
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
System and Analysis for Low Latency Video Processing using Microservices

Permalink
https://escholarship.org/uc/item/6c38332p

Author
VASUKI BALASUBRAMANIAM, KARTHIKEYAN

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c38332p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

System and Analysis for Low Latency Video Processing using Microservices

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Karthikeyan Vasuki Balasubramaniam

Committee in charge:

Professor George M. Porter, Chair
Professor Aaron Schulman
Professor Geoffrey M. Voelker

2017

Copyright

Karthikeyan Vasuki Balasubramaniam, 2017

All rights reserved.

The thesis of Karthikeyan Vasuki Balasubramaniam is ap-

proved, and it is acceptable in quality and form for publica-

tion on microfilm and electronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

I dedicate this thesis to the researchers who worked with me throughout

the course of this project, without whom this success would not have

been possible. Their guidance and constant support is the key factor for

the success of the thesis.

iv

EPIGRAPH

ADDICTED to SPEED?

Is your single processor too slow? The Concoction

Machine Mark-1 parallel computer is just for you!

No matter what your problem, solve it faster with

the Mark-1's many processors working in parallel.

In fact, we promise that with enough processors,

any reasonable problem will run exponentially

faster on our machine. Send us e-mail for more

information.

–Inconsequent Machine Co

“We trade processors for speed.”

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita and Publications . xii

Abstract of the Thesis . xiii

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem statement . 3
1.4 Contributions . 3
1.5 Layout of Thesis . 4

Chapter 2 Literature Review . 5
2.1 Related work . 5
2.2 Research Goals . 6
2.3 Terminology . 6
2.4 Cluster based computing 7

2.4.1 Map-Reduce . 7
2.4.2 Apache Spark . 8
2.4.3 Thunder . 10
2.4.4 StormCV . 10

2.5 Cloud computing . 11
2.5.1 Virtual Machines 12
2.5.2 Containers . 13

Chapter 3 Parallel video processing . 14
3.1 Structure of video . 14

3.1.1 Video formats . 14
3.1.2 Frame Type . 14

vi

3.1.3 Keyframe . 15
3.2 What is parallel video processing? 15
3.3 Solution Overview . 16
3.4 Infrastructure . 16
3.5 Components of an ideal system 17
3.6 Expected peak performance 17

3.6.1 Degree of parallelism 17
3.6.2 Running time complexity 18
3.6.3 Space complexity 19
3.6.4 Cost Estimation . 19

Chapter 4 Orchestration framework for Microservices 20
4.1 What are microservices? 20
4.2 Microservices for video processing 21
4.3 AWS Lambda - Run code in the cloud 21

4.3.1 Concepts . 22
4.3.2 Programming Paradigm 23
4.3.3 Run-time Environment 23
4.3.4 Cost . 24
4.3.5 Startup Latency . 25

4.4 An orchestration framework for lambdas 26
4.5 System Architecture . 27

4.5.1 Controller . 27
4.5.2 Service Endpoint 28
4.5.3 Lambda Worker Pool 29
4.5.4 Communication . 29
4.5.5 Throttling . 30
4.5.6 Data Partitioning 31
4.5.7 Deployment . 31

4.6 Data flow . 31
4.7 Conclusion . 32
4.8 Acknowledgements . 32

Chapter 5 Analysis of Grayscale pipeline 33
5.1 Grayscaling a video . 33
5.2 Scheduling the stages of a grayscaling job 33
5.3 Splitter . 35

5.3.1 Configuration . 35
5.3.2 State Machine . 35
5.3.3 Micro-benchmarks 36
5.3.4 Bottlenecks . 37

5.4 GrayScale . 40
5.4.1 Configuration . 40

vii

5.4.2 State Machine . 41
5.4.3 Micro-benchmarks 42
5.4.4 Bottlenecks . 44

5.5 Combiner . 44
5.5.1 Bottlenecks . 45

5.6 Streamer . 45
5.7 Improvements . 45

Chapter 6 Conclusion . 47

Bibliography . 49

viii

LIST OF FIGURES

Figure 2.1: Spark Architecture . 9

Figure 2.2: The Three Generations of virtualization 11

Figure 4.1: Thumbnail creation pipeline using AWS Lambda 22

Figure 4.2: Startup latency of containers . 25

Figure 4.3: Cold start and warm start latency of AWS Lambda. Minutely refers
to the lambda function invoked once every minute. 30Minutely
refers to the lambda function invoked once in 30 minutes. Hourly
refers to the lambda function invoked once in an hour 26

Figure 4.4: System Architecture of the mu framework 28

Figure 4.5: High-level State Machine of a controller in the mu framework . . . 30

Figure 5.1: Example of Gray-scaling an image (Image taken from Sintel) . . . 34

Figure 5.2: Splitter: Dataflow of the splitter stage 36

Figure 5.3: Splitter: State Machine of the controller 37

Figure 5.4: Splitter: Time taken to split a video (whiteboard) into images by
each lambda . 38

Figure 5.5: Splitter: Time taken to split a video (lord) into images by each lambda 39

Figure 5.6: Splitter: Time taken to split a video (sintel) into images by each
lambda . 40

Figure 5.7: GrayScale: Dataflow of the grayscale stage 41

Figure 5.8: GrayScale: State Machine of the grayscale controller 42

Figure 5.9: GrayScale: Time taken to grayscale the images of Whiteboard video 42

Figure 5.10: GrayScale: Time taken to grayscale the images of Lord video . . . 43

Figure 5.11: GrayScale: Time taken to grayscale the images of Sintel video . . . 43

ix

LIST OF TABLES

Table 5.1: Different videos used for the grayscale experiments 34

Table 5.2: Work distribution for different videos used in Splitter stage 35

Table 5.3: Microbenchmark results from tests performed on AWS Lambda and
S3 . 37

Table 5.4: Work distribution for different videos in GrayScale stage 40

x

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor George M. Porter for his consistent

and invaluable advice and support throughout my research and thesis work. His contin-

uous support and feedback helped me in conducting this research and in the writing of

this thesis.

Besides my advisor, I would like to thank Professor Keith Winstein and Riad

S. Wahby from Stanford University, Rahul Bhalerao from Google who worked in this

research for their immense knowledge and guidance.

I would like to extend my thanks to my thesis committee members, Professor

Geoffrey M. Voelker and Professor Aaron Schulman for their inputs and support during

this research.

The mu framework discussed in Chapter 4 is implemented by the co-authors

Riad S. Wahby and Prof. Keith Winstein of the submitted publication. Material from

Chapter 4 in part is currently being prepared for submission for the publication.

xi

VITA

1991 Born in Erode, India

2009-2013 B.E., Computer Science and Engineering,
PSG College of Technology, Coimbatore, India

2013-2015 Member Technical Staff,
NetApp Systems India Private Ltd., Bangalore, India

2015-2017 M.S., Computer Science,
University of California, San Diego, USA

PUBLICATIONS

Sathiya K Priya, Sudha G Sadasivam and V B Karthikeyan. “Article: A New Method
for preserving privacy in Quantitative Association Rules using Genetic Algorithm” In-
ternational Journal of Computer Applications 60(12):12-19, December 2012

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. “Encoding, fast and slow: Low-latency video processing using thousands of
tiny threads” NSDI17, March 2017

xii

ABSTRACT OF THE THESIS

System and Analysis for Low Latency Video Processing using Microservices

by

Karthikeyan Vasuki Balasubramaniam

Master of Science in Computer Science

University of California, San Diego, 2017

Professor George M. Porter, Chair

The evolution of big data processing and analysis has led to data-parallel frame-

works such as Hadoop, MapReduce, Spark, and Hive, which are capable of analyzing

large streams of data such as server logs, web transactions, and user reviews. Videos are

one of the biggest sources of data and dominate the Internet traffic. Video processing

on a large scale is critical and challenging as videos possess spatial and temporal fea-

tures, which are not taken into account by the existing data-parallel frameworks. There

are a broad range of users who want to apply sophisticated video processing pipelines

such as transcoding, feature extraction, classification, scene cut detection and digital

compositing to video content

Parallel video processing poses several significant research challenges to the ex-

isting data processing frameworks. Current systems are capable of processing videos

xiii

but with higher resource startup times, a small degree of parallelism, low average re-

source utilization, coarse-grained billing, and higher latency. This research proposes a

low latency software run-time for processing a single video efficiently by orchestrating

cloud-based microservices. The system leverages lightweight microservices provided

by Amazon Web Services Lambda framework.

xiv

Chapter 1

Introduction

The rate of development of tools for data processing and analysis enables new

applications over large data sets. Large data sets include medical records, web server

logs and user reviews. Data-parallel frameworks such as MapReduce [19], Hadoop [17],

Spark [3] and Storm [4] are used to process these large data sets efficiently.

The video, one of the biggest sources of data on the Internet is complicated to

analyze. Today's digital cinematography, game industry, advanced robotics, television,

and many other fields take advantage of data-intensive video analysis and processing.

In 2013, video traffic was 60% of all Internet traffic, and according to Cisco's forecast,

the percentage will grow to 75% in 2020. A majority of the video traffic includes video

content delivery over the network for users streaming videos. In addition to streaming

video content, users are demanding more complex video processing pipelines. Exam-

ples include video editing, video annotation, object recognition and video classification.

1.1 Background

Video refers to recording, manipulating, and displaying moving images, espe-

cially in a format that can be presented on the screen. With the advent of social media

and television, users demand more computationally intensive complex processing to be

done on videos.

Video processing is data intense, and several systems have been developed to

speed up the ability to process videos by exploiting parallelism. A majority of systems

1

2

support processing the videos in parallel to serve a massive number of users. Video

processing systems operate two levels of parallelism to analyze videos: inter-video par-

allelism and intra-video parallelism. Current video streaming systems such as YouTube

and Netflix deploy their systems in large clusters and rely on inter-video parallelism to

improve the responsiveness of the system and support the broad range of users. As a

result, these systems use coarse-grained parallelism - e.g., one thread per video. And

hence they do not optimize the efficiency of processing a single video. In other words,

intra-video parallelism has gained lesser attention.

Parallel video processing is critical, and existing data-parallel frameworks do not

perform well on videos for several reasons. First, unlike other sources of data, video pos-

sess spatial and temporal correlations among the nearby frames which make it difficult

for fine-grained parallelism. Second, users demand near real-time (interactive) process-

ing with videos which is hard to achieve in spite of the available parallelism. Third,

video processing jobs are computationally intensive and take a lot of CPU. Currently, it

takes hours to process videos in high definition standards.

1.2 Motivation

This section sets up the motivation of this research based on the current situation

of video processing systems.

Latency is critical for users. Users increasingly seem to apply complex pro-

cessing to videos. Today, systems performing complex tasks such as video editing and

compositing often take hours even for a short movie.

Optimizing intra-video processing is highly critical for users demanding

near real-time video processing. Efficient processing of a video requires a system

supporting intra-video parallelism which is challenging because splitting a video across

threads loses the temporal correlations among the nearby frames.

The infrastructure that supports the execution of video processing jobs should

be cost-effective. Most of the current video processing systems are developed using

dedicated infrastructure such as large clusters, that incur significant cost and time in de-

ployment and maintenance. With the advent of cloud computing, offering a pay-as-you-

3

use model, video processing systems can be deployed using the resources provisioned

on-demand such as virtual machines. Most of the cloud resources are billed on an hourly

basis. Though cloud computing is cost-effective, the billing is not fine-grained.

Current video processing systems either run their applications on a dedicated

cluster or deploy the application using virtual machines running in the cloud. Consid-

ering the resources, the efficient use of available computational resources is a key [40],

and this creates the demand for systems that can optimize the utilization of these com-

putational resources in response to the request. This problem becomes critical when the

incoming rate of jobs is sporadic. For instance, there will be an unanticipated burst of

client requests due to a seasonal event. There are moments when there is very low de-

mand, and the resources are idle, thus underutilizing the resources. Hence, the current

systems [40] do not take into account the seasonal variation of requests for processing

and are not cost-effective.

Users require interactive processing of videos. Interactive processing of a

video demands the application to exploit a large amount of parallelism for a very short

period. In other words, this processing is bursty in nature and requires a large number

of short-lived resources for a short period to process the video. Moreover, from an

economic perspective, the variation in demands do not justify a massive investment in

infrastructure, to provide computing power for peak situations.

1.3 Problem statement

The problem is to develop a software run-time that processes a single video

efficiently by orchestrating cloud-based microservices running in parallel.

1.4 Contributions

This research makes two key contributions:

• A software run-time that orchestrates parallel computations using microservices

running in the cloud. The run-time exploits the recent availability of services like

4

Amazon Web Services (AWS) Lambda. Unlike a traditional virtual machine run-

ning in the cloud, which takes minutes to start and billed on an hourly basis (AWS

EC2), Lambda starts in milliseconds and bills usage at sub-second granularity.

• A system that interacts with the user in getting the input video and using the

software run-time in an efficient way to stream the processed video to the user.

1.5 Layout of Thesis

The reminder of the thesis is organized as follows: Chapter 2: Literature Review

focuses on reviewing the literature of parallel video processing using different data-

parallel frameworks and the cloud. Chapter 3: Parallel video processing breaks down

the problem into sub-problems and explains the background, problem, and goals in de-

tail. Chapter 4: Orchestration Framework for Microservices talks about using AWS

Lambda, its use cases and the orchestration framework for invoking AWS Lambda.

Chapter 5: Analysis of Grayscale pipeline talks about the system design of using AWS

Lambda for video processing, explaining the architecture, design, and implementation

in detail. Chapter 6: Conclusion discusses the key contributions of this research, lessons

learnt and the future work.

Chapter 2

Literature Review

Parallel video processing has a substantial literature. We review the literature in

video processing on two fronts: data-parallel frameworks that support video processing

applications and the computing resources that support the video processing systems.

2.1 Related work

There has been significant work done in the area of data-parallel frameworks

that processes data using dedicated infrastructure. The work done in the last decade fo-

cuses on leveraging frameworks such as MapReduce [19], Apache Hadoop [17], Apache

Spark [3], Apache Storm [4], StormCV [25], Dryad [37] and HTCondor [43] for effi-

cient data analysis. They are suited for tasks with coarse-grained parallelism such as

analyzing web server logs and medical records, where data is separable and distributed

across threads. In these tasks, each thread processes a logically independent subset of

data.

The computing resource that is used to run the video processing applications

ranges from centralized scale-up compute servers, distributed scale-out architectures,

cloud compute instances such as AWS Elastic Compute Cloud (EC2), Docker contain-

ers, and microservices.

This chapter discusses in detail on how each of the above frameworks along with

the computing resource solves the problem of parallel video processing while optimizing

on some of the research goals mentioned in Section 1.2.

5

6

2.2 Research Goals

Following is a comprehensive list of the goals of this research and our literature

reviewed is compared against these goals.

• Improve the speed of processing a single video by optimizing on the intra-video

parallelism.

• Orchestrate cloud-based microservices, each working on a fraction of the video to

handle the bursty workload.

• Minimize the cost of the infrastructure supporting the execution of video process-

ing system through fine-grained granularity in billing.

• The running time of processing a video should not be a function of the video

length.

• A simple interface for the user to input the video and the operator, and get the

processed video streamed.

• Ability to start and stop the computing resources faster than the conventional vir-

tual machines.

2.3 Terminology

This section defines few important terms to describe the stages of a typical video

processing job.

• The split step: This is the first stage of any video processing job, where a single

video file is decoded and separated into a set of frames (images), in PNG or JPEG

format. In other words, for a single input, this stage produces M outputs, where

M is the number of frames (images).

• The process step: This is the second stage, where the operator, for example,

grayscale is applied on each frame to produce a grayscaled frame. In other words,

for a single input, this step creates a single output. Video processing jobs may

include one or more process steps.

7

• The merge step: This is the last stage, where a set of frames are combined and

encoded into a single video in the compressed format. This stage is an M-1 stage,

where M inputs are combined to produce a single output.

2.4 Cluster based computing

A cluster refers to a group of servers (nodes) and other resources that give a

single system image with availability, fault-tolerance, and load-balancing for parallel

processing. The distribution of tasks in a cluster for parallel processing has been adopted

by many data-parallel frameworks to process the data efficiently.

2.4.1 Map-Reduce

The Map-Reduce paradigm [32] is a framework for processing large datasets

using a dedicated cluster of computing nodes. MapReduce designates a node as the

master, which coordinates the execution of jobs. Several computing nodes are identified

as data nodes or worker nodes, which execute the tasks given by the master node. A

MapReduce job consists of a Map stage, where the master node splits the data and

distributes the splits across a set of worker nodes that process the information. The

Reduce phase follows the Map phase in collecting the partial outputs from the worker

nodes and combining them to produce the output. Apache Hadoop is a popular Map-

Reduce implementation which consists of a Job Tracker, where the client submits a job

and a Task Tracker which executes the map and reduce tasks.

Video processing has been solved using MapReduce paradigm, and several ap-

proaches have been proposed. Rafael et al. [40] proposed a distributed video process-

ing architecture that implements a video processing application using Hadoop. Though

Hadoop is efficient in processing large volumes of data, there are numerous challenges

involved in the deployment. First, this requires dedicated infrastructure, which requires

a substantial upfront investment and hence is not cost-effective. Second, Hadoop has

been successful in batch-processing jobs but are not suitable for interactive processing.

Weishan et al. [45] implemented the micro-batching model which approximates inter-

active processing but do not justify the investment required.

8

Distributed Video Transcoder [29] describes a video analysis framework that

uses Hadoop to process videos efficiently. This framework assumes that video filter for-

mats have a hierarchical structure like MPEG-2 and H.264. This hierarchical structure

in the video helps the splitter to decode arbitrary input chunks. At a high level, the first

stage of video processing has two jobs:

• A video sequence header MapReduce Job to look for metadata that is present in

the init (first) chunk of the video file.

• A video decoder MapReduce job that uses the metadata obtained from (1) to

decode a particular chunk and write into the Hadoop Distributed File System

(HDFS).

In both of the above studies, the native Hadoop interfaces for splitting a data set

do not fit videos because the splitter does not take into account the temporal correla-

tions of the video. The split step as described in Section 2.3 has to be customized for

dividing a compressed video file into images. The split step and the process step can be

implemented as map stages, and the merge step can be carried out as the reduce stage.

In summary, though Map-Reduce aims at solving video processing through the

high degree of parallelism, it requires upfront investment in setting up and maintaining

the necessary infrastructure. Also, a MapReduce job has a higher startup delay in setting

up the resources.

2.4.2 Apache Spark

Apache Spark [3] aims at processing volumes of data in near real-time through

micro-batching. Spark can process data at a much faster rate than Hadoop and MapRe-

duce because of the in-memory computing. Usually, Spark is deployed in a cluster

environment to support batch-processing and near real-time streaming.

Spark employs in-memory computing to avoid disk reads and writes by keeping

the data in memory. Spark follows the master-slave architecture. As shown in Figure

2.1, it has a single controller (driver) that communicates with many workers (executors).

The driver converts the job into multiple tasks and assigns the tasks to the executors.

Executors are processes running in the worker nodes executing the assigned task.

9

Figure 2.1: Spark Architecture

Spark creates the required executors for each job submitted, and all the executors

share the memory available in the cluster. As described in Figure 2.1, the executor is

a Java Virtual Machine (JVM) process with configurable amount of memory. Each

executor has a pool of task execution slots, which is the unit of parallelism exploited by

the tasks. The number of task slots is a function of the number of worker nodes, memory

per node and number of executors per node sharing the memory.

So in short, the task slots of an executor use shared memory architecture to read

and write data. Effectively, the throughput of the system depends on the number of task

slots available, the memory associated with each slot and interactions with the driver.

Comparing to the research goals laid out in Section 2.2, Spark supports job with

the high degree of parallelism and low startup latency due to the availability of light-

weight task slots. Spark provides fault-tolerance and supports near-real-time processing

due to micro-batching. Yet, there are few challenges associated with the deployment

of video processing systems using Spark. First, deploying the system in "always on"

clusters is not cost-effective and do not justify the variation in demand. Second, the

number of task execution slots [35] available in a cluster is limited for a burst workload.

10

Third, scaling the cluster up and down is expensive and not instantaneous [35]. Fourth,

the latency involved in the creation of task execution slots cannot efficiently support

bursty workload like video processing.

2.4.3 Thunder

Thunder [26] is an ecosystem of tools that focuses on data-parallel, independent

analysis of image data. It supports large-scale video processing by leveraging the ca-

pabilities of Spark. It provides uniform API irrespective of the job being run locally or

distributed.

A job submitted to Thunder starts by getting the image or time series data from

the user. Unlike Hadoop or Spark, the user has to execute the split step as discussed in

Section 2.3 before submitting the job to Thunder. In essence, Thunder exploits paral-

lelism with a rich set of operators for analyzing image data. The split and the merge step

are not currently performed by Thunder.

2.4.4 StormCV

StormCV [25] is an open-source data-parallel framework that enables the use

of Apache Storm [4] for image and video processing by leveraging Computer Vision

(CV) operations. StormCV primarily supports OpenCV (Open Computer Vision) ser-

vices and is flexible for the addition of new libraries. This platform enables the design

and development of distributed video processing pipelines deployed on Apache Storm

clusters.

The architecture of Storm [4] is similar to Spark in the context of job execu-

tion. A job submitted to the Storm creates a topology with a particular configuration

indicating the amount of parallelism needed. A topology is executed by a set of the

worker process. A worker process has its memory consisting of a set of executors. Each

executor, in turn, has one or more tasks which are the threads indicating the unit of par-

allelism. The tasks created here are similar to the task execution slots created by Spark

as described in Section 2.4.2.

Comparing against the research goals in Section 2.2, Storm [25] performs sim-

11

ilarly to Spark because of the similarity in the architecture. StormCV supports addi-

tional video processing operators providing a richer toolkit for the users, yet it has few

drawbacks. The latency involved in the creation of worker process, executors and tasks

are higher, increasing the end-to-end latency for interactive video processing. Also, the

inter-task communication is high when the amount of parallelism increases thus increas-

ing the processing latency. Besides latency, Storm clusters [25] incur a significant cost

for deployment and maintenance.

2.5 Cloud computing

Cloud computing is a way to dynamically provision and use scalable and virtual

resources on-demand over the Internet. Cloud providers such as Amazon Web Services

(AWS) [2], Microsoft Azure [22] and Google Cloud Platform (GCP) [16] offer a broad

range of infrastructure as a service with a different granularity of billing.

The computing resources of cloud can be broadly categorized under three buck-

ets: virtual machines, containers, and microservices. Most of the cloud providers in-

cluding Amazon Web Services [2], Google Cloud Platform[16], and Microsoft Azure

[22] provide all the three types of compute resources. Virtual machines and containers

are discussed in the following sections, and microservices will be introduced in the next

chapter.

Figure 2.2: The Three Generations of virtualization

12

2.5.1 Virtual Machines

The virtual machine provides an abstraction of the hardware and Instruction Set

Architecture (ISA), disk, CPU, network and peripherals. The virtual machine residing

on a physical server runs a separate instance of the operating system. A physical server

can host multiple virtual machines. A hypervisor creates and runs the different virtual

machines in a physical server.

Cloud providers such as Amazon offer Elastic Compute Cloud (EC2) [1] tools

which are virtual machines running in the cloud. Spinning up a new virtual machine

is fast and takes approximately 45-60 seconds [38]. EC2 offers dynamic provisioning

and auto-scaling of virtual machines based on the variation in demand. For example, as

of 2017, m4.4xlarge is a type of virtual machine provided by EC2, which comes with

64GB of RAM costing $0.8 per hour.

Virtual machines solve most of the problems associated with the infrastructure

needed by inter-video parallelism. They are cost-effective, can be dynamically provi-

sioned, scaled up and down with granular billing. It poses some challenges in using

virtual machines for parallel video processing. First, spinning up virtual machines each

working on chunks of the video is expensive regarding cost and startup delay. Second,

the billing is done on an hourly basis which does not justify the seasonal variation in

demand.

Rafael et al. [40] emphasizes on Split & Merge architecture for high-performance

video processing. This architecture is a generalization of the MapReduce paradigm,

that rationalizes the use of resources by exploring on-demand computing. This sys-

tem is deployed on Amazon Web Services (AWS) Public Cloud using Elastic Compute

Cloud (EC2), Simple Storage Service (S3) and Relational Database Service (RDS). Few

EC2 instances are designated as master instances that spawn and monitor multiple EC2

worker instances that execute the split and merge step. The intermediate results and

final output are written to S3 and RDS. This approach is not cost-effective and has high

startup times due to the reasons discussed above.

13

2.5.2 Containers

Traditionally, operating system allows one one user space instance to run ap-

plications. Operating system level virtualization makes it possible for the kernel to run

multiple isolated virtual instances. These isolated virtual instances are called containers.

Various OS-level virutalization systems have been developed over years.

A container consists of an entire runtime environment: application, dependen-

cies, libraries and configuration files, bundles into one package. As shown in Figure

2.2, by containerizing the application, differences in the operating system distributions

are abstracted away. Containers improve on many of the aspects of virtualization by

improved performance isolation, resource control, and efficiency.

One major problem with virtual machines was the adaptability of the system to

variance in load. Usually, with websites that support millions of users like Amazon,

Facebook, and Netflix, there will be variation in traffic (requests per hour) that may

affect the system performance and quality of service. With containers, it is easy to run

components of the system with isolation so that the critical elements of the system are

not affected.

Wrapping the web services with containers, the application is least affected by

any of the changes that occur in the host environment that support all the containers.

Containers are more efficient than virtual machines for large scale systems. Containers

can be cloned and started relatively fast compared to virtual machines. Minimal start-

up time (approximately < 1 second) compared to virtual machines. Reduces the start-up

time of application which is directly proportional to the quality of service impacting the

user.

Chapter 3

Parallel video processing

This chapter explains the structure of a video format and emphasizes the chal-

lenges in developing a parallel video processing system thus setting the expected peak

performance of an ideal video processing system.

3.1 Structure of video

3.1.1 Video formats

A video consists of video frames displayed at a specified frame rate (frames per

second). The frame format determines the size of images regarding pixels. Most movies

use 24 frames/sec.

3.1.2 Frame Type

There are three types of frames in a video: I-frame, B-frame, and P-frame [39].

‘I’-frame refers to the Intra-coded frame, which is a reference frame representing a full

image and is independent of the other frames. I-frames are encoded without motion

compensation which makes it a reference for future predicted frames. ‘B’-frame refers

to the bi-directional predictive frame. This frame contains the difference information

from the adjacent I- or P- frame. ‘P’-Frame refers to the Predictive frame, which is

encoded using motion compensated prediction from either I- or P- frame.

14

15

A group of Pictures (GOP) [39] relates to the collection of frames between two

successive ‘I’-frames including the ‘I’-frames. The presence of GOPs in the video en-

ables random access to the video, such as fast forward and reverse playback.

3.1.3 Keyframe

Videos are available in the compressed or raw format. A compressed video ap-

plies video compression techniques to exploit the correlation among the adjacent frames.

Sections of the image are not repeated in the encoded bit stream if the portion of the im-

ages does not change between the adjacent frames. But this makes random seek to the

video stream impossible because decoding in the middle of a stream does not work when

the images depend on one another.

Video encoders add "Key Frame" or "Stream Access Point" (SAP) in the

beginning, and periodically in the middle to enable random seek in the video. The

property of key frame is that it resets the stream and becomes a barrier. The video

decoder can start decoding from any key frame irrespective of the availability of the

previous frames of the bit stream. When the video is encoded, usually it carries a key

frame for every 10 seconds so that the minimum seek interval while streaming the video

will be 10 seconds, which is reasonable for videos of all length.

The chunks of a compressed video that are separated by a key frame are indepen-

dent. This property is useful in encoding the video in parallel. Each thread can operate

on its piece of chunk without communicating the frames of a video. When it comes to

processing other than encoding and decoding, such as applying the black-white filter to

the video, it is easy to emit the frames of a video and let each thread apply the filter to a

small set of frames.

3.2 What is parallel video processing?

Parallel video processing refers to the intra-video parallelism or frame level par-

allelism, where multiple threads process independent chunks of a video. Each thread

works on a chunk of the video. Frame level parallelism is widely adopted to enable

near-real-time processing because it can scale with the length of a video. Most systems

16

do frame level parallelism where each worker processes thousands of frames. The goal

of this research is to enable fine-grained parallelism where each thread operates on a

small set of frames.

3.3 Solution Overview

Many operators can be applied to video content such as classification, object

recognition, grayscaling, compositing and color grading. Grayscaling is one of the

simplest and fundamental problems in video processing. The problem of grayscaling

a video can be broken down into three sub-problems. Problem-1 (Stage-1): Split the

compressed video from mp4 format into a set or frames. Problem-2 (Stage-2): Ap-

ply the grayscale operator to each of the individual frames of the video to produce a

grayscale frame. Problem-3 (Stage-3): Merge the frames back into a video by using a

suitable video encoder. An analogy of this problem will be with a typical Map Reduce

job. Stage-1 resembles the splitter task (one-to-many function) where the input data is

split into independent chunks based on a particular format. Stage-2 resembles the map-

per task, a one-to-one function where a function is applied to an input to produce an

output. Stage-3 resembles the combiner and the reducer task (sometimes a many-to-one

function), where multiple partial outputs are merged into a single output.

3.4 Infrastructure

As discussed in Chapter 2, the required infrastructure to support the execution of

parallel video processing jobs falls into two broad categories: cluster-based computing

and cloud computing. Data-processing frameworks such as Hadoop and Spark today

rely on the high-performance computational platform offered by cloud providers such

as Amazon EC2 and Azure virtual machines. Cloud providers offer heavyweight virtual

machines for running the application servers.

17

3.5 Components of an ideal system

A parallel video processing system should have the following components. The

first component is an orchestration framework that manages the spawning of threads

and cloud resources for processing the video. The framework should handle a high

degree of parallelism with minimal overhead to minimize the overall running time of

the system. In addition to this, this framework should handle fault tolerance, replication,

data management and network interactions. Finally, a high-level programmatic interface

that the end user can use to process the video.

A set of efficient parallel processing algorithms that operate on videos and frames.

A typical video processing job will have three sub-tasks as discussed in Section 3.3. An

input splitter that converts a video into a set of images by using a decoder and a video

processing tool such as FFmpeg. An operator that processes each image and produces

an output image. A combiner or merger that encodes the set of images back into a video

and makes it available for consumption by the streaming services and the end user.

3.6 Expected peak performance

This section talks about the expected peak performance of an ideal video pro-

cessing system that has the components discussed in Section 3.5. The performance

metrics are not limited to the following sections. However, this research focuses on

the following criteria to evaluate the system. Other performance measures include time

spent in network communication while accessing the cloud resource, and performance

achieved when using the cloud resource optimally as instructed by the cloud providers,

etc. This research is evaluated based on the standard features that will be offered by any

cloud provider or dedicated infrastructure to understand the base system performance

better.

3.6.1 Degree of parallelism

The level of parallelism is mainly limited by some resources that can execute in

parallel. With containers such as Docker, Saarinen et al. [41] says that a maximum of

18

500 containers can be created on a host. Cloud-based microservices are available when

the application has a bursty workload, where the system needs to spawn hundreds of

resources for a shorter period and tear-down quickly. With AWS Lambda, microservices

framework from AWS, the number of concurrent executions without being queued (not

compromising the running time) is the limit that controls the degree of parallelism. Any

user having an account with AWS gets a default limit of 100 concurrent invocations and

can be extended to 1,200 by request. Other cloud providers such as Microsoft Azure

and Google Cloud Platform have similar defaults and extended concurrent limits.

A high degree of parallelism, together with an appropriate chunk size can achieve

high performance. When the level of parallelism is set to the concurrent limit exposed

by the underlying infrastructure, the chunk length can be readily determined by the fol-

lowing equation:

chunk_length =
video_length

concurrent_limits

3.6.2 Running time complexity

The running time of processing a video is measured as the end-to-end latency

involved in executing all the stages of the processing, and the interactions with the or-

chestration framework and the cloud service. When the concurrent limit of the available

resource is increased, the chunk length is reduced, doing less work per thread, which

reduces the time to process the video. So the running time of the stage is a function of

the chunk length processed by the resource.

Ideally, when there is no overhead due to communication and concurrency, the

running time of a stage should be the time taken to process a chunk. But in reality,

interactions with the orchestration framework, cloud resources startup, storing interme-

diate data, networking and throttling increase the running time of a stage by a variable

amount. Still, the asymptotic complexity that is desired to be a function of the chunk

length.

Let N represent the number of stages involved in processing a video, ti represent

the time spent in executing a stage, C represent the chunk length, T represent the total

19

time taken to complete a job and α be the time spent in the interactions in the system.

ti = O(C)

T =
N

∑
n=1

tn +α

3.6.3 Space complexity

The space complexity includes the space occupied to store the input video, out-

put video and any intermediate data produced. A video processing problem in most

cases is reduced to the image processing problem by splitting the video into images

using existing tools such as FFmpeg. During the execution, there are sets of images

produced which are written to the intermediate storage. The number of images can be

computed as the product of the frames-per-second and the length of the video in sec-

onds. For example, Sintel [24], an animation movie runs for 888 seconds, encoded at

24 frames-per-second, has a total of 21,312 images. Let f be the frames-per-second of a

video and L be the length of the video in seconds. The asymptotic space complexity is

a function of their product.

s = O(f ∗L)

3.6.4 Cost Estimation

One significant advantage of leveraging the infrastructure offered by cloud providers

is the pay-per-use model through different granularity of billing. As discussed in Sec-

tion 3.3, it is possible to estimate the cost incurred for running a video processing job

by getting the metering for all the services consumed. Cloud -based microservices such

as AWS Lambda offer granular billing for consuming microservices. For example, if a

job requires 1000 invocations of a function in the cloud, the cost of computing will be

the product of the number of invocations and cost per invocation.

Chapter 4

Orchestration framework for

Microservices

This chapter emphasizes the importance of using microservices [21] for video

processing and introduces the software run-time that processes a single video efficiently

using microservices. The software run-time uses AWS Lambda [6] framework for

achieving the desired performance. The features of AWS Lambda discussed in this

chapter are taken from the documentation [7] provided by Amazon as of 2017.

4.1 What are microservices?

For years, applications are designed as a unified component and deployed in a

monolithic architecture style. The monolithic design has several consequences. First,

as new requirements for software come up, changes made to the software has to be

deployed everywhere causing intermittent availability issues. Second, due to lack of

modularity in deployment, productivity slows down, and the deployment becomes com-

plex. Third, scaling individual software components becomes a bottleneck, because all

the elements co-exist in the same logical resource.

Microservices [21] are an architecture as well as a mechanism. It is an archi-

tectural pattern which breaks a complex application into a set of small and independent

processes communicating with each other using language and platform agnostic APIs.

In other words, it changes the strategy from having a single legacy unified application

20

21

to a functional paradigm that operates as a set of functions over the web.

Microservices architecture breaks the unified software into a set of software

components that can deploy independently into different services. Services can commu-

nicate by invoking each other through standard protocols such as HTTP. Microservices

solve all the three problems discussed above with a negligible overhead in orchestra-

tion. The major challenge in migrating towards a microservices-based architecture is

the need for a stable orchestration framework, that is a system, capable of managing

microservices with reliability, fault-tolerance, and responsiveness.

With microservices, the computing resources are launched and destroyed on-

demand, thus achieving nearly 100% utilization of the resources. Microservices reduces

the task of server management by spinning up computing power on-demand.

4.2 Microservices for video processing

The primary use case for microservices is to improve the large-scale software

deployment and server management. Though microservices are not intended for solving

parallel computing problems, the architecture, usage, and cost of microservices make

it efficient for solving an embarrassingly parallel problem such as video processing.

A typical video processing workflow as discussed in Section 3.3 includes a series of

complex interleaving operations such as splitting, transcoding, processing, merging and

streaming. These processes follow the microservices architectural style which enables

each of the operation to evolve independently and scale out in multiple dimensions.

Since these operations are data-parallel and isolated from each other, it is easy to launch

a large number of microservices for each operation.

4.3 AWS Lambda - Run code in the cloud

AWS Lambda [6] is an event-driven, serverless computing platform provided by

Amazon as a part of the Amazon Web Services. It runs applications without having

the need to provision or manages servers. The user uploads the code to be executed

and configures the trigger, and the AWS Lambda infrastructure takes care of execu-

22

tion and scalability. Though AWS Lambda is not intended for general-purpose parallel

computations, the features of lambda enable it to be a plausible solution for solving an

embarrassingly parallel problem like video processing.

AWS Lambda [7] is a cloud platform with almost zero administration required.

The main benefits of AWS Lambda framework are sub-second (100ms) billing [6],

serverless computing, and continuous scaling. Some of the common use cases of Lambda

are real-time file processing, real-time stream processing, ETL (Extract, Transform and

Load) style applications and web application back-end.

Lambda lets the user create a simple function by uploading a zip of the applica-

tion binaries. For example, a simple lambda function would be to generate a thumbnail

for the photo uploaded by a user in an AWS S3 [9] bucket. The lambda function has the

functionality to create a thumbnail and produce the output to another AWS S3 bucket

for display. Every object added to the S3 bucket will trigger the lambda function.

Figure 4.1: Thumbnail creation pipeline using AWS Lambda

4.3.1 Concepts

Following are some of the fundamental concepts associated with the AWS Lambda

framework.

• Lambda function: The most important component of the Lambda framework is

the lambda function. It is a piece of code written in a programming language

supported by the AWS Lambda framework such as Node.js, Python, Java, etc.

23

The function defines an entry point called the lambda_handler irrespective of the

programming language, and it accepts two parameters. The first parameter is the

event, which captures a set of key-value pairs. The second parameter is the con-

text, which specifies the execution environment such as programming language,

memory configuration, timeout in seconds, permission and role.

• ARN: Amazon Resource Name refers to the code and the metadata that is stored

durably in AWS. The Lambda infrastructure creates an instance of ARN on an

invocation of the lambda function.

• Invocation : Invocation refers to the lambda function in action. Lambda invoca-

tion gets instantiated when the request for invocation comes from AWS Manage-

ment Console or AWS Command Line Interface.

4.3.2 Programming Paradigm

This section talks about the lambda programming model as indicated by AWS

documentation. Execution starts from the lambda_handler, that has access to the event

object containing the JSON data structure. Additional copies of the function are created

to scale and evolve with changes.

Each lambda invocation comes with 512MB (subjected to change) of temporary

disk space. This storage is not durable, hence any persistent data should be stored in

AWS S3, DynamoDB or Redis or any other reliable AWS storage service.

The code written in the lambda function can make use of the functionality sup-

ported by the programming language chosen, or the Linux environment that supports

running the lambda function, or the official SDK provided by AWS to interact with

other AWS services.

4.3.3 Run-time Environment

Having seen the programming paradigm of AWS Lambda, this section talks in

detail about the characteristics of the lambda run-time environment.

24

• The context object contains the timeout that stops the execution of lambda func-

tion when time elapses. Usually, most of the lambda functions use 60 seconds

as a timeout. However for video processing, encode, decode, and other image

operations take significant time to execute.

• The memory and the timeout requirements are configured during the function cre-

ation. All invocations of the same function have the same memory and timeout

configuration. Memory varies anywhere from 128MB 1 till 1.5GB 2. The maxi-

mum timeout allowed is 5 minutes (300 seconds). A lambda invocation can create

up to 256 threads and up to 1,024 file descriptors.

• The invocation role gives the lambda function required permission to execute. The

execution role provides the lambda function the access to other AWS services.

• AWS CloudWatch stores the fine-grained statistics for each lambda function such

as the latency, context information, errors, etc.

• The CPU power, network and disk bandwidth are chosen based on the memory

configured to the lambda function. The user does not have control over the con-

figuration except memory and timeout. Billing depends on the amount of memory

set (not the actual memory used) and the time in 100 milliseconds granularity the

function took to execute.

• By default, each user gets a concurrent limit of 100 lambda invocations per AWS

region across different functions. The limits can be extended to 1,200 per AWS

region upon request. Any requests that are invoked after the limits are exhausted

are throttled.

4.3.4 Cost

As of 2017, a single AWS Lambda invocation costs $0.00001667 for every

GigaByte-second [8]. Comparing to the closest AWS EC2 instance (c3.large) [5] which

runs with same memory configuration, but higher memory and disk space, the cost of

1MB: Mega-byte 1MB = 1024 * 1024 bytes
2GB: Giga-byte 1GB = 1024 MB

25

using lambda is significantly lesser. The difference in cost attributes to the fine-grained

billing of 100-ms versus hourly billing. Hence, lambdas are extremely cost-effective

and powerful for solving general-purpose parallel computations.

4.3.5 Startup Latency

AWS Lambda executes in a container that provides protection and isolation to

the executing function. Lambda creates containers and reuses them whenever possible.

Every time a lambda is invoked, there is a small delay in container startup, language

initialization, and code initialization. Cold start [10] refers to the increased lambda

invocation time which occurs when the lambda function is invoked for the first time or

after an extended period which does not benefit from container reuse.

Figure 4.2: Startup latency of containers

From Amazon [11], if the code of the function is not changed and not too much

time has gone by, Lambda can reuse the previous container for the current invocation.

By reusing, it offers a significant performance by skipping the language initialization,

26

Figure 4.3: Cold start and warm start latency of AWS Lambda. Minutely refers to the lambda function
invoked once every minute. 30Minutely refers to the lambda function invoked once in 30 minutes. Hourly
refers to the lambda function invoked once in an hour

code initialization and the files in the temporary storage will still be available. This is

referred to as warm start.

4.4 An orchestration framework for lambdas

With a large number of isolated and virtualized compute resources such as con-

tainers and microservices, managing the resources in a coordinated manner becomes a

major challenge, creating the necessity for a high-level controller that could drive and

monitor the application. With standard Hadoop and Spark clusters, YARN [30] controls

job scheduling, fault-tolerance, synchronization and coordination among the different

components of a job. Like YARN, there exists operating systems such as CoreOS [12],

RancherOS [23] and Ubuntu Core [28] that provides support for containers and their

orchestration. Systems such as Docker Swarm [13], Kubernetes [18] and Mesosphere

[20] are designed as orchestration system for application containers.

What are the features of an orchestration framework? First, the ability to launch

hundreds of little workers that wraps up the application and controls execution. Second,

27

the capacity to launch, kill, restart and monitor the resources (containers or microser-

vices) across different jobs submitted by the user. Third, support resource consumption

across multiple hosts, availability, fault-tolerance, scalability in different dimensions,

network communication, storage and integration with other services.

Most of the frameworks discussed above deal with application containers like

Docker, LXC (Linux Containers) and containers running in the cloud and not targeted

towards infrastructure like lambda functions. Since these frameworks are tightly cou-

pled to the underlying computing resource, they lack portability in managing the lambda

functions. Hence, this creates the need for a new orchestration framework that can

schedule, launch, deploy and manage lambdas.

mu is a new orchestration framework written for managing lambdas [14]. The

framework is tailored to run with AWS Lambda but can be extended to other microser-

vices like Azure functions, and Google Cloud functions. It also supports the lambda

function integration with storage service such as AWS S3. The fundamental concept

of this framework is to spawn and manage lambdas, each processing a chunk of the

data thus exploiting high degree of parallelism. The ability to launch lambdas instanta-

neously handles applications that are embarrassingly parallel such as video processing.

4.5 System Architecture

The mu framework is organized into several components. Figure 4.4 explains

the architecture of the mu framework.

4.5.1 Controller

The controller is a long-lived coordinating server that creates a pool of lambda

workers. The coordinator instructs the workers through standard Remote Procedure

Call (RPC) request-response interface by sending HTTP requests over TLS connection.

It also maintains the state of worker threads from creation till termination and displays

the status of each worker.

There are three basic features of the controller. First, controller avoids deadlock

between lambda workers during communication with dependencies by scheduling the

28

Figure 4.4: System Architecture of the mu framework

workers in order. Second, the controller instantaneously starts a large number of worker

lambdas with the same lambda function. Third, the workers communicate with each

other using a rendezvous server.

4.5.2 Service Endpoint

There are different ways to invoke a lambda function: AWS Software Devel-

opment Toolkit (SDK), AWS Management Console and HTTP requests to the service

endpoint. Each lambda function has an HTTP endpoint which can be invoked through

standard HTTP requests (GET, HEAD, and POST). Every POST request includes a

29

JSON data structure containing the input to the lambda function. Each request creates

a lambda invocation with the memory and timeout configuration specified during the

lambda function creation.

4.5.3 Lambda Worker Pool

Workers are short-lived lambda functions running in the cloud as opposed to the

controller. When the worker is invoked, it establishes a TLS connection to the controller.

The controller sends messages containing the commands to the worker via a simple RPC

interface, and the worker replies back with the return value and output via the same RPC

interface.

The controller creates a pool of lambda workers which start from the prelaunch

state. Once the lambda worker can begin execution, it moves to the active state. When

the worker finishes and returns with (0) return value, it moves to the done state, else it

moves to the error state. Figure 4.4 depicts the flow of the state machine of the lambda

worker. Following are some of the characteristics of the mu framework.

• The lambda workers may spawn out of order.

• The lambda invocation created for the first time is called as cold lambda invoca-

tion. Cold lambda invocations incur a small latency in the order of milliseconds

because of the run-time initialization. Recently invoked lambda can be cached

and hence called as warm. Usually, warm lambda invocations are instantaneous

to be fired up.

• Workers are behind a Network Address Translator (NAT). Workers use NAT-

traversal techniques to communicate with each other.

• Controller instructs the worker with commands to be run and receives the response

to the command through standard RPC interface.

4.5.4 Communication

The controller communicates with the worker through standard HTTP request/response

synchronous communication over TLS. The controller sends the commands to be run in-

30

Figure 4.5: High-level State Machine of a controller in the mu framework

side the lambda as an HTTP message and the function that executes inside the lambda

invocation receives the message and runs the command. The response contains the out-

put of the command and the return value.

4.5.5 Throttling

AWS Lambda infrastructure imposes a limit on the number of concurrent lambda

invocations on a region basis. Though Amazon does not reveal the implementation de-

tails of the lambda infrastructure, OpenLambda [36] has done analysis on the infrastruc-

ture that could be used by Amazon to support lambdas. Each lambda invocation spins

a container that has the binaries of the function with the required run-time configura-

tion set in it. The concurrency limit comes from the number of containers that can be

scheduled, deployed and running simultaneously.

By default, each user gets 100 concurrent lambda invocations. Due to the de-

mands of this research, the concurrency limits are increased to 1,200 lambda invocations

per region. In addition to this, Lambda service runs in multiple regions, which increases

the number of concurrent lambda invocations to the product of the concurrency limits

and the number of regions supported. Any lambda invocation that crosses the limit gets

an error indicating the throttling.

31

4.5.6 Data Partitioning

The interesting component of the mu framework is to deal with data partition-

ing across the several thousand lambdas. Each lambda worker is identified by a unique

identifier which starts from 0 till N-1 (N: number of concurrent lambdas required). The

controller computes the start and end of a chunk that has to be processed by the corre-

sponding lambda invocation and instructs the lambda to download the chunk from AWS

S3. In video processing, there are two kinds of input to be partitioned. First, a single

video file in the mp4 format that has to be read by multiple lambda invocations to emit

the images out of the video chunk. In this case, the worker computes the byte offset

based on the duration of chunk to be processed. Second, AWS S3 holds thousands of

images, and each lambda invocation needs a unique subset of images to be processed.

In this case, the controller specifies the start and end image name or identifier to the

lambda invocation.

4.5.7 Deployment

The controller is a long-lived server running on a dedicated machine which

launches the pool of lambda workers and controls the execution till completion.

4.6 Data flow

The previous sections talk about the different components of the mu framework

and their interactions. This section talks about the data flow in the system starting from

the user submitting a video till the processed video getting streamed.

• User specifies the location of the video stored in AWS S3 bucket; the operator to

be applied to the video (e.g., gray-scale); the amount of parallelism (number of

lambdas).

• The mu framework invokes the appropriate controller, determines the stages for

processing; finds the chunk size to be processed by each lambda.

• The controller creates a pool of workers.

32

• The lambda worker is given the chunk identifier, the command to run and any

other meta-data needed by the controller.

• The controller communicates with the corresponding lambda worker through stan-

dard HTTP request/response messages.

• The controller monitors the state of the lambda workers and transitions them to

the next state based on the output of the command run in the lambda.

• The controller exits when all the lambda workers exit by success or failure.

• The output video is produced in an AWS S3 bucket which can be streamed to the

user.

4.7 Conclusion

This chapter discusses the need for microservices for large-scale video process-

ing, the advantages, and disadvantages of using it. It is clear that a new orchestration

framework is required in spite of the availability of a lot of frameworks. The mu frame-

work is introduced which acts as an orchestration layer between the user and the AWS

Lambda infrastructure. The data flow shows the efficiency of mu in managing thousands

of lambdas running in the cloud.

4.8 Acknowledgements

The mu framework discussed in Chapter 4 is implemented by the co-authors

Riad S. Wahby and Prof. Keith Winstein of the submitted publication. Material from

Chapter 4 in part is currently being prepared for submission for the publication.

Chapter 5

Analysis of Grayscale pipeline

This chapter discusses how this research helps gray-scale a video efficiently re-

garding cost, time, space and user experience.

5.1 Grayscaling a video

Grayscaling is the most basic filter that can be applied to a video. A video in the

compressed format can be grayscaled by grayscaling every image of the video. Figure

5.1 depicts a grayscaled image. This chapter explains the performance, bottlenecks,

limitations and improvements of the system in grayscaling a single video.

The job of grayscaling a video has three tasks as discussed in Section 3.3. First,

split the compressed video in mp4 format into a set of images in PNG format using

FFmpeg [15]. Second, run the operator (gray-scale) on each of the image produced.

Third, combine the gray-scaled images back into a video and stream the video back to

the user.

5.2 Scheduling the stages of a grayscaling job

A video processing job can be typically broken down into three stages as de-

scribed in Section 3.3 and the three stages can be executed in sequential or parallel

fashion. Breadth-first scheduling refers to the execution of the three stages sequentially.

33

34

Figure 5.1: Example of Gray-scaling an image (Image taken from Sintel)

The output of one stage is passed as the input to the next level. Parallelism is exploited

inside a stage, in other words, this method implements intra-stage parallelism.

Each stage in the grayscaling has a controller implemented using the mu frame-

work. The controller takes in the S3 bucket name, S3 keys to access, number of lambdas

and size of the chunk. The controller implements a state machine with transitions and

stores the per-state logic. Also, the controller assigns a unique identifier to the lambda

worker running in the cloud. This unique identifier is used for assigning the chunks

to the lambda worker. Lambda worker and lambda invocation both refer to the current

instance of the lambda function and can be employed interchangeably.

Table 5.1: Different videos used for the grayscale experiments

Video Name Duration in seconds Pixel Format Size Frames/second
Whiteboard 185 420p 5MB 30

Lord 273 420p 50MB 24
Sintel 888 1k 149.3MB 24

35

5.3 Splitter

5.3.1 Configuration

The splitter stage is driven by a controller implemented in the mu framework.

In this stage, the compressed video is given as input, and a set of images are produced

as output. If the number of lambdas specified exceeds the concurrent limit exposed

by AWS Lambda, the number of lambdas is lowered to the maximum concurrent limit

available. The controller for splitter computes the chunk duration based on the duration

of the video in seconds and the number of lambdas available. The chunk duration is

computed as the fraction of video duration in seconds and the number of lambdas avail-

able. For example, from Table 5.2, the Sintel video runs for 888 seconds and running

the splitter with 888 lambdas leaves each lambda to operate on a 1-second chunk.

Table 5.2: Work distribution for different videos used in Splitter stage

Video Duration (sec) Number of lambdas Chunk Duration (sec)
Whiteboard 185 185 1

Lord 273 273 1
Sintel 888 888 1

5.3.2 State Machine

The controller creates a pool of lambda workers in the prelaunch state. Once the

lambda worker is created, the worker is moved into the active state. The active state

can be further broken down into a state machine as shown in Figure 5.3. The machine

starts with ConfigState, where it sets the run-time environment configuration required

for the lambda. If the configuration is set right, it transitions to the SplitterState, where

the start point and duration of the chunk are determined based on the lambda worker

number and video duration in seconds.

SplitterState runs the FFmpeg tool with the required input to emit the images

out of the video chunk. Since FFmpeg is used with HTTP option, it issues byte range

request to the video stored in S3 and downloads only the chunk that is required by the

lambda thus saving storage and network bandwidth. Now, FFmpeg chops the chunk into

36

Figure 5.2: Splitter: Dataflow of the splitter stage

a set of images and writes to the local file system. The file system here is the temporary

file system, that is ephemeral and local to the lambda invocation. For instance, if the

chunk duration is 2 seconds and the video is encoded at 30 frames per second, there will

be 60 images written to the local file system.

Once the FFmpeg command returns with success, the SplitterState transitions to

the UploadLoopState. This state invokes the UploadState iteratively till all the images

are uploaded to S3. UploadState is given the image to upload by the UploadLoopState,

and it uses S3 API to upload the image. Once all the images are uploaded, the Upload-

LoopState transitions to the FinishState, where the lambda worker is moved to done or

error state based on the success of the workflow.

5.3.3 Micro-benchmarks

The following table documents the performance metrics collected from Lambda

and S3. The controller runs on a dedicated machine with four processors of Intel(R)

Xeon(R) CPU E5-2690 v2 3.00GHz. RTT refers to the round trip time measured in the

network. RTT {A, B} relates to the round trip time between the endpoints A and B.

37

Figure 5.3: Splitter: State Machine of the controller

Table 5.3: Microbenchmark results from tests performed on AWS Lambda and S3

Metric Time (milliseconds)
RTT {Controller, Lambda} 68ms

RTT {Lambda, S3} 60ms
TLS Connection Establishment {Controller, Lambda} 2 RTT {Controller, Lambda}

TLS Message Exchange {Controller, Lambda} 1 RTT {Controller, Lambda}
Lambda - File system write 0.03 seconds / 1MB of data

5.3.4 Bottlenecks

Bottlenecks in the splitter arise due to the cold start of lambdas, concurrency

limits exposed by AWS Lambda and S3, network bandwidth, storage bandwidth and

the bottleneck in the controller. As described in Table 5.2, X refers to the duration of a

video in seconds, Y refers to the number of lambdas processing the video and Z refers

to the chunk size, i.e., the fraction of video processed by a lambda.

Cold start [10] occurs when the container running the lambda function is not

reused from previous invocations of the same function. From Figure 5.6, running the

splitter for the first time has an increased latency in the fire-up state. The cold start adds

approximately 100 milliseconds to each lambda to create the container, initialize the

run-time and perform program initialization.

Network bottleneck refers to the overhead incurred due to the communication

38

Figure 5.4: Splitter: Time taken to split a video (whiteboard) into images by each lambda

between the controller and the lambda worker. Once, the lambda worker is spawned, it

establishes a connection with the controller which takes two round-trip-times according

to TLS benchmark results [27]. Once the connection is established, the controller sends

the command to be run inside the lambda as an HTTP message over the established con-

nection. When the lambda finishes executing the command, it sends back the output of

the command to the controller. Hence, for every command to be run inside the lambda,

it exchanges two messages. The time to transmit the message is a function of the RTT

between the controller and the lambda.

Storage bottlenecks can be classified into two: local file system writes and S3

uploads. From Figure 5.4, the split state includes the time to write data to local file

system, and the upload state represents the time to upload the images to S3. Local file

system writes significantly faster compared to the S3 uploads. It is evident that the S3

transfers are slow due to two reasons: the latency of transferring data from lambda to S3

and the number of concurrent read operations (800 operations per S3 bucket) and write

operations (300 operations per S3 bucket) supported by S3. For example, from Figure

5.6 and Table 5.2, each lambda emits 24 frames. This results in 24 local file system

write and 24 S3 uploads.

The Controller stores the per-state information, transition logic, and the com-

39

Figure 5.5: Splitter: Time taken to split a video (lord) into images by each lambda

mands to be run in the lambda. From Figure 5.4, splitter stage processes 1 second of

video per lambda, hence the lambda executes 1 (configuration setup) + 1 (FFmpeg de-

code/encode) + M (s3 uploads) commands, where M is the frames per second of the

video. For each command, the controller sends a message over the network. This turns

out to be 2 + M messages per lambda. The experiment in Figure 5.4 runs 185 lambdas,

each handling a second of video resulting in N * (2 + M) total messages communicated.

Stragglers are disproportionately long-running lambda workers that are either

delayed in startup significantly or are being stuck in execution and takes a longer time

to complete. Usually, stragglers in splitter task take five times longer than the median

completion time to finish. This increases the average completion time of the job. Figure

5.5 shows a straggler that increases the time to job completion. There are different rea-

sons for stragglers in the splitter task. First, due to the throttling by AWS Lambda, the

requests sent by the controller are not yet served and are queued. Second, the lambdas

in execution are queued by S3 when the number of outstanding read/write requests in

flight crosses the concurrent limits by S3. From the experiments performed with three

different videos, there is one straggler which took significant time to be started.

40

Figure 5.6: Splitter: Time taken to split a video (sintel) into images by each lambda

5.4 GrayScale

5.4.1 Configuration

In this stage, the images of the video are given as input, and a set of grayscaled

images are produced as output using the mu framework. This stage is driven by a con-

troller implemented in the mu framework. The grayscale controller computes the chunk

size (number of images per lambda) based on the number of images to be processed

and the number of lambdas available. If the number of lambdas specified exceeds the

concurrent limits, the number of lambdas is lowered to the maximum limit available to

the user.

Table 5.4: Work distribution for different videos in GrayScale stage

Video Name Number of images Number of lambdas Images/Lambda
Whiteboard 5,550 786 7

Lord 6,528 816 8
Sintel 21,312 888 24

41

Figure 5.7: GrayScale: Dataflow of the grayscale stage

5.4.2 State Machine

The controller creates a pool of lambda workers in the prelaunch state. The

controller implements a state machine with transitions that are executed by each lambda

worker. The machine starts with ConfigState, where it sets the run-time environment

configuration required for the lambda. Chunk size is determined based on the lambda

worker number (actor number) and total images available. If the configuration is set

right, it transitions to the GrayScaleLoopState.

GrayScaleLoopState invokes GrayScaleState till all the images of the chunk

are grayscaled. For example, with the specified configuration in Table 5.4, each lambda

worker gray scales ten images. GrayScaleLoopState invokes GrayScaleState 10 times to

grayscale the chunk. GrayScaleState retrieves the image from the S3 bucket and stores

in the local file system. Now, it runs the FFmpeg command to grayscale the image

and writes the grayscaled image to the local file system. The GrayScaleState returns

once the grayscaled image is uploaded to the output S3 bucket. Once all the images are

grayscaled, GrayScaleLoopState transitions to the FinishState where it returns from the

lambda worker.

42

Figure 5.8: GrayScale: State Machine of the grayscale controller

5.4.3 Micro-benchmarks

The GrayScaleState (including GrayScaleLoopState) retrieves the image; exe-

cutes the FFmpeg command to grayscale; writes the grayscaled image to the local file

system; uploads the grayscaled image to S3. This state can be broken into three sub-

tasks:

Figure 5.9: GrayScale: Time taken to grayscale the images of Whiteboard video

• Retrieve the image to be grayscaled from S3. The time to complete the request

depends on the available network bandwidth between the lambda worker and the

43

Figure 5.10: GrayScale: Time taken to grayscale the images of Lord video

Figure 5.11: GrayScale: Time taken to grayscale the images of Sintel video

S3 service. This is usually a high-performance bandwidth link allowing fast trans-

fers. This, in turn, has two operations: issue a GET request for the object and store

the object in the local file system. The performance of the request is dependent

on the network that connects lambda and S3. The benchmark tests run on lambda

shows that it takes 0.03 seconds to write 1MB data into the disk. The average size

of the image produced is about 1MB which results in N * 0.03 seconds for writing

the images into the file system.

• FFmpeg runs to grayscale the image downloaded. Once the grayscaled image is

44

produced, it is written back to the local file system.

• Upload the grayscaled image back to S3. The two operations here are local file

system write and network transfer. These estimates are similar to the results dis-

cussed on retrieving images from S3.

To summarize the running time of a lambda worker includes startup, code initial-

ization, download data from S3, write to local file system, grayscale the image through

S3, write data to file system, upload data to S3. The major bottlenecks are network and

concurrency limits.

5.4.4 Bottlenecks

Let N be the number of images processed by a single lambda worker. As dis-

cussed in Section 5.3.4, the bottlenecks of the splitter apply to the grayscale stage. The

network bottleneck is high at this stage between the controller and the lambda. The con-

troller sends three commands: retrieve image from S3, run FFmpeg, upload image to

S3 to the lambda worker for each image to be grayscaled. The experiments performed

shows that if there are N images to be processed per lambda, the controller exchanges

3N requests/responses with the lambda worker. The lambda executes N uploads and

N downloads with S3. So the network includes 5N HTTP messages transported per

lambda.

The controller has a higher overhead in maintaining the state of the lambda as

well as handle more TLS connections due to the high degree of parallelism. This adds

bottleneck in the controller in two fronts: the number of TLS connections to open and

maintain and the amount of memory needed to store the per-worker state.

5.5 Combiner

The task of the combiner is to combine the grayscaled images back into a video

and stream the video to the user. In this stage, the grayscaled images are given as

input, and a single video is produced as output and streamed to the user. The combiner

operation can be done serially or in parallel. In the serial merge, all the grayscaled

45

images are downloaded, and the images are encoded into a video in mp4 format. This

step does not use lambda and runs on a dedicated machine.

5.5.1 Bottlenecks

The serial merge is a bottleneck in the entire video processing job. However, due

to the timing constraints of the research, the experiments for this research is focused on

implementing the serial merge.

5.6 Streamer

There are different streaming protocols to stream the processed video to the user.

The open standard to stream video is Dynamic Adaptive Streaming over HTTP (MPEG-

DASH) [42] protocol. The DASH specification provides support for MP4 and MPEG-2

file formats. The video is partitioned into one or more segments and delivered to the

client running in the browser using HTTP. A media presentation description (MPD)

[42] contains the list of segments, and the information pertained to the segment.

5.7 Improvements

If the S3 service is replaced or removed, what will be the expected peak perfor-

mance? From the discussion on bottlenecks, it is obvious that the reads and writes per-

formed with S3 dominates the running time and becomes the bottleneck. For instance,

with the splitter, several hundred lambdas reading a single object increases contention

among the lambdas. If S3 is replaced with a better storage service or removed from the

execution and rather relied on any in-memory store, the network and storage bottlenecks

can be reduced. The running time of the stage will be just a function of the decode and

encode operations and not on the reads and writes.

How to make lambdas fault-tolerant? A lambda may fail for several reasons:

throttling by AWS Lambda, throttling by the other AWS resources such as S3, failure

inside the lambda. Lambda provides retry mechanism if any of the commands run inside

46

lambda fails. Alternatively, the mu framework can detect failures by checking the output

of each command and re-run the lambda worker.

How to mitigate stragglers? Several straggler mitigation strategies [31] have

been discussed which applies to micro-services as well. Delay assignment of the task to

workers can reduce the contention among the resources accessed. For example, when

the number of outstanding requests reaches 90% of the concurrency limits exposed, the

request rate can be slowed down by queueing the requests internally.

Chapter 6

Conclusion

The work described included a broad range of topics starting from data-parallel

frameworks, video processing, microservices, orchestration framework for managing

AWS Lambda, performance analysis of video processing. In particular, this work fo-

cused more on the AWS Lambda among the different microservices framework avail-

able. Microservices orchestration seems to be a new area of research because of the lack

of a reliable yet customized framework.

The grayscale pipeline discussed gives better insights into the data flow and in-

teractions that occur in the system. Understanding the bottlenecks in the system helps

design scalable and fault-tolerant video processing system using lambdas. The analysis

reveals that lambdas are cost-effective compared to using virtual machines.

The system implemented achieves the requirements set for the project. However,

there are numerous components in the system that could be improved. First, replacing

the controller with a distributed controller will remove some of the bottlenecks associ-

ated with the controller. Second, a straggler mitigation policy can reduce the average

completion time of the job thus improving the reliability of the system. Third, imple-

menting retry mechanism for lambda can improve the correctness of the system without

compromising performance. Last, running the controller in a serverless architecture

such as a container in the cloud will make the entire system serverless.

Though multiple aspects of the system are addressed, this work just touches the

surface of the ocean of problems to be solved with parallel video processing. Devel-

oping scalable and reliable microservices orchestration frameworks would be a more

47

48

challenging and exciting problem to solve to meet the current needs of the users. Mi-

croservices have been out on the market just for the last few years. It will be exciting to

see how the microservices architecture help transforms long-running high-performance

servers to ephemeral supercomputing service running in the cloud.

Bibliography

[1] Amazon Elastic Compute Cloud. https://aws.amazon.com/documentation/ec2/.

[2] Amazon Web Services. https://aws.amazon.com.

[3] Apache Spark. http://spark.apache.org.

[4] Apache Storm. http://storm.apache.org.

[5] AWS EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-demand/.

[6] AWS Lambda. https://aws.amazon.com/lambda/.

[7] AWS Lambda - Run code in the cloud. https://aws.amazon.com/blogs/aws/run-
code-cloud.

[8] AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/.

[9] AWS S3. https://aws.amazon.com/s3/.

[10] Cold start optimization. https://blog.newrelic.com/2017/01/11/aws-lambda-cold-
start-optimization.

[11] Container reuse in AWS Lambda. https://aws.amazon.com/blogs/compute/container-
reuse-in-lambda/.

[12] CoreOS. https://coreos.com/.

[13] Docker Swarm. https://www.docker.com/products/docker-swarm.

[14] Excamera - mu framework. https://github.com/excamera/mu/.

[15] Ffmpeg. https://ffmpeg.org.

[16] Google Cloud Platform. https://cloud.google.com.

[17] Hadoop. http://hadoop.apache.org.

[18] Kubernetes. https://kubernetes.io/.

49

50

[19] Mapreduce architecture. https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

[20] Mesosphere. https://mesosphere.com.

[21] Microservices. https://techbeacon.com/containers-microservices-how-modernize-
legacy-applications.

[22] Microsoft Azure. https://azure.microsoft.com.

[23] RancherOS. http://rancher.com/rancher-os/.

[24] Sintel. https://durian.blender.org/.

[25] StormCV. https://github.com/sensorstorm/StormCV.

[26] Thunder. http://thunder-project.org/.

[27] Transport layer security benchmarking. https://hpbn.co/transport-layer-security-
tls/.

[28] Ubuntu Core. http://developer/ubuntu.com/en/snappy/.

[29] Using Hadoop MapReduce for Distributed Video Transcoding on a Large
Scale. https://content.pivotal.io/blog/using-hadoop-mapreduce-for-distributed-
video-transcoding.

[30] YARN. https://hortonworks.com/apache/yarn/.

[31] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effec-
tive Straggler Mitigation: Attack of the Clones. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
13), pages 185–198, Lombard, IL, 2013. USENIX.

[32] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association.

[33] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasub-
ramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-Latency Video processing using
Thousands of Tiny Threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), Boston, MA, 2017. USENIX Association.

[34] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel
Computation. https://homes.cs.washington.edu/ ruzzo/papers/limits.pdf.

[35] Alexey Grishchenko. Spark Architecture. https://0x0fff.com/spark-architecture.

51

[36] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless Com-
putation with OpenLambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association.

[37] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks. SIGOPS
Oper. Syst. Rev., 41(3):59–72, March 2007.

[38] Ming Mao and Marty Humphrey. A Performance Study on the VM Startup Time
in the Cloud. In IEEE CLOUD, pages 423–430. IEEE, 2012.

[39] Thomas B. Moeslund. Introduction to Video and Image Processing: Building Real
Systems and Applications (Undergraduate Topics in Computer Science). Springer,
2012.

[40] Rafael Pereira, Marcello Azambuja, Karin Breitman, and Markus Endler. An archi-
tecture for distributed high performance video processing in the cloud. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages 482–
489. IEEE, 2010.

[41] Timo Saarinen. Container-based video processing. Master’s thesis, School of
Science, Aalto University, 2015-06-10.

[42] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming over the In-
ternet. IEEE MultiMedia, 18(4):62–67, October 2011.

[43] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the Condor experience. Concurrency - Practice and Experience, 17(2-
4):323–356, 2005.

[44] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-
puting. In Presented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 15–28, San Jose, CA, 2012.
USENIX.

[45] Weishan Zhang, Pengcheng Duan, and Qinghua Lu. Towards a load-aware
scheduling framework for realtime video cloud. In Identification, Information,
and Knowledge in the Internet of Things (IIKI), 2015 International Conference on,
pages 1–6. IEEE, 2015.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Thesis
	Introduction
	Background
	Motivation
	Problem statement
	Contributions
	Layout of Thesis

	Literature Review
	Related work
	Research Goals
	Terminology
	Cluster based computing
	Map-Reduce
	Apache Spark
	Thunder
	StormCV

	Cloud computing
	Virtual Machines
	Containers

	Parallel video processing
	Structure of video
	Video formats
	Frame Type
	Keyframe

	What is parallel video processing?
	Solution Overview
	Infrastructure
	Components of an ideal system
	Expected peak performance
	Degree of parallelism
	Running time complexity
	Space complexity
	Cost Estimation

	Orchestration framework for Microservices
	What are microservices?
	Microservices for video processing
	AWS Lambda - Run code in the cloud
	Concepts
	Programming Paradigm
	Run-time Environment
	Cost
	Startup Latency

	An orchestration framework for lambdas
	System Architecture
	Controller
	Service Endpoint
	Lambda Worker Pool
	Communication
	Throttling
	Data Partitioning
	Deployment

	Data flow
	Conclusion
	Acknowledgements

	Analysis of Grayscale pipeline
	Grayscaling a video
	Scheduling the stages of a grayscaling job
	Splitter
	Configuration
	State Machine
	Micro-benchmarks
	Bottlenecks

	GrayScale
	Configuration
	State Machine
	Micro-benchmarks
	Bottlenecks

	Combiner
	Bottlenecks

	Streamer
	Improvements

	Conclusion
	Bibliography

