
the largest ε for which Augment(I, P, ε), preserves feasibility and all maximizers as

ε = min(ε1, ε2). (5.12)

If ε = ε2(e), for some edge e, we call e the bottleneck edge.

5.2.4 Algorithm

The total flow on G is n, since |V | = n and each source vi has inflow 1. Given

an arbitrary feasible solution (α, β) for the dual problem, we can redistribute the flow

iteratively to approach the optimal solution. In each iteration, we start from the current

feasible solution (α, β), where α = maxj αj .

The idea is to execute Procedure Augment(J, P, ε) in each iteration, doing a si-

multaneous augmentation by the largest ε for which the new solution is feasible and all

vertices in J remain maximizers. To achieve polynomial running time, we follow the prin-

ciple of Edmonds-Karp algorithm and choose P to be the set of shortest augmenting paths

from each maximizer uj ∈ J to U − J . The amount ε of augmentation is computed using

formula (5.12).

Since we choose the shortest paths in P , the bound ε2 can be further simplified.

In P , an edge e can be chosen multiple times as either a forward edge or backward edge

in different augmenting paths. However, it cannot be forward edge in some path in P and

backward in another path in P , or it could make one of these paths shorter. Hence, for each

edge e in P , either CfwdP (e) = 0 or CbkdP (e) = 0. The bound ε2 can be then rewritten as

ε2 = min
e:CbkdP (e)>0

β(e)

CbkdP (e)

The algorithm for solving the dual linear program is shown in Pseudocode 31.
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Algorithm 31 (SolveDual
(
G = (U, V,E)

)
) . Initialization: choose an arbitrary

feasible solution (α, β)

For each vi, arbitrarily choose a uj s.t. (vi, uj) ∈ E and let βij ← 1

βij = 0 for other edges (i, j) ∈ E
αj =

∑
i:(vi,uj)∈E

βij ∀j

repeat

α = max{α1, α2, · · · , αm}
J ← {uj |αj = α}
if Some uj ∈ J does not have an augmenting path to U − J then

break

for each uj ∈ J do

pj ← shortest augmenting path from uj to U − J

P ← {pj : uj ∈ J}
ε1 ← min

uk∈U−I
(α− αk)/

(
CendP (uk) + 1

)
ε2 ← min

{e:CbkdP (e) >0}
β(e)/CbkdP (e)

ε← min(ε1, ε2) . If ε = ε1, the size of J increases, the phase is completed

. Otherwise, continue another iteration of current phase

Augment(J, P, ε)

end repeat

Correctness. Next, we prove that the obtained solution is optimal. When the algorithm

stops, there must exist a non-empty set of maximizers, X ⊆ J , which do not have augment-

ing paths to U − J . This implies that X also does not have augmenting paths to J −X,

otherwise augmenting paths from X to U − J would exist by going through J −X. Hence,

any sink vi that contributes to X has no edge to U − X. According to Lemma 30, the

obtained solution is optimal.

Analysis. In this section, we show that Algorithm SolveDual is a polynomial time algo-

rithm. We decided the computation into phases in which each individual phase spans the

sequences of augmentations between any two steps when ε was chosen to be ε1. In each step
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of a phase, except for the last, the value of the augmentation is determined by a bottleneck

edge. In the last step, at least one vertex, uk ∈ U − J , became a maximizer and was added

to J . Once a vertex was added into J , which will never be removed. Therefore, the number

of phases is at most m. It remains to estimate the number of iterations required to complete

a phase. For each vertex vi ∈ V and uj ∈ U , let d(vi) and d(uj) be the length of the shortest

augmenting path from it to U − J ; d(uk) = 0 for uk ∈ U − J . We claim that the distance

d(uj) never decreases. During the augmentation process in which for each edge e = (vi, uj),

the flow β(e) on it may change in three possible ways:

• If β(e) > 0 increases or decreases but remains positive, this will not affect the shortest

augmenting paths from I to U − J .

• If β(e) > 0 is reduced to 0, e can no longer be used as a backward edge in any

augmenting path. Removing edges cannot shorten the length of any augmenting

path.

• When β(e) raises from 0 to some positive value, then d(vi) > d(uj) otherwise β(e)

can not increase. Hence, assume the shortest augmenting path starting from uj uses

e, the length will increase to at least d(vi). Then, for other uk ∈ U , if the shortest

augmenting path starting from uk goes through uj , it must use e as an edge and the

distance d(uk) will also increase. For augmenting paths in which e is not used, the

distance keeps the same.

We now claim that between any two times when e = (vi, uj) is used as a bottleneck

edge, d(vi) increases by at least 2. Consider a step when e is a bottleneck edge. Then, at

this step, e is a backward edge with β(e) > 0. Letting r = d(uj), we have d(vi) = r − 1.

After the augmentation, β(e) is reduced to 0 and cannot become a backward edge; thus,

it cannot be a bottleneck edge either. Before e can be a bottleneck edge again, it must

have β(e) > 0, which implies e was a forward edge at some time. At this time, we have

d(vi) > d(uj) and we also know d(uj) = r will not decrease, thus d(vi) ≥ r + 1. Therefore,

d(vi) increases from r − 1 to at least r + 1.

Let |U | = m, |V | = n, and |E| = b. The distance between any two nodes in G is

at most m+n. Therefore, each edge can be used as a bottleneck edge for at most O(m+n)

times, according to the earlier claim about the bottleneck edges. Hence, each phase takes at

most O(b(m+ n)) iterations. The maximum number of phases is m and, in each iteration,
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it takes time O(b) to search for the shortest augmenting paths. The overall time complexity

of the above algorithm is O(b(m+ n)) ·O(m) ·O(b) = O(b2m(m+ n)).

5.3 General Case

5.3.1 Linear Program Interpretation

Recall that the general case dual problem is as below:

min δα+
∑
j

γj (5.13)

subject to α+ γj −
∑

i:p̂j 6=aij

βij ≥ 0 ∀j (5.14)

∑
j:p̂j 6=aij

βij ≥ 1 ∀i (5.15)

α, βij , γj ≥ 0 ∀i, j (5.16)

(5.17)

As in the previously discussed special case, the general case can also be interpreted

as a flow problem on a biparite graph. The bipartite graph G = (U, V,E) and the flow on

G is constructed in the same way as shown in Figure 5.1: a source vertex vi ∈ V for each i

that provides flow 1, a sink vertex uj ∈ U for each j that outputs flow αj , and βij indicates

the flow on each edge (vi, uj) ∈ E.

Since αj =
∑

i:(vi,uj)∈E βij , the constraint (5.14) can be re-written as γj ≥ αj −α.

In an optimal solution (α, β, γ), according to the constraints (5.14) and (5.16), we must

have γj = max(αj − α, 0). The variable α can be thought of as a threshold and γj is the

amount that the outflow αj exceeds this threshold α. We next claim that the minimum

objective value equals the sum of δ largest outflows.

Theorem 32 Assume (α, β, γ) is an optimal solution and the sinks are sorted so that αt1 ≥
αt2 ≥ · · · ≥ αtm. Then, α = αtδ and the objective value (5.13) is equal to

∑δ
j=1 αtj .
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Proof. The objective function can be re-written as it is below:

δ · α+
m∑
j=1

γj =
δ∑
j=1

(α+ γtj ) +
m∑

j=δ+1

γtj

≥
δ∑
j=1

αtj +
m∑

j=δ+1

γtj ≥
δ∑
j=1

αtj

When α = αtδ , it is trivial that αtj = α+ γtj for all 0 ≤ j ≤ δ, and γtj = 0 for all j > δ+ 1.

Therefore, the equality holds and the objective value is
∑δ

j=1 αtj .

5.3.2 Characterization of Optimal Solutions

Let Q and R be two disjoint subsets of V . We use Φ(Q,R) to denote the property

that Q and R satisfies the following conditions:

1. N(Q) ∩N(R) = ∅

2. |N(Q)| < δ ≤ |N(Q)|+ |N(R)|

We now give a characterization of optimal solutions that generalizes Theorem 29. Notice

how sets Q and R that satisfy Φ(Q,R) always exist, since Q can be an empty set, and then

R can be any set with |N(R)| ≥ δ.

Theorem 33 Let (α∗, β∗, γ∗) be an optimal solution of a given instance. Then,

δ · α∗ +
m∑
j=1

γ∗j = max
Q,R : Φ(Q,R)

(
|Q|+

(
δ − |N(Q)|

)
· |R|
|N(R)|

)

Proof. (≥) Fix any feasible solution (α, β, γ), and the sets QandR satisfy the

above constraints. Let I = N(Q) and J = N(R). We prove that the following inequality

holds:

δ · α+

m∑
j=1

γj ≥ |Q|+ (δ − |I|) ·
|R|
|J |
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• case 1: α ≤
|R|
|J |

δ · α+
m∑
j=1

γj ≥ δ · α+
∑

j:uj∈I∪J
γj

≥ δ · α+
∑

j:uj∈I∪J
(αj − α)

= δ · α+
∑

j:uj∈I∪J
αj − (|I|+ |J |) · α

= δ · α+ |Q|+ |R| − (|I|+ |J |) · α

= |Q|+ |R| − (|I|+ |J | − δ) · α

≥ |Q|+ |R| − (|I|+ |J | − δ) ·
|R|
|J |

= |Q|+ (|I| − δ) ·
|R|
|J |

• case 2: α >
|R|
|J |

δ · α+

m∑
j=1

γj ≥ δ · α+
∑
j:uj∈I

γj

≥ δ · α+
∑
j:uj∈I

(αj − α)

= δ · α+
∑
j:uj∈I

αj − |I| · α

= δ · α+ |Q| − |I| · α

= |Q|+ (δ − |I|) · α

> |Q|+ (δ − |I|) · |R|
|J |
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(≤) Let (α∗, β∗, γ∗) be the optimal solution with the minimum lexical order. That is, given

the sorted outflow (α∗t1 · · ·α
∗
tm), for the sorted outflow (αt1 · · ·αtm) of any feasible solution

(α, β, γ), if α∗tx < αtx for some x then there must exist some α∗ti > αti where 1 ≤ i < x.

Let I be the set of sinks uj where αj > α∗ and J be the set of sinks uj where

αj = α∗. It’s trivial that I and J are disjoint sets. Notice that the size I and J must satisfy

|I| < δ ≤ |I| + |J |, otherwise (α∗, β∗, γ∗) is not opimal and will form a contradiction. If

|I| ≥ δ, we can raise α∗ by some small amount ε to obtain a smaller object value.

Let Q and R be the subsets of V , which contributes positive flow to I and J ,

respectively. We prove that Q and R can be disjoint. If Q and R are not disjoint, it

means there exists some vi, which contributes to both utj ∈ I and some utk ∈ J . We can

redistribute the outflow of vi by sending less to utj and sending more to utk without changing

the order (which has smaller lexical order). This forms a contradiction of minimum lexical

order. Therefore, Q and R are disjoint.

It is trivial that Q does not contribute to any U− (I∪J), otherwise the optimality

is violated. Thus,
∑

j:uj∈I αj = |Q|. Also, according to the definition, all flow to J is

contributed by R only and each uj ∈ J outputs α∗. Hence, α∗ ≤ |R||J | .
From the information in the above paragraph, the object value is bounded as

below:

δ · α∗ +

m∑
j=1

γ∗j = δ · α∗ +
∑
j:uj∈I

γ∗j

= δ · α∗ +
∑
j:uj∈I

(αj − α∗)

= δ · α∗ +
∑
j:uj∈I

αj − |I| · α∗

= δ · α∗ + |Q| − |I| · α∗

= |Q|+ (δ − |I|) · α∗

≤ |Q|+ (δ − |I|) · |J |
|R|
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Similarly, from the above proof, Lemma 34 below is also true.

Lemma 34 A feasible solution (α, β, γ) is optimal if the set of sinks I which have outflow

greater than α do not have common neighbors with U − I and the set of sinks J that have

outflow α do not have common neighbors with U − J .

5.3.3 Algorithm

To solve the general case, we can apply Algorithm SolveDual repeatedly. Each

time, a set of vertices X is identified - vertices that have current maximum outflow and

do not have augmenting paths to U −X. We call this a stage. Then, we repeat the same

process on U −X, until all vertices in U is in some set X. This process separates U into

groups. Vertices in one group has the same outflow as another and do not have augmenting

paths to other groups. The algorithm for solving the generalized dual linear program is

shown in Pseudocode 35.
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Algorithm 35 (SolveDual2
(
G = (U, V,E)

)
)

I ← ∅
. Initialization: choose an arbitrary feasible solution (α, β)

For each vi, arbitrarily choose a uj s.t. (vi, uj) ∈ E and let βij ← 1

βij = 0 for other edges (i, j) ∈ E

while I 6= U do

repeat

αj =
∑

i:(vi,uj)∈E
βij ∀j

α = max{αj : αj ∈ U − I}
J ← {uj |αj = α} . J ⊆ Û : the set of maximizers in current solution

if Some uj ∈ J does not have an augmenting path to U − (I ∪ J) then

break

for each uj ∈ J do

pj ← shortest augmenting path from uj to U − (I ∪ J)

P ← {pj : uj ∈ J}
ε1 ← min

uk∈U−I
(α− αk)/

(
CendP (uk) + 1

)
ε2 ← min

{e:CbkdP (e) >0}
β(e)/CbkdP (e)

ε← min(ε1, ε2) . if ε = ε1, end phase

Augment(J, P, ε)

end repeat

X ← {u : u ∈ J which do not have augmenting path to U − (I ∪ J)}
I ← I ∪X . end stage

Correctness. When Algorithm SolveDual2 stops, let I be the set of sinks with outflow

greater than the threshold. Sinks uj ∈ I do not have any augmenting paths to U − I,

otherwise its outflow can be further reduced. We did not finish identifying groups and yet

the algorithm will not stop. Thus, all sources Q which send positive flow to I do have any

edge to U − I. Similarly, let J be the set of sinks with outflow equal to the threshold in

which J is a group and does not have augmenting paths to U − J , otherwise the algorithm
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will not stop. Therefore, any sink vi which contributes to J has no edge to U−J . According

to Lemma 34, the obtained solution is optimal.

Analysis. Given an instance of MCDPDtmpl with n input sequences of length m and a

template p̂, let b be the number of pairs (i, j) such that p̂j 6= aij . If a sequence ai has more

than δ mismatches with the template p̂, it is impossible for any primer to cover both ai and

p̂. Therefore, we can assume that b ≤ δ · n. The constructed bipartite graph G = (U, V,E)

in the dual problem has |U | = m, |V | = n and |E| = b.

Each stage can be finished in polynomial time b2m(m+n), since it simply applies

Algorithm SolveDual, as described in the special case δ = 1, to identify a group. Since

b = O(δ · n), the running time for a stage is O(δ2mn2(m+ n)).

In the general case, we actually only care about the first δ largest outflows and

we do not need to group the whole set of U . In fact, Algorithm SolveDual2 can terminate

earlier when |I| ≥ δ. We only need to identify at most δ groups. Hence, the total time to

solve the generalized linear program is O(δ3mn2(m+ n)).
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