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ABSTRACT OF THE THESIS

Android Application Level CPU DVFS Tuning

By

Sonny Wai-Git Lin

Masters of Science in Computer Science

University of California, Irvine, 2014

Professor Nikil Dutt, Chair

Battery life and performance are two important aspects for smart phone devices. The An-

droid platform runs on top of the Linux kernel. The Linux kernel allows Android users to

tune or control the CPU settings via virtual governors and cpufreq in the application level.

This thesis introduces an approach to tuning CPU DVFS Ondemand governor at the Android

application level that allows better balance between the two aspects. This approach gath-

ers information based on system sensors, application context, and CPU utilization to tune

the Ondemand governor policy. Our approach allows users to tune their governor policies

dynamically and without having to reinstall custom Android OS for their phones to achieve

this balance. We compared the Ondemand and Interactive virtual governor settings to our

approach for performance and power consumption. From our benchmarks, it is possible to

achieve 8% to 17% power savings on idle state. For high single core CPU utilization, energy

consumption improved for in a quad-core and dual-core system respectively by 7% to 13%

without decrease in performance.
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Chapter 1

Introduction

Smartphones are saturating the mobile device market with their increasing sales growth.

Data from Gartner shows that global worldwide mobile phone sales have eclipsed feature

phone sales for the first time in 2013 [1]. From this market share, the majority of the devices

run on the Android platform. As of Q3 of 2013, the Android platform takes a 79% of the

global smartphone market share [1]. With the increasing number of smartphones, there is a

growing need to provide users the ability to effectively control their smartphone’s power and

performance.

The Android platform has the unique capability of providing users the configuration and

information about their kernel’s system status, since the Android framework runs on top of

the Linux kernel layer, seen in Figure 1.1. Android users can take advantage of the kernel

information normally seen in Linux desktops develop features that other mobile platforms are

not able to utilize. With this architecture, numerous developers have created applications,

such as Busybox in the Google Play Store, that are enabling users to have high customization

and desktop capabilities [2].
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Figure 1.1: Android Framework [3]

Android applications allow users to adjust the balance between power and performance by

controlling the smartphones with information from the kernel and application layer. At the

application framework, programmers are able to allow users to control their devices’ radios

and CPU frequency. In this category, there is a subset of Android applications that focus on

configuring the CPU frequency via Linux’s cpufreq governors via the kernel layer [4]. From

observations and surveys, these CPU applications statically configure the CPU frequency and

CPU cpufreq governors based on the user configurations [5]. Although these applications

allow users to set adjust both CPU frequencies and cpufreq governor, these static profiles

do not address changes in utilization patterns. For instance, users leave their application

running without interaction or running background tasks, can vary the performance and

power savings. As a result, mobile devices do not have an effective way to dynamically tune

the cpufreq governor based on CPU utilization. Situations where the applications enter high

utilization or idle state, will result in performance loss or missed energy savings because the

static frequency caps or incorrect selection of cpufreq governor.
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In this thesis, we will present an approach with the Ondemand governor that allows users the

ability to tune their governors based on utilization behavior. In Section 2, we will describe

the surveyed approaches into smart phone power management and related works. In Section

3, we will present what we were tuning and how we implemented our approach. Section 4,

we show our experiments on the Galaxy Nexus and Nexus 4 devices to determine the effect

of the tuning the Ondemand governor. Finally, in Section 5, we will conclude our work

regarding the results of our findings.
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Chapter 2

Background

Our proposed approach is based on observations and survey papers found related to power

management and savings on the Android platform. From our survey, the Android governors’

tunable settings have many implications for the system performance and power savings.

We will explore the effect of tuning the CPU DVFS governor as an alternative approach to

achieve a balance between power and performance for mobile devices. This section covers the

details of surveyed power management approaches in Android smartphones that motivated

this research for tuning the CPU governor with application context.

Android users have different ways to approach this issue of power savings and performance.

In the Android market, there are “battery saving” applications that focus on managing the

Android system in the background. Such approach focuses on controlling GPS, Wi-Fi, and

cellular radios via modeling of application behaviors or statically configured profiles [6] [7].

Another approach, like Carat by UC Berkeley, focuses on identifying what applications con-

sume a significant amount of energy, so users can identify their application’s characteristics

to the community to identify the behaviors of certain apps [8].
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Other approaches utilize administrative privileges that are available through the Linux ker-

nel, to access and control the CPU frequency and cpufreq governor. Through administra-

tive access, smartphone users can install and control system level configurations that are not

available by default. Most notable of these applications that provide users the configuration

between power and performance are SetCPU and No-frills CPU [9][10]. These applications

provide basic adjustment of the CPU frequency and cpufreq governor, as seen in Figure

2.1, through static profiles or configurations. Based on static profiles and certain situations,

these programs allow users to switch cpufreq governor and CPU frequency steps.

(a) SetCPU Profiles (b) No Frills Profiles

Figure 2.1: Static Configuration Profiles

In conjunction with applications controlling the CPU frequencies and cpufreq governor,

Android users have been using custom kernels to improve their performance and energy

usage. Android developer community provides custom Android operating systems, as a way

to extend a smartphone’s capabilities after the devices’ intended end-of-life. CyanogenMod,

a well-known group in this area, utilizes such approach static configurations on a global
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context, similar to the No Frills approach in Figure 2.1 [12]. In the Android community

there are numerous cpufreq governors that balance between the demands of performance

and power with different approaches [13]. With applications, such as SetCpu, Android users

can switch between governors and frequency steps with their own configurations. The other

important factor for custom kernels and these type of application, is the increase frequency

steps for the applications to select. Kernel developers introduce more frequency steps for

their devices to increase performance or energy savings [11]. With these two approaches,

current Android platform provides users a set of configurations for adjusting the CPU’s

performance and energy savings; however, the configurations can be cumbersome and do not

reflect the system utilization due to running background tasks.

Related works in research also focus on creating custom cpufreq governors to apply certain

theory or approach to CPU frequency selection. One research implemented a governor

that switches frequency based on the frames per second (FPS) by tracking eglSwapBuffer

calls in the Android systems [15]. They introduced a cpufreq governor that controls the

CPU frequency only when it detects the application is a video game. Once their system

detects a game application, they switch to their cpufreq governor and use a targeted a

frame rate set by them to perform workload prediction to adjust the CPU cores’ frequency.

Chiou approaches the problem via monitoring the memory access rate of the system. The

author(s) introduce the concept of critical speed for the execution time of a program to

scale the CPU frequency based on the cache hit/miss rate ratio. With that information, the

paper introduces a mathematical model called AD-DVFS that scale the frequency based on

the cache hit/miss ratio [16]. Bezerra’s research shows that cpufreq governors can consume

more energy compared to statically set frequency for certain cases [17]. Their finding is that

there are optimal frequencies for real applications, such as e-book readers and videos that

provide better energy consumption compared to the Ondemand and Conservative governor

[13]. Bezerra showed that setting optimal frequency steps for each application will reduce

energy consumption; however, this finding does not mention about the potential performance
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loss due to using static frequency. Prior research efforts acknowledge the idea that there are

different factors to check, but they do not compare against the performance of the default

governor such as Interactive or Ondemand.

Since most research surveyed focus on custom governors looking at specific feature sets,

we realize that the default governor configurations will have a significant impact to the

performance and energy savings. Zhang noted that mobile applications have varied power

consumption due to the CPU’s different idle state and workloads not fully utilizing multicore

capabilities [18]. Also as noted earlier, the research by Bezerra, static frequency might

provide better energy consumption. From our research, cpufreq governors have statically

set parameters called tunables that affect the evaluation process of the cpufreq governor.

Motivated by these researches and cpufreq Ondemand governor tunable parameters, we

propose a new approach in dynamically tuning the cpufreq governor tunables to attain a

balance between energy consumption and performance. Our implementation focuses on

dynamically tuning the Ondemand governor tunables and frequency steps, based on system

and application information provided by the Android framework and the Linux kernel.
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Chapter 3

Approach

In the following section we will introduce the system we implemented in the Android ap-

plication layer. We will then show the two default Android cpufreq governors and discuss

their implementation.

3.1 System Design

From our observations and background research, we believe that a dynamically tuning

cpufreq governor can allow potential power savings because it can adapt to the utiliza-

tion characteristics of the system. This is important as the governors can be set to respond

well to varied utilization, which results in higher energy consumption.On the other hand

a conservative configuration results in slower CPU evaluations, at the cost of response to

utilization spikes. Therefore, we introduce a tuning system from the Android application

level that tunes the cpufreq frequency and governor based on the information collected in

the system at the application level about the CPU utilization characteristics created by the

running Ondemand governor. An overview of our system can be seen in Figure 3.1.
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Figure 3.1: Profiler System

The motivation for the system to be at the application layer, or userspace layer, so that we can

analyze the utilization patterns of the cpufreq governor for each application’s activity state.

Our tuning system can collect the following information about the Android system: CPU

frequency, cpufreq governor, and screen status. We choose to analyze the CPU utilization,

because we can identify the average usage of each core to adjust the governor’s tunable

parameters based on the retrieved CPU information. This allows the tuning system to have

a holistic view of the running system, because it can identify when the scheduler switches

between cores. This is possible on Linux system, because we can calculate the busy and

idle utilization via /proc/stat, which shows information for each CPU core and the whole

system. At each sampling interval on the system, we record the information into a circular

buffer for each core to calculate a moving average that contains the CPU information for
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the past samples certain amount of time. From this moving average, we are also able to

calculate the variance of each CPU core and the entire system as a whole. The variance is

important because the interactions on a smartphones are varied [19]. We categorized the

system into three utilization states: Low, Mid, and High. We have the settings tuned to

the following profiles for their respective categories, seen in Table 3.1. Since, this is at the

application level, users are able to tune this at an application basis or configure the regions

with different settings. For our purpose, Table 3.1 shows the baseline settings we are using

for our tests and analysis to test our approach.

Ondemand HIGH MID LOW

sampling rate (µs) 90,000 150,000 300,000

up threshold 75 80 90

powersave bias 0 0 100 (4001)

max frequency No Change No Change Decrease By 20%

min frequency Increase by 20% No Change No Change

Table 3.1: Ondemand Tuned Settings

Our approach categorizes the utilization into three regions because of the variations that

could occur at each application context. Since the Android system allows running back-

ground tasks, this approach can compensate for overhead caused by active background

tasks. The approach focuses on five important configurable parameters that are available

by the cpufreq interface and the Ondemand governor. From our research about the On-

demand governor, we focus the three tunable parameters: sampling rate, up threshold,

and powersave bias. These three tunables primarily affect the governor’s evaluation pro-

cess to control the CPU frequency during each sampling of the CPU core. We will explain

how we decide on the tunable values in section 3.2.2. For low and high regions, we con-

trol either the max or min frequency steps that the cpufreq governor can scale to via

scaling min frequency and scaling max frequency. The reasoning for this is to avoid

10



degradation in performance or power consumption due to characteristics of the Ondemand

governor in evaluating the CPU utilization and when the scheduler switches jobs between

CPU cores.

During runtime, the system evaluates and retains the global and application historical uti-

lization average, utilization variance, and frequency average to determine the region to select.

From the calculations, the system adjusts the tunable governor and cpufreq’s max/min fre-

quency with the preset user defined settings. The pseudo logic can be seen in Algorithm

1.

Algorithm 1 Tuner logic

while ServiceRuns do

for each core do

if core utilization > 0 then

Based on frequency average, CPU utilization average, utilization variance find

category region and max/min frequency steps

end if

Update core cpufreq max and min frequency

end for

Pick the highest state determined from evaluation of each core

if Utlization reflects the region characteristics and variance is within a predefined

threshold then

Select the region based on the utilization for the CPU Ondemand governor

Based on application’s average utilization set sampling rate, up threshold, and

powersave bias.

end if

end while

11



The algorithm runs on the Android Java layer as background service. We do this as accessing

the information that are provided by the Android SDK will allow retrieval of information

regarding the running application stack and screen status. Initially, we did consider tracking

input by adding a notification system service in the Android framework, but the overhead was

varied and insignificant. This occurs when users touch and hold on the screen, which results

in a high number of input events. We were able to reduce the CPU utilization overhead of

our tuner by reducing the number of instantiated objects in the Java layer during the run

time of the tuning mechanism. The overhead overall was around 2%. The duration of the

decision process takes about 3 to 10 milliseconds to complete. Figure 3.2 shows a high level

overview of how the tuner interacts with the CPU cores Ondemand cpufreq governor. The

implementation is available via a Bitbucket link in Appendix A.

Figure 3.2: System Infrastructure

3.2 CPU Governor

In the Linux kernel, programmers use the cpufreq interface to create governors that can

dynamically scale the CPU frequency based on a theory or idea[4]. We will explain briefly

about the two governors, Interactive and Ondemand, and characteristics to provide some

12



ideas of the capabilities of the governors, while showing the difference in tunables on the

Galaxy Nexus and Nexus 4 [20][21].

3.2.1 Interactive Governor

Interactive Galaxy Nexus Nexus 4

above highspeed delay 100000 20000

boost None None

go highspeed load 50 85

hispeed freq 70000 1512000

input boost 0 0

min sample time 60000 80000

timer rate 20000 20000

Table 3.2: Interactive Governor settings.

The Interactive governor, introduced by Google in 2010, is a polling governor that evaluates

the CPU workload at a sample interval and when the CPU wakes from idle [22]. The pur-

pose of this governor was to improve responsiveness to latency-sensitive workloads. This is

evaluation is done via a statically defined table called target loads that defines a certain

frequency for a range of CPU load [4]. As a result, research has shown that the Interactive

governor is more responsive in latency workloads compared to the Ondemand governor [23].

Although, target loads parameter is not available for application programmers and users,

there are other tunable parameters that affect the balance of performance and energy con-

sumption. The default static configurations for the Nexus 4 and Galaxy Nexus are available

in Table 3.2.
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From the table 3.2, the configurations show that the manufactures have different settings

for the cpufreq governors. In the Galaxy Nexus, the hispeed freq frequency is set to be

700 MHz while the Nexus 4 is the maximum frequency of 1.5 GHz. The governor scales

the frequency whenever the load exceeds the value set by go highspeed load. However,

the hispeed freq is also used by two tunable parameters, boostpulse and input boost.

Both devices use boostpulse or input boost to scale the frequency immediately when an

input event from the touch screen is encountered. As seen in the Nexus 4, this scales to

the maximum frequency step. The governor scales to the target frequency to reduce time

for starting or interacting with applications, based on the assumption that touch inputs

preemptively starts intensive work loads. In summary, the Interactive governor provides the

best performance because of how proactively it scales the frequency and scale based on input

events. However, this means excessive energy usage occurs due to preemptively scaling the

frequency on every input event.

3.2.2 Ondemand Governor

Ondemand Galaxy Nexus Nexus 4

ignore nice load 0 0

io is busy 0 1

powersave bias 0 0

sampling down factor 60000 80000

sampling rate (µs) 300000 50000

sampling rate min (µs) 30000 10000

up threshold 95 90

down differential N/A 3

Table 3.3: Ondemand Governor settings.
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The Ondemand governor is a cpufreq governor introduced to Linux operating system by

Intel [14]. This governor is widely adopted and functions less aggressively compared to

the Interactive governor. The governor only calculates the utilization of the target core at a

sampling interval set by the sampling rate. The Ondemand governor scales to the maximum

frequency, once the CPU utilization exceeds the up threshold value. Downscaling to a lower

frequency is determined at the next sample interval with respect to CPU utilization load.

It is also important to note that the Ondemand governor has received some tunable set-

ting changes from Linux kernel 3.0 to 3.4. Intel introduced the idea of changing the CPU

frequency based on sampling window improve the frequency downscaling decision [24]. Al-

though, there is a subtle change in calculating the frequency average, the kernel still uses

the same algorithm to determine the downscale frequency in both Ondemand governor in

the Galaxy Nexus and Nexus 4, seen in Figure 3.3. With this algorithm, the users are still

able to tune a set of tunables that are available from the two devices.

cur_load = 100 * (wall_time - idle_time) / wall_time; // Busy time

max_load_freq = cur_load * freq_avg;

freq_next = max_load_freq /(up_threshold - down_differential);

Figure 3.3: Ondemand Frequency Downscaling Method [25][26]

Comparing the two devices’ cpufreq Ondemand governor tunables we see a significant dif-

ference in the sample rate and up threshold values. In context, the Linux kernel clock

tick is approximately 10 milliseconds [27]. The Nexus 4’s Ondemand governor evaluates

the CPU core every 50 milliseconds, while Galaxy Nexus’s evaluates the CPU core every

300 milliseconds. From this difference, we see that the Ondemand governor’s sampling rate

affects the load on the system because of how often it evaluates the CPU load.

From section 3.1, our approach focuses on tuning the sampling rate, up threshold, and

powersave bias into three categories: Low, Mid, and High. Using the static configurations

15



for each region, we allow variability in the Ondemand governor’s evaluation process.In high

utilization region, the higher sampling rate and lower up threshold values are to improve

response times to utilization spikes For mid level category, we decided to provide the system

a medium setting of the two devices, while lowering the up threshold to increase respon-

siveness of the system if the utilization exceeds the application’s characteristics. In the low

categorization, we increased the sampling rate and up threshold to decrease the chances of

scaling to the max frequency. In addition, we also manipulate the powersave bias to avoid

scaling to the max frequency, until the utilization characteristics exceeds the application’s

utilization characteristics.
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Chapter 4

Experiments

4.1 Experimental Setup

Our experiments setup is tested on two mobile devices, the Galaxy Nexus and Nexus 4

[20][21]. We use a Monsoon Power Monitor to measure the energy consumption on the two

devices [28]. We created a work flow, seen in Figure 4.1, to allow repetitive tests on the

Android devices.The PC starts each tests via an AutoIt script [29]. At the start of the

test, it starts a batch file that passes the tests parameters into MonkeyRunner sets up the

Android application via a python file benchmark-start.py. We record the performance for

our benchmarks utilize a combination of Android SDK MonkeyRunner and RepetiTouch Pro

to start or to simulate rapid inputs for each test [30][31]. Once the startup of the testing

application completes, the AutoIt3 script disconnects the USB via an autopass control from

the Monsoon Power Monitor. After the duration of the test ends the script stops and

reconnects the power monitor to the PC. The final step, the script calls MonkeyRunner to

take screenshot of the results, exit the program, and to record the Monsoon Power Monitor

information onto the PC.

17



Figure 4.1: Testing Setup

The two devices both run on Android version 4.2.2. However, the two devices have funda-

mental differences in their specs and governor configuration. The hardware differences are

shown in Table 4.1.

Nexus 4 Galaxy Nexus

CPU Quad-core 1.5 GHz Krait Dual-core 1.2 GHz Cortex-A9

GPU Adreno 320 PowerVR SGX540

RAM 2 GB 1 GB

Linux Kernel 3.4 3.0

Voltage 3.7 V 3.8 V

Table 4.1: Nexus 4 and Galaxy Nexus Hardware Specification [20][21]
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These differences seen in Table 4.1 primarily affect the results for high and mid utilization

tests. The Nexus 4 has a powerful CPU and GPU chipset, which allows rendering and

execution time to be short. On the other hand the Galaxy Nexus’s hardware is less power,

which could result in better energy consumption because it has less CPU and GPU cores.

The most important aspect for our test is the software side of the two devices. One is the

Linux kernel version, the Galaxy Nexus and LG Nexus 4 runs on the Linux kernel 3.0 and 3.4

respectively. As mentioned earlier in section 3.2.2, the kernel change also affects the default

Ondemand governor’s down scaling methodology, such that in kernel 3.4 the next frequency

is evaluated with an average frequency window [24]. However, the most significant difference,

is the governor’s tunable parameters. The difference in up threshold and sampling rate

values affects the performance and energy consumption, which we will see in the results

of our experiments. Finally, the are frequency steps available in the Nexus 4 compared to

the Galaxy Nexus, seen in Table 4.2. The more frequency steps available, there is more

opportunity to downscale to a frequency step that can work with the utilization load.

Nexus 4 (Hz) Galaxy Nexus (Hz)

38400 486000 594000 702000

810000 918000 1026000 1134000

1242000 1350000 1458000 1512000

350000 700000 920000 1200000

Table 4.2: Nexus 4 and Galaxy Nexus Frequency Steps

4.2 Results

We tested our approach by testing high, mid, and idle CPU loads. This approach allows us

to see if the tuning system has an effect compared to a statically tuned system in various

CPU utilization scenarios. For instance, the idle test allows us to test if using power bias

will help reduce power consumption when the screen is off or running low utilization tasks.
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We will show the difference with the tuned Ondemand governor as the baseline. The actual

measured values from the Monsoon Power Monitor are in Appendix B.

4.2.1 High Utilization

For high utilization tests we choose to use Linpack for its high single core utilization. Linpack

is a benchmark designed to perform linear algebra computations that solves linear equations

and linear least-squares problems [32]. We utilize the open source Android Linpack bench-

marks created by Roy Longbottom [33]. These benchmarks are available in NDK, Neon,

and Java for Android [34][35][33]. These set of benchmark are a set of linear algebra matrix

computations that has an execution time between 5-10 seconds. Figures 4.2 and 4.3 provide

the energy and performance results that were seen after ten iterations with the Linpack tests.

20



Nexus 4

(a) Nexus 4 Ondemand/Tuner Linpack

(b) Nexus 4 Interactive/Tuner Linpack

Figure 4.2: Linpack Nexus 4
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Galaxy Nexus

(a) Galaxy Nexus Ondemand/Tuner Linpack

(b) Galaxy Nexus Interactive/Tuner Linpack

Figure 4.3: Linpack

From these three tests on the two devices, we see that there are power energy savings or

performance improvements for different parts of the programming layers. We observed from

traceview, that the improvement is due to the cost of switching between CPU cores [36].

During some tests, we noticed that the running task have the tendency to switch to another

CPU core during its execution. As a result, the core takes time to ramp up back to its
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effective frequency. We can see on the Nexus 4 the improvement is smaller comparison,

primarily due to the higher sampling rate, which will be able to address such core switch

at a shorter period. Since we preemptively shift the minimum frequency to be slightly higher

than the lowest frequency step for the active CPU core; we were able improve the execution

time and reduce the power consumption for the Linpack cases without impact to the overall

performance. In some cases, such as in Galaxy Nexus’s Java Linpack, we were able to

improve the energy efficiency and performance of the test.
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4.2.2 Mid Utilization

Antutu

(a) Nexus 4 Antutu

(b) Galaxy Nexus Antutu

Figure 4.4: Antutu Data

The Antutu benchmark is a common benchmark used in Android platforms to determine

the capabilities of a smartphone Antutu. This test composes of CPU, memory, I/O, and

graphics tests. We choose this test as a high to mid utilization benchmark test. The test
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is to see how a real benchmark tests performance and energy consumption be affected if

we dynamically change the sampling rate and up threshold based on the load the tests

that were performed by during the execution. Our testing application runs ten consecutive

tests on both devices with duration of 175 seconds on the Nexus 4 and 195 seconds on the

Galaxy Nexus. The test time duration is result of the GPUs on both devices which affects

the Antutus OpenGL tests. From the results, we see there is 2% to 3% improvement in

energy consumption for the Nexus 4, with minimal performance difference. We can see that

the high sampling rate of the default settings allow the governors to adapt to the workloads

effectively, which minimized potential performance gains. However, on the Galaxy Nexus

we see that this is a different case. Our tuner gained 4% and 2% improvement in the

Antutu score, compared to Ondemand and Interactive governors’ settings; however, the

energy consumption appears to be in between the two governors. The increase and decrease

from the base sampling rate with our tuner on both devices results in the difference in

energy and performance seen in our test results.
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Angry Birds

(a) Nexus 4 Angry Birds

Figure 4.5: Galaxy Nexus Angry Birds

Figure 4.6: Angry Birds

Angry Birds is a low-mid CPU utilization test. Using RepetiTouch, we repeatedly load the

game, play the first level, and exit the game [31]. For our performance metric we used FPS

Meter, which is an Android application that provides a one minute frames per second (FPS)

average [38].
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The purpose is to measure the effect of the sampling rate to its light load and sudden

increases in CPU utilization. The primary motivation for this test is to compare how much

energy can be saved when the CPU utilization resides primarily in betweens the Low and

Mid utilization regions with our tuner switching the sampling rate. This test shows an

important aspect in the difference in the cpufreq governor tunable settings for both devices.

For the Interactive governor, on both devices, the tuner gains a 9% energy savings with

small loss in FPS comparing to the tuner system. The Interactive governor’s hair trigger

call input boost or boost that is the primary reason for the high energy consumption;

this trigger is called whenever an input is detected on the touch screen. This parameter

immediately scales the frequency to the frequency defined by hispeed freq. Since this is a

heavily touched-based application, the Interactive governor is prone to scale the frequency set

in hispeed freq. This result in higher consumption with a small increase in FPS compared

to our tuner in both devices.

For the Ondemand governor on the two devices, the energy consumption provides a different

perspective of the effect of the tuner. On the Nexus 4 the tuner was able to improve energy

consumption by 6%, while the improvement in the Galaxy Nexus was around 2%. Since the

sampling rate on the Nexus 4 is six times faster than the Galaxy Nexus sampling rate, it is

easier to scale to the maximum frequency. Reducing the sampling rate at lower utilizations

reduced the volatility of scaling frequency seen in the Nexus 4, resulting in better energy

consumption. However, on the Galaxy Nexus our improvement can be attributed to the

increasing the sampling rate because of the transitions to a higher utilization region during

the tests, similar to what we saw in the Linpack tests.
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MiBench

Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 967.11 1,076.09 1,013.03 -4.53% 6.23%

Avg. Power (mW) 1,201.28 1,322.53 1,277.54 -5.97% 3.52%

Total Test (s) 4.96 3.67 4.88 1.64% -24.78%

Num. Tests 91.80 119.00 93.78 -2.11% 26.90%

Avg Test Time (s) 0.05 0.03 0.05 5.22% -40.13%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 870.24 976.45 978.79 -11.09% -0.24%

Avg. Power (mW) 1,233.24 1,266.46 1,246.67 -1.08% 1.59%

Expected Life (hr.) 6.47 6.30 6.40 1.09% -1.50%

Total Test Time (s) 4.46 3.22 3.55 25.60% -9.51%

Num. Tests 101.20 124.80 114.60 -11.69% 8.90%

Avg Test Time (s) 0.04 0.03 0.03 42.23% -16.88%

Table 4.3: MiBench FFT
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Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,003.22 1,073.64 1,008.04 -0.48% 6.51%

Avg. Power (mW) 1,263.76 1,354.28 1,283.62 -1.55% 5.50%

Expected Life (hr.) 6.18 5.73 6.05 2.12% -5.22%

Total Test Time (s) 5.21 4.66 5.32 -2.18% -12.40%

Num. Tests 32.60 35.00 32.40 0.62% 8.02%

Avg Test Time (s) 0.16 0.13 0.16 -2.92% -19.54%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 890.43 1,006.59 1,035.81 -14.04% -2.82%

Avg. Power (mW) 1,312.68 1,279.34 1,321.58 -0.67% -3.20%

Expected Life (hr.) 6.07 6.23 6.03 0.70% 3.32%

Total Test Time (s) 5.39 5.25 5.07 6.23% 3.55%

Num. Tests 30.80 32.00 32.20 -4.35% -0.62%

Avg Test Time (s) 0.17 0.16 0.16 11.06% 4.17%

Table 4.4: MiBench Basicmath

In order to simulate varied interval utilization, we created a micro-benchmark utilizing a

subset of the MiBench embedded tests suite [39]. We used the fft small and basicmath small

tests, because their execution times were small. The fft small test completes around 30 to

50 milliseconds, while basicmath takes around 150 to 180 milliseconds. When each test is

completed the running thread sleeps for 50 and 150 milliseconds respectively to simulate

idle times and test the effect it has on the governor policy. We run the two tests ten times

for duration of ten seconds, to simulate a constant repetitive low and medium workload.

Our motivation for this is to evaluate the effect of tuning both the sampling rate and

up threshold at different intervals, because the Ondemand governor will evaluate the load
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differently. Since this is a content repetitive test, the results are not as uniform compared

to the Antutu and Angry Birds test because it does not reflect the interactions seen in real

applications; however, the results reflect the approachs change in sampling rate regarding

the performance and energy consumption. From the Galaxy Nexus we see that the test

showed the tuner to be in between the Interactive and Ondemand governor’s performance

and energy consumption. On the Nexus 4 the tuner consistently resulted in the highest

energy consumption, but with the best performance. Since two devices have different sample

rate the modified MiBench benchmark show that the sampling rate of the governor affects

the energy consumption and performance during these repetitive tests. With the change in

sampling rate, the benchmark shows that the number of test do vary; however, with the

tuner’s approach our average test times are within 20 milliseconds comparing to the average

test times of the static settings of Ondemand governor. From these MiBench results, we see

that by tuning the sampling rate and up threshold can achieve a balance between power

and performance.
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4.2.3 Low Utilization

Audio

(a) Pink Noise Nexus 4

(b) Pink Noise Galaxy Nexus 4

Figure 4.7: Pink Noise

Our low utilization audio test utilizes a pink noise audio file provided by Audio Check

[40]. This pink noise runs at 96 kHz that runs for 30 seconds in a continuous loop on the

Google Play Music application [41]. Pink noise has the characteristics where power spectral

density is inversely proportional to the frequency of the signal [42]. In practicality, this noise
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appears in a variety of applications and ubiquitous in nature; which we purposed to simulate

users playing audio on the device [42][43]. According to these results, the tuned and static

Ondemand governors both consume similar amounts of energy, but the Interactive governor

consumes 9% to 4% more energy than the Ondemand governor. This is primarily due to

cores constantly waking from idle and the 20 millisecond sampling rate for the Interactive

governor on both devices. Furthermore, we conclude this via traceview, seen in Figure 4.8,

by the lack of blue, which represents the C-state or idle state during the execution of this

test on the Galaxy Nexus.

(a) Interactive Music Playback

(b) Ondemand Music Playback

Figure 4.8: Music Traceview
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Idle

(a) Nexus 4 Ondemand Idle

(b) Galaxy Nexus Ondemand Idle

Figure 4.9: Ondemand Idle Comparison

This test identifies if the powersave bias has the ability to consistently reduce power con-

sumption. The active applications during the test were the Android system services, such as

the Google Play Service, with Wi-Fi enabled, and the screen off. We set the powersave bias

value to 400, which means reduce the current frequency by 40% of the target frequency that is

allowed by the hardware frequency table (i.e. if the target frequency is 1.5 GHz the governor
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will try to select a frequency close to 600 MHz). Adjusting the powersave bias parameters

allows the Ondemand to effectively lower power the energy consumption but still allow the

system to scale the CPU frequency when background activities requires a higher frequency

step. We assume that background tasks do not require scaling to the highest frequency be-

cause users have the screen off, but still need some performance to respond to calls or other

important notifications. By scaling down from the maximum frequency, it shows that it is

possible to save power for such devices at this type of scenario. This configuration does not

impact the system performance when user’s interacts with the device, because the tuner will

dynamically reset the powersave -bias parameter once the screen turned on.

Summary Analysis

The tests we have taken to compare our approach in the high, mid, and low utilization states

to observe the effects of tuning the Ondemand settings and frequency steps.

From high utilization results, we see that the job scheduler has an important effect to the

power consumption of the system. This occurs due to how the cpufreq governor evaluates

the CPU utilization. The cost of reevaluating frequency once the core switched results in

performance loss and higher energy consumption. In the Nexus 4 and Galaxy Nexus, both

high utilization states our tuner shows that increasing the min frequency will have an impact

in reducing the power consumption and improving performance.

In the mid utilization results, we see mixed results from the real and micro benchmarks.

Although, our tests in Antutu and Angry Birds show potential energy savings without per-

formance loss, our modified MiBench benchmark showed a different aspect for mid utiliza-

tion. To clarify this difference, we performed a static sampling rate sweep of the MiBench

tests, seen in Table 4.5. The lower the sampling rate showed that it is possible to reduce

average power usage, but results in lower performance. This is different from our tuner’s
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results, because the system takes into account of the variance in utilization and adjusts the

min frequency and up threshold values. By adjusting the up threshold value, we allow

the Ondemand governor to pick a frequency step that is not the lowest. We see that higher

sampling rate will help for these types of repetitive busy to idle type of tests, but it correlates

to higher energy consumption because of the performance benefits.

Nexus 4 FFT Sample Rate (µs) 50,000 100,000 150,000 200,000 250,000

Energy (µAh) 854.12 827.23 831.97 787.63 784.91

Avg. Power (mW) 1,230.24 1,208.30 1,169.76 1,126.48 1,123.00

Expected Battery (hr.) 6.49 6.60 6.82 7.08 7.10

Num. Tests 101.13 88.50 80.60 66.20 67.77

Nexus 4 Basicmath Sample Rate (µs) 50,000 100,000 150,000 200,000 250,000

Energy (µAh) 890.43 916.93 927.43 907.06 894.63

Avg. Power (mW) 1,312.68 1,302.25 1,287.64 1,280.73 1,275.87

Expected Battery (hr.) 6.07 6.12 6.19 6.23 6.25

Num. Tests 30.80 30.00 29.20 28.60 28.20

Table 4.5: MiBench Sample Rate Sweep

Finally, the low utilization results, we see that the Ondemand governor excels in conserving

energy compared to the Interactive governor. We can see that the cores do not spend much

time on idle in the Interactive governor, which resulted in higher energy consumption. Our

approach with powersave bias allows the system to avoid scaling to the highest frequency

during a low utilization state. This is useful when the screen is off, since background tasks

do not require scaling the frequency to the highest in this state. Therefore, we do reduce

the performance during this state, but still able to retain performance when the screen is on

and when the CPU utilization does not match this particular low utilization region.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we introduced the approach of tuning the cpufreq governor from the ap-

plication layer, implemented with the Ondemand governor. We approached this problem

at the application level to allow users to control the CPU governor to effectively configure

their system to be on an application basis and by the system’s utilization pattern. Unlike

other methodologies that are only compatible with specific devices or by static profiles of

the running foreground applications, this approach allows users to tune their existing system

based on the utilization patterns and for each application. Since static profiles do not ad-

dress potential idle utilization (i.e. user leaves the application running), this approach will

dynamically tune the cpufreq governor for such utilization pattern. We compared our ap-

proach against the default Ondemand and Interactive governor settings on a Galaxy Nexus

and Nexus 4 device. Our experiments show that even though the Ondemand governor is the

same, each smartphone manufacturer has a different configuration that directly impacts the

performance and energy consumption of their manufactured device. Since smartphones are
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always on, setting the DVFS governor to a static setting is not beneficial for the system to

improve its energy consumption. By Changing the governor tunables and frequency based

on the CPU and system information, we allow the system to gain potential performance

benefit and opportunity to conserve battery.

Our methodology of partitioning the CPU frequency average allows the system to categorize

the utilization characteristics of the running application. By doing so, we are able to use a

set of rules to tune the cpufreq governor to be more responsive and some cases conserva-

tive battery life based on the application’s utilization characteristics. This is helpful since

previous research show that the difference in power management governors also affects the

latency of the system [23]. By tuning the governor, with application context, we can en-

able the cpufreq governors, such as Conservative or Ondemand to be responsive to certain

utilization patterns that are running on the Android application layer, while enable energy

savings at Low utilization states. For the Ondemand governor, our approach allows users

to tune the governor to respond better for applications in both high and low utilization

patterns.

Our approach highlights two important issues with current mobile multi-core systems. The

first issue is the CPU scheduler in Linux. By allocating tasks to an idle core, there is no

information passed from the original core to the idle core. This results in performance loss

and increase power consumption due to incorrect operating frequency.

The second issue is the importance of varying the sampling rate and threshold values. By

exploiting this fact on per-application basis, the system can consume less energy while per-

formance degradation will not be noticeable. Since the sampling rate affects how often the

governor decides when to scale the frequency from its previous sampled evaluation, it con-

tributes to the frequency the CPU frequency switches between the frequency steps. As seen

in the MiBench benchmarks, adjusting the right sampling rate and threshold for the system

can help improve energy consumption while minimizing performance loss. We also see that
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the higher sampling rate means that the system is sensitive to short utilization bursts in

that occurs when the system is working on background processes, which results in increased

energy consumption when the user is not actively interacting with the device.

5.2 Future Works

From this research, we see that there are opportunities to improve the performance and

energy consumption even at the application level. The immediate improvement to our ap-

proach is to move the tuning system to the NDK level, to reduce the overhead cost from

the Java layer. Although our test shows that we do not fully address the mid-utilization

tests, the primary reason is because we are still using static configurations for each region

category. We propose for future work that the tuner can propose self-determined policies to

the users on an application basis.

We also see that the job scheduler could be improved by extracting information about the

tasks that are in the cores work queue. Integrating the information provided by the scheduler,

the cpufreq governor can switch to tasks identified as requiring a certain frequency. This

is important because due to Linux Completely Fair Scheduler tasks migration results in

different cores working in the non-optimal frequency [45]. In current cpufreq governor the

high sampling rate helps offset this performance bottleneck, but results in increase power

consumption for tasks that requires a higher frequency. By integrating the scheduler and

cpufreq governor via a kernel module or some higher level of abstraction, the idea of tuning

the system is more effective because can proactively determine the optimal frequency for the

active running tasks in the CPU work queues.

From this research, it shows clearly the importance of a tuning system with a power model

to the existing mobile systems. Our tuning approach will be more efficient to include a
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power model that provides information of the energy cost of changing the governor’s tunable

parameters. By including power models, such as Power Tutor [44], we can correlate the

utilization load to the energy usage, temperature, and screen status to determine more

accurate tunable settings that does not reduce performance and improve energy efficiency.

With a model, we can determine the limitations of the tuning system and find exterior

parameters, such as temperature that will affect the performance of the system. In short,

to exceed the next energy savings overhead in the existing approach, it requires a higher

dynamic tuning that abstracts our approach into the system layer and able to adjust the

cpufreq governor settings and other sensors that are accessible at the kernel level. Mobile

device users, will state their desire for performance or energy saving and in turn the tuning

system should adjust the cpufreq governor and other options available by the Android

framework and Linux kernel to achieve this balance.
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Appendices

A Appendix A

This is the repository link for the project. There are three projects in this repo that contains

the applications that were used for this thesis

https://bitbucket.org/linsw/androiddvfstuner

The following explains the projects that are in this repository.

BenchmarkNativeTest contains the modified mibench tests for our constant repetition tests

ProfilerAutomation contains the AutoIt3 scripts to control the benchmark tests and batch

files used to call the MonkeyRunner scripts

ProfilerPhone is Android DVFS Tuner project for the Android devices.
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B Appendix B

Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,144.55 1,127.47 1,117.12 2.46% 0.93%

Avg Power (mW) 1,521.15 1,504.44 1,480.27 2.76% 1.63%

Mflops 163.00 163.42 160.99 1.25% 1.51%

Exe. Time (s) 7.80 7.83 7.73 0.92% 1.25%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,148.07 1,094.07 1,076.78 6.62% 1.61%

Avg Power (mW) 1,564.67 1,492.39 1,467.47 6.62% 1.70%

Mflops 249.78 249.73 246.92 1.16% 1.14%

Exe. Time (s) 7.81 7.61 7.41 5.39% 2.65%

Table B.1: Linpack NDK Tests
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Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (textmu Ah) 1,319.89 1,263.51 1,171.62 12.65% 7.84%

Avg Power (mW) 1,749.68 1,673.90 1,545.69 13.20% 8.29%

Mflops 48.03 61.42 51.13 -6.06% 20.12%

Exe. Time (s) 8.94 8.31 7.57 18.10% 9.78%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,178.45 1,151.56 1,152.17 2.28% -0.05%

Avg Power (mW) 1,669.10 1,629.04 1,632.23 2.26% -0.20%

Mflops 59.81 62.01 61.27 -2.38% 1.20%

Exe. Time (s) 7.66 8.47 7.56 1.40% 12.10%

Table B.2: Linpack Java Tests

Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,182.62 1,169.67 1,107.40 6.79% 5.62%

Avg Power (mW) 1,570.36 1,549.98 1,470.41 6.80% 5.41%

Mflops 384.32 384.83 411.18 -6.53% -6.41%

Exe. Time (s) 7.81 7.85 7.34 6.28% 6.93%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,295.13 1,306.00 1,287.96 0.56% 1.40%

Avg Power (mW) 1,725.38 1,745.28 1,727.12 -0.10% 1.05%

Mflops 823.99 822.95 813.00 1.35% 1.22%

Exe. Time (s) 8.11 8.21 7.82 3.69% 5.02%

Table B.3: Linpack NEON Tests
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Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (textmu Ah) 2,695.13 2,822.70 2,707.46 -0.46% 4.26%

Avg Power (mW) 1,204.96 1,263.79 1,215.94 -0.90% 3.94%

Expected Battery (hr) 6.66 6.40 6.61 0.74% -3.23%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 2,374.07 2,520.93 2,346.46 1.18% 7.44%

Avg Power (mW) 1,080.76 1,162.26 1,068.09 1.19% 8.82%

Expected Battery (hr) 7.38 6.87 7.47 -1.22% -8.08%

Table B.4: Audio - Pink Noise

Galaxy Nexus Ondemand Tuner Ondemand/Tuner

Energy (µAh) 56.00 47.77 17.23%

Avg. Power (mW) 24.77 21.11 17.32%

Expected Life (hr) 292.25 342.90 -14.77%

Nexus 4 Ondemand Tuner Ondemand/Tuner

Energy (µAh) 86.29 79.92 7.97%

Avg. Power (mW) 39.22 36.31 8.01%

Expected Life (hr) 229.31 262.10 -12.51%

Table B.5: Idle - Screen off
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Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 30,376.83 31,648.86 31,040.41 -2.14% 1.96%

Avg. Power (mW) 2,143.53 2,229.32 2,159.34 -0.73% 3.24%

Score 9,990.31 10,218.00 10,414.27 -4.07% -1.88%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 37,507.12 37,857.65 36,595.29 2.49% 3.45%

Avg. Power (mW) 2,930.20 2,957.64 2,859.10 2.49% 3.45%

Score 18,105.71 18,393.43 18,098.94 0.04% 1.63%

Table B.6: Antutu

Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 6,400.48 6,824.69 6,281.79 1.89% 8.64%

Avg. Power (mW) 1,721.24 1,840.61 1,691.99 1.73% 8.78%

FPS 36.80 36.50 36.00 2.22% 1.39%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 6,588.61 6,761.29 6,200.31 6.26% 9.05%

Avg. Power (mW) 1,810.57 1,856.04 1,724.67 4.98% 7.62%

FPS 48.10 48.20 47.30 1.69% 1.90%

Table B.7: Angry Birds
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Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 967.11 1,076.09 1,013.03 -4.53% 6.23%

Avg. Power (mW) 1,201.28 1,322.53 1,277.54 -5.97% 3.52%

Total Test (s) 4.96 3.67 4.88 1.64% -24.78%

Num. Tests 91.80 119.00 93.78 -2.11% 26.90%

Avg. Test Time (s) 0.05 0.03 0.05 5.22% -40.13%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 870.24 976.45 978.79 -11.09% -0.24%

Avg. Power (mW) 1,233.24 1,266.46 1,246.67 -1.08% 1.59%

Expected Life (hr) 6.47 6.30 6.40 1.09% -1.50%

Total Test Time (s) 4.46 3.22 3.55 25.60% -9.51%

Num. Tests 101.20 124.80 114.60 -11.69% 8.90%

Avg. Test Time (s) 0.04 0.03 0.03 42.23% -16.88%

Table B.8: Mibench FFT

49



Galaxy Nexus Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 1,015.10 1,050.66 1,097.65 -7.52% -4.28%

Avg. Power (mW) 1,369.06 1,333.65 1,381.13 -0.87% -3.44%

Total Tests Time(s) 5.41 5.25 5.07 6.61% 3.50%

Num. Tests 30.56 32.00 32.13 -4.89% -0.39%

Avg. Test Time (s) 0.16 0.13 0.16 -2.92% -19.54%

Nexus 4 Ondemand Interactive Tuner Ondemand

/Tuner

Interactive

/Tuner

Energy (µAh) 890.43 1,006.59 1,035.81 -14.04% -2.82%

Avg. Power (mW) 1,312.68 1,279.34 1,321.58 -0.67% -3.20%

Expected Life (hr) 6.07 6.23 6.03 0.70% 3.32%

Total Tests Time(s) 5.39 5.25 5.07 6.23% 3.55%

Num. Tests 30.80 32.00 32.20 -4.35% -0.62%

Avg. Test Time (s) 0.17 0.16 0.16 11.06% 4.17%

Table B.9: Mibench Basicmath
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Nexus 4 FFT Sample Rate 50,000 100,000 150,000 200,000 250,000

Energy (µAh) 854.12 827.23 831.97 787.63 784.91

Avg Power (mW) 1,230.24 1,208.30 1,169.76 1,126.48 1,123.00

Expected Battery (hr) 6.49 6.60 6.82 7.08 7.10

Total Tests Time(s) 4.46 5.03 5.42 6.08 6.03

Num. Tests 101.13 88.50 80.60 66.20 67.77

Avg. Text Time (s) 0.04 0.06 0.07 0.09 0.09

Nexus 4 Basicmath Sample Rate 50,000 100,000 150,000 200,000 250,000

Energy (µAh) 890.43 916.93 927.43 907.06 894.63

Avg Power (mW) 1,312.68 1,302.25 1,287.64 1,280.73 1,275.87

Expected Battery 6.07 6.12 6.19 6.23 6.25

Total Tests Time(s) 5.39 5.59 5.67 5.74 5.80

Num. Tests 30.80 30.00 29.20 28.60 28.20

Avg. Text Time (s) 0.17 0.19 0.19 0.20 0.21

Table B.10: Mibench Sample Rate Sweep
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