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Abstract

On extremizers for certain inequalities of the k-plane transform and related topics

by

Taryn Cristina Flock

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Christ, Chair

This dissertation is concerned with determining optimal constants and extremizers, functions
which achieve them, for certain inequalities arising in harmonic analysis.

The main inequality considered is the Lp-Lq inequality for the k-plane transform. It was shown
in [11] that the k-plane transform is a bounded operator from Lp of Euclidean space to Lq of the
Grassmann manifold of all affine k-planes in Rd for certain exponents depending on k and d.
Specifically, for 1 ≤ q ≤ d + 1 and p = dq

n−d+dq
there exists a finite positive constant A0 > 0 such

that
‖Tk,df‖Lq(Mk,d) ≤ A0‖f‖Lp(Rd).

Extremizers of the inequality have previously been shown to exist when q = 2 by Baernstein
and Loss [3], when k = 2 and q is an integer, also in [3], when k = d− 1 and q = d+ 1 by Christ
[12], and when q = d + 1 for general k by Drouot [17]. In each of these cases, f0(x) = (1 =

|x|2)
−(d−k)
2(p−1) is an extremizer. When q = 2 [3] or k = n− 1 and q = d + 1 [12] this extremizer has

been shown to be unique up to composition with certain explicit symmetries of the inequality.
Chapter 3 contains two proofs that when q is an integer, there exist extremizers, functions which

achieve equality in the inequality with the sharp constant.
Chapter 4 extends Christ’s uniqueness result for the endpoint case from k = n − 1 to general

k. In particular, we show that for q = d + 1 for k ∈ [1, d − 1], the extremizing function is unique
up to composition with affine maps. This is achieved by modifying the methods of [12] to apply to
functions which are only assumed to be measurableLp functions (rather than smoothLp functions).

Chapter 6 shows that when q and 1
p−1

are both integers, all extremizers are infinitely differen-
tiable. This involves a family of weighted inequalities for the k-plane transform and the analysis
of a nonlinear Euler-Lagrange equation.

Chapter 7, considers the related question of extremizing n-tuples of characteristic functions for
certain multilinear inequalities of Hardy-Riesz-Brascamp-Lieb-Luttinger-Rogers type. Extremiz-
ing n-tuples are characterized in a special case. This chapter is joint work with Christ.
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Chapter 1

Introduction

1.1 Optimal constants and extremizers
Inequalities abound in harmonic analysis. There are bounds for linear operators, bounds for multi-
linear forms, rearrangement inequalities, and many others. Here are a few examples:

• The Hausdorff-Young inequality: Let p ∈ [1, 2] and q = p
p−1

. Denote by f̂ the Fourier
transform of f . Then there exists a constant A such that for all f ∈ Lp,

‖f̂‖Lq ≤ A‖f‖Lp .

• The Hardy-Littlewood-Sobolev inequality: Let p, r > 1 and 0 < λ < n such that 1
p

+ λ
d

+ 1
r

=
2. Then there exists a constant A such that for all f ∈ Lp and h ∈ Lr,∣∣∣∣∫

Rd

∫
Rd
f(x)|x− y|−λh(y)dxdy

∣∣∣∣ ≤ A‖f‖Lp‖h‖Lr .

• The Riesz rearrangement inequality: Let f, g, and h be nonnegative measurable functions
and let f ∗, g∗, and h∗ be their radially symmetric decreasing rearrangements. Then∫

f(x)g(x− y)h(y) dxdy ≤
∫
f ∗(x)g∗(x− y)h∗(y) dxdy.

• The Sobolev inequality: Fix d > 1. Let 1 < p < d and take q = pd
d−p . Let Du denote the

gradient of a function u. Then there exists a constant A such that for all f ∈ Lp,

‖u‖Lq ≤ A‖Du‖Lp .

In each case, a natural question to ask is, “What is the optimal value for the constant A?” In
cases such as the Riesz rearrangement inequality, where the constantA is not explicitly mentioned,
we ask, “Is 1 the optimal value for the constant A?”
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For those inequalities involving only one function, when the right hand side is nonzero, dividing
yields

R(f) ≤ A

where R(f) is a ratio determined by the particular inequality. 1. Now, let A to denote the class of
functions for which the right hand side of the inequality is finite and nonzero. The optimal constant
satisfies

A = supf∈AR(f).

This leads to another natural question. Is this supremum actually a maximum? Are there functions
which achieve the optimal ratio? If so, what can we say about these functions? Such functions are
called extremizers.

When the inequality involves multiple functions, the same considerations apply, but now A
will consist of n-tuples of functions for which the right hand side is finite and nonzero. If A is
actually a maximum, then there will be a n-tuple of functions which achieve the optimal ratio and
such a n-tuple of functions will be called an extremizing n-tuple.

Extremizers and optimal constants have been determined for many cases of these inequali-
ties and for many others. While concentration compactness [34] and related ideas often provide
a method for demonstrating existence of extremizers, identification of optimal constants and/or
extremizers typically requires exploitation of specific symmetries or geometric properties of the
inequality in question and thus no truly general method exists. A sample of such results is given in
the next section.

1.2 A few key results from the literature
In this section we review several important results from the literature regarding optimal constants
and extremizers. This is by no means an exhaustive survey, but simply covers a few famous
examples (some of which closely relate to the work that follows).

For the Hausdorff-Young inequality the optimal constant is AH = (1/p)1/p

(1/q)1/q

d/2
and Gaussian

functions are extremizers. When p = q = 2 this is obvious. Plancherel’s theorem tells us that
equality is obtained with A = 1 for all functions. For pairs (p, q) where p ∈ [1, 2) and q = p

p−1

is an even integer, this result was obtained by Babenko [2] who used methods of entire functions.
Beckner [4] generalized the result to all pairs p ∈ [1, 2) and q = p

p−1
. Beckner’s landmark proof

begins by relating the Hausdorff-Young inequality to a multiplier inequality on the Hermite semi-
group. In this setting, he is able to harness surprising additional structure relating the problem to
both the central limit theorem and an inequality for the group with two elements. That Gaussian
functions are extremizers follows direct calculation once the optimal constants are known. The
sharp version of this inequality is sometimes called the Babenko-Beckner inequality.

Further, Lieb [33] shows that Gaussian functions are the unique extremizers. He proves the
more general result that Gaussian functions are the unique extremizers for all Lp-Lq inequalities

1For example, for the Hausdorff-Young inequality R(f) = ‖f̂‖Lq

‖f‖Lp
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for operators associated to Gaussian kernels whenever 1 < p ≤ q < ∞, and for p > q in some
special cases. His methods rely on the use of Minkowski’s integral inequality and conditions for
equality therein.

For the Riesz rearrangement inequality, 1 must be the optimal constant. Lieb in [32] proves that
when g = g∗ and g∗ is strictly symmetrically decreasing, a pair of nonnegative functions f and g
achieve equality if and only if for some v ∈ Rd, f(x−v) = f ∗(x) and g(x−v) = g∗(x). Burchard
in [7],[8] shows that if f, g, and h are nonnegative and two of f, g, and h have strictly symmetric
decreasing rearrangements then there exists an affine map φ such that f(φ(x)) = f ∗(x), f(φ(x)) =
f ∗(x), g(φ(x)) = g∗(x), and h(φ(x)) = h∗(x). Both results are proved by decomposing each
function using the layer cake decomposition to reduce to the case of indicator functions of sets.
Burchard identifies all cases equality in this situation. Burchard’s result in fact applies in the more
general Brascamp-Lieb-Luttinger-Rogers setting and is discussed in more depth in Section 1.5.

For the Hardy-Littlewood-Sobolev inequality, existence of extremizers was shown by Lieb
in [30]. When p = r, the unique extremizer is (1 + |x|2)−d/p up to dilation, translation, and
multiplication by a complex constant. The sharp constant is given by

Ap,λ,d = πλ/2
Γ(d/2− λ/2)

Γ(d− λ/2)

(
Γ(d/2)

Γ(d)

)λ/n−1

.

As a corollary of this result Lieb [30] also determines the extremizers and sharp constant when
p = 2 or q = 2.

Lieb proves the existence of extremizers by using Riesz’s rearrangement inequality to reduce
to the case of radially symmetric decreasing functions, where there is sufficient compactness to
prove that after an appropriate dilation any extremizing sequence has a convergent subsequence
which converges to a nonzero function. When p = r there is an additional inversion symmetry
which Lieb exploits to determine the form of the extremizer. He also uses the cases of equality in
the Riesz rearrangement inequality, to show that all extremizers are radial up to translation.

For the Sobolev inequality, the optimal constant is

Ad,p = π−1d−1/p

(
p− 1

d− p

)1−1/p(
Γ(1 + d/2)Γ(m)

Γ(d/p)Γ(1 +m−m/p)

)1/m

and the extremizers are the functions
(
a+ b|x|p/(p−1)

)1−d/p for a, b > 0. This was proved by
Talenti [45] using methods from rearrangement inequalities and the calculus of variations in one
dimension. Unlike Lieb’s in work on the Hardy-Littlewood-Sobolev inequality, existence of ex-
tremizers is shown by exhibiting the extremizer, rather than by a convergence argument.

1.3 The k-plane transform
The bulk of this thesis focuses on identifying the optimal constants and extremizers for Lp-Lq

inequalities of the k-plane transform. Here the optimal constant is the operator norm of the trans-
form.
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The k-plane transform takes complex-valued functions on Rd to complex-valued functions on
the Grassmannian manifold of all affine k-dimensional planes in Rd by mapping a function f to its
integrals over all k-planes. The (d − 1)-plane transform is better known as the Radon transform
and the 1-plane transform, as the X-ray transform. These transforms have applications in partial
differential equations, radio astronomy, and image processing, among others.

Discussing functions defined on the manifold of all k-planes requires a certain amount of no-
tation. Let’s begin with Gk,d, the Grassmannian manifold of all k-planes in Rd passing through the
origin (or equivalently, the Grassmannian manifold of all k-dimensional linear subspaces of Rd).
We use θ to denote elements of Gk,d. Both the manifold of all lines containing the origin, G1,d, and
the manifold of all hyperplanes containing the origin, Gd−1,d, are double-covered by the sphere, as
both lines and hyperplanes may be specified by unit vectors with the identification θ = −θ. In
general, Gk,d is a compact manifold of dimension k(d − k). Further, the orthogonal group group
acts transitively on Gk,d. This action gives rise to a natural probablity measure on Gk,d. Let dγO
denote unit Haar measure on the orthogonal group, and fix θ0 ∈ Gk,d. Define the measure of a set
E ∈ Gk,d by

γ(E) = γO({g ∈ O(d) : g(θ0) ∈ E}).
Next, denote by Mk,d the Grassmannian manifold of all affine k-planes in Rd. Each affine

k-plane may be specified by a k-dimensional linear subspace, θ, and an orthogonal translation
y ∈ θ⊥, where θ⊥ denotes the (d− k)-dimensional subspace orthogonal to θ. Thus the dimension
ofMk,d is (d − k)(k + 1). When k = d − 1, the dimension ofMd−1,d is d, and in general the
dimension ofMk,d is at least d. For a measure onMk,d, we take the measure formed by pairing
dγ(θ) on Gk,d, and Lebesgue measure on the (d−k)-dimensional subspace orthogonal to θ, denoted
dλθ⊥(y).

Thus,

‖F‖Lq(Mk,d) =

(∫
Gk,d

∫
θ⊥
|F (θ, y)|qdλθ⊥(y)dγ(θ)

)1/q

.

Using this notation, the k-plane transform in Rd is given by

Tk,df(θ, y) =

∫
x∈θ

f(x+ y) dλθ(x).

For example, let 1E be the indicator function of some measurable set E ⊂ Rd. Then

Tk,d1E(θ, 0) =

∫
θ

1E(x)dλθ(x) = k-dim volume of |E ∩ θ|.

Lp(Rd)-Lq(Mk,d) boundedness of the k-plane transform has been studied by several authors:
Strichartz [44], Oberlin and Stein, [35], Calderón [9], Drury [21], [19], and Christ [11]. The
simplest such result is the following inequality.

Claim 1. For all f ∈ L1(Rd)

‖Tk,df‖L1(Mk,d) ≤ ‖f‖L1(Rd). (1.1)
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Further, equality holds if and only if there exists c ∈ C such that f = c|f | almost everywhere.

Proof. By definition,∫
Gk,d

∫
θ⊥
|Tk,df(θ, y)|dλθ⊥(y)dγ(θ) =

∫
Gk,d

∫
θ⊥
|
∫
x∈θ

f(x+ y) dλθ(x)|dλθ⊥(y) dγ(θ)

≤
∫
Gk,d

∫
θ⊥

∫
x∈θ
|f(x+ y)| dλθ(x)dλθ⊥(y) dγ(θ)

Changing variables,∫
Gk,d

∫
θ⊥
|Tk,df(θ, y)|dλθ⊥(y)dγ(θ) ≤

∫
Gk,d

∫
Rd
|f(x)| dλRd(x) dγ(θ)

As the measure on Gk,d is a probability measure, this yields (1.1).
Equality occurs in the inequality |

∫
fdx| ≤

∫
|f |dx if and only if there exists c ∈ C such that

f = c|f |. Thus such functions are the unique extremizers.

Christ [11] showed that for q = d+ 1 and p = d+1
k+1

there exists a finite positive constant A such
that for all f ∈ Lp(Rd),

‖Tk,df‖Ld+1(Mk,d) ≤ A‖f‖
L
d+1
k+1 (Rd)

. (1.2)

Thus by interpolation [11], for 1 ≤ q ≤ d+ 1 and p = dq
d−k+kq

there exists a finite positive constant
A such that for all f ∈ Lp(Rd),

‖Tk,df‖Lq(Mk,d) ≤ A‖f‖Lp(Rd). (1.3)

Simple examples (families of characteristic functions of balls and of appropriately chosen
boxes) show that these are the only possible Lp(Rd)-Lq(Mk,d) inequalities.

Mixed norm inequalities of the k-plane transform are also of interest, though they are not
studied here. A useful survey of such results is [18].

1.4 Extremizers of the k-plane transform
For the k-plane transform the question of optimal constants and extremizers was first considered
by Baernstein and Loss in [3]. They conjectured:

Conjecture 1. For all a, b > 0, f0(x) = (a+ b|x|2)
−(d−k)
2(p−1) is an extremizer of (1.3).

As f0 is nonnegative and nonzero, the conjecture is true when q = 1 = p. In this case,
f0 is far from unique– all nonnegative functions which are not identically zero extremize. More
interestingly, the conjecture is also true when q = 2 and, thus, p = 2d

d+k
. Following Baernstein

and Loss [3], specializing Drury’s identity (here Lemma 10) to the case q = 2 gives that when
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q = 2, (1.3) is equivalent to the Hardy-Littlewood-Sobolev inequality with λ = d− k, q = 2, and
p = 2d

d+k
. Thus by the work of Lieb [30], f is an extremizer if and only if

f(x) = c(γ + |x− a|2)−(d+k)/2

for some c ∈ C, γ > 0 and a ∈ Rd.
Baernstein and Loss [3] also prove the conjecture for the 2-plane transform in the case when

q ∈ (1, d+1]∩Z, by using symmetrization to reduce to the case of radial functions. In this setting,
the k-plane transform becomes a one-dimensional integral operator for which (up to a change of
variables) extremizers were found by Bliss [5] using methods from the calculus of variations. In
this case, a radial function is an extremizer if and only if

f(|x|) = c(1 + γ|x|2)
−(d−2)
2(p−1)

for some c ∈ C and γ > 0.
For k = 2, the characterization of non-radial extremizers remains open unless q = 1, 2, or

d+ 1.
The distinction between integer and non-integer q arises because the tool used to reduce to

the radial case is the rearrangement inequality ‖Tk,df‖q ≤ ‖Tk,df ∗‖q where f ∗ is the radial non-
increasing rearrangement of f , which is proved [11],[3] by rewriting the Lq norm in terms of a
multilinear form and thus only known for integer q.

Recently the conjecture has also been proved for the Radon transform when q = d+1 by Christ
[12] and for the k-plane case when q = d+ 1 by Drouot [17].

Christ additionally proves a uniqueness result. When q = d + 1 and k = d − 1, f is an
extremizer of (1.3) if and only if

f(x) = c(1 + |φ(x)|2)
−d
2

where c ∈ C and φ is an invertible affine endomorphism of Rd.
In Chapter 4 we extend this endpoint uniqueness result to the k-plane transform case for 1 ≤

k ≤ d− 2.
While a complete characterization of extremizers in all cases remains unavailable, we also

show that extremizers are smooth in the case that q − 1 and 1
p−1

are integers larger than 1. This is
the content of Chapter 6.

1.5 Extremizing n-tuples of characteristic functions for
certain multilinear inequalities of
Hardy-Riesz-Brascamp-Lieb-Luttinger-Rogers type

In the characterization of extremizers in both [12] and Chapter 4 a key step is the application of
a theorem by Burchard [7],[8] on extremizers for Riesz’s rearrangement inequality. In Chapter 7,
which is joint work with Christ, we prove a limited extension of her result.
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The (very) general setting incorporates mutlilinear rearrangement inequalities of the type stud-
ied by Hardy, Riesz [36], Brascamp, Lieb and Luttinger [6] and Rogers [37]. We consider integral
expressions depending on three key parameters: m > k and n all positive integers. Let {Lj}nj=1 be
linear surjective maps Rm → Rk. Let Ej ⊂ Rk be Lebesgue measurable sets with positive, finite
measures, and consider

I(E1, · · · , En) =

∫
Rm

d∏
j=1

1Ej(Lj(x)) dx.

Definition 1. Extremizing n–tuples (E1, · · · , En) of measurable sets are those n-tuples that max-
imize I among all n–tuples with specified measures |Ej|.

The generalization of the Riesz rearrangement inequality, proved by Brascamp, Lieb, and Lut-
tinger [6] and, independently, Rogers [37], holds in this setting. Thus, among sets with specified
measures, the functional I attains its maximum value when, up to sets of measure zero, each Ej
equals E∗j , the ball centered at the origin with the same measure as Ej . Specifically,

I(E1, · · · , En) ≤ I(E∗1 , · · · , E∗n).

Thus, the main issue is the question of uniqueness.
Burchard characterized all extremizing n-tuples of measurable sets in the case where k is arbi-

trary, m/k = r is an integer and n = r + 1 [7],[8], and I has the form

IB(E1, . . . , En) =

∫
Rk(n−1)

(
n−1∏
i=1

1Ei(xi)

)
1En

(
n−1∑
i=1

xi

)
dx1 . . . dxn−1.

Definition 2. A set of positive numbers {ρi}ni=1 is admissible if they satisfy this generalization of
the triangle inequality:

d∑
j=1

j 6=i

ρj ≥ ρi for all i ∈ [1, n].

The set {ρi}ni=1 is strictly admissible if ≥ can be replaced by >.

Theorem 1. [Burchard’s theorem for indicator functions, [8], [7]] Let n ≥ 3. Let Ei for i ∈ [1, n]
be sets of finite positive measure in Rk. Denote by ρi the radii of the E∗i . If the family {ρi}ni=1

is strictly admissible, then (E1, . . . , En) is an extremizing n-tuple for IB if and only if there exist

vectors ci ∈ Rk for i ∈ [1, n] and numbers αi ∈ R+ such that
n∑
i=1

ci = 0, and an ellipsoid E ⊂ Rk

centered at the origin, such that up to sets of measure zero

Ei = ci + αiE .
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If the family {ρi}ni=1 is admissible but not strictly admissible, then (E1, . . . , En) is an extremiz-
ing n-tuple for IB if and only if for each i ∈ [1, n] there exist vectors ci ∈ Rk and numbers αi ∈ R+

such that
d∑
i=1

ci = 0, and there exists a convex setM⊂ Rk centered at the origin, such that up to

sets of measure zero
Ei = ci + αiM.

Note that in the case k = 1 the results for strict admissibility and admissibility are equivalent.
In Chapter 7, which is joint work with Christ, we characterize all extremizing n-tuples in the

case where k = 1 and m = 2 but n ≥ m+ 1 under an appropriate nondegeneracy condition on the
maps Lj .
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Chapter 2

Preliminary results regarding the k-plane
transform

We here record several basic results regarding the k-plane transform for later use.

2.1 Simple symmetries
A symmetry of (1.3) is a ”nice”1 operation on Lp functions such that

•
‖J (f)‖Lp(Rd) = ‖f‖Lp(Rd)

•
‖Tk,nJ (f)‖Lq(Mk,d) = ‖Tk,nf‖Lq(Mk,d).

Clearly, if J is a symmetry of (1.3) and f is an extremizer of (1.3) then J (f) is also an
extremizer of (1.3).

We next show that translation and dilation (with the appropriate Jacobian factor) are symmetries
of the k-plane transform.

Claim 2. For any v ∈ Rd, let τv(f) = f(x+ v). For all v ∈ Rd,

Tk,dτv(f) = τPθ⊥ (v)Tk,df(θ, y)

where the translation onMk,d acts only in the y variable. Thus,

‖Tk,dτv(f)‖Lq(Mk,d) = ‖Tk,d(f)‖Lq(Mk,d)

1For the purposes of the thesis we will Let ϕ : Rn → Rn be a function with a well defined Jacobian determinant.
Define J : Lp(Rn)→ Lp(Rn) by J f = |Jϕ|1/p(f ◦ ϕ) where |Jϕ| is the Jacobian determinant of ϕ.
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Proof. Fix θ and y ∈ θ⊥. By definition,

Tk,dτvf(θ, y) =

∫
x∈θ

f(x+ y + v) dλθ(x).

Let Pθ denote projection on the k-plane θ and Pθ⊥ denote projection on to the (d − k)-plane
perpendicular to θ. Then v = Pθ(v) + Pθ⊥(v) and

Tk,dτvf(θ, y) =

∫
x∈θ

f(x+ y + Pθ(v) + Pθ⊥(v)) dλθ(x).

As x+ Pθ(v) ∈ θ, making the change variables z = x+ Pθ(v) gives

Tk,dτvf(θ, y) =

∫
z∈θ

f(z + y + Pθ⊥(v)) dλθ(z).

The second statement follows directly from the first by a similar change of variables.

Claim 3. For all r 6= 0, define Jr(f) = r−d/pf(r−1x). If 1 ≤ q, p are related by p = dq
d−k+kq

, then
for all r 6= 0

‖Tk,d[Jr(f)]‖Lq(Mk,d) = ‖Tk,d(f)‖Lq(Mk,d)

Proof. It is enough to prove Tk,d[Jr(f)] = r(k−d)/qTk,df(θ, r−1y). First,

Tk,d[r
−d/pf(r−1x)] =

∫
x∈θ

r−d/pf(r−1(x) + r−1(y)) dλθ(x).

Changing variables from z = r−1x,∫
x∈θ

r−d/pf(r−1(x) + r−1(y)) dλθ(x) =

∫
z∈θ

rd/pf(z + r−1(y)) rkdλθ(z).

Lastly, −d/p+ k = −d+k−kq
q

+ k = −d+k−kq+kq
q

= k−d
q

.

2.2 The dual k-plane transform
Define

T ∗k,df(x) =

∫
Gk,d

f(θ, Pθ⊥(x)) dθ

where Pθ⊥(x) is the projection of x on to the (d−k)-dimensional plane perpendicular to θ. This is
the dual transform in the sense that if f and g are Schwartz functions then

∫
Mk,d

(Tk,df)ḡdλθ⊥(y)dθ =∫
Rd f(T ∗k,ng)dx.

The dual k-plane transform takes a function defined on the space of all k-planes and returns
a function defined on Rd by assigning to x the average value of the function on k-planes passing
through the point x.
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That this transform is dual to the k-plane transform is seen as follows,∫
Mk,d

(Tk,df)ḡdλθ(y)dθ =

∫
Gk,d

∫
θ⊥

(Tk,df)ḡdλθ⊥(y)dθ

=

∫
Gk,d

∫
θ⊥

∫
θ

f(x+ y)ḡdλθ(x)dλθ⊥(y)dθ

Make the change of variables z = x + y. Note that as x ranges over θ and y ranges over θ⊥, z
ranges over Rd, and also that y = Pθ⊥(z). Thus,∫

Mk,d

(Tk,df)ḡdλθ(y)dθ =

∫
Gk,d

∫
Rd
f(z)ḡ(θ, Pθ⊥(z))dzdθ

=

∫
Rd
f(z)

∫
Gk,d

ḡ(θ, Pθ⊥(z))dθdz.

2.3 Basic properties of Tk,d and T ∗k,d
Let S denote the Schwartz class of functions on Rd. Let S (Mk,d) denote the class of functions
on Mk,d, satisfying “for all θ, f(θ, y) ∈ S (θ⊥) ∼ S (Rd−k)”. We call this class the Schwartz
class of functions onMk,d. Note that for this class of functions Tk,df is always well defined.

Lemma 1. Let f ∈ S be a radial function, Then the function g defined on on [0,∞) by

g(r) =

∫ ∞
0

f((s2 + r2)1/2)sk−1ds

satisfies Tk,df(θ, y) = g(|y|). Moreover, if f is symmetric decreasing, then g is decreasing as well.

Proof. Fix θ and y ∈ θ⊥. By definition,

Tk,df(θ, y) =

∫
x∈θ

f(x+ y) dλθ(x).

As f is radial, and x and y are orthogonal,

Tk,df(θ, y) =

∫
x∈θ

f((|x|2 + |y|2)1/2) dλθ(x).

Let Rθ be the rotation of Rn such that Rθ(θ) = Rk. As f is radial, it is invariant under rotation,
thus

Tk,df(θ, y) =

∫
x∈Rk

f((|x|2 + |y|2)1/2) dλθ(x).

Changing variables we have

Tk,df(θ, y) =

∫ ∞
0

f((r2 + |y|2)1/2)rk−1 dλθ(x).
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Lemma 2. For all f ∈ S (Rd), for all g ∈ S (Mk,d), for all θ ∈ Gk,d, for all ξ ∈ θ⊥

̂Tk,df(θ, ξ) = f̂(ξ)

and
T̂ ∗k,dg(ξ) =

∫
{θ:θ⊥ξ}

ĝ(θ, ξ)dγξ⊥(θ)

where for functions onMk,d the Fourier transform is taken only in the y-variable and dγξ⊥ repre-
sent the restriction of the measure dγ to the subset of k-planes which are perpendicular to ξ.

Proof. Fix θ ∈Mk,d.

̂Tk,df(θ, ξ) =

∫
Tk,df(θ, y)e−2πiξ·ydλθ⊥(y)

=

∫
θ⊥

∫
θ

f(x+ y)e−2πiξ·y dλθ(x)dλθ⊥(y)

Make the change of variable z = x+ y. Note that for ξ ∈ θ⊥ ξ · z = ξ · y. Thus,

̂Tk,df(θ, ξ) =

∫
Rd
f(z)e−2πiξ·zdλRd(z)

= f̂(ξ)

Now,

T̂ ∗k,dg(ξ) =

∫
Rd
T ∗k,dg(x)e−2πix·ξdx

=

∫
Rd

∫
Gk,d

g(θ, Pθ⊥(x))e−2πix·ξdγ(θ)dx

=

∫
Gk,d

∫
θ

∫
θ⊥
g(θ, x1)e−2πi(x1·ξ1+x2·ξ2)dλθ⊥(x1)dλθ(x2)dγ(θ)

where x1 = Pθ⊥(x) and x2 = Pθ(x) and similarly for ξ.

T̂ ∗k,dg(ξ) =

∫
Gk,d

∫
θ

(∫
θ⊥
g(θ, x1)e−2πi(x1·ξ1)dλθ⊥(x1)

)
e−2πi(x2·ξ2)dλθ(x2)dγ(θ)

=

∫
{θ:θ⊥ξ}

ĝ(θ, ξ)dγξ⊥(θ)
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2.4 Rearrangement inequalities
Rearrangment inequalities play a key role in many results regarding optimal constants and ex-
tremizers. An excellent introduction is provided in [31] but we record the main definitions and
properties here for easy reference.

Definition 3. For any measurable set E, |E| <∞, let E∗ be the open ball with the same measure

Definition 4. The radial symmetric decreasing (nonincreasing) rearrangement of f is given by

f ∗(x) =

∫ ∞
0

1
∗
|f |>t(x)dt

Thus f ∗ is radial and nonincreasing. Further ‖f ∗‖Lp = ‖f‖Lp , which follows immediately
from the formula

‖f‖Lp = p

∫ ∞
0

tp−1µ{|f | > t})dt.

2.5 Euler-Lagrange equation
Recall that our goal is to find the optimal constant A0 in (1.3). We know that

A0 = sup
{f :‖f‖Lp 6=0}

‖Tk,df‖Lq
‖f‖Lp

.

For q ∈ (1, d + 1], the nonnegative critical points of this functional satisfy the Euler-Lagrange
equation

f = λ(T ∗k,d[(Tk,df)qel ])pel (2.1)

where qel = q − 1, pel = 1
p−1

, and λ =
(
‖f‖p

Lp(Rd)
‖Tk,df‖−qLq(Mk,d)

)pel
.

Here we present a purely formal computation of the Euler-Lagrange equation and second vari-
ation. For an example of this computation done rigorously see [15].

‖F + zG‖qLq =

∫
(F + zG)qdx

=

∫
F q + zqF q−1G+ z2

(
q

2

)
F q−2G2 +O(z3)dx

‖Tk,d(f + zg)‖qLq =

∫ ∫
(Tk,df)q + zq(Tk,df)q−1Tk,dg + z2

(
q

2

)
(Tk,df)q−2(Tk,dg)2 +O(z3)dydθ
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‖f + zg‖qLp =

(∫
(f + zg)pdx

)q/p
=

(∫
fp + zpfp−1g + z2

(
p

2

)
(f)p−2g2 +O(z3)dx

)q/p
=

(∫
fpdx+

∫
zpfp−1g + z2

(
p

2

)
(f)p−2g2 +O(z3)dx

)q/p
=

(∫
fpdx

)q/p
+
q

p

(∫
fpdx

)q/p−1 ∫
zpfp−1g + z2

(
p

2

)
(f)p−2g2dx

+

(
q/p

2

)(∫
fpdx

)q/p−2(∫
zpfp−1g + z2

(
p

2

)
(f)p−2g2dx

)2

+O(z3)

= ‖f‖qp + zq‖f‖q−pp

∫
fp−1gdx+ z2 q

p

(
p

2

)
‖f‖q−pp

∫
fp−2g2dx

+(zp)2

(
q/p

2

)
‖f‖q−2p

p

(∫
fp−1gdx

)2

+O(z3)

= ‖f‖qp
(

1 + zq‖f‖−pp
∫
fp−1gdx+ z2 q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

+(zp)2

(
q/p

2

)
‖f‖−2p

p

(∫
fp−1gdx

)2
)

+O(z3)

‖f + zg‖−qLp = ‖f‖−qp
∞∑
n=0

(
−zq‖f‖−pp

∫
fp−1gdx− z2 q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

−(zp)2

(
q/p

2

)
‖f‖−2p

p

(∫
fp−1gdx

)2
)n

+O(z3)

= ‖f‖−qp
(

1− zq‖f‖−pp
∫
fp−1gdx− z2 q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

−z2p2

(
q/p

2

)
‖f‖−2p

p

(∫
fp−1gdx

)2

+ z2q2‖f‖−2p
p

(∫
fp−1gdx

)2
)

+O(z3)

= ‖f‖−qp
(

1− zq‖f‖−pp
∫
fp−1gdx− z2 q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

+z2‖f‖−2p
p

(∫
fp−1gdx

)2(
q2 − p2

(
q/p

2

)))
+O(z3)
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‖Tk,d(f + zg)‖qLq
‖f + zg‖qLp

=

(∫ ∫
(Tk,df)q + zq(Tk,df)q−1Tk,dg + z2

(
q

2

)
(Tk,df)q−2(Tk,dg)2 dydθ

)
+

(
‖f‖−qp

(
1− zq‖f‖−pp

∫
fp−1gdx− z2 q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

+z2‖f‖−2p
p

(∫
fp−1gdx

)2(
q2 − p2

(
q/p

2

))))
+O(z3)

= ‖Tk,df‖qLq‖f‖
−q
p

+zq‖f‖−qp
(∫ ∫

(Tk,df)q−1Tk,dg dydθ − ‖f‖−pp ‖Tk,df‖
q
Lq

∫
fp−1gdx

)
−z2q2‖f‖−q−pp

∫ ∫
(Tk,df)q−1Tk,dg dydθ

∫
fp−1gdx

+z2‖Tk,df‖qLq‖f‖
−q
p

(
‖f‖−2p

p

(
q2 − p2

(
q/p

2

))(∫
fp−1gdx

)2

− q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

)
+z2‖f‖−qp

(
q

2

)∫ ∫
(Tk,df)q−2(Tk,dg)2 dydθ +O(z3)

If f is critical point, then for all g nice test functions:

0 =

∫ ∫
(Tk,df)q−1Tk,dg dydθ − ‖f‖−pp ‖Tk,df‖

q
Lq

∫
fp−1gdx

=

∫
T ∗k,d

(
[Tk,df ]q−1

)
gdx− ‖f‖−pp ‖Tk,df‖

q
Lq

∫
fp−1gdx

=

∫ (
T ∗k,d[(Tk,df)q−1]− ‖f‖−pp ‖Tk,df‖

q
Lqf

p−1
)
gdx

Thus,
T ∗k,d[(Tk,df)q−1]− ‖f‖−pp ‖Tk,df‖

q
Lqf

p−1 = 0

f =

( ‖f‖pp
‖Tk,df‖qLq

T ∗k,d[(Tk,df)q−1]

) 1
p−1

Yielding the generalized Euler-Lagrange Equation,

f = λ
(
T ∗k,d[(Tk,df)q−1]

) 1
p−1
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Considering the second variation we have, if f is an extremizer,

− q2‖f‖−q−pp

∫ ∫
(Tk,df)q−1Tk,dg dydθ

∫
fp−1gdx

+ ‖Tk,df‖qLq‖f‖
−q
p

(
‖f‖−2p

p

(
q2 − p2

(
q/p

2

))(∫
fp−1gdx

)2

− q

p

(
p

2

)
‖f‖−pp

∫
fp−2g2dx

)

+ ‖f‖−qp
(
q

2

)∫ ∫
(Tk,df)q−2(Tk,dg)2 dydθ ≤ 0

If f is an extremizer then it satisfies the equation:∫ ∫
(Tk,df)q−1Tk,dg dydθ = ‖f‖−pp ‖Tk,df‖

q
Lq

∫
fp−1gdx.

Thus,

(q − 1)

∫ ∫
(Tk,df)q−2(Tk,dg)2 dydθ

− (q − p)‖Tk,df‖qLq‖f‖
−2p
p

(∫
fp−1gdx

)2

− (p− 1)‖Tk,df‖qLq‖f‖
−p
p

∫
fp−2g2dx ≤ 0

2.6 Nonnegative extremizers are strictly positive
In order to show that nonnegative extremizers of (1.3) are positive almost everywhere, we instead
prove a slightly more general statement.

Note that all nonnegative extremizers of (1.3) satisfy the Euler-Lagrange equation

f(x) = λ(T ∗k,n[(Tk,nf)q0 ])p0(x) (2.2)

where q0 = q − 1, p0 = 1
p−1

, λ depends on p, q, n, k and f , and T ∗k,n is the dual of the k-plane
transform.

Proposition 1. If f(x) ∈ Lp(Rn) is a nonnegative solution of (2.1) with q ≥ 2, then either
f(x) > 0 for almost every x ∈ Rn or f(x) = 0 for almost every x ∈ Rn.

The proof relies on the following lemma.

Lemma 3. For any nonnegative solution f(x) ∈ Lp(Rn) of (2.1) with q ≥ 2,
f(x) ≥ C(λ)(T ∗k,nTk,nf(x))p0q0 almost everywhere.
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Proof. Let dθ be the unique Haar probability measure on Gk,n and P (x, θ⊥) be the projection of x
onto θ⊥, the orthogonal complement of θ. Then, writing out T ∗k,n explicitly,

f(x) = λ

(∫
Gk,n

[Tk,nf(θ, P (x, θ⊥))]q0dθ

)p0

.

As q0 = q − 1 = n ≥ 1, Hölder’s inequality applies.

∫
Gk,n

g(θ)dθ ≤

(∫
Gk,n

g(θ)q0dθ

)1/q0 (∫
Gk,n

1dθ

)1/q′0

= C

(∫
Gk,n

g(θ)q0dθ

)1/q0

.

Thus,
∫
Gk,n

[Tk,nf(θ, P (x, θ⊥))]q0dθ ≥
(∫
Gk,n

(Tk,nf(θ, P (x, θ⊥))dθ
)q0

. As p = n+1
k+1
≥ 1, p0 =

1
p−1

> 0 and therefore

f(x) ≥ Cλ

(∫
Gk,n

[(Tk,nf(θ, P (x, θ⊥))] dθ

)p0q0

.

Again applying the definition of T ∗k,n proves the statement, with the qualification that as our func-
tion satisfies (2.1) with equality in Lp, the statement holds only almost everywhere.

Proof of Proposition. Writing out T ∗k,nTk,n using Fuglede’s formula [23]

f(x) ≥ Cλ

(∫
f(y)|y − x|k−ndx

)p0q0
.

If there is a set of positive measure on which f(x) = 0 then for some x0 ,

Cλ(

∫
f(y)|y − x0|k−ndx)p0q0 = 0.

∫
f(y)|y − x0|k−ndx = 0.

As |y − x0|k−n is positive except at y = x0, f(y) = 0 almost everywhere.



18

Chapter 3

Existence of extremizers when q is an
integer

3.1 Main result and methods
In this chapter we give two proofs of the fact that when q ∈ [1, d + 1] is an integer, extremizers
of the k-plane transform inequality (1.3) exist. The idea of the proof is simple: show that some
extremizing sequence converges. Given this, it will be advantageous to work in a space of func-
tions with better compactness properties than Lp. Specifically, we use a rearrangement inequality
to reduce to the case of radial symmetric decreasing functions. It is this step that imposes the
restriction that q be an integer, as the rearrangement inequality is only known in this case. It is an
open question whether the rearrangement inequality holds in the noninteger case. If it does, then
either proof would give existence of extremizers in all cases.

Additionally, the symmetries of our inequality pose an obstacle to convergence. Suppose an ex-
tremizer exists, say f , and let v be a non-zero vector. Then each of the sequences fn(x) = f(x+nv)
and f = nd/pf(nx) are extremizing but converge pointwise to zero as n → ∞. Similar prob-
lems may arise with a generic extremizing sequence. Restricting to radial symmetric decreasing
functions removes the translation symmetry. We show that some subsequence of any extremiz-
ing sequence of radially symmetric nonincreasing functions {fn} converges after an n-dependent
dilation.

We give two proofs, one following Lieb’s proof for existence of extremizers for the Hardy-
Littlewood-Sobolev inequality [30], and one following Drouot’s proof for existence of extremizers
in the endpoint case [17]. Both proofs follow the same general outline:

Reduce to radially symmetric functions using the rearrangement inequality for the k-plane
transform.

Lemma 4 (k-plane rearrangement, [11]). When q ∈ [1, d+ 1] is an integer, for all f ∈ Lp(Rd),

‖Tk,df‖Lq ≤ ‖Tk,df ∗‖Lq .



CHAPTER 3. EXISTENCE OF EXTREMIZERS WHEN q IS AN INTEGER 19

Christ gives this result for q = d + 1 in [11], in a multilinear form from which the inequality
for smaller q can be derived. Another proof is given in [3].

Given Lemma 4 and invariance of the ratio of norms under multiplication by a constant, the
sharp constant A0 in is given by

A0 = sup
{f :‖f‖Lp=1,f=f∗}

‖Tk,df‖Lq
‖f‖Lp

. (3.1)

With this notation our main result is:

Theorem 2. Let q ∈ (1, d + 1] be an integer. Let fj be an extremizing sequence for (3.1). Then
there exist a subsequence, which we will continue to denote fj , and a sequence σj ∈ (0,∞) such
that the new extremizing sequence |σj|−d/pfj(σ−1

j x) is relatively compact in Lp(Rd). In particular,
the supremum in (3.1) is attained.

Again, Drouot in [17] has already proved this in the q = d+ 1 case. A more general version of
this result has been proved by Christ in [12] in the case that q = n+ 1 and k = n− 1.

Restricting to sequences of radially symmetric decreasing functions allows us to extract a se-
quence which converges pointwise (except perhaps at zero) by Helly’s selection principle.

Lemma 5 (Helly’s selection principle (see for instance [31])). For any sequence, {fj}, of functions
[0,∞) → [0,∞) (resp. Rd → [0,∞)) which are decreasing (resp. radial symmetric decreasing),
and for which there exists a finite positive constant B, such that ‖fj‖Lp ≤ B for all j, there exists
a function f ∈ Lp and a subsequence, which we will continue to denote fj , such that fj → f
pointwise except perhaps at the origin.

Given pointwise convergence, we now wish to apply a powerful theorem of Lieb’s from [30].

Lemma 6 (Lieb [30] Lemma 2.7). Let (M,Σ, µ) and (M ′,Σ′, µ′) be measure spaces and let X
(resp. Y ) be Lp(M,Σ, µ) (resp. Lq(M ′,Σ′, µ′)) with 1 ≤ p ≤ q <∞. Let A be a bounded linear
operator from X to Y . For f ∈ X , f 6= 0, let

R(f) = ‖Af‖Y /‖f‖X and N = sup{R(f)|f 6= 0}

Let {fj} be a uniformly norm-bounded maximizing sequence for N and suppose that fj → f 6= 0
and that Afj → Af pointwise almost everywhere. Then f maximizes R, ie, R(f) = N . Moreover,
if p < q and if lim‖fj‖X = C exists, then ‖f‖X = C and hence ‖Afj‖Y → ‖Af‖Y .

Thus we are required to prove that there exists a sequence σj ∈ (0,∞) such that the new ex-
tremizing sequence |σj|−d/pfj(σ−1

j x) converges pointwise to a nonzero function and that Tk,dfj →
Tk,df pointwise.
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3.2 Conclusion of the proof of Theorem 2
Lemma 7. Let fj be an extremizing sequence for (3.1) such that for each j, ‖Tk,dfj‖Lq ≥ A0/2.
Then there exists a sequence σj ∈ (0,∞) and a ball B such that for each j, |σj|−d/pfj(σ−1

j x) ≥
1B(x).

This follows from Lorentz norm estimates for the k-plane transform.

Lemma 8. [11] There exists a constant C such that for all f ∈ L
d+1
k+1

,d+1,

‖Tk,df‖Ld+1(Mk,d) ≤ C‖f‖
L
d+1
k+1

,d+1 .

By interpolation, this yields

Lemma 9. For q ∈ [1, d+ 1] and p = nq
n−k+kq

, there exists a constant C such that for all f ∈ Lp,q,

‖Tk,df‖Lq(Mk,d) ≤ C‖f‖Lp,q .

Note that for q > 1 as p = n
n+k(q−1)

q < q, this estimate is stronger then that of (1.3).

Proof. The q = d + 1 endpoint is exactly Christ’s estimate. The q = 1 endpoint is the inequality
‖Tk,df‖L1(Mk,d) ≤ ‖f‖L1 . These estimates certainly imply the corresponding estimates for weak
Lq. Thus, using the off-diagonal Marcinkiewicz interpolation theorem [43], for q ∈ (1, d+ 1) and
p = nq

n−k+kq
, for all r ∈ (0,∞], there exists a constant C such that for all f ∈ Lp,r,

‖Tk,df‖Lq,r(Mk,d) ≤ C‖f‖Lp,r .

Taking r = q gives the theorem.

This proof is essentially the same as that given in [17].

Proof of Lemma 7. First note that for 1 ≤ p < q <∞,

‖f‖qLp,q ≤ ‖f‖
q−p
Lp,∞‖f‖

p
p (3.2)

which can be seen as follows.

‖f‖qLp,q =

∫ ∞
0

tq (µ{x : |f(x)| > t})q/p dt
t

=

∫ ∞
0

(tpµ{x : |f(x)| > t}) (tq−p (µ{x : |f(x)| > t})(q−p)/p dt

t

≤ sup
t>0

(tq−p (µ{x : |f(x)| > t})(q−p)/p
∫ ∞

0

(tpµ{x : |f(x)| > t}) dt
t

≤ ‖f‖q−pLp,∞‖f‖
p
Lp .
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Therefore as for each j, ‖Tk,dfj‖Lq ≥ A0/2 and ‖fj‖Lp = 1,

(A0/2)q ≤ ‖Tk,dfj‖qLq
≤ C‖fj‖qLp,q
≤ C‖fj‖q−pLp,∞

≤ C sup
t>0

(tq−p (µ{x : |fj(x)| > t})(q−p)/p

Thus, there exists tj such that

tpj (µ{x : |fj(x)| > tj}) ≥
(

Aq0
2q+1C

) p
q−p

.

Set σj = t
−p/n
j . Then

µ{x : σ
d/p
j |fj(σjx)| > 1} = tpj (µ{x : |fj(x)| > tj}) .

Let B be the ball centered at origin with volume
(

Aq0
2q+1C

) p
q−p

. As, fj is symmetric decreasing, it
follow from the above estimates that

σ
d/p
j fj(σjx) ≥ 1B(x).

Proof of Theorem 2 . Let fj be an extremizing sequence for (3.1). Thus ‖fj‖Lp = 1, fj is radial
symmetric decreasing, and there exists a subsequence, which we will continue to denote fj , such
that ‖Tk,df‖Lq ≥ A0/2. Take σj as guaranteed by Lemma 7. Applying Helly’s selection principle
(Lemma 5) to |σj|−d/pfj(σ−1

j x), there exist a function f ∈ Lp and a subsequence, which we will
continue to denote fj , such that |σj|−d/pfj(σ−1

j x) → f pointwise except at the origin. By Lemma
7 for each j, |σj|−d/pfj(σ−1

j x) ≥ 1B. Thus f ≥ 1B, and in particular, f 6= 0.
As fj is radial symmetric decreasing, Tk,dfj(θ, y) is as well. Let gj = Tk,dfj(θ, y). Applying

Helly’s selection principle there exists g such that some subsequence still denoted gj satisfies gj →
g pointwise except at the origin. As q ∈ (1, d + 1], p ∈ (1,∞). Also ‖fj‖Lp(Rd) = 1, and so
by (1.3), ‖gj‖Lq(Mk,d) = ‖Tk,dfj(θ, y)‖Lq(Mk,d) ≤ A0. Thus each of these sequences converges
weakly. Finally, T is a bounded linear operator for Lp to Lq(Mk,d) and thus also is a bounded
linear operator from Lp(Rd) to Lq(Mk,d) when each is endowed with the weak topology. Hence
g = Tk,df , and the conditions of Lemma 6 are satisfied.

3.3 Conclusion of the proof of Theorem 2 by Lieb’s method
Proof. Recall that by Lieb’s lemma (stated above as Lemma 6), it is enough to show that given an
extremizing sequence fj , after extracting a subsequence which we will continue to denote fj , there
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exists a sequence σj ∈ (0,∞) such that the new extremizing sequence |σj|−d/pfj(σ−1
j x) converges

pointwise to a nonzero function and that Tk,dfj → Tk,df pointwise.
Define F (u) = eud/pf(eu). Let cd be the volume of the unit sphere in Rd. Firstly, ‖F‖Lp(R) =

c
1/p
d ‖f‖Lp(Rd). Secondly, ‖f‖Lp,∞ = supt>0 c

1/p
d td/pf ∗(t), and hence, ‖F‖L∞(R) = c

1/p
d ‖f‖Lp,∞ .

By Lemma 1, regarding the action of the k-plane on radial functions, there exists a decreasing
function h defined on on [0,∞) such that Tk,df(θ, y) = h(|y|). Set H(v) = ev(d−k)/qh(ev). First,
‖H‖Lq(R) = c

1/q
n−k‖Tk,df(θ, y)‖Lq(Mk,d)

By Lemma 1,

h(r) =

∫ ∞
0

f((s2 + r2)1/2)sk−1ds.

Thus,

H(v) = ev(d−k)/q

∫ ∞
0

f((e2v + s2)1/2)sk−1ds.

Changing variables so that eu = (e2v + s2)1/2, yields

H(v) = ev(d−k)/q

∫ ∞
v

f(eu)(e2u − e2v)
k−2
2 e2udu.

Using that F (u) = eud/pf(eu)

H(v) =

∫ ∞
v

F (u)(e2u − e2v)
k−2
2 e(2−n

p
)uev(d−k)/qdu.

Now p = nq
n−q+kq , thus 2− n

p
= 2− k − n−k

q
and

H(v) =

∫ ∞
v

F (u)(1− e2(v−u))
k−2
2 e(v−u)(d−k)/qdu.

Define Ld,k = (1− e2u)
k−2
2 eu(d−k)/q

1(−∞,0]. Then,

H = F ∗ Ld,k.

Now, Ld,k is an integrable function provided that (k − 2)/2 > −1 and (d − k)/q > 0 which hold
in all cases that we consider. Thus by Young’s inequality,

‖H‖L∞(R) ≤ ‖F‖L∞(R)‖Ld,k‖L1(R) (3.3)

Let fj be an extremizing sequence for (3.1). Thus ‖fj‖Lp = 1 and fj is radial symmetric
decreasing.

Define aj = supr∈[0,∞) r
d/pfj(r) = c−1/d‖fj‖Lp,∞ . Note that aj is invariant under dilations

which preserve the Lp norm and aj ≤ cd where cd is the volume of the unit sphere in Rd, because

1 = cd

∫ ∞
0

rn−1fj(r)
p dr ≥ cd

∫ R

0

rn−1fj(r)
p ≥ cdR

nfj(R)p.
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By Lemma 9 and equation (3.2), ‖Tk,dfj‖Lq(Mk,d) ≤ C‖fj‖p/qLp ‖fj‖
1−p/q
Lp,∞ . Thus, if fj is an

extremizing sequence, and ‖fj‖Lp = 1 it cannot be that the aj tend to zero.
Choose α > 0, such that for all j, aj > 2α. Next choose σj such that |σj|−d/pfj(σ−1

j ) > α. For
all |x| ≤ 1, |σj|−d/pfj(σ−1

j x) > α as fj is a radial symmetric decreasing function.
Applying Helly’s selection principle, after extracting a subsequence if necessary, the sequence

|σj|−d/pfj(σ−1
j x) converges pointwise except perhaps at zero to a function f . By pointwise con-

vergence, for all x 6= 0, |x| ≤ 1, f(x) > α, and in particular f is nonzero.
Let gj(x) = |σj|−d/pfj(σ−1

j x) and Gj(u) = eud/pgj(e
u). Now ‖Gj‖∞ ≤ cd and the Gj con-

verge pointwise to G = eud/pf(eu). Thus, by dominated convergence Ld,k ∗ (Gj) converges point-
wise to Ld,k ∗G, and hence Tk,dgj converges pointwise to Tk,df as required.
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Chapter 4

Uniqueness of extremizers in the endpoint
case

4.1 Main result and methods
The main result of this chapter is:

Theorem 3. f ∈ L(d+1)/(k+1)(Rd) is an extremizer of the inequality (1.2) if and only if

f(x) = c(1 + |φ(x)|2)−(k+1)/2

for some c ∈ C− {0} and some invertible affine endomorphism, φ, of Rd.

The proof of Theorem 3 has two main steps. The first, done by Drouot in [17], is to show
that extremizers exist and that f = c(1 + |x|2)−(k+1)/2 is a radial nonincreasing extremizer. Drouot
further proved the conditional result that if every extremizer of (1.2) has the form f ◦φ for f a radial
nonincreasing extremizer and φ an affine map, then all extremizers have the the form required in
Theorem 3. This paper concerns the second step, showing that the conditional step holds.

Proposition 2. For any nonnegative extremizer f ∈ Lp(Rd) of (1.2) there exists φ an invertible
affine transformation of Rd, such that f = F ◦ φ for F some radial nonincreasing function F :
Rd → [0,∞).

The proof of Proposition 2 is modeled on that of Christ in [12], which treats the Radon trans-
form case. The basic idea is to show that the superlevel sets of any extremizer are homothetic ellip-
soids. As radial function are precisely those functions whose superlevel sets are spheres, functions
which are radial after composition with an affine map are those functions whose superlevel sets
are homothetic ellipsoids. This is done by applying a theorem of Burchard [7],[8] characterizing
m-tuples of characteristic functions which extremize a certain class of multilinear rearrangement
inequalities as homothetic ellipsoids.
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The change in dimension from that treated by [12] presents two difficulties. First, the result in
[8],[7] applies directly in the case of the Radon transform, but this result must be adapted before it
applies for the k-plane transform case. This is dealt with in Section 4.4.

More crucially, while in the case of the Radon transform it was known before [12] that ex-
tremizers of the endpoint inequality are smooth, in the general case they are not yet even known to
be continuous. When setting ourselves up to use Burchard’s theorem we are forced to work with
cross-sections of the superlevel sets, which are, firstly, measure zero sets, and, secondly, have to
”line up correctly” so that they ”stack back up” into superlevel sets which are themselves homo-
thetic ellipses. We adapt the methods of [12] handle extremizers which are only assumed to be
measurable Lp functions.

4.2 Proof of Theorem 3 from Proposition 2
In [17], Drouot proves the following conditional result which is the starting place for our argument.

Theorem 4 (Drouot, [17]). Let 1 ≤ k ≤ d − 1. Assume that any extremizer f ∈ Lp(Rd) for the
k-plane transform inequality (1.2) can be written f ◦ φ with f a radial nonincreasing extremizer
and φ an invertible affine map. Then any extremizer can be written

f = c(1 + |φ(x)|2)−(k+1)/2

with c ∈ C and φ an invertible affine map.

Proof of Theorem 3 from Proposition 2. It is easy to see that if f ∈ Lp(Rd) is an extremizer of
(1.2) then f = c|f | for some c ∈ C − {0}, thus it suffices to consider nonnegative extremizers.
By Proposition 1, the conditions of Drouot’s theorem are satisfied for all nonnegative functions,
and thus any extremizer can be written f = c(1 + |φ(x)|2)−(k+1)/2 for some c ∈ C and φ an
invertible affine map. That any such function is an extremizer follows as f = c(1 + |x|2)−(k+1)/2

is an extremizer, and invertible affine maps are symmetries of (1.2) ([17]).

4.3 Direct Symmetrization
Following Christ’s proof in [12], we begin by rewriting ‖Tk,df‖Lq as a multilinear form to which
we may apply symmetrization results.

Lemma 10 (Drury’s Identity, [21]). Let f ∈ Lp(Rd) be a nonnegative function. There exists
C ∈ R+ depending only on d and k such that

‖Tk,df‖qLq(Mk,d)

= C

∫ k∏
i=0

f(xi)

(
d∏

i=k+1

∫
π(x0,...,xk)

f(xi) dσ

)
det(k−d)(x0, . . . , xk) dx0 . . . dxk
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where det(k−d)(x0, . . . , xk) is the k-dimensional volume of the simplex determined by x0, . . . , xk in
Rd raised to the power (k − d) and dσ is the surface measure on π(x0, . . . , xk).

Next reorganize Drury’s identity, separating Rd into Rk × Rd−k with coordinates x′ ∈ Rk and
v ∈ Rd−k.

Lemma 11. Let f ∈ Lp(Rd) be a nonnegative function. There exists C ∈ R+ depending only on d
and k such that

‖Tk,df‖qLq(Mk,d) =

C

∫
R(d−k)(k+1)

∆(k−d)(x′0, . . . , x
′
k)

∫
Rk(n+1)

k∏
i=0

f(x′i, vi)
d∏

i=k+1

f(x′i,
k∑
j=0

bi,jvj) dv0 . . . dvkdx
′
0 . . . dx

′
d

where bi,j are certain measurable real-valued functions of x′0, . . . , x
′
k, x

′
i, i and j.

Proof. This is essentially a change of coordinates. Let xi = (x′i, vi) for i ∈ [0, d]. Take x′i to
be an independent variable in Rk for each i ∈ [0, d], and take vi to be an independent variable
in R(d−k) for i ∈ [0, k]. Then for i ∈ [k + 1, d], vi will be determined by x′0, . . . , x

′
k, x

′
i, and

v0, . . . , vk so that for i ∈ [k + 1, d], each (x′i, vi) lies in the k-plane spanned by {(x′i, vi)}ki=0.
Specifically, let A : Rk → Rd−k be the unique affine map determined by (k+1)-tuple of equations
{A(x′i) = vi}ki=0. Then for i ∈ [k + 1, d], set vi = A(x′i).

Our goal is to express dσ in terms of dx′i for i ∈ [k + 1, d]. The parameterization above of
π(x0, . . . , xk) takes the k-simplex in Rk spanned by (x′0, . . . , x

′
k) which has volume ∆(x′0, . . . , x

′
k)

to the k-simplex in Rd spanned by (x0, . . . , xk) which has volume det(x0, . . . , xk). Therefore, for
each xi with i ∈ [k + 1, d], dσ(xi) = det(x0,...,xk)

∆(x′0,...,x
′
k)
dx′i. As n− k terms of this type appear in Drury’s

identity, the det(x0, . . . , xk) terms cancel leaving

‖Tk,df‖d+1
Ln+1(Mk,d) =

C

∫∫ k∏
i=0

f(x′i, vi)
d∏

i=k+1

f(x′i, A(x′i))∆
(k−d)(x′0, . . . , x

′
k) dv1 . . . dvkdx

′
0 . . . dx

′
d.

Finally, a computation by Cramer’s rule shows that for i ∈ [k + 1, d], A(x′i) =
∑k

j=0 bi,jvj for
coefficients bi,j given by

bi,j =
∆(x′0, . . . , x

′
j−1, x

′
i, x
′
j+1, . . . , x

′
k)

∆(x′0, . . . , x
′
k)

. (4.1)

The formula (4.1) gives bi,j = δi,j if 0 ≤ i ≤ k. Define bi,j = δi,j for all 0 ≤ i ≤ k.

The inner integral in Lemma 11 becomes∫ k∏
i=0

f(x′i, vi)
d∏

i=k+1

f(x′i,
k∑
j=0

bi,jvj) dv0 . . . dvk =

∫ d∏
i=0

fx′i(
k∑
j=0

bi,jvj)dv0 . . . dvk.
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Definition 5. For bi,j with i ∈ [0, d] and j ∈ [0, k] depending on (x′0, . . . , x
′
d), given by (4.1), and

Fi : Rd−k → R for all i ∈ [0, d], let Tx′0,...,x′d denote the operator given by

Tx′0,...,x′d(F0, . . . , Fd) =

∫ d∏
i=0

Fi(
k∑
j=0

bi,jvj)dv0 . . . dvk.

As the bi,j are real valued Tx′0,...,x′d is precisely the type of multilinear form addressed by Bras-
camp, Lieb, and Luttinger’s rearrangement inequality:

Theorem 5 (Brascamp, Lieb, and Luttinger’s rearrangement inequality, [6]). Let fi(x) for 1 ≤ i ≤
m be nonnegative measurable functions on Rd, and let ai,j for 1 ≤ i ≤ m and 1 ≤ j ≤ k be real
numbers. Then∫

Rnk

m∏
i=1

fi(
k∑
j=1

ai,jxj) dx1 . . . dxk ≤
∫
Rnk

m∏
i=1

f ∗i (
k∑
j=1

ai,jxj) dx1 . . . dxk.

Thus,

Tx′0,...,x′d(F0, . . . , Fd) ≤ Tx′0,...,x′d(F
∗
0 , . . . , F

∗
d ). (4.2)

Moreover,

Lemma 12. For every nonnegative extremizer f ∈ Lp(Rd) of (1.2) and every symmetry J of (1.2),
for almost every x′0, . . . , x

′
d

Tx′0,...,x′d(J (f)x′0 , . . . ,J (f)x′d) = Tx′0,...,x′d(J (f)∗x′0 , . . . ,J (f)∗x′d).

Proof. As J is a symmetry of (1.2) , J (f) is an extremizer of (1.2) , hence it suffices to consider
J the identity transformation on Lp(Rd). Multiplying both sides of (4.2) by ∆(x′0, . . . , x

′
k)

(k−d)

gives
∆(x′0,..., x

′
k)

(k−d)Tx′0,...,x′d(fx′0 ,..., fx′d)≤∆(x′0,..., x
′
k)

(k−d)Tx′0,...,x′d(f
∗
x′0
,..., f ∗x′d). (4.3)

Let f ](x, v) = f ∗x(v). Then integrating in each x′i shows

‖Tk,df‖qLq(Mk,d) ≤ ‖Tk,df
]‖qLq(Mk,d). (4.4)

Since f is an extremizer, there is equality in (4.4). Hence, there is equality in (4.3) for almost
every x′0, . . . , x

′
k. Multiplying by ∆(x′0, . . . , x

′
k)

(d−k), which is nonzero for almost every x′0, . . . , x
′
k,

proves the proposition.

We further reduce to the case where Tx′0,...,x′d is applied to characteristic functions of superlevel
sets of extremizers. This requires the layer cake decomposition of a function.
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Proposition 3 (Layer cake decomposition (see for instance [31])). If f is a nonnegative measurable
function, then

f(x) =

∫ ∞
0

1{f(x)>t}(x)dt.

To implement this reduction we will need a proposition parallel to Lemma 12 for superlevel
sets.

Proposition 4. For every nonnegative extremizer f of (1.2) , for almost every x′0, . . . , x
′
d and

almost every s0, . . . , sd,

Tx′0,...,x′d(E(x′0, s0), . . . , E(x′d, sd)) = Tx′0,...,x′d(E(x′0, s0)∗, . . . , E(x′d, sd)
∗) (4.5)

where E(x′i, si) is shorthand for 1E(x′i,si)
.

Proof. Applying the layer cake decomposition to each Fx′i ,

Tx′0,...,x′d(Fx′0 , . . . , Fx′d)=

∫
(0,∞)n+1

∫
(Rd−k)k+1

d∏
i=0

1E(x′i,si)

(
k∑
j=0

bi,jvj

)
k∏
l=0

dvl

d∏
m=0

dsm

Similarly,

Tx′0,...,x′d(F
∗
x′0
, . . . , F ∗x′d)=

∫
(0,∞)n+1

∫
(Rd−k)k+1

d∏
i=0

1E∗(x′i,si)

(
k∑
j=0

bi,jvj

)
k∏
l=0

dvl

d∏
m=0

dsm.

Again by the result of Brascamp, Lieb, and Luttinger in [6],∫
(Rd−k)k+1

d∏
i=0

1E(x′i,si)

(
k∑
j=0

bi,jvj

)
k∏
l=0

dvl≤
∫

(Rd−k)k+1

d∏
i=0

1E∗(x′i,si)

(
k∑
j=0

bi,jvj

)
k∏
l=0

dvl.

Integrating in si gives

Tx′0,...,x′d(fx′0 , . . . , fx′d) ≤ Tx′0,...,x′d(f
∗
x′0
, . . . , f ∗x′d).

As equality holds here for almost every x′0, . . . , x
′
d and the product of characteristic functions is

nonnegative, equality must hold in (4.5) for almost every x′0, . . . , x
′
d, for almost every s0, . . . , sd

.

4.4 Inverse symmetrization for superlevel sets
In [12], Christ performs a change of variables and applies Burchard’s Theorem ([8],[7]) to conclude
that the superlevel sets of the fxi are intervals. Here, because of the change in the relationship
between the dimension and the number of functions, the result does not apply directly. Before
applying Burchard’s Theorem ([8],[7]), we must first show that the extra n − k functions are
redundant given a modified admissibility condition and then apply a change of variables so that the
functions, rather than the functional, depend on bi,j .
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Definition 6. A set of positive numbers {ρi}di=0 is permissible with respect to (x′0, . . . , x
′
d) if:

k+1∑
j=0

j 6=i

|b(k+1),j|ρj > |b(k+1),i|ρi for all i ∈ [0, k + 1] (4.6)

k∑
j=0

|bi,j|ρj < ρi for all i ∈ [k + 2, d] (4.7)

where the bi,j are determined for i ∈ [0, d] and j ∈ [0, k] by x′0, . . . , x
′
d according to (4.1) and

b(k+1),(k+1) = 1.

Lemma 13. For i ∈ [0, d] let Ei ⊂ Rd−k be a set of finite positive measure. Let ρi be the radius
of E∗i . If the set {ρi}di=0 is permissible with respect to (x′0, . . . , x

′
d) and Tx′0,...,x′d(E0, . . . , Ed) =

Tx′0,...,x′d(E
∗
0 , . . . , E

∗
d) then

Tx′0,...,x′d(E0, . . . , Ed) = Tx′0,...,x′d(E0, . . . , Ek+1,R, . . . ,R)

and
Tx′0,...,x′d(E0, . . . , Ek+1,R, . . . ,R) = Tx′0,...,x′d(E

∗
0 , . . . , E

∗
k+1,R, . . . ,R)

Proof. By definition Tx′0,...,x′d(E
∗
0 , . . . , E

∗
d) =

∫ ∏d
i=0 1E

∗
i
(
∑k

j=0 bi,jvj)dv0 . . . dvk. Recall that bi,j =
δi,j if i, j ∈ [0, k]. Consider

k∏
i=0

1E∗i
(vi)1E∗l (

k∑
j=0

bl,jvj).

For l ∈ [k + 2, d], from the definition of permissibility (4.7),

ρl >
k∑
j=0

|bl,j|ρj.

As ρj is the radius of the open ball E∗j which is centered at the origin, it follows that for any choice
of vectors vj ∈ E∗j ,

k∑
j=0

|bl,j|vj ∈ E∗l .

Therefore,
k∏
i=0

1E∗i
(vi)1E∗l (

k∑
j=0

bl,jvj) =
k∏
i=0

1E∗i
(vi).

Because this holds for every l ∈ [k + 2, d],

k∏
i=0

1E∗i
(vi)

d∏
l=k+2

1E∗l
(
k∑
j=0

bl,jvj) =
k∏
i=0

1E∗i
(vi).
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Multiplying by 1E∗k+1
(
∑k

j=0 bl,jvj) yields,

d∏
l=1

1E∗l
(
k∑
j=0

bl,jvj) =
k+1∏
i=0

1E∗i
(vi).

Multiply the right hand side by one in the form
∏d

l=k+2 1R(
∑k

j=0 bl,jvj) and integrate in vj for
j ∈ [0, k] to obtain

Tx′0,...,x′d(E
∗
0 , . . . , E

∗
d) = Tx′0,...,x′d(E

∗
0 , . . . , E

∗
k+1,R, . . . ,R). (4.8)

Now
d∏
i=0

1Ei(
k∑
j=0

bi,jvj) ≤
k+1∏
i=0

1Ei(
k∑
j=0

bi,jvj)

because each term in the product is a characteristic function. Hence

Tx′0,...,x′d(E0, . . . , Ed) ≤ Tx′0,...,x′d(E0, . . ., Ek+1,R, . . . ,R).

Combining this with (4.8) and the fact that Tx′0,...,x′d satisfies rearrangement inequalities yields

Tx′0,...,x′d(E0, . . . , Ed) ≤ Tx′0,...,x′d(E0, . . . , Ek+1,R, . . . ,R)

≤ Tx′0,...,x′d(E
∗
0 , . . . , E

∗
k+1,R, . . . ,R) = Tx′0,...,x′d(E

∗
0 , . . . , E

∗
d)

Since by assumption Tx′0,...,x′d(E0, . . . , Ed) = Tx′0,...,x′d(E
∗
0 , . . . , E

∗
d) equality must hold at every step.

Theorem 6 (An adaption of Burchard’s theorem for indicator functions). Let Ei be sets of finite
positive measure in Rd−k for i ∈ [0, d]. Denote by ρi the radius ofE∗i . If the family ρi is permissible
with respect to (x′0, . . . , x

′
d) and

Tx′0,...,x′d(E0, · · · , Ed) = Tx′0,...,x′d(E
∗
0 , · · · , E∗d)

then for each i ∈ [0, k + 1] there exist vectors βi ∈ Rd−k and numbers αi ∈ R+ such that∑k
i=0 βi = βk+1, and there exists an ellipsoid E which is centered at the origin and independent of

i such that, up to null sets,
b(k+1),iEi = βi + αiE

where the bi,j are determined for i ∈ [0, d] and j ∈ [0, k] by x′0, . . . , x
′
d according to (4.1) and

b(k+1),(k+1) = 1.

Proof. By Lemma 13, Tx′0,...,x′d(E0, · · · , Ek+1,R, . . . ,R) = Tx′0,...,x′d(E
∗
0 , · · · , E∗k+1,R, . . . ,R). Set

y0 = b(k+1),0v0 and yi = −b(k+1),ivi for i ∈ [1, k]. Recall that bi,j = δi,j if i, j ∈ [0, k].

Tx′0,...,x′d(E0, . . . , Ek+1,R, . . . ,R) =

∫ k∏
i=0

1Ei(vi)1Ek+1
(
k∑
j=0

b(k+1),jvj)dv0 . . . dvk

= c

∫ k∏
i=0

1Ei(b
−1
(k+1),iyi)1Ek+1

(y0 −
k∑
j=1

yj)dy0 . . . dyk.
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Therefore,

Tx′0,...,x′d(E0, . . . , Ek+1,R, . . . ,R) = cI(Ek+1, b(k+1),0E0, . . . , b(k+1),kEk).

The permissibility condition (4.6) is precisely the requirement that the radii of
{b(k+1),iE

∗
i }ki=0

⋃
E∗k+1 are strictly admissible. Thus as the family ρi is permissible with respect to

(x′0, . . . , x
′
d), Burchard’s Theorem applied to {b(k+1),iE

∗
i }ki=0

⋃
E∗k+1 gives the result.

4.5 Identifying (d− k)-cross sections of superlevel sets
Definition 7. To each nonnegative extremizer f of (1.2) , associate a function ρ(x′, s) which is the
radius of the ball E∗(x′, s).

In this section we show that almost every (d − k)-cross section of almost every superlevel set
is, up to a null set, an ellipsoid. The main step is to show that each such set of positive measure
can be associated to an (d+ 1)-tuple of sets to which Burchard’s theorem in the form of Theorem
6 may be applied. We construct such (d+ 1)-tuples predominantly following the proof of Lemma
5.4 in [12]. Our proof differs in that it is not yet known that extremizers are continuous, so we will
rely on Lebesgue points of the function ρ(x′, s). The goal is:

Proposition 5. Let f be any nonnegative extremizer of (1.2) . For almost every x′ ∈ Rk, for almost
every s ∈ R+ the set E(x′, s) differs from an ellipsoid by a null set.

Before we wade into the proof we need a few technical lemmas.

Lemma 14. For every nonnegative extremizer f of (1.2) the associated function ρ(x′, s) is in
L1
loc(Rk × R+). In particular, almost every (x′, s) ∈ Rk × R+ is a Lebesgue point of the function

(x′, s)→ ρ(x′, s).

Proof. This is a direct consequence of the definition, the observation that f ∈ Lp(Rd), and Fubini’s
theorem.

Lemma 15. Any nonnegative extremizer f ∈ Lp(Rd) of (1.2) satisfies f(x) > 0 for almost every
x ∈ Rd.

The proof is deferred to the last section of the paper.

Lemma 16. Let {ui}ki=0 be a set of pairwise-distinct unit vectors such that the volume of the
simplex with vertices 0, u1, . . . , uj−1, uj+1, . . . , uk is independent of the choice of j. Let τ > 0. If
x′i = x′k+1 + τui for i ∈ [0, k], then for all j ∈ [0, k] b(k+1),j = 1

k+1
.

Proof. Note that such ui exist in every dimension, take the vertices of a regular triangle, tetrahe-
dron, etc. Take ui and τ as in the statement of the lemma. Set x′i = x′k+1 + τui for i ∈ [0, k].
By choice of ui each of volumes ∆(x′0, . . . , x

′
j−1, x

′
k+1, x

′
j+1, . . . , x

′
k) are equal. Plugging this into

(4.1), the definition of bi,j , produces b(k+1),j = 1
k+1

for j ∈ [0, k].
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Proof of Proposition 5 . Fix any x′k+1 ∈ Rk such that fx′k+1
is in Lp(Rd−k), fx′k+1

is positive almost
everywhere and for almost every s ∈ R+, (x′k+1, s) is a Lebesgue point of the function (x′, s) →
ρ(x′, s). Almost every x′ ∈ Rk satisfies all of these conditions: the first because f ∈ Lp(Rd), the
second by Lemma 15, and the third by Lemma 14. Consider sk+1 ∈ R+. Either ρ(x′k+1, sk+1) > 0
or ρ(x′k+1, sk+1) = 0. In the latter case, |E(x′k+1, sk+1)| = 0 and the conclusion of Proposition 5
is vacuously true. Hence it suffices to consider sk+1 such that ρ(x′k+1, sk+1) > 0. Fix some such
sk+1 ∈ R+.

Our goal is to construct a family of sets {Si ⊂ (Rk,R+) : k + 1 6= i ∈ [0, d]} depending
on (x′k+1, sk+1) satisfying two conditions: first |Si| > 0 for i ∈ [0, d] \ {k + 1} and second,
if for each i ∈ [0, d] \ {k + 1}, (x′i, si) ∈ Si then {ρ(x′i, si)}di=0 is permissible with respect to
(x′0, . . . , x

′
d). Proposition 4 guarantees that for almost every (xk+1, sk+1) ∈ Rk × R+ for which

such a family exists, for almost every (x′0, s0), . . . , (x′k, sk), (x
′
k+2, sk+2) . . . , (x′d, sd) equality in

(4.5) holds in addition to permissibility. Applying Burchard’s Theorem 6 for superlevel to the
sets E(x′0, s0), . . . , E(x′d, sd) for which both equality and permissibility hold, produces the desired
conclusion.

The first permissibility condition (4.6) doesn’t depend on ρi for i ∈ [k + 2, d]. Thus we begin
by constructing {Si}ki=0 such that if (x′i, si) ∈ Si then {ρ(x′i, si)}k+1

i=0 satisfies (4.6).
Choose rk+1 ∈ (0, sk+1) such that (x′k+1, rk+1) is a Lebesgue point of the function (x′, s) →

ρ(x′, s) and ρ(x′k+1, rk+1) > ρ(x′k+1, sk+1). The first condition holds for almost every rk+1 > 0
by choice of x′k+1. The second must be satisfied by some rk+1 as fx′k+1

(v) ∈ Lp(Rd−k) is almost
everywhere positive, and thus larger superlevel sets always exist.

Our strategy for constructing the family {Si}ki=0 will be to find sets with positive measure of
(x′, s) ∈ Rk × R+ such that each ρ(x′, s) is approximately ρ(x′k+1, rk+1) and the
b(k+1),j(x

′
0, . . . , x

′
k+1) for j ∈ [0, k] are approximately equal to one another.

Fix ερ > 0 such that 4ερ < min
(
ρ(x′k+1, rk+1)− ρ(x′k+1, sk+1), ρ(x′k+1, sk+1)

)
. This will be

the tolerance in the size of superlevel sets.
Let B(δρ) = B(x′k+1, δρ)×B(rk+1, δρ). Since (x′k+1, rk+1) is a Lebesgue point of the function

(x′, s)→ ρ(x′, s), there is a δρ > 0 such that

1

|B(δρ)|

∫
B(δρ)

|ρ(x′, s)− ρ(x′k+1, rk+1)|dx′ds < ερ
2(k + 1)

.

Hence, ∣∣∣{(x′, s) : |ρ(x′, s)− ρ(x′k+1, rk+1)| > ερ
2

}⋂
B(δρ)

∣∣∣ < |B(δρ)|
k + 1

.

Therefore, by the pigeonhole principle, it is possible to choose {ui}ki=0 as in the statement of
Lemma 16, τ ∈ (0, δρ), and ri ∈ B(rk+1, δρ) for i ∈ [0, k] such that z′i = x′k+1 + τui satisfy
|ρ(z′i, si) − ρ(z′k+1, rk+1)| < ερ/2 and each of the (z′i, ri) are in turn Lebesgue points of (x′, s) →
ρ(x′, s). Note that as computed in Lemma 16 for j ∈ [0, k], b(k+1),j(z

′
0, . . . , z

′
k, x

′
k+1) = 1

k+1
. Di-

rect computation verifies that {ρ(z′i, ri)}ki=0 ∪ {ρ(x′k+1, sk+1) satisfy (4.6).
Fix εb < ερ

(
(k + 1)ρ(x′k+1, rk+1)

)−1
. This will be the tolerance in the variation of the coef-

ficients b(k+1),j . For each j ∈ [0, k] the function b(k+1),j : R(d−k)(k+1) → R is continuous, as it
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is a multilinear function of {x′i}ki=0. Therefore, there exists δb > 0 such that if x′i ∈ B(z′i, δb) for
i ∈ [0, k] and y′k+1 ∈ B(x′k+1, δb), then |b(k+1),j(z

′
0, . . . , z

′
k, x

′
k+1)−b(k+1),j(x

′
0, . . . , x

′
k, y
′
k+1)| < εb.

Set Si = {(xi, si) : |ρ(x′i, si) − ρ(x′k+1, rk+1)| < ερ, x
′
i ∈ B(z′i, δb)}, for i ∈ [0, k]. To

see that for i ∈ [0, k], |Si| > 0 recall that each (z′i, ri) is a Lebesgue point of the function
(x′, s)→ ρ(x′, s). Thus, there exists a small radius δ ∈ (0, δb) such that for all i ∈ [0, k] the condi-
tion |ρ(z′i, ri)−ρ(x′i, si)| < ερ/2 is satisfied by at least half of the (x′i, si) such that x′i ∈ B(z′i, δ) and
|ri − si| ≤ δ. By the triangle inequality, such (x′i, si) also satisfy |ρ(x′i, si)− ρ(x′k+1, rk+1)| < ερ.

We now verify that any (k + 1)-tuple (x′i, si)
k
i=0 such (x′i, si) ∈ Si fulfills the permissibility

condition.
By Lemma 16, b(k+1),j(z

′
0, . . . , z

′
k, x

′
k+1) = 1

k+1
, therefore b(k+1),j = b(k+1),j(x

′
0, . . . , x

′
k+1) ∈

( 1
k+1
− εb, 1

k+1
+ εb).

k∑
j=0

|b(k+1),j|ρ(x′j, sj) ≥ (1− (k + 1)εb)(ρ(x′k+1, rk+1)− ερ)

≥ ρ(x′k+1, rk+1)− (k + 1)εbρ(x′k+1, rk+1)− ερ
As εb <

ερ
(k+1)ρ(x′k+1,rk+1)

and 2ερ < ρ(x′k+1, rk+1)− ρ(x′k+1, sk+1) ,

k∑
j=0

|b(k+1),j|ρ(x′j, sj) > ρ(x′k+1, sk+1).

Fix any i ∈ [0, k], then

k+1∑
j=0

j 6=i

|b(k+1),j|ρ(x′j, sj) ≥
k − kεb
k + 1

(
ρ(x′k+1, rk+1)− ερ

)
+ ρ(x′k+1, sk+1)

≥
kρ(x′k+1, rk+1)

k + 1
+ ρ(x′k+1, sk+1)− k

(k + 1)
(ερ + εbρ(x′k+1, rk+1)).

As εb <
ερ

(k+1)ρ(x′k+1,rk+1)
and k(k+2)

(k+1)2
< 1 ,

k+1∑
j=0

j 6=i

|b(k+1),j|ρ(x′j, sj) ≥
kρ(x′k+1, rk+1)

k + 1
+ ρ(x′k+1, sk+1)− ερ ≥

kρ(x′k+1, rk+1)

k + 1
+ 3ερ

Additionally as εb ≤ ερ
(k+1)ρ(x′k+1,rk+1)

< 1, and k ≥ 1 ,

|b(k+1),j|ρ(x′j, sj) < (
1

k + 1
+ εb)(ρ(x′k+1, rk+1) + ερ)

≤
ρ(x′k+1, rk+1)

k + 1
+

3

k + 1
ερ ≤

ρ(x′k+1, rk+1)

k + 1
+ 2ερ.
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Therefore
k+1∑
j=0

j 6=i

|b(k+1),j|ρ(x′j, sj) > |b(k+1),i|ρ(x′j, sj).

To prove the proposition, it remains to find a family {Si}di=k+2. Given the construction above,
for i ∈ [0, k] if (x′i, si) ∈ Si, ρ(x′i, si) < ρ(x′k+1, rk+1) + ερ. Moreover, if i ≥ k + 1 then
bi,j(x

′
0, . . . , x

′
d) = b(k+1),j(x

′
0, . . . , x

′
k, x

′
i). Therefore |bi,j(x′0, . . . , x′d)−b(k+1),j(z

′
0, . . . , z

′
k, xk+1)| <

1
k+1

+ εb. Hence, there exists C ′ ∈ R such that if (x′j, sj) ∈ Sj for j ∈ [0, k]

k∑
j=0

|bi,j|ρ(x′j, sj) ≤ C ′.

For each i ∈ [k+2, d], set Si = {(x′i, si) : x′i ∈ B(x′k+1, δ) and ρ(x′i, si) > C ′}. Si for i ∈ [k+2, d]
has positive measure by positivity of the nonnegative extremizer f (see Lemma 15). Moreover, if
(x′i, si) ∈ Si for i ∈ [0, d] \ {k + 1}, then

k∑
j=0

|bi,j|ρ(x′j, sj) ≤ C ′ < ρ(x′i, si)

and hence (4.7) is satisfied.

4.6 Identifying (d− k)-cross sections part II: shared geometry
Thus far we have shown that almost all (d − k)-dimensional cross sections of the superlevel sets
of extremizers are ellipsoids up to null sets. The next step is to show that these elliptical cross
sections almost always have the same geometry, i.e., they are translations and dilations of a single
ellipsoid in Rd−k. Further, we show that the translations are given by an affine function.

We have not yet used the full strength of Burchard’s theorem. Applying Theorem 6:

Lemma 17. For every nonnegative extremizer f of (1.2) , for almost every x′ ∈ Rk, for almost
every s ∈ R+, there exist an ellipsoid E(x′) ⊂ Rd−k centered at the origin, a vector γ(x′) ∈ Rd−k

and a number α(x′, s) ∈ R such that, up to a null set,

E(x′, s) = γ(x′) + α(x′, s)E(x′).

Proof. It is enough to prove the lemma for almost every x′ ∈ Rd−k, for almost any pair s and s̃
such that both ρ(x′k+1, s) and ρ(xk+1, s̃) are nonzero.

Take x′k+1 ∈ Rd−k satisfying the conditions of the construction of Proposition 5. Apply the
construction, with rk+1 chosen so that ρ(x′k+1, rk+1) is greater than both ρ(x′k+1, s) and ρ(x′k+1, s̃).
This produces a family of measurable sets {Si ⊂ Rd−k×R+ : k+1 6= i ∈ [0, d]}, each with positive
measure, such that if (x′i, si) ∈ Si then {ρ(x′i, si)}di=0 is permissible with respect to (x′0, . . . , x

′
d)
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both for sk+1 = s and for sk+1 = s̃. By Proposition 4 , for almost every x′k+1 ∈ Rk and almost
every pair (s, s̃) ∈ R2

+, for almost every family {(x′i, si) : k + 1 6= i ∈ [0, d]} with (x′i, si) ∈ Si,
the (d+ 1)-tuple of sets {E(x′i, si)}di=0 produces equality in equation (4.5), both for sk+1 = s and
for sk+1 = s̃.

For any (d + 1)-tuple of sets {E(x′i, si)}di=0 which produces equality in equation (4.5) and is
such that the set {ρ(x′i, si)}di=0 is permissible, Burchard’s Theorem (Theorem 6) gives that for i ∈
[0, k+1] there exist numbers α(x′i, si) ∈ R+, vectors β(x′i, si) ∈ Rd−k satisfying

∑k
i=0 β(x′i, si) =

β(x′k+1, sk+1), and a fixed ellipsoid E(x′i, si) which is centered at the origin and independent of i
such that, up to null sets,

b(k+1),iE(x′i, si) = β(x′i, si) + α(x′i, si)E(x′i, si).

Recall that b(k+1),i is given by (4.1) for i ∈ [0, k] and b(k+1),(k+1) = 1. As E(x′i, si) is determined
by {(x′i, si)}ki=0, E(x′k+1, s) = E(x′k+1, s̃). Set E(x′k+1) = E(x′k+1, s̃). Similarly, β(x′k+1, sk+1) =∑k

i=0 β(x′i, si), thus β(x′k+1, s) = β(x′k+1, s̃). Set γ(x′k+1) = β(x′k+1, s).
With this terminology, for almost every x′k+1 ∈ Rd−k, for almost every pair s, s̃ ∈ R+ × R+,

both for sk+1 = s and for sk+1 = s̃, up to a null set,

E(x′k+1, sk+1) = γ(x′k+1) + α(x′k+1, sk+1)E(x′k+1).

Because superlevel sets are nested, this result extends to:

Proposition 6. For every nonnegative extremizer f of (1.2) , for all s ∈ R+, for almost every
x′ ∈ Rk, there exist an ellipsoid centered at the origin E(x′) ⊂ Rd−k, a vector γ(x′) ∈ Rd−k, and
a number α(x′, s) ∈ R such that E(x′, s) = γ(x′) + α(x′, s)E(x′) up to a null set.

Proof. Fix any s̃ ∈ R+. Fix any x′ ∈ Rk such that for almost every s ∈ R+, E(x′, s) = γ(x′) +
α(x′, s)E(x′) up to a null set. By Lemma 17, this condition is satisfied by almost every x′ ∈ Rk.
Because superlevel sets are nested, for any sequence sd approaching s̃ from above, E(x′, s̃) =⋃
sd
E(x′, sd). By our choice of x′ ∈ Rk, this sequence sd can be chosen such that for each n ∈ ,

E(x′, sd) = γ(x′) + α(x′, sd)E(x′) up to a null set. As the union of a countable collection of null
sets is a null set,

E(x′, s̃) =
⋃
sd

γ(x′) + α(x′, sd)E(x′)

up to a null set.
Set α(x′, s̃) = limn→∞ α(x′, sd). This limit exists because α(x′, sd) is nondecreasing and

bounded as n → ∞. The first condition holds because superlevel sets are nested. The second
because x′ was chosen to satisfy the conditions of the construction in Proposition 5 which require
that fx′k+1

is in Lp(Rd−k) and thus that each superlevel set of fx′k+1
(v) has finite measure.

Therefore, up to a null set,

E(x′, s̃) = γ(x′) + α(x′, s̃)E(x′).



CHAPTER 4. UNIQUENESS OF EXTREMIZERS IN THE ENDPOINT CASE 36

Our next goal is to show that there exists an ellipsoid centered at the origin E ⊂ Rd−k such
that for every x′ ∈ Rk, E(x′) = E and further that γ(x′) is an affine function. A proof similar
to that given for Lemma 17 holds if the extremizers are known to be continuous. However, for
extremizers that are only known to be measurable, there is an extra step. We show that the results
proved so far imply that any superlevel set of an extremizer is convex up a null set and thus there
exists a representative of f ∈ Lp(Rd) whose superlevel sets are convex. This function will have
the properties of continuous functions that are relevant to the proof.

Definition 8. A set E is almost Lebesgue convex if for almost every pair (x, y) ∈ E × E the line
segment xy ⊂ E up to a one-dimensional null set.

In Section 4.8 we prove Lemma 20: A set E is almost Lebesgue convex if and only if there
exists an open convex set C such that |E∆C| = 0 and in this case, C is the convex hull of the
Lebesgue points of E.

Proposition 7. For every nonnegative extremizer f of (1.2) , for every s ∈ R+ the set Es = {x ∈
Rd : f(x) > s} is an almost Lebesgue convex set.

We will first show:

Lemma 18. For every nonnegative extremizer f of (1.2) , for every s ∈ R+, for every k-plane
θ ∈ Mk,n, for almost every x′ ∈ θ, and for almost every pair (v1, v2) ∈ θ⊥ × θ⊥ such that
x′+ v1 ∈ Es and x′+ v2 ∈ Es , the line segment connecting x′+ v1 and x′+ v2 is contained in Es
up to a one-dimensional null set.

Note that unlike most claims in this paper, which are of the almost everywhere variety, this
result holds for every superlevel set and every k-plane.

Proof. For any k-plane θ there is an affine map A taking θ to Rk. As A is affine, the mapping
f 7→ f ◦A is a symmetry of (1.2) . Therefore f ◦A is also an nonnegative extremizer of (1.2) and
it suffices to consider the case where θ = Rk ⊂ Rd. By Proposition 6, for all s ∈ R+, for almost
every x′ ∈ Rk, E(x′, s) is an ellipsoid, and hence convex, up to an (d− k)-dimensional null set, so
the claim follows from the only if direction of Lemma 20.

Proof of Proposition 7. Factor Rd × Rd as the product Gk,k+1 × Rk × Rd−k × Rd−k, losing a null
set, as follows. For x = (x1, · · · , xd) write x′′ = (x1, . . . , xk+1). Almost every pair (x′′, y′′)
determines a line ` in Rk+1. There is a unique k-plane, θ, in Rk+1 that passes through the origin
and is perpendicular to ` . Let x′ ∈ Rk denote the projection of x onto θ. As θ is perpendicular to `,
the projection of y onto θ is also x′. Let vx be the projection of x onto θ⊥, the (d− k)-dimensional
subspace perpendicular to θ, and similarly for vy. The 4-tuple (θ, x′, vx, vy) completely specifies
the pair (x, y).

By Lemma 18 the set of 4-tuples (θ, x′, vx, vy) such that the line segment connecting x′ + vx
and x′ + vy is contained in Es up to a null set has full measure. Thus the set of (x, y) such that
xy ⊂ Es up to a one-dimensional null set has full measure as well.
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Proposition 8. For every nonnegative extremizer f ∈ Lp(Rd) of (1.2) , there exists f̃ ∈ Lp(Rd)
such that f̃ = f almost everywhere and every superlevel set of f̃ is open and convex.

Proof. Let f be any nonnegative extremizer of (1.2) . Let Es = {x : f(x) > s}. By Proposition 7
for every s ∈ R+, the convex hull of the Lebesgue points ofEs, Cs, is open and satisfies |Es∆Cs| =
0. Define

f̃(x) =

∫ ∞
0

1Cs(x)ds. (4.9)

Because |Es∆Cs| = 0, f̃(x) = f(x) almost everywhere .
Observe that the sets Cs are nested. Take r > t > 0. Er ⊂ Et, thus the set of Lebesgue points

of Er is contained in the set of Lebesgue points of Et. As Cr and Ct are the convex hulls of the
Lebesgue points of Er and Et respectively, Cr ⊂ Ct.

For each s ∈ R+, define Ẽs = {x : f̃(x) > s}. Using (4.9) and that the sets Cs are nested,
Ẽs =

⋃
t>s Ct. As the union of open sets is open, Ẽs is open. Further, as the union of nested convex

sets is convex, Ẽs is also convex.

Corollary 1. Any nonnegative extremizer f of (1.2) agrees almost everywhere with a lower semi-
continuous function.

Corollary 2. Let f be a nonnegative extremizer of (1.2) whose superlevel sets are open and convex.
For every s ∈ R+, the function x′ → ρ(x′, s) is continuous on the interior of {x′ : ρ(x′, s) 6= 0}.

Proof. Fix any x′ ∈ Rk and y′ ∈ Rk such that |E(x′, s)| 6= 0 and |E(y′, s)| 6= 0. By the Brunn-
Minkowski inequality,

|tE(x′, s) + (1− t)E(y′, s))|1/n ≥ t|E(x′, s)|1/n + (1− t)|E(y′, s)|1/n.

By convexity of the superlevel set Es,

tE(x′, s) + (1− t)E(y′, s)) ⊂ E(tx′ + (1− t)y′, s).

Thus,
ρ(tx′ + (1− t)y′, s) ≥ tρ(x′, s) + (1− t)ρ(y′, s).

Hence x′ → ρ(x′, s) is concave on {x′ : ρ(x′, s) 6= 0}. Using that a concave function on an open
set is continuous, x′ → ρ(x′, s) is continuous on the interior of the set {x′ : ρ(x′, s) 6= 0}.

Proposition 9. Let f be a nonnegative extremizer of (1.2) whose superlevel sets are open and
convex. There exist an ellipsoid centered at the origin E ⊂ Rd−k, an affine function γ(x′), and
numbers α(x′, s) ∈ [0,∞) such that for every (x′, s) ∈ Rk × R+ satisfying |E(x′, s)| > 0

E(x′, s) = γ(x′) + α(x′, s)E .
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Proof. By Proposition 6, for all s ∈ R+, for almost every x′ ∈ Rk, there exist an ellipsoid centered
at the origin E(x′) ⊂ Rd−k, a vector γ(x′) ∈ Rd−k, and a number α(x′, s) ∈ R such that up to a
null set,

E(x′, s) = γ(x′) + α(x′, s)E(x′). (4.10)

As E(x′, s) is open and convex, when |E(x′, s)| > 0 there is true equality in (4.10), not just
equality up to a null set. It remains to see that E(x′) is independent of x′ and γ(x′) is an affine
function.

By the convexity established in Proposition 8, it suffices to show that for almost every z′ ∈ Rk

there exists some δ > 0 such that for almost every x′ ∈ B(z′, δ), E(z′) = E(x′) and γ(x′) is almost
everywhere equal to an affine function on B(z′, δ).

Fix z′k+1 ∈ Rk satisfying the conditions of the construction in Proposition 5 and take sk+1 ∈ R+

such that z′k+1 is in the interior of {x′ : ρ(x′, sk+1) 6= 0}. Such an sk+1 always exists by positivity
of nonnegative extremizers and convexity of each superlevel set.

By essentially the same argument used for the construction in Proposition 5, there exist δb > 0,
ερ > 0, and {Si : k + 1 6= i ∈ [0, d]} such that if |ρ(x′k+1, sk+1) − ρ(z′k+1, sk+1)| < ερ and
x′k+1 ∈ B(z′k+1, δb) and (x′i, si) ∈ Si for i ∈ [0, d]\{k+ 1}, then {ρ(x′i, si)}di=0 is permissible with
respect to (x′0, . . . , x

′
d+1).

The only change required is in the definition of δb. Whereas in the original proof b(k+1),j

is viewed as a function of the (k + 1) variables {x′i}ki=0 with x′k+1 fixed, here x′k+1 varies as
well. Thus b(k+1),j is a function of the (k + 2) variables {x′i}k+1

i=0 . As this function is continuous,
there exists δb > 0 such that if x′i ∈ B(z′i, δb) for i ∈ [0, k + 1], then |b(k+1),j(x

′
0, . . . , x

′
k+1) −

b(k+1),j(z
′
0, . . . , z

′
k, z
′
k+1)| < εb, where for i ∈ [0, k], z′i is fixed as in Proposition 5. As there

is an extra ερ in the computation of permissibility in Proposition 5, the same computation gives
permissibility here.

By Corollary 2, there exists δ1 > 0 such that for all x′ ∈ B(z′k+1, δ1),

|ρ(x′, sk+1)− ρ(z′k+1, sk+1)| < ερ.

Set δz′k+1
= min(δ1, δb). Then, for every x′k+1 ∈ B(z′k+1, δz′k+1

) if (x′i, si) ∈ Si for i ∈ [0, d] \ {k +

1}, {ρ(x′i, si)}di=0 is permissible with respect to (x′0, . . . , x
′
d+1).

By Proposition 4, for almost every (z′k+1, sk+1) ∈ Rk × R+ satisfying the conditions above,
for almost every for almost every family {(x′i, si) : k + 1 6= i ∈ [0, d]} with (x′i, si) ∈ Si, for
almost every x′k+1 ∈ B(z′k+1, δz′k+1

), the family {E(x′i, si)}di=0 produces equality in (4.5) and the
family {ρ(x′i, si)}di=0 is permissible. Thus for almost every z′k+1 ∈ Rk, there exist an sk+1 ∈ Rk

and a family {(x′i, si) : k + 1 6= i ∈ [0, d]} such that for almost every x′k+1 ∈ B(z′k+1, δz′k+1
), the

(d+ 1)-tuple of sets {E(x′i, si)}di=0 satisfies the conditions of Burchard’s theorem.
Applying Burchard’s theorem and Lemma 17 gives that there exist vectors β(x′i) ∈ Rd−k

satisfying
∑k

i=0 β(x′i) = β(x′k+1), numbers α(x′i, si) ∈ R+ and a fixed ellipsoid E(x′i) which is
centered at the origin and independent of i, such that up to null sets,

b(k+1),i(x
′
0, . . . , x

′
k+1)E(x′i, si) = β(x′i) + α(x′i, si)E(x′i).
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Therefore E(x′k+1) is determined by {x′i}ki=0 and must be the same for almost every x′k+1 ∈
B(z′k+1, δb,sk+1

).
Set1 γ(x′i) = β(x′i)/b(k+1),i(x

′
0, . . . , x

′
k+1). Therefore for almost every x′k+1 ∈ B(z′k+1, δb,sk+1

),

γ(x′k+1) =
k∑
i=0

b(k+1),i(x
′
0, . . . , x

′
k+1)γ(x′i).

For i ∈ [0, k], b(k+1),i(x
′
0, . . . , x

′
k+1) defined by (4.1)) is an affine function of xk+1, thus γ(x′k+1) is

as well.

4.7 Proof of Proposition 2
Proposition 10. Let f be a nonnegative extremizer of (1.2) whose superlevel sets are open and
convex. Let v → f ](x′, v) be the symmetric nonincreasing rearrangement of v → f(x′, v) for each
x′ ∈ R(d−k). Then there exist γ(x′) : Rk → Rd−k an affine function and L : Rd−k → Rd−k an
invertible linear map such that f(x′, L(v) + γ(x′)) = f ](x′, v).s

Proof. Let f ∈ Lp(Rd) be any nonnegative extremizer of (1.2) whose superlevel sets are open
and convex. By Proposition 9, there exist an ellipsoid centered at the origin E ⊂ Rd−k, an affine
function γ(x′), and numbers α(x′, s) ∈ [0,∞) such that for every (x′, s) ∈ Rk × R+ satisfying
|E(x′, s)| > 0

E(x′, s) = γ(x′) + α(x′, s)E .

Let L : Rd−k → Rd−k be the linear map taking the unit ball to E . Thus for each x′ ∈ Rk, each
superlevel set of the function v → f(x′, L(v) + γ(x′)) is a ball centered at the origin or the empty
set.

To prove Proposition 2, we follow the proof in [12] for the Radon transform with modifications
to allow for the change in dimension. This proof requires some notation from group theory. Let
A(d) denote the affine group and O(d) denote the orthogonal group, each in Rd. Similarly, let
O(d− k) denote the orthogonal group in Rd−k.

Definition 9. Fix k ∈ [1, d − 1]. For ϕ ∈ O(d) define a scaled skew reflection associated to ϕ to
be any element of A(d) with the form

Φϕ = ϕ−1ψ−1L−1RLψϕ

where ψ(x′, v) = (x′, v + γ(x′)) for γ(x′) : Rk → Rd−k an affine mapping, L(x′, v) = (x′, L(v))
for L : Rd−k → Rd−k an invertible linear map, and
R(x′, v1, . . . , vd−k) = (x′, v1, . . . , vn−k−1,−vd−k).

1 Note that γ(x′k+1) = β(x′k+1) so this definition agrees with the definition of γ(x′k+1) given in Lemma 17.
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We use the term scaled skew reflection, to distinguish these functions the the skew reflections
used in [12], where the linear map L is unnecessary as ellipsoids and spheres are both intervals in
1 dimension. The following results are proved in [12] where scaled skew reflections are replaced
by skew reflections.

Lemma 19. For every nonnegative extremizer f ∈ Lp(Rd) of (1.2), for each ϕ ∈ O(d) there exists
a scaled skew reflection associated to ϕ, Φϕ, such thatf ◦ Φϕ = f almost everywhere.

Proof. Given a nonnegative extremizer f ∈ Lp(Rd) of (1.2) and an orthogonal transformation ϕ ∈
O(d), take γ(x′) : Rk → Rd−k and L : Rd−k → Rd−k to be the affine function and invertible linear
map guaranteed by Proposition 10 applied to the extremizer that agrees almost everywhere whose
level sets are open and convex with f ◦ ϕ. Set L = (x′, L−1(v)) and ψ(x′, v) = (x′, v − γ(x′)).
Then by Proposition 10, f ◦ Φϕ = f almost everywhere.

Proposition 11. Let f : Rd → [0,∞) be a measurable function such that each superlevel set
is convex and bounded. Suppose {x : f(x) > 0} has positive Lebesgue measure and for each
ϕ ∈ O(d) there exists a scaled skew reflection associated to ϕ, Φϕ, such that f ◦ Φϕ = f almost
everywhere, then there exists φ ∈ A(d) such that f ◦ φ = (f ◦ φ)∗ almost everywhere.

Proof. For each s ∈ R+ set Es = {x : f(x) > s}. Let G ⊂ A(d) be the subgroup of all g ∈ A(d)
such that g(Es) = Es up to a null set for each s ∈ R+. As for some s ∈ R+ the set Es has positive
measure and for each s ∈ R+ the set Es is bounded, G is compact. For each ϕ ∈ O(d) there
exists a scaled skew reflection associated to ϕ, Φϕ, such thatf ◦ Φϕ = f and hence Φϕ ∈ G. Any
compact subgroup of A(d) is conjugate by an element of A(d) to a subgroup of O(d) (see [26] pg
256). Thus, there exists φ ∈ A(d) such that for all ϕ ∈ O(d), φ−1Φϕφ ∈ O(d). Set Φ̃ϕ = φ−1Φϕφ.

Express Rd as Rd−1 × R. The transformation ψ−1L−1RLψ acts as the identity on Rd−1, so
Φ̃ϕ acts as the identity on φ−1ϕ−1(Rd−1). For a scaled skew reflection Φϕ, Φ̃ϕ is an orthogonal
reflection. Thus Φ̃ϕ must be reflection about the hyperplane parallel to φ−1ϕ−1(Rd−1) passing
through origin. As ϕ ranges over O(d), the hyperplane parallel to φ−1ϕ−1(Rd−1) passing through
origin ranges over G(d−1),n. Thus the conjugated subgroup φ−1Gφ contains a reflection about each
(d− 1)-dimensional subspace of Rd. These transformations generate the orthogonal group, so for
each s ∈ R+, φ(Es) is a convex set fixed under every orthogonal transformation. Therefore, for
each s ∈ R+, φ(Es) must be a ball.

Proof of Proposition 2. For every nonnegative extremizer f ∈ Lp(Rd) of (1.2) , each superlevel
set Es of f is convex. As f ∈ Lp(Rd), each Es has finite measure. As a convex set with positive
finite measure is bounded, for every s ∈ R+, Es is bounded. Given this and Lemma 19, f̃ satisfies
the conditions of Proposition 11. Hence f̃ = F ◦ φ for some radial function F and φ some affine
transformation of Rd. As f̃ and f are equal in Lp, this suffices.
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4.8 Almost Lebesgue convexity
Recall Definition 8: A set E is almost Lebesgue convex if for almost every pair (x, y) ∈ E × E
the line segment xy ⊂ E up to a one-dimensional null set. Throughout this section EL will denote
the set of Lebesgue points of a set E, and for any set A, ch(A) will be the convex hull of A.

Lemma 20. A set E is almost Lebesgue convex if and only if there exists an open convex set C such
that |E∆C| = 0. In this case, C is the convex hull of the Lebesgue points of E.

We start with two lemmas that together prove the “only if” direction when |E| > 0.

Lemma 21. For any setE with positive measure, if for almost every (d+1)-tuple (x1, . . . , xd+1) ∈
Ed+1, the convex hull ch(x1, . . . , xd+1) ⊂ E up to an n-dimensional null set, then the convex hull
of the Lebesgue points of E, ch(EL), is an open convex set, and |ch(EL)∆E| = 0.

Proof. As EL ⊂ ch(EL), |E \ ch(EL)| < |E \ EL| = 0. Thus |E \ ch(EL)| = 0.
It remains to show that ch(EL) is open and |ch(EL) \ E| = 0. The main step is to show that

for each (d+ 1)-tuple of points {x1, . . . , xd+1} ∈ Ed+1
L , there exists an open set O{x1,...,xd+1}, such

that ch(x1, . . . , xd+1) ⊂ O{x1,...,xd+1} ⊂ ch(EL) and O{x1,...,xd+1} \ E is a null set.
This claim implies the lemma as follows: By definition,

ch(EL) =
⋃
{x1,...,xd+1}∈Ed+1

L
ch(x1, . . . , xd+1).

As ch(x1, . . . , xd+1) ⊂ O{x1,...,xd+1},

ch(EL) ⊂
⋃
{x1,...,xd+1}∈Ed+1

L
O{x1,...,xd+1}.

Similarly, because each O{x1,...,xd+1} ⊂ ch(EL),

ch(EL) ⊃
⋃
{x1,...,xd+1}∈Ed+1

L
O{x1,...,xd+1}.

Therefore,
ch(EL) =

⋃
{x1,...,xd+1}∈Ed+1

L
O{x1,...,xd+1}.

As ch(EL) is a union of open sets, it is open. Moreover, by the second countability of Rd, there
exists {Oi} a countable collection ofO{x1,...,xd+1}, such that ch(EL) =

⋃∞
i=1Oi. Thus ch(EL)\E ⊂⋃∞

i=1(Oi \ E), which is a null set by countable additivity.
It remains to construct these O{x1,...,xd+1}. Begin by observing that given the conditions of the

lemma, if x ∈ EL then there exists δ > 0 such that B(x, δ) ⊂ E up to a d-dimensional null set.
Since x ∈ EL, there exists δ′ > 0 such that |B(x, δ′) ∩ E| ≥ 1

d+1
|B(x, δ′)|. Applying the pigeon-

hole principle, there exists an n-tuple {xi}d+1
i=1 such that x is in the interior of ch(x1, . . . , xd+1)

and ch(x1, . . . , xd+1) ⊂ E up to a d-dimensional null set. Therefore, there exists δ > 0 such that
B(x, δ) ⊂ ch(x1, . . . , xd+1), B(x, δ) ⊂ E up to a d-dimensional null set.

For any (d+1)-tuple of points (x1, . . . , xd+1) ∈ Ed+1
L , using the observation above, there exists

a set of positive measure in Ed+1
L of y1, . . . , yd+1 such that ch(x1, . . . , xd+1) ⊂ ch(y1, . . . , yd+1).
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By the hypothesis of the lemma, for almost every such (d+ 1)-tuple, ch(y1, . . . , yd+1) ⊂ E up to a
null set. Pick one of these (d+1)-tuples and takeO(x1,...,xd+1) to be the interior of ch(y1, . . . , yd+1).

Lemma 22. If E ⊂ Rd is an almost Lebesgue convex set with positive measure and m ∈ [2, d+1],
then for almost every m-tuple (x1, . . . , xm) ∈ Em, the convex hull ch(x1, . . . , xm) ⊂ E up to an
(m− 1)-dimensional null set.

Proof. The proof proceeds by induction on m. If E ⊂ Rd is almost Lebesgue convex, then by
definition the base case m = 2 holds. Assume m ∈ [2, d] and the statement is true for m. We
seek to prove that for almost every x0, for almost every x1, . . . , xm, ch(x0, . . . , xm) ⊂ E up to an
m-dimensional null set.

Fix x0 ∈ E such that for almost every y, |x0y \ E| = 0. By almost Lebesgue convexity, it
is enough to prove the statement for every such x0. Working in polar coordinates centered at x,
define rθ = sup{r : |x0(θ, r) \ E| = 0}. Set

Sx0 =
⋃

θ∈Sn−1

x0(θ, rθ).

By the definition of rθ, |Sx0 \ E| = 0. Moreover, because |x0y \ E| = 0 for almost every y,
|E \ Sx0| = 0. Therefore, |Sx0∆E| = 0.

Parameterizem-tuples in Rd, losing a null set, by (π, y, v1, . . . , vm) where π ∈ Gm−1,n, y ∈ π⊥,
viπ for i ∈ [1,m]. Let (π, y) denote the (m − 1)-plane π translated by y. By the induction
hypothesis, for almost every π, for almost every y, for almost every m-tuple, v1, . . . , vm ∈ πm

such that v1 + y, . . . , vm + y ∈ Em, ch(v1 + y, . . . , vm + y) ⊂ E up to an (m − 1)-dimensional
null set.

Fix π ∈ Gm−1,n such that this condition holds. For almost every y ∈ π⊥, (π, y) ∩ E satisfies
the conditions of Lemma 21, hence there is a convex set C(π,y) such that |((π, y)∩E)∆C(π,y)| = 0.
For the null set of y ∈ π⊥ for which such a set does not exist, let C(π,y) be the empty set. Set

Cπ =
⋃
y∈π⊥
C(π,y).

Then |Cπ∆E| = 0, and moreover, |Cπ∆Sx0| = 0. Thus for almost every y ∈ π⊥, |C(π,y)∆(Sx0 ∩
(π, y))| = 0. Using that |C(π,y) \ Sx0 | = 0 and Sx0 is star-shapped about x0, for almost every
y ∈ π⊥, for almost everym-tuple v1, . . . , vm ∈ πm such that v1 +y, . . . , vm+y ∈ Em, |ch(x0, v1 +
y, . . . , vm + y) \Sx0| = 0. As |Sx0∆E| = 0, it follows that for almost every m-tuple, v1, . . . , vm ∈
πm such that v1 + y, . . . , vm + y ∈ Em, |ch(x0, v1 + y, . . . , vm + y) \ E| = 0.

Proof of Lemma 20 . First consider the case that |E| = 0. Any null set is almost Lebesgue convex.
The set of Lebesgue points for any null set is the empty set which is an open convex set equal to E
up to a null set. Hence the theorem holds when |E| = 0.

The “only if” direction when |E| > 0 is addressed by Lemmas 21 and 22.
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To see the “if” direction, assume there exists an open convex set C such that |E∆C| = 0. As
|E| > 0, |E ∩ C| > 0. Fix any x ∈ E ∩ C. Take polar coordinates centered at x. For every θ ∈ Sd,
define rθ = inf{r : (θ, r) /∈ C}. rθ > 0 as C is open. Further as |C \ E| = 0, for almost every θ,
for every 0 < r < rθ such that (θ, r) ∈ E the line segment in the direction θ up to distance r is
contained in E up to a one-dimensional null set. As almost every point of C will be some (θ, r)
such that this condition holds, it will hold for almost every point of E as well. As almost every
x ∈ E is in E ∩ C, this suffices.
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Chapter 5

Alternate perspectives on the endpoint
inequality

5.1 Main results and methods
Central to the uniqueness argument is a multilinear form (Drury’s identity) that gives the Lq norm
of the k-plane transform. A related multilinear form has been studied by Valdimarsson using sim-
ilar methods in [46]. As in Valdimarsson’s case there is a certain amount of geometric invariance
that allows us to immediately extend our result for the k-plane transform Euclidean space to the
k-plane transform in elliptic space. This transform was originally introduced by Funk [24]. See
Helgason (for instance [27]) for the modern perspective. The question of Lp-Lq inequalities for the
k-plane transform in elliptic space has been considered by Strichartz [44], Christ [11], and Drury
[20].

The k-plane transform in elliptic space is defined as follows. Let F be a function defined on
G1,d, the set of lines through the origin in Rd. Let π ∈ Gk,d be a k-plane passing through the origin
in Rd. There is a unique probability measure invariant under the action of the orthogonal group on
the space of lines through the origin contained in π analogous to that for G1,k. This measure will
be denoted by dγπ. The k-plane transform in elliptic space is given by

TEk,dF (π) =

∫
θ⊂π

F (θ) dγπ(θ).

Christ [11] proves that there exists a finite indeterminate constant AE such that for all f ∈ Lp(Rd),(∫
Gk,d
|TEk,dF (π)|ddγ(π)

)1/d

≤ AE

(∫
G1,d
|F (θ)|

d
kdγ(θ)

) k
d

. (5.1)

Assign coordinates on G1,d, losing a null set, by identifying each unit vector θ in the northern
hemisphere with the line it spans. For a linear map L, L(θ) is the image of the unit vector θ under
the map L. The main result of Section 3 is:
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Theorem 7. F ∈ L d
k (G1,d) is an extremizer of the inequality (5.1) if and only if

F (θ) = c |L(θ)|−k

for some c ∈ C− {0} and some invertible linear endomorphism L of Rd.

We also consider a third variant of the k-plane transform, T ]k,d. Denote the space of k× (d− k)

matrices by Mat(k, d − k). Let f : Rd → C, A ∈ Mat(k, d − k) and b ∈ R(d−k). Then T ]k,df is
given by:

T ]k,df(A, b) =

∫
Rk
f(x′, A(x′) + b)dx′.

We view T ]k,df(A, b) as a function on R(k+1)(d−k) by identifying Mat(k, d − k) × R(d−k) with
R(k+1)(d−k) by first identifying Mat(k, d−k) with Rd−k× . . .×Rd−k. As usual, equip R(k+1)(d−k)

with Lebesgue measure. The main result of section 4 is:

Theorem 8. There exists a finite constant A] ∈ R+ such that for all f ∈ Lp(Rd)(∫
Rk(d−k)

∫
Rd−k
|T ]k,df(A, b)|qdAdb

)1/q

≤ A]‖f‖Lp(Rd). (5.2)

Further, f ∈ Lp(Rd) is an extremizer of (5.2) if and only if it is an extremizer of (1.2).

Again, this is an extension of a result in [12] where Theorem 8 is proved in the case that
k = n− 1.

5.2 k-plane transform in elliptic space
At the heart of this section is a correspondence between the k-plane transform in Euclidean space
and the (k + 1)-plane transform in elliptic space when q = d + 1. This correspondence was orig-
inally observed by Drury [20] for the l-to-k plane transform and its elliptic analog. Valdimarsson
[46] uses a similar correspondence to extend his results on extremizers in Lp(Rd) for a multilinear
form similar to the form which appears in Drury’s identity to extremizers in Lp(Sd+1∩{xd+1 > 0})
for a corresponding version of the multilinear form.

Recall that the (k+1)-plane transform in elliptic space, defined in the introduction, is a bounded
operator from L

d+1
k+1 (G1,d+1) to Ld+1(Gk+1,d+1). Define a map from Rd to G1,d+1 by embedding Rd

in Rd+1 as {xd+1 = 1} and associating to each point (x, 1) the line it spans. Parameterize G1,d+1

by θ ∈ Sd+1
⋂
{xd+1 > 0}, losing a null set, by associating unit vectors in the northern hemisphere

with the lines they span. In these coordinates, the map described is a nonlinear projection onto the
northern hemisphere:

S(x) =
1

(1 + |x|2)1/2
(x1, . . . , xn, 1).
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Let dσ denote surface measure on the northern hemisphere and set cn =
∫
Sd+1 1{θd+1>0}(θ)dσ. For

this parametrization of G1,d+1 the natural probability measure is c−1
n 1{θd+1>0}(θ)dσ.

To a function f ∈ L
d+1
k+1 (Rd), associate the function F ∈ L

d+1
k+1 (G1,d+1) defined by

F (θ) = (θd+1)−(k+1)f(S−1(θ)).

Observe that c1/p
n ‖F‖Lp(G1,d+1) = ‖f‖Lp(Rd) when p = d+1

k+1
.

Lemma 23. There exists C ∈ R+ depending only on n and k such that for every f ∈ L
d+1
k+1 (Rd)

and its associated function F ∈ L
d+1
k+1 (G1,d+1)

||TEk+1,d+1F (θ)||Ld+1(Gk+1,d+1) = C||Tk,df ||Ln+1(Mk,d). (5.3)

Proof. The nonlinear projection above also gives us a map from Gk+1,d+1 toMk,d. For any π ∈
Gk+1,d+1, let Π ∈Mk,d be π∩{xd+1 = 1} thought of as a k-plane in Rd. Note that each line θ ∈ π
corresponds to a point S−1(θ) ∈ Π. Let b(Π) denote the distance from Π to the origin in Rd+1.
In [20], Drury showed that there exists c ∈ R+ depending only on k and d such that the natural
measure on G1,d+1, denoted dγ, is related to the natural product measure, denoted dµ, onMk,d by

dγ(π) = c(b(Π))−(d+1)dµ(Π).

The next step is to relate the natural measure on the set of linear subspaces contained in π, denoted
dγπ, to the natural product measure on the set of lines contained in Π, denoted dλΠ. As each of
the measures in question is invariant under rotation1, it is enough to consider π passing through
the north pole of Sd+1 and Π passing through (0, . . . , 0, b(Π)). In this case our map corresponds to
division by b(Π) followed by our original projection. Thus,

θ
−(k+1)
d+1 dγπ(θ) = cnb(Π)dλΠ(x).

Therefore,

TEk+1,d+1

(
(θd+1)−(k+1)f(S−1(θ))

)
(π) =

∫
θ⊂π

(θd+1)−(k+1)f(S−1(θ))dγπ(θ)

= cn

∫
x∈Π

f(x)(b(Π)) dλΠ(x).

Now,

||TEk+1,d+1F ||d+1
Ld+1(Gk+1,d+1)

=

∫
G1,d+1

[
TEk,d

(
(θd+1)−(k+1)f(S−1(θ))

)]d+1
dγ(π)

= C

∫
Mk,d

[∫
x∈Π

f(x)(b(Π)) dλΠ(x)

]d+1

(b(Π))−(d+1)dµ(Π)

= C||Tk,df ||d+1
Ld+1(Mk,d)

1To rotate the northern hemisphere, rotate the sphere and send any points of the northern hemisphere mapped into
the southern hemisphere to their antipodal points.
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Proof of theorem 7. By Lemma 23, there exists C ∈ R+ depending only on n and k such that for
any f ∈ Lp(Rd) with p = d+1

k+1
,

‖Tk,df‖Ld+1(Mk,d)

‖f‖Lp(Rd)

= C
‖TEk,dF‖Ld+1(Gk+1,d+1)

‖F‖Lp(G1,d+1)

.

It follows immediately that f ∈ Lp(Rd) is an extremizer of (1.2) if and only if F is an extremizer
of (5.1).

By Theorem 3 any extremizer of (1.2) has the form f(x) = c(1+ |φ(x)|2)−(k+1)/2 where φ is an
affine endomorphism of Rd. It remains to compute the associated F . Observe for any such φ there
exists L, an invertible transformation of Rd+1, such that (1 + |φ(x)|2) = |L(x, 1)|2. Therefore,

F (θ) = (θd+1)−(k+1)f(S−1(θ))

= c(θd+1)−(k+1)(|L(S−1(θ), 1)|2)−(k+1)/2

= c|L(θ1, . . . , θd+1)|−(k+1).

This perspective gives insight into the additional symmetry J used in Christ [12] and Drouot’s
[17] work. Define S∗ : Lp(Rd) → Lp(G1,d+1) by S∗(f) = F . Denote by sgn the standard sign
function. Set Jf(s, y) = |s|−k−1f(s−1, s−1y) and

RF (θ) = F (sgn(θ1)θd+1, sgn(θ1)θ2, . . . , sgn(θ1)θn, |θ1|).

Lemma 24. For every f ∈ L
d+1
k+1 (Rd),

S∗Jf(θ) = RS∗f(θ).

Proof.

RS∗f(θ) = |θ1|−k−1f

(
sgn(θ1)θd+1

|θ1|
,

sgn(θ1)θ2

|θ1|
, . . . ,

sgn(θ1)θn
|θ1|

)
.

Similarly,

S∗Jf(θ) = | θ1

θd+1

|−(k+1)(θd+1)−(k+1)f

(
θd+1

θ1

,
θ2

θ1

, . . . ,
θn
θ1

)
.

As θd+1 > 0, S∗Jf(θ) = RS∗f(θ) as claimed.

As the reflection R is clearly a symmetry of (5.1), J must be a symmetry of (1.2) by Lemma
23.

5.3 Another related family of operators
In this section we present yet another realization of the inequality (1.2), this time for the operator
T ]k,d which was defined in the introduction. Recall that T ]k,d takes functions on Rd to functions on
R(k+1)(d−k).
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Lemma 25. Let f ∈ Lp(Rd) be a nonnegative continuous function. Then there exists C ∈ R+

depending only on n and k such that

‖Tk,df‖Lq(Mk,d) = C‖T ]k,df‖Lq(R(k+1)(d−k)).

The proof is a generalization of that used in [12] in the case k = n− 1.

Proof. By Lemma 11, it suffices to show that for any nonnegative continuous function f ,

‖T ]k,df‖
q

Lq(R(k+1)(d−k))
=∫

∆(k−n)(x′0, . . . , x
′
k)

∫ k∏
i=0

f(x′i, vi)
d∏

i=k+1

f(x′i,
k∑
j=0

bi,jvj) dv0 . . . dvkdx
′
0 . . . dx

′
d. (5.4)

Let cd−k be the volume of the unit sphere in (d− k) dimensions. Observe that

T ]k,df(A, b) =

∫
Rk
f(x′, A(x′) + b)dx′

= lim
ε→0

(
cd−kε

d−k)−1
∫
Rk

∫
Rd−k

f(x′, A(x′) + b+ t)1|t|<ε dtdx
′.

Taking dA to be Lebesgue measure on the entries of A, and db to be Lebesgue measure on Rd−k,∫ (
T ]k,df(A, b)

)d+1

dAdb =∫ k∏
j=0

(
lim
ε→0

(
cd−kε

d−k)−1
∫
f(x′j, A(x′j)+b+tj)1|tj |<ε dtjdx

′
j

) n∏
j=k+1

(∫
Rk
f(x′j, A(x′j) + b)dx′j

)
dAdb.

Apply the change of variables sj = Axj + b+ tj for j ∈ [0, k] and Tonelli’s theorem to obtain

∫ (
T ]k,df(A, b)

)d+1

dAdb =

∫ k∏
j=0

f(x′j, sj)

∫ n∏
j=k+1

f(x′j, A(x′j) + b)

k∏
j=0

(
lim
ε→0

(
cd−kε

d−k)−1
1|sj−Axj+b|<ε

)
dAdb

k∏
j=0

dsjdx
′
j

n∏
j=k+1

dx′j. (5.5)

Consider the inner integral, now viewing 1|sj−Axj+b|<ε as a cutoff function in A and b. Let ai be
the i-th row of A and bi be the i-th entry of b. Let L be the linear map such that L(ai, bi) =
(ai · xj + bi)

k
j=0. Then L has a Jacobian JL given by

JL =

 x′0,1 · · · x′0,k 1
...

...
...

x′k,1 · · · x′k,k 1

 = ∆(x′0, . . . , x
′
k).
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Let A0, b0 such that A0x
′
j + b0 = sj . As f is assumed to be continuous,

lim
ε→0

(
cd−kε

d−k)−1
∫ n∏

j=k+1

f(x′j, A(x′j) + b)
k∏
j=0

(
1|sj−Axj+b|<ε

)
dAdb =

∆(x′0, . . . , x
′
k)
k−nδ(A,b)(A0,b0)

n∏
j=k+1

f(x′j, A(x′j) + b).

Substituting this into (5.5) gives the result.

Proof of theorem 8. Using Lemma 25 and standard approximation arguments, it follows that for
any nonnegative function f ∈ Lp(Rd), ‖Tk,df‖Lq(Mk,d) = C‖T ]k,df‖Lq(R(k+1)(d−k)). As

‖T ]k,df‖Lq(R(k+1)(d+1)) ≤ ‖T
]
k,d|f |‖Lq(R(k+1)(d+1)),

it follows directly from Lemma 25 and Theorem (3) that T ]k,d is a bounded operator from Lp(Rd)

to Lq(R(k+1)(d+1)). Moreover, as ‖Tk,df‖Lq(Mk,d) ≤ ‖Tk,d|f |‖Lq(Mk,d) as well,

sup
{g:‖g‖

Lp(Rd) 6=0}

‖Tk,dg‖Lq(Mk,d)

‖g‖Lp(Rd)

= sup
{g:‖g‖

Lp(Rd) 6=0,g>0}

‖Tk,dg‖Lq(Mk,d)

‖g‖Lp(Rd)

.

By Lemma 25 there exists C ∈ R+ depending only on n and k such that

sup
{g:‖g‖

Lp(Rd) 6=0,g>0}

‖Tk,dg‖Lq(Mk,d)

‖g‖Lp(Rd)

= sup
{g:‖g‖

Lp(Rd) 6=0,g>0}

C‖T ]k,dg‖Lq(Mk,d)

‖g‖Lp(Rd)

.

Therefore, a nonnegative function f ∈ Lp(Rd) is an extremizer of (1.2) if and only if it is a
nonnegative extremizer of (5.2). As any extremizer has the form f = c|f | for some complex
number c, this suffices.

Again, the pseudo-conformal symmetry J used to execute the method of competing symmetries
in [17] is a natural symmetry of (5.2). Here, J intertwines with changing the identification of
R(k+1)(d−k) = Rk(d−k) ×R(d−k) 'Mat(k, d− k)×R(d−k) = {(A, b)} by interchanging b and the
first row of A. Recall that Jf = |s|−k−1f(s−1, s−1y). Let Ab be the matrix A with the first row
replaced by b and a1 be the first row of A. Then define R]F (A, b) = F (Ab, a1).

Lemma 26. For every f ∈ Lp(Rd),

T ]k,dJf = R]T ]k,df.
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Proof.

T ]k,dJf(A, b) =

∫
Rk

(Jf(x′, A(x′) + b))dx′

=

∫
Rk
|s|−(k+1)f(s−1, s−1x′, s−1(A(s, x′) + b)))dx′

=

∫
Rk

(|s|−(k+1)f(s−1, s−1x′, (A(1, s−1x′) + s−1b)))dx′

.

Change variables so that t = s−1 and w = s−1x′ to obtain

T ]k,dJf(A, b) =

∫
Rk

(|f(t, w′, (A(1, w′) + tb)))dx′

=

∫
Rk

(|f(t, w′, (Ab(t, w
′) + a1)))d+1dx′

= R]T ]k,df.
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Chapter 6

Smoothness of extremizers when q and 1
p−1

are integers

6.1 Main results and methods
While a characterization of extremizers of (1.3) for all q, or even all integer q, remains beyond us, in
this chapter we prove that when q and 1

p−1
are integers all extremizers are infinitely differentiable.

Recall that extremizers are functions which maximize the functional

Φ(f) =
‖Tk,df‖Lq(Mk,d)

‖f‖Lp(Rd)

.

For q ∈ (1, d + 1], as discussed in Chapter 2, the nonnegative critical points of this functional
satisfy the Euler-Lagrange equation (2.1):

f = λ(T ∗k,d[(Tk,df)qel ])pel

where qel = q − 1, pel = 1
p−1

, and λ =
(
‖f‖p

Lp(Rd)
‖Tk,df‖−qLq(Mk,d)

)pel
.

We show

Theorem 9. Let d ≥ 2 and λ ∈ R. Take q0 ∈ (1, d + 1], p0 = d
d−k+kq0

, such that both q0 − 1 and
1

p0−1
are integers. Let f ∈ Lp0(Rd) be any real-valued solution of the generalized Euler-Lagrange

equation (2.1). Then f ∈ C∞, all partial derivatives of f are bounded, and there exists δ > 0 such
that (1 + |x|2)δDsf(x) ∈ Lp0(Rd) for all s ≥ 0.

Corollary 3. When q0 − 1 and 1
p0−1

are integers, all extremizers of the corresponding Lp-Lq in-
equality are smooth.

Proof. Tk,nf ≤ Tk,n|f |. Thus, if f is an extremizer |f | is a well, and moreover, Tk,nf = Tk,n|f |.
From which it follows that f = c|f |.
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Complex-valued critical points also satisfy the generalized Euler-Lagrange equation (2.1) with
λ as above, when the powers of the complex numbers on the right hand side of (2.1) are interpreted
appropriately. Specifically, if z ∈ C and 0 6= s ∈ R, zs is interpreted as z|z|s−1. When s is an
odd integer, s − 1 is even, and |z|s−1 can be written as a product of positive integer powers of z
and z̄. This allows the argument for Theorem 9 to be carried out for complex-valued functions
with straightforward modifications to the formulas to account for various complex conjugations,
but only when both qel and pel are odd integers.

Remark 1. Theorem 1 holds for complex valued solutions of the generalized Euler-Lagrange equa-
tion (2.1) when both q0 − 1 and 1

p0−1
are odd integers.

The condition that 1
p−1

and q − 1 are both integers is satisfied infinitely often. For any pair of
integers qel,pel not both 1, for any s ∈ N taking q = qel+1, n = qel(pel+1)s, and k = (pelqel−1)s
gives 1

p−1
= pel and q − 1 = qel.

The methods come from Christ and Xue [16], which concerns extremizers of an Lp-Lq inequal-
ity for a convolution operator related to the Radon transform. To apply their technique requires a
limited theory of weighted inequalities for the k-plane transform.

Such inequalities have been studied previously by Solmon [40] and Rubin [39]. Weighted
inequalities corresponding to known mixed norm estimates for the k-plane transform of radial
functions have been studied by Kumar and Ray [29]. Solmon [40] considers weights vα(x) =
〈x〉α−d where 0 < α ≤ k < d. He shows that for 1 ≤ p < n/k and 0 < α < k, Tk,d is a bounded
operator from Lp to L1(vα). Rubin [39] considers weights of the form |x|µ where µ > k − n/p.
He shows that for 1 ≤ p ≤ ∞, 1/p+ 1/p′ = 1, ν = µ− k/p′ and µ > k − n/p, Tk,d is a bounded
operator from Lp(|x|µ) to Lp(|y|ν).

We consider weights 〈x〉
d−k
p−1 . Note that unlike in Solmon’s case the power is positive. We prove

that Tk,d is a bounded operator from Lp(〈x〉
d−k
p−1 ) to Lq(〈y〉d) where q and p are paired as in (1.3)

(rather than from one weighted Lp another as in Rubin’s work).
Throughout the chapter, Ds will denote the Fourier-multiplier operator defined by Dsf(x) =

(|ξ|sf̂(ξ))∨ and analogously, Dsf(θ, y) = (|ξ|sf̂(θ, ξ))∨ where the Fourier transform is taken only
in the y variable.

6.2 Weighted inequalities
Define the following weights:

w(x) = (1 + |x|2)
d−k

2(p0−1) = 〈x〉pel(d−k)

w∗(θ, y) = (1 + |y|2)n/2 = 〈y〉d.

Lemma 27. There exist positive finite constants C1 and C0 depending only on q0, n and k, such
that

Tk,d(w
−1) = C0w

−1/qel
∗

T ∗k,d(w
−1
∗ ) = C1w

−1/pel .
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The lemma follows from direct computation and is a special case of the formulas given in ([38],
Example 2.2).

Lemma 28. There exists a constant C such that for all t ∈ [0, 1], for all nonnegative functions
f : Rd → [0,∞) and g :Mk,d → [0,∞),(∫

Mk,d

(Tk,df)qtwtqt/qel∗ dλθ⊥(y)dθ

)1/qt

≤ C

(∫
Rd
fptwtptdx

)1/pt

(∫
Rd

(T ∗k,dg)p
′
twtp

′
t/peldx

)1/p′t

≤ C

(∫
Mk,d

gq
′
tw

tq′t
∗ dλθ⊥(y)dθ

)1/q′t

where qt = q0/(1 − t), pt = p0/(1 − t), p′0 and q′0 are the Hölder conjugates of p0 and q0,
p′t = p′0/(1− t) and q′t = q′0/(1− t).

Proof. The proof relies on complex interpolation. Consider the analytic family of operators Tzf =

w
z/qel
∗ Tk,d(w

−zf) on the strip {z : 0 ≤ Re(z) ≤ 1}. If Re(z) = 0 then Tzf is bounded from
Lp0(Rd) to Lq0(Mk,d). If Re(z) = 1 then Tzf is bounded from L∞(Rd) to L∞(Mk,d), by Lemma
27. Both bounds are uniform in Im(z). Therefore, the first conclusion follows by complex inter-
polation.

The proof of the second inequality is similar.

Definition 10. For all complex valued functions f : Rd → C and g :Mk,d → C, set

T (f) = (Tk,df)qel

T∗(g) = (T ∗k,dg)pel

S(f) = T∗(T (f)).

With this notation, the generalized Euler-Lagrange equation (2.1) becomes

f = λS(f).

We now define weighted spaces tailored to T , T∗, and S.

Definition 11. Define the spaces Xt, X∗,t, and Y∗,t to be the sets of all equivalence classes of
measurable functions on Rd,Mk,d, andMk,d respectively, for which the following weighted norms
are finite:

||f ||ptXt =

∫
Rd
|f |ptwtptdx

||g||q
′
t
X∗,t

=

∫
Mk,d

|g|q′twtq
′
t
∗ dλθ⊥dµ

||g||qtY∗,t =

∫
Mk,d

|g|qtwtqt/qel∗ dλθ⊥dµ.
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Lemma 29. There exists a constant C such that for any t ∈ [0, 1], for any functions f ∈ Xt and
g ∈ X∗,t

||Tk,df ||Y∗,t ≤ C||f ||Xt
||T f ||X∗,t ≤ C||f ||qelXt
||T∗g||Xt ≤ C||g||pelX∗,t

Proof. Let f ∈ Xt. As |Tk,df | ≤ Tk,d|f |,

||Tk,df ||Y∗,t =

(∫
Mk,d

|Tk,df |qtwtqt/qel∗

)1/qt

≤

(∫
Mk,d

(Tk,d|f |)qtwtqt/qel∗

)1/qt

.

By the weighted inequalities of Lemma 28,

||Tk,df ||Y∗,t ≤ C

(∫
Rd
|f |ptwtpt

)1/pt

≤ C||f ||Xt .

Next,

||T f ||X∗,t =

(∫
Mk,d

|T f |q′twtq
′
t
∗

)1/q′t

=

(∫
Mk,d

|Tk,df |qelq
′
tw

tq′t
∗

)1/q′t

.

Because qel = q0 − 1, it so happens that q′0 = q0
qel

and hence qelq′t = qt. Again using that |Tk,df | ≤
Tk,d|f | and Lemma 28,

||T f ||X∗,t ≤

(∫
Mk,d

(Tk,d|f |)qtw
t
qt
qel
∗

)qel/qt

≤ C

(∫
Rd
|f |ptwtpt

)qel/pt
≤ C||f ||qelXt .

Lastly for g ∈ X∗,t

||T∗g||Xt =

(∫
Rd
|T∗g|ptwtpt

)1/pt

=

(∫
Rd
|T ∗k,dg|pelptwtpt

)1/pt

.

Similarly, pel = 1
p0−1

, so it happens that p′0 = p0pel and hence pelpt = p′t. Here using that
|T ∗k,dg| ≤ Tk,d|g| and Lemma 28,

||T∗g||Xt ≤
(∫

Rd
(T ∗k,d|g|)p

′
twtp

′
t/pel

)pel/p′t
≤ C

(∫
Mk,d

|g|q′tv−tq′t
)pel/q

′
t

= C||g||pelX∗,t .
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Corollary 4. There exists a constant C such that for all t ∈ [0, 1], for all f ∈ Xt,

||Sf ||Xt ≤ C||f ||qelpelXt
.

We will need the following properties of these spaces, which are direct consequences of the
definitions and Hölder’s inequality.

Lemma 30. The following statements hold for the spaces Xt. They hold as well when Xt is
replaced by either X∗,t or Y∗,t.

1. If α < β then Xβ ⊂ Xα. In particular, there exists a constant C such that for all 0 ≤ α ≤
β ≤ 1, for all f ∈ Xβ ,

‖f‖Xα ≤ C‖f‖Xβ .

2. Let 0 ≤ α ≤ γ ≤ β < 1. Let γ = θα + (1− θ)β. Then,

‖f‖Xγ ≤ ‖f‖θXα‖f‖
1−θ
Xβ

Let Ap denote the standard Muckenhoupt classes of weights. Whenever wtpt ∈ Apt operators
of Calderón-Zygmund type are bounded on Lpt(wtpt) = Xt (see for instance [41], pg 205).

Lemma 31. For all sufficiently small t, the weight w = (1 + |x|2)
pel(d−k)

2 satisfies wtpt ∈ Apt(Rd).

Proof. For any polynomial u, |u|s ∈ Ap if −1 < s(deg(u)) < p − 1 ([41], pg. 219). Thus for
t ≥ 0 wtpt ∈ Apt if

pel(d− k)tpt < pt − 1.

Using that pt = p0
1−t , this holds whenever

t <
(p0 − 1)2

p0(d− k − 1) + 1
.

As p0 > 1 and 1 ≤ k ≤ n− 1 this bound is strictly positive.

We will also need similar results for the weights w∗, adapted to the spaces Y∗,t and X∗,t.

Lemma 32. Let w∗(θ, y) = 〈y〉d. For all sufficiently small t, for every θ ∈ Gk,d, w
tq′t
∗ (θ, y) ∈

Aq′t(θ
⊥) and wtqt/qel∗ (θ, y) ∈ Aqt(θ⊥).

Proof. Using again that for any polynomial u, |u|s ∈ Ap if −1 < s(deg(u)) < p − 1, for t ≥ 0
(w∗)

tq′t ∈ Aq′t if ntq′t < q′t − 1. Using that q′t = q0
(q0−1)(1−t) , gives that (w∗)

tq′t ∈ Aq′t if

t <
1

q0n− q0 + 1
.
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Secondarily, (w∗)
tqt/qel ∈ Aqt if nt qt

qel
< qt− 1. Using that qt = q0

1−t and qel = q0− 1 gives that
(w∗)

tqt/qel ∈ Aqt if

t <
(q0 − 1)2

q0(n− 1) + 1
.

Again note that each of these bounds is strictly positive.

6.3 Smoothing
Lemma 33 (Strichartz [44]1). For p ∈ (1, 2], there exists a constant C such that

‖Dk/p′

y Tk,df‖Lp(Mk,d) ≤ C‖f‖Lp(Rd).

Lemma 34. Let q0 ∈ (1, d + 1] such that p0 = dq0
d−k+kq0

satisfies p0 ∈ (1, 2]. Let t > 0. There
exists γ = γ(t) > 0 such that for any f ∈ Xt, Dγ

y (Tf) ∈ Lq0(Mk,d). In particular, there exists a
positive finite constant C such that for any f ∈ Xt,

‖Dγ
y (Tk,df)‖Lq0 (Mk,d) ≤ C‖f‖Xt .

Proof. Let t > 0. Let f ∈ Xt. From Lemma 29, ‖Tk,df‖Y∗,t ≤ C‖f‖Xt . There exists r > q0 such
that the space Y∗,t embeds continuously into Lr(Mk,d);

‖Tk,df‖Lr(Mk,d) ≤ C‖f‖Xt .

As p0 ∈ (1, 2], Lemma 33 yields

‖Dk/p′

y Tk,df‖Lp0 (Mk,d) ≤ C‖f‖Lp0 (Rd) ≤ C‖f‖Xt .

Using the analytic family of operators Dzk/p′
y Tk,d to interpolate between these two estimates gives

that for θ ∈ [0, 1],
‖Dθk/p′

y Tk,df‖LQ(θ)(Mk,d) ≤ C‖f‖Xt
where Q(θ)−1 = 1

p0
θ + 1

r
(1 − θ). As q0 > 1, p0 = d

d−k+kq0
(q0) < q0. Therefore there exists

θ ∈ (0, 1), such that Q(θ) = q0.

6.4 Multilinear Bounds
For the rest of the chapter we require that p0 and q0have the property that pel, qel ∈ Z.

1Strichartz actually proves a stronger mixed norm estimate.



CHAPTER 6. SMOOTHNESS OF EXTREMIZERS 57

Definition 12. Let ~f = {fi,j} for i ∈ [1, pel], j ∈ [1, qel]. Define the multilinear operator ~S by:

~S(~f) =

pel∏
i=1

T ∗k,d

(
qel∏
j=1

Tk,d(fi,j)

)
.

Thus S(f) = ~S(f, . . . , f).

Lemma 35. For each ~f = {fi,j} for i ∈ [1, pel], j ∈ [1, qel],

|~S(~f)| ≤
pel∏
i=1

qel∏
j=1

S(|fi,j|)
1

pelqel .

Proof. As both |T ∗k,d(g)| ≤ T ∗k,d(|g|) and |Tk,d(f)| ≤ Tk,d(|f |),

|~S(~f)| ≤
pel∏
i=1

T ∗k,d

(
qel∏
j=1

Tk,d(|fi,j|)

)
.

Also,

T ∗k,d

(
qel∏
j=1

gj

)
=

∫
Gk,d

qel∏
j=1

gj(θ, P (x, θ⊥))dθ

By repeated applications of Hölder’s inequality,

T ∗k,d

(
qel∏
j=1

gj

)
≤

qel∏
j=1

(∫
Gk,d

gj(θ, P (x, θ⊥))qeldθ

)1/qel

≤
qel∏
j=1

(T ∗k,d(g
qel
j ))

1
qel .

Applying this for each i with gj = Tk,d(|fi,j|) gives

|~S(~f)| ≤
pel∏
i=1

qel∏
j=1

T ∗k,d ([Tk,d(|fi,j|)]qel)
1
qel =

pel∏
i=1

qel∏
j=1

S(|fi,j|)
1

pelqel .

Lemma 35 and a weighted multilinear version of Hölder’s inequality (Christ and Xue’s Lemma
3.1, [16]) combine to give multilinear estimates for S which will be used in the following sections.

Lemma 36 (Christ and Xue, [16]). Let p0 ∈ [1,∞), t > 0, and pt = p0
1−t . Let Xt ⊂ Lp(Rd)

with norm given by ||f ||ptXt =
∫
Rd |f |

ptwtpt for some measurable function w ≥ 1. Let A be any
finite index set. Let θα, tα ∈ [0, 1] for each α ∈ A. Suppose that

∑
α∈A θα = 1 and 1 − t =∑

α∈A θα(1− tα). Then for any nonnegative functions {fα}α∈A,

||
∏
α∈A

f θαα ||Xt ≤
∏
α∈A

||fα||θαXtα .
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Lemma 37. Let t ∈ [0, 1]. Let A = {(i, j) : 0 ≤ i ≤ qel, 0 ≤ j ≤ pel}. Let {fα : α ∈ A} satisfy
fα ∈ Xt for all α ∈ A. Then ~S(~f) ∈ Xt and

‖~S(~f)‖Xt ≤ C
∏
α∈A

‖fα‖Xt .

Proof. Estimating ~S in terms of S by Lemma 35,

‖|~S(~f)‖Xt ≤ ‖
∏
α∈A

(S(|fα|))
1

pelqel ‖Xt .

Applying Lemma 36 with θα = 1
pelqel

and tα = t for each α ∈ A,

‖
∏
α∈A

(S(fα))
1

pelqel ‖Xt ≤
∏
α∈A

||S(fα)||
1

pelqel
Xt

.

The lemma then follows from the bound on S from Corollary 4.

Lemma 38. Let t ∈ [0, 1
pelqel

]. Let A = {(i, j) : 0 ≤ i ≤ qel, 0 ≤ j ≤ pel}. Let {fα : α ∈ A} such
that fα ∈ X0 for all α ∈ A and suppose further that there exists β ∈ A such that fβ ∈ Xtpelqel .
Then

‖~S(~f)‖Xt ≤ C

(
‖fβ‖Xtpelqel

∏
α 6=β

‖fα‖X0

)
.

Proof. Again, estimating ~S in terms of S by Lemma 35,

‖|~S(~f)‖Xt ≤ ‖
∏
α∈A

(S(|fα|))
1

pelqel ‖Xt .

Apply Lemma 36 with θα = 1
pelqel

, tα = 0 for α 6= β, and tβ = pelqelt to obtain

‖
∏
α∈A

(S(fα))
1

pelqel ‖Xt ≤
∏
α∈A

||S(fα)||
1

pelqel
Xtα

.

Using the bound on S from Corollary 4 and that tα = 0 for α 6= β and tβ = pelqelt ,∏
α∈A

||S(fα)||
1

pelqel
Xtα

≤ C
∏
α∈A

||fα||Xtα ≤ C||fα||Xpelqelt
∏
α 6=β

||fα||X0 .
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6.5 Extra Decay
Proposition 12. Let q0 ∈ (1, d + 1] such that for p0 = dq0

d−k+kq0
, qel = q0 − 1 and pel = 1

p0−1
are

both integers. Let d ≥ 2 and λ ∈ R. Let f ∈ Lp0(Rd) be a real- valued solution of the generalized
Euler-Lagrange equation f = λSf. Then there exists t > 0 such that f ∈ Xt.

The proof given here is essentially the same as that of Proposition 5.1 in [16].
For any pair of functions ϕ, g ∈ X0 such that, additionally, ϕ ∈ L∞(Rd) , set

L(ϕ, g) = λS(ϕ+ g)− λS(g)− ϕ.

For each ε > 0, chose a decomposition of f , f = ϕε + gε, such that ‖gε‖X0 < ε and ϕε ∈ L∞ has
bounded support. Define

Aε(h) = λS(h) + L(ϕε, gε).

As f is a solution of the generalized Euler-Lagrange equation, gε is a solution of Aε(h) = h in the
space X0. Proposition 12 follows from showing that gε in fact has better decay. The main step is
the following lemma.

Lemma 39. Let q0 ∈ (1, d + 1] such that for p0 = dq0
d−k+kq0

, qel = q0 − 1 and pel = 1
p0−1

are
both integers. Let d ≥ 2 and λ ∈ R. Let f ∈ Lp0(Rd) be a real- valued solution of f = λS(f).
For each ε > 0, let f = ϕε + gε be any decomposition such that ‖gε‖X0 < ε and ϕε ∈ L∞ has
bounded support. Then there exists ε0 > 0 such that for each ε ∈ (0, ε0], there exists tε > 0 such
that for all t ∈ [0, tε], the fixed point equation Aε(h) = h has a unique solution h ∈ Xt satisfying
‖h‖Xt ≤ ε1/2.

Proof. We begin by estimating ‖L(ϕε, gε)‖Xt for small t. First, as gε + ϕε is a solution to the
generalized Euler-Lagrange equation (2.1), there exists λ ∈ C such that gε + ϕε = λS(gε + ϕε).
Therefore,

L(ϕε, gε) = gε − λSgε.
By the bound on S from Corollary 4 and the triangle inequality for ε ≤ 1,

‖L(ϕε, gε)‖X0 ≤ ‖gε‖X0 + C‖gε‖pelqelX0
≤ Cε.

Next consider t = 1
pelqel

the largest value of t for which the multilinear estimate Lemma 38 applies.
Working directly from the definition of L,

‖L(ϕε, gε)‖X1/pelqel
≤ |λ|‖S(ϕε + gε)− S(gε))‖X1/pelqel

+ ‖ϕε‖X1/pelqel
.

Expand S(ϕε + g) − S(gε) as a sum of pelqel − 1 terms each of the general form ~S(~fi) where
~fi = (fi,α : α ∈ A) and fi,α ∈ {ϕε, gε} and for each term there is at least one index β such that
fi,β = ϕε. Applying Lemma 38 to each such term gives,

‖L(ϕε, gε)‖X 1
pelqel

≤ C

pelqel∑
i=1

(
‖ϕε‖X1

∏
α 6=β

‖fi,α‖X0

)
+ ‖ϕε‖X 1

pelqel

.
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As ‖gε‖X0 < ε, and for each s ∈ [0, 1], ‖ϕε‖Xs < ‖ϕε‖X1 , there exists a finite constant depending
on ϕε such that

‖L(ϕε, gε)‖X1/pelqel
≤ Cϕε .

By Lemma 30, in particular, by convexity of theXt norms, for sufficiently small ε > 0, there exists
tε > 0, such that for each t ∈ (0, tε],

‖L(ϕε, gε)‖Xt ≤ ε3/4.

Consider now bounds for Aε. By the triangle inequality,

‖Aε(h)‖Xt ≤ |λ|‖Sh‖Xt + ‖L(ϕε, gε)‖Xt .

Using the bound on S from Corollary 4,

‖Aε(h)‖Xt ≤ C‖h‖pelqelXt
+ ‖L(ϕε, gε)‖Xt .

Let Bt(0, ε
1/2) be the open ball of radius ε1/2 centered at 0 in Xt. If t ∈ (0, tε], for h ∈ Bt(0, ε

1/2),

‖Aε(h)‖Xt ≤ Cεpelqel/2 + ε3/4. (6.1)

For sufficiently small ε it follows that ‖Aε(h)‖Xt < ε1/2. Thus for sufficiently small ε, for every
t ∈ (0, tε],

Aε(Bt(0, ε
1/2)) ⊂ Bt(0, ε

1/2).

Consider h̃, h ∈ Bt(0, ε
1/2).

‖Aε(h)− Aε(h̃)‖Xt = C‖Sh− Sh̃‖Xt .

Write out S(h) and S(h̃) in terms of the multilinear operator ~S. Adding and subtracting terms of
the form ~S(h, . . . , h, h̃, h̃, . . . , h̃), allows one to write S(h)−S(h̃) as a sum of pelqel terms, where
each term is of the general form ~S(~f) with ~f = (fα : α ∈ A) such that there is one index β such
that fβ = h− h̃, and for α 6= β, fα is either h or h̃. Applying the multilinear estimate from Lemma
37 to each such term gives that there exists C independent of ε such that

‖Aε(h)− Aε(h̃)‖Xt ≤ Cε(pelqel−1)/2‖h− h̃‖Xt .

Thus when ε is sufficiently small Aε : Bt(0, ε
1/2) → Bt(0, ε

1/2) is a strict contraction. Therefore,
there exists a unique hε ∈ Xt such that ‖hε‖Xt ≤ ε1/2 and Aε(hε) = hε.

Proof of Proposition 12. Let ε0 be the small quantity guaranteed in Lemma 39. Fix ε ∈ (0, ε0] and
let 0 ≤ s ≤ t ≤ tε. Let h ∈ Xs, ‖h‖Xs ≤ ε1/2 and Aε(h) = h. Similarly, let h̃ ∈ Xt, ‖h̃‖Xt ≤ ε1/2

and Aε(h̃) = h̃. As h̃ ∈ Xt and s ≤ t, h̃ ∈ Xs and further,

‖h̃‖Xs ≤ ‖h̃‖Xt ≤ ε1/2.

Hence by the uniqueness result in Lemma 39, h = h̃.
Taking s = 0 and h = gε, this uniqueness implies that gε ∈ Xt for all t ∈ [0, tε] for all

sufficiently small ε.
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6.6 Mollified derivatives
The next goal is to show that if f ∈ Xρ for some ρ > 0, then its derivatives exist and behave well.
Following Christ and Xue [16] we use mollified derivatives to prove the smoothness result. We
correct a small technical error from [16] in the definition of these mollified derivatives.

Recall that 〈x〉 = (1 + |x|2)1/2 and S (Rd) denotes the Schwartz class of functions onMk,d.
Let S (Mk,d) denote the class of functions onMk,d, satisfying “f(θ, y) ∈ S (θ⊥) ∼ S (Rd−k),
uniformly in θ”. We call this class the Schwartz class of functions onMk,d.

Definition 13. For all f ∈ S (Rd) , for each s ≥ 0 and Λ ≥ 1 define the operator Ds
Λ by

D̂s
Λf(ξ) =

〈ξ〉s

〈Λ−1ξ〉s
f̂(ξ).

Similarly, for all g(θ, y) ∈ S (Mk,d), for each s ≥ 0 and Λ ≥ 1 define Ds
Λ by

D̂s
Λgθ(ξ) =

〈ξ〉s

〈Λ−1ξ〉s
ĝθ(ξ).

where the Fourier transform is taken only in the y variable.

Lemma 40. For all sufficiently small ρ ≥ 0, for each Λ > 0, there exists a constant CΛ, such that
for all f ∈ Xρ,

‖Ds
Λf‖Xρ ≤ CΛ‖f‖Xρ .

Proof. For sufficiently small ρ, wρp ∈ Ap by Lemma 31.By the Hörmander-Mihlin multiplier
theorem (for the simple case used here see [41], pg. 26) it is enough to check that for each multi-
index α,

∣∣∣∂αξ ( 〈ξ〉s
〈Λ−1ξ〉s

)∣∣∣ ≤ Cα
|ξ||α| . Direct computation shows,

∣∣∣∣∂αξ ( 〈ξ〉s

〈Λ−1ξ〉s

)∣∣∣∣ = Λs

∣∣∣∣∣∂αξ
(

1 + |ξ|2

Λ2 + |ξ|2

)s/2∣∣∣∣∣ ≤ CαΛs+2

|ξ||α|+2
≤ CαΛs

|ξ||α|
(6.2)

Moreover, these operators interact nicely with the k-plane and dual k-plane transforms. Let
S (Mk,d) denote the class of functions on Mk,d, satisfying “for all θ, f(θ, y) ∈ S (θ⊥) ∼
S (Rd−k)”. We call this class the Schwartz class of functions onMk,d.

Lemma 41. For all f ∈ S (Rd) and g ∈ S (Mk,d) the following formulas hold:

Ds
ΛTk,df = Tk,dD

s
Λf

Ds
ΛT
∗
k,dg = T ∗k,dD

s
Λg. (6.3)
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Proof. The key fact is that Tk,d and T ∗k,d interact nicely with the Fourier transform. Recall the result
of Lemma 2: For all f ∈ S (Rd), for all g ∈ S (Mk,d), for all θ ∈ Gk,d, for all ξ ∈ θ⊥

T̂k,dfθ(ξ) = f̂(ξ)

and
T̂ ∗k,dg(ξ) =

∫
{θ:θ⊥ξ}

ĝ(θ, ξ)dγξ⊥(θ) (6.4)

where for functions onMk,d the Fourier transform is taken only in the y-variable and dγξ⊥ repre-
sents the restriction of the measure dγ to the subset of k-planes which are perpendicular to ξ. The
notation g(θ, y) = gθ(y) is used to emphasize that onMk,d the Fourier transform is taken only in
the y-variable.

We prove (6.3). The proof of the other equation is similar.

Ds
ΛT
∗
k,dg(x) =

(
D̂s

ΛT
∗
k,dg(ξ)

)∨
=
(
〈ξ〉s〈Λ−1ξ〉−sT̂ ∗k,dg(ξ)

)∨
=

∫
Rd
e2πix·ξ〈ξ〉s〈Λ−1ξ〉−sT̂ ∗k,dg(ξ)dξ.

By (6.4),

=

∫
Rd
e2πix·ξ〈ξ〉s〈Λ−1ξ〉−s

∫
{θ:θ⊥ξ}

ĝ(θ, ξ)dγξ⊥(θ)dξ.

=

∫
Rd
e2πix·ξ

∫
{θ:θ⊥ξ}

〈ξ〉s〈Λ−1ξ〉−sĝ(θ, ξ)dγξ⊥(θ)dξ.

By the definition of Ds
Λ,

=

∫
Rd
e2πix·ξ

∫
{θ:θ⊥ξ}

D̂s
Λg(θ, ξ)dγξ⊥(θ)dξ.

Using (6.4) again,

=

∫
Rd
e2πix·ξ ̂T ∗[Ds

Λg](ξ)dξ.

Mollified derivatives, like fractional derivatives, fail to satisfy Leibniz’s rule for derivatives of
products. The following lemmas provide an adequate substitute in our situation.

Lemma 42. Let d ≥ 2. Let s ∈ (0,∞) and Λ ∈ (4,∞). Suppose that r−1 = p−1
j +q−1

j for j = 1, 2
and that all exponents r, pj, qj belong to the open interval (1,∞). Let u ≥ 0 be a locally integrable
function on Rd. Suppose further that the weight u belongs to Ar and that u = u1v1 = u2v2 where
u
pj/r
j ∈ Apj and vqj/rj ∈ Aqj . Then there exists a constant C such that for all Λ > 4 the following

inequality holds, whenever the right hand side is finite:

‖Ds
Λ(fg)‖Lr(u) ≤ C‖Ds

Λ(f)‖Lp1 (up1/r)‖g‖Lq1 (vq1/r) + C‖f‖Lp2 (up2/r)‖Ds
Λ(g)‖Lq2 (vq2/r).



CHAPTER 6. SMOOTHNESS OF EXTREMIZERS 63

This lemma is a modification of the standard fractional Leibniz rule or Kato-Ponce inequality
[28] to the setting of mollified derivatives. The proof follows the methods of Christ and Weinstein
in [13] and is similar to that in Christ and Xue, [16]. The proof is a routine application of ideas
from weighted Calderón-Zygmund theory, but is rather long and consequently is deferred to the
next section.

We also require a modified version for the spaceMk,d.

Lemma 43. Let s ∈ (0,∞)and Λ ∈ (4,∞). Suppose that r−1 = p−1
j + q−1

j for j = 1, 2 and that
all exponents r, pj, qj belong to the open interval (1,∞). Let u ≥ 0 be a locally integrable function
on Mk,d. Suppose the weight uθ belongs to Ar(θ⊥), uniformly in θ, and that for each θ ∈ Gk,d
uθ = uθ,1vθ,1 = uθ,2vθ,2 where upj/rθ,j ∈ Apj(θ⊥) and vqj/rθ,j ∈ Aqj(θ⊥). Then there exists a constant
C such that Ds

Λ(fg) ∈ Lr(Mk,d, u) and the following inequality holds, whenever the right hand
side is finite:

‖Ds
Λ(fg)‖Lr(Mk,d,u) ≤ C‖Ds

Λ(f)‖Lp1 (Mk,d,u
p1/r)‖g‖Lq1 (Mk,d,v

q1/r)+

C‖f‖Lp2 (Mk,d,u
p2/r)‖Ds

Λ(g)‖Lq2 (Mk,d,v
q2/r).

Proof.

‖Ds
Λ(fg)‖rLr(Mk,d,u) =

∫
Gk,d

(∫
θ⊥
|Ds

Λ(fg)|ruθdλθ⊥y
)
dθ.

By Lemma 42 applied to the inner integral for each θ,

‖‖Ds
Λ(fg)‖rLr(Mk,d,u) ≤ C

∫
Gk,d

(
‖Ds

Λ(f)‖
Lp1 (θ⊥,u

p1/r
θ,1 )
‖g‖

Lq1 (θ⊥,v
q1/r
θ,1 )

+‖f‖
Lp2 (θ⊥,u

p2/r
θ,2 )
‖Ds

Λ(g)‖
Lq2 (θ⊥,v

q2/r
θ,2 )

)r
dθ

Using Minowski’s integral inequality,

‖‖Ds
Λ(fg)‖rLr(Mk,d,u) ≤ C

∫
Gk,d

(
‖Ds

Λ(f)‖
Lp1 (θ⊥,u

p1/r
θ,1 )
‖g‖

Lq1 (θ⊥,v
q1/r
θ,1 )

)r
dθ

+ C

∫
Gk,d

(
‖f‖

Lp2 (θ⊥,u
p2/r
θ,2 )
‖Ds

Λ(g)‖
Lq2 (θ⊥,v

q2/r
θ,2 )

)r
dθ.

The lemma then follows by Hölder’s inequality.

Applying Lemmas 42 and 43 to ‖Ds
ΛSf‖X% using the definition of S gives the following result.

The conditions of these lemmas are met because Lemmas 32 and 31, guarantee that for sufficiently
small t, wtpt and wtpt∗ are in the appropriate Ap space.

Corollary 5. For all ρ ≥ 0 sufficiently small, there exist %′ ≤ % both in (0, ρ) and a constant C
such that for all s > 0 and Λ ≥ 4, for all f ∈ Xρ satisfying ‖f‖Xρ = 1 ,

‖Ds
ΛSf‖X% ≤ C‖f‖pelqel−1

Xρ
‖Ds

ΛTk,df‖Y∗,%′ .
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We require one last technical lemma. Recall that Dsf is defined such that D̂sf(ξ) = 〈ξ〉sf̂(ξ).

Lemma 44. For all γ > 0, for all s > 0, there exists a constant C such that for all sufficiently
small t ≥ 0, for all Λ ≥ 1, for all h ∈ Xt,

‖Ds
ΛD
−γf‖Xt ≤ C‖Ds

Λf‖
1−γ/s
Xt

‖f‖γ/sXt
.

Proof. First, the operator Ds
ΛD
−s is a Fourier multiplier operator with

m(ξ) = 〈ξ〉−s 〈ξ〉
s

〈Λ−1ξ〉s
=

1

〈Λ−1ξ〉s
.

For each multi-index α, ∣∣∂αξ (m)
∣∣ ≤ Cα|ξ|−|α|.

Therefore ([41], pg 26,205),
‖Ds

ΛD
−sf‖Xt ≤ C‖f‖Xt .

Additionally, D−iσ is bounded on Xt with a norm . 〈σ〉c uniformly for all σ [16], whence

‖Ds
ΛD
−s+iσf‖Xt ≤ C〈σ〉c‖f‖Xt .

Trivially, ‖Ds
Λf‖Xt ≤ C‖Ds

Λf‖Xt .
The lemma follows from these two estimates by complex interpolation applied to the the ana-

lytic family of operators Ds
ΛD
−z.

6.7 Proof of Lemma 42 (the fractional derivative inequality
for mollified derivatives)

Proof. Fix η ∈ S (Rn), a radial function, such that η(ξ) = 1 if |ξ| ≤ 1 and η(ξ) = 0 if |ξ| ≥ 2.
For each j ∈ {0, 1, 2, . . .}, define Pj by P̂jf(ξ) = f̂(ξ)η(2−jξ). For j ≥ 1, define Qj by Qj =
Pj − Pj−1. Fix κ such that 2κ−1 ≤ Λ ≤ 2κ. As Λ ≥ 4, κ ≥ 3. Define Rκf = f − Pκf . Note that
P̂jf is supported in {ξ : |ξ| ≤ 2j+1}, Q̂jf is supported in {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}, and R̂κf(ξ) is
supported in {ξ : |ξ| ≥ 2κ}.

Decompose

f = Pκf +Rκf = P2f +
κ∑
i=3

Qif +Rκ

and decompose g similarly. Using this decomposition,

fg =
κ∑
j=3

Qjf · Pjg +
κ∑
j=3

Qjg · Pj−1f (6.5)

+P2fP2g (6.6)
+RκfPκg +RκgPκf +Rκf ·Rκg (6.7)
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Let us first consider the term ‖Ds
ΛP2fP2g‖Lr(u).

As P̂2fP2g is supported in |ξ| < 24,

(Ds
ΛP2fP2g)̂ =

〈ξ〉s

〈Λ−1ξ〉s
η(2−4ξ)

(
P̂2f ∗ P̂2g

)
.

The function 〈ξ〉s
〈Λ−1ξ〉sη(2−4ξ) ∈ C∞0 (Rd) uniformly in Λ. Thus, Therefore,

‖Ds
ΛP2fP2g‖Lr(u) ≤ C‖P2fP2g‖Lr(u).

Applying Hölder’s inequality,

‖P2fP2g‖Lr(u) ≤ C‖P2f‖Lp1 (up1/r)‖P2g‖Lq1 (vq1/r).

The operator P2 is given by convolution with a Schwartz function independent of Λ so

‖P2g‖Lq1 (vq1/r) ≤ C‖g‖Lq1 (vq1/r).

Lastly,

P̂2f = η(2−2ξ)

(
〈Λ−1ξ〉s

〈ξ〉s

)
〈ξ〉s

〈Λ−1ξ〉s
f̂(ξ).

Direct computation and the observation that as Λ ≥ 4, |ξ| ≤ 2Λ on the support of η(2−2ξ)
yields, ∣∣∣∣∂αξ (η(2−2ξ)(1 + |Λ−1ξ|2)s/2

(1 + |ξ|2)s/2

)∣∣∣∣ ≤ Cα.

As, additionally, this multiplier is supported on {ξ : |ξ| < 8} and up1/r1 ∈ Ap1 , ‖P2(f)‖Lp1 (up1/r) ≤
‖Ds

Λ(f)‖Lp1 (up1/r). Therefore,

‖Ds
Λ(P2fP2g)‖Lr(u) ≤ Cs,n‖Ds

Λ(f)‖Lp1 (up1/r)‖g‖Lq1 (vq1/r).

Moving on to the terms in (6.5) , consider the contribution from Ds
Λ(
∑κ

j=3QjfPjg). Further
decompose this sum as

Ds
Λ

(
κ∑
j=3

QjfPjg

)
= Ds

ΛP0(
κ∑
j=3

QjfPjg) +
∞∑
l=1

Ds
ΛQl(

κ∑
j=3

QjfPjg). (6.8)

As above ‖Ds
ΛP0(

∑κ
j=3QjfPjg)‖Lr(u), is handled by Hölder’s inequality and weighted Calderón-

Zygmund theory. For any h, P̂0(h) is supported in |ξ| < 2,

D̂s
ΛP0(h) =

〈ξ〉s

〈Λ−1ξ〉s
η(2−1ξ)ĥ.
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Arguing as above,

‖Ds
ΛP0(

κ∑
j=3

QjfPjg)‖Lr(u) ≤ C‖
κ∑
j=3

QjfPjg‖Lr(u).

Further for any j, |Pjg(x)| = |2−nj η̂(2jx) ∗ g(x)| ≤ ‖ψ′‖L1M|g| where ψ′ ∈ L1 is a radial
decreasing majorant for η̂. Thus,

|Pjg(x)| ≤ CM|g|, (6.9)

and

‖
κ∑
j=3

QjfPjg‖Lr(u) ≤ C‖M(g)Pκf‖Lr(u).

Applying Hölder’s inequality,

‖M(g)Pκf‖Lr(u) ≤ C‖Pκ(f)‖Lp1 (up1/r)‖Mg‖Lq1 (vq1/r).

As, vq1/r ∈ Aq1 , ‖Mg‖Lq1 (vq1/r) ≤ ‖g‖Lq1 (vq1/r). Lastly,

P̂κf = η(2−κξ)

(
〈Λ−1ξ〉s

〈ξ〉s

)
〈ξ〉s

〈Λ−1ξ〉s
f̂(ξ).

Direct computation yields, ∣∣∣∣∂αξ (〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα〈Λ−1ξ〉s−|α|

〈ξ〉s+|α|
(6.10)

Now, η(ξ) is smooth and supported on |ξ| ≤ 4, whence for any j > 0 ,∣∣∂αξ (η(2−jξ)
)∣∣ ≤ Cα〈ξ〉−|α| (6.11)

Combining (6.10) and (6.11) and using that |ξ| ≤ 2κ+1 ≤ 4Λ on the support of η(2−κξ),∣∣∣∣∂αξ (〈ξ〉sη(2−κξ)

〈Λ−1ξ〉s

)∣∣∣∣ ≤ Cα〈ξ〉−|α|

Therefore, as up1/r1 ∈ Ap1 ,

‖Pκ(f)‖Lp1 (up1/r) ≤ ‖Ds
Λ(f)‖Lp1 (up1/r).

Finally,

‖Ds
ΛP0(

κ∑
j=3

QjfPjg)‖Lr(u) ≤ C‖Ds
Λ(f)‖Lp1 (up1/r)‖g‖Lq1 (vq1/r).
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Returning to the second term in (6.8), using that Fourier multiplier operators commute and weighted
Littlewood-Paley theory∥∥∥∥∥Ds

Λ

(
∞∑
l=1

Ql(
κ∑
j=3

QjfPjg)

)∥∥∥∥∥
Lr(u)

≤ C

∥∥∥∥∥∥
{
Q̃lD

s
Λ

(
κ∑
j=3

QjfPjg

)}∞
l=−1

∥∥∥∥∥∥
Lr(`2,u)

The first step is to prove∥∥∥∥∥∥
{
Q̃lD

s
Λ

(
κ∑
j=3

QjfPjg

)}κ+4

l=1

∥∥∥∥∥∥
Lr(`2,u)

≤ C

∥∥∥∥∥∥
{

2lsQ̃l

(
κ∑
j=3

QjfPjg

)}κ+4

l=1

∥∥∥∥∥∥
Lr(`2,u)

(6.12)

For any function hl supported in {ξ : |ξ| ≤ 2l+1},

D̂s
Λ(hl) =

2−ls〈ξ〉s

〈Λ−1ξ〉s
η(2−l−2ξ)2lsĥl(ξ).

Define Ml(h) by M̂lh = mlĥ where ml = 2−ls〈ξ〉s
〈Λ−1ξ〉s η(2−l−2ξ). Let ~M be the vector valued operator

~M({hl}) = {Mlhl}. Thus,∥∥∥∥∥∥
{
Q̃lD

s
Λ

(
∞∑
j=3

QjfPjg

)}κ

l=1

∥∥∥∥∥∥
Lr(`2,u)

=

∥∥∥∥∥∥ ~M
{

2lsQ̃l

(
∞∑
j=3

QjfPjg

)}κ

l=1

∥∥∥∥∥∥
Lr(`2,u)

.

First, ∣∣∣∣∂αξ ( 〈ξ〉s

〈Λ−1ξ〉s

)∣∣∣∣ =

∣∣∣∣∂αξ ( Λs

(Λ2 + |ξ|2)s/2
(1 + |ξ|2)s/2

)∣∣∣∣ ≤ Cα〈ξ〉s−|α|.

Whence, ∣∣∣∣∂αξ (2−ls〈ξ〉s

〈Λ−1ξ〉s

)∣∣∣∣ ≤ Cα2−ls〈ξ〉s−|α|. (6.13)

Combining (6.13) and (6.11) with j = l + 2 and using that η(2−l−2ξ) is supported on |ξ| ≤ 2l+3,

∣∣∂αξ (ml(ξ))
∣∣ ≤ ∣∣∣∣∂αξ (2−ls〈ξ〉sη(2−l−2ξ)

〈Λ−1ξ〉s

)∣∣∣∣ ≤ Cα〈ξ〉−|α|

As this bound is independent of l, ~M is a vector valued Calderón-Zygmund operator [25] and,
thus, is bounded from Lr(`2, u) to Lr(`2, u) for any u ∈ Ar which proves (6.12).

Next, noting that Ql(QjfPjg) = 0 if l > j + 4 and using Minkowski’s integral inequality,∥∥∥∥∥∥
{

2lsQ̃l

(
κ∑
j=3

QjfPjg

)}∞
l=1

∥∥∥∥∥∥
Lr(`2,u)

≤ C

∥∥∥∥∥∥
∞∑

t=−4

(
κ∑
j=3

∣∣∣2(j−t)sQ̃j−t (QjfPjg)
∣∣∣2)1/2

∥∥∥∥∥∥
Lr(u)
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As the sum
∑∞

t=−4 2−ts is a finite constant depending only on s,∥∥∥∥∥∥
∞∑

t=−4

(
κ∑
j=3

∣∣∣2(j−t)sQ̃j−t (QjfPjg)
∣∣∣2)1/2

∥∥∥∥∥∥
Lr(u)

≤ C

∥∥∥∥{2jsQ̃j−t (QjfPjg)
}κ
j=3

∥∥∥∥
Lr(`2,u)

Further for any l, |Qlg(x)| = |Plg(x)− Pl−1g(x)| ≤ CM|g| by (6.9).∥∥∥∥{2jsQ̃j−t (QjfPjg)
}κ
j=3

∥∥∥∥
Lr(`2,u)

≤ C
∥∥∥{M (

2jsQjfPjg
)}κ

j=3

∥∥∥
Lr(`2,u)

.

This last quantity is the Lr(u) norm of Fefferman and Stein’s ([22]) vector-valued maximal
function (with q = 2), which is well known to be bounded on Lr(`2, u) for u ∈ Ar (see [1]). Thus,∥∥∥{M (

2jsQjfPjg
)}κ

j=3

∥∥∥
Lr(`2,u)

≤ C
∥∥∥{(2jsQjfPjg

)}κ
j=3

∥∥∥
Lr(`2,u)

.

Again by (6.9), ∥∥∥{(2jsQjfPjg
)}κ

j=3

∥∥∥
Lr(`2,u)

≤ C
∥∥∥M(g)

{(
2jsQjf

)}κ
j=3

∥∥∥
Lr(`2,u)

Therefore, by Hölder’s inequality and the factorization u = u1v1,∥∥∥M(g)
{(

2jsQjf
)}κ

j=3

∥∥∥
Lr(`2,u)

≤ C ‖Mg‖
Lq1 (v

q1/r
1 )

∥∥∥{(2jsQjf
)}κ

j=3

∥∥∥
Lp1(`2,u

p1/r
1 )

Moreover, ‖Mg‖
Lq1 (v

q1/r
1 )
≤ C ‖g‖

Lq1 (v
q1/r
1 )

as vq1/r1 ∈ Aq1 .

Finally, recall that Qj is supported on {ξ : 2j−1|ξ| ≤ 2j+1}. Let ζ(ξ) a Schwartz cut-off
function such that ζ(ξ) = 1 for 1/2 ≤ |ξ| < 2 and ζ(ξ) = 0 for |ξ| < 1/4 and |ξ| > 4. Then,

2̂jsQjf = (η(2−jξ)− η(2−j+1ξ))ζ(2−jξ)

(
2js〈Λ−1ξ〉s

〈ξ〉s

)
〈ξ〉s

〈Λ−1ξ〉s
f̂(ξ).

Direct computation shows that∣∣∣∣∂αξ (2js〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα2js〈Λ−1ξ〉s−|α|

〈ξ〉s+|α|
.

Now, ζ(ξ) also satisfies the estimate |∂α (ζ(ξ))| ≤ Cα,η〈ξ〉−|α|. Further, ζ(2−jξ) is supported on
{ξ : 2j−2 ≤ |ξ| ≤ 2j+2} and 2j+2 < 8Λ for j ≤ κ. This yields,∣∣∣∣∂αξ (ζ(2−jξ)

2js〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα〈ξ〉−|α|.

As this bound is independent of Λ and j ([25],Theorem 3.16),∥∥{2jsQjf}κj=3

∥∥
Lp1 (`2,u

p1/r
1 )
≤ C

∥∥{Qj(D
s
Λf)}κj=3

∥∥
Lp1 (`2,u

p1/r
1 )

.
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Applying weighted Littlewood-Paley theory,∥∥{Qj(D
s
Λf)}κj=3

∥∥
Lp1 (`2,u

p1/r
1 )
≤ C ‖Ds

Λf‖Lp1 (u
p1/r
1 )

.

Therefore, ∥∥∥∥∥Ds
Λ

(
∞∑
l=1

Ql(
κ∑
j=3

QjfPjg)

)∥∥∥∥∥
Lr(u)

≤ C ‖Ds
Λf‖Lp1 (u

p1/r
1 )
‖g‖

Lq1 (v
q1/r
1 )

.

Finally,

‖Ds
Λ(

κ∑
j=3

Qjf · Pj−3g)‖Lr(u) ≤ C ‖Ds
Λf‖Lp1 (u

p1/r
1 )
‖g‖

Lq1 (v
q1/r
1 )

.

The same argument with the roles of f and g reversed shows that

‖Ds
Λ(

κ∑
j=3

Qjg · Pj−3f)‖Lr(u) ≤ C ‖f‖
Lp2 (u

p2/r
2 )
‖Ds

Λg‖Lq2 (v
q2/r
2 )

.

It remains to bound the terms in (6.7). Consider ‖Ds
Λ(Rκf · Pκg)‖Lr(u). Write,

̂Ds
Λ(RκfPκg) =

2−sκ〈ξ〉s

〈Λ−1ξ〉s
(

2sκR̂κf ∗ P̂κg
)
.

Recall that 2κ−1 ≤ Λ ≤ 2κ. Making use of the estimate (6.2),∣∣∣∣∂αξ (2−sκ〈ξ〉s

〈Λ−1ξ〉s

)∣∣∣∣ ≤ CαΛs2−sκ

|ξ||α|
≤ Cα
|ξ||α|

.

Therefore, as u ∈ Ar ([41], pg. 26, 205),

‖Ds
Λ(Rκf · Pκg)‖Lr(u) ≤ C‖2sκRκf · Pκg‖Lr(u).

Using Hölder’s inequality and the factorization u = u1v1,

‖2sκRκf · Pκg‖Lr(u) ≤ C ‖2sκRκf‖Lp1 (u
p1/r
1 )
‖Pκg‖Lq1 (v

q1/r
1 )

.

Using (6.9),
‖Pκg‖Lq1 (v

q1/r
1 )
≤ C ‖Mg‖

Lq1 (v
q1/r
1 )
≤ C ‖g‖

Lq1 (v
q1/r
1 )

.

Finally, consider ‖2sκRκf‖Lq1 (v
q1/r
1 )

. Take a function ψ such that ψ(ξ) = 1 on |ξ| ≥ κ, ψ(ξ) = 0

on |ξ| ≤ κ− 1, and
∣∣∂αξ (ψ(ξ))

∣∣ ≤ Cα〈ξ〉−|α|. Then,

2̂sκRκf =

(
2sκψ(ξ)〈Λ−1ξ〉s

〈ξ〉s

)
〈ξ〉s

〈Λ−1ξ〉s
f̂(ξ).
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We again have the estimate,∣∣∣∣∂αξ (2sκ〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα2sκ〈Λ−1ξ〉s−|α|

〈ξ〉s+|α|
.

Now, 2κ ≤ 2Λ. Hence, when |ξ| > Λ,∣∣∣∣∂αξ (2sκ〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα(Λ2 + |ξ|2)s

〈ξ〉s+|α|〈Λ−1ξ〉|α|
≤ Cα〈ξ〉−|α|.

Whence, ∣∣∣∣∂αξ (2sκψ(ξ)〈Λ−1ξ〉s

〈ξ〉s

)∣∣∣∣ ≤ Cα〈ξ〉−|α|.

The other remainder terms are addressed analogously with only the additional observation that
‖Rκg‖Lq1 (v

q1/r
1 )

= ‖g − Pκ(g)‖
Lq1 (v

q1/r
1 )

and, thus, by (6.9)

‖Rκg‖Lq1 (v
q1/r
1 )
≤ C ‖Mg‖

Lq1 (v
q1/r
1 )
≤ C ‖g‖

Lq1 (v
q1/r
1 )

.

6.8 Conclusion of Proof
This section is devoted to the proof of the following lemma from which Theorem 9 follows.

Proposition 13. Let q0 ∈ (1, d + 1] such that for p0 = dq0
d−k+kq0

, qel = q0 − 1 and pel = 1
p0−1

are
both integers. Let d ≥ 2, λ ∈ R, and ρ > 0. Let f ∈ Xρ be any real- valued solution of the
generalized Euler-Lagrange equation f = λSf. Let λ ∈ C. Then there exists % > 0 such that for
all s ≥ 0, Dsf ∈ X%.

Proof of Theorem 9 using Proposition 13. By Proposition 12, if f ∈ Lp0(Rd) is a solution of the
generalized Euler-Lagrange equation f = λSf, there exists t > 0 such that f ∈ Xt. Thus the
conditions of Proposition 13 are met, and there exists % > 0 such that for all s ≥ 0, Dsf ∈ X%.
The theorem then follows by Sobolev embedding (see for instance, [42]).

Proof of Proposition 13 . Fix λ ∈ R. Let f ∈ Xρ for some ρ > 0 be any solution of the generalized
Euler-Lagrange equation f = λSf . It suffices to consider ‖f‖Xρ = 1, as F = f/‖f‖Xρ will satisfy
f = λ‖f‖pelqelXρ

Sf .
Fix s > 0. It is enough to prove that there exists a finite constant C independent of Λ such that

for all Λ ≥ 4, ‖Ds
Λf‖X% < C.

Using Corollary2 5 there exist %′ ≤ % both in (0, ρ),

‖Ds
Λf‖X% ≤ C‖f‖pelqel−1

Xρ
‖Ds

ΛTk,df‖Y∗,%′ = C‖Ds
ΛTk,df‖Y∗,%′ . (6.14)

2This step assumes that pel, qel are integers so that Ds
ΛS(f) can be written as the derivative of a product.
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As 0 ≤ %′ ≤ %, by Lemma 30, in particular convexity of the Y∗,t norms, there exists θ ∈ (0, 1) such
that

‖Ds
ΛTk,df‖Y∗,%′ ≤ ‖D

s
ΛTk,df‖θY∗,%‖D

s
ΛTk,df‖1−θ

Y∗,0
.

By Lemma 41, on how mollified derivatives and the k-plane transform commute,

‖Ds
ΛTk,df‖Y∗,%′ ≤ ‖Tk,dD

s
Λf‖θY∗,%‖Tk,dD

s
Λf‖1−θ

Y∗,0
.

Using the estimate for Tk,d given in Lemma 29,

‖Ds
ΛTk,df‖Y∗,%′ ≤ ‖D

s
Λf‖θX%‖Tk,dD

s
Λf‖1−θ

Y∗,0
.

From this and (6.14), we conclude that

‖Ds
Λf‖X% ≤ C‖Tk,dDs

Λf‖Lq0 (Mk,d). (6.15)

Let γ = γ(%) as guaranteed by Lemma 34 which applies because if pel = 1
p0−1

is an integer
then p0 ∈ (1, 2]. Write Tk,dDs

Λf = DγTk,d(D
s
ΛD
−γf). Applying the estimate from Lemma 34,

‖Tk,dDs
Λf‖Lq0 (Mk,d) = ‖DγTk,d(D

s
ΛD
−γf)‖Lq0 (Mk,d) ≤ C‖Ds

ΛD
−γf‖X% .

Applying Lemma 44,
‖Ds

ΛD
−γf‖X% ≤ C‖Ds

Λf‖
1−γ
X%
‖f‖γX% .

Combining this estimate and (6.15),

‖Ds
Λf‖X% ≤ C‖Ds

Λf‖
1−γ
X%

.

By Lemma 40, ‖Ds
Λf‖X% ≤ CΛ‖f‖X% and hence is finite. Therefore ‖Ds

Λf‖X% ≤ C where C is
independent of Λ.

For s = 0 the estimate holds as 0 < % < ρ.
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Chapter 7

Cases of equality in certain multilinear
inequalities of Hardy-Riesz-Brascamp-Lieb-
Luttinger-Rogers
type

This chapter represents the joint work of myself and Michael Christ.

7.1 Main result and methods
In this chapter we characterize cases of equality in certain Hardy-Riesz-Brascamp-Lieb-Luttinger-
Rogers rearrangement inequalities.

Let m ≥ 2 and n ≥ m+ 1 be positive integers. For j ∈ {1, 2, · · · , n} let Ej ⊂ R be Lebesgue
measurable sets with positive, finite measures, and let Lj be surjective linear maps Rm → R.
This paper is concerned with the nature of those n–tuples (E1, · · · , En) of measurable sets that
maximize expressions

I(E1, · · · , En) =

∫
Rm

n∏
j=1

1Ej(Lj(x)) dx,

among all n–tuples with specified Lebesgue measures |Ej|. Our results apply only in the lowest-
dimensional nontrivial case, m = 2, but apply for arbitrarily large n.

Definition 14. A family {Lj} of surjective linear mappings from Rm to R1 is nondegenerate if for
every set S ⊂ {1, 2, · · · , n} of cardinality m, the map x 7→ (Lj(x) : j ∈ S) from Rm to RS is a
bijection.

For any Lebesgue measurable set E ⊂ R1 with finite Lebesgue measure, E∗ denotes the
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nonempty closed1 interval centered at the origin satisfying |E| = |E∗|. Brascamp, Lieb, and
Luttinger [6] proved that among sets with specified measures, the functional I attains its maximum
value when each Ej equals E∗j , that is,

I(E1, · · · , En) ≤ I(E∗1 , · · · , E∗n). (7.1)

In this paper we study the uniqueness question and show that these are the only maximizing n–
tuples, up to certain explicit symmetries of the functional, in those situations in which a satisfactory
characterization of maximizers can exist.

Inequalities of this type can be traced back at least to Hardy and to Riesz [36]. In the 1930s,
Riesz and Sobolev independently showed that∫∫

Rk×Rk
1E1(x)1E2(y)1E3(x+ y) dx dy ≤

∫∫
Rk×Rk

1E∗1
(x)1E∗2 (y)1E∗3 (x+ y) dx dy

for arbitrary measurable sets Ej with finite Lebesgue measures. Brascamp, Lieb, and Luttinger
[6] later proved the more general result indicated above, and in a yet more general form in which
the target spaces R1 are replaced by Rk for arbitrary k ≥ 1, satisfying an appropriate equivariance
hypothesis.

The first inverse theorem in this context, characterizing cases of equality, was established
by Burchard [8], [7]. The cases n ≤ m are uninteresting, since I(E1, · · · , En) = ∞ for all
(E1, · · · , En) when n < m, and equality holds for all sets when n = m. The results of Burchard
[7] apply to the smallest nontrivial value of n for given m, that is to n = m+ 1, but not to larger n.
We are aware of no further progress in this direction since that time. This paper treats a situation
at the opposite extreme of the spectrum of possibilities, in which m = 2 is the smallest dimension
of interest, but the number n ≥ 3 of factors can be arbitrarily large.

Burchard’s inverse theorem has more recently been applied to characterizations of cases of
equality in certain inequalities for the Radon transform and its generalizations the k–plane trans-
forms [12],[Me ]. Cases of near but not exact equality for the Riesz-Sobolev inequality have been
characterized still more recently [10],[14].

As was pointed out by Burchard [8], a satisfactory characterization of cases of equality is
possible only if no set Ei is too large relative to the others. This is already apparent for the trilinear
expression associated to convolution,

I(E1, E2, E3) =

∫∫
1E1(x)1E2(y)1E3(x+ y) dx dy;

if |E3| > |E1| + |E2| and if E1, E2 are intervals, then equality holds whenever E3 is the union of
an arbitrary measurable set with the algebraic sum of those two intervals.

Consider any expression I(E1, · · · , En) where the integral is taken over Rm, Ej ⊂ R1, and
Lj : Rm → R1 are linear and surjective. Set Sj = {x ∈ Rm : Lj(x) ∈ Ej}. Then I(E1, · · · , En)
is equal to the m–dimensional Lebesgue measure of ∩jSj . Define also

S?j = {x ∈ Rm : Lj(x) ∈ E∗j }. (7.2)

1A more common convention is that E∗ should be open, but this convention will be convenient in our proofs. If
E = ∅ then E∗ = {0}, rather than the empty set, under our convention.
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Definition 15. Let (Lj : 1 ≤ j ≤ n) be an n-tuple of surjective linear mappings from Rm to R.
An n–tuple (Ej : 1 ≤ j ≤ n) of subsets of R1 is admissible relative to (Lj) if each Ej is Lebesgue
measurable and satisfies 0 < |Ej| < ∞, and if there exists no index k such that S?k contains an
open neighborhood of

⋂
j 6=k S

?
j .

(Ej) is strictly admissible relative to (Lj) if each setEj is Lebesgue measurable, 0 < |Ej| <∞
for all j, and there exists no index k such that S?k contains

⋂
j 6=k S

?
j .

Once the maps Lj are specified, admissibility of (E1, . . . , En) is a property only of the n–tuple
of measures (|E1|, . . . , |En|). Its significance is easily explained. Suppose that (e1, · · · , en) is a
sequence of positive numbers such that an n-tuple of sets with these measures is not admissible.
The sets E∗j , S

?
j are determined by ej . Choose an index k such that S?k ⊃ ∩j 6=kS?j . For j 6= k set

Ej = E∗j . Choose the unique closed interval I centered at 0 such that the strip S = {x : Lk(x) ∈ I}
contains ∩j 6=kS?j , but |I| is as small as possible among all such intervals. Choose Ek to be the dis-
joint union of I with an arbitrary set of measure |Ek|−|I|. Then I(E1, · · · , En) = I(E∗1 , · · · , E∗n),
yet Ek \ I is an artibrary set of the specified measure. Thus without admissibility, extremizing n-
tuples are highly nonunique.

Admissibility and strict admissibility manifestly enjoy the following invariance property. Let Φ
be an affine automorphism of Rm, and for j ∈ {1, 2, · · · , n} let Ψj be affine automorphisms of R1.
Each composition Ψj◦Lj◦Φ is an affine mapping from Rm to R1. Write Ψj◦Lj◦Φ(x) = L̃j(x)+aj
where L̃j : Rm → R1 is linear. Define Ẽj = Ψj(Ej) for all j. Then (Ej : 1 ≤ j ≤ n) is
admissible relative to (Lj : 1 ≤ j ≤ n) if and only if (Ẽj : 1 ≤ j ≤ n) is admissible relative to
(L̃j : 1 ≤ j ≤ n). Strict admissibility is invariant in the same sense.

A4B will denote the symmetric difference of two sets. |E| will denote the Lebesgue measure
of a subset of either R1 or R2. We say that sets A,B differ by a null set if |A4B| = 0.

The following theorem, our main result, characterizes cases of equality, in the situation in
which I(E1, · · · , En) is defined by integration over R2 and Ej ⊂ R1.

Theorem 10. Let n ≥ 3. Let (Li : 1 ≤ i ≤ n) be a nondegenerate n-tuple of surjective linear
maps Li : R2 → R1. Let (Ei : 1 ≤ i ≤ n) be an admissible n–tuple of Lebesgue measurable
subsets of R1. If I(E1, · · · , En) = I(E∗1 , · · · , E∗n) then there exist a point z ∈ R2, and for each
index i an interval Ji ⊂ R, such that |Ei 4 Ji| = 0 and the center point of Ji equals Li(z).
Conversely, I(E1, · · · , En) = I(E∗1 , · · · , E∗n) in all such cases.

We conjecture that Theorem 10 extends to arbitrary m ≥ 2.
The authors thank Ed Scerbo for very useful comments and copious suggestions regarding the

exposition.
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7.2 On admissibility conditions
For maps Lj from Rm to the simplest target space R1, which is the subject of this paper, the most
general case treated by Burchard [7] concerns∫

Rm
1E0(x1 + x2 + · · ·+ xm)

m∏
j=1

1Ej(xj) dx1 · · · dxm, (7.3)

where m is any integer greater than or equal to 2. Cases of equality are characterized under the
admissibility condition

|Ei| ≤
∑
j 6=i

|Ej| for all i ∈ {0, 1, 2, · · · ,m}. (7.4)

Strict admissibility is the same condition, with inequality replaced by strict inequality for all i.
This single case subsumes many cases, in light of the invariance property discussed above.

Lemma 45. For the expression (7.3), admissibility in the sense (7.4) is equivalent to admissibility
in the sense of Definition 15. Likewise, the two definitions of strict admissibility are mutually
equivalent.

Proof. S?0 = {x : |
∑n

j=1 xj| ≤
1
2
|E0|}, while for j ≥ 1, S?j =

{
x : |xj| ≤ 1

2
|Ej|

}
. Thus |E0| ≥∑n

j=1 |Ej| if and only if

S?0 ⊃
{
x : |xj| ≤ 1

2
|Ej| for all 1 ≤ j ≤ n

}
= ∩nj=1S

?
j .

Likewise, strict inequality is equivalent to inclusion of ∩nj=1S
?
j in the interior of S?0 .

For any i ∈ {1, · · · , n},

∩j 6=iS?j =
{
x : |xk| ≤ 1

2
|Ek| for all k 6= i ∈ {1, 2, · · · , n}

}⋂{
x : |

n∑
l=1

xj| ≤ 1
2
|E0|

}
while

S?i =
{
x : |xi| ≤ 1

2
|Ei|
}
.

Therefore |Ei| ≥
∑

0≤j 6=i |Ej| if and only if S?i ⊃ ∩0≤j 6=iS
?
j , and strict inequality is equivalent to

inclusion of ∩0≤j 6=iS
?
j in the interior of S?i .

The case m = 2, n = 3 of Theorem 10 says nothing new. Indeed, let (Lj : 1 ≤ j ≤ 3) be
a nondegenerate family of linear transformations from R2 to R1. By making a linear change of
coordinates in R2 we can make L1(x, y) ≡ x and L2(x, y) ≡ y, so that

I(E1, E2, E3) = c

∫
R2

1E1(x)1E2(y)1E3(ax+ by) dx dy
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where a, b are both nonzero. This equals

c′
∫
R2

1E1(x/a)1E2(y/b)1E3(x+ y) dx dy = c′
∫
R2

1Ẽ1
(x)1Ẽ2

(y)1E3(x+ y) dx dy

where Ẽj are appropriate dilates and reflections of Ej .
We will need the following simple result concerning the stability of strict admissibility.

Lemma 46. Let (Lj : 1 ≤ j ≤ n) be a nondegenerate family of surjective linear mappings from
Rm to R1. Let (E1, · · · , En) be a strictly admissible n-tuple of Lebesgue measurable subsets of
R1. There exists ε > 0 such that any n-tuple (E1, · · · , En) of Lebesgue measurable subsets of R1

satisfying
∣∣ |Ej| − |Fj| ∣∣ < ε for all j ∈ {1, 2, · · · , n} is strictly admissible.

Proof. Suppose that no ε satisfying the conclusion exists. Then there exists a sequence of n-tuples
((Ej,ν) : ν ∈ N) such that |Ej,ν | → |Ej| as ν → ∞, for each j ∈ {1, 2, · · · , n}, and such that for
each ν ∈ N, (En,ν : 1 ≤ j ≤ n) is not admissible.

Let E∗j,ν ⊂ R1 be the associated closed intervals centered at 0. Let

S?j,ν =
{
x ∈ Rm : Lj(x) ∈ E∗j,ν

}
be the associated closed strips. The failure of strict admissibility means that for each ν there exists
J(ν) such that S?J(ν),ν ⊃ ∩j 6=J(ν)S

?
j,ν . By passing to a subsequence we may assume that J(ν) ≡ J

is independent of ν.
Since |Ej,ν | → |Ej|, the closed strips S?j,ν converge to the closed strips S?j as ν → ∞, in

such a way that it follows immediately that S?J ⊃ ∩j 6=JS?j . Therefore (E1, · · · , En) is not strictly
admissible.

7.3 Truncation
Definition 16. Let E ⊂ R1 have finite measure. Let α, β > 0. If α + β ≤ |E| then the truncation
E(α, β) of E is

E(α, β) = E ∩ [a, b] (7.5)

where a, b ∈ R are respectively the minimum and the maximum real numbers that satisfy

|E ∩ (−∞, a]| = α and |E ∩ [b,∞)| = β.

In the degenerate case in which α+β = |E|, E(α, β) has Lebesgue measure equal to zero, and
may be empty or nonempty. According to our conventions, E(α, β)∗ = {0} in this circumstance,
in either case. This convention will be convenient below.

Lemma 47. Let k ≥ 1. Let {Ei : i ∈ {1, 2, · · · , k}} be a finite collection of Lebesgue measurable
subsets of R1 with positive, finite Lebesgue measures. Let α, β > 0, and suppose that |Ei| ≥ α+β
for each index i. If ∩ki=1Ei(α, β) 6= ∅ then∫

R

k∏
i=1

1Ei(y) dy ≤ α + β +

∫
R

k∏
i=1

1Ei(α,β)(y) dy. (7.6)
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If Ei are closed intervals and if ∩ki=1Ei(α, β) 6= ∅ then equality holds in inequality (7.6).

This generalizes a key element underpinning the work of Burchard [8], which in turn is related,
but not identical, to the construction employed by Riesz [36].2

Proof. For each index i, let ai, bi ∈ R respectively be the smallest and the largest real numbers
satisfying |Ei ∩ (−∞, ai]| = α and |Ei ∩ [bi,∞)| = β. Thus Ei = [ai, bi]. Let a = maxi ai and
b = mini bi. Then

⋂
iEi(α, β) = (∩iEi)∩ [a, b]. It is given that

⋂
iEi(α, β) is nonempty, so a ≤ b.

Thus ∫
R

k∏
i=1

1Ei(α,β)(y) dy = | ∩i Ei(α, β)| = |(∩iEi) ∩ [a, b]|.

Therefore∫
R

k∏
i=1

1Ei(y) dy −
∫
R

k∏
i=1

1Ei(α,β)(y) dy = |(∩iEi) \ [a, b]|

= |(∩iEi) ∩ (−∞, a)|+ |(∩iEi) ∩ (b,∞)|.

Choose l such that al = a. Then (∩iEi) ∩ (−∞, a) ⊂ El ∩ (−∞, a) and hence

|(∩iEi) ∩ (−∞, a)| ≤ |El ∩ (−∞, a)| = α.

Similarly |(∩iEi) ∩ (b,∞)| ≤ β.
For the converse, suppose that the Ei are closed intervals, and that ∩iEi(α, β) 6= ∅. Then

∩iEi(α, β) = [a, b] where a ≤ b, as above. In the same way, ∩iEi = [a?, b?] where a? is the
maximum of the left endpoints of the intervals Ei, and b? is the minimum of their right endpoints.
Obviously a? = a− α and b? = b+ β.

The next lemma is evident.

Lemma 48. Let 0 ≤ α, β < ∞. Let {Ik} be a collection of closed bounded subintervals of R
satisfying |Ik| ≥ α + β. Suppose that ∩kIk(α, β) 6= ∅, and that J is a closed subinterval of R
satisfying J(α, β) ⊃ ∩kIk(α, β). Then J ⊃ ∩kIk.

7.4 Deformation
We change notation: The number of sets Ej will be n + 1, and the index j will run through
{0, 1, · · · , n}. The index j = 0 will have a privileged role.

Consider a functional

I(E0, · · · , En) =

∫
R2

n∏
j=0

1Ej(Lj(x)) dx,

2Riesz considers only the case of three sets, truncates all three in this fashion, uses only the case α = β, and works
directly with the integral over R2 which defines I(E1, · · · , En), rather than with one-dimensional integrals.
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with {Lj : 0 ≤ j ≤ n} nondegenerate. The invariance under changes of variables noted above,
together with this nondegeneracy, make it possible to bring this functional into the form

I(E0, · · · , En) = c

∫
R
1E0(x)

∫
R

n∏
j=1

1Ej(y + tjx) dy dx

where c is a positive constant, and the tj are pairwise distinct. This is accomplished by means of
a linear change of variables in R2 together with linear changes of variables in each of the spaces
R1
j in which the sets Ej lie. The sets Ej which appear here are images of the original sets Ej

under invertible linear mappings of R1
j , but equality holds in the inequality (7.1) for this rewritten

expression I(E0, · · · , En) if and only if it holds for the original expression, and the property of
admissibility is preserved.

With I(E0, · · · , En) written in this form,

S?0 = {(x, y) ∈ R2 : |x| ≤ 1
2
|E0|}

S?j = {(x, y) ∈ R2 : |y + tjx| ≤ 1
2
|Ej|} for 1 ≤ j ≤ n.

Let π : R2 → R1 be the projection π(x, y) = x. Define

Ej(r) = Ej(
1
2
r, 1

2
r) for j ≥ 1 and 0 < r ≤ |Ej|

Ej(0) = Ej

E0(r) ≡ E0.

Thus |Ej(r)| = |Ej| − r for j ≥ 1. Let S?j (r) be the associated strips; S?0(r) = S?0 while for j ≥ 1,

S?j (r) =
{

(x, y) ∈ R2 : |y + tjx| ≤ 1
2
|Ej| − 1

2
r
}

for 0 ≤ r ≤ minj |Ej|. Thus if j ≥ 1 and r = |Ej| then S?j (r) is a line in R2.
The cases n ≥ 3 of the next lemma will later be used to prove Theorem 10 by induction on n.

Lemma 49. Let n ≥ 2. Let {Ej : 0 ≤ j ≤ n} be a strictly admissible family of n + 1 Lebesgue
measurable subsets of R1. Then there exists r̄ ∈ (0,min1≤j≤n |Ej|) such that

(Ej(r̄) : 0 ≤ j ≤ n) is admissible
S?0 ⊃ ∩j≥1S

?
j (r̄).

The second conclusion says in particular that (Ej(r̄) : 0 ≤ j ≤ n) fails to be strictly admissible.
Because admissibility is a property of the measures of sets only with no reference to their geometry,
Lemma 49 concerns deformations of intervals centered at 0 and of associated strips, not of more
general sets.

Proof. Define r̄ to be the infimum of the set of all r ∈ [0,mink≥1 |Ek|] for which (Ej(r) : 0 ≤
j ≤ n) fails to be strictly admissible. If r = mink≥1k≥1 |Ek| = |Ei| then |Ei(r)| = 0 and therefore
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(Ej(r) : 0 ≤ j ≤ n) is not strictly admissible. Thus r̄ is defined as the infinmum of a nonempty
set, and 0 ≤ r̄ ≤ mink≥1 |Ek|.

Since (E0, · · · , En) = (E0(0), · · · , En(0)) is strictly admissible, and since strict admissibility
is stable under small perturbations of the type under consideration, the n+ 1-tuple
(E0(r), · · · , En(r)) is strictly admissible for all sufficiently small r ≥ 0. Therefore r̄ > 0.

Consequently the definition of r̄ implies one of two types of degeneracy: Either |E∗l (r̄)| = 0
for some l ≥ 1, or there exists i ∈ {0, 1, · · · , n} such that

S?i (r̄) ⊃ ∩j 6=iS?j (r̄). (7.7)

Claim 4. The inclusion (7.7) must hold for at least one index i ∈ {0, 1, · · · , n}.

Proof. If not, then the other alternative must hold; there exists an index l such that |E∗l (r̄)| = 0. In
that case, S?l (r̄) is by definition equal to the line {(x, y) : y + tlx = 0}, which contains 0. For each
index j 6= l, the intersection of S?j (r̄) with L is a nonempty closed interval of finite nonnegative
length, centered at 0. Choose i 6= l for which the length of S?i (r̄) ∩ L is maximal. Then S?i (r̄)
contains S?i (r̄) ∩ L, which in turn contains S?j (r̄) ∩ L for every j /∈ {i, l}. Therefore (7.7) holds
for this index i.

Let
K = ∩nj=1S

?
j (r̄),

which is a nonempty balanced convex subset of R2. K is compact, by the nondegeneracy hypoth-
esis, since E∗j are compact intervals.

π(K) ⊂ R is a compact interval centered at 0, as isE∗0 . Therefore3 π(K) ⊂ E∗0 , orE∗0 ⊂ π(K).

Claim 5. If π(K) ⊃ E∗0 and if an index i satisfies (7.7), then i = 0.

Proof. Suppose that π(K) ⊃ E∗0 and that i 6= 0 satisfies (7.7). For 1 ≤ j ≤ n define the closed
intervals

J(x, j, r) =
{
y ∈ R1 : (x, y) ∈ S?j (r)

}
⊂ R1. (7.8)

For any x ∈ π(K), these intervals have at least one point in common. Since S?i (r̄) ⊃ ∩j 6=iS?j (r̄),

J(x, i, r̄) ⊃ ∩j 6=iJ(x, j, r̄) for any x ∈ E∗0 .

Therefore by Lemma 48,

J(x, i, 0) ⊃ ∩1≤j 6=iJ(x, j, 0) for all x ∈ E∗0 . (7.9)

Since S?0 = π−1(E∗0) it then follows that

S?i ⊃ S?i ∩ π−1(E∗0) ⊃ ∩1≤j 6=iS
?
j ∩ π−1(E∗0) = ∩0≤j 6=iS

?
j ,

contradicting the hypothesis that (E0, · · · , En) is strictly admissible.

3This apparently innocuous step is responsible for the restriction m = 2 in our main theorem.
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Claim 6. π(K) cannot properly contain E∗0 .

Proof. Suppose that π(K) properly containsE∗0 . By the preceding Claim, (7.7) holds for i = 0. Let
x ∈ π(K) \ E∗0 . There exists y ∈ R such that (x, y) ∈ K. Since x /∈ E∗0 , (x, y) /∈ S?0 = π−1(E∗0).
Therefore K = ∩j≥1S

?
j (r̄) is not contained in S?0 = S?0(r̄), contradicting (7.7).

Claim 7. π(K) is not properly contained in E∗0 .

Proof. If π(K) is properly contained in E∗0 , then it is contained in the interior of E∗0 , since each
of these sets is a closed interval centered at 0. Consequently K is contained in the interior of
π−1(E∗0) = S?0 = S?0(r̄); that is, ∩j≥1S

?
j (r̄) is contained in the interior of S?0 . Therefore for every

r′ < r̄ sufficiently close to r̄, ∩j≥1S
?
j (r
′) is contained in S?0 . Thus (E0(r′), · · · , En(r′)) fails to be

strictly admissible. This contradicts the definition of r̄ as the infimum of the set of all r for which
(E0(r), · · · , En(r)) fails to be strictly admissible.

Combining the above four claims, we conclude that (7.7) holds for i = 0 and for no other
index, and that π(K) = E∗0 .

Claim 8. |Ej(r̄)| > 0 for every index j ∈ {0, 1, · · · , n}.

Proof. If |El(r̄)| = 0 then since E0(r̄) = E0, the index l cannot equal 0. S?l (r̄) is the line L =
{(x, y) : y + tlx = 0}. For each j 6= l, S?j (r̄) ∩ L is a closed subinterval of L centered at 0.
Therefore K is equal to the smallest of these subintervals.

Since π(K) = E∗0 , and since π : L → R is injective, K must equal L ∩ S?0 = S?l (r̄) ∩ S?0 .
Therefore S?j (r̄)∩L ⊃ S?0(r̄)∩L. Therefore every i /∈ {0, l} satisfies (7.7). Since n ≥ 2 there are
at least three indices 0 ≤ i ≤ n, so there exists at least one index i /∈ {0, l}. But we have shown
that the only such index is i = 0, so this is a contradiction.

To conclude the proof of Lemma 49, it remains to show that (E0(r̄), · · · , En(r̄)) must be ad-
missible. We have shown that |Ej(r̄)| > 0 for all j. The failure of admissibility is a stable property
for sets with positive measures, so if (E0(r̄), · · · , En(r̄)) were not admissible then there would
exist 0 < r < r̄ for which (E0(r), · · · , En(r)) was not admissible, contradicting the minimality of
r̄.

7.5 Conclusion of the Proof
The proof of Theorem 10 proceeds by induction on the degree of multilinearity of the form I , that
is, on the number of sets appearing in I(E1, · · · , En). The base case n = 3 is a restatement of
the one-dimensional case of Burchard’s theorem, in its invariant form, since the two definitions of
admissibility are equivalent.

Assuming that the result holds for expressions involving n sets Ej , we will prove it for ex-
pressions involving n + 1 sets. Let (E0, · · · , En) be any admissible n + 1–tuple of sets satisfying
I(E0, · · · , En) = I(E∗0 , · · · , E∗n).
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Consider first the case in which (Ej : 0 ≤ j ≤ n) is not strictly admissible. Then there exists i
such that S?i ⊃ ∩j 6=iS?j . By permuting the indices, we may assume without loss of generality that
i = 0. Then

I(E0, · · · , En) ≤ I(R, E1, · · · , En) ≤ I(R, E∗1 , · · · , E∗n) = I(E∗0 , · · · , E∗n),

so I(R, E1, · · · , En) = I(R, E∗1 , · · · , E∗n).
Defining

J(E1, · · · , En) = I(R, E1, · · · , En),

we have J(E1, · · · , En) = J(E∗1 , · · · , E∗n). Now (E1, · · · , En) is admissible relative to
{Lj : 1 ≤ j ≤ n}. For if not, then there would exist k ∈ {1, 2, · · · , n} for which S?k properly
contained ∩1≤j 6=kS

?
j . Since S?0 ⊃ ∩j≥1S

?
j ,

∩1≤j 6=kS
?
j = S?0 ∩ (∩1≤j 6=kS

?
j ).

so S?k would properly contain ∩0≤j 6=kS
?
j , contradicting the hypothesis that (E0, · · · , En) is admis-

sible.
By the induction hypothesis, equality in the rearrangement inequality for J can occur only if

Ej differs from an interval by a null set, for each j ≥ 1. Moreover, there must exist a point z ∈ R2

such that for every j ∈ {1, 2, · · · , n}, Lj(z) equals the center of the interval corresponding to Ej .
For j ≥ 1, replace Ej by the unique closed interval which differs from Ej by a null set. By an

affine change of variables in R2, we can write I(E0, · · · , En) in the form

c

∫
1E0(x)

∫ n∏
j=1

1Ej(y + tjx) dy dx (7.10)

where c ∈ (0,∞) and tj ∈ R, and now for each j ≥ 1, Ej is an interval centered at 0. The inner
integral defines a nonnegative function F of x ∈ R which is continuous, nonincreasing on [0,∞),
even, and has support equal to a certain closed bounded interval centered at 0. The condition that
(E0, · · · , En) is admissible but S?0 ⊃ ∩nj=1S

?
j means that this support is equal to the closed interval

E∗0 . Among sets E satisfying |E| = |E0|,
∫
E
F <

∫
R F unless E differs from E∗0 by a null set. We

have thus shown that in any case of nonstrict admissibility, all the sets Ej differ from intervals by
null sets, and the centers cj of these intervals are coherently situated, in the sense that cj = Lj(z)
for a common point z ∈ R2.

Next consider the case in which (E0, · · · , En) is strictly admissible. Change variables to put
I(E0, · · · , En) into the form (7.10). This replaces the sets Ej by their images under certain invert-
ible linear transformations, but does not affect the validity of the two conclusions of the theorem.

Let r̄ be as specified in Lemma 49. Set Ẽj = Ej(r̄), and recall that Ẽ0 = E0. Let S̃?j be the
strips in R2 associated to the rearrangements Ẽ∗j . By Lemma 47,∫

R

n∏
j=1

1Ej(y + tjx)dy ≤ r̄ +

∫
R

n∏
j=1

1Ẽj
(y + tjx) dy
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for each x ∈ E0. Multiplying both sides by 1E0(x) and integrating with respect to x gives∫
R
1E0(x)

∫
R

n∏
i=1

1Ej(y + tjx) dy dx ≤ r̄|E0|+
∫
R
1E0(x)

∫
R

n∏
i=1

1Ẽj
(y + tjx) dy dx.

Thus
I(E0, . . . , En) ≤ r̄|E0|+ I(E0, Ẽ1, . . . , Ẽn). (7.11)

By the general rearrangement inequality applied to the n+ 1–tuple (E0, E1, . . . , En),

r̄|E0|+ I(E0, Ẽ1, . . . , Ẽn) ≤ r̄|E0|+ I(E∗0 , Ẽ
∗
1 , . . . , Ẽ

∗
n). (7.12)

Since (Ẽj : 0 ≤ j ≤ n) is admissible, for each x ∈ E0 there exists y such that (x, y) ∈ ∩j≥1S̃
?
j .

Therefore by the second conclusion of Lemma 47,∫
R

n∏
i=1

1E∗j
(y + tjx) dy = r̄ +

∫
R

n∏
i=1

1Ẽ∗j
(y + tjx) dy.

Integrating both sides of this inequality with respect to x ∈ E∗0 gives

I(E∗0 , E
∗
1 , . . . , E

∗
n) = r̄|E∗0 |+ I(E∗0 , Ẽ

∗
1 , . . . , Ẽ

∗
n). (7.13)

Combining (7.11), (7.12), and (7.13) yields

I(E0, . . . , En) ≤ r̄|E0|+ I(E0, Ẽ1, . . . , Ẽn) ≤
r̄|E0|+ I(E∗0 , Ẽ

∗
1 , . . . , Ẽ

∗
n) = I(E∗0 , E

∗
1 , . . . , E

∗
n)

We are assuming that I(E0, E1, . . . , En) = I(E∗0 , Ẽ
∗
1 , . . . , Ẽ

∗
n), so equality holds in each inequality

in this chain. Hence
I(E0, Ẽ1, . . . , Ẽn) = I(E∗0 , Ẽ

∗
1 , . . . , Ẽ

∗
n).

Thus the n + 1–tuple (E0, Ẽ1, · · · , Ẽn) is admissible but not strictly admissible, and achieves
equality in the inequality (7.1). This situation was analyzed above. Therefore we conclude that E0

coincides with an interval, up to a null set.
The same reasoning can be applied to Ej for all j, by permuting the indices, so each of the sets

Ej is an interval up to a null set. In this case (returning to the above discussion in which the index
j = 0 is singled out), each interval Ej has the same center as Ej(r̄). The discussion above has
established that the centers of the intervals Ej(r̄) are coherently situated.
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